WorldWideScience

Sample records for ghg emission abatement

  1. A Study on Portfolio of Domestic Policies and Measures for GHG emission Abatement

    Energy Technology Data Exchange (ETDEWEB)

    Lim, J.K. [Korea Energy Economics Institute, Euiwang (Korea)

    2001-11-01

    After the climate change negotiation reaches an agreement in COP7, the next main issue to be addressed is the way of involvement of developing countries in emission abatement commitments and the development of domestic policies and measures to achieve GHG emission reduction target. Many Annex I countries have developed and implemented policies and measures to achieve its quantified GHG emission reduction target. The purpose of this paper is to propose a portfolio of policies and measures, that is, which policies and measures Korea will have to take in preparing future commitment for GHG emission reduction as well as in strengthening mitigation of climate change. Various policies and measures can be used, such as regulations, economic instruments, and covenants, etc., but it is desirable to implement them in some portfolio, taking advantage of their characteristics. Among the possible policies and measures, this study found that economic instruments such as carbon tax and domestic emissions trading have attracted considerable interest recently due to their cost effectiveness. This study also found that, in practice, many developed countries have used these policy instruments in achieving their quantified GHG emission reduction target. In order to develop a portfolio of policies and measures, the comprehension of the features of each policy and measure and the synergetic reconciliation with other objectives than climate change is important. (author). 82 refs., 11 figs., 31 tabs.

  2. Energy and GHG abatement cost curves

    Energy Technology Data Exchange (ETDEWEB)

    Alvarenga, Rafael [BHP Billiton Base Metals (Australia)

    2010-07-01

    Global warming due to various reasons but especially to emission of green house gases (GHGs) has become a cause for serious concern. This paper discusses the steps taken by BHP Billiton to reduce energy consumption and GHG emissions using cost curves. According to forecasts, global warming is expected to impact Chile badly and the rise in temperature could be between 1 and more than 5 degrees Celsius. Mining in Chile consumes a lot of energy, particularly electricity. Total energy and electricity consumption in 2007 was 13 and 36 % respectively. BHP base metals developed a set of abatement cost curves for energy and GHG in Chile and these are shown in figures. The methodology for the curves consisted of consultant visits to each mine operation. The study also includes mass energy balance and feasibility maps. The paper concludes that it is important to evaluate the potential for reducing emissions and energy and their associated costs.

  3. Potential Cost-Effective Opportunities for Methane Emission Abatement

    Energy Technology Data Exchange (ETDEWEB)

    Warner, Ethan [Joint Inst. for Strategic Energy Analysis, Golden, CO (United States); Steinberg, Daniel [Joint Inst. for Strategic Energy Analysis, Golden, CO (United States); Hodson, Elke [U.S. Department of Energy, Washington, DC (United States); Heath, Garvin [Joint Inst. for Strategic Energy Analysis, Golden, CO (United States)

    2015-08-01

    The energy sector was responsible for approximately 84% of carbon dioxide equivalent (CO2e) greenhouse gas (GHG) emissions in the U.S. in 2012 (EPA 2014a). Methane is the second most important GHG, contributing 9% of total U.S. CO2e emissions. A large portion of those methane emissions result from energy production and use; the natural gas, coal, and oil industries produce approximately 39% of anthropogenic methane emissions in the U.S. As a result, fossil-fuel systems have been consistently identified as high priority sectors to contribute to U.S. GHG reduction goals (White House 2015). Only two studies have recently attempted to quantify the abatement potential and cost associated with the breadth of opportunities to reduce GHG emissions within natural gas, oil, and coal supply chains in the United States, namely the U.S. Environmental Protection Agency (EPA) (2013a) and ICF (2014). EPA, in its 2013 analysis, estimated the marginal cost of abatement for non-CO2 GHG emissions from the natural gas, oil, and coal supply chains for multiple regions globally, including the United States. Building on this work, ICF International (ICF) (2014) provided an update and re-analysis of the potential opportunities in U.S. natural gas and oil systems. In this report we synthesize these previously published estimates as well as incorporate additional data provided by ICF to provide a comprehensive national analysis of methane abatement opportunities and their associated costs across the natural gas, oil, and coal supply chains. Results are presented as a suite of marginal abatement cost curves (MACCs), which depict the total potential and cost of reducing emissions through different abatement measures. We report results by sector (natural gas, oil, and coal) and by supply chain segment - production, gathering and boosting, processing, transmission and storage, or distribution - to facilitate identification of which sectors and supply chain

  4. Abatement cost of GHG emissions for wood-based electricity and ethanol at production and consumption levels.

    Directory of Open Access Journals (Sweden)

    Puneet Dwivedi

    Full Text Available Woody feedstocks will play a critical role in meeting the demand for biomass-based energy products in the US. We developed an integrated model using comparable system boundaries and common set of assumptions to ascertain unit cost and greenhouse gas (GHG intensity of electricity and ethanol derived from slash pine (Pinus elliottii at the production and consumption levels by considering existing automobile technologies. We also calculated abatement cost of greenhouse gas (GHG emissions with respect to comparable energy products derived from fossil fuels. The production cost of electricity derived using wood chips was at least cheaper by 1 ¢ MJ-1 over electricity derived from wood pellets. The production cost of ethanol without any income from cogenerated electricity was costlier by about 0.7 ¢ MJ-1 than ethanol with income from cogenerated electricity. The production cost of electricity derived from wood chips was cheaper by at least 0.7 ¢ MJ-1 than the energy equivalent cost of ethanol produced in presence of cogenerated electricity. The cost of using ethanol as a fuel in a flex-fuel vehicle was at least higher by 6 ¢ km-1 than a comparable electric vehicle. The GHG intensity of per km distance traveled in a flex-fuel vehicle was greater or lower than an electric vehicle running on electricity derived from wood chips depending on presence and absence of GHG credits related with co-generated electricity. A carbon tax of at least $7 Mg CO2e-1 and $30 Mg CO2e-1 is needed to promote wood-based electricity and ethanol production in the US, respectively. The range of abatement cost of GHG emissions is significantly dependent on the harvest age and selected baseline especially for electricity generation.

  5. Macro economic linkages and impacts. Technical and fiscal options in GHG abatement

    International Nuclear Information System (INIS)

    Backus, G.; Barker, T.

    1995-01-01

    This paper discusses some of the main macro economic linkages and feedbacks associated with policies for GHG abatement. The linkages in a global model are described when OECD carbon taxes or alternatively OECD/OPEC joint action raises world oil prices with a smaller OECD carbon tax. The results give a world perspective on the GHG abatement problem. The paper continues with a discussion of the linkages and feedbacks associated with three options: demand-side management (DSM), mainly to improve end-use energy efficiency, reductions in subsidies of fossil fuel production and use, and investment in renewable energy supplies, specifically in energy forestry and associated infrastructure. It concludes that DSM and investment in renewables are unlikely on their own to bring about reduction in GHG emissions, and that new supplies may even lead to increased emissions by driving down the price of energy. However, reductions in emissions may be compatible with increased efficiency and development, as well as with improvements in the quality of the local environment and in rural living, with the new supplies replacing fossil fuel supplies, provided that real fossil fuel prices are increased via removal of subsidies and if required carbon taxes. (au) 15 refs

  6. Energy balance and GHG-abatement cost of cassava utilization for fuel ethanol in Thailand

    International Nuclear Information System (INIS)

    Nguyen, Thu Lan Thi; Gheewala, Shabbir H.; Garivait, Savitri

    2007-01-01

    Since 2001, in order to enhance ethanol's cost competitiveness with gasoline, the Thai government has approved the exemption of excise tax imposed on ethanol, controlling the retail price of gasohol (a mixture of ethanol and gasoline at a ratio of 1:9) to be less than that of octane 95 gasoline, within a range not exceeding 1.5 baht a litre. The policy to promote ethanol for transport is being supported by its positive effects on energy security and climate change mitigation. An analysis of energy, greenhouse gas (GHG) balances and GHG abatement cost was done to evaluate fuel ethanol produced from cassava in Thailand. Positive energy balance of 22.4 MJ/L and net avoided GHG emission of 1.6 kg CO 2 eq./L found for cassava-based ethanol (CE) proved that it would be a good substitute for gasoline, effective in fossil energy saving and GHG reduction. With a GHG abatement cost of US$99 per tonne of CO 2 , CE is rather less cost effective than the many other climate strategies relevant to Thailand in the short term. Opportunities for improvements are discussed to make CE a reasonable option for national climate policy

