WorldWideScience

Sample records for ghg mitigation technology

  1. GHG emission mitigation measures and technologies in the Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Tichy, M. [Energy Efficiency Center, Prague (Czech Republic)

    1996-12-31

    The paper presents a short overview of main results in two fields: projection of GHG emission from energy sector in the Czech Republic and assessment of technologies and options for GHG mitigation. The last part presents an overview of measures that were prepared for potential inclusion to the Czech Climate Change Action Plan.

  2. National and Sectoral GHG Mitigation Potential

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This paper compares model estimates of national and sectoral GHG mitigation potential across six key OECD GHG-emitting economies: Australia, Canada, the EU, Japan, Mexico and the US. It examines the implications of model structure, baseline and policy assumptions, and assesses GHG mitigation potential estimates across a variety of models, including models that are used to inform climate policy-makers in each of these economies.

  3. GHG emissions and mitigation potential in Indian agriculture

    Science.gov (United States)

    Vetter, Sylvia; Feliciano, Diana; Sapkota, Tek; Hillier, Jon; Smith, Pete; Stirling, Clare

    2016-04-01

    India is one of the world's largest greenhouse gas (GHG) emitter, accounting for about 5% of global emissions with further increases expected in the future. The Government of India aims to reduce emission intensities by 20-25% by 2020 compared with the 2005 level. In a recent departure from past practice the reconvened Council on Climate Change stated that climate change in agriculture would include a component that would focus on reducing emissions in agriculture, particularly methane and nitrous oxide emissions. To develop recommendations for mitigation in agriculture in India, a baseline study is presented to analyse the GHG emissions from agriculture for current management (Directorate of Economics and Statistics of the government of India). This analysis is done for the two states Bihar and Haryana, which differ in their management and practises based on different climate and policies. This first analysis shows were the highest GHG emissions in agriculture is produced and were the highest mitigation potential might be. The GHG emissions and mitigation potential are calculated using the CCAFS Mitigation Option Tool (CCAFS-MOT) (https://ccafs.cgiar.org/mitigation-option-tool-agriculture#.VpTnWL826d4) with modifications for the special modelling. In a second step, stakeholder meetings provided a wide range of possible and definite scenarios (management, policy, technology, costs, etc.) for the future to mitigate emissions in agriculture as well as how to increase productivity. These information were used to create scenarios to give estimates for the mitigation potential in agriculture for India in 2020.

  4. Assessment of GHG mitigation technology measures in Ukraine

    Energy Technology Data Exchange (ETDEWEB)

    Raptsoun, N.; Parasiouk, N.

    1996-12-31

    In June 1992 the representatives of 176 countries including Ukraine met in Rio de Janeiro at the UN Conference to coordinate its efforts in protecting and guarding the environment. Signature of the UN Framework Convention on Climate Change by around 150 countries indicates that climate change is potentially a major threat to the world`s environment and economic development. The project {open_quotes}Country Study on Climate Change in Ukraine{close_quotes} coordinated by the Agency for Rational Energy Use and Ecology (ARENIA-ECO) and supported by the US Country Studies Program Support for Climate Change Studies. The aim of the project is to make the information related to climate change in Ukraine available for the world community by using the potential of Ukrainian research institutes for further concerted actions to solve the problem of climate change on the global scale. The project consists of four elements: (1) the development of the GHG Inventory in Ukraine; (2) assessments of ecosystems-vulnerability to climate change and adaptation options; and (3) mitigation options analysis; (4) public education and outreach activities. This paper contains the main results of the third element for the energy and non-energy sectors. Main tasks of the third element were: (1) to select, test and describe or develop the methodology for mitigation options assessment; (2) to analyze the main sources of GHG emissions in Ukraine; (3) to give the macro economic analysis of Ukrainian development and the development of main economical sectors industry, energy, transport, residential, forestry and agriculture; (4) to forecast GHG emissions for different scenarios of the economic development; and (5) to analyze the main measures to mitigate climate change.

  5. Genetic mitigation strategies to tackle agricultural GHG emissions: The case for biological nitrification inhibition technology.

    Science.gov (United States)

    Subbarao, G V; Arango, J; Masahiro, K; Hooper, A M; Yoshihashi, T; Ando, Y; Nakahara, K; Deshpande, S; Ortiz-Monasterio, I; Ishitani, M; Peters, M; Chirinda, N; Wollenberg, L; Lata, J C; Gerard, B; Tobita, S; Rao, I M; Braun, H J; Kommerell, V; Tohme, J; Iwanaga, M

    2017-09-01

    Accelerated soil-nitrifier activity and rapid nitrification are the cause of declining nitrogen-use efficiency (NUE) and enhanced nitrous oxide (N 2 O) emissions from farming. Biological nitrification inhibition (BNI) is the ability of certain plant roots to suppress soil-nitrifier activity, through production and release of nitrification inhibitors. The power of phytochemicals with BNI-function needs to be harnessed to control soil-nitrifier activity and improve nitrogen-cycling in agricultural systems. Transformative biological technologies designed for genetic mitigation are needed, so that BNI-enabled crop-livestock and cropping systems can rein in soil-nitrifier activity, to help reduce greenhouse gas (GHG) emissions and globally make farming nitrogen efficient and less harmful to environment. This will reinforce the adaptation or mitigation impact of other climate-smart agriculture technologies. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Estimating GHG emission mitigation supply curves of large-scale biomass use on a country level

    International Nuclear Information System (INIS)

    Dornburg, Veronika; Dam, Jinke van; Faaij, Andre

    2007-01-01

    This study evaluates the possible influences of a large-scale introduction of biomass material and energy systems and their market volumes on land, material and energy market prices and their feedback to greenhouse gas (GHG) emission mitigation costs. GHG emission mitigation supply curves for large-scale biomass use were compiled using a methodology that combines a bottom-up analysis of biomass applications, biomass cost supply curves and market prices of land, biomaterials and bioenergy carriers. These market prices depend on the scale of biomass use and the market volume of materials and energy carriers and were estimated using own-price elasticities of demand. The methodology was demonstrated for a case study of Poland in the year 2015 applying different scenarios on economic development and trade in Europe. For the key technologies considered, i.e. medium density fibreboard, poly lactic acid, electricity and methanol production, GHG emission mitigation costs increase strongly with the scale of biomass production. Large-scale introduction of biomass use decreases the GHG emission reduction potential at costs below 50 Euro /Mg CO 2eq with about 13-70% depending on the scenario. Biomaterial production accounts for only a small part of this GHG emission reduction potential due to relatively small material markets and the subsequent strong decrease of biomaterial market prices at large scale of production. GHG emission mitigation costs depend strongly on biomass supply curves, own-price elasticity of land and market volumes of bioenergy carriers. The analysis shows that these influences should be taken into account for developing biomass implementations strategies

  7. Viet Nam - Nuclear power for GHG mitigation and sustainable energy development

    International Nuclear Information System (INIS)

    Le Doan Phac; Nguyen Tien Nguyen; Le Van Hong; Nguyen Huu Thanh; Nguyen Anh Tuan

    2000-01-01

    The Government of Viet Nam has recently formulated a national energy programme entitled Strategy and Policy of Sustainable Energy Development. Its aim is to define a development policy for the country for the period from 2000 to 2020. The main objectives of the national energy programme are: 1. Increasing energy efficiency and demand side management (DSM) 2. Expanding rural electrification 3. Defining an energy price policy (e.g. pricing such that revenues cover costs) 4. Minimizing environmental impacts 5. Encouraging private investment in the energy and electricity sectors 6. Energy supply security 7. Diversifying energy sources, and 8. Exploring the potential role of nuclear power in Viet Nam. In formulating this programme, one of the objectives has been to minimize environmental impacts, including those caused by the electricity sector. Nevertheless, the shortage of investment capital in Viet Nam and the difficulty of securing favourable financial arrangements are crucial obstacles to the introduction of new technology options to mitigate GHG emissions. Viet Nam views CDM as an opportunity to find ways to overcome such problems and expects that all GHG mitigating technologies will be considered equally under the CDM

  8. Assessment of GHG mitigation and CDM technology in urban transport sector of Chandigarh, India.

    Science.gov (United States)

    Bhargava, Nitin; Gurjar, Bhola Ram; Mor, Suman; Ravindra, Khaiwal

    2018-01-01

    The increase in number of vehicles in metropolitan cities has resulted in increase of greenhouse gas (GHG) emissions in urban environment. In this study, emission load of GHGs (CO, N 2 O, CO 2 ) from Chandigarh road transport sector has been estimated using Vehicular Air Pollution Inventory (VAPI) model, which uses emission factors prevalent in Indian cities. Contribution of 2-wheelers (2-w), 3-wheelers (3-w), cars, buses, and heavy commercial vehicles (HCVs) to CO, N 2 O, CO 2 , and total GHG emissions was calculated. Potential for GHG mitigation through clean development mechanism (CDM) in transport sector of Chandigarh under two scenarios, i.e., business as usual (BAU) and best estimate scenario (BES) using VAPI model, has been explored. A major contribution of GHG load (~ 50%) in Chandigarh was from four-wheelers until 2011; however, it shows a declining trend after 2011 until 2020. The estimated GHG emission from motor vehicles in Chandigarh has increased more than two times from 1065 Gg in 2005 to 2486 Gg by 2011 and is expected to increase to 4014 Gg by 2020 under BAU scenario. Under BES scenario, 30% of private transport has been transformed to public transport; GHG load was possibly reduced by 520 Gg. An increase of 173 Gg in GHGs load is projected from additional scenario (ADS) in Chandigarh city if all the diesel buses are transformed to CNG buses by 2020. Current study also offers potential for other cities to plan better GHG reduction strategies in transport sector to reduce their climate change impacts.

  9. New power generation technology options under the greenhouse gases mitigation scenario in China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qiang [Graduate University of Chinese Academy of Science, 19A Yu Quan Road, Beijing 100049 (China); Energy Research Institute, Guohong Mansion, Xicheng District, Beijing 100038 (China); Shi, Minjun [Graduate University of Chinese Academy of Science, 19A Yu Quan Road, Beijing 100049 (China); Jiang, Kejun [Energy Research Institute, Guohong Mansion, Xicheng District, Beijing 100038 (China)

    2009-06-15

    Climate change has become a global issue. Almost all countries, including China, are now considering adopting policies and measures to reduce greenhouse gas (GHG) emissions. The power generation sector, as a key source of GHG emissions, will also have significant potential for GHG mitigation. One of the key options is to use new energy technologies with higher energy efficiencies and lower carbon emissions. In this article, we use an energy technology model, MESSAGE-China, to analyze the trend of key new power generation technologies and their contributions to GHG mitigation in China. We expect that the traditional renewable technologies, high-efficiency coal power generation and nuclear power will contribute substantially to GHG mitigation in the short term, and that solar power, biomass energy and carbon capture and storage (CCS) will become more important in the middle and long term. In the meantime, in order to fully bring the role of technology progress into play, China needs to enhance the transfer and absorption of international advanced technologies and independently strengthen her ability in research, demonstration and application of new power generation technologies. (author)

  10. New power generation technology options under the greenhouse gases mitigation scenario in China

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, Liu [Graduate University of Chinese Academy of Science, 19A Yu Quan Road, Beijing 100049 (China); Energy Research Institute, Guohong Mansion, Xicheng District, Beijing 100038 (China)], E-mail: liuqiang@eri.org.cn; Minjun, Shi [Graduate University of Chinese Academy of Science, 19A Yu Quan Road, Beijing 100049 (China); Kejun, Jiang [Energy Research Institute, Guohong Mansion, Xicheng District, Beijing 100038 (China)

    2009-06-15

    Climate change has become a global issue. Almost all countries, including China, are now considering adopting policies and measures to reduce greenhouse gas (GHG) emissions. The power generation sector, as a key source of GHG emissions, will also have significant potential for GHG mitigation. One of the key options is to use new energy technologies with higher energy efficiencies and lower carbon emissions. In this article, we use an energy technology model, MESSAGE-China, to analyze the trend of key new power generation technologies and their contributions to GHG mitigation in China. We expect that the traditional renewable technologies, high-efficiency coal power generation and nuclear power will contribute substantially to GHG mitigation in the short term, and that solar power, biomass energy and carbon capture and storage (CCS) will become more important in the middle and long term. In the meantime, in order to fully bring the role of technology progress into play, China needs to enhance the transfer and absorption of international advanced technologies and independently strengthen her ability in research, demonstration and application of new power generation technologies.

  11. Greenhouse Gas Mitigation Options Database and Tool - Data repository of GHG mitigation technologies.

    Science.gov (United States)

    Industry and electricity production facilities generate over 50 percent of greenhouse gas (GHG) emissions in the United States. There is a growing consensus among scientists that the primary cause of climate change is anthropogenic greenhouse gas (GHG) emissions. Reducing GHG emi...

  12. Modeling the Heterogeneous Effects of GHG Mitigation Policies on Global Agriculture and Forestry

    Science.gov (United States)

    Golub, A.; Henderson, B.; Hertel, T. W.; Rose, S. K.; Sohngen, B.

    2010-12-01

    Agriculture and forestry are envisioned as potentially key sectors for climate change mitigation policy, yet the depth of analysis of mitigation options and their economic consequences remains remarkably shallow in comparison to that for industrial mitigation. Farming and land use change - much of it induced by agriculture -account for one-third of global greenhouse gas (GHG) emissions. Any serious attempt to curtail these emissions will involve changes in the way farming is conducted, as well as placing limits on agricultural expansion into areas currently under more carbon-intensive land cover. However, agriculture and forestry are extremely heterogeneous, both in the technology and intensity of production, as well as in the GHG emissions intensity of these activities. And these differences, in turn, give rise to significant changes in the distribution of agricultural production, trade and consumption in the wake of mitigation policies. This paper assesses such distributional impacts via a global economic analysis undertaken with a modified version of the GTAP model. The paper builds on a global general equilibrium GTAP-AEZ-GHG model (Golub et al., 2009). This is a unified modeling framework that links the agricultural, forestry, food processing and other sectors through land, and other factor markets and international trade, and incorporates different land-types, land uses and related CO2 and non-CO2 GHG emissions and sequestration. The economic data underlying this work is the global GTAP data base aggregated up to 19 regions and 29 sectors. The model incorporates mitigation cost curves for different regions and sectors based on information from the US-EPA. The forestry component of the model is calibrated to the results of the state of the art partial equilibrium global forestry model of Sohngen and Mendelson (2007). Forest carbon sequestration at both the extensive and intensive margins are modeled separately to better isolate land competition between

  13. GHG mitigation of agricultural peatlands requires coherent policies

    DEFF Research Database (Denmark)

    Regina, Kristina; Budiman, Arif; Greve, Mogens Humlekrog

    2016-01-01

    As soon as peat soil is drained for agricultural production, the peat starts to degrade, which causes emissions to the atmosphere. In countries with large peatland areas, the GHG mitigation potential related to management of these soils is often estimated as the highest amongst the measures...

  14. Challenges in Implementing Emission Mitigation Technologies in Indonesia Agricultural Sector: Criticizing the Available Mitigation Technologies

    Directory of Open Access Journals (Sweden)

    Malahayati Marissa

    2018-03-01

    Full Text Available Reduction of Green House Gas (GHG emissions in the agricultural sector is the main target for reducing non-CO2 emissions. In Indonesia, the agricultural sector is the third largest GHG emitter, far behind that from Land Use Change and Forestry (LUCF and the energy sector. However, the agricultural sector is the biggest contributor of non-CO2 emissions and is also the most vulnerable sector to climate change. The Indonesian government is committed to reduce total emission inform current levels by 29% by 2030 under Nationally Determined Contribution (NDC. This will require reductions in emissions from all sectors including agriculture. Several mitigation technologies have been recommended by UNFCCC for implementation such as replacing urea with ammonium sulfate fertilizer; replacing nitrogen fertilizer with multicontent fertilizer; water irrigation management; replacing roughage with concentrate as livestock feed; and building biogas digesters. From our Computer General Equilibrium (CGE simulation, if the focus of mitigation technology implementation in agriculture is to reduce non-CO2 emissions gases such as CH4 and N2O, then a comprehensive approach is needed. If the government implements the technology partially, we predict there will be a trade-off between CH4 and N2O emission. However, our simulation shows the loss to GDP caused by a new emission mitigation policy is very high even though Indonesia has invested for mitigation technology in agriculture. This is because we consider the additional investment needed will be costly and some technologies may not be suitable for implementation in Indonesia. In this research, we review current literature and examine each technology and its cost and compatibility with Indonesian situations in order to make policy recommendations for implementation by the Indonesia government.

  15. Fuel conservation and GHG (Greenhouse gas) emissions mitigation scenarios for China’s passenger vehicle fleet

    International Nuclear Information System (INIS)

    Hao, Han; Wang, Hewu; Ouyang, Minggao

    2011-01-01

    Passenger vehicles are the main consumers of gasoline in China. We established a bottom-up model which focuses on the simulation of energy consumptions and greenhouse gas (GHG) emissions growth by China’s passenger vehicle fleet. The fuel conservation and GHG emissions mitigation effects of five measures including constraining vehicle registration, reducing vehicle travel, strengthening fuel consumption rate (FCR) limits, vehicle downsizing and promoting electric vehicle (EV) penetration were evaluated. Based on the combination of these measures, the fuel conservation and GHG emissions mitigation scenarios for China’s passenger vehicle fleet were analyzed. Under reference scenario with no measures implemented, the fuel consumptions and life cycle GHG emissions will reach 520 million tons of oil equivalent (Mtoe) and 2.15 billion tons in 2050, about 8.1 times the level in 2010. However, substantial fuel conservation can be achieved by implementing the measures. By implementing all five measures together, the fuel consumption will reach 138 Mtoe in 2030 and decrease to 126 Mtoe in 2050, which is only 37.1% and 24.3% of the consumption under reference scenario. Similar potential lies in GHG mitigation. The results and scenarios provided references for the Chinese government’s policy-making. -- Highlights: ► We established a bottom-up model to simulate the fuel consumptions and GHG (Greenhouse gas) emissions growth by China’s passenger vehicle fleet. ► Five measures including constraining vehicle registration, reducing vehicle travel, improving fuel efficiency, vehicle downsizing and promoting EV penetration were evaluated. ► The fuel conservation and GHG emissions mitigation scenarios for China’s passenger vehicle fleet were provided as references for policy-making.

  16. Cost effectiveness of GHG mitigation options and policy implication

    Energy Technology Data Exchange (ETDEWEB)

    Lim, K. S. [Korea Institute for Industrial Economics and Trade, Seoul (Korea, Republic of)

    1998-04-01

    This paper represents the summary findings and conclusions of several studies implemented about microeconomics and macroeconomics marginal costs of GHG abatement policies. Financial, economic, and, where possible, environmental microeconomics costs of reducing GHGs are estimated by a World Bank team. Six energy-related CO{sub 2} mitigation policy options are applied to estimate the macroeconomics costs of GHG emission reduction, the macroeconomics impacts on the Chinese economy. In terms of policy, conservation is a better option to cope with a restrictive mitigation constraint, assuming a developing country can achieve planned energy-saving targets. Without a CO{sub 2} emission constraint or with less restrictive CO{sub 2} emission constraints, however, the simulation results indicate that a conservation strategy may be less attractive than fuel substitution in a developing country, mainly due to the economic dampening effect of reduced production in the energy sectors. This finding suggests that an often-cited costless or negative-cost energy conservation policy may not be a better option when a less restrictive mitigation target is in force. This does not mean that the potential for energy efficiency improvements in a developing country is not worthwhile, but that the overall macroeconomics impacts should be considered before implementing the policy option. (author). 9 refs., 3 figs., 3 tabs.

  17. Assessment of potential greenhouse gas mitigation of available household solid waste treatment technologies

    Directory of Open Access Journals (Sweden)

    Hoang Minh Giang

    2013-11-01

    Full Text Available Current household solid waste treatment practices in most cities in Vietnam caused a great amount of direct greenhouse gas (GHG emissions. Available solid waste treatment technologies should be seriously taken  into consideration as a wedge of GHG mitigation in waste sector base on presently Vietnamese economic conditions. This study aim to evaluate the potential amount of GHG mitigation from current domestic solid waste treatment technologies in Vietnam including landfills and composting from various management scenarios. In oder to use Tier 2 model of IPCC 2006 for GHG estimation from landfills, an analysis on current household solid waste management system of the city was obtained by using material flow analysis approach. A case study in Hanoi, the capital city of Vietnam was carried out in this research. As a result, there was a reduced of over 70% of the amount of CH4 emissions and  up to 53% of total GHG saving (CO2-eq from avoiding organic waste to landfill. In addition, applying an energy recovery from LFG system to available landfills would lead to aproximately 75% of GHG saved compare to current emission of waste sector.Doi: http://dx.doi.org/10.12777/wastech.1.1.10-16Citation: Giang, H.M.,Luong, N.D., and Huong, L.T.M.2013. Assessment of potential greenhouse gas mitigation of available household solid waste treatment technologies. . Waste Technology 1(1:6-9. Doi: http://dx.doi.org/10.12777/wastech.1.1.10-16

  18. Assessment of mitigation pathways of GHG emissions from the Korean waste sector through 2050

    Directory of Open Access Journals (Sweden)

    Yongjoo Chung

    2018-05-01

    Full Text Available The waste sector may play a significant role in national mitigation policies with further greenhouse gas (GHG reduction opportunities mainly because of its linkage to other sectors. However, the waste sector has not drawn much attention from research community mainly because the amount of GHG emissions from the waste sector is notably smaller than other sectors. This study presents emissions estimation and mitigation potentials of the waste sector in Korea. Emission estimates and business-as-usual emissions through 2050 are estimated based on four different treatment methods, including landfill, incineration, wastewater, and biological treatment by considering country-specific emission parameters of wastes, where available. Different types of wastes for each treatment method are investigated to obtain accurate emission estimates. It is expected that GHG emissions in 2050 are about 12.0 Tg CO2eq, which is 17% less than those in 2010. Mitigation potentials and economic impacts of five different measures are also investigated, and it is revealed that the production of refuse drive fuel from combustible municipal solid wastes may render the greatest benefit with the most mitigation potential of 649 kt CO2eq. An interdependent nature among mitigation measures is further discussed and it is shown that, if implemented together, the accumulated mitigation potentials are far less than the simple sum of individual potentials. It is implied that an aggregate potential of individual measures needs to be examined when implementing several mitigation measures simultaneously. This study outlines how to investigate emissions estimation and mitigation pathways for the waste sector in a national level. Keywords: Greenhouse gas, Emissions estimation, Waste treatment, Mitigation potential, Marginal abatement cost

  19. Evaluating the effectiveness of urban energy conservation and GHG mitigation measures: The case of Xiamen city, China

    International Nuclear Information System (INIS)

    Lin Jianyi; Cao Bin; Cui Shenghui; Wang Wei; Bai Xuemei

    2010-01-01

    To assess the effectiveness of urban energy conservation and GHG mitigation measures, a detailed Long-range Energy Alternatives Planning (LEAP) model is developed and applied to analyze the future trends of energy demand and GHG emissions in Xiamen city. Two scenarios have been designed to describe the future energy strategies in relation to the development of Xiamen city. The 'Business as Usual' scenario assumes that the government will do nothing to influence the long-term trends of urban energy demand. An 'Integrated' scenario, on the other hand, is generated to assess the cumulative impact of a series of available reduction measures: clean energy substitution, industrial energy conservation, combined heat and power generation, energy conservation in building, motor vehicle control, and new and renewable energy development and utilization. The reduction potentials in energy consumption and GHG emissions are estimated for a time span of 2007-2020 under these different scenarios. The calculation results in Xiamen show that the clean energy substitution measure is the most effective in terms of energy saving and GHG emissions mitigation, while the industrial sector has the largest abatement potential.

  20. Thailand's Low-Carbon Scenario 2050: The AIM/CGE analyses of CO2 mitigation measures

    International Nuclear Information System (INIS)

    Thepkhun, Panida; Limmeechokchai, Bundit; Fujimori, Shinichiro; Masui, Toshihiko; Shrestha, Ram M.

    2013-01-01

    Climate change and CO 2 mitigation have become increasingly important environmental issues. Recently Thailand has proposed policies on GHG mitigation such as Thailand’s Nationally Appropriate Mitigation Action (NAMA), which aims at GHG mitigation in the energy sector. This study used the computable general equilibrium (CGE) model, called “AIM/CGE” model, to analyse GHG mitigation measures under emission trading and carbon capture and storage (CCS) technology in Thailand. Results show that the international free emission trading policy can drive more GHG reduction by decreasing energy supply and demand, and increasing prices of emissions. The CCS technologies would balance emission reduction but they would reduce energy efficiency improvement and renewable energy utilization. In the energy security aspect, the policy options in this study would improve energy security, energy import dependency, and co-benefits of GHG mitigation in forms of improving local air quality. Results are also helpful to GHG mitigation policy in developing countries. -- Highlights: •A Computable General Equilibrium (CGE) model was used to analyze GHG mitigation policies in Thailand. •The CCS and emission trading will increase GHG mitigation in Thailand. •The 30% GHG mitigation target with 50% emission trading will give the best result in GDP. •The share of biomass resource and energy efficiency will decrease with CCS. •The emission trading will play an important role in decreasing fossil consumption and increasing renewable energy utilization

  1. Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Lingbo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); South China Univ. of Technology (SCUT), Guangzhou (China); Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-11-01

    The pulp and paper industry ranks fourth in terms of energy consumption among industries worldwide. Globally, the pulp and paper industry accounted for approximately 5 percent of total world industrial final energy consumption in 2007, and contributed 2 percent of direct carbon dioxide (CO2) emissions from industry. Worldwide pulp and paper demand and production are projected to increase significantly by 2050, leading to an increase in this industry’s absolute energy use and greenhouse gas (GHG) emissions. Development of new energy-efficiency and GHG mitigation technologies and their deployment in the market will be crucial for the pulp and paper industry’s mid- and long-term climate change mitigation strategies. This report describes the industry’s processes and compiles available information on the energy savings, environmental and other benefits, costs, commercialization status, and references for 36 emerging technologies to reduce the industry’s energy use and GHG emissions. Although studies from around the world identify a variety of sector-specific and cross-cutting energy-efficiency technologies that have already been commercialized for the pulp and paper industry, information is scarce and/or scattered regarding emerging or advanced energy-efficiency and low-carbon technologies that are not yet commercialized. The purpose of this report is to provide engineers, researchers, investors, paper companies, policy makers, and other interested parties with easy access to a well-structured resource of information on these technologies.

  2. Fossil energy savings and GHG mitigation potentials of ethanol as a gasoline substitute in Thailand

    International Nuclear Information System (INIS)

    Nguyen, Thu Lan T.; Gheewala, Shabbir H.; Garivait, Savitri

    2007-01-01

    One of the Thai government's measures to promote ethanol use is excise tax exemption, making gasohol cheaper than gasoline. The policy in favour of biofuels is being supported by their contribution to fossil energy savings and greenhouse gas (GHG) mitigation. An analysis of energy balance (EnB), GHG balance and GHG abatement cost has been done to evaluate molasses-based ethanol (MoE) in Thailand. A positive EnB of 19.2 MJ/L implies that MoE is a good substitute for gasoline, effective in fossil energy savings. GHG balance assessment based on the baseline scenario shows that emissions are most likely to increase with the substitution. Scenarios using biogas captured from spent wash treatment and rice husk to substitute coal used in ethanol conversion give encouraging results in improving the GHG balance. However, the higher price of MoE over gasoline currently has resulted in high GHG abatement costs, even under the best-case scenario. Compared to the many other climate strategies relevant to Thailand, MoE is much less cost effective. Governed by the rule of supply and demand, a strong fluctuation in molasses price is considered the main cause of volatile MoE price. Once supplies are stable, the trend of price drops would make MoE a reasonable option for national climate policy

  3. Pakistan - Nuclear power for GHG mitigation and sustainable energy development

    International Nuclear Information System (INIS)

    Ahmad, Mohammad; Jalal, A.I.; Mumtaz, A.; Latif, M.

    2000-01-01

    Although Pakistan's contribution to global GHG emissions is very small (currently only 0.3% of world-wide emissions), it shares with the world community the concerns of climate change due to the build-up of GHGs. Pakistan is committed to co-operating with global efforts to avert the potential threat of global warming and is already working towards its own socio-economic development in a sustainable manner. However, due to the country's limited technical and financial capabilities, its efforts are diluted and limited to only high priority areas of national interest. There is a large potential for expanding these efforts, if the necessary technical and financial support can be made available, and such an expansion would contribute significantly to the collective global objective of sustainable development. One such step is the reduction of GHG emissions from Pakistan's power sector by introducing advanced cleaner technologies. Nuclear power is one such technology

  4. General equilibrium effects of a supply side GHG mitigation option under the Clean Development Mechanism.

    Science.gov (United States)

    Timilsina, Govinda R; Shrestha, Ram M

    2006-09-01

    The Clean Development Mechanism (CDM) under the Kyoto Protocol to the United Nations Framework Convention on Climate Change is considered a key instrument to encourage developing countries' participation in the mitigation of global climate change. Reduction of greenhouse gas (GHG) emissions through the energy supply and demand side activities are the main options to be implemented under the CDM. This paper analyses the general equilibrium effects of a supply side GHG mitigation option-the substitution of thermal power with hydropower--in Thailand under the CDM. A static multi-sector general equilibrium model has been developed for the purpose of this study. The key finding of the study is that the substitution of electricity generation from thermal power plants with that from hydropower plants would increase economic welfare in Thailand. The supply side option would, however, adversely affect the gross domestic product (GDP) and the trade balance. The percentage changes in economic welfare, GDP and trade balance increase with the level of substitution and the price of certified emission reduction (CER) units.

  5. Mitigation technologies and measures in energy sector of Kazakstan

    Energy Technology Data Exchange (ETDEWEB)

    Pilifosova, O.; Danchuk, D.; Temertekov, T. [and others

    1996-12-31

    An important commitment in the UN Framework Convention on Climate Change is to conduct mitigation analysis and to communicate climate change measures and policies. In major part reducing CO{sub 2} as well as the other greenhouse gas emissions in Kazakstan, can be a side-product of measures addressed to increasing energy efficiency. Since such measures are very important for the national economy, mitigation strategies in the energy sector of Kazakstan are directly connected with the general national strategy of the energy sector development. This paper outlines the main measures and technologies in energy sector of Kazakstan which can lead to GHG emissions reduction and presents the results of current mitigation assessment. The mitigation analysis is addressed to energy production sector. A baseline and six mitigation scenarios were developed to evaluate the most attractive mitigation options, focusing on specific technologies which have been already included in sustainable energy programs. According to the baseline projection, Kazakstan`s CO{sub 2} emissions will not exceed their 1990 level until 2005. The potential for CO{sub 2} emission reduction is estimated to be about 11 % of the base line emission level by the end of considered period (in 2020). The main mitigation options in the energy production sector in terms of mitigation potential and technical and economical feasibility include rehabilitation of thermal power plants aimed to increasing efficiency, use of nuclear energy and further expansion in the use of hydro energy based on small hydroelectric power plants.

  6. Opportunities to integrate solar technologies into the Chilean lithium mining industry - reducing process related GHG emissions of a strategic storage resource

    Science.gov (United States)

    Telsnig, Thomas; Potz, Christian; Haas, Jannik; Eltrop, Ludger; Palma-Behnke, Rodrigo

    2017-06-01

    The arid northern regions of Chile are characterized by an intensive mineral mining industry and high solar irradiance levels. Besides Chile's main mining products, copper, molybdenum and iron, the production of lithium carbonate from lithium containing brines has become strategically important due to the rising demand for battery technologies worldwide. Its energy-intensive production may affect the ecological footprint of the product and the country's climate targets. Thus, the use of solar technologies for electricity and heat production might constitute an interesting option for CO2 mitigation. This study aims to quantify the impacts of the lithium carbonate production processes in Chile on climate change, and to identify site-specific integration options of solar energy technologies to reduce GHG life-cycle emissions. The considered solar integration options include a parabolic trough power plant with a molten salt storage, a solar tower power plant with molten salt receiver and molten salt storage, a one-axis tracking photovoltaic energy system for electricity, and two solar thermal power plants with Ruths storage (steam accumulator) for thermal heat production. CSP plants were identified as measures with the highest GHG mitigation potential reducing the CO2 emissions for the entire production chain and the lithium production between 16% and 33%. In a scenario that combines solar technologies for electricity and thermal energy generation, up to 59% of the CO2 emissions at the lithium production sites in Chile can be avoided. A comparison of the GHG abatement costs of the proposed solar integration options indicates that the photovoltaic system, the solar thermal plant with limited storage and the solar tower power plant are the most cost effective options.

  7. A Systems Approach to Reducing Institutional GHG Emissions

    Science.gov (United States)

    Williamson, Sean R.

    2012-01-01

    Purpose: The purpose of this paper is to establish necessity and methods for considering greenhouse gas (GHG) mitigation policies at a system-level. The research emphasizes connecting narrowly focused GHG mitigation objectives (e.g. reduce single occupancy vehicle travel) with broader institutional objectives (e.g. growth in student population) to…

  8. Mitigation of greenhouse gas emissions by adopting anaerobic digestion technology on dairy, sow and pig farms in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Kaparaju, P.; Rintala, J. [Department of Biological and Environmental Science, University of Jyvaeskylae, P.O. Box 35, FIN-40014 Jyvaeskylae (Finland)

    2011-01-15

    The impact of anaerobic digestion (AD) technology on mitigating greenhouse gas (GHG) emissions from manure management on typical dairy, sow and pig farms in Finland was compared. Firstly, the total annual GHG emissions from the farms were calculated using IPCC guidelines for a similar slurry type manure management system. Secondly, laboratory-scale experiments were conducted to estimate methane (CH{sub 4}) potentials and process parameters for semi-continuous digestion of manures. Finally, the obtained experimental data were used to evaluate the potential renewable energy production and subsequently, the possible GHG emissions that could be avoided through adoption of AD technology on the studied farms. Results showed that enteric fermentation (CH{sub 4}) and manure management (CH{sub 4} and N{sub 2}O) accounted for 231.3, 32.3 and 18.3 Mg of CO{sub 2} eq. yr{sup -1} on dairy, sow and pig farms, respectively. With the existing farm data and experimental methane yields, an estimated renewable energy of 115.2, 36.3 and 79.5 MWh of heat yr{sup -1} and 62.8, 21.8 and 47.7 MWh of electricity yr{sup -1} could be generated in a CHP plant on these farms respectively. The total GHG emissions that could be offset on the studied dairy cow, sow and pig farms were 177, 87.7 and 125.6 Mg of CO{sub 2} eq. yr{sup -1}, respectively. The impact of AD technology on mitigating GHG emissions was mainly through replaced fossil fuel consumption followed by reduced emissions due to reduced fertilizer use and production, and from manure management. (author)

  9. Liberalised electricity markets, new bioenergy technologies, and GHG emission reductions: interactions and CO2 mitigation costs

    International Nuclear Information System (INIS)

    Gustavsson, L.; Madlener, R.

    1999-01-01

    We contrast recent developments in power and heat production with bioenergy, and natural-gas-fired condensing plants with and without decarbonisation, in the light of electricity market liberalisation. Our main focus is on CO 2 mitigation costs and carbon tax sensitivity of production costs. We find that CO 2 mitigation costs are lower for biomass systems using IGCC technology than for natural gas system using decarbonisation. However, based on current fuel prices natural-gas fired co-generation plants have the lowest production costs. Hence energy policy measures will be needed to promote biomass technologies and decarbonisation options on a liberalised market. (author)

  10. Reporting and Recording Post 2012 GHG Mitigation Commitments, Actions and Support

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This study assesses the long-term economic and environmental effects of introducing price caps and price floors in hypothetical climate change mitigation architecture, which aims to reduce global energy-related CO2 emissions by 50% by 2050. Based on abatement costs in IPCC and IEA reports, this quantitative analysis confirms what qualitative analyses have already suggested: introducing price caps could significantly reduce economic uncertainty. This uncertainty stems primarily from unpredictable economic growth and energy prices, and ultimately unabated emission trends. In addition, the development of abatement technologies is uncertain. With price caps, the expected costs could be reduced by about 50% and the uncertainty on economic costs could be one order of magnitude lower. Reducing economic uncertainties may spur the adoption of more ambitious policies by helping to alleviate policy makers' concerns of economic risks. Meanwhile, price floors would reduce the level of emissions beyond the objective if the abatement costs ended up lower than forecasted. If caps and floors are commensurate with the ambition of the policy pursued and combined with slightly tightened emission objectives, climatic results could be on average similar to those achieved with 'straight' objectives (i.e. with no cost-containment mechanism). This papers reviews current proposals in the UNFCCC negotiations for future mechanisms to report and record Parties' GHG mitigation actions and commitments, as well as support provided for such actions. It explores the possible purposes, coverage and form of a reporting/recording mechanism post-2012 and highlights the decision points that are needed in order to establish such a mechanism. It examines what information such a mechanism could include in terms of actions, commitments and support, as well as the institutional implications of different design options.

  11. Research and Development of a DNDC Online Model for Farmland Carbon Sequestration and GHG Emissions Mitigation in China.

    Science.gov (United States)

    Jiang, Zaidi; Yin, Shan; Zhang, Xianxian; Li, Changsheng; Shen, Guangrong; Zhou, Pei; Liu, Chunjiang

    2017-12-01

    Appropriate agricultural practices for carbon sequestration and emission mitigation have a significant influence on global climate change. However, various agricultural practices on farmland carbon sequestration usually have a major impact on greenhouse gas (GHG) emissions. It is very important to accurately quantify the effect of agricultural practices. This study developed a platform-the Denitrification Decomposition (DNDC) online model-for simulating and evaluating the agricultural carbon sequestration and emission mitigation based on the scientific process of the DNDC model, which is widely used in the simulation of soil carbon and nitrogen dynamics. After testing the adaptability of the platform on two sampling fields, it turned out that the simulated values matched the measured values well for crop yields and GHG emissions. We used the platform to estimate the effect of three carbon sequestration practices in a sampling field: nitrogen fertilization reduction, straw residue and midseason drainage. The results indicated the following: (1) moderate decrement of the nitrogen fertilization in the sampling field was able to decrease the N₂O emission while maintaining the paddy rice yield; (2) ground straw residue had almost no influence on paddy rice yield, but the CH₄ emission and the surface SOC concentration increased along with the quantity of the straw residue; (3) compared to continuous flooding, midseason drainage would not decrease the paddy rice yield and could lead to a drop in CH₄ emission. Thus, this study established the DNDC online model, which is able to serve as a reference and support for the study and evaluation of the effects of agricultural practices on agricultural carbon sequestration and GHG emissions mitigation in China.

  12. Towards better GHG emissions savings with use of ISO GHG standards

    International Nuclear Information System (INIS)

    Chan Kook Weng

    2010-01-01

    The 15th Conference of Parties (COP 15) at Copenhagen, Denmark in December 2009 highlighted the need to combat climate change by facing the challenge of committing to reducing our emissions at all three levels with locally appropriate mitigation actions (LAMAs) at the local level to be linked to the nationally appropriate mitigation actions (NAMAs) and then contribute onwards to globally appropriate mitigation actions (GAMAs). The aim is to find solutions for both adaptation and mitigation by ensuring sufficient means are made available to support such efforts. This is because the world in entering a new phase that will be characterised by green growth in business. Thus be it agriculture that uses local knowledge of specific crop and livestock varieties to help in secure food supply, bio-energy, transport, industries, there must be policies to understand ecosystem-based to link people, biodiversity, energy, water and carbon so as to be more resilient and adaptable to the need for a low carbon economy in todays society.Climate change therefore affects organisations in many areas and they include legal compliance, carbon market, corporate social responsibility and sustainable development. Promoting sustainability requires making efficient use of energy, water and natural resources, decrease in waste load through recycling and streamlining the processes leading to everything that decreases their CO 2 and water footprints. Currently there are many GHG schemes and programmes and the issues centres around compatibility, costs and most importantly credibility. Achieving real GHG emissions reduction requires controlled and verified emissions reductions and quantification that are sound and verifiable. Thanks to the development of the ISO suite of standards on GHG and related matters, the use of these harmonised standards has given the assurance that a tonne of carbon is a tonne of carbon be it in Malaysia, Mali or Mongolia.The use of these standards like ISO 14064 Part 1

  13. The impact of uncertainties on predicted GHG emissions of dairy cow production systems

    NARCIS (Netherlands)

    Zehetmeier, M.; Gandorfer, M.; Hoffmann, H.; Muller, U.K.; Boer, de I.J.M.

    2014-01-01

    Dairy farms produce significant greenhouse gas (GHG) emissions and are therefore a focal point for GHG-mitigation practices. To develop viable mitigation options, we need robust (insensitive to changes in model parameters and assumptions) predictions of GHG emissions. To this end, we developed a

  14. Co-benefits of greenhouse gas mitigation: a review and classification by type, mitigation sector, and geography

    Science.gov (United States)

    Deng, Hong-Mei; Liang, Qiao-Mei; Liu, Li-Jing; Diaz Anadon, Laura

    2017-12-01

    The perceived inability of climate change mitigation goals alone to mobilize sufficient climate change mitigation efforts has, among other factors, led to growing research on the co-benefits of reducing greenhouse gas (GHG) emissions. This study conducts a systematic review (SR) of the literature on the co-benefits of mitigating GHG emissions resulting in 1554 papers. We analyze these papers using bibliometric analysis, including a keyword co-occurrence analysis. We then iteratively develop and present a typology of co-benefits, mitigation sectors, geographic scope, and methods based on the manual double coding of the papers resulting from the SR. We find that the co-benefits from GHG mitigation that have received the largest attention of researchers are impacts on ecosystems, economic activity, health, air pollution, and resource efficiency. The co-benefits that have received the least attention include the impacts on conflict and disaster resilience, poverty alleviation (or exacerbation), energy security, technological spillovers and innovation, and food security. Most research has investigated co-benefits from GHG mitigation in the agriculture, forestry and other land use (AFOLU), electricity, transport, and residential sectors, with the industrial sector being the subject of significantly less research. The largest number of co-benefits publications provide analysis at a global level, with relatively few studies providing local (city) level analysis or studying co-benefits in Oceanian or African contexts. Finally, science and engineering methods, in contrast to economic or social science methods, are the methods most commonly employed in co-benefits papers. We conclude that given the potential mobilizing power of understudied co-benefits (e.g. poverty alleviation) and local impacts, the magnitude of GHG emissions from the industrial sector, and the fact that Africa and South America are likely to be severely affected by climate change, there is an opportunity

  15. GHG emission scenarios in Asia and the world: The key technologies for significant reduction

    International Nuclear Information System (INIS)

    Akashi, Osamu; Hijioka, Yasuaki; Masui, Toshihiko; Hanaoka, Tatsuya; Kainuma, Mikiko

    2012-01-01

    In this paper, we explore GHG emission scenarios up to 2050 in Asia and the world as part of the Asian Modeling Exercise and assess technology options for meeting a 2.6 W/m 2 radiative forcing target using AIM/Enduse[Global] and AIM/Impact[Policy]. Global GHG emissions in 2050 are required to be reduced by 72% relative to a reference scenario, which corresponds to a 57% reduction from the 2005 level, in order to meet the above target. Energy intensity improvement contributes a lot to curbing CO 2 emission in the short-term. Meanwhile, carbon intensity reduction and CO 2 capture play a large role for further emission reduction in the mid to long-term. The top five key technologies in terms of reduction amount are CCS, solar power generation, wind power generation, biomass power generation and biofuel, which, in total, account for about 60% of global GHG emissions reduction in 2050. We implement additional model runs, each of which enforced limited availability of one of the key technology. The result shows that the 2.6 W/m 2 target up to 2050 is achievable even if availability of any one of the key technologies is limited to half the level achieved in the default simulation. However, if the use of CCS or biomass is limited, the cumulative GHG abatement cost until 2050 increases considerably. Therefore CCS and biomass have a vital role in curbing costs to achieve significant emission reductions. - Highlights: ► We explore GHG emission scenarios up to 2050 in Asia and the world. ► Significant GHG emission reduction is required to limit radiative forcing at low level. ► We assess technology options for achieving significant GHG emission reduction. ► CCS, solar power, wind power, and biomass are the key technologies for reduction. ► Especially, CCS and biomass play a vital role in curbing costs to achieve significant emission reductions.

  16. Greenhouse gas energy scenarios for Mexico in year 2020, and mitigation potential of renewable technologies

    Energy Technology Data Exchange (ETDEWEB)

    Sheinbaum, Claudia; Robles, Guillermo; Rodriguez V, Luis [Instituto de Ingenieria de la UNAM, Mexico, D.F. (Mexico); Massera, Omar [UNAM, Michoacan (Mexico)

    2000-07-01

    This paper presents the structure of the Mexican Energy-Emission Scenario Model (MEESM). In explains the importance of developing a bottom-up model for GHG mitigation assessment in Mexico. Also, the paper presents results of CO{sub 2} mitigation scenarios for year 2020 for five renewable energy technologies: solar water heaters, geothermal, biomass, mini/micro hydro and wind power generation. The paper concludes by discussing the importance of simulation accounting bottom-up models as tools for GHG mitigation policies. [Spanish] Este articulo presenta la estructura del Modelo de Escenario de Emision de Energia Mexicano (MEESM). En el se explica la importancia de desarrollar un modelo organizacional de abajo hacia arriba para la evaluacion de la mitigacion del efecto invernadero en Mexico. El articulo presenta tambien los resultados de los escenarios de mitigacion de CO{sub 2} para el ano 2020 utilizando cinco tecnologias de energia renovable: calentadores solares de agua, geotermia, biomasa, y mini/micro generacion de energia por agua y viento. El articulo concluye con el analisis de la importancia de la simulacion tomando en cuenta modelos organizacionales de abajo hacia arriba como herramientas para las politicas de mitigacion del efecto invernadero.

  17. Toward a Multi-City Framework for Urban GHG Estimation in the United States: Methods, Uncertainties, and Future Goals

    Science.gov (United States)

    Mueller, K. L.; Callahan, W.; Davis, K. J.; Dickerson, R. R.; Duren, R. M.; Gurney, K. R.; Karion, A.; Keeling, R. F.; Kim, J.; Lauvaux, T.; Miller, C. E.; Shepson, P. B.; Turnbull, J. C.; Weiss, R. F.; Whetstone, J. R.

    2017-12-01

    City and State governments are increasingly interested in mitigating greenhouse gas (GHG) emissions to improve sustainability within their jurisdictions. Estimation of urban GHG emissions remains an active research area with many sources of uncertainty. To support the effort of improving measurement of trace gas emissions in city environments, several federal agencies along with academic, research, and private entities have been working within a handful of domestic metropolitan areas to improve both (1) the assessment of GHG emissions accuracy using a variety of measurement technologies, and (2) the tools that can better assess GHG inventory data at urban mitigation scales based upon these measurements. The National Institute of Standards and Technology (NIST) activities have focused on three areas, or testbeds: Indianapolis (INFLUX experiment), Los Angeles (the LA Megacities project), and the Northeastern Corridor areas encompassing Washington and Baltimore (the NEC/BW GHG Measurements project). These cities represent diverse meteorological, terrain, demographic, and emissions characteristics having a broad range of complexities. To date this research has involved multiple measurement systems and integrated observing approaches, all aimed at advancing development of a robust, science-base upon which higher accuracy quantification approaches can rest. Progress toward such scientifically robust, widely-accepted emissions quantification methods will rely upon continuous performance assessment. Such assessment is challenged by the complexities of cities themselves (e.g., population, urban form) along with the many variables impacting a city's technological ability to estimate its GHG emissions (e.g., meteorology, density of observations). We present the different NIST testbeds and a proposal to initiate conceptual development of a reference framework supporting the comparison of multi-city GHG emissions estimates. Such a reference framework has potential to provide

  18. Sustainable passenger road transport scenarios to reduce fuel consumption, air pollutants and GHG (greenhouse gas) emissions in the Mexico City Metropolitan Area

    International Nuclear Information System (INIS)

    Chavez-Baeza, Carlos; Sheinbaum-Pardo, Claudia

    2014-01-01

    This paper presents passenger road transport scenarios that may assist the MCMA (Mexico City Metropolitan Area) in achieving lower emissions in both criteria air pollutants (CO, NO x , NMVOC (non-methane volatile organic compounds), and PM 10 ) and GHG (greenhouse gas) (CH 4 , N 2 O and CO 2 ), while also promoting better mobility and quality of life in this region. We developed a bottom-up model to estimate the historical trends of energy demand, criteria air pollutants and GHG emissions caused by passenger vehicles circulating in the Mexico City Metropolitan Area (MCMA) in order to construct a baseline scenario and two mitigation scenarios that project their impact to 2028. Mitigation scenario “eff” considers increasing fuel efficiencies and introducing new technologies for vehicle emission controls. Mitigation scenario “BRT” considers a modal shift from private car trips to a Bus Rapid Transport system. Our results show significant reductions in air pollutants and GHG emissions. Incentives and environmental regulations are needed to enable these scenarios. - Highlights: • More than 4.2 million passenger vehicles in the MCMA (Mexico City Metropolitan Area) that represent 61% of criteria pollutants and 44% of GHG (greenhouse gas) emissions. • Emissions of CO, NO x and NMVOC (non-methane volatile organic compounds) in baseline scenario decrease with respect to its 2008 value because emission standards. • Emissions of PM 10 and GHG increase in baseline scenario. • Emissions of PM 10 and GHG decrease in eff + BRT scenario from year 2020. • Additional reductions are possible with better standards for diesel vehicles and other technologies

  19. Precision Agriculture Technologies Positively Contributing to GHG Emissions Mitigation, Farm Productivity and Economics

    Directory of Open Access Journals (Sweden)

    Athanasios Balafoutis

    2017-07-01

    Full Text Available Agriculture is one of the economic sectors that affect climate change contributing to greenhouse gas emissions directly and indirectly. There is a trend of agricultural greenhouse gas emissions reduction, but any practice in this direction should not affect negatively farm productivity and economics because this would limit its implementation, due to the high global food and feed demand and the competitive environment in this sector. Precision agriculture practices using high-tech equipment has the ability to reduce agricultural inputs by site-specific applications, as it better target inputs to spatial and temporal needs of the fields, which can result in lower greenhouse gas emissions. Precision agriculture can also have a positive impact on farm productivity and economics, as it provides higher or equal yields with lower production cost than conventional practices. In this work, precision agriculture technologies that have the potential to mitigate greenhouse gas emissions are presented providing a short description of the technology and the impacts that have been reported in literature on greenhouse gases reduction and the associated impacts on farm productivity and economics. The technologies presented span all agricultural practices, including variable rate sowing/planting, fertilizing, spraying, weeding and irrigation.

  20. FUTURE FOSSIL FUEL PRICE IMPACTS ON NDC ACHIEVEMENT; ESTIMATION OF GHG EMISSIONS AND MITIGATION COSTS

    Directory of Open Access Journals (Sweden)

    Yosuke Arino

    2017-12-01

    Full Text Available The Shale Revolution in the US, a supply-side innovation in oil and gas production, has been dramatically changing the world’s fossil fuel energy markets – leading to a decrease in oil, gas and coal prices. Some projections suggest that low fossil fuel prices might continue at least over the next few decades. Uncertainty in fossil fuel prices might affect the levels of emission reductions expected from submitted nationally determined contributions (NDCs and/or influence the difficulty of achieving the NDCs. This paper evaluated the impact of different (high, medium, and low fossil fuel prices, sustained through to 2050, on worldwide GHG emissions reductions and associated costs (mainly marginal abatement costs (MACs. Total global GHG emissions were estimated to be 57.5-61.5 GtCO2eq by 2030, with the range shown reflecting uncertainties about fossil fuel prices and the target levels of several NDCs (i.e., whether their upper or lower targets were adopted. It was found that lower fuel prices not only diminished the environmental effectiveness of global NDCs but also widened regional differences of marginal and total abatement costs, thereby generating more room for carbon leakage. One possible policy direction in terms of abatement efficiency, fairness and environmental effectiveness would be to require countries with low marginal and total abatement costs but having a major influence on global GHG emissions (such as China and India to increase their mitigation efforts, especially in a low-fuelprice world.

  1. Assessment of Air Pollution and GHG Mitigation Strategies in Malaysia using the GAINS Model

    International Nuclear Information System (INIS)

    Kumar, M.

    2013-01-01

    Planning for future energy development, taking into account the national obligations to mitigate climate change and air quality pressures is a major challenge faced by Malaysia. This research facilitates the impact assessment of simultaneous control of air pollution and GHG abatement through a set of emission scenarios while considering current and future Malaysian policies. The IIASAs GAINS (Greenhouse Gas-Air Pollution Interactions and Synergies) model is used for the estimation of emissions and costs, and the outputs of the MESSAGE and MAED energy models provide the underlying energy projections by 2050. Results show that current air-quality policies are efficient in keeping emissions growth at moderate rate, however, significant reduction potential exists if best available control technologies are introduced. Malaysian climate policies - modeled here for power sector - aiming at the -40 % decrease in carbon-intensity, result in important reductions of air pollutants, while the overall co-benefits can be substantial if other sectors are tackled by climate strategies. Initial results indicate the reduction of air pollutant control cost due to climate measures is comparable to the invoked cost-increase in power sector by 2030. Thereby, these co-benefits help to moderate total expenditures for meeting national climate policy targets. (author)

  2. Crowd-Sourcing Management Activity Data to Drive GHG Emission Inventories in the Land Use Sector

    Science.gov (United States)

    Paustian, K.; Herrick, J.

    2015-12-01

    Greenhouse gas (GHG) emissions from the land use sector constitute the largest source category for many countries in Africa. Enhancing C sequestration and reducing GHG emissions on managed lands in Africa has to potential to attract C financing to support adoption of more sustainable land management practices that, in addition to GHG mitigation, can provide co-benefits of more productive and climate-resilient agroecosystems. However, robust systems to measure and monitor C sequestration/GHG reductions are currently a significant barrier to attracting more C financing to land use-related mitigation efforts.Anthropogenic GHG emissions are driven by a variety of environmental factors, including climate and soil attributes, as well as human-activities in the form of land use and management practices. GHG emission inventories typically use empirical or process-based models of emission rates that are driven by environmental and management variables. While a lack of field-based flux and C stock measurements are a limiting factor for GHG estimation, we argue that an even greater limitation may be availabiity of data on the management activities that influence flux rates, particularly in developing countries in Africa. In most developed countries there is a well-developed infrastructure of agricultural statistics and practice surveys that can be used to drive model-based GHG emission estimations. However, this infrastructure is largely lacking in developing countries in Africa. While some activity data (e.g. land cover change) can be derived from remote sensing, many key data (e.g., N fertilizer practices, residue management, manuring) require input from the farmers themselves. The explosive growth in cellular technology, even in many of the poorest parts of Africa, suggests the potential for a new crowd-sourcing approach and direct engagement with farmers to 'leap-frog' the land resource information model of developed countries. Among the many benefits of this approach

  3. Technology Roadmap: Energy and GHG reductions in the chemical industry via catalytic processes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    The chemical industry is a large energy user; but chemical products and technologies also are used in a wide array of energy saving and/or renewable energy applications so the industry has also an energy saving role. The chemical and petrochemical sector is by far the largest industrial energy user, accounting for roughly 10% of total worldwide final energy demand and 7% of global GHG emissions. The International Council of Chemical Associations (ICCA) has partnered with the IEA and DECHEMA (Society for Chemical Engineering and Biotechnology) to describe the path toward further improvements in energy efficiency and GHG reductions in the chemical sector. The roadmap looks at measures needed from the chemical industry, policymakers, investors and academia to press on with catalysis technology and unleash its potential around the globe. The report uncovers findings and best practice opportunities that illustrate how continuous improvements and breakthrough technology options can cut energy use and bring down greenhouse gas (GHG) emission rates. Around 90% of chemical processes involve the use of catalysts – such as added substances that increase the rate of reaction without being consumed by it – and related processes to enhance production efficiency and reduce energy use, thereby curtailing GHG emission levels. This work shows an energy savings potential approaching 13 exajoules (EJ) by 2050 – equivalent to the current annual primary energy use of Germany.

  4. Mitigation: cross-sectoral and other issues

    Energy Technology Data Exchange (ETDEWEB)

    Leemans, R. [National Inst. of Public Health and Environmental Protection, Bilthoven (Netherlands). Coordination Center for Effects

    1996-12-31

    Measures, methodologies and technologies to reduce emissions and enhance sinks of greenhouse gases (GHG) are assessed in this paper, together with other options for limiting anthropogenic climatic change and consequences. This chapter of the Intergovernmental Panel on Climate Change Working Group II`s 1996 report discusses the cross-sectorial potential for reducing emissions between areas discussed specifically in other chapters namely energy supply, industry, transportation, human settlements, agriculture and forestry, aiming to provide an integrated analysis of mitigation options with cross-cutting themes. Energy supply and demand issues within a low GHG emissions scenario are discussed as are issues relating to land use and land cover. Broadly-based concepts for counterbalancing climatic change are described and their mitigation potential assessed. (UK)

  5. Priority mitigation measures in non-energy sector in Kazakstan

    Energy Technology Data Exchange (ETDEWEB)

    Mizina, S.V.; Pilifosova, O.V.; Gossen, E.F.

    1996-12-31

    Fulfilling the Commitments on UN FCCC through the U.S. Country Studies Program, Kazakstan has developed the national GHG Inventory, vulnerability and adaptation assessment and estimated the possibility of mitigation measures in certain sectors. Next step is developing National Climate Change Action Plan. That process includes such major steps as setting priorities in mitigation measures and technologies, their comprehensive evaluation, preparation implementation strategies, developing the procedure of incorporation of the National Action Plan into other development plans and programs. This paper presents programs and measures that can reduce GHG emissions in non-energy sector. Measures in land-use change and forestry, agriculture and coal mining are considered. Current situation in non-energy sector of Kazakstan is discussed. The amount of GHG emissions reduction and cost analysis presented in this paper was developed with the use of IPCC recommendations.

  6. JST Thesaurus Headwords and Synonyms: GHG [MeCab user dictionary for science technology term[Archive

    Lifescience Database Archive (English)

    Full Text Available MeCab user dictionary for science technology term GHG 名詞 一般 * * * * 温室効果ガス オンシツコウカガス オンシツコーカガス Thesaurus2015 200906034745287750 C KA01 UNKNOWN_1 GHG

  7. Alternative energy balances for Bulgaria to mitigate climate change

    Science.gov (United States)

    Christov, Christo

    1996-01-01

    Alternative energy balances aimed to mitigate greenhouse gas (GHG) emissions are developed as alternatives to the baseline energy balance. The section of mitigation options is based on the results of the GHG emission inventory for the 1987 1992 period. The energy sector is the main contributor to the total CO2 emissions of Bulgaria. Stationary combustion for heat and electricity production as well as direct end-use combustion amounts to 80% of the total emissions. The parts of the energy network that could have the biggest influence on GHG emission reduction are identified. The potential effects of the following mitigation measures are discussed: rehabilitation of the combustion facilities currently in operation; repowering to natural gas; reduction of losses in thermal and electrical transmission and distribution networks; penetration of new combustion technologies; tariff structure improvement; renewable sources for electricity and heat production; wasteheat utilization; and supply of households with natural gas to substitute for electricity in space heating and cooking. The total available and the achievable potentials are estimated and the implementation barriers are discussed.

  8. The Forgotten Benefits of Climate Change Mitigation. Innovation, Technological Leapfrogging, Employment, and Sustainable Development

    Energy Technology Data Exchange (ETDEWEB)

    Jochem, E. [Fraunhofer-Institut fuer Systemtechnik und Innovationsforschung ISI, Karlsruhe (Germany); Madlener, R. [Centre for Energy Policy and Economics CEPE, ETH Zentrum, WEC, Zuerich (Switzerland)

    2003-07-01

    Traditional concepts for ancillary benefit/co-benefit frameworks reflect a macro and welfare economics perspective. They are often designed to serve certain modelling requirements, and typically focus primarily on avoided environmental damages and/or on induced net employment. This paper presents a conceptual framework that is extended to non-environmental and non-climate-change externalities. It not only includes the net ancillary and co-benefits that accrue from the dynamics of technological innovation and market diffusion, but also those from spillover effects that arise from global trade, communications, and technology transfer, which can all have important impacts on both the business economics and the macroeconomic level. We show that multi-functionality of energy-efficient technologies at the useful energy level, in contrast to mono-functionality of energy conversion technologies, leads to net ancillary benefits/co-benefits of GHG mitigation that may go far beyond fossil energy savings and emission mitigation, and that are in many cases not (or at least not sufficiently) accounted for in investment decision-making and policy-making processes. Several illustrative examples are provided to underline the points that are made.

  9. What factors influence mitigative capacity?

    International Nuclear Information System (INIS)

    Winkler, Harald; Baumert, Kevin; Blanchard, Odile; Burch, Sarah; Robinson, John

    2007-01-01

    This article builds on Yohe's seminal piece on mitigative capacity, which elaborates 'determinants' of mitigative capacity, also reflected in the IPCC's third assessment report. We propose a revised definition, where mitigative capacity is a country's ability to reduce anthropogenic greenhouse gas emissions or enhance natural sinks. By 'ability' we mean skills, competencies, fitness, and proficiencies that a country has attained which can contribute to GHG emissions mitigation. A conceptual framework is proposed, linking mitigative capacity to a country's sustainable development path, and grouping the factors influencing mitigative capacity into three main sets: economic factors, institutional ones, and technology. Both quantitative and qualitative analysis of factors is presented, showing how these factors vary across countries. We suggest that it is the interplay between the three economic factors-income, abatement cost and opportunity cost-that shape mitigative capacity. We find that income is an important economic factor influencing mitigative capacity, while abatement cost is important in turning mitigative capacity into actual mitigation. Technology is a critical mitigative capacity, including the ability to absorb existing climate-friendly technologies or to develop innovative ones. Institutional factors that promote mitigative capacity include the effectiveness of government regulation, clear market rules, a skilled work force and public awareness. We briefly investigate such as high abatement cost or lack of political willingness that prevent mitigative capacity from being translated into mitigation

  10. Nuclear power for greenhouse gas mitigation

    International Nuclear Information System (INIS)

    Rogner, H.-H.

    2000-11-01

    The possibility of global climate change resulting from an increase in greenhouse gas (GHG) concentrations in the atmosphere is a major global concern. At the Third Conference of the Parties (CoP 3) to the United Nations Framework Convention on Climate Change (UNFCCC) held at Kyoto, in December 1997, industrialized countries agreed to accept binding commitments that would reduce their collective GHG emissions, in the 2008-2012 commitment period, by at least 5% below 1990 levels. These countries also agreed to make demonstrable progress towards reducing GHG emissions by 2005. Because climate change is a global problem, i.e. it does not matter where on the globe GHGs are emitted - they all end up in the same atmosphere, many market economists maintain that mitigation should first occur wherever it is cheapest. Thus Article 12 of the Kyoto Protocol makes provisions by which whose signatories who are required to limit emissions can gain credit for financing cost-effective mitigation projects in developing countries, while at the same time promoting sustainable development through the provision of financial and technical assistance. This option is known as the Clean Development Mechanism (CDM). The CDM could be of particular interest to developing countries, which are not subject to emission limitations in the Kyoto Protocol. For example, the use of capital-intensive nuclear power instead of less costly coal-fired electricity generation would result in a significant reduction in GHG emissions. Because many developing countries may not be able to afford the higher investments associated with a nuclear power project, or because nuclear may simply not be the least-cost generation option for a given country, CDM offers an opportunity for (incremental) capital and technology transfer sponsored by countries of the CoP 3 in exchange for GHG emission credits. The benefit to the sponsor would be compliance with the emission limits set out in the Protocol, at a lower cost than if

  11. Enhancing international technology cooperation for climate change mitigation. Lessons from an electromobility case study

    Energy Technology Data Exchange (ETDEWEB)

    Bhasin, Shikha

    2014-07-01

    As a global agreement on climate mitigation and absolute emissions reductions remains grid-locked, this paper assesses whether the prospects for international technology cooperation in low-carbon sectors can be improved. It analyses the case of international cooperation on electric vehicle technologies to elaborate on the trade-offs that cooperation such as this inherently attempts to balance- national growth objectives of industrial and technology development versus the global goods benefit of reducing greenhouse gas (GHG) emissions. It focuses on bilateral German-Chinese programmes for electric vehicle development, as well as multilateral platforms on low-carbon technology cooperation related to electric vehicles. Based on insights from these cases studies, this paper ultimately provides policy recommendations to address gaps in international technology cooperation at a bilateral level for ongoing German-Chinese engagement on electric vehicles; and at a multilateral level with a focus on the emerging technology cooperation framework of the United Nations Framework Convention on Climate Change (UNFCCC).

  12. Enhancing international technology cooperation for climate change mitigation. Lessons from an electromobility case study

    International Nuclear Information System (INIS)

    Bhasin, Shikha

    2014-01-01

    As a global agreement on climate mitigation and absolute emissions reductions remains grid-locked, this paper assesses whether the prospects for international technology cooperation in low-carbon sectors can be improved. It analyses the case of international cooperation on electric vehicle technologies to elaborate on the trade-offs that cooperation such as this inherently attempts to balance- national growth objectives of industrial and technology development versus the global goods benefit of reducing greenhouse gas (GHG) emissions. It focuses on bilateral German-Chinese programmes for electric vehicle development, as well as multilateral platforms on low-carbon technology cooperation related to electric vehicles. Based on insights from these cases studies, this paper ultimately provides policy recommendations to address gaps in international technology cooperation at a bilateral level for ongoing German-Chinese engagement on electric vehicles; and at a multilateral level with a focus on the emerging technology cooperation framework of the United Nations Framework Convention on Climate Change (UNFCCC).

  13. Assessment of the potential REDD+ as a new international support measure for GHG reduction

    Science.gov (United States)

    Kim, Y.; Ahn, J.; Kim, H.

    2016-12-01

    As part of the Paris Agreement, the mechanism for reducing emissions from deforestation and forest degradation in developing countries (REDD+) has high potential to simultaneously contribute to greenhouse gas (GHG) mitigation through forest conservation and poverty alleviation. Some of 162 Intended Nationally Determined Contributions (INDCs) submitted by 189 countries representing approximately 98.8% of global GHG emissions include not only unconditional mitigation goals but also conditional goals based on the condition of the provision of international support such as finance, technology transfer and capacity building. Considering REDD+ as one of the main mechanisms to support such work, this study selected ten countries from among Korea's 24 ODA priority partners, taking into consideration their conditional INDC targets alongside sectoral quantified targets such as land use, land-use change and forestry (LULUCF). The ten selected countries are Indonesia, Cambodia, Vietnam, Bangladesh, Sri Lanka, Ghana, Senegal, Colombia, Peru and Paraguay. Of these countries, most REDD+ projects have been conducted in Indonesia mainly due to the fact that 85% of the country's total GHG emissions are caused by forest conversion and peatland degradation. Therefore, GHG reduction rates and associated projected costs of the Indonesia's REDD+ projects were analyzed in order to offer guidance on the potential of REDD+ to contribute to other INDCs' conditional goals. The result showed that about 0.9 t CO2 ha-1 could be reduced at a cost of USD 23 per year. Applying this estimation to the Cambodian case, which has submitted a conditional INDC target of increasing its forest coverage by 60% (currently 57%) by 2030, suggests that financial support of USD 12.8 million would reduce CO2 emissions by about 5.1 million tones by increasing forest coverage. As there is currently no consideration of LULUCF in Cambodia's INDC, this result represents the opportunity for an additional contribution to

  14. Integrating uncertainties for climate change mitigation

    Science.gov (United States)

    Rogelj, Joeri; McCollum, David; Reisinger, Andy; Meinshausen, Malte; Riahi, Keywan

    2013-04-01

    The target of keeping global average temperature increase to below 2°C has emerged in the international climate debate more than a decade ago. In response, the scientific community has tried to estimate the costs of reaching such a target through modelling and scenario analysis. Producing such estimates remains a challenge, particularly because of relatively well-known, but ill-quantified uncertainties, and owing to limited integration of scientific knowledge across disciplines. The integrated assessment community, on one side, has extensively assessed the influence of technological and socio-economic uncertainties on low-carbon scenarios and associated costs. The climate modelling community, on the other side, has worked on achieving an increasingly better understanding of the geophysical response of the Earth system to emissions of greenhouse gases (GHG). This geophysical response remains a key uncertainty for the cost of mitigation scenarios but has only been integrated with assessments of other uncertainties in a rudimentary manner, i.e., for equilibrium conditions. To bridge this gap between the two research communities, we generate distributions of the costs associated with limiting transient global temperature increase to below specific temperature limits, taking into account uncertainties in multiple dimensions: geophysical, technological, social and political. In other words, uncertainties resulting from our incomplete knowledge about how the climate system precisely reacts to GHG emissions (geophysical uncertainties), about how society will develop (social uncertainties and choices), which technologies will be available (technological uncertainty and choices), when we choose to start acting globally on climate change (political choices), and how much money we are or are not willing to spend to achieve climate change mitigation. We find that political choices that delay mitigation have the largest effect on the cost-risk distribution, followed by

  15. Socio-technological impact analysis using an energy IO approach to GHG emissions issues in South Korea

    International Nuclear Information System (INIS)

    Chung, Whan-Sam; Tohno, Susumu; Choi, Ki-Hong

    2011-01-01

    Highlights: → Using the Sato-Vartia index for the three periods of 1985-1995, 1995-2000, and 2000-2005, the changes in three factors affecting GHG emissions in South Korea were analyzed. → A total emission matrix including both direct and indirect GHG emissions showed plain shape; however, ripple effects were observed in some sectors. → This process is useful in measuring national energy policies. → Several limitations of the Divisia decomposition analysis were pointed out. -- Abstract: Through energy input-output (E-IO) analyses from 1985 to 2005, the changes in three factors affecting GHG emissions in South Korea were analyzed. Based on the E-IO results, the changes in the direct and total (embodied) GHG emissions from the pertinent sectors were decomposed into three factors-the energy consumption effect, the social effect, and the technological effect-using the Sato-Vartia index for the three periods of 1985-1995, 1995-2000, and 2000-2005. The decomposition analysis demonstrated that a total emission matrix including both direct and indirect GHG emissions showed an evolution pattern that was very similar to the changes in direct GHG emissions; however, ripple effects were observed in the case of emissions from sector number -59 (Synthetic resins, synthetic rubber-p). The results showed that national energy policies such as those pertaining to the diversification of energy sources, shifts in the energy consumption structure (social effect), and the transformation to a low-carbon energy economy (technology effect) were effective. Finally, several limitations of the Divisia decomposition analysis were pointed out.

  16. A comparability analysis of global burden sharing GHG reduction scenarios

    International Nuclear Information System (INIS)

    Ciscar, Juan-Carlos; Saveyn, Bert; Soria, Antonio; Szabo, Laszlo; Van Regemorter, Denise; Van Ierland, Tom

    2013-01-01

    The distribution of the mitigation burden across countries is a key issue regarding the post-2012 global climate policies. This article explores the economic implications of alternative allocation rules, an assessment made in the run-up to the COP15 in Copenhagen (December 2009). We analyse the comparability of the allocations across countries based on four single indicators: GDP per capita, GHG emissions per GDP, GHG emission trends in the recent past, and population growth. The multi-sectoral computable general equilibrium model of the global economy, GEM-E3, is used for that purpose. Further, the article also compares a perfect carbon market without transaction costs with the case of a gradually developing carbon market, i.e. a carbon market with (gradually diminishing) transaction costs. - Highlights: ► Burden sharing of global mitigation efforts should consider equity and efficiency. ► The comparability of allocations across countries is based on four indicators. ► The four indicators are GDP/capita, GHG/GDP, population growth, and GHG trend. ► Any possible agreement on effort comparability needs a combination of indicators. ► We analyse the role played by the degree of flexibility in global carbon trading

  17. Evaluating experience with electricity generating GHG mitigation projects

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, J.

    2003-07-01

    theoretical and practical level. The paper examines the experience to date with how baselines and additionality have been calculated or assessed for selected electricity-generating GHG mitigation projects. It will focus on CDM and CDM-type projects, including for projects that have been accepted or rejected by particular programmes (e.g. CERUPT) and projects where the associated baseline and monitoring methodologies have been submitted to the CDM's Executive Board. Thus, it will focus on larger-scale (>15MW) and grid-connected projects. The paper will also assess how the baseline methods for projects currently under development 'fit' with the three baseline 'approaches outlined in the Marrakech Accords.

  18. Accelerating the development and diffusion of new energy technologies: Beyond the 'valley of death'

    International Nuclear Information System (INIS)

    Weyant, John P.

    2011-01-01

    There are at least three motivations for government intervention in GHG mitigation: (1) inducing the private sector to reduce GHG emissions directly by setting a price on emissions, (2) increasing the amount of innovative activity in GHG mitigation technology development, and (3) educating the public regarding GHG-reducing investment opportunities, allowing consumers to make better private decisions. This paper discusses the pros and cons of policy instruments that might be used to respond to these motivations and makes recommendations for an appropriate mix of policy instruments over time given both economic and policital/instituional considerations. - Research Highlights: → Increases in pre-competitive energy R and D and energy efficiency technology diffusion policies in the US are highly desirable. → The cost of well designed programs in these areas can be low and the pay off very high. → Such policies make sense even if the GHG externality is internalized through a GHG tax or equivalent, but are even more desirable if they are not.

  19. Modelling the impacts of challenging 2050 European climate mitigation targets on Ireland’s energy system

    International Nuclear Information System (INIS)

    Chiodi, Alessandro; Gargiulo, Maurizio; Rogan, Fionn; Deane, J.P.; Lavigne, Denis; Rout, Ullash K.; Ó Gallachóir, Brian P.

    2013-01-01

    The Copenhagen Accord established political consensus on the 2 °C limit (in global temperature increase) and for deep cuts in greenhouse gas (GHG) emissions levels to achieve this goal. The European Union has set ambitious GHG targets for the year 2050 (80–95% below 1990 levels), with each Member State developing strategies to contribute to these targets. This paper focuses on mitigation targets for one Member State, Ireland, an interesting case study due to the growth in GHG emissions (24% increase between 1990 and 2005) and the high share of emissions from agriculture (30% of total GHG emissions). We use the Irish TIMES energy systems modelling tool to build a number of scenarios delivering an 80% emissions reduction target by 2050, including accounting for the limited options for agriculture GHG abatement by increasing the emissions reduction target for the energy system. We then compare the scenario results in terms of changes in energy technology, the role of energy efficiency and renewable energy. We also quantify the economic impacts of the mitigation scenarios in terms of marginal CO 2 abatement costs and energy system costs. The paper also sheds light on the impacts of short term targets and policies on long term mitigation pathways. - Highlights: ► We developed a techno-economic energy model of Ireland to the year 2050. ► Reductions between 80% and 95% of GHG emissions can be technically achieved. ► A 50% emissions cut in agriculture requires a 95% reductions from the energy system. ► Extending current policies implies greater electrification and efficiency measures. ► The additional cost to achieve mitigation remain less than 2% of GDP levels in 2050.

  20. Emerging biorefinery technologies for Indian forest industry to reduce GHG emissions.

    Science.gov (United States)

    Sharma, Naman; Nainwal, Shubham; Jain, Shivani; Jain, Siddharth

    2015-11-01

    The production of biofuels as alternative energy source over fossil fuels has gained immense interest over the years as it can contribute significantly to reduce the greenhouse gas (GHG) emissions from energy production and utilization. Also with rapidly increasing fuel price and fall in oil wells, the present scenario forces us to look for an alternative source of energy that will help us in the operation of industrial as well as the transportation sector. The pulp mills in India are one of the many options. The pulp mills in India can help us to produce bio-fuels by thermo-chemical/biochemical conversion of black liquor and wood residues. These technologies include extraction of hemi-cellulose from wooden chips and black liquor, lignin from black liquor, methanol from evaporator condensates, biogas production from waste sludge, syngas production from biomass using gasification and bio-oil production from biomass using pyrolysis. The objective of this paper is to overview these emerging bio-refinery technologies that can be implemented in Indian Forest Industry to get bio-fuels, bio-chemicals and bio-energy to reduce GHG emissions. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Impact of non-petroleum vehicle fuel economy on GHG mitigation potential

    International Nuclear Information System (INIS)

    Luk, Jason M; Saville, Bradley A; MacLean, Heather L

    2016-01-01

    The fuel economy of gasoline vehicles will increase to meet 2025 corporate average fuel economy standards (CAFE). However, dedicated compressed natural gas (CNG) and battery electric vehicles (BEV) already exceed future CAFE fuel economy targets because only 15% of non-petroleum energy use is accounted for when determining compliance. This study aims to inform stakeholders about the potential impact of CAFE on life cycle greenhouse gas (GHG) emissions, should non-petroleum fuel vehicles displace increasingly fuel efficient petroleum vehicles. The well-to-wheel GHG emissions of a set of hypothetical model year 2025 light-duty vehicles are estimated. A reference gasoline vehicle is designed to meet the 2025 fuel economy target within CAFE, and is compared to a set of dedicated CNG vehicles and BEVs with different fuel economy ratings, but all vehicles meet or exceed the fuel economy target due to the policy’s dedicated non-petroleum fuel vehicle incentives. Ownership costs and BEV driving ranges are estimated to provide context, as these can influence automaker and consumer decisions. The results show that CNG vehicles that have lower ownership costs than gasoline vehicles and BEVs with long distance driving ranges can exceed the 2025 CAFE fuel economy target. However, this could lead to lower efficiency CNG vehicles and heavier BEVs that have higher well-to-wheel GHG emissions than gasoline vehicles on a per km basis, even if the non-petroleum energy source is less carbon intensive on an energy equivalent basis. These changes could influence the effectiveness of low carbon fuel standards and are not precluded by the light-duty vehicle GHG emissions standards, which regulate tailpipe but not fuel production emissions. (letter)

  2. Russia at GHG Market

    International Nuclear Information System (INIS)

    Golub, A.; Strukova, E.

    2004-01-01

    In the first Kyoto commitment period Russia could be the major supplier for the greenhouse gases (GHG) emissions market. Potential Russian supply depends on the ability of Russia to keep GHG emissions lower than the Kyoto target. In the literature there is no common understanding of the total trading potential of Russia at the international carbon market. In this paper we focus on CO2 emission, which constituted nearly 80% of Russian GHG emission. We compare different projections of Russian CO2 emission and analyze the most important factors, which predetermine the CO2 emission growth. In a transition economy these factors are: Gross Domestic Product (GDP) dynamic, changes of GDP structure, innovation activity, transformation of export-import flows and response to the market signals. The input-output macroeconomic model with the two different input-output tables representing old and new production technologies has been applied for the analysis to simulate technological innovations and structural changes in the Russian economy during transition period. The Russian supply at the international GHG market without forest sector may be up to 3 billion metric ton of CO2 equivalent. Earlier actions to reduce CO2 emission are critical to insure the Russian supply at the international carbon market. With regard to the current status of the Russian capital market, the forward trading with OECD countries is only the possibility to raise initial investments to roll no-regret and low-cost GHG reduction. This paper discusses uncertainties of Russian CO2 emission dynamics and analyzes the different incentives to lower the emission pathway

  3. Life cycle energy use and GHG emission assessment of coal-based SNG and power cogeneration technology in China

    International Nuclear Information System (INIS)

    Li, Sheng; Gao, Lin; Jin, Hongguang

    2016-01-01

    Highlights: • Life cycle energy use and GHG emissions are assessed for SNG and power cogeneration. • A model based on a Chinese domestic database is developed for evaluation. • Cogeneration shows lower GHG emissions than coal-power pathway. • Cogeneration has lower life cycle energy use than supercritical coal-power pathway. • Cogeneration is a good option to implement China’s clean coal technologies. - Abstract: Life cycle energy use and GHG emissions are assessed for coal-based synthetic natural gas (SNG) and power cogeneration/polygenereation (PG) technology and its competitive alternatives. Four main SNG applications are considered, including electricity generation, steam production, SNG vehicle and battery electric vehicle (BEV). Analyses show that if SNG is produced from a single product plant, the lower limits of its life cycle energy use and GHG emissions can be comparable to the average levels of coal-power and coal-BEV pathways, but are still higher than supercritical and ultra supercritical (USC) coal-power and coal-BEV pathways. If SNG is coproduced from a PG plant, when it is used for power generation, steam production, and driving BEV car, the life cycle energy uses for PG based pathways are typically lower than supercritical coal-power pathways, but are still 1.6–2.4% higher than USC coal-power pathways, and the average life cycle GHG emissions are lower than those of all coal-power pathways including USC units. If SNG is used to drive vehicle car, the life cycle energy use and GHG emissions of PG-SNGV-power pathway are both much higher than all combined coal-BEV and coal-power pathways, due to much higher energy consumption in a SNG driven car than in a BEV car. The coal-based SNG and power cogeneration technology shows comparable or better energy and environmental performances when compared to other coal-based alternatives, and is a good option to implement China’s clean coal technologies.

