Ghost telescope and ghost Fourier telescope with thermal light
International Nuclear Information System (INIS)
Gong Wenlin; Han Shensheng
2011-01-01
As important observation tools, telescopes are very useful in remote observations. We report a proof-of-principle experimental demonstration of ghost telescope scheme and show that, by measuring the intensity correlation of two light fields and only changing the position of the detector in the reference path, ghost telescope and ghost Fourier telescope can be obtained even if a single-pixel detector is fixed in Fresnel region of the object. Differences between conventional telescope and ghost telescope are also discussed.
International Nuclear Information System (INIS)
Hawking, S.W.; Hertog, Thomas
2002-01-01
Perturbation theory for gravity in dimensions greater than two requires higher derivatives in the free action. Higher derivatives seem to lead to ghosts, states with negative norm. We consider a fourth order scalar field theory and show that the problem with ghosts arises because, in the canonical treatment, φ and □φ are regarded as two independent variables. Instead, we base quantum theory on a path integral, evaluated in Euclidean space and then Wick rotated to Lorentzian space. The path integral requires that quantum states be specified by the values of φ and φ ,τ . To calculate probabilities for observations, one has to trace out over φ ,τ on the final surface. Hence one loses unitarity, but one can never produce a negative norm state or get a negative probability. It is shown that transition probabilities tend toward those of the second order theory, as the coefficient of the fourth order term in the action tends to zero. Hence unitarity is restored at the low energies that now occur in the universe
International Nuclear Information System (INIS)
Grensing, G.
2002-01-01
The path integral for ghost fermions, which is heuristically made use of in the Batalin-Fradkin-Vilkovisky approach to quantization of constrained systems, is derived from first principles. The derivation turns out to be rather different from that of physical fermions since the definition of Dirac states for ghost fermions is subtle. With these results at hand, it is then shown that the nonminimal extension of the Becchi-Rouet-Stora-Tyutin operator must be chosen differently from the notorious choice made in the literature in order to avoid the boundary terms that have always plagued earlier treatments. Furthermore it is pointed out that the elimination of states with nonzero ghost number requires the introduction of a thermodynamic potential for ghosts; the reason is that Schwarz's Lefschetz formula for the partition function of the time-evolution operator is not capable, despite claims to the contrary, to get rid of nonzero ghost number states on its own. Finally, we comment on the problems of global topological nature that one faces in the attempt to obtain the solutions of the Dirac condition for physical states in a configuration space of nontrivial geometry; such complications give rise to anomalies that do not obey the Wess-Zumino consistency conditions. (orig.)
Optical image encryption scheme with multiple light paths based on compressive ghost imaging
Zhu, Jinan; Yang, Xiulun; Meng, Xiangfeng; Wang, Yurong; Yin, Yongkai; Sun, Xiaowen; Dong, Guoyan
2018-02-01
An optical image encryption method with multiple light paths is proposed based on compressive ghost imaging. In the encryption process, M random phase-only masks (POMs) are generated by means of logistic map algorithm, and these masks are then uploaded to the spatial light modulator (SLM). The collimated laser light is divided into several beams by beam splitters as it passes through the SLM, and the light beams illuminate the secret images, which are converted into sparse images by discrete wavelet transform beforehand. Thus, the secret images are simultaneously encrypted into intensity vectors by ghost imaging. The distances between the SLM and secret images vary and can be used as the main keys with original POM and the logistic map algorithm coefficient in the decryption process. In the proposed method, the storage space can be significantly decreased and the security of the system can be improved. The feasibility, security and robustness of the method are further analysed through computer simulations.
Computational Ghost Imaging for Remote Sensing
Erkmen, Baris I.
2012-01-01
This work relates to the generic problem of remote active imaging; that is, a source illuminates a target of interest and a receiver collects the scattered light off the target to obtain an image. Conventional imaging systems consist of an imaging lens and a high-resolution detector array [e.g., a CCD (charge coupled device) array] to register the image. However, conventional imaging systems for remote sensing require high-quality optics and need to support large detector arrays and associated electronics. This results in suboptimal size, weight, and power consumption. Computational ghost imaging (CGI) is a computational alternative to this traditional imaging concept that has a very simple receiver structure. In CGI, the transmitter illuminates the target with a modulated light source. A single-pixel (bucket) detector collects the scattered light. Then, via computation (i.e., postprocessing), the receiver can reconstruct the image using the knowledge of the modulation that was projected onto the target by the transmitter. This way, one can construct a very simple receiver that, in principle, requires no lens to image a target. Ghost imaging is a transverse imaging modality that has been receiving much attention owing to a rich interconnection of novel physical characteristics and novel signal processing algorithms suitable for active computational imaging. The original ghost imaging experiments consisted of two correlated optical beams traversing distinct paths and impinging on two spatially-separated photodetectors: one beam interacts with the target and then illuminates on a single-pixel (bucket) detector that provides no spatial resolution, whereas the other beam traverses an independent path and impinges on a high-resolution camera without any interaction with the target. The term ghost imaging was coined soon after the initial experiments were reported, to emphasize the fact that by cross-correlating two photocurrents, one generates an image of the target. In
2010-10-01
... vent, maximum trap size, and ghost panel requirements. 697.21 Section 697.21 Wildlife and Fisheries... identification and marking, escape vent, maximum trap size, and ghost panel requirements. (a) Gear identification... Administrator finds to be consistent with paragraph (c) of this section. (d) Ghost panel. (1) Lobster traps not...
Tensor ghosts in the inflationary cosmology
International Nuclear Information System (INIS)
Clunan, Tim; Sasaki, Misao
2010-01-01
Theories with curvature-squared terms in the action are known to contain ghost modes in general. However, if we regard curvature-squared terms as quantum corrections to the original theory, the emergence of ghosts may be simply due to the perturbative truncation of a full non-perturbative theory. If this is the case, there should be a way to live with ghosts. In this paper, we take the Euclidean path integral approach, in which ghost degrees of freedom can be, and are integrated out in the Euclideanized spacetime. We apply this procedure to Einstein gravity with a Weyl curvature-squared correction in the inflationary background. We find that the amplitude of tensor perturbations is modified by a term of O(α 2 H 2 ) where α 2 is a coupling constant in front of the Weyl-squared term and H is the Hubble parameter during inflation.
Long-distance thermal temporal ghost imaging over optical fibers
Yao, Xin; Zhang, Wei; Li, Hao; You, Lixing; Wang, Zhen; Huang, Yidong
2018-02-01
A thermal ghost imaging scheme between two distant parties is proposed and experimentally demonstrated over long-distance optical fibers. In the scheme, the weak thermal light is split into two paths. Photons in one path are spatially diffused according to their frequencies by a spatial dispersion component, then illuminate the object and record its spatial transmission information. Photons in the other path are temporally diffused by a temporal dispersion component. By the coincidence measurement between photons of two paths, the object can be imaged in a way of ghost imaging, based on the frequency correlation between photons in the two paths. In the experiment, the weak thermal light source is prepared by the spontaneous four-wave mixing in a silicon waveguide. The temporal dispersion is introduced by single mode fibers of 50 km, which also could be looked as a fiber link. Experimental results show that this scheme can be realized over long-distance optical fibers.
Are ghost surfaces quadratic-flux-minimizing?
International Nuclear Information System (INIS)
Hudson, S.R.; Dewar, R.L.
2009-01-01
Two candidates for 'almost-invariant' toroidal surfaces passing through magnetic islands, namely quadratic-flux-minimizing (QFMin) surfaces and ghost surfaces, use families of periodic pseudo-orbits (i.e. paths for which the action is not exactly extremal). QFMin pseudo-orbits, which are coordinate-dependent, are field lines obtained from a modified magnetic field, and ghost-surface pseudo-orbits are obtained by displacing closed field lines in the direction of steepest descent of magnetic action, ∫A.dl. A generalized Hamiltonian definition of ghost surfaces is given and specialized to the usual Lagrangian definition. A modified Hamilton's Principle is introduced that allows the use of Lagrangian integration for calculation of the QFMin pseudo-orbits. Numerical calculations show QFMin and Lagrangian ghost surfaces give very similar results for a chaotic magnetic field perturbed from an integrable case, and this is explained using a perturbative construction of an auxiliary poloidal angle for which QFMin and Lagrangian ghost surfaces are the same up to second order. While presented in the context of 3-dimensional magnetic field line systems, the concepts are applicable to defining almost-invariant tori in other 11/2 degree-of-freedom nonintegrable Lagrangian/Hamiltonian systems.
Lensless ghost imaging through the strongly scattering medium
International Nuclear Information System (INIS)
Yang Zhe; Zhao Xueliang; Li Junlin; Zhao Lianjie; Qin Wei
2016-01-01
Lensless ghost imaging has attracted much interest in recent years due to its profound physics and potential applications. In this paper we report studies of the robust properties of the lensless ghost imaging system with a pseudo-thermal light source in a strongly scattering medium. The effects of the positions of the strong medium on the ghost imaging are investigated. In the lensless ghost imaging system, a pseudo-thermal light is split into two correlated beams by a beam splitter. One beam goes to a charge-coupled detector camera, labeled as CCD2. The other beam goes to an object and then is collected in another charge-coupled detector camera, labeled as CCD1, which serves as a bucket detector. When the strong medium, a pane of ground glass disk, is placed between the object and CCD1, the bucket detector, the quality of ghost imaging is barely affected and a good image could still be obtained. The quality of the ghost imaging can also be maintained, even when the ground glass is rotating, which is the strongest scattering medium so far. However, when the strongly scattering medium is present in the optical path from the light source to CCD2 or the object, the lensless ghost imaging system hardly retrieves the image of the object. A theoretical analysis in terms of the second-order correlation function is also provided. (paper)
Ghost fringe removal techniques using Lissajous data presentation.
Erskine, David J; Eggert, J H; Celliers, P M; Hicks, D G
2016-03-01
A VISAR (Velocity Interferometer System for Any Reflector) is a Doppler velocity interferometer which is an important optical diagnostic in shockwave experiments at the national laboratories, used to measure equation of state (EOS) of materials under extreme conditions. Unwanted reflection of laser light from target windows can produce an additional component to the VISAR fringe record that can distort and obscure the true velocity signal. Accurately removing this so-called ghost artifact component is essential for achieving high accuracy EOS measurements, especially when the true light signal is only weakly reflected from the shock front. Independent of the choice of algorithm for processing the raw data into a complex fringe signal, we have found it beneficial to plot this signal as a Lissajous and seek the proper center of this path, even under time varying intensity which can shift the perceived center. The ghost contribution is then solved by a simple translation in the complex plane that recenters the Lissajous path. For continuous velocity histories, we find that plotting the fringe magnitude vs nonfringing intensity and optimizing linearity is an invaluable tool for determining accurate ghost offsets. For discontinuous velocity histories, we have developed graphically inspired methods which relate the results of two VISARs having different velocity per fringe proportionalities or assumptions of constant fringe magnitude to find the ghost offset. The technique can also remove window reflection artifacts in generic interferometers, such as in the metrology of surfaces.
Abd El-Maksoud, Rania H
2016-02-20
In this paper, a methodology is developed to model and analyze the effect of undesired (ghost) reflections of Gaussian beams that are produced by anamorphic optical systems. The superposition of these beams with the nominal beam modulates the nominal power distribution at the recording plane. This modulation may cause contrast reduction, veiling parts of the nominal image, and/or the formation of spurious interference fringes. The developed methodology is based on synthesizing the beam optical paths into nominal and ghost optical beam paths. Similar to the nominal beam, we present the concept that each ghost beam is characterized by a beam size, wavefront radius of curvature, and Gouy phase in the paraxial regime. The nominal and ghost beams are sequentially traced through the system and formulas for estimating the electric field magnitude and phase of each ghost beam at the recording plane are presented. The effective electric field is the addition of the individual nominal and ghost electric fields. Formulas for estimating Gouy phase, the shape of the interference fringes, and the central interference order are introduced. As an application, the theory of the formation of the interference fringes by Michelson interferometer is presented. This theory takes into consideration the ghost reflections that are formed by the beam splitter. To illustrate the theory and to show its wide applicability, simulation examples that include a Mangin mirror, a Michelson interferometer, and a black box optical system are provided.
Defocusing effects of lensless ghost imaging and ghost diffraction with partially coherent sources
Zhou, Shuang-Xi; Sheng, Wei; Bi, Yu-Bo; Luo, Chun-Ling
2018-04-01
The defocusing effect is inevitable and degrades the image quality in the conventional optical imaging process significantly due to the close confinement of the imaging lens. Based on classical optical coherent theory and linear algebra, we develop a unified formula to describe the defocusing effects of both lensless ghost imaging (LGI) and lensless ghost diffraction (LGD) systems with a partially coherent source. Numerical examples are given to illustrate the influence of defocusing length on the quality of LGI and LGD. We find that the defocusing effects of the test and reference paths in the LGI or LGD systems are entirely different, while the LGD system is more robust against defocusing than the LGI system. Specifically, we find that the imaging process for LGD systems can be viewed as pinhole imaging, which may find applications in ultra-short-wave band imaging without imaging lenses, e.g. x-ray diffraction and γ-ray imaging.
Image quality enhancement in low-light-level ghost imaging using modified compressive sensing method
Shi, Xiaohui; Huang, Xianwei; Nan, Suqin; Li, Hengxing; Bai, Yanfeng; Fu, Xiquan
2018-04-01
Detector noise has a significantly negative impact on ghost imaging at low light levels, especially for existing recovery algorithm. Based on the characteristics of the additive detector noise, a method named modified compressive sensing ghost imaging is proposed to reduce the background imposed by the randomly distributed detector noise at signal path. Experimental results show that, with an appropriate choice of threshold value, modified compressive sensing ghost imaging algorithm can dramatically enhance the contrast-to-noise ratio of the object reconstruction significantly compared with traditional ghost imaging and compressive sensing ghost imaging methods. The relationship between the contrast-to-noise ratio of the reconstruction image and the intensity ratio (namely, the average signal intensity to average noise intensity ratio) for the three reconstruction algorithms are also discussed. This noise suppression imaging technique will have great applications in remote-sensing and security areas.
Ghost story. II. The midpoint ghost vertex
International Nuclear Information System (INIS)
Bonora, L; Maccaferri, C; Scherer Santos, R.J.; Tolla, D D
2009-01-01
We construct the ghost number 9 three strings vertex for OSFT in the natural normal ordering. We find two versions, one with a ghost insertion at z = i and a twist-conjugate one with insertion at z = -i. For this reason we call them midpoint vertices. We show that the relevant Neumann matrices commute among themselves and with the matrix G representing the operator K 1 . We analyze the spectrum of the latter and find that beside a continuous spectrum there is a (so far ignored) discrete one. We are able to write spectral formulas for all the Neumann matrices involved and clarify the important role of the integration contour over the continuous spectrum. We then pass to examine the (ghost) wedge states. We compute the discrete and continuous eigenvalues of the corresponding Neumann matrices and show that they satisfy the appropriate recursion relations. Using these results we show that the formulas for our vertices correctly define the star product in that, starting from the data of two ghost number 0 wedge states, they allow us to reconstruct a ghost number 3 state which is the expected wedge state with the ghost insertion at the midpoint, according to the star recursion relation.
Ghost Stories, Ghost Estates: Melancholia in Irish Recession Literature
Directory of Open Access Journals (Sweden)
Molly Slavin
2017-01-01
Full Text Available This article considers representations of melancholia in post-Celtic Tiger Irish literature. By situating their post-recession fictions in “ghost estates,” or largely uninhabited housing developments, Donal Ryan and Tana French present neoliberally-inflected varieties of melancholia for their contemporary readers to contemplate. The settings of the ghost estates – and the accompanying supernatural elements to the texts – call to mind ghosts of Ireland’s past and legacies of recent economically unsound policies, spurring the reader to think about the imagined loss of futurity that accompanied the Irish economic crash. “Ghost stories for ghost estates,” then, represent an important contribution to the growing field of post-recession Irish literature.
Noncanonical quantization-on the coexistence of particles and ghosts
International Nuclear Information System (INIS)
Saller, H.
1988-01-01
Local interactions of quantized fields are sometimes parametrized with the aid of ghostlike degrees of freedom, e.g., in non-Abelian gauge theories. These ghosts do not necessarily lead to eigenstates of energy. Such a situation requires a discussion of the asymptotic boundary condition for the ghosts, leading to ghost propagation only for timelike distance. Coexisting particle and ghost degrees of freedom in one basic field operator allow the formulation of interactions for such a field without local ambiguities
Infrared behavior of gluons and ghosts in ghost-antighost symmetric gauges
International Nuclear Information System (INIS)
Alkofer, R.; Fischer, C.S.; Reinhardt, H.; Smekal, L. von
2003-01-01
To investigate the possibility of a ghost-antighost condensate, the coupled Dyson-Schwinger equations for the gluon and ghost propagators in Yang-Mills theories are derived in general covariant gauges, including ghost-antighost symmetric gauges. The infrared behavior of these two-point functions is studied in a bare-vertex truncation scheme which has proven to be successful in the Landau gauge. In all linear covariant gauges the same infrared behavior as in the Landau gauge is found: The gluon propagator is infrared-suppressed whereas the ghost propagator is infrared-enhanced. This infrared singular behavior provides an indication against a ghost-antighost condensate. In the ghost-antighost symmetric gauges we find that the infrared behavior of the gluon and ghost propagators cannot be determined when replacing all dressed vertices by bare ones. The question of a BRS invariant dimension-2 condensate remains to be further studied
Perturbative Yang-Mills theory without Faddeev-Popov ghost fields
Huffel, Helmuth; Markovic, Danijel
2018-05-01
A modified Faddeev-Popov path integral density for the quantization of Yang-Mills theory in the Feynman gauge is discussed, where contributions of the Faddeev-Popov ghost fields are replaced by multi-point gauge field interactions. An explicit calculation to O (g2) shows the equivalence of the usual Faddeev-Popov scheme and its modified version.
Half-integer ghost states and simple BRST quantization
International Nuclear Information System (INIS)
Marnelius, R.
1987-01-01
Quantum mechanical BRST systems are considered. As is well known an odd number of ghost operators has a representation with respect to the ghost number operator consisting of states with half-integer ghost numbers. Here it is shown that an eigenstate representation of the ghost operators requires a particular mixed Grassmann character of the states. It is also shown that such states always may be avoided provided only one starts from a lagrangian where the fundamental constraints are generated by Lagrange multipliers. In the latter case there also exists an anti-BRST charge. Some relevant properties of the different BRST approaches are displayed. The existence of inequivalent physical representations is demonstrated. (orig.)
AXAF-I ghost ray study: On orbit case
Gaetz, T. J.
1993-01-01
The problem of baffles for control of singly reflected (and nonreflected) ghost rays is considered. The theory of baffle design for Wolter Type I grazing incidence optics is reviewed, and a set of sample baffle parameters is obtained subject to the assumptions of nominal mirror figures and perfect manufacture and alignment of baffles. It is found that baffles forward of the optics (in the thermal precollimator) and between the mirror elements (at the CAP) are sufficient to allow the simultaneous ghost image and vignetting requirements to be satisfied for HRMA shells P1H1, P3H3, and P4H4. However, these baffles are not sufficient for the innermost shell P6H6; at best the requirements are slightly violated and there is no margin for tolerances. The addition of a baffle interior to the P6 space at an axial station about one third of the way forward from the aft end of the paraboloid will allow the ghost ray and vignetting requirements to be met. The minimum ghost ray angles and the vignetting angles are sensitive functions of the baffle positions and radii; tolerances of considerably better than 1 mm will be required. The sensitivities are coupled and correlated; further investigations should be undertaken in order to obtain baffle parameters which, combined with likely achievable tolerances, will minimize the risk of the vignetting/ghost ray requirements not being met. The lightweight carbon-epoxy composite used for thermal baffles has insufficient X-ray opacity to be a suitable material for construction of the controlling X-ray baffles; further study is needed to determine an appropriate material and to investigate its thermal and mechanical implications.
International Nuclear Information System (INIS)
Okuda, Takuya; Takayanagi, Tadashi
2006-01-01
We define a ghost D-brane in superstring theories as an object that cancels the effects of an ordinary D-brane. The supergroups U(N|M) and OSp(N/M) arise as gauge symmetries in the supersymmetric world-volume theory of D-branes and ghost D-branes. A system with a pair of D-brane and ghost D-brane located at the same location is physically equivalent to the closed string vacuum. When they are separated, the system becomes a new brane configuration. We generalize the type I/heterotic duality by including n ghost D9-branes on the type I side and by considering the heterotic string whose gauge group is OSp(32+2n/2n). Motivated by the type IIB S-duality applied to D9- and ghost D9-branes, we also find type II-like closed superstrings with U(n/n) gauge symmetry
Numerical Study of the Ghost-Ghost-Gluon Vertex on the Lattice
International Nuclear Information System (INIS)
Mihara, A.; Cucchieri, A.; Mendes, T.
2004-01-01
It is well known that, in Landau gauge, the renormalization function of the ghost-ghost-gluon vertex Z-tilde1 (p2) is finite and constant, at least to all orders of perturbation theory. On the other hand, a direct non-perturbative verification of this result using numerical simulations of lattice QCD is still missing. Here we present a preliminary numerical study of the ghost-ghost-gluon vertex and of its corresponding renormalization function using Monte Carlo simulations in SU(2) lattice Landau gauge. Data were obtained in 4 dimensions for lattice couplings β = 2.2, 2.3, 2.4 and lattice sides N = 4, 8, 16
Numerical study of the ghost-ghost-gluon vertex on the lattice
International Nuclear Information System (INIS)
Mihara, A.; Cucchieri, A.; Mendes, T.
2004-01-01
It is well known that, in Landau gauge, the renormalization function of the ghost-ghost-gluon vertex Z∼ 1 1(p 2 ) is finite and constant, at least to all orders of perturbation theory. On the other hand, a direct non-perturbative verification of this result using numerical simulations of lattice QCD is still missing. Here we present a preliminary numerical study of the ghost-ghost-gluon vertex and of its corresponding renormalization function using Monte Carlo simulations in SU(2) lattice Landau gauge. Data were obtained in 4 dimensions for lattice couplings β= 2.2, 2.3, 2.4 and lattice sides N = 4, 8, 16. (author)
Entangled spins and ghost-spins
Directory of Open Access Journals (Sweden)
Dileep P. Jatkar
2017-09-01
Full Text Available We study patterns of quantum entanglement in systems of spins and ghost-spins regarding them as simple quantum mechanical toy models for theories containing negative norm states. We define a single ghost-spin as in [20] as a 2-state spin variable with an indefinite inner product in the state space. We find that whenever the spin sector is disentangled from the ghost-spin sector (both of which could be entangled within themselves, the reduced density matrix obtained by tracing over all the ghost-spins gives rise to positive entanglement entropy for positive norm states, while negative norm states have an entanglement entropy with a negative real part and a constant imaginary part. However when the spins are entangled with the ghost-spins, there are new entanglement patterns in general. For systems where the number of ghost-spins is even, it is possible to find subsectors of the Hilbert space where positive norm states always lead to positive entanglement entropy after tracing over the ghost-spins. With an odd number of ghost-spins however, we find that there always exist positive norm states with negative real part for entanglement entropy after tracing over the ghost-spins.
Directory of Open Access Journals (Sweden)
E Rajesh
2015-01-01
Full Text Available Ghost cells have been a controversy for a long time. Ghost cell is a swollen/enlarged epithelial cell with eosnophilic cytoplasm, but without a nucleus. In routine H and E staining these cells give a shadowy appearance. Hence these cells are also called as shadow cells or translucent cells. The appearance of these cells varies from lesion to lesion involving odontogenic and nonodontogenic lesions. This article review about the origin, nature and significance of ghost cells in different neoplasms.
Non-perturbative materialization of ghosts
International Nuclear Information System (INIS)
Emparan, Roberto; Garriga, Jaume
2006-01-01
In theories with a hidden ghost sector that couples to visible matter through gravity only, empty space can decay into ghosts and ordinary matter by graviton exchange. Perturbatively, such processes can be very slow provided that the gravity sector violates Lorentz invariance above some cut-off scale. Here, we investigate non-perturbative decay processes involving ghosts, such as the spontaneous creation of self-gravitating lumps of ghost matter, as well as pairs of Bondi dipoles (i.e. lumps of ghost matter chasing after positive energy objects). We find the corresponding instantons and calculate their Euclidean action. In some cases, the instantons induce topology change or have negative Euclidean action. To shed some light on the meaning of such peculiarities, we also consider the nucleation of concentrical domain walls of ordinary and ghost matter, where the Euclidean calculation can be compared with the canonical (Lorentzian) description of tunneling. We conclude that non-perturbative ghost nucleation processes can be safely suppressed in phenomenological scenarios
Ghost hunting—an assessment of ghost particle detection and removal methods for tomographic-PIV
International Nuclear Information System (INIS)
Elsinga, G E; Tokgoz, S
2014-01-01
This paper discusses and compares several methods, which aim to remove spurious peaks, i.e. ghost particles, from the volume intensity reconstruction in tomographic-PIV. The assessment is based on numerical simulations of time-resolved tomographic-PIV experiments in linear shear flows. Within the reconstructed volumes, intensity peaks are detected and tracked over time. These peaks are associated with particles (either ghosts or actual particles) and are characterized by their peak intensity, size and track length. Peak intensity and track length are found to be effective in discriminating between most ghosts and the actual particles, although not all ghosts can be detected using only a single threshold. The size of the reconstructed particles does not reveal an important difference between ghosts and actual particles. The joint distribution of peak intensity and track length however does, under certain conditions, allow a complete separation of ghosts and actual particles. The ghosts can have either a high intensity or a long track length, but not both combined, like all the actual particles. Removing the detected ghosts from the reconstructed volume and performing additional MART iterations can decrease the particle position error at low to moderate seeding densities, but increases the position error, velocity error and tracking errors at higher densities. The observed trends in the joint distribution of peak intensity and track length are confirmed by results from a real experiment in laminar Taylor–Couette flow. This diagnostic plot allows an estimate of the number of ghosts that are indistinguishable from the actual particles. (paper)
IR finiteness of the ghost dressing function from numerical resolution of the ghost SD equation
International Nuclear Information System (INIS)
Boucaud, Ph.; Leroy, J.P.; Yaouanc, A. Le; Micheli, J.; Pene, O.; RodrIguez-Quintero, J.
2008-01-01
We solve numerically the Schwinger-Dyson ghost equation in the Landau gauge for a given, finite at k = 0 gluon propagator (i.e. the infrared exponent of its dressing function, α gluon , is 1) and under the usual assumption of constancy of the ghost-gluon vertex ; we show that there exist two possible types of ghost dressing function solutions, as we have previously inferred from analytical considerations: one which is singular at zero momentum (the infrared exponent of its dressing function, α ghost , (We shall use α G and α F as shorthands for α gluon and α ghost respectively; let us recall that we denote the gluon by a G and the ghost by a F, for ''fantome''.) is gluon +2α ghost = 0 and has therefore α ghost = -1/2, and another one which is finite at the origin with α ghost = 0 and violates the relation. It is most important that the type of solution which is realized depends on the value of the coupling constant. There are regular ones - α F = 0 - for any coupling below some value, while there is only one singular solution - α F <0 -, obtained for a single critical value of the coupling. For all momenta k <.5 GeV where they can be trusted, our lattice data exclude neatly the singular one, and agree very well with the regular solution we obtain at a coupling constant compatible with the bare lattice value.
Ghost-Story Telling: Keeping It Appropriate.
Weintraub, Jeff
1996-01-01
Guidelines for telling ghost stories at camp involve considering children's fears at different ages, telling age appropriate stories, determining appropriate times for telling ghost stories, and minimizing fear when a child becomes frightened by a ghost story. Includes tips on the selection, preparation, and presentation of ghost stories. (LP)
GHOST balloons around Antarctica
Stearns, Charles R.
1988-01-01
The GHOST balloon position as a function of time data shows that the atmospheric circulation around the Antarctic Continent at the 100 mb and 200 mb levels is complex. The GHOST balloons supposedly follow the horizontal trajectory of the air at the balloon level. The position of GHOST balloon 98Q for a three month period in 1968 is shown. The balloon moved to within 2 deg of the South Pole on 1 October 1968 and then by 9 December 1968 was 35 deg from the South Pole and close to its position on 1 September 1968. The balloon generally moved from west to east but on two occasions moved in the opposite direction for a few days. The latitude of GHOST balloons 98Q and 149Z which was at 200 mb is given. Both balloons tended to get closer to the South Pole in September and October. Other GHOST balloons at the same pressure and time period may not indicate similar behavior.
International Nuclear Information System (INIS)
Sbisà, Fulvio
2015-01-01
The aim of these notes is to provide a self-contained review of why it is generically a problem when a solution of a theory possesses ghost fields among the perturbation modes. We define what a ghost field is and we show that its presence is associated with a classical instability whenever the ghost field interacts with standard fields. We then show that the instability is more severe at quantum level, and that perturbative ghosts can exist only in low energy effective theories. However, if we do not consider very ad hoc choices, compatibility with observational constraints implies that low energy effective ghosts can exist only at the price of giving up Lorentz invariance or locality above the cut-off, in which case the cut-off has to be much lower that the energy scales we currently probe in particle colliders. We also comment on the possible role of extra degrees of freedom which break Lorentz invariance spontaneously. (paper)
Existence, uniqueness and cohomology of the classical BRST charge with ghosts of ghosts
International Nuclear Information System (INIS)
Fisch, J.; Stasheff, J.
1989-01-01
A complete canonical formulation of the BRST theory of systems with redundant gauge symmetries is presented. These systems include p-form gauge fields, the superparticle, and the superstring. We first define the Koszul-Tate differential and explicitly show how the introduction of the momenta conjugate to the ghosts of ghosts makes it acyclic. The global existence of the BRST generator is then demonstrated, and the BRST charge is proved to be unique up to canonical transformations in the extended phase space, which includes the ghosts. Finally, the BRST cohomology in classical mechanics is investigated and shown to be equal to the cohomology of the exterior derivative along the gauge orbits, as in the irreducible case. This is done by re-expressing the exterior algebra along the gauge orbits as a free differential algebra containing generators of higher degree, which are identified with the ghosts of ghosts. The quantum cohomology is not dealt with. (orig.)
GHOST: global hepatitis outbreak and surveillance technology.
Longmire, Atkinson G; Sims, Seth; Rytsareva, Inna; Campo, David S; Skums, Pavel; Dimitrova, Zoya; Ramachandran, Sumathi; Medrzycki, Magdalena; Thai, Hong; Ganova-Raeva, Lilia; Lin, Yulin; Punkova, Lili T; Sue, Amanda; Mirabito, Massimo; Wang, Silver; Tracy, Robin; Bolet, Victor; Sukalac, Thom; Lynberg, Chris; Khudyakov, Yury
2017-12-06
Hepatitis C is a major public health problem in the United States and worldwide. Outbreaks of hepatitis C virus (HCV) infections associated with unsafe injection practices, drug diversion, and other exposures to blood are difficult to detect and investigate. Effective HCV outbreak investigation requires comprehensive surveillance and robust case investigation. We previously developed and validated a methodology for the rapid and cost-effective identification of HCV transmission clusters. Global Hepatitis Outbreak and Surveillance Technology (GHOST) is a cloud-based system enabling users, regardless of computational expertise, to analyze and visualize transmission clusters in an independent, accurate and reproducible way. We present and explore performance of several GHOST implemented algorithms using next-generation sequencing data experimentally obtained from hypervariable region 1 of genetically related and unrelated HCV strains. GHOST processes data from an entire MiSeq run in approximately 3 h. A panel of seven specimens was used for preparation of six repeats of MiSeq libraries. Testing sequence data from these libraries by GHOST showed a consistent transmission linkage detection, testifying to high reproducibility of the system. Lack of linkage among genetically unrelated HCV strains and constant detection of genetic linkage between HCV strains from known transmission pairs and from follow-up specimens at different levels of MiSeq-read sampling indicate high specificity and sensitivity of GHOST in accurate detection of HCV transmission. GHOST enables automatic extraction of timely and relevant public health information suitable for guiding effective intervention measures. It is designed as a virtual diagnostic system intended for use in molecular surveillance and outbreak investigations rather than in research. The system produces accurate and reproducible information on HCV transmission clusters for all users, irrespective of their level of bioinformatics
Energy Technology Data Exchange (ETDEWEB)
Ivanov, Mikhail M.; Tokareva, Anna A., E-mail: mikhail.ivanov@cern.ch, E-mail: anna.tokareva@epfl.ch [Institute of Physics, LPPC, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne (Switzerland)
2016-12-01
We study the creation and evolution of cosmological perturbations in renormalizable quadratic gravity with a Weyl term. We adopt a prescription that implies the stability of the vacuum at the price of introducing a massive spin-two ghost state, leading to the loss of unitarity. The theory may still be predictive regardless the interpretation of non-unitary processes provided that their rate is negligible compared to the Universe expansion rate. This implies that the ghost is effectively stable. In such a setup, there are two scalar degrees of freedom excited during inflation. The first one is the usual curvature perturbation whose power spectrum appears to coincide with that of single-field inflation. The second one is a scalar component of the ghost encoded in the shift vector of the metric in the uniform inflaton gauge. The amplitudes of primordial tensor and vector perturbations are strongly suppressed. After inflation the ghost field starts to oscillate and its energy density shortly becomes dominant in the Universe. For all ghost masses allowed by laboratory constraints ghosts should have ''overclosed'' the Universe at temperatures higher than that of primordial nucleosynthesis. Thus, the model with the light Weyl ghost is ruled out.
Ghost condensate and generalized second law
International Nuclear Information System (INIS)
Mukohyama, Shinji
2009-01-01
Dubovsky and Sibiryakov recently proposed a scenario in which particles of different species propagate with different speeds due to their direct couplings to ghost condensate. It was argued that this extended version of ghost condensate allows a gedanken experiment leading to violation of the generalized second law. However, in the original ghost condensate scenario, difference in propagation speeds is suppressed by M 2 /M Pl 2 , where M is the order parameter of spontaneous Lorentz breaking and M Pl is the Planck scale. In this case the energy transfer necessary for the gedanken experiment is so slow that the timescale of decrease of entropy, if any, is always longer than the Jeans timescale of ghost condensate. Hence the generalized second law is not violated by the gedanken experiment in the original ghost condensate scenario. This conclusion trivially extends to gauged ghost condensation by taking into account accretion of gauged ghost condensate into a black hole.
Black holes in the ghost condensate
International Nuclear Information System (INIS)
Mukohyama, Shinji
2005-01-01
We investigate how the ghost condensate reacts to black holes immersed in it. A ghost condensate defines a hypersurface-orthogonal congruence of timelike curves, each of which has the tangent vector u μ =-g μν ∂ ν φ. It is argued that the ghost condensate in this picture approximately corresponds to a congruence of geodesics. In other words, the ghost condensate accretes into a black hole just like a pressureless dust. Correspondingly, if the energy density of the ghost condensate at large distance is set to an extremely small value by cosmic expansion then the late-time accretion rate of the ghost condensate should be negligible. The accretion rate remains very small even if effects of higher derivative terms are taken into account, provided that the black hole is sufficiently large. It is also discussed how to reconcile the black-hole accretion with the possibility that the ghost condensate might behave like dark matter
Unexorcized ghost in DGP brane world
International Nuclear Information System (INIS)
Izum, Keisuke; Tanaka, Takahiro; Koyama, Kazuya
2007-01-01
The brane world model proposed by Dvali-Gabadadze-Porrati realizes self-acceleration of the universe. However, it is known that this cosmological solution contains a spin-2 ghost. We study the possibility of avoiding the appearance of the ghost by slightly modifying the model via the introduction of a second brane. First, we consider a simple model without stabilization of the brane separation. By changing the separation between the branes, we find that we can erase the spin-2 ghost. However, this can be done only at the expense of the appearance of a spin-0 ghost instead. We discuss why these two different types of ghosts are correlated. Then, we examine a model with stabilization of the brane separation. Even in this case, we find that the correlation between spin-0 and spin-2 ghosts remains. As a result we find that we cannot avoid the appearance of a ghost by introducing a second brane in the model
Ghost signals in Allison emittance scanners
International Nuclear Information System (INIS)
Stockli, Martin P.; Leitner, M.; Moehs, D.P.; Keller, R.; Welton, R.F.
2004-01-01
For over 20 years, Allison scanners have been used to measure emittances of low-energy ion beams. We show that scanning large trajectory angles produces ghost signals caused by the sampled beamlet impacting on an electric deflection plate. The ghost signal strength is proportional to the amount of beam entering the scanner. Depending on the ions, and their velocity, the ghost signals can have the opposite or the same polarity as the main beam signals. The ghost signals cause significant errors in the emittance estimates because they appear at large trajectory angles. These ghost signals often go undetected because they partly overlap with the real signals, are mostly below the 1% level, and often hide in the noise. A simple deflection plate modification is shown to reduce the ghost signal strength by over 99%
Ghost Signals In Allison Emittance Scanners
International Nuclear Information System (INIS)
Stockli, Martin P.; Leitner, M.; Keller, R.; Moehs, D.P.; Welton, R. F.
2005-01-01
For over 20 years, Allison scanners have been used to measure emittances of low-energy ion beams. We show that scanning large trajectory angles produces ghost signals caused by the sampled beamlet impacting on an electric deflection plate. The ghost signal strength is proportional to the amount of beam entering the scanner. Depending on the ions, and their velocity, the ghost signals can have the opposite or the same polarity as the main beam signals. The ghost signals cause significant errors in the emittance estimates because they appear at large trajectory angles. These ghost signals often go undetected because they partly overlap with the real signals, are mostly below the 1% level, and often hide in the noise. A simple deflection plate modification is shown to reduce the ghost signal strength by over 99%
Ghost Spectroscopy with Classical Thermal Light Emitted by a Superluminescent Diode
Janassek, Patrick; Blumenstein, Sébastien; Elsäßer, Wolfgang
2018-02-01
We propose and realize the first classical ghost-imaging (GI) experiment in the frequency or wavelength domain, thus performing ghost spectroscopy using thermal light exhibiting photon bunching. The required wavelength correlations are provided by light emitted by spectrally broadband near-infrared amplified spontaneous emission of a semiconductor-based superluminescent diode. They are characterized by wavelength-resolved intensity cross-correlation measurements utilizing two-photon-absorption interferometry. Finally, a real-world spectroscopic application of this ghost spectroscopy with a classical light scheme is demonstrated in which an absorption band of trichloromethane (chloroform) at 1214 nm is reconstructed with a spectral resolution of 10 nm as a proof-of-principle experiment. This ghost-spectroscopy work fills the gap of a hitherto missing analogy between the spatial and the spectral domain in classical GI modalities, with the expectation of contributing towards a broader dissemination of correlated photon ghost modalities, hence paving the way towards more applications which exploit the favorable advantages.
Ghost counting in supergravity
International Nuclear Information System (INIS)
Nielsen, N.K.
1978-04-01
The elimination of unphysical degrees of freedom from a quantized massless Rarita-Schwinger field interacting with a (quantized or classical) gravitational field is analyzed on the one-loop level. It is shown that, besides the ordinary Faddeev-Popov ghosts, an extra ghost is needed to remove the effects of unphysical modes. The new ghost only couples to the S matrix if the gauge-fixing of the Rarita-Schwinger field involves the gravitational field, but it is necessary in the partition function for other gauge choices. (Auth.)
Ghost counting in supergravity
International Nuclear Information System (INIS)
Nielsen, N.K.
1978-01-01
The elimination of unphysical degrees of freedom from a quantized massless Rarita-Schwinger field interacting with a (quantized or classical) gravitational field is analyzed on the one-loop level. It is shown that, besides the ordinary Faddeev-Popov ghosts, an extra ghost is needed to remove the effects of unphysical modes. The new ghost only couples to the S-matrix if the gauge-fixing of the Rarita-Schwinger field involves the gravitational field, but it is necessary in the partition function for other gauge choices. (Auth.)
Ghost free massive gravity in the Stückelberg language
International Nuclear Information System (INIS)
Rham, Claudia de; Gabadadze, Gregory; Tolley, Andrew J.
2012-01-01
Massive gravity in 4 dimensions has been shown to be free of the Boulware-Deser (BD) ghost in the ADM language for a specific choice of mass terms. We show here how this is consistent with the Stückelberg language beyond the decoupling limit, and how the constraint required to remove the BD ghost arises in this framework non-perturbatively, without the use of field redefinitions. We emphasize a subtlety in obtaining this constraint, that has been overlooked in previous literature. In both the ADM and Stückelberg formalisms the vanishing of the determinant of a Hessian guarantees the absence of the BD ghost.
Ghost imaging with a single detector
International Nuclear Information System (INIS)
Bromberg, Yaron; Katz, Ori; Silberberg, Yaron
2009-01-01
We experimentally demonstrate pseudothermal ghost imaging and ghost diffraction using only a single detector. We achieve this by replacing the high-resolution detector of the reference beam with a computation of the propagating field, following a recent proposal by Shapiro [Phys. Rev. A 78, 061802(R) (2008)]. Since only a single detector is used, this provides experimental evidence that pseudothermal ghost imaging does not rely on nonlocal quantum correlations. In addition, we show the depth-resolving capability of this ghost imaging technique.
Ombud’s corner: Do you believe in ghosts?
Sudeshna Datta-Cockerill
2014-01-01
“Ghosting” is the common term used to describe situations when a piece of work is done by somebody but credited to somebody else. Ghosting often occurs in creative fields, such as writing texts, music, developing graphic charters or translating. Let’s celebrate Halloween this year by acknowledging the contributions of all the CERN ghosts who work tirelessly behind the scenes in all areas of the Organization. “Ghosting” is a recognised job with international professional associations, particularly in the field of text writing. The role requires strict anonymity, good reciprocal trust and understanding between the people involved, and the professional flexibility to be able to adapt to different situations and different styles of expression as needed. At CERN there are many ghosts: you can find them in the Translation and Minute-writing service, whose members also provide valuable editing and proof-reading skills; in the Communications group w...
International Nuclear Information System (INIS)
Bender, Carl M; Mannheim, Philip D
2008-01-01
The Pais-Uhlenbeck model is a quantum theory described by a higher-derivative field equation. It has been believed for many years that this model possesses ghost states (quantum states of negative norm) and therefore that this model is a physically unacceptable quantum theory. The existence of such ghost states was believed to be attributable to the field equation having more than two derivatives. This paper shows that the Pais-Uhlenbeck model does not possess any ghost states at all and that it is a perfectly acceptable quantum theory. The supposed ghost states in this model arise if the Hamiltonian of the model is (incorrectly) treated as being Dirac Hermitian (invariant under combined matrix transposition and complex conjugation). However, the Hamiltonian is not Dirac Hermitian, but rather it is PT symmetric. When it is quantized correctly according to the rules of PT quantum mechanics, the energy spectrum is real and bounded below and all of the quantum states have positive norm
THE REPRESENTATION OF THE GHOST ARCHETYPE IN THE CANTERVILLE GHOST BY OSCAR WILDE
Directory of Open Access Journals (Sweden)
Safaryan Agata Vladimirovna
2015-03-01
Full Text Available The article touches upon the actual interdisciplinary problems of modern cognitive linguistics, psychology, literary criticism and is related to the study of the archetypal representations of ethnicity and changes reflected in the linguistic consciousness. These changes are mainly influenced by the works of fiction and the role of writer's worldview in their formation. Guided by the thesis of universality of the archetypes, the author mentions that though the archetype represents the inherent characteristics of certain ethnic and cultural space, it retains the features which make an image recognizable at all times. By this fact the author explains the existence of beliefs in ghosts with different embodiments in all cultures. The awakening of the archetype is caused by certain historical events, i.e. the revival and further embodiment of the ghost archetype was the result of reversion to the cultural heritage during the Victorian England. The complex analysis of the means of speech representation that called up the realization of the ghost archetype in Oscar Wilde's short story The Canterville Ghost allowed to reveal that alongside with features that constitute the archetypal nature of ghosts in general, there appear the ones peculiar to the author's individual worldview, which either complement or change the existing notions about this being from another world.
Witten's ghost vertex made simple
International Nuclear Information System (INIS)
Belov, D.M.
2004-01-01
First, we diagonalize the bc-ghost 3-string Neumann matrices using the technique described in Phys. Rev. D 68, 066003 (2003). Their eigenvalues are in complete agreement with the previous authors. Second, we diagonalize the N-string gluing vertices for the bosonized ghost system. Third, we verify the descent and associativity relations for the combined bosonic matter+ghost gluing vertices. We find that in order for these relations to be true, the vertices must be normalized by the factor Z N . Here Z N is the partition function of the bosonic matter+ghost CFT on the gluing surface, which is the unit disk with the Neumann boundary conditions and the midpoint conelike singularity specified by the angle excess π(N-2)
Fast ghost imaging and ghost encryption based on the discrete cosine transform
International Nuclear Information System (INIS)
Tanha, Mehrdad; Ahmadi-Kandjani, Sohrab; Kheradmand, Reza
2013-01-01
We introduce the discrete cosine transform as an advanced compression tool for images in computational ghost imaging. A novel approach to fast imaging and encryption, the discrete cosine transform, promotes the security level of ghost images and reduces the image retrieval time. To discuss the advantages of this technique we compare experimental outcomes with simulated ones. (paper)
The Color Antisymmetric Ghost Propagator and One-Loop Vertex Renormalization
Furui, Sadataka
2007-01-01
The color matrix elements of the ghost triangle diagram that appears in the triple gluon vertex and the ghost-ghost-gluon triangle diagram that appears in the ghost-gluon-ghost vertex are calculated. The ghost-ghost-gluon triangle contains a loop consisting of two color diagonal ghosts and one gluon and a loop consisting of two color antisymmetric ghosts and one gluon. Consequently, the pQCD argument in the infrared region based on the one particle irreducible diagram should be modified. Impl...
Kinetic k-essence ghost dark energy model
International Nuclear Information System (INIS)
Rozas-Fernández, Alberto
2012-01-01
A ghost dark energy model has been recently put forward to explain the current accelerated expansion of the Universe. In this model, the energy density of ghost dark energy, which comes from the Veneziano ghost of QCD, is proportional to the Hubble parameter, ρ D =αH. Here α is a constant of order Λ QCD 3 where Λ QCD ∼100 MeV is the QCD mass scale. We consider a connection between ghost dark energy with/without interaction between the components of the dark sector and the kinetic k-essence field. It is shown that the cosmological evolution of the ghost dark energy dominated Universe can be completely described a kinetic k-essence scalar field. We reconstruct the kinetic k-essence function F(X) in a flat Friedmann-Robertson-Walker Universe according to the evolution of ghost dark energy density.
The color antisymmetric ghost propagator and one-loop vertex renormalization
International Nuclear Information System (INIS)
Furui, Sadataka
2008-01-01
The color matrix elements of the ghost triangle diagram that appears in the triple gluon vertex and the ghost-ghost-gluon triangle diagram that appears in the ghost-gluon-ghost vertex are calculated. The ghost-ghost-gluon triangle contains a loop consisting of two color diagonal ghosts and one gluon and a loop consisting of two color antisymmetric ghosts and one gluon. Consequently, the pQCD argument in the infrared region based on the one particle irreducible diagram should be modified. Implications for the Kugo-Ojima color confinement and the QCD running coupling are discussed. (author)
Adaptive compressive ghost imaging based on wavelet trees and sparse representation.
Yu, Wen-Kai; Li, Ming-Fei; Yao, Xu-Ri; Liu, Xue-Feng; Wu, Ling-An; Zhai, Guang-Jie
2014-03-24
Compressed sensing is a theory which can reconstruct an image almost perfectly with only a few measurements by finding its sparsest representation. However, the computation time consumed for large images may be a few hours or more. In this work, we both theoretically and experimentally demonstrate a method that combines the advantages of both adaptive computational ghost imaging and compressed sensing, which we call adaptive compressive ghost imaging, whereby both the reconstruction time and measurements required for any image size can be significantly reduced. The technique can be used to improve the performance of all computational ghost imaging protocols, especially when measuring ultra-weak or noisy signals, and can be extended to imaging applications at any wavelength.
Inflation with light Weyl ghost
Directory of Open Access Journals (Sweden)
Tokareva Anna
2016-01-01
Full Text Available Inflationary perturbations are considered in a renormalizable but non-unitary theory of gravity with the additional Weyl term. We obtained that ghost degrees of freedom do not spoil the inflation and the scalar perturbation amplitude at the linear level even in a case of the ghost with mass smaller than Hubble parameter at inflation. The ghost impact to the observables is also estimated to be negligible for the range of masses allowed by the experiment. The non-linear level of the theory and its possible application are also discussed.
Ghost-gluon vertex in the presence of the Gribov horizon
Mintz, B. W.; Palhares, L. F.; Sorella, S. P.; Pereira, A. D.
2018-02-01
We consider Yang-Mills theories quantized in the Landau gauge in the presence of the Gribov horizon via the refined Gribov-Zwanziger (RGZ) framework. As the restriction of the gauge path integral to the Gribov region is taken into account, the resulting gauge field propagators display a nontrivial infrared behavior, being very close to the ones observed in lattice gauge field theory simulations. In this work, we explore a higher correlation function in the refined Gribov-Zwanziger theory: the ghost-gluon interaction vertex, at one-loop level. We show explicit compatibility with kinematical constraints, as required by the Ward identities of the theory, and obtain analytical expressions in the limit of vanishing gluon momentum. We find that the RGZ results are nontrivial in the infrared regime, being compatible with lattice Yang-Mills simulations in both SU(2) and SU(3), as well as with solutions from Schwinger-Dyson equations in different truncation schemes, Functional Renormalization Group analysis, and the renormalization group-improved Curci-Ferrari model.
Using Ghost Reflections Rather than Removing Them
Blacquiere, G.; Berkhout, A.J.
2015-01-01
In marine acquisition both a direct wavefield and a ghost wavefield are produced as well as recorded. Hence, the seismic data can be considered to be a natural blend of four wavefields related to the real sources, ghost sources, real detectors and ghost detectors respectively. We consider deghosting
Accretion of Ghost Condensate by Black Holes
Energy Technology Data Exchange (ETDEWEB)
Frolov, A
2004-06-02
The intent of this letter is to point out that the accretion of a ghost condensate by black holes could be extremely efficient. We analyze steady-state spherically symmetric flows of the ghost fluid in the gravitational field of a Schwarzschild black hole and calculate the accretion rate. Unlike minimally coupled scalar field or quintessence, the accretion rate is set not by the cosmological energy density of the field, but by the energy scale of the ghost condensate theory. If hydrodynamical flow is established, it could be as high as tenth of a solar mass per second for 10MeV-scale ghost condensate accreting onto a stellar-sized black hole, which puts serious constraints on the parameters of the ghost condensate model.
Geometrical theory of ghost and Higgs fields and SU(2/1)
International Nuclear Information System (INIS)
Ne'eman, Y.; Thierry-Mieg, J.
1979-10-01
That a Principal Fiber Bundle provides a precise geometrical representation of Yang-Mills gauge theories has been known since 1963 and used since 1975. This work presents an entirely new domain of applications. The Feynman-DeWitt-Fadeev-Popov ghost-fields required in the renormalization procedure are identified with geometrical objects in the Principal Bundle. This procedure directly yields the BRS equations guaranteeing unitarity and Slavnov-Taylor invariance of the quantum effective Lagrangian. Except for one ghost field and its variation, this entire symmetry thus corresponds to classical notions, in that it is geometrical, and completely independent of the gauge-fixing procedure, which determines the quantized Lagrangian. These results may be used to fix the signs associated with the various ghost loops of quantum supergravity. The result is based upon the identification of a geometrical Z(2) x Z(2) double-gradation of the generalized fields in supergravity: [physical/ghost] fields and [integer/half integer] spins. Then the case of a supergroup as an internal symmetry gauge is considered. Ghosts geometrically associated to odd generators may be identified with the Goldstone-Nambu Higgs-Kibble scalar fields of conventional models with spontaneous symmetry breakdown. As an example, the chiral SU(3)/sub L/ x SU(3)/sub R/ flavor symmetry is realized by gauging the supergroup Q(3).Lastly, the main results concerning asthenodynamics (Weak-EM Unification) as given by the ghost-gauge SU(2/1) supergroup are recalled. 1 table
Infrared finite ghost propagator in the Feynman gauge
International Nuclear Information System (INIS)
Aguilar, A. C.; Papavassiliou, J.
2008-01-01
We demonstrate how to obtain from the Schwinger-Dyson equations of QCD an infrared finite ghost propagator in the Feynman gauge. The key ingredient in this construction is the longitudinal form factor of the nonperturbative gluon-ghost vertex, which, contrary to what happens in the Landau gauge, contributes nontrivially to the gap equation of the ghost. The detailed study of the corresponding vertex equation reveals that in the presence of a dynamical infrared cutoff this form factor remains finite in the limit of vanishing ghost momentum. This, in turn, allows the ghost self-energy to reach a finite value in the infrared, without having to assume any additional properties for the gluon-ghost vertex, such as the presence of massless poles. The implications of this result and possible future directions are briefly outlined
International Nuclear Information System (INIS)
Cheng Hung; Tsai Ercheng
1986-01-01
We give a correspondence formula which equates transition amplitudes in a quantum gauge field theory without ghost fields to those in a quantum theory with the gauge fields covariantly quantized and coupled to ghost fields. (orig.)
Infra-red ghost contribution to the gluon Green's functions
International Nuclear Information System (INIS)
Paccanoni, F.
1985-01-01
The Schwinger-Dyson equations for the ghost propagator and the ghost-ghost-gluon vertex function are studied in the Landau gauge. A confining infra-red singularity is assumed for the gluon propagator and a suitable approximation is devised for the solution of the integral equations. It is found that the bare values of the ghost propagator and coupling cannot be a consistent solution of either equation. It is determined a possible behaviour of the correction factor for the ghost propagator in the small-momentum limit and discussed the consistency of the approximation schemes for the gluon propagator that neglet Faddeev-Popov ghost
Ghost quintessence in fractal gravity
Indian Academy of Sciences (India)
In this study, using the time-like fractal theory of gravity, we mainly focus on the ghost dark energy model which was recently suggested to explain the present acceleration of the cosmic expansion. Next, we establish a connection between the quintessence scalar field and fractal ghost dark energy density.
Observability of complex ghosts and tachyons
International Nuclear Information System (INIS)
Yamamoto, Hiroshi
1976-01-01
The complex ghost introduced previously by the present author is studied from a standpoint whether its effects are observable by experiments or not. According to the theory of complex ghost the scattering cross section of two real particles shows some particular properties. It has a kind of resonance peak at a certain energy which does not conform to the Breit-Wigner formula. It has also a peak for a certain energy transfer, if there exist tachyons. The tachyon is a kind of ghost and is allowed to exist in the theory. Using these properties the complex ghosts are expected to be detected by experiments. The recently observed resonance psi(3.1) is supposed to be the complex ghost of photon, since they have the same quantum numbers. If it is assumed, some properties of the resonance known by experiments are explained naturally to a certain extent. Along the same line it is not unnatural to expect that the photon is also accompanied by a tachyon as a ghost. An experiment to detect the tachyon is proposed. If the angular distribution of elastic electron-positron or electron-electron scattering is observed at a suitably high energy, then a peak will be found in the domain -1< cos theta<1, where it is assumed that the exchanged photon accompanies a tachyon. (auth.)
Recovering a hidden polarization by ghost polarimetry.
Janassek, Patrick; Blumenstein, Sébastien; Elsäßer, Wolfgang
2018-02-15
By exploiting polarization correlations of light from a broadband fiber-based amplified spontaneous emission source we succeed in reconstructing a hidden polarization in a ghost polarimetry experiment in close analogy to ghost imaging and ghost spectroscopy. Thereby, an original linear polarization state in the object arm of a Mach-Zehnder interferometer configuration which has been camouflaged by a subsequent depolarizer is recovered by correlating it with light from a reference beam. The variation of a linear polarizer placed inside the reference beam results in a Malus law type second-order intensity correlation with high contrast, thus measuring a ghost polarigram.
Khakimov, R. I.; Henson, B. M.; Shin, D. K.; Hodgman, S. S.; Dall, R. G.; Baldwin, K. G. H.; Truscott, A. G.