  7. FUTURE FOSSIL FUEL PRICE IMPACTS ON NDC ACHIEVEMENT; ESTIMATION OF GHG EMISSIONS AND MITIGATION COSTS

    Directory of Open Access Journals (Sweden)

    Yosuke Arino

    2017-12-01

    Full Text Available The Shale Revolution in the US, a supply-side innovation in oil and gas production, has been dramatically changing the world’s fossil fuel energy markets – leading to a decrease in oil, gas and coal prices. Some projections suggest that low fossil fuel prices might continue at least over the next few decades. Uncertainty in fossil fuel prices might affect the levels of emission reductions expected from submitted nationally determined contributions (NDCs and/or influence the difficulty of achieving the NDCs. This paper evaluated the impact of different (high, medium, and low fossil fuel prices, sustained through to 2050, on worldwide GHG emissions reductions and associated costs (mainly marginal abatement costs (MACs. Total global GHG emissions were estimated to be 57.5-61.5 GtCO2eq by 2030, with the range shown reflecting uncertainties about fossil fuel prices and the target levels of several NDCs (i.e., whether their upper or lower targets were adopted. It was found that lower fuel prices not only diminished the environmental effectiveness of global NDCs but also widened regional differences of marginal and total abatement costs, thereby generating more room for carbon leakage. One possible policy direction in terms of abatement efficiency, fairness and environmental effectiveness would be to require countries with low marginal and total abatement costs but having a major influence on global GHG emissions (such as China and India to increase their mitigation efforts, especially in a low-fuelprice world.

  8. An evaluation of the effect of greenhouse gas accounting methods on a marginal abatement cost curve for Irish agricultural greenhouse gas emissions

    International Nuclear Information System (INIS)

    O’Brien, Donal; Shalloo, Laurence; Crosson, Paul; Donnellan, Trevor; Farrelly, Niall; Finnan, John; Hanrahan, Kevin; Lalor, Stan; Lanigan, Gary; Thorne, Fiona; Schulte, Rogier

    2014-01-01

    Highlights: • Improving productivity was the most effective strategy to reduce emissions and costs. • The accounting methods disagreed on the total abatement potential of mitigation measures. • Thus, it may be difficult to convince farmers to adopt certain abatement measures. • Domestic offsetting and consumption based accounting are options to overcome current methodological issues. - Abstract: Marginal abatement cost curve (MACC) analysis allows the evaluation of strategies to reduce agricultural greenhouse gas (GHG) emissions relative to some reference scenario and encompasses their costs or benefits. A popular approach to quantify the potential to abate national agricultural emissions is the Intergovernmental Panel on Climate Change guidelines for national GHG inventories (IPCC-NI method). This methodology is the standard for assessing compliance with binding national GHG reduction targets and uses a sector based framework to attribute emissions. There is however an alternative to the IPCC-NI method, known as life cycle assessment (LCA), which is the preferred method to assess the GHG intensity of food production (kg of GHG/unit of food). The purpose of this study was to compare the effect of using the IPCC-NI and LCA methodologies when completing a MACC analysis of national agricultural GHG emissions. The MACC was applied to the Irish agricultural sector and mitigation measures were only constrained by the biophysical environment. The reference scenario chosen assumed that the 2020 growth targets set by the Irish agricultural industry would be achieved. The comparison of methodologies showed that only 1.1 Mt of the annual GHG abatement potential that can be achieved at zero or negative cost could be attributed to agricultural sector using the IPCC-NI method, which was only 44% of the zero or negative cost abatement potential attributed to the sector using the LCA method. The difference between methodologies was because the IPCC-NI method attributes the

  9. Marginal abatement cost curves for policy recommendation – A method for energy system analysis

    International Nuclear Information System (INIS)

    Tomaschek, Jan

    2015-01-01

    The transport sector is seen as one of the key factors for driving future energy consumption and greenhouse gas (GHG) emissions. In order to rank possible measures marginal abatement cost curves have become a tool to graphically represent the relationship between abatement costs and emission reduction. This paper demonstrates how to derive marginal abatement cost curves for well-to-wheel GHG emissions of the transport sector considering the full energy provision chain and the interlinkages and interdependencies within the energy system. Presented marginal abatement cost curves visualize substitution effects between measures for different marginal mitigation costs. The analysis makes use of an application of the energy system model generator TIMES for South Africa (TIMES-GEECO). For the example of Gauteng province, this study exemplary shows that the transport sector is not the first sector to address for cost-efficient reduction of GHG emissions. However, the analysis also demonstrates that several options are available to mitigate transport related GHG emissions at comparable low marginal abatement costs. This methodology can be transferred to other economic sectors as well as to other regions in the world to derive cost-efficient GHG reduction strategies

  10. Relative Greenhouse Gas Abatement Cost Competitiveness of Biofuels in Germany

    Directory of Open Access Journals (Sweden)

    Markus Millinger

    2018-03-01

    Full Text Available Transport biofuels derived from biogenic material are used for substituting fossil fuels, thereby abating greenhouse gas (GHG emissions. Numerous competing conversion options exist to produce biofuels, with differing GHG emissions and costs. In this paper, the analysis and modeling of the long-term development of GHG abatement and relative GHG abatement cost competitiveness between crop-based biofuels in Germany are carried out. Presently dominant conventional biofuels and advanced liquid biofuels were found not to be competitive compared to the substantially higher yielding options available: sugar beet-based ethanol for the short- to medium-term least-cost option and substitute natural gas (SNG for the medium to long term. The competitiveness of SNG was found to depend highly on the emissions development of the power mix. Silage maize-based biomethane was found competitive on a land area basis, but not on an energetic basis. Due to land limitations, as well as cost and GHG uncertainty, a stronger focus on the land use of crop-based biofuels should be laid out in policy.

  11. Modelling the impacts of challenging 2020 non-ETS GHG emissions reduction targets on Ireland′s energy system

    International Nuclear Information System (INIS)

    Chiodi, Alessandro; Gargiulo, Maurizio; Deane, J.P.; Lavigne, Denis; Rout, Ullash K.; Ó Gallachóir, Brian P.

    2013-01-01

    This paper focuses on Ireland's ambitious target for 2020 to reduce greenhouse gas (GHG) emissions by 20% below 2005 levels for sectors not covered by ETS (Non-ETS). Ireland is an interesting case study due to the role of agriculture (a particularly challenging sector with regard to GHG emissions reduction), that represents 29% of Ireland's GHG emissions compared with less than 10% for the EU. The analysis is carried out with the Irish TIMES model, a bottom-up energy systems modelling tool with detailed characterization of Ireland's energy system. The paper uses scenario analysis to provide pathways that demonstrate how Ireland can meet the non-ETS target at least cost. The paper considers the impacts (in terms of different technology choices and higher marginal abatement costs) arising from higher targets for the energy system to compensate for growth in agriculture activity and low mitigation potential in that sector. The results point to a need to reconsider Ireland's renewable energy focus, with a need for increased effort in renewable transport and renewable heat in particular. The results also point to significant electrification of residential heating. The results also point to a high marginal abatement cost (€213/tCO 2 ), which challenges the analysis carried out at EU level to establish Ireland's non-ETS target. - Highlights: • Techno-economic energy model to deliver EU GHG mitigation target by 2020 in Ireland. • Agriculture represents nearly half of Non-ETS emissions in Ireland. • The target set for Non-ETS GHG for Ireland is far from a cost optimal target. • The results point to a need to reconsider Ireland's renewable energy focus. • Key pathways: electrification of heating in buildings and biofuels in transport