  4. Developing an optimal energy supply strategy for Syria in view of GHG reduction with least-cost climate protection

    International Nuclear Information System (INIS)

    Hainoun, A.; Omar, H.; Almoustafa, A.; Seif Al-din, M.Kh.

    2010-12-01

    This report presents the outcomes of a two years CRP project entitled (Developing an optimal energy supply strategy for Syria in view of GHG reduction with least-cost climate protection). The main activity deals with a case study concerning the assessment of optimal Syrian energy supply strategy taking into account the impact of environmental constraints related to GHG reduction on the cost and prospects of energy sources and technologies with special emphasis on renewable and nuclear options. In a previous activity the future long-term development of Syrian energy and electricity demand has been analyzed according to various scenarios of socio-economic and technological development of the country. The results indicate that energy demand will grow rapidly in the next decades as consequent of many socio-economic and technological factors given by Syria's high population growth, its current economic transition, and its expected economic and technological development, particularly in the industry sector. To meet the projected future energy demand up to 2030, an optimal reference energy supply strategy with minimal supply cost has been developed taking into account, in particular, the availability of national energy resources and diversity of supply options. The analysis has been performed using the IAEA's optimization tool MESSAGE. MESSAGE is suitable to formulate and evaluate alternative energy supply strategies consistent with pre-defined constraints including limits on new investment, fuel availability and trade, environmental regulations, and market penetration rates for new technologies. To evaluate the potential of GHG reduction in the Syrian power sector an alternative energy supply scenario - Mitigation Scenario (Ren S ce) has been introduced reflecting the most probable adaptation measures of this sector to mitigate GHG emission by more dependency on renewable options. Compatible with the Kyoto agreement for developing countries, the CDM is being considered

  5. Decoupling urban transport from GHG emissions in Indian cities-A critical review and perspectives

    International Nuclear Information System (INIS)

    Li Jun

    2011-01-01

    How to sustain rapid economic and urban growth with minimised detriment to environment is a key challenge for sustainable development and climate change mitigation in developing countries, which face constraints of technical and financial resources scarcity as well as dearth of infrastructure governance capacity. This paper attempts to address this question by investigating the driving forces of transport demand and relevant policy measures that facilitate mitigating GHG emissions in the urban transport sector in Indian cities based on a critical review of the literature. Our overview of existing literature and international experiences suggests that it is critical to improve urban governance in transport infrastructure quality and develop efficient public transport, coupled with integrated land use/transport planning as well as economic instruments. This will allow Indian cities to embark on a sustainable growth pathway by decoupling transport services demand of GHG emissions in the longer term. Appropriate policy instruments need to be selected to reconcile the imperatives of economic and urban growth, aspiration to higher quality of life, improvements in social welfare, urban transport-related energy consumption and GHG emissions mitigation target in Indian cities. - Highlights: → Investigating the relevant policies that facilitate mitigating GHG emissions in urban transport in Indian cities. → Determining the factors of increase in energy demand and carbon emissions in transport. → Improving urban governance in transport infrastructure with integrated transport planning. → Designing and implementing the policy and economic instruments for low-carbon urban transport in India.

  6. The Welfare Costs of GHG Reduction with Renewable Energy Policies in the US

    OpenAIRE

    Khanna, Madhu; Oliver, Anthony

    2013-01-01

    A range of policies have been implemented in the agricultural, transportation, and electric power sectors, which comprise the majority of GHG emissions in the US. Two prominent policy sets are the national RFS and state-level RPSs. The purpose of this research is to examine the GHG implications of the state RPSs and their welfare costs of mitigating GHG emissions. We also analyze the interactions between the RFS and state RPS policies and the extent to which these policies create competition ...

  7. Scenarios of technology adoption towards low-carbon cities

    International Nuclear Information System (INIS)

    Mohareb, Eugene A.; Kennedy, Christopher A.

    2014-01-01

    Technological change has often been presented as a readily accepted means by which long-term greenhouse gas (GHG) emission reductions can be achieved. Cities are the future centers of economic growth, with the global population becoming predominantly urban; hence, increases or reductions of GHG emissions are tied to their energy strategies. This research examines the likelihood of a developed world city (the Greater Toronto Area) achieving an 80% reduction in GHG emissions through policy-enabled technological change. Emissions are examined from 3 major sources: light duty passenger vehicles, residential buildings and commercial/institutional buildings. Logistic diffusion curves are applied for the adoption of alternative vehicle technologies, building retrofits and high performance new building construction. This research devises high, low and business-as-usual estimates of future technological adoption and finds that even aggressive scenarios are not sufficient to achieve an 80% reduction in GHG emissions by 2050. This further highlights the challenges faced in maintaining a relatively stable climate. Urban policy makers must consider that the longer the lag before this transition occurs, the greater the share of GHG emissions mitigation that must addressed through behavioural change in order to meet the 2050 target, which likely poses greater political challenges. - Highlights: • Explores policy options in a city targeting an 80% GHG emission reduction target by 2050. • Aggressive building code changes will have minimal impact on GHG mitigation. • Support of low-carbon electricity for the majority of generation necessary by 2050. • Internal combustion engine use must be mostly eliminated from the vehicle stock. • Policies supporting elimination of physical exchange space should be promoted

  8. Nuclear power for greenhouse gas mitigation under the Kyoto protocol: The Clean Development Mechanism (CDM)

    International Nuclear Information System (INIS)

    Rogner, H.-H.

    2000-01-01

    At the 43rd regular session of the IAEA General Conference, Member States requested the IAEA to help countries in assessing nuclear power's role in light of global environmental challenges and energy needs. Such assistance should include support for implementing national case studies, and facilitating access to relevant information about nuclear power's role in achieving sustainable development in developing countries and in mitigating GHG emissions. The dissemination of information on CDM is of particular importance to developing countries, so as to enable Member States interested in the mechanism to take an active and informed role in the debate regarding the Kyoto Protocol and eligible CDM technologies. Therefore, the Secretariat organized a series of information seminars, workshops and training courses for Member States on the Kyoto Protocol, the Clean Development Mechanism, Joint Implementation and Emissions Trading with particular emphasis on the potential role of nuclear power for GHG mitigation. On request, the Secretariat also provided training and assistance to several Member States in the preparation of national case studies that explore the potential role of nuclear power as a CDM technology. These case studies will be presented by the respective national study teams during this side event at the 44th IAEA General Conference. Within the general criteria included in the Kyoto Protocol, the decision on which technologies are eligible for GHG mitigation under the flexibility mechanisms is a sovereign decision of each country

  9. Pathways to Mexico’s climate change mitigation targets: A multi-model analysis

    International Nuclear Information System (INIS)

    Veysey, Jason; Octaviano, Claudia; Calvin, Katherine; Martinez, Sara Herreras; Kitous, Alban; McFarland, James; Zwaan, Bob van der

    2016-01-01

    Mexico’s climate policy sets ambitious national greenhouse gas (GHG) emission reduction targets—30% versus a business-as-usual baseline by 2020, 50% versus 2000 by 2050. However, these goals are at odds with recent energy and emission trends in the country. Both energy use and GHG emissions in Mexico have grown substantially over the last two decades. We investigate how Mexico might reverse current trends and reach its mitigation targets by exploring results from energy system and economic models involved in the CLIMACAP-LAMP project. To meet Mexico’s emission reduction targets, all modeling groups agree that decarbonization of electricity is needed, along with changes in the transport sector, either to more efficient vehicles or a combination of more efficient vehicles and lower carbon fuels. These measures reduce GHG emissions as well as emissions of other air pollutants. The models find different energy supply pathways, with some solutions based on renewable energy and others relying on biomass or fossil fuels with carbon capture and storage. The economy-wide costs of deep mitigation could range from 2% to 4% of GDP in 2030, and from 7% to 15% of GDP in 2050. Our results suggest that Mexico has some flexibility in designing deep mitigation strategies, and that technological options could allow Mexico to achieve its emission reduction targets, albeit at a cost to the country. - Highlights: • We explore paths to deep mitigation for Mexico (50% cut in GHG emissions by 2050). • We present results from six models and compare them with Mexican climate policy. • We find a range of potential paths and costs, implying options for policy makers. • An important commonality between the paths is a decarbonized electricity supply. • Estimated mitigation costs vary but are higher than official published estimates.

  10. Greenhouse gas emissions from Thailand’s transport sector: Trends and mitigation options

    International Nuclear Information System (INIS)

    Pongthanaisawan, Jakapong; Sorapipatana, Chumnong

    2013-01-01

    Rapid growth of population and economy during the past two decades has resulted in continuing growth of transport’s oil demand and greenhouse gas (GHG) emissions. The objectives of this study are to examine pattern and growth in energy demand as well as related GHG emissions from the transport sector and to analyze potential pathways of energy demand and GHG emissions reduction from this sector of the measures being set by the Thai Government. A set of econometric models has been developed to estimate the historical trend of energy demand and GHG emissions in the transport sector during 1989–2007 and to forecast future trends to 2030. Two mitigation option scenarios of fuel switching and energy efficiency options have been designed to analyze pathways of energy consumption and GHG emissions reduction potential in Thailand’s transport sector compared with the baseline business-as-usual (BAU) scenario, which assumed to do nothing influences the long-term trends of transport energy demand. It has been found that these two mitigation options can reduce the GHG emissions differently. The fuel-switching option could significantly reduce the amount of GHG emissions in a relatively short time frame, albeit it will be limited by its supply resources, whereas the energy efficiency option is more effective for GHG emissions mitigation in the long term. Therefore, both measures should be implemented simultaneously for both short and long term mitigation effects in order to more effectively achieve GHG emissions reduction target.

  11. The Padanian LiMeS. Spatial Interpretation of Local GHG Emission Data

    Directory of Open Access Journals (Sweden)

    Michèle Pezzagno

    2015-04-01

    Full Text Available The relevant role of spatial planning in the enforcement of climate change mitigation, managing the development of new low-carbon infrastructures and increasing system-wide efficiencies across sectors, has been addressed at global level (IPCC, 2014 WGIII. In this context, local GHG inventories appear a relevant tool toward the definition of a coherent, inter-sectorial background for local planning, mitigation, and adaptation policies.Taking advantage of consistent GHG emissions data availability in the Lombard context, local maps of direct GHG emissions have been linked with geographic data, including municipal boundaries, population data, and land-use information, produced and organized within the research PRIN 2007 From metropolitan city to metropolitan corridor: the case of the Po Valley Corridor.The results of this mapping exercise have been evaluated on the background of consolidated knowledge about northern Italy urban patterns, including the Linear Metropolitan System – LiMeS – and preliminary observations about characteristics, potential, and limits of the tool are proposed.

  12. Modelling the impacts of challenging 2020 non-ETS GHG emissions reduction targets on Ireland′s energy system

    International Nuclear Information System (INIS)

    Chiodi, Alessandro; Gargiulo, Maurizio; Deane, J.P.; Lavigne, Denis; Rout, Ullash K.; Ó Gallachóir, Brian P.

    2013-01-01

    This paper focuses on Ireland's ambitious target for 2020 to reduce greenhouse gas (GHG) emissions by 20% below 2005 levels for sectors not covered by ETS (Non-ETS). Ireland is an interesting case study due to the role of agriculture (a particularly challenging sector with regard to GHG emissions reduction), that represents 29% of Ireland's GHG emissions compared with less than 10% for the EU. The analysis is carried out with the Irish TIMES model, a bottom-up energy systems modelling tool with detailed characterization of Ireland's energy system. The paper uses scenario analysis to provide pathways that demonstrate how Ireland can meet the non-ETS target at least cost. The paper considers the impacts (in terms of different technology choices and higher marginal abatement costs) arising from higher targets for the energy system to compensate for growth in agriculture activity and low mitigation potential in that sector. The results point to a need to reconsider Ireland's renewable energy focus, with a need for increased effort in renewable transport and renewable heat in particular. The results also point to significant electrification of residential heating. The results also point to a high marginal abatement cost (€213/tCO 2 ), which challenges the analysis carried out at EU level to establish Ireland's non-ETS target. - Highlights: • Techno-economic energy model to deliver EU GHG mitigation target by 2020 in Ireland. • Agriculture represents nearly half of Non-ETS emissions in Ireland. • The target set for Non-ETS GHG for Ireland is far from a cost optimal target. • The results point to a need to reconsider Ireland's renewable energy focus. • Key pathways: electrification of heating in buildings and biofuels in transport

  13. The effects of economic and policy incentives on carbon mitigation technologies

    International Nuclear Information System (INIS)

    Newell, Richard G.; Jaffe, Adam B.; Stavins, Robert N.

    2006-01-01

    The ability to estimate the likely effects of potential climate change policies on energy use and greenhouse gas (GHG) emissions requires an improved understanding of the relationship between different policy alternatives and energy-saving and GHG-reducing changes in technology. A particularly important and understudied aspect of this set of issues is the conceptual and empirical modeling of how the various stages of technological change are interrelated, how they unfold over time in response to market forces, and the differential impact of various policies (for example, R and D subsidies, environmental taxes, information programs). We summarize several contributions to this literature and suggest promising areas for continued research on empirical analysis and modeling of induced technological change

  14. On the Commons and Climate Change: Collective Action and GHG Mitigation - Working Paper No. 2012-13

    International Nuclear Information System (INIS)

    Cochran, Ian

    2012-07-01

    Reducing greenhouse-gas (GHG) emissions from anthropogenic activity may be one of the greatest collective-action problems faced by humanity. This poses challenges not only in terms of the institutional configurations to support coordinated governance processes, but equally the information tools and expertise necessary to link GHG mitigation with other policy priorities. This paper theoretically explores how the adoption of a modified theory of collective action based upon a behavioral theory of the individual allows for a re-framing of the climate-change policy challenge. As such, it appears important to develop a context within which collective action becomes possible where success is no longer solely tied to incentives, but equally to the provision of information, learning, and interaction between stakeholders while simultaneously fostering trust and reciprocity among actors. At all levels of government, information plays a key role to both inform and to facilitate communication, as well as to identify and develop the necessary actions and investments and to track changes in conditions. In the case of climate change, greenhouse-gas inventories and other informational tools are necessary components to track an a priori intangible emission. As such, it is key to analyze the legitimacy, credibility and saliency of information and expertise integrated into the decision-making process. Further, it is important to recognize that the construction of indicators and other information tools is not apolitical, but rather the product of a number of assumptions, interests and decisions concerning what is included and what is excluded shaped by the involved actors. (author)

  15. Greenhouse gas mitigation in animal production

    DEFF Research Database (Denmark)

    De Boer, IJM; Cederberg, C; Eady, S

    2011-01-01

    The animal food chain contributes significantly to emission of greenhouse gases (GHGs). We explored studies that addressed options to mitigate GHG emissions in the animal production chain and concluded that most studies focused on production systems in developed countries and on a single GHG...

  16. Assessing the health benefits of urban air pollution reductions associated with climate change mitigation (2000-2020): Santiago, São Paulo, México City, and New York City.

    Science.gov (United States)

    Cifuentes, L; Borja-Aburto, V H; Gouveia, N; Thurston, G; Davis, D L

    2001-06-01

    To investigate the potential local health benefits of adopting greenhouse gas (GHG) mitigation policies, we develop scenarios of GHG mitigation for México City, México; Santiago, Chile; São Paulo, Brazil; and New York, New York, USA using air pollution health impact factors appropriate to each city. We estimate that the adoption of readily available technologies to lessen fossil fuel emissions over the next two decades in these four cities alone will reduce particulate matter and ozone and avoid approximately 64,000 (95% confidence interval [CI] 18,000-116,000) premature deaths (including infant deaths), 65,000 (95% CI 22,000-108,000) chronic bronchitis cases, and 46 million (95% CI 35-58 million) person-days of work loss or other restricted activity. These findings illustrate that GHG mitigation can provide considerable local air pollution-related public health benefits to countries that choose to abate GHG emissions by reducing fossil fuel combustion.

  17. GHG emission control and solid waste management for megacities with inexact inputs: A case study in Beijing, China

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Hongwei, E-mail: luhw@ncepu.edu.cn; Sun, Shichao; Ren, Lixia; He, Li

    2015-03-02

    Highlights: • This study advances an integrated MSW management model under inexact input information. • The model can minimize net system cost and mitigate GHG emissions. • The model is particularly developed for the city of Beijing, China. • It reduces system cost by [45, 61]% and mitigates GHG emissions by [141, 179]%. • It could provide implications to megacities regarding GHG emissions control. - Abstract: This study advances an integrated MSW management model under inexact input information for the city of Beijing, China. The model is capable of simultaneously generating MSW management policies, performing GHG emission control, and addressing system uncertainty. Results suggest that: (1) a management strategy with minimal system cost can be obtained even when suspension of certain facilities becomes unavoidable through specific increments of the remaining ones; (2) expansion of facilities depends only on actual needs, rather than enabling the full usage of existing facilities, although it may prove to be a costly proposition; (3) adjustment of waste-stream diversion ratio directly leads to a change in GHG emissions from different disposal facilities. Results are also obtained from the comparison of the model with a conventional one without GHG emissions consideration. It is indicated that (1) the model would reduce the net system cost by [45, 61]% (i.e., [3173, 3520] million dollars) and mitigate GHG emissions by [141, 179]% (i.e., [76, 81] million tons); (2) increased waste would be diverted to integrated waste management facilities to prevent overmuch CH{sub 4} emission from the landfills.

  18. Approximated EU GHG inventory: Early estimates for 2011

    Energy Technology Data Exchange (ETDEWEB)

    Herold, A. [Oeko-Institut (Oeko), Freiburg (Germany); Fernandez, R. [European Environment Agency (EEA), Copenhagen (Denmark)

    2012-10-15

    The objective of this report is to provide an early estimate of greenhouse gas (GHG) emissions in the EU-15 and EU-27 for the year 2011. The official submission of 2011 data to the United Nations Framework Convention on Climate Change (UNFCCC) will occur in 2013. In recent years, the EEA and its European Topic Centre on Air Pollution and Climate Change Mitigation have developed a methodology to estimate GHG emissions using a bottom up approach - based on data or estimates for individual countries, sectors and gases - to derive EU GHG estimates in the preceding year (t-1). For transparency, this report shows the country-level GHG estimates from which the EU estimates have been derived. The 2011 estimates are based on the latest activity data available at country level and assume no change in emission factors or methodologies as compared to the official 2012 submissions to UNFCCC (which relate to emissions in 2010). Some Member States estimate and publish their own early estimates of GHG emissions for the preceding year. Where such estimates exist they are clearly referenced in this report in order to ensure complete transparency regarding the different GHG estimates available. Member State early estimates were also used for quality assurance and quality control of the EEA's GHG early estimates for 2011. Finally, the EEA has also used the early estimates of 2011 GHG emissions produced by EEA member countries to assess progress towards the Kyoto targets in its annual trends and projections report (due to be published alongside the present report). In that report, the EEA's early estimates for 2011 were only used for countries that lack their own early estimates to track progress towards national and EU targets. (LN)

  19. Approximated EU GHG inventory: Early estimates for 2010

    Energy Technology Data Exchange (ETDEWEB)

    Herold, A.; Busche, J.; Hermann, H.; Joerss, W.; Scheffler, M. (OEko-Institut, Freiburg (Germany))

    2011-10-15

    The objective of this report is to provide an early estimate of greenhouse gas (GHG) emissions in the EU-15 and EU-27 for the year 2010. The official submission of 2010 data to the United Nations Framework Convention on Climate Change (UNFCCC) will occur in 2012. In recent years, the EEA and its European Topic Centre on Air Pollution and Climate Change Mitigation have developed a methodology to estimate GHG emissions using a bottom up approach - based on data or estimates for individual countries, sectors and gases - to derive EU GHG estimates in the preceding year (t-1). For transparency, this report shows the country-level GHG estimates from which the EU estimates have been derived. The 2010 estimates are based on the latest activity data available at country level and assume no change in emission factors or methodologies as compared to the official 2011 submissions to UNFCCC (which re-late to emissions in 2009). Some Member States estimate and publish their own early estimates of GHG emissions for the preceding year. Where such estimates exist they are clearly referenced in this report in order to ensure complete transparency regarding the different GHG estimates available. Member State early estimates were also used for quality assurance and quality control of the EEA's GHG early estimates for 2010. Finally, EEA has also used the early estimates of 2010 GHG emissions produced by EEA member countries to assess progress towards the Kyoto targets in its annual trends and projections report (due to be published alongside the present report). In that report, the EEA's early estimates for 2010 were only used for countries that lack their own early estimates to track progress towards national and EU targets. (Author)

  20. Recent advances in measurement and dietary mitigation of enteric methane emissions in ruminants

    Directory of Open Access Journals (Sweden)

    Amlan Kumar Patra

    2016-05-01

    Full Text Available Methane (CH4 emission, which is mainly produced during normal fermentation of feeds by the rumen microorganisms, represents a major contributor to the greenhouse gas (GHG emissions. Several enteric CH4 mitigation technologies have been explored recently. A number of new techniques have also been developed and existing techniques have been improved in order to evaluate CH4 mitigation technologies and prepare an inventory of GHG emissions precisely. The aim of this review is to discuss different CH4 measuring and mitigation technologies, which have been recently developed. Respiration chamber technique is still considered as a gold standard technique due to its greater precision and reproducibility in CH4 measurements. With the adoption of recent recommendations for improving the technique, the SF6 method can be used with a high level of precision similar to the chamber technique. Short-term measurement techniques of CH4 measurements generally invite considerable within- and between animal variations. Among the short-term measuring techniques, Greenfeed and methane hood systems are likely more suitable for evaluation of CH4 mitigation studies, if measurements could be obtained at different times of the day relative to the diurnal cycle of the CH4 production. Carbon dioxide and CH4 ratio, sniffer and other short-term breath analysis techniques are more suitable for on farm screening of large number of animals to generate the data of low CH4 producing animals for genetic selection purposes. Different indirect measuring techniques are also investigated in recent years. Several new dietary CH4 mitigation technologies have been explored, but only a few of them are practical and cost-effective. Future research should be directed towards both the medium- and long-term mitigation strategies, which could be utilized on farms to accomplish substantial reductions of CH4 emissions and to profitably reduce carbon footprint of livestock production systems. This

  1. Recent Advances in Measurement and Dietary Mitigation of Enteric Methane Emissions in Ruminants.

    Science.gov (United States)

    Patra, Amlan K

    2016-01-01

    Methane (CH4) emission, which is mainly produced during normal fermentation of feeds by the rumen microorganisms, represents a major contributor to the greenhouse gas (GHG) emissions. Several enteric CH4 mitigation technologies have been explored recently. A number of new techniques have also been developed and existing techniques have been improved in order to evaluate CH4 mitigation technologies and prepare an inventory of GHG emissions precisely. The aim of this review is to discuss different CH4 measuring and mitigation technologies, which have been recently developed. Respiration chamber technique is still considered as a gold standard technique due to its greater precision and reproducibility in CH4 measurements. With the adoption of recent recommendations for improving the technique, the SF6 method can be used with a high level of precision similar to the chamber technique. Short-term measurement techniques of CH4 measurements generally invite considerable within- and between-animal variations. Among the short-term measuring techniques, Greenfeed and methane hood systems are likely more suitable for evaluation of CH4 mitigation studies, if measurements could be obtained at different times of the day relative to the diurnal cycle of the CH4 production. Carbon dioxide and CH4 ratio, sniffer, and other short-term breath analysis techniques are more suitable for on farm screening of large number of animals to generate the data of low CH4-producing animals for genetic selection purposes. Different indirect measuring techniques are also investigated in recent years. Several new dietary CH4 mitigation technologies have been explored, but only a few of them are practical and cost-effective. Future research should be directed toward both the medium- and long-term mitigation strategies, which could be utilized on farms to accomplish substantial reductions of CH4 emissions and to profitably reduce carbon footprint of livestock production systems. This review presents

  2. Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: Present and future perspectives – A mini review

    International Nuclear Information System (INIS)

    Maity, Jyoti Prakash; Bundschuh, Jochen; Chen, Chien-Yen; Bhattacharya, Prosun

    2014-01-01

    The extensive use of fossil fuels is increasingly recognized as unsustainable as a consequence of depletion of supplies and the contribution of these fuels to climate change by GHG (greenhouse gas) emissions into the atmosphere. Microalgae indicate alternative renewable sustainable energy sources as they have a high potential for producing large amounts of biomass which in turn can be used for production of different third-generation biofuels at large scale. Microalgae transform the solar energy into the carbon storage products, leads to lipid accumulation, including TAG (triacylglycerols), which then can be transformed into biodiesel, bioethanol and biomethanol. This paper reviews the selection, production and accumulation of target bioenergy carrier's strains and their advantages as well as the technological development for oil, biodiesel, ethanol, methanol, biogas production and GHG mitigation. The feedstock of promising algal strain exhibits the suitable biofuel production. The current progress of hybrid-technologies (biomass production, wastewater treatment, GHG mitigation) for production of prime-products as biofuels offer atmospheric pollution control such as the reduction of GHG (CO 2 fixation) coupling wastewater treatment with microalgae growth. The selection of efficient strain, microbial metabolism, cultivation systems, biomass production are key parameters of viable technology for microalgae-based biodiesel-production. - Highlights: • Microalgae are promising feedstock for biofuel production within lower farming area. • Production rate (L/ha) of oil from microalgae is much higher than other feedstock. • Lipid of Chlorella emersonii, Botryococcus braunii, Dunaliella tertiolecta, are high (>60% of dw biomass). • Remove pollutant from wastewater during feedstock production by selective strains. • Ecofriendly route to mitigate GHG (greenhouse gas) and water pollution during microalgae production

  3. Comprehensive development of industrial symbiosis for the response of greenhouse gases emission mitigation: Challenges and opportunities in China

    International Nuclear Information System (INIS)

    Liu, Zhe; Adams, Michelle; Cote, Raymond P.; Geng, Yong; Chen, Qinghua; Liu, Weili; Sun, Lu; Yu, Xiaoman

    2017-01-01

    Although not yet a global consensus, there is widespread agreement that climate change is the result of anthropogenic sources of greenhouse gases (GHG) emissions. In order to respond to this issue, society has applied such strategies as clean energy development, improving industrial resource efficiency etc. Despite this, GHG emissions are still pursuing an upward trend. As the largest global GHG emitter, China faces a considerable challenge in responding to its agreed target of 40–45% GHG emission mitigation per unit gross domestic production (GDP) by 2020 as compared to 2005 levels. How to practically achieve this is still largely undecided. Comprehensive development of industrial symbiosis around nationwide is considered part of the solution. However, few researchers have studied how to actually implement a comprehensive development of industrial symbiosis for the purpose of GHG emission mitigation. This work intends to address this gap through highlighting the opportunities to develop such an approach for particular application to GHG emissions reduction in China. In addition, this study will also address the challenges ahead associated with the implementation of such a strategy, and outlines the where future research could be focused. Policy implications like establishing industrial symbiosis indicators associated with GHG emission mitigation are proposed. - Highlights: • Urgent issue of GHG mitigation and background of industrial symbiosis are introduced. • The challenges like lack of indicator, investigating methodologies and regional disparity are analyzed. • Opportunities for GHG mitigation through comprehensive development of industrial symbiosis are detailed. • Policy implications for responding GHG mitigation through industrial symbiosis are proposed.

  4. Greenhouse gas emissions from Spanish motorway transport: Key aspects and mitigation solutions

    International Nuclear Information System (INIS)

    Pérez-López, Paula; Gasol, Carles M.; Oliver-Solà, Jordi; Huelin, Sagrario; Moreira, Ma Teresa; Feijoo, Gumersindo

    2013-01-01

    The current increasing importance of road transport in the overall greenhouse gas (GHG) emissions has led to the adoption of diverse policies for the mitigation of global warming. These policies focus in two directions, depending on whether they involve the reduction of emissions or the mitigation through carbon dioxide (CO 2 ) sequestration. In this paper, the Tier 3 methodology from the European Monitoring and Evaluation Programme and the Environment Agency (EMEP/EEA) was applied to determine the evolution of Spanish motorway GHG emissions in the period 2005–2010. According to the results, though the average daily traffic (ADT) is the major parameter, the average fleet age and vehicle size also affect the level of emissions. Data analysis also revealed a clear connection between the decrease in European trade volume during the financial crisis and the GHG release, despite its temporary character. Among the three improvement scenarios evaluated, reduced speed limit seems the most direct measure while the consequences of afforestation strongly depend on the traffic density of the stretch of the motorway considered. Finally, technological improvement requires a drastic change in the fleet to obtain substantial decrease. The combination of different policies would allow a more robust strategy with lower GHG emissions. - Highlights: • Three model stretches, representative of Spanish motorway conditions, were evaluated. • Three environmental improvement scenarios were proposed. • Speed limit seemed the easiest measure to implement in a near future. • Afforestation showed limited effectiveness per unit of land surface. • A drastic technological improvement is required to obtain significant reductions

  5. Broadening the Appeal of Marginal Abatement Cost Curves: Capturing Both Carbon Mitigation and Development Benefits of Clean Energy Technologies; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Cowlin, S.; Cochran, J.; Cox, S.; Davison, C.; van der Gaast, Y.

    2012-08-01

    Low emission development strategies (LEDS) articulate policies and implementation plans that enable countries to advance sustainable, climate-resilient development and private sector growth while significantly reducing the greenhouse gas (GHG) emissions traditionally associated with economic growth. In creating a LEDS, policy makers often have access to information on abatement potential and costs for clean energy technologies, but there is a scarcity of economy-wide approaches for evaluating and presenting information on other dimensions of importance to development, such as human welfare, poverty alleviation, and energy security. To address this shortcoming, this paper proposes a new tool for communicating development benefits to policy makers as part of a LEDS process. The purpose of this tool is two-fold: 1. Communicate development benefits associated with each clean energy-related intervention; 2. Facilitate decision-making on which combination of interventions best contributes to development goals. To pilot this tool, the authors created a visual using data on developmental impacts identified through the Technology Needs Assessment (TNA) project in Montenegro. The visual will then be revised to reflect new data established through the TNA that provides information on cost, GHG mitigation, as well as the range and magnitude of developmental impacts.

  6. Life cycle greenhouse gas (GHG) impacts of a novel process for converting food waste to ethanol and co-products

    International Nuclear Information System (INIS)

    Ebner, Jacqueline; Babbitt, Callie; Winer, Martin; Hilton, Brian; Williamson, Anahita

    2014-01-01

    Highlights: • Co-fermentation using SSF at ambient temperature has potential as an ethanol pathway. • Bio-refinery GHG emissions are similar to corn and MSW ethanol production processes. • Net production GHG impact is negative with inclusion of waste disposal avoidance. • Food waste diversion from landfills is the largest contributor to GHG benefits. - Abstract: Waste-to-ethanol conversion is a promising technology to provide renewable transportation fuel while mitigating feedstock risks and land use conflicts. It also has the potential to reduce environmental impacts from waste management such as greenhouse gas (GHG) emissions that contribute to climate change. This paper analyzes the life cycle GHG emissions associated with a novel process for the conversion of food processing waste into ethanol (EtOH) and the co-products of compost and animal feed. Data are based on a pilot plant co-fermenting retail food waste with a sugary industrial wastewater, using a simultaneous saccharification and fermentation (SSF) process at room temperature with a grinding pretreatment. The process produced 295 L EtOH/dry t feedstock. Lifecycle GHG emissions associated with the ethanol production process were 1458 gCO 2 e/L EtOH. When the impact of avoided landfill emissions from diverting food waste to use as feedstock are considered, the process results in net negative GHG emissions and approximately 500% improvement relative to corn ethanol or gasoline production. This finding illustrates how feedstock and alternative waste disposal options have important implications in life cycle GHG results for waste-to-energy pathways

  7. Technology and demand forecasting for carbon capture and storage technology in South Korea

    International Nuclear Information System (INIS)

    Shin, Jungwoo; Lee, Chul-Yong; Kim, Hongbum

    2016-01-01

    Among the various alternatives available to reduce greenhouse gas (GHG) emissions, carbon capture and storage (CCS) is considered to be a prospective technology that could both improve economic growth and meet GHG emission reduction targets. Despite the importance of CCS, however, studies of technology and demand forecasting for CCS are scarce. This study bridges this gap in the body of knowledge on this topic by forecasting CCS technology and demand based on an integrated model. For technology forecasting, a logistic model and patent network analysis are used to compare the competitiveness of CCS technology for selected countries. For demand forecasting, a competition diffusion model is adopted to consider competition among renewable energies and forecast demand. The results show that the number of patent applications for CCS technology will increase to 16,156 worldwide and to 4,790 in Korea by 2025. We also find that the United States has the most competitive CCS technology followed by Korea and France. Moreover, about 5 million tCO_2e of GHG will be reduced by 2040 if CCS technology is adopted in Korea after 2020. - Highlights: • Carbon capture and storage (CCS) can help mitigate climate change globally. • It can both improve economic growth and meet GHG emission reduction targets. • We forecast CCS technology and demand based on an integrated model. • The US has the most competitive CCS technology followed by Korea and France. • 5 million tCO_2e of GHG will be reduced by 2040 if CCS is adopted in Korea.

  8. Linking GHG Emission Trading Systems and Markets

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Several different types of links are possible between different GHG-mitigation systems. These include: Linking two or more emission trading schemes so that emissions trading can occur both within and between different schemes ('direct links'); and Linking emission trading systems to registries/mechanisms and systems that generate offsets from project based mechanisms or from direct purchases/transfers of AAUs ('indirect links').

  9. Estimating GHG emissions of marine ports-the case of Barcelona

    International Nuclear Information System (INIS)

    Villalba, Gara; Gemechu, Eskinder Demisse

    2011-01-01

    In recent years, GHG inventories of cities have expanded to include extra-boundary activities that form part of the city's urban metabolism and economy. This paper centers on estimating the emissions due to seaports, in such a way that they can be included as part of the city's inventory or be used by the port itself to monitor their policy and technology improvements for mitigating climate change. We propose the indicators GHG emissions per ton of cargo handled or per passenger and emissions per value of cargo handled as practical measures for policy making and emission prevention measures to be monitored over time. Adapting existing methodologies to the Port of Barcelona, we calculated a total of 331,390 tons of GHG emissions (CO 2 equivalents) for the year of 2008, half of which were attributed to vessel movement (sea-based emissions) and the other half to port, land related activities (land-based emissions). The highest polluters were auto carriers with 6 kg of GHG emissions per ton of cargo handled. Knowing the highest emitters, the port can take action to improve the ship's activities within the port limits, such as maneuvering and hotelling. With these results, the port and the city can also find ways to reduce the land-based emissions. - Research highlights: → Adapting existing methodologies to the Port of Barcelona (PoB), we calculated a total of 331,390 tons of GHG emissions for the year of 2008, half of which were attributed to vessel movement (sea-based emissions) and the other half to port, land related activities (land-based emissions) → Emissions per ton of cargo handled is proposed as an indicator to pin point high polluting vessels-a measure independent of the city the port belongs to. For 2008, the highest polluters were auto carriers with 6 kg of GHG emissions per ton of cargo handled. → An additional measure of emissions per value of cargo handled is proposed to complement the emissions per weight indicator. For 2008, the volume of cargo

  10. Greenhouse gas emissions reduction in different economic sectors: Mitigation measures, health co-benefits, knowledge gaps, and policy implications.

    Science.gov (United States)

    Gao, Jinghong; Hou, Hongli; Zhai, Yunkai; Woodward, Alistair; Vardoulakis, Sotiris; Kovats, Sari; Wilkinson, Paul; Li, Liping; Song, Xiaoqin; Xu, Lei; Meng, Bohan; Liu, Xiaobo; Wang, Jun; Zhao, Jie; Liu, Qiyong

    2018-05-15

    To date, greenhouse gas (GHG) emissions, mitigation strategies and the accompanying health co-benefits in different economic sectors have not been fully investigated. The purpose of this paper is to review comprehensively the evidence on GHG mitigation measures and the related health co-benefits, identify knowledge gaps, and provide recommendations to promote further development and implementation of climate change response policies. Evidence on GHG emissions, abatement measures and related health co-benefits has been observed at regional, national and global levels, involving both low- and high-income societies. GHG mitigation actions have mainly been taken in five sectors: energy generation, transport, food and agriculture, household and industry, consistent with the main sources of GHG emissions. GHGs and air pollutants to a large extent stem from the same sources and are inseparable in terms of their atmospheric evolution and effects on ecosystem; thus, GHG reductions are usually, although not always, estimated to have cost effective co-benefits for public health. Some integrated mitigation strategies involving multiple sectors, which tend to create greater health benefits. The pros and cons of different mitigation measures, issues with existing knowledge, priorities for research, and potential policy implications were also discussed. Findings from this study can play a role not only in motivating large GHG emitters to make decisive changes in GHG emissions, but also in facilitating cooperation at international, national and regional levels, to promote GHG mitigation policies that protect public health from climate change and air pollution simultaneously. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Whole farm quantification of GHG emissions within smallholder farms in developing countries

    International Nuclear Information System (INIS)

    Seebauer, Matthias

    2014-01-01

    The IPCC has compiled the best available scientific methods into published guidelines for estimating greenhouse gas emissions and emission removals from the land-use sector. In order to evaluate existing GHG quantification tools to comprehensively quantify GHG emissions and removals in smallholder conditions, farm scale quantification was tested with farm data from Western Kenya. After conducting a cluster analysis to identify different farm typologies GHG quantification was exercised using the VCS SALM methodology complemented with IPCC livestock emission factors and the cool farm tool. The emission profiles of four farm clusters representing the baseline conditions in the year 2009 are compared with 2011 where farmers adopted sustainable land management practices (SALM). The results demonstrate the variation in both the magnitude of the estimated GHG emissions per ha between different smallholder farm typologies and the emissions estimated by applying two different accounting tools. The farm scale quantification further shows that the adoption of SALM has a significant impact on emission reduction and removals and the mitigation benefits range between 4 and 6.5 tCO 2  ha −1  yr −1 with significantly different mitigation benefits depending on typologies of the crop–livestock systems, their different agricultural practices, as well as adoption rates of improved practices. However, the inherent uncertainty related to the emission factors applied by accounting tools has substantial implications for reported agricultural emissions. With regard to uncertainty related to activity data, the assessment confirms the high variability within different farm types as well as between different parameters surveyed to comprehensively quantify GHG emissions within smallholder farms. (paper)

  12. Progress toward an Integrated Global GHG Information System (IG3IS)

    Science.gov (United States)

    DeCola, Philip

    2016-04-01

    from a specific human activity. Based upon the recent advances in GHG observation technologies, new data-mining tools for acquiring socioeconomic activity data, and enhancements to the computational models used to merge this data, WMO and its partners are developing a plan for an Integrated Global GHG Information System (IG3IS) able to evaluate the efficacy of policy, reduce emission inventory uncertainty, and inform additional mitigation actions. The presentation will cover the principles and objectives of IG3IS, as well as progress toward answering the questions: What research capabilities are ready and able to deliver useful information for whom? What decisions will be informed? What valuable and additional outcomes will result?

  13. The role of China in mitigating climate change

    International Nuclear Information System (INIS)

    Paltsev, Sergey; Morris, Jennifer; Cai, Yongxia; Karplus, Valerie; Jacoby, Henry

    2012-01-01

    We explore short- and long-term implications of several energy scenarios of China's role in efforts to mitigate global climate risk. The focus is on the impacts on China's energy system and GDP growth, and on global climate indicators such as greenhouse gas concentrations, radiative forcing, and global temperature change. We employ the MIT Integrated Global System Model (IGSM) framework and its economic component, the MIT Emissions Prediction and Policy Analysis (EPPA) model. We demonstrate that China's commitments for 2020, made during the UN climate meetings in Copenhagen and Cancun, are reachable at very modest cost. Alternative actions by China in the next 10 years do not yield any substantial changes in GHG concentrations or temperature due to inertia in the climate system. Consideration of the longer-term climate implications of the Copenhagen-type of commitments requires an assumption about policies after 2020, and the effects differ drastically depending on the case. Meeting a 2 °C target is problematic unless radical GHG emission reductions are assumed in the short-term. Participation or non-participation of China in global climate architecture can lead by 2100 to a 200–280 ppm difference in atmospheric GHG concentration, which can result in a 1.1 °C to 1.3 °C change by the end of the century. We conclude that it is essential to engage China in GHG emissions mitigation policies, and alternative actions lead to substantial differences in climate, energy, and economic outcomes. Potential channels for engaging China can be air pollution control and involvement in sectoral trading with established emissions trading systems in developed countries. - Highlights: ► It is essential to engage China in GHG emissions mitigation policies. ► China's mitigation actions proposed for 2015 and 2020 are reachable at modest costs. ► Meeting 2 °C target is problematic without radical GHG emissions reductions.

  14. Relevance of Clean Coal Technology for India’s Energy Security: A Policy Perspective

    Science.gov (United States)

    Garg, Amit; Tiwari, Vineet; Vishwanathan, Saritha

    2017-07-01

    Climate change mitigation regimes are expected to impose constraints on the future use of fossil fuels in order to reduce greenhouse gas (GHG) emissions. In 2015, 41% of total final energy consumption and 64% of power generation in India came from coal. Although almost a sixth of the total coal based thermal power generation is now super critical pulverized coal technology, the average CO2 emissions from the Indian power sector are 0.82 kg-CO2/kWh, mainly driven by coal. India has large domestic coal reserves which give it adequate energy security. There is a need to find options that allow the continued use of coal while considering the need for GHG mitigation. This paper explores options of linking GHG emission mitigation and energy security from 2000 to 2050 using the AIM/Enduse model under Business-as-Usual scenario. Our simulation analysis suggests that advanced clean coal technologies options could provide promising solutions for reducing CO2 emissions by improving energy efficiencies. This paper concludes that integrating climate change security and energy security for India is possible with a large scale deployment of advanced coal combustion technologies in Indian energy systems along with other measures.

  15. Multiple-pollutant cost-effectiveness of greenhouse gas mitigation measures in the UK agriculture

    International Nuclear Information System (INIS)

    Eory, Vera; Topp, Cairistiona F.E.; Moran, Dominic

    2013-01-01

    Highlights: ► Multiple-pollutant marginal abatement cost curves can inform integrated environmental policy. ► We incorporated the co-effects on NH 3 , NO 3 − , P and sediment, as monetary values, into the UK GHG MACC. ► Adding co-effects modifies the GHG MACC, though with little impact unless using high damage values. ► Further research is needed on the co-effects of GHG mitigation measures and on damage values. ► Analysis should focus on the co-effects of measures that are slightly above or below the threshold. -- Abstract: This paper develops multiple-pollutant marginal abatement cost curve analysis to identify an optimal set of greenhouse gas (GHG) mitigation measures considering the trade-offs and synergies with other environmental pollutants. The analysis is applied to UK agriculture, a sector expected to make a contribution to the national GHG mitigation effort. Previous analyses using marginal abatement cost curves (MACCs) have determined the sector's GHG abatement potential based on the cost-effectiveness of a variety of technically feasible mitigation measures. Most of these measures have external effects on other pollution loads arising from agricultural activities. Here the monetary values of four of the most important impacts to water and air (specifically ammonia, nitrate, phosphorous and sediment) are included in the cost-effectiveness analysis. The resulting multiple-pollutant marginal abatement cost curve (MP MACC) informs the design of sustainable climate change policies by showing how the MP MACC for the UK agriculture can differ from the GHG MACC. The analysis also highlights research gaps, and suggests a need to understand the wider environmental effects of GHG mitigation options and to reduce the uncertainty in pollutant damage cost estimates

  16. Biomass direct-fired power generation system in China: An integrated energy, GHG emissions, and economic evaluation for Salix

    International Nuclear Information System (INIS)

    Wang, Changbo; Zhang, Lixiao; Chang, Yuan; Pang, Mingyue

    2015-01-01

    To gain a better understanding of the options of biomass power generation in China, this study presented an integrated energy, environmental, and economic evaluation for Salix in China, and a typical Salix direct-fired power generation system (SDPGS) in Inner Mongolia was selected for case study. A tiered hybrid life cycle assessment (LCA) model was developed to calculate the “planting-to-wire” (PTW) energy consumption, greenhouse gas (GHG) emissions, and economic cost and profit of the SDPGS, including feedstock cultivation, power plant construction and operation, and on-grid price with/without government subsidies. The results show that the PTW energy consumption and GHG emissions of Salix are 0.8 MJ/kWh and 114 g CO 2 -eq/kWh, respectively, indicating an energy payback time (EPBT) of 3.2 years. The SDPGS is not economically feasible without government subsidies. The PTW costs are dominated by feedstock cultivation. The energy saving and GHG mitigation benefits are still robust, even when the power plant runs at only 60% design capacity. For future development of biomass power in China, scientific planning is necessary to guarantee a sufficient feedstock supply. In addition, technology progress, mature industrial chains, and reasonable price setting policy are required to enable potential energy and environmental advantages of biomass power moving forward. -- Highlights: •A hybrid LCA model was used to evaluate overall performance of the SDPGS. •On-site processes dominate the “planting-to-wire” footprints. •The energy saving and GHG mitigation benefits of the SDPGS are robust. •The economic profit of the SDPGS is feeble without government subsidies. •Generating efficiency promotion has a comprehensive positive effect on the system

  17. Synergies between mitigation of, and adaptation to, climate change in agriculture

    DEFF Research Database (Denmark)

    Smith, P; Olesen, Jørgen E

    2010-01-01

    There is a very significant, cost effective greenhouse gas (GHG) mitigation potential in agriculture. The annual mitigation potential in agriculture is estimated to be 4200, 2600 and 1600 Mt CO2 equiv/yr at C prices of 100, 50 and 20 US$/t CO2 equiv, respectively. The value of GHG mitigated each...... year is equivalent to 420 000, 130 000 and 32 000 million US$/yr for C prices of 100, 50 and 20 US$/t CO2 equiv, respectively. From both the mitigation and economic perspectives, we cannot afford to miss out on this mitigation potential. The challenge of agriculture within the climate change context...... of the agroecosystem in some way. This often not only affects the GHG emissions but also the soil properties and nutrient cycling. Adaptation to increased variability of temperature and rainfall involves increasing the resilience of the production systems. This may be done by improving soil water holding capacities...

  18. Agricultural productivity and greenhouse gas emissions: trade-offs or synergies between mitigation and food security?

    International Nuclear Information System (INIS)

    Valin, H; Havlík, P; Mosnier, A; Obersteiner, M; Herrero, M; Schmid, E

    2013-01-01

    In this letter, we investigate the effects of crop yield and livestock feed efficiency scenarios on greenhouse gas (GHG) emissions from agriculture and land use change in developing countries. We analyze mitigation associated with different productivity pathways using the global partial equilibrium model GLOBIOM. Our results confirm that yield increase could mitigate some agriculture-related emissions growth over the next decades. Closing yield gaps by 50% for crops and 25% for livestock by 2050 would decrease agriculture and land use change emissions by 8% overall, and by 12% per calorie produced. However, the outcome is sensitive to the technological path and which factor benefits from productivity gains: sustainable land intensification would increase GHG savings by one-third when compared with a fertilizer intensive pathway. Reaching higher yield through total factor productivity gains would be more efficient on the food supply side but halve emissions savings due to a strong rebound effect on the demand side. Improvement in the crop or livestock sector would have different implications: crop yield increase would bring the largest food provision benefits, whereas livestock productivity gains would allow the greatest reductions in GHG emission. Combining productivity increases in the two sectors appears to be the most efficient way to exploit mitigation and food security co-benefits. (letter)

  19. A core framework and scenario for deep GHG reductions at the city scale

    International Nuclear Information System (INIS)

    Lazarus, Michael; Chandler, Chelsea; Erickson, Peter

    2013-01-01

    Trends in increasing urbanization, paired with a lack of ambitious action on larger scales, uniquely position cities to resume leadership roles in climate mitigation. While many cities have adopted ambitious long-term emission reduction goals, few have articulated how to reach them. This paper presents one of the first long-term scenarios of deep greenhouse gas abatement for a major U.S. city. Using a detailed, bottom-up scenario analysis, we investigate how Seattle might achieve its recently stated goal of carbon neutrality by the year 2050. The analysis demonstrates that a series of ambitious strategies could achieve per capita GHG reductions of 34% in 2020, and 91% in 2050 in Seattle's “core” emissions from the buildings, transportation, and waste sectors. We examine the pros and cons of options to get to, or beyond, net zero emissions in these sectors. We also discuss methodological innovations for community-scale emissions accounting frameworks, including a “core” emissions focus that excludes industrial activity and a consumption perspective that expands the emissions footprint and scope of policy solutions. As in Seattle, other communities may find the mitigation strategies and analytical approaches presented here are useful for crafting policies to achieve deep GHG-reduction goals. - Highlights: ► Cities can play a pivotal role in mitigating climate change. ► Strategies modeled achieve per-capita GHG reductions of 91% by 2050 in Seattle. ► We discuss methodological innovations in community-scale accounting frameworks. ► We weigh options for getting to, or beyond, zero GHG emissions. ► Other cities may adapt these measures and analytical approaches to curb emissions

  20. Co-benefits of global, domestic, and sectoral greenhouse gas mitigation for US air quality and human health in 2050

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuqiang; Smith, Steven J.; Bowden, Jared H.; Adelman, Zachariah; West, J. Jason

    2017-11-01

    Policies to reduce greenhouse gas (GHG) emissions can bring ancillary benefits of improved air quality and reduced premature mortality, in addition to slowing climate change. Here we study the co-benefits of global and domestic GHG mitigation on US air quality and human health in 2050 at fine resolution using dynamical downscaling, and quantify for the first time the co-benefits from foreign GHG mitigation. Relative to a reference scenario, global GHG reductions in RCP4.5 avoid 16000 PM2.5-related all-cause deaths yr-1 (90% confidence interval, 11700-20300), and 8000 (3600-12400) O3-related respiratory deaths yr-1 in the US in 2050. Foreign GHG mitigation avoids 15% and 62% of PM2.5- and O3-related total avoided deaths, highlighting the importance of foreign GHG mitigation on US human health benefits. GHG mitigation in the US residential sector brings the largest co-benefits for PM2.5-related deaths (21% of total domestic co-benefits), and industry for O3 (17%). Monetized benefits, for avoided deaths from ozone, PM2.5, and heat stress from a related study, are $148 ($96-201) per ton CO2 at high valuation and $49 ($32-67) at low valuation, of which 36% are from foreign GHG reductions. These benefits likely exceed the marginal cost of GHG reductions in 2050. The US gains significantly greater co-benefits when coordinating GHG reductions with foreign countries. Similarly, previous studies estimating co-benefits locally or regionally may greatly underestimate the full co-benefits of coordinated global actions.

  1. Potential and cost of clean development mechanism options in the energy sector. Inventory of options in non-Annex I countries to reduce GHG-emissions

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, J.C.; Van der Linden, N.H.; Martens, J.W.; Ormel, F.; Van Rooijen, S.N.M. [ECN Policy Studies, Petten (Netherlands); Heaps, C.; Kartha, S.; Lazarus, M.; Ruth, M. [Stockholm Environment Institute SEI, Boston (United States); Lee, R.; Mendis, M. [Alternative Energy Development, Inc., Silver Spring (United States)

    1999-12-01

    An assessment is presented of the potential and cost of the Clean Development Mechanism as an instrument to partially meet the Greenhouse Gases emission limitation commitments of the Netherlands for the first budget period, 2008-2012. Information about the cost and emission reduction potential in the energy sector has been collected from national mitigation studies. In total, some 300 GHG emission reduction options in 24 non-Annex I countries have been collected Together, these countries account for two-thirds of current non-Annex I GHG emissions. The mitigation potential in non-Annex I countries is significant when compared with Annex I reduction requirements. The inventory of mitigation options suggests that an annual mitigation potential in the first budget period at costs up to 1990 USD 10/ton CO2 is approximately 1.7 Gt CO2 equivalents. However, this estimate should be viewed with caution, as the mitigation studies on which this estimate is based have been carried out as capacity-building exercises and they should not be viewed as definitive, technically rigorous, exhaustive, analysis of national GHG mitigation potential. 15 refs.

  2. Life-cycle analysis on energy consumption and GHG emission intensities of alternative vehicle fuels in China

    International Nuclear Information System (INIS)

    Ou, Xunmin; Yan, Xiaoyu; Zhang, Xiliang; Liu, Zhen

    2012-01-01

    Highlights: ► We analyzed the life cycle energy intensity and GHG emissions of about 40 pathways of alternative vehicle fuels in China. ► Coal-based liquid fuel has higher life cycle energy intensities and first generation technology bio-fuel has relatively lower intensity. ► By 2020 electricity will have significantly lower GHG intensity and second generation technology bio-fuel will have near zero intensities. -- Abstract: Fossil energy consumption (FEC) and greenhouse gas (GHG) emission intensities of major alternative vehicle fuels (AVFs) in China are calculated and compared with conventional fuels by means of full life-cycle analysis. Currently most of the AVFs have not relatively obvious GHG emission reduction when compared to the gasoline pathway: (1) coal-based AVF has higher intensities in terms of both the FEC and GHG emissions; (2) electricity from the average Chinese grid has the GHG emission intensity similar to that of gasoline pathway although relatively lower FEC intensity; and (3) first generation technology bio-fuel has relatively lower GHG emission intensity and substantially lower FEC intensity. It is forecasted that by 2020 when still comparing to the gasoline pathway: (1) coal-based AVF will still have FEC and GHG emission intensities that are 1.5–1.8 and 1.8–2.5 time those of gasoline pathway, and the application of carbon capture and storage technology can reduce the GHG emission intensity of coal-based AVF; (2) electricity will have significantly lower GHG intensity; and (3) second generation technology bio-fuel will have near zero FEC and GHG intensities.

  3. Agricultural opportunities to mitigate greenhouse gas emissions

    International Nuclear Information System (INIS)

    Johnson, Jane M.-F.; Franzluebbers, Alan J.; Weyers, Sharon Lachnicht; Reicosky, Donald C.

    2007-01-01

    Agriculture is a source for three primary greenhouse gases (GHGs): CO 2 , CH 4 , and N 2 O. It can also be a sink for CO 2 through C sequestration into biomass products and soil organic matter. We summarized the literature on GHG emissions and C sequestration, providing a perspective on how agriculture can reduce its GHG burden and how it can help to mitigate GHG emissions through conservation measures. Impacts of agricultural practices and systems on GHG emission are reviewed and potential trade-offs among potential mitigation options are discussed. Conservation practices that help prevent soil erosion, may also sequester soil C and enhance CH 4 consumption. Managing N to match crop needs can reduce N 2 O emission and avoid adverse impacts on water quality. Manipulating animal diet and manure management can reduce CH 4 and N 2 O emission from animal agriculture. All segments of agriculture have management options that can reduce agriculture's environmental footprint. - Management options can be used to reduce agriculture's environmental impacts

  4. The potential role for management of U.S. public lands in greenhouse gas mitigation and climate policy.

    Science.gov (United States)

    Olander, Lydia P; Cooley, David M; Galik, Christopher S

    2012-03-01

    Management of forests, rangelands, and wetlands on public lands, including the restoration of degraded lands, has the potential to increase carbon sequestration or reduce greenhouse gas (GHG) emissions beyond what is occurring today. In this paper we discuss several policy options for increasing GHG mitigation on public lands. These range from an extension of current policy by generating supplemental mitigation on public lands in an effort to meet national emissions reduction goals, to full participation in an offsets market by allowing GHG mitigation on public lands to be sold as offsets either by the overseeing agency or by private contractors. To help place these policy options in context, we briefly review the literature on GHG mitigation and public lands to examine the potential for enhanced mitigation on federal and state public lands in the United States. This potential will be tempered by consideration of the tradeoffs with other uses of public lands, the needs for climate change adaptation, and the effects on other ecosystem services.

  5. The influence of urban form on GHG emissions in the U.S. household sector

    International Nuclear Information System (INIS)

    Lee, Sungwon; Lee, Bumsoo

    2014-01-01

    To better understand the role of sustainable urban development in greenhouse gas (GHG) mitigation, this study examines the paths by which urban form influences an individual household's carbon dioxide emissions in the 125 largest urbanized areas in the U.S. Our multilevel SEM analyses show that doubling population-weighted density is associated with a reduction in CO 2 emissions from household travel and residential energy consumption by 48% and 35%, respectively. Centralized population and polycentric structures have only a moderate impact in our analyses. Given that household travel and residential energy use account for 42% of total U.S. carbon dioxide emissions, these findings highlight the importance of smart growth policies to build more compact and transit friendly cities as a crucial part of any strategic efforts to mitigate GHG emissions and to stabilize climate. - Highlights: • We examine how urban form influences household CO 2 emissions using a multilevel SEM. • Doubling population-weighted density is associated with a 48% reduction in CO 2 emissions from household travel. • Doubling population-weighted density is associated with a 35% reduction in CO 2 emissions from residential energy use. • Doubling per capita transit subsidy is associated with a 46% lower VMT and 18% reduction in transportation CO 2 emissions. • Smart growth policies should be a crucial part of any strategic efforts to mitigate GHG emissions and stabilize climate

  6. Cities' Role in Mitigating United States Food System Greenhouse Gas Emissions.

    Science.gov (United States)

    Mohareb, Eugene A; Heller, Martin C; Guthrie, Peter M

    2018-05-15

    Current trends of urbanization, population growth, and economic development have made cities a focal point for mitigating global greenhouse gas (GHG) emissions. The substantial contribution of food consumption to climate change necessitates urban action to reduce the carbon intensity of the food system. While food system GHG mitigation strategies often focus on production, we argue that urban influence dominates this sector's emissions and that consumers in cities must be the primary drivers of mitigation. We quantify life cycle GHG emissions of the United States food system through data collected from literature and government sources producing an estimated total of 3800 kg CO 2 e/capita in 2010, with cities directly influencing approximately two-thirds of food sector GHG emissions. We then assess the potential for cities to reduce emissions through selected measures; examples include up-scaling urban agriculture and home delivery of grocery options, which each may achieve emissions reductions on the order of 0.4 and ∼1% of this total, respectively. Meanwhile, changes in waste management practices and reduction of postdistribution food waste by 50% reduce total food sector emissions by 5 and 11%, respectively. Consideration of the scale of benefits achievable through policy goals can enable cities to formulate strategies that will assist in achieving deep long-term GHG emissions targets.

  7. Climate-Smart Livestock Systems: An Assessment of Carbon Stocks and GHG Emissions in Nicaragua.

    Directory of Open Access Journals (Sweden)

    Lucía Gaitán

    Full Text Available Livestock systems in the tropics can contribute to mitigate climate change by reducing greenhouse gas (GHG emissions and increasing carbon accumulation. We quantified C stocks and GHG emissions of 30 dual-purpose cattle farms in Nicaragua using farm inventories and lifecycle analysis. Trees in silvo-pastoral systems were the main C stock above-ground (16-24 Mg ha-1, compared with adjacent secondary forests (43 Mg C ha-1. We estimated that methane from enteric fermentation contributed 1.6 kg CO2-eq., and nitrous oxide from excreta 0.4 kg CO2-eq. per kg of milk produced. Seven farms that we classified as climate-smart agriculture (CSA out of 16 farms had highest milk yields (6.2 kg cow-1day-1 and lowest emissions (1.7 kg CO2-eq. per kg milk produced. Livestock on these farms had higher-quality diets, especially during the dry season, and manure was managed better. Increasing the numbers of CSA farms and improving CSA technology will require better enabling policy and incentives such as payments for ecosystem services.

  8. Climate-Smart Livestock Systems: An Assessment of Carbon Stocks and GHG Emissions in Nicaragua.

    Science.gov (United States)

    Gaitán, Lucía; Läderach, Peter; Graefe, Sophie; Rao, Idupulapati; van der Hoek, Rein

    2016-01-01

    Livestock systems in the tropics can contribute to mitigate climate change by reducing greenhouse gas (GHG) emissions and increasing carbon accumulation. We quantified C stocks and GHG emissions of 30 dual-purpose cattle farms in Nicaragua using farm inventories and lifecycle analysis. Trees in silvo-pastoral systems were the main C stock above-ground (16-24 Mg ha-1), compared with adjacent secondary forests (43 Mg C ha-1). We estimated that methane from enteric fermentation contributed 1.6 kg CO2-eq., and nitrous oxide from excreta 0.4 kg CO2-eq. per kg of milk produced. Seven farms that we classified as climate-smart agriculture (CSA) out of 16 farms had highest milk yields (6.2 kg cow-1day-1) and lowest emissions (1.7 kg CO2-eq. per kg milk produced). Livestock on these farms had higher-quality diets, especially during the dry season, and manure was managed better. Increasing the numbers of CSA farms and improving CSA technology will require better enabling policy and incentives such as payments for ecosystem services.

  9. The Moving Target of Climate Mitigation: Examples from the Energy Sector in California

    Science.gov (United States)

    Tarroja, B.; AghaKouchak, A.; Forrest, K.; Chiang, F.; Samuelsen, S.

    2016-12-01

    In response to the concerns of climate change-induced impacts on human health, environmental integrity, and the secure operation of resource supply infrastructures, strategies to reduce greenhouse gas (GHG) emissions of major societal sectors have been in development. In the energy sector, these strategies are based in low carbon primary energy deployment, increased energy efficiency, and implementing complementary technologies for operational resilience. While these strategies are aimed at climate mitigation, a degree of climate change-induced impacts will occur by the time of their deployment, and many of these impacts can compromise the effectiveness of these climate mitigation strategies. In order to develop climate mitigation strategies that will achieve their GHG reduction and other goals, the impact that climate change-induced conditions can have on different components of climate mitigation strategies must be understood. This presentation will highlight three examples of how climate change-induced conditions affect components of climate mitigation strategies in California: through impacts on 1) hydropower generation, 2) renewable potential for geothermal and solar thermal resources to form part of the renewable resource portfolio, and 3) the magnitudes and shapes of the electric load demand that must be met sustainably. These studies are part of a larger, overarching project to understand how climate change impacts the energy system and how to develop a sustainable energy infrastructure that is resilient against these impacts.

  10. Results of mitigation studies from Pakistan

    International Nuclear Information System (INIS)

    1998-01-01

    At the international level, Pakistan's contractual obligations to the United Nations Framework Convention on Climate Change (UNFCCC) include the preparation of a greenhouse gas (GHG) emissions abatement program, a national communication on climate change, and the formulation of a least-cost GHG abatement action plan and strategy. Pakistan ratified the UNFCCC in June 1994. The ratification of the Convention has lead to the undertaking of activities such as the Asia Least-cost Greenhouse Gas Abatement Strategy (ALGAS) Project, which aims to build capacity in Asian countries in the preparation of GHG inventories and mitigation programs. (au)

  11. Greenhouse gas mitigation potential of biomass energy technologies in Vietnam using the long range energy alternative planning system model

    International Nuclear Information System (INIS)

    Kumar, Amit; Bhattacharya, S.C.; Pham, H.L.

    2003-01-01

    The greenhouse gas (GHG) mitigation potentials of number of selected Biomass Energy Technologies (BETs) have been assessed in Vietnam. These include Biomass Integrated Gasification Combined Cycle (BIGCC) based on wood and bagasse, direct combustion plants based on wood, co-firing power plants and Stirling engine based on wood and cooking stoves. Using the Long-range Energy Alternative Planning (LEAP) model, different scenarios were considered, namely the base case with no mitigation options, replacement of kerosene and liquefied petroleum gas (LPG) by biogas stove, substitution of gasoline by ethanol in transport sector, replacement of coal by wood as fuel in industrial boilers, electricity generation with biomass energy technologies and an integrated scenario including all the options together. Substitution of coal stoves by biogas stove has positive abatement cost, as the cost of wood in Vietnam is higher than coal. Replacement of kerosene and LPG cookstoves by biomass stove also has a positive abatement cost. Replacement of gasoline by ethanol can be realized after a few years, as at present the cost of ethanol is more than the cost of gasoline. The replacement of coal by biomass in industrial boiler is also not an attractive option as wood is more expensive than coal in Vietnam. The substitution of fossil fuel fired plants by packages of BETs has a negative abatement cost. This option, if implemented, would result in mitigation of 10.83 million tonnes (Mt) of CO 2 in 2010

  12. Climate change mitigation in developing countries through interregional collaboration by local governments: Japanese citizens' preference

    International Nuclear Information System (INIS)

    Nakamura, Hidenori; Kato, Takaaki

    2011-01-01

    This study explores the motivation of domestic and international interregional collaboration on climate change mitigation through carbon crediting by Japanese local governments, using a social survey. The study finds balanced collaboration with domestic partner regions and developing countries is preferred in the case of collaboration, given that the unit cost of collaboration is assumed lower than that of no collaboration. Appreciation of benefits such as technology transfer and local environmental improvement in developing countries increases the preference of collaboration with developing countries. Two factors hinder Japanese local governments' collaboration with developing countries from the perspective of citizens: a sense of environmental responsibility to reduce greenhouse gas (GHG) emissions within the city and a preference for domestic orientation even if the collaboration with developing countries is less costly and has benefits of technology transfer and local environmental improvement. The preference for a lower total cost of GHG emissions reductions is confirmed except for those with a sense of environmental responsibility. The study also finds that provision of information on mitigation projects and co-benefits would increase the preference for interregional collaboration with developing countries depending on the types of collaborative project, except for those with a sense of environmental responsibility. - Highlights: → We surveyed views of Japanese citizens on interregional/international cooperation of their cities for GHG reduction. → Sense of environmental responsibility is negatively correlated with the needs for cooperation. → Information on co-benefits of collaboration would strengthen preference for cooperation.

  13. State of the art of mitigation and relation mitigation/adaptation

    Energy Technology Data Exchange (ETDEWEB)

    Lenstra, W.J.; Van Doorn, J.; Verheggen, B.; Sahan, E.; Boersma, A.R. [ECN Biomass, Coal and Environment Research, Petten (Netherlands)

    2009-04-15

    This study has the main purpose to make useful information available for the programming of the Knowledge for Climate (KfC) program. The emphasis has been laid on a broad overview of mitigation options and relations, complemented with more detailed information on new or less known options and insights. The mitigation option biomass gets special attention in this study. The production of biomass has many (positive and negative) relations with other elements of the KfC program like space use and adaptation. Recently a global discussion on biomass usage for biofuels has started (food or fuel). Therefore a separate chapter will be dedicated to the sustainability aspects of biomass. An overview of technical mitigation measures with emphasis on the energy supply side is presented. This overview shows the large number of available and innovative options and the vast potential for reduction of the emissions of Greenhouse Gases (GHG) of these mitigation measures. The effectiveness of many mitigation options is strongly dependent on local conditions and implementation issues. A number of innovative mitigation measures such as aquatic biomass and biomass in combination with Carbon Capture and Storage (CCS) are described in more detail. Biomass for energy has many different forms and applications. It is one of the mitigation options with a high potential, but at the same time it can have negative environmental impacts and might compete with other forms of land use including food production. This makes bio-energy a promising but complex option, which makes careful evaluation necessary. Several examples of multifunctional land use show that by combining functions, synergy can be achieved. This could lead to a reduction of potentially negative impacts and thus easier implementation. Furthermore, novel technologies for reducing or offsetting climate change such as air capture and artificial cooling might have a high potential as mitigation option, but need to be examined before

  14. Incorporation of electricity GHG emissions intensity variability into building environmental assessment

    International Nuclear Information System (INIS)

    Cubi, Eduard; Doluweera, Ganesh; Bergerson, Joule

    2015-01-01

    Highlights: • Current building assessment does not account for variability in the electric grid. • A new method incorporates hourly grid variability into building assessment. • The method is complementary with peak-shaving policies. • The assessment method can affect building design decisions. - Abstract: Current building energy and GHG emissions assessments do not account for the variable performance of the electric grid. Incorporating hourly grid variability into building assessment methods can help to better prioritize energy efficiency measures that result in the largest environmental benefits. This article proposes a method to incorporate GHG emissions intensity changes due to grid variability into building environmental assessment. The proposed method encourages building systems that reduce electricity use during peak periods while accounting for differences in grid GHG emissions intensity (i.e., peak shaving is more strongly encouraged in grids that have GHG intense peak generation). A set of energy saving building technologies are evaluated in a set of building variants (office, residential) and grid types (hydro/nuclear dominated, coal/gas dominated) to demonstrate the proposed method. Differences between total GHG emissions calculated with the new method compared with the standard (which assumes a constant GHG emissions intensity throughout the year) are in the 5–15% range when the contribution of electricity to total GHG emissions is more significant. The influence of the method on the assessment of the relative performance of some energy efficiency measures is much higher. For example, the estimated GHG emissions savings with heat pumps and photovoltaics can change by −40% and +20%, respectively, using the new assessment method instead of the standard. These differences in GHG emissions estimates can influence building design decisions. The new method could be implemented easily, and would lead to better decision making and more accurate

  15. An interval fixed-mix stochastic programming method for greenhouse gas mitigation in energy systems under uncertainty

    International Nuclear Information System (INIS)

    Xie, Y.L.; Li, Y.P.; Huang, G.H.; Li, Y.F.

    2010-01-01

    In this study, an interval fixed-mix stochastic programming (IFSP) model is developed for greenhouse gas (GHG) emissions reduction management under uncertainties. In the IFSP model, methods of interval-parameter programming (IPP) and fixed-mix stochastic programming (FSP) are introduced into an integer programming framework, such that the developed model can tackle uncertainties described in terms of interval values and probability distributions over a multi-stage context. Moreover, it can reflect dynamic decisions for facility-capacity expansion during the planning horizon. The developed model is applied to a case of planning GHG-emission mitigation, demonstrating that IFSP is applicable to reflecting complexities of multi-uncertainty, dynamic and interactive energy management systems, and capable of addressing the problem of GHG-emission reduction. A number of scenarios corresponding to different GHG-emission mitigation levels are examined; the results suggest that reasonable solutions have been generated. They can be used for generating plans for energy resource/electricity allocation and capacity expansion and help decision makers identify desired GHG mitigation policies under various economic costs and environmental requirements.

  16. Integrated energy planning: Strategies to mitigate climate change

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Johnny N; Sheffield, John W [University of Missouri-Rolla (United States)

    1997-07-01

    The framework convention on climate change, signed by more than 150 governments worldwide in June 1992, calls on parties to the convention undertaken inventories of national sources and sinks of greenhouse gases and to develop plans for responding to climate change. The energy sector is comprised of the major energy demand sectors (industry, residential and commercial, transport and agriculture), and the energy supply sector, which consists of resource extraction, conversion, and delivery of energy products. Greenhouse Gas (GHG) emissions occur at various points in the sector, from resource extraction to end use application, and accordingly, options for mitigation exist at various points. In most countries, will be a major focus of GHG mitigation analysis. The primary focus of this paper is on the identification of strategies that can mitigate climate changes on the basis of integrated energy planing analysis. The overall approach follows a methodology developed by the U.S. Country Studies Program under the framework of the Convention's commitments. It involves the development of scenarios based on energy uses and evaluation of specific technologies that can satisfy demands for energy services. One can compare technologies based on their relative cost to achieve a unit of GHG reduction and other features of interest. This approach gives equal weight to both energy supply and energy demand options. A variety of screening criteria including indicators of cost-effectiveness as well as non-economic analysis concerns, can be used to identify and assess promising options, which can then be combined to create one or more scenarios. Mitigation scenarios are evaluated against the backdrop of a baseline scenario, which simulates assumed to take place in the absence of mitigation efforts. Mitigation scenarios can be designed to meet specific emission reduction targets or to simulate the effect of specific policy inventions. The paper ends with an application using a

  17. Mitigation incentives with climate finance and treaty options

    International Nuclear Information System (INIS)

    Strand, Jon

    2016-01-01

    Future greenhouse gas (GHG) mitigation action of current non-climate-policy (NP) countries is considered to take two alternative forms: 1) “climate finance” payments received in return for future reductions in its GHG emissions below a defined “baseline”; and 2) join a “climate treaty” whereby the required emissions reductions are formally binding. It is assumed that baselines defining climate finance payments, and required emissions reductions under a treaty, depend positively on current emissions. It is then shown that making such future options available reduces current GHG mitigation in NP countries, leading to higher emissions in the short run. This effect is stronger when future climate finance payments are higher; the required relative emissions reductions under a treaty are greater; when commitments under a treaty are longer-lasting; and mitigation targets depend more on current emissions. Such short-run increases in emissions can (sometimes, more than) fully eliminate the effect of the subsequent policy. When climate finance and treaties are both future alternatives, more generous climate finance can make it harder and more expensive to induce the country to join a climate treaty. - Highlights: • A good future climate finance arrangement can increase GHG emissions today. • The same can be the case with a future and restrictive climate treaty. • These can be problems when costs under such solutions are reduced by higher emissions today. • Better climate finance also tends to make joining a climate treaty less attractive.

  18. International workshop on greenhouse gas mitigation technologies and measures: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    More than 150 countries are now Party to the United Nations Framework Convention on Climate Change (FCCC), which seeks to stabilize atmospheric concentrations of greenhouse gases at a level that would prevent dangerous human interference with the global climate system. Climate change country studies are a significant step for developing countries and countries with economies in transition to meet their national reporting commitments to the FCCC. These studies also provide the basis for preparation of National Climate Change Action Plans and implementation of technologies and practices which reduce greenhouse gas emissions or enhance carbon sinks. The broad goals of the workshop were to: (1) present results of country study mitigation assessments, (2) identify promising no-regrets greenhouse gas mitigation options in land-use and energy sectors, (3) share information on development of mitigation technologies and measures which contribute to improved National Climate Change Actions Plans, and (4) begin the process of synthesizing mitigation assessments for use by FCCC subsidiary bodies. The 59 papers are arranged into the following topical sections: (1) national mitigation assessments, technology priorities, and measures; (2) sector-specific mitigation assessment results, subdivided further into: energy sector; non-energy sector; renewable energy; energy efficiency in industry and buildings; transportation; electricity supply; forestry; and methane mitigation; (3) support for mitigation technologies and measures; and (4) activities implemented jointly. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  19. Energy balance and GHG-abatement cost of cassava utilization for fuel ethanol in Thailand

    International Nuclear Information System (INIS)

    Nguyen, Thu Lan Thi; Gheewala, Shabbir H.; Garivait, Savitri

    2007-01-01

    Since 2001, in order to enhance ethanol's cost competitiveness with gasoline, the Thai government has approved the exemption of excise tax imposed on ethanol, controlling the retail price of gasohol (a mixture of ethanol and gasoline at a ratio of 1:9) to be less than that of octane 95 gasoline, within a range not exceeding 1.5 baht a litre. The policy to promote ethanol for transport is being supported by its positive effects on energy security and climate change mitigation. An analysis of energy, greenhouse gas (GHG) balances and GHG abatement cost was done to evaluate fuel ethanol produced from cassava in Thailand. Positive energy balance of 22.4 MJ/L and net avoided GHG emission of 1.6 kg CO 2 eq./L found for cassava-based ethanol (CE) proved that it would be a good substitute for gasoline, effective in fossil energy saving and GHG reduction. With a GHG abatement cost of US$99 per tonne of CO 2 , CE is rather less cost effective than the many other climate strategies relevant to Thailand in the short term. Opportunities for improvements are discussed to make CE a reasonable option for national climate policy

  20. Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector

    Energy Technology Data Exchange (ETDEWEB)

    Xu, T.T.; Sathaye, J.; Galitsky, C.

    2010-09-30

    Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. With the working of energy programs and policies on carbon regulation, how to effectively analyze and manage the costs associated with GHG reductions become extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions (e.g., carbon emission) for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models. In this report, we first conduct brief overview on different representations of end-use technologies (mitigation measures) in various energy-climate models, followed by problem statements, and a description of the basic concepts of quantifying the cost of conserved energy including integrating non-regrets options. A non-regrets option is defined as a GHG reduction option that is cost effective, without considering their additional benefits related to reducing GHG emissions. Based upon these, we develop information on costs of mitigation measures and technological change. These serve as the basis for collating the data on energy savings and costs for their future use in integrated assessment models. In addition to descriptions of the iron and steel making processes, and the mitigation measures identified in this study, the report includes tabulated databases on costs of measure implementation, energy savings, carbon-emission reduction, and lifetimes. The cost curve data on mitigation

  1. Assessment of the GHG budget mitigation potential of intercrops: analysis on several trials and intercrops species in the Southwest of France.

    Science.gov (United States)

    Ferlicoq, M.; Ceschia, E.; Brut, A.; VandeWalle, A.

    2012-04-01

    by a very dry summer in 2009. FO ranged between 9.9 and 12.7 for the different trials. Compared to the other terms, they have a relative low impact on the GHG budget. They represented at most 13g eq-C during the IC period, 60% of those emissions are caused by the use of machinery. GHG budgets over the IC period are largely positive (source effect), due to low biomass production, mainly because of poor emergence and/or development. Still carbon fixation in the biomass mitigated the emissions. To balance the GHG budget, biomass production should be doubled for mustard (1.5 ton biomass ha-1) which is realistic and increased by a factor 4 for oat/phacelia and oat/vetch associations. In general, we can conclude that except for the black oat (biomass production is too low), these intercrops improve the GHG budget. Nevertheless, to get real advantages from these intercrops, they need to produce more than 0.26 t/ ha to compensate technical operations and additional CO2 emissions associated to IC decomposition will have to be assessed.

  2. What can we learn from field experiments about the development of SOC and GHG emissions under different management practices?

    Science.gov (United States)

    Spiegel, Heide; Lehtinen, Taru; Schlatter, Norman; Haslmayr, Hans-Peter; Baumgarten, Andreas; ten Berge, Hein

    2015-04-01

    Successful agricultural management practices are required to maintain or enhance soil quality; at the same time climate change mitigation is becoming increasingly important. Within the EU project CATCH-C we analysed the effects of different agricultural practices not only on crop productivity, but also on soil quality indicators (e.g. soil organic carbon (SOC)) and climate change (CC) mitigation indicators (e.g. CO2, CH4, N2O emissions). European data sets and associated literature, mainly from long-term experiments were evaluated. This evaluation of agricultural management practices was carried out comparing a set of improved ("best") and often applied ("current") management practices. Positive and negative effects occurred when best management practices are adopted. As expected, none of the investigated practices could comply with all objectives simultaneously, i.e. maintaining high yields, mitigating climate change and improving chemical, physical and biological soil quality. The studied soil management practices "non-inversion tillage", "organic fertilisation" (application of farm yard manure, slurry, compost) and "incorporation of crop residues" represent important management practices for farmers to increase SOC, thus improving soil quality. However, CO2 and, especially, N2O emissions may rise as well. The evaluation of CC mitigation is often limited by the lack of data from - preferably - continuous GHG emission measurements. Thus, more long-term field studies are needed to better assess the CO2, CH4 and, especially, N2O emissions following the above mentioned favorably rated MPs. Only if SOC and GHG emissions are measured in the same field experiments, it will be possible to compute overall balances of necessary CO2-C equivalent emissions. CATCH-C is funded within the 7th Framework Programme for Research, Technological Development and Demonstration, Theme 2 - Biotechnologies, Agriculture & Food. (Grant Agreement N° 289782).

  3. Greenhouse gas mitigation in animal production: towards an integrated life cycle sustainability assessment.

    NARCIS (Netherlands)

    Boer, de I.J.M.; Cederberg, C.; Eady, S.; Gollnow, S.; Kristensen, T.; Macleod, M.; Meul, M.; Nemecek, T.; Phong, L.T.; Thoma, G.; Werf, H.M.G.; Williams, A.G.; Zonderland-Thomassen, M.A.

    2011-01-01

    The animal food chain contributes significantly to emission of greenhouse gases (GHGs). We explored studies that addressed options to mitigate GHG emissions in the animal production chain and concluded that most studies focused on production systems in developed countries and on a single GHG. They

  4. Towards the development of a GHG emissions baseline for the Agriculture, Forestry and Other Land Use (AFOLU sector, South Africa

    Directory of Open Access Journals (Sweden)

    Luanne B. Stevens

    2016-12-01

    Full Text Available South Africa is a signatory to the United Nations Framework Convention on Climate Change (UNFCCC and as such is required to report on Greenhouse gas (GHG emissions from the Energy, Transport, Waste and the Agriculture, Forestry and Other Land Use (AFOLU sectors every two years in national inventories. The AFOLU sector is unique in that it comprises both sources and sinks for GHGs. Emissions from the AFOLU sector are estimated to contribute a quarter of the total global greenhouse gas emissions. GHG emissions sources from agriculture include enteric fermentation; manure management; manure deposits on pastures, and soil fertilization. Emissions sources from Forestry and Other Land Use (FOLU include anthropogenic land use activities such as: management of croplands, forests and grasslands and changes in land use cover (the conversion of one land use to another. South Africa has improved the quantification of AFOLU emissions and the understanding of the dynamic relationship between sinks and sources over the past decade through projects such as the 2010 GHG Inventory, the Mitigation Potential Analysis (MPA, and the National Terrestrial Carbon Sinks Assessment (NTCSA. These projects highlight key mitigation opportunities in South Africa and discuss their potentials. The problem remains that South Africa does not have an emissions baseline for the AFOLU sector against which the mitigation potentials can be measured. The AFOLU sector as a result is often excluded from future emission projections, giving an incomplete picture of South Africa’s mitigation potential. The purpose of this project was to develop a robust GHG emissions baseline for the AFOLU sector which will enable South Africa to project emissions into the future and demonstrate its contribution towards the global goal of reducing emissions.