2016-12-01
Ghost imaging is a counter-intuitive phenomenon—first realized in quantum optics—that enables the image of a two-dimensional object (mask) to be reconstructed using the spatio-temporal properties of a beam of particles with which it never interacts. Typically, two beams of correlated photons are used: one passes through the mask to a single-pixel (bucket) detector while the spatial profile of the other is measured by a high-resolution (multi-pixel) detector. The second beam never interacts with the mask. Neither detector can reconstruct the mask independently, but temporal cross-correlation between the two beams can be used to recover a ‘ghost’ image. Here we report the realization of ghost imaging using massive particles instead of photons. In our experiment, the two beams are formed by correlated pairs of ultracold, metastable helium atoms, which originate from s-wave scattering of two colliding Bose-Einstein condensates. We use higher-order Kapitza-Dirac scattering to generate a large number of correlated atom pairs, enabling the creation of a clear ghost image with submillimetre resolution. Future extensions of our technique could lead to the realization of ghost interference, and enable tests of Einstein-Podolsky-Rosen entanglement and Bell’s inequalities with atoms.
Recent developments in the path integral approach to anomalies
International Nuclear Information System (INIS)
Fujikawa, Kazuo.
1986-08-01
After a brief summary of the path integral approach to anomalous identities, some of the recent developments in this approach are discussed. The topics discussed include (i) Construction of the effective action by means of the covariant current, (ii) Gauss law constraint in anomalous gauge theories, (iii) Path integral approach to anomalies in superconformal transformations, (iv) Conformal and ghost number anomalies in string theory in analogy with the instanton calculation, (v) Covariant local Lorentz anomaly and its connection with the mathematical construction of the consistent anomaly. (author)
Ghost number anomaly in the Polyakov's light-cone gauge
International Nuclear Information System (INIS)
Suzuki, Hiroshi.
1990-06-01
The conformal (Weyl) anomaly of the ghost-anti-ghost system in the two-dimentional quantum gravity is calculated. A background covariant formalism allows us to treat the Polyakov's light-cone gauge in a systematic way. The anomaly gives a contribution to the central charge, -28, which agrees with the result of Kniznik, Polyakov and Zamolodchikov. The ghost number anomaly is also calculated, and the metric corrections to the naive ghost number current are given. It is suggested that a general scalar density in the light-cone gauge carries a screening ghost number. (author)
Accretion of a ghost condensate by black holes
International Nuclear Information System (INIS)
Frolov, Andrei V.
2004-01-01
The intent of this paper is to point out that the accretion of a ghost condensate by black holes could be extremely efficient. We analyze steady-state spherically symmetric flows of the ghost fluid in the gravitational field of a Schwarzschild black hole and calculate the accretion rate. Unlike minimally coupled scalar field or quintessence, the accretion rate is set not by the cosmological energy density of the field, but by the energy scale of the ghost condensate theory. If hydrodynamical flow is established, it could be as high as a tenth of a solar mass per second for 10 MeV scale ghost condensate accreting onto a stellar-sized black hole, which puts serious constraints on the parameters of the ghost condensate model
High visibility temporal ghost imaging with classical light
Liu, Jianbin; Wang, Jingjing; Chen, Hui; Zheng, Huaibin; Liu, Yanyan; Zhou, Yu; Li, Fu-li; Xu, Zhuo
2018-03-01
High visibility temporal ghost imaging with classical light is possible when superbunching pseudothermal light is employed. In the numerical simulation, the visibility of temporal ghost imaging with pseudothermal light, equaling (4 . 7 ± 0 . 2)%, can be increased to (75 ± 8)% in the same scheme with superbunching pseudothermal light. The reasons for that the retrieved images are different for superbunching pseudothermal light with different values of degree of second-order coherence are discussed in detail. It is concluded that high visibility and high quality temporal ghost image can be obtained by collecting sufficient number of data points. The results are helpful to understand the difference between ghost imaging with classical light and entangled photon pairs. The superbunching pseudothermal light can be employed to improve the image quality in ghost imaging applications.
Ghost imaging with third-order correlated thermal light
International Nuclear Information System (INIS)
Ou, L-H; Kuang, L-M
2007-01-01
In this paper, we propose a ghost imaging scheme with third-order correlated thermal light. We show that it is possible to produce the spatial information of an object at two different places in a nonlocal fashion by means of a third-order correlated imaging process with a third-order correlated thermal source and third-order correlation measurement. Concretely, we propose a protocol to create two ghost images at two different places from one object. This protocol involves two optical configurations. We derive the Gaussian thin lens equations and plot the geometrical optics of the ghost imaging processes for the two configurations. It is indicated that third-order correlated ghost imaging with thermal light exhibits richer correlated imaging effects than second-order correlated ghost imaging with thermal light
Ghost properties of generalized theories of gravitation
International Nuclear Information System (INIS)
Mann, R.B.; Moffat, J.W.
1982-01-01
We investigate theories of gravitation, in which spacetime is non-Riemannian and the metric g/sub munu/ is nonsymmetric, for ghosts and tachyons, using a spin-projection operator formalism. Ghosts are removed not by gauge invariance but by a Lagrange multiplier W/sub μ/, which occurs due to the breaking of projective invariance in the theory. Unified theories based on a Lagrangian containing a term lambdag/sup munu/g/sub / are proved to contain ghosts or tachyons
The ghost propagator in Coulomb gauge
International Nuclear Information System (INIS)
Watson, P.; Reinhardt, H.
2011-01-01
We present results for a numerical study of the ghost propagator in Coulomb gauge whereby lattice results for the spatial gluon propagator are used as input to solving the ghost Dyson-Schwinger equation. We show that in order to solve completely, the ghost equation must be supplemented by a boundary condition (the value of the inverse ghost propagator dressing function at zero momentum) which determines if the solution is critical (zero value for the boundary condition) or subcritical (finite value). The various solutions exhibit a characteristic behavior where all curves follow the same (critical) solution when going from high to low momenta until 'forced' to freeze out in the infrared to the value of the boundary condition. The boundary condition can be interpreted in terms of the Gribov gauge-fixing ambiguity; we also demonstrate that this is not connected to the renormalization. Further, the connection to the temporal gluon propagator and the infrared slavery picture of confinement is discussed.
Interacting ghost dark energy in Brans-Dicke theory
International Nuclear Information System (INIS)
Ebrahimi, Esmaeil; Sheykhi, Ahmad
2011-01-01
We investigate the QCD ghost model of dark energy in the framework of Brans-Dicke cosmology. First, we study the non-interacting ghost dark energy in a flat Brans-Dicke theory. In this case we obtain the equation of state and the deceleration parameters and a differential equation governing the evolution of ghost energy density. Interestingly enough, we find that the equation of state parameter of the non-interacting ghost dark energy can cross the phantom line (w D =-1) provided the parameters of the model are chosen suitably. Then, we generalize the study to the interacting ghost dark energy in both flat and non-flat Brans-Dicke framework and find out that the transition of w D to phantom regime can be more easily achieved for than when resort to the Einstein field equations is made.
Ghost Children: Invisible Middle Level Students
Matteson, Shirley M.
2014-01-01
For this study, 119 middle level teacher candidates identified, observed, and documented their interactions with middle school "ghost children" as part of their field placement activities. About two thirds of the 124 ghost children identified for this study were male. The teacher candidates documented additional characteristics of ghost…
International Nuclear Information System (INIS)
Capeluto, M G; Schmiegelow, C T; Francisco, D; Ledesma, S; Iemmi, C; Duisterwinkel, H
2011-01-01
Ghost imaging and ghost diffraction are techniques in which information about the object or about its diffraction pattern is extracted by measuring the correlation between a reference beam and a beam that passes through the object. Although first experiments were carried on by using entangled photons, it was demonstrated that this technique can be performed by splitting incoherent pseudo-thermal radiation such as that obtained with a laser passing through a moving diffuser. In this work we implemented the use of a programmable phase spatial light modulator (SLM) in order to replace the rotating ground glass. In this way the random phase distributions obtained from the moving diffuser can be emulated by displaying onto the SLM different realizations of a random function with uniform distribution. Based on the programmability of the modulator we have studied the influence of diverse parameters such as speckle size or phase distributions in the final image quality. We carry on the experiment for two different cases ghost imaging and far field ghost diffraction.
SecureCore Software Architecture: Trusted Path Application (TPA) Requirements
National Research Council Canada - National Science Library
Clark, Paul C; Irvine, Cynthia E; Levin, Timothy E; Nguyen, Thuy D; Vidas, Timothy M
2007-01-01
.... A high-level architecture is described to provide such features. In addition, a usage scenario is described for a potential use of the architecture, with emphasis on the trusted path, a non-spoofable user interface to the trusted components of the system. Detailed requirements for the trusted path are provided.
Beam Dumping Ghost Signals in Electric Sweep Scanners
International Nuclear Information System (INIS)
Stockli, M.P.; Leitner, M.; Keller, R.; Moehs, D.P.; Welton, R.F.
2005-01-01
Over the last 20 years many labs started to use Allison scanners to measure low-energy ion beam emittances. We show that large trajectory angles produce ghost signals due to the impact of the beamlet on the electric deflection plates. The strength of the ghost signal is proportional to the amount of beam entering the scanner. Depending on the ions and their velocity, ghost signals can have the opposite polarity as the main beam signals or the same polarity. These ghost signals are easily overlooked because they partly overlap the real signals, they are mostly below the 1% level, and they are often hidden in the noise. However, they cause significant errors in emittance estimates because they are associated with large trajectory angles. The strength of ghost signals, and the associated errors, can be drastically reduced with a simple modification of the deflection plates
Beam dumping ghost signals in electric sweep scanners
International Nuclear Information System (INIS)
Stockli, M.P.; SNS Project, Oak Ridge; Tennessee U.; Leitner, M.; LBL, Berkeley; Moehs, D.P.; Keller, R.; LBL, Berkeley; Welton, R.F.; SNS Project, Oak Ridge
2004-01-01
Over the last 20 years many labs started to use Allison scanners to measure loW--energy ion beam emittances. We show that large trajectory angles produce ghost signals due to the impact of the beamlet on the electric deflection plates. The strength of the ghost signal is proportional to the amount of beam entering the scanner. Depending on the ions and their velocity, ghost signals can have the opposite polarity as the main beam signals or the same polarity. These ghost signals are easily overlooked because they partly overlap the real signals, they are mostly below the 1% level, and they are often hidden in the noise. However, they cause significant errors in emittance estimates because they are associated with large trajectory angles. The strength of ghost signals, and the associated errors, can be drastically reduced with a simple modification of the deflection plates
Confessions of Academic Ghost Authors
Directory of Open Access Journals (Sweden)
Ehsan Shahghasemi
2015-02-01
Full Text Available Academic plagiarism exists in all academic spheres, but contextual factors determine the level, intensity, and forms of it. Over the last few years, the phenomenon of “Ghost Authorship” has become widespread in Iran, and concerns have been expressed regarding this issue, not only by academicians but also by officials. In this study, 143 students participated in a two-step interview study in which they spoke about their experiences on either seeing a ghost author doing the research of someone else in exchange of money or they themselves being a ghost author. In all, 29 students said that they had done it once or so. The in-depth interviews with these 29 students showed how the plagiarism industry works in Iran, who the customers are, how they find each other, and so on.
High-quality compressive ghost imaging
Huang, Heyan; Zhou, Cheng; Tian, Tian; Liu, Dongqi; Song, Lijun
2018-04-01
We propose a high-quality compressive ghost imaging method based on projected Landweber regularization and guided filter, which effectively reduce the undersampling noise and improve the resolution. In our scheme, the original object is reconstructed by decomposing of regularization and denoising steps instead of solving a minimization problem in compressive reconstruction process. The simulation and experimental results show that our method can obtain high ghost imaging quality in terms of PSNR and visual observation.
Infrared Behavior of Gluon and Ghost Propagators in Landau Gauge QCD
International Nuclear Information System (INIS)
von Smekal, L.; Hauck, A.; Alkofer, R.
1997-01-01
A truncation scheme for the Dyson-Schwinger equations of Euclidean QCD in Landau gauge is presented. It implements the Slavnov-Taylor identities for the three-gluon and ghost-gluon vertices, whereas irreducible four-gluon couplings as well as the gluon-ghost and ghost-ghost scattering kernels are neglected. The infrared behavior of gluon and ghost propagators is obtained analytically: The gluon propagator vanishes for small momenta, whereas the ghost propagator diverges strongly. The numerical solutions are compared with recent lattice results. The running coupling approaches a fixed point, α c ≅9.5 , in the infrared. copyright 1997 The American Physical Society
Are ghosts necessary in planar gauges?
International Nuclear Information System (INIS)
Kummer, W.
1988-01-01
The introduction of Faddeev-Popov ghosts in axial gauges and especially in the ones of the planar type is not a technical necessity for the general proof of renormalization and gauge independence. It is shown that all necessary identities for Green's functions and for one-particle-irreducible vertices arise in a completely ghost-free formulation as well
GHOSTS I: A new faint very isolated dwarf galaxy at D = 12 ± 2 Mpc
International Nuclear Information System (INIS)
Monachesi, Antonela; Bell, Eric F.; Radburn-Smith, David J.; Dalcanton, Julianne J.; De Jong, Roelof S.; Streich, David; Vlajić, Marija; Bailin, Jeremy; Holwerda, Benne W.; Alyson Ford, H.; Zucker, Daniel B.
2014-01-01
We report the discovery of a new faint dwarf galaxy, GHOSTS I, using HST/ACS data from one of our GHOSTS (Galaxy Halos, Outer disks, Substructure, Thick disk, and Star clusters) fields. Its detected individual stars populate an approximately 1 mag range of its luminosity function (LF). Using synthetic color-magnitude diagrams (CMDs) to compare with the galaxy's CMD, we find that the colors and magnitudes of GHOSTS I's individual stars are most consistent with being young helium-burning and asymptotic giant branch stars at a distance of ∼12 ± 2 Mpc. Morphologically, GHOSTS I appears to be actively forming stars, so we tentatively classify it as a dwarf irregular (dIrr) galaxy, although future Hubble Space Telescope (HST) observations deep enough to resolve a larger magnitude range in its LF are required to make a more secure classification. GHOSTS I's absolute magnitude is M V ∼−9.85 −0.33 +0.40 , making it one of the least luminous dIrr galaxies known, and its metallicity is lower than [Fe/H] = –1.5 dex. The half-light radius of GHOSTS I is 226 ± 38 pc and its ellipticity is 0.47 ± 0.07, similar to Milky Way and M31 dwarf satellites at comparable luminosity. There are no luminous massive galaxies or galaxy clusters within ∼4 Mpc from GHOSTS I that could be considered as its host, making it a very isolated dwarf galaxy in the local universe.
Weyl and ghost number anomalies in the Polyakov's light-cone gauge
International Nuclear Information System (INIS)
Suzuki, H.
1991-01-01
In this paper the conformal (Weyl) anomaly of the ghost-anti-ghost system in the 2-dimensional quantum gravity is calculated. A background covariant formalism allows us to treat the Polyakov's light-cone gauge in a systematic way. The anomaly gives a contribution to the central charge, -28, which agrees with the result of Kniznik, Polyakov, and Zamolodchikov. The ghost number anomaly is also calculated, and the metric corrections to the naive ghost number current are given. It is suggested that a general scalar density in the light-cone gauge carries a screening ghost number
International Nuclear Information System (INIS)
Pennington, M. R.; Wilson, D. J.
2011-01-01
The gluon and ghost propagators in Landau gauge QCD are investigated using the Schwinger-Dyson equation approach. Working in Euclidean spacetime, we solve for these propagators using a selection of vertex inputs, initially for the ghost equation alone and then for both propagators simultaneously. The results are shown to be highly sensitive to the choices of vertices. We favor the infrared finite ghost solution from studying the ghost equation alone where we argue for a specific unique solution. In order to solve this simultaneously with the gluon using a dressed-one-loop truncation, we find that a nontrivial full ghost-gluon vertex is required in the vanishing gluon momentum limit. The self-consistent solutions we obtain correspond to having a masslike term in the gluon propagator dressing, in agreement with similar studies supporting the long-held proposal of Cornwall.
Ghost lines in Moessbauer relaxation spectra
International Nuclear Information System (INIS)
Price, D.C.
1985-01-01
The appearance in Moessbauer relaxation spectra of 'ghost' lines, which are narrow lines that do not correspond to transitions between real hyperfine energy levels of the resonant system, is examined. It is shown that in many cases of interest, the appearance of these 'ghost' lines can be interpreted in terms of the relaxational averaging of one or more of the static interactions of the ion. (orig.)
Low-momentum ghost dressing function and the gluon mass
International Nuclear Information System (INIS)
Boucaud, Ph.; Leroy, J. P.; Le Yaouanc, A.; Micheli, J.; Pene, O.; Gomez, M. E.; Rodriguez-Quintero, J.
2010-01-01
We study the low-momentum ghost propagator Dyson-Schwinger equation in the Landau gauge, assuming for the truncation a constant ghost-gluon vertex, as it is extensively done, and a simple model for a massive gluon propagator. Then, regular Dyson-Schwinger equation solutions (the zero-momentum ghost dressing function not diverging) appear to emerge, and we show the ghost propagator to be described by an asymptotic expression reliable up to the order O(q 2 ). That expression, depending on the gluon mass and the zero-momentum Taylor-scheme effective charge, is proven to fit pretty well some low-momentum ghost propagator data [I. L. Bogolubsky, E. M. Ilgenfritz, M. Muller-Preussker, and A. Sternbeck, Phys. Lett. B 676, 69 (2009); Proc. Sci., LAT2007 (2007) 290] from big-volume lattice simulations where the so-called ''simulated annealing algorithm'' is applied to fix the Landau gauge.
Roles of the color antisymmetric ghost propagator in the Infrared QCD
International Nuclear Information System (INIS)
Furui, S.
2009-01-01
The results of Coulomb gauge and Landau gauge lattice QCD simulation do not agree completely with continuum theory. There are indications that the ghost propagator in the infrared region has strong fluctuation whose modulus is compatible with that of the color diagonal ghost propagator. After presenting lattice simulation of configurations produced with Kogut-Susskind fermion (MILC collaboration) and those with domain wall fermion (RBC/UKQCD collaboration), I investigate in triple gluon vertex and the ghost-gluon-ghost vertex how the square of the color antisymmetric ghost contributes. Then the effect of the vertex correction to the gluon propagator and the ghost propagator is investigated. Recent Dyson-Schwinger equation analysis suggests the ghost dressing function G(0) = finite and no infrared enhancement or a G = 0. But the ghost propagator renormalized by the loop containing a product of color antisymmetric ghost is expected to behave as [cc] r = - (G(q 2 ))/(q 2 ) with G(q 2 ) ∝ q -2aG with a G = 0.5, if the fixed point scenario is valid. I interpret the a G = 0 solution should contain a vertex correction. The infrared exponent of our lattice Landau gauge gluon propagator of the RBC/UKQCD is a D = - 0.5 and that of MILC is about - 0.7. A possible interpretation of the origin of the fluctuation is given. (author)
Neutron Ghost Imaging Technology Research on CARR Reactor
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
Ghost imaging is also known as quantum imaging. Different from the classical imaging, the neutron ghost imaging is based on the quantum mechanics properties of light field and its intrinsic parallel characteristic, and developed by new optical
Ghost problem of quantum field theories with higher derivatives
International Nuclear Information System (INIS)
Gavrielides, A.; Kuo, T.K.; Lee, S.Y.
1976-01-01
Second-order theories, i.e., theories described by Lagrangians quadratic in second derivatives of the fields, are carefully examined and their ghost problems are isolated and clearly exhibited. In particular, theories with gauge symmetry are shown to have precisely the same ghost problems as theories without gauge symmetry. It is also shown that massless theories of the same nature are the limit of massive theories containing ghost states
Vertex operators of ghost number three in Type IIB supergravity
International Nuclear Information System (INIS)
Mikhailov, Andrei
2016-01-01
We study the cohomology of the massless BRST complex of the Type IIB pure spinor superstring in flat space. In particular, we find that the cohomology at the ghost number three is nontrivial and transforms in the same representation of the supersymmetry algebra as the solutions of the linearized classical supergravity equations. Modulo some finite dimensional spaces, the ghost number three cohomology is the same as the ghost number two cohomology. We also comment on the difference between the naive and semi-relative cohomology, and the role of b-ghost.
Publication ethics and the ghost management of medical publication.
Sismondo, Sergio; Doucet, Mathieu
2010-07-01
It is by now no secret that some scientific articles are ghost authored - that is, written by someone other than the person whose name appears at the top of the article. Ghost authorship, however, is only one sort of ghosting. In this article, we present evidence that pharmaceutical companies engage in the ghost management of the scientific literature, by controlling or shaping several crucial steps in the research, writing, and publication of scientific articles. Ghost management allows the pharmaceutical industry to shape the literature in ways that serve its interests. This article aims to reinforce and expand publication ethics as an important area of concern for bioethics. Since ghost-managed research is primarily undertaken in the interests of marketing, large quantities of medical research violate not just publication norms but also research ethics. Much of this research involves human subjects, and yet is performed not primarily to increase knowledge for broad human benefit, but to disseminate results in the service of profits. Those who sponsor, manage, conduct, and publish such research therefore behave unethically, since they put patients at risk without justification. This leads us to a strong conclusion: if medical journals want to ensure that the research they publish is ethically sound, they should not publish articles that are commercially sponsored.
BRST cohomology of the superstring at arbitrary ghost number
International Nuclear Information System (INIS)
Horowitz, G.T.; Myers, R.C.; Martin, S.P.
1989-01-01
We investigate the cohomology of the BRST operator of the NSR superstring. No restriction is placed on the ghost number of the states. It is shown that every cohomology class can be written as a picture changed version of one of the known cohomology classes at a fixed ghost number. A generalization of this result is also found for the cohomology in the large algebra of a new bosonization of the superconformal ghosts. (orig.)
Some issues in the ghost condensation scenario
International Nuclear Information System (INIS)
Anisimov, A.
2004-01-01
In the recently proposed 'ghost condensation' scenario a model of consistent infrared modification of gravity was suggested. We first review the basic ideas of this scenario. We discuss various phenomenological aspects of the ghost condensation, such as stability of the condensate, bounds on the UV cut-off scale of the corresponding effective field theory and other issues. (author)
Variational method for lattice spectroscopy with ghosts
International Nuclear Information System (INIS)
Burch, Tommy; Hagen, Christian; Gattringer, Christof; Glozman, Leonid Ya.; Lang, C.B.
2006-01-01
We discuss the variational method used in lattice spectroscopy calculations. In particular we address the role of ghost contributions which appear in quenched or partially quenched simulations and have a nonstandard euclidean time dependence. We show that the ghosts can be separated from the physical states. Our result is illustrated with numerical data for the scalar meson
Ghost Imaging of Space Objects
International Nuclear Information System (INIS)
Strekalov, Dmitry V; Erkmen, Baris I; Yu Nan
2013-01-01
The term 'ghost imaging' was coined in 1995 when an optical correlation measurement in combination with an entangled photon-pair source was used to image a mask placed in one optical channel by raster-scanning a detector in the other, empty, optical channel. Later, it was shown that the entangled photon source could be replaced with thermal sources of light, which are abundantly available as natural illumination sources. It was also shown that the bucket detector could be replaced with a remote point-like detector, opening the possibility to remote-sensing imaging applications. In this paper, we discuss the application of ghost-imaging-like techniques to astronomy, with the objective of detecting intensity-correlation signatures resulting from space objects of interest, such as exo-planets, gas clouds, and gravitational lenses. An important aspect of being able to utilize ghost imaging in astronomy, is the recognition that in interstellar imaging geometries the object of interest can act as an effective beam splitter, yielding detectable variations in the intensity-correlation signature.
Masslessness of ghosts in equivariantly gauge-fixed Yang-Mills theories
International Nuclear Information System (INIS)
Golterman, Maarten; Zimmerman, Leah
2005-01-01
We show that the one-loop ghost self-energy in an equivariantly gauge-fixed Yang-Mills theory vanishes at zero momentum. A ghost mass is forbidden by equivariant BRST symmetry, and our calculation confirms this explicitly. The four-ghost self interaction which appears in the equivariantly gauge-fixed Yang-Mills theory is needed in order to obtain this result
Analysis of ghost image in high power laser system using computer
International Nuclear Information System (INIS)
Zhang Qingquan; Liu Jinsong; Wang Kejia; Zhu Qihua; Zhao Runchang; Wang Fang
2011-01-01
Using a self-made software named CatchGhost the ghost points' position and energy in a coaxial optic systems were calculated accurately in a short time without omission. The software can carry out massive calculation in a short time, and pick out the harmful ghosts in system automatically. Because all the elements which are related to beams' energy,including the pinhole' effect, reflectivity,gain and loss,are counted, data of ghost points given by the software are exact and useful. (authors)
Geometric ghosts and unitarity
International Nuclear Information System (INIS)
Ne'eman, Y.
1980-09-01
A review is given of the geometrical identification of the renormalization ghosts and the resulting derivation of Unitarity equations (BRST) for various gauges: Yang-Mills, Kalb-Ramond, and Soft-Group-Manifold
Ghost neutrinos as test fields in curved space-time
International Nuclear Information System (INIS)
Audretsch, J.
1976-01-01
Without restricting to empty space-times, it is shown that ghost neutrinos (their energy-momentum tensor vanishes) can only be found in algebraically special space-times with a neutrino flux vector parallel to one of the principal null vectors of the conformal tensor. The optical properties are studied. There are no ghost neutrinos in the Kerr-Newman and in spherically symmetric space-times. The example of a non-vacuum gravitational pp-wave accompanied by a ghost neutrino pp-wave is discussed. (Auth.)
International Nuclear Information System (INIS)
Novello, M.
1976-07-01
A class of solutions of DIRAC'S equation in gravitational fields for ghost neutrinos is given. Comments are restricted to the neutrino cosmological model recently found by M. Novello e I.D. Soares [pt
Ghost imaging with bucket detection and point detection
Zhang, De-Jian; Yin, Rao; Wang, Tong-Biao; Liao, Qing-Hua; Li, Hong-Guo; Liao, Qinghong; Liu, Jiang-Tao
2018-04-01
We experimentally investigate ghost imaging with bucket detection and point detection in which three types of illuminating sources are applied: (a) pseudo-thermal light source; (b) amplitude modulated true thermal light source; (c) amplitude modulated laser source. Experimental results show that the quality of ghost images reconstructed with true thermal light or laser beam is insensitive to the usage of bucket or point detector, however, the quality of ghost images reconstructed with pseudo-thermal light in bucket detector case is better than that in point detector case. Our theoretical analysis shows that the reason for this is due to the first order transverse coherence of the illuminating source.
Earth Data Analysis Center, University of New Mexico — This data provides locations and non-spatial attributes of many ghost towns in the State of New Mexico, compiled from various sources. Locations provided with...
Ivanov, Mikhail M
2014-01-01
We present a setup that provides a partial UV-completion of the ghost inflation model up to a scale which can be almost as high as the Planck mass. This is achieved by coupling the inflaton to the Lorentz-violating sector described by the Einstein-aether theory or its khronometric version. Compared to previous works on ghost inflation our setup allows to go beyond the study of small perturbations and include the background dynamics in a unified framework. In the specific regime when the expansion of the Universe is dominated by the kinetic energy of the inflaton we find that the model predicts rather high tensor-to-scalar ratio r ~ 0.02 $\\div$ 0.2 and non-Gaussianity of equilateral type with f_NL in the range from -50 to -5.
Ghost responses of the FitzHugh–Nagumo system induced by colored noise
International Nuclear Information System (INIS)
Bordet, M.; Morfu, S.; Marquié, P.
2015-01-01
We investigate both numerically and experimentally how the triggering of Ghost Stochastic Resonance is affected by colored noise in a FitzHugh–Nagumo circuit. It is experimentally shown that when the circuit is excited with a bichromatic signal, weak colored noise can induce a response with a main ghost frequency which is not present in the excitation. We analyze the occurrence of this ghost frequency versus the noise intensity and the correlation time of the colored noise. Numerical simulations and experiments confirm that for larger noise correlation time, submultiples of this ghost frequency dominate the system response while the previous expected ghost frequency is less observed
Theoretical scheme of thermal-light many-ghost imaging by Nth-order intensity correlation
International Nuclear Information System (INIS)
Liu Yingchuan; Kuang Leman
2011-01-01
In this paper, we propose a theoretical scheme of many-ghost imaging in terms of Nth-order correlated thermal light. We obtain the Gaussian thin lens equations in the many-ghost imaging protocol. We show that it is possible to produce N-1 ghost images of an object at different places in a nonlocal fashion by means of a higher order correlated imaging process with an Nth-order correlated thermal source and correlation measurements. We investigate the visibility of the ghost images in the scheme and obtain the upper bounds of the visibility for the Nth-order correlated thermal-light ghost imaging. It is found that the visibility of the ghost images can be dramatically enhanced when the order of correlation becomes larger. It is pointed out that the many-ghost imaging phenomenon is an observable physical effect induced by higher order coherence or higher order correlations of optical fields.
Izumi, K. H.; Thompson, J. L.; Groce, J. L.; Schwab, R. W.
1986-01-01
The design requirements for a 4D path definition algorithm are described. These requirements were developed for the NASA ATOPS as an extension of the Local Flow Management/Profile Descent algorithm. They specify the processing flow, functional and data architectures, and system input requirements, and recommended the addition of a broad path revision (reinitialization) function capability. The document also summarizes algorithm design enhancements and the implementation status of the algorithm on an in-house PDP-11/70 computer. Finally, the requirements for the pilot-computer interfaces, the lateral path processor, and guidance and steering function are described.
Delayed transitions in non-linear replicator networks: About ghosts and hypercycles
International Nuclear Information System (INIS)
Sardanyes, Josep; Sole, Ricard V.
2007-01-01
In this paper we analyze delayed transition phenomena associated to extinction thresholds in a mean field model for hypercycles composed of three and four units, respectively. Hence, we extend a previous analysis carried out with the two-membered hypercycle [see Sardanyes J, Sole RV. Ghosts in the origins of life? Int J Bifurcation Chaos 2006;16(9), in press]. The models we analyze show that, after the tangent bifurcation, these hypercycles also leave a ghost in phase space. These ghosts, which actually conserve the dynamical properties of the coalesced coexistence fixed point, delay the flows before hypercycle extinction. In contrast with the two-component hypercycle, both ghosts show a plateau in the delay as φ → 0, thus displacing the power-law dependence to higher values of φ, in which the scaling law is now given by τ ∼ φ β , with β = -1/3 (where τ is the delay and φ = ε - ε c , the parametric distance above the extinction bifurcation point). These results suggest that the presence of the ghost is a general property of hypercycles. Such ghosts actually cause a memory effect which might increase hypercycle survival chances in fluctuating environments
Comparison of the signal-to-noise characteristics of quantum versus thermal ghost imaging
International Nuclear Information System (INIS)
O'Sullivan, Malcolm N.; Chan, Kam Wai Clifford; Boyd, Robert W.
2010-01-01
We present a theoretical comparison of the signal-to-noise characteristics of quantum versus thermal ghost imaging. We first calculate the signal-to-noise ratio of each process in terms of its controllable experimental conditions. We show that a key distinction is that a thermal ghost image always resides on top of a large background; the fluctuations in this background constitutes an intrinsic noise source for thermal ghost imaging. In contrast, there is a negligible intrinsic background to a quantum ghost image. However, for practical reasons involving achievable illumination levels, acquisition times for thermal ghost images are often much shorter than those for quantum ghost images. We provide quantitative predictions for the conditions under which each process provides superior performance. Our conclusion is that each process can provide useful functionality, although under complementary conditions.
Ghost sector of vacuum string field theory and the projection equation
International Nuclear Information System (INIS)
Potting, Robertus; Raeymaekers, Joris
2002-01-01
We study the ghost sector of vacuum string field theory where the BRST operator Q is given by the midpoint insertion proposed by Gaiotto, Rastelli, Sen and Zwiebach. We introduce a convenient basis of half-string modes in terms of which Q takes a particularly simple form. We show that there exists a field redefinition which reduces the ghost sector field equation to a pure projection equation for string fields satisfying the constraint that the ghost number is equally divided over the left- and right halves of the string. When this constraint is imposed, vacuum string field theory can be reformulated as a U(∞) cubic matrix model. Ghost sector solutions can be constructed from projection operators on half-string Hilbert space just as in the matter sector. We construct the ghost sector equivalent of various well-known matter sector projectors such as the sliver, butterfly and nothing states. (author)
Hunting for CDF multi-muon ''ghost'' events at collider and fixed-target experiments
International Nuclear Information System (INIS)
Bornhauser, Nicki; Drees, Manuel
2011-01-01
In 2008 the CDF collaboration discovered a large excess of events containing two or more muons, at least one of which seemed to have been produced outside the beam pipe. We investigate whether similar ''ghost'' events could (and should) have been seen in already completed experiments. The CDF di-muon data can be reproduced by a simple model where a relatively light X particle undergoes 4-body decay. This model predicts a large number of ghost events in Fermilab fixed-target experiments E772, E789 and E866, applying the cuts optimized for analyses of Drell-Yan events. A correct description of events with more than two muons requires a more complicated model, where two X particles are produced from a very broad resonance Y. This model can be tested in fixed-target experiments only if the cut on the angles, or rapidities, of the muons can be relaxed. Either way, the UA1 experiment at the CERN p anti p collider should have observed O(100) ghost events. (orig.)
International Nuclear Information System (INIS)
Stroian, G.; Falco, T.; Seuntjens, J.P.
2004-01-01
The accuracy of dose delivery in radiotherapy is affected by the uncertainty in tumor localization. Motion of internal anatomy due to physiological processes such as respiration may lead to significant displacements which compromise tumor coverage and generate irradiation of healthy tissue. Real-time tracking with infrared-based systems is often used for tracking thoracic motion in radiation therapy. We studied the origin of ghost markers ('crosstalk') which may appear during dual sensor-based infrared tracking of independent reflective markers. Ghost markers occur when two or more reflective markers are coplanar with each other and with the sensors of the two camera-based infrared tracking system. Analysis shows that sensors are not points but they have a finite extent and this extent determines for each marker a 'ghost volume'. If one reflective marker enters the ghost volume of another marker, ghost markers will be reported by the tracking system; if the reflective markers belong to a surface their 'ghost volume' is reduced to a 'ghost surface' (ghost zone). Appearance of ghost markers is predicted for markers taped on the torso of an anthropomorphic phantom. This study illustrates the dependence of the shape, extent, and location of the ghost zones on the shape of the anthropomorphic phantom, the angle of view of the tracking system, and the distance between the tracking system and the anthropomorphic phantom. It is concluded that the appearance of ghost markers can be avoided by positioning the markers outside the ghost zones of the other markers. However, if this is not possible and the initial marker configuration is ghost marker-free, ghost markers can be eliminated during real-time tracking by virtue of the fact that they appear in the coordinate data sequence only temporarily
Gribov's horizon and the ghost dressing function
International Nuclear Information System (INIS)
Boucaud, Ph.; Leroy, J. P.; Le Yaouanc, A.; Micheli, J.; Pene, O.; Rodriguez-Quintero, J.
2009-01-01
We study a relation recently derived by K. Kondo at zero momentum between the Zwanziger's horizon function, the ghost dressing function and Kugo's functions u and w. We agree with this result as far as bare quantities are considered. However, assuming the validity of the horizon gap equation, we argue that the solution w(0)=0 is not acceptable since it would lead to a vanishing renormalized ghost dressing function. On the contrary, when the cutoff goes to infinity, u(0)→∞, w(0)→-∞ such that u(0)+w(0)→-1. Furthermore w and u are not multiplicatively renormalizable. Relaxing the gap equation allows w(0)=0 with u(0)→-1. In both cases the bare ghost dressing function, F(0,Λ), goes logarithmically to infinity at infinite cutoff. We show that, although the lattice results provide bare results not so different from the F(0,Λ)=3 solution, this is an accident due to the fact that the lattice cutoffs lie in the range 1-3 GeV -1 . We show that the renormalized ghost dressing function should be finite and nonzero at zero momentum and can be reliably estimated on the lattice up to powers of the lattice spacing; from published data on a 80 4 lattice at β=5.7 we obtain F R (0,μ=1.5 GeV)≅2.2.
Gravitational lensing and ghost images in the regular Bardeen no-horizon spacetimes
International Nuclear Information System (INIS)
Schee, Jan; Stuchlík, Zdeněk
2015-01-01
We study deflection of light rays and gravitational lensing in the regular Bardeen no-horizon spacetimes. Flatness of these spacetimes in the central region implies existence of interesting optical effects related to photons crossing the gravitational field of the no-horizon spacetimes with low impact parameters. These effects occur due to existence of a critical impact parameter giving maximal deflection of light rays in the Bardeen no-horizon spacetimes. We give the critical impact parameter in dependence on the specific charge of the spacetimes, and discuss 'ghost' direct and indirect images of Keplerian discs, generated by photons with low impact parameters. The ghost direct images can occur only for large inclination angles of distant observers, while ghost indirect images can occur also for small inclination angles. We determine the range of the frequency shift of photons generating the ghost images and determine distribution of the frequency shift across these images. We compare them to those of the standard direct images of the Keplerian discs. The difference of the ranges of the frequency shift on the ghost and direct images could serve as a quantitative measure of the Bardeen no-horizon spacetimes. The regions of the Keplerian discs giving the ghost images are determined in dependence on the specific charge of the no-horizon spacetimes. For comparison we construct direct and indirect (ordinary and ghost) images of Keplerian discs around Reissner-Nördström naked singularities demonstrating a clear qualitative difference to the ghost direct images in the regular Bardeen no-horizon spacetimes. The optical effects related to the low impact parameter photons thus give clear signature of the regular Bardeen no-horizon spacetimes, as no similar phenomena could occur in the black hole or naked singularity spacetimes. Similar direct ghost images have to occur in any regular no-horizon spacetimes having nearly flat central region
Peripheral dentinogenic ghost cell tumor
Directory of Open Access Journals (Sweden)
Sushant S Kamat
2013-01-01
Full Text Available Dentinogenic ghost cell tumors (DGCT are uncommon lesions mainly with rare peripheral types. This report presents a case of peripheral DGCT on the left side of the mandibular alveolar ridge of a heavy smoker, a 68-year-old man, with main presenting feature as a mild pain. Submandibular lymphadenopathy and radiological "saucerization" were evident. Differential diagnosis included fibroma, neurofibroma, peripheral ameloblastoma, peripheral odontogenic fibroma, and peripheral giant cell granuloma. Histologically, ameloblastoma-like epithelial elements were seen in association with grouped ghost cells. Proliferating polyhedral cells and stellate reticulum-like cells with various densities were spread over a wide range of the field. The lesion was curetted and after 2 years of follow up, it did not recur.
Analysis of Generalized Ghost Dark Energy in LQC and Galileon Gravity
International Nuclear Information System (INIS)
Biswas, Mahasweta; Debnath, Ujjal
2016-01-01
A so-called ghost dark energy was recently proposed to explain the present acceleration of the universe. The energy density of ghost dark energy, which originates from Veneziano ghost of Quantum Chromodynamics (QCD), in a time dependent background, can be written in the form, ρ_D = (αH + βH"2) where H is the Hubble parameter. We investigate the generalized ghost dark energy (GGDE) model in the setup of loop quantum Cosmology (LQC) and Galileon Cosmology. We study the cosmological implications of the models. We also obtain the equation of state and the deceleration parameters and differential equations governing the evolution of this dark energy model for LQC and Galileon Cosmology. (paper)
Evidence of ghost suppression in gluon mass scale dynamics
Aguilar, A. C.; Binosi, D.; Figueiredo, C. T.; Papavassiliou, J.
2018-03-01
In this work we study the impact that the ghost sector of pure Yang-Mills theories may have on the generation of a dynamical gauge boson mass scale, which hinges on the appearance of massless poles in the fundamental vertices of the theory, and the subsequent realization of the well-known Schwinger mechanism. The process responsible for the formation of such structures is itself dynamical in nature, and is governed by a set of Bethe-Salpeter type of integral equations. While in previous studies the presence of massless poles was assumed to be exclusively associated with the background-gauge three-gluon vertex, in the present analysis we allow them to appear also in the corresponding ghost-gluon vertex. The full analysis of the resulting Bethe-Salpeter system reveals that the contribution of the poles associated with the ghost-gluon vertex are particularly suppressed, their sole discernible effect being a slight modification in the running of the gluon mass scale, for momenta larger than a few GeV. In addition, we examine the behavior of the (background-gauge) ghost-gluon vertex in the limit of vanishing ghost momentum, and derive the corresponding version of Taylor's theorem. These considerations, together with a suitable Ansatz, permit us the full reconstruction of the pole sector of the two vertices involved.
An improved ghost-cell immersed boundary method for compressible flow simulations
Chi, Cheng
2016-05-20
This study presents an improved ghost-cell immersed boundary approach to represent a solid body in compressible flow simulations. In contrast to the commonly used approaches, in the present work ghost cells are mirrored through the boundary described using a level-set method to farther image points, incorporating a higher-order extra/interpolation scheme for the ghost cell values. A sensor is introduced to deal with image points near the discontinuities in the flow field. Adaptive mesh refinement (AMR) is used to improve the representation of the geometry efficiently in the Cartesian grid system. The improved ghost-cell method is validated against four test cases: (a) double Mach reflections on a ramp, (b) smooth Prandtl-Meyer expansion flows, (c) supersonic flows in a wind tunnel with a forward-facing step, and (d) supersonic flows over a circular cylinder. It is demonstrated that the improved ghost-cell method can reach the accuracy of second order in L1 norm and higher than first order in L∞ norm. Direct comparisons against the cut-cell method demonstrate that the improved ghost-cell method is almost equally accurate with better efficiency for boundary representation in high-fidelity compressible flow simulations. Copyright © 2016 John Wiley & Sons, Ltd.
Ghost Imaging of Space Objects
National Aeronautics and Space Administration — Ghost imaging is an optical imaging technique that utilizes the correlations between optical fields in two channels. One of the channels contains the object, however...
Ghost anomalous dimension in asymptotically safe quantum gravity
International Nuclear Information System (INIS)
Eichhorn, Astrid; Gies, Holger
2010-01-01
We compute the ghost anomalous dimension within the asymptotic-safety scenario for quantum gravity. For a class of covariant gauge fixings and using a functional renormalization group scheme, the anomalous dimension η c is negative, implying an improved UV behavior of ghost fluctuations. At the non-Gaussian UV fixed point, we observe a maximum value of η c ≅-0.78 for the Landau-deWitt gauge within the given scheme and truncation. Most importantly, the backreaction of the ghost flow onto the Einstein-Hilbert sector preserves the non-Gaussian fixed point with only mild modifications of the fixed-point values for the gravitational coupling and cosmological constant and the associated critical exponents; also their gauge dependence is slightly reduced. Our results provide further evidence for the asymptotic-safety scenario of quantum gravity.
Lag and ghosting in a clinical flat-panel selenium digital mammography system
International Nuclear Information System (INIS)
Bloomquist, Aili K.; Yaffe, Martin J.; Mawdsley, Gordon E.; Hunter, David M.; Beideck, Daniel J.
2006-01-01
We present measurements of lag and ghosting in a FDA-approved digital mammography system that uses a dielectric/selenium based detector structure. Lag is the carryover of signal from a previous image, whereas ghosting is the reduction of sensitivity caused by previous exposure history of the detector. Data from six selenium units were acquired. For the type of selenium detector tested, and under typical clinical usage conditions, the lag was as high as 0.15% of source signal and the ghosting could be as high as 15%. The amount of lag and ghosting varied from unit to unit. Results were compared with data acquired on a phosphor-based full-field digital mammography system. Modifications in the technology of the selenium detectors appear to have resulted in a marked decrease in both lag and ghosting effects in more recent systems
Exorcising ghosts in induced gravity
Energy Technology Data Exchange (ETDEWEB)
Narain, Gaurav [Chinese Academy of Sciences (CAS), Key Laboratory of Theoretical Physics, Kavli Institute for Theoretical Physics China (KITPC), Institute of Theoretical Physics, Beijing (China)
2017-10-15
Unitarity of the scale-invariant coupled theory of higher-derivative gravity and matter is investigated. A scalar field coupled with a Dirac fermion is taken as the matter sector. Following the idea of induced gravity the Einstein-Hilbert term is generated via dynamical symmetry breaking of scale invariance. The renormalisation group flows are computed and one-loop RG improved effective potential of scalar is calculated. The scalar field develops a new minimum via the Coleman-Weinberg procedure inducing the Newton constant and masses in the matter sector. The spin-2 problematic ghost and the spin-0 mode of the metric fluctuation get a mass in the broken phase of the theory. The energy dependence of the vacuum expectation value in the RG improved scenario implies a running for the induced parameters. This sets up platform to ask whether it is possible to evade the spin-2 ghost by keeping its mass always above the running energy scale? In broken phase this question is satisfactorily answered for a large domain of coupling parameter space where the ghost is evaded. The spin-0 mode can be made physically realisable or not depending upon the choice of the initial parameters. The induced Newton constant is seen to vanish in the ultraviolet case. By properly choosing parameters it is possible to make the matter fields physically unrealisable. (orig.)
An Improved Ghost-cell Immersed Boundary Method for Compressible Inviscid Flow Simulations
Chi, Cheng
2015-05-01
This study presents an improved ghost-cell immersed boundary approach to represent a solid body in compressible flow simulations. In contrast to the commonly used approaches, in the present work ghost cells are mirrored through the boundary described using a level-set method to farther image points, incorporating a higher-order extra/interpolation scheme for the ghost cell values. In addition, a shock sensor is in- troduced to deal with image points near the discontinuities in the flow field. Adaptive mesh refinement (AMR) is used to improve the representation of the geometry efficiently. The improved ghost-cell method is validated against five test cases: (a) double Mach reflections on a ramp, (b) supersonic flows in a wind tunnel with a forward- facing step, (c) supersonic flows over a circular cylinder, (d) smooth Prandtl-Meyer expansion flows, and (e) steady shock-induced combustion over a wedge. It is demonstrated that the improved ghost-cell method can reach the accuracy of second order in L1 norm and higher than first order in L∞ norm. Direct comparisons against the cut-cell method demonstrate that the improved ghost-cell method is almost equally accurate with better efficiency for boundary representation in high-fidelity compressible flow simulations. Implementation of the improved ghost-cell method in reacting Euler flows further validates its general applicability for compressible flow simulations.
Energy Technology Data Exchange (ETDEWEB)
Karami, K.; Abdolmaleki, A.; Asadzadeh, S. [University of Kurdistan, Department of Physics, Sanandaj (Iran, Islamic Republic of); Safari, Z. [Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of)
2013-09-15
Within the framework of modified teleparallel gravity, we reconstruct a f(T) model corresponding to the QCD ghost dark energy scenario. For a spatially flat FRW universe containing only the pressureless matter, we obtain the time evolution of the torsion scalar T (or the Hubble parameter). Then, we calculate the effective torsion equation of state parameter of the QCD ghost f(T)-gravity model as well as the deceleration parameter of the universe. Furthermore, we fit the model parameters by using the latest observational data including SNeIa, CMB and BAO data. We also check the viability of our model using a cosmographic analysis approach. Moreover, we investigate the validity of the generalized second law (GSL) of gravitational thermodynamics for our model. Finally, we point out the growth rate of matter density perturbation. We conclude that in QCD ghost f(T)-gravity model, the universe begins a matter dominated phase and approaches a de Sitter regime at late times, as expected. Also this model is consistent with current data, passes the cosmographic test, satisfies the GSL and fits the data of the growth factor well as the {Lambda}CDM model. (orig.)
Visions of Inflation in World History: Ghost Story III
Niederjohn, M. Scott; Schug, Mark C.; Wood, William C.
2013-01-01
This article represents the third in a "ghost story" series by the same authors. Readers may recall that Mr. Bernanke was "visited" by the ghosts of Adam Smith and John Maynard Keynes in the March/April 2010 issue of "Social Education" as these two famous economists debated the economic recovery (see EJ878912). Mr.…
Ghost imaging and its visibility with partially coherent elliptical Gaussian Schell-model beams
International Nuclear Information System (INIS)
Luo, Meilan; Zhu, Weiting; Zhao, Daomu
2015-01-01
The performances of the ghost image and the visibility with partially coherent elliptical Gaussian Schell-model beams have been studied. In that case we have derived the condition under which the goal ghost image is achievable. Furthermore, the visibility is assessed in terms of the parameters related to the source to find that the visibility reduces with the increase of the beam size, while it is a monotonic increasing function of the transverse coherence length. More specifically, it is found that the inequalities of the source sizes in x and y directions, as well as the transverse coherence lengths, play an important role in the ghost image and the visibility. - Highlights: • We studied the ghost image and visibility with partially coherent EGSM beams. • We derived the condition under which the goal ghost image is achievable. • The visibility is assessed in terms of the parameters related to the source. • The source sizes and coherence lengths play role in the ghost image and visibility.
128 Gothicism/Ghost Stories in Nigerian Literature: Facts or Fiction ...
African Journals Online (AJOL)
Ike Odimegwu
In The Castle of Otranto, a gigantic hand in armour, a ghost ling figure, a vast helmet ... literature, the “literary ghost stories are stories written by creative artists who .... nurses, lovers, civil servants, the palm wine tapers, widows, job applicants ...
CLONING HARDDISK MELALUI JARINGAN KOMPUTER DENGAN MENGGUNAKAN SOFTWARE GHOST
Directory of Open Access Journals (Sweden)
M Mufadhol
2009-07-01
Full Text Available Kloning adalah proses duplikat isi harddisk ke harddisk yang lain. Jadi isi kedua harddisk adalah sama persis. Kloning harddisk dilakukan untuk mempercepat proses instalasi perangkat lunak dengan spesifikasi hardware yang sama. Kloning harddisk melalui jaringan komputer dapat dilakukan dari harddisk master ke harddisk slave atau harddisk tujuan. Pada proses kloning harddisk melalui jaringan komputer hardis induk berada di komputer server saja sedangkan slave harddisk berada di komputer klien saja. Harddisk setiap komputer tidak perlu digandeng (diparalel. Dalam melakukan kloning harddisk melalui jaringan komputer diperlukan beberapa program aplikasi antara lain: Ghost Cast Server, Boot Wizard, LAN Boot Floppy Klien, Ghost Explore. Aplikasi yang sering digunakan untuk kloning adalah software Ghost yang dirilis oleh Symantect Coorporation.
Non-perturbative power corrections to ghost and gluon propagators
International Nuclear Information System (INIS)
Boucaud, Philippe; Leroy, Jean-Pierre; Yaouanc, Alain Le; Lokhov, Alexey; Micheli, Jacques; Pene, Olivier; RodrIguez-Quintero, Jose; Roiesnel, Claude
2006-01-01
We study the dominant non-perturbative power corrections to the ghost and gluon propagators in Landau gauge pure Yang-Mills theory using OPE and lattice simulations. The leading order Wilson coefficients are proven to be the same for both propagators. The ratio of the ghost and gluon propagators is thus free from this dominant power correction. Indeed, a purely perturbative fit of this ratio gives smaller value ( ≅ 270MeV) of Λ M-barS-bar than the one obtained from the propagators separately( ≅ 320MeV). This argues in favour of significant non-perturbative ∼ 1/q 2 power corrections in the ghost and gluon propagators. We check the self-consistency of the method
'Ghost of Mirach' Rears its Spooky Head
2008-01-01
[figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Visible/DSS Click on image for larger version Ultraviolet/GALEX Click on image for larger version Poster Version Click on image for larger version The 'Ghost of Mirach' galaxy is shown in visible light on the left, and in ultraviolet as seen by NASA's Galaxy Evolution Explorer on the right. The fields of view are identical in both pictures, with the Ghost of Mirach a galaxy called NGC 404 seen as the whitish spot in the center of the images. Mirach is a red giant star that looms large in visible light. Because NGC 404 is lost in the glare of this star, it was nicknamed the Ghost of Mirach. But when the galaxy is viewed in ultraviolet light, it comes to 'life,' revealing a never-before-seen ring. This ring, seen in blue in the picture on the right, contains new stars a surprise considering that the galaxy was previously thought to be, essentially, dead. The field of view spans 55,000 light years across. The Ghost of Mirach is located 11 million light-years from Earth. The star Mirach is very close in comparison it is only 200 light-years away and is visible with the naked eye. The visible data come from the Digitized Sky Survey of the Space Telescope Science Institute in Baltimore, Md.
Ghost circles in lattice Aubry-Mather theory
Mramor, Blaz; Rink, Bob
Monotone lattice recurrence relations such as the Frenkel-Kontorova lattice, arise in Hamiltonian lattice mechanics, as models for ferromagnetism and as discretization of elliptic PDEs. Mathematically, they are a multi-dimensional counterpart of monotone twist maps. Such recurrence relations often admit a variational structure, so that the solutions x:Z→R are the stationary points of a formal action function W(x). Given any rotation vector ω∈R, classical Aubry-Mather theory establishes the existence of a large collection of solutions of ∇W(x)=0 of rotation vector ω. For irrational ω, this is the well-known Aubry-Mather set. It consists of global minimizers and it may have gaps. In this paper, we study the parabolic gradient flow {dx}/{dt}=-∇W(x) and we will prove that every Aubry-Mather set can be interpolated by a continuous gradient-flow invariant family, the so-called 'ghost circle'. The existence of these ghost circles is known in dimension d=1, for rational rotation vectors and Morse action functions. The main technical result of this paper is therefore a compactness theorem for lattice ghost circles, based on a parabolic Harnack inequality for the gradient flow. This implies the existence of lattice ghost circles of arbitrary rotation vectors and for arbitrary actions. As a consequence, we can give a simple proof of the fact that when an Aubry-Mather set has a gap, then this gap must be filled with minimizers, or contain a non-minimizing solution.
Suppressing Ghost Diffraction in E-Beam-Written Gratings
Wilson, Daniel; Backlund, Johan
2009-01-01
A modified scheme for electron-beam (E-beam) writing used in the fabrication of convex or concave diffraction gratings makes it possible to suppress the ghost diffraction heretofore exhibited by such gratings. Ghost diffraction is a spurious component of diffraction caused by a spurious component of grating periodicity as described below. The ghost diffraction orders appear between the main diffraction orders and are typically more intense than is the diffuse scattering from the grating. At such high intensity, ghost diffraction is the dominant source of degradation of grating performance. The pattern of a convex or concave grating is established by electron-beam writing in a resist material coating a substrate that has the desired convex or concave shape. Unfortunately, as a result of the characteristics of electrostatic deflectors used to control the electron beam, it is possible to expose only a small field - typically between 0.5 and 1.0 mm wide - at a given fixed position of the electron gun relative to the substrate. To make a grating larger than the field size, it is necessary to move the substrate to make it possible to write fields centered at different positions, so that the larger area is synthesized by "stitching" the exposed fields.
International Nuclear Information System (INIS)
Jaskolski, Z.
1991-05-01
The geometrical approach to the functional integral over Faddeev-Popov ghost fields is developed and applied to construct the BRST extension of the off-shell closed string amplitudes in the constant curvature gauge. In this gauge the overlap path integral for off-shell amplitudes is evaluated. It leads to the nonlocal sewing procedure generating all off-shell amplitudes from the cubic interaction vertex. The general scheme of the reconstruction of a covariant closed string field theory from the off-shell amplitudes is discussed within the path integral framework. (author). 30 refs
Vertex operator construction of superconformal ghosts and string field theory
International Nuclear Information System (INIS)
Ezawa, Z.F.; Nakamura, S.; Tezuka, A.
1987-01-01
Superconformal ghosts in string theories are characterized by the SU(1,1) Kac-Moody algebra with central charge -1/2. These ghost fields are constructed as the vertex operators realizing spinor representations of the Kac-Moody algebra. Representations of the canonical commutation relations of the superconformal ghosts are analyzed extensively. All irreducible representations are found to possess only the trivial inner product but for one exceptional case. Consequently, in superstring field theory it is necessary to consider reducible representations in general. Hilbert spaces with a non-trivial inner product are explicitly obtained upon which second quantization of superstring may be carried out. (orig.)