  12. GHG emission scenarios in Asia and the world: The key technologies for significant reduction

    International Nuclear Information System (INIS)

    Akashi, Osamu; Hijioka, Yasuaki; Masui, Toshihiko; Hanaoka, Tatsuya; Kainuma, Mikiko

    2012-01-01

    In this paper, we explore GHG emission scenarios up to 2050 in Asia and the world as part of the Asian Modeling Exercise and assess technology options for meeting a 2.6 W/m 2 radiative forcing target using AIM/Enduse[Global] and AIM/Impact[Policy]. Global GHG emissions in 2050 are required to be reduced by 72% relative to a reference scenario, which corresponds to a 57% reduction from the 2005 level, in order to meet the above target. Energy intensity improvement contributes a lot to curbing CO 2 emission in the short-term. Meanwhile, carbon intensity reduction and CO 2 capture play a large role for further emission reduction in the mid to long-term. The top five key technologies in terms of reduction amount are CCS, solar power generation, wind power generation, biomass power generation and biofuel, which, in total, account for about 60% of global GHG emissions reduction in 2050. We implement additional model runs, each of which enforced limited availability of one of the key technology. The result shows that the 2.6 W/m 2 target up to 2050 is achievable even if availability of any one of the key technologies is limited to half the level achieved in the default simulation. However, if the use of CCS or biomass is limited, the cumulative GHG abatement cost until 2050 increases considerably. Therefore CCS and biomass have a vital role in curbing costs to achieve significant emission reductions. - Highlights: ► We explore GHG emission scenarios up to 2050 in Asia and the world. ► Significant GHG emission reduction is required to limit radiative forcing at low level. ► We assess technology options for achieving significant GHG emission reduction. ► CCS, solar power, wind power, and biomass are the key technologies for reduction. ► Especially, CCS and biomass play a vital role in curbing costs to achieve significant emission reductions.

  13. Peatland-GHG emissions in Europe

    Science.gov (United States)

    Droesler, Matthias

    2013-04-01

    Managed peatlands are hot spots for CO2, CH4 and N2O emissions. GHG which have been not fully integrated in past European climate projects. Peatlands contribute to European GHG emissions 10 times more per unit area than other terrestrial ecosystems. Peatland management and exploration by drainage, agricultural use and peat extraction turned pristine peatland GHG sinks into sources. Emissions can reach more than 40 t CO2equiv. ha-1 a-1 in intensively managed peatlands. On the other hand, the restoration of degraded peatlands does normally reduce these emissions significantly towards climate neutral levels, once the restoration work is done wisely. But in some cases the net climate effect do not decrease significantly depending on hydrological regimes, fertilization status of the peatlands, climate and vegetation type. In many European countries with significant peatland cover nationally funded projects were set up to investigate peatland GHG fluxes and their drivers. These scattered data and knowledge are currently being brought together under the coverage of the GHG-Europe project (Grant agreement no.: 244122) within a new synthesis to develop the relevant EF, identify the drivers and develop upscaling options for GHG-emissions. The talk will: (1) show a first cut of new Emission Factors for peatlands in Europe and compare these with IPCC-default values. (2) discuss the developed sensible response functions for GHG-fluxes against natural and anthropogenic drivers such as land use intensity, land management with drainage and climate variability. (3) show case studies from Germany show the applicability of response functions for upscaling of GHG-balances. (4) An outlook is given to the future European peatland GHG-Balance.

  14. Nitrous Oxide Abatement Coupled with Biopolymer Production As a Model GHG Biorefinery for Cost-Effective Climate Change Mitigation.

    Science.gov (United States)

    Frutos, Osvaldo D; Cortes, Irene; Cantera, Sara; Arnaiz, Esther; Lebrero, Raquel; Muñoz, Raúl

    2017-06-06

    N 2 O represents ∼6% of the global greenhouse gas emission inventory and the most important O 3 -depleting substance emitted in this 21st century. Despite its environmental relevance, little attention has been given to cost-effective and environmentally friendly N 2 O abatement methods. Here we examined, the potential of a bubble column (BCR) and an internal loop airlift (ALR) bioreactors of 2.3 L for the abatement of N 2 O from a nitric acid plant emission. The process was based on the biological reduction of N 2 O by Paracoccus denitrificans using methanol as a carbon/electron source. Two nitrogen limiting strategies were also tested for the coproduction of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) coupled with N 2 O reduction. High N 2 O removal efficiencies (REs) (≈87%) together with a low PHBV cell accumulation were observed in both bioreactors in excess of nitrogen. However, PHBV contents of 38-64% were recorded under N limiting conditions along with N 2 O-REs of ≈57% and ≈84% in the ALR and BCR, respectively. Fluorescence in situ hybridization analyses showed that P. denitrificans was dominant (>50%) after 6 months of experimentation. The successful abatement of N 2 O concomitant with PHBV accumulation confirmed the potential of integrating biorefinery concepts into biological gas treatment for a cost-effective GHG mitigation.

  15. Effects of Local Greenhouse Gas Abatement Strategies on Air Pollutant Emissions and on Health in Kuopio, Finland

    Directory of Open Access Journals (Sweden)

    Arja Asikainen

    2017-06-01

    Full Text Available Implementation of greenhouse gas (GHG abatement strategies often ends up as the responsibility of municipal action rather than national policies. Impacts of local GHG reduction measures were investigated in the EU FP7 funded project Urban Reduction of Greenhouse Gas Emissions in China and Europe (URGENCHE. Kuopio in Finland was one of the case study cities. The assessed reduction measures were (1 increased use of biomass in local heat and power cogeneration plant, (2 energy efficiency improvements of residences, (3 increased biofuel use in traffic, and (4 increased small scale combustion of wood for residential heating. Impact assessment compared the 2010 baseline with a 2020 BAU (business as usual scenario and a 2020 CO2 interventions scenario. Changes in emissions were assessed for CO2, particulate matter (PM2.5 and PM10, NOx, and SO2, and respective impacts were assessed for PM2.5 ambient concentrations and health effects. The assessed measures would reduce the local CO2 emissions in the Kuopio urban area by over 50% and local emissions of PM2.5 would clearly decrease. However, the annual average ambient PM2.5 concentration would decrease by just 4%. Thus, only marginal population level health benefits would be achieved with these assumed local CO2 abatement actions.

  16. Assessment of mitigation pathways of GHG emissions from the Korean waste sector through 2050

    Directory of Open Access Journals (Sweden)

    Yongjoo Chung

    2018-05-01

    Full Text Available The waste sector may play a significant role in national mitigation policies with further greenhouse gas (GHG reduction opportunities mainly because of its linkage to other sectors. However, the waste sector has not drawn much attention from research community mainly because the amount of GHG emissions from the waste sector is notably smaller than other sectors. This study presents emissions estimation and mitigation potentials of the waste sector in Korea. Emission estimates and business-as-usual emissions through 2050 are estimated based on four different treatment methods, including landfill, incineration, wastewater, and biological treatment by considering country-specific emission parameters of wastes, where available. Different types of wastes for each treatment method are investigated to obtain accurate emission estimates. It is expected that GHG emissions in 2050 are about 12.0 Tg CO2eq, which is 17% less than those in 2010. Mitigation potentials and economic impacts of five different measures are also investigated, and it is revealed that the production of refuse drive fuel from combustible municipal solid wastes may render the greatest benefit with the most mitigation potential of 649 kt CO2eq. An interdependent nature among mitigation measures is further discussed and it is shown that, if implemented together, the accumulated mitigation potentials are far less than the simple sum of individual potentials. It is implied that an aggregate potential of individual measures needs to be examined when implementing several mitigation measures simultaneously. This study outlines how to investigate emissions estimation and mitigation pathways for the waste sector in a national level. Keywords: Greenhouse gas, Emissions estimation, Waste treatment, Mitigation potential, Marginal abatement cost