  5. GHG emissions inventory for on-road transportation in the town of Sassari (Sardinia, Italy)

    Science.gov (United States)

    Sanna, Laura; Ferrara, Roberto; Zara, Pierpaolo; Duce, Pierpaolo

    2016-04-01

    The IPCC Fifth Assessment Report (AR5) accounts an increase of the total annual anthropogenic GHG emissions between 2000 and 2010 that directly came from the transport sector. In 2010, 14% of GHG emissions were released by transport and fossil-fuel-related CO2 emissions reached about 32 GtCO2 per year. The report also considers adaptation and mitigation as complementary strategies for reducing the risks of climate change for sustainable development of urban areas. This paper describes the on-road traffic emission estimated in the framework of a Sardinian regional project [1] for the town of Sassari (Sardinia, Italy), one of the Sardinian areas where the fuel consumption for on-road transportation purposes is higher [2]. The GHG emissions have been accounted (a) by a calculation-based methodology founded on a linear relationship between source activity and emission, and (b) by the COPERT IV methodology through the EMITRA (EMIssions from road TRAnsport) software tool [3]. Inventory data for annual fossil fuel consumption associated with on-road transportation (diesel, gasoline, gas) have been collected through the Dogane service, the ATP and ARST public transport services and vehicle fleet data are available from the Public Vehicle Database (PRA), using 2010 as baseline year. During this period, the estimated CO2 emissions accounts for more than 180,000 tCO2. The calculation of emissions due to on-road transport quantitatively estimates CO2 and other GHG emissions and represents a useful baseline to identify possible adaptation and mitigation strategies to face the climate change risks at municipal level. Acknowledgements This research was funded by the Sardinian Regional Project "Development, functional checking and setup of an integrated system for the quantification of CO2 net exchange and for the evaluation of mitigation strategies at urban and territorial scale", (Legge Regionale 7 agosto 2007, No. 7). References [1] Sanna L., Ferrara R., Zara P. & Duce P. (2014

  6. Short-term global warming mitigation costs of fischer-tropsch diesel production and policy scenarios in Norway

    Energy Technology Data Exchange (ETDEWEB)

    Bright, Ryan M.; Stroemman, Anders Hammer

    2010-07-01

    Full text: Increasing the supply of advanced biofuels like synthetic diesel produced from woody biomass require attractive investment environments so that novel technologies are deployed and technological learning can lead to reduced production costs and accelerated market diffusion. Technology-specific biofuel policy designed to minimize perceived risk may encourage shortterm investment into those biofuels offering superior environmental benefits - particularly climate mitigation benefits - thereby leading to steeper learning curves and deeper greenhouse gas (GHG) emission cuts over the medium- and long-term horizon. We perform both a Life Cycle Assessment (LCA) and an economic analysis of Fischer-Tropsch diesel (FTD) produced from Norwegian forest biomass at an 'nth' commercial plant (a plant with the same technologies that have been employed in previous commercial plants). This is followed with a cost growth analysis in order to derive production costs likely to be borne by pioneer commercial plants in Norway in the short-term (2016). LCA results are used to calculate shortterm GHG mitigation costs. We then assess, through scenarios, how various policy measures and financial support mechanisms would reduce production costs for incentivizing short-term investment and expediting commercial deployment in Norway. Because 'top-down' or 'market pull' biofuel support policy like excise tax exemptions or carbon taxes do not directly encourage investment into specific biofuel technologies like wood-FTD in the short term, we choose to analyze three 'bottom-up' or 'market push' policy scenarios to assess their effects on reducing levelized unit production costs. These include a Capital Grant, a low-interest Loan Guarantee, a Corporate Tax Credit, and a Feedstock Credit scenario. Under the Capital Grant scenario, we assess the change in levelized production and thus GHG abatement costs when a 50% capital grant (TCI) is

  7. Greenhouse gas emission and mitigation potential of changes in water management for two rice sites in Bangladesh

    Science.gov (United States)

    Begum, Khadiza; Kuhnert, Matthias; Yeluripati, Jagadeesh; Smith, Pete; Ogle, Stephen; Parton, William; Kader, Abdul; Sleutel, Steven

    2017-04-01

    Agriculture is one of the main contributors to greenhouse gas (GHG) emissions in Bangladesh and rice production is one of the largest sources of GHG emissions. This study considers measurements from two test sites, situated in Mymensingh (Bangladesh), to calibrate and validate the biogeochemical model DailyDayCent and estimate the mitigation potential of alternative management practices at the sites. There are two different N application treatments on the two test sites, which are on the first site a control with no N application and a mineral fertilizer application (120 kg N ha-1) and on the second site only a mineral fertilizer application (110 kg N ha-1). For mitigation, the water management is modified in a modelling approach to estimate the mitigation potential for reducing GHG emissions. The model shows partial agreement with the observations. The modifications to the water management, by changing from permanent wetting to alternate wetting, shows a decrease in GHG emissions of up to 46 % and 37 % for the two test sites, respectively. These tests enable an optimization of the management options to reduce the GHG emissions while maintaining yields.

  8. Assessing GHG emissions, ecological footprint, and water linkage for different fuels.

    Science.gov (United States)

    Chavez-Rodriguez, Mauro F; Nebra, Silvia A

    2010-12-15

    Currently, transport is highly dependent on fossil fuels and responsible for about 23% of world energy-related GHG (greenhouse gas) emissions. Ethanol from sugar cane and corn emerges as an alternative for gasoline in order to mitigate GHG emissions. Additionally, deeper offshore drilling projects such as in the Brazilian Pre-Salt reservoirs and mining projects of nonconventional sources like Tar Sands in Canada could be a solution for supplying demand of fossil fuels in the short and midterm. Based on updated literature, this paper presents an assessment of GHG emissions for four different fuels: ethanol from sugar cane and from corn and gasoline from conventional crude oil and from tar sands. An Ecological Footprint analysis is also presented, which shows that ethanol from sugar cane has the lowest GHG emissions and requires the lowest biocapacity per unit of energy produced among these fuels. Finally, an analysis using the Embodied Water concept is made with the introduction of a new concept, the "CO(2)-Water", to illustrate the impacts of releasing carbon from underground to atmosphere and of the water needed to sequestrate it over the life cycle of the assessed fuels. Using this method resulted that gasoline from fossil fuels would indirectly "require" on average as much water as ethanol from sugar cane per unit of fuel energy produced.

  9. Co-benefits of global and regional greenhouse gas mitigation for US air quality in 2050

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuqiang; Bowden, Jared H.; Adelman, Zachariah; Naik, Vaishali; Horowitz, Larry W.; Smith, Steven J.; West, J. Jason

    2016-08-01

    Policies to mitigate greenhouse gas (GHG) emissions will not only slow climate change but can also have ancillary benefits of improved air quality. Here we examine the co-benefits of both global and regional GHG mitigation for US air quality in 2050 at fine resolution, using dynamical downscaling methods, building on a previous global co-benefits study (West et al., 2013). The co-benefits for US air quality are quantified via two mechanisms: through reductions in co-emitted air pollutants from the same sources and by slowing climate change and its influence on air quality, following West et al. (2013). Additionally, we separate the total co-benefits into contributions from domestic GHG mitigation vs. mitigation in foreign countries. We use the Weather Research and Forecasting (WRF) model to dynamically downscale future global climate to the regional scale and the Sparse Matrix Operator Kernel Emissions (SMOKE) program to directly process global anthropogenic emissions to the regional domain, and we provide dynamical boundary conditions from global simulations to the regional Community Multi-scale Air Quality (CMAQ) model. The total co-benefits of global GHG mitigation from the RCP4.5 scenario compared with its reference are estimated to be higher in the eastern US (ranging from 0.6 to 1.0 µg m-3) than the west (0–0.4 µg m-3) for fine particulate matter (PM2.5), with an average of 0.47 µg m-3 over the US; for O3, the total co-benefits are more uniform at 2–5 ppb, with a US average of 3.55 ppb. Comparing the two mechanisms of co-benefits, we find that reductions in co-emitted air pollutants have a much greater influence on both PM2.5 (96 % of the total co-benefits) and O3 (89 % of the total) than the second co-benefits mechanism via slowing climate change, consistent with West et al. (2013). GHG mitigation from foreign countries contributes more to the US O3 reduction

  10. Uncertainty of forest carbon stock changes. Implications to the total uncertainty of GHG inventory of Finland

    International Nuclear Information System (INIS)

    Monni, S.; Savolainen, I.; Peltoniemi, M.; Lehtonen, A.; Makipaa, R.; Palosuo, T.

    2007-01-01

    Uncertainty analysis facilitates identification of the most important categories affecting greenhouse gas (GHG) inventory uncertainty and helps in prioritisation of the efforts needed for development of the inventory. This paper presents an uncertainty analysis of GHG emissions of all Kyoto sectors and gases for Finland consolidated with estimates of emissions/removals from LULUCF categories. In Finland, net GHG emissions in 2003 were around 69 Tg (±15 Tg) CO2 equivalents. The uncertainties in forest carbon sink estimates in 2003 were larger than in most other emission categories, but of the same order of magnitude as in carbon stock change estimates in other land use, land-use change and forestry (LULUCF) categories, and in N2O emissions from agricultural soils. Uncertainties in sink estimates of 1990 were lower, due to better availability of data. Results of this study indicate that inclusion of the forest carbon sink to GHG inventories reported to the UNFCCC increases uncertainties in net emissions notably. However, the decrease in precision is accompanied by an increase in the accuracy of the overall net GHG emissions due to improved completeness of the inventory. The results of this study can be utilised when planning future GHG mitigation protocols and emission trading schemes and when analysing environmental benefits of climate conventions

  11. Summary of Fast Pyrolysis and Upgrading GHG Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Snowden-Swan, Lesley J.; Male, Jonathan L.

    2012-12-07

    The Energy Independence and Security Act (EISA) of 2007 established new renewable fuel categories and eligibility requirements (EPA 2010). A significant aspect of the National Renewable Fuel Standard 2 (RFS2) program is the requirement that the life cycle greenhouse gas (GHG) emissions of a qualifying renewable fuel be less than the life cycle GHG emissions of the 2005 baseline average gasoline or diesel fuel that it replaces. Four levels of reduction are required for the four renewable fuel standards. Table 1 lists these life cycle performance improvement thresholds. Table 1. Life Cycle GHG Thresholds Specified in EISA Fuel Type Percent Reduction from 2005 Baseline Renewable fuel 20% Advanced biofuel 50% Biomass-based diesel 50% Cellulosic biofuel 60% Notably, there is a specialized subset of advanced biofuels that are the cellulosic biofuels. The cellulosic biofuels are incentivized by the Cellulosic Biofuel Producer Tax Credit (26 USC 40) to stimulate market adoption of these fuels. EISA defines a cellulosic biofuel as follows (42 USC 7545(o)(1)(E)): The term “cellulosic biofuel” means renewable fuel derived from any cellulose, hemicellulose, or lignin that is derived from renewable biomass and that has lifecycle greenhouse gas emissions, as determined by the Administrator, that are at least 60 percent less than the baseline lifecycle greenhouse gas emissions. As indicated, the Environmental Protection Agency (EPA) has sole responsibility for conducting the life cycle analysis (LCA) and making the final determination of whether a given fuel qualifies under these biofuel definitions. However, there appears to be a need within the LCA community to discuss and eventually reach consensus on discerning a 50–59 % GHG reduction from a ≥ 60% GHG reduction for policy, market, and technology development. The level of specificity and agreement will require additional development of capabilities and time for the sustainability and analysis community, as illustrated

  12. Pyrolysis and gasification of meat-and-bone-meal: Energy balance and GHG accounting

    DEFF Research Database (Denmark)

    Cascarosa, Esther; Boldrin, Alessio; Astrup, Thomas Fruergaard

    2013-01-01

    the main products in the gasification system. These products can be used – eventually after upgrading – for energy production, thereby offsetting energy production elsewhere in the system. Greenhouse gases (GHG) accounting of the technologies showed that all three options provided overall GHG savings...

  13. International Experiences with Quantifying the Co-Benefits of Energy-Efficiency and Greenhouse-Gas Mitigation Programs and Policies

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Christopher [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wu, Grace [Univ. of California, Berkeley, CA (United States)

    2012-09-30

    Improving the efficiency of energy production and consumption and switching to lower carbon energy sources can significantly decrease carbon dioxide (CO2) emissions and reduce climate change impacts. A growing body of research has found that these measures can also directly mitigate many non-climate change related human health hazards and environmental damage. Positive impacts of policies and programs that occur in addition to the intended primary policy goal are called co-benefits. Policy analysis relies on forecasting and comparing the costs of policy and program implementation and the benefits that accrue to society from implementation. GHG reduction and energy efficiency policies and programs face political resistance in part because of the difficulty of quantifying their benefits. On the one hand, climate change mitigation policy benefits are often global, long-term, and subject to large uncertainties, and subsidized energy pricing can reduce the direct monetary benefits of energy efficiency policies to below their cost. On the other hand, the co-benefits that accrue from these efforts’ resultant reductions in conventional air pollution (such as improved health, agricultural productivity, reduced damage to infrastructure, and local ecosystem improvements) are generally near term, local, and more certain than climate change mitigation benefits and larger than the monetary value of energy savings. The incorporation of co-benefits into energy efficiency and climate mitigation policy and program analysis therefore might significantly increase the uptake of these policies. Faster policy uptake is especially important in developing countries because ongoing development efforts that do not consider co-benefits may lock in suboptimal technologies and infrastructure and result in high costs in future years. Over the past two decades, studies have repeatedly documented that non-climate change related benefits of energy efficiency and fuel conversion efforts, as a part

  14. Tooling up urban planning for climate change mitigation in Malaysian cities

    International Nuclear Information System (INIS)

    Chau, L W; Yap, Z C; Ho, C S

    2014-01-01

    The city's 2-dimensional spatial structure and 3-dimensional form significantly influence its energy and GHG emission intensity. In rapidly developing urban-regions, the ability of the local planning authorities to quantify the spatial structure and form of existing urban areas, new developments and the emergent urban-region in terms of GHG emission is vital to any effective local, national and global climate change mitigation effort. While a wide array of tools has been developed for assessing built environment sustainability at various spatial scales, these are predominantly eco-efficiency rating tools that do not model the 'spatial structure-GHG' relationship and do not illustrate the GHG implications of urban structure and form, which crucially inform local planning decisions with respect to climate change mitigation. This paper takes the first steps in analysing three spatial-based planning models (Envision Tomorrow, GHGProof, URBEMIS) that estimate GHG emissions towards assessing their adaptability for application in Malaysian cities. It looks into the models' i nner working , unpacking the variables and their relationships; assumptions and conversion rates used; and their data requirement and structure. The models' characteristics and features are critically compared to evaluate their capabilities, limitations and relevance to the Malaysian urban planning context, particularly in terms of data availability

  15. TECHNOLOGY NEEDS ASSESSMENT (TNA FOR CLIMATE CHANGE MITIGATION IN AGRICULTURE SECTOR: CRITERIA, PRIORITIZING AND BARRIERS

    Directory of Open Access Journals (Sweden)

    Kasdi Subagyono

    2010-11-01

    greenhouse gas emission, yet technologies need for have not been assessed. The technology needs assessment for the agriculture sector cover paddy field, perennial crops, peat soil, and livestock. The concern of the assessment is categorized into technology options, priority/key technology, barriers, and modalities. Selected technologies are based on criteria and priority options of technology needs. Data and information have been collected from related agencies, center, institutes and other relevant sources as well as through a workshop. Technology selection process for mitigation considered general criteria of reducing GHG emissions from crops and livestock, promoting resource conservation, promoting sustainable biodiversity, promoting green energy, sustaining food security, and promoting energy alternative; and specific criteria of promoting local technology for mitigation, sustaining site-specific germ plasms, promoting simple and cheap technology for poor farmers, promoting less emission crop varieties, substituting chemical with organic fertilizers/compost, and reduce CH4 emissions. Those criteria are scored into 4 classes, i.e. high value/high relevant/high impact (score: 5, Medium value/relevant/med impact (score: 3; Low value/less relevant/less impact (score: 1; nil – not relevant/no impact (score: 0. The assessment has come up with the results that priority technologies needed for mitigation are (a low methane emitter crops varieties, appropriate fertilizing, no tillage, and intermittent irrigation for paddy fields, (b appropriate slash and burn and bio-fuel for perennial crops, (c composting manure and biogas production for livestock, and (d overcoming slash and burn, avoiding over drain and maintaining soil moisture for peat soils.

  16. Assessment of GHG emissions of biomethane from energy cereal crops in Umbria, Italy

    International Nuclear Information System (INIS)

    Buratti, C.; Barbanera, M.; Fantozzi, F.

    2013-01-01

    Highlights: • GHG emissions of biomethane from energy crops cultivated in a central Italian farm were investigated. • Electricity consumption of the biogas plant was monitored. • Current scenario does not allow to achieve a GHG saving according to Renewable Energy Directive. • GHG emissions could be reduced by covering the storage tanks of digestate and installing a CHP plant. - Abstract: Biomethane from energy crops is a renewable energy carrier and therefore it potentially contributes to climate change mitigation. However, significant greenhouse gas (GHG) emissions resulting from cultivation and processing must be considered. Among those, the production and use of nitrogen fertilizers, the resulting nitrous oxide (N 2 O) emissions, the methane emissions from digestate storage and the energy consumption of the biogas plant are crucial factors. In the present paper an integrated life cycle assessment (LCA) of GHG emissions from biomethane production is carried out, taking into account own measurements and experience data from a modern biogas plant located in Umbria, Italy. The study is also focused on the electricity consumption of the biogas plant, assessing the specific absorption power of each machinery. The analysis is based on the methodology defined by the European Union Renewable Energy Directive 2009/28/EC (RED). The main result is that the biomethane chain exceeds the minimum value of GHG saving (35%) mainly due to the open storage of digestate. However by varying the system, using heat and electricity from a biogas CHP plant and covering digestate storage tank, a reduction of 68.9% could be obtained

  17. Long-run implications for developing countries of joint implementation of greenhouse gas mitigation

    International Nuclear Information System (INIS)

    Rose, A.; Bulte, E.; Folmer, H.

    1999-01-01

    Joint Implementation (JI) calls for cooperation between industrialized and developing countries in the mitigation of greenhouse gas (GHG) emissions. However, a major concern of potential host countries is that if they utilize their low-cost options for JI now, they will be left with only high cost options in the future, thereby penalizing them at a time when they may be obligated to mitigate GHGs themselves. This paper formalizes this hypothesis by utilizing an optimal control framework analogous to the Hotelling model of non-renewable resource extraction. The results are that cumulative abatement effects can impose costs on the future, but that they can be offset by technological change, market power, or compensation. 11 refs

  18. Cost-effectiveness of greenhouse gas mitigation in transport: A review of methodological approaches and their impact

    International Nuclear Information System (INIS)

    Kok, Robert; Annema, Jan Anne; Wee, Bert van

    2011-01-01

    A review is given of methodological practices for ex ante cost-effectiveness analysis (CEA) of transport greenhouse gas (GHG) mitigation measures, e.g. fuel economy and CO 2 standards for road vehicles in the US and EU. Besides the fundamental differences between different types of policies and abatement options which inherently result in different CEA outcomes, differences in methodological choices and assumptions are another important source of variation in CEA outcomes. Fourteen methodological issues clustered into six groups are identified on which thirty-three selected studies are systematically reviewed. The potential variation between lower and upper cost-effectiveness estimates for GHG mitigation measures in transport, resulting from different methodological choices and assumptions, lies in the order of $400 per tonne CO 2 -eq. The practise of using CEA for policy-making could improve considerably by clearly indicating the specific purpose of the CEA and its strengths and limitations for policy decisions. Another improvement is related to the dominant approach in transport GHG mitigation studies: the bottom-up financial technical approach which assesses isolated effects, implying considerable limitations for policy-making. A shift to welfare-economic approaches using a hybrid model has the potential to establish an improved assessment of transport GHG mitigation measures based on realistic market responses and behavioural change. - Highlights: ► We identify fourteen important methodological issues clustered into six groups. ► We systematically review thirty-three selected transport GHG mitigation studies. ► Methodological choices can lead to a difference by up to $400 per tonne CO 2 -eq. ► The dominant bottom-up approach has limitations for policy-making. ► Welfare-economic approaches could improve cost-effectiveness analysis.

  19. Mitigation of greenhouse gases from agriculture

    DEFF Research Database (Denmark)

    Schils, R.L.M.; Ellis, J. L.; de Klein, C. A. M.

    2013-01-01

    Models are widely used to simulate the emission of greenhouse gases (GHG). They help to identify knowledge gaps, estimate total emissions for inventories, develop mitigation options and policies, raise awareness and encourage adoption. These models vary in scale, scope and methodological approach...

  20. Greenhouse gas mitigation with scarce land

    DEFF Research Database (Denmark)

    Meyer-Aurich, A; Olesen, Jørgen E; Prochnow, A

    2013-01-01

    Agricultural lands have been identified to mitigate greenhouse gas (GHG) emissions primarily by production of energy crops and substituting fossil energy resources and through carbon sequestration in soils. Increased fertilizer input resulting in increased yields may reduce the area needed for crop...

  1. Technologies for climate change mitigation - Agriculture sector

    Energy Technology Data Exchange (ETDEWEB)

    Uprety, D.C.; Dhar, S.; Hongmin, D.; Kimball, B.A.; Garg, A.; Upadhyay, J.

    2012-07-15

    This guidebook describes crop and livestock management technologies and practices that contribute to climate change mitigation while improving crop productivity, reducing reliance on synthetic fertilizers, and lowering water consumption. It is co-authored by internationally recognised experts in the areas of crops, livestock, emissions, and economics, and we are grateful for their efforts in producing this cross disciplinary work. This publication is part of a technical guidebook series produced by the UNEP Risoe Centre on Energy, Climate and Sustainable Development (URC) as part of the Technology Needs Assessment (TNA) project (http://tech-action.org) that is assisting developing countries in identifying and analysing the priority technology needs for mitigating and adapting to climate change. The TNA process involves different stakeholders in a consultative process, enabling all stakeholders to understand their technology needs in a cohesive manner, and prepare Technology Action Plans (TAPs) accordingly. The TNA project is funded by the Global Environment Facility (GEF) and is being implemented by UNEP and the URC in 36 developing countries. (Author)

  2. Early drainage mitigates methane and nitrous oxide emissions from organically amended paddy soils

    DEFF Research Database (Denmark)

    Tariq, Azeem; Jensen, Lars Stoumann; de Tourdonnet, Stephane

    2017-01-01

    Elevated greenhouse gas (GHG) emissions, particularly of methane (CH4) from flooded rice production systems contribute to global warming. Different crop management strategies, such as drainage of paddy soils and climate-smart residue management, are essential in order to mitigate GHG emissions from...... flooded rice systems, but they often conflict with practical management preferences.The aim of this study was to assess the potential of early-season drainage for mitigating CH4 and N2O emissions from soils with and without added organic amendments in relation to native soil organic carbon (SOC). Rice...

  3. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the U.S. Pulp and Paper Sector

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tengfang [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sathaye, Jayant [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kramer, Klaas Jan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-07-01

    Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. How to effectively analyze and manage the costs associated with GHG reductions becomes extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models. In this report, we first conduct a brief review of different representations of end-use technologies (mitigation measures) in various energy-climate models, followed by the problem statement, and a description of the basic concepts of quantifying the cost of conserved energy including integrating no-regrets options.

  4. Planning regional energy system in association with greenhouse gas mitigation under uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.P.; Huang, G.H. [Research Academy of Energy and Environmental Studies, North China Electric Power University, Beijing 102206 (China); Chen, X. [Key Laboratory of Oasis Ecology and Desert Environment, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang 830011 (China)

    2011-03-15

    Greenhouse gas (GHG) concentrations are expected to continue to rise due to the ever-increasing use of fossil fuels and ever-boosting demand for energy. This leads to inevitable conflict between satisfying increasing energy demand and reducing GHG emissions. In this study, an integrated fuzzy-stochastic optimization model (IFOM) is developed for planning energy systems in association with GHG mitigation. Multiple uncertainties presented as probability distributions, fuzzy-intervals and their combinations are allowed to be incorporated within the framework of IFOM. The developed method is then applied to a case study of long-term planning of a regional energy system, where integer programming (IP) technique is introduced into the IFOM to facilitate dynamic analysis for capacity-expansion planning of energy-production facilities within a multistage context to satisfy increasing energy demand. Solutions related fuzzy and probability information are obtained and can be used for generating decision alternatives. The results can not only provide optimal energy resource/service allocation and capacity-expansion plans, but also help decision-makers identify desired policies for GHG mitigation with a cost-effective manner. (author)

  5. Programs and measures to reduce GHG emissions in agriculture and waste treatment in Slovakia

    Energy Technology Data Exchange (ETDEWEB)

    Mareckova, K.; Bratislava, S.; Kucirek, S.

    1996-12-31

    Slovakia is a UN FCCC Annex I country and is obliged to limit its anthropogenic GHG emissions in the year 2000 to 1990 level. The key greenhouse gas in Slovakia is CO{sub 2} resulting mainly from fuel combustion processes. However the share of CH{sub 4} and N{sub 2}O is approximately 20% of the total emissions on GWP basis. These gases are occurring mainly in non-energy sectors. The construction of the non-CO{sub 2} emission scenarios to reduce GHG and the uncertainty in N{sub 2}O and CH{sub 4} emission estimation are discussed focusing on agriculture and waste treatment. The presentation will also include information on emission trends of CH{sub 4} and N{sub 2}O since 1988. There are already implemented measures reducing GHG emissions in Slovakia, however, not motivated by global warming. A short view of implemented measures with an assessment of their benefit concerning non-CO{sub 2} GHG emissions reduction and some proposed mitigation options for agriculture and waste treatment are shown. Expected difficulties connected with preparing scenarios and with implementation of reducing measures are discussed.

  6. Cradle to grave GHG emissions analysis of shale gas hydraulic fracking in Western Australia

    Directory of Open Access Journals (Sweden)

    Bista Sangita

    2017-01-01

    Full Text Available Western Australia has globally significant onshore gas resources, with over 280 trillion cubic feet of economically recoverable gas located in five shale basins. The Western Australian Government and gas industry have promoted the development of these resources as a “clean energy source” that would “help to reduce global carbon emissions” and provide a “transition fuel” to a low carbon economy. This research examines those claims by reviewing existing literature and published data to estimate the life cycle greenhouse gas (GHG pollution that would result from the development of Western Australia’s onshore gas basins using hydraulic fracking. Estimates of carbon pollution from each stage in gas development, processing, transport and end-use are considered in order to establish total life-cycle emissions in tonnes of carbon-dioxide equivalent (CO2e. The emissions estimates draw from published research on emissions from shale gas development in other jurisdictions as well as industry or government reported emissions from current technology for gas processing and end-use as applicable. The current policy and regulatory environment for carbon pollution and likely resulting GHG mitigation measures has also been considered, as well as the potential for the gas to displace or substitute for other energy sources. In areas where there is uncertainty, conservative emissions estimates have been used. Modelling of GHG emissions has been undertaken for two comparison resource development and utilisation scenarios; Australian domestic and 100% export i.e. no domestic use. Each scenario corresponds to a different proportionate allocation of emissions accounted for domestic emissions in Australia and emissions accounted for in other jurisdictions. Emissions estimates for the two scenarios are 245–502 MTCO2e/year respectively over a resource development timeframe of 20 years. This is roughly the same as Australia’s total GHG emissions in 2014

  7. Global climate targets and future consumption level: an evaluation of the required GHG intensity

    International Nuclear Information System (INIS)

    Girod, Bastien; Van Vuuren, Detlef Peter; Hertwich, Edgar G

    2013-01-01

    Discussion and analysis on international climate policy often focuses on the rather abstract level of total national and regional greenhouse gas (GHG) emissions. At some point, however, emission reductions need to be translated to consumption level. In this article, we evaluate the implications of the strictest IPCC representative concentration pathway for key consumption categories (food, travel, shelter, goods, services). We use IPAT style identities to account for possible growth in global consumption levels and indicate the required change in GHG emission intensity for each category (i.e. GHG emission per calorie, person kilometer, square meter, kilogram, US dollar). The proposed concept provides guidance for product developers, consumers and policymakers. To reach the 2 °C climate target (2.1 tCO 2 -eq. per capita in 2050), the GHG emission intensity of consumption has to be reduced by a factor of 5 in 2050. The climate targets on consumption level allow discussion of the feasibility of this climate target at product and consumption level. In most consumption categories products in line with this climate target are available. For animal food and air travel, reaching the GHG intensity targets with product modifications alone will be challenging and therefore structural changes in consumption patterns might be needed. The concept opens up possibilities for further research on potential solutions on the consumption and product level to global climate mitigation. (letter)

  8. Interest mediation and policy formulation in the European Union. Influence of transnational technology-oriented agreements on European policy in the field of carbon capture and storage. Advances in systems analysis 3

    International Nuclear Information System (INIS)

    Schenk, Olga

    2013-01-01

    The United Nations Framework Convention on Climate Change (UNFCCC) laid down the cornerstone in the international cooperation to reduce the greenhouse gas (GHG) emissions from fossil fuels combustion. The UNFCCC provided a general framework for global cooperation to mitigate climate change. The Kyoto Protocol to the UNFCCC which formulated binding GHG emissions reduction targets did not result in universal participation. The United States- the major CO 2 emitting country at the time of the adoption of the Kyoto Protocol in 1997 - signed but did not ratify the Protocol. China - the current top CO 2 emitter - does not belong to the list of countries which are committed to the CO 2 reductions in the framework of the Protocol. Whereas the approach pursued within the UNFCCC is based on a goal-setting in the framework of the legally binding international treaties, an alternative approach to GHG mitigation presents a voluntary international cooperation in the field of development and deployment of innovative technologies. The technology-oriented approach to climate change mitigation led to the development of the specific forms of cooperation between the public authorities and the stakeholders. Previous research referred to the organizations aimed at the transnational cooperation in the field of development and deployment of innovative technologies to mitigate GHG emissions as the technology-oriented agreements (TOA). The literature on TOA focused on the scope of the contribution of the technology-oriented approach to the climate change mitigation targets. This PhD research project analyzes the influence of those specific forms of cooperation on policies in the field of development and deployment of innovative technologies. The principal research question of the research project is formulated as follows - What is the influence of the technology-oriented agreements on policies aimed at supporting innovative technologies for mitigation of GHG emissions? The research project

  9. Interest mediation and policy formulation in the European Union. Influence of transnational technology-oriented agreements on European policy in the field of carbon capture and storage. Advances in systems analysis 3

    Energy Technology Data Exchange (ETDEWEB)

    Schenk, Olga

    2013-10-01

    The United Nations Framework Convention on Climate Change (UNFCCC) laid down the cornerstone in the international cooperation to reduce the greenhouse gas (GHG) emissions from fossil fuels combustion. The UNFCCC provided a general framework for global cooperation to mitigate climate change. The Kyoto Protocol to the UNFCCC which formulated binding GHG emissions reduction targets did not result in universal participation. The United States- the major CO{sub 2} emitting country at the time of the adoption of the Kyoto Protocol in 1997 - signed but did not ratify the Protocol. China - the current top CO{sub 2} emitter - does not belong to the list of countries which are committed to the CO{sub 2} reductions in the framework of the Protocol. Whereas the approach pursued within the UNFCCC is based on a goal-setting in the framework of the legally binding international treaties, an alternative approach to GHG mitigation presents a voluntary international cooperation in the field of development and deployment of innovative technologies. The technology-oriented approach to climate change mitigation led to the development of the specific forms of cooperation between the public authorities and the stakeholders. Previous research referred to the organizations aimed at the transnational cooperation in the field of development and deployment of innovative technologies to mitigate GHG emissions as the technology-oriented agreements (TOA). The literature on TOA focused on the scope of the contribution of the technology-oriented approach to the climate change mitigation targets. This PhD research project analyzes the influence of those specific forms of cooperation on policies in the field of development and deployment of innovative technologies. The principal research question of the research project is formulated as follows - What is the influence of the technology-oriented agreements on policies aimed at supporting innovative technologies for mitigation of GHG emissions? The

  10. Policy and tecnological constraints to implementation of greenhouse gas mitigation options in agriculture

    CSIR Research Space (South Africa)

    Smith, P

    2007-01-01

    Full Text Available A recent assessment of agricultural greenhouse gas (GHG) emissions has demonstrated significant potential for mitigation, but suggests that the full mitigation will not be realized due to significant barriers to implementation. In this paper, we...

  11. Mitigation of greenhouse gas emissions in the production of fluid milk.

    Science.gov (United States)

    Tomasula, Peggy M; Nutter, Darin W

    2011-01-01

    Global climate change, driven by the buildup of greenhouse gas (GHG) emissions in the atmosphere, is challenging the dairy industries in the United States and throughout the world to develop sustainable initiatives to reduce their environmental impact. The U.S. dairy industry has committed to lowering the GHG emissions, primarily CH(4), N(2)O, and CO(2), in each sector of the fluid milk supply chain which extends from the farm, to the processing plant, and to distribution of the packaged product, where it is refrigerated by the retailer and then the consumer. This chapter provides an overview of the life cycle analysis (LCA) technique and its use in identifying the GHG emissions in each sector of the fluid milk supply chain, from cradle to grave, and the best practices and research that is currently being conducted to reduce or mitigate GHG emissions in each sector. We also discuss the use of on-farm and off-farm process simulation as tools for evaluating on-farm mitigation techniques, off-farm alternative processing scenarios, and use of alternative energy management practices. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. EV-GHG Mobile Source

    Data.gov (United States)

    U.S. Environmental Protection Agency — The EV-GHG Mobile Source Data asset contains measured mobile source GHG emissions summary compliance information on light-duty vehicles, by model, for certification...

  13. Peatland-GHG emissions in Europe

    Science.gov (United States)

    Droesler, Matthias

    2013-04-01

    Managed peatlands are hot spots for CO2, CH4 and N2O emissions. GHG which have been not fully integrated in past European climate projects. Peatlands contribute to European GHG emissions 10 times more per unit area than other terrestrial ecosystems. Peatland management and exploration by drainage, agricultural use and peat extraction turned pristine peatland GHG sinks into sources. Emissions can reach more than 40 t CO2equiv. ha-1 a-1 in intensively managed peatlands. On the other hand, the restoration of degraded peatlands does normally reduce these emissions significantly towards climate neutral levels, once the restoration work is done wisely. But in some cases the net climate effect do not decrease significantly depending on hydrological regimes, fertilization status of the peatlands, climate and vegetation type. In many European countries with significant peatland cover nationally funded projects were set up to investigate peatland GHG fluxes and their drivers. These scattered data and knowledge are currently being brought together under the coverage of the GHG-Europe project (Grant agreement no.: 244122) within a new synthesis to develop the relevant EF, identify the drivers and develop upscaling options for GHG-emissions. The talk will: (1) show a first cut of new Emission Factors for peatlands in Europe and compare these with IPCC-default values. (2) discuss the developed sensible response functions for GHG-fluxes against natural and anthropogenic drivers such as land use intensity, land management with drainage and climate variability. (3) show case studies from Germany show the applicability of response functions for upscaling of GHG-balances. (4) An outlook is given to the future European peatland GHG-Balance.

  14. A Study on Portfolio of Domestic Policies and Measures for GHG emission Abatement

    Energy Technology Data Exchange (ETDEWEB)

    Lim, J.K. [Korea Energy Economics Institute, Euiwang (Korea)

    2001-11-01

    After the climate change negotiation reaches an agreement in COP7, the next main issue to be addressed is the way of involvement of developing countries in emission abatement commitments and the development of domestic policies and measures to achieve GHG emission reduction target. Many Annex I countries have developed and implemented policies and measures to achieve its quantified GHG emission reduction target. The purpose of this paper is to propose a portfolio of policies and measures, that is, which policies and measures Korea will have to take in preparing future commitment for GHG emission reduction as well as in strengthening mitigation of climate change. Various policies and measures can be used, such as regulations, economic instruments, and covenants, etc., but it is desirable to implement them in some portfolio, taking advantage of their characteristics. Among the possible policies and measures, this study found that economic instruments such as carbon tax and domestic emissions trading have attracted considerable interest recently due to their cost effectiveness. This study also found that, in practice, many developed countries have used these policy instruments in achieving their quantified GHG emission reduction target. In order to develop a portfolio of policies and measures, the comprehension of the features of each policy and measure and the synergetic reconciliation with other objectives than climate change is important. (author). 82 refs., 11 figs., 31 tabs.

  15. Estimating GHG Reduction from Combinations of Current Best-Available and Future Powertrain and Vehicle Technologies for a Midsized Car Using EPA’s ALPHA Model (SAE 2016-01-0910)

    Science.gov (United States)

    EPA identified the best, or most efficient, engines, transmissions and vehicle technologies, and then used ALPHA to predict the GHG emissions would be from a midsized car incorporating the best combination of these technologies.

  16. Mitigation of global warming and the role of identification of greenhouse gas sources

    International Nuclear Information System (INIS)

    Kaya, Y.

    2002-01-01

    Japan Science and Technology Corporation (JST) is an organization supporting R and D of frontier science and technologies under the full sponsorship of the government of Japan. Under the umbrella of JST the author is in charge of a program called 'Environment friendly social systems' which includes more than 20 research projects for better environment (with as an average of 1 million US dollars per project per year). One of the projects in this program is on development of isotopomer technology and its use in identifying greenhouse gas (GHG) sources headed by Prof. N.Yoshida. JST earnestly hopes that it can contribute as much as possible to mitigation of global warming through the support of important research projects such as Yoshida's. (author)

  17. Identify: Improving industrial energy efficiency and mitigating global climate change

    International Nuclear Information System (INIS)

    Lazarus, M.; Hill, D.; Cornland, D.W.; Heaps, C.; Hippel, D. von; Williams, R.

    1997-01-01

    The use of energy in the industrial sectors of nations with both industrialized and developing economies will continue to be, a major source of greenhouse gas (GHG) emissions, particularly carbon dioxide. The patterns of industrial-sector energy use--energy provided primarily by the combustion of fossil fuels-have shifted both within the between countries in recent decades. Projections of future energy use and carbon-dioxide (CO 2 ) emissions suggest continued shifts in these patterns, as industrial production in developed countries stabilizes and declines, while industrial output in the developing world continues to expand. This expansion of industrial-sector activity and CO 2 emissions in developing countries presents both a challenge and an opportunity. To seize this opportunity and contribute to international efforts to mitigate global climate change, the United National Industrial Development Organization (UNIDO) recently initiated a two-phase effort to help improve the efficiency of energy-intensive industries (iron and steel, chemicals, refining, paper and pulp, and cement) in developing countries. As part of the Phase I, the authors reviewed industrial sector scenarios and to initiated development of a software-based toolkit for identifying and assessing GHG mitigating technologies. This toolkit, called IDENTIFY, is comprised of a technology inventory and a companion economic analysis tool. In addition, UNIDO commissioned institutions in India, South Africa, and Argentina to review energy use patterns and savings opportunities in selected industries across nine developing countries, and contribute to the development of the IDENTIFY toolkit. UNIDO is now preparing to launch Phase 2, which will focus on full development and dissemination of the IDENTIFY toolkit through seminars and case studies around the world. This paper describes Phase 1 of the UNIDO project

  18. Technologies for Climate Change Mitigation - Agriculture Sector

    DEFF Research Database (Denmark)

    Uprety, D.C.; Dhar, Subash; Hongmin, Dong

    This guidebook describes crop and livestock management technologies and practices that contribute to climate change mitigation while improving crop productivity, reducing reliance on synthetic fertilizers, and lowering water consumption. It is co-authored by internationally recognised experts...

  19. Explaining Information Technology Users' Ways of Mitigating Technostress

    OpenAIRE

    Salo, Markus; Pirkkalainen, Henri; Chua, Cecil; Koskelainen, Tiina

    2017-01-01

    Technostress refers to the inability of an individual to deal with information technology (IT) in a healthy manner. Researchers, practitioners, and medical professionals have emphasized the omnipresence of technostress and its severe outcomes, including poor well-being and burnout. Despite the importance of the phenomenon, prior research has paid limited attention to how technostress can be mitigated. The few existing studies examine organizational mitigation mechanisms, but we co...

  20. CO2 mitigation scenarios in China's road transport sector

    International Nuclear Information System (INIS)

    Wang, Can; Cai, Wenjia; Lu, Xuedu; Chen, Jining

    2007-01-01

    China is the world's second largest greenhouse gas emitter, and emissions from the road transport sector represent one of the fastest growing GHG sources in China. Taking previous research on China's projected future vehicle ownership and future CO 2 emissions in the transport sector as a starting point, this paper reviews all recent environmental policies relating to the automobile industry and employs a scenario analysis to estimate different emissions inventories for different development strategies. The new policy scenario considers all possible mitigation options available to the road transport sector from a bottom up perspective and examines the effects for fuel efficiency improvement and the cost of these mitigation options - vehicle technology improvement, bus rapid transit system and fuel switching, through which the carbon dioxide emissions reduction potential is estimated. Not only does this paper indicate that a large emissions reduction potential exists in China's road transport sector, but it implies that vehicle technology improvement, especially engine technology is likely to be the most effective means to meet emissions reduction targets. This paper concludes by identifying key barriers to implementing those options in China and deduces the technical, financial and institutional aspects of the demand in China for national capacity building and international aid in order to achieve the emissions reduction goals

  1. Mitigation options for the industrial sector in Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Gelil, I.A.; El-Touny, S.; Korkor, H. [Organization for Energy Conservation and Planning (OECP), Cairo (Egypt)

    1996-12-31

    Though its contribution to the global Greenhouse gases emission is relatively small, Egypt has signed and ratified the United Nations Framework Convention on Climate Change (UN FCCC) and has been playing an active role in the international efforts to deal with such environmental challenges. Energy efficiency has been one of the main strategies that Egypt has adopted to improve environmental quality and enhance economic competitiveness. This paper highlights three initiatives currently underway to improve energy efficiency of the Egyptian industry. The first is a project that has been recently completed by OECP to assess potential GHG mitigation options available in Egypt`s oil refineries. The second initiative is an assessment of GHG mitigation potential in the Small and Medium size Enterprises (SME) in the Mediterranean city of Alexandria. The third one focuses on identifying demand side management options in some industrial electricity consumers in the same city.

  2. India - Nuclear power for GHG mitigation and sustainable energy development

    International Nuclear Information System (INIS)

    Nema, A.K.; Pathak, B.K.; Grover, R.B.

    2000-01-01

    The increasing use of the earth's resources to improve our quality of life has led to certain deleterious effects on the environment. The increased concentration of greenhouse gases (GHGs) is one such important effect. GHG emissions have come primarily from industrialized countries. Currently industrialized countries emit 11.4 tonnes of carbon per year per capita. For India the corresponding figure is 1.0, and for China it is 2.7. We recognize the necessity of both meeting the development needs of all the countries in the South, and ensuring that such development is sustainable. The CDM may have an important role to play, although the positions of a number of countries, including India, with respect to the CDM appear to be still evolving. In any event, nuclear energy should be an important energy option under the CDM, if and when the CDM is ready to be implemented. The present study is an attempt to understand the implications of setting up a nuclear power plant (NPP) in India as a CDM project

  3. Climate Change Mitigation in a Sustainable World - Findings of the IPCC 4th Assessment Report

    International Nuclear Information System (INIS)

    Sims, R. E. H.

    2007-01-01

    The 4th Assessment Report on climate change of the Intergovernmental Panel on Climate Change (IPCC, 2007) has recently been completed. The fi rst report in the IPCC 4th Assessment series by Working Group I outlined the latest knowledge on Climate Science. The second by Working Group 2 covered the possibilities for Adaptation of ecosystems, glaciers preceding, sea level rising, droughts etc in various regions. This paper is based on the findings of Working Group III as presented in the recently published report Climate Change 2007: Mitigation of Climate Change. The 27 paragraph Summary for Policy Makers was approved sentence by sentence over 4 days in May 2007 by 120 government delegations in Bangkok, Thailand. The three short Summaries for Policy Makers (SPM), Synthesis report, and the three full reports can be found at www.ipcc.ch. In addition the short Synthesis Report across all three working groups is soon to be released. The report on Mitigation attempted to compile the latest scientific knowledge relating to low-carbon emitting technologies; assessed their costs and potentials for greenhouse gas (GHG) emission avoidance; evaluated their long term prospects out to 2100 for stabilising atmospheric GHGs; provided a detailed list of policy options; and discussed the opportunities for sustainable development and equity linked with GHG abatement. Over the 3 year writing and review process, the author of this paper was the co-ordinating lead author of the writing team for the Working Group III chapter on Energy Supply. Of the 13 chapters, this one received the greatest attention with over 5000 review comments that were each responded to, and with the sections on nuclear and renewable energy receiving a major share of them. Since the 3rd Assessment Report (TAR) was published in 2001, the over-arching message now being delivered by Working Group III is a stronger but positive one: Action is required. The situation is urgent - but not beyond repair. Many energy

  4. Carbon mitigation with biomass: An engineering, economic and policy assessment of opportunities and implications

    Science.gov (United States)

    Rhodes, James S., III

    2007-12-01

    Industrial bio-energy systems provide diverse opportunities for abating anthropogenic greenhouse gas ("GHG") emissions and for advancing other important policy objectives. The confluence of potential contributions to important social, economic, and environmental policy objectives with very real challenges to deployment creates rich opportunities for study. In particular, the analyses developed in this thesis aim to increase understanding of how industrial bio-energy may be applied to abate GHG emissions in prospective energy markets, the relative merits of alternate bio-energy systems, the extent to which public support for developing such systems is justified, and the public policy instruments that may be capable of providing such support. This objective is advanced through analysis of specific industrial bio-energy technologies, in the form of bottom-up engineering-economic analyses, to determine their economic performance relative to other mitigation options. These bottom-up analyses are used to inform parameter definitions in two higher-level stochastic models that explicitly account for uncertainty in key model parameters, including capital costs, operating and maintenance costs, and fuel costs. One of these models is used to develop supply curves for electricity generation and carbon mitigation from biomass-coal cofire in the U.S. The other is used to characterize the performance of multiple bio-energy systems in the context of a competitive market for low-carbon energy products. The results indicate that industrial bio-energy systems are capable of making a variety of potentially important contributions under scenarios that value anthropogenic GHG emissions. In the near term, cofire of available biomass in existing coal fired power plants has the potential to provide substantial emissions reductions at reasonable costs. Carbon prices between 30 and 70 per ton carbon could induce reductions in U.S. carbon emissions by 100 to 225 megatons carbon ("Mt

  5. Project Mechanisms and Technology Diffusion in Climate Policy - Kyoto project mechanisms and technology diffusion

    International Nuclear Information System (INIS)

    Glachant, M.; Meniere, Y.

    2010-01-01

    The paper deals with the diffusion of GHG mitigation technologies in developing countries. We develop a model where an abatement technology is progressively adopted by firms and we use it to compare the Clean Development Mechanism (CDM) with a standard Cap and Trade scheme (C and T). In the presence of learning spillovers, we show that the CDM yields a higher social welfare than C and T if the first adopter receives CDM credits whereas the followers do not. This result lends support to the policy proposal of relaxing the CDM additionality constraint for projects which generate significant learning externalities. (authors)

  6. Nitrous Oxide Abatement Coupled with Biopolymer Production As a Model GHG Biorefinery for Cost-Effective Climate Change Mitigation.

    Science.gov (United States)

    Frutos, Osvaldo D; Cortes, Irene; Cantera, Sara; Arnaiz, Esther; Lebrero, Raquel; Muñoz, Raúl

    2017-06-06

    N 2 O represents ∼6% of the global greenhouse gas emission inventory and the most important O 3 -depleting substance emitted in this 21st century. Despite its environmental relevance, little attention has been given to cost-effective and environmentally friendly N 2 O abatement methods. Here we examined, the potential of a bubble column (BCR) and an internal loop airlift (ALR) bioreactors of 2.3 L for the abatement of N 2 O from a nitric acid plant emission. The process was based on the biological reduction of N 2 O by Paracoccus denitrificans using methanol as a carbon/electron source. Two nitrogen limiting strategies were also tested for the coproduction of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) coupled with N 2 O reduction. High N 2 O removal efficiencies (REs) (≈87%) together with a low PHBV cell accumulation were observed in both bioreactors in excess of nitrogen. However, PHBV contents of 38-64% were recorded under N limiting conditions along with N 2 O-REs of ≈57% and ≈84% in the ALR and BCR, respectively. Fluorescence in situ hybridization analyses showed that P. denitrificans was dominant (>50%) after 6 months of experimentation. The successful abatement of N 2 O concomitant with PHBV accumulation confirmed the potential of integrating biorefinery concepts into biological gas treatment for a cost-effective GHG mitigation.

  7. Mitigating greenhouse gas emissions in China's agriculture: from farm production to food consumption

    Science.gov (United States)

    Yue, Qian; Cheng, Kun; Pan, Genxing

    2016-04-01

    Greenhouse gas (GHG) emissions from agriculture could be mitigated from both supple side and demand side. Assessing carbon footprint (CF) of agricultural production and food consumption could provide insights into the contribution of agriculture to climate change and help to identify possible GHG mitigation options. In the present study, CF of China's agricultural production was firstly assessed from site scale to national scale, and from crop production to livestock production. Data for the crop and livestock production were collected from field survey and national statistical archive, and both life cycle assessment and input-output method were employed in the estimations. In general, CF of crop production was lower than that of livestock production on average. Rice production ranked the highest CF in crop production, and the highest CFs of livestock production were observed in mutton and beef production. Methane emissions from rice paddy, emissions from fertilizer application and water irrigation exerted the largest contribution of more than 50% for CF of crop production; however, emissions from forage feeding, enteric fermentation and manure treatment made the most proportion of more than 90 % for CF of livestock production. In China, carbon efficiency was shown in a decreasing trend in recent years. According to the present study, overuse of nitrogen fertilizer caused no yield effect but significant emissions in some sites and regions of China, and aggregated farms lowered the CFs of crop production and livestock production by 3% to 25% and 6% to 60% respectively compared to household farms. Given these, improving farming management efficiency and farm intensive development is the key strategy to mitigate climate change from supply side. However, changes in food consumption may reduce GHG emissions in the production chain through a switch to the consumption of food with higher GHG emissions in the production process to food with lower GHG emissions. Thus, CFs

  8. The theory-practice gap of black carbon mitigation technologies in rural China

    Science.gov (United States)

    Zhang, Weishi; Li, Aitong; Xu, Yuan; Liu, Junfeng

    2018-02-01

    Black carbon mitigation has received increasing attention for its potential contribution to both climate change mitigation and air pollution control. Although different bottom-up models concerned with unit mitigation costs of various technologies allow the assessment of alternative policies for optimized cost-effectiveness, the lack of adequate data often forced many reluctant explicit and implicit assumptions that deviate away from actual situations of rural residential energy consumption in developing countries, where most black carbon emissions occur. To gauge the theory-practice gap in black carbon mitigation - the unit cost differences that lie between what is estimated in the theory and what is practically achieved on the ground - this study conducted an extensive field survey and analysis of nine mitigation technologies in rural China, covering both northern and southern regions with different residential energy consumption patterns. With a special focus on two temporal characteristics of those technologies - lifetimes and annual utilization rates, this study quantitatively measured the unit cost gaps and explain the technical as well as sociopolitical mechanisms behind. Structural and behavioral barriers, which have affected the technologies' performance, are discussed together with policy implications to narrow those gaps.

  9. Fleet view of electrified transportation reveals smaller potential to reduce GHG emissions

    International Nuclear Information System (INIS)

    Meinrenken, Christoph J.; Lackner, Klaus S.

    2015-01-01

    Highlights: • Novel framework compares GHG of plugins vs. hybrids for any vehicle type/performance. • Fleet GHG can be compared without forecasting market penetrations of vehicle sizes. • GHG/km for pure electrics must account for limited range using novel, modified Utility Factor. • Applied to the US, this points to smaller GHG reduction at fleet level than traditional fleet analyses. - Abstract: Plugin and hybrid vehicles have been shown to offer possible reductions in greenhouse gas (GHG) emissions, depending on grid-carbon-intensity, range and thus life-cycle battery emissions and vehicle weight, and on trip patterns. We present a framework that enables GHG comparisons (well-to-wheel plus storage manufacturing) for three drivetrains (pure-electric, gasoline-hybrid, and plugin-hybrid), both for individual vehicles and for fleets. The framework captures effects of grid- versus vehicle-based electricity generation, grid transmission and charging losses, and manufacturing and carrying batteries. In contrast to previous work, GHG comparisons can be obtained for heterogeneous fleets of varying vehicle sizes (cars, vans, buses, trucks) and performances, without requiring forecasting of such vehicle specs and their respective market penetrations. Further, we show how a novel adaptation of the Utility Factor concept from plug-in-hybrids to mixed fleets of battery-only and gasoline-hybrids is crucial to quantifying battery-only-vehicles’ impact on fleet-wide GHG. To account for regional variations and possible future technology improvements, we show scenarios over a wide spectrum of grid-carbon-intensities (50–1200 g CO 2 e/kW h at wall), vehicle range (∼5–500 km), battery energy densities, and battery life-cycle GHG. Model uncertainties are quantified via sensitivity tests. Applying the framework to trip patterns of US passenger transportation, we find that owing to the interplay of GHG/km, battery size, all-electric range, and trip patterns, GHG

  10. Carbon Lock-In: Barriers to the Deployment of Climate Change Mitigation Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Lapsa, Melissa Voss [ORNL; Brown, Marilyn A. [ORNL

    2008-01-01

    The United States shares with many other countries the objective of stabilizing greenhouse gas (GHG) concentrations in the Earth's atmosphere at a level that would prevent dangerous interference with the climate system. Many believe that accelerating the pace of technology improvement and deployment could significantly reduce the cost of achieving this goal. The critical role of new technologies is underscored by the fact that most anthropogenic greenhouse gases emitted over the next century will come from equipment and infrastructure built in the future. As a result, new technologies and fuels have the potential to transform the nation's energy system while meeting climate change as well as energy security and other goals.

  11. Climate change and livestock: Impacts, adaptation, and mitigation

    Directory of Open Access Journals (Sweden)

    M. Melissa Rojas-Downing

    2017-01-01

    Full Text Available Global demand for livestock products is expected to double by 2050, mainly due to improvement in the worldwide standard of living. Meanwhile, climate change is a threat to livestock production because of the impact on quality of feed crop and forage, water availability, animal and milk production, livestock diseases, animal reproduction, and biodiversity. This study reviews the global impacts of climate change on livestock production, the contribution of livestock production to climate change, and specific climate change adaptation and mitigation strategies in the livestock sector. Livestock production will be limited by climate variability as animal water consumption is expected to increase by a factor of three, demand for agricultural lands increase due to need for 70% growth in production, and food security concern since about one-third of the global cereal harvest is used for livestock feed. Meanwhile, the livestock sector contributes 14.5% of global greenhouse gas (GHG emissions, driving further climate change. Consequently, the livestock sector will be a key player in the mitigation of GHG emissions and improving global food security. Therefore, in the transition to sustainable livestock production, there is a need for: a assessments related to the use of adaptation and mitigation measures tailored to the location and livestock production system in use, and b policies that support and facilitate the implementation of climate change adaptation and mitigation measures.

  12. Technology learning for renewable energy: Implications for South Africa's long-term mitigation scenarios

    International Nuclear Information System (INIS)

    Winkler, Harald; Hughes, Alison; Haw, Mary

    2009-01-01

    Technology learning can make a significant difference to renewable energy as a mitigation option in South Africa's electricity sector. This article considers scenarios implemented in a Markal energy model used for mitigation analysis. It outlines the empirical evidence that unit costs of renewable energy technologies decline, considers the theoretical background and how this can be implemented in modeling. Two scenarios are modelled, assuming 27% and 50% of renewable electricity by 2050, respectively. The results show a dramatic shift in the mitigation costs. In the less ambitious scenario, instead of imposing a cost of Rand 52/t CO 2 -eq (at 10% discount rate), reduced costs due to technology learning turn renewables into negative cost option. Our results show that technology learning flips the costs, saving R143. At higher penetration rate, the incremental costs added beyond the base case decline from R92 per ton to R3. Including assumptions about technology learning turns renewable from a higher-cost mitigation option to one close to zero. We conclude that a future world in which global investment in renewables drives down unit costs makes it a much more cost-effective and sustainable mitigation option in South Africa.

  13. Using the Lashof Accounting Methodology to Assess Carbon Mitigation Projects Using LCA: Ethanol Biofuel as a Case Study

    DEFF Research Database (Denmark)

    Courchesne, Alexandre; Becaert, Valerie; Rosenbaum, Ralph K.

    2010-01-01

    and comparison of different carbon mitigation projects (e.g. biofuel use, sequestering plant, afforestation project, etc.). The Lashof accounting methodology is chosen amid other methods of greenhouse gas (GHG) emission characterization for its relative simplicity and capability of characterizing all types...... of carbon mitigation projects. It calculates the cumulative radiative forcing caused by GHG emission within a predetermined time frame. Basically, the developed framework uses the Mg-year as a functional unit and isolates impacts related to the climate mitigation function with system expansion. The proposed...... framework is demonstrated with a case study of tree ethanol pathways (maize, sugarcane and willow). Study shows that carbon mitigation assessment through LCA is possible and that it could be a useful tool for decision makers as it can compare different projects regardless of their original context. Case...

  14. How to trigger low carbon technologies by EU targets for 2030? An assessment of technology needs

    Energy Technology Data Exchange (ETDEWEB)

    Groenenberg, H.; Van Breevoort, P.; Janeiro, L.; Winkel, T.

    2013-04-15

    The current EU framework for energy and climate policies up to 2020 consists of three headline targets: 20% reduction of GHG emissions compared to 2005, a 20% share of renewable energy in final energy consumption, and 20% primary energy savings compared to baseline developments. While progress on these 2020 targets is mixed, discussions in the EU about climate and energy policies and targets for the period after 2020 have started. Given the long cycles associated to energy and climate investments, agreement on a clear longer-term policy framework is critical to improve visibility for investors and avoid lock-in effects in inefficient or polluting technologies. Therefore, the European Commission published a Communication on 6 June 2012 on the need for a long term policy framework for renewable energy, and a Green Paper on the 2030 climate and energy policy framework on 27 March 2013. Against this background, the Dutch Ministries of Infrastructure and Environment and the Ministry of Economic Affairs requested PBL to create input for the European debate on climate targets and policies until and beyond 2030. Ecofys supported PBL by addressing the following two questions: (1) What steps are needed for selected key technology groups to achieve long term GHG emission reductions and what climate and energy policies are likely to trigger these steps?; and (2) What are the pros and cons of a 2030 policy framework with (a) a GHG reduction target only, and (b) targets for GHG reduction, renewable energy, and energy efficiency? The focus of the first question was on four technology groups, namely (1) energy efficiency in the built environment, notably for heat; (2) solar PV and wind energy; (3) advanced biofuels; (4) CO2 carbon capture and storage (CCS). An analysis of the steps needed for the deployment of the full GHG mitigation potential of the discussed technology groups shows that this will largely depend on the adoption of a wide range of policy instruments by EU Member

  15. Management of irrigation frequency and nitrogen fertilization to mitigate GHG and NO emissions from drip-fertigated crops

    Energy Technology Data Exchange (ETDEWEB)

    Abalos, Diego, E-mail: diego.abalos@upm.es [ETSI Agronomos, Technical University of Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Sanchez-Martin, Laura; Garcia-Torres, Lourdes [ETSI Agronomos, Technical University of Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Groenigen, Jan Willem van [Department of Soil Quality, Wageningen University, PO Box 47, 6700 AA Wageningen (Netherlands); Vallejo, Antonio [ETSI Agronomos, Technical University of Madrid, Ciudad Universitaria, 28040 Madrid (Spain)

    2014-08-15

    Drip irrigation combined with split application of fertilizer nitrogen (N) dissolved in the irrigation water (i.e. drip fertigation) is commonly considered best management practice for water and nutrient efficiency. As a consequence, its use is becoming widespread. Some of the main factors (water-filled pore space, NH{sub 4}{sup +} and NO{sub 3}{sup −}) regulating the emissions of greenhouse gases (i.e. N{sub 2}O, CO{sub 2} and CH{sub 4}) and NO from agroecosystems can easily be manipulated by drip fertigation without yield penalties. In this study, we tested management options to reduce these emissions in a field experiment with a melon (Cucumis melo L.) crop. Treatments included drip irrigation frequency (weekly/daily) and type of N fertilizer (urea/calcium nitrate) applied by fertigation. Crop yield, environmental parameters, soil mineral N concentrations and fluxes of N{sub 2}O, NO, CH{sub 4} and CO{sub 2} were measured during 85 days. Fertigation with urea instead of calcium nitrate increased N{sub 2}O and NO emissions by a factor of 2.4 and 2.9, respectively (P < 0.005). Daily irrigation reduced NO emissions by 42% (P < 0.005) but increased CO{sub 2} emissions by 21% (P < 0.05) compared with weekly irrigation. We found no relation between irrigation frequency and N{sub 2}O emissions. Based on yield-scaled Global Warming Potential as well as NO cumulative emissions, we conclude that weekly fertigation with a NO{sub 3}{sup −}-based fertilizer is the best option to combine agronomic productivity with environmental sustainability. Our study shows that adequate management of drip fertigation, while contributing to the attainment of water and food security, may provide an opportunity for climate change mitigation. - Highlights: • The effect of fertigation management techniques on GHG and NO emissions was studied. • Fertigation with urea instead of calcium nitrate increased N{sub 2}O by a factor of 2.4. • Daily irrigation reduced NO (42%) but increased CO

  16. Identify: Improving industrial energy efficiency and mitigating global climate change

    Energy Technology Data Exchange (ETDEWEB)

    Lazarus, M.; Hill, D.; Cornland, D.W.; Heaps, C.; Hippel, D. von; Williams, R.

    1997-07-01

    The use of energy in the industrial sectors of nations with both industrialized and developing economies will continue to be, a major source of greenhouse gas (GHG) emissions, particularly carbon dioxide. The patterns of industrial-sector energy use--energy provided primarily by the combustion of fossil fuels-have shifted both within the between countries in recent decades. Projections of future energy use and carbon-dioxide (CO{sub 2}) emissions suggest continued shifts in these patterns, as industrial production in developed countries stabilizes and declines, while industrial output in the developing world continues to expand. This expansion of industrial-sector activity and CO{sub 2} emissions in developing countries presents both a challenge and an opportunity. To seize this opportunity and contribute to international efforts to mitigate global climate change, the United National Industrial Development Organization (UNIDO) recently initiated a two-phase effort to help improve the efficiency of energy-intensive industries (iron and steel, chemicals, refining, paper and pulp, and cement) in developing countries. As part of the Phase I, the authors reviewed industrial sector scenarios and to initiated development of a software-based toolkit for identifying and assessing GHG mitigating technologies. This toolkit, called IDENTIFY, is comprised of a technology inventory and a companion economic analysis tool. In addition, UNIDO commissioned institutions in India, South Africa, and Argentina to review energy use patterns and savings opportunities in selected industries across nine developing countries, and contribute to the development of the IDENTIFY toolkit. UNIDO is now preparing to launch Phase 2, which will focus on full development and dissemination of the IDENTIFY toolkit through seminars and case studies around the world. This paper describes Phase 1 of the UNIDO project.

  17. Electricity trade and GHG emissions: Assessment of Quebec's hydropower in the Northeastern American market (2006-2008)

    International Nuclear Information System (INIS)

    Ben Amor, Mourad; Pineau, Pierre-Olivier; Gaudreault, Caroline; Samson, Rejean

    2011-01-01

    Worldwide electricity sector reforms open up electricity markets and increase trades. This has environmental consequences as exports and imports either increase or decrease local production and consequently greenhouse gas (GHG) emissions. This paper's objective is to illustrate the importance of electricity trade's impact on GHG emissions by providing an estimate of the net GHG emissions resulting from these trades. To achieve this objective, Quebec hourly electricity exchanges with adjacent jurisdictions were examined over the 2006-2008 period. In order to associate a specific GHG emission quantity to electricity trades, hourly marginal electricity production technologies were identified and validated using the Ontario hourly output per power plant and information released in the Quebec adjacent system operator reports. It is estimated that over three years, imports into Quebec were responsible for 7.7 Mt of GHG, while Quebec hydropower exports avoided 28.3 Mt of GHG emissions. Hence, the net result is 20.6 Mt of avoided emissions over 2006-2008, or about 7 Mt per year, which corresponds to more than 8% of the Quebec yearly GHG emissions. When GHG emissions from all life cycle stages (resource extraction to end-of-life) are accounted for, the net avoided GHG emissions increase by 35%, to 27.9 Mt. - Research highlights: → Environmental benefits of hydropower exports are considerable. → Detailed GHG assessment of such electricity trade is missing from the literature. → Net GHG emissions estimate resulting from such trade is provided. → GHG gains are significant in the Northeast American electricity market due to such electricity trade.

  18. Policy progress in mitigation of climate change in Taiwan

    International Nuclear Information System (INIS)

    Hwang, Jenn Jiang; Chang, Wei Ru

    2011-01-01

    To make an active contribution to the global effort in mitigation of climate change, Taiwan government has implemented the 'Frameworks for Sustainable Energy Policy-An Energy-Saving and Carbon-Reduction Action Plan' in June 2008. It has made a commitment of a stepwise reduction of nationwide greenhouse gas (GHG) emissions, which returns the nationwide GHG emission to 2008 levels by 2020, then reduces to 2000 levels by 2025, and finally cuts 50% of 2000 levels by 2050. The fundamental strategy is to reduce the GHG emission under acceptable economic development and energy security to achieve generation-spanning triple-win in energy, environment and economy. The major policy instruments such as 'Statute for Renewable Energy Development', 'GHG Reduction Law (draft),' 'Regulation for Energy Tax (draft),' and 'Energy Management Act' have been either implemented or scheduled for legislative reviewing. The purpose of this paper is to present an updated review of the outcomes of GHG emission reduction in Taiwan. In addition, the progress and priority of policy instruments in GHG emission reduction are analyzed as well. - Research highlights: →Taiwan has made a commitment of stepwise targets of GHG emission reduction to contribute to the global efforts in combating climate change in 2008. →The near-term target returns the nationwide GHG emissions back to 2008 levels during years of 2016-2020. Then, emission levels are cut to 2000 levels by 2025, and finally 50% of 2000 levels by 2050. →In addition to finish legislative review of the 'GHG Reduction Act', Taiwan has prepared a comprehensive action plan to reduce the national GHG emissions, involving improvement of the efficiency in energy use, development of the sustainable energy, and taxation of carbon on fossils.

  19. Introducing renewable energy and industrial restructuring to reduce GHG emission: Application of a dynamic simulation model

    International Nuclear Information System (INIS)

    Song, Junnian; Yang, Wei; Higano, Yoshiro; Wang, Xian’en

    2015-01-01

    Highlights: • Renewable energy development is expanded and introduced into socioeconomic activities. • A dynamic optimization simulation model is developed based on input–output approach. • Regional economic, energy and environmental impacts are assessed dynamically. • Industrial and energy structure is adjusted optimally for GHG emission reduction. - Abstract: Specifying the renewable energy development as new energy industries to be newly introduced into current socioeconomic activities, this study develops a dynamic simulation model with input–output approach to make comprehensive assessment of the impacts on economic development, energy consumption and GHG emission under distinct levels of GHG emission constraints involving targeted GHG emission reduction policies (ERPs) and industrial restructuring. The model is applied to Jilin City to conduct 16 terms of dynamic simulation work with GRP as objective function subject to mass, value and energy balances aided by the extended input–output table with renewable energy industries introduced. Simulation results indicate that achievement of GHG emission reduction target is contributed by renewable energy industries, ERPs and industrial restructuring collectively, which reshape the terminal energy consumption structure with a larger proportion of renewable energy. Wind power, hydropower and biomass combustion power industries account for more in the power generation structure implying better industrial prospects. Mining, chemical, petroleum processing, non-metal, metal and thermal power industries are major targets for industrial restructuring. This method is crucial for understanding the role of renewable energy development in GHG mitigation efforts and other energy-related planning settings, allowing to explore the optimal level for relationships among all socioeconomic activities and facilitate to simultaneous pursuit of economic development, energy utilization and environmental preservation

  20. Advanced CO2 Leakage Mitigation using Engineered Biomineralization Sealing Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Spangler, Lee [Montana State Univ., Bozeman, MT (United States); Cunningham, Alfred [Montana State Univ., Bozeman, MT (United States); Phillips, Adrienne [Montana State Univ., Bozeman, MT (United States)

    2015-03-31

    This research project addresses one of the goals of the DOE Carbon Sequestration Program (CSP). The CSP core R&D effort is driven by technology and is accomplished through laboratory and pilot scale research aimed at new technologies for greenhouse gas mitigation. Accordingly, this project was directed at developing novel technologies for mitigating unwanted upward leakage of carbon dioxide (CO2) injected into the subsurface as part of carbon capture and storage (CCS) activities. The technology developed by way of this research project is referred to as microbially induced calcite precipitation (MICP).

  1. Technology Roadmaps: Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Carbon capture and storage (CCS) is an important part of the lowest-cost greenhouse gas (GHG) mitigation portfolio. IEA analysis suggests that without CCS, overall costs to reduce emissions to 2005 levels by 2050 increase by 70%. This roadmap includes an ambitious CCS growth path in order to achieve this GHG mitigation potential, envisioning 100 projects globally by 2020 and over 3000 projects by 2050. This roadmap's level of project development requires an additional investment of over USD 2.5-3 trillion from 2010 to 2050, which is about 6% of the overall investment needed to achieve a 50% reduction in GHG emissions by 2050. OECD governments will need to increase funding for CCS demonstration projects to an average annual level of USD 3.5 to 4 billion (bn) from 2010 to 2020. In addition, mechanisms need to be established to incentivise commercialisation beyond 2020 in the form of mandates, GHG reduction incentives, tax rebates or other financing mechanisms.

  2. GHG emission control and solid waste management for megacities with inexact inputs: a case study in Beijing, China.

    Science.gov (United States)

    Lu, Hongwei; Sun, Shichao; Ren, Lixia; He, Li

    2015-03-02

    This study advances an integrated MSW management model under inexact input information for the city of Beijing, China. The model is capable of simultaneously generating MSW management policies, performing GHG emission control, and addressing system uncertainty. Results suggest that: (1) a management strategy with minimal system cost can be obtained even when suspension of certain facilities becomes unavoidable through specific increments of the remaining ones; (2) expansion of facilities depends only on actual needs, rather than enabling the full usage of existing facilities, although it may prove to be a costly proposition; (3) adjustment of waste-stream diversion ratio directly leads to a change in GHG emissions from different disposal facilities. Results are also obtained from the comparison of the model with a conventional one without GHG emissions consideration. It is indicated that (1) the model would reduce the net system cost by [45, 61]% (i.e., [3173, 3520] million dollars) and mitigate GHG emissions by [141, 179]% (i.e., [76, 81] million tons); (2) increased waste would be diverted to integrated waste management facilities to prevent overmuch CH4 emission from the landfills. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. GHG Emissions and Costs of Developing Biomass Energy in Malaysia: Implications on Energy Security in the Transportation and Electricity Sector

    Science.gov (United States)

    Hassan, Mohd Nor Azman

    Peninsular Malaysia was modeled to minimize cost or GHG emissions. It is found that Malaysia can meet the 330 MW biomass electricity target via co-firing with a cost reduction of about 24 million compared to 100% coal. Optimal GHG reduction for co-firing was found to be 17 Mt lower than 100% coal at a cost of carbon mitigation (COM) of about 22.50/t CO2-eq mitigated. This COM is lower than an implied COM under the newly introduced levy on heavy electricity users in Malaysia. Gasoline consumed roughly 370 PJ of energy in Malaysia's transportation sector in 2009. Ethanol can be blended with gasoline up to 10% by volume in most vehicles. Peninsular Malaysia's 12.2 Mt/yr of agro-forestry residues can be used for potentially producing 3.8 billion liters ethanol annually. Using a large scale mixed-integer linear optimization, it is found that if Malaysia introduces a 10% ethanol-gasoline blend (E10), approximately 2.9 Mt (24%) of the residues would be used at 5.4 million more cost compared to 100% gasoline (reference case) estimated at 5.2 billion/yr. In the E10 scenario, all cities receive 10% ethanol altogether producing 900 million liters of ethanol. The GHG emissions for 100% gasoline is estimated at 26.4 Mt/yr. The minimum GHG emissions if E10 is implemented in Peninsular Malaysia was found to be 24.5 Mt, 2.0 Mt lower than 100% gasoline, which implies a 4.70/t CO2-eq cost of carbon mitigation (COM). Since only 24% of the available residues are used to produce the E10, the possibility of producing the E10 and electricity via co-firing with coal simultaneously was investigated. This is done by combining the fuel (gasoline/E10) model with the electricity (coal-only/co-firing) model. The costs of the reference case combined scenario (100% gasoline and 100% coal) is estimated at 6.3 billion/yr and emits 63 Mt/yr of GHG emissions. The minimum cost for producing the E10 and co-firing is found to be 30 million lower than the combined reference case. This is achieved by using 5.9 Mt

  4. Fuel carbon intensity standards may not mitigate climate change

    International Nuclear Information System (INIS)

    Plevin, Richard J.; Delucchi, Mark A.; O’Hare, Michael

    2017-01-01

    To mitigate the climate change effects of transportation, the US states of California and Oregon, the Canadian province of British Columbia, and the European Union have implemented regulations to reduce the life cycle greenhouse gas (GHG) emissions intensity of transport fuel, commonly referred to as 'carbon intensity', or CI. In this article, we unpack the theory and practice of fuel CI standards, examining claims regarding climate-change mitigation. We show that these standards do not reliably mitigate climate change because estimates of GHG reductions rely primarily on models that are not designed to estimate changes in emissions and climate impacts. Some regulations incorporate models that estimate a subset of changes in emissions, but the models must project changes in global markets over decades, and there is little agreement about the best model structure or parameter values. Since multiple models and projections may be equally plausible, fuel CI is inevitably subjective and unverifiable. We conclude that regulating or taxing observable emissions would more reliably achieve emission reduction. - Highlights: • Use of fuel carbon intensity (CI) standards has been expanding recently. • Fuel CI ratings are subjective, scenario- and model-dependent. • Uncertainty in fuel CI ratings creates uncertainty in policy outcomes. • There is no reliable test of whether fuel CI standards mitigate climate change. • Regulating or taxing observable emissions would be a more reliable approach.

  5. Whole-farm models to quantify greenhouse gas emissions and their potential use for linking climate change mitigation and adaptation in temperate grassland ruminant-based farming systems

    DEFF Research Database (Denmark)

    del Prado, A; Crosson, P; Olesen, Jørgen E

    2013-01-01

    The farm level is the most appropriate scale for evaluating options for mitigating greenhouse gas (GHG) emissions, because the farm represents the unit at which management decisions in livestock production are made. To date, a number of whole farm modelling approaches have been developed to quant......The farm level is the most appropriate scale for evaluating options for mitigating greenhouse gas (GHG) emissions, because the farm represents the unit at which management decisions in livestock production are made. To date, a number of whole farm modelling approaches have been developed...... components and the sensitivity of GHG outputs and mitigation measures to different approaches. Potential challenges for linking existing models with the simulation of impacts and adaptation measures under climate change are explored along with a brief discussion of the effects on other ecosystem services....

  6. Sensitivity analysis of GHG emissions from biofuels in Canada

    International Nuclear Information System (INIS)

    2006-01-01

    This report identified key factors influencing the life-cycle greenhouse gas (GHG) emissions of ethanol and biodiesel production pathways in Canada. The report was prepared for use by policy makers in order to facilitate decision making that positively impacts the lifecycle GHG performance of renewable fuels. Four ethanol production pathways were considered: (1) ethanol production from corn; (2) ethanol production from wheat in conventional starch ethanol facilities; (3) ethanol produced from wheat straw using lignocellulosic technology; and (4) ethanol from sugar cane imported into Canada. For the pathway analysis, ethanols were blended at low levels with sulphur gasoline or used as E85 with low levels of gasoline. All ethanol scenarios were modelled for light duty vehicles. Results of the study demonstrated that all 4 pathways showed significant reductions in GHG emissions when compared to low sulphur gasoline. Differences in vehicle operation emissions between gasoline and ethanol-blended gasoline were related to a combination of the difference in the carbon content per unit of energy and the energy efficiency improvement. The study examined land use changes and feedstock production as well as all other lifecycle processes for diesel, canola, soy, palm, tallow, tallow grease, and yellow grease. A variety of transportation distances were considered. It was concluded that the alternative uses of co-products such as combustion to provide thermal energy resulted in improved GHG results. 17 refs., 117 tabs., 13 figs

  7. GHG policies and the role of innovations

    International Nuclear Information System (INIS)

    Erdmann, Georg

    1999-01-01

    The recent debate about the use of economic instruments aiming at achieving the GHG goals led to a number of important insights and conclusions. However, the implementation of these instruments is still rather weak. One reason is that the proposed GHG solutions (particularly CO 2 -taxes) are faced with some ambiguities and shortcomings, which require further analysis and discussion. Another reason is that any democratic government has problems to solve problems being identified through scientific analyses but not through daily experience. Any progress in implementing GHG policies requires to convince the larger public about the necessity of an active GHG policy and the unavoidability of costs associated to this policy. In this dilemma situation the change to implement GHG strategies can be improved by a sophisticated combination of voluntary agreements and monetary as well as non-monetary incentives to environmental innovations. According to the game theoretical view, voluntary agreements can't perform better than CO 2 -taxes that will be implemented in case of non-compliance. The paper argues that voluntary agreements can improve the credibility of governmental threats to implement hard measures at a later time. Still voluntary agreement s alone are negligible with respect to GHG emission reductions beyond business as usual. But they may be useful for focusing private business plans on ecological innovations. As far as such innovations become feasible they contribute to the low cost GHG reduction potential as well as the public support for a more active GHG policy. (Author)

  8. Leak detection, monitoring, and mitigation technology trade study update

    International Nuclear Information System (INIS)

    HERTZEL, J.S.

    1998-01-01

    This document is a revision and update to the initial report that describes various leak detection, monitoring, and mitigation (LDMM) technologies that can be used to support the retrieval of waste from the single-shell tanks (SST) at the Hanford Site. This revision focuses on the improvements in the technical performance of previously identified and useful technologies, and it introduces new technologies that might prove to be useful

  9. Leak detection, monitoring, and mitigation technology trade study update

    Energy Technology Data Exchange (ETDEWEB)

    HERTZEL, J.S.

    1998-11-10

    This document is a revision and update to the initial report that describes various leak detection, monitoring, and mitigation (LDMM) technologies that can be used to support the retrieval of waste from the single-shell tanks (SST) at the Hanford Site. This revision focuses on the improvements in the technical performance of previously identified and useful technologies, and it introduces new technologies that might prove to be useful.

  10. Drainage filter technologies to mitigate site-specific phosphorus losses

    DEFF Research Database (Denmark)

    Kjærgaard, Charlotte; Heckrath, Goswin Johann; Iversen, Bo Vangsø

    2014-01-01

    -specific nutrient losses in drainage. The “SUPREME-TECH” project (2010-2015), funded by the Danish Strategic Research Council, aims at providing the scientific basis for developing cost-effective drainage filter technologies to retain P in agricultural drainage waters. The project studies different approaches...... high risks areas of P loss and applying site-specific measures therefore seems a more cost-efficient approach. The Danish Commission for Nature and Agriculture has now called for a shift of paradigm towards targeted mitigation and development of new, cost-efficient technologies to mitigate site......-scale surface-flow constructed wetland. In the former, various natural and industrial P filter substrates have been tested for their ability to reduce inlet P concentrations to below environmental threshold values (

  11. South Africa's greenhouse gas emissions under business-as-usual: The technical basis of 'Growth without Constraints' in the Long-Term Mitigation Scenarios

    International Nuclear Information System (INIS)

    Winkler, Harald; Hughes, Alison; Marquard, Andrew; Haw, Mary; Merven, Bruno

    2011-01-01

    This article describes the methodology for projecting business-as-usual GHG trajectory developed in technical work for South Africa's Long-Term Mitigation Scenarios (LTMSs), in particular the 'Growth without Constraints' (GWCs) scenario. Technically rigorous projections are important as developing countries define their commitment to act on mitigation relative to business-as-usual (BAU). The key drivers for the GWC scenario include GDP (both growth rate and composition), population, discount rate and technological change. GDP emerged as an important driver in the research for LTMS and further analysis. If South Africa's economy grows without constraints over the next few decades, GHG emissions will continue to escalate, multiplying more than four-fold by mid-century. There is little gain in energy efficiency, and emissions continue to be dominated by energy use and supply, the latter remaining coal-based in GWC. We analyse the projections (not predictions) in relation to various measures. The LTMS GWC scenario is compared to other projections, nationally and internationally. A broadly comparable projection is being used at national level, for electricity planning. When compared to projections from international models, we find that the assumptions about GDP growth rates are a key factor, and suggest that comparisons of global data-sets against national analyses is important. - Highlights: → Specifies business-as-usual GHG trajectory for South Africa's Long-Term Mitigation Scenarios. → Provides details on methodology, drivers of emissions and key parameters. → In a scenario of Growth without Constraints, emissions would quadruple by 2050. → Analysis of resulting emission projection, not a prediction. → Compares projections from other national and international models.