Ghost Imaging Using Orbital Angular Momentum
Institute of Scientific and Technical Information of China (English)
赵生妹; 丁建; 董小亮; 郑宝玉
2011-01-01
We present a novel encoding scheme in a ghost-imaging system using orbital angular momentum. In the signal arm, object spatial information is encoded as a phase matrix. For an N-grey-scale object, different phase matrices, varying from 0 to K with increment n/N, are used for different greyscales, and then they are modulated to a signal beam by a spatial light modulator. According to the conservation of the orbital angular momentum in the ghost imaging system, these changes will give different coincidence rates in measurement, and hence the object information can be extracted in the idler arm. By simulations and experiments, the results show that our scheme can improve the resolution of the image effectively. Compared with another encoding method using orbital angular momentum, our scheme has a better performance for both characters and the image object.%We present a novel encoding scheme in a ghost-imaging system using orbital angular momentum.In the signal arm,object spatial information is encoded as a phase matrix.For an N-grey-scale object,different phase matrices,varying from 0 to π with increment π/N,are used for different greyscales,and then they are modulated to a signal beam by a spatial light modulator.According to the conservation of the orbital angular momentum in the ghost imaging system,these changes will give different coincidence rates in measurement,and hence the object information can be extracted in the idler arm.By simulations and experiments,the results show that our scheme can improve the resolution of the image effectively.Compared with another encoding method using orbital angular momentum,our scheme has a better performance for both characters and the image object.
An improved ghost-cell immersed boundary method for compressible flow simulations
Chi, Cheng; Lee, Bok Jik; Im, Hong G.
2016-01-01
This study presents an improved ghost-cell immersed boundary approach to represent a solid body in compressible flow simulations. In contrast to the commonly used approaches, in the present work ghost cells are mirrored through the boundary
Effects of the quark field on the ghost propagator of lattice Landau gauge QCD
International Nuclear Information System (INIS)
Furui, Sadataka; Nakajima, Hideo
2006-01-01
Infrared features of the ghost propagator of color-diagonal and color antisymmetric ghost propagator of quenched SU(2) and quenched SU(3) are compared with those of unquenched Kogut-Susskind fermion SU(3) lattice Landau gauge. We compare (i) the fluctuation of the ghost propagator (ii) the ghost condensate parameter v of the local composite operator (LCO) approach, and (iii) the Binder cumulant of color antisymmetric ghost propagator between quenched and unquenched configurations. The color-diagonal SU(3) ghost dressing function of unquenched configurations has weaker singularity than the quenched configurations. In both cases fluctuations become large in q c configuration samples is ∼0.002-0.04 GeV 2 while that of the SU(2) parallel tempering samples is consistent with 0. The Binder cumulant defined as U(q)=1-(1/3)( 4 >/( 2 >) 2 ), where φ-vector(q) is the color antisymmetric ghost propagator measured by the sample average of gauge fixed configurations via parallel tempering method, becomes ∼4/9 in all the momentum region. The Binder cumulant of the color antisymmetric ghost propagator of quenched SU(2) can be explained by the 3D Gaussian distribution, but that of the unquenched MILC c deviates slightly from that of the eight-dimensional Gaussian distribution. The stronger singularity and large fluctuation in the quenched configuration could be the cause of the deviation of the Kugo-Ojima confinement parameter c from 1, and the presence of ordering in the ghost propagator of unquenched configurations makes it closer to 1
Iwamuro, Masaya; Morishita, Yosuke; Urata, Haruo; Okada, Hiroyuki
2017-12-01
Recently, we encountered a female patient who identified the presence of a ghost tablet in her fecal matter. Interestingly, although the patient was prescribed potassium chloride capsules, elemental composition analysis by energy-dispersive X-ray spectroscopy was unable to detect the presence of either potassium or chloride in the fecal tablet remnant.
DEFF Research Database (Denmark)
Pinder, David
2001-01-01
), which is set in east London. Connections are also drawn with other recent projects in the same area by Rachel Lichtenstein and Iain Sinclair. The paper discusses how these artists raise important issues about the cultural geographies of the city relating to subjectivity, representation and memory....... Cardiff’s audio-walk in particular works with connections between the self and the city, between the conscious and unconscious, and between multiple selves and urban footsteps. In so doing, she directs attention to the significance of dreams and ghostly matters for thinking about the real and imagined...
Y-formalism and b ghost in the non-minimal pure spinor formalism of superstrings
International Nuclear Information System (INIS)
Oda, Ichiro; Tonin, Mario
2007-01-01
We present the Y-formalism for the non-minimal pure spinor quantization of superstrings. In the framework of this formalism we compute, at the quantum level, the explicit form of the compound operators involved in the construction of the b ghost, their normal-ordering contributions and the relevant relations among them. We use these results to construct the quantum-mechanical b ghost in the non-minimal pure spinor formalism. Moreover we show that this non-minimal b ghost is cohomologically equivalent to the non-covariant b ghost
Schlacher, Thomas A.; Lucrezi, Serena; Connolly, Rod M.; Peterson, Charles H.; Gilby, Ben L.; Maslo, Brooke; Olds, Andrew D.; Walker, Simon J.; Leon, Javier X.; Huijbers, Chantal M.; Weston, Michael A.; Turra, Alexander; Hyndes, Glenn A.; Holt, Rebecca A.; Schoeman, David S.
2016-02-01
Beach and coastal dune systems are increasingly subjected to a broad range of anthropogenic pressures that on many shorelines require significant conservation and mitigation interventions. But these interventions require reliable data on the severity and frequency of adverse ecological impacts. Such evidence is often obtained by measuring the response of 'indicator species'. Ghost crabs are the largest invertebrates inhabiting tropical and subtropical sandy shores and are frequently used to assess human impacts on ocean beaches. Here we present the first global meta-analysis of these impacts, and analyse the design properties and metrics of studies using ghost-crabs in their assessment. This was complemented by a gap analysis to identify thematic areas of anthropogenic pressures on sandy beach ecosystems that are under-represented in the published literature. Our meta-analysis demonstrates a broad geographic reach, encompassing studies on shores of the Pacific, Indian, and Atlantic Oceans, as well as the South China Sea. It also reveals what are, arguably, two major limitations: i) the near-universal use of proxies (i.e. burrow counts to estimate abundance) at the cost of directly measuring biological traits and bio-markers in the organism itself; and ii) descriptive or correlative study designs that rarely extend beyond a simple 'compare and contrast approach', and hence fail to identify the mechanistic cause(s) of observed contrasts. Evidence for a historically narrow range of assessed pressures (i.e., chiefly urbanisation, vehicles, beach nourishment, and recreation) is juxtaposed with rich opportunities for the broader integration of ghost crabs as a model taxon in studies of disturbance and impact assessments on ocean beaches. Tangible advances will most likely occur where ghost crabs provide foci for experiments that test specific hypotheses associated with effects of chemical, light and acoustic pollution, as well as the consequences of climate change (e
Burning behavior in a poor-ventilation compartment fire - ghosting fire
International Nuclear Information System (INIS)
Sugawa, Osami; Kawagoe, Kunio; Oka, Yasushi
1991-01-01
We investigated compartment fire behavior under poor-ventilation conditions using a methyl alcohol pool fire as the source with a diameter of 30 cm set in a tight box of 2 m (W)x3 m(L)x0.6 m(H). The temperatures in the box and the fuel, gas concentrations of CO, CO 2 , and O 2 , and the fuel consumption rate were measured simultaneously. The burning fuel surface level was kept constant during the test by means of an automatic fuel supply system. It was found that the flame begun to detach from the fuel surface as the oxygen concentration decreased to about 16%, and the color changed to pale blue. The flame detached completely from the fuel and a 'ghosting flame' was observed just under the ceiling which showed a thin pale blue flame and looked line an aurora. The oxygen concentration measured in the ghosting period under the ceiling was 9-10 vol%, and CO 2 was 4.5 vol% so that the oxygen of such concentration acted as in inert gas. CO 2 gas concentration looked almost a single-layer with gradient in the upper half part in ghosting period. Temperatures in the same layer decreased after ghosting occurred with gradient. For poor-ventilated fires, air exchange rate as 1.6-2.4 times/hr was estimated in the test; the burning rate decreased finally to about 1/6 of the fuel controlled fire. It has been tacitly assumed that the flame (reaction zone) and pyrolyzing material area (fuel) exit in almost the same zone, but ghosting fire is not necessarily the case. Therefore, extinguishment of ghosting fire which may occur in an enclosure with fuel and energy rich but poor-ventilation such as a power plant will be extremely difficult. (orig.)
Ghost Remains After Black Hole Eruption
2009-05-01
NASA's Chandra X-ray Observatory has found a cosmic "ghost" lurking around a distant supermassive black hole. This is the first detection of such a high-energy apparition, and scientists think it is evidence of a huge eruption produced by the black hole. This discovery presents astronomers with a valuable opportunity to observe phenomena that occurred when the Universe was very young. The X-ray ghost, so-called because a diffuse X-ray source has remained after other radiation from the outburst has died away, is in the Chandra Deep Field-North, one of the deepest X-ray images ever taken. The source, a.k.a. HDF 130, is over 10 billion light years away and existed at a time 3 billion years after the Big Bang, when galaxies and black holes were forming at a high rate. "We'd seen this fuzzy object a few years ago, but didn't realize until now that we were seeing a ghost", said Andy Fabian of the Cambridge University in the United Kingdom. "It's not out there to haunt us, rather it's telling us something - in this case what was happening in this galaxy billions of year ago." Fabian and colleagues think the X-ray glow from HDF 130 is evidence for a powerful outburst from its central black hole in the form of jets of energetic particles traveling at almost the speed of light. When the eruption was ongoing, it produced prodigious amounts of radio and X-radiation, but after several million years, the radio signal faded from view as the electrons radiated away their energy. HDF 130 Chandra X-ray Image of HDF 130 However, less energetic electrons can still produce X-rays by interacting with the pervasive sea of photons remaining from the Big Bang - the cosmic background radiation. Collisions between these electrons and the background photons can impart enough energy to the photons to boost them into the X-ray energy band. This process produces an extended X-ray source that lasts for another 30 million years or so. "This ghost tells us about the black hole's eruption long after
Simplified pure spinor b ghost in a curved heterotic superstring background
Energy Technology Data Exchange (ETDEWEB)
Berkovits, Nathan [ICTP South American Institute for Fundamental Research,Instituto de Física Teórica, UNESP - Universidade Estadual Paulista,Rua Dr. Bento T. Ferraz 271, 01140-070, São Paulo, SP (Brazil); Chandia, Osvaldo [Departamento de Ciencias, Facultad de Artes Liberales,Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez,Diagonal Las Torres 2640, Peñalolén, Santiago (Chile)
2014-06-03
Using the RNS-like fermionic vector variables introduced in arXiv:1305.0693, the pure spinor b ghost in a curved heterotic superstring background is easily constructed. This construction simplifies and completes the b ghost construction in a curved background of arXiv:1311.7012.
Butler, J R A; Gunn, R; Berry, H L; Wagey, G A; Hardesty, B D; Wilcox, C
2013-07-15
Lost or discarded fishing nets are a significant component of marine debris which has trans-boundary impacts in large marine ecosystems. Such 'ghost nets' cause the by-catch of marine fauna and require retrieval from coastlines where they wash up. Identifying the causes of discarded nets and feasible intervention points requires analysis of a complex value chain and the stakeholders within it, yet no studies have attempted this. In this paper we combine Value Chain Analysis, commonly applied to understand value-adding for a commodity, with elements of Life Cycle Assessment and social network analysis to examine the drivers, stakeholders, economic, environmental and social costs and benefits in the life of a trawl net. We use the Arafura Sea as a case study, which is shared by Indonesia, Papua New Guinea and Australia, and is the focus of a Trans-boundary Diagnostic Assessment (TDA) within the Arafura-Timor Seas Ecosystem Action program (ATSEA). We follow a trawl net through four sub-systems: manufacture of webbing in South Korea, fishing and loss by an Indonesian vessel, retrieval as ghost net on the northern Australian coastline by Indigenous rangers, and disposal or re-cycling as 'GhostNet Art' by Indigenous artists. Primary stakeholders along the value chain incur economic and social benefits, and economic and environmental costs. There is an anomaly in the chain between Indonesian fishermen and Indigenous rangers, artists and communities due to the lack of market linkages between these primary stakeholders. The first 'nexus of influence' where reductions in net losses and environmental costs can be achieved is through interactions between GhostNets Australia, the World Wide Fund for Nature and the Australian Government, which can influence Indonesian fishery management institutions and fishing crews. The second nexus is via the international art market which by publicising GhostNet Art can raise awareness amongst fish consumers about the impacts of ghost nets
Ghost quintessence in fractal gravity
Indian Academy of Sciences (India)
In this study, using the time-like fractal theory of gravity, we mainly focus on the ghost ... Here a(t) is the cosmic scale factor and it measures the expansion of the Universe. ..... effectively appear as self-conserved dark energy, with a non-trivial ...
Exorcising the Ostrogradsky ghost in coupled systems
Energy Technology Data Exchange (ETDEWEB)
Klein, Remko; Roest, Diederik [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands)
2016-07-27
The Ostrogradsky theorem implies that higher-derivative terms of a single mechanical variable are either trivial or lead to additional, ghost-like degrees of freedom. In this letter we systematically investigate how the introduction of additional variables can remedy this situation. Employing a Lagrangian analysis, we identify conditions on the Lagrangian to ensure the existence of primary and secondary constraints that together imply the absence of Ostrogradsky ghosts. We also show the implications of these conditions for the structure of the equations of motion as well as possible redefinitions of the variables. We discuss applications to analogous higher-derivative field theories such as multi-Galileons and beyond Horndeski.
Exorcising the Ostrogradsky ghost in coupled systems
International Nuclear Information System (INIS)
Klein, Remko; Roest, Diederik
2016-01-01
The Ostrogradsky theorem implies that higher-derivative terms of a single mechanical variable are either trivial or lead to additional, ghost-like degrees of freedom. In this letter we systematically investigate how the introduction of additional variables can remedy this situation. Employing a Lagrangian analysis, we identify conditions on the Lagrangian to ensure the existence of primary and secondary constraints that together imply the absence of Ostrogradsky ghosts. We also show the implications of these conditions for the structure of the equations of motion as well as possible redefinitions of the variables. We discuss applications to analogous higher-derivative field theories such as multi-Galileons and beyond Horndeski.
Evidence of marine debris usage by the ghost crab Ocypode quadrata (Fabricius, 1787).
Costa, Leonardo Lopes; Rangel, Danilo Freitas; Zalmon, Ilana Rosental
2018-03-01
Sandy beaches are sites of marine debris stranding, but the interaction of beach biota with waste is poorly studied. The objective of this study was to investigate whether the ghost crab Ocypode quadrata selects marine debris by types using a non-destructive method on sandy beaches of Southeastern Brazil. We found marine debris in 7% of 1696 surveyed burrows, and the ghost crabs selectivity was mainly by soft plastic (30%), straw (11%), rope (6%) and foam (4%). Burrows with marine debris showed higher occupation rate (~68%) compared to burrows without debris (~28%), indicating that these materials may increase the capacity of ghost crabs to memorize their burrows placement (homing). The percentage of marine debris was not always related to their amount in the drift line, but ghost crabs used more debris near urbanized areas. Future studies should test whether ghost crabs are using marine debris for feeding, homing or other mechanisms. Copyright © 2018 Elsevier Ltd. All rights reserved.
Patch-based frame interpolation for old films via the guidance of motion paths
Xia, Tianran; Ding, Youdong; Yu, Bing; Huang, Xi
2018-04-01
Due to improper preservation, traditional films will appear frame loss after digital. To deal with this problem, this paper presents a new adaptive patch-based method of frame interpolation via the guidance of motion paths. Our method is divided into three steps. Firstly, we compute motion paths between two reference frames using optical flow estimation. Then, the adaptive bidirectional interpolation with holes filled is applied to generate pre-intermediate frames. Finally, using patch match to interpolate intermediate frames with the most similar patches. Since the patch match is based on the pre-intermediate frames that contain the motion paths constraint, we show a natural and inartificial frame interpolation. We test different types of old film sequences and compare with other methods, the results prove that our method has a desired performance without hole or ghost effects.
An Improved Ghost-cell Immersed Boundary Method for Compressible Inviscid Flow Simulations
Chi, Cheng
2015-01-01
This study presents an improved ghost-cell immersed boundary approach to represent a solid body in compressible flow simulations. In contrast to the commonly used approaches, in the present work ghost cells are mirrored through the boundary
Bracey, Kezz; Balderston, David
2014-01-01
If you are new to Ghost, this book is ideal for you. You might be completely new to content management systems or you might have experience with others such as WordPress. Some knowledge of web design basics such as HTML and CSS will be useful, but the book is designed so you can enter at the point relevant to you.
Interacting viscous ghost tachyon, K-essence and dilaton scalar field models of dark energy
International Nuclear Information System (INIS)
Karami, K; Fahimi, K
2013-01-01
We study the correspondence between the interacting viscous ghost dark energy model with the tachyon, K-essence and dilaton scalar field models in the framework of Einstein gravity. We consider a spatially non-flat FRW universe filled with interacting viscous ghost dark energy and dark matter. We reconstruct both the dynamics and potential of these scalar field models according to the evolutionary behavior of the interacting viscous ghost dark energy model, which can describe the accelerated expansion of the universe. Our numerical results show that the interaction and viscosity have opposite effects on the evolutionary properties of the ghost scalar field models. (paper)
Ghosts in the self-accelerating DGP branch with Gauss–Bonnet effect
Energy Technology Data Exchange (ETDEWEB)
Liu, Yen-Wei; Izumi, Keisuke; Bouhmadi-López, Mariam; Chen, Pisin
2015-06-01
The Dvali–Gabadadze–Porrati brane-world model provides a possible approach to address the late-time cosmic acceleration. However, it has subsequently been pointed out that a ghost instability will arise on the self-accelerating branch. Here, we carefully investigate whether this ghost problem could be possibly cured by introducing the Gauss–Bonnet term in the five-dimensional bulk action, a natural generalization to the Dvali–Gabadadze–Porrati model. Our analysis is carried out for a background where a de Sitter brane is embedded in an anti–de Sitter bulk. Our result shows that the ghost excitations cannot be avoided even in this modified model.
Spherical collapse of small masses in the ghost-free gravity
International Nuclear Information System (INIS)
Frolov, Valeri P.; Zelnikov, Andrei; Netto, Tibério de Paula
2015-01-01
We discuss some properties of recently proposed models of a ghost-free gravity. For this purpose we study solutions of linearized gravitational equations in the framework of such a theory. We mainly focus on the version of the ghost-free theory with the exponential modification exp (◻/μ 2 )◻ −1 of the free propagator. The following three problems are discussed: (i) gravitational field of a point mass; (ii) Penrose limit of a point source boosted to the speed of light; and (iii) spherical gravitational collapse of null fluid. For the first problem we demonstrate that it can be solved by using the method of heat kernels and obtain a solution in a spacetime with arbitrary number of dimensions. For the second problem we also find the corresponding gyraton-type solutions of the ghost-free gravitational equations for any number of dimensions. For the third problem we obtain solutions for the gravitational field for the collapse of both “thin" and “thick" spherical null shells. We demonstrate how the ghost-free modification of the gravitational equations regularize the solutions of the linearized Einstein equations and smooth out their singularities.
Spherical collapse of small masses in the ghost-free gravity
Energy Technology Data Exchange (ETDEWEB)
Frolov, Valeri P.; Zelnikov, Andrei [Theoretical Physics Institute, Department of Physics, University of Alberta,Edmonton, AB, T6G 2E1 (Canada); Netto, Tibério de Paula [Theoretical Physics Institute, Department of Physics, University of Alberta,Edmonton, AB, T6G 2E1 (Canada); Departamento de Fisica - ICE, Universidade Federal de Juiz de Fora,Campus da UFJF, CEP: 36036-900, Juiz de Fora, MG (Brazil)
2015-06-17
We discuss some properties of recently proposed models of a ghost-free gravity. For this purpose we study solutions of linearized gravitational equations in the framework of such a theory. We mainly focus on the version of the ghost-free theory with the exponential modification exp (◻/μ{sup 2})◻{sup −1} of the free propagator. The following three problems are discussed: (i) gravitational field of a point mass; (ii) Penrose limit of a point source boosted to the speed of light; and (iii) spherical gravitational collapse of null fluid. For the first problem we demonstrate that it can be solved by using the method of heat kernels and obtain a solution in a spacetime with arbitrary number of dimensions. For the second problem we also find the corresponding gyraton-type solutions of the ghost-free gravitational equations for any number of dimensions. For the third problem we obtain solutions for the gravitational field for the collapse of both “thin' and “thick' spherical null shells. We demonstrate how the ghost-free modification of the gravitational equations regularize the solutions of the linearized Einstein equations and smooth out their singularities.
Modelling of classical ghost images obtained using scattered light
International Nuclear Information System (INIS)
Crosby, S; Castelletto, S; Aruldoss, C; Scholten, R E; Roberts, A
2007-01-01
The images obtained in ghost imaging with pseudo-thermal light sources are highly dependent on the spatial coherence properties of the incident light. Pseudo-thermal light is often created by reducing the coherence length of a coherent source by passing it through a turbid mixture of scattering spheres. We describe a model for simulating ghost images obtained with such partially coherent light, using a wave-transport model to calculate the influence of the scattering on initially coherent light. The model is able to predict important properties of the pseudo-thermal source, such as the coherence length and the amplitude of the residual unscattered component of the light which influence the resolution and visibility of the final ghost image. We show that the residual ballistic component introduces an additional background in the reconstructed image, and the spatial resolution obtainable depends on the size of the scattering spheres
Ghost free dual vector theories in 2+1 dimensions
International Nuclear Information System (INIS)
Dalmazi, Denis
2006-01-01
We explore here the issue of duality versus spectrum equivalence in dual theories generated through the master action approach. Specifically we examine a generalized self-dual (GSD) model where a Maxwell term is added to the self-dual model. A gauge embedding procedure applied to the GSD model leads to a Maxwell-Chern-Simons (MCS) theory with higher derivatives. We show here that the latter contains a ghost mode contrary to the original GSD model. By figuring out the origin of the ghost we are able to suggest a new master action which interpolates between the local GSD model and a nonlocal MCS model. Those models share the same spectrum and are ghost free. Furthermore, there is a dual map between both theories at classical level which survives quantum correlation functions up to contact terms. The remarks made here may be relevant for other applications of the master action approach
Modelling of classical ghost images obtained using scattered light
Energy Technology Data Exchange (ETDEWEB)
Crosby, S; Castelletto, S; Aruldoss, C; Scholten, R E; Roberts, A [School of Physics, University of Melbourne, Victoria, 3010 (Australia)
2007-08-15
The images obtained in ghost imaging with pseudo-thermal light sources are highly dependent on the spatial coherence properties of the incident light. Pseudo-thermal light is often created by reducing the coherence length of a coherent source by passing it through a turbid mixture of scattering spheres. We describe a model for simulating ghost images obtained with such partially coherent light, using a wave-transport model to calculate the influence of the scattering on initially coherent light. The model is able to predict important properties of the pseudo-thermal source, such as the coherence length and the amplitude of the residual unscattered component of the light which influence the resolution and visibility of the final ghost image. We show that the residual ballistic component introduces an additional background in the reconstructed image, and the spatial resolution obtainable depends on the size of the scattering spheres.
Honorary and ghost authorship in nursing publications.
Kennedy, Maureen Shawn; Barnsteiner, Jane; Daly, John
2014-11-01
The purposes of this study were to (a) assess the prevalence of articles with honorary authors and ghost authors in 10 leading peer-reviewed nursing journals between 2010 to 2012; (b) compare the results to prevalence reported by authors of articles published in high-impact medical journals; and (c) assess the experiences of editors in the International Academy of Nursing Editors with honorary and guest authorship. Corresponding authors of articles published in 10 nursing journals between 2010 and 2012 were invited to complete an online survey about the contributions of coauthors to see if the International Committee of Medical Journal Editors () criteria for authorship were met. Additionally, members of the International Academy of Nursing Editors were invited to complete an online survey about their experiences in identifying honorary or ghost authors in articles submitted for publication. The prevalence of articles published in 10 nursing journals with honorary authors was 42%, and the prevalence of ghost authorship was 27.6%. This is a greater prevalence than what has been reported among medical journals. Qualitative data yielded five themes: lack of awareness around the rules for authorship; acknowledged need for debate, discussion, and promotion of ethical practice; knowingly tolerating, and sometimes deliberately promoting, transgressions in practice; power relations and expectations; and avoiding scrutiny. Among the 60 respondents to the editor survey, 22 (36.7%) reported identifying honorary authors and 13 (21.7%) reported ghost authors among papers submitted to their publications. Inappropriate authorship is a significant problem among scholarly nursing publications. If nursing scholarship is to maintain integrity and be considered trustworthy, and if publications are to be a factor in professional advancement, editors, nursing leaders, and faculty need to disseminate and adhere to ethical authorship practices. © 2014 Sigma Theta Tau International.
Ghost-tree: creating hybrid-gene phylogenetic trees for diversity analyses.
Fouquier, Jennifer; Rideout, Jai Ram; Bolyen, Evan; Chase, John; Shiffer, Arron; McDonald, Daniel; Knight, Rob; Caporaso, J Gregory; Kelley, Scott T
2016-02-24
Fungi play critical roles in many ecosystems, cause serious diseases in plants and animals, and pose significant threats to human health and structural integrity problems in built environments. While most fungal diversity remains unknown, the development of PCR primers for the internal transcribed spacer (ITS) combined with next-generation sequencing has substantially improved our ability to profile fungal microbial diversity. Although the high sequence variability in the ITS region facilitates more accurate species identification, it also makes multiple sequence alignment and phylogenetic analysis unreliable across evolutionarily distant fungi because the sequences are hard to align accurately. To address this issue, we created ghost-tree, a bioinformatics tool that integrates sequence data from two genetic markers into a single phylogenetic tree that can be used for diversity analyses. Our approach starts with a "foundation" phylogeny based on one genetic marker whose sequences can be aligned across organisms spanning divergent taxonomic groups (e.g., fungal families). Then, "extension" phylogenies are built for more closely related organisms (e.g., fungal species or strains) using a second more rapidly evolving genetic marker. These smaller phylogenies are then grafted onto the foundation tree by mapping taxonomic names such that each corresponding foundation-tree tip would branch into its new "extension tree" child. We applied ghost-tree to graft fungal extension phylogenies derived from ITS sequences onto a foundation phylogeny derived from fungal 18S sequences. Our analysis of simulated and real fungal ITS data sets found that phylogenetic distances between fungal communities computed using ghost-tree phylogenies explained significantly more variance than non-phylogenetic distances. The phylogenetic metrics also improved our ability to distinguish small differences (effect sizes) between microbial communities, though results were similar to non
Ghost-free, finite, fourth-order D = 3 gravity.
Deser, S
2009-09-04
Canonical analysis of a recently proposed linear + quadratic curvature gravity model in D = 3 establishes its pure, irreducibly fourth derivative, quadratic curvature limit as both ghost-free and power-counting UV finite, thereby maximally violating standard folklore. This limit is representative of a generic class whose kinetic terms are conformally invariant in any dimension, but it is unique in simultaneously avoiding the transverse-traceless graviton ghosts plaguing D > 3 quadratic actions as well as double pole propagators in its other variables. While the two-term model is also unitary, its additional mode's second-derivative nature forfeits finiteness.
[3H]Ouabain binding and Na+, K+-ATPase in resealed human red cell ghosts
International Nuclear Information System (INIS)
Shoemaker, D.G.; Lauf, P.K.
1983-01-01
The interaction of the cardiac glycoside [ 3 H]ouabain with the Na+, K+ pump of resealed human erythrocyte ghosts was investigated. Binding of [ 3 H]ouabain to high intracellular Na+ ghosts was studied in high extracellular Na+ media, a condition determined to produce maximal ouabain binding rates. Simultaneous examination of both the number of ouabain molecules bound per ghost and the corresponding inhibition of the Na+, K+-ATPase revealed that one molecule of [ 3 H]ouabain inhibited one Na+, K+-ATPase complex. Intracellular magnesium or magnesium plus inorganic phosphate produced the lowest ouabain binding rate. Support of ouabain binding by adenosine diphosphate (ADP) was negligible, provided synthesis of adenosine triphosphate (ATP) through the residual adenylate kinase activity was prevented by the adenylate kinase inhibitor Ap5A. Uridine 5'-triphosphate (UTP) alone did not support ouabain binding after inhibition of the endogenous nucleoside diphosphokinase by trypan blue and depletion of residual ATP by the incorporation of hexokinase and glucose. ATP acting solely at the high-affinity binding site of the Na+, K+ pump (Km approximately 1 microM) promoted maximal [ 3 H]ouabain binding rates. Failure of 5'-adenylyl-beta-gamma-imidophosphate (AMP-PNP) to stimulate significantly the rate of ouabain binding suggests that phosphorylation of the pump was required to expose the ouabain receptor
The b ghost of the pure spinor formalism is nilpotent
Energy Technology Data Exchange (ETDEWEB)
Chandia, Osvaldo, E-mail: osvaldo.chandia@uai.c [Departamento de Ciencias, Facultad de Artes Liberales and Facultad de Ingenieria y Ciencias, Universidad Adolfo Ibanez, Santiago (Chile)
2011-01-10
The ghost for world-sheet reparametrization invariance is not a fundamental field in the pure spinor formalism. It is written as a combination of pure spinor variables which have conformal dimension two and such that it commutes with the BRST operator to give the world-sheet stress tensor. We show that the ghost variable defined in this way is nilpotent since the OPE of b with itself does not have singularities.
Directory of Open Access Journals (Sweden)
Moh. Zikky
2016-08-01
Full Text Available Shortest pathfinding problem has become a populer issue in Game’s Artificial Intelligent (AI. This paper discussed the effective way to optimize the shortest pathfinding problem, namely Navigation Mesh (NavMesh. This method is very interesting because it has a large area of implementation, especially in games world. In this paper, NavMesh was implemented by using A* (A star algorithm and examined in Unity 3D game engine. A* was an effective algorithm in shortest pathfinding problem because its optimization was made with effective tracing using segmentation line. Pac-Man game was chosen as the example of the shortest pathfinding by using NavMesh in Unity 3D. A* algorithm was implemented on the enemies of Pac-Man (three ghosts, which path was designed by using NavMesh concept. Thus, the movement of ghosts in catching Pac-Man was the result of this review of the effectiveness of this concept. In further research, this method could be implemented on several optimization programmes, such as Geographic Information System (GIS, robotics, and statistics.
The Ghost in the Touchscreen: Social Scaffolds Promote Learning by Toddlers
Zimmermann, Laura; Moser, Alecia; Lee, Herietta; Gerhardstein, Peter; Barr, Rachel
2017-01-01
This study examined the effect of a "ghost" demonstration on toddlers' imitation. In the "ghost" condition, virtual pieces moved to make a fish or boat puzzle. Fifty-two 2.5- and 3-year-olds were tested on a touchscreen (no transfer) or with 3D pieces (transfer); children tested with 3D pieces scored above a no demonstration…
Klompmaker, Adiël A.
2016-01-01
Ghost shrimps of Callianassidae and Ctenochelidae are soft-bodied, usually heterochelous decapods representing major bioturbators of muddy and sandy (sub)marine substrates. Ghost shrimps have a robust fossil record spanning from the Early Cretaceous (~ 133 Ma) to the Holocene and their remains are present in most assemblages of Cenozoic decapod crustaceans. Their taxonomic interpretation is in flux, mainly because the generic assignment is hindered by their insufficient preservation and disagreement in the biological classification. Furthermore, numerous taxa are incorrectly classified within the catch-all taxon Callianassa. To show the historical patterns in describing fossil ghost shrimps and to evaluate taphonomic aspects influencing the attribution of ghost shrimp remains to higher level taxa, a database of all fossil species treated at some time as belonging to the group has been compiled: 250 / 274 species are considered valid ghost shrimp taxa herein. More than half of these taxa (160 species, 58.4%) are known only from distal cheliped elements, i.e., dactylus and / or propodus, due to the more calcified cuticle locally. Rarely, ghost shrimps are preserved in situ in burrows or in direct association with them, and several previously unpublished occurrences are reported herein. For generic assignment, fossil material should be compared to living species because many of them have modern relatives. Heterochely, intraspecific variation, ontogenetic changes and sexual dimorphism are all factors that have to be taken into account when working with fossil ghost shrimps. Distal elements are usually more variable than proximal ones. Preliminary results suggest that the ghost shrimp clade emerged not before the Hauterivian (~ 133 Ma). The divergence of Ctenochelidae and Paracalliacinae is estimated to occur within the interval of Hauterivian to Albian (133–100 Ma). Callichirinae and Eucalliacinae likely diverged later during the Late Cretaceous (100–66 Ma
A review of ghost gear entanglement amongst marine mammals, reptiles and elasmobranchs.
Stelfox, Martin; Hudgins, Jillian; Sweet, Michael
2016-10-15
This review focuses on the effect that ghost gear entanglement has on marine megafauna, namely mammals, reptiles and elasmobranchs. A total of 76 publications and other sources of grey literature were assessed, and these highlighted that over 5400 individuals from 40 different species were recorded as entangled in, or associated with, ghost gear. Interestingly, there appeared to be a deficit of research in the Indian, Southern, and Arctic Oceans; and so, we recommend that future studies focus efforts on these areas. Furthermore, studies assessing the effects of ghost gear on elasmobranchs, manatees, and dugongs should also be prioritised, as these groups were underrepresented in the current literature. The development of regional databases, capable of recording entanglement incidences following a minimum global set of criteria, would be a logical next step in order to analyse the effect that ghost gear has on megafauna populations worldwide. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Ghost Whisperer's Ghost in the Machine: An example of pop cultural representation of virtual worlds
DEFF Research Database (Denmark)
Reinhard, CarrieLynn D.
2009-01-01
Analysis of an episode of the CBS series "Ghost Whisperer" for how it depicts a) what is a virtual world and b) the tensions that are involved in discussing the uses and effects of a virtual world. Discussion focuses on the overriding negative reception of virtual worlds in popular culture due...
The BRST quantization and the no-ghost theorem for AdS3
International Nuclear Information System (INIS)
Asano, Masako; Natsuume, Makoto
2003-01-01
In our previous papers, we prove the no-ghost theorem without light-cone directions. We point out that our results are valid for more general backgrounds. In particular, we prove the no-ghost theorem for AdS 3 in the context of the BRST quantization (with the standard restriction on the spin). We compare our BRST proof with the OCQ proof and establish the BRST-OCQ equivalence for AdS 3 . The key in both approaches lies in the certain structure of the matter Hilbert space as a product of two Verma modules. We also present the no-ghost theorem in the most general form. (author)
We applied porewater pressure sensing, time-lapse photography and planar optode imaging of oxygen to investigate hydraulic behaviors of the Thalassinidean ghost shrimp Neotrypaea californiensis and the associated dynamics of oxygen in and around their burrows. Ghost shrimp were h...
Hunting The Ghost Gun: An Analysis Of The U.S. Army Infantry Rifle
2016-03-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA JOINT APPLIED PROJECT HUNTING THE GHOST GUN : AN ANALYSIS OF THE U.S. ARMY......LEFT BLANK iii Approved for public release; distribution is unlimited HUNTING THE GHOST GUN : AN ANALYSIS OF THE U.S. ARMY INFANTRY
International Nuclear Information System (INIS)
Yan, Guanghua; Li, Jonathan; Huang, Yin; Mittauer, Kathryn; Lu, Bo; Liu, Chihray
2014-01-01
Purpose: To propose a simple model to explain the origin of ghost markers in marker-based optical tracking systems (OTS) and to develop retrospective strategies to detect and eliminate ghost markers. Methods: In marker-based OTS, ghost markers are virtual markers created due to the cross-talk between the two camera sensors, which can lead to system execution failure or inaccuracy in patient tracking. As a result, the users have to limit the number of markers and avoid certain marker configurations to reduce the chances of ghost markers. In this work, the authors propose retrospective strategies to detect and eliminate ghost markers. The two camera sensors were treated as mathematical points in space. The authors identified the coplanar within limit (CWL) condition as the necessary condition for ghost marker occurrence. A simple ghost marker detection method was proposed based on the model. Ghost marker elimination was achieved through pattern matching: a ghost marker-free reference set was matched with the optical marker set observed by the OTS; unmatched optical markers were eliminated as either ghost markers or misplaced markers. The pattern matching problem was formulated as a constraint satisfaction problem (using pairwise distances as constraints) and solved with an iterative backtracking algorithm. Wildcard markers were introduced to address missing or misplaced markers. An experiment was designed to measure the sensor positions and the limit for the CWL condition. The ghost marker detection and elimination algorithms were verified with samples collected from a five-marker jig and a nine-marker anthropomorphic phantom, rotated with the treatment couch from −60° to +60°. The accuracy of the pattern matching algorithm was further validated with marker patterns from 40 patients who underwent stereotactic body radiotherapy (SBRT). For this purpose, a synthetic optical marker pattern was created for each patient by introducing ghost markers, marker position
Energy Technology Data Exchange (ETDEWEB)
Yan, Guanghua, E-mail: yan@ufl.edu; Li, Jonathan; Huang, Yin; Mittauer, Kathryn; Lu, Bo; Liu, Chihray [Department of Radiation Oncology, University of Florida, Gainesville, Florida 32610 (United States)
2014-10-15
Purpose: To propose a simple model to explain the origin of ghost markers in marker-based optical tracking systems (OTS) and to develop retrospective strategies to detect and eliminate ghost markers. Methods: In marker-based OTS, ghost markers are virtual markers created due to the cross-talk between the two camera sensors, which can lead to system execution failure or inaccuracy in patient tracking. As a result, the users have to limit the number of markers and avoid certain marker configurations to reduce the chances of ghost markers. In this work, the authors propose retrospective strategies to detect and eliminate ghost markers. The two camera sensors were treated as mathematical points in space. The authors identified the coplanar within limit (CWL) condition as the necessary condition for ghost marker occurrence. A simple ghost marker detection method was proposed based on the model. Ghost marker elimination was achieved through pattern matching: a ghost marker-free reference set was matched with the optical marker set observed by the OTS; unmatched optical markers were eliminated as either ghost markers or misplaced markers. The pattern matching problem was formulated as a constraint satisfaction problem (using pairwise distances as constraints) and solved with an iterative backtracking algorithm. Wildcard markers were introduced to address missing or misplaced markers. An experiment was designed to measure the sensor positions and the limit for the CWL condition. The ghost marker detection and elimination algorithms were verified with samples collected from a five-marker jig and a nine-marker anthropomorphic phantom, rotated with the treatment couch from −60° to +60°. The accuracy of the pattern matching algorithm was further validated with marker patterns from 40 patients who underwent stereotactic body radiotherapy (SBRT). For this purpose, a synthetic optical marker pattern was created for each patient by introducing ghost markers, marker position
Effects of ghost shrimp on zinc and cadmium in sediments from Tampa Bay, FL
Klerks, P.L.; Felder, D.L.; Strasser, K.; Swarzenski, P.W.
2007-01-01
This study investigated the effects that ghost shrimp have on the distribution of metals in sediment. We measured levels of HNO3-extractable zinc and cadmium in surface sediment, in ghost shrimp burrow walls and in sediment ejected by the ghost shrimp from their burrows, at five sandy intertidal sites in Tampa Bay. Ghost shrimp densities and their rate of sediment ejection were also quantified, as were sediment organic content and silt + clay content. Densities of ghost shrimp (Sergio trilobata and Lepidophthalmus louisianensis) averaged 33/m2 at our sites, and they ejected sediment at an average rate of 28 g/burrow/day. Levels of both Zn and Cd were significantly higher in burrow walls than in surface sediments. Sediment ejected by the shrimp from their burrows had elevated levels of Zn (relative to surface sediments) at one of the sites. Sediment organic content and silt + clay content were higher in burrow-wall sediments than in ejected sediment, which in turn tended to have values above those of surface sediments. Differences in levels of HNO3-extractable Zn and Cd among sediment types may be a consequence of these sediments differing in other physiochemical characteristics, though the differences in metal levels remained statistically significant for some sites after correcting for differences in organic content and silt + clay content. We conclude that the presence of ghost shrimp burrows contributes to spatial heterogeneity of sedimentary metal levels, while the ghost shrimp bioturbation results in a significant flux of metals to the sediment surface and is expected to decrease heterogeneity of metal levels in sedimentary depth profiles.
Building Shadow Detection from Ghost Imagery
Zhou, G.; Sha, J.; Yue, T.; Wang, Q.; Liu, X.; Huang, S.; Pan, Q.; Wei, J.
2018-05-01
Shadow is one of the basic features of remote sensing image, it expresses a lot of information of the object which is loss or interference, and the removal of shadow is always a difficult problem to remote sensing image processing. In this paper, it is mainly analyzes the characteristics and properties of shadows from the ghost image (traditional orthorectification). The DBM and the interior and exterior orientation elements of the image are used to calculate the zenith angle of sun. Then this paper combines the scope of the architectural shadows which has be determined by the zenith angle of sun with the region growing method to make the detection of architectural shadow areas. This method lays a solid foundation for the shadow of the repair from the ghost image later. It will greatly improve the accuracy of shadow detection from buildings and make it more conducive to solve the problem of urban large-scale aerial imagines.
BUILDING SHADOW DETECTION FROM GHOST IMAGERY
Directory of Open Access Journals (Sweden)
G. Zhou
2018-05-01
Full Text Available Shadow is one of the basic features of remote sensing image, it expresses a lot of information of the object which is loss or interference, and the removal of shadow is always a difficult problem to remote sensing image processing. In this paper, it is mainly analyzes the characteristics and properties of shadows from the ghost image (traditional orthorectification. The DBM and the interior and exterior orientation elements of the image are used to calculate the zenith angle of sun. Then this paper combines the scope of the architectural shadows which has be determined by the zenith angle of sun with the region growing method to make the detection of architectural shadow areas. This method lays a solid foundation for the shadow of the repair from the ghost image later. It will greatly improve the accuracy of shadow detection from buildings and make it more conducive to solve the problem of urban large-scale aerial imagines.
A simple approach for EPID dosimetric calibration to overcome the effect of image-lag and ghosting
International Nuclear Information System (INIS)
Alshanqity, Mukhtar; Duane, Simon; Nisbet, Andrew
2012-01-01
EPID dosimetry has known drawbacks. The main issue is that a measurable residual signal is observed after the end of irradiation for prolonged periods of time, thus making measurement difficult. We present a detailed analysis of EPID response and suggest a simple, yet accurate approach for calibration that avoids the complexity of incorporating ghosting and image-lag using the maximum integrated signal instead of the total integrated signal. This approach is linear with dose and independent of dose rate. - Highlights: ► Image-lag and ghosting effects dosimetric accuracy. ► Image-lag and ghosting result in the reduction of total integrated signal for low doses. ► Residual signal is the most significant result for the image-lag and ghosting effects. ► Image-lag and ghosting can result in under-dosing of up to 2.5%.
Harry Potter and the Ghost Teacher: Resurrecting the Lost Art of Lecturing
McDaniel, Kathryn N.
2010-01-01
A significant image of classroom lectures is the one presented in J. K. Rowling's "Harry Potter" series. At Harry's Hogwarts School of Witchcraft and Wizardry, the most torturous class is easily History of Magic, which is, incidentally, the only class in the school taught by a ghost. Being taught by a ghost could be quite exciting: not so in…
The Ghost Tradition: Helen Of Troy In The Elizabethan Era
Directory of Open Access Journals (Sweden)
RADUCANU ADRIANA
2014-12-01
Full Text Available Reputedly the most beautiful woman who has ever lived, Helen of Troy (or Sparta is less well known for her elusive, ghost-like dimension. Homer wrote that the greatest war of Western classical antiquity started because of Helen's adultery followed by her elopement to Troy. Other ancient writers and historians, among theme Aeschylus, Stesichorus, Hesiod, Pausanias, Aristophanes, Euripides and Gorgias of Leontini, challenged the Homeric version, in various ways and attempted to exonerate Helen either by focusing on her phantom/ ghost/ as the generic object of man's desire and scorn or by casting doubt on the mechanisms of the blaming process. This paper argues that the Elizabethans Christopher Marlowe and William Shakespeare adopted and adapted the anti-Homer version of the depiction of Helen, what I here call “the ancient Helen ghost tradition”; nevertheless, in so doing they further reinforced the character's demonic features and paradoxically achieved a return to the adulterous Homeric Helen.
Lucia's Ghosts: Sonic, Gothic, and Postmodern
DEFF Research Database (Denmark)
Fillerup, Jessie
2016-01-01
In this article, I use an intertextual interference – the spectral presence of Norma Desmond in a performance of Donizetti’s Lucia di Lammermoor – as a locus through which to explore the consequences of the ‘open’ text in theatrical spectatorship, criticism and historical study. Norma’s ghosting...
Cohen, Elizabeth L; Tyler, William J
2016-05-01
A number of high-profile public figures hire ghost-tweeters to post to their social media accounts on their behalf, but no research has examined how this social media practice can affect followers' feelings of connection to the public figures. College students (n = 132) participated in an online experiment to examine the effect of ghost-tweeting practices on parasocial interaction (PSI) with social media figures. Tweet authorship (use of a ghost-tweeter or not) was manipulated. Ghost-tweeting resulted in reduced PSI. Perceptions of distance, but not personal authenticity mediated this effect. However, authenticity and distance did serially mediate the relationship between ghost-tweeting and PSI. These findings shed light on the process of PSI with celebrities and other media figures on social network sites.
Alizadeh, Mahdi; Conklin, Chris J; Middleton, Devon M; Shah, Pallav; Saksena, Sona; Krisa, Laura; Finsterbusch, Jürgen; Faro, Scott H; Mulcahey, M J; Mohamed, Feroze B
2018-04-01
Ghost artifacts are a major contributor to degradation of spinal cord diffusion tensor images. A multi-stage post-processing pipeline was designed, implemented and validated to automatically remove ghost artifacts arising from reduced field of view diffusion tensor imaging (DTI) of the pediatric spinal cord. A total of 12 pediatric subjects including 7 healthy subjects (mean age=11.34years) with no evidence of spinal cord injury or pathology and 5 patients (mean age=10.96years) with cervical spinal cord injury were studied. Ghost/true cords, labeled as region of interests (ROIs), in non-diffusion weighted b0 images were segmented automatically using mathematical morphological processing. Initially, 21 texture features were extracted from each segmented ROI including 5 first-order features based on the histogram of the image (mean, variance, skewness, kurtosis and entropy) and 16s-order feature vector elements, incorporating four statistical measures (contrast, correlation, homogeneity and energy) calculated from co-occurrence matrices in directions of 0°, 45°, 90° and 135°. Next, ten features with a high value of mutual information (MI) relative to the pre-defined target class and within the features were selected as final features which were input to a trained classifier (adaptive neuro-fuzzy interface system) to separate the true cord from the ghost cord. The implemented pipeline was successfully able to separate the ghost artifacts from true cord structures. The results obtained from the classifier showed a sensitivity of 91%, specificity of 79%, and accuracy of 84% in separating the true cord from ghost artifacts. The results show that the proposed method is promising for the automatic detection of ghost cords present in DTI images of the spinal cord. This step is crucial towards development of accurate, automatic DTI spinal cord post processing pipelines. Copyright © 2017 Elsevier Inc. All rights reserved.
Bukara, Katarina; Drvenica, Ivana; Ilić, Vesna; Stančić, Ana; Mišić, Danijela; Vasić, Borislav; Gajić, Radoš; Vučetić, Dušan; Kiekens, Filip; Bugarski, Branko
2016-12-20
The objective of our study was to develop controlled drug delivery system based on erythrocyte ghosts for amphiphilic compound sodium diclofenac considering the differences between erythrocytes derived from two readily available materials - porcine slaughterhouse and outdated transfusion human blood. Starting erythrocytes, empty erythrocyte ghosts and diclofenac loaded ghosts were compared in terms of the encapsulation efficiency, drug releasing profiles, size distribution, surface charge, conductivity, surface roughness and morphology. The encapsulation of sodium diclofenac was performed by an osmosis based process - gradual hemolysis. During this process sodium diclofenac exerted mild and delayed antihemolytic effect and increased potassium efflux in porcine but not in outdated human erythrocytes. FTIR spectra revealed lack of any membrane lipid disorder and chemical reaction with sodium diclofenac in encapsulated ghosts. Outdated human erythrocyte ghosts with detected nanoscale damages and reduced ability to shrink had encapsulation efficiency of only 8%. On the other hand, porcine erythrocyte ghosts had encapsulation efficiency of 37% and relatively slow drug release rate. More preserved structure and functional properties of porcine erythrocytes related to their superior encapsulation and release performances, define them as more appropriate for the usage in sodium diclofenac encapsulation process. Copyright © 2016 Elsevier B.V. All rights reserved.
Cinematography in Motherhood: a Hong Kong film adaptation of Ghosts
Directory of Open Access Journals (Sweden)
Kwok-kan Tam
2015-02-01
Full Text Available This is a study of a Hong Kong Chinese film adaptation of Ghosts made in 1960. It deals with processes of cross-cultural and cross-media adaptation, and probes issues of how stage techniques are turned into cinematographic devices. Ibsen’s plays, except Ghosts, have been adapted numerous times for the Chinese stage and screen in Hong Kong and China. Unlike in China, the reception of Ibsen in Hong Kong is not meant for political purposes. In most Hong Kong adaptations, Ibsen is valued for the purpose of theatrical experimentation. Among the stage adaptations, A Doll’s House and The Master Builder are the most popular. However, there was a film adaptation of Ghosts in 1960, which has never been discussed in Ibsen scholarship. In this adaptation, Director Tso Kea borrowed the plot from Ghosts and made a perfect Chinese melodrama film highlighting the Chinese emotions and relations in a wealthy family that undergoes a crisis. In traditional Chinese drama, there is the lack of psychological rendering in characterization and characters act according to moral considerations. In Tso Kea’s film, the portrayal of the mother provides a new sense of characterization by combining Mrs Alving with the traditional Chinese mother figure. The borrowing from Ibsen makes it possible for the Chinese film to create a character with emotional and psychological complexities. Images from the film are selected as illustration in the article.
Ghosts in high dimensional non-linear dynamical systems: The example of the hypercycle
International Nuclear Information System (INIS)
Sardanyes, Josep
2009-01-01
Ghost-induced delayed transitions are analyzed in high dimensional non-linear dynamical systems by means of the hypercycle model. The hypercycle is a network of catalytically-coupled self-replicating RNA-like macromolecules, and has been suggested to be involved in the transition from non-living to living matter in the context of earlier prebiotic evolution. It is demonstrated that, in the vicinity of the saddle-node bifurcation for symmetric hypercycles, the persistence time before extinction, T ε , tends to infinity as n→∞ (being n the number of units of the hypercycle), thus suggesting that the increase in the number of hypercycle units involves a longer resilient time before extinction because of the ghost. Furthermore, by means of numerical analysis the dynamics of three large hypercycle networks is also studied, focusing in their extinction dynamics associated to the ghosts. Such networks allow to explore the properties of the ghosts living in high dimensional phase space with n = 5, n = 10 and n = 15 dimensions. These hypercyclic networks, in agreement with other works, are shown to exhibit self-maintained oscillations governed by stable limit cycles. The bifurcation scenarios for these hypercycles are analyzed, as well as the effect of the phase space dimensionality in the delayed transition phenomena and in the scaling properties of the ghosts near bifurcation threshold
A ghost-cell immersed boundary method for flow in complex geometry
International Nuclear Information System (INIS)
Tseng, Y.-H.; Ferziger, Joel H.
2003-01-01
An efficient ghost-cell immersed boundary method (GCIBM) for simulating turbulent flows in complex geometries is presented. A boundary condition is enforced through a ghost cell method. The reconstruction procedure allows systematic development of numerical schemes for treating the immersed boundary while preserving the overall second-order accuracy of the base solver. Both Dirichlet and Neumann boundary conditions can be treated. The current ghost cell treatment is both suitable for staggered and non-staggered Cartesian grids. The accuracy of the current method is validated using flow past a circular cylinder and large eddy simulation of turbulent flow over a wavy surface. Numerical results are compared with experimental data and boundary-fitted grid results. The method is further extended to an existing ocean model (MITGCM) to simulate geophysical flow over a three-dimensional bump. The method is easily implemented as evidenced by our use of several existing codes
Towards numerical simulations of supersonic liquid jets using ghost fluid method
International Nuclear Information System (INIS)
Majidi, Sahand; Afshari, Asghar
2015-01-01
Highlights: • A ghost fluid method based solver is developed for numerical simulation of compressible multiphase flows. • The performance of the numerical tool is validated via several benchmark problems. • Emergence of supersonic liquid jets in quiescent gaseous environment is simulated using ghost fluid method for the first time. • Bow-shock formation ahead of the liquid jet is clearly observed in the obtained numerical results. • Radiation of mach waves from the phase-interface witnessed experimentally is evidently captured in our numerical simulations. - Abstract: A computational tool based on the ghost fluid method (GFM) is developed to study supersonic liquid jets involving strong shocks and contact discontinuities with high density ratios. The solver utilizes constrained reinitialization method and is capable of switching between the exact and approximate Riemann solvers to increase the robustness. The numerical methodology is validated through several benchmark test problems; these include one-dimensional multiphase shock tube problem, shock–bubble interaction, air cavity collapse in water, and underwater-explosion. A comparison between our results and numerical and experimental observations indicate that the developed solver performs well investigating these problems. The code is then used to simulate the emergence of a supersonic liquid jet into a quiescent gaseous medium, which is the very first time to be studied by a ghost fluid method. The results of simulations are in good agreement with the experimental investigations. Also some of the famous flow characteristics, like the propagation of pressure-waves from the liquid jet interface and dependence of the Mach cone structure on the inlet Mach number, are reproduced numerically. The numerical simulations conducted here suggest that the ghost fluid method is an affordable and reliable scheme to study complicated interfacial evolutions in complex multiphase systems such as supersonic liquid
Ghost imaging based on Pearson correlation coefficients
International Nuclear Information System (INIS)
Yu Wen-Kai; Yao Xu-Ri; Liu Xue-Feng; Li Long-Zhen; Zhai Guang-Jie
2015-01-01
Correspondence imaging is a new modality of ghost imaging, which can retrieve a positive/negative image by simple conditional averaging of the reference frames that correspond to relatively large/small values of the total intensity measured at the bucket detector. Here we propose and experimentally demonstrate a more rigorous and general approach in which a ghost image is retrieved by calculating a Pearson correlation coefficient between the bucket detector intensity and the brightness at a given pixel of the reference frames, and at the next pixel, and so on. Furthermore, we theoretically provide a statistical interpretation of these two imaging phenomena, and explain how the error depends on the sample size and what kind of distribution the error obeys. According to our analysis, the image signal-to-noise ratio can be greatly improved and the sampling number reduced by means of our new method. (paper)
Phase-Sensitive Coherence and the Classical-Quantum Boundary in Ghost Imaging
Erkmen, Baris I.; Hardy, Nicholas D.; Venkatraman, Dheera; Wong, Franco N. C.; Shapiro, Jeffrey H.
2011-01-01
The theory of partial coherence has a long and storied history in classical statistical optics. the vast majority of this work addresses fields that are statistically stationary in time, hence their complex envelopes only have phase-insensitive correlations. The quantum optics of squeezed-state generation, however, depends on nonlinear interactions producing baseband field operators with phase-insensitive and phase-sensitive correlations. Utilizing quantum light to enhance imaging has been a topic of considerable current interest, much of it involving biphotons, i.e., streams of entangled-photon pairs. Biphotons have been employed for quantum versions of optical coherence tomography, ghost imaging, holography, and lithography. However, their seemingly quantum features have been mimicked with classical-sate light, questioning wherein lies the classical-quantum boundary. We have shown, for the case of Gaussian-state light, that this boundary is intimately connected to the theory of phase-sensitive partial coherence. Here we present that theory, contrasting it with the familiar case of phase-insensitive partial coherence, and use it to elucidate the classical-quantum boundary of ghost imaging. We show, both theoretically and experimentally, that classical phase-sensitive light produces ghost imaging most closely mimicking those obtained in biphotons, and we derived the spatial resolution, image contrast, and signal-to-noise ratio of a standoff-sensing ghost imager, taking into account target-induced speckle.