  17. Towards better GHG emissions savings with use of ISO GHG standards

    International Nuclear Information System (INIS)

    Chan Kook Weng

    2010-01-01

    The 15th Conference of Parties (COP 15) at Copenhagen, Denmark in December 2009 highlighted the need to combat climate change by facing the challenge of committing to reducing our emissions at all three levels with locally appropriate mitigation actions (LAMAs) at the local level to be linked to the nationally appropriate mitigation actions (NAMAs) and then contribute onwards to globally appropriate mitigation actions (GAMAs). The aim is to find solutions for both adaptation and mitigation by ensuring sufficient means are made available to support such efforts. This is because the world in entering a new phase that will be characterised by green growth in business. Thus be it agriculture that uses local knowledge of specific crop and livestock varieties to help in secure food supply, bio-energy, transport, industries, there must be policies to understand ecosystem-based to link people, biodiversity, energy, water and carbon so as to be more resilient and adaptable to the need for a low carbon economy in todays society.Climate change therefore affects organisations in many areas and they include legal compliance, carbon market, corporate social responsibility and sustainable development. Promoting sustainability requires making efficient use of energy, water and natural resources, decrease in waste load through recycling and streamlining the processes leading to everything that decreases their CO 2 and water footprints. Currently there are many GHG schemes and programmes and the issues centres around compatibility, costs and most importantly credibility. Achieving real GHG emissions reduction requires controlled and verified emissions reductions and quantification that are sound and verifiable. Thanks to the development of the ISO suite of standards on GHG and related matters, the use of these harmonised standards has given the assurance that a tonne of carbon is a tonne of carbon be it in Malaysia, Mali or Mongolia.The use of these standards like ISO 14064 Part 1

  18. Balance and saving of GHG emissions in thermochemical biorefineries

    International Nuclear Information System (INIS)

    Haro, Pedro; Aracil, Cristina; Vidal-Barrero, Fernando; Ollero, Pedro

    2015-01-01

    Highlights: • A simplified methodology for the balance and saving of GHG emissions is provided. • The GHG balance has a physical meaning and does not depend on the fossil reference. • The GHG saving depends on regulation of energy carriers. • The impact of Bio-CCS incorporation and multiproduction is analyzed. • The co-production of chemicals needs to be included in future regulation. - Abstract: In this study, a simplified methodology for the calculation of the balance of greenhouse gas (GHG) emissions and corresponding saving compared with the fossil reference is presented. The proposed methodology allows the estimation of the anthropogenic GHG emissions of thermochemical biorefineries (net emitted to the atmosphere). In the calculation of the GHG balance, all relevant factors have been identified and analyzed including multiproduction, emissions from biogenic carbon capture and storage (Bio-CCS), co-feeding of fossil fuels (secondary feedstock) and possible carbon storage in biomass-derived products (chemicals). Therefore, it is possible to calculate the balance of GHG emissions of a hypothetical thermochemical biorefinery considering different alternatives of land-use, biomass feedstock, co-feeding of fossil fuels, Bio-CCS incorporation and final use of the products. The comparison of the estimated GHG balance with the corresponding fossil reference for each product is of special relevance in the methodology since it is the parameter used in European regulation for the fulfillment of sustainability criteria in biomass-derived fuels and liquids. The proposed methodology is tested using a previously assessed set of different process concepts of thermochemical biorefineries (techno-economic analysis). The resulting GHG balance and saving are analyzed to identify uncertainties and provide recommendations for future regulation. In all process concepts, the GHG savings are above the minimum requirement of GHG emissions for 2018. In the case of incorporating

  19. National Greenhouse Gas Emission Inventory (EV-GHG)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The EV-GHG Mobile Source Data asset contains measured mobile source GHG emissions summary compliance information on light-duty vehicles, by model, for certification...

  20. GHG emission estimates for road transport in national GHG inventories

    NARCIS (Netherlands)

    Pulles, M.P.J.; Yang, H.

    2011-01-01

    The annual reporting procedures of the United Nations Framework Convention on Climate Change (UNFCCC) have now produced greenhouse gas (GHG) emission inventories from 40 so-called Annex I countries for 18 years. This article analyses a subset of these data: emissions from road transport. The article

  1. Simulating greenhouse gas (GHG) allowance cost and GHG emission reduction in Western Europe

    International Nuclear Information System (INIS)

    Delarue, Erik; Lamberts, Hans; D'haeseleer, William

    2007-01-01

    Due to the growing concern for global warming, the EU25 have implemented the European Union Greenhouse Gas Emission Trading Scheme (EU ETS). In the first trading period (2005-2007), part of the targeted GHG emission reductions presumably will have to result from a switch from coal fired electricity generation to gas fired electricity generation. It is possible to calculate the allowance cost necessary to switch a certain coal fired plant with a certain gas fired plant in the merit order. The allowance cost obtained is a so called switching point. When comparing historic European Union Allowance (EUA) prices (2005) with the corresponding historic switching points, the EUA prices were found high enough to cause a certain switch in the summer season. This finding leads to the use of switching points in establishing allowance cost profiles for several scenarios. A variable gas price profile is used in the simulation tool E-Simulate to simulate electricity generation and related GHG emissions in an eight zonal model representing Western Europe. Several GHG allowance cost profile scenarios are examined. For each scenario, electricity generation in the considered countries is clarified. The focus however lies on the GHG emission reduction potentials. These potentials are addressed for each scenario

  2. Incorporating greenhouse gas (GHG) emissions in long range transportation planning.

    Science.gov (United States)

    2014-05-01

    Greenhouse gas (GHG) emissions continue to be an important focus area for state, local, and federal : agencies. The transportation sector is the second biggest contributor to GHG emissions in the U.S., and : Texas contributes the highest emissions am...

  3. Short-Term Power Plant GHG Emissions Forecasting Model

    International Nuclear Information System (INIS)

    Vidovic, D.

    2016-01-01

    In 2010, the share of greenhouse gas (GHG) emissions from power generation in the total emissions at the global level was about 25 percent. From January 1st, 2013 Croatian facilities have been involved in the European Union Emissions Trading System (EU ETS). The share of the ETS sector in total GHG emissions in Croatia in 2012 was about 30 percent, where power plants and heat generation facilities contributed to almost 50 percent. Since 2013 power plants are obliged to purchase all emission allowances. The paper describes the short-term climate forecasting model of greenhouse gas emissions from power plants while covering the daily load diagram of the system. Forecasting is done on an hourly domain typically for one day, it is possible and more days ahead. Forecasting GHG emissions in this way would enable power plant operators to purchase additional or sell surplus allowances on the market at the time. Example that describes the operation of the above mentioned forecasting model is given at the end of the paper.(author).

  4. Incorporation of electricity GHG emissions intensity variability into building environmental assessment

    International Nuclear Information System (INIS)

    Cubi, Eduard; Doluweera, Ganesh; Bergerson, Joule

    2015-01-01

    Highlights: • Current building assessment does not account for variability in the electric grid. • A new method incorporates hourly grid variability into building assessment. • The method is complementary with peak-shaving policies. • The assessment method can affect building design decisions. - Abstract: Current building energy and GHG emissions assessments do not account for the variable performance of the electric grid. Incorporating hourly grid variability into building assessment methods can help to better prioritize energy efficiency measures that result in the largest environmental benefits. This article proposes a method to incorporate GHG emissions intensity changes due to grid variability into building environmental assessment. The proposed method encourages building systems that reduce electricity use during peak periods while accounting for differences in grid GHG emissions intensity (i.e., peak shaving is more strongly encouraged in grids that have GHG intense peak generation). A set of energy saving building technologies are evaluated in a set of building variants (office, residential) and grid types (hydro/nuclear dominated, coal/gas dominated) to demonstrate the proposed method. Differences between total GHG emissions calculated with the new method compared with the standard (which assumes a constant GHG emissions intensity throughout the year) are in the 5–15% range when the contribution of electricity to total GHG emissions is more significant. The influence of the method on the assessment of the relative performance of some energy efficiency measures is much higher. For example, the estimated GHG emissions savings with heat pumps and photovoltaics can change by −40% and +20%, respectively, using the new assessment method instead of the standard. These differences in GHG emissions estimates can influence building design decisions. The new method could be implemented easily, and would lead to better decision making and more accurate

  5. Does consideration of GHG reductions change local decision making? A Case Study in Chile

    Science.gov (United States)

    Cifuentes, L. A.; Blumel, G.