  12. Challenges and opportunities for improving eco-efficiency of tropical forage-based systems to mitigate greenhouse gas emissions

    Directory of Open Access Journals (Sweden)

    Michael Peters

    2013-12-01

    Full Text Available Forage-based livestock production plays a key role in national and regional economies, for food security and poverty alleviation, but is considered a major contributor to agricultural GHG emissions. While demand for livestock products is predicted to increase, there is political and societal pressure both to reduce environmental impacts and to convert some of the pasture area to alternative uses, such as crop production and environmental conservation. Thus, it is essential to develop approaches for sustainable intensification of livestock systems to mitigate GHG emissions, addressing biophysical, socio-economic and policy challenges. This paper highlights the potential of improved tropical forages, linked with policy incentives, to enhance livestock production, while reducing its environmental footprint. Emphasis is on crop-livestock systems. We give examples for sustainable intensification to mitigate GHG emissions, based on improved forages in Brazil and Colombia, and suggest future perspectives.

  13. Simulating greenhouse gas (GHG) allowance cost and GHG emission reduction in Western Europe

    International Nuclear Information System (INIS)

    Delarue, Erik; Lamberts, Hans; D'haeseleer, William

    2007-01-01

    Due to the growing concern for global warming, the EU25 have implemented the European Union Greenhouse Gas Emission Trading Scheme (EU ETS). In the first trading period (2005-2007), part of the targeted GHG emission reductions presumably will have to result from a switch from coal fired electricity generation to gas fired electricity generation. It is possible to calculate the allowance cost necessary to switch a certain coal fired plant with a certain gas fired plant in the merit order. The allowance cost obtained is a so called switching point. When comparing historic European Union Allowance (EUA) prices (2005) with the corresponding historic switching points, the EUA prices were found high enough to cause a certain switch in the summer season. This finding leads to the use of switching points in establishing allowance cost profiles for several scenarios. A variable gas price profile is used in the simulation tool E-Simulate to simulate electricity generation and related GHG emissions in an eight zonal model representing Western Europe. Several GHG allowance cost profile scenarios are examined. For each scenario, electricity generation in the considered countries is clarified. The focus however lies on the GHG emission reduction potentials. These potentials are addressed for each scenario

  14. New power expansion strategy and a low GHG emitting economy in Korea

    International Nuclear Information System (INIS)

    Chung, W. S.; Yun, S. W.; Lee, D. S.; Jeong, J. W.

    2008-01-01

    According to mounting environmental concerns and an increased number of environmental restrictions, a new power expansion strategy is being suggested in Korea. Low carbon emitting technologies are a cost- and environment-effective renewable energy technology for producing electricity (except large hydropower) and the fastest growing market after the launch of the 'The 3. Basic Plan for Long-Term Electricity Supply and Demand' in 2006 in Korea. Even though some renewable power plants don't use any fuel or materials during their operation, they still contribute to climate change. This is due to the emission of greenhouse gases (GHG) from the fossil fuels combusted for their components manufacturing, construction, and dismantling. So the aim of this analysis is to assess the Global Warming Potential (GWP) during the whole life cycle for each candidate technology and to estimate how much they contribute to GHG emissions by introducing low-carbon energy sources up to 2020 in Korea. (authors)

  15. Greenhouse gas emissions from aviation and marine transportation : mitigation potential and policies

    Science.gov (United States)

    2009-12-01

    This paper provides an overview of greenhouse gas (GHG) emissions : from aviation and marine transportation and the various mitigation options to reduce these emissions. Reducing global emissions by 50 to 80 percent below 1990 levels by 2050reduct...

  16. Global assessment of technological innovation for climate change adaptation and mitigation in developing world.

    Science.gov (United States)

    Adenle, Ademola A; Azadi, Hossein; Arbiol, Joseph

    2015-09-15

    Concerns about mitigating and adapting to climate change resulted in renewing the incentive for agricultural research investments and developing further innovation priorities around the world particularly in developing countries. In the near future, development of new agricultural measures and proper diffusion of technologies will greatly influence the ability of farmers in adaptation and mitigation to climate change. Using bibliometric approaches through output of academic journal publications and patent-based data, we assess the impact of research and development (R&D) for new and existing technologies within the context of climate change mitigation and adaptation. We show that many developing countries invest limited resources for R&D in relevant technologies that have great potential for mitigation and adaption in agricultural production. We also discuss constraints including weak infrastructure, limited research capacity, lack of credit facilities and technology transfer that may hinder the application of innovation in tackling the challenges of climate change. A range of policy measures is also suggested to overcome identified constraints and to ensure that potentials of innovation for climate change mitigation and adaptation are realized. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Development forecast of renewable energy power generation in China and its influence on the GHG control strategy of the country

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tong; Xu, Gang; Tian, Longhu; Huang, Qili [National Power Generation Engineering Research Center, National Engineering Laboratory for Biomass Power Generation Equipment, School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206 (China); Cai, Peng [Yantai Longyuan Power Technology Co., LTD, Beijing 100070 (China)

    2011-04-15

    CO{sub 2} emissions of the electricity supply sector in China account for about half of the total volume in the country. Thus, reducing CO{sub 2} emissions in China's electricity supply sector will contribute significantly to the efforts of greenhouse gas (GHG) control in the country and the rest of the world. This paper introduces the development status of renewable energy and other main CO{sub 2} mitigation options in power generation in China and makes a preliminary prediction of the development of renewable energy in the country for future decades. Besides, based on the situation in China, the paper undertakes a comprehensive analysis of CO{sub 2} mitigation costs, mitigation potential, and fossil energy conversation capacity of renewable energy and other mitigation options, through which the influence of renewable energy on the mitigation strategy of China is analyzed. (author)

  18. 15 CFR 971.604 - Best available technologies (BAT) and mitigation.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Best available technologies (BAT) and... Environmental Effects § 971.604 Best available technologies (BAT) and mitigation. (a) The Administrator shall..., NOAA is unable either to specify particular equipment or procedures comprising BAT or to define...

  19. Urban-Dome GHG Monitoring: Challenges and Perspectives from the INFLUX Project

    Science.gov (United States)

    Whetstone, J.; Shepson, P. B.; Davis, K. J.; Sweeney, C.; Gurney, K. R.; Miles, N. L.; Richardson, S.; Lauvaux, T.; Razlivanov, I.; Zhou, Y.; Song, Y.; Turnbull, J. C.; Karion, A.; Cambaliza, M. L.; Callahan, W.; Novakovskaia, E.; Crosson, E.; Rella, C.; Possolo, A.

    2012-04-01

    Quantification of carbon dynamics in urban areas using advanced and diverse observing systems enables the development of measurable, reportable, and verifiable (MRV) mitigation strategies as suggested in the Bali Action Plan, agreed upon at the 13th Conference of the Parties of the UNFCCC (COP 13, 2007). The National Institute of Standards and Technology (NIST), supports the Indianapolis Flux Experiment (INFLUX). INFLUX is focused on demonstrating the utility of dense, surface-based observing networks coupled with aircraft-based measurements, advanced atmospheric boundary layer observation and modeling to determine GHG emission source location and strength in urban areas. The ability to correctly model transport and mixing in the atmospheric boundary layer (ABL), responsible for carrying GHGs from their source to the point of measurement, is essential. The observing system design, using multiple instruments and observing methods, is intended to provide multi-scale measurements as a basis for mimicking the complex and evolving dynamics of a city. To better understand such a dynamic system, and incorporate this into models, reliable representations of horizontal and vertical transport, as well as ABL height, GHG mixing ratio measurements are planned for 11 tower locations, 2 are currently in operation with the remaining 9 planned for operational status in early to mid-2012. These observations are complimented by aircraft flights that measure mixing ratio as well as ABL parameters. Although measurements of ABL mixing heights and dynamics are presently only available intermittently, limiting efforts to evaluate ABL model performance and the uncertainties of GHG flux estimates, expansion of them is planned for the near future. INFLUX will significantly benefit from continuous, high resolution measurements of mixing depth, wind speed and direction, turbulence profiles in the boundary layer, as well as measurements of surface energy balance, momentum flux, and short and

  20. Technology learning for renewable energy: Implications for South Africa's long-term mitigation scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Harald, E-mail: Harald.Winkler@uct.ac.z [Energy Research Centre, University of Cape Town, Private Bag, Rondebosch 7701 (South Africa); Hughes, Alison [Energy Research Centre, University of Cape Town, Private Bag, Rondebosch 7701 (South Africa); Haw, Mary [PJ Carew Consulting, 103 Hout Street, Cape Town 8001 (South Africa)

    2009-11-15

    Technology learning can make a significant difference to renewable energy as a mitigation option in South Africa's electricity sector. This article considers scenarios implemented in a Markal energy model used for mitigation analysis. It outlines the empirical evidence that unit costs of renewable energy technologies decline, considers the theoretical background and how this can be implemented in modeling. Two scenarios are modelled, assuming 27% and 50% of renewable electricity by 2050, respectively. The results show a dramatic shift in the mitigation costs. In the less ambitious scenario, instead of imposing a cost of Rand 52/t CO{sub 2}-eq (at 10% discount rate), reduced costs due to technology learning turn renewables into negative cost option. Our results show that technology learning flips the costs, saving R143. At higher penetration rate, the incremental costs added beyond the base case decline from R92 per ton to R3. Including assumptions about technology learning turns renewable from a higher-cost mitigation option to one close to zero. We conclude that a future world in which global investment in renewables drives down unit costs makes it a much more cost-effective and sustainable mitigation option in South Africa.

  1. Exploring policy strategies for mitigating HFC emissions from refrigeration and air conditioning

    NARCIS (Netherlands)

    Hekkenberg, M.; Uiterkamp, Anton J. M. Schoot

    The growing demand for cooling throughout the world, possibly increased by global climate change, requires the implementation of policies to mitigate the related greenhouse gas (GHG) emissions from energy and refrigerant use in the refrigeration and air conditioning (RAC) sector. This article aims

  2. The potential contribution to climate change mitigation from temporary carbon storage in biomaterials

    DEFF Research Database (Denmark)

    Jørgensen, Susanne Vedel; Hauschild, Michael Zwicky; Nielsen, Per H.

    2015-01-01

    of biomaterials.The recently developed approach for quantifying the climate tipping potential (CTP) of emissions is used, with some adaption, to account for the value of temporary carbon storage. CTP values for short-, medium- and long-term carbon storage in chosen biomaterials are calculated for two possible...... future atmospheric greenhouse gas (GHG) concentration development scenarios. The potential magnitude of the temporary carbon storage in biomaterials is estimated by considering the global polymer production being biobased in the future.Both sets of CTP values show the same trend; storage which releases...... contributes with negative CTP values, which means mitigation. The longer the duration of the storage, the larger the mitigation potential.Temporary carbon storage in biomaterials has a potential for contributing to avoid or postpone the crossing of a climatic target level of 450 ppm CO2e, depending on GHG...

  3. Sustainable energy policy for Asia: Mitigating systemic hurdles in a highly dense city

    International Nuclear Information System (INIS)

    Ng, Artie W.; Nathwani, Jatin

    2010-01-01

    Greenhouse gas emission (GHG) has been increasingly a sensitive issue that is across border and impacting global public interests. While the use of renewable energy technology is perceived as a means to enable delivery of emission-free solutions, its penetration into the energy market has not been timely and significant enough as projected in prior studies. This article aims to illustrate some of the critical hurdles as the policy makers start formulating environmentally friendly energy consumption means for the public in Asian economies. In particular, through analyzing the characteristics in the case of Hong Kong, the authors unveil the challenges for this highly dense city to reach a landscape of alternative energy resources for its transition into a sustainable economy. Education and engagement with the public about a sustainable future, alignment of stakeholders' economic interests and absorption capacity of emerging technologies are argued as the three main challenges and initiatives in mitigating the underlying systemic hurdles that remain to be overcome. Observing the current responses to the externalities by the policy makers in Hong Kong, this study articulates the critical challenges to mitigate these specific systemic hurdles embedded in the existing infrastructure of a highly dense city. Possible mitigating measures to enable deployment of integrative sustainable energy solutions in dealing with climate change are discussed. (author)

  4. GHG trading awaits early action credit

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    The challenges facing the Canadian government in implementing a green house gas (GHG) emissions trading program were discussed. The government of Canada is proposing to establish a program offering credit for early action on GHG reduction. However, the program is proving to be difficult to design because Canada's national implementation strategy for climate change has not yet been defined. The program is intended to reveal how emitters can invest in GHG reduction now, and use them against future regulations limiting emissions. The intention is to design the program on the principle that any company which decreases GHG emissions below its 'business-as-usual' level will receive a credit which can later be sold to another source which wants to offset its emissions. Nevertheless, the government is looking for real reductions in the sense that it is trying to bend the 'business-as-usual' forecast down towards the Kyoto targets, and is trying to ensure that the system is a rigorous one before any credits are issued

  5. Mitigating greenhouse gas emissions from China's cities: Case study of Suzhou

    International Nuclear Information System (INIS)

    Wang, Hongsheng; Wang, Yunxia; Wang, Haikun; Liu, Miaomiao; Zhang, Yanxia; Zhang, Rongrong; Yang, Jie; Bi, Jun

    2014-01-01

    Knowledge of the factors driving greenhouse gas (GHG) emissions from cities is crucial to mitigating China's anthropogenic emissions. In this paper, the main drivers increasing GHG emissions from the Chinese city of Suzhou between 2005 and 2010 were identified and quantitatively analyzed using the Kaya identity and the log-mean Divisia index method. We found that economy and population were the major drivers of GHG emissions in Suzhou, having contributed 162.20% and 109.04%, respectively, to the increase in emissions. A decline in carbon intensity, which was caused by the declining energy intensity and an adjustment to the mixture of power and industrial structures, was the major determinant and accounted for a reduction of 171.24% in GHG emissions. Slowing and maintaining healthy growth rates of economy and population could be the primary and most effective means if Suzhou tries to curb the total emissions over the short term. It may be more realistic for Suzhou to control emissions by optimizing the economic structure for low-carbon industrial development because of the city's relative high energy requirements and low potential to mitigate GHGs by adjusting the energy mixture. - Highlights: • Per capita carbon emissions in Suzhou kept stable at 15 tons/year during period 2005–2010. • Slowing down growth rates of GDP and population could effectively control Suzhou's emissions. • Low carbon development policies were also recommended for other Chinese cities

  6. Bridging gaps in bioenergy: Deploying system analysis to investigate potential biomass supply, demand and greenhouse gas mitigation scenarios from a national, European and global perspective

    NARCIS (Netherlands)

    Hoefnagels, E.T.A.|info:eu-repo/dai/nl/313935998

    2014-01-01

    In transition towards a sustainable energy system with deep reductions in greenhouse gas (GHG) emissions and reduced consumption of fossil fuels, substitution of fossil energy carriers with biomass is considered one of the most important options. In the last decade, fossil energy and GHG mitigation

  7. Feeding strategies and manure management for cost-effective mitigation of greenhouse gas emissions from dairy farms in Wisconsin.

    Science.gov (United States)

    Dutreuil, M; Wattiaux, M; Hardie, C A; Cabrera, V E

    2014-09-01

    Greenhouse gas (GHG) emissions from dairy farms are a major concern. Our objectives were to assess the effect of mitigation strategies on GHG emissions and net return to management on 3 distinct farm production systems of Wisconsin. A survey was conducted on 27 conventional farms, 30 grazing farms, and 69 organic farms. The data collected were used to characterize 3 feeding systems scaled to the average farm (85 cows and 127ha). The Integrated Farm System Model was used to simulate the economic and environmental impacts of altering feeding and manure management in those 3 farms. Results showed that incorporation of grazing practices for lactating cows in the conventional farm led to a 27.6% decrease in total GHG emissions [-0.16kg of CO2 equivalents (CO2eq)/kg of energy corrected milk (ECM)] and a 29.3% increase in net return to management (+$7,005/yr) when milk production was assumed constant. For the grazing and organic farms, decreasing the forage-to-concentrate ratio in the diet decreased GHG emissions when milk production was increased by 5 or 10%. The 5% increase in milk production was not sufficient to maintain the net return; however, the 10% increase in milk production increased net return in the organic farm but not on the grazing farm. A 13.7% decrease in GHG emissions (-0.08kg of CO2eq/kg of ECM) was observed on the conventional farm when incorporating manure the day of application and adding a 12-mo covered storage unit. However, those same changes led to a 6.1% (+0.04kg of CO2eq/kg of ECM) and a 6.9% (+0.06kg of CO2eq/kg of ECM) increase in GHG emissions in the grazing and the organic farms, respectively. For the 3 farms, manure management changes led to a decrease in net return to management. Simulation results suggested that the same feeding and manure management mitigation strategies led to different outcomes depending on the farm system, and furthermore, effective mitigation strategies were used to reduce GHG emissions while maintaining

  8. Potential GHG mitigation options for agriculture in China

    Energy Technology Data Exchange (ETDEWEB)

    Erda, Lin; Yue, Li; Hongmin, Dong [Agrometeorology Institute, Beijing (China)

    1996-12-31

    Agriculture contributes more or less to anthropogenic emissions of carbon dioxide (CO{sub 2}), methane (CH{sub 4}), and nitrous oxide (N{sub 2}O). China`s agriculture accounts for about 5-15% of total emissions for these gases. Land-use changes related to agriculture are not major contributors in China. Mitigation options are available that could result in significant decrease in CH{sub 4} and N{sub 2}O emissions from agricultural systems. If implemented, they are likely to increase crop and animal productivity. Implementation has the potential to decrease CH{sub 4} emissions from rice, ruminants, and animal waste by 4-40%. The key to decreasing N{sub 2}O emissions is improving the efficiency of plant utilization of fertilizer N. This could decrease N{sub 2}O emissions from agriculture by almost 20%. Using animal waste to produce CH{sub 4} for energy and digested manure for fertilizer may at some time be cost effective. Economic analyses of options proposed should show positive economic as well as environmental benefits.

  9. National Greenhouse Gas Emission Inventory (EV-GHG)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The EV-GHG Mobile Source Data asset contains measured mobile source GHG emissions summary compliance information on light-duty vehicles, by model, for certification...

  10. Does consideration of GHG reductions change local decision making? A Case Study in Chile

    Science.gov (United States)

    Cifuentes, L. A.; Blumel, G.

    2003-12-01

    While local air pollution has been a public concern in developing countries for some time, climate change is looked upon as a non-urgent, developed world problem. In this work we present a case study of the interaction of measures to abate air pollution and measures to mitigate GHG emissions in Santiago, Chile, with the purpose of determining if the consideration of reductions in GHG affects the decisions taken to mitigate local air pollution. The emissions reductions of both GHG and local air pollutants were estimated from emission factors (some derived locally) and changes in activity levels. Health benefits due to air pollution abatement were computed using figures derived previously for the cost benefit analysis of Santiago's Decontamination Plan, transferred to the different cities taking into consideration local demographic and income data. The Santiago estimates were obtained using the damage function approach, based on some local epidemiological studies, and on local health and demographic data. Unit social values for the effects were estimated locally (for cost of treatment and lost productivity values) or extrapolated from US values (mainly for WTP values) using the ratio of per-capita income and an income elasticity of 1. The average benefits of emission abatement (in 1997 US\\ per ton) are 1,800 (1,200-2300) for NOx, 3,000 (2,100-3900) for SO2, 31,900 (21,900 - 41,900) for PM, and 630 (430 - 830) for resuspended dust. Economic benefits due to carbon reduction were considered at 3.5, 10 and 20 UStCO2. Marginal abatement cost curves were constructed considering private and net costs (private less the potential sales of carbon credits) Due to the bottom-up approach to constructing the marginal cost curve, many abatement measures (like congestion tolls and CNG instead of diesel buses) amounting to 8% reduction of PM2.5 concentration, exhibit a negative private cost. If the health benefits are considered for the decision, a maximum reduction of 22% in PM2

  11. Management of GHG, a successful business approach

    International Nuclear Information System (INIS)

    Gagnier, D.

    2003-01-01

    This PowerPoint presentation provided a brief overview of Alcan, an aluminium producer with operations in Quebec and in several other markets and countries. Alcan's strategy regarding climate change involves both short term and long term objectives and a public commitment to reducing the emissions of greenhouse gases (GHG). Alcan has implemented a company-wide GHG management program called TARGET, which involves measuring, monitoring and better management of emissions inventory. The TARGET program includes: measurement of data, quality assurance and reports; communications and public relations; improved processes; risk management systems; development of emissions trading systems; and support of functional groups. Alcan has also implemented voluntary GHG emissions reductions measures, encourages broad participation of GHG emissions reduction initiatives, and promotes economic growth and long term durability. figs

  12. The relative magnitude of the impacts and effects of GHG-related emission reductions

    International Nuclear Information System (INIS)

    Chiotti, Q.; Urquizo, N.

    2000-01-01

    A preliminary assessment of the current knowledge related to the co-benefits associated with climate change mitigation was provided in this document. One of the benefits of the reduction of greenhouse gas emissions is the reduction of other pollutants like sulphur dioxide, nitrogen oxides, carbon monoxide, volatile organic compounds, particulate matter, ground-level ozone, heavy metals and other toxic pollutants. Since these pollutants have an effect on acid deposition, ozone depletion and air quality, the environment, social welfare and human health, this paper provided an initial outline of the complex processes, interactions and uncertainties associated with this issue. Fossil fuels represent the major source of greenhouse gas (GHG) emissions in Canada. The reduction of emissions of GHG could have an impact on the Long Range Transport of air toxic substances, would help increase oxygen concentrations in the Northern Hemisphere, and lead to less carbon monoxide being released in the atmosphere, among others effects. Reductions of GHG emissions would also have an impact on ecosystems by reducing ground-level ozone concentrations. There would be less acid deposition and more dissolved organic carbon, allowing less ultraviolet-B penetration in aquatic ecosystems. In the case of human health, improved air quality impacts on the avoidance of premature mortality and reduced morbidity. Numerous other co-benefits were listed and discussed in this document. The first section stated the purpose and objectives. In section 2, that authors described the science and policy context and discussed building an analytical framework in section 3. The impact of GHG emission reductions on atmospheric pollution and ecosystems was dealt with in section 4 and section 5 was devoted to providing an assessment of the relative magnitude of effects. In section 6, the significance of scope was reviewed, and the authors concluded with section 7 in which they discussed the next steps: phase II

  13. Greenhouse Gas Mitigation of Rural Household Biogas Systems in China: A Life Cycle Assessment

    Directory of Open Access Journals (Sweden)

    Jun Hou

    2017-02-01

    Full Text Available Rural household biogas (RHB systems are at a crossroads in China, yet there has been a lack of holistic evaluation of their energy and climate (greenhouse gas mitigation efficiency under typical operating conditions. We combined data from monitoring projects and questionnaire surveys across hundreds of households from two typical Chinese villages within a consequential life cycle assessment (LCA framework to assess net GHG (greenhouse gas mitigation by RHB systems operated in different contexts. We modelled biogas production, measured biogas losses and used survey data from biogas and non-biogas households to derive empirical RHB system substitution rates for energy and fertilizers. Our results indicate that poorly designed and operated RHB systems in northern regions of China may in fact increase farm household GHG emissions by an average of 2668 kg CO2-eq· year−1, compared with a net mitigation effect of 6336 kg CO2-eq per household and year in southern regions. Manure treatment (104 and 8513 kg CO2-eq mitigation and biogas leakage (-533 and -2489 kg CO2-eq emission are the two most important factors affecting net GHG mitigation by RHB systems in northern and southern China, respectively. In contrast, construction (−173 and −305 kg CO2-eq emission, energy substitution (−522 emission and 653 kg·CO2-eq mitigation and nutrient substitution (−1544 and −37 kg CO2-eq emission made small contributions across the studied systems. In fact, survey data indicated that biogas households had higher energy and fertilizer use, implying no net substitution effect. Low biogas yields in the cold northern climate and poor maintenance services were cited as major reasons for RHB abandonment by farmers. We conclude that the design and management of RHB systems needs to be revised and better adapted to local climate (e.g., digester insulation and household energy demand (biogas storage and micro power generators to avoid discharge of unburned biogas

  14. Teachers' Initial and Sustained Use of an Instructional Assistive Technology Tool: Exploring the Mitigating Factors

    Science.gov (United States)

    Bouck, Emily C.; Flanagan, Sara; Heutsche, Anne; Okolo, Cynthia M.; Englert, Carol Sue

    2011-01-01

    This qualitative research project explored factors that mitigated teachers implementing an instructional assistive technology and factors that mitigated its sustained use. Specifically, it explored these issues in relation to a social studies based instructional assistive technology (Virtual History Museum [VHM]), which was originally implemented…

  15. Balance and saving of GHG emissions in thermochemical biorefineries

    International Nuclear Information System (INIS)

    Haro, Pedro; Aracil, Cristina; Vidal-Barrero, Fernando; Ollero, Pedro

    2015-01-01

    Highlights: • A simplified methodology for the balance and saving of GHG emissions is provided. • The GHG balance has a physical meaning and does not depend on the fossil reference. • The GHG saving depends on regulation of energy carriers. • The impact of Bio-CCS incorporation and multiproduction is analyzed. • The co-production of chemicals needs to be included in future regulation. - Abstract: In this study, a simplified methodology for the calculation of the balance of greenhouse gas (GHG) emissions and corresponding saving compared with the fossil reference is presented. The proposed methodology allows the estimation of the anthropogenic GHG emissions of thermochemical biorefineries (net emitted to the atmosphere). In the calculation of the GHG balance, all relevant factors have been identified and analyzed including multiproduction, emissions from biogenic carbon capture and storage (Bio-CCS), co-feeding of fossil fuels (secondary feedstock) and possible carbon storage in biomass-derived products (chemicals). Therefore, it is possible to calculate the balance of GHG emissions of a hypothetical thermochemical biorefinery considering different alternatives of land-use, biomass feedstock, co-feeding of fossil fuels, Bio-CCS incorporation and final use of the products. The comparison of the estimated GHG balance with the corresponding fossil reference for each product is of special relevance in the methodology since it is the parameter used in European regulation for the fulfillment of sustainability criteria in biomass-derived fuels and liquids. The proposed methodology is tested using a previously assessed set of different process concepts of thermochemical biorefineries (techno-economic analysis). The resulting GHG balance and saving are analyzed to identify uncertainties and provide recommendations for future regulation. In all process concepts, the GHG savings are above the minimum requirement of GHG emissions for 2018. In the case of incorporating

  16. Technology learning for renewable energy. Implications for South Africa's long-term mitigation scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Harald; Hughes, Alison [Energy Research Centre, University of Cape Town, Private Bag, Rondebosch 7701 (South Africa); Haw, Mary [PJ Carew Consulting, 103 Hout Street, Cape Town 8001 (South Africa)

    2009-11-15

    Technology learning can make a significant difference to renewable energy as a mitigation option in South Africa's electricity sector. This article considers scenarios implemented in a Markal energy model used for mitigation analysis. It outlines the empirical evidence that unit costs of renewable energy technologies decline, considers the theoretical background and how this can be implemented in modeling. Two scenarios are modelled, assuming 27% and 50% of renewable electricity by 2050, respectively. The results show a dramatic shift in the mitigation costs. In the less ambitious scenario, instead of imposing a cost of Rand 52/t CO{sub 2}-eq (at 10% discount rate), reduced costs due to technology learning turn renewables into negative cost option. Our results show that technology learning flips the costs, saving R143. At higher penetration rate, the incremental costs added beyond the base case decline from R92 per ton to R3. Including assumptions about technology learning turns renewable from a higher-cost mitigation option to one close to zero. We conclude that a future world in which global investment in renewables drives down unit costs makes it a much more cost-effective and sustainable mitigation option in South Africa. (author)

  17. Eco-efficiency for greenhouse gas emissions mitigation of municipal solid waste management: a case study of Tianjin, China.

    Science.gov (United States)

    Zhao, Wei; Huppes, Gjalt; van der Voet, Ester

    2011-06-01

    The issue of municipal solid waste (MSW) management has been highlighted in China due to the continually increasing MSW volumes being generated and the limited capacity of waste treatment facilities. This article presents a quantitative eco-efficiency (E/E) analysis on MSW management in terms of greenhouse gas (GHG) mitigation. A methodology for E/E analysis has been proposed, with an emphasis on the consistent integration of life cycle assessment (LCA) and life cycle costing (LCC). The environmental and economic impacts derived from LCA and LCC have been normalized and defined as a quantitative E/E indicator. The proposed method was applied in a case study of Tianjin, China. The study assessed the current MSW management system, as well as a set of alternative scenarios, to investigate trade-offs between economy and GHG emissions mitigation. Additionally, contribution analysis was conducted on both LCA and LCC to identify key issues driving environmental and economic impacts. The results show that the current Tianjin's MSW management system emits the highest GHG and costs the least, whereas the situation reverses in the integrated scenario. The key issues identified by the contribution analysis show no linear relationship between the global warming impact and the cost impact in MSW management system. The landfill gas utilization scenario is indicated as a potential optimum scenario by the proposed E/E analysis, given the characteristics of MSW, technology levels, and chosen methodologies. The E/E analysis provides an attractive direction towards sustainable waste management, though some questions with respect to uncertainty need to be discussed further. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Technology and knowledge transfer from Annex 1 countries to non Annex 2 countries under the Kyoto Protocol's Clean Development Mechanism (CDM). An empirical case study of CDM projects implemented in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Ulrich Elmer

    2008-10-15

    The CDM constitutes a central element in political discussions on climate change concerning means to facilitate transfer of technology and knowledge, regarding greenhouse gas (GHG) mitigation technologies, from Annex 1 countries to Non Annex 1 countries. The purpose of this thesis is therefore to answer the question of what role the CDM plays in relation to transfer of technology and knowledge. The thesis relies on multiple sources of qualitative data and is conducted as a multiple case study of thirteen CDM projects implemented in Malaysia. It focuses on the companies involved in implementation of specific technologies in these projects and the channels that can facilitate the transfer process. The aim of the thesis is therefore to provide insights into the dynamics of technology transfer at the micro-level. An analytical framework is put forward on which it can be concluded that the CDM only plays a role in one out of the thirteen projects examined. The thesis may contribute to provide a background on which future provisions concerning technology transfer in the CDM, and/or other mechanisms that involve GHG mitigation activities in Non Annex 1 countries. (au)

  19. South Africa's greenhouse gas emissions under business-as-usual: The technical basis of 'Growth without Constraints' in the Long-Term Mitigation Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Harald, E-mail: Harald.WInkler@uct.ac.za [University of Cape Town, Energy Research Centre, Upper Campus, Rondebosch, W Cape 7701 (South Africa); Hughes, Alison; Marquard, Andrew [University of Cape Town, Energy Research Centre, Upper Campus, Rondebosch, W Cape 7701 (South Africa); Haw, Mary [PJCarew Consulting, 103 Hout Street, Cape Town 8001 (South Africa); Merven, Bruno [University of Cape Town, Energy Research Centre, Upper Campus, Rondebosch, W Cape 7701 (South Africa)

    2011-10-15

    This article describes the methodology for projecting business-as-usual GHG trajectory developed in technical work for South Africa's Long-Term Mitigation Scenarios (LTMSs), in particular the 'Growth without Constraints' (GWCs) scenario. Technically rigorous projections are important as developing countries define their commitment to act on mitigation relative to business-as-usual (BAU). The key drivers for the GWC scenario include GDP (both growth rate and composition), population, discount rate and technological change. GDP emerged as an important driver in the research for LTMS and further analysis. If South Africa's economy grows without constraints over the next few decades, GHG emissions will continue to escalate, multiplying more than four-fold by mid-century. There is little gain in energy efficiency, and emissions continue to be dominated by energy use and supply, the latter remaining coal-based in GWC. We analyse the projections (not predictions) in relation to various measures. The LTMS GWC scenario is compared to other projections, nationally and internationally. A broadly comparable projection is being used at national level, for electricity planning. When compared to projections from international models, we find that the assumptions about GDP growth rates are a key factor, and suggest that comparisons of global data-sets against national analyses is important. - Highlights: > Specifies business-as-usual GHG trajectory for South Africa's Long-Term Mitigation Scenarios. > Provides details on methodology, drivers of emissions and key parameters. > In a scenario of Growth without Constraints, emissions would quadruple by 2050. > Analysis of resulting emission projection, not a prediction. > Compares projections from other national and international models.

  20. U.S. climate mitigation pathways post-2012: Transition scenarios in ADAGE

    International Nuclear Information System (INIS)

    Ross, Martin T.; Fawcett, Allen A.; Clapp, Christa S.

    2009-01-01

    The transition from the greenhouse gas (GHG) emission levels currently allowed under the Kyoto Protocol climate agreement to more ambitious, and internationally comprehensive, GHG reduction goals will have important implications for the global economic system. Given the major role that the United States plays in the global economy, and also as a major GHG emitter, this paper examines a range of climate policy pathways for the country in the context of international actions. The ADAGE model is used to examine policy impacts for climate scenarios, focusing on key factors such as emissions, technology deployment, macroeconomic indicators and international trade. In general, the simulations indicate that reductions in GHG emissions can be accomplished with limited economic adjustments, although impacts depend on the future availability of new low-carbon technologies.

  1. Scenarios for the use of GHG-reduction instruments - how can policy-instruments as carbon emission trading and tradable green certificates be used simultaneously to reach a common GHG-reduction target?

    International Nuclear Information System (INIS)

    Morthorst, P.E.

    2000-01-01

    According to the agreed burden sharing in the EU, a number of member states have to reduce their emissions of greenhouse gases substantially. To achieve these reductions various policy-instruments - national as well as international - are on hand. Two international instruments are emphasized in this paper: tradable quotas for limiting carbon emissions and tradable green certificates for promoting the deployment of renewable energy technologies. In the analyses of these two instruments two main questions are considered: (1) Will there be any international trade in green certificates, if no GHG-credits are attached to them? (2) Will it make any difference if the EU sets the targets to be achieved by the two instruments or alternatively the individual member countries do? An incentive-analysis in which four scenarios are set up and discussed is performed for the EU member states. The main conclusion is that if no GHG-credits are attached to the green certificates there seems to be limited of no incentives for a permanent international trade in certificates. On the other hand, if GHG-credits are attached to the certificates an efficient international trade will take place regardless of whether the EU or the member countries fix the quotas. Thus, the use of international instruments as tradable green certificates and tradable emissions permits will not lead to an optimal GHG-reduction strategy unless GHG-credits are attached to the certificates. (author)

  2. Life cycle GHG assessment of fossil fuel power plants with carbon capture and storage

    International Nuclear Information System (INIS)

    Odeh, Naser A.; Cockerill, Timothy T.

    2008-01-01

    The evaluation of life cycle greenhouse gas emissions from power generation with carbon capture and storage (CCS) is a critical factor in energy and policy analysis. The current paper examines life cycle emissions from three types of fossil-fuel-based power plants, namely supercritical pulverized coal (super-PC), natural gas combined cycle (NGCC) and integrated gasification combined cycle (IGCC), with and without CCS. Results show that, for a 90% CO 2 capture efficiency, life cycle GHG emissions are reduced by 75-84% depending on what technology is used. With GHG emissions less than 170 g/kWh, IGCC technology is found to be favorable to NGCC with CCS. Sensitivity analysis reveals that, for coal power plants, varying the CO 2 capture efficiency and the coal transport distance has a more pronounced effect on life cycle GHG emissions than changing the length of CO 2 transport pipeline. Finally, it is concluded from the current study that while the global warming potential is reduced when MEA-based CO 2 capture is employed, the increase in other air pollutants such as NO x and NH 3 leads to higher eutrophication and acidification potentials

  3. CAP payments and agricultural GHG emissions in Italy. A farm-level assessment.

    Science.gov (United States)

    Coderoni, Silvia; Esposti, Roberto

    2018-06-15

    The Common Agricultural Policy (CAP) is an important external driver of European agricultural production. Nowadays and in its envisioned future structure post-2020, the CAP has among its major objectives tackling climate change, for what concerns both adaptation and mitigation strategies. However, little is known about the link between past CAP reforms and agricultural greenhouse gases (GHG) emissions. This paper investigates the possible role played by the Fischler Reform (FR) on the agricultural GHG emissions at the farm level. The FR represents a major CAP reform for which data availability allows an ex-post analysis about its actual impacts. The empirical analysis concerns a balanced panel of 6542 Italian Farm Accountancy Data Network observed over years the 2003-2007. Multinomial Logit models are estimated in sequence to express how the farm-level production choices, and the respective emissions, vary over time also in response to CAP expenditure. Results suggest that CAP expenditure had a role in the evolution of the farm-level emissions, though the direction of this effect may differ across farms and deserves further investigation. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Asia's role in mitigating climate change: A technology and sector specific analysis with ReMIND-R

    International Nuclear Information System (INIS)

    Luderer, Gunnar; Pietzcker, Robert C.; Kriegler, Elmar; Haller, Markus; Bauer, Nico

    2012-01-01

    We use the ReMIND-R model to analyze the role of Asia in the context of a global effort to mitigate climate change. We introduce a novel method of secondary energy based mitigation shares, which allows us to quantify the economic mitigation potential of technologies in different regions and final energy carriers. The 2005 share of Asia in global CO 2 emissions amounts to 38%, and is projected to grow to 53% under business-as-usual until the end of the century. Asia also holds a large fraction of the global mitigation potential. A broad portfolio of technologies is deployed in the climate policy scenarios. We find that biomass in combination with CCS, other renewables, and end-use efficiency each make up a large fraction of the global mitigation potential, followed by nuclear and fossil CCS. We find considerable differences in decarbonization patterns across the final energy types electricity, heat and transport fuels. Regional differences in technology use are a function of differences in resource endowments, and structural differences in energy end use. Under climate policy, a substantial mitigation potential of non-biomass renewables emerges for China and other developing countries of Asia (OAS). Asia also accounts for the dominant share of the global mitigation potential of nuclear energy. In view of the substantial near term investments into new energy infrastructure in China and India, early adoption of climate policy prevents lock-in into carbon intensive infrastructure and thus leads to a much higher long-term mitigation potential. - Highlights: ► We develop a novel methodology for the attribution of emission reductions to technologies. ► Asia accounts for a substantial and increasing share of global CO 2 emissions. ► A broad portfolio of technologies contributes to emission reductions. ► Early action increases the long term mitigation potential of China and India.

  5. Uncovering China’s greenhouse gas emission from regional and sectoral perspectives

    International Nuclear Information System (INIS)

    Liu, Zhu; Geng, Yong; Lindner, Soeren; Guan, Dabo

    2012-01-01

    Understanding China’s GHG (greenhouse gas) emission status is critical for achieving the national mitigation plan. While much attention has addressed China’s national level GHG emission, less is known about its regional and sectoral emission features. In this paper China’s regional and sectoral GHG emission patterns and their driving forces were explored by using upgraded energy consumption data. We constructed a detailed GHG inventory for each province in the year 2009 which covering 28 sectors and further expanded time-serious inventories during 1997–2009. We then conducted variation and index decomposition analysis to explore its sectoral/regional disparity and features. Results showed significant differences of sectoral emission intensity among different provinces, implying a huge disparity of technology level. Since less developed provinces still apply energy intensive technologies, they had contributed to most of national emission increment during 1997–2009 and made the whole country towards carbon intensive direction. Our research outcomes indicate that the inequity of technology level among regions has already become a main barrier for China’s CO 2 mitigation. Such a reality deserves more attention from both researchers and policy makers so that appropriate carbon reduction policies can be raised. -- Highlights: ► We present spacial and sectoral disparity and drivers on green house gas (GHG) emission in 30 Chinese provinces. ► We indicated a huge difference of technology level among regions. ► Different industrial structure and development stage further result in GHG intensive in China's poor regions. ► Inequity of technology level among regions has already become a main barrier for China's GHG mitigation.

  6. The role of technological availability for the distributive impacts of climate change mitigation policy

    International Nuclear Information System (INIS)

    Lueken, Michael; Edenhofer, Ottmar; Knopf, Brigitte; Leimbach, Marian; Luderer, Gunnar; Bauer, Nico

    2011-01-01

    The impacts of the availability of low-carbon technologies on the regional distribution of mitigation costs are analyzed in a global multi-regional integrated assessment model. Three effects on regional consumption losses are distinguished: domestic measures, trade of fossil energy carriers and trade of emission permits. Key results are: (i) GDP losses and a redirection of investments in the energy system towards capital-intensive technologies are major contributions to regional consumption losses. (ii) A devaluation of tradable fossil energy endowments contributes largely to the mitigation costs of fossil fuel exporters. (iii) In case of reduced availability of low-carbon technologies, the permit market volume and associated monetary redistributions increase. The results suggest that the availability of a broad portfolio of low-carbon technologies could facilitate negotiations on the permit allocation scheme in a global cap-and-trade system. - Highlights: → We analyze the distribution of climate change mitigation costs among world regions. → We quantify contributions from various effects on regional costs. → The interference of world trade and low-carbon technologies is essential. → A broad portfolio of technologies helps international negotiations.

  7. The contribution of sectoral climate change mitigation options to national targets: a quantitative assessment of dairy production in Kenya

    Science.gov (United States)

    Brandt, Patric; Herold, Martin; Rufino, Mariana C.

    2018-03-01

    Reducing greenhouse gas (GHG) emissions from agriculture has become a critical target in national climate change policies. More than 80% of the countries in Sub-Saharan Africa (SSA) refer to the reduction of agricultural emissions, including livestock, in their nationally determined contribution (NDC) to mitigate climate change. The livestock sector in Kenya contributes largely to the gross domestic product and to GHG emissions from the land use sector. The government has recently pledged in its NDC to curb total GHG emissions by 30% by 2030. Quantifying and linking the mitigation potential of farm practices to national targets is required to support realistically the implementation of NDCs. Improvements in feed and manure management represent promising mitigation options for dairy production. This study aimed (i) to assess mitigation and food production benefits of feed and manure management scenarios, including land use changes covering Kenya’s entire dairy production region and (ii) to analyse the contribution of these practices to national targets on milk production and mitigation, and their biophysical feasibility given the availability of arable land. The results indicate that improving forage quality by increasing the use of Napier grass and supplementing dairy concentrates supports Kenya’s NDC target, reduces emission intensities by 26%-31%, partially achieves the national milk productivity target for 2030 by 38%-41%, and shows high feasibility given the availability of arable land. Covering manure heaps may reduce emissions from manure management by 68%. In contrast, including maize silage in cattle diets would not reduce emission intensities due to the risk of ten-fold higher emissions from the conversion of land required to grow additional maize. The shortage of arable land may render the implementation of these improved feed practices largely infeasible. This assessment provides the first quantitative estimates of the potential of feed

  8. A dynamic modelling approach to evaluate GHG emissions from wastewater treatment plants

    DEFF Research Database (Denmark)

    Flores-Alsina, Xavier; Arnell, Magnus; Amerlinck, Youri

    2012-01-01

    The widened scope for wastewater treatment plants (WWTP) to consider not only water quality and cost, but also greenhouse gas (GHG) emissions and climate change calls for new tools to evaluate operational strategies/treatment technologies. The IWA Benchmark Simulation Model no. 2 (BSM2) has been ...

  9. Developing Information on Energy Savings and Associated Costs and Benefits of Energy Efficient Emerging Technologies Applicable in California

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tengfang; Slaa, Jan Willem; Sathaye, Jayant

    2010-12-15

    Implementation and adoption of efficient end-use technologies have proven to be one of the key measures for reducing greenhouse gas (GHG) emissions throughout the industries. In many cases, implementing energy efficiency measures is among one of the most cost effective investments that the industry could make in improving efficiency and productivity while reducing carbon dioxide (CO2) emissions. Over the years, there have been incentives to use resources and energy in a cleaner and more efficient way to create industries that are sustainable and more productive. With the working of energy programs and policies on GHG inventory and regulation, understanding and managing the costs associated with mitigation measures for GHG reductions is very important for the industry and policy makers around the world and in California. Successful implementation of applicable emerging technologies not only may help advance productivities, improve environmental impacts, or enhance industrial competitiveness, but also can play a significant role in climate-mitigation efforts by saving energy and reducing the associated GHG emissions. Developing new information on costs and savings benefits of energy efficient emerging technologies applicable in California market is important for policy makers as well as the industries. Therefore, provision of timely evaluation and estimation of the costs and energy savings potential of emerging technologies applicable to California is the focus of this report. The overall goal of the project is to identify and select a set of emerging and under-utilized energy-efficient technologies and practices as they are important to reduce energy consumption in industry while maintaining economic growth. Specifically, this report contains the results from performing Task 3 Technology Characterization for California Industries for the project titled Research Opportunities in Emerging and Under-Utilized Energy-Efficient Industrial Technologies, sponsored by

  10. Economic efficiency assessment of greenhouse gases mitigation for agriculture; Analyse af omkostningseffektiviteten ved drivhusgasreducerende tiltag i relation til landbruget

    Energy Technology Data Exchange (ETDEWEB)

    Dubgaard, A.; Moeller Laugesen, F.; Staehl, E.E.; Bang, J.R.; Schou, E.; Jacobsen, Brian H.; Oerum, J.E.; Dejgaerd Jensen, J.

    2013-08-15

    utilization requirement for certain types of slurry in nitrogen quota system (5 % mink, 10 % poultry, and 20 % liquid manure) 13. Reduction of nitrogen quota (10 % of total nitrogen quota) 14. Energy willow (100,000 ha) 15. Straw for combustion (100,000 ha) 16. Catch crops ( 240,000ha, whereof 110,000 ha on clay soil and 130,000 ha on sandy soil) 17. Short term catch crops (240,000 ha, whereof 110,000 ha on clay soil and 130,000 ha on sandy soil) 18. Conversion of arable land (not naturally wet) to permanent grass (100,000 ha) 19. Afforestation of arable land (50,000 ha, whereof 31,000 ha on clay soil and 19,000 ha on sandy soil ha) 20. Conversion of arable, organogenic land to permanent grass with continued drainage (35,000 ha) 21. Conversion of arable, organogenic land to permanent grass with termination of drainage (35,000 ha). The mitigation measures and their assumed implementation potentials have been chosen in cooperation with the Faculty of Agricultural Sciences, Aarhus University. Marginal abatement cost functions have been constructed. The levels of the implementation potential for the individual measures have been stipulated at a scale assumed to allow implementation at approximately constant marginal costs when using existing technologies. For some measures the specified implementation potential is limited by the assumptions of the overall Government appraisal of GHG reduction measures for the non-ETS area. The focus of the Government appraisal is on the identification of cost-effective GHG reduction potentials which are not already covered by existing policy programs - such as the Danish Government's Green Growth program. For example, when the present study was initiated the Green Growth program stipulated that up to 50 per cent of the animal manure produced in Denmark should be used in biogas production by 2020. The 10 per cent specified here is in addition to this target. (LN)

  11. Silk industry and carbon footprint mitigation

    Science.gov (United States)

    Giacomin, A. M.; Garcia, J. B., Jr.; Zonatti, W. F.; Silva-Santos, M. C.; Laktim, M. C.; Baruque-Ramos, J.

    2017-10-01

    Currently there is a concern with issues related to sustainability and more conscious consumption habits. The carbon footprint measures the total amount of greenhouse gas (GHG) emissions produced directly and indirectly by human activities and is usually expressed in tonnes of carbon dioxide (CO2) equivalents. The present study takes into account data collected in scientific literature regarding the carbon footprint, garments produced with silk fiber and the role of mulberry as a CO2 mitigation tool. There is an indication of a positive correlation between silk garments and carbon footprint mitigation when computed the cultivation of mulberry trees in this calculation. A field of them mitigates CO2 equivalents in a proportion of 735 times the weight of the produced silk fiber by the mulberry cultivated area. At the same time, additional researches are needed in order to identify and evaluate methods to advertise this positive correlation in order to contribute to a more sustainable fashion industry.

  12. Climate Change Mitigation Potential of Wood Use in Civil Engineering in Japan Based on Life-Cycle Assessment

    Directory of Open Access Journals (Sweden)

    Chihiro Kayo

    2018-02-01

    Full Text Available Throughout its life-cycle, wood contributes to climate change mitigation through carbon storage and material and energy substitution. Focusing on wood use for piles, check dams, paved walkways, guardrails, and noise barriers, we quantified the nationwide potential for climate change mitigation in civil engineering in Japan through 2050. To assess mitigation potential, we examined life-cycle greenhouse gas (GHG emissions that are avoided by storing carbon in wood and forests, substituting wooden materials for non-wooden materials (cement, concrete, steel, and asphalt, and substituting processing residue and waste wood salvaged from defunct civil engineering structures for fossil fuels (heavy oil. Our projections suggest that there will be a maximum potential domestic log volume of 6.80 million m3/year available for civil engineering use in Japan in 2050, and that it would be possible to produce this volume while increasing Japan’s forest resources over the long term. A maximum nationwide avoided GHG emissions potential of 9.63 million t-CO2eq/year could be achieved in 2050, which is equivalent to 0.7% of Japan’s current GHG emissions. The breakdown of avoided emissions is 73%, 19%, and 8% for carbon storage, material substitution, and energy substitution, respectively, with the greatest contributions coming from carbon storage through the use of log piles.

  13. GHG emissions quantification at high spatial and temporal resolution at urban scale: the case of the town of Sassari (NW Sardinia - Italy)

    Science.gov (United States)

    Sanna, Laura; Ferrara, Roberto; Zara, Pierpaolo; Duce, Pierpaolo

    2014-05-01

    The European Union has set as priorities the fight against climate change related to greenhouse gas releases. The largest source of these emissions comes from human activities in urban areas that account for more than 70% of the world's emissions and several local governments intend to support the European strategic policies in understanding which crucial sectors drive GHG emissions in their city. Planning for mitigation actions at the community scale starts with the compilation of a GHG inventories that, among a wide range of measurement tools, provide information on the current status of GHG emissions across a specific jurisdiction. In the framework of a regional project for quantitative estimate of the net exchange of CO2 (emissions and sinks) at the municipal level in Sardinia, the town of Sassari represents a pilot site where a spatial and temporal high resolution GHG emissions inventory is built in line with European and international standard protocols to establish a baseline for tracking emission trends. The specific purpose of this accurate accounting is to obtain an appropriate allocation of CO2 and other GHG emissions at the fine building and hourly scale. The aim is to test the direct measurements needed to enable the construction of future scenarios of these emissions and for assessing possible strategies to reduce their impact. The key element of the methodologies used to construct this GHG emissions inventory is the Global Protocol for Community-Scale Greenhouse Gas Emissions (GPC) (March 2012) that identifies four main types of emission sources: (i) Stationary Units, (ii) Mobile Units, (iii) Waste, and (iv) Industrial Process and Product Use Emissions. The development of the GHG emissions account in Sassari consists in the collection of a range of alternative data sources (primary data, IPCC emission factors, national and local statistic, etc.) selected on the base on relevance and completeness criteria performed for 2010, as baseline year, using

  14. CHARACTERIZING COSTS, SAVINGS AND BENEFITS OF A SELECTION OF ENERGY EFFICIENT EMERGING TECHNOLOGIES IN THE UNITED STATES

    Energy Technology Data Exchange (ETDEWEB)

    Xu, T.; Slaa, J.W.; Sathaye, J.

    2010-12-15

    Implementation and adoption of efficient end-use technologies have proven to be one of the key measures for reducing greenhouse gas (GHG) emissions throughout the industries. In many cases, implementing energy efficiency measures is among one of the most cost effective investments that the industry could make in improving efficiency and productivity while reducing CO2 emissions. Over the years, there have been incentives to use resources and energy in a cleaner and more efficient way to create industries that are sustainable and more productive. With the working of energy programs and policies on GHG inventory and regulation, understanding and managing the costs associated with mitigation measures for GHG reductions is very important for the industry and policy makers around the world. Successful implementation of emerging technologies not only can help advance productivities and competitiveness but also can play a significant role in mitigation efforts by saving energy. Providing evaluation and estimation of the costs and energy savings potential of emerging technologies is the focus of our work in this project. The overall goal of the project is to identify and select emerging and under-utilized energy-efficient technologies and practices as they are important to reduce energy consumption in industry while maintaining economic growth. This report contains the results from performing Task 2"Technology evaluation" for the project titled"Research Opportunities in Emerging and Under-Utilized Energy-Efficient Industrial Technologies," which was sponsored by California Energy Commission and managed by CIEE. The project purpose is to analyze market status, market potential, and economic viability of selected technologies applicable to the U.S. In this report, LBNL first performed re-assessments of all of the 33 emerging energy-efficient industrial technologies, including re-evaluation of the 26 technologies that were previously identified by Martin et al. (2000) and

  15. GHG emission estimates for road transport in national GHG inventories

    NARCIS (Netherlands)

    Pulles, M.P.J.; Yang, H.

    2011-01-01

    The annual reporting procedures of the United Nations Framework Convention on Climate Change (UNFCCC) have now produced greenhouse gas (GHG) emission inventories from 40 so-called Annex I countries for 18 years. This article analyses a subset of these data: emissions from road transport. The article

  16. Republic of Korea - Nuclear power for GHG mitigation and sustainable energy development

    International Nuclear Information System (INIS)

    Lim, Chae-Young; Lee, Keun-Sung

    2000-01-01

    The Republic of Korea occupies the southern half of the Korean Peninsula. Korea's population in 2000 is 47.3 million, and the population density is over 450 persons per km 2 , the third highest in the world. However, the effective implementation of family planning policies has slowed population growth from 3.0% in 1960 to less than 1% currently. Korea's economy has changed markedly in every respect since the government launched a series of economic development plans in the early 1970s. Average economic growth over the last decade was above 8% per year, excluding the financial crisis period. High economic growth has inevitably led to rapid growth in energy consumption. Due to a lack of domestic energy resources, the overseas dependence rate of energy consumption has continuously increased from 47.5% in 1970 to 97.5% in 1997. Especially fossil fuels, such as oil, coal and gas, accounted for 88.2% of total energy consumption in 1997. These also caused a rapid increase in greenhouse gas emissions including CO 2 . In 1997, 140 million tonnes of carbon (MtC) were emitted - 1.8% of total world greenhouse gas (GHG) emissions

  17. Considering only first-order effects? How simplifications lead to unrealistic technology optimism in climate change mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Arvesen, Anders, E-mail: anders.arvesen@ntnu.no [Industrial Ecology Programme and Department of Energy and Process Engineering, Norwegian University of Science and Technology, Trondheim NO-7491 (Norway); Bright, Ryan M.; Hertwich, Edgar G. [Industrial Ecology Programme and Department of Energy and Process Engineering, Norwegian University of Science and Technology, Trondheim NO-7491 (Norway)

    2011-11-15

    This article challenges the notion that energy efficiency and 'clean' energy technologies can deliver sufficient degrees of climate change mitigation. By six arguments not widely recognized in the climate policy arena, we argue that unrealistic technology optimism exists in current climate change mitigation assessments, and, consequently, world energy and climate policy. The overarching theme of the arguments is that incomplete knowledge of indirect effects, and neglect of interactions between parts of physical and social sub-systems, systematically leads to overly optimistic assessments. Society must likely seek deeper changes in social and economic structures to preserve the climatic conditions to which the human civilization is adapted. We call for priority to be given to research evaluating aspects of mitigation in a broad, system-wide perspective. - Highlights: > We highlight some of the simplifying assumptions in climate change mitigation scenarios. > Mitigation assessments are the basis of unfounded technology optimism in climate policy. > Society must likely seek deeper changes in social and economic structures to stabilize climate.

  18. Considering only first-order effects? How simplifications lead to unrealistic technology optimism in climate change mitigation

    International Nuclear Information System (INIS)

    Arvesen, Anders; Bright, Ryan M.; Hertwich, Edgar G.

    2011-01-01

    This article challenges the notion that energy efficiency and 'clean' energy technologies can deliver sufficient degrees of climate change mitigation. By six arguments not widely recognized in the climate policy arena, we argue that unrealistic technology optimism exists in current climate change mitigation assessments, and, consequently, world energy and climate policy. The overarching theme of the arguments is that incomplete knowledge of indirect effects, and neglect of interactions between parts of physical and social sub-systems, systematically leads to overly optimistic assessments. Society must likely seek deeper changes in social and economic structures to preserve the climatic conditions to which the human civilization is adapted. We call for priority to be given to research evaluating aspects of mitigation in a broad, system-wide perspective. - Highlights: → We highlight some of the simplifying assumptions in climate change mitigation scenarios. → Mitigation assessments are the basis of unfounded technology optimism in climate policy. → Society must likely seek deeper changes in social and economic structures to stabilize climate.

  19. Greenhouse gas emissions from agricultural food production to supply Indian diets: Implications for climate change mitigation.

    Science.gov (United States)

    Vetter, Sylvia H; Sapkota, Tek B; Hillier, Jon; Stirling, Clare M; Macdiarmid, Jennie I; Aleksandrowicz, Lukasz; Green, Rosemary; Joy, Edward J M; Dangour, Alan D; Smith, Pete

    2017-01-16

    Agriculture is a major source of greenhouse gas (GHG) emissions globally. The growing global population is putting pressure on agricultural production systems that aim to secure food production while minimising GHG emissions. In this study, the GHG emissions associated with the production of major food commodities in India are calculated using the Cool Farm Tool. GHG emissions, based on farm management for major crops (including cereals like wheat and rice, pulses, potatoes, fruits and vegetables) and livestock-based products (milk, eggs, chicken and mutton meat), are quantified and compared. Livestock and rice production were found to be the main sources of GHG emissions in Indian agriculture with a country average of 5.65 kg CO 2 eq kg -1 rice, 45.54 kg CO 2 eq kg -1 mutton meat and 2.4 kg CO 2 eq kg -1 milk. Production of cereals (except rice), fruits and vegetables in India emits comparatively less GHGs with foods could greatly increase GHG emissions from Indian agriculture. A range of mitigation options are available that could reduce emissions from current levels and may be compatible with increased future food production and consumption demands in India.

  20. Adaptation and Mitigation in Agriculture: A Review of Synergies and Tradeoffs and How EO Could Improve Understanding and Outcomes

    Science.gov (United States)

    Barbieri, L.; Wollenberg, E.

    2017-12-01

    We present a review of the published literature on agricultural adaptation and mitigation, and report on the current evidence as to whether changes in agricultural practices meant to achieve mitigation or adaptation goals can be dual purpose: simultaneously reducing greenhouse gas (GHG) emissions and helping to facilitate adaptation. We characterize the spatio-temporal and system trends in how adaptation and mitigation outcomes are being achieved, and report on the current technical and knowledge gaps that exist and where Earth observations (EO) could improve our understanding. Agriculture contributes 12% GHG emissions globally, roughly one third from the developing world. Nearly 70% of the technical mitigation potential in agriculture sector occurs in these countries, however, while the mitigation potential is high, agricultural productivity also relies heavily on climate factors. With climate change, agricultural systems already, and will increasingly, need to adapt to extreme events and variability in temperatures and precipitation. This underscores the importance of implementing agricultural practices that can both reduce GHG emissions and help facilitate adaptation. Until recently, these objectives have been treated separately, but policy makers are increasingly calling for a joint approach to improve synergies, and avoid tradeoffs. There remain many complications in considering a joint approach: lack of clear conceptual frameworks, knowledge gaps in scientific understanding and evidence associated with adaptation and mitigation outcomes, and the abilities and motivations of stakeholders to consider both objectives. We review 56 peer-reviewed publications and present results from an in-depth analysis to answer two major concerns: to what extent is evidence provided for claims of synergistic outcomes, and what uncertainty surrounds this evidence. Our results show that only 21% of studies empirically measured both mitigation and adaptation outcomes, and claims

  1. Strategies for the Commercialization and Deployment of Greenhouse Gas Intensity-Reducing Technologies and Practices

    Energy Technology Data Exchange (ETDEWEB)

    Committee on Climate Change Science and Technology Integration (CCCSTI)

    2009-01-01

    New technologies will be a critical component--perhaps the critical component--of our efforts to tackle the related challenges of energy security, climate change, and air pollution, all the while maintaining a strong economy. But just developing new technologies is not enough. Our ability to accelerate the market penetration of clean energy, enabling, and other climate-related technologies will have a determining impact on our ability to slow, stop, and reverse the growth in greenhouse gas (GHG) emissions. Title XVI, Subtitle A, of the Energy Policy Act of 2005 (EPAct 2005) directs the Administration to report on its strategy to promote the commercialization and deployment (C&D) of GHG intensity-reducing technologies and practices. The Act also requests the Administration to prepare an inventory of climate-friendly technologies suitable for deployment and to identify the barriers and commercial risks facing advanced technologies. Because these issues are related, they are integrated here within a single report that we, representing the Committee on Climate Change Science and Technology Integration (CCCSTI), are pleased to provide the President, the Congress, and the public. Over the past eight years, the Administration of President George W. Bush has pursued a series of policies and measures aimed at encouraging the development and deployment of advanced technologies to reduce GHG emissions. This report highlights these policies and measures, discusses the barriers to each, and integrates them within a larger body of other extant policy. Taken together, more than 300 policies and measures described in this document may be viewed in conjunction with the U.S. Climate Change Technology Program's (CCTP's) Strategic Plan, published in September 2006, which focuses primarily on the role of advanced technology and associated research and development (R&D) for mitigating GHG emissions. The CCTP, a multi-agency technology planning and coordination program

  2. The Effect of Greenhouse Gas Mitigation on Drought Impacts in the U.S.

    Science.gov (United States)

    In this paper, we present a methodology for analyzing the economic benefits in the U.S. of changes in drought frequency and severity due to global greenhouse gas (GHG) mitigation. We construct reduced-form models of the effect of drought on agriculture and reservoir recreation i...

  3. Life cycle GHG emissions of sewage sludge treatment and disposal options in Tai Lake Watershed, China

    International Nuclear Information System (INIS)

    Liu, Beibei; Wei, Qi; Zhang, Bing; Bi, Jun

    2013-01-01

    The treatment and disposal of sewage sludge generate considerable amounts of greenhouse gases (GHGs) and pose environmental and economic challenges to wastewater treatment in China. To achieve a more informed and sustainable sludge management, this study conducts a life cycle inventory to investigate the GHG performances of six scenarios involving various sludge treatment technologies and disposal strategies. These scenarios are landfilling (S1), mono-incineration (S2), co-incineration (S3), brick manufacturing (S4), cement manufacturing (S5), and fertilizer for urban greening (S6). In terms of GHG emissions, S2 demonstrates the best performance with its large offset from sludge incineration energy recovery, followed by S4 and S6, whereas S1 demonstrates the poorest performance primarily because of its large quantity of methane leaks. The scenario rankings are affected by the assumptions of GHG offset calculation. In most scenarios, GHG performance could be improved by using waste gas or steam from existing facilities for drying sludge. Furthermore, considering the GHG performance along with economic, health, and other concerns, S6 is recommended. We thus suggest that local governments promote the use of composted sludge as urban greening fertilizers. In addition, the use of sludge with 60% water content, in place of the current standard of 80%, in wastewater treatment plants is proposed to be the new standard for Tai Lake Watershed in China. - Highlights: ► Life-cycle GHG emissions of six sludge handling scenarios are examined. ► Scenario rankings are affected by the assumptions of GHG offset calculation. ► Using heat from existing facilities to dry sludge can improve GHG performance. ► Fertilizer for urban greening is recommended due to its integrated performance. ► The sludge water-content standard is suggested to changed from 80% to 60%

  4. Life cycle GHG emissions of sewage sludge treatment and disposal options in Tai Lake Watershed, China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Beibei [State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093 (China); Department of Geography and Environmental Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States); Wei, Qi [State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093 (China); Zhang, Bing, E-mail: Zhangb@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093 (China); Bi, Jun [State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093 (China)

    2013-03-01

    The treatment and disposal of sewage sludge generate considerable amounts of greenhouse gases (GHGs) and pose environmental and economic challenges to wastewater treatment in China. To achieve a more informed and sustainable sludge management, this study conducts a life cycle inventory to investigate the GHG performances of six scenarios involving various sludge treatment technologies and disposal strategies. These scenarios are landfilling (S1), mono-incineration (S2), co-incineration (S3), brick manufacturing (S4), cement manufacturing (S5), and fertilizer for urban greening (S6). In terms of GHG emissions, S2 demonstrates the best performance with its large offset from sludge incineration energy recovery, followed by S4 and S6, whereas S1 demonstrates the poorest performance primarily because of its large quantity of methane leaks. The scenario rankings are affected by the assumptions of GHG offset calculation. In most scenarios, GHG performance could be improved by using waste gas or steam from existing facilities for drying sludge. Furthermore, considering the GHG performance along with economic, health, and other concerns, S6 is recommended. We thus suggest that local governments promote the use of composted sludge as urban greening fertilizers. In addition, the use of sludge with 60% water content, in place of the current standard of 80%, in wastewater treatment plants is proposed to be the new standard for Tai Lake Watershed in China. - Highlights: ► Life-cycle GHG emissions of six sludge handling scenarios are examined. ► Scenario rankings are affected by the assumptions of GHG offset calculation. ► Using heat from existing facilities to dry sludge can improve GHG performance. ► Fertilizer for urban greening is recommended due to its integrated performance. ► The sludge water-content standard is suggested to changed from 80% to 60%.

  5. Impact of future urban form on the potential to reduce greenhouse gas emissions from residential, commercial and public buildings in Utsunomiya, Japan

    International Nuclear Information System (INIS)

    Ishii, Satoshi; Tabushi, Shoichi; Aramaki, Toshiya; Hanaki, Keisuke

    2010-01-01

    Energy-saving technologies' applicability to making cities more environmentally sustainable can be strongly influenced by the city's form, building uses and their density pattern. Technological developments have clearly shown specific urban forms to be more conducive to installing certain mitigation technologies. In this study, the capacity for implementation and impacts on energy savings and subsequent greenhouse gas (GHG) reduction potential of mitigation technologies such as photovoltaic cells (PV) and combined heat and power (CHP) technologies were analysed with respect to three potential urban forms (high density centralised, medium density averaged and low density de-centralized) for Utsunomiya City, Japan. Given current building use patterns, scenarios for 2030 and 2050, showed the medium density averaged form, which benefits from both PV and CHP technologies, to outperform the other forms, resulting in an energy savings and GHG reduction potential of 27.6% in 2030 and 67.6% in 2050. Interestingly, GHG reduction in 2050 was primarily attributable to PV, while CHP technology had the greater influence in 2030. Despite the limitation of the analysis, the study provides a useful insight, highlighting the relationship between urban forms and GHG reduction potential by two energy-saving technologies.

  6. Water quality management and climate change mitigation: cost-effectiveness of joint implementation in the Baltic Sea region

    DEFF Research Database (Denmark)

    Nainggolan, Doan; Hasler, Berit; Andersen, Hans Estrup

    2018-01-01

    of contrasting strategies: single environmental objective management versus joint implementation strategy. The results show that implementing land-based measures with a sole focus on water quality (to meet the HELCOM's 2013 Baltic Sea Action Plan nutrient abatement targets) can produce climate change mitigation......This paper explores the scope for simultaneously managing nutrient abatement and climate change mitigation in the Baltic Sea (BS) region through the implementation of a selection of measures. The analysis is undertaken using a cost-minimisation model for the entire BS region, the BALTCOST model....... In the present research, the model has been extended to include greenhouse gas (GHG) emissions effects, enabling us to analyse the tradeoffs between cost-effective GHG and nutrient load reductions. We run the model for four different scenarios in order to compare the environmental and economic consequences...

  7. Greenhouse gas balances and mitigation costs of 70 modern Germany-focused and 4 traditional biomass pathways including land-use change effects

    International Nuclear Information System (INIS)

    Sterner, Michael; Fritsche, Uwe

    2011-01-01

    With Germany as the point of energy end-use, 70 current and future modern pathways plus 4 traditional biomass pathways for heat, power and transport have been compiled and examined in one single greenhouse gas (GHG) balancing assessment. This is needed to broaden the narrow focus on biofuels for transport and identify the role of bioenergy in GHG mitigation. Sensitivity analysis for land-use changes and fossil reference systems are included. Co-firing of woody biomass and fermentation of waste biomass are the most cost-efficient and effective biomass applications for GHG emission reduction in modern pathways. Replacing traditional biomass with modern biomass applications offers an underestimated economic potential of GHG emission reduction. The range of maximum CO 2 equivalent GHG reduction potential of bioenergy is identified in a range of 2.5–16 Gt a −1 in 2050 (5–33% of today’s global GHG emissions), and has an economic bioenergy potential of 150 EJ a −1 .

  8. Rice management interventions to mitigate greenhouse gas emissions: a review.

    Science.gov (United States)

    Hussain, Saddam; Peng, Shaobing; Fahad, Shah; Khaliq, Abdul; Huang, Jianliang; Cui, Kehui; Nie, Lixiao

    2015-03-01

    Global warming is one of the gravest threats to crop production and environmental sustainability. Rice, the staple food of more than half of the world's population, is the most prominent cause of greenhouse gas (GHG) emissions in agriculture and gives way to global warming. The increasing demand for rice in the future has deployed tremendous concerns to reduce GHG emissions for minimizing the negative environmental impacts of rice cultivation. In this review, we presented a contemporary synthesis of existing data on how crop management practices influence emissions of GHGs in rice fields. We realized that modifications in traditional crop management regimes possess a huge potential to overcome GHG emissions. We examined and evaluated the different possible options and found that modifying tillage permutations and irrigation patterns, managing organic and fertilizer inputs, selecting suitable cultivar, and cropping regime can mitigate GHG emissions. Previously, many authors have discussed the feasibility principle and the influence of these practices on a single gas or, in particular, in the whole agricultural sector. Nonetheless, changes in management practices may influence more than one gas at the same time by different mechanisms or sometimes their effects may be antagonistic. Therefore, in the present attempt, we estimated the overall global warming potential of each approach to consider the magnitude of its effects on all gases and provided a comprehensive assessment of suitable crop management practices for reducing GHG emissions in rice culture.

  9. Potentials to mitigate climate change using biochar - the Austrian perspective

    Science.gov (United States)

    Bruckman, Viktor J.; Klinglmüller, Michaela; Liu, Jay; Uzun, Basak B.; Varol, Esin A.

    2015-04-01

    Biomass utilization is seen as one of various promising strategies to reduce additional carbon emissions. A recent project on potentials of biochar to mitigate climate change (FOREBIOM) goes even a step further towards bioenergy in combination of CCS or "BECS" and tries to assess the current potentials, from sustainable biomass availability to biochar amendment in soils, including the identification of potential disadvantages and current research needs. The current report represents an outcome of the 1st FOREBIOM Workshop held in Vienna in April, 2013 and tries to characterize the Austrian perspective of biochar for climate change mitigation. The survey shows that for a widespread utilization of biochar in climate change mitigation strategies, still a number of obstacles have to be overcome. There are concerns regarding production and application costs, contamination and health issues for both producers and customers besides a fragmentary knowledge about biochar-soil interactions specifically in terms of long-term behavior, biochar stability and the effects on nutrient cycles. However, there are a number of positive examples showing that biochar indeed has the potential to sequester large amounts of carbon while improving soil properties and subsequently leading to a secondary carbon sink via rising soil productivity. Diversification, cascadic utilization and purpose designed biochar production are key strategies overcoming initial concerns, especially regarding economic aspects. A theoretical scenario calculation showed that relatively small amounts of biomass that is currently utilized for energy can reduce the gap between Austria's current GHG emissions and the Kyoto target by about 30% if biomass residues are pyrolized and biochar subsequently used as soil amendment. However, by using a more conservative approach that is representing the aims of the underlying FOREBIOM project (assuming that 10% of the annual biomass increment from forests is used for biochar

  10. International technology transfer for climate change mitigation and the cases of Russia and China

    International Nuclear Information System (INIS)

    Martinot, E.; Sinton, J.E.

    1997-01-01

    The environmental agenda for mitigating climate change through international transfers of technology is linked with a diverse literature, reviewed here within a framework that combines technological, agent/agenda, and market/transaction perspectives. Literature that bears on international technology transfer for climate change mitigation is similar in many ways for Russia and China: opportunities for energy efficiency and renewable energy, economic reform and restructuring, the difficulties enterprises face in responding to market conditions, international assistance policies, international joint ventures, market intermediation, and capacity building for market development. In both countries, capacity building means enhancing market-oriented capabilities in addition to technological capabilities. For Russia, institutional development is critical, such as new commercial legal codes and housing-sector changes beyond privatization. For China, technology policies and modernization programs significantly influence technology transfers. 234 refs., 3 tabs

  11. International technology transfer for climate change mitigation and the cases of Russia and China

    Energy Technology Data Exchange (ETDEWEB)

    Martinot, E. [Univ. of California, Berkeley, CA (United States). Energy and Resources Group]|[Stockholm Environment Inst., Boston, MA (United States); Sinton, J.E. [Univ. of California, Berkeley, CA (United States). Energy and Resources Group]|[Lawrence Berkeley National Lab., CA (United States). International Energy Studies Group; Haddad, B.M. [Univ. of California, Berkeley, CA (United States)

    1997-12-31

    The environmental agenda for mitigating climate change through international transfers of technology is linked with a diverse literature, reviewed here within a framework that combines technological, agent/agenda, and market/transaction perspectives. Literature that bears on international technology transfer for climate change mitigation is similar in many ways for Russia and China: opportunities for energy efficiency and renewable energy, economic reform and restructuring, the difficulties enterprises face in responding to market conditions, international assistance policies, international joint ventures, market intermediation, and capacity building for market development. In both countries, capacity building means enhancing market-oriented capabilities in addition to technological capabilities. For Russia, institutional development is critical, such as new commercial legal codes and housing-sector changes beyond privatization. For China, technology policies and modernization programs significantly influence technology transfers. 234 refs., 3 tabs.

  12. Use of comparative assessment framework for comparison of geological nuclear waste and CO2 disposal technologies

    Energy Technology Data Exchange (ETDEWEB)

    Streimikiene, Dalia

    2010-09-15

    Comparative assessment of few future energy and climate change mitigation options for Lithuania in 2020 performed indicated that nuclear and combined cycle gas turbine technologies are very similar energy options in terms of costs taking into account GHG emission reduction costs. Comparative assessment of these energy options requires evaluation of the potentials and costs for geological CO2 and nuclear waste storage as the main uncertainties in comparative assessment of electricity generation technologies are related with these back-end technologies. The paper analyses the main characteristics of possible geological storage of CO2 and NW options in Lithuania.

  13. Mitigation of greenhouse gas emissions in the French winter oilseed rape in order to produce sustainable biodiesel

    Directory of Open Access Journals (Sweden)

    Flénet Francis

    2012-05-01

    Full Text Available The objectives of the study were (1 to evaluate the possibility for the French winter oilseed rape to achieve the 50% greenhouse gas (GHG saving criteria of the European Directive on the promotion of renewable energy (2009/28/EC, and (2 to investigate mitigation options. The agricultural GHG emissions were calculated with the actual seed yields and cultural operations of more than 5000 winter oilseed rape fields producing seeds collected by 27 grain storage companies (GSC, while the same values of GHG emissions for transport and biodiesel processing were used for all GSC. The study clearly showed that the 50% GHG saving criteria could not be achieved each year, by each of the grain storage company, without improvements of crop management. The possibility to reduce the GHG emissions by improving the efficiency of mineral N fertilization was demonstrated. Improving seed yields without increasing the amount of N application on the fields would also decrease GHG emissions. On the contrary, the application of organic matter appeared to be largely ineffective because of the way N2O emissions were calculated in the study (tier 1 method of International Panel on Climate Change.

  14. GHG legislation: Lessons from Taiwan

    International Nuclear Information System (INIS)

    Huang, W.M.; Lee, Grace W.M.

    2009-01-01

    Taiwan has drafted a Greenhouse Gas (GHG) Reduction Bill in 2006, which is currently undergoing the legislative process in the Congress. The purpose of this study is to reexamine the legal framework and contents of this Bill, evaluate potential problems and propose recommendations. This study advocates that setting the GHG reduction targets should be settled in this Bill. In addition, based on the analysis of international experiences, it is recommenced that emissions trading scheme in the Bill should be focused on large emission sources and the share of allowance auction should be increased to reduce gratis allocation. Furthermore, from the calculation results based on the long-range energy alternative planning (LEAP) model, a conflict is observed for the existing energy policy and GHG reduction efforts in Taiwan. That is, coal-burning power plants will be the most important source of energy for Taiwan in the future. In order to reduce this conflict, the authors have recommended that the Bill should also be integrated with other relevant existing legislation to achieve a complementary effect.

  15. GHG emission factors developed for the recycling and composting of municipal waste in South African municipalities

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Elena, E-mail: Friedriche@ukzn.ac.za; Trois, Cristina

    2013-11-15

    Highlights: • GHG emission factors for local recycling of municipal waste are presented. • GHG emission factors for two composting technologies for garden waste are included. • Local GHG emission factors were compared to international ones and discussed. • Uncertainties and limitations are presented and areas for new research highlighted. - Abstract: GHG (greenhouse gas) emission factors for waste management are increasingly used, but such factors are very scarce for developing countries. This paper shows how such factors have been developed for the recycling of glass, metals (Al and Fe), plastics and paper from municipal solid waste, as well as for the composting of garden refuse in South Africa. The emission factors developed for the different recyclables in the country show savings varying from −290 kg CO{sub 2} e (glass) to −19 111 kg CO{sub 2} e (metals – Al) per tonne of recyclable. They also show that there is variability, with energy intensive materials like metals having higher GHG savings in South Africa as compared to other countries. This underlines the interrelation of the waste management system of a country/region with other systems, in particular with energy generation, which in South Africa, is heavily reliant on coal. This study also shows that composting of garden waste is a net GHG emitter, releasing 172 and 186 kg CO{sub 2} e per tonne of wet garden waste for aerated dome composting and turned windrow composting, respectively. The paper concludes that these emission factors are facilitating GHG emissions modelling for waste management in South Africa and enabling local municipalities to identify best practice in this regard.

  16. GHG emission factors developed for the recycling and composting of municipal waste in South African municipalities

    International Nuclear Information System (INIS)

    Friedrich, Elena; Trois, Cristina

    2013-01-01

    Highlights: • GHG emission factors for local recycling of municipal waste are presented. • GHG emission factors for two composting technologies for garden waste are included. • Local GHG emission factors were compared to international ones and discussed. • Uncertainties and limitations are presented and areas for new research highlighted. - Abstract: GHG (greenhouse gas) emission factors for waste management are increasingly used, but such factors are very scarce for developing countries. This paper shows how such factors have been developed for the recycling of glass, metals (Al and Fe), plastics and paper from municipal solid waste, as well as for the composting of garden refuse in South Africa. The emission factors developed for the different recyclables in the country show savings varying from −290 kg CO 2 e (glass) to −19 111 kg CO 2 e (metals – Al) per tonne of recyclable. They also show that there is variability, with energy intensive materials like metals having higher GHG savings in South Africa as compared to other countries. This underlines the interrelation of the waste management system of a country/region with other systems, in particular with energy generation, which in South Africa, is heavily reliant on coal. This study also shows that composting of garden waste is a net GHG emitter, releasing 172 and 186 kg CO 2 e per tonne of wet garden waste for aerated dome composting and turned windrow composting, respectively. The paper concludes that these emission factors are facilitating GHG emissions modelling for waste management in South Africa and enabling local municipalities to identify best practice in this regard

  17. Regional transport sector mitigation options

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Peter [EECG Consultants, Gaborone (Botswana)

    1998-10-01

    The rationale for conducting climate change mitigation studies in the transport sector is on the premise that: The transport sector is the second largest consumer of fossil fuels in the region; The regional transport sector is an area with high opportunity for infrastructural development under UNFCCC financial mechanism; The regional transport sector is crucial in the SADC region for trade and coupled with the Trade Protocol will play a major role in development hence the need to make it efficient in terms of energy demand and provision of services; The sector offers many mitigation options but with a challenge to evaluate their energy saving and GHG saving potential and yet there is need to quantify possible emission reduction for possible future emission trading. This is also a sector with potential to qualify for financing through Clean Development Mechanism (CDM) recently stipulated in the Kyoto Protocol. (au)

  18. Regional transport sector mitigation options

    International Nuclear Information System (INIS)

    Zhou, Peter

    1998-01-01

    The rationale for conducting climate change mitigation studies in the transport sector is on the premise that: The transport sector is the second largest consumer of fossil fuels in the region; The regional transport sector is an area with high opportunity for infrastructural development under UNFCCC financial mechanism; The regional transport sector is crucial in the SADC region for trade and coupled with the Trade Protocol will play a major role in development hence the need to make it efficient in terms of energy demand and provision of services; The sector offers many mitigation options but with a challenge to evaluate their energy saving and GHG saving potential and yet there is need to quantify possible emission reduction for possible future emission trading. This is also a sector with potential to qualify for financing through Clean Development Mechanism (CDM) recently stipulated in the Kyoto Protocol. (au)

  19. A wedge strategy for mitigation of urban warming in future climate scenarios

    Science.gov (United States)

    Zhao, Lei; Lee, Xuhui; Schultz, Natalie M.