Johnson, R G; Pfister, D; Carty, S E; Scarpa, A
1979-11-10
The effect of the transmembrane proton gradient (delta pH) and potential gradient (delta psi) upon the rate and extent of amine accumulation was investigated in chromaffin ghosts. The chromaffin ghosts were formed by hypo-osmotic lysis of isolated bovine chromaffin granules and extensive dialysis in order to remove intragranular binding components and dissipate the endogenous electrochemical gradients. Upon ATP addition to suspensions of chromaffin ghosts, a transmembrane proton gradient alone, a transmembrane gradient alone, or both, could be established, depending upon the compositions of the media in which the ghosts were formed and resuspended. When chloride was present in the medium, addition of ATP resulted in the generation of a transmembrane proton gradient, acidic inside of 1 pH unit (measured by [14C]methylamine distribution), and no transmembrane potential (measured by [14C]-thiocyanate distribution). When ATP was added to chromaffin ghosts suspended in a medium in which chloride was substituted by isethionate, a transmembrane potential, inside positive, of 45 mV and no transmembrane proton gradient, was measured. In each medium, the addition of agents known to affect proton or potential gradients, respectively, exerted a predictable mechanism of action. Accumulation of [14C]epinephrine or [14C]5-hydroxytryptamine was over 1 order of magnitude greater in the presence of the transmembrane proton gradient or the transmembrane potential than in the absence of any gradient and, moreover, was related to the magnitude of the proton or potential gradient in a dose-dependent manner. When ghosts were added to a medium containing chloride and isethionate, both a delta pH and delta psi could be generated upon addition of ATP. In this preparation, the maximal rate of amine accumulation was observed. The results indicate that amine accumulation into chromaffin ghosts can occur in the presence of either a transmembrane proton gradient, or a transmembrane potential
Correlation of the ghost and the quark in the lattice Landau gauge QCD
International Nuclear Information System (INIS)
Furui, Sadataka; Nakajima, Hideo
2007-01-01
Effects of the quark field on the ghost propagator of the lattice Landau gauge are investigated by using the unquenched SU(3) configurations produced by the MILC collaboration and compared with quenched gauge configurations of SU(2) first copy of the over relaxation gauge fixing, the parallel tempering (PT) gauge fixing and quenched SU(3) 56 4 configurations. We measure the color symmetric and the color antisymmetric ghost propagator and the Binder cumulant of the l 1 norm and the l 2 norm of color antisymmetric ghost propagators and investigate deviation from those of Gaussian distributions. In the first copy samples of quenched SU(2) we observe a large fluctuation in the Binder cumulant at the lowest momentum point. This fluctuation is reduced in the P T gauge fixed samples. The color anti-symmetric ghost propagator of quenched SU(3) configurations depends on the lattice size and is small as compared to the symmetric one in the large lattice of 56 4 . The Binder cumulant of the quenched SU(2) and the N f = 2 + 1 unquenched SU(3) are almost consistent with 3-d and 8-d Gaussian distribution, respectively. A comparison of the SU(3) unquenched configurations and quenched configurations indicates that the dynamical quarks have the effect of making color antisymmetric ghost propagator closer to the Gaussian distribution and the Kugo-Ojima color confinement parameter c closer to 1. (author)
Theoretical study of ghost imaging with cold atomic waves under the condition of partial coherence
International Nuclear Information System (INIS)
Chen, Jun; Liu, Yun-Xian
2014-01-01
A matter wave ghost imaging mechanism is proposed and demonstrated theoretically. This mechanism is based on the Talbot-Lau effect. Periodic gratings of matter wave density, which appear as a result of interference of atoms diffracted by pulses of an optical standing wave, are utilized to produce the reference wave and the signal wave simultaneously for the ghost imaging. An advantage of this mechanism is that during the imaging process, the beam-splitter is not needed, which highly simplifies the experimental setup and makes the ghost imaging possible in the field of matter wave
Pseudo color ghost coding imaging with pseudo thermal light
Duan, De-yang; Xia, Yun-jie
2018-04-01
We present a new pseudo color imaging scheme named pseudo color ghost coding imaging based on ghost imaging but with multiwavelength source modulated by a spatial light modulator. Compared with conventional pseudo color imaging where there is no nondegenerate wavelength spatial correlations resulting in extra monochromatic images, the degenerate wavelength and nondegenerate wavelength spatial correlations between the idle beam and signal beam can be obtained simultaneously. This scheme can obtain more colorful image with higher quality than that in conventional pseudo color coding techniques. More importantly, a significant advantage of the scheme compared to the conventional pseudo color coding imaging techniques is the image with different colors can be obtained without changing the light source and spatial filter.
Two-loop ghost-antighost condensation for SU(2) Yang-Mills theories in the maximal abelian gauge
International Nuclear Information System (INIS)
Fazio, A.R.
2004-01-01
In the framework of the formalism of Cornwall et.al. for composite operators I study the ghost-antighost condensation in SU(2) Yang-Mills theories quantized in the Maximal Abelian Gauge and derive analytically a condensating effective potential at two ghost loops. I find that in this approximation the one-loop pairing ghost-antighost is not destroyed and no mass is generated if the ansatz for the propagator suggested by the tree level Hubbard-Stratonovich transformations is used
International Nuclear Information System (INIS)
Klusoň, Josef; Nojiri, Shin'ichi; Odintsov, Sergei D.
2013-01-01
We propose new version of massive F(R) gravity which is natural generalization of convenient massive ghost-free gravity. Its Hamiltonian formulation in scalar-tensor frame is developed. We show that such F(R) theory is ghost-free. The cosmological evolution of such theory is investigated. Despite the strong Bianchi identity constraint the possibility of cosmic acceleration (especially, in the presence of cold dark matter) is established. Ghost-free massive F(R,T) gravity is also proposed
Phantom dark ghost in Einstein-Cartan gravity
Energy Technology Data Exchange (ETDEWEB)
Chang, Yu-Chiao [National Taiwan University, Department of Physics, Taipei (China); National Taiwan University, LeCosPA, Taipei (China); Bouhmadi-Lopez, Mariam [University of the Basque Country UPV/EHU, Department of Theoretical Physics, P.O. Box 644, Bilbao (Spain); Basque Foundation for Science, IKERBASQUE, Bilbao (Spain); Chen, Pisin [National Taiwan University, Department of Physics, Taipei (China); National Taiwan University, LeCosPA, Taipei (China); National Taiwan University, Graduate Institute of Astrophysics, Taipei (China); SLAC National Accelerator Laboratory, Stanford University, Kavli Institute for Particle Astrophysics and Cosmology, Stanford, CA (United States)
2017-05-15
A class of dynamical dark energy models is constructed through an extended version of fermion fields corresponding to phantom dark ghost spinors, which are spin 1/2 with mass dimension 1. We find that if these spinors interact with torsion fields in a homogeneous and isotropic universe, then it does not imply any future dark energy singularity or any abrupt event, though the fermion has a negative kinetic energy. In fact, the equation of state of this dark energy model will asymptotically approach the value w = -1 from above without crossing the phantom divide and inducing therefore a de Sitter state. Consequently, we expect the model to be stable because no real phantom fields will be created. At late time, the torsion fields will vanish as the corresponding phantom dark ghost spinors dilute. As would be expected, intuitively, this result is unaffected by the presence of cold dark matter although the proof is not as straightforward as in general relativity. (orig.)
International Nuclear Information System (INIS)
Main, J.; Wunner, G.
1997-01-01
Applying closed-orbit theory to the recurrence spectra of the hydrogen atom in a magnetic field, one can interpret most, but not all, structures semiclassically in terms of closed classical orbits. In particular, conventional closed-orbit theory fails near bifurcations of orbits where semiclassical amplitudes exhibit unphysical divergences. Here we analyze the role of ghost orbits living in complex phase space. The ghosts can explain resonance structures in the spectra of the hydrogen atom in a magnetic field at positions where no real orbits exist. For three different types of catastrophes, viz. fold, cusp, and butterfly catastrophes, we construct uniform semiclassical approximations and demonstrate that these solutions are completely determined by classical parameters of the real orbits and complex ghosts. copyright 1997 The American Physical Society
Spontaneous breaking of Lorentz symmetry by ghost condensation in perturbative quantum gravity
Faizal, Mir
2011-10-01
In this paper, we will study the spontaneous breakdown of the Lorentz symmetry by ghost condensation in perturbative quantum gravity. Our analysis will be done in the Curci-Ferrari gauge. We will also analyse the modification of the BRST and anti-BRST transformations by the formation of this ghost condensate. It will be shown that even though the modified BRST and anti-BRST transformations are not nilpotent, their nilpotency is restored on-shell.
Ramos, Bárbara Couto; da Silva Izar, Bruna Raquel; Pereira, Jéssica Lourdes Costa; Souza, Priscilla Sena; Valerio, Claudia Scigliano; Tuji, Fabrício Mesquita; Manzi, Flávio Ricardo
2016-03-01
Panoramic radiographs are a relatively simple technique that is commonly used in all dental specialties. In panoramic radiographs, in addition to the formation of real images of metal objects, ghost images may also form, and these ghost images can hinder an accurate diagnosis and interfere with the accuracy of radiology reports. Dentists must understand the formation of these images in order to avoid making incorrect radiographic diagnoses. Therefore, the present study sought to present a study of the formation of panoramic radiograph ghost images caused by metal objects in the head and neck region of a dry skull, as well as to report a clinical case n order to warn dentists about ghost images and to raise awareness thereof. An understanding of the principles of the formation of ghost images in panoramic radiographs helps prevent incorrect diagnoses.
Correspondence normalized ghost imaging on compressive sensing
International Nuclear Information System (INIS)
Zhao Sheng-Mei; Zhuang Peng
2014-01-01
Ghost imaging (GI) offers great potential with respect to conventional imaging techniques. It is an open problem in GI systems that a long acquisition time is be required for reconstructing images with good visibility and signal-to-noise ratios (SNRs). In this paper, we propose a new scheme to get good performance with a shorter construction time. We call it correspondence normalized ghost imaging based on compressive sensing (CCNGI). In the scheme, we enhance the signal-to-noise performance by normalizing the reference beam intensity to eliminate the noise caused by laser power fluctuations, and reduce the reconstruction time by using both compressive sensing (CS) and time-correspondence imaging (CI) techniques. It is shown that the qualities of the images have been improved and the reconstruction time has been reduced using CCNGI scheme. For the two-grayscale ''double-slit'' image, the mean square error (MSE) by GI and the normalized GI (NGI) schemes with the measurement number of 5000 are 0.237 and 0.164, respectively, and that is 0.021 by CCNGI scheme with 2500 measurements. For the eight-grayscale ''lena'' object, the peak signal-to-noise rates (PSNRs) are 10.506 and 13.098, respectively using GI and NGI schemes while the value turns to 16.198 using CCNGI scheme. The results also show that a high-fidelity GI reconstruction has been achieved using only 44% of the number of measurements corresponding to the Nyquist limit for the two-grayscale “double-slit'' object. The qualities of the reconstructed images using CCNGI are almost the same as those from GI via sparsity constraints (GISC) with a shorter reconstruction time. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
A spectre is haunting the cosmos: quantum stability of massive gravity with ghosts
International Nuclear Information System (INIS)
Könnig, Frank; Nersisyan, Henrik; Akrami, Yashar; Amendola, Luca; Zumalacárregui, Miguel
2016-01-01
Many theories of modified gravity with higher order derivatives are usually ignored because of serious problems that appear due to an additional ghost degree of freedom. Most dangerously, it causes an immediate decay of the vacuum. However, breaking Lorentz invariance can cure such abominable behavior. By analyzing a model that describes a massive graviton together with a remaining Boulware-Deser ghost mode we show that even ghostly theories of modified gravity can yield models that are viable at both classical and quantum levels and, therefore, they should not generally be ruled out. Furthermore, we identify the most dangerous quantum scattering process that has the main impact on the decay time and find differences to simple theories that only describe an ordinary scalar field and a ghost. Additionally, constraints on the parameters of the theory including some upper bounds on the Lorentz-breaking cutoff scale are presented. In particular, for a simple theory of massive gravity we find that a breaking of Lorentz invariance is allowed to happen even at scales above the Planck mass. Finally, we discuss the relevance to other theories of modified gravity.
The Ghosts of Acetylcholine : structure-activity relationships of ...
African Journals Online (AJOL)
The Ghosts of Acetylcholine : structure-activity relationships of muscle relaxants : registrar communication. ... AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's ...
On the state space of the dipole ghost
International Nuclear Information System (INIS)
Binegar, B.
1984-01-01
A particular representation of SO(4, 2) is identified with the state space of the free dipole ghost. This representation is then given an explicit realization as the solution space of a 4th-order wave equation on a spacetime locally isomorphic to Minkowski space. A discrete basis for this solution space is given, as well as an explicit expression for its SO(4, 2) invariant inner product. The connection between the modes of dipole field and those of the massless scalar field is clarified, and a recent conjecture concerning the restriction of the dipole representation to the Poincare subgroup is confirmed. A particular coordinate transformation then reveals the theory of the dipole ghost in Minkowski space. Finally, it is shown that the solution space of the dipole equation is not unitarizable in a Poincare invariant manner. (orig.)
International Nuclear Information System (INIS)
Danilov, G.S.
1995-01-01
A new formalism for ghosts on complex (1 bar 1) supermanifolds of genus n > 1 is discussed in superstring theory. In this formalism, vacuum correlation functions for ghost superfields differ substantially from correlation functions discussed earlier. In particular, the new correlation functions do not have unphysical poles. Among other things, these correlation functions take into account contributions to partition functions from the phase space of modular forms and from zero modes of ghosts. The above correlation functions, obtained for all even spinor structures, can be used to evaluate partition functions from equations that are nothing but Ward identities. 21 refs
Ghost image in enhanced self-heterodyne synthetic aperture imaging ladar
Zhang, Guo; Sun, Jianfeng; Zhou, Yu; Lu, Zhiyong; Li, Guangyuan; Xu, Mengmeng; Zhang, Bo; Lao, Chenzhe; He, Hongyu
2018-03-01
The enhanced self-heterodyne synthetic aperture imaging ladar (SAIL) self-heterodynes two polarization-orthogonal echo signals to eliminate the phase disturbance caused by atmospheric turbulence and mechanical trembling, uses heterodyne receiver instead of self-heterodyne receiver to improve signal-to-noise ratio. The principle and structure of the enhanced self-heterodyne SAIL are presented. The imaging process of enhanced self-heterodyne SAIL for distributed target is also analyzed. In enhanced self-heterodyne SAIL, the phases of two orthogonal-polarization beams are modulated by four cylindrical lenses in transmitter to improve resolutions in orthogonal direction and travel direction, which will generate ghost image. The generation process of ghost image in enhanced self-heterodyne SAIL is mathematically detailed, and a method of eliminating ghost image is also presented, which is significant for far-distance imaging. A number of experiments of enhanced self-heterodyne SAIL for distributed target are presented, these experimental results verify the theoretical analysis of enhanced self-heterodyne SAIL. The enhanced self-heterodyne SAIL has the capability to eliminate the influence from the atmospheric turbulence and mechanical trembling, has high advantage in detecting weak signals, and has promising application for far-distance ladar imaging.
Honorary and ghost authorship in high impact biomedical journals: a cross sectional survey.
Wislar, Joseph S; Flanagin, Annette; Fontanarosa, Phil B; Deangelis, Catherine D
2011-10-25
To assess the prevalence of honorary and ghost authors in six leading general medical journals in 2008 and compare this with the prevalence reported by authors of articles published in 1996. Cross sectional survey using a web based questionnaire. International survey of journal authors. Sample of corresponding authors of 896 research articles, review articles, and editorial/opinion articles published in six general medical journals with high impact factors in 2008: Annals of Internal Medicine, JAMA, Lancet, Nature Medicine, New England Journal of Medicine, and PLoS Medicine. Self reported compliance with International Committee of Medical Journal Editors (ICMJE) criteria for authorship for all authors on the selected articles. A total of 630/896 (70.3%) corresponding authors responded to the survey. The prevalence of articles with honorary authorship or ghost authorship, or both, was 21.0% (95% CI 18.0% to 24.3%), a decrease from 29.2% reported in 1996 (P = 0.004). Based on 545 responses on honorary authorship, 96 articles (17.6% (95% CI 14.6% to 21.0%)) had honorary authors (range by journal 12.2% to 29.3%), a non-significant change from 1996 (19.3%; P = 0.439). Based on 622 responses on ghost authorship, 49 articles (7.9% (6.0% to 10.3%)) had ghost authors (range by journal 2.1% to 11.0%), a significant decline from 1996 (11.5%; P = 0.023). The prevalence of honorary authorship was 25.0% in original research reports, 15.0% in reviews, and 11.2% in editorials, whereas the prevalence of ghost authorship was 11.9% in research articles, 6.0% in reviews, and 5.3% in editorials. Evidence of honorary and ghost authorship in 21% of articles published in major medical journals in 2008 suggests that increased efforts by scientific journals, individual authors, and academic institutions are essential to promote responsibility, accountability, and transparency in authorship, and to maintain integrity in scientific publication.
Comparison of ghosting effects for three commercial a-Si EPIDs
International Nuclear Information System (INIS)
McDermott, L. N.; Nijsten, S. M. J. J. G.; Sonke, J.-J.; Partridge, M.; Herk, M. van; Mijnheer, B. J.
2006-01-01
Many studies have reported dosimetric characteristics of amorphous silicon electronic portal imaging devices (EPIDs). Some studies ascribed a non-linear signal to gain ghosting and image lag. Other reports, however, state the effect is negligible. This study compares the signal-to-monitor unit (MU) ratio for three different brands of EPID systems. The signal was measured for a wide range of monitor units (5-1000), dose-rates, and beam energies. All EPIDs exhibited a relative under-response for beams of few MUs; giving 4 to 10% lower signal-to-MU ratios relative to that of 1000 MUs. This under-response is consistent with ghosting effects due to charge trapping
Directory of Open Access Journals (Sweden)
Mariëtte van Graan
2017-04-01
Full Text Available Ghost characters are a characteristic of the novels of Etienne van Heerden, but little research has been done concerning the nature and function of these ghost characters. In this article I discuss Van Heerden’s use of ghost characters diachronically with reference to the novels Ancestral voices (1986, Leap year (1993 and The long silence of Mario Salviati (2000. In order to clarify the nature of these ghosts, I use the so-called science of the paranormal as a framework. The ghosts in the three novels will be classified accordingly, and then discussed within the context of the novels in which they appear. In this way, I shall show how the ghost characters in these novels can be read as a constantly changing embodiment of Afrikaner identity (a central theme in Van Heerden’s oeuvre. Van Heerden’s Afrikaner changes with the times: in Ancestral voices the ghost characters form a collective that represents a fragmented image of the stereotypical, archaic male Afrikaner identity; in Leap year a liminal character is written in a liminal time to embody a liminal Afrikaner identity; and in The long silence of Mario Salviati Van Heerden moves away from the exclusive Afrikaner identity to a broader South African identity by using ghost characters from very different backgrounds and origins. In conclusion I shall compare these identities and the historical contexts of these novels in order to show the function of Van Heerden’s ghost characters as constant rewritings of South African identities.
Superconformal ghost correlators and picture changing
International Nuclear Information System (INIS)
Bonini, M.; Iengo, R.; Nunez, C.
1988-12-01
We compute the correlation functions for the system of superconformal ghosts β, γ(λ=3/2), including the corresponding spin fields, on arbitrary Riemann surfaces. Using fermionization, defined as a change of variables in the functional integration, we derive and generalize previous results obtained by bosonization. As an application we study the picture changing mechanism in the Ramond sector of the superstring. (author). 11 refs
Superrenormalizable quantum gravity with complex ghosts
Energy Technology Data Exchange (ETDEWEB)
Modesto, Leonardo, E-mail: lmodesto@fudan.edu.cn [Department of Physics & Center for Field Theory and Particle Physics, Fudan University, 200433, Shanghai (China); Shapiro, Ilya L., E-mail: shapiro@fisica.ufjf.br [Departamento de Fisica – ICE, Universidade Federal de Juiz de Fora, 33036-900 Juiz de Fora, Minas Gerais (Brazil); Tomsk State Pedagogical University and Tomsk State University, 634041, Tomsk (Russian Federation)
2016-04-10
We suggest and briefly review a new sort of superrenormalizable models of higher derivative quantum gravity. The higher derivative terms in the action can be introduced in such a way that all the unphysical massive states have complex poles. According to the literature on Lee–Wick quantization, in this case the theory can be formulated as unitary, since all massive ghosts-like degrees of freedom are unstable.
Polarization-multiplexing ghost imaging
Dongfeng, Shi; Jiamin, Zhang; Jian, Huang; Yingjian, Wang; Kee, Yuan; Kaifa, Cao; Chenbo, Xie; Dong, Liu; Wenyue, Zhu
2018-03-01
A novel technique for polarization-multiplexing ghost imaging is proposed to simultaneously obtain multiple polarimetric information by a single detector. Here, polarization-division multiplexing speckles are employed for object illumination. The light reflected from the objects is detected by a single-pixel detector. An iterative reconstruction method is used to restore the fused image containing the different polarimetric information by using the weighted sum of the multiplexed speckles based on the correlation coefficients obtained from the detected intensities. Next, clear images of the different polarimetric information are recovered by demultiplexing the fused image. The results clearly demonstrate that the proposed method is effective.
International Nuclear Information System (INIS)
Vandewalle, N; Dorbolo, S
2014-01-01
While the physics of equilibrium systems composed of many particles is well known, the interplay between small-scale physics and global properties is still a mystery for athermal systems. Non-trivial patterns and metastable states are often reached in those systems. We explored the various arrangements adopted by magnetic beads along chains and rings. Here, we show that it is possible to create mechanically stable defects in dipole arrangements keeping the memory of dipole frustration. Such defects, nicknamed ‘ghost junctions’, seem to act as macroscopic magnetic monopoles, in a way reminiscent of spin ice systems. (paper)
The Ghostly Workings of Danish Accountability Policies
Pors, Justine Grønbaek
2016-01-01
This article proposes a framework for thinking about the ghostly, thus arguing that policy can be understood as a landscape of intersecting and colliding temporalities from which arouse curious workings of barely-there forces, spooky energies and vibrating saturations of affective ambivalences. I present an empirical study of a policy agenda of…
Annual air pollution caused by the Hungry Ghost Festival.
Khezri, B; Chan, Y Y; Tiong, L Y D; Webster, R D
2015-09-01
Burning of joss paper and incense is still a very common traditional custom in countries with a majority Chinese population. The Hungry Ghost Festival which is celebrated in the 7 month of the Chinese calendar is one of the events where joss paper and incense are burned as offerings. This study investigates the impact of the Ghost Month Festival (open burning event) on air quality by analysis of the chemical composition of particulate matter (PM) and rainwater samples collected during this event, compared with data collected throughout the year, as well as bottom ash samples from burning the original joss paper and incense. The results showed that the change in the chemical composition of the rainwater and PM2.5 (PM ≤ 2.5 μm) atmospheric samples could be correlated directly with burning events during this festival, with many elements increasing between 18% and 60% during August and September compared to the yearly mean concentrations. The order of percentage increase in elemental composition (in rain water and PM2.5) during the Hungry Ghost Festival is as follows: Zn > Ca > K > Mg > Fe > Al > Na ∼ Mn ∼ Ti ∼ V > Cu > As > Ni > Co > Cd > Cr > Pb. The chemical composition of the original source materials (joss paper and incense for combustion) and their associated bottom ash were analysed to explain the impact of burning on air quality.
Ghost instabilities of cosmological models with vector fields nonminimally coupled to the curvature
International Nuclear Information System (INIS)
Himmetoglu, Burak; Peloso, Marco; Contaldi, Carlo R.
2009-01-01
We prove that many cosmological models characterized by vectors nonminimally coupled to the curvature (such as the Turner-Widrow mechanism for the production of magnetic fields during inflation, and models of vector inflation or vector curvaton) contain ghosts. The ghosts are associated with the longitudinal vector polarization present in these models and are found from studying the sign of the eigenvalues of the kinetic matrix for the physical perturbations. Ghosts introduce two main problems: (1) they make the theories ill defined at the quantum level in the high energy/subhorizon regime (and create serious problems for finding a well-behaved UV completion), and (2) they create an instability already at the linearized level. This happens because the eigenvalue corresponding to the ghost crosses zero during the cosmological evolution. At this point the linearized equations for the perturbations become singular (we show that this happens for all the models mentioned above). We explicitly solve the equations in the simplest cases of a vector without a vacuum expectation value in a Friedmann-Robertson-Walker geometry, and of a vector with a vacuum expectation value plus a cosmological constant, and we show that indeed the solutions of the linearized equations diverge when these equations become singular.
Optical encryption with selective computational ghost imaging
International Nuclear Information System (INIS)
Zafari, Mohammad; Kheradmand, Reza; Ahmadi-Kandjani, Sohrab
2014-01-01
Selective computational ghost imaging (SCGI) is a technique which enables the reconstruction of an N-pixel image from N measurements or less. In this paper we propose an optical encryption method based on SCGI and experimentally demonstrate that this method has much higher security under eavesdropping and unauthorized accesses compared with previous reported methods. (paper)
Enhancing Tomo-PIV reconstruction quality by reducing ghost particles
International Nuclear Information System (INIS)
De Silva, C M; Baidya, R; Marusic, I
2013-01-01
A technique to enhance the reconstruction quality and consequently the accuracy of the velocity vector field obtained in Tomo-PIV experiments is presented here. The methodology involves detecting and eliminating spurious outliers in the reconstructed intensity field (ghost particles). A simulacrum matching-based reconstruction enhancement (SMRE) technique is proposed, which utilizes the characteristic shape and size of actual particles to remove ghost particles in the reconstructed intensity field. An assessment of SMRE is performed by a quantitative comparison of Tomo-PIV simulation results and DNS data, together with a comparison to Tomo-PIV experimental data measured in a turbulent channel flow at a matched Reynolds number (Re τ = 937) to the DNS study. For the simulation data, a comparative study is performed on the reconstruction quality based on an ideal reconstruction determined from known particle positions. The results suggest that a significant improvement in the reconstruction quality and flow statistics is achievable at typical seeding densities used in Tomo-PIV experiments. This improvement is further amplified at higher seeding densities, enabling the use of up to twice the typical seeding densities currently used in Tomo-PIV experiments. A reduction of spurious vectors present in the velocity field is also observed based on a median outlier detection criterion. The application of SMRE to Tomo-PIV experimental data shows an improvement in flow statistics, comparable to the improvement seen in simulations. Finally, due to the non-iterative nature of SMRE, the increase in processing time is marginal since only a single pass of the reconstruction algorithm is required. (paper)
2011-12-08
... DEPARTMENT OF TRANSPORTATION Maritime Administration [Docket No. MARAD 2011 0148] Requested Administrative Waiver of the Coastwise Trade Laws: Vessel BARBARY GHOST; Invitation for Public Comments AGENCY... BARBARY GHOST is: Intended Commercial Use Of Vessel: ``Sightseeing tours in the San Francisco Bay for a...
Experimental Investigation of Quality of Lensless Ghost Imaging with Pseudo-Thermal Light
International Nuclear Information System (INIS)
Xia, Shen; Yan-Feng, Bai; Tao, Qin; Shen-Sheng, Han
2008-01-01
Factors influencing the quality of lensless ghost imaging are investigated. According to the experimental results, we find that the imaging quality is determined by the number of independent sub light sources on the imaging plane of the reference arm. A qualitative picture based on advanced wave optics is presented to explain the physics behind the experimental phenomena. The present results will be helpful to provide a basis for improving the quality of ghost imaging systems in future works. (fundamental areas of phenomenology(including applications))
Field theory of interacting open superstrings of fermionic ghost representation
International Nuclear Information System (INIS)
Aref'eva, I.Ya.; Medvedev, P.V.
1987-01-01
Field theory of interacting open superstring in fermionic ghost representation based on anticommuting and commuting ghosts corresponding respectively to world sheet bosonic x μ and fermionic φ μ coordinates is presented. The author have to revise once more the field theory of the free Ramond (R) string and starting from general algebraic point of view they obtain that the number of degrees of freedom in the R and NS (Neveu-Schwartz) sectors equalise themselves permitting to construct a supersymmetric operator. It is proposed to solve a specific equation guaranteeing superinvariance in order to find the R-R-NS and NS-R-R vertices in the term of the NS-NS-NS vertex
International Nuclear Information System (INIS)
Leihong, Zhang; Dong, Liang; Bei, Li; Zilan, Pan; Dawei, Zhang; Xiuhua, Ma
2015-01-01
In this article, the algorithm of compressing sensing is used to improve the imaging resolution and realize ghost imaging via compressive sensing for a phase object based on the theoretical analysis of the lensless Fourier imaging of the algorithm of ghost imaging based on phase-shifting digital holography. The algorithm of ghost imaging via compressive sensing based on phase-shifting digital holography uses the bucket detector to measure the total light intensity of the interference and the four-step phase-shifting method is used to obtain the total light intensity of differential interference light. The experimental platform is built based on the software simulation, and the experimental results show that the algorithm of ghost imaging via compressive sensing based on phase-shifting digital holography can obtain the high-resolution phase distribution figure of the phase object. With the same sampling times, the phase clarity of the phase distribution figure obtained by the algorithm of ghost imaging via compressive sensing based on phase-shifting digital holography is higher than that obtained by the algorithm of ghost imaging based on phase-shift digital holography. In this article, this study further extends the application range of ghost imaging and obtains the phase distribution of the phase object. (letter)
Ivanov, I T; Gadjeva, V
2000-09-01
Human erythrocytes and their resealed ghosts were alkylated under identical conditions using three groups of alkylating antitumor agents: mustards, triazenes and chloroethyl nitrosoureas. Osmotic fragility, acid resistance and thermal stability of membranes were changed only in alkylated ghosts in proportion to the concentration of the alkylating agent. All the alkylating agents decreased acid resistance in ghosts. The clinically used drugs sarcolysine, dacarbazine and lomustine all decreased osmotic fragility and thermal stability of ghost membranes depending on their lipophilicity. DM-COOH did not decrease osmotic fragility and thermal stability of ghost membranes, while NEM increased thermal stability of membranes. The preliminary but not subsequent treatment of ghosts with DM-COOH fully abolished the alkylation-induced thermal labilization of ghost membrane proteins while NEM had a partial effect only. The present study gives direct evidence that alkylating agents, having a high therapeutic activity against malignant growth, bind covalently to proteins of cellular membranes.
The hunters of humanity: creatures of horror in M. R. James's ghost stories
Oryshchuk, Nataliya
2017-01-01
In his ghost stories, M.R. James disclosed the most irrational and fearful aspects of archaic demonology still haunting the modern world. He turns humans into prey species, hunted and haunted by repulsive insect- and spider-like demons. This paper offers a closer look at the creatures of horror and the recurrent theme of the hunt in James's ghost stories, viewing them in the context of Victorian evolutionary theories as well as traditional medieval beliefs. James's protagonists, unimaginative...
Hornig, S.; Sterling, A.; Smith, Styles
1989-01-01
Geographic range: The ghost shrimp is found in intertidal areas along the west coast of North America from Mutiny Bay, Alaska, to the mouth of the Tijuana River, San Diego County, California; MacGinitie (1934) and Ricketts and Calvin (1968) reported finding specimens as far south as El Estuario de Punto Banda, Baja California Norte, Mexico. The blue mud shrimp is found from southeastern Alaska to San Quentin Bay (Bahia de San Quentin) in Baja California Norte. The general distribution of the two species in the Pacific Northwest is identical (Figure 3).
Ghost condensation and a consistent IR modification of gravity
International Nuclear Information System (INIS)
Arkani Hamed, N.; Cheng, H.S.; Luty, M.A.; Mukohyama, S.
2004-01-01
We propose a theoretically consistent modification of gravity in the infrared, which is compatible with all current experimental observations. This is an analog of Higgs mechanism in general relativity, and can be thought of as arising from ghost condensation-a background where a scalar field φhas a constant velocity, = M 2 . The ghost condensate is a new kind of fluid that can fill the universe, which has the same equation of state, ρ = -p, as a cosmological constant, and can hence drive de Sitter expansion of the universe. However, unlike a cosmological constant, it is a physical fluid with a physical scalar excitation, which can be described by a systematic effective field theory at low energies. The excitation has an unusual low-energy dispersion relation ω 2 ∼ k 4 /M 2 . If coupled to matter directly, it gives rise to small Lorentz-violating effects and a new long-range 1/r 2 spin dependent force. In the ghost condensate, the energy that gravitates is not the same as the particle physics energy, leading to the possibility of both sources that can gravitate and antigravitate. The Newtonian potential is modified with an oscillatory behavior starting at the distance scale M Pl /M 2 and the time scale M Pl 2 /M 3 . This theory opens up a number of new avenues for attacking cosmological problems, including inflation, dark matter and dark energy. (author)
International Nuclear Information System (INIS)
Ramons, BarbaraCouto; Da Silva Izar, Bruna Raquel; Pereira, Jessica Lourdes Costa; Souza Priscilla Serna; Valerio, Cludia Scigliano; Manzi, Flavio Ricardo; Tuji, Fabricio Mesquita
2016-01-01
Panoramic radiographs are a relatively simple technique that is commonly used in all dental specialties. In panoramic radiographs, in addition to the formation of real images of metal objects, ghost images may also form, and these ghost images can hinder an accurate diagnosis and interfere with the accuracy of radiology reports. Dentists must understand the formation of these images in order to avoid making incorrect radiographic diagnoses. Therefore, the present study sought to present a study of the formation of panoramic radiograph ghost images caused by metal objects in the head and neck region of a dry skull, as well as to report a clinical case n order to warn dentists about ghost images and to raise awareness thereof. An understanding of the principles of the formation of ghost images in panoramic radiographs helps prevent incorrect diagnoses
Energy Technology Data Exchange (ETDEWEB)
Ramons, BarbaraCouto; Da Silva Izar, Bruna Raquel; Pereira, Jessica Lourdes Costa; Souza Priscilla Serna; Valerio, Cludia Scigliano; Manzi, Flavio Ricardo [Dept. of Oral Radiology, School of Dentistry, Pontifical Catholic University of Minas Gerais, Belo Horizonte (Brazil); Tuji, Fabricio Mesquita [Federal University of Pará, Belém do Pará (Brazil)
2016-03-15
Panoramic radiographs are a relatively simple technique that is commonly used in all dental specialties. In panoramic radiographs, in addition to the formation of real images of metal objects, ghost images may also form, and these ghost images can hinder an accurate diagnosis and interfere with the accuracy of radiology reports. Dentists must understand the formation of these images in order to avoid making incorrect radiographic diagnoses. Therefore, the present study sought to present a study of the formation of panoramic radiograph ghost images caused by metal objects in the head and neck region of a dry skull, as well as to report a clinical case n order to warn dentists about ghost images and to raise awareness thereof. An understanding of the principles of the formation of ghost images in panoramic radiographs helps prevent incorrect diagnoses.
Rumayor, Alicia; Carlos, Román; Kirsch, Hernán Molina; de Andrade, Bruno A Benevenuto; Romañach, Mario J; de Almeida, Oslei Paes
2015-04-01
Pilomatrixoma, craniopharyngioma, and calcifying cystic odontogenic tumor are the main entities presenting ghost cells as an important histological feature, in spite their quite different clinical presentation; it seems that they share a common pathway in the formation of these cells. The aim of this study is to examine and compare the characteristics of ghost and other cells that form these lesions. Forty-three cases including 21 pilomatrixomas, 14 craniopharyngiomas, and eight calcifying cystic odontogenic tumors were evaluated by immunohistochemistry for cytokeratins, CD138, β-catenin, D2-40, Glut-1, FAS, CD10 and also by scanning electron microscopy. The CKs, CD138, β-catenin, Glut-1, FAS, and CD10 were more often expressed by transitional cells of craniopharyngioma and calcifying cystic odontogenic tumor, compared with pilomatrixoma. Basaloid cells of pilomatrixoma showed strong positivity for CD138 and CD10. Differences on expression pattern were identified in transitional and basal cells, as ghost cells were negative for most antibodies used, except by low expression for cytokeratins. By scanning electron microscopy, the morphology of ghost cells were similar in their fibrillar cytoplasm, but their pattern varied from sheets in pilomatrixoma to small clusters in craniopharyngioma and calcifying cystic odontogenic tumor. Mechanisms involved in formation of ghost cells are unknown, but probably they follow different pathways as protein expression in the basal/transitional cells was not uniform in the three tumors studied. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Metastatic ghost cell odontogenic carcinoma: description of a case and search for actionable targets
Directory of Open Access Journals (Sweden)
Maximilien J. Rappaport
2015-09-01
Full Text Available Ghost cell odontogenic carcinoma (GCOC is an exceedingly rare malignant tumor on the spectrum of already uncommon odontogenic or dentinogenic tumors. We describe here the case of metastatic GCOC in a patient with a history of recurrent dentinogenic ghost cell tumor of the mandible, now presenting with bilateral pleural effusions. We will discuss typical histopathologic and histochemical features of GCOC, along with results of genomic testing and their role in directing therapy.
Superrenormalizable quantum gravity with complex ghosts
Directory of Open Access Journals (Sweden)
Leonardo Modesto
2016-04-01
Full Text Available We suggest and briefly review a new sort of superrenormalizable models of higher derivative quantum gravity. The higher derivative terms in the action can be introduced in such a way that all the unphysical massive states have complex poles. According to the literature on Lee–Wick quantization, in this case the theory can be formulated as unitary, since all massive ghosts-like degrees of freedom are unstable. Keywords: Quantum gravity, Higher derivatives, Complex poles
Fed-Batch Production of Bacterial Ghosts Using Dielectric Spectroscopy for Dynamic Process Control
Directory of Open Access Journals (Sweden)
Andrea Meitz
2016-03-01
Full Text Available The Bacterial Ghost (BG platform technology evolved from a microbiological expression system incorporating the ϕX174 lysis gene E. E-lysis generates empty but structurally intact cell envelopes (BGs from Gram-negative bacteria which have been suggested as candidate vaccines, immunotherapeutic agents or drug delivery vehicles. E-lysis is a highly dynamic and complex biological process that puts exceptional demands towards process understanding and control. The development of a both economic and robust fed-batch production process for BGs required a toolset capable of dealing with rapidly changing concentrations of viable biomass during the E-lysis phase. This challenge was addressed using a transfer function combining dielectric spectroscopy and soft-sensor based biomass estimation for monitoring the rapid decline of viable biomass during the E-lysis phase. The transfer function was implemented to a feed-controller, which followed the permittivity signal closely and was capable of maintaining a constant specific substrate uptake rate during lysis phase. With the described toolset, we were able to increase the yield of BG production processes by a factor of 8–10 when compared to currently used batch procedures reaching lysis efficiencies >98%. This provides elevated potentials for commercial application of the Bacterial Ghost platform technology.
Krishnaswami, G.S.
2008-01-01
We consider large-N multi-matrix models whose action closely mimics that of Yang-Mills theory, including gauge-fixing and ghost terms. We show that the factorized Schwinger-Dyson loop equations, expressed in terms of the generating series of gluon and ghost correlations G( ), are quadratic equations
Elimination of ghost images in the response of PHASAR-demultiplexers
Dam, van C.; Staring, A.A.M.; Jansen, E.J.; Binsma, J.J.M.; Dongen, van T.; Smit, M.K.; Verbeek, B.H.
1997-01-01
In this paper the occurrence of first-order modes in the performance of phased-array demultiplexers is investigated. It is found that they cause "ghost" images, which can be circumvented by optimising waveguide junctions
A unifying framework for ghost-free Lorentz-invariant Lagrangian field theories
Li, Wenliang
2018-04-01
We propose a framework for Lorentz-invariant Lagrangian field theories where Ostrogradsky's scalar ghosts could be absent. A key ingredient is the generalized Kronecker delta. The general Lagrangians are reformulated in the language of differential forms. The absence of higher order equations of motion for the scalar modes stems from the basic fact that every exact form is closed. The well-established Lagrangian theories for spin-0, spin-1, p-form, spin-2 fields have natural formulations in this framework. We also propose novel building blocks for Lagrangian field theories. Some of them are novel nonlinear derivative terms for spin-2 fields. It is nontrivial that Ostrogradsky's scalar ghosts are absent in these fully nonlinear theories.
Quantum gravitation. The Feynman path integral approach
International Nuclear Information System (INIS)
Hamber, Herbert W.
2009-01-01
The book covers the theory of Quantum Gravitation from the point of view of Feynman path integrals. These provide a manifestly covariant approach in which fundamental quantum aspects of the theory such as radiative corrections and the renormalization group can be systematically and consistently addressed. The path integral method is suitable for both perturbative as well as non-perturbative studies, and is known to already provide a framework of choice for the theoretical investigation of non-abelian gauge theories, the basis for three of the four known fundamental forces in nature. The book thus provides a coherent outline of the present status of the theory gravity based on Feynman's formulation, with an emphasis on quantitative results. Topics are organized in such a way that the correspondence to similar methods and results in modern gauge theories becomes apparent. Covariant perturbation theory are developed using the full machinery of Feynman rules, gauge fixing, background methods and ghosts. The renormalization group for gravity and the existence of non-trivial ultraviolet fixed points are investigated, stressing a close correspondence with well understood statistical field theory models. Later the lattice formulation of gravity is presented as an essential tool towards an understanding of key features of the non-perturbative vacuum. The book ends with a discussion of contemporary issues in quantum cosmology such as scale dependent gravitational constants and quantum effects in the early universe. (orig.)
Quantization of gauge theories with open algebra in the representation with the third ghost
International Nuclear Information System (INIS)
Batalin, I.A.; Kallosh, R.E.
1983-01-01
We suggest a modified representation of the general BRS construction, which gives in a closed form the quantization of gauge theories with open algebra. Instead of gauging the Lagrange multiplier in this representation, we have the third ghost πsup(α) which appears in the quantization procedure on equal footing with the Faddeev-Popov ghosts anti Csup(α), Csup(α). This new representation is especially convenient in the non-singular gauges of the form 1/2#betta#sub(α#betta#chi)sup(#betta#)sub(chi)sup(α), where both sub(chi)sup(α) and #betta#sub(α#betta#) may arbitrarily depend on quantum fields. In the closed algebra case, we recover the result of Nielsen, whereas for the theories with open algebra we find new ghost couplings of the form anti Csup(n)Csup(n)πsup(m), n = 1, ...; m = 0, 1, ..., n. (orig.)
Lucia's Ghosts: Sonic, Gothic, and Postmodern
DEFF Research Database (Denmark)
Fillerup, Jessie
2016-01-01
In this article, I use an intertextual interference – the spectral presence of Norma Desmond in a performance of Donizetti’s Lucia di Lammermoor – as a locus through which to explore the consequences of the ‘open’ text in theatrical spectatorship, criticism and historical study. Norma’s ghosting...... the lens of Sunset Boulevard inverts chronological sequence, it acknowledges the temporal contradictions inherent in historical work and assigns productive meaning to nostalgic impulses that engage a reflective mode of thought....
A ghost fluid method for sharp interface simulations of compressible multiphase flows
International Nuclear Information System (INIS)
Majidi, Sahand; Afshari, Asghar
2016-01-01
A ghost fluid based computational tool is developed to study a wide range of compressible multiphase flows involving strong shocks and contact discontinuities while accounting for surface tension, viscous stresses and gravitational forces. The solver utilizes constrained reinitialization method to predict the interface configuration at each time step. Surface tension effect is handled via an exact interface Riemann problem solver. Interfacial viscous stresses are approximated by considering continuous velocity and viscous stress across the interface. To assess the performance of the solver several benchmark problems are considered: One-dimensional gas-water shock tube problem, shock-bubble interaction, air cavity collapse in water, underwater explosion, Rayleigh-Taylor Instability, and ellipsoidal drop oscillations. Results obtained from the numerical simulations indicate that the numerical methodology performs reasonably well in predicting flow features and exhibit a very good agreement with prior experimental and numerical observations. To further examine the accuracy of the developed ghost fluid solver, the obtained results are compared to those by a conventional diffuse interface solver. The comparison shows the capability of our ghost fluid method in reproducing the experimentally observed flow characteristics while revealing more details regarding topological changes of the interface.
A ghost fluid method for sharp interface simulations of compressible multiphase flows
Energy Technology Data Exchange (ETDEWEB)
Majidi, Sahand; Afshari, Asghar [University of Tehran, Teheran (Iran, Islamic Republic of)
2016-04-15
A ghost fluid based computational tool is developed to study a wide range of compressible multiphase flows involving strong shocks and contact discontinuities while accounting for surface tension, viscous stresses and gravitational forces. The solver utilizes constrained reinitialization method to predict the interface configuration at each time step. Surface tension effect is handled via an exact interface Riemann problem solver. Interfacial viscous stresses are approximated by considering continuous velocity and viscous stress across the interface. To assess the performance of the solver several benchmark problems are considered: One-dimensional gas-water shock tube problem, shock-bubble interaction, air cavity collapse in water, underwater explosion, Rayleigh-Taylor Instability, and ellipsoidal drop oscillations. Results obtained from the numerical simulations indicate that the numerical methodology performs reasonably well in predicting flow features and exhibit a very good agreement with prior experimental and numerical observations. To further examine the accuracy of the developed ghost fluid solver, the obtained results are compared to those by a conventional diffuse interface solver. The comparison shows the capability of our ghost fluid method in reproducing the experimentally observed flow characteristics while revealing more details regarding topological changes of the interface.
DEFF Research Database (Denmark)
Christiansen, Thomas; Somers, Marcel A.J.
2004-01-01
On evaluating lattice strain-depth or stress-depth profiles with X-ray diffraction, the variation of the information depth while combining various tilt angles,psi, in combination with lattice spacing gradients leads to artefacts,so-called ghost or fictitious stresses. X-ray diffraction lattice...... method for the evaluation of stress/strain and composition profiles, while minimising the risk for ghost stresses....
Deák, Róbert; Mihály, Judith; Szigyártó, Imola Cs; Wacha, András; Lelkes, Gábor; Bóta, Attila
2015-11-01
Colloidal stabile nanoerythrosomes with 200 nm average diameter were formed from hemoglobin-free erythrocyte ghost membrane via sonication and membrane extrusion. The incorporation of extra lipid (1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPC), added to the sonicated ghosts, caused significant changes in the thermotropic character of the original membranes. As a result of the increased DPPC ratio the chain melting of the hydrated DPPC system and the characteristic small angle X-ray scattering (SAXS) of the lipid bilayers appeared. Significant morphological changes were followed by transmission electron microscopy combined with freeze fracture method (FF-TEM). After the ultrasonic treatment the large entities of erythrocyte ghosts transformed into nearly spherical nanoerythrosomes with diameters between 100 and 300 nm and at the same time a great number of 10-30 nm large membrane proteins or protein clusters were dispersed in the aqueous medium. The infrared spectroscopy (FT-IR) pointed out, that the sonication did not cause changes in the secondary structures of the membrane proteins under our preparation conditions. About fivefold of extra lipid--compared to the lipid content of the original membrane--caused homogeneous dispersion of nanoerythrosomes however the shape of the vesicles was not uniform. After the addition of about tenfold of DPPC, monoform and monodisperse nanoerythrosomes became typical. The outer surfaces of these roughly spherical objects were frequently polygonal, consisting of a net of pentagons and hexagons. Copyright © 2015 Elsevier B.V. All rights reserved.
Raofi, Behzad
2005-01-01
This paper describes the methods used to estimate the statistical deltaV requirements for the propulsive maneuvers that will deliver the spacecraft to its target landing site while satisfying planetary protection requirements. the paper presents flight path control analysis results for three different trajectories, open, middle, and close of launch period for the mission.
1999-01-01
Looking like a colorful holiday card, a new image from NASA's Hubble Space Telescope reveals a vibrant green and red nebula far from Earth. The image of NGC 2080, taken by Hubble's Wide Field and Planetary Camera 2, designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif., is available online at http://www.jpl.nasa.gov/images/wfpc . Images like this help astronomers investigate star formation in nebulas. NGC 2080, nicknamed 'The Ghost Head Nebula,' is one of a chain of star-forming regions lying south of the 30 Doradus nebula in the Large Magellanic Cloud. 30 Doradus is the largest star-forming complex in the local group of galaxies. This 'enhanced color' picture is composed of three narrow-band-filter images obtained by Hubble on March 28, 2000. The red and blue light come from regions of hydrogen gas heated by nearby stars. The green light on the left comes from glowing oxygen. The energy to illuminate the green light is supplied by a powerful stellar wind, a stream of high-speed particles coming from a massive star just outside the image. The central white region is a combination of all three emissions and indicates a core of hot, massive stars in this star-formation region. Intense emission from these stars has carved a bowl-shaped cavity in surrounding gas. In the white region, the two bright areas (the 'eyes of the ghost') - named A1 (left) and A2 (right) -- are very hot, glowing 'blobs' of hydrogen and oxygen. The bubble in A1 is produced by the hot, intense radiation and powerful stellar wind from one massive star. A2 contains more dust and several hidden, massive stars. The massive stars in A1 and A2 must have formed within the last 10,000 years, since their natal gas shrouds are not yet disrupted by the powerful radiation of the newborn stars. The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract with the Goddard Space Flight Center, Greenbelt, Md. The
Use of the Location Inverse Solution to Reduce Ghost Images
Directory of Open Access Journals (Sweden)
Yong-Zhong Hu
2010-01-01
Full Text Available Through-the-wall imaging (TWI is a difficult but important task for both law enforcement and military missions. Acquiring information on both the internal features of a structure and the location of people inside plays an important role in many fields such as antiterrorism, hostage search and rescue, and barricade situations. Up to now, a number of promising experimental systems have been developed to validate and evaluate diverse imaging methods, most of which are based on a linear antenna array to obtain an image of the objects. However, these methods typically use the backward projection (BP algorithm based on ellipse curves, which usually generates additional ghost images. In this paper, the algorithm using the location inverse solution (LIS to reduce the ghost images is proposed and simulated. The results of simulation show that this approach is feasible.
International Nuclear Information System (INIS)
Rau, A.W.; Bakueva, L.; Rowlands, J.A.
2005-01-01
Amorphous selenium (a-Se) based real-time flat-panel imagers (FPIs) are finding their way into the digital radiology department because they offer the practical advantages of digital x-ray imaging combined with an image quality that equals or outperforms that of conventional systems. The temporal imaging characteristics of FPIs can be affected by ghosting (i.e., radiation-induced changes of sensitivity) when the dose to the detector is high (e.g., portal imaging and mammography) or the images are acquired at a high frame rate (e.g., fluoroscopy). In this paper, the x-ray time-of-flight (TOF) method is introduced as a tool for the investigation of ghosting in a-Se photoconductor layers. The method consists of irradiating layers of a-Se with short x-ray pulses. From the current generated in the a-Se layer, ghosting is quantified and the ghosting parameters (charge carrier generation rate and carrier lifetimes and mobilities) are assessed. The x-ray TOF method is novel in that (1) x-ray sensitivity (S) and ghosting parameters can be measured simultaneously (2) the transport of both holes and electrons can be isolated, and (3) the method is applicable to the practical a-Se layer structure with blocking contacts used in FPIs. The x-ray TOF method was applied to an analysis of ghosting in a-Se photoconductor layers under portal imaging conditions, i.e., 1 mm thick a-Se layers, biased at 5 V/μm, were irradiated using a 6 MV LINAC x-ray beam to a total dose (ghosting dose) of 30 Gy. The initial sensitivity (S 0 ) of the a-Se layers was 63±2 nC cm -2 cGy -1 . It was found that S decreases to 30% of S 0 after a ghosting dose of 5 Gy and to 21% after 30 Gy at which point no further change in S occurs. At an x-ray intensity of 22 Gy/s (instantaneous dose rate during a LINAC x-ray pulse), the charge carrier generation rate was 1.25±0.1x10 22 ehp m -3 s -1 and, to a first approximation, independent of the ghosting dose. However, both hole and electron transport showed a
Sorajjakool, Siroj
2007-01-01
The post-tsunami ghost phenomena in Thailand may be understood, in Jungian terms, as an expression of the autonomous complex of the collective psyche resulting from traumatic loss. Religious rituals, as in the context of Thai Buddhism, provide an alternative method of dealing with grief, and hence they affirm the place of religious practices in the overall psychological well-being of people from various cultural backgrounds.
Chandra Finds Ghosts Of Eruption In Galaxy Cluster
2002-01-01
"Ghostly" relics of an ancient eruption that tore through a cluster of galaxies were recently uncovered by NASA's Chandra X-ray Observatory. The discovery implies that galaxy clusters are the sites of enormously energetic and recurring explosions, and may provide an explanation why galaxy clusters behave like giant cosmic magnets. "Chandra's image revealed vast regions in the galaxy cluster Abell 2597 that contain almost no X-ray or radio emission. We call them ghost cavities," said Brian McNamara of Ohio University in Athens today during a press conference at the American Astronomical Society meeting in Washington. "They appear to be remnants of an old explosion where the radio emission has faded away over millions of years." The ghost cavities were likely created by extremely powerful explosions, due to material falling toward a black hole millions of times more massive than the Sun. As the matter swirled around the black hole, located in a galaxy near the center of the cluster, it generated enormous electromagnetic fields that expelled material from the vicinity of the black hole at high speeds. This explosive activity in Abell 2597 created jets of highly energetic particles that cleared out voids in the hot gas. Because they are lighter than the surrounding material, the cavities will eventually push their way to the edge of the cluster, just as air bubbles in water make their way to the surface. Researchers also found evidence that this explosion was not a one-time event. "We detected a small, bright radio source near the center of the cluster that indicates a new explosion has occurred recently," said team member Michael Wise of the Massachusetts Institute of Technology in Cambridge, "so the cycle of eruption is apparently continuing." Though dim, the ghost cavities are not completely empty. They contain a mixture of very hot gas, high-energy particles and magnetic fields -- otherwise the cavities would have collapsed under the pressure of the surrounding hot
Directory of Open Access Journals (Sweden)
Duo Yin
2017-11-01
Full Text Available Ordos is notoriously represented in media discourses as one of China’s principal “ghost cities”, with skyscrapers, apartment estates and grandiose squares largely unoccupied. The “ghost city” emerges from massive (overinvestment in the urban built environment. Aware that economic and financial sustainability are in question, we nonetheless choose to investigate this issue from the perspective of social sustainability, utilizing a theoretical framework informed by geographies of home. Relatively little analysis has thus far been applied to local residents’ everyday practice and agency in making place and home in allegedly “unhomely” ghost cities. This article first examines media discourses and representations of the “ghostly” aspect of the new town in Ordos. It then investigates the ways in which local residents practice and perform their place identity and sense of home in an alleged “ghost city”. Our empirical research in Kangbashi New Town demonstrates that the discourse of ghost cities is valid in so far as we take into account the local residents’ engagement in a process of home-making from below. This sense of place is created by connecting new and old homes, and constructing an emotionally delineated place identity. We argue that the issue of social sustainability in Ordos is multifaceted, and more nuanced than it has hitherto been represented in media reports.
Error threshold ghosts in a simple hypercycle with error prone self-replication
International Nuclear Information System (INIS)
Sardanyes, Josep
2008-01-01
A delayed transition because of mutation processes is shown to happen in a simple hypercycle composed by two indistinguishable molecular species with error prone self-replication. The appearance of a ghost near the hypercycle error threshold causes a delay in the extinction and thus in the loss of information of the mutually catalytic replicators, in a kind of information memory. The extinction time, τ, scales near bifurcation threshold according to the universal square-root scaling law i.e. τ ∼ (Q hc - Q) -1/2 , typical of dynamical systems close to a saddle-node bifurcation. Here, Q hc represents the bifurcation point named hypercycle error threshold, involved in the change among the asymptotic stability phase and the so-called Random Replication State (RRS) of the hypercycle; and the parameter Q is the replication quality factor. The ghost involves a longer transient towards extinction once the saddle-node bifurcation has occurred, being extremely long near the bifurcation threshold. The role of this dynamical effect is expected to be relevant in fluctuating environments. Such a phenomenon should also be found in larger hypercycles when considering the hypercycle species in competition with their error tail. The implications of the ghost in the survival and evolution of error prone self-replicating molecules with hypercyclic organization are discussed
Zhang, Wenli
2009-01-01
Superstitious ideas are always in people's life in spite of scientific and technological advancement. Hungry Ghost Festival in China, Halloween in some western countries and Day of the Dead in Mexico are three religious festivals which are observed every year. They reveal people's idea about ghosts and spirits after death. They also include…
Ghost imaging with paired x-ray photons
Schori, A.; Borodin, D.; Tamasaku, K.; Shwartz, S.