    2003-12-01

    While local air pollution has been a public concern in developing countries for some time, climate change is looked upon as a non-urgent, developed world problem. In this work we present a case study of the interaction of measures to abate air pollution and measures to mitigate GHG emissions in Santiago, Chile, with the purpose of determining if the consideration of reductions in GHG affects the decisions taken to mitigate local air pollution. The emissions reductions of both GHG and local air pollutants were estimated from emission factors (some derived locally) and changes in activity levels. Health benefits due to air pollution abatement were computed using figures derived previously for the cost benefit analysis of Santiago's Decontamination Plan, transferred to the different cities taking into consideration local demographic and income data. The Santiago estimates were obtained using the damage function approach, based on some local epidemiological studies, and on local health and demographic data. Unit social values for the effects were estimated locally (for cost of treatment and lost productivity values) or extrapolated from US values (mainly for WTP values) using the ratio of per-capita income and an income elasticity of 1. The average benefits of emission abatement (in 1997 US\\ per ton) are 1,800 (1,200-2300) for NOx, 3,000 (2,100-3900) for SO2, 31,900 (21,900 - 41,900) for PM, and 630 (430 - 830) for resuspended dust. Economic benefits due to carbon reduction were considered at 3.5, 10 and 20 UStCO2. Marginal abatement cost curves were constructed considering private and net costs (private less the potential sales of carbon credits) Due to the bottom-up approach to constructing the marginal cost curve, many abatement measures (like congestion tolls and CNG instead of diesel buses) amounting to 8% reduction of PM2.5 concentration, exhibit a negative private cost. If the health benefits are considered for the decision, a maximum reduction of 22% in PM2

  6. Greenhouse Gas and Ammonia Emissions from Different Stages of Liquid Manure Management Chains: Abatement Options and Emission Interactions.

    Science.gov (United States)

    Mohankumar Sajeev, Erangu Purath; Winiwarter, Wilfried; Amon, Barbara

    2018-01-01

    Farm livestock manure is an important source of ammonia and greenhouse gases. Concerns over the environmental impact of emissions from manure management have resulted in research efforts focusing on emission abatement. However, questions regarding the successful abatement of manure-related emissions remain. This study uses a meta-analytical approach comprising 89 peer-reviewed studies to quantify emission reduction potentials of abatement options for liquid manure management chains from cattle and pigs. Analyses of emission reductions highlight the importance of accounting for interactions between emissions. Only three out of the eight abatement options considered (frequent removal of manure, anaerobic digesters, and manure acidification) reduced ammonia (3-60%), nitrous oxide (21-55%), and methane (29-74%) emissions simultaneously, whereas in all other cases, tradeoffs were identified. The results demonstrate that a shift from single-stage emission abatement options towards a whole-chain perspective is vital in reducing overall emissions along the manure management chain. The study also identifies some key elements like proper clustering, reporting of influencing factors, and explicitly describing assumptions associated with abatement options that can reduce variability in emission reduction estimates. Prioritization of abatement options according to their functioning can help to determine low-risk emission reduction options, specifically options that alter manure characteristics (e.g., reduced protein diets, anaerobic digestion, or slurry acidification). These insights supported by comprehensive emission measurement studies can help improve the effectiveness of emission abatement and harmonize strategies aimed at reducing air pollution and climate change simultaneously. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. GHG emissions and mitigation potential in Indian agriculture

    Science.gov (United States)

    Vetter, Sylvia; Feliciano, Diana; Sapkota, Tek; Hillier, Jon; Smith, Pete; Stirling, Clare

    2016-04-01

    India is one of the world's largest greenhouse gas (GHG) emitter, accounting for about 5% of global emissions with further increases expected in the future. The Government of India aims to reduce emission intensities by 20-25% by 2020 compared with the 2005 level. In a recent departure from past practice the reconvened Council on Climate Change stated that climate change in agriculture would include a component that would focus on reducing emissions in agriculture, particularly methane and nitrous oxide emissions. To develop recommendations for mitigation in agriculture in India, a baseline study is presented to analyse the GHG emissions from agriculture for current management (Directorate of Economics and Statistics of the government of India). This analysis is done for the two states Bihar and Haryana, which differ in their management and practises based on different climate and policies. This first analysis shows were the highest GHG emissions in agriculture is produced and were the highest mitigation potential might be. The GHG emissions and mitigation potential are calculated using the CCAFS Mitigation Option Tool (CCAFS-MOT) (https://ccafs.cgiar.org/mitigation-option-tool-agriculture#.VpTnWL826d4) with modifications for the special modelling. In a second step, stakeholder meetings provided a wide range of possible and definite scenarios (management, policy, technology, costs, etc.) for the future to mitigate emissions in agriculture as well as how to increase productivity. These information were used to create scenarios to give estimates for the mitigation potential in agriculture for India in 2020.

  8. 40 CFR 98.243 - Calculating GHG emissions.

    Science.gov (United States)

    2010-07-01

    ... feedstock). (MWf)i = Molecular weight of gaseous feedstock i (kg/kg-mole). MVC = Molar volume conversion... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Petrochemical Production § 98.243 Calculating GHG emissions. (a) If you route all process vent emissions and emissions from combustion of process off-gas to one...

  9. Estimating GHG emissions of marine ports-the case of Barcelona

    International Nuclear Information System (INIS)

    Villalba, Gara; Gemechu, Eskinder Demisse

    2011-01-01

    In recent years, GHG inventories of cities have expanded to include extra-boundary activities that form part of the city's urban metabolism and economy. This paper centers on estimating the emissions due to seaports, in such a way that they can be included as part of the city's inventory or be used by the port itself to monitor their policy and technology improvements for mitigating climate change. We propose the indicators GHG emissions per ton of cargo handled or per passenger and emissions per value of cargo handled as practical measures for policy making and emission prevention measures to be monitored over time. Adapting existing methodologies to the Port of Barcelona, we calculated a total of 331,390 tons of GHG emissions (CO 2 equivalents) for the year of 2008, half of which were attributed to vessel movement (sea-based emissions) and the other half to port, land related activities (land-based emissions). The highest polluters were auto carriers with 6 kg of GHG emissions per ton of cargo handled. Knowing the highest emitters, the port can take action to improve the ship's activities within the port limits, such as maneuvering and hotelling. With these results, the port and the city can also find ways to reduce the land-based emissions. - Research highlights: → Adapting existing methodologies to the Port of Barcelona (PoB), we calculated a total of 331,390 tons of GHG emissions for the year of 2008, half of which were attributed to vessel movement (sea-based emissions) and the other half to port, land related activities (land-based emissions) → Emissions per ton of cargo handled is proposed as an indicator to pin point high polluting vessels-a measure independent of the city the port belongs to. For 2008, the highest polluters were auto carriers with 6 kg of GHG emissions per ton of cargo handled. → An additional measure of emissions per value of cargo handled is proposed to complement the emissions per weight indicator. For 2008, the volume of cargo

  10. GHG emissions due to deforestation

    International Nuclear Information System (INIS)

    Croezen, H.; Van Valkengoed, M.