    2017-07-01

    Heat stress is one of the most severe climate threats to human society in a future warmer world. The situation is further exacerbated in urban areas by urban heat islands (UHIs). Because the majority of world's population is projected to live in cities, there is a pressing need to find effective solutions for the heat stress problem. We use a climate model to investigate the effectiveness of various urban heat mitigation strategies: cool roofs, street vegetation, green roofs, and reflective pavement. Our results show that by adopting highly reflective roofs, almost all the cities in the United States and southern Canada are transformed into white oases - cold islands caused by cool roofs at midday, with an average oasis effect of -3.4 K in the summer for the period 2071-2100, which offsets approximately 80 % of the greenhouse gas (GHG) warming projected for the same period under the RCP4.5 scenario. A UHI mitigation wedge consisting of cool roofs, street vegetation, and reflective pavement has the potential to eliminate the daytime UHI plus the GHG warming.

  20. Impact of feedstock, land use change, and soil organic carbon on energy and greenhouse gas performance of biomass cogeneration technologies

    International Nuclear Information System (INIS)

    Njakou Djomo, S.; Witters, N.; Van Dael, M.; Gabrielle, B.; Ceulemans, R.

    2015-01-01

    Highlights: • Comparison of 40 bioenergy pathways to a fossil-fuel based CHP system. • Not all energy efficient pathways led to lower GHG emissions. • iLUC through intensification increased the total energy input and GHG emissions. • Fluidized bed technologies maximize the energy and GHG benefits of all pathways. • Perennial crops are in some cases better than residues on GHG emissions criteria. - Abstract: Bioenergy (i.e., bioheat and bioelectricity) could simultaneously address energy insecurity and climate change. However, bioenergy’s impact on climate change remains incomplete when land use changes (LUC), soil organic carbon (SOC) changes, and the auxiliary energy consumption are not accounted for in the life cycle. Using data collected from Belgian farmers, combined heat and power (CHP) operators, and a life cycle approach, we compared 40 bioenergy pathways to a fossil-fuel CHP system. Bioenergy required between 0.024 and 0.204 MJ (0.86 MJ th + 0.14 MJ el ) −1 , and the estimated energy ratio (energy output-to-input ratio) ranged from 5 to 42. SOC loss increased the greenhouse gas (GHG) emissions of residue based bioenergy. On average, the iLUC represented ∼67% of the total GHG emissions of bioenergy from perennial energy crops. However, the net LUC (i.e., dLUC + iLUC) effects substantially reduced the GHG emissions incurred during all phases of bioenergy production from perennial crops, turning most pathways based on energy crops to GHG sinks. Relative to fossil-fuel based CHP all bioenergy pathways reduced GHG emissions by 8–114%. Fluidized bed technologies maximize the energy and the GHG benefits of all pathways. The size and the power-to-heat ratio for a given CHP influenced the energy and GHG performance of these bioenergy pathways. Even with the inclusion of LUC, perennial crops had better GHG performance than agricultural and forest residues. Perennial crops have a high potential in the multidimensional approach to increase energy

  1. International energy technology collaboration and climate change mitigation. Case study 1. Concentrating Solar Power Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Philibert, C. [Energy and Environment Division, International Energy Agency IEA, Paris (France)

    2004-07-01

    Mitigating climate change and achieving stabilisation of greenhouse gas atmospheric concentrations will require deep reductions in global emissions of energy-related carbon dioxide emissions. Developing and disseminating new, low-carbon energy technology will thus be needed. Two previous AIXG papers have focused on possible drivers for such a profound technological change: Technology Innovation, Development and Diffusion, released in June 2003, and International Energy Technology Collaboration and Climate Change Mitigation, released in June 2004. The first of these papers assesses a broad range of technical options for reducing energy-related CO2 emissions. It examines how technologies evolve and the role of research and development efforts, alternative policies, and short-term investment decisions in making long-term options available. It considers various policy tools that may induce technological change, some very specific, and others with broader expected effects. Its overall conclusion is that policies specifically designed to promote technical change, or 'technology push', could play a critical role in making available and affordable new energy technologies. However, such policies would not be sufficient to achieve the Convention's objective in the absence of broader policies. First, because there is a large potential for cuts that could be achieved in the short run with existing technologies; and second, the development of new technologies requires a market pull as much as a technology push. The second paper considers the potential advantages and disadvantages of international energy technology collaboration and transfer for promoting technological change. Advantages of collaboration may consist of lowering R and D costs and stimulating other countries to invest in R and D; disadvantage may include free-riding and the inefficiency of reaching agreement between many actors. This paper sets the context for further discussion on the role of

  2. Implications of greenhouse gas emission mitigation scenarios for the main Asian regions

    International Nuclear Information System (INIS)

    Ruijven, Bas J. van; Vuuren, Detlef P. van; Vliet, Jasper van; Mendoza Beltran, Angelica; Deetman, Sebastiaan; Elzen, Michel G.J. den

    2012-01-01

    In order to limit global mean temperature increase, long-term greenhouse gas emissions need to be reduced. This paper discusses the implications of greenhouse gas emission reductions for major Asian regions (China, India, Indonesia, South-East Asia, Japan and Korea) based on results from the IMAGE modelling framework. Energy use in regions and economic sectors is affected differently by ambitious climate policies. We find that the potential for emission reduction varies widely between regions. With respect to technology choices in the power sector, we find major application of CO 2 storage in Indonesia and India, whereas Korea and India apply more solar and wind. Projections for Japan include a (debatable) large share of nuclear power. China and, India, and South-East Asia, show a diverse technology choice in the power sector. For the industry sector, we find that the recent rapid growth in China limits the potential for emission reduction in the next decades, assuming that recently built coal-based industry facilities are in use for the next decades. For the residential sector, the model results show that fewer households switch from traditional fuels to modern fuels in GHG mitigation scenarios. With respect to co-benefits, we find lower imports of fossil energy in mitigation scenarios and a clear reduction of air pollutant emissions. - Highlights: ► The potential for emission reduction varies widely between regions. ► Some regions have attractive CO 2 storage capacity; others have low-cost solar/wind potential. ► The recent rapid growth of Chinese industry may limit emission reduction potential for decades. ► Fewer households switch from traditional fuels to modern fuels in mitigation scenarios. ► Mitigation scenarios show less fossil energy import and reduction of air pollutant emission.

  3. Pyrolysis and gasification of meat-and-bone-meal: Energy balance and GHG accounting

    International Nuclear Information System (INIS)

    Cascarosa, Esther; Boldrin, Alessio; Astrup, Thomas

    2013-01-01

    Highlights: • GHG savings are in the order of 600–1000 kg CO 2 -eq. per Mg of MBM treated. • Energy recovery differed in terms of energy products and efficiencies. • The results were largely determined by use of the products for energy purposes. - Abstract: Meat-and-bone-meal (MBM) produced from animal waste has become an increasingly important residual fraction needing management. As biodegradable waste is routed away from landfills, thermo-chemical treatments of MBM are considered promising solution for the future. Pyrolysis and gasification of MBM were assessed based on data from three experimental lab and pilot-scale plants. Energy balances were established for the three technologies, providing different outcomes for energy recovery: bio-oil was the main product for the pyrolysis system, while syngas and a solid fraction of biochar were the main products in the gasification system. These products can be used – eventually after upgrading – for energy production, thereby offsetting energy production elsewhere in the system. Greenhouse gases (GHG) accounting of the technologies showed that all three options provided overall GHG savings in the order of 600–1000 kg CO 2 -eq. per Mg of MBM treated, mainly as a consequence of avoided fossil fuel consumption in the energy sector. Local conditions influencing the environmental performance of the three systems were identified, together with critical factors to be considered during decision-making regarding MBM management

  4. Pyrolysis and gasification of meat-and-bone-meal: Energy balance and GHG accounting

    Energy Technology Data Exchange (ETDEWEB)

    Cascarosa, Esther [Thermochemical Processes Group, Aragón Institute for Engineering Research (I3A), Universidad de Zaragoza (Spain); Boldrin, Alessio, E-mail: aleb@env.dtu.dk [Department of Environmental Engineering. Technical University of Denmark, Kongens Lyngby (Denmark); Astrup, Thomas [Department of Environmental Engineering. Technical University of Denmark, Kongens Lyngby (Denmark)

    2013-11-15

    Highlights: • GHG savings are in the order of 600–1000 kg CO{sub 2}-eq. per Mg of MBM treated. • Energy recovery differed in terms of energy products and efficiencies. • The results were largely determined by use of the products for energy purposes. - Abstract: Meat-and-bone-meal (MBM) produced from animal waste has become an increasingly important residual fraction needing management. As biodegradable waste is routed away from landfills, thermo-chemical treatments of MBM are considered promising solution for the future. Pyrolysis and gasification of MBM were assessed based on data from three experimental lab and pilot-scale plants. Energy balances were established for the three technologies, providing different outcomes for energy recovery: bio-oil was the main product for the pyrolysis system, while syngas and a solid fraction of biochar were the main products in the gasification system. These products can be used – eventually after upgrading – for energy production, thereby offsetting energy production elsewhere in the system. Greenhouse gases (GHG) accounting of the technologies showed that all three options provided overall GHG savings in the order of 600–1000 kg CO{sub 2}-eq. per Mg of MBM treated, mainly as a consequence of avoided fossil fuel consumption in the energy sector. Local conditions influencing the environmental performance of the three systems were identified, together with critical factors to be considered during decision-making regarding MBM management.

  5. Mitigation measures and programs in Hungary

    Energy Technology Data Exchange (ETDEWEB)

    Molnar, S. [Systemexpert Consulting Ltd., Budapest (Hungary)

    1996-12-31

    In Hungary there are four main governmental programs, which may result in a decrease of emissions of anthropogenic greenhouse gases (GHGs): (1) National program of energy efficiency improvement and energy conservation, (2) Afforestation program, (3) Volatile organic compounds (VOC) emission reduction program, and (4) Program to reduce the use of ozone depleting substances. These ambitious programs were launched in the beginning of the 90`s, but they have been slowed down because of budgetary problems. The comprehensive action plan for mitigation of GHG emissions should be based on these ongoing programs. These programs should be expanded by further measures and programs in order to fulfill the requirements of the FCCC. In the next sections the results and prospects of the above mentioned programs will be summarized. Also the results of the mitigation study supported by the U.S. Country Studies Program are included.

  6. Cost-effectiveness of nitrogen mitigation by alternative household wastewater management technologies.

    Science.gov (United States)

    Wood, Alison; Blackhurst, Michael; Hawkins, Troy; Xue, Xiaobo; Ashbolt, Nicholas; Garland, Jay

    2015-03-01

    Household wastewater, especially from conventional septic systems, is a major contributor to nitrogen pollution. Alternative household wastewater management technologies provide similar sewerage management services but their life cycle costs and nitrogen flow implications remain uncertain. This paper addresses two key questions: (1) what are the total costs, nitrogen mitigation potential, and cost-effectiveness of a range of conventional and alternative municipal wastewater treatment technologies, and (2) what uncertainties influence these outcomes and how can we improve our understanding of these technologies? We estimate a household nitrogen mass balance for various household wastewater treatment systems and combine this mass balance with life cycle cost assessment to calculate the cost-effectiveness of nitrogen mitigation, which we define as nitrogen removed from the local watershed. We apply our methods to Falmouth, MA, where failing septic systems have caused heightened eutrophication in local receiving water bodies. We find that flushing and dry (composting) urine-diversion toilets paired with conventional septic systems for greywater management demonstrate the lowest life cycle cost and highest cost-effectiveness (dollars per kilogram of nitrogen removed from the watershed). Composting toilets are also attractive options in some cases, particularly best-case nitrogen mitigation. Innovative/advanced septic systems designed for high-level nitrogen removal are cost-competitive options for newly constructed homes, except at their most expensive. A centralized wastewater treatment plant is the most expensive and least cost-effective option in all cases. Using a greywater recycling system with any treatment technology increases the cost without adding any nitrogen removal benefits. Sensitivity analysis shows that these results are robust considering a range of cases and uncertainties. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Methane mitigation timelines to inform energy technology evaluation

    Science.gov (United States)

    Roy, Mandira; Edwards, Morgan R.; Trancik, Jessika E.

    2015-11-01

    Energy technologies emitting differing proportions of methane (CH4) and carbon dioxide (CO2) vary significantly in their relative climate impacts over time, due to the distinct atmospheric lifetimes and radiative efficiencies of the two gases. Standard technology comparisons using the global warming potential (GWP) with a fixed time horizon do not account for the timing of emissions in relation to climate policy goals. Here we develop a portfolio optimization model that incorporates changes in technology impacts based on the temporal proximity of emissions to a radiative forcing (RF) stabilization target. An optimal portfolio, maximizing allowed energy consumption while meeting the RF target, is obtained by year-wise minimization of the marginal RF impact in an intended stabilization year. The optimal portfolio calls for using certain higher-CH4-emitting technologies prior to an optimal switching year, followed by CH4-light technologies as the stabilization year approaches. We apply the model to evaluate transportation technology pairs and find that accounting for dynamic emissions impacts, in place of using the static GWP, can result in CH4 mitigation timelines and technology transitions that allow for significantly greater energy consumption while meeting a climate policy target. The results can inform the forward-looking evaluation of energy technologies by engineers, private investors, and policy makers.

  8. Methane mitigation timelines to inform energy technology evaluation

    International Nuclear Information System (INIS)

    Roy, Mandira; Edwards, Morgan R; Trancik, Jessika E

    2015-01-01

    Energy technologies emitting differing proportions of methane (CH 4 ) and carbon dioxide (CO 2 ) vary significantly in their relative climate impacts over time, due to the distinct atmospheric lifetimes and radiative efficiencies of the two gases. Standard technology comparisons using the global warming potential (GWP) with a fixed time horizon do not account for the timing of emissions in relation to climate policy goals. Here we develop a portfolio optimization model that incorporates changes in technology impacts based on the temporal proximity of emissions to a radiative forcing (RF) stabilization target. An optimal portfolio, maximizing allowed energy consumption while meeting the RF target, is obtained by year-wise minimization of the marginal RF impact in an intended stabilization year. The optimal portfolio calls for using certain higher-CH 4 -emitting technologies prior to an optimal switching year, followed by CH 4 -light technologies as the stabilization year approaches. We apply the model to evaluate transportation technology pairs and find that accounting for dynamic emissions impacts, in place of using the static GWP, can result in CH 4 mitigation timelines and technology transitions that allow for significantly greater energy consumption while meeting a climate policy target. The results can inform the forward-looking evaluation of energy technologies by engineers, private investors, and policy makers. (letter)

  9. Fundamental cooperation project in fiscal 2000 for improving international energy consumption efficiency. Investigations in relation with prevention of global warming (analytical comparison centering around cost effectiveness related to greenhouse effect gas (GHG) reduction in overseas countries); 2000 nendo kokusai energy shohi koritsu ka chosa nado kyoryoku kiso jigyo - chikyu ondanka boshi kanren chosa hokokusho. Kaigai deno GHG sakugen ni kansuru hiyo tai koka wo chushin to shita bunseki hikaku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    In order to provide discussion materials for measures to achieve the GHG emission reduction target, investigations and discussions have been made on the following subjects: cost effectiveness of reducing GHG emission by target countries and target technologies, use of maps and databases on the possible reduction quantity of GHG emission, the targeted countries and business categories. Regarding the target countries, investigations were made on the general situation of the energy consumption efficiency, difference between their energy consumption efficiency by industries and that in Japan, and the GHG emission quantities by sectors. As a result, 31 counties hopeful in reducing CO2 emission were selected. With regard to technologies to reduce CO2 emission, technologies having been practically used and proliferated in Japan were used as the base, whereas 43 technologies were systematized for such departments as industries, business operations, households, and transportation. According to a trial calculation on the effect of CO2 emission reduction, if the 43 technologies are applied to the 31 target countries, CO2 emission reduction of 698 million tons as a whole would be possible, for which the required expense was calculated as 114.4 trillion yen. In evaluating the CO2 emission reducing technologies, the cost effectiveness of each technology was evaluated by cost per GHG emission reduction of 1t-CO2. (NEDO)

  10. Rice straw as a renewable energy source in India, Thailand, and the Philippines: Overall potential and limitations for energy contribution and greenhouse gas mitigation

    International Nuclear Information System (INIS)

    Gadde, Butchaiah; Menke, Christoph; Wassmann, Reiner

    2009-01-01

    abstract: Rice is a widely grown crop in the South and South-East Asia that leaves substantial quantity of straw in the field. The aim of this paper is to assess the quantity of rice straw produced, estimate Greenhouse Gas (GHG) emissions based on its current uses, and assess its possible energy potential and related GHG emissions mitigation potential. Updated statistics on rough rice production are used in this study in combination with the literature values on Straw-to-Grain Ratio (SGR) to quantify the amount of rice straw produced in the three countries of focus. It is estimated that 97.19, 21.86, and 10.68 Mt of rice straw residue are produced in India, Thailand, and the Philippines, respectively. In India, 23% of rice straw residue produced is surplus and is either left in the field as uncollected or to a large extent open-field burnt. About 48% of this residue produced is subjected to open-field burning in Thailand, and in the Philippines it is 95%. The GHG emissions contribution through open-field burning of rice straw in India, Thailand, and the Philippines are 0.05%, 0.18%, and 0.56%, and the mitigated GHG emissions when generated electricity is used would be 0.75%, 1.81%, and 4.31%, respectively, when compared to the total country GHG emissions.

  11. GHG-emissions for cars with different power trains over the whole life cycle

    Energy Technology Data Exchange (ETDEWEB)

    Roeder, A [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The method of life-cycle assessment (LCA) has been applied to cars with different power trains. As an example, the results for greenhouse gas (GHG) emissions are presented. They show possibilities and limits for the reduction of these emissions in the transportation sector by means of advanced technology. (author) 2 figs., 4 refs.

  12. Energy efficiency and CO_2 mitigation potential of the Turkish iron and steel industry using the LEAP (long-range energy alternatives planning) system

    International Nuclear Information System (INIS)

    Ates, Seyithan A.

    2015-01-01

    With the assistance of the LEAP (long-range energy alternatives planning) energy modeling tool, this study explores the energy efficiency and CO_2 emission reduction potential of the iron and steel industry in Turkey. With a share of 35%, the steel and iron industry is considered as the most energy-consuming sector in Turkey. The study explores that the energy intensity rate can be lowered by 13%, 38% and 51% in SEI (slow-speed energy efficiency improvement), AEI (accelerating energy efficiency improvement) and CPT (cleaner production and technology scenario) scenarios, respectively. Particularly the projected aggregated energy savings of the scenarios CPT and AES are very promising with saving rates of 33.7% and 23% respectively. Compared to baseline scenarios, energy efficiency improvements correspond to economic potential of 0.1 billion dollars for SEI, 1.25 dollars for AEI and 1.8 billion dollars for CPT scenarios annually. Concerning GHG (greenhouse gas) emissions, in 2030 the iron and steel industry in Turkey is estimated to produce 34.9 MtCO_2 in BAU (business-as-usual scenario), 32.5 MtCO_2 in SEI, 24.6 MtCO_2 in AEI and 14.5 MtCO_2 in CPT a scenario which corresponds to savings of 9%–39%. The study reveals that energy consumption and GHG emissions of the iron and steel industry can be lowered significantly if the necessary measures are implemented. It is expected that this study will fill knowledge gaps pertaining to energy efficiency potential in Turkish energy intensive industries and help stakeholders in energy intensive industries to realize the potential for energy efficiency and GHG mitigation. - Highlights: • This paper explores energy efficiency potential of iron and Steel industry in Turkey. • We applied the LEAP modeling to forecast future developments. • Four different scenarios have been developed for the LEAP modeling. • There is a huge potential for energy efficiency and mitigation of GHG emissions.

  13. Report on a survey in fiscal 1999. Analysis of materials related to IEA Greenhouse Gas R and D Program (IEA/GHG); 1999 nendo EIA/GHG kanren shiryo bunseki chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Materials related to IEA Greenhouse Gas Rand D Program (IEA/GHG) were analyzed. The Sleipner carbon dioxide underground storage workshop is acting to narrow themes for understanding the technologies, observation methods, and research activities. The IEA/GHG has verified the known facts about ocean storage of carbon dioxide, and discussed the important development targets. Researches were made on improving methane recovery efficiency and the possibility of sealing carbon dioxide by injecting carbon dioxide in order to improve recovery of carbon bed methane. The IEA/GHG has developed a methodology for complete fuel cycles of LNG, and evaluated cost and benefit of reducing greenhouse effect gas emission. A process combining electric power generation, carbon dioxide absorption and hot heat energy utilization can reduce emission of carbon dioxide into atmosphere at relatively low cost and low energy loss. The paper also describes reduction of greenhouse effect gas emitted from cement factories, petroleum refining and petro-chemical industries, and offshore petroleum and gas facilities. It also describes influence of forestry on carbon absorption and timber markets. Case studies have discussed effects of modifying power generation plants. (NEDO)

  14. Surface reflectance and conversion efficiency dependence of technologies for mitigating global warming

    Energy Technology Data Exchange (ETDEWEB)

    Edmonds, Ian [Solartran Pty Ltd., 12 Lentara St, Kenmore, Brisbane 4069 (Australia); Smith, Geoff [Physics and Advanced Materials, University of Technology, Sydney, PO Box 123, Broadway, New South Wales 2007 (Australia)

    2011-05-15

    A means of assessing the relative impact of different renewable energy technologies on global warming has been developed. All power plants emit thermal energy to the atmosphere. Fossil fuel power plants also emit CO{sub 2} which accumulates in the atmosphere and provides an indirect increase in global warming via the greenhouse effect. A fossil fuel power plant may operate for some time before the global warming due to its CO{sub 2} emission exceeds the warming due to its direct heat emission. When a renewable energy power plant is deployed instead of a fossil fuel power plant there may be a significant time delay before the direct global warming effect is less than the combined direct and indirect global warming effect from an equivalent output coal fired plant - the ''business as usual'' case. Simple expressions are derived to calculate global temperature change as a function of ground reflectance and conversion efficiency for various types of fossil fuelled and renewable energy power plants. These expressions are used to assess the global warming mitigation potential of some proposed Australian renewable energy projects. The application of the expressions is extended to evaluate the deployment in Australia of current and new geo-engineering and carbon sequestration solutions to mitigate global warming. Principal findings are that warming mitigation depends strongly on the solar to electric conversion efficiency of renewable technologies, geo-engineering projects may offer more economic mitigation than renewable energy projects and the mitigation potential of reforestation projects depends strongly on the location of the projects. (author)

  15. Cost effectiveness comparison of certain transportation measures to mitigate greenhouse gas emissions in San Diego County, California

    International Nuclear Information System (INIS)

    Silva-Send, Nilmini; Anders, Scott; Narwold, Andrew

    2013-01-01

    California's overarching mandate to achieve 1990 levels of greenhouse gases (GHGs) in 2020 (AB 32, 2005), and the ensuing recent regulations (SB 375, CEQA updates) require local and regional governments to assess GHG mitigation policies, including on-road transportation. The regulations do not make cost-effectiveness a primary criteria for choosing measures but cost remains important to a variety of stakeholders. This communication summarizes results from GHG and cost analysis for seven actual San Diego County road transportation policies: telecommute, vanpools, a bicycle strategy, an increase in mass transit use, parking policies (parking pricing, preferred parking for electric vehicles), an increased local fuel tax and speed harmonization (signal re-timing, roundabouts). Net costs are calculated as the sum of direct costs and benefits to the administering agency, the employer and the individual. Net costs per metric ton GHG abated vary greatly across measures, from negative to high positive (more than US $1000). We find that local GHG cost cannot be sensibly compared to other carbon or GHG policy costs outside the local context for a variety of reasons, but especially because measures have not been adopted primarily for carbon or GHG abatement potential or on the basis of cost effectiveness

  16. Uncertainty in estimating and mitigating industrial related GHG emissions

    International Nuclear Information System (INIS)

    El-Fadel, M.; Zeinati, M.; Ghaddar, N.; Mezher, T.

    2001-01-01

    Global climate change has been one of the challenging environmental concerns facing policy makers in the past decade. The characterization of the wide range of greenhouse gas emissions sources and sinks as well as their behavior in the atmosphere remains an on-going activity in many countries. Lebanon, being a signatory to the Framework Convention on Climate Change, is required to submit and regularly update a national inventory of greenhouse gas emissions sources and removals. Accordingly, an inventory of greenhouse gases from various sectors was conducted following the guidelines set by the United Nations Intergovernmental Panel on Climate Change (IPCC). The inventory indicated that the industrial sector contributes about 29% to the total greenhouse gas emissions divided between industrial processes and energy requirements at 12 and 17%, respectively. This paper describes major mitigation scenarios to reduce emissions from this sector based on associated technical, economic, environmental, and social characteristics. Economic ranking of these scenarios was conducted and uncertainty in emission factors used in the estimation process was emphasized. For this purpose, theoretical and experimental emission factors were used as alternatives to default factors recommended by the IPCC and the significance of resulting deviations in emission estimation is presented. (author)

  17. Climate change mitigation options in the rural land use sector: Stakeholders’ perspectives on barriers, enablers and the role of policy in North East Scotland

    International Nuclear Information System (INIS)

    Feliciano, Diana; Hunter, Colin; Slee, Bill; Smith, Pete

    2014-01-01

    Highlights: • Farmers are mainly willing to expand the uptake of mitigation practices they already implement. • Main barriers and enablers to uptake are physical–environmental constraints and personal values. • Farmers consider that agriculture is a “special case” because their function is to produce food. • Lack of incentives is not the main barrier to the uptake of mitigation practices. • Policies should allow differentiation, and mitigation measures should be integrated with other mechanisms. - Abstract: The rural land use sector could potentially mitigate a large amount of GHG emissions. Implementation requires the engagement of farmers and other land managers. Understanding the barriers and enablers for the uptake of these practices is essential both to inform policy-makers and to achieve effective policy outreach. In Scotland, the rural land use sector is subject to a greenhouse gas (GHG) emission reduction target of 21% by 2020 relative to 1990 levels. This study contributes to the body of research on stakeholders’ perspectives about suitability of climate change mitigation practices at the regional level. Mixed-methods were used to collect the data, namely participatory workshops with scientists and relevant stakeholders, a farmer questionnaire, and focus groups with farmers. Findings show that farmers were mainly willing to expand the uptake of mitigation practices they were already implementing because they consider these are the most cost-effective. Barriers to the implementation of mitigation practices are mainly related to physical–environmental constraints, lack of information and education and personal interests and values. Similarly, enablers are also related to physical–environmental factors and personal interests and values. Economic incentives, voluntary approaches and provision of information have been identified by workshop participants as the most favourable approaches needed to promote the uptake of technically feasible

  18. Greenhouse gas emissions and reactive nitrogen releases during the life-cycles of staple food production in China and their mitigation potential

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Longlong [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Ti, Chaopu [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Li, Bolun [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xia, Yongqiu [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Yan, Xiaoyuan, E-mail: yanxy@issas.ac.cn [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China)

    2016-06-15

    Life-cycle analysis of staple food (rice, flour and corn-based fodder) production and assessments of the associated greenhouse gas (GHG) and reactive nitrogen (Nr) releases, from environmental and economic perspectives, help to develop effective mitigation options. However, such evaluations have rarely been executed in China. We evaluated the GHG and Nr releases per kilogram of staple food production (carbon and Nr footprints) and per unit of net economic benefit (CO{sub 2-NEB} and Nr{sub -NEB}), and explored their mitigation potential. Carbon footprints of food production in China were obviously higher than those in some developed countries. There was a high spatial variation in the footprints, primarily attributable to differences in synthetic N use (or CH{sub 4} emissions) per unit of food production. Provincial carbon footprints had a significant linear relationship with Nr footprints, attributed to large contribution of N fertilizer use to both GHG and Nr releases. Synthetic N fertilizer applications and CH{sub 4} emissions dominated the carbon footprints, while NH{sub 3} volatilization and N leaching were the main contributors to the Nr footprints. About 564 (95% uncertainty range: 404–701) Tg CO{sub 2} eq GHG and 10 (7.4–12.4) Tg Nr-N were released every year during 2001–2010 from staple food production. This caused the total damage costs of 325 (70–555) billion ¥, equivalent to nearly 1.44% of the Gross Domestic Product of China. Moreover, the combined damage costs and economic input costs, accounted for 66%-80% of the gross economic benefit generated from food production. A reduction of 92.7 Tg CO{sub 2} eq yr{sup −1} and 2.2 Tg Nr-N yr{sup −1} could be achieved by reducing synthetic N inputs by 20%, increasing grain yields by 5% and implementing off-season application of straw and mid-season drainage practices for rice cultivation. In order to realize these scenarios, an ecological compensation scheme should be established to incentivize

  19. Greenhouse gas emissions and reactive nitrogen releases during the life-cycles of staple food production in China and their mitigation potential

    International Nuclear Information System (INIS)

    Xia, Longlong; Ti, Chaopu; Li, Bolun; Xia, Yongqiu; Yan, Xiaoyuan

    2016-01-01

    Life-cycle analysis of staple food (rice, flour and corn-based fodder) production and assessments of the associated greenhouse gas (GHG) and reactive nitrogen (Nr) releases, from environmental and economic perspectives, help to develop effective mitigation options. However, such evaluations have rarely been executed in China. We evaluated the GHG and Nr releases per kilogram of staple food production (carbon and Nr footprints) and per unit of net economic benefit (CO 2-NEB and Nr -NEB ), and explored their mitigation potential. Carbon footprints of food production in China were obviously higher than those in some developed countries. There was a high spatial variation in the footprints, primarily attributable to differences in synthetic N use (or CH 4 emissions) per unit of food production. Provincial carbon footprints had a significant linear relationship with Nr footprints, attributed to large contribution of N fertilizer use to both GHG and Nr releases. Synthetic N fertilizer applications and CH 4 emissions dominated the carbon footprints, while NH 3 volatilization and N leaching were the main contributors to the Nr footprints. About 564 (95% uncertainty range: 404–701) Tg CO 2 eq GHG and 10 (7.4–12.4) Tg Nr-N were released every year during 2001–2010 from staple food production. This caused the total damage costs of 325 (70–555) billion ¥, equivalent to nearly 1.44% of the Gross Domestic Product of China. Moreover, the combined damage costs and economic input costs, accounted for 66%-80% of the gross economic benefit generated from food production. A reduction of 92.7 Tg CO 2 eq yr −1 and 2.2 Tg Nr-N yr −1 could be achieved by reducing synthetic N inputs by 20%, increasing grain yields by 5% and implementing off-season application of straw and mid-season drainage practices for rice cultivation. In order to realize these scenarios, an ecological compensation scheme should be established to incentivize farmers to gradually adopt knowledge

  20. Alternative policy impacts on US GHG emissions and energy security: A hybrid modeling approach

    International Nuclear Information System (INIS)

    Sarica, Kemal; Tyner, Wallace E.

    2013-01-01

    This study addresses the possible impacts of energy and climate policies, namely corporate average fleet efficiency (CAFE) standard, renewable fuel standard (RFS) and clean energy standard (CES), and an economy wide equivalent carbon tax on GHG emissions in the US to the year 2045. Bottom–up and top–down modeling approaches find widespread use in energy economic modeling and policy analysis, in which they differ mainly with respect to the emphasis placed on technology of the energy system and/or the comprehensiveness of endogenous market adjustments. For this study, we use a hybrid energy modeling approach, MARKAL–Macro, that combines the characteristics of two divergent approaches, in order to investigate and quantify the cost of climate policies for the US and an equivalent carbon tax. The approach incorporates Macro-economic feedbacks through a single sector neoclassical growth model while maintaining sectoral and technological detail of the bottom–up optimization framework with endogenous aggregated energy demand. Our analysis is done for two important objectives of the US energy policy: GHG reduction and increased energy security. Our results suggest that the emission tax achieves results quite similar to the CES policy but very different results in the transportation sector. The CAFE standard and RFS are more expensive than a carbon tax for emission reductions. However, the CAFE standard and RFS are much more efficient at achieving crude oil import reductions. The GDP losses are 2.0% and 1.2% relative to the base case for the policy case and carbon tax. That difference may be perceived as being small given the increased energy security gained from the CAFE and RFS policy measures and the uncertainty inherent in this type of analysis. - Highlights: • Evaluates US impacts of three energy/climate policies and a carbon tax (CT) • Analysis done with bottom–up MARKAL model coupled with a macro model • Electricity clean energy standard very close to

  1. The effective mitigation of greenhouse gas emissions from rice paddies without compromising yield by early-season drainage.

    Science.gov (United States)

    Islam, Syed Faiz-Ul; van Groenigen, Jan Willem; Jensen, Lars Stoumann; Sander, Bjoern Ole; de Neergaard, Andreas

    2018-01-15

    Global rice production systems face two opposing challenges: the need to increase production to accommodate the world's growing population while simultaneously reducing greenhouse gas (GHG) emissions. Adaptations to drainage regimes are one of the most promising options for methane mitigation in rice production. Whereas several studies have focused on mid-season drainage (MD) to mitigate GHG emissions, early-season drainage (ED) varying in timing and duration has not been extensively studied. However, such ED periods could potentially be very effective since initial available C levels (and thereby the potential for methanogenesis) can be very high in paddy systems with rice straw incorporation. This study tested the effectiveness of seven drainage regimes varying in their timing and duration (combinations of ED and MD) to mitigate CH 4 and N 2 O emissions in a 101-day growth chamber experiment. Emissions were considerably reduced by early-season drainage compared to both conventional continuous flooding (CF) and the MD drainage regime. The results suggest that ED+MD drainage may have the potential to reduce CH 4 emissions and yield-scaled GWP by 85-90% compared to CF and by 75-77% compared to MD only. A combination of (short or long) ED drainage and one MD drainage episode was found to be the most effective in mitigating CH 4 emissions without negatively affecting yield. In particular, compared with CF, the long early-season drainage treatments LE+SM and LE+LM significantly (pemissions were small and not significantly affected by ED. It is concluded that ED+MD drainage might be an effective low-tech option for small-scale farmers to reduce GHG emissions and save water while maintaining yield. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Gas Mitigation in Paper Production

    Science.gov (United States)

    Santos, AS; Bittencourt, C.

    2017-07-01

    The Brazilian paper industry has competitive advantages offered by the favorable climate, which favors an increase in the yield of forest restoration, and consequently, in the productive process. On the other hand, following the greenhouse gases (GHG), we can see our constantly changing sun, causing the solar storms, allowing their prevention or mitigating measures. The objective of this work is to contribute to the construction of the understanding necessary for the reduction of GHG emission from a preliminary analysis of the pulp and paper sector. As a secondary objective, the text preliminarily analyzes a company’s behavior against the backdrop of the Paris Accord, which strengthens the global response to the threat of climate change and strengthens the capacity of countries to deal with the impacts of such changes. The identification of best practices in the pulp and paper industry is understood, focusing on environmental sustainability, such as the adoption of reforestation, obtaining significant results. In the case of the paper industry, the management of public forests for sustainable production, within the structure of the Ministry of the Environment, establishes the promotion of public awareness about the importance of conservation, recovery and sustainable management of forest resources.

  3. The role of technology and policy in mitigating regional nitrogen pollution

    International Nuclear Information System (INIS)

    Gu Baojing; Zhu Yimei; Chang Jie; Liu Dong; Min Yong; Ge Ying; Peng Changhui; Luo Weidong; Howarth, Robert W

    2011-01-01

    Human activity greatly influences nitrogen (N) pollution in urbanized and adjacent areas. We comprehensively studied the N cycling in an urban-rural complex system, the Greater Hangzhou Area (GHA) in southeastern China. Our results indicated that subsurface N accumulation doubled, riverine N export tripled and atmospheric N pollutants increased 2.5 times within the GHA from 1980-2004. Agriculture was the largest N pollution source to air and water before 2000, whereas industry and human living gradually became the primary N pollution sources with the socioeconomic development. Based on the sensitivity analysis, we developed a scenario analysis to quantify the effects of technology and policy on environmental N dynamics. The fertilization reduction scenario suggested that the groundwater N pollution could decrease by 17% with less than a 5% reduction in crop production; the N effluent standard revision scenario led to a surface water N pollution reduction of 45%; the constructed wetlands implementation scenario could reduce surface water pollution by 43%-64%. Lastly, the technological improvement scenario mitigated atmospheric N pollution by 65%. Technologies play a key role in atmospheric N pollution control, policies mainly contribute to groundwater N pollution control, while technology and policy both work on surface water N mitigation within an urban-rural complex.

  4. The Future of Tourism: Can Tourism Growth and Climate Policy be Reconciled? A Climate Change Mitigation Perspective

    NARCIS (Netherlands)

    Gössling, S.; Hall, C.M.; Peeters, P.M.; Scott, D.

    2010-01-01

    Tourism is an increasingly significant contributor to greenhouse gas (GHG) emissions. Emissions growth in the sector is in substantial conflict with global climate policy goals that seek to mitigate climate change through deep emission reductions. This article discusses the role of various tourism

  5. Accessing international financing for climate change mitigation - A guidebook for developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Limaye, D.R.; Zhu, X.

    2012-08-15

    This guidebook has been prepared by the UNEP Risoe Centre (URC) as part of its Technology Needs Assessment (TNA) project. The TNA project assists developing countries to identify national mitigation and adaptation technology priorities and to develop Technology Action Plans (TAPs) for mitigation of greenhouse gas (GHG) emissions and climate change adaptation. This guidebook provides information to help TNA countries better identify and access financial resources for the mitigation activities included in their national TAPs. This guidebook covers both mitigation 'projects' (such as a wind farm or a solar PV generation facility) and 'programmes' (such as a credit line for financing energy efficiency projects in small and medium-sized enterprises (SMEs), or bulk procurement and distribution of compact fluorescent lamps to households). The primary emphasis is on multilateral and bilateral sources of financing but the guidebook also includes an overview of private funding sources and public-private partnerships (PPPs). This guidebook only covers international financing for mitigation actions in developing countries. For example, EU funding for EU member countries and Chinese funding for mitigation in China are not covered in this guidebook. However, the EU funding for mitigation in developing countries and Chinese funding supporting mitigation in other developing countries are included. Special funds established in some developing countries by pooling financing support from developed countries are also covered in this guidebook. Information on the financing sources was compiled in a standard format and reviewed and analysed to categorise the financing sources. For the multilateral and bilateral financing sources, the available information was used to define their major characteristics (such as geographic coverage, technology/sector focus, funding sources, financing objectives, financing mechanisms, and management and governance). In addition, the

  6. Cost Benefit Analysis of Using Clean Energy Supplies to Reduce Greenhouse Gas Emissions of Global Automotive Manufacturing

    Directory of Open Access Journals (Sweden)

    Xiang Zhao

    2011-09-01

    Full Text Available Automotive manufacturing is energy-intensive. The consumed energy contributes to the generation of significant amounts of greenhouse gas (GHG emissions by the automotive manufacturing industry. In this paper, a study is conducted on assessing the application potential of such clean energy power systems as solar PV, wind and fuel cells in reducing the GHG emissions of the global auto manufacturing industry. The study is conducted on the representative solar PV, wind and fuel cell clean energy systems available on the commercial market in six representative locations of GM’s global facilities, including the United States, Mexico, Brazil, China, Egypt and Germany. The results demonstrate that wind power is superior to other two clean energy technologies in the economic performance of the GHG mitigation effect. Among these six selected countries, the highest GHG emission mitigation potential is in China, through wind power supply. The maximum GHG reduction could be up to 60 tons per $1,000 economic investment on wind energy supply in China. The application of wind power systems in the United States and Germany could also obtain relatively high GHG reductions of between 40–50 tons per $1,000 economic input. When compared with wind energy, the use of solar and fuel cell power systems have much less potential for GHG mitigation in the six countries selected. The range of median GHG mitigation values resulting from solar and wind power supply are almost at the same level.

  7. GHG emissions, GDP growth and the Kyoto Protocol: A revisit of Environmental Kuznets Curve hypothesis

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Wei Ming; Lee, Grace W.M. [Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Road, Taipei 106 (China); Wu, Chih Cheng [Energy and Air Pollution Control Section, New Materials R and D Department, China Steel Corporation, 1, Chung-Kang Road, Siaogang District, Kaohsiung 81233 (China)

    2008-01-15

    The Kyoto Protocol attempts through political negotiations to guide participating industrialized countries' greenhouse gas (GHG) emissions from a positive growing trend, to reach a peak point (or turning point), and then be reduced to a negative growth. That means the relationship between decreasing GHG emissions and economic growth may be described by an inverted-U curve (or called a bell-shaped curve), which is consistent with the concept of the Environmental Kuznets Curve (EKC) hypothesis. This research observed that the economic development and GHG emissions in Economies in Transition (EITs) exhibit a hockey-stick curve trend (or called quasi-L-shape curve), that also generates a lot of 'hot air' which is significant to the implementation of the Kyoto Protocol. In addition, through the analysis of single-country time series data and GDP data, this research demonstrated that statistical data for most of the Annex II countries do not possess evidence that supports the EKC hypothesis for GHG emissions. The results from this study also indicated that the 38 industrialized countries are unable to meet their targets under the Kyoto Protocol within the specified time period, which are probably caused by the econometric method's inability to predict accurately the extents and development of innovative technologies and Clean Development Mechanism (CDM) projects. If the international community truly wants to reduce the GHG emissions, the effectiveness of the existing international framework for emissions reduction needs to be reconsidered seriously, and the global cooperation mechanism also needs to be greatly enhanced. (author)

  8. GHG emissions, GDP growth and the Kyoto Protocol: A revisit of Environmental Kuznets Curve hypothesis

    Energy Technology Data Exchange (ETDEWEB)

    Huang Weiming [Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Road, Taipei 106, Taiwan (China); Lee, Grace W.M. [Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Road, Taipei 106, Taiwan (China)], E-mail: gracelee@ntu.edu.tw; Wu Chihcheng [Energy and Air Pollution Control Section, New Materials R and D Department, China Steel Corporation, 1, Chung-Kang Road, Siaogang District, Kaohsiung 81233, Taiwan (China)

    2008-01-15

    The Kyoto Protocol attempts through political negotiations to guide participating industrialized countries' greenhouse gas (GHG) emissions from a positive growing trend, to reach a peak point (or turning point), and then be reduced to a negative growth. That means the relationship between decreasing GHG emissions and economic growth may be described by an inverted-U curve (or called a bell-shaped curve), which is consistent with the concept of the Environmental Kuznets Curve (EKC) hypothesis. This research observed that the economic development and GHG emissions in Economies in Transition (EITs) exhibit a hockey-stick curve trend (or called quasi-L-shape curve), that also generates a lot of 'hot air' which is significant to the implementation of the Kyoto Protocol. In addition, through the analysis of single-country time series data and GDP data, this research demonstrated that statistical data for most of the Annex II countries do not possess evidence that supports the EKC hypothesis for GHG emissions. The results from this study also indicated that the 38 industrialized countries are unable to meet their targets under the Kyoto Protocol within the specified time period, which are probably caused by the econometric method's inability to predict accurately the extents and development of innovative technologies and Clean Development Mechanism (CDM) projects. If the international community truly wants to reduce the GHG emissions, the effectiveness of the existing international framework for emissions reduction needs to be reconsidered seriously, and the global cooperation mechanism also needs to be greatly enhanced.

  9. GHG emissions, GDP growth and the Kyoto Protocol: A revisit of Environmental Kuznets Curve hypothesis

    International Nuclear Information System (INIS)

    Huang Weiming; Lee, Grace W.M.; Wu Chihcheng

    2008-01-01

    The Kyoto Protocol attempts through political negotiations to guide participating industrialized countries' greenhouse gas (GHG) emissions from a positive growing trend, to reach a peak point (or turning point), and then be reduced to a negative growth. That means the relationship between decreasing GHG emissions and economic growth may be described by an inverted-U curve (or called a bell-shaped curve), which is consistent with the concept of the Environmental Kuznets Curve (EKC) hypothesis. This research observed that the economic development and GHG emissions in Economies in Transition (EITs) exhibit a hockey-stick curve trend (or called quasi-L-shape curve), that also generates a lot of 'hot air' which is significant to the implementation of the Kyoto Protocol. In addition, through the analysis of single-country time series data and GDP data, this research demonstrated that statistical data for most of the Annex II countries do not possess evidence that supports the EKC hypothesis for GHG emissions. The results from this study also indicated that the 38 industrialized countries are unable to meet their targets under the Kyoto Protocol within the specified time period, which are probably caused by the econometric method's inability to predict accurately the extents and development of innovative technologies and Clean Development Mechanism (CDM) projects. If the international community truly wants to reduce the GHG emissions, the effectiveness of the existing international framework for emissions reduction needs to be reconsidered seriously, and the global cooperation mechanism also needs to be greatly enhanced

  10. Evaluation of additional biogeochemical impacts on mitigation pathways in an energy sytem integrated assessment model.

    Science.gov (United States)

    Dessens, O.

    2017-12-01

    Within the last IPCC AR5 a large and systematic sensitivity study around available technologies and timing of policies applied in IAMs to achieve the 2°C target has been conducted. However the simple climate representations included in IAMs are generally tuned to the results of ensemble means. This may result in hiding within the ensemble mean results possible challenging mitigation pathways for the economy or the technology future scenarios. This work provides new insights on the sensitivity of the socio-economic response to different climate factors under a 2°C climate change target in order to help guide future efforts to reduce uncertainty in the climate mitigation decisions. The main objective is to understand and bring new insights on how future global warming will affect the natural biochemical feedbacks on the climate system and what could be the consequences of these feedbacks on the anthropogenic emission pathways with a specific focus on the energy-economy system. It specifically focuses on three issues of the climate representation affecting the energy system transformation and GHG emissions pathways: 1- Impacts of the climate sensitivity (or TCR); 2- Impacts of warming on the radiative forcing (cloudiness,...); 3- Impacts of warming on the carbon cycle (carbon cycle feedback). We use the integrated assessment model TIAM-UCL to examine the mitigation pathways compatible with the 2C target depending on assumptions regarding the 3 issues of the climate representation introduced above. The following key conclusions drawn from this study are that mitigation to 2°C is still possible under strong climate sensitivity (TCR), strong carbon cycle amplification or positive radiative forcing feedback. However, this level of climate mitigation will require a significant transformation in the way we produce and consume energy. Carbon capture and sequestration on electricity generation, industry and biomass is part of the technology pool needed to achieve this

  11. CO{sub 2} mitigation costs of large-scale bioenergy technologies in competitive electricity markets

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, L [Mid-Sweden University, Ostersund (Sweden). Dept. of Natural and Environmental Sciences, Ecotechnology; Madlener, R [Swiss Federal Institute of Technology, Zurich (Switzerland). CEPE

    2003-11-01

    In this study, we compare and contrast the impact of recent technological developments in large biomass-fired and natural-gas-fired cogeneration and condensing plants in terms of CO{sub 2} mitigation costs and under the conditions of a competitive electricity market. The CO{sub 2} mitigation cost indicates the minimum economic incentive required (e.g. in the form of a carbon tax) to equal the cost of a less carbon extensive system with the cost of a reference system. The results show that CO{sub 2} mitigation costs are lower for biomass systems than for natural gas systems with decarbonization. However, in liberalized energy markets and given the sociopolitical will to implement carbon extensive energy systems, market-based policy measures are still required to make biomass and decarbonization options competitive and thus help them to penetrate the market. This cost of cogeneration plants, however, depends on the evaluation method used. If we account for the limitation of heat sinks by expanding the reference entity to include both heat and power, as is typically recommended in life-cycle analysis, then the biomass-based gasification combined cycle (BIG/CC) technology turns out to be less expensive and to exhibit lower CO{sub 2} mitigation costs than biomass-fired steam turbine plants. However, a heat credit granted to cogeneration systems that is based on avoided cost of separate heat production, puts the steam turbine technology despite its lower system efficiency at an advantage. In contrast, when a crediting method based on avoided electricity production in natural gas fired condensing plants is employed, the BIG/CC technology turns out to be more cost competitive than the steam turbine technology for carbon tax levels beyond about $150/t C. Furthermore, steam turbine plants are able to compete with natural gas fired cogeneration plants at carbon tax levels higher than about $90/tC. (author)

  12. Greenhouse gas mitigation potential of short-rotation-coppice based generation of electricity in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.; Meyer-Aurich, A.; Kern, J.; Balasus, A.; Prochnow, A. [Leibniz Inst. of Agricultural Engineering, Potsdam (Germany)

    2010-07-01

    The generation of energy from wood biomass may help secure local energy supplies and reduce the greenhouse effect by substituting fossil resources with bio-based ones. In the case of short rotation coppice (SRC), bio-based resources can be generated by extensive agricultural production systems. They produce less carbon dioxide equivalent (CO{sub 2eq}) emissions than fossil resources. This paper reported on a study in which a model system was developed for a regional supply chain producing second generation bioenergy generated from SRC in eastern Germany. The study focuses on the generation of electricity and was compared to a business-as-usual reference system, based on the latest CO{sub 2} mitigation factors for renewable energies in the German power-generation mix. A life cycle assessment based on greenhouse gas (GHG) inventories was also conducted in which other factors were also considered, such as options for nutrient cycling. The key determinants for GHG mitigation with SRC were also discussed with regards to indirect land-use effects resulting from increased demand for land.

  13. A wedge strategy for mitigation of urban warming in future climate scenarios

    Directory of Open Access Journals (Sweden)

    L. Zhao

    2017-07-01

    Full Text Available Heat stress is one of the most severe climate threats to human society in a future warmer world. The situation is further exacerbated in urban areas by urban heat islands (UHIs. Because the majority of world's population is projected to live in cities, there is a pressing need to find effective solutions for the heat stress problem. We use a climate model to investigate the effectiveness of various urban heat mitigation strategies: cool roofs, street vegetation, green roofs, and reflective pavement. Our results show that by adopting highly reflective roofs, almost all the cities in the United States and southern Canada are transformed into white oases – cold islands caused by cool roofs at midday, with an average oasis effect of −3.4 K in the summer for the period 2071–2100, which offsets approximately 80 % of the greenhouse gas (GHG warming projected for the same period under the RCP4.5 scenario. A UHI mitigation wedge consisting of cool roofs, street vegetation, and reflective pavement has the potential to eliminate the daytime UHI plus the GHG warming.

  14. Microencapsulation Technology for Corrosion Mitigation by Smart Coatings

    Science.gov (United States)

    Buhrow, Jerry; Li, Wenyan; Jolley, Scott; Calle, Luz M.

    2011-01-01

    A multifunctional, smart coating for the autonomous control of corrosion is being developed based on micro-encapsulation technology. Corrosion indicators as well as corrosion inhibitors have been incorporated into microcapsules, blended into several paint systems, and tested for corrosion detection and protection effectiveness. This paper summarizes the development, optimization, and testing of microcapsules specifically designed to be incorporated into a smart coating that will deliver corrosion inhibitors to mitigate corrosion autonomously. Key words: smart coating, corrosion inhibition, microencapsulation, microcapsule, pH sensitive microcapsule, corrosion inhibitor, corrosion protection pain

  15. Forest bioenergy or forest carbon? Assessing trade-offs in greenhouse gas mitigation with wood-based fuels.

    Science.gov (United States)

    McKechnie, Jon; Colombo, Steve; Chen, Jiaxin; Mabee, Warren; MacLean, Heather L

    2011-01-15

    The potential of forest-based bioenergy to reduce greenhouse gas (GHG) emissions when displacing fossil-based energy must be balanced with forest carbon implications related to biomass harvest. We integrate life cycle assessment (LCA) and forest carbon analysis to assess total GHG emissions of forest bioenergy over time. Application of the method to case studies of wood pellet and ethanol production from forest biomass reveals a substantial reduction in forest carbon due to bioenergy production. For all cases, harvest-related forest carbon reductions and associated GHG emissions initially exceed avoided fossil fuel-related emissions, temporarily increasing overall emissions. In the long term, electricity generation from pellets reduces overall emissions relative to coal, although forest carbon losses delay net GHG mitigation by 16-38 years, depending on biomass source (harvest residues/standing trees). Ethanol produced from standing trees increases overall emissions throughout 100 years of continuous production: ethanol from residues achieves reductions after a 74 year delay. Forest carbon more significantly affects bioenergy emissions when biomass is sourced from standing trees compared to residues and when less GHG-intensive fuels are displaced. In all cases, forest carbon dynamics are significant. Although study results are not generalizable to all forests, we suggest the integrated LCA/forest carbon approach be undertaken for bioenergy studies.

  16. A systematic review of biochar research, with a focus on its stability in situ and its promise as a climate mitigation strategy.

    Directory of Open Access Journals (Sweden)

    Noel P Gurwick

    Full Text Available BACKGROUND: Claims about the environmental benefits of charring biomass and applying the resulting "biochar" to soil are impressive. If true, they could influence land management worldwide. Alleged benefits include increased crop yields, soil fertility, and water-holding capacity; the most widely discussed idea is that applying biochar to soil will mitigate climate change. This claim rests on the assumption that biochar persists for hundreds or thousands of years, thus storing carbon that would otherwise decompose. We conducted a systematic review to quantify research effort directed toward ten aspects of biochar and closely evaluated the literature concerning biochar's stability. FINDINGS: We identified 311 peer-reviewed research articles published through 2011. We found very few field studies that addressed biochar's influence on several ecosystem processes: one on soil nutrient loss, one on soil contaminants, six concerning non-CO2 greenhouse gas (GHG fluxes (some of which fail to support claims that biochar decreases non-CO2 GHG fluxes, and 16-19 on plants and soil properties. Of 74 studies related to biochar stability, transport or fate in soil, only seven estimated biochar decomposition rates in situ, with mean residence times ranging from 8 to almost 4,000 years. CONCLUSIONS: Our review shows there are not enough data to draw conclusions about how biochar production and application affect whole-system GHG budgets. Wide-ranging estimates of a key variable, biochar stability in situ, likely result from diverse environmental conditions, feedstocks, and study designs. There are even fewer data about the extent to which biochar stimulates decomposition of soil organic matter or affects non-CO2 GHG emissions. Identifying conditions where biochar amendments yield favorable GHG budgets requires a systematic field research program. Finally, evaluating biochar's suitability as a climate mitigation strategy requires comparing its effects with

  17. High-tech and climate change : promoting the application of enabling and high-tech solutions to reduce GHG emissions : final report

    International Nuclear Information System (INIS)

    2003-03-01

    This report identifies the greenhouse gas (GHG) reducing potential of the high-tech sector with particular reference to the following 5 key technology convergence groups: biotechnology and bio-products; intelligent systems; information and communications technology; advanced materials; and, nanotechnology. It was noted that Canada's efforts to reduce GHG emissions in the abatement of climate change can drive innovation, stimulate economic growth and attain international leadership in technology solutions. Although Canada's strong economic growth has resulted in the creation of more highly skilled jobs, expansion in innovation and new infrastructure, there is a challenge of preserving the environmental and social quality within communities, and ensuring that productivity within companies does not lapse. In response, the government is shaping policy responses that drive innovation, productivity and prosperity and which help Canadian companies capitalize on emerging global opportunities while minimizing environmental and social impacts. This report includes information on climate change and the Kyoto Protocol, Canada's Climate Change Action Plan and the emerging carbon marketplace. It also describes the role of technology innovation and the opportunity of convergence in spurring innovation. Several actions have been proposed to Industry Canada by different technology sectors to help climate change providers generate innovative solutions, commercialize products and expand market presence. This report includes those initiatives which further promote the convergence, growth and development of different enabling and high-tech sectors to develop climate change solutions; promote the opportunities that are emerging to apply innovative high-tech and enabling technologies to reduce GHG emissions; and help Canada meet its Kyoto commitments. 50 refs., 1 tab., 2 figs

  18. Will Transition of Staple Food Strategy in China Really Mitigate Global Climate Change?

    Science.gov (United States)

    Liu, B.; Zhao, D.

    2017-12-01

    With the increase in agricultural demand, reducing greenhouse gas (GHG) emissions is a vital challenge in mitigating climate change. Potato staple food strategy in China introduced by Ministry of Agriculture in 2015 is to gradually adjust staple food structure, which provides an opportunity to meet with the challenge. Apart from staple food structure, difference on energy, material input, geography, and crop management are essential to determine agriculture's contribution to climate change. In this study, we conduct a life cycle analysis of four staple foods in China, namely rice, wheat, maize, and potato, to develop crop-specific estimates of GHG emissions and GHG intensity by using `Production intensity' (carbon dioxide equivalent emissions per kilocalorie produced), to help us understand potential synergies and frictions between food producing and climate mitigation. Data used in this study is on city / province levels if city level is unavailable in 2015. First, we evaluate GHG reductions due to transition of staple food structure in China. Staple food GHG emissions in China are 546.90 Tg CO2e yr-1 in 2015, with 47.6%, 21.9%, 27.3% and 3.2% from rice, wheat, maize and potato. Mean production intensity of staple food is 0.45 Mg CO2e M kcal-1 in 2015. Maize leads the intensity with 0.77 Mg CO2e M kcal-1, followed by rice (0.49 Mg CO2e M kcal-1), wheat (0.28 Mg CO2e M kcal-1) and potato (0.24 Mg CO2e M kcal-1). After staple food structure adjustment, 25 Tg CO2e yr-1 (4.2%) reduction will be accomplished in 2020 without any crop management improvement. Further reduction (33.3% - 40.4%) could be achieved with crop management improvement. In addition, because of staple food structure switching, native rice production will decline, which might lead to more export from countries with higher production intensity. Estimated emission leakage from rice import is 30.10 Tg CO2e yr-1, exceeds emission reduction in native China. Therefore, potato staple food strategy could

  19. The indirect costs and benefits of greenhouse gas mitigation

    International Nuclear Information System (INIS)

    Markandya, A.

    1998-01-01

    The indirect costs of GHG projects are very important in the evaluation of such projects. In many cases they are more important than the direct costs. This paper has shown what such costs consist of and how they may be estimated. As countries prepare their mitigation strategies, it is very important that they develop tools for the assessment of these indirect costs and use these tools in the appropriate manner. Hopefully, this paper will point them in the right direction. (au) 11 refs

  20. Long-term optimization of the transport sector to address greenhouse gas reduction targets under rapid growth. Application of an energy system model for Gauteng province, South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Tomaschek, Jan

    2013-12-11

    The transport sector is seen as one of the key factors for driving future energy consumption and greenhouse gas (GHG) emissions. Especially in developing countries, significant growth in transport demand is expected. Gauteng province, as the economic centre of South Africa and transport hub for the whole of southern Africa, is one emerging urban region that faces rapid growth. However, the province is on its way to playing a leading role for supporting ways to adapt to climate change and mitigate GHG emissions. Conversely, there is a lack of scientific research on the promising measures for GHG mitigation in the transport sector. For the rapidly growing transport sector of the province in particular, research is focused primarily on extending and structuring the road infrastructure. Moreover, it is important that the transport sector is considered as part of the whole energy system, as significant contributions to GHG emissions and the associated costs arise from energy supply, provision and conversion. This research is the first application of an integrated energy system model (i.e. the TIMES-GEECO model) for the optimization of the transport sector of Gauteng. Optimizing energy system models allows finding least-cost measures for various scenarios, by considering dependencies and interlinkages in the energy system as well as environmental constraints. To do so, the transport sector and the energy supply sector had to be incorporated into the model application in terms of the characteristics of a developing urban region, which includes all relevant transport modes, vehicle technologies, fuel options, vehicle-to-grid energy storage, the consideration of road types as well as explicit expansions of the public transport system and income-dependent travel demand modelling. Additionally, GHG mitigation options outside the provincial boundaries were incorporated to allow for mitigation at least cost and to consider regional resource availability. Moreover, in TIMES

  1. Long-term optimization of the transport sector to address greenhouse gas reduction targets under rapid growth. Application of an energy system model for Gauteng province, South Africa

    International Nuclear Information System (INIS)

    Tomaschek, Jan

    2013-01-01

    The transport sector is seen as one of the key factors for driving future energy consumption and greenhouse gas (GHG) emissions. Especially in developing countries, significant growth in transport demand is expected. Gauteng province, as the economic centre of South Africa and transport hub for the whole of southern Africa, is one emerging urban region that faces rapid growth. However, the province is on its way to playing a leading role for supporting ways to adapt to climate change and mitigate GHG emissions. Conversely, there is a lack of scientific research on the promising measures for GHG mitigation in the transport sector. For the rapidly growing transport sector of the province in particular, research is focused primarily on extending and structuring the road infrastructure. Moreover, it is important that the transport sector is considered as part of the whole energy system, as significant contributions to GHG emissions and the associated costs arise from energy supply, provision and conversion. This research is the first application of an integrated energy system model (i.e. the TIMES-GEECO model) for the optimization of the transport sector of Gauteng. Optimizing energy system models allows finding least-cost measures for various scenarios, by considering dependencies and interlinkages in the energy system as well as environmental constraints. To do so, the transport sector and the energy supply sector had to be incorporated into the model application in terms of the characteristics of a developing urban region, which includes all relevant transport modes, vehicle technologies, fuel options, vehicle-to-grid energy storage, the consideration of road types as well as explicit expansions of the public transport system and income-dependent travel demand modelling. Additionally, GHG mitigation options outside the provincial boundaries were incorporated to allow for mitigation at least cost and to consider regional resource availability. Moreover, in TIMES

  2. Linkage between forest-based mitigation and GHG markets

    International Nuclear Information System (INIS)

    Loisel, C.

    2008-01-01

    According to the latest assessment report of the Intergovernmental Panel on Climate Change, deforestation and forest degradation contributed to 23% of global carbon dioxide emissions and 17% of global emissions of all greenhouse gases in 2004 (IPCC AR4 SPM, 2007). Despite significant uncertainties, these figures stress the relevance of addressing deforestation into the new global climate governance regime. Deforestation is primarily a concern for tropical regions nowadays and FAO's Forest resource assessments (2005) highlight significant national disparities as a consequence of history, soil and climate conditions and current policies and socio-economic conditions. The Stern Review (2006) pointed to deforestation abatement as a must-seize opportunity to cut global greenhouse emissions with good cost/efficiency and numerous co-benefits. Under the framework of the 2007 Bali Action Plan, the UNFCCC is now considering policy approaches to promote the reduction of emissions from deforestation and forest degradation, and also forest conservation, sustainable forest management and forestation ('REDD+'). At the same time, the European Union is engaged in a major review of its climate and energy legislation. The EU climate/energy package has entered into the final stages of negotiation and the outcome should provide funding for REDD+ actions on the long run through some sort of connection to carbon markets. These are moments of historic significance both for world forests and climate protection, but significant challenges remain. This workshop focuses on one of these challenges: while mechanisms are being designed to connect greenhouse gas emission trading schemes and REDD+ actions, we must ensure that they enable broad and far-reaching actions while safeguarding against various sorts of unintended consequences. This background paper intends to provide a rapid initial overview on three aspects of the linkage between forest-based mitigation and emission trading schemes: (i

  3. Greenhouse gas emissions for the EU in four future scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Lesschen, J.P.; Rienks, W.; Staritsky, I. [Alterra, Wageningen-UR, Wageningen (Netherlands); Eickhout, B.; Prins, A.G. [Netherlands Environmental Assessment Agency PBL, Bilthoven (Netherlands)

    2009-12-15

    The European Common Agricultural Policy (CAP) will be revised in the near future. A proposed agricultural policy reform will affect many dimensions of the sustainable development of agriculture. One of these dimensions are greenhouse gas (GHG) emissions. The objective of this study was to assess the impact of four scenarios of the future, from the Eururalis study, and the effects of CAP options on GHG emissions from agriculture. The results provide an indication of the range of GHG emissions between the four diverging base scenarios and the differences with current emission levels in Member States and on EU level. Analysis of the possible impact of the measures on GHG emissions showed that this would be much larger from mitigation measures than from CAP options. Full implementation of the mitigation measures could lead to a reduction in GHG emissions from agriculture of 127 Mt CO2 equivalents. This is about a quarter of current GHG emissions from agriculture. Promoting mitigation measures, therefore, is more effective for reducing GHG emissions from agriculture, than influencing income and price subsidies within the CAP. On the global scale, CAP options hardly play a role in total GHG emissions from land use. Much more important are developments in global population, economic growth, policies and technological developments, as depicted in the various scenarios.

  4. Measuring, Reporting and Verifying Nationally Appropriate Mitigation Actions. Reflecting experiences under the Mitigation Momentum Project. Discussion paper

    Energy Technology Data Exchange (ETDEWEB)

    De Vit, C.; Roeser, F.; Fekete, H.; Hoehne, N.; Wartmann, S.; Van Tilburg, X.; Larkin, J.; Escalante, D.; Haensel, G.; Veum, K.; Cameron, L.; Halcomb, J.

    2013-06-15

    The Mitigation Momentum project aims to support the development of Nationally Appropriate Mitigation Actions (NAMAs). It contributes to the concrete design of NAMA proposals in five countries (Peru, Chile, Indonesia, Tunisia and Kenya). A further aim is to foster cooperation and knowledge exchange within the NAMA community while advancing the international climate policy debate on mitigation and related issues, including approaches for the Measurement, Reporting and Verification (MRV) of NAMAs. MRV enables the assessment of the effectiveness of both internationally supported NAMAs (supported NAMAs) and domestically supported NAMAs (unilateral NAMAs) by tracking NAMA impacts including greenhouse gas (GHG) emission reductions and non-GHG related impacts such as sustainable development benefits. MRV also supports improved policy design and decision making through systematic progress reporting and is a key tool to ensure accountability of NAMA stakeholders. Both host countries and funders share the common interest of having strong, implementable MRV systems in place. From both perspectives, this raises a number of questions, as well as potential challenges, on how to adapt the MRV approach to the specific circumstances of each NAMA. The objective of this paper is to identify open issues for the MRV of impacts of NAMAs, understood here as implementable actions, i.e. a project, a policy, a programme or a strategy. It pays particular attention to NAMAs with a supported component and reflects relevant initial experiences with developing NAMA proposals in the five Mitigation Momentum countries (i.e. using country examples where appropriate). As MRV systems for these NAMAs are still under development or at their preliminary stage, we hope to share further lessons learned in a subsequent discussion paper. Key challenges analysed in this paper include: How to design a MRV system that satisfies both the host country's and funder's expectations while complying with

  5. Advancing national greenhouse gas inventories for agriculture in developing countries: improving activity data, emission factors and software technology

    International Nuclear Information System (INIS)

    Ogle, Stephen M; Hartman, Melannie; Spencer, Shannon; Buendia, Leandro; Butterbach-Bahl, Klaus; Breidt, F Jay; Yagi, Kazuyuki; Nayamuth, Rasack; Wirth, Tom; Smith, Pete

    2013-01-01

    Developing countries face many challenges when constructing national inventories of greenhouse gas (GHG) emissions, such as lack of activity data, insufficient measurements for deriving country-specific emission factors, and a limited basis for assessing GHG mitigation options. Emissions from agricultural production are often significant sources in developing countries, particularly soil nitrous oxide, and livestock enteric and manure methane, in addition to wetland rice methane. Consequently, estimating GHG emissions from agriculture is an important part of constructing developing country inventories. While the challenges may seem insurmountable, there are ways forward such as: (a) efficiently using resources to compile activity data by combining censuses and surveys; (b) using a tiered approach to measure emissions at appropriately selected sites, coupled with modeling to derive country-specific emission factors; and (c) using advanced software systems to guide compilers through the inventory process. With a concerted effort by compilers and assistance through capacity-building efforts, developing country compilers could produce transparent, accurate, complete, consistent and comparable inventories, as recommended by the IPCC (Intergovernmental Panel on Climate Change). In turn, the resulting inventories would provide the foundation for robust GHG mitigation analyses and allow for the development of nationally appropriate mitigation actions and low emission development strategies. (letter)

  6. Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter; Bogner, J.E.

    2009-01-01

    Landfill gas containing methane is produced by anaerobic degradation of organic waste. Methane is a strong greenhouse gas and landfills are one of the major anthropogenic sources of atmospheric methane. Landfill methane may be oxidized by methanotrophic microorganisms in soils or waste materials...... to predict methane emissions from landfills. Additional research and technology development is needed before methane mitigation technologies utilizing microbial methane oxidation processes can become commercially viable and widely deployed....

  7. Energy Technology Roll-Out for Climate Change Mitigation: A Multi-Model Study for Latin America

    NARCIS (Netherlands)

    van der Zwaan, B.; Kober, T.; Calderon, S.; Clarke, L.; Daenzer, K.; Kitous, A.; Labriet, M.; Lucena, A.F.P.; Octaviano, C.; Di Sbroiavacca, N.

    In this paper we investigate opportunities for energy technology deployment under climate change mitigation efforts in Latin America. Through several carbon tax and CO2 abatement scenarios until 2050 we analyze what resources and technologies, notably for electricity generation, could be

  8. Climate change mitigation in Asia and financing Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, P.R.; Deo, P. [eds.

    1998-12-01

    The three primary objectives of the conference, which was organized by the UNEP Collaborating Centre on Energy and Environment (UCCEE) in conjunction with the Environment Department of the World Bank, at Goa in India from May 4 to 6, 1998, were: 1) to share the GHG mitigation experiences from Asian developing countries; 2) to disseminate the standard methodological approach for mitigation analysis developed by UNEP and its applications in different countries; and 3) assess the role and efficacy of financial mechanisms and to, specifically, seek feedback on the Prototype Carbon Fund proposed by the World Bank. Follwing these objectives, the workshop presentations and discussions were structured in three parts. In the first part, participants from eleven Asian developing countries made presentations that were followed by discussions. The second part included the presentations by the experts from UCCEE, UNFCCC and other invited experts who presented the mitigation methodology and the issues and experiences relating to various co-operative implementation mechanisms. The third part included the presentations by the World Bank representatives on the Prototype Carbon Fund and the discussions on financial mechanisms. (EG)

  9. Comparative Advantage of Maize- and Grass-Silage Based Feedstock for Biogas Production with Respect to Greenhouse Gas Mitigation

    Directory of Open Access Journals (Sweden)

    Andreas Meyer-Aurich

    2016-06-01

    Full Text Available This paper analyses the comparative advantage of using silage maize or grass as feedstock for anaerobic digestion to biogas from a greenhouse gas (GHG mitigation point of view, taking into account site-specific yield potentials, management options, and land-use change effects. GHG emissions due to the production of biogas were calculated using a life-cycle assessment approach for three different site conditions with specific yield potentials and adjusted management options. While for the use of silage maize, GHG emissions per energy unit were the same for different yield potentials, and the emissions varied substantially for different grassland systems. Without land-use change effects, silage maize-based biogas had lower GHG emissions per energy unit compared to grass-based biogas. Taking land-use change into account, results in a comparative advantage of biogas production from grass-based feedstock produced on arable land compared to silage maize-based feedstock. However, under current frame conditions, it is quite unrealistic that grass production systems would be established on arable land at larger scale.

  10. Renewable biocatalyst for swine manure treatment and mitigation of odorous VOCs, ammonia and hydrogen sulfide emissions: Review

    Science.gov (United States)

    Comprehensive control of odors, hydrogen sulfide (H2S), ammonia (NH3), and greenhouse gas (GHG) emissions associated with swine production is a critical need. The objective of this paper is to review the use of soybean peroxidase (SBP) and peroxides as a manure additive to mitigate emissions of odor...

  11. Broadening GHG accounting with LCA: application to a waste management business unit.

    Science.gov (United States)

    Fallaha, Sophie; Martineau, Geneviève; Bécaert, Valérie; Margni, Manuele; Deschênes, Louise; Samson, Réjean; Aoustin, Emmanuelle

    2009-11-01

    In an effort to obtain the most accurate climate change impact assessment, greenhouse gas (GHG) accounting is evolving to include life-cycle thinking. This study (1) identifies similarities and key differences between GHG accounting and life-cycle assessment (LCA), (2) compares them on a consistent basis through a case study on a waste management business unit. First, GHG accounting is performed. According to the GHG Protocol, annual emissions are categorized into three scopes: direct GHG emissions (scope 1), indirect emissions related to electricity, heat and steam production (scope 2) and other indirect emissions (scope 3). The LCA is then structured into a comparable framework: each LCA process is disaggregated into these three scopes, the annual operating activities are assessed, and the environmental impacts are determined using the IMPACT2002+ method. By comparing these two approaches it is concluded that both LCA and GHG accounting provide similar climate change impact results as the same major GHG contributors are determined for scope 1 emissions. The emissions from scope 2 appear negligible whereas emissions from scope 3 cannot be neglected since they contribute to around 10% of the climate change impact of the waste management business unit. This statement is strengthened by the fact that scope 3 generates 75% of the resource use damage and 30% of the ecosystem quality damage categories. The study also shows that LCA can help in setting up the framework for a annual GHG accounting by determining the major climate change contributors.

  12. Technology and climate change

    International Nuclear Information System (INIS)

    Morrison, R.; Layzell, D.; McLean, G.

    2001-01-01

    This paper provides a context for assessing the needs for technologies to reduce the concentration of GHG in the atmosphere. It looks at sources, sinks and trends for GHG, in the world at large and in Canada, and at efforts to develop new technologies to achieve the goals of climate change policy. Technology development is one of many approaches to reducing emissions and absorbing GHG from the atmosphere. New technologies will be more successful if they can also achieve non-climate goals, such as better air quality or reduced soil erosion. This paper examines sectors where new technology may be most needed. In general these will be areas where emissions are large, or growing rapidly, or both. It focuses on transport, electricity and biomass as sectors of interest, both because of their potential for contributing to climate change policy goals within Canada, and also because of the author's own research interests. (author)

  13. Incorporating greenhouse gas (GHG) emissions in long range transportation planning.

    Science.gov (United States)

    2014-05-01

    Greenhouse gas (GHG) emissions continue to be an important focus area for state, local, and federal : agencies. The transportation sector is the second biggest contributor to GHG emissions in the U.S., and : Texas contributes the highest emissions am...

  14. Reconciling Oil Palm Expansion and Climate Change Mitigation in Kalimantan, Indonesia

    Science.gov (United States)

    Austin, Kemen G.; Kasibhatla, Prasad S.; Urban, Dean L.; Stolle, Fred; Vincent, Jeffrey

    2015-01-01

    Our society faces the pressing challenge of increasing agricultural production while minimizing negative consequences on ecosystems and the global climate. Indonesia, which has pledged to reduce greenhouse gas (GHG) emissions from deforestation while doubling production of several major agricultural commodities, exemplifies this challenge. Here we focus on palm oil, the world’s most abundant vegetable oil and a commodity that has contributed significantly to Indonesia’s economy. Most oil palm expansion in the country has occurred at the expense of forests, resulting in significant GHG emissions. We examine the extent to which land management policies can resolve the apparently conflicting goals of oil palm expansion and GHG mitigation in Kalimantan, a major oil palm growing region of Indonesia. Using a logistic regression model to predict the locations of new oil palm between 2010 and 2020 we evaluate the impacts of six alternative policy scenarios on future emissions. We estimate net emissions of 128.4–211.4 MtCO2 yr-1 under business as usual expansion of oil palm plantations. The impact of diverting new plantations to low carbon stock land depends on the design of the policy. We estimate that emissions can be reduced by 9-10% by extending the current moratorium on new concessions in primary forests and peat lands, 35% by limiting expansion on all peat and forestlands, 46% by limiting expansion to areas with moderate carbon stocks, and 55–60% by limiting expansion to areas with low carbon stocks. Our results suggest that these policies would reduce oil palm profits only moderately but would vary greatly in terms of cost-effectiveness of emissions reductions. We conclude that a carefully designed and implemented oil palm expansion plan can contribute significantly towards Indonesia’s national emissions mitigation goal, while allowing oil palm area to double. PMID:26011182

  15. Reconciling oil palm expansion and climate change mitigation in Kalimantan, Indonesia.

    Science.gov (United States)

    Austin, Kemen G; Kasibhatla, Prasad S; Urban, Dean L; Stolle, Fred; Vincent, Jeffrey

    2015-01-01

    Our society faces the pressing challenge of increasing agricultural production while minimizing negative consequences on ecosystems and the global climate. Indonesia, which has pledged to reduce greenhouse gas (GHG) emissions from deforestation while doubling production of several major agricultural commodities, exemplifies this challenge. Here we focus on palm oil, the world's most abundant vegetable oil and a commodity that has contributed significantly to Indonesia's economy. Most oil palm expansion in the country has occurred at the expense of forests, resulting in significant GHG emissions. We examine the extent to which land management policies can resolve the apparently conflicting goals of oil palm expansion and GHG mitigation in Kalimantan, a major oil palm growing region of Indonesia. Using a logistic regression model to predict the locations of new oil palm between 2010 and 2020 we evaluate the impacts of six alternative policy scenarios on future emissions. We estimate net emissions of 128.4-211.4 MtCO2 yr(-1) under business as usual expansion of oil palm plantations. The impact of diverting new plantations to low carbon stock land depends on the design of the policy. We estimate that emissions can be reduced by 9-10% by extending the current moratorium on new concessions in primary forests and peat lands, 35% by limiting expansion on all peat and forestlands, 46% by limiting expansion to areas with moderate carbon stocks, and 55-60% by limiting expansion to areas with low carbon stocks. Our results suggest that these policies would reduce oil palm profits only moderately but would vary greatly in terms of cost-effectiveness of emissions reductions. We conclude that a carefully designed and implemented oil palm expansion plan can contribute significantly towards Indonesia's national emissions mitigation goal, while allowing oil palm area to double.

  16. A greenhouse-gas information system monitoring and validating emissions reporting and mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Jonietz, Karl K [Los Alamos National Laboratory; Dimotakis, Paul E [JPL/CAL TECH; Roman, Douglas A [LLNL; Walker, Bruce C [SNL

    2011-09-26

    Current GHG-mitigating regimes, whether internationally agreed or self-imposed, rely on the aggregation of self-reported data, with limited checks for consistency and accuracy, for monitoring. As nations commit to more stringent GHG emissions-mitigation actions and as economic rewards or penalties are attached to emission levels, self-reported data will require independent confirmation that they are accurate and reliable, if they are to provide the basis for critical choices and actions that may be required. Supporting emissions-mitigation efforts and agreements, as well as monitoring energy- and fossil-fuel intensive national and global activities would be best achieved by a process of: (1) monitoring of emissions and emission-mitigation actions, based, in part, on, (2) (self-) reporting of pertinent bottom-up inventory data, (3) verification that reported data derive from and are consistent with agreed-upon processes and procedures, and (4) validation that reported emissions and emissions-mitigation action data are correct, based on independent measurements (top-down) derived from a suite of sensors in space, air, land, and, possibly, sea, used to deduce and attribute anthropogenic emissions. These data would be assessed and used to deduce and attribute measured GHG concentrations to anthropogenic emissions, attributed geographically and, to the extent possible, by economic sector. The validation element is needed to provide independent assurance that emissions are in accord with reported values, and should be considered as an important addition to the accepted MRV process, leading to a MRV&V process. This study and report focus on attributes of a greenhouse-gas information system (GHGIS) needed to support MRV&V needs. These needs set the function of such a system apart from scientific/research monitoring of GHGs and carbon-cycle systems, and include (not exclusively): the need for a GHGIS that is operational, as required for decision-support; the need for a

  17. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies

    International Nuclear Information System (INIS)

    Wang, M. Q.

    1998-01-01

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions

  18. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M. Q.

    1998-12-16

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

  19. Fluid-based radon mitigation technology development for industrial applications

    International Nuclear Information System (INIS)

    Liu, K.V.; Gabor, J.D.; Holtz, R.E.; Gross, K.C.

    1996-01-01

    The objective of the radon mitigation technology development effort is to develop an efficient and economical radon gas removal technology based on a fluid absorption process. The technology must be capable of cleaning up a wide range of radon gas stream concentrations to a level that meets EPA gas emission standards for residential and industrial applications. Argonne has recently identified a phenomenon that offers the possibility of radon recovery from the atmosphere with high efficiency at room temperature, and radon release at slightly elevated temperatures (50-60 degrees C.) such a device would offer numerous substantial advantages over conventional cryogenic charcoal systems for the removal of radon. Controlled sources of radon in Argonne's radon research facility are being used to quantitatively assess the performance of a selected class of absorbing fluids over a range of radon concentrations. This paper will discuss the design of laboratory- and engineering-scale radon absorption units and present some preliminary experimental test results

  20. Climate change mitigation: the potential of agriculture as a renewable energy source in Nigeria.

    Science.gov (United States)

    Elum, Z A; Modise, D M; Nhamo, G

    2017-02-01

    Energy is pivotal to the economic development of every nation. However, its production and utilization leads to undesirable carbon emissions that aggravate global warming which results in climate change. The agriculture sector is a significant user of energy. However, it has the potential to be a major contributor to Nigeria's energy supply mix in meeting its energy deficit. More so, in the light of current and impending adverse effects of climate change, there is a need to contain GHG's emissions. This paper focuses on bioenergy utilization as a climate change mitigation strategy and one that can, through effective waste management, enhance sustainable economic development in Nigeria. The paper employed a critical discourse analysis to examine the potential of the agricultural sector to provide biofuels from energy crops and other biomass sources. We conclude that Nigeria can reduce its GHG emissions and greatly contribute to global climate change mitigation while also alleviating its energy supply deficit if the agricultural and municipal wastes readily available in its towns and cities are converted to bioenergy. Such engagements will not only promote a clean and healthy environment but also create jobs for economic empowerment and a better standard of living for the people.