2018-06-01
We report the experimental observation of ghost imaging with paired x-ray photons, which are generated by parametric downconversion. We use the one-to-one relation between the photon energies and the emission angles and the anticorrelation between the k -vectors of the signal and the idler photons to reconstruct the images of slits with nominally zero background levels. Further extension of our procedure can be used for the observation of various quantum phenomena at x-ray wavelengths.
Luisa's Ghosts: Haunted Legality and Collective Expressions of Pain.
Krauss, Amy
2018-04-25
Feminist health care providers have debated the efficacy of the decriminalization of abortion in Mexico City. Luisa, a counselor in a private clinic, suggested that while the law has expanded the visibility of, and access to safe abortion, it has also called forth "other ghosts." In this article, I take Luisa's critical perspective as a starting point for examining ongoing criminalization and moral stigma as forms of haunting that arise in the wake of the Mexico City abortion policy. Drawing on ethnographic research, I explore how Luisa's ghosts materialize in the embodied- affective relations between patients in new legal clinics. Women who attend public clinics negotiate moral stigma along with religious and familial pressures in the ways they suffer, as well as normalize abortion as a painful experience. Rather than approach pain as purely a sign of victimization, I suggest that its expression constitutes an effervescent collectivity between women in the clinic, making explicit, while at the same time dissipating, an intractable moral-affective knot that might otherwise be ignored.
Two-Photon Ghost Image and Interference-Diffraction
Shih, Y. H.; Sergienko, A. V.; Pittman, T. B.; Strekalov, D. V.; Klyshko, D. N.
1996-01-01
convex lens. Surprisingly, an image of this aperture is observed in the idler beam, by scanning the idler photon detector in the transverse plane of the idler beam, if we are sure that the idler photon detector 'catches' the 'twin brother' of the signal, which can be easily performed by a coincidence measurement. This effect is even more striking when we found that the object-lens-image relationship satisfies the Gaussian thin lens equation. The second experiment demonstrates two-photon 'ghost' interference-diffraction. The experimental set up is similar to the image experiment, except that rather than a lens and an aperture it is a Young's double-slit (or a single-slit) inserted into the path of the signal beam. We could not find any interference (or diffraction) pattern behind the slit. Surprisingly, an interference (or diffraction) pattern is observed when scanning the detector in the idler beam, if we are sure that the idler photon detector 'catches' the 'twin brother' of the signal.
Zhu, Wenxing; Hao, Lujiang; Liu, Xinli; Orlando, Borrás-Hidalgo; Zhang, Yuyu
2018-03-20
Epothilones constitute a new class of microtubule-stabilizing anti-cancer agents with promising preclinical and clinical activity. However, its systemic application still causes some toxic side effects. To reduce these undesired effects, advanced drug delivery systems based on cell targeting carriers are needed currently. In this study, the high quality bacterial ghosts of the probiotic Escherichia coli Nissle 1917 (EcN) were prepared in a large scale and retained fully intact surface structures for specific attachment to mammalian cells. The EcN ghosts could be efficiently loaded with the low hydrophilic drug Epothilone B (Epo B) and the maximal load efficiency was approximately 2.5% (w/w). Cytotoxicity assays revealed that Epo B-ghosts exhibited enhanced anti-proliferative properties on the HeLa cells. The Epo B associated with EcN ghosts was more cytotoxic at least 10 times than the free Epo B at the same concentrations. Apoptosis assays showed that both Epo B-ghosts and free Epo B induced time course-dependent apoptosis and necrosis in HeLa cells, respectively. While the former induced more apoptosis and necrosis than the latter. Furthermore, the cytochrome C release and the activation of caspase-3 were more remarkable after treatment with the Epo B-ghosts compared to the free Epo B, which implied that Epo B-ghosts might more effectively induce the apoptosis mediated by mitochondrial pathway in HeLa cells. Therefore, the higher anti-proliferative effects of the Epo B-ghosts on the HeLa cells were mediated by mitochondrial pathway of apoptosis. The EcN ghosts may provide a useful drug delivery carrier for drug candidates in cancer therapy.
Ghosted images: old lesbians on screen.
Krainitzki, Eva
2015-01-01
Screen images of old lesbians combine modes of representing female gender, lesbian sexuality, and old age, all of which contain layers of otherness within a hetero-patriarchal and youth-centered society. Analyzing a range of films, from independent to mainstream cinema, this article explores how the ghosted lesbian paradigm intersects with narratives of aging as decline in representations of lesbian characters who are over the age of sixty. The spectral matters of illness, death, mourning, and widowhood inevitably culminate in an unhappy ending. Removed from a lesbian community context, intergenerational continuity vanishes and the old lesbian emerges as the cultural other.
Zembylas, Michalinos
2013-01-01
Michalinos Zembylas examines how history education can be reconceived in terms of Jacques Derrida's notion of "hauntology," that is, as an ongoing conversation with the "ghost"--in the case of this essay, the ghosts of disappeared victims of war and dictatorship. Here, Zembylas uses hauntology as both metaphor and pedagogical methodology for…
Ghosts, Meaning, and Faith: After-Death Communications in Bereavement Narratives
Kwilecki, Susan
2011-01-01
After-death communications (ADCs) are reported encounters with a deceased loved one, a contemporary type of ghost experience heralded as therapeutic in coping with bereavement. Pertinent literature generally illustrates the healing power of ADCs with brief, self-contained episodes. The functions of ADCs over the course of grief need exploration.…
Teen Girls' Resistance and the Disappearing Social in "Ghost World."
Giroux, Henry A.
2002-01-01
Examines "Ghost World," a Hollywood film about youth, friendship, alienation, and survival, critically investigating how popular representations of youth signal a particular crisis of the social through a discourse of privatization, which fails to locate youth and problems they face within the related geographies of the social and political. The…
Ghost crabs on a treadmill: Oxygen Uptake and Haemocyanin ...
African Journals Online (AJOL)
Ghost crabs Ocypode ceratophthalmus were exercised on a specially constructed treadmill. At a running speed of 13,3 cm s-1, most crabs ran for 2 h before getting fatigued. At this speed the oxygen consumption rate (MO2) was measured in time intervals for a total of 52 min. For exercised crabs the MO2 values are about ...
New Ghost-node method for linking different models with varied grid refinement
International Nuclear Information System (INIS)
Mehl, Steffen W.; Hill, Mary Catherine; James, Scott Carlton; Leake, Stanley A.; Zyvoloski, George A.; Dickinson, Jesse E.; Eddebbarh, Al A.
2006-01-01
A flexible, robust method for linking grids of locally refined models constructed with different numerical methods is needed to address a variety of hydrologic problems. This work outlines and tests a new ghost-node model-linking method for a refined 'child' model that is contained within a larger and coarser 'parent' model that is based on the iterative method of Mehl and Hill (2002, 2004). The method is applicable to steady-state solutions for ground-water flow. Tests are presented for a homogeneous two-dimensional system that has either matching grids (parent cells border an integer number of child cells; Figure 2a) or non-matching grids (parent cells border a non-integer number of child cells; Figure 2b). The coupled grids are simulated using the finite-difference and finite-element models MODFLOW and FEHM, respectively. The simulations require no alteration of the MODFLOW or FEHM models and are executed using a batch file on Windows operating systems. Results indicate that when the grids are matched spatially so that nodes and child cell boundaries are aligned, the new coupling technique has error nearly equal to that when coupling two MODFLOW models (Mehl and Hill, 2002). When the grids are non-matching, model accuracy is slightly increased over matching-grid cases. Overall, results indicate that the ghost-node technique is a viable means to accurately couple distinct models because the overall error is less than if only the regional model was used to simulate flow in the child model's domain
New ghost-node method for linking different models with varied grid refinement
James, S.C.; Dickinson, J.E.; Mehl, S.W.; Hill, M.C.; Leake, S.A.; Zyvoloski, G.A.; Eddebbarh, A.-A.
2006-01-01
A flexible, robust method for linking grids of locally refined ground-water flow models constructed with different numerical methods is needed to address a variety of hydrologic problems. This work outlines and tests a new ghost-node model-linking method for a refined "child" model that is contained within a larger and coarser "parent" model that is based on the iterative method of Steffen W. Mehl and Mary C. Hill (2002, Advances in Water Res., 25, p. 497-511; 2004, Advances in Water Res., 27, p. 899-912). The method is applicable to steady-state solutions for ground-water flow. Tests are presented for a homogeneous two-dimensional system that has matching grids (parent cells border an integer number of child cells) or nonmatching grids. The coupled grids are simulated by using the finite-difference and finite-element models MODFLOW and FEHM, respectively. The simulations require no alteration of the MODFLOW or FEHM models and are executed using a batch file on Windows operating systems. Results indicate that when the grids are matched spatially so that nodes and child-cell boundaries are aligned, the new coupling technique has error nearly equal to that when coupling two MODFLOW models. When the grids are nonmatching, model accuracy is slightly increased compared to that for matching-grid cases. Overall, results indicate that the ghost-node technique is a viable means to couple distinct models because the overall head and flow errors relative to the analytical solution are less than if only the regional coarse-grid model was used to simulate flow in the child model's domain.
Dentinoameloblastoma with ghost cells: A rare case report with emphasis on its biological behavior
Directory of Open Access Journals (Sweden)
Kiran Kumar
2013-01-01
Full Text Available Ameloblastomas are regarded as a homogeneous group of neoplasms with locally invasive character. They generally do not show induction of dental hard tissue formation except in few cases. Biological behavior and histogenesis of these tumors is still unexplored as there is lack of relevant studies and long follow-up of these patients. So, we aimed to report this rare case of dentinoameloblastoma with unique presence of ghost cells in middle-aged female involving maxilla with emphasis on its biological behavior. We conclude that although histogenesis of this tumor is not clear but biological potential is similar to conventional ameloblastoma requiring wider excision.
Dark matter as a ghost free conformal extension of Einstein theory
International Nuclear Information System (INIS)
Barvinsky, A.O.
2014-01-01
We discuss ghost free models of the recently suggested mimetic dark matter theory. This theory is shown to be a conformal extension of Einstein general relativity. Dark matter originates from gauging out its local Weyl invariance as an extra degree of freedom which describes a potential flow of the pressureless perfect fluid. For a positive energy density of this fluid the theory is free of ghost instabilities, which gives strong preference to stable configurations with a positive scalar curvature and trace of the matter stress tensor. Instabilities caused by caustics of the geodesic flow, inherent in this model, serve as a motivation for an alternative conformal extension of Einstein theory, based on the generalized Proca vector field. A potential part of this field modifies the inflationary stage in cosmology, whereas its rotational part at the post inflationary epoch might simulate rotating flows of dark matter
A specter of coexistence: Is centrifugal community organization haunted by the ghost of competition?
Wasserberg, Gideon; Kotler, B.P.; Morris, D.W.; Abramsky, Z.
2006-01-01
In a centrifugally organized community species prefer the same habitat (called "core") but differ in their secondary habitat preferences. The first model of centrifugal community organization (CCO) predicted that optimally foraging, symmetrically competing species would share use of the core habitat at all density combinations. But one might also assume that the competition in the core habitat is asymmetrical, that is, that one of the species (the dominant) has a behavioral advantage therein. In this study, we asked how should habitat use evolve in a centrifugally organized community if its species compete asymmetrically in the core habitat? To address this question we developed an "isoleg model". The model predicts that in a centrifugally organized community, asymmetric competition promotes the use of the core habitat exclusively by the dominant species at most points in the state space. The separation of the core habitat use by the species ("the ghost of competition past") may be either complete or partial ("partial ghost"), and behavior at the stable competitive equilibrium between the species could determine whether coexistence should occur at the "complete-" or the "partial ghost" regions. This version of CCO should be a common feature of competitive systems.
A Novel Probability Model for Suppressing Multipath Ghosts in GPR and TWI Imaging: A Numerical Study
Directory of Open Access Journals (Sweden)
Tan Yun-hua
2015-10-01
Full Text Available A novel concept for suppressing the problem of multipath ghosts in Ground Penetrating Radar (GPR and Through-Wall Imaging (TWI is presented. Ghosts (i.e., false targets mainly arise from the use of the Born or single-scattering approximations that lead to linearized imaging algorithms; however, these approximations neglect the effect of multiple scattering (or multipath between the electromagnetic wavefield and the object under investigation. In contrast to existing methods of suppressing multipath ghosts, the proposed method models for the first time the reflectivity of the probed objects as a probability function up to a normalized factor and introduces the concept of random subaperture by randomly picking up measurement locations from the entire aperture. Thus, the final radar image is a joint probability distribution that corresponds to radar images derived from multiple random subapertures. Finally, numerical experiments are used to demonstrate the performance of the proposed methodology in GPR and TWI imaging.
Johnson, James E.; Conley, Cassie; Siegel, Bette
2015-01-01
As systems, technologies, and plans for the human exploration of Mars and other destinations beyond low Earth orbit begin to coalesce, it is imperative that frequent and early consideration is given to how planetary protection practices and policy will be upheld. While the development of formal planetary protection requirements for future human space systems and operations may still be a few years from fruition, guidance to appropriately influence mission and system design will be needed soon to avoid costly design and operational changes. The path to constructing such requirements is a journey that espouses key systems engineering practices of understanding shared goals, objectives and concerns, identifying key stakeholders, and iterating a draft requirement set to gain community consensus. This paper traces through each of these practices, beginning with a literature review of nearly three decades of publications addressing planetary protection concerns with respect to human exploration. Key goals, objectives and concerns, particularly with respect to notional requirements, required studies and research, and technology development needs have been compiled and categorized to provide a current 'state of knowledge'. This information, combined with the identification of key stakeholders in upholding planetary protection concerns for human missions, has yielded a draft requirement set that might feed future iteration among space system designers, exploration scientists, and the mission operations community. Combining the information collected with a proposed forward path will hopefully yield a mutually agreeable set of timely, verifiable, and practical requirements for human space exploration that will uphold international commitment to planetary protection.
"Haunting experiences: Ghosts in contemporary folklore," by Diane E. Goldstein et al.
Directory of Open Access Journals (Sweden)
Linda Levitt
2010-03-01
Full Text Available Diane E. Goldstein, Sylvia Ann Grider, and Jeannie Banks Thomas. Haunting experiences: Ghosts in contemporary folklore. Logan: Utah State University Press, 2007, paperback, $24.95 (272p ISBN 978-0-87421-636-3.
On operators of the ghost number and conjugation in the BRST quantization formalism
International Nuclear Information System (INIS)
Azizov, T.Ya.; Khoruzhij, S.S.
1989-01-01
Detailed and rigorous study is made of operators of the ghost number Q c and ghost conjugation U c which are operators in Krein spaces arising in the BRST quantization formalism for constrained dynamical systems. A number of conditions are obtained which guarantee that Q c is well-defined and J-symmetric. It is shown that properties of Q c are related to the following geometrical problem: to find conditions under which a pair of lineals in the Krein space can be made neutral by the appropriate choice of J-metrics. The complete solution of this problem is given. Whole series of examples is constructed which demonstrate the connections between properties of Q c and geometry of its spectral subspaces
Wormhole solutions with a complex ghost scalar field and their instability
Dzhunushaliev, Vladimir; Folomeev, Vladimir; Kleihaus, Burkhard; Kunz, Jutta
2018-01-01
We study compact configurations with a nontrivial wormholelike spacetime topology supported by a complex ghost scalar field with a quartic self-interaction. For this case, we obtain regular asymptotically flat equilibrium solutions possessing reflection symmetry. We then show their instability with respect to linear radial perturbations.
Effects of Low Anisotropy on Generalized Ghost Dark Energy in Galileon Gravity
Hossienkhani, H.; Fayaz, V.; Jafari, A.; Yousefi, H.
2018-04-01
The definition of the Galileon gravity form is extended to the Brans-Dicke theory. Given, the framework of the Galileon theory, the generalized ghost dark energy model in an anisotropic universe is investigated. We study the cosmological implications of this model. In particular, we obtain the equation of state and the deceleration parameters and a differential equation governing the evolution of this dark energy in Bianchi type I model. We also probe observational constraints by using the latest observational data on the generalized ghost dark energy models as the unification of dark matter and dark energy. In order to do so, we focus on observational determinations of the Hubble expansion rate (namely, the expansion history) H(z). As a result, we show the influence of the anisotropy (although low) on the evolution of the universe in the statefinder diagrams for Galileon gravity.
An Embedded Ghost-Fluid Method for Compressible Flow in Complex Geometry
Almarouf, Mohamad Abdulilah Alhusain Alali
2016-06-03
We present an embedded ghost-fluid method for numerical solutions of the compressible Navier Stokes (CNS) equations in arbitrary complex domains. The PDE multidimensional extrapolation approach of Aslam [1] is used to reconstruct the solution in the ghost-fluid regions and impose boundary conditions at the fluid-solid interface. The CNS equations are numerically solved by the second order multidimensional upwind method of Colella [2] and Saltzman [3]. Block-structured adaptive mesh refinement implemented under the Chombo framework is utilized to reduce the computational cost while keeping high-resolution mesh around the embedded boundary and regions of high gradient solutions. Numerical examples with different Reynolds numbers for low and high Mach number flow will be presented. We compare our simulation results with other reported experimental and computational results. The significance and advantages of our implementation, which revolve around balancing between the solution accuracy and implementation difficulties, are briefly discussed as well. © 2016 Trans Tech Publications.
An Embedded Ghost-Fluid Method for Compressible Flow in Complex Geometry
Almarouf, Mohamad Abdulilah Alhusain Alali; Samtaney, Ravi
2016-01-01
We present an embedded ghost-fluid method for numerical solutions of the compressible Navier Stokes (CNS) equations in arbitrary complex domains. The PDE multidimensional extrapolation approach of Aslam [1] is used to reconstruct the solution in the ghost-fluid regions and impose boundary conditions at the fluid-solid interface. The CNS equations are numerically solved by the second order multidimensional upwind method of Colella [2] and Saltzman [3]. Block-structured adaptive mesh refinement implemented under the Chombo framework is utilized to reduce the computational cost while keeping high-resolution mesh around the embedded boundary and regions of high gradient solutions. Numerical examples with different Reynolds numbers for low and high Mach number flow will be presented. We compare our simulation results with other reported experimental and computational results. The significance and advantages of our implementation, which revolve around balancing between the solution accuracy and implementation difficulties, are briefly discussed as well. © 2016 Trans Tech Publications.
At the Table with Hungry Ghosts: Intimate Borderwork in Mexico City
Directory of Open Access Journals (Sweden)
Jean Duruz
2011-09-01
Full Text Available This article focuses on the project of sustaining cultural diversity within global cities’ intimate spaces. Specifically, it sketches the culinary histories of an Anglo-Australian woman (who, in 1968, settled permanently in Mexico and her male partner (who grew up in Mexico; his mother Mexican, his father Cantonese. Drawing on the tools of ‘borderwork’ (Hodge and O’Carroll, the argument positions culturally diverse landscapes of ‘Sydney’, ‘China’ and ‘Mexico City’ as distinct yet overlapping geographies. Meanwhile, analysis of curious moments in the couple’s intersecting histories contributes much fluidity to this cartography. In the process, a company of hungry ghosts appears at the dinner table – ghosts of diversity, diaspora and cosmopolitanism; nostalgia and memory; gender and ethnicity; home and belonging. The article concludes that even when borderwork is conducted amiably behind closed doors, it relies on contradictions for cultural sustenance. At the same time, its tensions resonate with possibilities for creative practice.
Energy Technology Data Exchange (ETDEWEB)
Schuurhuis, G.J.; Hommes, J.; Vos, J.; Molenaar, I.; Konings, A.W.T. (Rijksuniversiteit Groningen (Netherlands))
1984-02-01
Isolated human erythrocytes and ghosts were irradiated with X-rays under different experimental conditions and the effect examined with regard to the structure of membrane proteins and morphology of whole cells and ghosts. From sodium dodecyl sulphate/polyacrylamide gel electrophoresis it is concluded that spectrin (band 1 and 2) is the most radiosensitive of the membrane proteins examined. X-irradiation of cells and ghosts induced covalent cross-linking of a small fraction of membrane proteins. In the protein aggregates thus formed spectrin was found to be the major component. Molecular disulphide (-SS-) bridges seemed to account for part of the cross-links observed. Some nondisulphide cross-links were found, especially when ghosts were irradiated. Significant amounts of spectrin aggregates were formed during post-irradiation incubation at 37/sup 0/C but not at 4/sup 0/C. In the intact cell a transformation in shape from discocyte to echinocyte accompanied the process of post-irradiation spectrin aggregation. The characteristics of both processes, such as their reversibility with adenosine, point to a metabolic involvement. It is shown that there is no causal relationship between the two phenomena observed. Possible causes of the post-irradiation effects and the parallelism with similar processes in non-irradiated metabolically depleted cells are discussed.
International Nuclear Information System (INIS)
Schuurhuis, G.J.; Hommes, J.; Vos, J.; Molenaar, I.; Konings, A.W.T.
1984-01-01
Isolated human erythrocytes and ghosts were irradiated with X-rays under different experimental conditions and the effect examined with regard to the structure of membrane proteins and morphology of whole cells and ghosts. From sodium dodecyl sulphate/polyacrylamide gel electrophoresis it is concluded that spectrin (band 1 and 2) is the most radiosensitive of the membrane proteins examined. X-irradiation of cells and ghosts induced covalent cross-linking of a small fraction of membrane proteins. In the protein aggregates thus formed spectrin was found to be the major component. Molecular disulphide (-SS-) bridges seemed to account for part of the cross-links observed. Some nondisulphide cross-links were found, especially when ghosts were irradiated. Significant amounts of spectrin aggregates were formed during post-irradiation incubation at 37 0 C but not at 4 0 C. In the intact cell a transformation in shape from discocyte to echinocyte accompanied the process of post-irradiation spectrin aggregation. The characteristics of both processes, such as their reversibility with adenosine, point to a metabolic involvement. It is shown that there is no causal relationship between the two phenomena observed. Possible causes of the post-irradiation effects and the parallelism with similar processes in non-irradiated metabolically depleted cells are discussed. (author)
Gravity and magnetic data across the Ghost Dance Fault in WT-2 Wash, Yucca Mountain, Nevada
International Nuclear Information System (INIS)
Oliver, H.W.; Sikora, R.F.
1994-01-01
Detailed gravity and ground magnetic data were obtained in September 1993 along a 4,650 ft-long profile across the Ghost Dance Fault system in WT-2 Wash. Gravity stations were established every 150 feet along the profile. Total-field magnetic measurements made initially every 50 ft along the profile, then remade every 20 ft through the fault zone. These new data are part of a geologic and geophysical study of the Ghost Dance Fault (GDF) which includes detailed geologic mapping, seismic reflection, and some drilling including geologic and geophysical logging. The Ghost Dance Fault is the only through-going fault that has been identified within the potential repository for high-level radioactive waste at Yucca Mountain, Nevada. Preliminary gravity results show a distinct decrease of 0.1 to 0.2 mGal over a 600-ft-wide zone to the east of and including the mapped fault. The gravity decrease probably marks a zone of brecciation. Another fault-offset located about 2,000 ft to the east of the GDF was detected by seismic reflection data and is also marked by a distinct gravity low. The ground magnetic data show a 200-ft-wide magnetic low of about 400 nT centered about 100 ft east of the Ghost Dance Fault. The magnetic low probably marks a zone of brecciation within the normally polarized Topopah Spring Tuff, the top of which is about 170 ft below the surface, and which is known from drilling to extend to a depth of about 1,700 ft. Three-component magnetometer logging in drill hole WT-2 located about 2,700 ft east of the Ghost Dance Fault shows that the Topopah Spring Tuff is strongly polarized magnetically in this area, so that fault brecciation of a vertical zone within the Tuff could provide an average negative magnetic contrast of the 4 Am -1 needed to produce the 400 nT low observed at the surface
Ghost-Free Massive $f(R)$ Theories Modelled as Effective Einstein Spaces and Cosmic Acceleration
Vacaru, Sergiu I
2014-01-01
We study how massive ghost-free gravity $f(R)$-modified theories, MGFTs, can be encoded into generic off-diagonal Einstein spaces. Using "auxiliary" connections completely defined by the metric fields and adapted to nonholonomic frames with associated to nonlinear connection structure, we decouple and integrate in certain general forms the field equations in MGFT. Imposing additional nonholonomic constraints, we can generate Levi--Civita, LC, configurations and mimic MGFT effects via off-diagonal interactions of effective Einstein and/or Einstein-Cartan gravity with nonholonomically induced torsion. The cosmological evolution of ghost-free off--diagonal Einstein spaces is investigated. Certain compatibility of MGFT cosmology to small off-diagonal deformations of $\\Lambda $CDM models is established. %
Cooperative organic mine avoidance path planning
McCubbin, Christopher B.; Piatko, Christine D.; Peterson, Adam V.; Donnald, Creighton R.; Cohen, David
2005-06-01
The JHU/APL Path Planning team has developed path planning techniques to look for paths that balance the utility and risk associated with different routes through a minefield. Extending on previous years' efforts, we investigated real-world Naval mine avoidance requirements and developed a tactical decision aid (TDA) that satisfies those requirements. APL has developed new mine path planning techniques using graph based and genetic algorithms which quickly produce near-minimum risk paths for complicated fitness functions incorporating risk, path length, ship kinematics, and naval doctrine. The TDA user interface, a Java Swing application that obtains data via Corba interfaces to path planning databases, allows the operator to explore a fusion of historic and in situ mine field data, control the path planner, and display the planning results. To provide a context for the minefield data, the user interface also renders data from the Digital Nautical Chart database, a database created by the National Geospatial-Intelligence Agency containing charts of the world's ports and coastal regions. This TDA has been developed in conjunction with the COMID (Cooperative Organic Mine Defense) system. This paper presents a description of the algorithms, architecture, and application produced.
Computational ghost imaging using deep learning
Shimobaba, Tomoyoshi; Endo, Yutaka; Nishitsuji, Takashi; Takahashi, Takayuki; Nagahama, Yuki; Hasegawa, Satoki; Sano, Marie; Hirayama, Ryuji; Kakue, Takashi; Shiraki, Atsushi; Ito, Tomoyoshi
2018-04-01
Computational ghost imaging (CGI) is a single-pixel imaging technique that exploits the correlation between known random patterns and the measured intensity of light transmitted (or reflected) by an object. Although CGI can obtain two- or three-dimensional images with a single or a few bucket detectors, the quality of the reconstructed images is reduced by noise due to the reconstruction of images from random patterns. In this study, we improve the quality of CGI images using deep learning. A deep neural network is used to automatically learn the features of noise-contaminated CGI images. After training, the network is able to predict low-noise images from new noise-contaminated CGI images.
Debris Likelihood, based on GhostNet, NASA Aqua MODIS, and GOES Imager, EXPERIMENTAL
National Oceanic and Atmospheric Administration, Department of Commerce — Debris Likelihood Index (Estimated) is calculated from GhostNet, NASA Aqua MODIS Chl a and NOAA GOES Imager SST data. THIS IS AN EXPERIMENTAL PRODUCT: intended...
Path-based Queries on Trajectory Data
DEFF Research Database (Denmark)
Krogh, Benjamin Bjerre; Pelekis, Nikos; Theodoridis, Yannis
2014-01-01
In traffic research, management, and planning a number of path-based analyses are heavily used, e.g., for computing turn-times, evaluating green waves, or studying traffic flow. These analyses require retrieving the trajectories that follow the full path being analyzed. Existing path queries cannot...... sufficiently support such path-based analyses because they retrieve all trajectories that touch any edge in the path. In this paper, we define and formalize the strict path query. This is a novel query type tailored to support path-based analysis, where trajectories must follow all edges in the path...... a specific path by only retrieving data from the first and last edge in the path. To correctly answer strict path queries existing network-constrained trajectory indexes must retrieve data from all edges in the path. An extensive performance study of NETTRA using a very large real-world trajectory data set...
Kaehler-Dirac ghosts for self-dual fields
International Nuclear Information System (INIS)
Labastida, J.M.F.; Pernici, M.
1988-01-01
We present the generalization to spacetime dimension D=4n+2 of the Lorentz covariant quadratic lagrangian for pairs of (anti)self-dual fields previously obtained by the authors in D=2. In the process of BRST quantizing this lagrangian a first-order quadratic lagrangian for ghost (anti)self-dual fields is found which, after gauge fixing, can be written in terms of bispinors and it turns out to be a Kaehler-Dirac lagrangian. The coupling to gravity is straightforward and the gravitational anomaly due to (anti)self-dual fields is obtained directly from an action principle. (orig.)
Plato's ghost the modernist transformation of mathematics
Gray, Jeremy
2008-01-01
Plato's Ghost is the first book to examine the development of mathematics from 1880 to 1920 as a modernist transformation similar to those in art, literature, and music. Jeremy Gray traces the growth of mathematical modernism from its roots in problem solving and theory to its interactions with physics, philosophy, theology, psychology, and ideas about real and artificial languages. He shows how mathematics was popularized, and explains how mathematical modernism not only gave expression to the work of mathematicians and the professional image they sought to create for themselves, but how modernism also introduced deeper and ultimately unanswerable questions
Energy consumption of ProTaper Next X1 after glide path with PathFiles and ProGlider.
Berutti, Elio; Alovisi, Mario; Pastorelli, Michele Angelo; Chiandussi, Giorgio; Scotti, Nicola; Pasqualini, Damiano
2014-12-01
Instrument failure caused by excessive torsional stress can be controlled by creating a manual or mechanical glide path. The ProGlider single-file system (Dentsply Maillefer, Ballaigues, Switzerland) was recently introduced to perform a mechanical glide path. This study was designed to compare the effect of a glide path performed with PathFiles (Dentsply Maillefer) and ProGlider on torque, time, and pecking motion required for ProTaper Next X1 (Dentsply Maillefer) to reach the full working length in simulated root canals. Forty Endo Training Blocks (Dentsply Maillefer) were used. Twenty were prepared with a mechanical glide path using PathFiles 1 and 2 (the PathFile group), and 20 were prepared with a mechanical glide path using a ProGlider single file (the ProGlider group). All samples were shaped with ProTaper Next X1 driven by an endodontic motor connected to a digital wattmeter. The required torque for root canal instrumentation was analyzed by evaluating the electrical power consumption of the endodontic engine. Electric power consumption (mW/h), elapsed time (seconds), and number of pecking motions required to reach the full working length with ProTaper Next X1 were calculated. Differences among groups were analyzed with the parametric Student t test for independent data (P < .05). Elapsed time and electric power consumption were significantly different between groups (P = .0001 for both). ProGlider appears to perform more efficiently than PathFiles in decreasing electric power consumption of ProTaper Next X1 to reach the full working length. This study confirmed the ability of ProGlider to reduce stress in ProTaper Next X1 during shaping through a glide path and preliminary middle and coronal preflaring. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
An algebraic approach to laying a ghost to rest
International Nuclear Information System (INIS)
Nucci, M C; Leach, P G L
2010-01-01
In the recent literature there has been a resurgence of interest in the fourth-order field-theoretic model of Pais-Uhlenbeck (1950 Phys. Rev. 79 145-65) which has not had a good reception over the past half a century due to the existence of ghosts in the properties of the quantum mechanical solution. Bender and Mannheim (2008 J. Phys. A: Math. Theor. 41 304018) were successful in persuading the corresponding quantum operator to 'give up the ghost'. Their success had the advantage of making the model of Pais-Uhlenbeck acceptable to the physics community and in the process added further credit to the cause of advancement of the use of PT symmetry. We present a case for the acceptance of the Pais-Uhlenbeck model in the context of Dirac's theory by providing an Hamiltonian that is not quantum mechanically haunted. The essential point is the manner in which a fourth-order equation is rendered into a system of second-order equations. We show by means of the method of reduction of order (Nucci M C 1996 J. Math. Phys. 37 1772-5) that it is possible to construct a Hamiltonian that gives rise to a satisfactory quantal description without having to abandon Dirac.
Ramos, B?rbara Couto; da Silva Izar, Bruna Raquel; Pereira, J?ssica Lourdes Costa; Souza, Priscilla Sena; Valerio, Claudia Scigliano; Tuji, Fabr?cio Mesquita; Manzi, Fl?vio Ricardo
2016-01-01
Panoramic radiographs are a relatively simple technique that is commonly used in all dental specialties. In panoramic radiographs, in addition to the formation of real images of metal objects, ghost images may also form, and these ghost images can hinder an accurate diagnosis and interfere with the accuracy of radiology reports. Dentists must understand the formation of these images in order to avoid making incorrect radiographic diagnoses. Therefore, the present study sought to present a stu...
International Nuclear Information System (INIS)
Da Rocha, C.A.; Wilets, L.
1997-01-01
Complex mass poles, or ghost poles, are present in the Hartree-Fock solution of the Schwinger-Dyson equation for the nucleon propagator in renormalizable models with Yukawa-type meson-nucleon couplings, as shown many years ago by Brown, Puff and Wilets (BPW). These ghosts violate basic theorems of quantum field theory and their origin is related to the ultraviolet behavior of the model interactions. Recently, Krein et.al, proved that the ghosts disappear when vertex corrections are included in a self-consistent way, softening the interaction sufficiently in the ultraviolet region. In previous studies of πN scattering using ''dressed'' nucleon propagator and bare vertices, did by Nutt and Wilets in the 70's (NW), it was found that if these poles are explicitly included, the value of the isospin-even amplitude A (+) is satisfied within 20% at threshold. The absence of a theoretical explanation for the ghosts and the lack of chiral symmetry in these previous studies led us to re-investigate the subject using the approach of the linear σ-model and study the interplay of low-energy theorems for πN scattering and ghost poles. For bare interaction vertices we find that ghosts are present in this model as well and that the A (+) value is badly described. As a first approach to remove these complex poles, we dress the vertices with phenomenological form factors and a reasonable agreement with experiment is achieved. In order to fix the two cutoff parameters, we use the A (+) value for the chiral limit (m π →0) and the experimental value of the isoscalar scattering length. Finally, we test our model by calculating the phase shifts for the S waves and we find a good agreement at threshold. (orig.)
William Wordsworth’s Danish Ghost and the Ballad that Never Was
DEFF Research Database (Denmark)
Jensen-Rix, Robert William
2017-01-01
been discussed. It is argued that the singing and harp-playing ghost is a trope for the poetic vigour that had dissipated under the demands for classical styles of poetry. More than any other piece in Lyrical Ballads, “A Fragment” points to the ancient Germanic origin of the new models for poetic...
International Nuclear Information System (INIS)
Ponce, D.A.; Langenheim, V.E.
1995-01-01
Ground magnetic and gravity data collected along traverses across the Ghost Dance and Solitario Canyon faults on the eastern and western flanks, respectively, of Yucca Mountain in southwest Nevada are interpreted. These data were collected as part of an effort to evaluate faulting in the vicinity of a potential nuclear waste repository at Yucca Mountain. Gravity and magnetic data and models along traverses across the Ghost Dance and Solitario Canyon faults show prominent anomalies associated with known faults and reveal a number of possible concealed faults beneath the eastern flank of Yucca Mountain. The central part of the eastern flank of Yucca Mountain is characterized by several small amplitude anomalies that probably reflect small scale faulting
Ghost properties of algebraically extended theories of gravitation
International Nuclear Information System (INIS)
Kelly, P.F.; Mann, R.B.
1986-01-01
Recently a technique for extending general relativity called algebraic extension was shown to yield only five classes of gravitational theories (general relativity plus four extensions). The particle spectra of these theories are analysed and it is shown that only one of these extensions is ghost free. Two inequivalent theories are shown to result from this extension at the linearised level. One of these is the linearised version of Moffat's theory of gravitation; the other is a new theory which possesses an additional gauge invariance which has been associated with a closed string. (author)
Fourier-transform ghost imaging with pure far-field correlated thermal light
International Nuclear Information System (INIS)
Liu Honglin; Shen Xia; Han Shensheng; Zhu Daming
2007-01-01
Pure far-field correlated thermal light beams are created with phase grating, and Fourier-transform ghost imaging depending only on the far-field correlation is demonstrated experimentally. Theoretical analysis and the results of experimental investigation of this pure far-field correlated thermal light are presented. Applications which may be exploited with this imaging scheme are discussed
Observational artifacts of Nuclear Spectroscopic Telescope Array: Ghost rays and stray light
DEFF Research Database (Denmark)
Madsen, Kristin K.; Christensen, Finn Erland; Craig, William W.
2017-01-01
photons that do not undergo the focused double reflections in the optics, and we term these ghost rays. We present detailed analysis and characterization of these two components and discuss how they impact observations. Finally, we discuss how they could have been prevented and should be in future...
The Ghostly Workings of Danish Accountability Policies
DEFF Research Database (Denmark)
Pors, Justine Grønbæk
2016-01-01
present an empirical study of a policy agenda of introducing an assessment culture and improving the management of the Danish public school. I explore how all the routines and habits deemed outdated and sought annihilated by a new policy paradigm continue to haunt head teachers as seething presence...... of lurking resistance towards the policy aims as well as insidious doubts. Thinking about the ghostly contributes to studies of education policy by locating the reality of power in the mundane everyday doings and experiences of educational practitioners and insisting on the very tangled way people sense...... and intuit the complexities of contemporary forms of power....
BOOK REVIEW: Path Integrals in Field Theory: An Introduction
Ryder, Lewis
2004-06-01
by three on gauge field theories---quantum electrodynamics and Yang--Mills theories, Faddeev--Popov ghosts and so on.There is no treatment of the quantisation of gravity.Thus in about 200 pages the reader has the chance to learn in some detail about a most important area of modern physics. The subject is tough but the style is clear and pedagogic, results for the most part being derived explicitly. The choice of topics included is main-stream and sensible and one has a clear sense that the author knows where he is going and is a reliable guide. Path Integrals in Field Theory is clearly the work of a man with considerable teaching experience and is recommended as a readable and helpful account of a rather non-trivial subject.
Prevalence of articles with honorary and ghost authors in three pharmacy journals.
Dotson, Bryan; Slaughter, Richard L
2011-09-15
The prevalence of honorary and ghost authors in articles published in 2009 in three peer-reviewed pharmacy journals was studied. A 20-question survey was e-mailed to corresponding authors of articles with two or more authors published in 2009 in the American Journal of Health-System Pharmacy, Annals of Pharmacotherapy, and Pharmacotherapy. The survey solicited the following information: demographic characteristics of the corresponding author, information about the published article, information to determine whether any of the authors did not meet the International Committee of Medical Journal Editors criteria for authorship, and information to determine if an individual contributed substantially to the research or writing of the article but was not listed as an author. Of the 491 corresponding authors to whom the survey was sent, 457 had a working e-mail address; 114 surveys were completed (24.9% response rate). Usable responses were provided by 112 authors. The prevalence of articles with honorary and ghost authors was 14.3% and 0.9%, respectively. Honorary authorship was more common in original research than review articles. Articles with honorary authors had longer bylines than articles without honorary authors (mean number of authors, 4.9 versus 3.7; p = 0.002). The proportion of articles with an honorary author was 1.9% for articles with fewer than 4 authors, 25% for articles with 4 or 5 authors, and 29.4% for articles with more than 5 authors (p = 0.001). A survey sent to the corresponding authors of articles published in 2009 in three peer-reviewed pharmacy journals revealed that a substantial percentage of articles demonstrated evidence of honorary or ghost authorship.
Massive, massless and ghost modes of gravitational waves from higher-order gravity
DEFF Research Database (Denmark)
Bogdanos, Charalampos; Capozziello, Salvatore; De Laurentis, Mariafelicia
We linearize the field equations for higher order theories that contain scalar invariants other than the Ricci scalar. We find that besides a massless spin-2 field (the standard graviton), the theory contains also spin-0 and spin-2 massive modes with the latter being, in general, ghost modes. Then...
Influence map baserad Ms. Pac-Man och Ghost Kontroller
Svensson, Johan
2012-01-01
This thesis will cover the use oftheinfluence map technique applied to the retro game Ms. Pac-Man. A game thatis easy to learn but hard to master. The Ms. Pac-Man controller is implemented with five main parameters that alters the behaviour of the controller while the Ghost controller have three parameters. The experimental results of the controllers is explored to using the alterations of the parameters to find its peak of performance. The conclusion from using the influence map for this gam...
Ghosts of the City: A Spectrology of Cinematic Spaces
Petra Löffler
2015-01-01
This paper investigates how, in early cinema, in-between spaces were created that were receptive to scenes of haunting. Adopting Derrida’s notions of a hauntology and a spectrology it argues for a genuine productivity of cinematic space that is able to build ghostly environments without incorporating an actual specter. This productivity is described as ‘making appear’ and ‘making act’. Furthermore, the paper explains how, in the era of silent cinema, cinematic techniques were used to create s...
A robust mass spectrometry method for rapid profiling of erythrocyte ghost membrane proteomes.
Fye, Haddy K S; Mrosso, Paul; Bruce, Lesley; Thézénas, Marie-Laëtitia; Davis, Simon; Fischer, Roman; Rwegasira, Gration L; Makani, Julie; Kessler, Benedikt M
2018-01-01
Red blood cell (RBC) physiology is directly linked to many human disorders associated with low tissue oxygen levels or anemia including chronic obstructive pulmonary disease, congenital heart disease, sleep apnea and sickle cell anemia. Parasites such as Plasmodium spp. and phylum Apicomplexa directly target RBCs, and surface molecules within the RBC membrane are critical for pathogen interactions. Proteomics of RBC membrane 'ghost' fractions has therefore been of considerable interest, but protocols described to date are either suboptimal or too extensive to be applicable to a larger set of clinical cohorts. Here, we describe an optimised erythrocyte isolation protocol from blood, tested for various storage conditions and explored using different fractionation conditions for isolating ghost RBC membranes. Liquid chromatography mass spectrometry (LC-MS) analysis on a Q-Exactive Orbitrap instrument was used to profile proteins isolated from the comparative conditions. Data analysis was run on the MASCOT and MaxQuant platforms to assess their scope and diversity. The results obtained demonstrate a robust method for membrane enrichment enabling consistent MS based characterisation of > 900 RBC membrane proteins in single LC-MS/MS analyses. Non-detergent based membrane solubilisation methods using the tissue and supernatant fractions of isolated ghost membranes are shown to offer effective haemoglobin removal as well as diverse recovery including erythrocyte membrane proteins of high and low abundance. The methods described in this manuscript propose a medium to high throughput framework for membrane proteome profiling by LC-MS of potential applicability to larger clinical cohorts in a variety of disease contexts.
Techniques and applications of path integration
Schulman, L S
2005-01-01
A book of techniques and applications, this text defines the path integral and illustrates its uses by example. It is suitable for advanced undergraduates and graduate students in physics; its sole prerequisite is a first course in quantum mechanics. For applications requiring specialized knowledge, the author supplies background material.The first part of the book develops the techniques of path integration. Topics include probability amplitudes for paths and the correspondence limit for the path integral; vector potentials; the Ito integral and gauge transformations; free particle and quadra
Testing the ghost with the machine
International Nuclear Information System (INIS)
De Zubicaray, G.
2002-01-01
Since its introduction during the 1990s, functional magnetic resonance imaging (fMRI) has been used to investigate brain activity occurring during a bewildering variety of sensory, motor and cognitive tasks. That is, a machine is being used to test 'the ghost in the machine' - the human mind. The use of imaging techniques to investigate these issues has even led to the emergence of a new scientific field called cognitive neuroscience. Currently, there are only a few groups in Australia actively publishing fMRI studies in the international literature, and the majority of these laboratories are clustered on the east coast. My own research with fMRI has focused on areas such as language and memory, with a special interest in how we solve competitive processes in our thinking
Ghost Hunting as a Means to Illustrate Scientific Methodology and Enhance Critical Thinking
Rockwell, Steven C.
2012-01-01
The increasing popularity of television shows featuring paranormal investigations has led to a renewed enthusiasm in ghost hunting activities, and belief in the paranormal in general. These shows typically feature a group of investigators who, while claiming to utilize proper scientifically correct methodologies, violate many core scientific…
Ghosts of the City: A Spectrology of Cinematic Spaces
Directory of Open Access Journals (Sweden)
Petra Löffler
2015-09-01
Full Text Available This paper investigates how, in early cinema, in-between spaces were created that were receptive to scenes of haunting. Adopting Derrida’s notions of a hauntology and a spectrology it argues for a genuine productivity of cinematic space that is able to build ghostly environments without incorporating an actual specter. This productivity is described as ‘making appear’ and ‘making act’. Furthermore, the paper explains how, in the era of silent cinema, cinematic techniques were used to create scenes of haunting.
DiversePathsJ: diverse shortest paths for bioimage analysis.
Uhlmann, Virginie; Haubold, Carsten; Hamprecht, Fred A; Unser, Michael
2018-02-01
We introduce a formulation for the general task of finding diverse shortest paths between two end-points. Our approach is not linked to a specific biological problem and can be applied to a large variety of images thanks to its generic implementation as a user-friendly ImageJ/Fiji plugin. It relies on the introduction of additional layers in a Viterbi path graph, which requires slight modifications to the standard Viterbi algorithm rules. This layered graph construction allows for the specification of various constraints imposing diversity between solutions. The software allows obtaining a collection of diverse shortest paths under some user-defined constraints through a convenient and user-friendly interface. It can be used alone or be integrated into larger image analysis pipelines. http://bigwww.epfl.ch/algorithms/diversepathsj. michael.unser@epfl.ch or fred.hamprecht@iwr.uni-heidelberg.de. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.
Methods for reducing ghost rays on the Wolter-I focusing figures of the FOXSI rocket payload
Buitrago-Casas, Juan Camilo; Glesener, Lindsay; Christe, Steven; Ramsey, Brian; Elsner, Ronald; Courtade, Sasha; Vievering, Juliana; Subramania, Athiray; Krucker, Sam; Bale, Stuart
2017-08-01
In high energy solar astrophysics, imaging hard X-rays by direct focusing offers higher dynamic range and greater sensitivity compared to past techniques that used indirect imaging. The Focusing Optics X-ray Solar Imager (FOXSI) is a sounding rocket payload which uses seven sets of nested Wolter-I figured mirrors that, together with seven high-sensitive semiconductor detectors, observes the Sun in hard X-rays by direct focusing. The FOXSI rocket has successfully flown twice and is funded to fly a third time in summer 2018.The Wolter-I geometry consists of two consecutive mirrors, one paraboloid, and one hyperboloid, that reflect photons at grazing angles. Correctly focused X-rays reflect twice, once per mirror segment. For extended sources, like the Sun, off-axis photons at certain incident angles can reflect on only one mirror and still reach the focal plane, generating a pattern of single-bounce photons, or ‘ghost rays’ that can limit the sensitivity of the observation of focused X-rays. Understanding and cutting down the ghost rays on the FOXSI optics will maximize the instrument’s sensitivity of the solar faintest sources for future flights. We present an analysis of the FOXSI ghost rays based on ray-tracing simulations, as well as the effectiveness of different physical strategies to reduce them.
International Nuclear Information System (INIS)
Gamell, Marc; Kolla, Hemanth; Mayo, Jackson; Heroux, Michael A.
2017-01-01
In order to achieve exascale systems, application resilience needs to be addressed. Some programming models, such as task-DAG (directed acyclic graphs) architectures, currently embed resilience features whereas traditional SPMD (single program, multiple data) and message-passing models do not. Since a large part of the community's code base follows the latter models, it is still required to take advantage of application characteristics to minimize the overheads of fault tolerance. To that end, this paper explores how recovering from hard process/node failures in a local manner is a natural approach for certain applications to obtain resilience at lower costs in faulty environments. In particular, this paper targets enabling online, semitransparent local recovery for stencil computations on current leadership-class systems as well as presents programming support and scalable runtime mechanisms. Also described and demonstrated in this paper is the effect of failure masking, which allows the effective reduction of impact on total time to solution due to multiple failures. Furthermore, we discuss, implement, and evaluate ghost region expansion and cell-to-rank remapping to increase the probability of failure masking. To conclude, this paper shows the integration of all aforementioned mechanisms with the S3D combustion simulation through an experimental demonstration (using the Titan system) of the ability to tolerate high failure rates (i.e., node failures every five seconds) with low overhead while sustaining performance at large scales. In addition, this demonstration also displays the failure masking probability increase resulting from the combination of both ghost region expansion and cell-to-rank remapping.
International Nuclear Information System (INIS)
Deshpande, S.; Vial, P.; Goozee, G.; Holloway, L.
2010-01-01
Full text: To assess the ghosting effect of a Siemens EPID (Optivue 1000: while acquiring IMRT fluence with step and shoot delivery. Six sets of segmented fields with 1,2,3,5, J( and 20 monitor units (MU) per segment were designed. Each set consisted of ten segments of equal MU and field size (J 0 x 10 cm 2 ) Standard single fields (non-segmented) of the same total MU as the segmented fields were also created (10-200 MU). EPID images for these fields were acquired with multi-frame acquisition mode. The integrated EPID response was determined as the mean central 20 x 21 pixel readout multiplied by the number of frames. The same fields wen measured with an ionization chamber at a depth of dose maximum in, solid water phantom. The total signal measured from the segmented fields was compared to the corresponding non-segmented fields. The ratio of EPID response between segmented and non-segmented delivery indicates an under-response for segmented fields by 5, 4, 2.5 and 2% for 1,2,3, and 5 MU per segment exposures respectively compared to ionisation chamber response (se Fig. I). The ratio was within 2% for 5 MU per segment and above. Th error bar in Fig. I indicate the intra-segment response variation. The Siemens EPID exhibited significant ghosting effect and variation in response for small M U segments. EPID dosimetry ( IMRT fields with less than 5 MU per segment requires corrections t maintain dose calibration accuracy to within 2%. (author)
Watson, Gregory S.; Gregory, Emily A.; Johnstone, Charmaine; Berlino, Manuel; Green, David W.; Peterson, Nicola R.; Schoeman, David S.; Watson, Jolanta A.
2018-04-01
Ghost crabs, Ocypode cordimanus, inhabit relatively hostile environments subject to thermal fluctuations, including both diurnal and seasonal cycles. For many ectotherms, including ghost crabs, a major challenge is to remain cool during hot daytime temperatures. This can be achieved by adopting a fossorial lifestyle, taking advantage of thermal refuge afforded by burrows of sufficient depth. Another consideration, often overlooked, is the potential advantage associated with ready access to a thermal energy source (a "charging station") when surface temperatures are cooler. Being able to rapidly elevate body temperature during cool periods would enhance the crab's ability to maintain rate processes and carry out essential activities. We have measured ghost crab burrow temperature profiles at two times of the day with contrasting sun exposure (06:00 and 14:00), demonstrating how effective burrow depth (up to a maximum of 40 cm) provides thermal regulation below the surface of the sand (e.g., at dawn (06:00) and early afternoon (14:00) at a depth of 5 cm, temperatures (±SD) of 16.32 ± 0.96 °C and 25.04 ± 1.47 °C were recorded, respectively. Corresponding temperatures at a depth of 30 cm were 19.17 ± 0.59 °C and 19.78 ± 1.60 °C, respectively). This demonstrates that while temperature conditions at the surface vary dramatically from night to day, ghost crab burrows can maintain relatively constant temperatures at the burrow base throughout the diurnal cycle, at least during winter. As a consequence, the burrow heat signatures undergo a corresponding thermal gradient reversal between night and day, as revealed by infra-red photography. Complementing these field observations, we also determined heating and cooling times/constants for O. cordimanus in the laboratory (τ = 17.54 and 16.59 JK-1, respectively), and analysed chemical composition of their carapace (external (with β Chitin evident) and internal (predominance of α Chitin)), which is the primary thermal
Recovery of compacted soils in Mojave Desert ghost towns.
Webb, R.H.; Steiger, J.W.; Wilshire, H.G.
1986-01-01
Residual compaction of soils was measured at seven sites in five Mojave Desert ghost towns. Soils in these Death Valley National Monument townsites were compacted by vehicles, animals, and human trampling, and the townsites had been completely abandoned and the buildings removed for 64 to 75 yr. Recovery times extrapolated using a linear recovery model ranged from 80 to 140 yr and averaged 100 yr. The recovery times were related to elevation, suggesting freeze-thaw loosening as an important factor in ameliorating soil compaction in the Mojave Desert. -from Authors
Fors, Yvonne; Grudd, Håkan; Rindby, Anders; Jalilehvand, Farideh; Sandström, Magnus; Cato, Ingemar; Bornmalm, Lennart
2014-02-01
Sulfur and iron concentrations in wood from three 17th century shipwrecks in the Baltic Sea, the Ghost wreck, the Crown and the Sword, were obtained by X-ray fluorescence (XRF) scanning. In near anaerobic environments symbiotic microorganisms degrade waterlogged wood, reduce sulfate and promote accumulation of low-valent sulfur compounds, as previously found for the famous wrecks of the Vasa and Mary Rose. Sulfur K-edge X-ray absorption near-edge structure (XANES) analyses of Ghost wreck wood show that organic thiols and disulfides dominate, together with elemental sulfur probably generated by sulfur-oxidizing Beggiatoa bacteria. Iron sulfides were not detected, consistent with the relatively low iron concentration in the wood. In a museum climate with high atmospheric humidity oxidation processes, especially of iron sulfides formed in the presence of corroding iron, may induce post-conservation wood degradation. Subject to more general confirmation by further analyses no severe conservation concerns are expected for the Ghost wreck wood.
International Nuclear Information System (INIS)
Rusu, L; Rusu, A
2013-01-01
In the ghost imaging system, the object and image are separately illuminated by a pair of correlated beams and the image is obtained through coincidence detection of the two beams. When the correlated beams are obtained by a spontaneous parametric down-conversion phenomenon, the image formation is attributed to either quantum entanglement or wave vector correlation. The physicist D B Ion has published a different point of view: the ghost imaging can be explained by electromagnetic crossing symmetric photon reactions. We report on an experimental setup to verify that a change of the object reflection coefficient modifies the idler single count rate. The obtained results are a confirmation proof and suggest the existence of a stimulated spontaneous parametric down-conversion effect. A possible application is mentioned. (paper)
Li, Xianye; Meng, Xiangfeng; Yang, Xiulun; Wang, Yurong; Yin, Yongkai; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi
2018-03-01
A multiple-image encryption method via lifting wavelet transform (LWT) and XOR operation is proposed, which is based on a row scanning compressive ghost imaging scheme. In the encryption process, the scrambling operation is implemented for the sparse images transformed by LWT, then the XOR operation is performed on the scrambled images, and the resulting XOR images are compressed in the row scanning compressive ghost imaging, through which the ciphertext images can be detected by bucket detector arrays. During decryption, the participant who possesses his/her correct key-group, can successfully reconstruct the corresponding plaintext image by measurement key regeneration, compression algorithm reconstruction, XOR operation, sparse images recovery, and inverse LWT (iLWT). Theoretical analysis and numerical simulations validate the feasibility of the proposed method.
Khodabandeloo, Babak; Landrø, Martin
2017-04-01
Sound is deployed by marine mammals for variety of vital purposes such as finding food, communication, echolocation, etc. On the other hand human activities generate underwater noise. One major type of acoustic source is marine seismic acquisition which is carried out to image layers beneath the seabed exploiting reflected acoustic and elastic waves. Air-gun arrays are the most common and efficient marine seismic sources. Field measurements using broad band hydrophones have revealed that acoustic energies emitted by air-gun arrays contains frequencies from a few Hz up to tens of kHz. Frequencies below 200 Hz benefit seismic imaging and the rest is normally considered as wasted energy. On the other hand, the high frequency range (above 200 Hz) overlaps with hearing curves of many marine mammals and especially toothed whales and may have an impact on their behavior. A phenomenon called ghost cavitation is recently recognized to be responsible for a major part of these high frequencies (> 5 kHz). Acoustic pressure waves of individual air guns reflected from sea surface can cause the hydrostatic pressure to drop towards zero close to the source array. In these regions there is a high probability for water vapor cavity growth and subsequent collapse. We have simulated ghost cavitation cloud using numerical modelling and the results are validated by comparing with field measurements. The model is used to compare the amount of high frequency noise due to ghost cavitation for two different air gun arrays. Both of the arrays have three subarrays but the array distance for the one with 2730 in3 air volume is 6 meters and for the slightly bigger array (3250 in3 in air volume) the subarrays are separated by 8 meters. Simulation results indicate that the second array, despite larger subarray distance, generates stronger ghost cavitation signal.