    2009-05-01

    An assessment was made for the magnitude of greenhouse gas emissions resulting from deforestation and forest degradation in tropical forests in Malaysia and Indonesia related to Dutch economic activities. Greenhouse gas emissions (GHG) are calculated in relation to (1) the emissions related to vegetation removal sec; and (2) the emissions related to removal and more long term effects related to assimilation of CO2 in forest regrowth and changes in organic material in soils. Emissions related to vegetation removal and aggregated emissions for both vegetation removal and long term effects are reported separately. Soil organic carbon stock changes are considered by Greenpeace as more uncertain, so the emphasis will be on the direct emissions. Changes in carbon stocks and N2O emissions and actually also changes in vegetation all are events that occur gradually, rather than immediately. Only removal of existing vegetation and possible burning of this vegetation and associated emissions related to both activities are immediate by nature. Carbon stocks and N2O emissions change to a new level within several decades after deforestation or forest degradation. Removed vegetation can grow back or be replaced eventually by other vegetation, thereby changing the net greenhouse gas (GHG) emissions related to deforestation or forest degradation. Vegetation extracted for commercial purposes such as timber or pulp will also take years or decades to become waste and be converted into CO2. In IPCC and LCA's all these emissions are taken into account - or at least all emissions occurring within a period of 20 years, as required by IPCC. Soil organic carbon stock changes are also considered by Greenpeace as more uncertain, so the emphasis will be on the direct emmissions.

  11. Impact of neighborhood design on energy performance and GHG emissions

    International Nuclear Information System (INIS)

    Hachem, Caroline

    2016-01-01

    Highlights: • Energy use and GHG emissions of different neighborhood designs are investigated. • Improving buildings energy performance reduces energy use and GHG emissions by 75%. • Density as isolated factor has limited effect on transport on per capita basis. • Distance to central business district impacts transport GHG emission significantly. - Abstract: This paper presents an innovative and holistic approach to the analysis of the impact of selected design parameters of a new solar community on its environmental performance, in terms of energy efficiency and carbon footprint (green-house gas (GHG) emissions). The design parameters include energy performance level of buildings, density, type of the neighborhood (mixed-use vs residential), location of the commercial center relative to residential areas and the design of the streets. Energy performance is measured as the balance between overall energy consumption for building operations (assuming an all-electric neighborhood) and electricity generation potential through integration of PV panels on available roof surfaces. Greenhouse gas emissions are those associated with building operations and transport. Results of simulations carried out on prototype neighborhoods located in the vicinity of Calgary, Alberta, Canada indicate that, while adopting high-energy efficiency measures can reduce the buildings’ impact by up to 75% in terms of energy consumption and GHG emissions, transport still has a large environmental impact. The parameters of highest impact on transport and its associated GHG emissions are the design of the neighborhood and the distance to the business center. Density, as isolated parameter, has a modest effect on the selected mode of transportation, in terms of using private or public transportation. While this study relates to a specific location and a range of design assumptions, the methodology employed can serve as a template for evaluating design alternatives of new sustainable

  12. Emission abatement: Untangling the impacts of the EU ETS and the economic crisis

    International Nuclear Information System (INIS)

    Bel, Germà; Joseph, Stephan

    2015-01-01

    In this study we use historical emission data from installations under the European Union Emissions Trading System (EU ETS) to evaluate the impact of this policy on greenhouse gas emissions during the first two trading phases (2005–2012). As such the analysis seeks to disentangle two causes of emission abatement: that attributable to the EU ETS and that attributable to the economic crisis that hit the EU in 2008/09. To do so, we use a dynamic panel data approach. Our results suggest that, by far, the biggest share of abatement was attributable to the effects of the economic crisis. This finding has serious implications for future policy adjustments affecting core elements of the EU ETS, including the distribution of EU emission allowances. - Highlights: • We untangle the effects of the EU ETS from those of the economic crisis on industrial emission abatement. • The empirical analysis uses verified emission data instead of estimated emission data. • Abatement of emissions in EU in the last years has been mainly due to the impact of the economic crisis. • Low level of abatement attributable to the EU ETS suggests that important changes must be made in environmental policy

  13. GHG emissions from primary aluminum production in China: Regional disparity and policy implications

    International Nuclear Information System (INIS)

    Hao, Han; Geng, Yong; Hang, Wen

    2016-01-01

    Highlights: • GHG emissions from primary aluminum production in China were accounted. • The impact of regional disparity of power generation was considered for this study. • GHG emissions factor of China’s primary aluminum production was 16.5 t CO_2e/t Al ingot in 2013. • Total GHG emissions from China’s primary aluminum production were 421 mt CO_2e in 2013. - Abstract: China is the world-leading primary aluminum production country, which contributed to over half of global production in 2014. Primary aluminum production is power-intensive, for which power generation has substantial impact on overall Greenhouse Gas (GHG) emissions. In this study, we explore the impact of regional disparity of China’s power generation system on GHG emissions for the sector of primary aluminum production. Our analysis reveals that the national GHG emissions factor (GEF) of China’s primary aluminum production was 16.5 t CO_2e/t Al ingot in 2013, with province-level GEFs ranging from 8.2 to 21.7 t CO_2e/t Al ingot. There is a high coincidence of provinces with high aluminum productions and high GEFs. Total GHG emissions from China’s primary aluminum production were 421 mt CO_2e in 2013, approximately accounting for 4% of China’s total GHG emissions. Under the 2020 scenario, GEF shows a 13.2% reduction compared to the 2013 level, but total GHG emissions will increase to 551 mt CO_2e. Based on our analysis, we recommend that the government should further promote energy efficiency improvement, facilitate aluminum industry redistribution with low-carbon consideration, promote secondary aluminum production, and improve aluminum industry data reporting and disclosure.

  14. Uncertainty quantification of CO2 emission reduction for maritime shipping

    International Nuclear Information System (INIS)

    Yuan, Jun; Ng, Szu Hui; Sou, Weng Sut

    2016-01-01

    The International Maritime Organization (IMO) has recently proposed several operational and technical measures to improve shipping efficiency and reduce the greenhouse gases (GHG) emissions. The abatement potentials estimated for these measures have been further used by many organizations to project future GHG emission reductions and plot Marginal Abatement Cost Curves (MACC). However, the abatement potentials estimated for many of these measures can be highly uncertain as many of these measures are new, with limited sea trial information. Furthermore, the abatements obtained are highly dependent on ocean conditions, trading routes and sailing patterns. When the estimated abatement potentials are used for projections, these ‘input’ uncertainties are often not clearly displayed or accounted for, which can lead to overly optimistic or pessimistic outlooks. In this paper, we propose a methodology to systematically quantify and account for these input uncertainties on the overall abatement potential forecasts. We further propose improvements to MACCs to better reflect the uncertainties in marginal abatement costs and total emissions. This approach provides a fuller and more accurate picture of abatement forecasts and potential reductions achievable, and will be useful to policy makers and decision makers in the shipping industry to better assess the cost effective measures for CO 2 emission reduction. - Highlights: • We propose a systematic method to quantify uncertainty in emission reduction. • Marginal abatement cost curves are improved to better reflect the uncertainties. • Percentage reduction probability is given to determine emission reduction target. • The methodology is applied to a case study on maritime shipping.

  15. FORECASTING MODEL OF GHG EMISSION IN MANUFACTURING SECTORS OF THAILAND

    Directory of Open Access Journals (Sweden)

    Pruethsan Sutthichaimethee

    2017-01-01

    Full Text Available This study aims to analyze the modeling and forecasting the GHG emission of energy consumption in manufacturing sectors. The scope of the study is to analysis energy consumption and forecasting GHG emission of energy consumption for the next 10 years (2016-2025 and 25 years (2016-2040 by using ARIMAX model from the Input-output table of Thailand. The result shows that iron and steel has the highest value of energy consumption and followed by cement, fluorite, air transport, road freight transport, hotels and places of loading, coal and lignite, petrochemical products, other manufacturing, road passenger transport, respectively. The prediction results show that these models are effective in forecasting by measured by using RMSE, MAE, and MAPE. The results forecast of each model is as follows: 1 Model 1(2,1,1 shows that GHG emission will be increasing steadily and increasing at 25.17% by the year 2025 in comparison to 2016. 2 Model 2 (2,1,2 shows that GHG emission will be rising steadily and increasing at 41.51% by the year 2040 in comparison to 2016.