  1. 2007 status of climate change: Mitigation of Climate Change. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policy-makers

    International Nuclear Information System (INIS)

    Barker, T.; Bashmakov, I.; Bernstein, L.; Bogner, J.; Bosch, P.; Dave, R.; Davidson, O.; Fisher, B.; Grubb, M.; Gupta, S.; Halsnaes, K.; Heij, B.; Kahn Ribeiro, S.; Kobayashi, S.; Levine, M.; Martino, D.; Masera Cerutti, O.; Metz, B.; Meyer, L.; Nabuurs, G.J.; Najam, A.; Nakicenovic, N.; Holger Rogner, H.; Roy, J.; Sathaye, J.; Schock, R.; Shukla, P.; Sims, R.; Smith, P.; Swart, R.; Tirpak, D.; Urge-Vorsatz, D.; Dadi, Z.

    2007-01-01

    The Working Group III contribution to the IPCC Fourth Assessment Report (AR4) focuses on new literature on the scientific, technological, environmental, economic and social aspects of mitigation of climate change, published since the IPCC Third Assessment Report (TAR) and the Special Reports on CO 2 Capture and Storage (SRCCS) and on Safeguarding the Ozone Layer and the Global Climate System (SROC).The main aim of this summary report is to assess options for mitigating climate change. Several aspects link climate change with development issues. This report explores these links in detail, and illustrates where climate change and sustainable development are mutually reinforcing. Economic development needs, resource endowments and mitigative and adaptive capacities differ across regions. There is no one-size-fits-all approach to the climate change problem, and solutions need to be regionally differentiated to reflect different socio-economic conditions and, to a lesser extent, geographical differences. Although this report has a global focus, an attempt is made to differentiate the assessment of scientific and technical findings for the various regions. Given that mitigation options vary significantly between economic sectors, it was decided to use the economic sectors to organize the material on short- to medium-term mitigation options. Contrary to what was done in the Third Assessment Report, all relevant aspects of sectoral mitigation options, such as technology, cost, policies etc., are discussed together, to provide the user with a comprehensive discussion of the sectoral mitigation options. The report is organised into six sections after the introduction: - Greenhouse gas (GHG) emission trends; - Mitigation in the short and medium term, across different economic sectors (until 2030); - Mitigation in the long-term (beyond 2030); - Policies, measures and instruments to mitigate climate change; - Sustainable development and climate change mitigation; - Gaps in

  2. Activities of four bus terminals of Semarang City gateway and the related GHG emission

    Science.gov (United States)

    Huboyo, H. S.; Wardhana, I. W.; Sutrisno, E.; Wangi, L. S.; Lina, R. A.

    2018-01-01

    The activities of the bus terminal, including loading-unloading passengers, bus idling, and bus movements at the terminal, will emit GHG’s emission. This research analyzes GHG emission from four terminals, i.e., Mangkang, Terboyo, Penggaron, and Sukun in Semarang City. The emission was estimated by observing detail activities of public transport means, especially for moving and idling time. The emission was calculated by Tier 2 method based on the vehicle type as well as fuel consumption. The highest CO2e during vehicle movements at Sukun area was contributed by large bus about 2.08 tons/year, while at Terboyo terminal was contributed by medium bus about 347.97 tons/year. At Mangkang terminals, the highest emission for vehicle movements was attributed by medium bus as well of about 53.18 tons/year. At last, Penggaron terminal’s highest GHG emission was attributed by BRT about 26.47 tons/year. During idling time, the highest contributor to CO2e was the large bus at the three terminals, i.e., Sukun of 43.53 tons/year, Terboyo of 196.56 tons/year, and Mangkang of 84.26 tons/year, while at Penggaron, BRT dominated with CO2e of 26.47 tons/year. The management of public transport in terminals is crucial to mitigate the emission related to bus terminals activities.

  3. Assessment of the mitigation options in the energy system in Bulgaria

    Energy Technology Data Exchange (ETDEWEB)

    Christov, C.; Vassilev, C.; Simenova, K. [and others

    1996-12-31

    Bulgaria signed the Framework Convention on Climate Change at the UNCEP in Rio in June 1992. The parliament ratified the Convention in March 1995. In compliance with the commitments arising under the Convention, Bulgaria elaborates climate change polity. The underlying principles in this policy are Bulgaria to joint the international efforts towards solving climate change problems to the extent that is adequate to both the possibilities of national economy and the options to attract foreign investments. All policies and measures implemented should be as cost-effective as possible. The Bulgarian GHG emission profile reveals the energy sector as the most significant emission source and also as an area where the great potential for GHG emissions reduction exists. This potential could be achieved in many cases by relatively low cost or even no-cost options. Mitigation analysis incorporates options in energy demand and energy supply within the period 1992-2020.

  4. Technology Evaluation for Environmental Risk Mitigation Compendium

    Science.gov (United States)

    Meinhold, A.; Greene, B.; Dussich, J.; Sorkin, A.; Olsen, W.

    2017-01-01

    The Technology Evaluation for Environmental Risk Mitigation (TEERM) Principal Center and its predecessor organization the Acquisition Pollution Prevention Program (AP2) supported the National Aeronautics and Space Administration (NASA) in identifying technology solutions to risks and costs to NASA programs driven by environmental regulations and requirements. TEERM researched the commercial and government marketplace to locate viable and available technologies that met NASAs needs. TEERM focused on addressing environmentally-driven risks of direct concern to NASA programs and facilities, including hazardous materials in NASA operations and materials that became obsolescent because of environmental regulations. TEERM projects aimed to reduce cost; ensure the health and safety of people, assets, and the environment; promote efficiency; and minimize duplication. Major TEERM and AP2 projects focused on waste minimization and hazardous waste treatment, recycling, corrosion prevention and control, solvent and ozone depleting substances substitution, and aqueous based cleaners. In 2017, NASA made the decision to terminate the TEERM Principal Center. This Compendium Report documents TEERM and AP2 project successes. The Compendium Report traces the evolution of TEERM based on evolving risks and requirements for NASA and its relationship to the Space Shuttle Program, the United States Department of Defense, the European Space Agency, and other public and private stakeholders. This Compendium Report also documents project details from Project Summaries and Joint Test Plans and describes project stakeholders and collaborative effort results.

  5. Global Farm Animal Production and Global Warming: Impacting and Mitigating Climate Change

    OpenAIRE

    Koneswaran, Gowri; Nierenberg, Danielle

    2008-01-01

    Background The farm animal sector is the single largest anthropogenic user of land, contributing to many environmental problems, including global warming and climate change. Objectives The aim of this study was to synthesize and expand upon existing data on the contribution of farm animal production to climate change. Methods We analyzed the scientific literature on farm animal production and documented greenhouse gas (GHG) emissions, as well as various mitigation strategies. Discussions An a...

  6. The effective mitigation of greenhouse gas emissions from rice paddies without compromising yield by early-season drainage

    DEFF Research Database (Denmark)

    Islam, Syed Faiz-Ul; van Groenigen, Jan Willem; Jensen, Lars Stoumann

    2018-01-01

    Global rice production systems face two opposing challenges: the need to increase production to accommodate the world's growing population while simultaneously reducing greenhouse gas (GHG) emissions. Adaptations to drainage regimes are one of the most promising options for methane mitigation...... only. A combination of (short or long) ED drainage and one MD drainage episode was found to be the most effective in mitigating CH4 emissions without negatively affecting yield. In particular, compared with CF, the long early-season drainage treatments LE+SM and LE+LM significantly (p

  7. Fossil energy and GHG saving potentials of pig farming in the EU

    International Nuclear Information System (INIS)

    Nguyen, Thu Lan T.; Hermansen, John E.; Mogensen, Lisbeth

    2010-01-01

    In Europe, the highly developed livestock industry places a high burden on resource use and environmental quality. This paper examines pig meat production in North-West Europe as a base case and runs different scenarios to investigate how improvements in terms of energy and greenhouse gas (GHG) savings can be feasibly achieved. As shown in the results of the analysis, pig farming in the EU has a high potential to reduce fossil energy use and GHG emissions by taking improvement measures in three aspects: (i) feed use; (ii) manure management; and (iii) manure utilization. In particular, a combination of improvements in all mentioned aspects offers the highest savings potential of up to 61% fossil energy and 49% GHG emissions. In weighing these three aspects, manure utilization for energy production is found to be the most important factor in reducing fossil energy use and GHG emissions. However, when GHG implications of land use change and land opportunity cost associated with the production of feed crops (e.g. soy meal, cereals) are considered, reducing feed use becomes the main factor in improving GHG performance of EU pork.

  8. Fossil energy and GHG saving potentials of pig farming in the EU

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thu Lan T.; Hermansen, John E.; Mogensen, Lisbeth [Department of Agroecology and Environment, Aarhus University, Tjele (Denmark)

    2010-05-15

    In Europe, the highly developed livestock industry places a high burden on resource use and environmental quality. This paper examines pig meat production in North-West Europe as a base case and runs different scenarios to investigate how improvements in terms of energy and greenhouse gas (GHG) savings can be feasibly achieved. As shown in the results of the analysis, pig farming in the EU has a high potential to reduce fossil energy use and GHG emissions by taking improvement measures in three aspects: (i) feed use; (2) manure management; and (3) manure utilization. In particular, a combination of improvements in all mentioned aspects offers the highest savings potential of up to 61% fossil energy and 49% GHG emissions. In weighing these three aspects, manure utilization for energy production is found to be the most important factor in reducing fossil energy use and GHG emissions. However, when GHG implications of land use change and land opportunity cost associated with the production of feed crops (e.g. soy meal, cereals) are considered, reducing feed use becomes the main factor in improving GHG performance of EU pork. (author)

  9. Toward a protocol for quantifying the greenhouse gas balance and identifying mitigation options in smallholder farming systems

    Science.gov (United States)

    Rosenstock, T. S.; Rufino, M. C.; Butterbach-Bahl, K.; Wollenberg, E.

    2013-06-01

    GHG budgets for developing economies. This dearth of information constrains the capacity to transition to low-carbon agricultural development, opportunities for smallholders to capitalize on carbon markets, and the negotiating position of developing countries in global climate policy discourse. Concerns over the poor state of information, in terms of data availability and representation, have fueled appeals for new approaches to quantifying GHG emissions and removals from smallholder agriculture, for both existing conditions and mitigation interventions (Berry and Ryan 2013, Olander et al 2013). Considering the dependence of quantification approaches on data and the current data deficit for smallholder systems, it is clear that in situ measurements must be a core part of initial and future strategies to improve GHG inventories and develop mitigation measures for smallholder agriculture. Once more data are available, especially for farming systems of high priority (e.g., those identified through global and regional rankings of emission hotspots or mitigation leverage points), better cumulative estimates and targeted actions will become possible. Greenhouse gas measurements in agriculture are expensive, time consuming, and error prone. These challenges are exacerbated by the heterogeneity of smallholder systems and landscapes and the diversity of methods used. Concerns over methodological rigor, measurement costs, and the diversity of approaches, coupled with the demand for robust information suggest it is germane for the scientific community to establish standards of measurements—'a protocol'—for quantifying GHG emissions from smallholder agriculture. A standard protocol for use by scientists and development organizations will help generate consistent, comparable, and reliable data on emissions baselines and allow rigorous comparisons of mitigation options. Besides enhancing data utility, a protocol serves as a benchmark for non-experts to easily assess data

  10. Climate change mitigation policy paradigms — national objectives and alignments

    DEFF Research Database (Denmark)

    Halsnæs, Kirsten; Garg, Amit; Christensen, John M.

    2014-01-01

    for discussing how a multi objective policy paradigm can contribute to future climate change mitigation. The paper includes country case studies from Brazil, Canada, China, the European Union (EU), India, Japan, Mexico, Nigeria, South Africa, South Korea and the United States covering renewable energy options......, industry, transportation, the residential sector and cross-sectoral policies. These countries and regions together contribute more than two thirds of global GHG emissions. The paper finds that policies that are nationally driven and that have multiple objectives, including climate-change mitigation, have...... been widely applied for decades in both developing countries and industrialised countries. Many of these policies have a long history, and adjustments have taken place based on experience and cost effectiveness concerns. Various energy and climate-change policy goals have worked together...

  11. Comprehensive mitigation assessment process (COMAP) - Description and instruction manual

    Energy Technology Data Exchange (ETDEWEB)

    Makundi, Willy; Sathaye, Jayant

    2001-11-09

    In order to prepare policies and plans to reduce GHG emissions, national policy-makers need information on the costs and benefits of different mitigation options in addition to their carbon implications. Policy-makers must weigh the costs, benefits, and impacts of climate change mitigation and adaptation options, in the face of competition for limited resources. The policy goal for mitigation options in the land use sector is to identify which mix of options is likely to best achieve the desired forestry service and production objectives at the least cost, while attempting to maximize economic and social benefits, and minimize negative environmental and social impacts. Improved national-level cost estimates of response options in the land use sector can be generated by estimating the costs and benefits of different forest management practices appropriate for specific country conditions which can be undertaken within the constraint of land availability and its opportunity cost. These co st and land use estimates can be combined to develop cost curves, which would assist policy-makers in constructing policies and programs to implement forest responses.

  12. Drainage filter technologies to mitigate site-specific phosphorus losses in agricultural drainage discharge

    DEFF Research Database (Denmark)

    Kjærgaard, Charlotte; Heckrath, Goswin Johann; Canga, Eriona

    in drainage. The Danish “SUPREME-TECH” project (2010-2016) (www.supreme-tech.dk) aims at providing the scientific basis for developing cost-effective filter technologies for P in agricultural drainage waters. The project studies different approaches of implementing filter technologies including drainage well....... Targeting high risk areas of P loss and applying site-specific measures promises to be a cost-efficient approach. The Danish Commission for Nature and Agriculture has, therefore, now called for a paradigm shift towards targeted, cost-efficient technologies to mitigate site-specific nutrient losses...... environmental threshold values (

  13. Fuel cycle comparison of distributed power generation technologies

    International Nuclear Information System (INIS)

    Elgowainy, A.; Wang, M.Q.

    2008-01-01

    The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions

  14. Abatement cost of GHG emissions for wood-based electricity and ethanol at production and consumption levels.

    Directory of Open Access Journals (Sweden)

    Puneet Dwivedi

    Full Text Available Woody feedstocks will play a critical role in meeting the demand for biomass-based energy products in the US. We developed an integrated model using comparable system boundaries and common set of assumptions to ascertain unit cost and greenhouse gas (GHG intensity of electricity and ethanol derived from slash pine (Pinus elliottii at the production and consumption levels by considering existing automobile technologies. We also calculated abatement cost of greenhouse gas (GHG emissions with respect to comparable energy products derived from fossil fuels. The production cost of electricity derived using wood chips was at least cheaper by 1 ¢ MJ-1 over electricity derived from wood pellets. The production cost of ethanol without any income from cogenerated electricity was costlier by about 0.7 ¢ MJ-1 than ethanol with income from cogenerated electricity. The production cost of electricity derived from wood chips was cheaper by at least 0.7 ¢ MJ-1 than the energy equivalent cost of ethanol produced in presence of cogenerated electricity. The cost of using ethanol as a fuel in a flex-fuel vehicle was at least higher by 6 ¢ km-1 than a comparable electric vehicle. The GHG intensity of per km distance traveled in a flex-fuel vehicle was greater or lower than an electric vehicle running on electricity derived from wood chips depending on presence and absence of GHG credits related with co-generated electricity. A carbon tax of at least $7 Mg CO2e-1 and $30 Mg CO2e-1 is needed to promote wood-based electricity and ethanol production in the US, respectively. The range of abatement cost of GHG emissions is significantly dependent on the harvest age and selected baseline especially for electricity generation.

  15. Mitigating the environmental impacts of milk production via anaerobic digestion of manure: case study of a dairy farm in the Po Valley.

    Science.gov (United States)

    Battini, F; Agostini, A; Boulamanti, A K; Giuntoli, J; Amaducci, S

    2014-05-15

    This work analyzes the environmental impacts of milk production in an intensive dairy farm situated in the Northern Italy region of the Po Valley. Three manure management scenarios are compared: in Scenario 1 the animal slurry is stored in an open tank and then used as fertilizer. In scenario 2 the manure is processed in an anaerobic digestion plant and the biogas produced is combusted in an internal combustion engine to produce heat (required by the digester) and electricity (exported). Scenario 3 is similar to scenario 2 but the digestate is stored in a gas-tight tank. In scenario 1 the GHG emissions are estimated to be equal to 1.21 kg CO2 eq.kg(-1) Fat and Protein Corrected Milk (FPCM) without allocation of the environmental burden to the by-product meat. With mass allocation, the GHG emissions associated to the milk are reduced to 1.18 kg CO2 eq.kg(-1) FPCM. Using an economic allocation approach the GHG emissions allocated to the milk are 1.13 kg CO2 eq.kg(-1) FPCM. In scenarios 2 and 3, without allocation, the GHG emissions are reduced respectively to 0.92 (-23.7%) and 0.77 (-36.5%) kg CO2 eq.kg(-1) FPCM. If land use change due to soybean production is accounted for, an additional emission of 0.53 kg CO2 eq. should be added, raising the GHG emissions to 1.74, 1.45 and 1.30 kg CO2 eq kg(-1) FPCM in scenarios 1, 2 and 3, respectively. Primary energy from non-renewable resources decreases by 36.2% and 40.6% in scenarios 2 and 3, respectively, with the valorization of the manure in the biogas plant. The other environmental impact mitigated is marine eutrophication that decreases by 8.1% in both scenarios 2 and 3, mostly because of the lower field emissions. There is, however, a trade-off between non-renewable energy and GHG savings and other environmental impacts: acidification (+6.1% and +5.5% in scenarios 2 and 3, respectively), particulate matter emissions (+1.4% and +0.7%) and photochemical ozone formation potential (+41.6% and +42.3%) increase with the

  16. GHG emission quantification for pavement construction projects using a process-based approach

    Directory of Open Access Journals (Sweden)

    Charinee Limsawasd

    2017-03-01

    Full Text Available Climate change and greenhouse gas (GHG emissions have attracted much attention for their impacts upon the global environment. Initiating of new legislation and regulations for control of GHG emissions from the industrial sectors has been applied to address this problem. The transportation industries, which include operation of road pavement and pavement construction equipment, are the highest GHG-emitting sectors. This study presents a novel quantification model of GHG emissions of pavement construction using process-based analysis. The model is composed of five modules that evaluate GHG emissions. These are: material production and acquisition, (2 material transport to a project site, (3 heavy equipment use, (4 on-site machinery use, and, (5 on-site electricity use. The model was applied to a hypothetical pavement project to compare the environmental impacts of flexible and rigid pavement types during construction. The resulting model can be used for evaluation of environmental impacts, as well as for designing and planning highway pavement construction.

  17. 2009 EVALUATION OF TRITIUM REMOVAL AND MITIGATION TECHNOLOGIES FOR WASTEWATER TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    LUECK KJ; GENESSE DJ; STEGEN GE

    2009-02-26

    Since 1995, a state-approved land disposal site (SALDS) has received tritium contaminated effluents from the Hanford Site Effluent Treatment Facility (ETF). Tritium in this effluent is mitigated by storage in slow moving groundwater to allow extended time for decay before the water reaches the site boundary. By this method, tritium in the SALDS is isolated from the general environment and human contact until it has decayed to acceptable levels. This report contains the 2009 update evaluation of alternative tritium mitigation techniques to control tritium in liquid effluents and groundwater at the Hanford site. A thorough literature review was completed and updated information is provided on state-of-the-art technologies for control of tritium in wastewaters. This report was prepared to satisfy the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-026-07B (Ecology, EPA, and DOE 2007). Tritium separation and isolation technologies are evaluated periodically to determine their feasibility for implementation to control Hanford site liquid effluents and groundwaters to meet the Us. Code of Federal Regulations (CFR), Title 40 CFR 141.16, drinking water maximum contaminant level (MCL) for tritium of 20,000 pOll and/or DOE Order 5400.5 as low as reasonably achievable (ALARA) policy. Since the 2004 evaluation, there have been a number of developments related to tritium separation and control with potential application in mitigating tritium contaminated wastewater. These are primarily focused in the areas of: (1) tritium recycling at a commercial facility in Cardiff, UK using integrated tritium separation technologies (water distillation, palladium membrane reactor, liquid phase catalytic exchange, thermal diffusion), (2) development and demonstration of Combined Electrolysis Catalytic Exchange (CECE) using hydrogen/water exchange to separate tritium from water, (3) evaporation of tritium contaminated water for dispersion in the

  18. GHG emissions from primary aluminum production in China: Regional disparity and policy implications

    International Nuclear Information System (INIS)

    Hao, Han; Geng, Yong; Hang, Wen

    2016-01-01

    Highlights: • GHG emissions from primary aluminum production in China were accounted. • The impact of regional disparity of power generation was considered for this study. • GHG emissions factor of China’s primary aluminum production was 16.5 t CO_2e/t Al ingot in 2013. • Total GHG emissions from China’s primary aluminum production were 421 mt CO_2e in 2013. - Abstract: China is the world-leading primary aluminum production country, which contributed to over half of global production in 2014. Primary aluminum production is power-intensive, for which power generation has substantial impact on overall Greenhouse Gas (GHG) emissions. In this study, we explore the impact of regional disparity of China’s power generation system on GHG emissions for the sector of primary aluminum production. Our analysis reveals that the national GHG emissions factor (GEF) of China’s primary aluminum production was 16.5 t CO_2e/t Al ingot in 2013, with province-level GEFs ranging from 8.2 to 21.7 t CO_2e/t Al ingot. There is a high coincidence of provinces with high aluminum productions and high GEFs. Total GHG emissions from China’s primary aluminum production were 421 mt CO_2e in 2013, approximately accounting for 4% of China’s total GHG emissions. Under the 2020 scenario, GEF shows a 13.2% reduction compared to the 2013 level, but total GHG emissions will increase to 551 mt CO_2e. Based on our analysis, we recommend that the government should further promote energy efficiency improvement, facilitate aluminum industry redistribution with low-carbon consideration, promote secondary aluminum production, and improve aluminum industry data reporting and disclosure.

  19. Impact of neighborhood design on energy performance and GHG emissions

    International Nuclear Information System (INIS)

    Hachem, Caroline

    2016-01-01

    Highlights: • Energy use and GHG emissions of different neighborhood designs are investigated. • Improving buildings energy performance reduces energy use and GHG emissions by 75%. • Density as isolated factor has limited effect on transport on per capita basis. • Distance to central business district impacts transport GHG emission significantly. - Abstract: This paper presents an innovative and holistic approach to the analysis of the impact of selected design parameters of a new solar community on its environmental performance, in terms of energy efficiency and carbon footprint (green-house gas (GHG) emissions). The design parameters include energy performance level of buildings, density, type of the neighborhood (mixed-use vs residential), location of the commercial center relative to residential areas and the design of the streets. Energy performance is measured as the balance between overall energy consumption for building operations (assuming an all-electric neighborhood) and electricity generation potential through integration of PV panels on available roof surfaces. Greenhouse gas emissions are those associated with building operations and transport. Results of simulations carried out on prototype neighborhoods located in the vicinity of Calgary, Alberta, Canada indicate that, while adopting high-energy efficiency measures can reduce the buildings’ impact by up to 75% in terms of energy consumption and GHG emissions, transport still has a large environmental impact. The parameters of highest impact on transport and its associated GHG emissions are the design of the neighborhood and the distance to the business center. Density, as isolated parameter, has a modest effect on the selected mode of transportation, in terms of using private or public transportation. While this study relates to a specific location and a range of design assumptions, the methodology employed can serve as a template for evaluating design alternatives of new sustainable

  20. Use of Space Technology in Flood Mitigation (Western Province, Zambia)

    Science.gov (United States)

    Mulando, A.

    2001-05-01

    Disasters, by definition are events that appear suddenly and with little warning. They are usually short lived, with extreme events bringing death, injury and destruction of buildings and communications. Their aftermath can be as damaging as their physical effects through destruction of sanitation and water supplies, destruction of housing and breakdown of transport for food, temporary shelter and emergency services. Since floods are one of the natural disasters which endanger both life and property, it becomes vital to know its extents and where the hazards exists. Flood disasters manifest natural processes on a larger scale and information provided by Remote Sensing is a most appropriate input to analysis of actual events and investigations of potential risks. An analytical and qualitative image processing and interpretation of Remotely Sensed data as well as other data such as rainfall, population, settlements not to mention but a few should be used to derive good mitigation strategies. Since mitigation is the cornerstone of emergency management, it therefore becomes a sustained action that will reduce or eliminate long term risks to people and property from natural hazards such as floods and their effects. This will definitely involve keeping of homes and other sensitive structures away from flood plains. Promotion of sound land use planning based on this known hazard, "FLOODS" is one such form of mitigation that can be applied in flood affected areas within flood plain. Therefore future mitigation technologies and procedures should increasingly be based on the use of flood extent information provided by Remote Sensing Satellites like the NOAA AVHRR as well as information on the designated flood hazard and risk areas.

  1. Environmental Technology Verification Report: Taconic Energy, Inc. TEA Fuel Additive

    Science.gov (United States)

    The Greenhouse Gas Technology Center (GHG Center) is one of six verification organizations operating under EPA’s ETV program. One sector of significant interest to GHG Center stakeholders is transportation - particularly technologies that result in fuel economy improvements. Taco...

  2. FORECASTING MODEL OF GHG EMISSION IN MANUFACTURING SECTORS OF THAILAND

    Directory of Open Access Journals (Sweden)

    Pruethsan Sutthichaimethee

    2017-01-01

    Full Text Available This study aims to analyze the modeling and forecasting the GHG emission of energy consumption in manufacturing sectors. The scope of the study is to analysis energy consumption and forecasting GHG emission of energy consumption for the next 10 years (2016-2025 and 25 years (2016-2040 by using ARIMAX model from the Input-output table of Thailand. The result shows that iron and steel has the highest value of energy consumption and followed by cement, fluorite, air transport, road freight transport, hotels and places of loading, coal and lignite, petrochemical products, other manufacturing, road passenger transport, respectively. The prediction results show that these models are effective in forecasting by measured by using RMSE, MAE, and MAPE. The results forecast of each model is as follows: 1 Model 1(2,1,1 shows that GHG emission will be increasing steadily and increasing at 25.17% by the year 2025 in comparison to 2016. 2 Model 2 (2,1,2 shows that GHG emission will be rising steadily and increasing at 41.51% by the year 2040 in comparison to 2016.

  3. Climate change mitigation opportunities based on carbon footprint estimates of dietary patterns in Peru.

    Directory of Open Access Journals (Sweden)

    Ian Vázquez-Rowe

    Full Text Available Food consumption accounts for an important proportion of the world GHG emissions per capita. Previous studies have delved into the nature of dietary patterns, showing that GHG reductions can be achieved in diets if certain foods are consumed rather than other, more GHG intensive products. For instance, vegetarian and low-meat diets have proved to be less carbon intensive than diets that are based on ruminant meat. These environmental patterns, increasingly analyzed in developed nations, are yet to be assessed in countries liked Peru where food purchase represents a relatively high percentage of the average household expenditure, ranging from 38% to 51% of the same. Therefore, food consumption can be identified as a potential way to reduce GHG emissions in Peru. However, the Peruvian government lacks a specific strategy to mitigate emissions in this sector, despite the recent ratification of the Paris Accord. In view of this, the main objective of this study is to analyze the environmental impacts of a set of 47 Peruvian food diet profiles, including geographical and socioeconomic scenarios. In order to do this, Life Cycle Assessment was used as the methodological framework to obtain the overall impacts of the components in the dietary patterns observed and primary data linked to the composition of diets were collected from the Peruvian National Institute for Statistics (INEI. Life cycle inventories for the different products that are part of the Peruvian diet were obtained from a set of previous scientific articles and reports regarding food production. Results were computed using the IPCC 2013 assessment method to estimate GHG emissions. Despite variations in GHG emissions from a geographical perspective, no significant differences were observed between cities located in the three Peruvian natural regions (i.e., coast, Andes and Amazon basin. In contrast, there appears to be a strong, positive correlation between GHG emissions and social

  4. Climate change mitigation opportunities based on carbon footprint estimates of dietary patterns in Peru.

    Science.gov (United States)

    Vázquez-Rowe, Ian; Larrea-Gallegos, Gustavo; Villanueva-Rey, Pedro; Gilardino, Alessandro

    2017-01-01

    Food consumption accounts for an important proportion of the world GHG emissions per capita. Previous studies have delved into the nature of dietary patterns, showing that GHG reductions can be achieved in diets if certain foods are consumed rather than other, more GHG intensive products. For instance, vegetarian and low-meat diets have proved to be less carbon intensive than diets that are based on ruminant meat. These environmental patterns, increasingly analyzed in developed nations, are yet to be assessed in countries liked Peru where food purchase represents a relatively high percentage of the average household expenditure, ranging from 38% to 51% of the same. Therefore, food consumption can be identified as a potential way to reduce GHG emissions in Peru. However, the Peruvian government lacks a specific strategy to mitigate emissions in this sector, despite the recent ratification of the Paris Accord. In view of this, the main objective of this study is to analyze the environmental impacts of a set of 47 Peruvian food diet profiles, including geographical and socioeconomic scenarios. In order to do this, Life Cycle Assessment was used as the methodological framework to obtain the overall impacts of the components in the dietary patterns observed and primary data linked to the composition of diets were collected from the Peruvian National Institute for Statistics (INEI). Life cycle inventories for the different products that are part of the Peruvian diet were obtained from a set of previous scientific articles and reports regarding food production. Results were computed using the IPCC 2013 assessment method to estimate GHG emissions. Despite variations in GHG emissions from a geographical perspective, no significant differences were observed between cities located in the three Peruvian natural regions (i.e., coast, Andes and Amazon basin). In contrast, there appears to be a strong, positive correlation between GHG emissions and social expenditure or academic

  5. Window of Opportunity: Mitigating Threats from Disruptive Technologies Before Widespread Adoption

    Science.gov (United States)

    2014-09-01

    diffusion.117 Taking a lesson from the issues faced by mitigating the dual-use concerns in the biotechnology field, Mandel and Gerald Epstein...technology combined with online collaboration enables users to make high quality firearm parts and high-capacity magazines by simply downloading a...adoption of EDTs, are very similar to those faced in the biotechnology field. Advances in biotechnology are plagued with dual-use concerns, and the

  6. Fiscal 2000 report of investigation. Project for promoting international cooperation for global environment/Project for assessment on effect of climate change; 2000 nendo chikyu kankyo kokusai kyoryoku suishin jigyo / kiko hendo eikyo hyoka nado jigyo chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Assessment and examination were conducted on the scientific/technological aspect, environmental aspect and economic/social aspect concerning measures for mitigating climate change, as a part of international cooperation in global warming issues. In the development of assessment methods for cost analysis, it revealed that, in the activities for mitigating emission of greenhouse effect gases (GHG) or for increasing carbon sequestration, benefits of the mitigation sometimes surpassed their cost, allowing the society to benefit from the mitigation. In the examination of problems in technology transfer and their solutions, it was found that, in order to attain successful transfer, partnership among the parties interested was essential and that each government was capable of promoting such partnership. In the assessment of various policy options, the situation in the U.S. is such that the market aspect of GHG emission permit and credit trading is rather weak because of immaturity in a legal framework on GHG emission trading and because of undefinedness in the systems of the Kyoto Protocol and in the possibility of its validation. However, the reason enterprises are actively participating in the early market is that they plan a risk-hedge for example in anticipation of tighter regulations in the future. (NEDO)

  7. Evaluation of technological measures to cope with climate change

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Hiroshi; Moriguchi, Yulchi [National Inst. for Environmental Studies, Onogawa Tsukuba (Japan)

    1993-12-31

    Because the global warming (climate change) is recognized as a highly probable phenomenon in the next century, the countermeasures to cope with this issue is really Important. International discussion Is progressing towards the conclusion of the treaty to stabilize global warming. Therefore, now is the time to take concrete action to reduce the emission to the greenhouse gases (GHG). To find the way to reduce the emission of the GHG, the procedure as next should be taken. (1) Systematic estimation of GHG emission (GHG analysis), (2) Identification of conventional and Innovative technologies, (3) Assessment of individual sectoral technologies, (4) Comprehensive evaluation of countermeasures as a whole. Both in the U.S.A. and Japan, this kind of research have been made independently. Among these processes, the standard methodologies should be established on the GHG analysis, the assessment of individual technologies and the comprehensive evaluation. From such a background, it is important to discuss the way to evaluate technological measures to cope with climate change between the specialist from the U.S.A. and Japan. And still required to search the possibility to establish a joint project between both countries.

  8. Aerosol Observing System Greenhouse Gas (AOS GhG) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Biraud, S. C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Reichl, K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-03-01

    The Greenhouse Gas (GhG) Measurement system is a combination of two systems in series: (1) the Tower Gas Processing (TGP) System, an instrument rack which pulls, pressurizes, and dries air streams from an atmospheric sampling tower through a series of control and monitoring components, and (2) the Picarro model G2301 cavity ringdown spectrometer (CRDS), which measures CO2, CH4, and H2O vapor; the primary measurements of the GhG system.

  9. Enteric methane mitigation technologies for ruminant livestock: a synthesis of current research and future directions.

    Science.gov (United States)

    Patra, Amlan Kumar

    2012-04-01

    Enteric methane (CH(4)) emission in ruminants, which is produced via fermentation of feeds in the rumen and lower digestive tract by methanogenic archaea, represents a loss of 2% to 12% of gross energy of feeds and contributes to global greenhouse effects. Globally, about 80 million tonnes of CH(4) is produced annually from enteric fermentation mainly from ruminants. Therefore, CH(4) mitigation strategies in ruminants have focused to obtain economic as well as environmental benefits. Some mitigation options such as chemical inhibitors, defaunation, and ionophores inhibit methanogenesis directly or indirectly in the rumen, but they have not confirmed consistent effects for practical use. A variety of nutritional amendments such as increasing the amount of grains, inclusion of some leguminous forages containing condensed tannins and ionophore compounds in diets, supplementation of low-quality roughages with protein and readily fermentable carbohydrates, and addition of fats show promise for CH(4) mitigation. These nutritional amendments also increase the efficiency of feed utilization and, therefore, are most likely to be adopted by farmers. Several new potential technologies such as use of plant secondary metabolites, probiotics and propionate enhancers, stimulation of acetogens, immunization, CH(4) oxidation by methylotrophs, and genetic selection of low CH(4)-producing animals have emerged to decrease CH(4) production, but these require extensive research before they can be recommended to livestock producers. The use of bacteriocins, bacteriophages, and development of recombinant vaccines targeting archaeal-specific genes and cell surface proteins may be areas worthy of investigation for CH(4) mitigation as well. A combination of different CH(4) mitigation strategies should be adopted in farm levels to substantially decrease methane emission from ruminants. Evidently, comprehensive research is needed to explore proven and reliable CH(4) mitigation technologies

  10. The political economy of a tradable GHG permit market in the European Union

    DEFF Research Database (Denmark)

    Markussen, P.; Svendsen, Gert Tinggaard; Vesterdal, Morten

    2002-01-01

    The EU has committed itself to meet an 8% greenhouse gas (GHG) reduction target level following the Kyoto agreement. Therefore, the EU Commission has just proposed a new directive establishing a framework for GHG emissions trading within the European Union. This proposal is the outcome of a policy...... that the dominant interest groups indeed influenced the final design of an EU GHG market....

  11. Research and Development Opportunities for Joining Technologies in HVAC&R

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Burlington, MA (United States); Guernsey, Matt [Navigant Consulting, Burlington, MA (United States); Young, Jim [Navigant Consulting, Burlington, MA (United States)

    2015-10-01

    The Building Technologies Office (BTO) works with researchers and industry partners to develop and deploy technologies that can substantially reduce energy consumption and greenhouse gas (GHG) emissions in residential and commercial buildings. This opportunity assessment aims to advance BTO’s energy savings, GHG reduction, and other program goals by identifying research and development (R&D) initiatives for joining technologies in heating, ventilation, air-conditioning, and refrigeration (HVAC&R) systems. Improving joining technologies for HVAC&R equipment has the potential to increase lifetime equipment operating efficiency, decrease equipment and project cost, and most importantly reduce hydroflourocarbon (HFC) refrigerant leakage to support HFC phasedown and GHG reduction goals.

  12. A methodology for the sustainability assessment of arsenic mitigation technology for drinking water.

    Science.gov (United States)

    Etmannski, T R; Darton, R C

    2014-08-01

    In this paper we show how the process analysis method (PAM) can be applied to assess the sustainability of options to mitigate arsenic in drinking water in rural India. Stakeholder perspectives, gathered from a fieldwork survey of 933 households in West Bengal in 2012 played a significant role in this assessment. This research found that the 'most important' issues as specified by the technology users are cost, trust, distance from their home to the clean water source (an indicator of convenience), and understanding the health effects of arsenic. We show that utilisation of a technology is related to levels of trust and confidence in a community, making use of a composite trust-confidence indicator. Measures to improve trust between community and organisers of mitigation projects, and to raise confidence in technology and also in fair costing, would help to promote successful deployment of appropriate technology. Attitudes to cost revealed in the surveys are related to the low value placed on arsenic-free water, as also found by other investigators, consistent with a lack of public awareness about the arsenic problem. It is suggested that increased awareness might change attitudes to arsenic-rich waste and its disposal protocols. This waste is often currently discarded in an uncontrolled manner in the local environment, giving rise to the possibility of point-source recontamination. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Short-Term Power Plant GHG Emissions Forecasting Model

    International Nuclear Information System (INIS)

    Vidovic, D.

    2016-01-01

    In 2010, the share of greenhouse gas (GHG) emissions from power generation in the total emissions at the global level was about 25 percent. From January 1st, 2013 Croatian facilities have been involved in the European Union Emissions Trading System (EU ETS). The share of the ETS sector in total GHG emissions in Croatia in 2012 was about 30 percent, where power plants and heat generation facilities contributed to almost 50 percent. Since 2013 power plants are obliged to purchase all emission allowances. The paper describes the short-term climate forecasting model of greenhouse gas emissions from power plants while covering the daily load diagram of the system. Forecasting is done on an hourly domain typically for one day, it is possible and more days ahead. Forecasting GHG emissions in this way would enable power plant operators to purchase additional or sell surplus allowances on the market at the time. Example that describes the operation of the above mentioned forecasting model is given at the end of the paper.(author).

  14. Cover crops mitigate direct greenhouse gases balance but reduce drainage under climate change scenarios in temperate climate with dry summers.

    Science.gov (United States)

    Tribouillois, Hélène; Constantin, Julie; Justes, Eric

    2018-02-14

    Cover crops provide ecosystem services such as storing atmospheric carbon in soils after incorporation of their residues. Cover crops also influence soil water balance, which can be an issue in temperate climates with dry summers as for example in southern France and Europe. As a consequence, it is necessary to understand cover crops' long-term influence on greenhouse gases (GHG) and water balances to assess their potential to mitigate climate change in arable cropping systems. We used the previously calibrated and validated soil-crop model STICS to simulate scenarios of cover crop introduction to assess their influence on rainfed and irrigated cropping systems and crop rotations distributed among five contrasted sites in southern France from 2007 to 2052. Our results showed that cover crops can improve mean direct GHG balance by 315 kg CO 2 e ha -1  year -1 in the long term compared to that of bare soil. This was due mainly to an increase in carbon storage in the soil despite a slight increase in N 2 O emissions which can be compensated by adapting fertilization. Cover crops also influence the water balance by reducing mean annual drainage by 20 mm/year but increasing mean annual evapotranspiration by 20 mm/year compared to those of bare soil. Using cover crops to improve the GHG balance may help to mitigate climate change by decreasing CO 2 e emitted in cropping systems which can represent a decrease from 4.5% to 9% of annual GHG emissions of the French agriculture and forestry sector. However, if not well managed, they also could create water management issues in watersheds with shallow groundwater. Relationships between cover crop biomass and its influence on several variables such as drainage, carbon sequestration, and GHG emissions could be used to extend our results to other conditions to assess the cover crops' influence in a wider range of areas. © 2018 John Wiley & Sons Ltd.

  15. Management matters: Testing a mitigation strategy of nitrous oxide emissions on managed grassland

    Science.gov (United States)

    Fuchs, Kathrin; Hörtnagl, Lukas; Eugster, Werner; Koller, Patrick; Käslin, Florian; Merbold, Lutz

    2017-04-01

    The magnitude of greenhouse gas (GHG) exchange between managed grasslands and the atmosphere depends besides climate predominantly on management practices. While natural or extensively managed grasslands are known to function as GHG sinks, intensively managed grasslands are characterized by substantial nitrous oxide (N2O) emissions diminishing their sink function. One potential N2O mitigation strategy is to reduce the required amount of nitrogen (N) fertilizer input by using biological nitrogen fixation (BNF) via legumes. However, the effect of legumes on nitrous oxide emissions is still not fully understood. In this study we quantify net GHG fluxes from two differently managed grassland parcels (mitigation, control) and relate our results to productivity (yields). In addition, we aim at revealing the influence of various driver variables on N2O exchange. Our experimental setup consisted of an eddy covariance tower that measured the net exchange of the three major anthropogenic GHGs, nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2). Both grassland parcels can be covered with this tower due to two prevailing wind directions. GHG flux measurements were accompanied by measurements of commonly known driver variables such as water filled pore space, soil temperature, soil oxygen concentrations and mineral N to disentangle the soil meteorological influence of N2O fluxes from human drivers. Following organic fertilizer application, we measured elevated N2O emissions (>1 nmol m-2 s-1) at the control parcel and unchanged N2O emissions at the treatment parcel. Net annual fluxes were 54% and 50% lower at the experimental parcel in 2015 and 2016, respectively. Annual yields did not significantly differ between parcels, but were slightly lower at the experimental parcel compared to the control parcel. Significantly lower nitrous oxide fluxes under experimental management indicate that nitrous oxide emissions can be effectively reduced at very low costs with a clover

  16. Measuring reporting verifying. A primer on MRV for nationally appropriate mitigation actions

    Energy Technology Data Exchange (ETDEWEB)

    Hinostroza, M. (ed.); Luetken, S.; Holm Olsen, K. (Technical Univ. of Denmark. UNEP Risoe Centre, Roskilde (Denmark)); Aalders, E.; Pretlove, B.; Peters, N. (Det Norske Veritas, Hellerup (Denmark))

    2012-03-15

    The requirements for measurement, reporting and verification (MRV) of nationally appropriate mitigation actions (NAMAs) are one of the crucial topics on the agenda of international negotiations to address climate change mitigation. According to agreements so far, the general guidelines for domestic MRV are to be developed by Subsidiary Body for Scientific and Technological Advice (SBSTA)1. Further, the Subsidiary Body for Implementation (SBI) will be conducting international consultations and analysis (ICA) of biennial update reports (BUR) to improve transparency of mitigation actions, which should be measured, reported and verified. 2. What is clear from undergoing discussions both at SBSTA and at SBI is that MRV for NAMAs should not be a burden for controlling greenhouse gas (GHG) emissions connected to economic activities. Instead, the MRV process should facilitate mitigation actions; encourage the redirection of investments and address concerns regarding carbon content of emission intensive operations of private and public companies and enterprises worldwide. While MRV requirements are being shaped within the Convention, there are a number of initiatives supporting developing countries moving forward with NAMA development and demonstration activities. How these actions shall be measured, reported and verified, however, remain unanswered. MRV is not new. It is present in most existing policies and frameworks related to climate change mitigation. With an aim to contribute to international debate and capacity building on this crucial issue, the UNEP Risoe Centre in cooperation with UNDP, are pleased to present this publication that through the direct collaboration with Det Norske Veritas (DNV) builds on existing MRV practices in current carbon markets; provides insights on how MRV for NAMAs can be performed and identifies elements and drivers to be considered when designing adequate MRV systems for NAMAs in developing countries. This primer is the second

  17. Life cycle GHG analysis of rice straw bio-DME production and application in Thailand

    International Nuclear Information System (INIS)

    Silalertruksa, Thapat; Gheewala, Shabbir H.; Sagisaka, Masayuki; Yamaguchi, Katsunobu

    2013-01-01

    Highlights: • Life cycle GHG emissions of rice straw bio-DME production in Thailand are assessed. • Bio-DME replaces diesel in engines and supplements LPG for household application. • Rice straw bio-DME in both cases of substitution helps reduce GHG emissions. - Abstract: Thailand is one of the leading countries in rice production and export; an abundance of rice straw, therefore, is left in the field nowadays and is commonly burnt to facilitate quick planting of the next crop. The study assesses the life cycle greenhouse gas (GHG) emissions of using rice straw for bio-DME production in Thailand. The analysis is divided into two scenarios of rice straw bio-DME utilization i.e. used as automotive fuel for diesel engines and used as LPG supplement for household application. The results reveal that that utilization of rice straw for bio-DME in the two scenarios could help reduce GHG emissions by around 14–70% and 2–66%, respectively as compared to the diesel fuel and LPG substituted. In case rice straw is considered as a by-product of rice cultivation, the cultivation of rice straw will be the major source of GHG emission contributing around 50% of the total GHG emissions of rice straw bio-DME production. Several factors that can affect the GHG performance of rice straw bio-DME production are discussed along with measures to enhance GHG performance of rice straw bio-DME production and utilization

  18. 75 FR 62739 - 2017 and Later Model Year Light Duty Vehicle GHG Emissions and CAFE Standards; Notice of Intent

    Science.gov (United States)

    2010-10-13

    ... Model Year Light Duty Vehicle GHG Emissions and CAFE Standards; Notice of Intent AGENCIES: Environmental... fuel economy (CAFE) standards in accordance with the Energy Policy and Conservation Act (EPCA), as... FR 49454, 49460 (September 28, 2009). The NHTSA CAFE standards are only based on technologies that...

  19. SUSTAINING CLIMATE CHANGE MITIGATION—POLICY, TECHNOLOGY, AND SOCIETY

    Directory of Open Access Journals (Sweden)

    Andreas Rechkemmer

    2010-01-01

    Full Text Available In a world that is becoming more and more exposed and vulnerable to the effects of global climate change, combining integrated risk assessment tools with effective strategies for both mitigation and adaptation is a key prerogative for policy-making. With the focus of both researchers and decision-makers gradually shifting from observing and assessing the bio-physical aspects of climate change to a more human and society centered understanding of the nature of the problem, the social, behavioral, economic and technological aspects have entered center stage of the public discourse. Responses to the climate change challenge have to establish an optimal interplay between mitigation, adaptation and socio-economic instruments. Yet, given the band-width and scale of the climate problematique and its projected impacts, very ambitious mitigation measures have to be undertaken without delays, a fact that is particularly true for emerging economies with their very rapid and unprecedented growth rates, both in GDP and GHG emissions terms. The challenge for the next years is to harmonize poverty eradication and attaining the Millenium Development Goals through stable economic growth with mitigating the effects of climate change. Therefore, “inclusive green growth” has become the motto of the day. But how can this goal be achieved? Obviously, quite fundamental changes have to be introduced that affect both the production and the consumption sectors and allow for real innovation in technologies and energy, in urban mobility, infrastructure and transportation grids. This paper illustrates the deep social and societal nature of climate change response strategies, especially in the area of mitigation, and shows that transitions to green and low-carbon economies will have to embed policies, incentive schemes and economic instruments in a larger societal context of social learning and behavioral change.

  20. Technology policy for energy and climate change. Lessons from a retrospective of thirty years on research, development, and demonstration experiences

    Energy Technology Data Exchange (ETDEWEB)

    Marlay, R.C.; Koske, B.H. [Office of Policy and International Affairs, U.S. Dept. of Energy, Washington, DC (United States)

    2005-08-15

    Increasing accumulations of carbon dioxide (CO{sub 2}) and other greenhouse gases (GHGs) in the Earth atmosphere have raised concerns about the potential for climate change and related consequences. These concerns have heightened attention to GHG emissions and the various means for their mitigation. If substantial reductions in anthropogenic emissions of GHGs were to be required over the course of the 21 Century, fundamental changes would need to take place in the way the world produces and uses energy, as well as in many other GHG-emitting aspects of industry, agriculture, land management and use, and other activities associated with modern civilization. New and advanced technologies could enable and facilitate a gradual, long-term transformation to a future society characterized by significantly lower GHG emissions. Progress could be made by providing improved and less costly means for reducing, avoiding, capturing and sequestering GHG emissions, while also providing the energy and other services needed to sustain expanding economic activity and serve the rising aspirations of a growing world population. It is generally agreed that certain policies aimed at stimulating technological innovation toward this end, including investment in research, development and demonstration (RD and D), constitute an important component of any long-term strategy aimed at addressing climate change. Beyond RD and D, however, there appears to be little agreement as to the answers to two key questions. Might augmenting policies, beyond RD and D, be justified today to spur technology development and adoption? If so, what does history suggest about the kinds of policies that might be most appropriate, and to what extent would they be applicable? This paper attempts to provide insights to the answers to these two questions. It notes in passing the current state of climate change science and its uncertainties, which suggests the potential efficacy of so-called hedging strategies to reduce

  1. Technology policy for energy and climate change. Lessons from a retrospective of thirty years on research, development, and demonstration experiences

    International Nuclear Information System (INIS)

    Marlay, R.C.; Koske, B.H.

    2005-08-01

    Increasing accumulations of carbon dioxide (CO 2 ) and other greenhouse gases (GHGs) in the Earth atmosphere have raised concerns about the potential for climate change and related consequences. These concerns have heightened attention to GHG emissions and the various means for their mitigation. If substantial reductions in anthropogenic emissions of GHGs were to be required over the course of the 21 Century, fundamental changes would need to take place in the way the world produces and uses energy, as well as in many other GHG-emitting aspects of industry, agriculture, land management and use, and other activities associated with modern civilization. New and advanced technologies could enable and facilitate a gradual, long-term transformation to a future society characterized by significantly lower GHG emissions. Progress could be made by providing improved and less costly means for reducing, avoiding, capturing and sequestering GHG emissions, while also providing the energy and other services needed to sustain expanding economic activity and serve the rising aspirations of a growing world population. It is generally agreed that certain policies aimed at stimulating technological innovation toward this end, including investment in research, development and demonstration (RD and D), constitute an important component of any long-term strategy aimed at addressing climate change. Beyond RD and D, however, there appears to be little agreement as to the answers to two key questions. Might augmenting policies, beyond RD and D, be justified today to spur technology development and adoption? If so, what does history suggest about the kinds of policies that might be most appropriate, and to what extent would they be applicable? This paper attempts to provide insights to the answers to these two questions. It notes in passing the current state of climate change science and its uncertainties, which suggests the potential efficacy of so-called hedging strategies to reduce risk

  2. Co-benefits, trade-offs, barriers and policies for greenhouse gas mitigation in the agriculture, forestry and other land use (AFOLU) sector.

    Science.gov (United States)

    Bustamante, Mercedes; Robledo-Abad, Carmenza; Harper, Richard; Mbow, Cheikh; Ravindranat, Nijavalli H; Sperling, Frank; Haberl, Helmut; Pinto, Alexandre de Siqueira; Smith, Pete

    2014-10-01

    The agriculture, forestry and other land use (AFOLU) sector is responsible for approximately 25% of anthropogenic GHG emissions mainly from deforestation and agricultural emissions from livestock, soil and nutrient management. Mitigation from the sector is thus extremely important in meeting emission reduction targets. The sector offers a variety of cost-competitive mitigation options with most analyses indicating a decline in emissions largely due to decreasing deforestation rates. Sustainability criteria are needed to guide development and implementation of AFOLU mitigation measures with particular focus on multifunctional systems that allow the delivery of multiple services from land. It is striking that almost all of the positive and negative impacts, opportunities and barriers are context specific, precluding generic statements about which AFOLU mitigation measures have the greatest promise at a global scale. This finding underlines the importance of considering each mitigation strategy on a case-by-case basis, systemic effects when implementing mitigation options on the national scale, and suggests that policies need to be flexible enough to allow such assessments. National and international agricultural and forest (climate) policies have the potential to alter the opportunity costs of specific land uses in ways that increase opportunities or barriers for attaining climate change mitigation goals. Policies governing practices in agriculture and in forest conservation and management need to account for both effective mitigation and adaptation and can help to orient practices in agriculture and in forestry towards global sharing of innovative technologies for the efficient use of land resources. Different policy instruments, especially economic incentives and regulatory approaches, are currently being applied however, for its successful implementation it is critical to understand how land-use decisions are made and how new social, political and economic forces

  3. Energy and GHG Analysis of Rural Household Biogas Systems in China

    Directory of Open Access Journals (Sweden)

    Lixiao Zhang

    2014-02-01

    Full Text Available The Chinese government has taken great efforts to popularize rural household scale biogas digesters, since they are regarded as an effective approach to address energy shortage issues in rural areas and as a potential way of reducing greenhouse gas (GHG emissions. Focusing on a typical rural household biogas system, the aim of this study is to systematically quantify its total direct and indirect energy, concentrating on non-renewable energy and the associated GHG emission cost over the entire life cycle to understand its net dynamic benefits. The results show that the total energetic cost for biogas output is 2.19 J/J, of which 0.56 J is from non-renewable energy sources and the GHG emission cost is 4.54 × 10−5 g CO2-equivalent (CO2-eq, with respect to its design life cycle of 20 years. Correspondingly, a net non-renewable energy saving of 9.89 × 1010 J and GHG emission reduction of 50.45 t CO2-eq can be obtained considering the coal substitution and manure disposal. However, it must be run for at least 10 and 3 years, to obtain positive net non-renewable energy savings and GHG emission reduction benefits, respectively. These results have policy implications for development orientation, follow-up services, program management and even national financial subsidy methods.

  4. Final Report. SFAA No. DEFC02-98CH10961. Technical assistance for joint implementation and other supporting mechanisms and measures for greenhouse gas emissions mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Knight, Denise

    2001-10-15

    IIEC, a division of CERF, has developed an extensive base of experience implementing activities that support climate action by developing USIJI projects in transitional countries within Asia, Latin America, Central and Eastern Europe, and southern Africa. IIEC has been able to provide a range of technical and policy assistance to governments and industry in support of sustainable energy use. IIEC continues to work in key countries with local partners to develop and implement energy efficiency policies and standards, develop site-specific projects, and assist governing bodies to establish national priorities and evaluation criteria for approving GHG-mitigation projects. As part of this project, IIEC focused on promoting a series of activities in Thailand and South Africa in order to identify GHG mitigation projects and work within the national approval process of those countries. The sections of this report outline the activities conducted in each country in order to achieve that goal.

  5. Use of cost-effective construction technologies in India to mitigate climate change

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, N. [Forum of Scientists, Engineers and Technologists, Kolkata (India)

    2008-01-10

    Concentration of greenhouse gases plays a major role in raising the earth's temperature. Carbon dioxide, produced from burning of fossil fuels, is the principle greenhouse gas and efforts are being made at international level to reduce its emission through adoption of energy-efficient technologies. The UN Conference on Environment and Development, 1992 made a significant development in this field by initiating the discussion on sustainable development under the Agenda 21. Cost-effective construction technologies can bring down the embodied energy level associated with production of building materials by lowering use of energy-consuming materials. This embodied energy is a crucial factor for sustainable construction practices and effective reduction of the same would contribute in mitigating global warming. The cost-effective construction technologies would emerge as the most acceptable case of sustainable technologies in India both in terms of cost and environment.

  6. The complexity and challenges of determining GHG (greenhouse gas) emissions from grid electricity consumption and conservation in LCA (life cycle assessment) – A methodological review

    International Nuclear Information System (INIS)

    Soimakallio, Sampo; Kiviluoma, Juha; Saikku, Laura

    2011-01-01

    The way in which GHG (greenhouse gas) emissions associated with grid electricity consumption is handled in different LCA (life cycle assessment) studies, varies significantly. Apart from differences in actual research questions, methodological choices and data set selection have a significant impact on the outcomes. These inconsistencies result in difficulties to compare the findings of various LCA studies. This review paper explores the issue from a methodological point of view. The perspectives of ALCA (attributional life cycle assessment) and CLCA (consequential life cycle assessment) are reflected. Finally, the paper summarizes the key issues and provides suggestions on the way forward. The major challenge related to both of the LCA categories is to determine the GHG emissions of the power production technologies under consideration. Furthermore, the specific challenge in ALCA is to determine the appropriate electricity production mix, and in CLCA, to identify the marginal technologies affected and related consequences. Significant uncertainties are involved, particularly in future-related LCAs, and these should not be ignored. Harmonization of the methods and data sets for various purposes is suggested, acknowledging that selections might be subjective. -- Highlights: ► Methods to assess GHG emissions from grid electricity consumption in LCA vary. ► We explored the major challenges related to various methods. ► Significant uncertainties are involved particularly in future-related GHG emissions. ► The most appropriate method depends on the equity viewpoints.

  7. Analysis of low-carbon industrial symbiosis technology for carbon mitigation in a Chinese iron/steel industrial park: A case study with carbon flow analysis

    International Nuclear Information System (INIS)

    Zhang, Hui; Dong, Liang; Li, Huiquan; Fujita, Tsuyoshi; Ohnishi, Satoshi; Tang, Qing

    2013-01-01

    CO 2 mitigation strategies in industrial parks are a significant component of the Chinese climate change mitigation policy, and industrial symbiosis can provide specific CO 2 mitigation opportunity. Technology is important to support symbiosis, but few studies in China have focused on this topic at the industrial park level. This research presented a case study in a national iron and steel industrial park in China. Focus was given onto carbon mitigation through industrial symbiosis technology using substance flow analysis (SFA). Three typical iron and steel industry technologies, including coke dry quenching (CDQ), combined cycle power plant (CCPP), and CO 2 capture by slag carbonization (CCSC) were evaluated with SFA. Technology assessment was further conducted in terms of carbon mitigation potential and unit reduction cost. Compared with the Business as usual (BAU) scenario, application with CDQ, CCPP, and CCSC reduced the net carbon emissions by 56.18, 134.43, and 222.89 kg CO 2 per ton crude steel inside the industrial parks, respectively, including both direct and indirect emissions. Economic assessment revealed that the unit costs for the three technologies were also high, thereby necessitating national financial support. Finally, relevant policy suggestions and future concerns were proposed and discussed. - Highlights: • A typical carbon mitigation case study on China iron/steel industrial park. • Using carbon SFA to investigate mitigation effects of industrial symbiosis technology. • CCPP greatly reduced the indirect carbon emission embodied in power purchase. • CCSC reduced the carbon emission by distributing fixed carbon into by-product. • Specific low carbon-tech promotion policies fit to China was discussed and proposed

  8. Energy and GHG abatement cost curves

    Energy Technology Data Exchange (ETDEWEB)

    Alvarenga, Rafael [BHP Billiton Base Metals (Australia)

    2010-07-01

    Global warming due to various reasons but especially to emission of green house gases (GHGs) has become a cause for serious concern. This paper discusses the steps taken by BHP Billiton to reduce energy consumption and GHG emissions using cost curves. According to forecasts, global warming is expected to impact Chile badly and the rise in temperature could be between 1 and more than 5 degrees Celsius. Mining in Chile consumes a lot of energy, particularly electricity. Total energy and electricity consumption in 2007 was 13 and 36 % respectively. BHP base metals developed a set of abatement cost curves for energy and GHG in Chile and these are shown in figures. The methodology for the curves consisted of consultant visits to each mine operation. The study also includes mass energy balance and feasibility maps. The paper concludes that it is important to evaluate the potential for reducing emissions and energy and their associated costs.

  9. Assessing CO2 Mitigation Options Utilizing Detailed Electricity Characteristics and Including Renewable Generation

    Science.gov (United States)

    Bensaida, K.; Alie, Colin; Elkamel, A.; Almansoori, A.

    2017-08-01

    This paper presents a novel techno-economic optimization model for assessing the effectiveness of CO2 mitigation options for the electricity generation sub-sector that includes renewable energy generation. The optimization problem was formulated as a MINLP model using the GAMS modeling system. The model seeks the minimization of the power generation costs under CO2 emission constraints by dispatching power from low CO2 emission-intensity units. The model considers the detailed operation of the electricity system to effectively assess the performance of GHG mitigation strategies and integrates load balancing, carbon capture and carbon taxes as methods for reducing CO2 emissions. Two case studies are discussed to analyze the benefits and challenges of the CO2 reduction methods in the electricity system. The proposed mitigations options would not only benefit the environment, but they will as well improve the marginal cost of producing energy which represents an advantage for stakeholders.

  10. Carbon flows and economic evaluation of mitigation options in Tanzania's forest sector

    International Nuclear Information System (INIS)

    Makundi, W.; Okiting'ati, Aku

    1995-01-01

    This paper presents estimates of the rate of forest use, deforestation and forest degradation, as well as the corresponding carbon flows, in the Tanzanian forest sector. It is estimated that the country lost 525,000 ha of forests in 1990, with associated committed emissions of 31.5 Mt carbon (MtC), and 7.05 MtC of committed carbon sequestration. The paper then describes the possible response options in the forest sector to mitigate GHG emissions, and evaluates the most stable subset of these - i.e. forest conservation, woodfuel plantations and agroforestry. The conservation options were found to cost an average of US$1.27 per tonne of carbon (tC) conserved. Five options for fuelwood plantations and agroforestry, with two different ownership regimes were evaluated. Each one of the options gives a positive net present value at low rates of discount, ranging from U.S.$1.06 to 3.4/tC of avoided emissions at 0% discount rate. At 10% discount, the eucalyptus and maize option has a highest PNV of U.S.$1.73/tC, and the government plantation gives a negative PNV (loss) of U.S.$ 0.13 tC sequestered. The options with a private/community type of ownership scheme fared better than government run options. This conclusion also held true when ranking the options by the BRAC indicator, with the government fuelwood plantation ranked the lowest, and the private agroforestry option of eucalyptus and corn performing best. The mitigation options evaluated here show that the forest sector in Tanzania has one of the most cost-effective GHG mitigation opportunities in the world, and they are within the development aspirations of the country. (Author)

  11. GHG REDUCTION POTENTIAL OF BIOGAS RESOURCE UTILZATION IN HOLBÆK’S HEATING AND ELECTRICITY SECTOR

    OpenAIRE

    DAO, THI THU HUONG DIU

    2013-01-01

    This project is set out to identify the GHG reduction potentials of the 3 identified biogas plants in the Holbæk municipality. The GHG reduction of the 3 plants will be calculated in association with 2 biogas applications, which are CHP and upgrading biogas for individual heating purposes. The GHG reduction potentials of the 3 plants will be reflected to Holbæk’s specific GHG reduction target to see how these potentials contribute to the set goal. Departure from that, future version of biogas...

  12. Development of Nanosatellite Technology with APRS Module for Disaster Mitigation

    Science.gov (United States)

    Prahyang, S. Y.; Dhiya’Ulhaq, M. Z.; Golim, O. P.; Gunawan, R.; Suhandinata; Jahja, E.; Nelwan, E. R. G.; Ananta, C.; Chow, I. M.; Mali, N. D. F.

    2018-05-01

    Development of nanosatellite technology has enabled satellites to be developed with multiple capabilities for a specific mission in a short time with a low cost. Satellite communications are proved to be more effective in delivering information due to its large coverage area. Surya Satellite-1 will become the first Indonesian nanosatellite developed by undergraduate students. It is designed with low-cost commercial payloads, including an APRS module for communication and operated on VHF and UHF amateur radio frequencies. The mission of the satellites focused on disaster mitigation through APRS communication network with remote stations located on disaster-prone areas.

  13. Searching for solutions to mitigate greenhouse gas emissions by agricultural policy decisions--Application of system dynamics modeling for the case of Latvia.

    Science.gov (United States)

    Dace, Elina; Muizniece, Indra; Blumberga, Andra; Kaczala, Fabio

    2015-09-15

    European Union (EU) Member States have agreed to limit their greenhouse gas (GHG) emissions from sectors not covered by the EU Emissions Trading Scheme (non-ETS). That includes also emissions from agricultural sector. Although the Intergovernmental Panel on Climate Change (IPCC) has established a methodology for assessment of GHG emissions from agriculture, the forecasting options are limited, especially when policies and their interaction with the agricultural system are tested. Therefore, an advanced tool, a system dynamics model, was developed that enables assessment of effects various decisions and measures have on agricultural GHG emissions. The model is based on the IPCC guidelines and includes the main elements of an agricultural system, i.e. land management, livestock farming, soil fertilization and crop production, as well as feedback mechanisms between the elements. The case of Latvia is selected for simulations, as agriculture generates 22% of the total anthropogenic GHG emissions in the country. The results demonstrate that there are very limited options for GHG mitigation in the agricultural sector. Thereby, reaching the non-ETS GHG emission targets will be very challenging for Latvia, as the level of agricultural GHG emissions will be exceeded considerably above the target levels. Thus, other non-ETS sectors will have to reduce their emissions drastically to "neutralize" the agricultural sector's emissions for reaching the EU's common ambition to move towards low-carbon economy. The developed model may serve as a decision support tool for impact assessment of various measures and decisions on the agricultural system's GHG emissions. Although the model is applied to the case of Latvia, the elements and structure of the model developed are similar to agricultural systems in many countries. By changing numeric values of certain parameters, the model can be applied to analyze decisions and measures in other countries. Copyright © 2015 Elsevier B.V. All

  14. Marine and Hydrokinetic Renewable Energy Technologies: Potential Navigational Impacts and Mitigation Measures

    Energy Technology Data Exchange (ETDEWEB)

    Cool, Richard, M.; Hudon, Thomas, J.; Basco, David, R.; Rondorf, Neil, E.

    2009-12-10

    On April 15, 2008, the Department of Energy (DOE) issued a Funding Opportunity Announcement for Advanced Water Power Projects which included a Topic Area for Marine and Hydrokinetic Renewable Energy Market Acceleration Projects. Within this Topic Area, DOE identified potential navigational impacts of marine and hydrokinetic renewable energy technologies and measures to prevent adverse impacts on navigation as a sub-topic area. DOE defines marine and hydrokinetic technologies as those capable of utilizing one or more of the following resource categories for energy generation: ocean waves; tides or ocean currents; free flowing water in rivers or streams; and energy generation from the differentials in ocean temperature. PCCI was awarded Cooperative Agreement DE-FC36-08GO18177 from the DOE to identify the potential navigational impacts and mitigation measures for marine hydrokinetic technologies, as summarized herein. The contract also required cooperation with the U.S. Coast Guard (USCG) and two recipients of awards (Pacific Energy Ventures and reVision) in a sub-topic area to develop a protocol to identify streamlined, best-siting practices. Over the period of this contract, PCCI and our sub-consultants, David Basco, Ph.D., and Neil Rondorf of Science Applications International Corporation, met with USCG headquarters personnel, with U.S. Army Corps of Engineers headquarters and regional personnel, with U.S. Navy regional personnel and other ocean users in order to develop an understanding of existing practices for the identification of navigational impacts that might occur during construction, operation, maintenance, and decommissioning. At these same meetings, “standard” and potential mitigation measures were discussed so that guidance could be prepared for project developers. Concurrently, PCCI reviewed navigation guidance published by the USCG and international community. This report summarizes the results of this effort, provides guidance in the form of a

  15. Climate change impacts and greenhouse gas mitigation effects on U.S. hydropower generation

    International Nuclear Information System (INIS)

    Boehlert, Brent; Strzepek, Kenneth M.; Gebretsadik, Yohannes; Swanson, Richard; McCluskey, Alyssa; Neumann, James E.; McFarland, James; Martinich, Jeremy

    2016-01-01

    Highlights: • Analyze contiguous U.S. hydropower generation under various emissions scenarios. • Employ systems model that allocates water to competing uses in 2119 river basins. • Average U.S. generation increases under climate change, but falls under low flows. • Mitigation benefits are $2-$4 billion/year due to high values of carbon-free energy. - Abstract: Climate change will have potentially significant effects on hydropower generation due to changes in the magnitude and seasonality of river runoff and increases in reservoir evaporation. These physical impacts will in turn have economic consequences through both producer revenues and consumer expenditures. We analyze the physical and economic effects of changes in hydropower generation for the contiguous U.S. in futures with and without global-scale greenhouse gas (GHG) mitigation, and across patterns from 18 General Circulation Models. Using a monthly water resources systems model of 2119 river basins that routes simulated river runoff through reservoirs, and allocates water to potentially conflicting and climate dependent demands, we provide a first-order estimate of the impacts of various projected emissions outcomes on hydropower generation, and monetize these impacts using outputs from an electric sector planning model for over 500 of the largest U.S. hydropower facilities. We find that, due to generally increasing river runoff under higher emissions scenarios in the Pacific Northwest, climate change tends to increase overall hydropower generation in the contiguous U.S. During low flow months, generation tends to fall with increasing emissions, potentially threatening the estimated low flow, firm energy from hydropower. Although global GHG mitigation slows the growth in hydropower generation, the higher value placed on carbon-free hydropower leads to annual economic benefits ranging from $1.8 billion to $4.3 billion. The present value of these benefits to the U.S. from global greenhouse gas

  16. Voluntary GHG reduction of industrial sectors in Taiwan.

    Science.gov (United States)

    Chen, Liang-Tung; Hu, Allen H

    2012-08-01

    The present paper describes the voluntary greenhouse gas (GHG) reduction agreements of six different industrial sectors in Taiwan, as well as the fluorinated gases (F-gas) reduction agreement of the semiconductor and Liquid Crystal Display (LCD) industries. The operating mechanisms, GHG reduction methods, capital investment, and investment effectiveness are also discussed. A total of 182 plants participated in the voluntary energy saving and GHG reduction in six industrial sectors (iron and steel, petrochemical, cement, paper, synthetic fiber, and textile printing and dyeing), with 5.35 Mt reduction from 2004 to 2008, or 33% higher than the target goal (4.02 Mt). The reduction accounts for 1.6% annual emission or 7.8% during the 5-yr span. The petrochemical industry accounts for 49% of the reduction, followed by the cement sector (21%) and the iron and steel industry (13%). The total investment amounted to approximately USD 716 million, in which, the majority of the investment went to the modification of the manufacturing process (89%). The benefit was valued at around USD 472 million with an average payback period of 1.5 yr. Moreover, related energy saving was achieved through different approaches, e.g., via electricity (iron and steel), steam and oil consumption (petrochemical) and coal usage (cement). The cost for unit CO(2) reduction varies per industry, with the steel and iron industrial sector having the highest cost (USD 346 t(-1) CO(2)) compared with the average cost of the six industrial sectors (USD 134 t(-1) CO(2)). For the semiconductor and Thin-Film Transistor LCD industries, F-gas emissions were reduced from approximately 4.1 to about 1.7 Mt CO(2)-eq, and from 2.2 to about 1.1 Mt CO(2)-eq, respectively. Incentive mechanisms for participation in GHG reduction are also further discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Greenhouse gases mitigation potential and costs for Brazil's energy system from 2010 to 2030

    Energy Technology Data Exchange (ETDEWEB)

    Borba, Bruno S.M.C.; Lucena, Andre F.P. de; Rathmann, Regis; Costa, Isabella V.L. da; Nogueira, Larissa P.P.; Rochedo, Pedro R.R.; H. Junior, Mauricio F.; Szklo, Alexandre; Schaeffer, Roberto [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PPE/COPPE/UFRJ), RJ (Brazil). Programa de Planejamento Energetico

    2012-07-01

    This paper analyses the potential for energy-related greenhouse gas (GHG) emission reductions and their abatement costs in the energy system of Brazil. The analysis of mitigation options and their costs focuses on the following sectors: industry, transportation and energy supply (electricity generation and oil refining), given their large contribution to the Brazil's GHGs emissions. For the industrial and oil refining sectors, the paper estimated abatement costs based on the investments along with the energy and operational costs of the measures considered. Two discount rates were used: 15% a year (private discount rate) and 8% a year (social discount rate). Compared to a business-as-usual reference scenario, results show a potential to reduce future energy-related GHG emissions by 27% in 2030. This study shows, however, that in relation to a reference year (2007), the examined abatement measures, along with the socioeconomic dynamics of an emerging country such as Brazil, would not be enough to attain absolute reductions in GHG emissions by 2030. This result is valid both each sector individually and for the sum of the emissions from all the sectors analyzed. (author)

  18. Improved oilfield GHG accounting using a global oilfield database

    Science.gov (United States)

    Roberts, S.; Brandt, A. R.; Masnadi, M.

    2016-12-01

    The definition of oil is shifting in considerable ways. Conventional oil resources are declining as oil sands, heavy oils, and others emerge. Technological advances mean that these unconventional hydrocarbons are now viable resources. Meanwhile, scientific evidence is mounting that climate change is occurring. The oil sector is responsible for 35% of global greenhouse gas (GHG) emissions, but the climate impacts of these new unconventional oils are not well understood. As such, the Oil Climate Index (OCI) project has been an international effort to evaluate the total life-cycle environmental GHG emissions of different oil fields globally. Over the course of the first and second phases of the project, 30 and 75 global oil fields have been investigated, respectively. The 75 fields account for about 25% of global oil production. For the third phase of the project, it is aimed to expand the OCI to contain closing to 100% of global oil production; leading to the analysis of 8000 fields. To accomplish this, a robust database system is required to handle and manipulate the data. Therefore, the integration of the data into the computer science language SQL (Structured Query Language) was performed. The implementation of SQL allows users to process the data more efficiently than would be possible by using the previously established program (Microsoft Excel). Next, a graphic user interface (gui) was implemented, in the computer science language of C#, in order to make the data interactive; enabling people to update the database without prior knowledge of SQL being necessary.

  19. Searching for solutions to mitigate greenhouse gas emissions by agricultural policy decisions — Application of system dynamics modeling for the case of Latvia

    International Nuclear Information System (INIS)

    Dace, Elina; Muizniece, Indra; Blumberga, Andra; Kaczala, Fabio

    2015-01-01

    European Union (EU) Member States have agreed to limit their greenhouse gas (GHG) emissions from sectors not covered by the EU Emissions Trading Scheme (non-ETS). That includes also emissions from agricultural sector. Although the Intergovernmental Panel on Climate Change (IPCC) has established a methodology for assessment of GHG emissions from agriculture, the forecasting options are limited, especially when policies and their interaction with the agricultural system are tested. Therefore, an advanced tool, a system dynamics model, was developed that enables assessment of effects various decisions and measures have on agricultural GHG emissions. The model is based on the IPCC guidelines and includes the main elements of an agricultural system, i.e. land management, livestock farming, soil fertilization and crop production, as well as feedback mechanisms between the elements. The case of Latvia is selected for simulations, as agriculture generates 22% of the total anthropogenic GHG emissions in the country. The results demonstrate that there are very limited options for GHG mitigation in the agricultural sector. Thereby, reaching the non-ETS GHG emission targets will be very challenging for Latvia, as the level of agricultural GHG emissions will be exceeded considerably above the target levels. Thus, other non-ETS sectors will have to reduce their emissions drastically to “neutralize” the agricultural sector's emissions for reaching the EU's common ambition to move towards low-carbon economy. The developed model may serve as a decision support tool for impact assessment of various measures and decisions on the agricultural system's GHG emissions. Although the model is applied to the case of Latvia, the elements and structure of the model developed are similar to agricultural systems in many countries. By changing numeric values of certain parameters, the model can be applied to analyze decisions and measures in other countries. - Highlights:

  20. Searching for solutions to mitigate greenhouse gas emissions by agricultural policy decisions — Application of system dynamics modeling for the case of Latvia

    Energy Technology Data Exchange (ETDEWEB)

    Dace, Elina, E-mail: elina.dace@rtu.lv [Institute of Energy Systems and Environment, Riga Technical University, Azenes 12/1, Riga LV1048 (Latvia); Muizniece, Indra; Blumberga, Andra [Institute of Energy Systems and Environment, Riga Technical University, Azenes 12/1, Riga LV1048 (Latvia); Kaczala, Fabio [Department of Biology and Environmental Science, Faculty of Health & Life Sciences, Linnaeus University, SE-39182 Kalmar (Sweden)

    2015-09-15

    European Union (EU) Member States have agreed to limit their greenhouse gas (GHG) emissions from sectors not covered by the EU Emissions Trading Scheme (non-ETS). That includes also emissions from agricultural sector. Although the Intergovernmental Panel on Climate Change (IPCC) has established a methodology for assessment of GHG emissions from agriculture, the forecasting options are limited, especially when policies and their interaction with the agricultural system are tested. Therefore, an advanced tool, a system dynamics model, was developed that enables assessment of effects various decisions and measures have on agricultural GHG emissions. The model is based on the IPCC guidelines and includes the main elements of an agricultural system, i.e. land management, livestock farming, soil fertilization and crop production, as well as feedback mechanisms between the elements. The case of Latvia is selected for simulations, as agriculture generates 22% of the total anthropogenic GHG emissions in the country. The results demonstrate that there are very limited options for GHG mitigation in the agricultural sector. Thereby, reaching the non-ETS GHG emission targets will be very challenging for Latvia, as the level of agricultural GHG emissions will be exceeded considerably above the target levels. Thus, other non-ETS sectors will have to reduce their emissions drastically to “neutralize” the agricultural sector's emissions for reaching the EU's common ambition to move towards low-carbon economy. The developed model may serve as a decision support tool for impact assessment of various measures and decisions on the agricultural system's GHG emissions. Although the model is applied to the case of Latvia, the elements and structure of the model developed are similar to agricultural systems in many countries. By changing numeric values of certain parameters, the model can be applied to analyze decisions and measures in other countries. - Highlights:

  1. Quantitative evaluation of time-series GHG emissions by sector and region using consumption-based accounting

    International Nuclear Information System (INIS)

    Homma, Takashi; Akimoto, Keigo; Tomoda, Toshimasa

    2012-01-01

    This study estimates global time-series consumption-based GHG emissions by region from 1990 to 2005, including both CO 2 and non-CO 2 GHG emissions. Estimations are conducted for the whole economy and for two specific sectors: manufacturing and agriculture. Especially in the agricultural sector, it is important to include non-CO 2 GHG emissions because these are the major emissions present. In most of the regions examined, the improvements in GHG intensities achieved in the manufacturing sector are larger than those in the agricultural sector. Compared with developing regions, most developed regions have consistently larger per-capita consumption-based GHG emissions over the whole economy, as well as higher production-based emissions. In the manufacturing sector, differences calculated by subtracting production-based emissions from consumption-based GHG emissions are determined by the regional economic level while, in the agricultural sector, they are dependent on regional production structures that are determined by international trade competitiveness. In the manufacturing sector, these differences are consistently and increasingly positive for the U.S., EU15 and Japan but negative for developing regions. In the agricultural sector, the differences calculated for the major agricultural importers like Japan and the EU15 are consistently positive while those of exporters like the U.S., Australia and New Zealand are consistently negative. - Highlights: ► We evaluate global time-series production-based and consumption-based GHG emissions. ► We focus on both CO 2 and non-CO 2 GHG emissions, broken down by region and by sector. ► Including non-CO 2 GHG emissions is important in agricultural sector. ► In agriculture, differences in accountings are dependent on production structures. ► In manufacturing sector, differences in accountings are determined by economic level.

  2. A techno-economic & environmental analysis of a novel technology utilizing an internal combustion engine as a compact, inexpensive micro-reformer for a distributed gas-to-liquids system

    Science.gov (United States)

    Browne, Joshua B.