Steinhagen, R J; Belleman, J; Bohl, T; Damerau, H
2012-01-01
While most LHC detectors and instrumentation systems are optimised for a nominal bunch spacing of 25 ns, the LHC RF cavities themselves operate at the 10th harmonic of the maximum bunch frequency. Due to the beam production scheme and transfers in the injector chain, part of the nominally ‘empty’ RF buckets may contain particles, referred to as ghost or satellite bunches. These populations must be accurately quantified for high-precision experiments, luminosity calibration and control of parasitic particle encounters at the four LHC interaction points. This contribution summarises the wall-current-monitor based ghost and satellite bunch measurements in CERN’s PS and LHC accelerators. Instrumentation set-up, post-processing and achieved performance are discussed.
Directory of Open Access Journals (Sweden)
Rodrigo Kalmy Bolton
2014-02-01
Full Text Available This essay is the first part of an arqueology on governmentality in islam. Identifying the quran´s assimilation of angel Gabriel and the Holy Ghost I think that islamic medieval mystic develop an spiritualization of the angel where pneumatology and angelology seems to be the same, because the angel is not a simple server of God but a manager of man´s soul. In this way the Ghost-Angel would be consider as a dispositiv of soul´s salvation (the divinization of men and the condition of a government of itself. That´s why it challenge the formalization proposes by the islamic law (fiqh.
Zhang, Hao; Liu, Qiancheng; Li, Hongyuan; Zhang, Yi
2018-04-01
In marine seismic exploration, the ghost energies (down-going waves), which arise from the reflection at the surface, are often treated as unwanted signals for data processing. The ghost wave fields interfere with the desired primary signals, leads to frequency notches and attenuation of low frequencies, which in turn downgrade the resolution of the recorded seismic data. There are two main categories of methods to solve the ghost or the so-called notch problem: the non-conventional acquisition configuration-based technique and a deghosting algorithm-based solution. The variable-depth streamer (VDS) acquisition solution is one of the most representative methods in the first category, which has become a popular solution for marine seismic acquisition to obtain broad data bandwidth. However, this approach is not as economic as the conventional constant depth streamer (CDS) acquisition, due to the precise control of the towing streamer. In addition, there are large quantities of conventionally-towed legacy data stored in the data library. Applying receiver deghosting to the CDS data thus becomes a more economical method. In theory, both types of data after deghosting should have the same bandwidth and S/N ratio, but in reality they are different. In this paper, we conduct a comparative study and evaluation to apply receiver deghosting to a set of real 2D marine data including both types of acquisition (CDS and VDS) corresponding to the same geology. The deghosting algorithm we employed is a self-sustained, inversion-based approach operated in the τ-p domain. This evaluation can help us to understand two questions: whether the VDS acquisition has more broadband characteristics compared to conventional CDS acquisition after deghosting, and whether we can achieve the identical or similar data quality (e.g., S/N ratio) through the proper deghosting algorithm for both types of data. The comparative results are illustrated and discussed.
Information Security Scheme Based on Computational Temporal Ghost Imaging.
Jiang, Shan; Wang, Yurong; Long, Tao; Meng, Xiangfeng; Yang, Xiulun; Shu, Rong; Sun, Baoqing
2017-08-09
An information security scheme based on computational temporal ghost imaging is proposed. A sequence of independent 2D random binary patterns are used as encryption key to multiply with the 1D data stream. The cipher text is obtained by summing the weighted encryption key. The decryption process can be realized by correlation measurement between the encrypted information and the encryption key. Due to the instinct high-level randomness of the key, the security of this method is greatly guaranteed. The feasibility of this method and robustness against both occlusion and additional noise attacks are discussed with simulation, respectively.
Gluon-ghost condensate of mass dimension 2 in the Curci-Ferrari gauge
International Nuclear Information System (INIS)
Dudal, D.; Verschelde, H.; Lemes, V.E.R.; Sarandy, M.S.; Sorella, S.P.; Picariello, M.
2003-01-01
The effective potential for an on-shell BRST invariant gluon-ghost condensate of mass dimension 2 in the Curci-Ferrari gauge in SU(N) Yang-Mills is analysed by combining the local composite operator technique with the algebraic renormalization. We pay attention to the gauge parameter independence of the vacuum energy obtained in the considered framework and discuss the Landau gauge as an interesting special case
International Nuclear Information System (INIS)
Hagelskjær Lauridsen, Erik; Stissing Jensen, Jens
2013-01-01
50 years of progressively strengthened energy requirements in the Danish building code appear to be a success, as the energy consumption has remained constant despite an increase in the total area in requirement of heating. This article however argues that the building code mechanism is heavily influenced by path dependent regime structuration processes, and that the mechanism constitutes a barrier to more radical developments within low energy housing. Few and poorly organized frontrunner activities within low energy housing have accordingly taken place in a Danish context during the past decades. Finally it is proposed that the current development within the energy system provides opportunities for cultivating an improved transitional awareness and for carrying out experimental activities that may challenge the path dependencies of prevailing regime structuration processes. - Highlights: ► We analyze the role of the building code energy strategy as an incumbent regime. ► Regime independent development activities such as passive houses are retained. ► Industry is characterized by adaptive capacity to support radical development. ► Adaptive capacity needs to be mobilized and configure by regime problematizations. ► Governance capabilities to achieve such a mobilization are presently in short supply.
comparative analysis and implementation of dijkstra's shortest path
African Journals Online (AJOL)
user
path problem requires finding a single shortest-path between given vertices s and t; ... Bridge in 1735, [5 – 10]. This problem led to the .... their advancements from new design paradigms, data structures ..... .
The burrowing ghost shrimp, Neotrypaea californiensis, is a vital member of the estuarine benthic community. Dense populations of shrimp are found in the major estuaries of Washington and Oregon. Our study determines the genetic structure of shrimp populations in order to gain ...
Space-efficient path-reporting approximate distance oracles
DEFF Research Database (Denmark)
Elkin, Michael; Neiman, Ofer; Wulff-Nilsen, Christian
2016-01-01
We consider approximate path-reporting distance oracles, distance labeling and labeled routing with extremely low space requirements, for general undirected graphs. For distance oracles, we show how to break the nlogn space bound of Thorup and Zwick if approximate paths rather than distances need...
Two-color ghost interference with photon pairs generated in hot atoms
Directory of Open Access Journals (Sweden)
Dong-Sheng Ding
2012-09-01
Full Text Available We report on an experimental observation of a two-photon ghost interference experiment. A distinguishing feature of our experiment is that the photons are generated via a non-degenerated spontaneous four-wave mixing process in a hot atomic ensemble; therefore the photon has narrow bandwidth. Besides, there is a large difference in frequency between two photons in a pair. Our works may be important to achieve more secure, large transmission capacity long-distance quantum communication.
Ghost suppression in image restoration filtering
Riemer, T. E.; Mcgillem, C. D.
1975-01-01
An optimum image restoration filter is described in which provision is made to constrain the spatial extent of the restoration function, the noise level of the filter output and the rate of falloff of the composite system point-spread away from the origin. Experimental results show that sidelobes on the composite system point-spread function produce ghosts in the restored image near discontinuities in intensity level. By redetermining the filter using a penalty function that is zero over the main lobe of the composite point-spread function of the optimum filter and nonzero where the point-spread function departs from a smoothly decaying function in the sidelobe region, a great reduction in sidelobe level is obtained. Almost no loss in resolving power of the composite system results from this procedure. By iteratively carrying out the same procedure even further reductions in sidelobe level are obtained. Examples of original and iterated restoration functions are shown along with their effects on a test image.
International Nuclear Information System (INIS)
Johnson, P.W.; Warnock, R.L.
1977-01-01
Equations for the construction of a crossing-symmetric unitary Regge theory of meson-meson scattering are described. In the case of strong coupling, Regge trajectories are to be generated dynamically as zeros of the D function in a nonlinear N/D system. This paper is concerned mainly with writing the inputs to the N/D system in such a way that a convergent theory with exact crossing symmetry is defined. The scheme demands elimination of ghosts, i.e., bound-state poles at energies below threshold where trajectories pass through zero. A method for ghost elimination is proposed which entails an s-wave subtraction constant, and allows the physical s wave to be different from the l-analytic amplitude evaluated at l = 0. A dynamical model is suggested in which the subtraction constant alone generates the meson-meson interaction. An alternative ghost-elimination scheme proposed by Gell-Mann, in which only l-analytic amplitudes are involved, can be discussed in a formalism including channels with spin
Directory of Open Access Journals (Sweden)
Hyun Jung Park
2016-11-01
Full Text Available Acellular bacterial ghosts (BGs are empty non-living bacterial cell envelopes, commonly generated by controlled expression of the cloned lysis gene E of bacteriophage PhiX174. In this study, Vibrio parahaemolyticus ghosts (VPGs were generated by chemically-induced lysis and the method is based on minimum inhibitory concentration (MIC of sodium hydroxide (NaOH, acetic acid, boric acid, citric acid, maleic acid, hydrochloric acid, and sulfuric acid. The MIC values of the respective chemicals were 3.125, 6.25, <50.0, 25.0, 6.25, 1.56, and 0.781 mg/mL. Except for boric acid, the lysis efficiency reached more than 99.99% at 5 min after treatment of all chemicals. Among those chemicals, NaOH-induced VPGs appeared completely DNA-free, which was confirmed by quantitative real-time PCR. Besides, lipopolysaccharides (LPS extracted from the NaOH-induced VPGs showed no distinctive band on SDS-PAGE gel after silver staining. On the other hand, LPS extracted from wild-type bacterial cells, as well as the organic acids-induced VPGs showed triple major bands and LPS extracted from the inorganic acids-induced VPGs showed double bands. It suggests that some surface structures in LPS of the NaOH-induced VPGs may be lost, weakened, or modified by the MIC of NaOH. Nevertheless, Limulus amoebocyte lysate assay revealed that there is no significant difference in endotoxic activity between the NaOH-induced VPGs and wild-type bacterial cells. Macrophages exposed to the NaOH-induced VPGs at 0.5 × 106 CFU/mL showed cell viability of 97.9%, however, the MIC of NaOH did not reduce the cytotoxic effect of wild-type bacterial cells. Like Escherichia coli LPS, the NaOH-induced VPGs are an excellent activator of pro-inflammatory cytokines (IL-1β and iNOS, anti-inflammatory cytokine (IL-10, and dual activities (IL-6 in the stimulated macrophage cells. On the other hand, the induction of TNF-α mRNA was remarkable in the macrophages exposed with wild-type cells. Scanning
The process of ghost-rock karstification and its role in the formation of cave systems
Czech Academy of Sciences Publication Activity Database
Dubois, C.; Quinif, Y.; Baele, J.-M.; Barriquand, L.; Bini, A.; Bruxelles, L.; Dandurand, G.; Havron, C.; Kaufmann, O.; Lans, B.; Maire, R.; Martin, J.; Rodet, J.; Rowberry, Matthew David; Tognini, P.; Vergari, A.
2014-01-01
Roč. 131, APR (2014), s. 116-148 ISSN 0012-8252 Institutional support: RVO:67985891 Keywords : chemical weathering * ghost-rock * karstification * limestone dissolution * speleogenesis Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 7.885, year: 2014 http://www.sciencedirect.com/science/article/pii/S0012825214000154
Energy Technology Data Exchange (ETDEWEB)
Lee, Kyongwoon [Corporate R& D Institute, Doosan Heavy Industries & Construction,Gwigok-dong, Gyeongsangnam-do Seongsan-gu, Changwon-si 642-792 (Korea, Republic of); Lee, Seonghyeong; Na, Hyesung [School of Materials Science and Engineering, Pusan National University, San 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of); Kang, Chungyun, E-mail: kangcy@pusan.ac.kr [School of Materials Science and Engineering, Pusan National University, San 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of)
2016-11-15
Microstructural characteristics of the CGHAZ (coarse grained heat affected zone) made of the 2.25Cr-1Mo-V-Ti material for the thermal power plant boiler tube were discussed using the technique of tint etching. To conduct the micro structural characterization, the sample on which CGHAZ was produced by using a high temperature thermal cycle simulator, Gleeble 3500 equipment was used for comparative analyses using the existing Nital etching (ASTM E407-74) and the alkaline etching (ASTM E40785). The latter was used to observe a specific phase. For the microstructure on which the alkaline etching was experimented, the shape of a black strip (Ghost microstructure) in a few microns was observed, which was not observed from the Nital etching. It was found from the phase identifications based EPMA, EBSD and TEM experiments that the image of the black strip in a few microns represented the alpha phase in which C, Cr and Mo became segregated. In addition, it was verified that austenite and M{sub 23}C{sub 6} phase were present around the segregated zone. Based on such results, the mechanism by which the image of the black strip in a few microns was formed at the CGHAZ. In this study, we have investigated the mechanism of the appeared black strip in the CGHAZ. - Highlights: •Ghost microstructure was observed which was not observed from the nital etching. •Ghost microstructure has high concentrations of carbon and molybdenum than matrix. •Schematic illustration proposed of why Ghost microstructure was generated. •Ghost microstructure caused by partial dissolution of M{sub 23}C{sub 6} precipitation.
Ghost microscope imaging system from the perspective of coherent-mode representation
Shen, Qian; Bai, Yanfeng; Shi, Xiaohui; Nan, Suqin; Qu, Lijie; Li, Hengxing; Fu, Xiquan
2018-03-01
The coherent-mode representation theory of partially coherent fields is firstly used to analyze a two-arm ghost microscope imaging system. It is shown that imaging quality of the generated images depend crucially on the distribution of the decomposition coefficients of the object imaged when the light source is fixed. This theory is also suitable for demonstrating the effects from the distance the object is moved away from the original plane on imaging quality. Our results are verified theoretically and experimentally.
X-ray ‘ghost images’ could cut radiation doses
Chen, Sophia
2018-03-01
On its own, a single-pixel camera captures pictures that are pretty dull: squares that are completely black, completely white, or some shade of gray in between. All it does, after all, is detect brightness. Yet by connecting a single-pixel camera to a patterned light source, a team of physicists in China has made detailed x-ray images using a statistical technique called ghost imaging, first pioneered 20 years ago in infrared and visible light. Researchers in the field say future versions of this system could take clear x-ray photographs with cheap cameras—no need for lenses and multipixel detectors—and less cancer-causing radiation than conventional techniques.
Telling Ghost Stories with the Voice of an Ogre: Deleuze, Identity, and Disruptive Pedagogies
Beighton, Christian
2017-01-01
French philosopher Gilles Deleuze (1925-95) was something of a cult figure among his university students in the 1970s and 1980s, "telling ghost stories with the voice of an ogre" (Jaeglé, 2005:10). More recently, academic interest in the educational possibilities of his work has grown considerably in Anglophone countries. Perhaps texts…
Exorcising the ghost of the Sputnik crisis.
Kolberg, Espen Skarstein; Holt, Heidi Marie; Klevan, Ingvild
2017-10-01
Drug calculation is not immune to the undesirable impact of math anxiety and negative attitudes on test outcomes in nursing studies, and several studies indicate that math anxiety is present in the student population at such a degree that it is likely to interfere with these students' mathematical ability. Examining the educational system through the lens of history and adding a dash of cultural theory, a contributing cause to the math anxiety may be found in the Sputnik Crisis of the late 1950s, the ghostly remnants of which are still present in the stereotypes of mathematics promoted by mass media. In an effort to reshape the culturally conditioned attitudes which may be responsible for math anxiety, we suggest using elements from popular culture to diversify the perception and image of mathematics in drug calculation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Takizawa, Ken; Beaucamp, Anthony
2017-09-18
A new category of circular pseudo-random paths is proposed in order to suppress repetitive patterns and improve surface waviness on ultra-precision polished surfaces. Random paths in prior research had many corners, therefore deceleration of the polishing tool affected the surface waviness. The new random path can suppress velocity changes of the polishing tool and thus restrict degradation of the surface waviness, making it suitable for applications with stringent mid-spatial-frequency requirements such as photomask blanks for EUV lithography.
Objective lens simultaneously optimized for pupil ghosting, wavefront delivery and pupil imaging
Olczak, Eugene G (Inventor)
2011-01-01
An objective lens includes multiple optical elements disposed between a first end and a second end, each optical element oriented along an optical axis. Each optical surface of the multiple optical elements provides an angle of incidence to a marginal ray that is above a minimum threshold angle. This threshold angle minimizes pupil ghosts that may enter an interferometer. The objective lens also optimizes wavefront delivery and pupil imaging onto an optical surface under test.
Zhang, Leihong; Liang, Dong; Li, Bei; Kang, Yi; Pan, Zilan; Zhang, Dawei; Gao, Xiumin; Ma, Xiuhua
2016-07-01
On the basis of analyzing the cosine light field with determined analytic expression and the pseudo-inverse method, the object is illuminated by a presetting light field with a determined discrete Fourier transform measurement matrix, and the object image is reconstructed by the pseudo-inverse method. The analytic expression of the algorithm of computational ghost imaging based on discrete Fourier transform measurement matrix is deduced theoretically, and compared with the algorithm of compressive computational ghost imaging based on random measurement matrix. The reconstruction process and the reconstruction error are analyzed. On this basis, the simulation is done to verify the theoretical analysis. When the sampling measurement number is similar to the number of object pixel, the rank of discrete Fourier transform matrix is the same as the one of the random measurement matrix, the PSNR of the reconstruction image of FGI algorithm and PGI algorithm are similar, the reconstruction error of the traditional CGI algorithm is lower than that of reconstruction image based on FGI algorithm and PGI algorithm. As the decreasing of the number of sampling measurement, the PSNR of reconstruction image based on FGI algorithm decreases slowly, and the PSNR of reconstruction image based on PGI algorithm and CGI algorithm decreases sharply. The reconstruction time of FGI algorithm is lower than that of other algorithms and is not affected by the number of sampling measurement. The FGI algorithm can effectively filter out the random white noise through a low-pass filter and realize the reconstruction denoising which has a higher denoising capability than that of the CGI algorithm. The FGI algorithm can improve the reconstruction accuracy and the reconstruction speed of computational ghost imaging.
2015-12-01
data. Of note, the interferometer compensates for the double -pass induced by single reflections off a surface by diving all measurements by 2. However...the interferometer. Since the laser reflects off the CFRP mirror only once, the CFRP wavefront measurements did not require additional double -pass...conducted with a flat mirror in the optical path. Figure 13 presents the measured wavefront error of the CFRP mirror with piston , tip and tip removed and
Third-order optical intensity correlation measurements of pseudo-thermal light
International Nuclear Information System (INIS)
Chen Xi-Hao; Wu Wei; Meng Shao-Ying; Li Ming-Fei
2014-01-01
Third-order Hanbrury Brown—Twiss and double-slit interference experiments with a pseudo-thermal light are performed by recording intensities in single, double and triple optical paths, respectively. The experimental results verifies the theoretical prediction that the indispensable condition for achieving a interference pattern or ghost image in Nth-order intensity correlation measurements is the synchronous detection of the same light field by each reference detector, no matter the intensities recorded in one, or two, or N optical paths. It is shown that, when the reference detectors are scanned in the opposite directions, the visibility and resolution of the third-order spatial correlation function of thermal light is much better than that scanned in the same direction, but it is no use for obtaining the Nth-order interference pattern or ghost image in the thermal Nth-order interference or ghost imaging. (general)
Reactive Path Planning Approach for Docking Robots in Unknown Environment
Directory of Open Access Journals (Sweden)
Peng Cui
2017-01-01
Full Text Available Autonomous robots need to be recharged and exchange information with the host through docking in the long-distance tasks. Therefore, feasible path is required in the docking process to guide the robot and adjust its pose. However, when there are unknown obstacles in the work area, it becomes difficult to determine the feasible path for docking. This paper presents a reactive path planning approach named Dubins-APF (DAPF to solve the path planning problem for docking in unknown environment with obstacles. In this proposed approach the Dubins curves are combined with the designed obstacle avoidance potential field to plan the feasible path. Firstly, an initial path is planned and followed according to the configurations of the robot and the docking station. Then when the followed path is evaluated to be infeasible, the intermediate configuration is calculated as well as the replanned path based on the obstacle avoidance potential field. The robot will be navigated to the docking station with proper pose eventually via the DAPF approach. The proposed DAPF approach is efficient and does not require the prior knowledge about the environment. Simulation results are given to validate the effectiveness and feasibility of the proposed approach.
International Nuclear Information System (INIS)
Capri, M.A.L.; Lemes, V.E.R.; Sobreiro, R.F.; Sorella, S.P.; Dudal, D.; Verschelde, H.; Gracey, J.A.
2006-01-01
The ghost condensate abc c b c c > is considered together with the gluon condensate μ 2 > in SU(2) Euclidean Yang-Mills theories quantized in the Landau gauge. The vacuum polarization ceases to be transverse due to the nonvanishing condensate abc c b c c >. The gluon propagator itself remains transverse. By polarization effects, this ghost condensate induces then a splitting in the gluon mass parameter, which is dynamically generated through μ 2 >. The obtained effective masses are real when μ 2 > is included in the analysis. In the absence of μ 2 >, the already known result that the ghost condensate induces effective tachyonic masses is recovered. At the one-loop level, we find that the effective diagonal mass becomes smaller than the off-diagonal one. This might serve as an indication for some kind of Abelian dominance in the Landau gauge, similar to what happens in the maximal Abelian gauge
Hard paths, soft paths or no paths? Cross-cultural perceptions of water solutions
Wutich, A.; White, A. C.; White, D. D.; Larson, K. L.; Brewis, A.; Roberts, C.
2014-01-01
In this study, we examine how development status and water scarcity shape people's perceptions of "hard path" and "soft path" water solutions. Based on ethnographic research conducted in four semi-rural/peri-urban sites (in Bolivia, Fiji, New Zealand, and the US), we use content analysis to conduct statistical and thematic comparisons of interview data. Our results indicate clear differences associated with development status and, to a lesser extent, water scarcity. People in the two less developed sites were more likely to suggest hard path solutions, less likely to suggest soft path solutions, and more likely to see no path to solutions than people in the more developed sites. Thematically, people in the two less developed sites envisioned solutions that involve small-scale water infrastructure and decentralized, community-based solutions, while people in the more developed sites envisioned solutions that involve large-scale infrastructure and centralized, regulatory water solutions. People in the two water-scarce sites were less likely to suggest soft path solutions and more likely to see no path to solutions (but no more likely to suggest hard path solutions) than people in the water-rich sites. Thematically, people in the two water-rich sites seemed to perceive a wider array of unrealized potential soft path solutions than those in the water-scarce sites. On balance, our findings are encouraging in that they indicate that people are receptive to soft path solutions in a range of sites, even those with limited financial or water resources. Our research points to the need for more studies that investigate the social feasibility of soft path water solutions, particularly in sites with significant financial and natural resource constraints.
Path coupling and aggregate path coupling
Kovchegov, Yevgeniy
2018-01-01
This book describes and characterizes an extension to the classical path coupling method applied to statistical mechanical models, referred to as aggregate path coupling. In conjunction with large deviations estimates, the aggregate path coupling method is used to prove rapid mixing of Glauber dynamics for a large class of statistical mechanical models, including models that exhibit discontinuous phase transitions which have traditionally been more difficult to analyze rigorously. The book shows how the parameter regions for rapid mixing for several classes of statistical mechanical models are derived using the aggregate path coupling method.
Path Creation, Path Dependence and Breaking Away from the Path
Wang, Jens; Hedman, Jonas; Tuunainen, Virpi Kristiina
2016-01-01
The explanation of how and why firms succeed or fail is a recurrent research challenge. This is particularly important in the context of technological innovations. We focus on the role of historical events and decisions in explaining such success and failure. Using a case study of Nokia, we develop and extend a multi-layer path dependence framework. We identify four layers of path dependence: technical, strategic and leadership, organizational, and external collaboration. We show how path dep...
Gluon and ghost propagator studies in lattice QCD at finite temperature
International Nuclear Information System (INIS)
Aouane, Rafik
2013-01-01
Gluon and ghost propagators in quantum chromodynamics (QCD) computed in the infrared momentum region play an important role to understand quark and gluon confinement. They are the subject of intensive research thanks to non-perturbative methods based on Dyson-Schwinger (DS) and functional renormalization group (FRG) equations. Moreover, their temperature behavior might also help to explore the chiral and deconfinement phase transition or crossover within QCD at non-zero temperature. Our prime tool is the lattice discretized QCD (LQCD) providing a unique ab-initio non-perturbative approach to deal with the computation of various observables of the hadronic world. We investigate the temperature dependence of Landau gauge gluon and ghost propagators in pure gluodynamics and in full QCD. Regarding the gluon propagator, we compute its longitudinal D L as well its transversal D T components. The aim is to provide a data set in terms of fitting formulae which can be used as input for DS (or FRG) equations. We deal with full (N f =2) LQCD with the twisted mass fermion discretization. We employ gauge field configurations provided by the tmfT collaboration for temperatures in the crossover region and for three fixed pion mass values in the range [300,500] MeV. Finally, within SU(3) pure gauge theory (at T=0) we compute the Landau gauge gluon propagator according to different gauge fixing criteria. Our goal is to understand the influence of gauge copies with minimal (non-trivial) eigenvalues of the Faddeev-Popov operator.
"Walking with a Ghost": Arts-Based Research, Music Videos, and the Re-Performing Body
Taylor, Pamela G.; Wilder, Shannon O.; Helms, Kathryn R.
2007-01-01
In folk-rock duo Tegan and Sara's 2004 music video "Walking with a Ghost," two women face one another, mirrored images in black and white. One is dressed in black--grunge shirt, pants and boots, while the other stands barefoot in a simple white dress. The black-clad figure removes three red paper hearts from her twin's chest, leaving crimson…
A career path in clinical pathways.
Bower, K A
1998-03-01
Much like the development of a clinical path, the creation of a career path requires knowledge of patterns of behavior, needs for standardized education and skill development, along with variance analysis and individualized care. This nationally known nursing entrepreneur tells the story of her involvement in the development of case management and clinical pathways and how she turned that into a successful business that has changed how patient care is managed nationally and internationally.
Kanehisa, Minoru; Sato, Yoko; Morishima, Kanae
2016-02-22
BlastKOALA and GhostKOALA are automatic annotation servers for genome and metagenome sequences, which perform KO (KEGG Orthology) assignments to characterize individual gene functions and reconstruct KEGG pathways, BRITE hierarchies and KEGG modules to infer high-level functions of the organism or the ecosystem. Both servers are made freely available at the KEGG Web site (http://www.kegg.jp/blastkoala/). In BlastKOALA, the KO assignment is performed by a modified version of the internally used KOALA algorithm after the BLAST search against a non-redundant dataset of pangenome sequences at the species, genus or family level, which is generated from the KEGG GENES database by retaining the KO content of each taxonomic category. In GhostKOALA, which utilizes more rapid GHOSTX for database search and is suitable for metagenome annotation, the pangenome dataset is supplemented with Cd-hit clusters including those for viral genes. The result files may be downloaded and manipulated for further KEGG Mapper analysis, such as comparative pathway analysis using multiple BlastKOALA results. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
DEFF Research Database (Denmark)
Ejegod, Ditte; Bottari, Fabio; Pedersen, Helle
2016-01-01
This study describes a validation of the BD Onclarity HPV (Onclarity) assay using the international guidelines for HPV test requirements for cervical cancer screening of women 30 years and above using Danish SurePath screening samples. The clinical specificity (0.90, 95% CI: 0.88-0.91) and sensit......This study describes a validation of the BD Onclarity HPV (Onclarity) assay using the international guidelines for HPV test requirements for cervical cancer screening of women 30 years and above using Danish SurePath screening samples. The clinical specificity (0.90, 95% CI: 0.......88-0.91) and sensitivity (0.97, 95% CI: 0.87-1.0) of the Onclarity assay were shown to be non-inferior to the reference assay (specificity 0.90, 95% CI: 0.88-0.92, sensitivity 0.98, 95% CI: 0.91-1.0). The intra-laboratory reproducibility of Onclarity was 97% with a lower confidence bound of 96% (kappa value: 0...
Wen, Jianming
2012-09-01
A recent thermal ghost imaging experiment implemented in Wu's group [Chin. Phys. Lett. 279, 074216 (2012)] showed that both positive and negative images can be constructed by applying a novel algorithm. This algorithm allows us to form the images with the use of partial measurements from the reference arm (even which never passes through the object), conditioned on the object arm. In this paper, we present a simple theory that explains the experimental observation and provides an in-depth understanding of conventional ghost imaging. In particular, we theoretically show that the visibility of formed images through such an algorithm is not bounded by the standard value 1/3. In fact, it can ideally grow up to unity (with reduced imaging quality). Thus, the algorithm described here not only offers an alternative way to decode spatial correlation of thermal light, but also mimics a "bandpass filter" to remove the constant background such that the visibility or imaging contrast is improved. We further show that conditioned on one still object present in the test arm, it is possible to construct the object's image by sampling the available reference data.
Robust reflective ghost imaging against different partially polarized thermal light
Li, Hong-Guo; Wang, Yan; Zhang, Rui-Xue; Zhang, De-Jian; Liu, Hong-Chao; Li, Zong-Guo; Xiong, Jun
2018-03-01
We theoretically study the influence of degree of polarization (DOP) of thermal light on the contrast-to-noise ratio (CNR) of the reflective ghost imaging (RGI), which is a novel and indirect imaging modality. An expression for the CNR of RGI with partially polarized thermal light is carefully derived, which suggests a weak dependence of CNR on the DOP, especially when the ratio of the object size to the speckle size of thermal light has a large value. Different from conventional imaging approaches, our work reveals that RGI is much more robust against the DOP of the light source, which thereby has advantages in practical applications, such as remote sensing.
Carris, Joanne M.
2011-01-01
"Ghosts of No Child Left Behind" politically situates curriculum within a historically and critically informed context, to understand the structural forces that have contributed to the creation of a population of adolescents who read below a third grade level. The book then proposes a reconceptualization of literacy curriculum within a…
Ghost Particle Velocimetry implementation in millimeters devices and comparison with μPIV
Riccomi, Marco; Alberini, Federico; Brunazzi, Elisabetta; Vigolo, Daniele
2016-11-01
Micro/milli-fluidic devices are becoming an important reference for several disciplines and are quickly increasing their applications in scientific, as well as industrial, environment. As a consequence, the development of techniques able to analyse these kinds of systems is required to allow their progress. Here we show the implementation of the Ghost Particle Velocimetry (GPV) for the flow velocity field investigation in milli-fluidic devices. This innovative technique has been recently introduced, and has been already proven to be useful in describing rapid phenomenon at a small scale. In this work, the GPV has been used to characterize the trapping of light suspended material in a branching junction. Experiments have been performed to identify the flow velocity field close to a millimeters scale T-junction, at different Reynolds numbers. Particularly interesting are the complex structures, such as vortices and recirculation zones, induced by the vortex breakdown phenomenon. The results obtained have been deeply validated and compared with the well-established μPIV, highlighting the differences in terms of qualitative and quantitative parameters. A performance comparison has been designed to underline the strengths and weaknesses of the two experimental techniques.
Gluon and ghost propagator studies in lattice QCD at finite temperature
Energy Technology Data Exchange (ETDEWEB)
Aouane, Rafik
2013-04-29
Gluon and ghost propagators in quantum chromodynamics (QCD) computed in the infrared momentum region play an important role to understand quark and gluon confinement. They are the subject of intensive research thanks to non-perturbative methods based on Dyson-Schwinger (DS) and functional renormalization group (FRG) equations. Moreover, their temperature behavior might also help to explore the chiral and deconfinement phase transition or crossover within QCD at non-zero temperature. Our prime tool is the lattice discretized QCD (LQCD) providing a unique ab-initio non-perturbative approach to deal with the computation of various observables of the hadronic world. We investigate the temperature dependence of Landau gauge gluon and ghost propagators in pure gluodynamics and in full QCD. Regarding the gluon propagator, we compute its longitudinal D{sub L} as well its transversal D{sub T} components. The aim is to provide a data set in terms of fitting formulae which can be used as input for DS (or FRG) equations. We deal with full (N{sub f}=2) LQCD with the twisted mass fermion discretization. We employ gauge field configurations provided by the tmfT collaboration for temperatures in the crossover region and for three fixed pion mass values in the range [300,500] MeV. Finally, within SU(3) pure gauge theory (at T=0) we compute the Landau gauge gluon propagator according to different gauge fixing criteria. Our goal is to understand the influence of gauge copies with minimal (non-trivial) eigenvalues of the Faddeev-Popov operator.
Mark Setterfield
2015-01-01
Path dependency is defined, and three different specific concepts of path dependency – cumulative causation, lock in, and hysteresis – are analyzed. The relationships between path dependency and equilibrium, and path dependency and fundamental uncertainty are also discussed. Finally, a typology of dynamical systems is developed to clarify these relationships.
Design Change Model for Effective Scheduling Change Propagation Paths
Zhang, Hai-Zhu; Ding, Guo-Fu; Li, Rong; Qin, Sheng-Feng; Yan, Kai-Yin
2017-09-01
Changes in requirements may result in the increasing of product development project cost and lead time, therefore, it is important to understand how requirement changes propagate in the design of complex product systems and be able to select best options to guide design. Currently, a most approach for design change is lack of take the multi-disciplinary coupling relationships and the number of parameters into account integrally. A new design change model is presented to systematically analyze and search change propagation paths. Firstly, a PDS-Behavior-Structure-based design change model is established to describe requirement changes causing the design change propagation in behavior and structure domains. Secondly, a multi-disciplinary oriented behavior matrix is utilized to support change propagation analysis of complex product systems, and the interaction relationships of the matrix elements are used to obtain an initial set of change paths. Finally, a rough set-based propagation space reducing tool is developed to assist in narrowing change propagation paths by computing the importance of the design change parameters. The proposed new design change model and its associated tools have been demonstrated by the scheduling change propagation paths of high speed train's bogie to show its feasibility and effectiveness. This model is not only supportive to response quickly to diversified market requirements, but also helpful to satisfy customer requirements and reduce product development lead time. The proposed new design change model can be applied in a wide range of engineering systems design with improved efficiency.
Yuan, Sheng; Yang, Yangrui; Liu, Xuemei; Zhou, Xin; Wei, Zhenzhuo
2018-01-01
An optical image transformation and encryption scheme is proposed based on double random-phase encoding (DRPE) and compressive ghost imaging (CGI) techniques. In this scheme, a secret image is first transformed into a binary image with the phase-retrieval-based DRPE technique, and then encoded by a series of random amplitude patterns according to the ghost imaging (GI) principle. Compressive sensing, corrosion and expansion operations are implemented to retrieve the secret image in the decryption process. This encryption scheme takes the advantage of complementary capabilities offered by the phase-retrieval-based DRPE and GI-based encryption techniques. That is the phase-retrieval-based DRPE is used to overcome the blurring defect of the decrypted image in the GI-based encryption, and the CGI not only reduces the data amount of the ciphertext, but also enhances the security of DRPE. Computer simulation results are presented to verify the performance of the proposed encryption scheme.
An adaptive dual-optimal path-planning technique for unmanned air vehicles
Directory of Open Access Journals (Sweden)
Whitfield Clifford A.
2016-01-01
Full Text Available A multi-objective technique for unmanned air vehicle path-planning generation through task allocation has been developed. The dual-optimal path-planning technique generates real-time adaptive flight paths based on available flight windows and environmental influenced objectives. The environmentally-influenced flight condition determines the aircraft optimal orientation within a downstream virtual window of possible vehicle destinations that is based on the vehicle’s kinematics. The intermittent results are then pursued by a dynamic optimization technique to determine the flight path. This path-planning technique is a multi-objective optimization procedure consisting of two goals that do not require additional information to combine the conflicting objectives into a single-objective. The technique was applied to solar-regenerative high altitude long endurance flight which can benefit significantly from an adaptive real-time path-planning technique. The objectives were to determine the minimum power required flight paths while maintaining maximum solar power for continual surveillance over an area of interest (AOI. The simulated path generation technique prolonged the flight duration over a sustained turn loiter flight path by approximately 2 months for a year of flight. The potential for prolonged solar powered flight was consistent for all latitude locations, including 2 months of available flight at 60° latitude, where sustained turn flight was no longer capable.
Quivers of Bound Path Algebras and Bound Path Coalgebras
Directory of Open Access Journals (Sweden)
Dr. Intan Muchtadi
2010-09-01
Full Text Available bras and coalgebras can be represented as quiver (directed graph, and from quiver we can construct algebras and coalgebras called path algebras and path coalgebras. In this paper we show that the quiver of a bound path coalgebra (resp. algebra is the dual quiver of its bound path algebra (resp. coalgebra.
Fractional path planning and path tracking
International Nuclear Information System (INIS)
Melchior, P.; Jallouli-Khlif, R.; Metoui, B.
2011-01-01
This paper presents the main results of the application of fractional approach in path planning and path tracking. A new robust path planning design for mobile robot was studied in dynamic environment. The normalized attractive force applied to the robot is based on a fictitious fractional attractive potential. This method allows to obtain robust path planning despite robot mass variation. The danger level of each obstacles is characterized by the fractional order of the repulsive potential of the obstacles. Under these conditions, the robot dynamic behavior was studied by analyzing its X - Y path planning with dynamic target or dynamic obstacles. The case of simultaneously mobile obstacles and target is also considered. The influence of the robot mass variation is studied and the robustness analysis of the obtained path shows the robustness improvement due to the non integer order properties. Pre shaping approach is used to reduce system vibration in motion control. Desired systems inputs are altered so that the system finishes the requested move without residual vibration. This technique, developed by N.C. Singer and W.P.Seering, is used for flexible structure control, particularly in the aerospace field. In a previous work, this method was extended for explicit fractional derivative systems and applied to second generation CRONE control, the robustness was also studied. CRONE (the French acronym of C ommande Robuste d'Ordre Non Entier ) control system design is a frequency-domain based methodology using complex fractional integration.
Compact wireless control network protocol with fast path switching
Directory of Open Access Journals (Sweden)
Yasutaka Kawamoto
2017-08-01
Full Text Available Sensor network protocol stacks require the addition or adjustment of functions based on customer requirements. Sensor network protocols that require low delay and low packet error rate (PER, such as wireless control networks, often adopt time division multiple access (TDMA. However, it is difficult to add or adjust functions in protocol stacks that use TDMA methods. Therefore, to add or adjust functions easily, we propose NES-SOURCE, a compact wireless control network protocol with a fast path-switching function. NES-SOURCE is implemented using carrier sense multiple access/collision avoidance (CSMA/CA rather than TDMA. Wireless control networks that use TDMA prevent communication failure by duplicating the communication path. If CSMA/CA networks use duplicate paths, collisions occur frequently, and communication will fail. NES-SOURCE switches paths quickly when communication fails, which reduces the effect of communication failures. Since NES-SOURCE is implemented using CSMA/CA rather than TDMA, the implementation scale is less than one-half that of existing network stacks. Furthermore, since NES-SOURCE’s code complexity is low, functions can be added or adjusted easily and quickly. Communication failures occur owing to changes in the communication environment and collisions. Experimental results demonstrate that the proposed NES-SOURCE’s path-switching function reduces the amount of communication failures when the communication environment changes owing to human movement and others. Furthermore, we clarify the relationships among the probability of a changing communication environment, the collision occurrence rate, and the PER of NES-SOURCE.
Improved initial guess for minimum energy path calculations
International Nuclear Information System (INIS)
Smidstrup, Søren; Pedersen, Andreas; Stokbro, Kurt; Jónsson, Hannes
2014-01-01
A method is presented for generating a good initial guess of a transition path between given initial and final states of a system without evaluation of the energy. An objective function surface is constructed using an interpolation of pairwise distances at each discretization point along the path and the nudged elastic band method then used to find an optimal path on this image dependent pair potential (IDPP) surface. This provides an initial path for the more computationally intensive calculations of a minimum energy path on an energy surface obtained, for example, by ab initio or density functional theory. The optimal path on the IDPP surface is significantly closer to a minimum energy path than a linear interpolation of the Cartesian coordinates and, therefore, reduces the number of iterations needed to reach convergence and averts divergence in the electronic structure calculations when atoms are brought too close to each other in the initial path. The method is illustrated with three examples: (1) rotation of a methyl group in an ethane molecule, (2) an exchange of atoms in an island on a crystal surface, and (3) an exchange of two Si-atoms in amorphous silicon. In all three cases, the computational effort in finding the minimum energy path with DFT was reduced by a factor ranging from 50% to an order of magnitude by using an IDPP path as the initial path. The time required for parallel computations was reduced even more because of load imbalance when linear interpolation of Cartesian coordinates was used
PLOTGEOMX: a program for display of a neutron target assembly by means of a GHOST plotting system
International Nuclear Information System (INIS)
Clarke, J.H.
1978-02-01
The program PLOTGEOM has been modified to work on the A.E.R.E., Harwell IBM 370-167 computer using the GHOST graphics package. The control data routine has been altered to permit free format input and the program has been compiled and stored using the extended-H FORTRAN optimising compiler. (author)
Some instructive examples of Mayer's interference in path integral
International Nuclear Information System (INIS)
Fiziev, P.P.
1984-01-01
A new technique of path integral evaluation by a discretization procedure is proposed. It is based on the requirement, found previously, to single out the set of classical trajectories over which the summation is performed. The notion of Mayer's interference is introduced and illustrated by a number of simple examples. The choice of the set of paths is shown to induce a corresponding quantization procedure and this line is followed to demonstrate its connection with the symmetries of the problem. The possibility of extracting information on the space of quantum states from path integrals has been reviewed. A class of paths has been found; the summation over these paths within the framework of the suggested approach produces the well known results for the motion in a homogeneous field and for the harmonic oscillator
Experimental demonstration of spectrum-sliced elastic optical path network (SLICE).
Kozicki, Bartłomiej; Takara, Hidehiko; Tsukishima, Yukio; Yoshimatsu, Toshihide; Yonenaga, Kazushige; Jinno, Masahiko
2010-10-11
We describe experimental demonstration of spectrum-sliced elastic optical path network (SLICE) architecture. We employ optical orthogonal frequency-division multiplexing (OFDM) modulation format and bandwidth-variable optical cross-connects (OXC) to generate, transmit and receive optical paths with bandwidths of up to 1 Tb/s. We experimentally demonstrate elastic optical path setup and spectrally-efficient transmission of multiple channels with bit rates ranging from 40 to 140 Gb/s between six nodes of a mesh network. We show dynamic bandwidth scalability for optical paths with bit rates of 40 to 440 Gb/s. Moreover, we demonstrate multihop transmission of a 1 Tb/s optical path over 400 km of standard single-mode fiber (SMF). Finally, we investigate the filtering properties and the required guard band width for spectrally-efficient allocation of optical paths in SLICE.
The ghost of pandemics past: revisiting two centuries of influenza in Sweden.
Holmberg, Martin
2017-09-01
Previous influenza pandemics are usually invoked in pandemic preparedness planning without a thorough analysis of the events surrounding them, what has been called the 'configuration' of epidemics. Historic pandemics are instead used to contrast them to the novelty of the coming imagined plague or as fear of a ghost-like repetition of the past. This view of pandemics is guided by a biomedical framework that is ahistorical and reductionist. The meaning of 'pandemic' influenza is in fact highly ambiguous in its partitioning of pandemic and seasonal influenza. The past 200 years of influenza epidemics in Sweden are examined with a special focus on key social structures-households, schools, transportations and the military. These are shown to have influenced the progression of influenza pandemics. Prevailing beliefs around influenza pandemics have also profoundly influenced intervention strategies. Measuring long-term trends in pandemic severity is problematic because pandemics are non-linear events where the conditions surrounding them constantly change. However, in a linearised view, the Spanish flu can be seen to represent a historical turning point and the H1N1 2009 pandemic not as an outlier, but following a 100-year trend of decreasing severity. Integrating seasonal and pandemic influenza, and adopting an ecosocial stance can deepen our understanding and bring the ghost-like pandemic past to life. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
MODIFIED PATH METHODOLOGY FOR OBTAINING INTERVAL-SCALED POSTURAL ASSESSMENTS OF FARMWORKERS.
Garrison, Emma B; Dropkin, Jonathan; Russell, Rebecca; Jenkins, Paul
2018-01-29
Agricultural workers perform tasks that frequently require awkward and extreme postures that are associated with musculoskeletal disorders (MSDs). The PATH (Posture, Activity, Tools, Handling) system currently provides a sound methodology for quantifying workers' exposure to these awkward postures on an ordinal scale of measurement, which places restrictions on the choice of analytic methods. This study reports a modification of the PATH methodology that instead captures these postures as degrees of flexion, an interval-scaled measurement. Rather than making live observations in the field, as in PATH, the postural assessments were performed on photographs using ImageJ photo analysis software. Capturing the postures in photographs permitted more careful measurement of the degrees of flexion. The current PATH methodology requires that the observer in the field be trained in the use of PATH, whereas the single photographer used in this modification requires only sufficient training to maintain the proper camera angle. Ultimately, these interval-scale measurements could be combined with other quantitative measures, such as those produced by electromyograms (EMGs), to provide more sophisticated estimates of future risk for MSDs. Further, these data can provide a baseline from which the effects of interventions designed to reduce hazardous postures can be calculated with greater precision. Copyright© by the American Society of Agricultural Engineers.
Feynman's path integrals and Bohm's particle paths
International Nuclear Information System (INIS)
Tumulka, Roderich
2005-01-01
Both Bohmian mechanics, a version of quantum mechanics with trajectories, and Feynman's path integral formalism have something to do with particle paths in space and time. The question thus arises how the two ideas relate to each other. In short, the answer is, path integrals provide a re-formulation of Schroedinger's equation, which is half of the defining equations of Bohmian mechanics. I try to give a clear and concise description of the various aspects of the situation. (letters and comments)
Amadi, Anthony
2016-01-01
This article is a historical narrative about the contribution the Holy Ghost Congregation made in the educational development of Nigeria. It is narrative because it highlights the events and the work of the early Spiritan missionaries that brought education and its benefits to Nigerians. It is pedagogic because it describes the methods these Holy…
Multi-Dimensional Path Queries
DEFF Research Database (Denmark)
Bækgaard, Lars
1998-01-01
to create nested path structures. We present an SQL-like query language that is based on path expressions and we show how to use it to express multi-dimensional path queries that are suited for advanced data analysis in decision support environments like data warehousing environments......We present the path-relationship model that supports multi-dimensional data modeling and querying. A path-relationship database is composed of sets of paths and sets of relationships. A path is a sequence of related elements (atoms, paths, and sets of paths). A relationship is a binary path...
Edge detection based on computational ghost imaging with structured illuminations
Yuan, Sheng; Xiang, Dong; Liu, Xuemei; Zhou, Xin; Bing, Pibin
2018-03-01
Edge detection is one of the most important tools to recognize the features of an object. In this paper, we propose an optical edge detection method based on computational ghost imaging (CGI) with structured illuminations which are generated by an interference system. The structured intensity patterns are designed to make the edge of an object be directly imaged from detected data in CGI. This edge detection method can extract the boundaries for both binary and grayscale objects in any direction at one time. We also numerically test the influence of distance deviations in the interference system on edge extraction, i.e., the tolerance of the optical edge detection system to distance deviation. Hopefully, it may provide a guideline for scholars to build an experimental system.
Toward solving the sign problem with path optimization method
Mori, Yuto; Kashiwa, Kouji; Ohnishi, Akira
2017-12-01
We propose a new approach to circumvent the sign problem in which the integration path is optimized to control the sign problem. We give a trial function specifying the integration path in the complex plane and tune it to optimize the cost function which represents the seriousness of the sign problem. We call it the path optimization method. In this method, we do not need to solve the gradient flow required in the Lefschetz-thimble method and then the construction of the integration-path contour arrives at the optimization problem where several efficient methods can be applied. In a simple model with a serious sign problem, the path optimization method is demonstrated to work well; the residual sign problem is resolved and precise results can be obtained even in the region where the global sign problem is serious.
International Nuclear Information System (INIS)
Exner, P.; Kolerov, G.I.
1981-01-01
Properties of the subset of polygonal paths in the Hilbert space H of paths referring to a d-dimensional quantum-mechanical system are examined. Using the reproduction kernel technique we prove that each element of H is approximated by polygonal paths uniformly with respect to the ''norm'' of time-interval partitions. This result will be applied in the second part of the present paper to prove consistency of the uniform polygonal-path extension of the Feynman maps [ru
Ghosting Politics: Speechwriters, Speechmakers and the (Recrafting of Identity
Directory of Open Access Journals (Sweden)
Michael Richardson
2017-11-01
Full Text Available Despite public awareness of their role, speechwriters occupy an anxiously liminal position within the political process. As the ongoing dispute between former Australian prime minister Paul Keating and Don Watson over the Redfern Speech suggests, the authorship and ownership of speeches can be a fraught proposition, no matter the professional codes. Crafting and re-crafting identity places speechwriter and speechmaker in a relation of intense intimacy, one in which neither party may be comfortable and from which both may well emerge changed. Having written speeches for Jack Layton, former leader of the New Democratic Party of Canada, I know just how complex, uncertain and productive that relation can be. This article conceives of identity as transindividual, formed in the intensity and flux of encounter, and weaves together the personal and the critical to examine politics’ speechwriting ghost.
International Nuclear Information System (INIS)
Ramachandran, M.; Nair, C.N.; Abraham, E.C.
1987-01-01
The biological receptor for tumor-promoting phorbol esters has been identified as the Ca 2+ /phospholipid dependent enzyme, protein kinase C. In the red cell, this enzyme is mainly cytosolic but becomes translocated to the membrane if the cellular Ca 2+ is allowed to rise. Since cellular Ca 2+ in sickle red cells is high, it was reasoned that this enzyme may become more membrane-bound. In fact, the authors noticed a four-fold increase in the binding of 3 H-PDBu by membrane ghosts isolated from sickle red cells compared to normal red cells (pmoles PDBu bound/mg protein; normal = 0.3 vs sickle cell = 1.4). Attempts to assay the enzyme directly as phospholipid-activated 32 P incorporation into the acid-precipitable membrane proteins also indicated a two-fold increase in the radiolabelling of sickle cell membrane ghosts. Autophosphorylation of membrane proteins and analysis of the phosphorylation profile by SDS-PAGE and autoradiography revealed phosphorylation predominantly of bands 3, 4.1 and 4.9 which are known protein kinase C substrates for the red cell enzyme. The increased membrane-associated protein kinase C in sickle red cells may have a bearing on the altered membrane properties reported in this condition
Ghost Dancing the Grand Canyon. Southern Paiute Rock Art, Ceremony, and Cultural Landscapes.
Stoffle; Loendorf; Austin; Halmo; Bulletts
2000-02-01
Combining rock art studies with ethnohistory, contemporary ethnographic analysis, and the interpretations of people who share the cultural traditions being studied, this paper documents a rock art site in Kanab Creek Canyon that appears to have been the location of a Ghost Dance ceremony performed by Southern Paiute and perhaps Hualapai people in the late 1800s. Using the site as a point of departure, it focuses on the way in which synergistic associations among place, artifact, resources, events, and historic and contemporary Indian people contribute to the construction of a contextual cultural landscape.
Irish nationalism and the uncanny: a reading of “The ghost of Roger Casement”
Bolfarine, Mariana; Universidade de São Paulo
2015-01-01
Of the several fictional works about the Irish revolutionary Roger David Casement, none has reached the notoriety of William Butler Yeats’s poem “The ghost of Roger Casement” (1936). Roger Casement is known for acting as British Consul in Africa and in Brazil, having reported atrocities committed against the natives in these regions by imperial rubber companies. The aftermath of having witnessed the effects of such atrocities eventually turned Casement against the British Empire for which he ...
Path Planning with a Lazy Significant Edge Algorithm (LSEA
Directory of Open Access Journals (Sweden)
Joseph Polden
2013-04-01
Full Text Available Probabilistic methods have been proven to be effective for robotic path planning in a geometrically complex environment. In this paper, we propose a novel approach, which utilizes a specialized roadmap expansion phase, to improve lazy probabilistic path planning. This expansion phase analyses roadmap connectivity information to bias sampling towards objects in the workspace that have not yet been navigated by the robot. A new method to reduce the number of samples required to navigate narrow passages is also proposed and tested. Experimental results show that the new algorithm is more efficient than the traditional path planning methodologies. It was able to generate solutions for a variety of path planning problems faster, using fewer samples to arrive at a valid solution.
Distribution definition of path integrals
International Nuclear Information System (INIS)
Kerler, W.
1979-01-01
By starting from quantum mechanics it turns out that a rather general definition of quantum functional integrals can be given which is based on distribution theory. It applies also to curved space and provides clear rules for non-linear transformations. The refinements necessary in usual definitions of path integrals are pointed out. Since the quantum nature requires special care with time sequences, it is not the classical phase space which occurs in the phase-space form of the path integral. Feynman's configuration-space form only applies to a highly specialized situation, and therefore is not a very advantageous starting point for general investigations. It is shown that the commonly used substitutions of variables do not properly account for quantum effects. The relation to the traditional ordering problem is clarified. The distribution formulation has allowed to treat constrained systems directly at the quantum level, to complete the path integral formulation of the equivalence theorem, and to define functional integrals also for space translation after the transition to fields. (orig.)
A middle path for electricity options and sustainable development
International Nuclear Information System (INIS)
Mills, J.I.; Herring, J.S.
1994-01-01
In a landmark article in Foreign Affairs in October 1976, Amory Lovins presented his vision of two vastly different and seemingly irreconcilable paths that energy provision might take into the future. One path was a ''hard'' path, characterized by extensive development of large, capital-intensive centralized electrical generating facilities and their peripherals, designed with little consideration given to the matching of these facilities to the requirements of the end-use needs. The second, ''soft'' path was characterized by energy technologies that are diverse, operate on renewable energy flows, are relatively simple, less capital-intensive, and matched in scale and energy quality to end-use needs. One of the most controversial arguments in the Lovins' paper was that the ''hard'' and ''soft'' paths are culturally and institutionally antagonistic. In retrospect, it seems this argument was self-fulfilling, for the history of the energy debate throughout the developed world since the appearance of the Lovins' article has been marked by an either-or antagonism that has left little room for serious discussion of a ''middle-path.'' In this paper, we argue that ''middle-path,'' paved with elements of both the soft and hard, is especially suited for developing countries, since they do not now carry the burden of an existing and extensive ''hard path'' energy infrastructure
Ghost forest creation and the conversion of uplands to wetlands
Kirwan, M. L.; Schieder, N. W.; Reay, W.