  16. Pollution Emissions, Environmental Policy, and Marginal Abatement Costs.

    Science.gov (United States)

    He, Ling-Yun; Ou, Jia-Jia

    2017-12-05

    Pollution emissions impose serious social negative externalities, especially in terms of public health. To reduce pollution emissions cost-effectively, the marginal abatement costs (MACs) of pollution emissions must be determined. Since the industrial sectors are the essential pillars of China's economic growth, as well as leading energy consumers and sulfur dioxide (SO₂) emitters, estimating MACs of SO₂ emissions at the industrial level can provide valuable information for all abatement efforts. This paper tries to address the critical and essential issue in pollution abatement: How do we determine the MACs of pollution emissions in China? This paper first quantifies the SO₂ emission contribution of different industrial sectors in the Chinese economy by an Input-Output method and then estimates MACs of SO₂ for industrial sectors at the national level, provincial level, and sectoral level by the shadow price theory. Our results show that six sectors (e.g., the Mining and Washing of Coal sector) should be covered in the Chinese pollution emission trading system. We have also found that the lowest SO₂ shadow price is 2000 Yuan/ton at the national level, and that shadow prices should be set differently at the provincial level. Our empirical study has several important policy implications, e.g., the estimated MACs may be used as a pricing benchmark through emission allowance allocation. In this paper, the MACs of industrial sectors are calculated from the national, provincial and sectoral levels; therefore, we provide an efficient framework to track the complex relationship between sectors and provinces.

  17. An assessment of greenhouse gas emissions-weighted clean energy standards

    International Nuclear Information System (INIS)

    Coffman, Makena; Griffin, James P.; Bernstein, Paul

    2012-01-01

    This paper quantifies the relative cost-savings of utilizing a greenhouse gas emissions-weighted Clean Energy Standard (CES) in comparison to a Renewable Portfolio Standard (RPS). Using a bottom-up electricity sector model for Hawaii, this paper demonstrates that a policy that gives “clean energy” credit to electricity technologies based on their cardinal ranking of lifecycle GHG emissions, normalizing the highest-emitting unit to zero credit, can reduce the costs of emissions abatement by up to 90% in comparison to a typical RPS. A GHG emissions-weighted CES provides incentive to not only pursue renewable sources of electricity, but also promotes fuel-switching among fossil fuels and improved generation efficiencies at fossil-fired units. CES is found to be particularly cost-effective when projected fossil fuel prices are relatively low. - Highlights: ► Proposes a GHG Emissions-Weighted Clean Energy Standard (CES) mechanism. ► Compares CES to RPS using a case study of Hawaii. ► Finds CES is up to 90% more cost-effective as a GHG abatement tool.

  18. The impact of uncertainties on predicted GHG emissions of dairy cow production systems

    NARCIS (Netherlands)

    Zehetmeier, M.; Gandorfer, M.; Hoffmann, H.; Muller, U.K.; Boer, de I.J.M.

    2014-01-01

    Dairy farms produce significant greenhouse gas (GHG) emissions and are therefore a focal point for GHG-mitigation practices. To develop viable mitigation options, we need robust (insensitive to changes in model parameters and assumptions) predictions of GHG emissions. To this end, we developed a

  19. GHG emission quantification for pavement construction projects using a process-based approach

    Directory of Open Access Journals (Sweden)

    Charinee Limsawasd

    2017-03-01

    Full Text Available Climate change and greenhouse gas (GHG emissions have attracted much attention for their impacts upon the global environment. Initiating of new legislation and regulations for control of GHG emissions from the industrial sectors has been applied to address this problem. The transportation industries, which include operation of road pavement and pavement construction equipment, are the highest GHG-emitting sectors. This study presents a novel quantification model of GHG emissions of pavement construction using process-based analysis. The model is composed of five modules that evaluate GHG emissions. These are: material production and acquisition, (2 material transport to a project site, (3 heavy equipment use, (4 on-site machinery use, and, (5 on-site electricity use. The model was applied to a hypothetical pavement project to compare the environmental impacts of flexible and rigid pavement types during construction. The resulting model can be used for evaluation of environmental impacts, as well as for designing and planning highway pavement construction.

  20. Fossil energy savings and GHG mitigation potentials of ethanol as a gasoline substitute in Thailand

    International Nuclear Information System (INIS)

    Nguyen, Thu Lan T.; Gheewala, Shabbir H.; Garivait, Savitri

    2007-01-01

    One of the Thai government's measures to promote ethanol use is excise tax exemption, making gasohol cheaper than gasoline. The policy in favour of biofuels is being supported by their contribution to fossil energy savings and greenhouse gas (GHG) mitigation. An analysis of energy balance (EnB), GHG balance and GHG abatement cost has been done to evaluate molasses-based ethanol (MoE) in Thailand. A positive EnB of 19.2 MJ/L implies that MoE is a good substitute for gasoline, effective in fossil energy savings. GHG balance assessment based on the baseline scenario shows that emissions are most likely to increase with the substitution. Scenarios using biogas captured from spent wash treatment and rice husk to substitute coal used in ethanol conversion give encouraging results in improving the GHG balance. However, the higher price of MoE over gasoline currently has resulted in high GHG abatement costs, even under the best-case scenario. Compared to the many other climate strategies relevant to Thailand, MoE is much less cost effective. Governed by the rule of supply and demand, a strong fluctuation in molasses price is considered the main cause of volatile MoE price. Once supplies are stable, the trend of price drops would make MoE a reasonable option for national climate policy

  1. Pricing emission permits in the absence of abatement

    International Nuclear Information System (INIS)

    Hintermann, Beat

    2012-01-01

    If emissions are stochastic and firms are unable to control them through abatement, the cap in a permit market may be exceeded, or not be reached. I derive a binary options pricing formula that expresses the permit price as a function of the penalty for noncompliance and the probability of an exceeded cap under the assumption of no abatement. I apply my model to the EU ETS, where the rapid introduction of the market made it difficult for firms to adjust their production technology in time for the first phase. The model fits the data well, implying that the permit price may have been driven by firms hedging against stochastic emissions.

  2. Electricity trade and GHG emissions: Assessment of Quebec's hydropower in the Northeastern American market (2006-2008)

    International Nuclear Information System (INIS)

    Ben Amor, Mourad; Pineau, Pierre-Olivier; Gaudreault, Caroline; Samson, Rejean

    2011-01-01

    Worldwide electricity sector reforms open up electricity markets and increase trades. This has environmental consequences as exports and imports either increase or decrease local production and consequently greenhouse gas (GHG) emissions. This paper's objective is to illustrate the importance of electricity trade's impact on GHG emissions by providing an estimate of the net GHG emissions resulting from these trades. To achieve this objective, Quebec hourly electricity exchanges with adjacent jurisdictions were examined over the 2006-2008 period. In order to associate a specific GHG emission quantity to electricity trades, hourly marginal electricity production technologies were identified and validated using the Ontario hourly output per power plant and information released in the Quebec adjacent system operator reports. It is estimated that over three years, imports into Quebec were responsible for 7.7 Mt of GHG, while Quebec hydropower exports avoided 28.3 Mt of GHG emissions. Hence, the net result is 20.6 Mt of avoided emissions over 2006-2008, or about 7 Mt per year, which corresponds to more than 8% of the Quebec yearly GHG emissions. When GHG emissions from all life cycle stages (resource extraction to end-of-life) are accounted for, the net avoided GHG emissions increase by 35%, to 27.9 Mt. - Research highlights: → Environmental benefits of hydropower exports are considerable. → Detailed GHG assessment of such electricity trade is missing from the literature. → Net GHG emissions estimate resulting from such trade is provided. → GHG gains are significant in the Northeast American electricity market due to such electricity trade.

  3. Linking GHG Emission Trading Systems and Markets

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Several different types of links are possible between different GHG-mitigation systems. These include: Linking two or more emission trading schemes so that emissions trading can occur both within and between different schemes ('direct links'); and Linking emission trading systems to registries/mechanisms and systems that generate offsets from project based mechanisms or from direct purchases/transfers of AAUs ('indirect links').