    Anthropogenic greenhouse gas emissions (GHG) contribute to global warming, and must be mitigated. With GHG mitigation as an overarching goal, this research aims to study the potential for newfound and abundant sources of natural gas to play a role as part of a GHG mitigation strategy. However, recent work suggests that methane leakage in the current natural gas system may inhibit end-use natural gas as a robust mitigation strategy, but that natural gas as a feedstock for other forms of energy, such as electricity generation or liquid fuels, may support natural-gas based mitigation efforts. Flaring of uneconomic natural gas, or outright loss of natural gas to the atmosphere results in greenhouse gas emissions that could be avoided and which today are very large in aggregate. A central part of this study is to look at a new technology for converting natural gas into methanol at a unit scale that is matched to the size of individual natural gas wells. The goal is to convert stranded or otherwise flared natural gas into a commercially valuable product and thereby avoid any unnecessary emission to the atmosphere. A major part of this study is to contribute to the development of a novel approach for converting natural gas into methanol and to assess the environmental impact (for better or for worse) of this new technology. This Ph. D. research contributes to the development of such a system and provides a comprehensive techno-economic and environmental assessment of this technology. Recognizing the distributed nature of methane leakage associated with the natural gas system, this work is also intended to advance previous research at the Lenfest Center for Sustainable Energy that aims to show that small, modular energy systems can be made economic. This thesis contributes to and analyzes the development of a small-scale gas-to-liquids (GTL) system aimed at addressing flared natural gas from gas and oil wells. This thesis includes system engineering around a design that

  3. Can we trust corporates GHG inventories? An investigation among Canada's large final emitters

    International Nuclear Information System (INIS)

    Talbot, David; Boiral, Olivier

    2013-01-01

    In the public sphere and the literature on climate strategies, the measurability of corporate GHG emissions tends to be taken for granted, and few empirical studies have examined the reliability of such data. The present case study, which was conducted among 10 Canadian companies considered as large final emitters and three auditing firms, focuses on the factors which could affect the perceived credibility of GHG inventories and the strategic implications of these. The qualitative, inductive study allows identifying three main factors which affect trust in business inventories: technical issues and complexity of GHG measurements, lack of transparency on the part of the companies and unreliability of verification mechanisms. The study also makes it possible to evaluate the implications of uncertainties concerning GHG inventories which are of strategic importance for companies and policy makers. While the reliability of GHG measurement is taken for granted at the political level, uncertainties in this area can in fact have a huge impact on the establishment of the cap and trade system. The study also contributes to the literature on carbon accounting by shedding light on underexplored ethical issues, including the lack of independence of auditors and its implications. - Highlights: • The complexity of GHG emission measurement is underestimated in the public sphère. • The data disclosed by companies to the different stakeholders lack transparency. • The auditors' lack of competence and independence undermine the credibility of audit reports

  4. Role of technologies in energy-related CO2 mitigation in China within a climate-protection world: A scenarios analysis using REMIND

    International Nuclear Information System (INIS)

    Zhang, Shuwei; Bauer, Nico; Luderer, Gunnar; Kriegler, Elmar

    2014-01-01

    Highlights: • The augmented REMIND model is used to study the role of energy technologies under a carbon tax. • The scale and timing of fossil fuels with CCS, nuclear, and renewables are examined. • CCS is important but the window of opportunity for its deployment is limited. • The effectiveness of nuclear is strongly linked to its cost performance. • Renewable energy is a long-term mitigation option. - Abstract: In a world with the need of climate protection through emission reduction, China’s domestic mitigation will be put on the national agenda. The large-scale deployment of innovative technologies induced by climate policies is a key determinant for reducing emissions in an effective and efficient manner. A distinguishing feature of the Chinese energy sector (especially electricity generation), is that investment costs are significantly lower than in other world regions. Represented in the methodological framework of the augmented REMIND model, three promising mitigation technologies (also known as technology clusters) in the electricity sector: CCS with advanced coal-generation technologies, nuclear, and renewables are the focus of this study. The scenarios are designed to analyze the roles of these technologies and their associated economic impacts under a climate policy (i.e., a carbon tax). Our results indicate that: (1)Technology policies improving the techno-economic features of low-carbon technologies are insufficient to restrain China’s increasing emissions. (2)Carbon-pricing policies can effectively reduce emissions by making low-carbon options more competitive than conventional fossil fuel alternatives. In the global carbon tax regime framed in this paper, China’s mitigation potential is larger than that of any of other region and the peak of emissions occurs earlier (by 2020) and is 50% lower than in the BASE scenario. (3)CCS is important, but the window of opportunity for its deployment is limited to the near- to mid-term future. It

  5. Blast Shock Wave Mitigation Using the Hydraulic Energy Redirection and Release Technology

    Science.gov (United States)

    Chen, Yun; Huang, Wei; Constantini, Shlomi

    2012-01-01

    A hydraulic energy redirection and release technology has been developed for mitigating the effects of blast shock waves on protected objects. The technology employs a liquid-filled plastic tubing as a blast overpressure transformer to transfer kinetic energy of blast shock waves into hydraulic energy in the plastic tubings. The hydraulic energy is redirected through the plastic tubings to the openings at the lower ends, and then is quickly released with the liquid flowing out through the openings. The samples of the specifically designed body armor in which the liquid-filled plastic tubings were installed vertically as the outer layer of the body armor were tested. The blast test results demonstrated that blast overpressure behind the body armor samples was remarkably reduced by 97% in 0.2 msec after the liquid flowed out of its appropriate volume through the openings. The results also suggested that a volumetric liquid surge might be created when kinetic energy of blast shock wave was transferred into hydraulic energy to cause a rapid physical movement or displacement of the liquid. The volumetric liquid surge has a strong destructive power, and can cause a noncontact, remote injury in humans (such as blast-induced traumatic brain injury and post-traumatic stress disorder) if it is created in cardiovascular system. The hydraulic energy redirection and release technology can successfully mitigate blast shock waves from the outer surface of the body armor. It should be further explored as an innovative approach to effectively protect against blast threats to civilian and military personnel. PMID:22745740

  6. Changes of energy-related GHG emissions in China: An empirical analysis from sectoral perspective

    International Nuclear Information System (INIS)

    Xu, Xianshuo; Zhao, Tao; Liu, Nan; Kang, Jidong

    2014-01-01

    Highlights: • We analyzed the factors impacting China’s emissions from a sectoral perspective. • Sector-specific policies and measures for emissions mitigation were evaluated. • Economic growth dominantly increased the emissions in the economic sectors. • Energy intensity decrease primarily reduced the emissions in the economic sectors. • Residential emissions growth was mainly driven by increase in per-capita energy use. - Abstract: In order to better understand sectoral greenhouse gas (GHG) emissions in China, this study utilized a logarithmic mean Divisia index (LMDI) decomposition analysis to study emission changes from a sectoral perspective. Based on the decomposition results, recently implemented policies and measures for emissions mitigation in China were evaluated. The results show that for the economic sectors, economic growth was the dominant factor in increasing emissions from 1996 to 2011, whereas the decline in energy intensity was primarily responsible for the emission decrease. As a result of the expansion of industrial development, economic structure change also contributed to growth in emissions. For the residential sector, increased emissions were primarily driven by an increase in per-capita energy use, which is partially confirmed by population migration. For all sectors, the shift in energy mix and variation in emission coefficient only contributed marginally to the emissions changes. The decomposition results imply that energy efficiency policy in China has been successful during the past decade, i.e., Top 1000 Priorities, Ten-Key Projects programs, the establishment of fuel consumption limits and vehicle emission standards, and encouragement of efficient appliances. Moreover, the results also indicate that readjusting economic structure and promoting clean and renewable energy is urgently required in order to further mitigate emissions in China

  7. Accounting for time-dependent changes in GHG emissions in the Ribeiro appellation (NW Spain): Are land use changes an important driver?

    International Nuclear Information System (INIS)

    Villanueva-Rey, Pedro; Vázquez-Rowe, Ian; Otero, Marta; Moreira, María Teresa; Feijoo, Gumersindo

    2015-01-01

    Highlights: • The environmental profile of a wine appellation was assessed for a 20 year period. • LUCs and LCA methods were linked to assess the GHG emissions in the appellation. • Winegrowing operations and land use were monitored up to the gate of the winery. • Different trends were found depending on the period assessed. • Demographic and social changes triggered changes in the carbon stocks. - Abstract: Land use changes (LUCs) constitute a crucial source of environmental impact in production systems, which are mostly associated with greenhouse gas (GHG) emissions. This circumstance is especially important for the agricultural sector, since these imply an important proportion of the total GHG emissions occurring worldwide. Wine and grape production is a key sector in Spain, representing the largest surface area at European level. In the past decades, important wine related LUCs have been observed due to changes in farming methods/type, number of Denominations of Origin, and the establishment of larger wineries that have enhanced exports. The current study presents a temporally based Life Cycle Assessment (LCA) study of the Ribeiro appellation in NW Spain, in which the gradual changes in the land use, as well as the technological improvements are analyzed in detail in order to understand how the environmental profile of this specific wine producing area has shifted in the past two decades (i.e., from 1990 to 2009). On the one hand, phenomena such as afforestation and agricultural intensification are analyzed throughout the appellation to estimate the impact due to GHG emissions linked to LUCs, based on IPCC standards. On the other hand, trends linked to technological improvements, operational changes, such as changes in the use and management of plant protection agents or fertilizers or the change in the energy sources for machinery on the vineyards, were assessed in detail

  8. Technology and climate change

    International Nuclear Information System (INIS)

    Morrison, R.; Layzedl, D.; McLean, G.

    2002-01-01

    This paper was the major one of the opening plenary session at the Climate Change 2 conference. The paper provides a context for assessing the needs for technologies to reduce the concentration of GHG in the atmosphere. It looks at sources, sinks and trends for GHG, in the world at large and in Canada, and at efforts to develop new technologies to achieve the goals of climate change policy. The paper focusses on transport, electricity and biomass as sectors of interest, both because of their potential for contributing to climate change policy goals within Canada, and also because of research interests

  9. Mitigation assessment results and priorities in China

    Energy Technology Data Exchange (ETDEWEB)

    Wu Zongxin; Wei Zhihong [Tsinghua Univ., Beijing (China)

    1996-12-31

    In this paper energy related CO2 emission projections of China by 2030 are given. CO2 mitigation potential and technology options in main fields of energy conservation and energy substitution are analyzed. CO2 reduction costs of main mitigation technologies are estimated and the AHP approach is used for helping assessment of priority technologies.

  10. Public willingness to pay for CO2 mitigation and the determinants under climate change: a case study of Suzhou, China.

    Science.gov (United States)

    Yang, Jie; Zou, Liping; Lin, Tiansheng; Wu, Ying; Wang, Haikun

    2014-12-15

    This study explored the factors that influence respondents' willingness to pay (WTP) for CO2 mitigation under climate change. A questionnaire survey combined with contingent valuation and psychometric paradigm methods were conducted in the city of Suzhou, Jiangsu Province in China. Respondents' traditional demographic attributes, risk perception of greenhouse gas (GHG), and attitude toward the government's risk management practices were established using a Tobit model to analyze the determinants. The results showed that about 55% of the respondents refused to pay for CO2 mitigation, respondent's WTP increased with increasing CO2 mitigation percentage. Important factors influencing WTP include people's feeling of dread of GHGs, confidence in policy, the timeliness of governmental information disclosure, age, education and income level. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. 40 CFR 98.413 - Calculating GHG emissions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Calculating GHG emissions. 98.413 Section 98.413 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Industrial Greenhouse Gases § 98.413 Calculating...

  12. The monitoring, evaluation, reporting, and verification of climate change mitigation projects: Discussion of issues and methodologies and review of existing protocols and guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Vine, E.; Sathaye, J.

    1997-12-01

    Because of concerns with the growing threat of global climate change from increasing emissions of greenhouse gases, the US and other countries are implementing, by themselves or in cooperation with one or more other nations (i.e., joint implementation), climate change mitigation projects. These projects will reduce greenhouse gas (GHG) emissions or sequester carbon, and will also result in non-GHG impacts (i.e., environmental, economic, and social impacts). Monitoring, evaluating, reporting, and verifying (MERV) guidelines are needed for these projects in order to accurately determine their net GHG, and other, benefits. Implementation of MERV guidelines is also intended to: (1) increase the reliability of data for estimating GHG benefits; (2) provide real-time data so that mid-course corrections can be made; (3) introduce consistency and transparency across project types and reporters; and (4) enhance the credibility of the projects with stakeholders. In this paper, the authors review the issues and methodologies involved in MERV activities. In addition, they review protocols and guidelines that have been developed for MERV of GHG emissions in the energy and non-energy sectors by governments, nongovernmental organizations, and international agencies. They comment on their relevance and completeness, and identify several topics that future protocols and guidelines need to address, such as (1) establishing a credible baseline; (2) accounting for impacts outside project boundaries through leakage; (3) net GHG reductions and other impacts; (4) precision of measurement; (5) MERV frequency; (6) persistence (sustainability) of savings, emissions reduction, and carbon sequestration; (7) reporting by multiple project participants; (8) verification of GHG reduction credits; (9) uncertainty and risk; (10) institutional capacity in conducting MERV; and (11) the cost of MERV.

  13. Optimizing production with energy and GHG emission constraints in Greece: An input-output analysis

    International Nuclear Information System (INIS)

    Hristu-Varsakelis, D.; Karagianni, S.; Pempetzoglou, M.; Sfetsos, A.

    2010-01-01

    Under its Kyoto and EU obligations, Greece has committed to a greenhouse gas (GHG) emissions increase of at most 25% compared to 1990 levels, to be achieved during the period 2008-2012. Although this restriction was initially regarded as being realistic, information derived from GHG emissions inventories shows that an increase of approximately 28% has already taken place between 1990 and 2005, highlighting the need for immediate action. This paper explores the reallocation of production in Greece, on a sector-by-sector basis, in order to meet overall demand constraints and GHG emissions targets. We pose a constrained optimization problem, taking into account the Greek environmental input-output matrix for 2005, the amount of utilized energy and pollution reduction options. We examine two scenarios, limiting fluctuations in sectoral production to at most 10% and 15%, respectively, compared to baseline (2005) values. Our results indicate that (i) GHG emissions can be reduced significantly with relatively limited effects on GVP growth rates, and that (ii) greater cutbacks in GHG emissions can be achieved as more flexible production scenarios are allowed.

  14. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector

    Energy Technology Data Exchange (ETDEWEB)

    Sathaye, J.; Xu, T.; Galitsky, C.

    2010-08-15

    Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. How to effectively analyze and manage the costs associated with GHG reductions becomes extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models.

  15. Hydrological Sensitivity of Land Use Scenarios for Climate Mitigation

    Science.gov (United States)

    Boegh, E.; Friborg, T.; Hansen, K.; Jensen, R.; Seaby, L. P.

    2014-12-01

    Bringing atmospheric concentration to 550 ppm CO2 or below by 2100 will require large-scale changes to global and national energy systems, and potentially the use of land (IPCC, 2013) The Danish government aims at reducing greenhouse gas emissions (GHG) by 40 % in 1990-2020 and energy consumption to be based on 100 % renewable energy by 2035. By 2050, GHG emissions should be reduced by 80-95 %. Strategies developed to reach these goals require land use change to increase the production of biomass for bioenergy, further use of catch crops, reduced nitrogen inputs in agriculture, reduced soil tillage, afforestation and establishment of permanent grass fields. Currently, solar radiation in the growing season is not fully exploited, and it is expected that biomass production for bioenergy can be supported without reductions in food and fodder production. Impacts of climate change on the hydrological sensitivity of biomass growth and soil carbon storage are however not known. The present study evaluates the hydrological sensitivity of Danish land use options for climate mitigation in terms of crop yields (including straw for bioenergy) and net CO2 exchange for wheat, barley, maize and clover under current and future climate conditions. Hydrological sensitivity was evaluated using the agrohydrological model Daisy. Simulations during current climate conditions were in good agreement with measured dry matter, crop nitrogen content and eddy covariance fluxes of water vapour and CO2. Climate scenarios from the European ENSEMBLES database were downscaled for simulating water, nitrogen and carbon balance for 2071-2100. The biomass potential generally increase, but water stress also increases in strength and extends over a longer period, thereby increasing sensitivity to water availability. The potential of different land use scenarios to maximize vegetation cover and biomass for climate mitigation is further discussed in relation to impacts on the energy- and water balance.

  16. Mitigating climate change: The Philippine case

    International Nuclear Information System (INIS)

    Garcia, J.L.L.

    1998-01-01

    The Government of the Philippines signed the UN Framework Convention on Climate change on June 12, 1992 and the Philippine Congress ratified it in 1994. The Philippine Government has also subsequently created the Inter-Agency Committee on Climate Change (IACCC). The GOP is currently preparing the Philippine Country Study to address climate change. The first phase of the work was financed by a grant from the US Country Studies Program which is led by the US Department of Energy. The Study includes the following elements: a) development of a National Inventory of GHG emission and Sinks; b) vulnerability assessment and evaluation of adaptations of coastal resources; c) identification of alternative programs and measures to promote mitigation and/or adaptation to climate change; d) public information and education campaign; and e) development of the National Action Plan on Climate Change. (au)

  17. Scenario analysis on alternative fuel/vehicle for China's future road transport: Life-cycle energy demand and GHG emissions

    International Nuclear Information System (INIS)

    Ou Xunmin; Zhang Xiliang; Chang Shiyan

    2010-01-01

    The rapid growth of vehicles has resulted in continuing growth in China's oil demand. This paper analyzes future trends of both direct and life cycle energy demand (ED) and greenhouse gas (GHG) emissions in China's road transport sector, and assesses the effectiveness of possible reduction measures by using alternative vehicles/fuels. A model is developed to derive a historical trend and to project future trends. The government is assumed to do nothing additional in the future to influence the long-term trends in the business as usual (BAU) scenario. Four specific scenarios are used to describe the future cases where different alternative fuel/vehicles are applied. The best case scenario is set to represent the most optimized case. Direct ED and GHG emissions would reach 734 million tonnes of oil equivalent and 2384 million tonnes carbon dioxide equivalent by 2050 in the BAU case, respectively, more than 5.6 times of 2007 levels. Compared with the BAU case, the relative reductions achieved in the best case would be 15.8% and 27.6% for life cycle ED and GHG emissions, respectively. It is suggested for future policy implementation to support sustainable biofuel and high efficient electric-vehicles, and the deployment of coal-based fuels accompanied with low-carbon technology.

  18. Lifecycle GHG emissions of palm biodiesel: Unintended market effects negate direct benefits of the Malaysian Economic Transformation Plan (ETP)

    International Nuclear Information System (INIS)

    Abdul-Manan, Amir F.N.

    2017-01-01

    Biodiesel expansion can lead to unintended effects that offset the direct GHG benefits of biofuels. Two documented unintended effects are the indirect land use change (ILUC) and indirect energy use change (IEUC). ILUC has been included in many lifecycle GHG studies of biofuels, but IEUC has remained relatively elusive. This paper presents an updated assessment of the lifecycle GHG emissions of palm biodiesel from Malaysia and, for the first time, incorporating the two estimated indirect effects simultaneously. Future GHG emissions of palm biodiesel are projected by taking into account of Malaysia's Economic Transformation Programme (ETP) that aims to reform the oil palm industry in order to achieve a high-income nation. Uncertainties associated with lifecycle GHG models were dealt with using Monte Carlo simulation in order to identify the breadth and likelihood of GHG reductions relative to petroleum-based fuels in the context of the European directives. This study has shown that the ETP, if successfully implemented, can significantly improve the direct GHG emissions of palm biodiesel, but the benefits are offset by the rise in global emissions due to ILUC and IEUC. Biofuel policies should also include IEUC, in addition to ILUC, to avoid GHG emissions leakages. - Highlights: • Estimate current and future lifecycle GHG emissions of Malaysian palm biodiesel. • Evaluate the GHG effects of Malaysia's Economic Transformation Plan (ETP). • Direct GHG benefits of biodiesel offset by indirect market effects. • Palm biodiesel unlikely to enable global GHG emissions reductions. • Global biofuel policy must account for indirect effects.

  19. Connections between population density, energy use, and GHG emissions in water networks

    Energy Technology Data Exchange (ETDEWEB)

    Filion, Y.R. [Queen' s Univ., Kingston, ON (Canada). Dept. of Civil Engineering

    2007-07-01

    There is a growing concern that urban sprawl and highly dispersed urban infrastructure in cities is posing significant environmental impacts. However, there is no agreement on the suitability of interventions such as population intensification on reducing environmental impacts. This paper investigated the connection between population intensification and environmental impact in water distribution networks. Specifically, it examined the relationship between population density, annual per capita energy use, and annual per capita greenhouse gas (GHG) emissions in water distribution networks. It also examined which population densities produce low levels of annual per capita energy use and GHG emissions. An analytical model of a trunk main was developed to connect population density to energy use and GHG emissions. The model considered energy use in five life activities of the trunk main, namely pipe fabrication, pipe repair, water pumping, and pipe recycling and/or disposal. The energy use model was combined with emission factors and electricity fuel-source mixtures from four Canadian regions (Atlantic Provinces, Quebec, Ontario, and Alberta) to compute representative levels of annual per capita GHGs emitted by the trunk main. It was concluded that increasing population density from 10 ca/ha to 150 ca/ha reduced energy use and GHG emissions by 67per cent and that increasing population density beyond 150 ca/ha produces no significant decrease in annual per capita energy use and GHG emissions. Further analysis on looped networks is required to verify these preliminary findings. 10 refs., 3 tabs., 2 figs.

  20. A consumption-based GHG inventory for the U.S. state of Oregon.

    Science.gov (United States)

    Erickson, Peter; Allaway, David; Lazarus, Michael; Stanton, Elizabeth A

    2012-04-03

    Many U.S. states conduct greenhouse gas (GHG) inventories to inform their climate change planning efforts. These inventories usually follow a production-based method adapted from the Intergovernmental Panel on Climate Change. States could also take a consumption-based perspective, however, and estimate all emissions released to support consumption in their state, regardless of where the emissions occur. In what may be the first such comprehensive inventory conducted for a U.S. state, we find that consumption-based emissions for Oregon are 47% higher than those released in-state. This finding implies that Oregon's contribution to global greenhouse gas emissions (carbon footprint) is considerably higher than traditional production-based methods would suggest. Furthermore, the consumption-based inventory helps highlight the role of goods and services (and associated purchasing behaviors) more so than do production-based methods. Accordingly, a consumption-based perspective opens new opportunities for many states and their local government partners to reduce GHG emissions, such as initiatives to advance lower-carbon public sector or household consumption, that are well within their sphere of influence. State and local governments should consider conducting consumption-based GHG inventories and adopting consumption-based emission reductions targets in order to broaden the reach and effectiveness of state and local actions in reducing global GHG emissions. Consumption-based frameworks should be viewed as a complement to, but not a substitute for, production-based (in-state) GHG emissions inventories and targets.

  1. National economic development programmes and GHG mitigation strategies in developing countries

    International Nuclear Information System (INIS)

    Sokona, Y.

    1995-01-01

    Increasingly, it is being acknowledged there that there is no need for more scientific evidence about the deleterious effects of anthropogenic emissions before taking action. Moreover, there is no longer any doubt that any perspective for the mitigation or stabilization of these gases can only be envisaged from a global approach. The most privileged nations, just as the least favoured nations, find themselves faced with a specific emergency period of immeasurable limits. In other words, this phenomenon can result in irreversible consequences or incur such high costs in being resolved that we must not wait before taking precautionary measures on a collective scale. When presented as such, this environmental issue is far too limited to its 'direct effects' which, for most Third World countries, are only a small part of a much larger problem, and a crucial aspect is the relationship between environment and development. The Third World countries, and particularly those of sub-Saharan Africa, confronted with an endemic crisis, might be tempted to treat their problems linked to anthropic emissions by paralipsis. But this could hardly be held against them, for they are assailed by a number of concurrent problems of proportions until now unheard of on our planet. However, it is not preposterous to think that sustained reflection on the planet's environmental problems such as greenhouse gas emissions could enhance their capacity to solve their own problems. Provided, however, that they have real power in decision-making and in taking action. (au)

  2. General guidance and procedures for estimating and reporting national GHG emissions for agriculture

    International Nuclear Information System (INIS)

    Rypdal, K.

    2002-01-01

    Greenhouse gas (GHG) emissions from agriculture account for a large share of total GHG emissions in most countries. Methane from ruminants, animal manure and rice fields, and nitrous oxide from agricultural soils are among the most important sources. In general, these emission estimates also are more uncertain than most other parts of the GHG emission inventory. IPCC has developed guidelines for estimating and reporting emissions of GHG. These guidelines shall be followed to secure complete, consistent, accurate and transparent reporting of emissions. However, the recommended methodologies are tiered, and choice of methods shall preferably reflect national circumstances, the national importance of a source, and different resources to prepare inventories. A country may also apply a national methodology given that it is well documented and not in conflict with good practice. Emission data reported under the United Nation Framework Convention on Climate Change are subject to external control, and the methodologies are reviewed by experts on agricultural inventories. (au)

  3. A regional assessment of the cost and effectiveness of mitigation measures for reducing nutrient losses to water and greenhouse gas emissions to air from pastoral farms.

    Science.gov (United States)

    Vibart, Ronaldo; Vogeler, Iris; Dennis, Samuel; Kaye-Blake, William; Monaghan, Ross; Burggraaf, Vicki; Beautrais, Josef; Mackay, Alec

    2015-06-01

    Using a novel approach that links geospatial land resource information with individual farm-scale simulation, we conducted a regional assessment of nitrogen (N) and phosphorous (P) losses to water and greenhouse gas (GHG) emissions to air from the predominant mix of pastoral industries in Southland, New Zealand. An evaluation of the cost-effectiveness of several nutrient loss mitigation strategies applied at the farm-scale, set primarily for reducing N and P losses and grouped by capital cost and potential ease of adoption, followed an initial baseline assessment. Grouped nutrient loss mitigation strategies were applied on an additive basis on the assumption of full adoption, and were broadly identified as 'improved nutrient management' (M1), 'improved animal productivity' (M2), and 'restricted grazing' (M3). Estimated annual nitrate-N leaching losses occurring under representative baseline sheep and beef (cattle) farms, and representative baseline dairy farms for the region were 10 ± 2 and 32 ± 6 kg N/ha (mean ± standard deviation), respectively. Both sheep and beef and dairy farms were responsive to N leaching loss mitigation strategies in M1, at a low cost per kg N-loss mitigated. Only dairy farms were responsive to N leaching loss abatement from adopting M2, at no additional cost per kg N-loss mitigated. Dairy farms were also responsive to N leaching loss abatement from adopting M3, but this reduction came at a greater cost per kg N-loss mitigated. Only dairy farms were responsive to P-loss mitigation strategies, in particular by adopting M1. Only dairy farms were responsive to GHG abatement; greater abatement was achieved by the most intensified dairy farm system simulated. Overall, M1 provided for high levels of regional scale N- and P-loss abatement at a low cost per farm without affecting overall farm production, M2 provided additional N-loss abatement but only marginal P-loss abatement, whereas M3 provided the greatest N-loss abatement, but

  4. Energy consumption and GHG emissions of six biofuel pathways by LCA in China

    Energy Technology Data Exchange (ETDEWEB)

    Ou, Xunmin [School of Public Policy and Management (SPPM), Tsinghua University, Beijing 100084 (China); China Automotive Energy Research Center (CAERC), Tsinghua University, Beijing 100084 (China); Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China); Zhang, Xiliang; Chang, Shiyan; Guo, Qingfang [China Automotive Energy Research Center (CAERC), Tsinghua University, Beijing 100084 (China); Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China)

    2009-11-15

    This paper presents life-cycle-analysis (LCA) energy consumption (EC) and greenhouse gas (GHG) emissions of China's current six biofuel pathways, which are: corn-derived ethanol (CE); cassava-derived ethanol (KE); sweet sorghum-derived ethanol (SE); soybean-derived bio-diesel (SB); jatropha fruit-derived bio-diesel (JB); and used cooking oil (UCO)-derived bio-diesel (UB). The tool utilized here is the WTW (Well-to-Wheels) module of Tsinghua-CA3EM model covering the entire lifecycle including: raw materials cultivation (or feedstock collection); fuel production; transportation and distribution; and application in automobile engines, compared with Conventional Petroleum-based gasoline and diesel Pathways (CPP). The results indicate: (1) the fossil energy inputs are about 1.0-1.5 times the energy contained in the fuel for the CE, SE and SB pathways, but 0.5-0.9 times for the KE, UB and JB pathways; (2) compared with CPP, the JB, KE and UB pathways can reduce both fossil fuel consumption and GHG emissions; the CE and SB pathways can only reduce fossil fuel consumption, but increase GHG emission; the SE pathway increases not only fossil fuel consumption but also GHG emission; and (3) the main factors inducing high EC and GHG emission levels include: high EC levels during the fuel production stage and high fertilizer application rates during the planting of raw feedstocks. Conclusions are that of the aforementioned biofuel pathways in China: (1) only the JB, KE and UB pathways have energy-saving merits as indicated by the LCA energy inputs and outputs; (2) compared with CPP, all but the SE pathway reduces fossil fuel consumption. However, the SB and CE pathway increase GHG emission; (3) all six displace petroleum by utilizing more coal; and (4) feedstock productivity levels must be increased, and there must be a reduction in fertilizer utilization and EC consumption during the cultivation and transportation stages in order to achieve the goals of energy balance and

  5. Energy consumption and GHG emissions of six biofuel pathways by LCA in China

    International Nuclear Information System (INIS)

    Ou Xunmin; Zhang Xiliang; Chang Shiyan; Guo Qingfang

    2009-01-01

    This paper presents life-cycle-analysis (LCA) energy consumption (EC) and greenhouse gas (GHG) emissions of China's current six biofuel pathways, which are: corn-derived ethanol (CE); cassava-derived ethanol (KE); sweet sorghum-derived ethanol (SE); soybean-derived bio-diesel (SB); jatropha fruit-derived bio-diesel (JB); and used cooking oil (UCO)-derived bio-diesel (UB). The tool utilized here is the WTW (Well-to-Wheels) module of Tsinghua-CA3EM model covering the entire lifecycle including: raw materials cultivation (or feedstock collection); fuel production; transportation and distribution; and application in automobile engines, compared with Conventional Petroleum-based gasoline and diesel Pathways (CPP). The results indicate: (1) the fossil energy inputs are about 1.0-1.5 times the energy contained in the fuel for the CE, SE and SB pathways, but 0.5-0.9 times for the KE, UB and JB pathways; (2) compared with CPP, the JB, KE and UB pathways can reduce both fossil fuel consumption and GHG emissions; the CE and SB pathways can only reduce fossil fuel consumption, but increase GHG emission; the SE pathway increases not only fossil fuel consumption but also GHG emission; and (3) the main factors inducing high EC and GHG emission levels include: high EC levels during the fuel production stage and high fertilizer application rates during the planting of raw feedstocks. Conclusions are that of the aforementioned biofuel pathways in China: (1) only the JB, KE and UB pathways have energy-saving merits as indicated by the LCA energy inputs and outputs; (2) compared with CPP, all but the SE pathway reduces fossil fuel consumption. However, the SB and CE pathway increase GHG emission; (3) all six displace petroleum by utilizing more coal; and (4) feedstock productivity levels must be increased, and there must be a reduction in fertilizer utilization and EC consumption during the cultivation and transportation stages in order to achieve the goals of energy balance and GHG

  6. Life cycle assessment of municipal solid waste management with regard to greenhouse gas emissions: Case study of Tianjin, China

    International Nuclear Information System (INIS)

    Zhao Wei; Voet, Ester van der; Zhang Yufeng; Huppes, Gjalt

    2009-01-01

    The environmental impacts of municipal solid waste (MSW) management have been highlighted in China, due to the continually increasing amount of MSW being generated and the limited capacity of waste treatment facilities. Of particular interest is greenhouse gas (GHG) mitigation, aided by the Kyoto Mechanisms. China is an important case study for this global issue; however, an analysis of the entire life cycle of MSW management on GHG emissions is not available for China. This study evaluates the current and possible patterns of MSW management with regard to GHG emissions, using life cycle assessment (LCA), based on the Tianjin case. We assess the baseline scenario, reflecting the existing MSW management system, as well as a set of alternative scenarios, five exploring waste treatment technology innovations and one exploring integrated MSW management, to quantitatively predict potentials of GHG mitigation for Tianjin. Additionally, a sensitivity analysis is used to investigate the influence of landfill gas (LFG) collection efficiency, recycling rate and methodological choice, especially allocation, on the outcomes. The results show GHG emissions from Tianjin's MSW management system amount to 467.34 Mg CO 2 eq. per year, based on the treatment of MSW collected in the central districts in 2006, and the key issue is LFG released. The integrated MSW management scenario, combining different improvement options, shows the highest GHG mitigation potential. Given the limited financial support and the current waste management practice in Tianjin, LFG utilization scenario would be the preferred choice. The sensitivity analysis of recycling rate shows an approximately linear relation of inverse proportion between recycling rate and total GHG emissions. Kitchen waste composting makes a considerable contribution to total GHG emissions reduction. Allocation choices result in differences in total quantitative outcomes, but preference orders and contributions analysis are found to

  7. Life cycle assessment of municipal solid waste management with regard to greenhouse gas emissions: Case study of Tianjin, China

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Wei [School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Nankai District 300072 (China); Institute of Environmental Sciences (CML), Leiden University, P. O. Box 9518, 2300RA, Leiden (Netherlands)], E-mail: zhao@cml.leidenuniv.nl; Voet, Ester van der [Institute of Environmental Sciences (CML), Leiden University, P. O. Box 9518, 2300RA, Leiden (Netherlands); Zhang Yufeng [School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Nankai District 300072 (China); Huppes, Gjalt [Institute of Environmental Sciences (CML), Leiden University, P. O. Box 9518, 2300RA, Leiden (Netherlands)

    2009-02-15

    The environmental impacts of municipal solid waste (MSW) management have been highlighted in China, due to the continually increasing amount of MSW being generated and the limited capacity of waste treatment facilities. Of particular interest is greenhouse gas (GHG) mitigation, aided by the Kyoto Mechanisms. China is an important case study for this global issue; however, an analysis of the entire life cycle of MSW management on GHG emissions is not available for China. This study evaluates the current and possible patterns of MSW management with regard to GHG emissions, using life cycle assessment (LCA), based on the Tianjin case. We assess the baseline scenario, reflecting the existing MSW management system, as well as a set of alternative scenarios, five exploring waste treatment technology innovations and one exploring integrated MSW management, to quantitatively predict potentials of GHG mitigation for Tianjin. Additionally, a sensitivity analysis is used to investigate the influence of landfill gas (LFG) collection efficiency, recycling rate and methodological choice, especially allocation, on the outcomes. The results show GHG emissions from Tianjin's MSW management system amount to 467.34 Mg CO{sub 2} eq. per year, based on the treatment of MSW collected in the central districts in 2006, and the key issue is LFG released. The integrated MSW management scenario, combining different improvement options, shows the highest GHG mitigation potential. Given the limited financial support and the current waste management practice in Tianjin, LFG utilization scenario would be the preferred choice. The sensitivity analysis of recycling rate shows an approximately linear relation of inverse proportion between recycling rate and total GHG emissions. Kitchen waste composting makes a considerable contribution to total GHG emissions reduction. Allocation choices result in differences in total quantitative outcomes, but preference orders and contributions analysis are

  8. Greenhouse Gas CCI Project (GHG-CCI): Overview and current status

    Science.gov (United States)

    Buchwitz, M.; Burrows, J. P.; Reuter, M.; Schneising, O.; Noel, S.; Bovensmann, H.; Notholt, J.; Boesch, H.; Parker, R.; Hasekamp, O. P.; Guerlet, S.; Aben, I.; Lichtenberg, G.; Crevoisier, C. D.; Chedin, A.; Stiller, G. P.; Laeng, A.; Butz, A.; Blumenstock, T.; Orphal, J.; Sussmann, R.; De Maziere, M. M.; Dils, B.; Brunner, D.; Popp, C. T.; Buchmann, B.; Chevallier, F.; Bergamaschi, P. M.; Frankenberg, C.; Zehner, C.

    2011-12-01

    The GHG-CCI project is one of several projects of ESA's Climate Change Initiative (CCI), which will deliver various Essential Climate Variables (ECVs). The goal of GHG-CCI is to deliver global satellite-derived data sets of the two most important anthropogenic greenhouse gases (GHGs) carbon dioxide (CO2) and methane (CH4) suitable to obtain information on regional CO2 and CH4 surface sources and sinks as needed for better climate prediction. The GHG-CCI core ECV data products are column-averaged mole fractions of CO2 and CH4, i.e., XCO2 and XCH4, retrieved from SCIAMACHY on ENVISAT and TANSO on GOSAT. Other satellite instruments will be used to provide constraints in upper layers such as IASI, MIPAS, and ACE-FTS. Which of the advanced algorithms, which are under development, will be the best for a given data product still needs to be determined. For each of the 4 GHG-CCI core data products - XCO2 and XCH4 from SCIAMACHY and GOSAT - several algorithms will be further developed and the corresponding data products will be inter-compared to identify which data product is the most appropriate. This includes comparisons with corresponding data products generated elsewhere, most notably with the operational data products of GOSAT generated at NIES and the NASA/ACOS GOSAT XCO2 product. This activity, the so-called "Round Robin exercise", will be performed in the first two years of this project. At the end of the 2 year Round Robin phase a decision will be made which of the algorithms performs best. The selected algorithms will be used to generate the first version of the ECV GHG. In the last six months of this 3 year project the resulting data products will be validated and made available to all interested users. In the presentation and overview about this project will be given. Focus will be on a discussion and intercomparison of the various data products focusing on CO2.

  9. Climate change, insurance, and the buildings sector: Technological synergisms between adaptation and mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Evan

    2002-11-01

    Examining the intersection of risk analysis and sustainable energy strategies reveals numerous examples of energy efficient and renewable energy technologies that offer insurance loss-prevention benefits. The growing threat of climate change provides an added motivation for the risk community to better understand this area of opportunity. While analyses of climate change mitigation typically focus on the emissions-reduction characteristics of sustainable energy technologies, less often recognized are a host of synergistic ways in which these technologies also offer adaptation benefits, e.g. making buildings more resilient to natural disasters. While there is already some relevant activity, there remain various barriers to significantly expanding these efforts. Achieving successful integration of sustainable energy considerations with risk-management objectives requires a more proactive orientation, and coordination among diverse actors and industry groups.

  10. Climate change, insurance and the building sector: technological synergisms between adaptation and mitigation

    International Nuclear Information System (INIS)

    Mills, E.

    2003-01-01

    Examining the intersection of risk analysis and sustainable energy strategies reveals numerous examples of energy-efficient and renewable energy technologies that offer insurance loss-prevention benefits. The growing threat of climate change provides an added motivation for the risk community to understand better this area of opportunity. While analyses of climate change mitigation typically focus on the emissions-reduction characteristics of sustainable energy technologies, less often recognised are a host of synergistic ways in which these technologies also offer adaptation benefits, e.g. making buildings more resilient to natural disasters. While there is already some relevant activity, there remain various barriers to expanding these efforts significantly. Achieving successful integration of sustainable energy considerations with risk-management objectives requires a more proactive orientation, and coordination among diverse actors and industry groups. (author)

  11. 40 CFR 98.73 - Calculating GHG emissions.

    Science.gov (United States)

    2010-07-01

    ...). MW = Molecular weight of the gaseous feedstock (kg/kg-mole). MVC = Molar volume conversion factor... stream (kg/kg-mole). MVC = Molar volume conversion factor (849.5 scf per kg-mole at standard conditions... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.73 Calculating GHG emissions. You...

  12. 40 CFR 98.243 - Calculating GHG emissions.

    Science.gov (United States)

    2010-07-01

    ... feedstock). (MWf)i = Molecular weight of gaseous feedstock i (kg/kg-mole). MVC = Molar volume conversion... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Petrochemical Production § 98.243 Calculating GHG emissions. (a) If you route all process vent emissions and emissions from combustion of process off-gas to one...

  13. 0-6696 : incorporating greenhouse gas (GHG) emissions in long-range transportation planning : [project summary].

    Science.gov (United States)

    2013-08-01

    Greenhouse gas (GHG) emissions continue to be : an important focus area for state, local, and : federal agencies. The transportation sector is the : second biggest contributor to GHG emissions in : the United States, and Texas contributes the : highe...

  14. Climate change mitigation in Asia and financing Mechanisms.Proceedings of a Regional Conference

    International Nuclear Information System (INIS)

    Shukla, P.R.; Deo, P.

    1998-12-01

    The three primary objectives of the conference, which was organized by the UNEP Collaborating Centre on Energy and Environment (UCCEE) in conjunction with the Environment Department of the World Bank, at Goa in India from May 4 to 6, 1998, were: 1) to share the GHG mitigation experiences from Asian developing countries; 2) to disseminate the standard methodological approach for mitigation analysis developed by UNEP and its applications in different countries; and 3) assess the role and efficacy of financial mechanisms and to, specifically, seek feedback on the Prototype Carbon Fund proposed by the World Bank. Follwing these objectives, the workshop presentations and discussions were structured in three parts. In the first part, participants from eleven Asian developing countries made presentations that were followed by discussions. The second part included the presentations by the experts from UCCEE, UNFCCC and other invited experts who presented the mitigation methodology and the issues and experiences relating to various co-operative implementation mechanisms. The third part included the presentations by the World Bank representatives on the Prototype Carbon Fund and the discussions on financial mechanisms. (EG)

  15. Net greenhouse gas emissions from manure management using anaerobic digestion technology in a beef cattle feedlot in Brazil.

    Science.gov (United States)

    Costa Junior, Ciniro; Cerri, Carlos E P; Pires, Alexandre V; Cerri, Carlos C

    2015-02-01

    As part of an agreement during the COP15, the Brazilian government is fostering several activities intended to mitigate greenhouse gas (GHG) emissions. One of them is the adoption of anaerobic digester (AD) for treating animal manure. Due to a lack of information, we developed a case study in order to evaluate the effect of such initiative for beef cattle feedlots. We considered the net GHG emissions (CH4 and N2O) from the manure generated from 140 beef heifers confined for 90 days in the scope "housing to field application" by including field measurements, literature values, and the offset generated by the AD system through the replacement of conventional sources of nitrogen (N) fertilizer and electricity, respectively. Results showed that direct GHG emissions accounted for 0.14 ± 0.06 kg of carbon dioxide equivalent (CO₂eq) per kg of animal live weight gain (lwg), with ~80% originating from field application, suggesting that this emission does not differ from the conventional manure management (without AD) typically done in Brazil (0.19 ± 0.07 kg of CO₂eq per kg lwg(-1)). However, 2.4 MWh and 658.0 kg of N-manure were estimated to be generated as a consequence of the AD utilization, potentially offsetting 0.13 ± 0.01 kg of CO₂eq kg lwg(-1) or 95% (±45%) of total direct emissions from the manure management. Although, by replacing fossil fuel sources, i.e. diesel oil, this offset could be increased to 169% (±47%). In summary, the AD has the potential to significantly mitigate GHG emissions from manure management in beef cattle feedlots, but the effect is indirect and highly dependent on the source to be replaced. In spite of the promising results, more and continuous field measurements for decreasing uncertainties and improving assumptions are required. Identifying shortcomings would be useful not only for the effectiveness of the Brazilian government, but also for worldwide plans in mitigating GHG emissions from beef production systems. Copyright

  16. Net greenhouse gas emissions from manure management using anaerobic digestion technology in a beef cattle feedlot in Brazil

    International Nuclear Information System (INIS)

    Costa Junior, Ciniro; Cerri, Carlos E.P.; Pires, Alexandre V.; Cerri, Carlos C.

    2015-01-01

    As part of an agreement during the COP15, the Brazilian government is fostering several activities intended to mitigate greenhouse gas (GHG) emissions. One of them is the adoption of anaerobic digester (AD) for treating animal manure. Due to a lack of information, we developed a case study in order to evaluate the effect of such initiative for beef cattle feedlots. We considered the net GHG emissions (CH 4 and N 2 O) from the manure generated from 140 beef heifers confined for 90 days in the scope “housing to field application” by including field measurements, literature values, and the offset generated by the AD system through the replacement of conventional sources of nitrogen (N) fertilizer and electricity, respectively. Results showed that direct GHG emissions accounted for 0.14 ± 0.06 kg of carbon dioxide equivalent (CO 2 eq) per kg of animal live weight gain (lwg), with ∼ 80% originating from field application, suggesting that this emission does not differ from the conventional manure management (without AD) typically done in Brazil (0.19 ± 0.07 kg of CO 2 eq per kg lwg −1 ). However, 2.4 MWh and 658.0 kg of N-manure were estimated to be generated as a consequence of the AD utilization, potentially offsetting 0.13 ± 0.01 kg of CO 2 eq kg lwg −1 or 95% (± 45%) of total direct emissions from the manure management. Although, by replacing fossil fuel sources, i.e. diesel oil, this offset could be increased to 169% (± 47%). In summary, the AD has the potential to significantly mitigate GHG emissions from manure management in beef cattle feedlots, but the effect is indirect and highly dependent on the source to be replaced. In spite of the promising results, more and continuous field measurements for decreasing uncertainties and improving assumptions are required. Identifying shortcomings would be useful not only for the effectiveness of the Brazilian government, but also for worldwide plans in mitigating GHG emissions from beef production systems

  17. High-resolution techno-ecological modelling of a bioenergy landscape to identify climate mitigation opportunities in cellulosic ethanol production

    Science.gov (United States)

    Field, John L.; Evans, Samuel G.; Marx, Ernie; Easter, Mark; Adler, Paul R.; Dinh, Thai; Willson, Bryan; Paustian, Keith

    2018-03-01

    Although dedicated energy crops will probably be an important feedstock for future cellulosic bioenergy production, it is unknown how they can best be integrated into existing agricultural systems. Here we use the DayCent ecosystem model to simulate various scenarios for growing switchgrass in the heterogeneous landscape that surrounds a commercial-scale cellulosic ethanol biorefinery in southwestern Kansas, and quantify the associated fuel production costs and lifecycle greenhouse gas (GHG) emissions. We show that the GHG footprint of ethanol production can be reduced by up to 22 g of CO2 equivalent per megajoule (CO2e MJ-1) through careful optimization of the soils cultivated and corresponding fertilizer application rates (the US Renewable Fuel Standard requires a 56 gCO2e MJ-1 lifecycle emissions reduction for `cellulosic' biofuels compared with conventional gasoline). This improved climate performance is realizable at modest additional costs, less than the current value of low-carbon fuel incentives. We also demonstrate that existing subsidized switchgrass plantings within this landscape probably achieve suboptimal GHG mitigation, as would landscape designs that strictly minimize the biomass collection radius or target certain marginal lands.

  18. Energy consumption and GHG emissions from the upstream oil and gas sector in Canada: an overview

    International Nuclear Information System (INIS)

    Bhargava, A.; Timilsina, G.

    2004-01-01

    After electricity generation, the oil and gas sector is the most emission intensive industry in Canada. This paper presents statistical data and research by the Canadian Energy Research Institute (CERI). The aim of the research was to provide a comparative evaluation between Alberta's energy consumption and Canada-wide consumption. Data revealed that energy consumption and greenhouse gas (GHG) emissions have increased faster in Alberta in comparison to the rest of Canada, but have slowed since 1997, while emissions in the rest of Canada still continued to increase. Aggregate emission intensities were presented. It was noted that there were no significant changes in fuel mix in either Alberta or the country as a whole. Key factors contributing to rapid increase in energy consumption and GHG emissions after 1996 were: increased energy intensive production and increased use of natural gas. Charts of oil and gas use were presented in energy consumption, economic output and GHG emissions, also indicating that Canadian trends followed Alberta trends. A list of reduction measures in the oil and gas sector were provided, with figures of total reductions and cost. Future actions were outlined and included: ratification of the Kyoto Accord, the negotiation of sectoral agreements, important elements such as cost cap and percentages of reduction; the limited ability to reduce emissions at lower cost per tonne within the oil and gas sector; technology breakthroughs; and adoption of new practices such as the use of alternate fuels in energy intensive processes. tabs, figs

  19. Energy consumption and GHG emissions from the upstream oil and gas sector in Canada: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Bhargava, A.; Timilsina, G. [Canadian Energy Research Inst., Calgary, AB (Canada)

    2004-07-01

    After electricity generation, the oil and gas sector is the most emission intensive industry in Canada. This paper presents statistical data and research by the Canadian Energy Research Institute (CERI). The aim of the research was to provide a comparative evaluation between Alberta's energy consumption and Canada-wide consumption. Data revealed that energy consumption and greenhouse gas (GHG) emissions have increased faster in Alberta in comparison to the rest of Canada, but have slowed since 1997, while emissions in the rest of Canada still continued to increase. Aggregate emission intensities were presented. It was noted that there were no significant changes in fuel mix in either Alberta or the country as a whole. Key factors contributing to rapid increase in energy consumption and GHG emissions after 1996 were: increased energy intensive production and increased use of natural gas. Charts of oil and gas use were presented in energy consumption, economic output and GHG emissions, also indicating that Canadian trends followed Alberta trends. A list of reduction measures in the oil and gas sector were provided, with figures of total reductions and cost. Future actions were outlined and included: ratification of the Kyoto Accord, the negotiation of sectoral agreements, important elements such as cost cap and percentages of reduction; the limited ability to reduce emissions at lower cost per tonne within the oil and gas sector; technology breakthroughs; and adoption of new practices such as the use of alternate fuels in energy intensive processes. tabs, figs.

  20. Plug-in hybrid vehicle GHG impacts in California: Integrating consumer-informed recharge profiles with an electricity-dispatch model

    International Nuclear Information System (INIS)

    Axsen, Jonn; Kurani, Kenneth S.; McCarthy, Ryan; Yang, Christopher

    2011-01-01

    This paper explores how Plug-in Hybrid Vehicles (PHEVs) may reduce source-to-wheel Greenhouse Gas (GHG) emissions from passenger vehicles. The two primary advances are the incorporation of (1) explicit measures of consumer interest in and potential use of different types of PHEVs and (2) a model of the California electricity grid capable of differentiating hourly and seasonal GHG emissions by generation source. We construct PHEV emissions scenarios to address inherent relationships between vehicle design, driving and recharging behaviors, seasonal and time-of-day variation in GHG-intensity of electricity, and total GHG emissions. A sample of 877 California new vehicle buyers provide data on driving, time of day recharge access, and PHEV design interests. The elicited data differ substantially from the assumptions used in previous analyses. We construct electricity demand profiles scaled to one million PHEVs and input them into an hourly California electricity supply model to simulate GHG emissions. Compared to conventional vehicles, consumer-designed PHEVs cut marginal (incremental) GHG emissions by more than one-third in current California energy scenarios and by one-quarter in future energy scenarios-reductions similar to those simulated for all-electric PHEV designs. Across the emissions scenarios, long-term GHG reductions depends on reducing the carbon intensity of the grid. - Research highlights: → We estimate California Plug-in Hybrid Vehicle (PHEV) GHGs using consumer data and an electricity supply model. → Consumer-designed (mostly 'blended') PHEVs can reduce GHG emissions compared to conventional vehicles. → These PHEVs can also reduce GHG emissions relative to 'all-electric' PHEV designs. → 'All-electric' designs may further reduce GHG emissions as electricity carbon intensity falls. → Ranking of GHG savings from off-peak versus daytime charging scenarios depends on electricity carbon intensity.

  1. Mechanism of floating body effect mitigation via cutting off source injection in a fully-depleted silicon-on-insulator technology

    International Nuclear Information System (INIS)

    Huang Pengcheng; Chen Shuming; Chen Jianjun

    2016-01-01

    In this paper, the effect of floating body effect (FBE) on a single event transient generation mechanism in fully depleted (FD) silicon-on-insulator (SOI) technology is investigated using three-dimensional technology computer-aided design (3D-TCAD) numerical simulation. The results indicate that the main SET generation mechanism is not carrier drift/diffusion but floating body effect (FBE) whether for positive or negative channel metal oxide semiconductor (PMOS or NMOS). Two stacking layout designs mitigating FBE are investigated as well, and the results indicate that the in-line stacking (IS) layout can mitigate FBE completely and is area penalty saving compared with the conventional stacking layout. (paper)

  2. Trade study of leakage detection, monitoring, and mitigation technologies to support Hanford single-shell waste retrieval

    International Nuclear Information System (INIS)

    Hertzel, J.S.

    1996-03-01

    The U.S. Department of Energy has established the Tank Waste Remediation System to safely manage and dispose of low-level, high-level, and transuranic wastes currently stored in underground storage tanks at the Hanford Site in Eastern Washington. This report supports the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone No. M-45-08-T01 and addresses additional issues regarding single-shell tank leakage detection, monitoring, and mitigation technologies and provide an indication of the scope of leakage detection, monitoring, and mitigation activities necessary to support the Tank Waste Remedial System Initial Single-shell Tank Retrieval System project

  3. Dynamic integrated assessment of bioenergy technologies for energy production utilizing agricultural residues: An input–output approach

    International Nuclear Information System (INIS)

    Song, Junnian; Yang, Wei; Higano, Yoshiro; Wang, Xian’en

    2015-01-01

    Highlights: • A dynamic input–output model is developed with bioenergy technologies complemented. • Availability of agricultural residues for bioenergy technologies is evaluated. • Trends in electricity and biofuel production are simulated dynamically. • Net profit and GHG mitigation contribution of bioenergy technologies are assessed. • Combustion power generation and briquette fuel are more advantageous. - Abstract: In order to facilitate regional agricultural residue utilization for energy production through bioenergy technologies, a dynamic input–output model is developed to estimate and assess the energy, economic and environmental performances of industrialization of five bioenergy technologies within a 15-year time horizon. Electricity and solid, gaseous and liquid biofuels are energy products of bioenergy technologies. Bioenergy technologies are complemented into regional input–output framework and combined with socioeconomic activities aided by their bottom-up economic and energy parameters. The simulation results for the target area indicate that the agricultural residues available for bioenergy technologies could amount to 55.16 million t, facilitating to 8.38 million t coal-equivalent bioenergy production by 2025. A 3.1% net reduction in accumulative greenhouse gas emission compared with the “business as usual” case could be achieved owing to substitution of fossil energy with electricity and biofuels produced by bioenergy technologies. From energy production, economic benefits and greenhouse gas mitigation three aspects integratedly, direct-combustion power generation and briquette fuel are more advantageous in the target area. The quantified energy, economic and environmental performances of bioenergy technologies are expected to give recommendations for their industrial development.

  4. Multigas reduction strategy under climate stabilization target

    Energy Technology Data Exchange (ETDEWEB)

    Kurosawa, A. [Inst. of Applied Energy, Tokyo (Japan)

    2005-07-01

    Global warming can be mitigated through the abatement of carbon dioxide (CO{sub 2}), methane (CH{sub 4}), nitrous oxide (N{sub 2}O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs) and sulfur hexafluoride (SF{sub 6}). This study argued that multiple gas reduction flexibility should be assessed when considering effective greenhouse gas (GHG) mitigation strategies. Emissions of non-CO{sub 2} GHGs were calculated endogenously using an integrated assessment model. Multigas reduction potential was measured in relation to long-term atmospheric temperature targets, and the effects on gas life as well as abatement timing uncertainty were considered in terms of cost and technological availability. The model consisted of 5 nodules which considered issues related to energy, climate, land use, macroeconomics, and environmental impacts. The time horizon of the model was 2000 to 2100. An economic utility maximization technology was used to consider global trade balances. Emissions of non-CO{sub 2} gases from specific sources was calculated by multiplying the emission factor and the endogenous parameters within the model. Results were presented for GHG emissions and concentrations in 2 simulation cases: (1) a no climate policy case (NCP); and (2) a transient temperature stabilization (TTS) case. Actions to reduce non-CO{sub 2} GHGs included activity level changes in production and consumption, and additional reductions in abatement costs without sector activity changes. Results of the study showed that reducing global dependency on fossil fuels was an effective way to reduce GHG effects from CO{sub 2}, CH{sub 4} and N{sub 2}O. Additional abatements to reduce N{sub 2}O emissions are required in the agricultural sector. Economic incentives and public outreach programs are needed to offset the high transaction costs of GHG mitigation strategies. It was concluded that both short-term and long-term policies are required to reduce GHG in all sectors. Multigas mitigation is needed to

  5. Bridging Climate Change Resilience and Mitigation in the Electricity Sector Through Renewable Energy and Energy Efficiency: Emerging Climate Change and Development Topics for Energy Sector Transformation

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Sarah L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hotchkiss, Elizabeth L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bilello, Daniel E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Watson, Andrea C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Holm, Alison [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-03

    Reliable, safe, and secure electricity is essential for economic and social development and a necessary input for many sectors of the economy. However, electricity generation and associated processes make up a significant portion of global greenhouse gas (GHG) emissions contributing to climate change. Furthermore, electricity systems are vulnerable to climate change impacts - both short-term events and changes over the longer term. This vulnerability presents both near-term and chronic challenges in providing reliable, affordable, equitable, and sustainable energy services. Within this context, developing countries face a number of challenges in the energy sector, including the need to reliably meet growing electricity demand, lessen dependence on imported fuels, expand energy access, and improve stressed infrastructure for fuel supply and electricity transmission. Energy efficiency (EE) and renewable energy (RE) technical solutions described in this paper can bridge action across climate change mitigation and resilience through reducing GHG emissions and supporting electric power sector adaptation to increasing climate risk. Integrated planning approaches, also highlighted in this paper, play an integral role in bringing together mitigation and resilience action under broader frameworks. Through supporting EE and RE deployment and integrated planning approaches, unique to specific national and local circumstances, countries can design and implement policies, strategies, and sectoral plans that unite development priorities, climate change mitigation, and resilience.

  6. Modeling of energy consumption and related GHG (greenhouse gas) intensity and emissions in Europe using general regression neural networks

    International Nuclear Information System (INIS)

    Antanasijević, Davor; Pocajt, Viktor; Ristić, Mirjana; Perić-Grujić, Aleksandra

    2015-01-01

    This paper presents a new approach for the estimation of energy-related GHG (greenhouse gas) emissions at the national level that combines the simplicity of the concept of GHG intensity and the generalization capabilities of ANNs (artificial neural networks). The main objectives of this work includes the determination of the accuracy of a GRNN (general regression neural network) model applied for the prediction of EC (energy consumption) and GHG intensity of energy consumption, utilizing general country statistics as inputs, as well as analysis of the accuracy of energy-related GHG emissions obtained by multiplying the two aforementioned outputs. The models were developed using historical data from the period 2004–2012, for a set of 26 European countries (EU Members). The obtained results demonstrate that the GRNN GHG intensity model provides a more accurate prediction, with the MAPE (mean absolute percentage error) of 4.5%, than tested MLR (multiple linear regression) and second-order and third-order non-linear MPR (multiple polynomial regression) models. Also, the GRNN EC model has high accuracy (MAPE = 3.6%), and therefore both GRNN models and the proposed approach can be considered as suitable for the calculation of GHG emissions. The energy-related predicted GHG emissions were very similar to the actual GHG emissions of EU Members (MAPE = 6.4%). - Highlights: • ANN modeling of GHG intensity of energy consumption is presented. • ANN modeling of energy consumption at the national level is presented. • GHG intensity concept was used for the estimation of energy-related GHG emissions. • The ANN models provide better results in comparison with conventional models. • Forecast of GHG emissions for 26 countries was made successfully with MAPE of 6.4%

  7. A regional field-based assessment of organic C sequestration and GHG balances in irrigated agriculture in Mediterranean semi-arid land

    Science.gov (United States)

    Virto, Inigo; Antón, Rodrigo; Arias, Nerea; Orcaray, Luis; Enrique, Alberto; Bescansa, Paloma

    2016-04-01

    quantifications will allow for evaluating the most suitable strategies for developing sustainable irrigation agrosystems in the region. The quantification of SOC stocks was done within equivalent soil units in each area, and for each level of comparison. Soil organic C stocks were quantified using the area-frame randomized soil sampling protocol (Stolbovoy et al., 2007), in the tilled layer (0-30 cm). GHG balances were calculated from inputs information obtained from farmers, using tools developed by the regional agricultural research institute (INTIA), adapted to the local characteristics of agriculture. The results corresponding to the comparison between dryland and irrigated agrosystems showed differences both in terms of SOC storage and GHG balances in the two studied areas. Irrigated fields had significantly greater stocks of SOC on average, although net organic C storage was significantly affected by soil and crop type. Also, organic fertilization in dryland resulted in significantly more SOC stored in the soil. Net GHG balances were greatly affected by the type of crops and their management, in particular fertilization strategies. As a result, net balances in terms of GHG emissions and mitigation varied greatly among irrigated systems, and in comparison to dryland systems.

  8. Assessment of Clmate Change Mitigation Strategies for the Road Transport Sector of India

    Science.gov (United States)

    Singh, N.; Mishra, T.; Banerjee, R.

    2017-12-01

    India is one of the fastest growing major economies of the world. It imports three quarters of its oil demand, making transport sector major contributor of greenhouse gas (GHG) emissions. 40% of oil consumption in India comes from transport sector and over 90% of energy demand is from road transport sector. This has led to serious increase in CO2 emission and concentration of air pollutants in India. According to Intergovernmental Panel on Climate Change (IPCC), transport can play a crucial role for mitigation of global greenhouse gas emissions. Therefore, assessment of appropriate mitigation policies is required for emission reduction and cost benefit potential. The present study aims to estimate CO2, SO2, PM and NOx emissions from the road transport sector for the base year (2014) and target year (2030) by applying bottom up emission inventory model. Effectiveness of different mitigation strategies like inclusion of natural gas as alternate fuel, penetration of electric vehicle as alternate vehicle, improvement of fuel efficiency and increase share of public transport is evaluated for the target year. Emission reduction achieved from each mitigation strategies in the target year (2030) is compared with the business as usual scenario for the same year. To obtain cost benefit analysis, marginal abatement cost for each mitigation strategy is estimated. The study evaluates mitigation strategies not only on the basis of emission reduction potential but also on their cost saving potential.

  9. Target-aimed versus wishful-thinking in designing efficient GHG reduction strategies for a metropolitan city: Taipei

    International Nuclear Information System (INIS)

    Liu, C.-M.; Liou, M.-L.; Yeh, S.-C.; Shang, N.-C.

    2009-01-01

    In recent years, many national and local governments claim for a specific GHG (greenhouse gas) reduction goal targeted for many years later. In 2005, the Taipei City government announced that Taipei's total GHG emission in 2015 will reach the same level as that in 2005 and then down to 75% of that level at year 2030. However, based on the estimated energy consumption and GHG emission and the proposed emission reduction plans from the local government, it is clear that these goals are not going to be accomplished. In Taipei, the residential and commercial sector contributes more than 78% of the total GHG emission. Thus, in a business as usual scenario, the total GHG emission in 2030 would be 79% more than that in 2005, far more than the target value proclaimed. As many key factors are uncontrollable by the local government, a target-aimed strategy designing process by looking into changes in Taipei and identifying major targets is proposed in this study. It is demonstrated that such a universally applicable approach will give more confidence to the public on working toward the expected GHG reduction goal

  10. NASA Technology Evaluation for Environmental Risk Mitigation Remediation Technology Collaboration Development

    Science.gov (United States)

    Romeo, James

    2013-01-01

    NASA is committed to finding solutions to agency cleanup problems that are better, cheaper, and more effective than the status quo. Unfortunately, some potential solutions involve innovative technologies for which NASA remediation managers may not have a high level of understanding or confidence. Since 2004, NASA's Stennis Space Center (SSC) in Mississippi has been pumping groundwater contaminated with trichloroethylene (TCE) and other halogenated volatile organic compounds (HVOC) from their cleanup location designated "Area G" through extraction wells to an aboveground treatment system. Over time, however, the effectiveness of this treatment strategy has diminished and an alternative approach is needed. In 2012, professionals from NASA's Principal Center for Technology Evaluation for Environmental Risk Mitigation (TEERM) introduced SSC managers to an innovative technology for enhancing the performance of SSC's existing pump and treat system. The technology, generally referred to as in situ chemical oxidation (ISCO), involves slowly and continuously injecting a strong but safe chemical oxidant into the groundwater. Treatment is enhanced by a "surfactant-type effect" which causes residual contamination from saturated soil to be released into the dissolved-phase where it can be readily oxidized. Any dissolved-phase contamination that was not oxidized can be collected by the extraction well network and treated aboveground. SSC was not familiar with the technology so to increase their confidence, TEERM identified a contractor who was willing to demonstrate their product and process at a significantly reduced price. An initial, small-scale demonstration of ISCO began at sse in March 2012 and completed in August 2012. This successful demonstration was followed by three larger-scale ISCO demonstrations between August and December 2012. The contractor's innovative Continuous Injection System (CIS) incorporated "green" and sustainable technologies and practices. A slow

  11. Greenhouse gas emissions and reactive nitrogen releases during the life-cycles of staple food production in China and their mitigation potential.

    Science.gov (United States)

    Xia, Longlong; Ti, Chaopu; Li, Bolun; Xia, Yongqiu; Yan, Xiaoyuan

    2016-06-15

    Life-cycle analysis of staple food (rice, flour and corn-based fodder) production and assessments of the associated greenhouse gas (GHG) and reactive nitrogen (Nr) releases, from environmental and economic perspectives, help to develop effective mitigation options. However, such evaluations have rarely been executed in China. We evaluated the GHG and Nr releases per kilogram of staple food production (carbon and Nr footprints) and per unit of net economic benefit (CO2-NEB and Nr-NEB), and explored their mitigation potential. Carbon footprints of food production in China were obviously higher than those in some developed countries. There was a high spatial variation in the footprints, primarily attributable to differences in synthetic N use (or CH4 emissions) per unit of food production. Provincial carbon footprints had a significant linear relationship with Nr footprints, attributed to large contribution of N fertilizer use to both GHG and Nr releases. Synthetic N fertilizer applications and CH4 emissions dominated the carbon footprints, while NH3 volatilization and N leaching were the main contributors to the Nr footprints. About 564 (95% uncertainty range: 404-701) TgCO2eqGHG and 10 (7.4-12.4) Tg Nr-N were released every year during 2001-2010 from staple food production. This caused the total damage costs of 325 (70-555) billion ¥, equivalent to nearly 1.44% of the Gross Domestic Product of China. Moreover, the combined damage costs and economic input costs, accounted for 66%-80% of the gross economic benefit generated from food production. A reduction of 92.7TgCO2eqyr(-1) and 2.2TgNr-Nyr(-1) could be achieved by reducing synthetic N inputs by 20%, increasing grain yields by 5% and implementing off-season application of straw and mid-season drainage practices for rice cultivation. In order to realize these scenarios, an ecological compensation scheme should be established to incentivize farmers to gradually adopt knowledge-based managements. Copyright © 2016

  12. 40 CFR 98.173 - Calculating GHG emissions.

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Iron and Steel Production § 98.173 Calculating GHG emissions... for the process as specified in paragraphs (b)(1)(i) through (b)(1)(vii) of this section. The... the gaseous fuel (kg/kg-mole). MVC = Molar volume conversion factor (849.5 scf per kg-mole at standard...

  13. 40 CFR 98.163 - Calculating GHG emissions.

    Science.gov (United States)

    2010-07-01

    ... = Molecular weight of the gaseous fuel and feedstock (kg/kg-mole). MVC = Molar volume conversion factor (849.5... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Hydrogen Production § 98.163 Calculating GHG emissions. You... = Volume of the gaseous fuel and feedstock used in month n (scf (at standard conditions of 68 °F and...

  14. Acceptance and Utilization of Technology (UTAUT) as a Method of Technology Acceptance Model of Mitigation Disaster Website

    Science.gov (United States)

    Siswanto, T.; Shofiati, R.; Hartini, H.

    2018-01-01

    www.mitigasi-bencana.com as a knowledge management website created based on survey results in April-July 2014 in East Java and Central Java provinces, indicates a gap between the expectations and reality that exist in the services provided by the regional disaster management agency. Based on condition analysis, the gaps that occur can be reduced if the community has the understanding and knowledge of adequate disaster mitigation. The problem that arises later is whether the chosen technology solution is appropriate and acceptable to the public? The methodology used in this study using the Technology Acceptance Model development is the Unified Theory of Acceptance and Utilization of Technology (UTAUT). Feedback obtained from respondents KarangTaruna youth SelogedongBantul, www.mitigasi-bencana.com can be accepted by the respondents, but from processed data is obtained only UTAUT hypotheses on the relationship dimension eligible for Social Expectancy on the Attitude toward technology, which means the higher the perception of the Social Expectancy, the higher the perception of the Attitude toward technology. Because www.mitigasi-bencana.com is new socialized so that society still need time to explore content information and knowledge contained therein. To be accepted by user, a knowledge management application must prepare various aspects of Performance Expectancy, Effort Expectancy, Social Factors, Facilitating Conditions and Attitude.

  15. Emerging Radiation Health-Risk Mitigation Technologies

    International Nuclear Information System (INIS)

    Wilson, J.W.; Cucinotta, F.A.; Schimmerling, W.

    2004-01-01

    Past space missions beyond the confines of the Earth's protective magnetic field have been of short duration and protection from the effects of solar particle events was of primary concern. The extension of operational infrastructure beyond low-Earth orbit to enable routine access to more interesting regions of space will require protection from the hazards of the accumulated exposures of Galactic Cosmic Rays (GCR). There are significant challenges in providing protection from the long-duration exposure to GCR: the human risks to the exposures are highly uncertain and safety requirements places unreasonable demands in supplying sufficient shielding materials in the design. A vigorous approach to future radiation health-risk mitigation requires a triage of techniques (using biological and technical factors) and reduction of the uncertainty in radiation risk models. The present paper discusses the triage of factors for risk mitigation with associated materials issues and engineering design methods

  16. Managing GHG emissions : performance to the end of 2003 and forecast to 2008

    International Nuclear Information System (INIS)

    2004-10-01

    This paper presents statistics of greenhouse gas (GHG) emissions for Shell Canada Ltd., one of the largest integrated oil and gas companies in Canada. Strategies for future emissions reductions were also presented. Since 1995, Shell has both set and met targets to reduce emissions in base businesses. They have increased their target reductions to a further 6 per cent by 2008. Strategies included reductions in energy consumption and improvements in energy efficiency. Challenges presented by new governmental regulations were discussed. Alternate energy sources are being considered as a means of expanding the Shell energy business portfolio. Principles and management plans guiding the emissions reduction strategy were presented, as well as details of the Shell management structure and climate change advisory panel. Figures and statistics of emissions reductions were provided in relation to changes in business activity; energy efficiency; formation gas; energy in declining fields; and fuel mix. An emissions forecast to 2010 was presented with newly adjusted goals. In 2003, overall refinery energy efficiency improved by over 4 per cent. Statistics of refinery energy intensity were presented. Exploration and production businesses achieved a reduction of 6 per cent, with energy intensity per unit of production presented. Oil sands projects achieved a GHG emissions intensity of 69 kilograms per barrel of bitumen. In addition, the voluntary GHG management plan introduced a number of offsets including tree planting programs and the purchase of voluntary GHG credits. The methodology used to calculate GHG emissions was also provided. tabs., figs

  17. Contribution of plastic waste recovery to greenhouse gas (GHG) savings in Spain.

    Science.gov (United States)

    Sevigné-Itoiz, Eva; Gasol, Carles M; Rieradevall, Joan; Gabarrell, Xavier

    2015-12-01

    This paper concentrates on the quantification of greenhouse gas (GHG) emissions of post-consumer plastic waste recovery (material or energy) by considering the influence of the plastic waste quality (high or low), the recycled plastic applications (virgin plastic substitution or non-plastic substitution) and the markets of recovered plastic (regional or global). The aim is to quantify the environmental consequences of different alternatives in order to evaluate opportunities and limitations to select the best and most feasible plastic waste recovery option to decrease the GHG emissions. The methodologies of material flow analysis (MFA) for a time period of thirteen years and consequential life cycle assessment (CLCA) have been integrated. The study focuses on Spain as a representative country for Europe. The results show that to improve resource efficiency and avoid more GHG emissions, the options for plastic waste management are dependent on the quality of the recovered plastic. The results also show that there is an increasing trend of exporting plastic waste for recycling, mainly to China, that reduces the GHG benefits from recycling, suggesting that a new focus should be introduced to take into account the split between local recycling and exporting. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Climate-smart technologies. Integrating renewable energy and energy efficiency in mitigation and adaptation responses

    Energy Technology Data Exchange (ETDEWEB)

    Leal Filho, Walter; Mannke, Franziska; Schulte, Veronika [Hamburg Univ. of Applied Sciences (Germany). Faculty of Life Sciences; Mohee, Romeela; Surroop, Dinesh (eds.) [Mauritius Univ., Reduit (Mauritius). Chemical and Environmental Engineering Dept.

    2013-11-01

    Explores the links between climate change and technologies. Relates to the links between renewable energy and climate change. Documents and promotes a collection of experiences from island nations. Has a strong international focus and value to developing countries. The book addresses the perceived need for a publication with looks at both, climate smart technologies and the integration of renewable energy and energy efficiency in mitigation and adaptation responses. Based on a set of papers submitted as part of the fifth on-line climate conference (CLIMATE 2012) and a major conference on renewable energy on island States held in Mauritius in 2012, the book provides a wealth of information on climate change strategies and the role of smart technologies. The book has been produced in the context of the project ''Small Developing Island Renewable Energy Knowledge and Technology Transfer Network'' (DIREKT), funded by the ACP Science and Technology Programme, an EU programme for cooperation between the European Union and the ACP region.

  19. Policies and Measures to Realise Industrial Energy Efficiency and Mitigate Climate Change

    International Nuclear Information System (INIS)

    Price, L.K.; McKane, A.T.; Ploutakhina, M.; Monga, P.; Gielen, D.; Bazilian, M.; Nussbaumer, P.; Howells, M.; Rogner, H.-H.

    2009-01-01

    The industrial sector is responsible for a significant share of global energy use and carbon dioxide (CO 2 ) emissions. Energy efficiency is commonly seen as the most cost-effective, least-polluting, and most readily-accessible industrial energy saving option available in the industrial sector worldwide. Capturing the full extent of these potential end-use energy efficiency improvements rapidly is essential if the world is to be on a path to stabilise greenhouse gas (GHG) concentrations to a level that would prevent dangerous anthropogenic interference with the climate system. In the International Energy Agency (IEA) 450 parts per million stabilisation scenario, over a quarter of all energy efficiency gains need to come from the industrial sector by 2050, largely by changing the pattern of industrial energy use. The reduction potential estimated by IEA and the Intergovernmental Panel on Climate Change (IPCC) for five energy-intensive industrial sub-sectors ranges from about 10 to 40 per cent, depending upon the sector. There is significant potential to reduce, at low or no cost, the amount of energy used to manufacture most commodities. Many policies and programmes - at a national level - have already demonstrated significant improvements in industrial energy efficiency. The associate reduction in energy needs often also improves economic competitiveness as well as mitigates GHG emissions. However, at an international level, approaches such as the Clean Development Mechanism (CDM) are not yet delivering the expected energy efficiency improvements. Existing and effective industrial energy efficiency policies and measures could be replicated at a global level. Key elements of those policies and measures include increasing facility management attention to the issue of energy efficiency; promoting the dissemination of information, practice, and tools; increasing the auditing and implementation capacity; and developing the market for industrial energy efficiency

  20. A framework for technological learning in the supply chain: A case study on CdTe photovoltaics

    International Nuclear Information System (INIS)

    Bergesen, Joseph D.; Suh, Sangwon

    2016-01-01

    Highlights: • A framework for technological learning in the supply chain is proposed. • This framework separates learning effects on value added and intermediate inputs. • Supply-chain learning can project both changing environmental impacts and costs. • Learning upstream in the supply chain can influence observed learning rates. • An example for CdTe photovoltaics illustrates how this framework can be implemented. - Abstract: Accounting for technological changes and innovation is important when assessing the implications of rapidly-developing greenhouse gas (GHG) mitigation technologies. Technological learning curves have been commonly used as a tool to understand technological change as a function of cumulative production. Traditional learning curve approaches, however, do not distinguish the direct and upstream, supply chain technological changes by which cost reductions are achieved. While recent advances in learning curves have focused on distinguishing the different physical and economic drivers of learning, forecasted technological changes have not been applied to estimate the potential changes in the environmental performance of a technology. This article illustrates how distinguishing the different effects of technological learning throughout the supply chain can help assess the changing costs, environmental impacts and natural resource implications of technologies as they develop. We propose a mathematical framework to distinguish the effects of learning on the direct inputs to a technology from the effects of learning on value added, and we incorporate those effects throughout the supply chain of a technology using a life cycle assessment (LCA) framework. An example for cadmium telluride (CdTe) photovoltaics (PV) illustrates how the proposed framework can be implemented. Results show that that life cycle GHG emissions can decrease at least 40% and costs can decrease at least 50% as cumulative production of CdTe reaches 100 GW. Technological

  1. Hydroelectric dams in Amazon as source of GHG

    International Nuclear Information System (INIS)

    Rosa, L.P.; Schaeffer, R.; Santos, M.A.

    1996-01-01

    A recent paper by Fearnside points out that hydroelectric development in Amazonia is a significant source of greenhouse gases (GHG) emissions. This conclusion is in contrast to the common belief that hydroelectric dams are better than fossil fuel use in electric power generation, from the view point of GHG emissions. The authors have considered both CH 4 and CO 2 emissions taking into account the instantaneous radiative forcing due to a unit increase in the concentration of gases, the decay times of gases in the atmosphere and the emissions patterns of emissions vary depending on biomass density and type of the forest area flooded, as well as on depth of flooding. As the Fearnside paper is more concerned with CO 2 emissions from the above water biomass, the authors' focus will be restricted to the formulae for calculating the cumulative effect of CO 2

  2. Vehicle lightweighting vs. electrification: Life cycle energy and GHG emissions results for diverse powertrain vehicles

    International Nuclear Information System (INIS)

    Lewis, Anne Marie; Kelly, Jarod C.; Keoleian, Gregory A.

    2014-01-01

    Highlights: • We modeled life cycle energy and greenhouse gas (GHG) emissions from diverse powertrain vehicles. • Lightweight versions of the vehicle models were compared against baseline models. • Maximum energy and GHG emissions occur with aluminum vs. advanced high strength steel. • Design harmonization method shows 0.2–0.3 kg of support required per 1 kg powertrain mass increase. - Abstract: This work assesses the potential of electrified vehicles and mass reduction to reduce life cycle energy and greenhouse gas (GHG) emissions. Life cycle assessment (LCA) is used to account for processes upstream and downstream of the vehicle operation, thereby incorporating regional variation of energy and GHG emissions due to electricity production and distinct energy and GHG emissions due to conventional and lightweight materials. Design harmonization methods developed in previous work are applied to create baseline and lightweight vehicle models of an internal combustion vehicle (ICV), hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV). Thus, each vehicle is designed to be functionally equivalent and incorporate the structural support required for heavier powertrains. Lightweight vehicles are designed using body-in-white (BIW) mass reduction scenarios with aluminum and advanced/high strength steel (A/HSS). For the mass reduction scenarios considered in this work, results indicate that the greatest life cycle energy and GHG emissions reductions occur when steel is replaced by aluminum. However, since A/HSS requires less energy to produce as compared to aluminum, the energy and GHG reductions per unit mass removed is greatest for A/HSS. Results of the design harmonization modeling method show that 0.2–0.3 kg of structural support is required per unit increase in powertrain mass, thus extending previous methods

  3. Regional disparity of urban passenger transport associated GHG (greenhouse gas) emissions in China: A review

    International Nuclear Information System (INIS)

    Hao, Han; Geng, Yong; Wang, Hewu; Ouyang, Minggao

    2014-01-01

    With China’s urbanization and motorization, greenhouse gas (GHG) emissions from urban passenger transport increased rapidly over recent years. As we estimated, China’s urban passenger transport associated motorized travel, energy consumption and lifecycle GHG emissions reached 2815 billion passenger kilometers (pkm), 77 million tons of oil equivalent (toe) and 335 million ton CO 2 equivalent in 2010, over half of which were located in eastern provinces. Over national level, GHG emissions by private passenger vehicles, business passenger vehicles, taxis, motorcycles, E-bikes, transit buses and urban rails accounted for 57.7%, 13.0%, 7.7%, 8.6%, 1.8%, 10.5% and 0.7% of the total. Significant regional disparity was observed. The province-level per capita GHG emissions ranged from 285 kg/capita in Guizhou to 1273 kg/capita in Beijing, with national average of 486 kg/capita. Depending on province context and local policy orientation, the motorization pathways of China’s several highest motorized provinces are quite diverse. We concluded that motorization rate and transport structure were the substantial factors determining urban passenger transport associated GHG emissions. Considering the great potential of urban passenger transport growth in China, policies guiding the optimization of transport structure should be in place with priority in eastern provinces. - Highlights: • Province-leveled motorized travel, energy consumption and GHG emissions in China were studied. • Significant regional disparities on urban passenger transport were observed. • Region-specific sustainable transport energy policies were discussed

  4. The political economy of a tradable GHG permit market in the European Union

    International Nuclear Information System (INIS)

    Markussen, P.; Tinggaard Svendsen, G.; Vesterdal, M.

    2002-01-01

    The EU has committed itself to meet an 8% greenhouse gas (GHG) reduction target level following the Kyoto agreement. Therefore, the EU Commission has just proposed a new directive establishing a framework for GHG emissions trading within the European Union. This proposal is to outcome a policy process started by the EU Commission and its Green Paper from March 2000. The main industrial stake holders all had the opportunity to comment on the Green Paper and from their directive proposal. Here, we find that the dominant interest groups indeed influenced the final design of an EU GHG market. This industrial rent-seeking most prominently lead to a grand fathered permit allocation rule like the one found in the US tradable permit systems. (au)

  5. The political economy of a tradable GHG permit market in the European Union

    Energy Technology Data Exchange (ETDEWEB)

    Markussen, P; Tinggaard Svendsen, G; Vesterdal, M

    2002-07-01

    The EU has committed itself to meet an 8% greenhouse gas (GHG) reduction target level following the Kyoto agreement. Therefore, the EU Commission has just proposed a new directive establishing a framework for GHG emissions trading within the European Union. This proposal is to outcome a policy process started by the EU Commission and its Green Paper from March 2000. The main industrial stake holders all had the opportunity to comment on the Green Paper and from their directive proposal. Here, we find that the dominant interest groups indeed influenced the final design of an EU GHG market. This industrial rent-seeking most prominently lead to a grand fathered permit allocation rule like the one found in the US tradable permit systems. (au)

  6. Forest carbon response to management scenarios intended to mitigate GHG emissions and reduce fire impacts in the US West Coast region

    Science.gov (United States)

    Hudiburg, T. W.; Law, B. E.; Thornton, P. E.; Luyssaert, S.