2017-12-01
Global sea level rise rates began accelerating sharply in the late 19th century, with an approximate tripling in sea level rise rates in many regions of the world. Some portions of the coastal landscape, such as marshes and barrier islands, survive relative sea level rise by natural eco-geomorphic processes that allow them to build elevation vertically and migrate landward. In contrast, adjacent uplands typically occupied by forests and agricultural fields have limited ability to resist the impacts of sea level rise. This portion of the coastal landscape consists of mostly salt intolerant plants, receives little mineral sediment deposition, and rarely builds elevation through the accumulation of soil organic matter. Thus, ghost forests- dead trees surrounded by marshland- are a prominent feature of many low-relief coastal landscapes, and represent a striking visual indicator of upland to wetland conversion. Here, we report preliminary results of several efforts designed to quantify rates and drivers of upland to wetland conversion in the mid-Atlantic region of the United States. Drone based canopy monitoring and ground-based seedling experiments suggest that ghost forests are created by episodic, storm-driven adult tree mortality paired with continuous seedling mortality. Preliminary comparisons between sediment cores and historical photographs from 5 sites in Maryland, Virginia, and North Carolina suggest that modern coastal forest retreat is 2-10 times faster than late-Holocene retreat rates, and that rates have accelerated in most decades since the 1930's. Finally, historical T-Sheet maps suggest that approximately 100,000 acres (400 km2) of uplands have converted to wetlands in the Chesapeake region, and that about 1/3 of all present-day marsh was created by upland drowning since the late 19th Century. Together, these observations indicate rapid coastal transgression, where low-relief, terrestrial portions of the coastal landscape are perhaps more sensitive to
International Nuclear Information System (INIS)
Janse van Rensburg, E J
2010-01-01
In this paper the models of pulled Dyck paths in Janse van Rensburg (2010 J. Phys. A: Math. Theor. 43 215001) are generalized to pulled Motzkin path models. The generating functions of pulled Motzkin paths are determined in terms of series over trinomial coefficients and the elastic response of a Motzkin path pulled at its endpoint (see Orlandini and Whittington (2004 J. Phys. A: Math. Gen. 37 5305-14)) is shown to be R(f) = 0 for forces pushing the endpoint toward the adsorbing line and R(f) = f(1 + 2cosh f))/(2sinh f) → f as f → ∞, for forces pulling the path away from the X-axis. In addition, the elastic response of a Motzkin path pulled at its midpoint is shown to be R(f) = 0 for forces pushing the midpoint toward the adsorbing line and R(f) = f(1 + 2cosh (f/2))/sinh (f/2) → 2f as f → ∞, for forces pulling the path away from the X-axis. Formal combinatorial identities arising from pulled Motzkin path models are also presented. These identities are the generalization of combinatorial identities obtained in directed paths models to their natural trinomial counterparts.
Energy Technology Data Exchange (ETDEWEB)
Janse van Rensburg, E J, E-mail: rensburg@yorku.c [Department of Mathematics and Statistics, York University, Toronto, ON, M3J 1P3 (Canada)
2010-08-20
In this paper the models of pulled Dyck paths in Janse van Rensburg (2010 J. Phys. A: Math. Theor. 43 215001) are generalized to pulled Motzkin path models. The generating functions of pulled Motzkin paths are determined in terms of series over trinomial coefficients and the elastic response of a Motzkin path pulled at its endpoint (see Orlandini and Whittington (2004 J. Phys. A: Math. Gen. 37 5305-14)) is shown to be R(f) = 0 for forces pushing the endpoint toward the adsorbing line and R(f) = f(1 + 2cosh f))/(2sinh f) {yields} f as f {yields} {infinity}, for forces pulling the path away from the X-axis. In addition, the elastic response of a Motzkin path pulled at its midpoint is shown to be R(f) = 0 for forces pushing the midpoint toward the adsorbing line and R(f) = f(1 + 2cosh (f/2))/sinh (f/2) {yields} 2f as f {yields} {infinity}, for forces pulling the path away from the X-axis. Formal combinatorial identities arising from pulled Motzkin path models are also presented. These identities are the generalization of combinatorial identities obtained in directed paths models to their natural trinomial counterparts.
Janse van Rensburg, E. J.
2010-08-01
In this paper the models of pulled Dyck paths in Janse van Rensburg (2010 J. Phys. A: Math. Theor. 43 215001) are generalized to pulled Motzkin path models. The generating functions of pulled Motzkin paths are determined in terms of series over trinomial coefficients and the elastic response of a Motzkin path pulled at its endpoint (see Orlandini and Whittington (2004 J. Phys. A: Math. Gen. 37 5305-14)) is shown to be R(f) = 0 for forces pushing the endpoint toward the adsorbing line and R(f) = f(1 + 2cosh f))/(2sinh f) → f as f → ∞, for forces pulling the path away from the X-axis. In addition, the elastic response of a Motzkin path pulled at its midpoint is shown to be R(f) = 0 for forces pushing the midpoint toward the adsorbing line and R(f) = f(1 + 2cosh (f/2))/sinh (f/2) → 2f as f → ∞, for forces pulling the path away from the X-axis. Formal combinatorial identities arising from pulled Motzkin path models are also presented. These identities are the generalization of combinatorial identities obtained in directed paths models to their natural trinomial counterparts.
The Ghosts of Justice and the Law of Historical Memory
Directory of Open Access Journals (Sweden)
Mónica López Lerma
2011-04-01
representational practices (words, images, expressions that seek to do justice to the victims, with unequal success. The novel’s recurring expressions (i.e., shadows, the repressed, eternal return, ghosts, and blindness stress the importance of coming to terms with the “ghosts of the past.” The law focuses instead on other words and images (i.e., foundation, reconciliation, concord, and closure that allude to the idea of historical progress, it will be argued, without proper acknowledgment of the injustices of the past. In doing so, the law becomes a commemorative site for the Spanish Transition, but not for the recovery of the victims’ memory. The law’s re-appropriation of the “spirit of the Transition” reveals Spain’s deep fear of confronting the ghosts of the past, a fear that can be perceived still today.
Short term depression unmasks the ghost frequency.
Directory of Open Access Journals (Sweden)
Tjeerd V Olde Scheper
Full Text Available Short Term Plasticity (STP has been shown to exist extensively in synapses throughout the brain. Its function is more or less clear in the sense that it alters the probability of synaptic transmission at short time scales. However, it is still unclear what effect STP has on the dynamics of neural networks. We show, using a novel dynamic STP model, that Short Term Depression (STD can affect the phase of frequency coded input such that small networks can perform temporal signal summation and determination with high accuracy. We show that this property of STD can readily solve the problem of the ghost frequency, the perceived pitch of a harmonic complex in absence of the base frequency. Additionally, we demonstrate that this property can explain dynamics in larger networks. By means of two models, one of chopper neurons in the Ventral Cochlear Nucleus and one of a cortical microcircuit with inhibitory Martinotti neurons, it is shown that the dynamics in these microcircuits can reliably be reproduced using STP. Our model of STP gives important insights into the potential roles of STP in self-regulation of cortical activity and long-range afferent input in neuronal microcircuits.
1975-06-01
Traditionally, synchronization of concurrent processes is coded in line by operations on semaphores or similar objects. Path expressions move the...discussion about a variety of synchronization primitives . An analysis of their relative power is found in [3]. Path expressions do not introduce yet...another synchronization primitive . A path expression relates to such primitives as a for- or while-statement of an ALGOL-like language relates to a JUMP
Acquisition Path Analysis as a Collaborative Activity
International Nuclear Information System (INIS)
Nakao, A.; Grundule, R.; Gushchyn, K.; El Gebaly, A.; Higgy, R.; Tsvetkov, I.; Mandl, W.
2015-01-01
In the International Atomic Energy Agency, acquisition path analysis (APA) is indispensable to safeguards implementation. It is an integral part of both State evaluation process and the development of State level safeguards approaches, all performed through ongoing collaborative analysis of all available safeguards relevant information by State evaluation groups (SEG) with participation of other contributors, as required. To perform comprehensive State evaluation, to develop and revise State-level safeguards approaches, and to prepare annual implementation plans, the SEG in its collaborative analysis follows accepted safeguards methodology and guidance. In particular, the guide ''Performing Acquisition Path Analysis for the Development of a State-level Safeguards Approach for a State with a CSA'' is used. This guide identifies four major steps of the APA process: 1. Consolidating information about the State's past, present and planned nuclear fuel cycle-related capabilities and infrastructure; 2. Identifying and visually presenting technically plausible acquisition paths for the State; 3. Assessing acquisition path steps (State's technical capabilities and possible actions) along the identified acquisition paths; and 4. Assessing the time needed to accomplish each identified technically plausible acquisition path for the State. The paper reports on SEG members' and other contributors' experience with APA when following the above steps, including the identification of plausible acquisition pathways, estimation of time frames for all identified steps and determination of the time needed to accomplish each acquisition path. The difficulties that the SEG encountered during the process of performing the APA are also addressed. Feedback in the form of practical suggestions for improving the clarity of the acquisition path step assessment forms and a proposal for software support are also included. (author)
Zhao, Shengmei; Wang, Le; Liang, Wenqiang; Cheng, Weiwen; Gong, Longyan
2015-10-01
In this paper, we propose a high performance optical encryption (OE) scheme based on computational ghost imaging (GI) with QR code and compressive sensing (CS) technique, named QR-CGI-OE scheme. N random phase screens, generated by Alice, is a secret key and be shared with its authorized user, Bob. The information is first encoded by Alice with QR code, and the QR-coded image is then encrypted with the aid of computational ghost imaging optical system. Here, measurement results from the GI optical system's bucket detector are the encrypted information and be transmitted to Bob. With the key, Bob decrypts the encrypted information to obtain the QR-coded image with GI and CS techniques, and further recovers the information by QR decoding. The experimental and numerical simulated results show that the authorized users can recover completely the original image, whereas the eavesdroppers can not acquire any information about the image even the eavesdropping ratio (ER) is up to 60% at the given measurement times. For the proposed scheme, the number of bits sent from Alice to Bob are reduced considerably and the robustness is enhanced significantly. Meantime, the measurement times in GI system is reduced and the quality of the reconstructed QR-coded image is improved.
Humpage, Neil; Boesch, Hartmut; Palmer, Paul; Parr-Burman, Phil; Vick, Andy; Bezawada, Naidu; Black, Martin; Born, Andy; Pearson, David; Strachan, Jonathan; Wells, Martyn
2014-05-01
The tropospheric distribution of greenhouse gases (GHGs) is dependent on surface flux variations, atmospheric chemistry and transport processes over a wide range of spatial and temporal scales. Errors in assumed atmospheric transport can adversely affect surface flux estimates inferred from surface, aircraft or satellite observations of greenhouse gas concentrations using inverse models. We present a novel, compact shortwave infrared spectrometer (GHOST) for installation on the NASA Global Hawk unmanned aerial vehicle to provide tropospheric column observations of CO2, CO, CH4, H2O and HDO over the ocean to address the need for large-scale, simultaneous, finely resolved measurements of key GHGs. These species cover a range of lifetimes and source processes, and measurements of their tropospheric columns will reflect the vertically integrated signal of their vertical and horizontal transport within the troposphere. The primary science objectives of GHOST are to: 1) provide observations which can be used to test atmospheric transport models; 2) validate satellite observations of GHG column observations over oceans, thus filling a critical gap in current validation capabilities; and 3) complement in-situ tropopause transition layer tracer observations from other instrumentation on board the Global Hawk to provide a link between upper and lower troposphere concentration measurements. The GHOST spectrometer system comprises a target acquisition module (TAM), a fibre slicer and feed system, and a multiple order spectrograph. The TAM design utilises a gimbal behind an optical dome, which is programmed to direct solar radiation reflected by the ocean surface into a fibre optic bundle. The fibre slicer and feed system then splits the light into the four spectral bands using order sorting filters. The fibres corresponding to each band are arranged with a small sideways offset to correctly centre each spectrum on the detector array. The spectrograph design is unique in that a
International Nuclear Information System (INIS)
Prokhorov, L.V.
1982-01-01
Problems related to consideration of operator nonpermutability in Hamiltonian path integral (HPI) are considered in the review. Integrals are investigated using trajectories in configuration space (nonrelativistic quantum mechanics). Problems related to trajectory integrals in HPI phase space are discussed: the problem of operator nonpermutability consideration (extra terms problem) and corresponding equivalence rules; ambiguity of HPI usual recording; transition to curvilinear coordinates. Problem of quantization of dynamical systems with couplings has been studied. As in the case of canonical transformations, quantization of the systems with couplings of the first kind requires the consideration of extra terms
Directory of Open Access Journals (Sweden)
Susan Ginsburg
2014-04-01
Full Text Available Since 9/11, migration-related security measures, including a growing reliance on watch-lists, have limited the right to travel. Jeffrey Kahn’s book, Mrs. Shipley’s Ghost: The Right to Travel and Terrorist Watchlists, examines the legal and policy questions raised by prohibitions on travel by US citizens.
Gravitational field of static p -branes in linearized ghost-free gravity
Boos, Jens; Frolov, Valeri P.; Zelnikov, Andrei
2018-04-01
We study the gravitational field of static p -branes in D -dimensional Minkowski space in the framework of linearized ghost-free (GF) gravity. The concrete models of GF gravity we consider are parametrized by the nonlocal form factors exp (-□/μ2) and exp (□2/μ4) , where μ-1 is the scale of nonlocality. We show that the singular behavior of the gravitational field of p -branes in general relativity is cured by short-range modifications introduced by the nonlocalities, and we derive exact expressions of the regularized gravitational fields, whose geometry can be written as a warped metric. For large distances compared to the scale of nonlocality, μ r →∞ , our solutions approach those found in linearized general relativity.
Unusual square roots in the ghost-free theory of massive gravity
Golovnev, Alexey; Smirnov, Fedor
2017-06-01
A crucial building block of the ghost free massive gravity is the square root function of a matrix. This is a problematic entity from the viewpoint of existence and uniqueness properties. We accurately describe the freedom of choosing a square root of a (non-degenerate) matrix. It has discrete and (in special cases) continuous parts. When continuous freedom is present, the usual perturbation theory in terms of matrices can be critically ill defined for some choices of the square root. We consider the new formulation of massive and bimetric gravity which deals directly with eigenvalues (in disguise of elementary symmetric polynomials) instead of matrices. It allows for a meaningful discussion of perturbation theory in such cases, even though certain non-analytic features arise.
Simons, Jacob V., Jr.
2017-01-01
The critical path method/program evaluation and review technique method of project scheduling is based on the importance of managing a project's critical path(s). Although a critical path is the longest path through a network, its location in large projects is facilitated by the computation of activity slack. However, logical fallacies in…
Points-Based Safe Path Planning of Continuum Robots
Directory of Open Access Journals (Sweden)
Khuram Shahzad
2015-07-01
Full Text Available Continuum robots exhibit great potential in a number of challenging applications where traditional rigid link robots pose certain limitations, e.g., working in unstructured environments. In order to enable the usage of continuum robots in safety-critical applications, such as surgery and nuclear decontamination, it is extremely important to ensure a safe path for the robot's movement. Existing algorithms for continuum robot path planning have certain limitations that need to be addressed. These include the fact that none of the algorithms provide safety assurance parameters and control for path planning. They are computationally expensive, applicable to a specific type of continuum robots, and mostly they do not incorporate design and kinematics constraints. In this paper, we propose a points-based path planning (PoPP algorithm for continuum robots that computes the path by imposing safety constraints and improves upon the limitations of existing approaches. In the algorithm, we exploit the constant curvature-bending property of continuum robots in their path planning process. The algorithm is computationally efficient and provides a good tradeoff between accuracy and efficiency that can be implemented to enable the safety-critical application of continuum robots. This algorithm also provides information regarding path volume and flexibility in movement. Simulation results confirm that the algorithm possesses promising potential for all types of continuum robots (following the constant curvature-bending property. We believe that this effectively balances the desired safety and efficiency requirements.
Mehl, Steffen W.; Hill, Mary C.
2013-01-01
This report documents the addition of ghost node Local Grid Refinement (LGR2) to MODFLOW-2005, the U.S. Geological Survey modular, transient, three-dimensional, finite-difference groundwater flow model. LGR2 provides the capability to simulate groundwater flow using multiple block-shaped higher-resolution local grids (a child model) within a coarser-grid parent model. LGR2 accomplishes this by iteratively coupling separate MODFLOW-2005 models such that heads and fluxes are balanced across the grid-refinement interface boundary. LGR2 can be used in two-and three-dimensional, steady-state and transient simulations and for simulations of confined and unconfined groundwater systems. Traditional one-way coupled telescopic mesh refinement methods can have large, often undetected, inconsistencies in heads and fluxes across the interface between two model grids. The iteratively coupled ghost-node method of LGR2 provides a more rigorous coupling in which the solution accuracy is controlled by convergence criteria defined by the user. In realistic problems, this can result in substantially more accurate solutions and require an increase in computer processing time. The rigorous coupling enables sensitivity analysis, parameter estimation, and uncertainty analysis that reflects conditions in both model grids. This report describes the method used by LGR2, evaluates accuracy and performance for two-and three-dimensional test cases, provides input instructions, and lists selected input and output files for an example problem. It also presents the Boundary Flow and Head (BFH2) Package, which allows the child and parent models to be simulated independently using the boundary conditions obtained through the iterative process of LGR2.
Optimal Path Planner for Mobile Robot in 2D Environment
Directory of Open Access Journals (Sweden)
Valeri Kroumov
2004-06-01
Full Text Available The problem of path planning for the case of a mobile robot moving in an environment filled with obstacles with known shapes and positions is studied. A path planner based on the genetic algorithm approach, which generates optimal in length path is proposed. The population member paths are generated by another algorithm, which uses for description of the obstacles an artificial annealing neural network and is based on potential field approach. The resulting path is piecewise linear with changing directions at the corners of the obstacles. Because of this feature, the inverse kinematics problems in controlling differential drive robots are simply solved: to drive the robot to some goal pose (x, y, theta, the robot can be spun in place until it is aimed at (x, y, then driven forward until it is at (x, y, and then spun in place until the required goal orientation
An accurate conservative level set/ghost fluid method for simulating turbulent atomization
International Nuclear Information System (INIS)
Desjardins, Olivier; Moureau, Vincent; Pitsch, Heinz
2008-01-01
This paper presents a novel methodology for simulating incompressible two-phase flows by combining an improved version of the conservative level set technique introduced in [E. Olsson, G. Kreiss, A conservative level set method for two phase flow, J. Comput. Phys. 210 (2005) 225-246] with a ghost fluid approach. By employing a hyperbolic tangent level set function that is transported and re-initialized using fully conservative numerical schemes, mass conservation issues that are known to affect level set methods are greatly reduced. In order to improve the accuracy of the conservative level set method, high order numerical schemes are used. The overall robustness of the numerical approach is increased by computing the interface normals from a signed distance function reconstructed from the hyperbolic tangent level set by a fast marching method. The convergence of the curvature calculation is ensured by using a least squares reconstruction. The ghost fluid technique provides a way of handling the interfacial forces and large density jumps associated with two-phase flows with good accuracy, while avoiding artificial spreading of the interface. Since the proposed approach relies on partial differential equations, its implementation is straightforward in all coordinate systems, and it benefits from high parallel efficiency. The robustness and efficiency of the approach is further improved by using implicit schemes for the interface transport and re-initialization equations, as well as for the momentum solver. The performance of the method is assessed through both classical level set transport tests and simple two-phase flow examples including topology changes. It is then applied to simulate turbulent atomization of a liquid Diesel jet at Re=3000. The conservation errors associated with the accurate conservative level set technique are shown to remain small even for this complex case
Directory of Open Access Journals (Sweden)
P.O. Judt
2015-10-01
Full Text Available In many engineering applications special requirements are directed to a material's fracture behavior and the prediction of crack paths. Especially if the material exhibits anisotropic elastic properties or fracture toughnesses, e.g. in textured or composite materials, the simulation of crack paths is challenging. Here, the application of path independent interaction integrals (I-integrals, J-, L- and M-integrals is beneficial for an accurate crack tip loading analysis. Numerical tools for the calculation of loading quantities using these path-invariant integrals are implemented into the commercial finite element (FE-code ABAQUS. Global approaches of the integrals are convenient considering crack tips approaching other crack faces, internal boundaries or material interfaces. Curved crack faces require special treatment with respect to integration contours. Numerical crack paths are predicted based on FE calculations of the boundary value problem in connection with an intelligent adaptive re-meshing algorithm. Considering fracture toughness anisotropy and accounting for inelastic effects due to small plastic zones in the crack tip region, the numerically predicted crack paths of different types of specimens with material interfaces and internal boundaries are compared to subcritically grown paths obtained from experiments.
Transition paths in single-molecule force spectroscopy.
Cossio, Pilar; Hummer, Gerhard; Szabo, Attila
2018-03-28
In a typical single-molecule force spectroscopy experiment, the ends of the molecule of interest are connected by long polymer linkers to a pair of mesoscopic beads trapped in the focus of two laser beams. At constant force load, the total extension, i.e., the end-to-end distance of the molecule plus linkers, is measured as a function of time. In the simplest systems, the measured extension fluctuates about two values characteristic of folded and unfolded states, with occasional transitions between them. We have recently shown that molecular (un)folding rates can be recovered from such trajectories, with a small linker correction, as long as the characteristic time of the bead fluctuations is shorter than the residence time in the unfolded (folded) state. Here, we show that accurate measurements of the molecular transition path times require an even faster apparatus response. Transition paths, the trajectory segments in which the molecule (un)folds, are properly resolved only if the beads fluctuate more rapidly than the end-to-end distance of the molecule. Therefore, over a wide regime, the measured rates may be meaningful but not the transition path times. Analytic expressions for the measured mean transition path times are obtained for systems diffusing anisotropically on a two-dimensional free energy surface. The transition path times depend on the properties both of the molecule and of the pulling device.
Path Creation, Path Dependence and Breaking Away from the Path: Re-Examining the Case of Nokia
Wang, Jens; Hedman, Jonas; Tuunainen, Virpi Kristiina
2016-01-01
The explanation of how and why firms succeed or fail is a recurrent research challenge. This is particularly important in the context of technological innovations. We focus on the role of historical events and decisions in explaining such success and failure. Using a case study of Nokia, we develop and extend a multi-layer path dependence framework. We identify four layers of path dependence: technical, strategic and leadership, organizational, and external collaboration. We show how path dep...
Optical identity authentication technique based on compressive ghost imaging with QR code
Wenjie, Zhan; Leihong, Zhang; Xi, Zeng; Yi, Kang
2018-04-01
With the rapid development of computer technology, information security has attracted more and more attention. It is not only related to the information and property security of individuals and enterprises, but also to the security and social stability of a country. Identity authentication is the first line of defense in information security. In authentication systems, response time and security are the most important factors. An optical authentication technology based on compressive ghost imaging with QR codes is proposed in this paper. The scheme can be authenticated with a small number of samples. Therefore, the response time of the algorithm is short. At the same time, the algorithm can resist certain noise attacks, so it offers good security.
International Nuclear Information System (INIS)
Khrapko, R.I.
1985-01-01
A uniform description of various path-dependent functions is presented with the help of expansion of the type of the Taylor series. So called ''path-integrals'' and ''path-tensor'' are introduced which are systems of many-component quantities whose values are defined for arbitrary paths in coordinated region of space in such a way that they contain a complete information on the path. These constructions are considered as elementary path-dependent functions and are used instead of power monomials in the usual Taylor series. Coefficients of such an expansion are interpreted as partial derivatives dependent on the order of the differentiations or else as nonstandard cavariant derivatives called two-point derivatives. Some examples of pathdependent functions are presented.Space curvature tensor is considered whose geometrica properties are determined by the (non-transitive) translator of parallel transport of a general type. Covariant operation leading to the ''extension'' of tensor fiels is pointed out
Accelerating Sequential Gaussian Simulation with a constant path
Nussbaumer, Raphaël; Mariethoz, Grégoire; Gravey, Mathieu; Gloaguen, Erwan; Holliger, Klaus
2018-03-01
Sequential Gaussian Simulation (SGS) is a stochastic simulation technique commonly employed for generating realizations of Gaussian random fields. Arguably, the main limitation of this technique is the high computational cost associated with determining the kriging weights. This problem is compounded by the fact that often many realizations are required to allow for an adequate uncertainty assessment. A seemingly simple way to address this problem is to keep the same simulation path for all realizations. This results in identical neighbourhood configurations and hence the kriging weights only need to be determined once and can then be re-used in all subsequent realizations. This approach is generally not recommended because it is expected to result in correlation between the realizations. Here, we challenge this common preconception and make the case for the use of a constant path approach in SGS by systematically evaluating the associated benefits and limitations. We present a detailed implementation, particularly regarding parallelization and memory requirements. Extensive numerical tests demonstrate that using a constant path allows for substantial computational gains with very limited loss of simulation accuracy. This is especially the case for a constant multi-grid path. The computational savings can be used to increase the neighbourhood size, thus allowing for a better reproduction of the spatial statistics. The outcome of this study is a recommendation for an optimal implementation of SGS that maximizes accurate reproduction of the covariance structure as well as computational efficiency.
Larvae of the ghost shrimp, Lepidophthalmus louisianensis, were mass-reared under laboratory conditions (28|C; 20o/ooS) from hatching to the decapodid (D) stage. Iatroscan lipid class analysis revealed that polar lipids (Zoea I: 77.4|1.7%; Zoea II: 77.5|2.1%; Decapodid: 80.0|1.7%...
Win-win strategies in directing low-carbon resilient development path
International Nuclear Information System (INIS)
Masui, Toshihiko; Kainuma, Mikiko
2015-01-01
This section explores big win-win strategies in directing low carbon resilient development path. There are lots of “leapfrog” development possibilities in developing countries, which go directly from a status of under-development through to efficient and environmentally benign lifestyle. To achieve low carbon resilient paths, not only technology development but also institutional and behavioral changes are required. Science-policy nexus is also discussed.
ITS Multi-path Communications Access Decision Scheme
Directory of Open Access Journals (Sweden)
Miroslav Svitek
2008-02-01
Full Text Available Intelligent Transport Systems (ITS require widely spread and guarantied quality communications services. Method of ITS decomposition to set of subsystems and quantification of communications subsystems parameters is introduced. Due to typical complexity of the IST solution and mobility as the typical system elements property idea of communications systems with multipath multivendor structures is adopted. Resolution of seamless switching within a set of available wireless access solutions is presented. CALM based system or specifically designed and configured L3/L2 switching can be relevant solution for multi-path access communication system. These systems meet requirements of the seamless secure communications functionality within even extensive cluster of moving objects. Competent decision processes based on precisely quantified system requirements and each performance indicator tolerance range must be implemented to keep service up and running with no influence of continuously changing conditions in time and served space. Method of different paths service quality evaluation and selection of the best possible active communications access path is introduced. Proposed approach is based on Kalman filtering, which separates reasonable part of noise and also allows prediction of the individual parameters near future behavior. Presented classification algorithm applied on filtered measured data combined with deterministic parameters is trained using training data, i.e. combination of parameters vectors line and relevant decisions. Quality of classification is dependent on the size and quality of the training sets. This method is studied within projects e-Ident, DOTEK and SRATVU which are elaborating results of project CAMNA.
High Torque Density Transverse Flux Machine without the Need to Use SMC Material for 3D Flux Paths
DEFF Research Database (Denmark)
Lu, Kaiyuan; Wu, Weimin
2015-01-01
This paper presents a new transverse flux permanent magnet machine. In a normal transverse flux machine, complicated 3-D flux paths often exist. Such 3-D flux paths would require the use of soft magnetic composites material instead of laminations for construction of the machine stator. In the new...... machine topology proposed in this paper, by advantageously utilizing the magnetic flux path provided by an additional rotor, use of laminations that allow 2-D flux paths only will be sufficient to accomplish the required 3-D flux paths. The machine also has a high torque density and is therefore...
Design of an arbitrary path-following controller for a non-holonomic mobile platform
CSIR Research Space (South Africa)
Sabatta, DG
2009-11-01
Full Text Available required for the platform to asymptotically track the path. The controller derived in this paper is implemented on the Seekur platform from Mobile Robots. Results showing the following of a pre-recorded path from differential GPS are discussed....
The anomalous dimension of the gluon-ghost mass operator in Yang-Mills theory
International Nuclear Information System (INIS)
Dudal, D.; Verschelde, H.; Lemes, V.E.R.; Sarandy, M.S.; Sobreiro, R.; Sorella, S.P.; Picariello, M.; Gracey, J.A.
2003-01-01
The local composite gluon-ghost operator (((1)/(2))A aμ A μ a +αc-bar a c a ) is analysed in the framework of the algebraic renormalization in SU(N) Yang-Mills theories in the Landau, Curci-Ferrari and maximal abelian gauges. We show, to all orders of perturbation theory, that this operator is multiplicatively renormalizable. Furthermore, its anomalous dimension is not an independent parameter of the theory, being given by a general expression valid in all these gauges. We also verify the relations we obtain for the operator anomalous dimensions by explicit 3-loop calculations in the MS-bar scheme for the Curci-Ferrari gauge
Learning to improve path planning performance
International Nuclear Information System (INIS)
Chen, Pang C.
1995-04-01
In robotics, path planning refers to finding a short. collision-free path from an initial robot configuration to a desired configuratioin. It has to be fast to support real-time task-level robot programming. Unfortunately, current planning techniques are still too slow to be effective, as they often require several minutes, if not hours of computation. To remedy this situation, we present and analyze a learning algorithm that uses past experience to increase future performance. The algorithm relies on an existing path planner to provide solutions to difficult tasks. From these solutions, an evolving sparse network of useful robot configurations is learned to support faster planning. More generally, the algorithm provides a speedup-learning framework in which a slow but capable planner may be improved both cost-wise and capability-wise by a faster but less capable planner coupled with experience. The basic algorithm is suitable for stationary environments, and can be extended to accommodate changing environments with on-demand experience repair and object-attached experience abstraction. To analyze the algorithm, we characterize the situations in which the adaptive planner is useful, provide quantitative bounds to predict its behavior, and confirm our theoretical results with experiments in path planning of manipulators. Our algorithm and analysis are sufficiently, general that they may also be applied to other planning domains in which experience is useful
Cloutier, Geneviève
2016-01-01
As a hauntological artist, I deconstruct my silenced First Nation Wolastoqiyik (Maliseet) ancestry and look towards the intergenerational narratives of my grandmother, mother, and I. Employing the methodology of a/r/tography, the intersection of autobiography and art-making, I utilize diverse art forms to find that g(hosts) reside amongst spaces…
Robust Path Planning and Feedback Design Under Stochastic Uncertainty
Blackmore, Lars
2008-01-01
Autonomous vehicles require optimal path planning algorithms to achieve mission goals while avoiding obstacles and being robust to uncertainties. The uncertainties arise from exogenous disturbances, modeling errors, and sensor noise, which can be characterized via stochastic models. Previous work defined a notion of robustness in a stochastic setting by using the concept of chance constraints. This requires that mission constraint violation can occur with a probability less than a prescribed value.In this paper we describe a novel method for optimal chance constrained path planning with feedback design. The approach optimizes both the reference trajectory to be followed and the feedback controller used to reject uncertainty. Our method extends recent results in constrained control synthesis based on convex optimization to solve control problems with nonconvex constraints. This extension is essential for path planning problems, which inherently have nonconvex obstacle avoidance constraints. Unlike previous approaches to chance constrained path planning, the new approach optimizes the feedback gain as wellas the reference trajectory.The key idea is to couple a fast, nonconvex solver that does not take into account uncertainty, with existing robust approaches that apply only to convex feasible regions. By alternating between robust and nonrobust solutions, the new algorithm guarantees convergence to a global optimum. We apply the new method to an unmanned aircraft and show simulation results that demonstrate the efficacy of the approach.
Dermot Bolger’s Ghosting the War
Directory of Open Access Journals (Sweden)
Aleksandra Kędzierska
2017-10-01
Full Text Available Dermot Bolger’s Walking the Road (2007 is a tribute to Francis Ledwidge (1887–1917, one of the greatest Irish poets of the First World War. Focusing on the life and afterlife of Ledwidge who, as depicted in Bolger’s play, emblematizes the condition of other Great War combatants doomed to oblivion, this essay, concerned with the various functions of the deployment of ghosts in Bolger’s drama, argues that spectrality can become an effective means of revealing the plight of the war dead: the unremembered, whose names were effectively erased from public memory and who, thus turned into homeless revenants, were forced into a continual involvement in the war from which they cannot escape, even after death. As a spectral witness who moves between pre-war Ireland and the world of the trenches, Bolger’s hero makes one aware how similar these realities are. Furthermore, as a classic case of shell shock, he demonstrates the role of haunting in the narrative of trauma, identity and memory. Last but not least, whilst enhancing the gothic dimension of the war, Frank’s perceptions, as well as his spectral discourse, not only contribute significantly to illuminating the enigma which he personified, but, by providing an insight into his search for himself, they convey the plight of truth seekers who grasp, yet never fully encompass the Irish experience of the war.
Road networks as collections of minimum cost paths
Wegner, Jan Dirk; Montoya-Zegarra, Javier Alexander; Schindler, Konrad
2015-10-01
We present a probabilistic representation of network structures in images. Our target application is the extraction of urban roads from aerial images. Roads appear as thin, elongated, partially curved structures forming a loopy graph, and this complex layout requires a prior that goes beyond standard smoothness and co-occurrence assumptions. In the proposed model the network is represented as a union of 1D paths connecting distant (super-)pixels. A large set of putative candidate paths is constructed in such a way that they include the true network as much as possible, by searching for minimum cost paths in the foreground (road) likelihood. Selecting the optimal subset of candidate paths is posed as MAP inference in a higher-order conditional random field. Each path forms a higher-order clique with a type of clique potential, which attracts the member nodes of cliques with high cumulative road evidence to the foreground label. That formulation induces a robust PN -Potts model, for which a global MAP solution can be found efficiently with graph cuts. Experiments with two road data sets show that the proposed model significantly improves per-pixel accuracies as well as the overall topological network quality with respect to several baselines.
Medial temporal lobe roles in human path integration.
Directory of Open Access Journals (Sweden)
Naohide Yamamoto
Full Text Available Path integration is a process in which observers derive their location by integrating self-motion signals along their locomotion trajectory. Although the medial temporal lobe (MTL is thought to take part in path integration, the scope of its role for path integration remains unclear. To address this issue, we administered a variety of tasks involving path integration and other related processes to a group of neurosurgical patients whose MTL was unilaterally resected as therapy for epilepsy. These patients were unimpaired relative to neurologically intact controls in many tasks that required integration of various kinds of sensory self-motion information. However, the same patients (especially those who had lesions in the right hemisphere walked farther than the controls when attempting to walk without vision to a previewed target. Importantly, this task was unique in our test battery in that it allowed participants to form a mental representation of the target location and anticipate their upcoming walking trajectory before they began moving. Thus, these results put forth a new idea that the role of MTL structures for human path integration may stem from their participation in predicting the consequences of one's locomotor actions. The strengths of this new theoretical viewpoint are discussed.
Rules for integrals over products of distributions from coordinate independence of path integrals
International Nuclear Information System (INIS)
Kleinert, H.; Chervyakov, A.
2001-01-01
In perturbative calculations of quantum-mechanical path integrals in curvilinear coordinates, one encounters Feynman diagrams involving multiple temporal integrals over products of distributions which are mathematically undefined. In addition, there are terms proportional to powers of Dirac δ-functions at the origin coming from the measure of path integration. We derive simple rules for dealing with such singular terms from the natural requirement of coordinate independence of the path integrals. (orig.)
MinePath: Mining for Phenotype Differential Sub-paths in Molecular Pathways
Koumakis, Lefteris; Kartsaki, Evgenia; Chatzimina, Maria; Zervakis, Michalis; Vassou, Despoina; Marias, Kostas; Moustakis, Vassilis; Potamias, George
2016-01-01
Pathway analysis methodologies couple traditional gene expression analysis with knowledge encoded in established molecular pathway networks, offering a promising approach towards the biological interpretation of phenotype differentiating genes. Early pathway analysis methodologies, named as gene set analysis (GSA), view pathways just as plain lists of genes without taking into account either the underlying pathway network topology or the involved gene regulatory relations. These approaches, even if they achieve computational efficiency and simplicity, consider pathways that involve the same genes as equivalent in terms of their gene enrichment characteristics. Most recent pathway analysis approaches take into account the underlying gene regulatory relations by examining their consistency with gene expression profiles and computing a score for each profile. Even with this approach, assessing and scoring single-relations limits the ability to reveal key gene regulation mechanisms hidden in longer pathway sub-paths. We introduce MinePath, a pathway analysis methodology that addresses and overcomes the aforementioned problems. MinePath facilitates the decomposition of pathways into their constituent sub-paths. Decomposition leads to the transformation of single-relations to complex regulation sub-paths. Regulation sub-paths are then matched with gene expression sample profiles in order to evaluate their functional status and to assess phenotype differential power. Assessment of differential power supports the identification of the most discriminant profiles. In addition, MinePath assess the significance of the pathways as a whole, ranking them by their p-values. Comparison results with state-of-the-art pathway analysis systems are indicative for the soundness and reliability of the MinePath approach. In contrast with many pathway analysis tools, MinePath is a web-based system (www.minepath.org) offering dynamic and rich pathway visualization functionality, with the
Path Planning Algorithms for Autonomous Border Patrol Vehicles
Lau, George Tin Lam
This thesis presents an online path planning algorithm developed for unmanned vehicles in charge of autonomous border patrol. In this Pursuit-Evasion game, the unmanned vehicle is required to capture multiple trespassers on its own before any of them reach a target safe house where they are safe from capture. The problem formulation is based on Isaacs' Target Guarding problem, but extended to the case of multiple evaders. The proposed path planning method is based on Rapidly-exploring random trees (RRT) and is capable of producing trajectories within several seconds to capture 2 or 3 evaders. Simulations are carried out to demonstrate that the resulting trajectories approach the optimal solution produced by a nonlinear programming-based numerical optimal control solver. Experiments are also conducted on unmanned ground vehicles to show the feasibility of implementing the proposed online path planning algorithm on physical applications.
Gravity's ghost and big dog scientific discovery and social analysis in the twenty-first century
Collins, Harry
2013-01-01
Gravity's Ghost and Big Dog brings to life science's efforts to detect cosmic gravitational waves. These ripples in space-time are predicted by general relativity, and their discovery will not only demonstrate the truth of Einstein's theories but also transform astronomy. Although no gravitational wave has ever been directly detected, the previous five years have been an especially exciting period in the field. Here sociologist Harry Collins offers readers an unprecedented view of gravitational wave research and explains what it means for an analyst to do work of this kind.
NSRD-10: Leak Path Factor Guidance Using MELCOR
Energy Technology Data Exchange (ETDEWEB)
Louie, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Humphries, Larry L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-03-01
Estimates of the source term from a U.S. Department of Energy (DOE) nuclear facility requires that the analysts know how to apply the simulation tools used, such as the MELCOR code, particularly for a complicated facility that may include an air ventilation system and other active systems that can influence the environmental pathway of the materials released. DOE has designated MELCOR 1.8.5, an unsupported version, as a DOE ToolBox code in its Central Registry, which includes a leak-path-factor guidance report written in 2004 that did not include experimental validation data. To continue to use this MELCOR version requires additional verification and validations, which may not be feasible from a project cost standpoint. Instead, the recent MELCOR should be used. Without any developer support and lack of experimental data validation, it is difficult to convince regulators that the calculated source term from the DOE facility is accurate and defensible. This research replaces the obsolete version in the 2004 DOE leak path factor guidance report by using MELCOR 2.1 (the latest version of MELCOR with continuing modeling development and user support) and by including applicable experimental data from the reactor safety arena and from applicable experimental data used in the DOE-HDBK-3010. This research provides best practice values used in MELCOR 2.1 specifically for the leak path determination. With these enhancements, the revised leak-path-guidance report should provide confidence to the DOE safety analyst who would be using MELCOR as a source-term determination tool for mitigated accident evaluations.
A benign property of the ghost mode in massive theory of gravitation
Chugreev, Yu. V.
2018-01-01
It was shown in the frameworks of massive gravitational theories having in linear approximation mass term {m^2}( {φ ^{α β }}{φ_{α β }} - 1/2{φ ^2}} ) in the lagrangian, that created some time ago spherically-symmetric static sources should possess inside their light cone not only Yukawa potential, but also nonstationary component. It leads to the long ( 1/ m) period of gravitational evaporation of such sources with the mass loss Ṁ m 2 M 2 The magnitude of the flux is c 4/ v 4 times ( c—speed of light, v—velocity of the source particles) bigger then negative gravitational radiation flux corresponding to the ghost scalar mode in the spectrum of such gravitational field, with stabilizing the source.
A novel communication mechanism based on node potential multi-path routing
Bu, Youjun; Zhang, Chuanhao; Jiang, YiMing; Zhang, Zhen
2016-10-01
With the network scales rapidly and new network applications emerge frequently, bandwidth supply for today's Internet could not catch up with the rapid increasing requirements. Unfortunately, irrational using of network sources makes things worse. Actual network deploys single-next-hop optimization paths for data transmission, but such "best effort" model leads to the imbalance use of network resources and usually leads to local congestion. On the other hand Multi-path routing can use the aggregation bandwidth of multi paths efficiently and improve the robustness of network, security, load balancing and quality of service. As a result, multi-path has attracted much attention in the routing and switching research fields and many important ideas and solutions have been proposed. This paper focuses on implementing the parallel transmission of multi next-hop data, balancing the network traffic and reducing the congestion. It aimed at exploring the key technologies of the multi-path communication network, which could provide a feasible academic support for subsequent applications of multi-path communication networking. It proposed a novel multi-path algorithm based on node potential in the network. And the algorithm can fully use of the network link resource and effectively balance network link resource utilization.
Czech Academy of Sciences Publication Activity Database
Rowberry, Matthew David; Battiau-Queney, Y.; Walsh, P.; Blažejowski, B.; Bout-Roumazeilles, V.; Trentesaux, A.; Křížová, L.; Griffiths, H.
2014-01-01
Roč. 17, č. 1 (2014), s. 33-42 ISSN 1374-8505 Institutional research plan: CEZ:AV0Z30460519 Keywords : deep weathering * saprolite * ghost -rock * Gash Breccia Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.782, year: 2014 http://popups.ulg.ac.be/1374-8505/index.php?id=4353&file=1&pid=4150
Multi-AGV path planning with double-path constraints by using an improved genetic algorithm.
Directory of Open Access Journals (Sweden)
Zengliang Han
Full Text Available This paper investigates an improved genetic algorithm on multiple automated guided vehicle (multi-AGV path planning. The innovations embody in two aspects. First, three-exchange crossover heuristic operators are used to produce more optimal offsprings for getting more information than with the traditional two-exchange crossover heuristic operators in the improved genetic algorithm. Second, double-path constraints of both minimizing the total path distance of all AGVs and minimizing single path distances of each AGV are exerted, gaining the optimal shortest total path distance. The simulation results show that the total path distance of all AGVs and the longest single AGV path distance are shortened by using the improved genetic algorithm.
Directory of Open Access Journals (Sweden)
Changnam Lee
2013-12-01
Full Text Available This paper reviews Gaston Leroux’s Phantom of the Opera in the context of the social and cultural changes of the metropolis Paris at the end of the 19th century. The Phantom of the Opera, a success in the literary world and widely proliferated in its musical and film renditions afterward, is considered and interpreted mainly in the literary and artistic tradition. In this paper, however, this work will be considered from an urban sociological perspective, especially from that of Walter Benjamin, who developed the theory of the urban culture, focusing on the dreaming collectives at the end of the 19th century. Leroux’s novel can be regarded as an exemplary social form of the collective dreams of the period expressed in arts, architectures, popular stories and films and other popular arts. Given the premise that the dream images in the novel, so-called kitsch, reflect the fears and desires of the bourgeois middle class that were pathologized in the figure of the ghost, this paper reveals the cultural, social and transnational implications of the Ghost-Image in relation to the rapidly changing borders of the 19th century metropolis.
Edwards, James P.; Gerber, Urs; Schubert, Christian; Trejo, Maria Anabel; Weber, Axel
2018-04-01
We introduce two integral transforms of the quantum mechanical transition kernel that represent physical information about the path integral. These transforms can be interpreted as probability distributions on particle trajectories measuring respectively the relative contribution to the path integral from paths crossing a given spatial point (the hit function) and the likelihood of values of the line integral of the potential along a path in the ensemble (the path-averaged potential).
Mean free path of nucleons in a Fermi gas at finite temperature
International Nuclear Information System (INIS)
Collins, M.T.; Griffin, J.J.
1980-01-01
The mean free path of a nucleon in a nuclear Fermi gas at finite temperature is calculated by utilizing the free nucleon-nucleon cross section modified to suppress final states excluded by the Pauli principle. The results agree with an earlier zero-temperature calculation but yield substantially smaller values than a previous finite-temperature analysis. The Fermi gas mean free paths are some two to four times shorter than those implied by phenomenological imaginary optical potentials, suggesting that the present Fermi gas model fails to adequately describe the physical processes determining the mean free path. Even so, the present results, taken as lower bounds on te mean free path, require temperatures of some 4.5 MeV before the mean free path of bound nucleons becomes as short as the nuclear diameter. It follows that very high excitation energies are prerequisite to any short mean free path assumption in nuclear heavy-ion collisions. (orig.)
Path planning algorithms for assembly sequence planning. [in robot kinematics
Krishnan, S. S.; Sanderson, Arthur C.
1991-01-01
Planning for manipulation in complex environments often requires reasoning about the geometric and mechanical constraints which are posed by the task. In planning assembly operations, the automatic generation of operations sequences depends on the geometric feasibility of paths which permit parts to be joined into subassemblies. Feasible locations and collision-free paths must be present for part motions, robot and grasping motions, and fixtures. This paper describes an approach to reasoning about the feasibility of straight-line paths among three-dimensional polyhedral parts using an algebra of polyhedral cones. A second method recasts the feasibility conditions as constraints in a nonlinear optimization framework. Both algorithms have been implemented and results are presented.
Memristor Multiport Readout: A Closed-Form Solution for Sneak Paths
Zidan, Mohammed A.; Eltawil, Ahmed M.; Fahmy, Hossam A.H.; Kurdahi, Fadi; Salama, Khaled N.
2014-01-01
In this paper, we introduce for the first time, a closed-form solution for the memristor-based memory sneak paths without using any gating elements. The introduced technique fully eliminates the effect of sneak paths by reading the stored data using multiple access points and evaluating a simple addition/subtraction on the different readings. The new method requires fewer reading steps compared to previously reported techniques, and has a very small impact on the memory density. To verify the underlying theory, the proposed system is simulated using Synopsys HSPICE showing the ability to achieve a 100% sneak-path error-free memory. In addition, the effect of quantization bits on the system performance is studied.
Memristor Multiport Readout: A Closed-Form Solution for Sneak Paths
Zidan, Mohammed A.
2014-06-18
In this paper, we introduce for the first time, a closed-form solution for the memristor-based memory sneak paths without using any gating elements. The introduced technique fully eliminates the effect of sneak paths by reading the stored data using multiple access points and evaluating a simple addition/subtraction on the different readings. The new method requires fewer reading steps compared to previously reported techniques, and has a very small impact on the memory density. To verify the underlying theory, the proposed system is simulated using Synopsys HSPICE showing the ability to achieve a 100% sneak-path error-free memory. In addition, the effect of quantization bits on the system performance is studied.
Which coordinate system for modelling path integration?
Vickerstaff, Robert J; Cheung, Allen
2010-03-21
Path integration is a navigation strategy widely observed in nature where an animal maintains a running estimate, called the home vector, of its location during an excursion. Evidence suggests it is both ancient and ubiquitous in nature, and has been studied for over a century. In that time, canonical and neural network models have flourished, based on a wide range of assumptions, justifications and supporting data. Despite the importance of the phenomenon, consensus and unifying principles appear lacking. A fundamental issue is the neural representation of space needed for biological path integration. This paper presents a scheme to classify path integration systems on the basis of the way the home vector records and updates the spatial relationship between the animal and its home location. Four extended classes of coordinate systems are used to unify and review both canonical and neural network models of path integration, from the arthropod and mammalian literature. This scheme demonstrates analytical equivalence between models which may otherwise appear unrelated, and distinguishes between models which may superficially appear similar. A thorough analysis is carried out of the equational forms of important facets of path integration including updating, steering, searching and systematic errors, using each of the four coordinate systems. The type of available directional cue, namely allothetic or idiothetic, is also considered. It is shown that on balance, the class of home vectors which includes the geocentric Cartesian coordinate system, appears to be the most robust for biological systems. A key conclusion is that deducing computational structure from behavioural data alone will be difficult or impossible, at least in the absence of an analysis of random errors. Consequently it is likely that further theoretical insights into path integration will require an in-depth study of the effect of noise on the four classes of home vectors. Copyright 2009 Elsevier Ltd
Conceptual Soundness, Metric Development, Benchmarking, and Targeting for PATH Subprogram Evaluation
Energy Technology Data Exchange (ETDEWEB)
Mosey. G.; Doris, E.; Coggeshall, C.; Antes, M.; Ruch, J.; Mortensen, J.
2009-01-01
The objective of this study is to evaluate the conceptual soundness of the U.S. Department of Housing and Urban Development (HUD) Partnership for Advancing Technology in Housing (PATH) program's revised goals and establish and apply a framework to identify and recommend metrics that are the most useful for measuring PATH's progress. This report provides an evaluative review of PATH's revised goals, outlines a structured method for identifying and selecting metrics, proposes metrics and benchmarks for a sampling of individual PATH programs, and discusses other metrics that potentially could be developed that may add value to the evaluation process. The framework and individual program metrics can be used for ongoing management improvement efforts and to inform broader program-level metrics for government reporting requirements.
The shortest-path problem analysis and comparison of methods
Ortega-Arranz, Hector; Gonzalez-Escribano, Arturo
2014-01-01
Many applications in different domains need to calculate the shortest-path between two points in a graph. In this paper we describe this shortest path problem in detail, starting with the classic Dijkstra's algorithm and moving to more advanced solutions that are currently applied to road network routing, including the use of heuristics and precomputation techniques. Since several of these improvements involve subtle changes to the search space, it may be difficult to appreciate their benefits in terms of time or space requirements. To make methods more comprehensive and to facilitate their co
Scan path entropy and Arrow plots: Capturing scanning behavior of multiple observers
Directory of Open Access Journals (Sweden)
Ignace T C Hooge
2013-12-01
Full Text Available Designers of visual communication material want their material to attract and retain attention. In marketing research, heat maps, dwell time, and time to AOI first hit are often used as evaluation parameters. Here we present two additional measures 1 scan path entropy to quantify gaze guidance and 2 the arrow plot to visualize the average scan path. Both are based on string representations of scan paths. The latter also incorporates transition matrices and time required for 50% of the observers to first hit AOIs (T50. The new measures were tested in an eye tracking study (48 observers, 39 advertisements. Scan path entropy is a sensible measure for gaze guidance and the new visualization method reveals aspects of the average scan path and gives a better indication in what order global scanning takes place.
Auditory perception of motor vehicle travel paths.
Ashmead, Daniel H; Grantham, D Wesley; Maloff, Erin S; Hornsby, Benjamin; Nakamura, Takabun; Davis, Timothy J; Pampel, Faith; Rushing, Erin G
2012-06-01
These experiments address concerns that motor vehicles in electric engine mode are so quiet that they pose a risk to pedestrians, especially those with visual impairments. The "quiet car" issue has focused on hybrid and electric vehicles, although it also applies to internal combustion engine vehicles. Previous research has focused on detectability of vehicles, mostly in quiet settings. Instead, we focused on the functional ability to perceive vehicle motion paths. Participants judged whether simulated vehicles were traveling straight or turning, with emphasis on the impact of background traffic sound. In quiet, listeners made the straight-or-turn judgment soon enough in the vehicle's path to be useful for deciding whether to start crossing the street. This judgment is based largely on sound level cues rather than the spatial direction of the vehicle. With even moderate background traffic sound, the ability to tell straight from turn paths is severely compromised. The signal-to-noise ratio needed for the straight-or-turn judgment is much higher than that needed to detect a vehicle. Although a requirement for a minimum vehicle sound level might enhance detection of vehicles in quiet settings, it is unlikely that this requirement would contribute to pedestrian awareness of vehicle movements in typical traffic settings with many vehicles present. The findings are relevant to deliberations by government agencies and automobile manufacturers about standards for minimum automobile sounds and, more generally, for solutions to pedestrians' needs for information about traffic, especially for pedestrians with sensory impairments.
Differential geometry in string models
International Nuclear Information System (INIS)
Alvarez, O.
1986-01-01
In this article the author reviews the differential geometric approach to the quantization of strings. A seminal paper demonstrates the connection between the trace anomaly and the critical dimension. The role played by the Faddeev-Popov ghosts has been instrumental in much of the subsequent work on the quantization of strings. This paper discusses the differential geometry of two dimensional surfaces and its importance in the quantization of strings. The path integral quantization approach to strings will be carefully analyzed to determine the correct effective measure for string theories. The choice of measure for the path integral is determined by differential geometric considerations. Once the measure is determined, the manifest diffeomorphism invariance of the theory will have to be broken by using the Faddeev-Popov ansatz. The gauge fixed theory is studied in detail with emphasis on the role of conformal and gravitational anomalies. In the analysis, the path integral formulation of the gauge fixed theory requires summing over all the distinct complex structures on the manifold
Creep analysis by the path function method
International Nuclear Information System (INIS)
Akin, J.E.; Pardue, R.M.
1977-01-01
The finite element method has become a common analysis procedure for the creep analysis of structures. The most recent programs are designed to handle a general class of material properties and are able to calculate elastic, plastic, and creep components of strain under general loading histories. The constant stress approach is too crude a model to accurately represent the actual behaviour of the stress for large time steps. The true path of a point in the effective stress-effective strain (sigmasup(e)-epsilonsup(c)) plane is often one in which the slope is rapidly changing. Thus the stress level quickly moves away from the initial stress level and then gradually approaches the final one. The result is that the assumed constant stress level quickly becomes inaccurate. What is required is a better method of approximation of the true path in the sigmasup(e)-epsilonsup(c) space. The method described here is called the path function approach because it employs an assumed function to estimate the motion of points in the sigmasup(e)-epsilonsup(c) space. (Auth.)
Wu, Y; Montes, J G; Sjodin, R A
1992-01-01
Rabbit erythrocyte ghosts were fused by means of electric pulses to determine the electrofusion thresholds for these membranes. Two protocols were used to investigate fusion events: contact-first, and pulse-first. Electrical capacitance discharge (CD) pulses were used to induce fusion. Plots of fusion yield vs peak field strength yielded curves that intersected the field strength axis at positive values (pseudothresholds) which depended on the protocol and decay half time of the pulses. It wa...
Incorporating Quantitative Reasoning in Common Core Courses: Mathematics for The Ghost Map
Directory of Open Access Journals (Sweden)
John R. Jungck
2012-01-01
Full Text Available How can mathematics be integrated into multi-section interdisciplinary courses to enhance thematic understandings and shared common readings? As an example, four forms of quantitative reasoning are used to understand and critique one such common reading: Steven Berlin Johnson’s "The Ghost Map: The Story of London's Most Terrifying Epidemic - and How it Changed Science, Cities and the Modern World" (Riverhead Books, 2006. Geometry, statistics, modeling, and networks are featured in this essay as the means of depicting, understanding, elaborating, and critiquing the public health issues raised in Johnson’s book. Specific pedagogical examples and resources are included to illustrate applications and opportunities for generalization beyond this specific example. Quantitative reasoning provides a robust, yet often neglected, lens for doing literary and historical analyses in interdisciplinary education.
Generation of Path-Encoded Greenberger-Horne-Zeilinger States
Bergamasco, N.; Menotti, M.; Sipe, J. E.; Liscidini, M.
2017-11-01
We study the generation of Greenberger-Horne-Zeilinger (GHZ) states of three path-encoded photons. Inspired by the seminal work of Bouwmeester et al. [Phys. Rev. Lett. 82, 1345 (1999), 10.1103/PhysRevLett.82.1345] on polarization-entangled GHZ states, we find a corresponding path representation for the photon states of an optical circuit, identify the elements required for the state generation, and propose a possible implementation of our strategy. Besides the practical advantage of employing an integrated system that can be fabricated with proven lithographic techniques, our example suggests that it is possible to enhance the generation efficiency by using microring resonators.
Tempo e percezione in The Body Artist di Don DeLillo e Ghost Trio di Samuel Beckett
Directory of Open Access Journals (Sweden)
Davide Barbuscia
2013-03-01
Full Text Available This essay provides a critical analysis of Don DeLillo’s novel The Body Artist and Samuel Beckett’s work for television Ghost Trio. In particular it analyses the representation of time and its perception in both these works, highlighting some shared aesthetic modalities such as their attempt to depict duration through a poetics of slow motion. The essay also foregrounds how both these works give narrative form to Merleau-Ponty’s understanding of ‘time as its perception’.
DISPOSITION PATHS FOR ROCKY FLATS GLOVEBOXES: EVALUATING OPTIONS
International Nuclear Information System (INIS)
Lobdell, D.; Geimer, R.; Larsen, P.; Loveland, K.