    2012-12-01

    US West coast forests are among the most carbon dense biomes in the world and the potential for biomass accumulation in mesic coastal forests is the highest recorded (Waring and Franklin 1979, Hudiburg et al. 2009). Greenhouse gas (GHG) mitigation strategies have recently expanded to include forest woody biomass as bioenergy, with the expectation that this will also reduce forest mortality. We examined forest carbon response and life cycle assessment (LCA) of net carbon emissions following varying combinations of bioenergy management scenarios in Pacific Northwest forests for the period from 2010-2100. We use the NCAR CLM4 model combined with a regional atmospheric forcing dataset and account for future environmental change using the IPCC RCP4.5 and RCP 8.5 scenarios. Bioenergy management strategies include a repeated thinning harvest, a repeated clearcut harvest, and a single salvage harvest in areas with projected insect-related mortality. None of the bioenergy management scenarios reduce net emissions to the atmosphere compared to continued business-as-usual harvest (BAU) by the end of the 21st century. Forest regrowth and reduced fire emissions are not large enough to balance the wood removals from harvest. Moreover, the substitution of wood for fossil fuel energy and products is not large enough to offset the wood losses through decomposition and combustion. However, in some ecoregions (Blue Mountains and East Cascades), emissions from the thinning harvests begin to improve over BAU at the end of the century and could lead to net reductions in those ecoregions over a longer time period (> 100 years). For salvage logging, there is no change compared to BAU emissions by the end of the 21st century because the treatment area is minimal compared to the other treatments and only performed once. These results suggest that managing forests for carbon sequestration will need to include a variety of approaches accounting for forest baseline conditions and in some

  7. Scenario analysis on alternative fuel/vehicle for China's future road transport: Life-cycle energy demand and GHG emissions

    Energy Technology Data Exchange (ETDEWEB)

    Ou Xunmin, E-mail: oxm07@mails.tsinghua.edu.c [Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China); China Automotive Energy Research Center (CAERC), Tsinghua University, Beijing 100084 (China); School of Public Policy and Management (SPPM), Tsinghua University, Beijing 100084 (China); Zhang Xiliang, E-mail: zhang_xl@tsinghua.edu.c [Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China); China Automotive Energy Research Center (CAERC), Tsinghua University, Beijing 100084 (China); Chang Shiyan [Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China); China Automotive Energy Research Center (CAERC), Tsinghua University, Beijing 100084 (China)

    2010-08-15

    The rapid growth of vehicles has resulted in continuing growth in China's oil demand. This paper analyzes future trends of both direct and life cycle energy demand (ED) and greenhouse gas (GHG) emissions in China's road transport sector, and assesses the effectiveness of possible reduction measures by using alternative vehicles/fuels. A model is developed to derive a historical trend and to project future trends. The government is assumed to do nothing additional in the future to influence the long-term trends in the business as usual (BAU) scenario. Four specific scenarios are used to describe the future cases where different alternative fuel/vehicles are applied. The best case scenario is set to represent the most optimized case. Direct ED and GHG emissions would reach 734 million tonnes of oil equivalent and 2384 million tonnes carbon dioxide equivalent by 2050 in the BAU case, respectively, more than 5.6 times of 2007 levels. Compared with the BAU case, the relative reductions achieved in the best case would be 15.8% and 27.6% for life cycle ED and GHG emissions, respectively. It is suggested for future policy implementation to support sustainable biofuel and high efficient electric-vehicles, and the deployment of coal-based fuels accompanied with low-carbon technology.

  8. Scenario analysis on alternative fuel/vehicle for China's future road transport. Life-cycle energy demand and GHG emissions

    Energy Technology Data Exchange (ETDEWEB)

    Ou, Xunmin [Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China); China Automotive Energy Research Center (CAERC), Tsinghua University, Beijing 100084 (China); School of Public Policy and Management (SPPM), Tsinghua University, Beijing 100084 (China); Zhang, Xiliang; Chang, Shiyan [Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China); China Automotive Energy Research Center (CAERC), Tsinghua University, Beijing 100084 (China)

    2010-08-15

    The rapid growth of vehicles has resulted in continuing growth in China's oil demand. This paper analyzes future trends of both direct and life cycle energy demand (ED) and greenhouse gas (GHG) emissions in China's road transport sector, and assesses the effectiveness of possible reduction measures by using alternative vehicles/fuels. A model is developed to derive a historical trend and to project future trends. The government is assumed to do nothing additional in the future to influence the long-term trends in the business as usual (BAU) scenario. Four specific scenarios are used to describe the future cases where different alternative fuel/vehicles are applied. The best case scenario is set to represent the most optimized case. Direct ED and GHG emissions would reach 734 million tonnes of oil equivalent and 2384 million tonnes carbon dioxide equivalent by 2050 in the BAU case, respectively, more than 5.6 times of 2007 levels. Compared with the BAU case, the relative reductions achieved in the best case would be 15.8% and 27.6% for life cycle ED and GHG emissions, respectively. It is suggested for future policy implementation to support sustainable biofuel and high efficient electric-vehicles, and the deployment of coal-based fuels accompanied with low-carbon technology. (author)

  9. Life cycle GHG evaluation of organic rice production in northern Thailand.

    Science.gov (United States)

    Yodkhum, Sanwasan; Gheewala, Shabbir H; Sampattagul, Sate

    2017-07-01

    Greenhouse gas (GHG) emission is one of the serious international environmental issues that can lead to severe damages such as climate change, sea level rise, emerging disease and many other impacts. Rice cultivation is associated with emissions of potent GHGs such as methane and nitrous oxide. Thai rice has been massively exported worldwide however the markets are becoming more competitive than ever since the green market has been hugely promoted. In order to maintain the same level or enhance of competitiveness, Thai rice needs to be considered for environmentally conscious products to meet the international environmental standards. Therefore, it is necessary to evaluate the greenhouse gas emissions throughout the life cycle of rice production in order to identify the major emission sources and possible reduction strategies. In this research, the rice variety considered is Khao Dawk Mali 105 (KDML 105) cultivated by organic practices. The data sources were Don-Chiang Organic Agricultural Cooperative (DCOAC), Mae-teang district, Chiang Mai province, Thailand and the Office of Agricultural Economics (OAE) of Thailand with onsite records and interviews of farmers in 2013. The GHG emissions were calculated from cradle-to-farm by using the Life Cycle Assessment (LCA) approach and the 2006 IPCC Guideline for National Greenhouse Gas Inventories. The functional unit is defined as 1 kg of paddy rice at farm gate. Results showed that the total GHG emissions of organic rice production were 0.58 kg CO 2 -eq per kg of paddy rice. The major source of GHG emission was from the field emissions accounting for 0.48 kg CO 2 -eq per kg of paddy rice, about 83% of total, followed by land preparation, harvesting and other stages (planting, cultivation and transport of raw materials) were 9, 5 and 3% of total, respectively. The comparative results clearly showed that the GHG emissions of organic paddy rice were considerably lower than conventional rice production due to the

  10. Greenhouse Gas Implications of Peri-Urban Land Use Change in a Developed City under Four Future Climate Scenarios

    Directory of Open Access Journals (Sweden)

    Alison Rothwell

    2016-12-01

    Full Text Available Present decisions about urbanization of peri-urban (PU areas may contribute to the capacity of cities to mitigate future climate change. Comprehensive mitigative responses to PU development should require integration of urban form and food production to realise potential trade-offs. Despite this, few studies examine greenhouse gas (GHG implications of future urban development combined with impacts on PU food production. In this paper, four future scenarios, at 2050 and 2100 time horizons, were developed to evaluate the potential GHG emissions implications of feeding and housing a growing urban population in Sydney, Australia. The scenarios were thematically downscaled from the four relative concentration pathways. Central to the scenarios were differences in population, technology, energy, housing form, transportation, temperature, food production and land use change (LUC. A life cycle assessment approach was used within the scenarios to evaluate differences in GHG impacts. Differences in GHG emissions between scenarios at the 2100 time horizon, per area of PU land transformed, approximated 0.7 Mt CO2-e per year. Per additional resident this equated to 0.7 to 6.1 t CO2-e per year. Indirect LUC has the potential to be significant. Interventions such as carbon capture and storage technology, renewables and urban form markedly reduced emissions. However, incorporating cross-sectoral energy saving measures within urban planning at the regional scale requires a paradigmatic shift.

  11. Towards real energy economics: Energy policy driven by life-cycle carbon emission

    International Nuclear Information System (INIS)

    Kenny, R.; Law, C.; Pearce, J.M.

    2010-01-01

    Alternative energy technologies (AETs) have emerged as a solution to the challenge of simultaneously meeting rising electricity demand while reducing carbon emissions. However, as all AETs are responsible for some greenhouse gas (GHG) emissions during their construction, carbon emission 'Ponzi Schemes' are currently possible, wherein an AET industry expands so quickly that the GHG emissions prevented by a given technology are negated to fabricate the next wave of AET deployment. In an era where there are physical constraints to the GHG emissions the climate can sustain in the short term this may be unacceptable. To provide quantitative solutions to this problem, this paper introduces the concept of dynamic carbon life-cycle analyses, which generate carbon-neutral growth rates. These conceptual tools become increasingly important as the world transitions to a low-carbon economy by reducing fossil fuel combustion. In choosing this method of evaluation it was possible to focus uniquely on reducing carbon emissions to the recommended levels by outlining the most carbon-effective approach to climate change mitigation. The results of using dynamic life-cycle analysis provide policy makers with standardized information that will drive the optimization of electricity generation for effective climate change mitigation.

  12. The status and prospects of renewable energy for combating global warming

    International Nuclear Information System (INIS)

    Arent, Douglas J.; Wise, Alison; Gelman, Rachel

    2011-01-01

    Reducing anthropogenic greenhouse gas (GHG) emissions in material quantities, globally, is a critical element in limiting the impacts of global warming. GHG emissions associated with energy extraction and use are a major component of any strategy addressing climate change mitigation. Non-emitting options for electrical power and liquid transportation fuels are increasingly considered key components of an energy system with lower overall environmental impacts. Renewable energy technologies (RETs) as well as biofuels technologies have been accelerating rapidly during the past decades, both in technology performance and cost-competitiveness - and they are increasingly gaining market share. These technology options offer many positive attributes, but also have unique cost/benefit trade-offs, such as land-use competition for bioresources and variability for wind and solar electric generation technologies. This paper presents a brief summary of status, recent progress, some technological highlights for RETs and biofuels, and an analysis of critical issues that must be addressed for RETs to meet a greater share of the global energy requirements and lower GHG emissions.

  13. The status and prospects of renewable energy for combating global warming

    Energy Technology Data Exchange (ETDEWEB)

    Arent, Douglas J., E-mail: doug.arent@nrel.gov; Wise, Alison; Gelman, Rachel

    2011-07-15

    Reducing anthropogenic greenhouse gas (GHG) emissions in material quantities, globally, is a critical element in limiting the impacts of global warming. GHG emissions associated with energy extraction and use are a major component of any strategy addressing climate change mitigation. Non-emitting options for electrical power and liquid transportation fuels are increasingly considered key components of an energy system with lower overall environmental impacts. Renewable energy technologies (RETs) as well as biofuels technologies have been accelerating rapidly during the past decades, both in technology performance and cost-competitiveness - and they are increasingly gaining market share. These technology options offer many positive attributes, but also have unique cost/benefit trade-offs, such as land-use competition for bioresources and variability for wind and solar electric generation technologies. This paper presents a brief summary of status, recent progress, some technological highlights for RETs and biofuels, and an analysis of critical issues that must be addressed for RETs to meet a greater share of the global energy requirements and lower GHG emissions.

  14. GHG Mitigation Potential, Costs and Benefits in Global Forests: ADynamic Partial Equilibrium Approach

    Energy Technology Data Exchange (ETDEWEB)

    Sathaye, Jayant; Makundi, Willy; Dale, Larry; Chan, Peter; Andrasko, Kenneth

    2005-03-22

    This paper reports on the global potential for carbonsequestration in forest plantations, and the reduction of carbonemissions from deforestation, in response to six carbon price scenariosfrom 2000 to 2100. These carbon price scenarios cover a range typicallyseen in global integrated assessment models. The world forest sector wasdisaggregated into tenregions, four largely temperate, developedregions: the European Union, Oceania, Russia, and the United States; andsix developing, mostly tropical, regions: Africa, Central America, China,India, Rest of Asia, and South America. Three mitigation options -- long-and short-rotation forestry, and the reduction of deforestation -- wereanalyzed using a global dynamic partial equilibrium model (GCOMAP). Keyfindings of this work are that cumulative carbon gain ranges from 50.9 to113.2 Gt C by 2100, higher carbon prices early lead to earlier carbongain and vice versa, and avoided deforestation accounts for 51 to 78percent of modeled carbon gains by 2100. The estimated present value ofcumulative welfare change in the sector ranges from a decline of $158billion to a gain of $81 billion by 2100. The decline is associated witha decrease in deforestation.

  15. Benefits of collaborative and comparative research on land use change and climate mitigation

    Science.gov (United States)

    Zhu, Zhiliang; Gong, Peng

    2016-04-01

    The world's two largest economies are also the latest greenhouse gas emitters. The United States is committed to reduce the net greenhouse gas emission by 28% below the 2005 level by 2025. Similarly China also announced significant climate mitigation steps at the Paris climate convention. These policy plans will require actions including reduction of GHG emissions as well as protection of carbon stored in biologic pools and increase of carbon sequestration by the natural ecosystems. Major drivers of ecosystem carbon sequestration and protection of existing carbon resources include land use, disturbances, and climate change. Recent studies indicate that vegetated ecosystems in the United States remain as a carbon sink but the sink is weakening due to increased disturbances (such as wildfire and harvesting) and aging of forests. Unique land use policies in China such as large-scale afforestation in the recent decades have reportedly led to significant increase in total forest area and aboveground biomass, although it is not clear to what degree the increase has translated to strengthened net uptake of atmospheric CO2 and the rate of sequestration by vegetated ecosystems. What lessons can we draw from different land management and land use practices in the U.S. and China that can benefit scientific advances and climate mitigation goals? Research conducted collaboratively by the U.S. Geological Survey and China Ministry of Science and Technology has led to improved techniques for tracking and modeling land use change and ecosystem disturbances and improved understanding of consequences of different land use change and management practices on ecosystem carbon sequestration capacities.

  16. Chapter 5. Assessing the Need for High Impact Technology Research, Development & Deployment for Mitigating Climate Change

    Directory of Open Access Journals (Sweden)

    David Auston

    2016-12-01

    Full Text Available Technology is a centrally important component of all strategies to mitigate climate change. As such, it encompasses a multi-dimensional space that is far too large to be fully addressed in this brief chapter. Consequently, we have elected to focus on a subset of topics that we believe have the potential for substantial impact. As researchers, we have also narrowed our focus to address applied research, development and deployment issues and omit basic research topics that have a longer-term impact. This handful of topics also omits technologies that we deem to be relatively mature, such as solar photovoltaics and wind turbines, even though we acknowledge that additional research could further reduce costs and enhance performance. These and other mature technologies such as transportation are discussed in Chapter 6. This report and the related Summit Conference are an outgrowth of the University of California President’s Carbon Neutrality Initiative, and consequently we are strongly motivated by the special demands of this ambitious goal, as we are also motivated by the corresponding goals for the State of California, the nation and the world. The unique feature of the UC Carbon Neutrality Initiative is the quest to achieve zero greenhouse gas emissions by 2025 at all ten 10 campuses. It should be emphasized that a zero emission target is enormously demanding and requires careful strategic planning to arrive at a mix of technologies, policies, and behavioral measures, as well as highly effective communication – all of which are far more challenging than reducing emissions by some 40% or even 80%. Each campus has a unique set of requirements based on its current energy and emissions. Factors such as a local climate, dependence on cogeneration, access to wholesale electricity markets, and whether a medical school is included shape the specific challenges of the campuses, each of which is a “living laboratory” setting a model for others to

  17. Trends and Projected Estimates of GHG Emissions from Indian Livestock in Comparisons with GHG Emissions from World and Developing Countries

    Directory of Open Access Journals (Sweden)

    Amlan Kumar Patra

    2014-04-01

    Full Text Available This study presents trends and projected estimates of methane and nitrous oxide emissions from livestock of India vis-à-vis world and developing countries over the period 1961 to 2010 estimated based on IPCC guidelines. World enteric methane emission (EME increased by 54.3% (61.5 to 94.9 ×109 kg annually from the year 1961 to 2010, and the highest annual growth rate (AGR was noted for goat (2.0%, followed by buffalo (1.57% and swine (1.53%. Global EME is projected to increase to 120×109 kg by 2050. The percentage increase in EME by Indian livestock was greater than world livestock (70.6% vs 54.3% between the years 1961 to 2010, and AGR was highest for goat (1.91%, followed by buffalo (1.55%, swine (1.28%, sheep (1.25% and cattle (0.70%. In India, total EME was projected to grow by 18.8×109 kg in 2050. Global methane emission from manure (MEM increased from 6.81 ×109 kg in 1961 to 11.4×109 kg in 2010 (an increase of 67.6%, and is projected to grow to 15×109 kg by 2050. In India, the annual MEM increased from 0.52×109 kg to 1.1×109 kg (with an AGR of 1.57% in this period, which could increase to 1.54×109 kg in 2050. Nitrous oxide emission from manure in India could be 21.4×106 kg in 2050 from 15.3×106 kg in 2010. The AGR of global GHG emissions changed a small extent (only 0.11% from developed countries, but increased drastically (1.23% for developing countries between the periods of 1961 to 2010. Major contributions to world GHG came from cattle (79.3%, swine (9.57% and sheep (7.40%, and for developing countries from cattle (68.3%, buffalo (13.7% and goat (5.4%. The increase of GHG emissions by Indian livestock was less (74% vs 82% over the period of 1961 to 2010 than the developing countries. With this trend, world GHG emissions could reach 3,520×109 kg CO2-eq by 2050 due to animal population growth driven by increased demands for meat and dairy products in the world.

  18. The Dust Management Project: Characterizing Lunar Environments and Dust, Developing Regolith Mitigation Technology and Simulants

    Science.gov (United States)

    Hyatt, Mark J.; Straka, Sharon A.

    2010-01-01

    A return to the Moon to extend human presence, pursue scientific activities, use the Moon to prepare for future human missions to Mars, and expand Earth?s economic sphere, will require investment in developing new technologies and capabilities to achieve affordable and sustainable human exploration. From the operational experience gained and lessons learned during the Apollo missions, conducting long-term operations in the lunar environment will be a particular challenge, given the difficulties presented by the unique physical properties and other characteristics of lunar regolith, including dust. The Apollo missions and other lunar explorations have identified significant lunar dust-related problems that will challenge future mission success. Comprised of regolith particles ranging in size from tens of nanometers to microns, lunar dust is a manifestation of the complex interaction of the lunar soil with multiple mechanical, electrical, and gravitational effects. The environmental and anthropogenic factors effecting the perturbation, transport, and deposition of lunar dust must be studied in order to mitigate it?s potentially harmful effects on exploration systems and human explorers. The Dust Management Project (DMP) is tasked with the evaluation of lunar dust effects, assessment of the resulting risks, and development of mitigation and management strategies and technologies related to Exploration Systems architectures. To this end, the DMP supports the overall goal of the Exploration Technology Development Program (ETDP) of addressing the relevant high priority technology needs of multiple elements within the Constellation Program (CxP) and sister ETDP projects. Project scope, plans, and accomplishments will be presented.

  19. Vehicle Technologies and Fuel Cell Technologies Program: Prospective Benefits Assessment Report for Fiscal Year 2016

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, T. S. [Argonne National Lab. (ANL), Argonne, IL (United States); Taylor, C. H. [TA Engineering, Inc., Catonsville, MD (United States); Moore, J. S. [TA Engineering, Inc., Catonsville, MD (United States); Ward, J. [United States Department of Energy, Washington, DC (United States). Office of Energy Efficiency and Renewable Energy

    2016-02-23

    Under a diverse set of programs, the Vehicle Technologies and Fuel Cell Technologies offices of DOE’s Office of Energy Efficiency and Renewable Energy invest in research, development, demonstration, and deployment of advanced vehicle, hydrogen production, delivery and storage, and fuel cell technologies. This report estimates the benefits of successfully developing and deploying these technologies (a “Program Success” case) relative to a base case (the “No Program” case). The Program Success case represents the future with completely successful deployment of Vehicle Technologies Office (VTO) and Fuel Cell Technologies Office (FCTO) technologies. The No Program case represents a future in which there is no contribution after FY 2016 by the VTO or FCTO to these technologies. The benefits of advanced vehicle, hydrogen production, delivery and storage, and fuel cell technologies were estimated on the basis of differences in fuel use, primary energy use, and greenhouse gas (GHG) emissions from light-, medium- and heavy-duty vehicles, including energy and emissions from fuel production, between the base case and the Program Success case. Improvements in fuel economy of various vehicle types, growth in the stock of fuel cell vehicles and other advanced technology vehicles, and decreased GHG intensity of hydrogen production and delivery in the Program Success case over the No Program case were projected to result in savings in petroleum use and GHG emissions. Benefits were disaggregated by individual program technology areas, which included the FCTO program and the VTO subprograms of batteries and electric drives; advanced combustion engines; fuels and lubricants; materials (for reduction in vehicle mass, or “lightweighting”); and, for medium- and heavy-duty vehicles, reduction in rolling and aerodynamic resistance. Projections for the Program Success case indicate that by 2035, the average fuel economy of on-road, light-duty vehicle stock could be 47% to 76

  20. Expectations and drivers of future greenhouse gas emissions from Canada's oil sands: An expert elicitation

    International Nuclear Information System (INIS)

    McKellar, Jennifer M.; Sleep, Sylvia; Bergerson, Joule A.; MacLean, Heather L.

    2017-01-01

    The greenhouse gas (GHG) emissions intensity of oil sands operations has declined over time but has not offset absolute emissions growth due to rapidly increasing production. Policy making, decisions about research and development, and stakeholder discourse should be informed by an assessment of future emissions intensity trends, however informed projections are not easily generated. This study investigates expected trends in oil sands GHG emissions using expert elicitation. Thirteen experts participated in a survey, providing quantitative estimates of expected GHG emissions intensity changes and qualitative identifications of drivers. Experts generally agree that emissions intensity reductions are expected at commercially operating projects by 2033, with the greatest reductions expected through the use of technology in the in situ area of oil sands activity (40% mean reduction at multiple projects, averaged across experts). Incremental process changes are expected to contribute less to reducing GHG emissions intensity, however their potentially lower risk and cost may result in larger cumulative reductions. Both technology availability and more stringent GHG mitigation policies are required to realize these emissions intensity reductions. This paper demonstrates a method to increase rigour in emissions forecasting activities and the results can inform policy making, research and development and modelling and forecasting studies. - Highlights: • Expert elicitation used to investigate expected trends in oil sands GHG emissions. • Overall, emissions intensity reductions are expected at commercial projects by 2033. • Reductions are expected due to both technology changes and process improvements. • Technology availability and more stringent GHG policies are needed for reductions. • Method used increases rigour in emissions forecasting, and results inform policy.

  1. Quantifying the biophysical climate change mitigation potential of Canada's forest sector

    Science.gov (United States)

    Smyth, C. E.; Stinson, G.; Neilson, E.; Lemprière, T. C.; Hafer, M.; Rampley, G. J.; Kurz, W. A.

    2014-07-01

    The potential of forests and the forest sector to mitigate greenhouse gas (GHG) emissions is widely recognized, but challenging to quantify at a national scale. Forests and their carbon (C) sequestration potential are affected by management practices, where wood harvesting transfers C out of the forest into products, and subsequent regrowth allows further C sequestration. Here we determine the mitigation potential of the 2.3 × 106 km2 of Canada's managed forests from 2015 to 2050 using the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3), a harvested wood products (HWP) model that estimates emissions based on product half-life decay times, and an account of emission substitution benefits from the use of wood products and bioenergy. We examine several mitigation scenarios with different assumptions about forest management activity levels relative to a base case scenario, including improved growth from silvicultural activities, increased harvest and residue management for bioenergy, and reduced harvest for conservation. We combine forest management options with two mitigation scenarios for harvested wood product use involving an increase in either long-lived products or bioenergy uses. Results demonstrate large differences among alternative scenarios, and we identify potential mitigation scenarios with increasing benefits to the atmosphere for many decades into the future, as well as scenarios with no net benefit over many decades. The greatest mitigation impact was achieved through a mix of strategies that varied across the country and had cumulative mitigation of 254 Tg CO2e in 2030, and 1180 Tg CO2e in 2050. There was a trade-off between short-term and long-term goals, in that maximizing short-term emissions reduction could reduce the forest sector's ability to contribute to longer-term objectives. We conclude that (i) national-scale forest sector mitigation options need to be assessed rigorously from a systems perspective to avoid the development of

  2. Quantification of greenhouse gas (GHG) emissions from wastewater treatment plants using a ground-based remote sensing approach

    Science.gov (United States)

    Delre, Antonio; Mønster, Jacob; Scheutz, Charlotte

    2016-04-01

    The direct release of nitrous oxide (N2O) and methane (CH4) from wastewater treatment plants (WWTP) is important because it contributes to the global greenhouse gases (GHGs) release and strongly effects the WWTP carbon footprint. Biological nitrogen removal technologies could increase the direct emission of N2O (IPCC, 2006), while CH4 losses are of environmental, economic and safety concern. Currently, reporting of N2O and CH4 emissions from WWTPs are performed mainly using methods suggested by IPCC which are not site specific (IPCC, 2006). The dynamic tracer dispersion method (TDM), a ground based remote sensing approach implemented at DTU Environment, was demonstrated to be a novel and successful tool for full-scale CH4 and N2O quantification from WWTPs. The method combines a controlled release of tracer gas from the facility with concentration measurements downwind of the plant (Mønster et al., 2014; Yoshida et al., 2014). TDM in general is based on the assumption that a tracer gas released at an emission source, in this case a WWTP, disperses into the atmosphere in the same way as the GHG emitted from process units. Since the ratio of their concentrations remains constant along their atmospheric dispersion, the GHG emission rate can be calculated using the following expression when the tracer gas release rate is known: EGHG=Qtr*(CGHG/Ctr)*(MWGHG/MWtr) EGHG is the GHG emission in mass per time, Qtr is the tracer release in mass per time, CGHG and Ctr are the concentrations measured downwind in parts per billion subtracted of their background values and integrated over the whole plume, and MWGHG and MWtr are the molar weights of GHG and tracer gas respectively (Mønster et al. 2014). In this study, acetylene (C2H2) was used as tracer. Downwind plume concentrations were measured driving along transects with two cavity ring down spectrometers (Yoshida et al., 2014). TDM was successfully applied in different seasons at several Scandinavian WWTPs characterized by

  3. Substitution elasticities between GHG-polluting and nonpolluting inputs in agricultural production: A meta-regression

    International Nuclear Information System (INIS)

    Liu, Boying; Richard Shumway, C.

    2016-01-01

    This paper reports meta-regressions of substitution elasticities between greenhouse gas (GHG) polluting and nonpolluting inputs in agricultural production, which is the main feedstock source for biofuel in the U.S. We treat energy, fertilizer, and manure collectively as the “polluting input” and labor, land, and capital as nonpolluting inputs. We estimate meta-regressions for samples of Morishima substitution elasticities for labor, land, and capital vs. the polluting input. Much of the heterogeneity of Morishima elasticities can be explained by type of primal or dual function, functional form, type and observational level of data, input categories, number of outputs, type of output, time period, and country categories. Each estimated long-run elasticity for the reference case, which is most relevant for assessing GHG emissions through life-cycle analysis, is greater than 1.0 and significantly different from zero. Most predicted long-run elasticities remain significantly different from zero at the data means. These findings imply that life-cycle analysis based on fixed proportion production functions could provide grossly inaccurate measures of GHG of biofuel. - Highlights: • This paper reports meta-regressions of substitution elasticities between greenhouse-gas (GHG) polluting and nonpolluting inputs in agricultural production, which is the main feedstock source for biofuel in the U.S. • We estimate meta-regressions for samples of Morishima substitution elasticities for labor, land, and capital vs. the polluting input based on 65 primary studies. • We found that each estimated long-run elasticity for the reference case, which is most relevant for assessing GHG emissions through life-cycle analysis, is greater than 1.0 and significantly different from zero. Most predicted long-run elasticities remain significantly different from zero at the data means. • These findings imply that life-cycle analysis based on fixed proportion production functions could

  4. Public Perception of Climate Change and Mitigation Technologies; Percepcion Publica del Cambio Climatico y las Tecnologias de Mitigacion

    Energy Technology Data Exchange (ETDEWEB)

    Sola, R; Sala, R; Oltra, C

    2007-09-27

    Public perception and understanding of climate change and mitigation policies may have a significant influence on the development of political programs as well as on individual behavioral intentions to address climate change. The study of public attitudes and beliefs about climate change and energy policy may be useful in the design of suitable communication strategies and in the efficient implementation of climate change mitigation and adaptation strategies. Based on a survey to the Spanish population, we analyze different issues such as the level of concern towards climate change, the existing knowledge about the contribution of different energy technologies to global warming, the attitudes toward energy technologies and the beliefs about potential adaptation strategies. Comparisons with other countries based on similar public opinion surveys are established to obtain a broader view of policy preferences and attitudes regarding climate change. (Author) 5 refs.

  5. Future Greenhouse Gas and Local Pollutant Emissions for India: Policy Links and Disjoints

    Energy Technology Data Exchange (ETDEWEB)

    Garg, A. [Project Management Cell, NATCOM Project, Winrock International India, 7, Poorvi Marg, Vasant Vihar, New Delhi - 110057 (India); Shukla, P.R. [Public Systems Group, Indian Institute of Management, Vastrapur, Ahmedabad 380015 (India); Ghosh, D. [Kennedy School of Government, Harvard University (United States); Kapshe, M.; Rajesh, N. [Indian Institute of Management, Vastrapur, Ahmedabad 380015 (India)

    2003-07-01

    This paper estimates the future greenhouse gas (GHG) and local pollutant emissions for India under various scenarios. The reference scenario assumes continuation of the current official policies of the Indian government and forecasts of macro-economic, demographic and energy sector indicators. Other scenarios analyzed are the economic growth scenarios (high and low), carbon mitigation scenario, sulfur mitigation scenario and frozen (development) scenario. The main insight is that GHG and local pollutant emissions from India, although connected, do not move in synchronization in future and have a disjoint under various scenarios. GHG emissions continue to rise while local pollutant emissions decrease after some years. GHG emission mitigation therefore would have to be pursued for its own sake in India. National energy security concerns also favor this conclusion since coal is the abundant national resource while most of the natural gas has to be imported. The analysis of contributing factors to this disjoint indicates that sulfur reduction in petroleum oil products and penetration of flue gas desulfurisation technologies are the two main contributors for sulfur dioxide (SO2) mitigation. The reduction in particulate emissions is mainly due to enforcing electro-static precipitator efficiency norms in industrial units, with cleaner fuels and vehicles also contributing substantially. These policy trends are already visible in India. Another insight is that high economic growth is better than lower growth to mitigate local pollution as lack of investible resources limits investments in cleaner environmental measures. Our analysis also validates the environmental Kuznets' curve for India as SO2 emissions peak around per capita GDP of US$ 5,300-5,400 (PPP basis) under various economic growth scenarios.

  6. Implications of a consumer-based perspective for the estimation of GHG emissions. The illustrative case of Luxembourg

    International Nuclear Information System (INIS)

    Caro, Dario; Rugani, Benedetto; Pulselli, Federico Maria; Benetto, Enrico

    2015-01-01

    The Kyoto protocol has established an accounting system for national greenhouse gas (GHG) emissions according to a geographic criterion (producer perspective), such as that proposed by the IPCC guidelines for national GHG inventories. However, the representativeness of this approach is still being debated, because the role of final consumers (consumer perspective) is not considered in the emission allocation system. This paper explores the usefulness of a hybrid analysis, including input–output (IO) and process inventory data, as a complementary tool for estimating and allocating national GHG emissions according to both consumer- and producer-based perspectives. We assess the historical GHG impact profile (from 1995 to 2009) of Luxembourg, which is taken as a case study. The country's net consumption over time is estimated to generate about 28,700 Gg CO 2 e/year on average. Compared to the conventional IPCC inventory, the IO-based framework typically shows much higher emission estimations. This relevant discrepancy is mainly due to the different points of view obtained from the hybrid model, in particular with regard to the contribution of imported goods and services. Detailing the GHG inventory by economic activity and considering a wider system boundary make the hybrid IO method advantageous as compared to the IPCC approach, but its effective implementation is still limited by the relatively complex modeling system, as well as the lack of coordination and scarce availability of datasets at the national level. - Highlights: • GHG emissions for Luxembourg are assessed using hybrid input–output (IO) modeling. • Consumer and producer perspectives are compared for the period 1995–2009. • IO-based GHG profiles are remarkably higher than traditional IPCC inventorying. • IO-based GHG accounting presents some advantages but is limited in implementation. • Key-aspects of IPCC and IO-based methods are extensively investigated and compared

  7. Implications of a consumer-based perspective for the estimation of GHG emissions. The illustrative case of Luxembourg

    Energy Technology Data Exchange (ETDEWEB)

    Caro, Dario, E-mail: caro2@unisi.it [Ecodynamics Group/DEEPS, Department of Environment, Earth and Physical Sciences, University of Siena, Via A. Moro, 2, I-53100 Siena (Italy); Department of Animal Science, University of California, Davis, CA 95616 (United States); Rugani, Benedetto [Public Research Centre Henri Tudor (CRPHT), Resource Centre for Environmental Technologies (CRTE), 6A, avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette (Luxembourg); Pulselli, Federico Maria [Ecodynamics Group/DEEPS, Department of Environment, Earth and Physical Sciences, University of Siena, Via A. Moro, 2, I-53100 Siena (Italy); Benetto, Enrico [Public Research Centre Henri Tudor (CRPHT), Resource Centre for Environmental Technologies (CRTE), 6A, avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette (Luxembourg)

    2015-03-01

    The Kyoto protocol has established an accounting system for national greenhouse gas (GHG) emissions according to a geographic criterion (producer perspective), such as that proposed by the IPCC guidelines for national GHG inventories. However, the representativeness of this approach is still being debated, because the role of final consumers (consumer perspective) is not considered in the emission allocation system. This paper explores the usefulness of a hybrid analysis, including input–output (IO) and process inventory data, as a complementary tool for estimating and allocating national GHG emissions according to both consumer- and producer-based perspectives. We assess the historical GHG impact profile (from 1995 to 2009) of Luxembourg, which is taken as a case study. The country's net consumption over time is estimated to generate about 28,700 Gg CO{sub 2}e/year on average. Compared to the conventional IPCC inventory, the IO-based framework typically shows much higher emission estimations. This relevant discrepancy is mainly due to the different points of view obtained from the hybrid model, in particular with regard to the contribution of imported goods and services. Detailing the GHG inventory by economic activity and considering a wider system boundary make the hybrid IO method advantageous as compared to the IPCC approach, but its effective implementation is still limited by the relatively complex modeling system, as well as the lack of coordination and scarce availability of datasets at the national level. - Highlights: • GHG emissions for Luxembourg are assessed using hybrid input–output (IO) modeling. • Consumer and producer perspectives are compared for the period 1995–2009. • IO-based GHG profiles are remarkably higher than traditional IPCC inventorying. • IO-based GHG accounting presents some advantages but is limited in implementation. • Key-aspects of IPCC and IO-based methods are extensively investigated and compared.

  8. ON THE STUDY OF GHG (GREENHOUSE GAS EMISSIONS IN RICE PRODUCTION SYSTEMS IN DARGAZ, IRAN

    Directory of Open Access Journals (Sweden)

    Ghorbanali RASSAM

    2015-12-01

    Full Text Available The most important issue which has attracted the attention of many scientists is the climate change and global warming due to greenhouse gas emission which has caused the world faced with a great human and environmental disaster. In this study, the amount of greenhouse gas (GHG emissions was estimated in the semi-traditional and semi-mechanized rice production systems in Dargaz region, Iran. All the agricultural and consuming inputs procedures responsible for greenhouse gas emissions were collected and recorded in both systems. The amount of GHG emission in semi-traditional and semi-mechanized was 813.17 and 968.31 kg CO2-eq ha-1, respectively. The fuel consumption with the share of 38.22% in semi-traditional method and 43.32% in semi-mechanized system had the largest share in GHG emission and using Nitrogen fertilizer on farms with the share of 31.97% in semi-traditional method and 26.91% in semi-mechanized system is in the second place of GHG emission. The semi-traditional system had greater GHG emissions in the unit of tone of harvested grain and unit of energy output. The use of alternative methods such as conservation tillage and organic fertilizers can be effective in improving the environmental status of the production area.

  9. A multi-objective programming model for assessment the GHG emissions in MSW management

    Energy Technology Data Exchange (ETDEWEB)

    Mavrotas, George, E-mail: mavrotas@chemeng.ntua.gr [National Technical University of Athens, Iroon Polytechniou 9, Zografou, Athens, 15780 (Greece); Skoulaxinou, Sotiria [EPEM SA, 141 B Acharnon Str., Athens, 10446 (Greece); Gakis, Nikos [FACETS SA, Agiou Isidorou Str., Athens, 11471 (Greece); Katsouros, Vassilis [Athena Research and Innovation Center, Artemidos 6 and Epidavrou Str., Maroussi, 15125 (Greece); Georgopoulou, Elena [National Observatory of Athens, Thisio, Athens, 11810 (Greece)

    2013-09-15

    Highlights: • The multi-objective multi-period optimization model. • The solution approach for the generation of the Pareto front with mathematical programming. • The very detailed description of the model (decision variables, parameters, equations). • The use of IPCC 2006 guidelines for landfill emissions (first order decay model) in the mathematical programming formulation. - Abstract: In this study a multi-objective mathematical programming model is developed for taking into account GHG emissions for Municipal Solid Waste (MSW) management. Mathematical programming models are often used for structure, design and operational optimization of various systems (energy, supply chain, processes, etc.). The last twenty years they are used all the more often in Municipal Solid Waste (MSW) management in order to provide optimal solutions with the cost objective being the usual driver of the optimization. In our work we consider the GHG emissions as an additional criterion, aiming at a multi-objective approach. The Pareto front (Cost vs. GHG emissions) of the system is generated using an appropriate multi-objective method. This information is essential to the decision maker because he can explore the trade-offs in the Pareto curve and select his most preferred among the Pareto optimal solutions. In the present work a detailed multi-objective, multi-period mathematical programming model is developed in order to describe the waste management problem. Apart from the bi-objective approach, the major innovations of the model are (1) the detailed modeling considering 34 materials and 42 technologies, (2) the detailed calculation of the energy content of the various streams based on the detailed material balances, and (3) the incorporation of the IPCC guidelines for the CH{sub 4} generated in the landfills (first order decay model). The equations of the model are described in full detail. Finally, the whole approach is illustrated with a case study referring to the

  10. A multi-objective programming model for assessment the GHG emissions in MSW management

    International Nuclear Information System (INIS)

    Mavrotas, George; Skoulaxinou, Sotiria; Gakis, Nikos; Katsouros, Vassilis; Georgopoulou, Elena

    2013-01-01

    Highlights: • The multi-objective multi-period optimization model. • The solution approach for the generation of the Pareto front with mathematical programming. • The very detailed description of the model (decision variables, parameters, equations). • The use of IPCC 2006 guidelines for landfill emissions (first order decay model) in the mathematical programming formulation. - Abstract: In this study a multi-objective mathematical programming model is developed for taking into account GHG emissions for Municipal Solid Waste (MSW) management. Mathematical programming models are often used for structure, design and operational optimization of various systems (energy, supply chain, processes, etc.). The last twenty years they are used all the more often in Municipal Solid Waste (MSW) management in order to provide optimal solutions with the cost objective being the usual driver of the optimization. In our work we consider the GHG emissions as an additional criterion, aiming at a multi-objective approach. The Pareto front (Cost vs. GHG emissions) of the system is generated using an appropriate multi-objective method. This information is essential to the decision maker because he can explore the trade-offs in the Pareto curve and select his most preferred among the Pareto optimal solutions. In the present work a detailed multi-objective, multi-period mathematical programming model is developed in order to describe the waste management problem. Apart from the bi-objective approach, the major innovations of the model are (1) the detailed modeling considering 34 materials and 42 technologies, (2) the detailed calculation of the energy content of the various streams based on the detailed material balances, and (3) the incorporation of the IPCC guidelines for the CH 4 generated in the landfills (first order decay model). The equations of the model are described in full detail. Finally, the whole approach is illustrated with a case study referring to the application

  11. A life-cycle approach to technology, infrastructure, and climate policy decision making: Transitioning to plug-in hybrid electric vehicles and low-carbon electricity

    Science.gov (United States)

    Samaras, Constantine

    In order to mitigate the most severe effects of climate change, large global reductions in the current levels of anthropogenic greenhouse gas (GHG) emissions are required in this century to stabilize atmospheric carbon dioxide (CO2) concentrations at less than double pre-industrial levels. The Intergovernmental Panel on Climate Change (IPCC) fourth assessment report states that GHG emissions should be reduced to 50-80% of 2000 levels by 2050 to increase the likelihood of stabilizing atmospheric CO2 concentrations. In order to achieve the large GHG reductions by 2050 recommended by the IPCC, a fundamental shift and evolution will be required in the energy system. Because the electric power and transportation sectors represent the largest GHG emissions sources in the United States, a unique opportunity for coupling these systems via electrified transportation could achieve synergistic environmental (GHG emissions reductions) and energy security (petroleum displacement) benefits. Plug-in hybrid electric vehicles (PHEVs), which use electricity from the grid to power a portion of travel, could play a major role in reducing greenhouse gas emissions from the transport sector. However, this thesis finds that life cycle GHG emissions from PHEVs depend on the electricity source that is used to charge the battery, so meaningful GHG emissions reductions with PHEVs are conditional on low-carbon electricity sources. Power plants and their associated GHGs are long-lived, and this work argues that decisions made regarding new electricity supplies within the next ten years will affect the potential of PHEVs to play a role in a low-carbon future in the coming decades. This thesis investigates the life cycle engineering, economic, and policy decisions involved in transitioning to PHEVs and low-carbon electricity. The government has a vast array of policy options to promote low-carbon technologies, some of which have proven to be more successful than others. This thesis uses life

  12. Possibilities for Near-term Bioenergy Production and GHG-Mitigation through Sustainable Intensification of Agriculture and Forestry in Denmark

    DEFF Research Database (Denmark)

    Larsen, Søren; Bentsen, Niclas S; Dalgaard, Tommy

    2017-01-01

    To mitigate climate change it is necessary to further increase the deployment of renewable energy, including bioenergy. This analysis shows how this can be achieved in Danish agriculture and forestry before 2020. The key is a sustainable intensification and we show through three scenarios how...

  13. Net greenhouse gas emissions from manure management using anaerobic digestion technology in a beef cattle feedlot in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Costa Junior, Ciniro, E-mail: cinirojr@hotmail.com [University of São Paulo, Center of Nuclear Energy in Agriculture, Laboratory of Biogeochemistry, Avenida Centenário, 303, Piracicaba, SP 13416-000 (Brazil); Cerri, Carlos E.P., E-mail: cepcerri@usp.br [University of São Paulo, “Luiz de Queiroz” College of Agriculture, Department of Soil Science, Avenida Pádua Dias, 11, Piracicaba, SP 13418-900 (Brazil); Pires, Alexandre V., E-mail: pires.1@usp.br [University of São Paulo, “Luiz de Queiroz” College of Agriculture, Department of Animal Science, Avenida Pádua Dias, 11, Piracicaba, SP 13418-900 (Brazil); Cerri, Carlos C., E-mail: cerri@cena.usp.br [University of São Paulo, Center of Nuclear Energy in Agriculture, Laboratory of Biogeochemistry, Avenida Centenário, 303, Piracicaba, SP 13416-000 (Brazil)

    2015-02-01

    As part of an agreement during the COP15, the Brazilian government is fostering several activities intended to mitigate greenhouse gas (GHG) emissions. One of them is the adoption of anaerobic digester (AD) for treating animal manure. Due to a lack of information, we developed a case study in order to evaluate the effect of such initiative for beef cattle feedlots. We considered the net GHG emissions (CH{sub 4} and N{sub 2}O) from the manure generated from 140 beef heifers confined for 90 days in the scope “housing to field application” by including field measurements, literature values, and the offset generated by the AD system through the replacement of conventional sources of nitrogen (N) fertilizer and electricity, respectively. Results showed that direct GHG emissions accounted for 0.14 ± 0.06 kg of carbon dioxide equivalent (CO{sub 2}eq) per kg of animal live weight gain (lwg), with ∼ 80% originating from field application, suggesting that this emission does not differ from the conventional manure management (without AD) typically done in Brazil (0.19 ± 0.07 kg of CO{sub 2}eq per kg lwg{sup −1}). However, 2.4 MWh and 658.0 kg of N-manure were estimated to be generated as a consequence of the AD utilization, potentially offsetting 0.13 ± 0.01 kg of CO{sub 2}eq kg lwg{sup −1} or 95% (± 45%) of total direct emissions from the manure management. Although, by replacing fossil fuel sources, i.e. diesel oil, this offset could be increased to 169% (± 47%). In summary, the AD has the potential to significantly mitigate GHG emissions from manure management in beef cattle feedlots, but the effect is indirect and highly dependent on the source to be replaced. In spite of the promising results, more and continuous field measurements for decreasing uncertainties and improving assumptions are required. Identifying shortcomings would be useful not only for the effectiveness of the Brazilian government, but also for worldwide plans in mitigating GHG emissions

  14. China's carbon mitigation strategies: Enough?

    International Nuclear Information System (INIS)

    Wang, Can; Lin, Jie; Cai, Wenjia; Liao, Hua

    2014-01-01

    As the largest CO 2 emitter in the world, China has made great achievements in carbon mitigation over the past eight years (2005–2013). Through a comprehensive and detailed overview of China's carbon mitigation strategies, this paper presents China's carbon mitigation achievements and strategies, including adjustment to the industrial structure, saving energy, optimizing energy structure, increasing forest carbon sinks, building foundational capacity, innovating technologies and practicing mitigation efforts in localities and sectors. Having been in place for some years already, the results of many of these measures and policies are now plateauing. China is facing challenges including inevitable emissions growth, shrinking of mitigation potential from technological progress, difficulty in further adjusting the industrial structure and economic development mode, continued dominance of coal in the energy mix, local governments’ reluctance to adopt measures to reduce carbon emissions, etc. Through policy diagnosis it is found that the root causes of these problems and challenges are the facts that policy-making is done primarily on the production side and there is an absence of co-benefits in the decision-making process. Therefore, it is recommended that translating mitigation targets to the consumption level and mainstreaming mitigations’ co-benefits into decision-making processes are needed to quickly enhance the results of mitigation work in China. - Highlights: • Key aspects of China's carbon mitigation strategies were outlined. • China's carbon mitigation achievements were summarized. • Challenges to meet further mitigation were investigated. • Strategic suggestions to quickly enhance China's mitigation ambition were given

  15. Optimization of the cultivation GHG balance of selected biofuels; Optimierung der Anbau-THG-Bilanz ausgewaehlter Biokraftstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Weirauch, Mareike; Gurgel, Andreas [Landesforschungsanstalt fuer Landwirtschaft und Fischerei Mecklenburg-Vorpommern, Guelzow-Pruezen (Germany). Sachgebiet Nachwachsende Rohstoffe; Schiemenz, Katja; Peters, Jana

    2016-08-01

    Biofuels should be produced more sustainable since the inception of the Renewable Energy Directive (EU-RED, 2009128/EG) in 2009. In comparison to fossil fuels biofuels have to achieve now a GHG reduction potential of 35 % (50 % from 2018). In a project at the State Research Center of Agriculture and Fisheries Mecklenburg- Vorpommern the current practical values of GHG emissions during the cultivation of rapeseed and wheat have been calculated. Bases of the calculation are operating agriculture data (harvesting 2011 until2015). The results show that the current GHG reduction potential can only be maintained at 26% of the studied rapeseed harvest quantity or at 75 %of the wheat harvest (own calculation). The default values of the EU-RED and the NUTS2 values cannot be achieved with the current agricultural production. Some calculating and agronomic optimization options for GHG reduction are available and must be implemented (for example: incorporating the oil content and the type of nitrogen fertilizer and reduced nitrogen fertilizer level). The aim is to keep the 50% GHG reduction potential of the EU-RED until 2018 to have a sure sustainable rapeseed and wheat cultivation for biofuel production.

  16. Compressed natural gas vehicles motoring towards a green Beijing

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ming; Kraft-Oliver, T. [International Institute for Energy Conservation (IIEC) - Asia, Bangkok (Thailand); Guo Xiao Yan [China North Vehicle Research Institute (CNVRI), Beijing (China)

    1996-12-31

    This paper first describes the state-of-the-art of compressed natural gas (CNG) technologies and evaluates the market prospects for CNG vehicles in Beijing. An analysis of the natural gas resource supply for fleet vehicles follows. The costs and benefits of establishing natural gas filling stations and promoting the development of vehicle technology are evaluated. The quantity of GHG reduction is calculated. The objective of the paper is to provide information of transfer niche of CNG vehicle and equipment production in Beijing. This paper argues that the development of CNG vehicles is a cost-effective strategy for mitigating both air pollution and GHG.

  17. Setting up GHG-based energy efficiency targets in buildings: The Ecolabel

    International Nuclear Information System (INIS)

    José Vinagre Díaz, Juan; Richard Wilby, Mark; Belén Rodríguez González, Ana

    2013-01-01

    The European Union has recently updated the regulations for energy performance of buildings and on the certification of energy-related products. The world is in the process of constructing policy frameworks to underwrite carbon emission reduction targets, best exemplified by the Kyoto Protocol. This requires complex technical and economical concepts to be presented in an understandable, transparent, and justifiable format. A building's energy efficiency was traditionally determined based on its annual consumption relative to some average performance level. Emissions are calculated as a derivative of consumptions and their aggregated values allow verification of the level of fulfillment of the objectives. Here we take a different approach: considering that the greenhouse gas emissions (GHG) objectives must be achieved; hence, we fix the efficiency standard based on emissions objectives, and then derive the corresponding reference values of consumption. Accordingly, we propose a certification scheme for energy efficiency in buildings based on targets of GHG emissions levels. This proposed framework includes both a label, namely the Ecolabel, and a fiche showing a set of indices and complementary information. The Ecolabel is designed to provide a flexible, evolvable, simple to use at the point of application, and transparent framework. - Highlights: • In this paper we consider the interaction between greenhouse gas emission reduction targets and building energy efficiency. • Specifically we propose an ‘‘Ecolabel” for buildings that is a GHG emissions liability index, which forms a labeling process. • The label follows the Kyoto Protocol philosophy and translates national GHG targets to targets for each and every building. • The approach provides both a new form of efficiency rating on which emissions reduction policy can be based

  18. Greenhouse gas mitigation for U.S. plastics production: energy first, feedstocks later

    Science.gov (United States)

    Posen, I. Daniel; Jaramillo, Paulina; Landis, Amy E.; Griffin, W. Michael

    2017-03-01

    Plastics production is responsible for 1% and 3% of U.S. greenhouse gas (GHG) emissions and primary energy use, respectively. Replacing conventional plastics with bio-based plastics (made from renewable feedstocks) is frequently proposed as a way to mitigate these impacts. Comparatively little research has considered the potential for green energy to reduce emissions in this industry. This paper compares two strategies for reducing greenhouse gas emissions from U.S. plastics production: using renewable energy or switching to renewable feedstocks. Renewable energy pathways assume all process energy comes from wind power and renewable natural gas derived from landfill gas. Renewable feedstock pathways assume that all commodity thermoplastics will be replaced with polylactic acid (PLA) and bioethylene-based plastics, made using either corn or switchgrass, and powered using either conventional or renewable energy. Corn-based biopolymers produced with conventional energy are the dominant near-term biopolymer option, and can reduce industry-wide GHG emissions by 25%, or 16 million tonnes CO2e/year (mean value). In contrast, switching to renewable energy cuts GHG emissions by 50%-75% (a mean industry-wide reduction of 38 million tonnes CO2e/year). Both strategies increase industry costs—by up to 85/tonne plastic (mean result) for renewable energy, and up to 3000 tonne-1 plastic for renewable feedstocks. Overall, switching to renewable energy achieves greater emission reductions, with less uncertainty and lower costs than switching to corn-based biopolymers. In the long run, producing bio-based plastics from advanced feedstocks (e.g. switchgrass) and/or with renewable energy can further reduce emissions, to approximately 0 CO2e/year (mean value).

  19. The Use of Plant Bioactive Compounds to Mitigate Enteric Methane in Ruminants and its Application in Indonesia

    Directory of Open Access Journals (Sweden)

    Elizabeth Wina

    2012-03-01

    Full Text Available Worldwide, increasing greenhouse gas (GHG emissions have become a major concern as they are now considered to be the cause of global warming. Several strategies have been planned and taken by different countries including Indonesia to mitigate this situation. Agriculture is considered to be one of major contributors to GHG, especially methane coming from ruminant digestive processes. More than 85% of the methane produced by ruminants comes from enteric fermentation. Several options have been proposed to lower this enteric methane production. This paper describes a review on diet manipulation using feed additives, especially plant bioactive compounds, to mitigate the GHG emission from ruminant livestock. Plant bioactive compounds have been found with various chemical structures. Some of them such as saponin, tannin, essential oils, organosulphur compounds, have been reported to have ability to reduce enteric methane production. Indonesia has many plant resources that have potential as methane reducing agents. Sapindus rarak fruit especially its methanol extract contain saponins which reduce the activity of methanogens in the rumen in vitro, hence reduce methane production (11%. Feeding S. rarak to sheep increased daily weight gain but not that of local cattle. Shrub legumes such as Calliandra calothyrsus and Leucaena leucocephala contain tannins which can reduce methanogenesis (3 – 21% methane reduction. Besides tannin, these shrub legumes are a good source of protein. Feeding shrub legumes can be beneficial as a protein source and a methane reducer. Other sources of methane reducing agents have been tested in other countries and some can be applied for Indonesian situation. The strategy to reduce methane by plant bioactive compounds should be developed to be simple and relatively cheap so it will benefit the local farmers. Extraction of these compounds may be expensive, therefore, costs should be considered carefully when proposing to use the

  20. Examination of the optimal operation of building scale combined heat and power systems under disparate climate and GHG emissions rates

    International Nuclear Information System (INIS)

    Howard, B.; Modi, V.

    2017-01-01

    Highlights: • CHP attributable reductions, not viable by electric generation alone, are defined. • Simplified operating strategy heuristics are optimal under specific circumstances. • Phosphoric acid fuel cells yield the largest reductions except in the extremes. • Changes in baseline emissions affect the optimal system capacity and operating hours. - Abstract: This work aims to elucidate notions concerning the ideal operation and greenhouse gas (GHG) emissions benefits of combined heat and power (CHP) systems by investigating how various metrics change as a function of the GHG emissions from the underlying electricity source, building use type and climate. Additionally, a new term entitled “CHP Attributable” reductions is introduced to quantify the benefits from the simultaneous use of thermal and electric energy, removing benefits achieved solely from fuel switching and generating electricity more efficiently. The GHG emission benefits from implementing internal combustion engine, microturbines, and phosphoric acid (PA) fuel cell based CHP systems were evaluated through an optimization approach considering energy demands of prototypical hospital, office, and residential buildings in varied climates. To explore the effect of electric GHG emissions rates, the ideal operation of the CHP systems was evaluated under three scenarios: “High” GHG emissions rates, “Low” GHG emissions rates, and “Current” GHG emissions rate for a specific location. The analysis finds that PA fuel cells achieve the highest GHG emission reductions in most cases considered, though there are exceptions. Common heuristics, such as electric load following and thermal load following, are the optimal operating strategy under specific conditions. The optimal CHP capacity and operating hours both vary as a function of building type, climate and GHG emissions rates from grid electricity. GHG emissions reductions can be as high as 49% considering a PA fuel cell for a

  1. Ecosystem Management and Land Conservation Can Substantially Contribute to California's Climate Mitigation Goals

    Science.gov (United States)

    Marvin, D.; Cameron, D. R.; Passero, M. C.; Remucal, J. M.

    2017-12-01

    California has been a global leader in climate change policy through its early adoption of ambitious GHG reduction goals, committing to steep reductions through 2030 and beyond. Modeling efforts focused on future greenhouse gas (GHG) emissions from energy and other sectors in California have shown varying capacity to meet the emissions reductions targets established by the state. These efforts have not included potential reductions from changes in ecosystem management, restoration, and conservation. This study simulates the future GHG reduction potential of these land-based activities (e.g., changes to forest management, avoided conversion of grasslands to agriculture) when applied to California lands at three plausible rates of policy implementation relative to current efforts. We then compare the reduction potential of the activities against "business-as-usual" (BAU) emissions projections for the California to highlight the contribution of the biosphere toward reaching the state's GHG 2030 and 2050 reduction targets. By 2030, an Ambitious land-based activity implementation scenario could contribute as much as 146.7 MMTCO2e or 17.4% of the cumulative reductions needed to meet the state's 2030 goal, greater than the individual contributions of four other economic sectors, including those from the Industrial and Agriculture sectors. On an annual basis, the Ambitious scenario could result in reductions as high as 17.93 MMTCO2e yr-1 or 13.4% of the state's 2030 reduction goal. Most reductions come from changes in forest management, such as extending rotation times for harvest and reducing stocking density, thereby promoting accelerated growth. Such changes comprise 59.8% to 67.4% of annual projected emissions reductions in 2050 for the Ambitious and Limited scenarios, respectively. Implementation of a range of land-based emissions reduction activities can materially contribute to one of the most ambitious mitigation targets globally. This study provides a flexible

  2. Lack of Energy Efficiency Legislation in the Malaysian Building Sector Contributes to Malaysia’s Growing GHG Emissions

    Directory of Open Access Journals (Sweden)

    Zaid Suzaini M.

    2014-01-01

    Full Text Available Malaysia’s carbon emissions grew by +235.6% from 1990 to 2005, largely due to an increase in national energy demand of 210.7% from 1990 to 2004. This unparalleled carbon emission growth, along with business-as-usual (BAU practices will put Malaysia at high risk for carbon lock-in and a very unsustainable path of development. Malaysia clearly needs to make significant and urgent changes in its policy, economy, industries and lifestyle in order to reduce its climate change impacts. In 2010 Malaysia announced a voluntary commitment to reduce 40% of its greenhouse gases (GHG emissions by 2020 (from 1990 levels. Without emissions mitigation and conservation policies, Malaysia is unlikely to meet its emissions reduction targets. Presently, Malaysia has no energy efficiency legislation in its growing building sector. This paper reviews existing building policies and energy efficiency measures in Malaysia and highlights the need to implement mandatory energy efficiency building codes in reducing the sector’s impact on climate change.

  3. Quantification of physical and economic impacts of climate change on public infrastructure in Alaska and benefits of global greenhouse gas mitigation

    Science.gov (United States)

    Melvin, A. M.; Larsen, P.; Boehlert, B.; Martinich, J.; Neumann, J.; Chinowsky, P.; Schweikert, A.; Strzepek, K.

    2015-12-01

    Climate change poses many risks and challenges for the Arctic and sub-Arctic, including threats to infrastructure. The safety and stability of infrastructure in this region can be impacted by many factors including increased thawing of permafrost soils, reduced coastline protection due to declining arctic sea ice, and changes in inland flooding. The U.S. Environmental Protection Agency (EPA) is coordinating an effort to quantify physical and economic impacts of climate change on public infrastructure across the state of Alaska and estimate how global greenhouse gas (GHG) mitigation may avoid or reduce these impacts. This research builds on the Climate Change Impacts and Risk Analysis (CIRA) project developed for the contiguous U.S., which is described in an EPA report released in June 2015. We are using a multi-model analysis focused primarily on the impacts of changing permafrost, coastal erosion, and inland flooding on a range of infrastructure types, including transportation (e.g. roads, airports), buildings and harbors, energy sources and transmission, sewer and water systems, and others. This analysis considers multiple global GHG emission scenarios ranging from a business as usual future to significant global action. These scenarios drive climate projections through 2100 spanning a range of outcomes to capture variability amongst climate models. Projections are being combined with a recently developed public infrastructure database and integrated into a version of the Infrastructure Planning Support System (IPSS) we are modifying for use in the Arctic and sub-Arctic region. The IPSS tool allows for consideration of both adaptation and reactive responses to climate change. Results of this work will address a gap in our understanding of climate change impacts in Alaska, provide estimates of the physical and economic damages we may expect with and without global GHG mitigation, and produce important insights about infrastructure vulnerabilities in response to

  4. Greenhouse gas observations from space: The GHG-CCI project of ESA's Climate Change Initiative

    Science.gov (United States)

    Buchwitz, Michael; Noël, Stefan; Bergamaschi, Peter; Boesch, Hartmut; Bovensmann, Heinrich; Notholt, Justus; Schneising, Oliver; Hasekamp, Otto; Reuter, Maximilian; Parker, Robert; Dils, Bart; Chevallier, Frederic; Zehner, Claus; Burrows, John

    2012-07-01

    The GHG-CCI project (http://www.esa-ghg-cci.org) is one of several projects of ESA's Climate Change Initiative (CCI), which will deliver various Essential Climate Variables (ECVs). The goal of GHG-CCI is to deliver global satellite-derived data sets of the two most important anthropogenic greenhouse gases (GHGs) carbon dioxide (CO2) and methane (CH4) suitable to obtain information on regional CO2 and CH4 surface sources and sinks as needed for better climate prediction. The GHG-CCI core ECV data products are column-averaged mole fractions of CO2 and CH4, XCO2 and XCH4, retrieved from SCIAMACHY on ENVISAT and TANSO on GOSAT. Other satellite instruments will be used to provide constraints in upper layers such as IASI, MIPAS, and ACE-FTS. Which of the advanced algorithms, which are under development, will be the best for a given data product still needs to be determined. For each of the 4 GHG-CCI core data products - XCO2 and XCH4 from SCIAMACHY and GOSAT - several algorithms are being further developed and the corresponding data products are inter-compared to identify which data product is the most appropriate. This includes comparisons with corresponding data products generated elsewhere, most notably with the operational data products of GOSAT generated at NIES and the NASA/ACOS GOSAT XCO2 product. This activity, the so-called "Round Robin exercise", will be performed in the first two years of this project. At the end of the 2 year Round Robin phase (end of August 2012) a decision will be made which of the algorithms performs best. The selected algorithms will be used to generate the first version of the ECV GHG. In the last six months of this 3 year project the resulting data products will be validated and made available to all interested users. In the presentation and overview about this project will be given focussing on the latest results.

  5. The GHG-CCI Project to Deliver the Essential Climate Variable Greenhouse Gases: Current status

    Science.gov (United States)

    Buchwitz, M.; Boesch, H.; Reuter, M.

    2012-04-01

    The GHG-CCI project (http://www.esa-ghg-cci.org) is one of several projects of ESA's Climate Change Initiative (CCI), which will deliver various Essential Climate Variables (ECVs). The goal of GHG-CCI is to deliver global satellite-derived data sets of the two most important anthropogenic greenhouse gases (GHGs) carbon dioxide (CO2) and methane (CH4) suitable to obtain information on regional CO2 and CH4 surface sources and sinks as needed for better climate prediction. The GHG-CCI core ECV data products are column-averaged mole fractions of CO2 and CH4, XCO2 and XCH4, retrieved from SCIAMACHY on ENVISAT and TANSO on GOSAT. Other satellite instruments will be used to provide constraints in upper layers such as IASI, MIPAS, and ACE-FTS. Which of the advanced algorithms, which are under development, will be the best for a given data product still needs to be determined. For each of the 4 GHG-CCI core data products - XCO2 and XCH4 from SCIAMACHY and GOSAT - several algorithms are bing further developed and the corresponding data products are inter-compared to identify which data product is the most appropriate. This includes comparisons with corresponding data products generated elsewhere, most notably with the operational data products of GOSAT generated at NIES and the NASA/ACOS GOSAT XCO2 product. This activity, the so-called "Round Robin exercise", will be performed in the first two years of this project. At the end of the 2 year Round Robin phase (end of August 2012) a decision will be made which of the algorithms performs best. The selected algorithms will be used to generate the first version of the ECV GHG. In the last six months of this 3 year project the resulting data products will be validated and made available to all interested users. In the presentation and overview about this project will be given focussing on the latest results.

  6. Life cycle GHG emissions from Malaysian oil palm bioenergy development: The impact on transportation sector's energy security

    International Nuclear Information System (INIS)

    Hassan, Mohd Nor Azman; Jaramillo, Paulina; Griffin, W. Michael

    2011-01-01

    Malaysia's transportation sector accounts for 41% of the country's total energy use. The country is expected to become a net oil importer by the year 2011. To encourage renewable energy development and relieve the country's emerging oil dependence, in 2006 the government mandated blending 5% palm-oil biodiesel in petroleum diesel. Malaysia produced 16 million tonnes of palm oil in 2007, mainly for food use. This paper addresses maximizing bioenergy use from oil-palm to support Malaysia's energy initiative while minimizing greenhouse-gas emissions from land-use change. When converting primary and secondary forests to oil-palm plantations between 270-530 and 120-190 g CO 2 -equivalent per MJ of biodiesel produced, respectively, is released. However, converting degraded lands results in the capture of between 23 and 85 g CO 2 -equivalent per MJ of biodiesel produced. Using various combinations of land types, Malaysia could meet the 5% biodiesel target with a net GHG savings of about 1.03 million tonnes (4.9% of the transportation sector's diesel emissions) when accounting for the emissions savings from the diesel fuel displaced. These findings are used to recommend policies for mitigating GHG emissions impacts from the growth of palm oil use in the transportation sector. - Research highlights: → We modeled greenhouse gas emissions in the production of palm-biodiesel. → Five land types were included to model emissions associated with land-use change. → Land-use change has the biggest impact on the emissions in making palm-biodiesel. → Emissions from fertilizer use and effluent treatment are still significant. → At 5% biodiesel grown on suitable lands Malaysia would obtain an emissions savings.

  7. Mitigation - how to buy time

    International Nuclear Information System (INIS)

    Gunasekera, D.

    2007-01-01

    Full text: Full text: There is growing consensus in the global scientific community that human induced greenhouse gas emissions have increased the atmospheric concentration of these gases which has led, and will continue to lead to changes in regional and global climate. Climate change is projected to impact on Australian and global economic, biophysical, social and environmental systems. The impacts of climate change can be reduced by implementing a range of mitigation and adaptation strategies. The optimal policy response will depend on the relative costs and benefits of climate change impacts, and mitigation and adaptation responses. The focus in this presentation is to identify the key determinants that can reduce the cost of international mitigation responses. It is important to recognise that since cumulative emissions are the primary driver of atmospheric concentrations, mitigation policies should be assessed against their capacity to reduce cumulative emissions overtime, rather than at given time points only. If global greenhouse gas abatement costs are to be minimised, it is desirable that the coverage of countries, emission sources and technologies that are a part of any multilateral effort be as wide as possible. In this context the development and diffusion of clean technologies globally can play a key role in the future reduction of greenhouse gas emissions, according to scenarios analysed by ABARE. Furthermore, technology 'push' (for example, research and development policies) and 'pull' (for example, emission trading) policies will be required to achieve such an outcome

  8. A national inventory of greenhouse gas (GHG), criteria air contaminants (CAC) and hydrogen sulphide (H2S) emissions by the upstream oil and gas industry : volume 1, overview of the GHG emissions inventory : technical report

    International Nuclear Information System (INIS)

    2004-09-01

    A detailed inventory of greenhouse gas (GHG) emissions from the upstream oil and gas sector in Canada was presented along with explanations of the methodologies and data sources used. This report is based on previous work done on methane and volatile organic compound emissions from the upstream oil and gas sector for the period of 1990 to 1995, but it includes key improvements in identifying primary types of emissions sources such as emissions from fuel combustion, flaring, venting, fugitive equipment leaks and accidental releases. It also includes criteria air contaminants and hydrogen sulfide emissions, an analysis of GHG emission intensities and a change in the definition of volatile organic compounds from comprising all non-methane hydrocarbons to comprising all non-methane and non-ethane hydrocarbons. The report covers portions of the upstream oil and gas industry in Canada plus the natural gas transmission and natural gas distribution industries with reference to well drilling, oil production, and natural gas production, processing, transmission and distribution. Accidents and equipment failures are also included. The report reveals the total GHG emissions by source type, sub-sector, facility type and sub-type for the year 2000 at the national level. In 2000, the total carbon dioxide equivalent GHG emissions from the entire oil and gas sector were 101,211 kilo tonnes. For the upstream oil and gas sector alone, total GHG emissions were 84,355 kilo tonnes, representing 12 per cent of Canada's total national emissions of GHGs in 2000. This is an increase of about 25 per cent from 1995 levels. The biggest primary source of these emissions is fuel combustion, which accounts for 40.8 per cent of the total. This report also includes a provincial breakdown of GHG emissions for the natural gas transmission, storage and distribution sub-sectors in Canada for the year 2000. refs., tabs., figs

  9. Reducing GHG emissions in agricultural production process for production of biofuels by growing legumes and production-technical measures

    International Nuclear Information System (INIS)

    Gurgel, Andreas; Schiemenz, Katja

    2017-01-01

    The reduction of greenhouse gases (GHG) emissions in the supply chain for biofuels is a big challenge especially for the German and European cultivation of energy crops. The production of nitrogen fertilizers and field emissions are the main factors of GHG emissions. The amount of field emissions depends very strongly on the nitrogen effort and the intensity of tillage. The main objective is to reduce GHG emissions in field cropping systems within the biofuel production chains. An inclusion of legumes into crop rotations is particularly important because their cultivation does not require nitrogen fertilizer. Data base for the project is a complex field experiment with the biofuel crops winter rape and winter wheat. Previous crops are winter wheat, peas and lupins. ln each case tilling systems are compared with non-tilling. The first results of the field experiments are nitrogen functions depending on previous crops, sites and tilling system. Calculation models for GHG reduction models were developed on the bases of these results. By growing legumes as previous crops before wheat and rape it is possible to reduce GHG emissions from 2 to 10 g CO_2_e_q per MJ. The best reduction of GHG emissions is possible by combining legumes as previous crops with a reduced nitrogen effort.

  10. Solid oxide fuel cell technology coupled with methane dry reforming: A viable option for high efficiency plant with reduced CO2 emissions

    International Nuclear Information System (INIS)

    Barelli, L.; Ottaviano, A.

    2014-01-01

    Nowadays the control of greenhouse gas is probably the most challenging environmental policy issue. Since CO 2 is considered the major greenhouse gas (GHG) that contributes to the global warming, enforcing technological strategies aiming to avoid or reuse CO 2 emissions becomes crucial, in order to mitigate GHG environmental impact. Currently, solutions conventionally adopted to this purpose are carbon capture and storage (CCS) technologies. In this context, instead, the followed strategy aims to further improvements in energetic conversion efficiency with related reduced specific CO 2 emissions (per produced kWh e ). Therefore, with particular reference to the electric power generation, this paper proposes an innovative energy conversion system, based on solid oxide fuel cell (SOFC), characterized by higher efficiency and reduced CO 2 emission factor respect to an analogous conventional energy plant. In particular, the innovative solution consists of combining SOFC to methane dry reforming technology, while the conventional system refers to steam methane reforming-SOFC coupling. The innovative system performance up to 65% electric efficiency as cited in the paper, was validated through simulations carried out in Aspen Plus environment. - Highlights: • An innovative high efficiency plant with low CO 2 emissions is presented. • The new solution combined SOFC to methane dry reforming technology (CDR–SOFC). • A comparison between CDR–SOFC and SMR–SOFC system was carried out in Aspen Plus. • CDR–SOFC efficiency is greater of 6.4% percentage points respect to SMR–SOFC. • A CO 2 emission factor reduction of about 10% was achieved by CDR–SOFC plant

  11. Climate change mitigation in Asia and financing mechanism (contributions from Bangladesh)

    International Nuclear Information System (INIS)

    Wahhab, Abdul

    1998-01-01

    The Department of Environment (DOE), Ministlry of Environment and forest, Government of the people's Republic of Bangladesh made a request for a grant to the U.S. Government for studying various aspects of climate change and its implications for Bangladesh. Upon its subsequent approval, a country Study on Climate Change (Bangladesh Climate Change study) was launched in October 1994 to address the following major issues: Preparation of a country-specific inventory of greenhouse gases (GHGs); Assessment of vulnerability of the country, with special respect to climate change; Assessment of mitigation options to develop appropriate strategies and policies for reducing GHG emission into the atmosphere; Recommendations for an appropriate awareness and dissemination programme based on findings of the above components. (au)

  12. BC Hydro shops for GHG offsets

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    BC Hydro is reported to have offered to purchase one million tonnes of carbon dioxide reductions in Canada's Greenhouse Gas Emissions Reduction Trading program (GERT). The program uses a baseline and credit system, where emitters purchase measurable quantities of site-specific GHG reductions. Since mid-1998, the program registered five bilateral trades and seven offers to sell. BC Hydro's recent offer is the first offer to buy. BC Hydro has made the offer to buy in expectation of the introduction of the start of the Kyoto Protocol reductions, and expects to be in the game for some time to come if it is to meet its obligations under the Kyoto Protocol. Preference will be given to projects located in Canada, but BC Hydro will consider reductions created anywhere in the world. The financial range of a single trade is between $50,000 and $1 million. (GHG offsets are currently trading in North America for between $.50 and $3.00 Cdn per metric tonne of carbon dioxide equivalent.) At present, offsets are selling at a heavily discounted price because of the uncertainty that investments made now will be credited against future regulations curbing emitters. Consequently, buying now while prices are low, may lead to sizable benefits later, depending on the actual regulations when they are promulgated. Trading now will also give BC Hydro greater credibility and assurance to have its voice heard when discussions about emissions trading and the implementation of emission trading rules reaches the serious stage

  13. Powertrain Test Procedure Development for EPA GHG Certification of Medium- and Heavy-Duty Engines and Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Chambon, Paul H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Deter, Dean D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-07-01

    xiii ABSTRACT The goal of this project is to develop and evaluate powertrain test procedures that can accurately simulate real-world operating conditions, and to determine greenhouse gas (GHG) emissions of advanced medium- and heavy-duty engine and vehicle technologies. ORNL used their Vehicle System Integration Laboratory to evaluate test procedures on a stand-alone engine as well as two powertrains. Those components where subjected to various drive cycles and vehicle conditions to evaluate the validity of the results over a broad range of test conditions. Overall, more than 1000 tests were performed. The data are compiled and analyzed in this report.

  14. Fossil energy and GHG saving potentials of pig farming in the EU

    DEFF Research Database (Denmark)

    Nguyen, T Lan T; Mogensen, Lisbeth; Hermansen, John Erik

    2010-01-01

    ) savings can be feasibly achieved. As shown in the results of the analysis, pig farming in the EU has a high potential to reduce fossil energy use and GHG emissions by taking improvement measures in three aspects: (i) feed use; (ii) manure management; and (iii) manure utilization. In particular......In Europe, the highly developed livestock industry places a high burden on resource use and environmental quality. This paper examines pig meat production in North-West Europe as a base case and runs different scenarios to investigate how improvements in terms of energy and greenhouse gas (GHG...

  15. Industry

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of

  16. Report of the Project Research on Disaster Reduction using Disaster Mitigating Information Sharing Technology

    Science.gov (United States)

    Suzuki, Takeyasu

    For the purpose of reducing disaster damage by applying information sharing technologies, "the research on disaster reduction using crisis-adaptive information sharing technologies" was carried out from July, 2004 through March 2007, as a three year joint project composed of a government office and agency, national research institutes, universities, lifeline corporations, a NPO and a private company. In this project, the disaster mitigating information sharing platform which is effective to disaster response activities mainly for local governments was developed, as a framework which enables information sharing in disasters. A prototype of the platform was built by integrating an individual system and tool. Then, it was applied to actual local governments and proved to be effective to disaster responses. This paper summarizes the research project. It defines the platform as a framework of both information contents and information systems first and describes information sharing technologies developed for utilization of the platform. It also introduces fields tests in which a prototype of the platform was applied to local governments.

  17. A feasibility study of microgrids for reducing energy use and GHG emissions in an industrial application

    International Nuclear Information System (INIS)

    Li, Mengyu; Zhang, Xiongwen; Li, Guojun; Jiang, Chaoyang

    2016-01-01

    Highlights: • A life cycle assessment is conducted on the microgrids for an industry application. • The effect of renewable energy on the LCA performances of microgrids is illustrated. • The minimal life cycle energy use and GHG emissions of microgrids are evaluated. • The LCA of different pathways for electricity, heat and hydrogen are presented. - Abstract: Microgrids provide a new energy paradigm with the benefits of higher energy supply reliability, lower greenhouse gas (GHG) emissions through a higher penetration of renewable sources, higher energy efficiencies through the use of local waste heat and the avoidance of losses in transmission and distribution. This study reports a life cycle assessment (LCA) of microgrids for an industry application of an ammonia plant in central Inner Mongolia, China. The life cycle energy use and GHG emissions of the microgrids are evaluated and compared to the existing fossil fuel-based energy system. The electricity, heat and hydrogen fuel loads of the ammonia plant are all modelled in the study. An optimization model is developed to estimate the minimum life cycle energy use and GHG emissions with the microgrids under three scenarios (natural gas (NG)-based, optimized, and maximum renewable energy microgrids). The results indicate that the use of wind and solar in the NG-based microgrid can only slightly reduce the energy use and GHG emissions. If there are no land area limitations on the deployment of solar and wind power, the maximum renewable energy microgrid offers significant reductions of fossil fuel energy of up to 56.9% and GHG emissions reductions of up to 66.3% compared to the existing energy system.

  18. Comparative evaluation of GHG emissions from the use of Miscanthus for bio-hydrocarbon production via fast pyrolysis and bio-oil upgrading

    International Nuclear Information System (INIS)

    Shemfe, Mobolaji B.; Whittaker, Carly; Gu, Sai; Fidalgo, Beatriz

    2016-01-01

    Highlights: • GHG emissions from the upgrading of pyrolysis-derived bio-oil is quantified.. • Soil organic carbon sequestration rate had a significant effect on GHG emission. • Increasing plant scale could improve the environmental performance of the system. • Nitrogen to the pyrolysis reactor had significant impact on GHG emissions. - Abstract: This study examines the GHG emissions associated with producing bio-hydrocarbons via fast pyrolysis of Miscanthus. The feedstock is then upgraded to bio-oil products via hydroprocessing and zeolite cracking. Inventory data for this study were obtained from current commercial cultivation practices of Miscanthus in the UK and state-of-the-art process models developed in Aspen Plus®. The system boundary considered spans from the cultivation of Miscanthus to conversion of the pyrolysis-derived bio-oil into bio-hydrocarbons up to the refinery gate. The Miscanthus cultivation subsystem considers three scenarios for soil organic carbon (SOC) sequestration rates. These were assumed as follows: (i) excluding (SOC), (ii) low SOC and (iii) high (SOC) for best and worst cases. Overall, Miscanthus cultivation contributed moderate to negative values to GHG emissions, from analysis of excluding SOC to high SOC scenarios. Furthermore, the rate of SOC in the Miscanthus cultivation subsystem has significant effects on total GHG emissions. Where SOC is excluded, the fast pyrolysis subsystem shows the highest positive contribution to GHG emissions, while the credit for exported electricity was the main ‘negative’ GHG emission contributor for both upgrading pathways. Comparison between the bio-hydrocarbons produced from the two upgrading routes and fossil fuels indicates GHG emission savings between 68% and 87%. Sensitivity analysis reveals that bio-hydrocarbon yield and nitrogen gas feed to the fast pyrolysis reactor are the main parameters that influence the total GHG emissions for both pathways.

  19. Climate Leadership Award for Excellence in GHG Management (Goal Achievement Award)

    Science.gov (United States)

    Apply to the Climate Leadership Award for Excellence in GHG Management (Goal Achievement Award), which publicly recognizes organizations that achieve publicly-set aggressive greenhouse gas emissions reduction goals.

  20. Climate Leadership Award for Excellence in GHG Management (Goal Setting Certificate)

    Science.gov (United States)

    Apply to the Climate Leadership Award for Excellence in GHG Management (Goal Achievement Award), which publicly recognizes organizations that achieve publicly-set aggressive greenhouse gas emissions reduction goals.