2003-01-01
The Kaiser-Hill Company, LLC has the responsibility for closure activities at the Rocky Flats Environmental Technology Site (RFETS). One of the challenges faced for closure is the disposition of radiologically contaminated gloveboxes. Evaluation of the disposition options for gloveboxes included a detailed analysis of available treatment capabilities, disposal facilities, and lifecycle costs. The Kaiser-Hill Company, LLC followed several processes in determining how the gloveboxes would be managed for disposition. Currently, multiple disposition paths have been chosen to accommodate the needs of the varying styles and conditions of the gloveboxes, meet the needs of the decommissioning team, and to best manage lifecycle costs. Several challenges associated with developing a disposition path that addresses both the radiological and RCRA concerns as well as offering the most cost-effective solution were encountered. These challenges included meeting the radiological waste acceptance criteria of available disposal facilities, making a RCRA determination, evaluating treatment options and costs, addressing void requirements associated with disposal, and identifying packaging and transportation options. The varying disposal facility requirements affected disposition choices. Facility conditions that impacted decisions included radiological and chemical waste acceptance criteria, physical requirements, and measurement for payment options. The facility requirements also impacted onsite activities including management strategies, decontamination activities, and life-cycle cost
Thermal and ghost reflection modeling for a 180-deg. field-of-view long-wave infrared lens
Shi, Weimin; Couture, Michael E.
2001-03-01
Optics 1, Inc. has successfully designed and developed a 180 degree(s) field of view long wave infrared lens for USAF/AFRL under SBIR phase I and II funded projects in support of the multi-national Programmable Integrated Ordinance Suite (PIOS) program. In this paper, a procedure is presented on how to evaluate image degradation caused by asymmetric aerodynamic dome heating. In addition, a thermal gradient model is proposed to evaluate degradation caused by axial temperature gradient throughout the entire PIOS lens. Finally, a ghost reflection analysis is demonstrated with non-sequential model.
Minimum-link paths among obstacles in the plane
Mitchell, J.S.B.; Rote, G.; Woeginger, G.J.
1992-01-01
Given a set of nonintersecting polygonal obstacles in the plane, thelink distance between two pointss andt is the minimum number of edges required to form a polygonal path connectings tot that avoids all obstacles. We present an algorithm that computes the link distance (and a corresponding
International Nuclear Information System (INIS)
Dudal, David; Verschelde, Henri; Lemes, Vitor E.R.; Sarandy, Marcelo S.; Sorella, Silvio P.; Picariello, Marco; Vicini, Alessandro; Gracey, John A.
2003-01-01
We analyze the ghost condensates abc c b c c >, abc c-bar b c-bar c > and abc c-barbc c > in Yang-Mills theory in the Curci-Ferrari gauge. By combining the local composite operator formalism with the algebraic renormalization technique, we are able to give a simultaneous discussion of abc c b c c >, abc c-bar b c-bar c > and abc c-bar b c c >, which can be seen as playing the role of the BCS, respectively Overhauser effect in ordinary superconductivity. The Curci-Ferrari gauge exhibits a global continuous symmetry generated by the Nakanishi-Ojima (NO) algebra. This algebra includes, next to the {(anti-)BRST} transformation, a SL(2,R) subalgebra. We discuss the dynamical symmetry breaking of the NO algebra through these ghost condensates. Particular attention is paid to the Landau gauge, a special case of the Curci-Ferrari gauge. (author)
Illusion and Disillusionment in the Name of the “Ghost”:A Study of Xu Xu’s “Ghost Love”
Qin, Chen
2017-01-01
As one of the most popular writers of the Republican period, Xu Xu (1908-1980) is famous for fiction characterized by a cosmopolitan atmosphere, exoticism, and fantastic encounters. Ghost Love, his first well-known work, presents the traditional narrative of “a man encountering a female ghost” and offers serious contemplation about the nature of reality from the perspective of psychology, philosophy, and politics. In examining the intertextualit...
Locomotor adjustments for circumvention of an obstacle in the travel path.
Vallis, Lori Ann; McFadyen, Bradford J
2003-10-01
Independent living requires the navigation of a surrounding environment which is often cluttered with obstacles. When walking around an obstacle in the travel path, safe clearance requires some degree of body-segment reorientation. While body-segmental coordination strategies have been well studied for steering tasks that require moving the body in a new walking direction, it has never been established just what coordination strategies are used in different walking tasks. To address this issue, the current study was designed to investigate the timing of body segment coordination strategies and whole-body anticipatory locomotor adjustments employed when circumventing an obstacle placed in the travel path. Six healthy adults were asked to walk at their natural pace during unobstructed walking, as well as during avoidance to the right or left of a cylindrical obstacle (OBS) located in the travel path. Data analyzed were center of mass (COM) clearance from the OBS, forward velocity, step length and width, yaw angles of the head and trunk, roll angle of the trunk, and medial-lateral COM displacement. Onset of change in these variables from unobstructed walking was calculated as the time from OBS crossing. Avoidance involved two equally used strategies: lead limb close to or away from the OBS during the crossing step. Medial-lateral COM deviations were controlled by changes in step width without changes in trunk roll. There were no differences in the onset times of body segment reorientation for path deviation. These results are in contrast to previous studies on change in travel direction where the head segment initiates the body reorientation. Contrary to a steering task, circumventing an obstacle requires a different coordination for a transient change in COM trajectory with the underlying travel-direction maintained.
International Nuclear Information System (INIS)
DeWitt-Morette, C.
1983-01-01
Much is expected of path integration as a quantization procedure. Much more is possible if one recognizes that path integration is at the crossroad of stochastic and differential calculus and uses the full power of both stochastic and differential calculus in setting up and computing path integrals. In contrast to differential calculus, stochastic calculus has only comparatively recently become an instrument of thought. It has nevertheless already been used in a variety of challenging problems, for instance in the quantization problem. The author presents some applications of the stochastic scheme. (Auth.)
K. Novick; J. Walker; W.S. Chan; A. Schmidt; C. Sobek; J.M. Vose
2013-01-01
A new class of enclosed path gas analyzers suitable for eddy covariance applications combines the advantages of traditional closed-path systems (small density corrections, good performance in poor weather) and open-path systems (good spectral response, low power requirements), and permits estimates of instantaneous gas mixing ratio. Here, the extent to which these...
Dynamic Path Exploration on Mobile Devices
Birsak, Michael
2017-03-31
We present a novel framework for visualizing routes on mobile devices. Our framework is suitable for helping users explore their environment. First, given a starting point and a maximum route length, the system retrieves nearby points of interest (POIs). Second, we automatically compute an attractive walking path through the environment trying to pass by as many highly ranked POIs as possible. Third, we automatically compute a route visualization that shows the current user position, POI locations via pins, and detail lenses for more information about the POIs. The visualization is an animation of an orthographic map view that follows the current user position. We propose an optimization based on a binary integer program (BIP) that models multiple requirements for an effective placement of detail lenses. We show that our path computation method outperforms recently proposed methods and we evaluate the overall impact of our framework in two user studies.
Giant wormholes in ghost-free bigravity theory
Energy Technology Data Exchange (ETDEWEB)
Sushkov, Sergey V.; Volkov, Mikhail S., E-mail: sergey_sushkov@mail.ru, E-mail: volkov@lmpt.univ-tours.fr [Department of General Relativity and Gravitation, Institute of Physics, Kazan Federal University, Kremlevskaya street 18, 420008 Kazan (Russian Federation)
2015-06-01
We study Lorentzian wormholes in the ghost-free bigravity theory described by two metrics, g and f. Wormholes can exist if only the null energy condition is violated, which happens naturally in the bigravity theory since the graviton energy-momentum tensors do not apriori fulfill any energy conditions. As a result, the field equations admit solutions describing wormholes whose throat size is typically of the order of the inverse graviton mass. Hence, they are as large as the universe, so that in principle we might all live in a giant wormhole. The wormholes can be of two different types that we call W1 and W2. The W1 wormholes interpolate between the AdS spaces and have Killing horizons shielding the throat. The Fierz-Pauli graviton mass for these solutions becomes imaginary in the AdS zone, hence the gravitons behave as tachyons, but since the Breitenlohner-Freedman bound is fulfilled, there should be no tachyon instability. For the W2 wormholes the g-geometry is globally regular and in the far field zone it becomes the AdS up to subleading terms, its throat can be traversed by timelike geodesics, while the f-geometry has a completely different structure and is not geodesically complete. There is no evidence of tachyons for these solutions, although a detailed stability analysis remains an open issue. It is possible that the solutions may admit a holographic interpretation.
Giant wormholes in ghost-free bigravity theory
Energy Technology Data Exchange (ETDEWEB)
Sushkov, Sergey V. [Department of General Relativity and Gravitation, Institute of Physics,Kazan Federal University, Kremlevskaya street 18, 420008 Kazan (Russian Federation); Volkov, Mikhail S. [Department of General Relativity and Gravitation, Institute of Physics,Kazan Federal University, Kremlevskaya street 18, 420008 Kazan (Russian Federation); Laboratoire de Mathématiques et Physique Théorique CNRS-UMR 7350, Université de Tours, Parc de Grandmont, 37200 Tours (France)
2015-06-09
We study Lorentzian wormholes in the ghost-free bigravity theory described by two metrics, g and f. Wormholes can exist if only the null energy condition is violated, which happens naturally in the bigravity theory since the graviton energy-momentum tensors do not apriori fulfill any energy conditions. As a result, the field equations admit solutions describing wormholes whose throat size is typically of the order of the inverse graviton mass. Hence, they are as large as the universe, so that in principle we might all live in a giant wormhole. The wormholes can be of two different types that we call W1 and W2. The W1 wormholes interpolate between the AdS spaces and have Killing horizons shielding the throat. The Fierz-Pauli graviton mass for these solutions becomes imaginary in the AdS zone, hence the gravitons behave as tachyons, but since the Breitenlohner-Freedman bound is fulfilled, there should be no tachyon instability. For the W2 wormholes the g-geometry is globally regular and in the far field zone it becomes the AdS up to subleading terms, its throat can be traversed by timelike geodesics, while the f-geometry has a completely different structure and is not geodesically complete. There is no evidence of tachyons for these solutions, although a detailed stability analysis remains an open issue. It is possible that the solutions may admit a holographic interpretation.
Sponge-Like: A New Protocol for Preparing Bacterial Ghosts
Directory of Open Access Journals (Sweden)
Amro A. Amara
2013-01-01
Full Text Available Bacterial Ghosts (BGs received an increasing interest in the recent years for their promising medicinal and pharmaceutical applications. In this study, for the first time we introduce a new protocol for BGs production. E. coli BL21 (DE3 pLysS (Promega was used as a model to establish a general protocol for BGs preparation. The protocol is based on using active chemical compounds in concentrations less than the Minimum Inhibition Concentration (MIC. Those chemical compounds are SDS, NaOH, and H2O2. Plackett-Burman experimental design was used to map the best conditions for BGs production. Normal and electronic microscopes were used to evaluate the BGs quality (BGQ. Spectrophotometer was used to evaluate the amount of the released protein and DNA. Agarose gel electrophoresis was used to determine the existence of any residue of DNA after each BGs preparation. Viable cells, which existed after running this protocol, were subjected to lysis by inducing the lysozyme gene carried on pLysS plasmid. This protocol is able to produce BGs that can be used in different biotechnological applications.
Reparametrization in the path integral
International Nuclear Information System (INIS)
Storchak, S.N.
1983-01-01
The question of the invariance of a measure in the n-dimensional path integral under the path reparametrization is considered. The non-invariance of the measure through the jacobian is suggeste. After the path integral reparametrization the representatioq for the Green's function of the Hamilton operator in terms of the path integral with the classical Hamiltonian has been obtained
DEFF Research Database (Denmark)
Bessenrodt, Christine; Olsson, Jørn Børling; Sellers, James A.
2013-01-01
We give a complete classification of the unique path partitions and study congruence properties of the function which enumerates such partitions.......We give a complete classification of the unique path partitions and study congruence properties of the function which enumerates such partitions....
International Nuclear Information System (INIS)
Fernandes, K.S.; Silva, A.H.M.; Mendanha, S.A.; Rezende, K.R.; Alonso, A.
2013-01-01
4-Nerolidylcatechol (4-NC) is found in Pothomorphe umbellata root extracts and is reported to have a topical protective effect against UVB radiation-induced skin damage, toxicity in melanoma cell lines, and antimalarial activity. We report a comparative study of the antioxidant activity of 4-NC and α-tocopherol against lipid peroxidation initiated by two free radical-generating systems: 2,2′-azobis(2-aminopropane) hydrochloride (AAPH) and FeSO 4 /H 2 O 2 , in red blood cell ghost membranes and in egg phosphatidylcholine (PC) vesicles. Lipid peroxidation was monitored by membrane fluidity changes assessed by electron paramagnetic resonance spectroscopy of a spin-labeled lipid and by the formation of thiobarbituric acid-reactive substances. When lipoperoxidation was initiated by the hydroxyl radical in erythrocyte ghost membranes, both 4-NC and α-tocopherol acted in a very efficient manner. However, lower activities were observed when lipoperoxidation was initiated by the peroxyl radical; and, in this case, the protective effect of α-tocopherol was lower than that of 4-NC. In egg PC vesicles, malondialdehyde formation indicated that 4-NC was effective against lipoperoxidation initiated by both AAPH and FeSO 4 /H 2 O 2 , whereas α-tocopherol was less efficient in protecting against lipoperoxidation by AAPH, and behaved as a pro-oxidant for FeSO 4 /H 2 O 2 . The DPPH (2,2-diphenyl-1-picrylhydrazyl) free-radical assay indicated that two free radicals were scavenged per 4-NC molecule, and one free radical was scavenged per α-tocopherol molecule. These data provide new insights into the antioxidant capacity of 4-NC, which may have therapeutic applications for formulations designed to protect the skin from sunlight irradiation
International Nuclear Information System (INIS)
Wald, H.B.
1990-01-01
The 'PATH' codes are used to design magnetic optics subsystems for neutral particle beam systems. They include a 2-1/2D and three 3-D space charge models, two of which have recently been added. This paper describes the 3-D models and reports on preliminary benchmark studies in which these models are checked for stability as the cloud size is varied and for consistency with each other. Differences between the models are investigated and the computer time requirements for running these models are established
Inoue, Yuuji; Yoneyama, Masami; Nakamura, Masanobu; Takemura, Atsushi
2018-06-01
The two-dimensional Cartesian turbo spin-echo (TSE) sequence is widely used in routine clinical studies, but it is sensitive to respiratory motion. We investigated the k-space orders in Cartesian TSE that can effectively reduce motion artifacts. The purpose of this study was to demonstrate the relationship between k-space order and degree of motion artifacts using a moving phantom. We compared the degree of motion artifacts between linear and asymmetric k-space orders. The actual spacing of ghost artifacts in the asymmetric order was doubled compared with that in the linear order in the free-breathing situation. The asymmetric order clearly showed less sensitivity to incomplete breath-hold at the latter half of the imaging period. Because of the actual number of partitions of the k-space and the temporal filling order, the asymmetric k-space order of Cartesian TSE was superior to the linear k-space order for reduction of ghosting motion artifacts.
Image-based path planning for automated virtual colonoscopy navigation
Hong, Wei
2008-03-01
Virtual colonoscopy (VC) is a noninvasive method for colonic polyp screening, by reconstructing three-dimensional models of the colon using computerized tomography (CT). In virtual colonoscopy fly-through navigation, it is crucial to generate an optimal camera path for efficient clinical examination. In conventional methods, the centerline of the colon lumen is usually used as the camera path. In order to extract colon centerline, some time consuming pre-processing algorithms must be performed before the fly-through navigation, such as colon segmentation, distance transformation, or topological thinning. In this paper, we present an efficient image-based path planning algorithm for automated virtual colonoscopy fly-through navigation without the requirement of any pre-processing. Our algorithm only needs the physician to provide a seed point as the starting camera position using 2D axial CT images. A wide angle fisheye camera model is used to generate a depth image from the current camera position. Two types of navigational landmarks, safe regions and target regions are extracted from the depth images. Camera position and its corresponding view direction are then determined using these landmarks. The experimental results show that the generated paths are accurate and increase the user comfort during the fly-through navigation. Moreover, because of the efficiency of our path planning algorithm and rendering algorithm, our VC fly-through navigation system can still guarantee 30 FPS.
International Nuclear Information System (INIS)
Omran, Ahmed A.
2013-01-01
Graphical abstract: Bar diagram representing thermodynamic parameters obtained for the partitioning of NSAIDs into human erythrocyte ghost membranes at physiological pH; 7.4. Highlights: • Partition coefficients of NSAIDs into HEG membranes were determined. • Thermodynamic parameters were evaluated and successfully analyzed. • Partitioning of NSAIDs into HEG membranes was exothermic. • Partitioning of NSAIDs into HEG is spontaneous with negative free energy values. • Identical partitioning enthalpy–entropy driven compensation mechanism was shown. -- Abstract: In this work,second derivative spectrophotometry was applied for determining the partition coefficients (K p s) of four non-steroidal anti-inflammatory drugs (NSAIDs; flufenamic, meclofenamic, mefenamic and niflumic acids) into human erythrocyte ghost (HEG) membranes over a temperature range from (283.2 to 313.2) K. The proposed method allowed the evaluation and direct analyses of thermodynamic parameters; enthalpy (ΔH W→M ), Gibbs energy (ΔG W→M ) and entropy (ΔS W→M ) changes of the partitioning of NSAIDs into HEG membranes. The partitioning of NSAIDs between polar aqueous phase and non-polar lipid bilayer HEG membrane phase was exothermic with negative (ΔH W→M ) which compensated for the changes in (ΔS W→M ). The negative values of (ΔG W→M ) revealed that the partitioning of NSAIDs into HEG, owing to their transfer from polar aqueous phase and non-polar HEG phase is spontaneous. The enthalpy–entropy correlation analysis resulted in a good linearity that suggests an identical partitioning enthalpy–entropy driven compensation mechanism for the studied NSAIDs
Spectacular Attractions: Museums, Audio-Visuals and the Ghosts of Memory
Directory of Open Access Journals (Sweden)
Mandelli Elisa
2015-12-01
Full Text Available In the last decades, moving images have become a common feature not only in art museums, but also in a wide range of institutions devoted to the conservation and transmission of memory. This paper focuses on the role of audio-visuals in the exhibition design of history and memory museums, arguing that they are privileged means to achieve the spectacular effects and the visitors’ emotional and “experiential” engagement that constitute the main objective of contemporary museums. I will discuss this topic through the concept of “cinematic attraction,” claiming that when embedded in displays, films and moving images often produce spectacular mises en scène with immersive effects, creating wonder and astonishment, and involving visitors on an emotional, visceral and physical level. Moreover, I will consider the diffusion of audio-visual witnesses of real or imaginary historical characters, presented in Phantasmagoria-like displays that simulate ghostly and uncanny apparitions, creating an ambiguous and often problematic coexistence of truth and illusion, subjectivity and objectivity, facts and imagination.
Schwinger-Keldysh superspace in quantum mechanics
Geracie, Michael; Haehl, Felix M.; Loganayagam, R.; Narayan, Prithvi; Ramirez, David M.; Rangamani, Mukund
2018-05-01
We examine, in a quantum mechanical setting, the Hilbert space representation of the Becchi, Rouet, Stora, and Tyutin (BRST) symmetry associated with Schwinger-Keldysh path integrals. This structure had been postulated to encode important constraints on influence functionals in coarse-grained systems with dissipation, or in open quantum systems. Operationally, this entails uplifting the standard Schwinger-Keldysh two-copy formalism into superspace by appending BRST ghost degrees of freedom. These statements were previously argued at the level of the correlation functions. We provide herein a complementary perspective by working out the Hilbert space structure explicitly. Our analysis clarifies two crucial issues not evident in earlier works: first, certain background ghost insertions necessary to reproduce the correct Schwinger-Keldysh correlators arise naturally, and, second, the Schwinger-Keldysh difference operators are systematically dressed by the ghost bilinears, which turn out to be necessary to give rise to a consistent operator algebra. We also elaborate on the structure of the final state (which is BRST closed) and the future boundary condition of the ghost fields.
Ghost Images in Helioseismic Holography? Toy Models in a Uniform Medium
Yang, Dan
2018-02-01
Helioseismic holography is a powerful technique used to probe the solar interior based on estimations of the 3D wavefield. The Porter-Bojarski holography, which is a well-established method used in acoustics to recover sources and scatterers in 3D, is also an estimation of the wavefield, and hence it has the potential of being applied to helioseismology. Here we present a proof-of-concept study, where we compare helioseismic holography and Porter-Bojarski holography under the assumption that the waves propagate in a homogeneous medium. We consider the problem of locating a point source of wave excitation inside a sphere. Under these assumptions, we find that the two imaging methods have the same capability of locating the source, with the exception that helioseismic holography suffers from "ghost images" ( i.e. artificial peaks away from the source location). We conclude that Porter-Bojarski holography may improve the method currently used in helioseismology.
Interferences, ghost images and other quantum correlations according to stochastic optics
International Nuclear Information System (INIS)
Fonseca da Silva, Luciano; Dechoum, Kaled
2012-01-01
There are an extensive variety of experiments in quantum optics that emphasize the non-local character of the coincidence measurements recorded by spatially separated photocounters. These are the cases of ghost image and other interference experiments based on correlated photons produced in, for instance, the process of parametric down-conversion or photon cascades. We propose to analyse some of these correlations in the light of stochastic optics, a local formalism based on classical electrodynamics with added background fluctuations that simulate the vacuum field of quantum electrodynamics, and raise the following question: can these experiments be used to distinguish between quantum entanglement and classical correlations? - Highlights: ► We analyse some quantum correlations in the light of stochastic optics. ► We study how vacuum fluctuations can rule quantum correlations. ► Many criteria cannot be considered a boundary between quantum and classical theories. ► Non-locality is a misused term in relation to many observed experiments.
Iterated Leavitt Path Algebras
International Nuclear Information System (INIS)
Hazrat, R.
2009-11-01
Leavitt path algebras associate to directed graphs a Z-graded algebra and in their simplest form recover the Leavitt algebras L(1,k). In this note, we introduce iterated Leavitt path algebras associated to directed weighted graphs which have natural ± Z grading and in their simplest form recover the Leavitt algebras L(n,k). We also characterize Leavitt path algebras which are strongly graded. (author)
DEFF Research Database (Denmark)
Madsen, Mogens Ove
Begrebet Path Dependence blev oprindelig udviklet inden for New Institutionel Economics af bl.a. David, Arthur og North. Begrebet har spredt sig vidt i samfundsvidenskaberne og undergået en udvikling. Dette paper propagerer for at der er sket så en så omfattende udvikling af begrebet, at man nu kan...... tale om 1. og 2. generation af Path Dependence begrebet. Den nyeste udvikling af begrebet har relevans for metodologi-diskusionerne i relation til Keynes...
Path Planning Methods in an Environment with Obstacles (A Review
Directory of Open Access Journals (Sweden)
W. Liu
2018-01-01
Full Text Available Planning the path is the most important task in the mobile robot navigation. This task involves basically three aspects. First, the planned path must run from a given starting point to a given endpoint. Secondly, it should ensure robot’s collision-free movement. Thirdly, among all the possible paths that meet the first two requirements it must be, in a certain sense, optimal.Methods of path planning can be classified according to different characteristics. In the context of using intelligent technologies, they can be divided into traditional methods and heuristic ones. By the nature of the environment, it is possible to divide planning methods into planning methods in a static environment and in a dynamic one (it should be noted, however, that a static environment is rare. Methods can also be divided according to the completeness of information about the environment, namely methods with complete information (in this case the issue is a global path planning and methods with incomplete information (usually, this refers to the situational awareness in the immediate vicinity of the robot, in this case it is a local path planning. Note that incomplete information about the environment can be a consequence of the changing environment, i.e. in a dynamic environment, there is, usually, a local path planning.Literature offers a great deal of methods for path planning where various heuristic techniques are used, which, as a rule, result from the denotative meaning of the problem being solved. This review discusses the main approaches to the problem solution. Here we can distinguish five classes of basic methods: graph-based methods, methods based on cell decomposition, use of potential fields, optimization methods, фтв methods based on intelligent technologies.Many methods of path planning, as a result, give a chain of reference points (waypoints connecting the beginning and end of the path. This should be seen as an intermediate result. The problem
Path-integral method for the source apportionment of photochemical pollutants
Dunker, A. M.
2015-06-01
A new, path-integral method is presented for apportioning the concentrations of pollutants predicted by a photochemical model to emissions from different sources. A novel feature of the method is that it can apportion the difference in a species concentration between two simulations. For example, the anthropogenic ozone increment, which is the difference between a simulation with all emissions present and another simulation with only the background (e.g., biogenic) emissions included, can be allocated to the anthropogenic emission sources. The method is based on an existing, exact mathematical equation. This equation is applied to relate the concentration difference between simulations to line or path integrals of first-order sensitivity coefficients. The sensitivities describe the effects of changing the emissions and are accurately calculated by the decoupled direct method. The path represents a continuous variation of emissions between the two simulations, and each path can be viewed as a separate emission-control strategy. The method does not require auxiliary assumptions, e.g., whether ozone formation is limited by the availability of volatile organic compounds (VOCs) or nitrogen oxides (NOx), and can be used for all the species predicted by the model. A simplified configuration of the Comprehensive Air Quality Model with Extensions (CAMx) is used to evaluate the accuracy of different numerical integration procedures and the dependence of the source contributions on the path. A Gauss-Legendre formula using three or four points along the path gives good accuracy for apportioning the anthropogenic increments of ozone, nitrogen dioxide, formaldehyde, and nitric acid. Source contributions to these increments were obtained for paths representing proportional control of all anthropogenic emissions together, control of NOx emissions before VOC emissions, and control of VOC emissions before NOx emissions. There are similarities in the source contributions from the
Perturbation theory for quantized string fields
International Nuclear Information System (INIS)
Thorn, C.B.; Florida Univ., Gainesville
1987-01-01
We discuss the problem of gauge fixing in string field theory. We show that BRST invariance requires the gauge-fixed action to contain terms cubic in the ghost... of ghost of ghost fields. The final BRST invariant gauge-fixed action for the gauge b 0 A=0 is extremely simple: with the proper interpretation (as given in this article), it is essentially the one anticipated earlier in the work of Giddings, Martinec, and Witten in their analysis of the BRST invariant world-sheet approach to string theory. We derive the Feynman rules from this action and explain in detail how the sum over sufaces of the BRST first-quantized string is reproduced. This result depends crucially on the correct assignment for the Grassmann character of the string field and its ghost... of ghost of ghost string fields. If all these fields are unified in a single string field Φ containing all ghost numbers, the requirements is that Φ be uniformly Grassmann odd. Finally, we do some sample calculations which provide some simple checks on our general results. (orig.)
Covariant quantization of Lagrangians with quadratic dependent fields and derivative couplings
International Nuclear Information System (INIS)
Lam, C.S.; Wang, K.
1977-01-01
A covariant path-integral formula is derived for Lagrangians with quadratic dependent fields and derivative couplings. It differs from the naive one by a factor which can be viewed graphically as due to the coupling with ghost fields. These path integrals can be shown to be unitary and to satisfy equations of motion if and only if this extra factor is present. Applications of this formula to gauge and other field theories are discussed
Shortest Paths and Vehicle Routing
DEFF Research Database (Denmark)
Petersen, Bjørn
This thesis presents how to parallelize a shortest path labeling algorithm. It is shown how to handle Chvátal-Gomory rank-1 cuts in a column generation context. A Branch-and-Cut algorithm is given for the Elementary Shortest Paths Problem with Capacity Constraint. A reformulation of the Vehicle...... Routing Problem based on partial paths is presented. Finally, a practical application of finding shortest paths in the telecommunication industry is shown....
Li, Jian; Jiang, Ting; Li, Sai; Chen, Wei
2013-02-18
To investigate design methods of dual insertion paths and observe a short-term clinic overview of rotational path removable partial dentures (RPDs). In the study, 40 patients with partial edentulous arches were included and divided into two groups. The patients in group one were restored with rotational path RPDs (10 Kennedy class III and 10 Kennedy class IV respectively). The patients in group two (20 patients), whose edentulous area was matched with the patients' in group one, were restored with the linear path RPDs. After surveying and simulative preparation on diagnostic casts, the basic laws of designing rotational path RPDs were summarized. The oral preparation was accurately performed under the guidance of indices made on diagnostic casts after simulative preparation. The 40 dentures were recalled two weeks and one year after the insertion. The evaluations of the clinic outcome, including retention, stability, mastication function, esthetics and wearing convenience, were marked out as good, acceptable, and poor. The comparison of the evaluation results was performed between the two groups. In the rotational path design for Kennedy class III or IV RPDs, the angles (α) of dual insertion paths should be designed within a scope, approximate 10°-15°.When the angle (α) became larger, the denture retention turned to be better, but accordingly the posterior abutments needed more preparation. In the clinical application, the first insertions of the 40 dentures were all favorably accomplished. When the rotational path RPDs were compared to linear path RPDs, the time consuming on first insertion had no statistical difference[(32±8) min and (33±8) min respectively, P>0.05]. Recalled two weeks and one year after the insertion, in the esthetics evaluation, 20 rotational path RPDs were all evaluated as "A", but only 7(two weeks after) and 6 (one year after) linear path RPDs were evaluated as "A"(P<0.05). There was no significant difference in other evaluation results
International Nuclear Information System (INIS)
Connolly, T.J.; Hansen, U.; Jaek, W.; Beckurts, K.H.
1979-01-01
In examing the world nuclear energy paths, the following assumptions were adopted: the world economy will grow somewhat more slowly than in the past, leading to reductions in electricity demand growth rates; national and international political impediments to the deployment of nuclear power will gradually disappear over the next few years; further development of nuclear power will proceed steadily, without serious interruption but with realistic lead times for the introduction of advanced technologies. Given these assumptions, this paper attempts a study of possible world nuclear energy developments, disaggregated on a regional and national basis. The scenario technique was used and a few alternative fuel-cycle scenarios were developed. Each is an internally consistent model of technically and economically feasible paths to the further development of nuclear power in an aggregate of individual countries and regions of the world. The main purpose of this modeling exercise was to gain some insight into the probable international locations of reactors and other nuclear facilities, the future requirements for uranium and for fuel-cycle services, and the problems of spent-fuel storage and waste management. The study also presents an assessment of the role that nuclear power might actually play in meeting future world energy demand
An analysis of 3D particle path integration algorithms
International Nuclear Information System (INIS)
Darmofal, D.L.; Haimes, R.
1996-01-01
Several techniques for the numerical integration of particle paths in steady and unsteady vector (velocity) fields are analyzed. Most of the analysis applies to unsteady vector fields, however, some results apply to steady vector field integration. Multistep, multistage, and some hybrid schemes are considered. It is shown that due to initialization errors, many unsteady particle path integration schemes are limited to third-order accuracy in time. Multistage schemes require at least three times more internal data storage than multistep schemes of equal order. However, for timesteps within the stability bounds, multistage schemes are generally more accurate. A linearized analysis shows that the stability of these integration algorithms are determined by the eigenvalues of the local velocity tensor. Thus, the accuracy and stability of the methods are interpreted with concepts typically used in critical point theory. This paper shows how integration schemes can lead to erroneous classification of critical points when the timestep is finite and fixed. For steady velocity fields, we demonstrate that timesteps outside of the relative stability region can lead to similar integration errors. From this analysis, guidelines for accurate timestep sizing are suggested for both steady and unsteady flows. In particular, using simulation data for the unsteady flow around a tapered cylinder, we show that accurate particle path integration requires timesteps which are at most on the order of the physical timescale of the flow
Path planning in changeable environments
Nieuwenhuisen, D.
2007-01-01
This thesis addresses path planning in changeable environments. In contrast to traditional path planning that deals with static environments, in changeable environments objects are allowed to change their configurations over time. In many cases, path planning algorithms must facilitate quick
Rotational error in path integration: encoding and execution errors in angle reproduction.
Chrastil, Elizabeth R; Warren, William H
2017-06-01
Path integration is fundamental to human navigation. When a navigator leaves home on a complex outbound path, they are able to keep track of their approximate position and orientation and return to their starting location on a direct homebound path. However, there are several sources of error during path integration. Previous research has focused almost exclusively on encoding error-the error in registering the outbound path in memory. Here, we also consider execution error-the error in the response, such as turning and walking a homebound trajectory. In two experiments conducted in ambulatory virtual environments, we examined the contribution of execution error to the rotational component of path integration using angle reproduction tasks. In the reproduction tasks, participants rotated once and then rotated again to face the original direction, either reproducing the initial turn or turning through the supplementary angle. One outstanding difficulty in disentangling encoding and execution error during a typical angle reproduction task is that as the encoding angle increases, so does the required response angle. In Experiment 1, we dissociated these two variables by asking participants to report each encoding angle using two different responses: by turning to walk on a path parallel to the initial facing direction in the same (reproduction) or opposite (supplementary angle) direction. In Experiment 2, participants reported the encoding angle by turning both rightward and leftward onto a path parallel to the initial facing direction, over a larger range of angles. The results suggest that execution error, not encoding error, is the predominant source of error in angular path integration. These findings also imply that the path integrator uses an intrinsic (action-scaled) rather than an extrinsic (objective) metric.
Meisner, Jan; Markmeyer, Max N; Bohner, Matthias U; Kästner, Johannes
2017-08-30
Atom tunneling in the hydrogen atom transfer reaction of the 2,4,6-tri-tert-butylphenyl radical to 3,5-di-tert-butylneophyl, which has a short but strongly curved reaction path, was investigated using instanton theory. We found the tunneling path to deviate qualitatively from the classical intrinsic reaction coordinate, the steepest-descent path in mass-weighted Cartesian coordinates. To perform that comparison, we implemented a new variant of the predictor-corrector algorithm for the calculation of the intrinsic reaction coordinate. We used the reaction force analysis method as a means to decompose the reaction barrier into structural and electronic components. Due to the narrow energy barrier, atom tunneling is important in the abovementioned reaction, even above room temperature. Our calculated rate constants between 350 K and 100 K agree well with experimental values. We found a H/D kinetic isotope effect of almost 10 6 at 100 K. Tunneling dominates the protium transfer below 400 K and the deuterium transfer below 300 K. We compared the lengths of the tunneling path and the classical path for the hydrogen atom transfer in the reaction HCl + Cl and quantified the corner cutting in this reaction. At low temperature, the tunneling path is about 40% shorter than the classical path.
International Nuclear Information System (INIS)
Hou, C B; Wang, J G; Yang, J; Li, H Y; Peng, F; Yuan, L B; Yuan, Y G
2017-01-01
We developed a path imbalance measuring system using a reference interferometer with alterable optical path difference (OPD), aiming to eliminate the uncertainties due to synthetic wavelength measurement and remove the requirement of a known and stable reference OPD in frequency scanning interferometry. The path imbalance can be solved by using the phase ratios between the two interferometers produced before and after altering the OPD in the reference interferometer. The results have shown that the measurement uncertainty and the path imbalance are linearly related and a combined relative uncertainty of 4.9 × 10 −6 (1 σ ) in path imbalance measurement over a range from 0.5 m to 50 m is achieved. Besides, we analyzed the contributions to the uncertainty that limit the performance of the system, and we discussed how to obtain a better measurement uncertainty. (paper)
AN IMPROVEMENT ON GEOMETRY-BASED METHODS FOR GENERATION OF NETWORK PATHS FROM POINTS
Directory of Open Access Journals (Sweden)
Z. Akbari
2014-10-01
Full Text Available Determining network path is important for different purposes such as determination of road traffic, the average speed of vehicles, and other network analysis. One of the required input data is information about network path. Nevertheless, the data collected by the positioning systems often lead to the discrete points. Conversion of these points to the network path have become one of the challenges which different researchers, presents many ways for solving it. This study aims at investigating geometry-based methods to estimate the network paths from the obtained points and improve an existing point to curve method. To this end, some geometry-based methods have been studied and an improved method has been proposed by applying conditions on the best method after describing and illustrating weaknesses of them.
Fernandes, K.S.; Silva, A.H.M.; Mendanha, S.A.; Rezende, K.R.; Alonso, A.
2013-01-01
4-Nerolidylcatechol (4-NC) is found in Pothomorphe umbellata root extracts and is reported to have a topical protective effect against UVB radiation-induced skin damage, toxicity in melanoma cell lines, and antimalarial activity. We report a comparative study of the antioxidant activity of 4-NC and α-tocopherol against lipid peroxidation initiated by two free radical-generating systems: 2,2′-azobis(2-aminopropane) hydrochloride (AAPH) and FeSO4/H2O2, in red blood cell ghost membranes and in egg phosphatidylcholine (PC) vesicles. Lipid peroxidation was monitored by membrane fluidity changes assessed by electron paramagnetic resonance spectroscopy of a spin-labeled lipid and by the formation of thiobarbituric acid-reactive substances. When lipoperoxidation was initiated by the hydroxyl radical in erythrocyte ghost membranes, both 4-NC and α-tocopherol acted in a very efficient manner. However, lower activities were observed when lipoperoxidation was initiated by the peroxyl radical; and, in this case, the protective effect of α-tocopherol was lower than that of 4-NC. In egg PC vesicles, malondialdehyde formation indicated that 4-NC was effective against lipoperoxidation initiated by both AAPH and FeSO4/H2O2, whereas α-tocopherol was less efficient in protecting against lipoperoxidation by AAPH, and behaved as a pro-oxidant for FeSO4/H2O2. The DPPH (2,2-diphenyl-1-picrylhydrazyl) free-radical assay indicated that two free radicals were scavenged per 4-NC molecule, and one free radical was scavenged per α-tocopherol molecule. These data provide new insights into the antioxidant capacity of 4-NC, which may have therapeutic applications for formulations designed to protect the skin from sunlight irradiation. PMID:24068194
Energy Technology Data Exchange (ETDEWEB)
Fernandes, K. S.; Silva, A. H.M.; Mendanha, S. A. [Instituto de Física, Universidade Federal de Goiás, Goiânia, GO (Brazil); Rezende, K. R. [Laboratório de Biofarmácia e Farmacocinética de Substâncias Bioativas, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO (Brazil); Alonso, A. [Instituto de Física, Universidade Federal de Goiás, Goiânia, GO (Brazil)
2013-09-06
4-Nerolidylcatechol (4-NC) is found in Pothomorphe umbellata root extracts and is reported to have a topical protective effect against UVB radiation-induced skin damage, toxicity in melanoma cell lines, and antimalarial activity. We report a comparative study of the antioxidant activity of 4-NC and α-tocopherol against lipid peroxidation initiated by two free radical-generating systems: 2,2′-azobis(2-aminopropane) hydrochloride (AAPH) and FeSO{sub 4}/H{sub 2}O{sub 2}, in red blood cell ghost membranes and in egg phosphatidylcholine (PC) vesicles. Lipid peroxidation was monitored by membrane fluidity changes assessed by electron paramagnetic resonance spectroscopy of a spin-labeled lipid and by the formation of thiobarbituric acid-reactive substances. When lipoperoxidation was initiated by the hydroxyl radical in erythrocyte ghost membranes, both 4-NC and α-tocopherol acted in a very efficient manner. However, lower activities were observed when lipoperoxidation was initiated by the peroxyl radical; and, in this case, the protective effect of α-tocopherol was lower than that of 4-NC. In egg PC vesicles, malondialdehyde formation indicated that 4-NC was effective against lipoperoxidation initiated by both AAPH and FeSO{sub 4}/H{sub 2}O{sub 2}, whereas α-tocopherol was less efficient in protecting against lipoperoxidation by AAPH, and behaved as a pro-oxidant for FeSO{sub 4}/H{sub 2}O{sub 2}. The DPPH (2,2-diphenyl-1-picrylhydrazyl) free-radical assay indicated that two free radicals were scavenged per 4-NC molecule, and one free radical was scavenged per α-tocopherol molecule. These data provide new insights into the antioxidant capacity of 4-NC, which may have therapeutic applications for formulations designed to protect the skin from sunlight irradiation.
Path Network Recovery Using Remote Sensing Data and Geospatial-Temporal Semantic Graphs
Energy Technology Data Exchange (ETDEWEB)
McLendon, William C.,; Brost, Randolph
2016-05-01
Remote sensing systems produce large volumes of high-resolution images that are difficult to search. The GeoGraphy (pronounced Geo-Graph-y) framework [2, 20] encodes remote sensing imagery into a geospatial-temporal semantic graph representation to enable high level semantic searches to be performed. Typically scene objects such as buildings and trees tend to be shaped like blocks with few holes, but other shapes generated from path networks tend to have a large number of holes and can span a large geographic region due to their connectedness. For example, we have a dataset covering the city of Philadelphia in which there is a single road network node spanning a 6 mile x 8 mile region. Even a simple question such as "find two houses near the same street" might give unexpected results. More generally, nodes arising from networks of paths (roads, sidewalks, trails, etc.) require additional processing to make them useful for searches in GeoGraphy. We have assigned the term Path Network Recovery to this process. Path Network Recovery is a three-step process involving (1) partitioning the network node into segments, (2) repairing broken path segments interrupted by occlusions or sensor noise, and (3) adding path-aware search semantics into GeoQuestions. This report covers the path network recovery process, how it is used, and some example use cases of the current capabilities.
Optical design and performance of F-Theta lenses for high-power and high-precision applications
Yurevich, V. I.; Grimm, V. A.; Afonyushkin, A. A.; Yudin, K. V.; Gorny, S. G.
2015-09-01
F-Theta lenses are widely used in remote laser processing. Nowadays, a large variety of scanning systems utilizing these devices are commercially available. In this paper, we demonstrate that all practical issues lose their triviality in designing high-performance F-Theta scanning systems. Laser power scaling requires attention to thermally-induced phenomena and ghost reflections. This requirement considerably complicates optimization of the optical configuration of the system and primary aberration correction, even during preliminary design. Obtaining high positioning accuracy requires taking into consideration all probable reasons for processing field distortion. We briefly describe the key engineering relationships and invariants as well as the typical design of a scanner lens and the main field-flattening techniques. Specific emphasis is directed to consideration of the fundamental nonlinearity of two-mirror scanners. To the best of our knowledge, this issue has not been yet studied. We also demonstrate the benefits of our F-Theta lens optimization technique, which uses a plurality of entrance pupils. The problems of eliminating focused ghost reflections and the effects of thermally-induced processes in high-power F-Theta lenses are considered. A set of multi-path 3D processing and laser cutting experiments were conducted and are presented herein to demonstrate the impact of laser beam degradation on the process performance. A selection of our non-standard optical designs is presented.
Path integrals on curved manifolds
International Nuclear Information System (INIS)
Grosche, C.; Steiner, F.
1987-01-01
A general framework for treating path integrals on curved manifolds is presented. We also show how to perform general coordinate and space-time transformations in path integrals. The main result is that one has to subtract a quantum correction ΔV ∝ ℎ 2 from the classical Lagrangian L, i.e. the correct effective Lagrangian to be used in the path integral is L eff = L-ΔV. A general prescription for calculating the quantum correction ΔV is given. It is based on a canonical approach using Weyl-ordering and the Hamiltonian path integral defined by the midpoint prescription. The general framework is illustrated by several examples: The d-dimensional rotator, i.e. the motion on the sphere S d-1 , the path integral in d-dimensional polar coordinates, the exact treatment of the hydrogen atom in R 2 and R 3 by performing a Kustaanheimo-Stiefel transformation, the Langer transformation and the path integral for the Morse potential. (orig.)
International Nuclear Information System (INIS)
McGinnis, L.D.; Thompson, M.D.; Miller, S.F.
1994-06-01
Buildings E5485, E5487, and E5489, referred to informally as the open-quotes Ghost Townclose quotes complex, are potentially contaminated sites in the Edgewood section of Aberdeen Proving Ground. Noninvasive geophysical surveys, including magnetics, EM-31, EM-61, and ground-penetrating radar, were conducted to assist a sampling and monitoring program prior to decommissioning and dismantling of the buildings. The buildings are located on a marginal wetland bordering the west branch of Canal Creek. The dominant geophysical signature in the open-quotes Ghost Town close quotes complex is a pattern of northeast-southwest and northwest-southeast anomalies that appear to be associated with a trench/pipe/sewer system, documented by the presence of a manhole. Combinations of anomalies suggest that line sources include nonmetallic and ferromagnetic materials in trenches. On the basis of anomaly associations, the sewer lines probably rest in a trench, back-filled with conductive, amphibolitic, crushed rock. Where the sewer lines connect manholes or junctions with other lines, ferromagnetic materials are present. Isolated, unidentified magnetic anomalies litter the area around Building E5487, particularly to the north. Three small magnetic sources are located east of Building E5487
Welding Robot Collision-Free Path Optimization
Directory of Open Access Journals (Sweden)
Xuewu Wang
2017-02-01
Full Text Available Reasonable welding path has a significant impact on welding efficiency, and a collision-free path should be considered first in the process of welding robot path planning. The shortest path length is considered as an optimization objective, and obstacle avoidance is considered as the constraint condition in this paper. First, a grid method is used as a modeling method after the optimization objective is analyzed. For local collision-free path planning, an ant colony algorithm is selected as the search strategy. Then, to overcome the shortcomings of the ant colony algorithm, a secondary optimization is presented to improve the optimization performance. Finally, the particle swarm optimization algorithm is used to realize global path planning. Simulation results show that the desired welding path can be obtained based on the optimization strategy.
Ghost field realizations of the spinor $W_{2,s}$ strings based on the linear W(1,2,s) algebras
Liu, Yu-Xiao; Zhang, Li-Jie; Ren, Ji-Rong
2005-01-01
It has been shown that certain W algebras can be linearized by the inclusion of a spin-1 current. This Provides a way of obtaining new realizations of the W algebras. In this paper, we investigate the new ghost field realizations of the W(2,s)(s=3,4) algebras, making use of the fact that these two algebras can be linearized. We then construct the nilpotent BRST charges of the spinor non-critical W(2,s) strings with these new realizations.
Ghost field realizations of the spinor W2,s strings based on the linear W1,2,s algebras
International Nuclear Information System (INIS)
Liu Yuxiao; Ren Jirong; Zhang Lijie
2005-01-01
It has been shown that certain W algebras can be linearized by the inclusion of a spin-1 current. This provides a way of obtaining new realizations of the W algebras. In this paper, we investigate the new ghost field realizations of the W 2,s (s=3,4) algebras, making use of the fact that these two algebras can be linearized. We then construct the nilpotent BRST charges of the spinor non-critical W 2,s strings with these new realizations. (author)
Software-based data path for raster-scanned multi-beam mask lithography
Rajagopalan, Archana; Agarwal, Ankita; Buck, Peter; Geller, Paul; Hamaker, H. Christopher; Rao, Nagswara
2016-10-01
According to the 2013 SEMATECH Mask Industry Survey,i roughly half of all photomasks are produced using laser mask pattern generator ("LMPG") lithography. LMPG lithography can be used for all layers at mature technology nodes, and for many non-critical and semi-critical masks at advanced nodes. The extensive use of multi-patterning at the 14-nm node significantly increases the number of critical mask layers, and the transition in wafer lithography from positive tone resist to negative tone resist at the 14-nm design node enables the switch from advanced binary masks back to attenuated phase shifting masks that require second level writes to remove unwanted chrome. LMPG lithography is typically used for second level writes due to its high productivity, absence of charging effects, and versatile non-actinic alignment capability. As multi-patterning use expands from double to triple patterning and beyond, the number of LMPG second level writes increases correspondingly. The desire to reserve the limited capacity of advanced electron beam writers for use when essential is another factor driving the demand for LMPG capacity. The increasing demand for cost-effective productivity has kept most of the laser mask writers ever manufactured running in production, sometimes long past their projected lifespan, and new writers continue to be built based on hardware developed some years ago.ii The data path is a case in point. While state-ofthe- art when first introduced, hardware-based data path systems are difficult to modify or add new features to meet the changing requirements of the market. As data volumes increase, design styles change, and new uses are found for laser writers, it is useful to consider a replacement for this critical subsystem. The availability of low-cost, high-performance, distributed computer systems combined with highly scalable EDA software lends itself well to creating an advanced data path system. EDA software, in routine production today, scales
Master equations and the theory of stochastic path integrals
Weber, Markus F.; Frey, Erwin
2017-04-01
This review provides a pedagogic and self-contained introduction to master equations and to their representation by path integrals. Since the 1930s, master equations have served as a fundamental tool to understand the role of fluctuations in complex biological, chemical, and physical systems. Despite their simple appearance, analyses of master equations most often rely on low-noise approximations such as the Kramers-Moyal or the system size expansion, or require ad-hoc closure schemes for the derivation of low-order moment equations. We focus on numerical and analytical methods going beyond the low-noise limit and provide a unified framework for the study of master equations. After deriving the forward and backward master equations from the Chapman-Kolmogorov equation, we show how the two master equations can be cast into either of four linear partial differential equations (PDEs). Three of these PDEs are discussed in detail. The first PDE governs the time evolution of a generalized probability generating function whose basis depends on the stochastic process under consideration. Spectral methods, WKB approximations, and a variational approach have been proposed for the analysis of the PDE. The second PDE is novel and is obeyed by a distribution that is marginalized over an initial state. It proves useful for the computation of mean extinction times. The third PDE describes the time evolution of a ‘generating functional’, which generalizes the so-called Poisson representation. Subsequently, the solutions of the PDEs are expressed in terms of two path integrals: a ‘forward’ and a ‘backward’ path integral. Combined with inverse transformations, one obtains two distinct path integral representations of the conditional probability distribution solving the master equations. We exemplify both path integrals in analysing elementary chemical reactions. Moreover, we show how a well-known path integral representation of averaged observables can be recovered from
Master equations and the theory of stochastic path integrals.
Weber, Markus F; Frey, Erwin
2017-04-01
This review provides a pedagogic and self-contained introduction to master equations and to their representation by path integrals. Since the 1930s, master equations have served as a fundamental tool to understand the role of fluctuations in complex biological, chemical, and physical systems. Despite their simple appearance, analyses of master equations most often rely on low-noise approximations such as the Kramers-Moyal or the system size expansion, or require ad-hoc closure schemes for the derivation of low-order moment equations. We focus on numerical and analytical methods going beyond the low-noise limit and provide a unified framework for the study of master equations. After deriving the forward and backward master equations from the Chapman-Kolmogorov equation, we show how the two master equations can be cast into either of four linear partial differential equations (PDEs). Three of these PDEs are discussed in detail. The first PDE governs the time evolution of a generalized probability generating function whose basis depends on the stochastic process under consideration. Spectral methods, WKB approximations, and a variational approach have been proposed for the analysis of the PDE. The second PDE is novel and is obeyed by a distribution that is marginalized over an initial state. It proves useful for the computation of mean extinction times. The third PDE describes the time evolution of a 'generating functional', which generalizes the so-called Poisson representation. Subsequently, the solutions of the PDEs are expressed in terms of two path integrals: a 'forward' and a 'backward' path integral. Combined with inverse transformations, one obtains two distinct path integral representations of the conditional probability distribution solving the master equations. We exemplify both path integrals in analysing elementary chemical reactions. Moreover, we show how a well-known path integral representation of averaged observables can be recovered from them. Upon
Robot path planning using expert systems and machine vision
Malone, Denis E.; Friedrich, Werner E.
1992-02-01
This paper describes a system developed for the robotic processing of naturally variable products. In order to plan the robot motion path it was necessary to use a sensor system, in this case a machine vision system, to observe the variations occurring in workpieces and interpret this with a knowledge based expert system. The knowledge base was acquired by carrying out an in-depth study of the product using examination procedures not available in the robotic workplace and relates the nature of the required path to the information obtainable from the machine vision system. The practical application of this system to the processing of fish fillets is described and used to illustrate the techniques.
International Nuclear Information System (INIS)
Prokhorov, L.V.
1982-01-01
The properties of path integrals associated with the allowance for nonstandard terms reflecting the operator nature of the canonical variables are considered. Rules for treating such terms (''equivalence rules'') are formulated. Problems with a boundary, the behavior of path integrals under canonical transformations, and the problem of quantization of dynamical systems with constraints are considered in the framework of the method
Spreading paths in partially observed social networks
Onnela, Jukka-Pekka; Christakis, Nicholas A.
2012-03-01
Understanding how and how far information, behaviors, or pathogens spread in social networks is an important problem, having implications for both predicting the size of epidemics, as well as for planning effective interventions. There are, however, two main challenges for inferring spreading paths in real-world networks. One is the practical difficulty of observing a dynamic process on a network, and the other is the typical constraint of only partially observing a network. Using static, structurally realistic social networks as platforms for simulations, we juxtapose three distinct paths: (1) the stochastic path taken by a simulated spreading process from source to target; (2) the topologically shortest path in the fully observed network, and hence the single most likely stochastic path, between the two nodes; and (3) the topologically shortest path in a partially observed network. In a sampled network, how closely does the partially observed shortest path (3) emulate the unobserved spreading path (1)? Although partial observation inflates the length of the shortest path, the stochastic nature of the spreading process also frequently derails the dynamic path from the shortest path. We find that the partially observed shortest path does not necessarily give an inflated estimate of the length of the process path; in fact, partial observation may, counterintuitively, make the path seem shorter than it actually is.
Spreading paths in partially observed social networks.
Onnela, Jukka-Pekka; Christakis, Nicholas A
2012-03-01
Understanding how and how far information, behaviors, or pathogens spread in social networks is an important problem, having implications for both predicting the size of epidemics, as well as for planning effective interventions. There are, however, two main challenges for inferring spreading paths in real-world networks. One is the practical difficulty of observing a dynamic process on a network, and the other is the typical constraint of only partially observing a network. Using static, structurally realistic social networks as platforms for simulations, we juxtapose three distinct paths: (1) the stochastic path taken by a simulated spreading process from source to target; (2) the topologically shortest path in the fully observed network, and hence the single most likely stochastic path, between the two nodes; and (3) the topologically shortest path in a partially observed network. In a sampled network, how closely does the partially observed shortest path (3) emulate the unobserved spreading path (1)? Although partial observation inflates the length of the shortest path, the stochastic nature of the spreading process also frequently derails the dynamic path from the shortest path. We find that the partially observed shortest path does not necessarily give an inflated estimate of the length of the process path; in fact, partial observation may, counterintuitively, make the path seem shorter than it actually is.
Directory of Open Access Journals (Sweden)
Zhang Bin Loo
2017-01-01
Full Text Available Current network simulators abstract out wireless propagation models due to the high computation requirements for realistic modeling. As such, there is still a large gap between the results obtained from simulators and real world scenario. In this paper, we present a framework for improved path loss simulation built on top of an existing network simulation software, NS-3. Different from the conventional disk model, the proposed simulation also considers the diffraction loss computed using Epstein and Peterson’s model through the use of actual terrain elevation data to give an accurate estimate of path loss between a transmitter and a receiver. The drawback of high computation requirements is relaxed by offloading the computationally intensive components onto an inexpensive off-the-shelf parallel coprocessor, which is a NVIDIA GPU. Experiments are performed using actual terrain elevation data provided from United States Geological Survey. As compared to the conventional CPU architecture, the experimental result shows that a speedup of 20x to 42x is achieved by exploiting the parallel processing of GPU to compute the path loss between two nodes using terrain elevation data. The result shows that the path losses between two nodes are greatly affected by the terrain profile between these two nodes. Besides this, the result also suggests that the common strategy to place the transmitter in the highest position may not always work.
Sourabh Kumar Dubey; Deep Chandan Chakraborty; Sudipta Chakraborty; Amalesh Choudhury
2013-01-01
A study on burrow architecture and burrow morphology of the red ghost crab (Ocypode macrocera) was carried out at the southern proximity of the Sagar island (21°37.973' N, to E 88° 04.195'), western sector of Indian Sundarbans that faces the regular tidal influences of Bay of Bengal. Ocypode macrocera constructs burrows that are highly species specific and used by single individual. Four types of burrow patterns were observed like ‘I’, ‘J’ ‘U’ and ‘semi-U’ type with different size...
Al-Khafaji, Ammar Shamil Kadhim
2018-01-01
The research investigates in details about the influence of cultural differences in Postcolonial Ghana as presented in Ama Ata Aidoo's "Dilemma of a Ghost". The play centers on the cross cultural marriage of young couple; Ato Yawson, a Ghanaian who recently completed his studies in the United States and returns home, and Eulali, his…