  4. Whole farm quantification of GHG emissions within smallholder farms in developing countries

    International Nuclear Information System (INIS)

    Seebauer, Matthias

    2014-01-01

    The IPCC has compiled the best available scientific methods into published guidelines for estimating greenhouse gas emissions and emission removals from the land-use sector. In order to evaluate existing GHG quantification tools to comprehensively quantify GHG emissions and removals in smallholder conditions, farm scale quantification was tested with farm data from Western Kenya. After conducting a cluster analysis to identify different farm typologies GHG quantification was exercised using the VCS SALM methodology complemented with IPCC livestock emission factors and the cool farm tool. The emission profiles of four farm clusters representing the baseline conditions in the year 2009 are compared with 2011 where farmers adopted sustainable land management practices (SALM). The results demonstrate the variation in both the magnitude of the estimated GHG emissions per ha between different smallholder farm typologies and the emissions estimated by applying two different accounting tools. The farm scale quantification further shows that the adoption of SALM has a significant impact on emission reduction and removals and the mitigation benefits range between 4 and 6.5 tCO 2  ha −1  yr −1 with significantly different mitigation benefits depending on typologies of the crop–livestock systems, their different agricultural practices, as well as adoption rates of improved practices. However, the inherent uncertainty related to the emission factors applied by accounting tools has substantial implications for reported agricultural emissions. With regard to uncertainty related to activity data, the assessment confirms the high variability within different farm types as well as between different parameters surveyed to comprehensively quantify GHG emissions within smallholder farms. (paper)

  5. Carbon Abatement and Emissions Associated with the Gasification of Walnut Shells for Bioenergy and Biochar Production.

    Science.gov (United States)

    Pujol Pereira, Engil Isadora; Suddick, Emma C; Six, Johan

    2016-01-01

    By converting biomass residue to biochar, we could generate power cleanly and sequester carbon resulting in overall greenhouse gas emissions (GHG) savings when compared to typical fossil fuel usage and waste disposal. We estimated the carbon dioxide (CO2) abatements and emissions associated to the concurrent production of bioenergy and biochar through biomass gasification in an organic walnut farm and processing facility in California, USA. We accounted for (i) avoided-CO2 emissions from displaced grid electricity by bioenergy; (ii) CO2 emissions from farm machinery used for soil amendment of biochar; (iii) CO2 sequestered in the soil through stable biochar-C; and (iv) direct CO2 and nitrous oxide (N2O) emissions from soil. The objective of these assessments was to pinpoint where the largest C offsets can be expected in the bioenergy-biochar chain. We found that energy production from gasification resulted in 91.8% of total C offsets, followed by stable biochar-C (8.2% of total C sinks), offsetting a total of 107.7 kg CO2-C eq Mg-1 feedstock. At the field scale, we monitored gas fluxes from soils for 29 months (180 individual observations) following field management and precipitation events in addition to weekly measurements within three growing seasons and two tree dormancy periods. We compared four treatments: control, biochar, compost, and biochar combined with compost. Biochar alone or in combination with compost did not alter total N2O and CO2 emissions from soils, indicating that under the conditions of this study, biochar-prompted C offsets may not be expected from the mitigation of direct soil GHG emissions. However, this study revealed a case where a large environmental benefit was given by the waste-to-bioenergy treatment, addressing farm level challenges such as waste management, renewable energy generation, and C sequestration.

  6. Carbon Abatement and Emissions Associated with the Gasification of Walnut Shells for Bioenergy and Biochar Production.

    Directory of Open Access Journals (Sweden)

    Engil Isadora Pujol Pereira

    Full Text Available By converting biomass residue to biochar, we could generate power cleanly and sequester carbon resulting in overall greenhouse gas emissions (GHG savings when compared to typical fossil fuel usage and waste disposal. We estimated the carbon dioxide (CO2 abatements and emissions associated to the concurrent production of bioenergy and biochar through biomass gasification in an organic walnut farm and processing facility in California, USA. We accounted for (i avoided-CO2 emissions from displaced grid electricity by bioenergy; (ii CO2 emissions from farm machinery used for soil amendment of biochar; (iii CO2 sequestered in the soil through stable biochar-C; and (iv direct CO2 and nitrous oxide (N2O emissions from soil. The objective of these assessments was to pinpoint where the largest C offsets can be expected in the bioenergy-biochar chain. We found that energy production from gasification resulted in 91.8% of total C offsets, followed by stable biochar-C (8.2% of total C sinks, offsetting a total of 107.7 kg CO2-C eq Mg-1 feedstock. At the field scale, we monitored gas fluxes from soils for 29 months (180 individual observations following field management and precipitation events in addition to weekly measurements within three growing seasons and two tree dormancy periods. We compared four treatments: control, biochar, compost, and biochar combined with compost. Biochar alone or in combination with compost did not alter total N2O and CO2 emissions from soils, indicating that under the conditions of this study, biochar-prompted C offsets may not be expected from the mitigation of direct soil GHG emissions. However, this study revealed a case where a large environmental benefit was given by the waste-to-bioenergy treatment, addressing farm level challenges such as waste management, renewable energy generation, and C sequestration.

  7. Greenhouse gas abatement in Senegal. A case study of least-cost options

    International Nuclear Information System (INIS)

    Amous, S.; Revet, D.; Sokona, Y.

    1994-01-01

    The first stage of the study was to make a preliminary inventory of greenhouse gas (GHG) emissions for the base year 1988. Following this seven no regret technical options for emission reduction were investigated and the costs calculated, allowing the identification of three least-cost options. The three least-cost options must be implemented first because of their negative costs. The economic benefits of both abatement scenarios are characterized by a negative global cost whatever the discount rate is. (author)

  8. General guidance and procedures for estimating and reporting national GHG emissions for agriculture

    International Nuclear Information System (INIS)

    Rypdal, K.

    2002-01-01

    Greenhouse gas (GHG) emissions from agriculture account for a large share of total GHG emissions in most countries. Methane from ruminants, animal manure and rice fields, and nitrous oxide from agricultural soils are among the most important sources. In general, these emission estimates also are more uncertain than most other parts of the GHG emission inventory. IPCC has developed guidelines for estimating and reporting emissions of GHG. These guidelines shall be followed to secure complete, consistent, accurate and transparent reporting of emissions. However, the recommended methodologies are tiered, and choice of methods shall preferably reflect national circumstances, the national importance of a source, and different resources to prepare inventories. A country may also apply a national methodology given that it is well documented and not in conflict with good practice. Emission data reported under the United Nation Framework Convention on Climate Change are subject to external control, and the methodologies are reviewed by experts on agricultural inventories. (au)

  9. Quantitative evaluation of time-series GHG emissions by sector and region using consumption-based accounting

    International Nuclear Information System (INIS)

    Homma, Takashi; Akimoto, Keigo; Tomoda, Toshimasa

    2012-01-01

    This study estimates global time-series consumption-based GHG emissions by region from 1990 to 2005, including both CO 2 and non-CO 2 GHG emissions. Estimations are conducted for the whole economy and for two specific sectors: manufacturing and agriculture. Especially in the agricultural sector, it is important to include non-CO 2 GHG emissions because these are the major emissions present. In most of the regions examined, the improvements in GHG intensities achieved in the manufacturing sector are larger than those in the agricultural sector. Compared with developing regions, most developed regions have consistently larger per-capita consumption-based GHG emissions over the whole economy, as well as higher production-based emissions. In the manufacturing sector, differences calculated by subtracting production-based emissions from consumption-based GHG emissions are determined by the regional economic level while, in the agricultural sector, they are dependent on regional production structures that are determined by international trade competitiveness. In the manufacturing sector, these differences are consistently and increasingly positive for the U.S., EU15 and Japan but negative for developing regions. In the agricultural sector, the differences calculated for the major agricultural importers like Japan and the EU15 are consistently positive while those of exporters like the U.S., Australia and New Zealand are consistently negative. - Highlights: ► We evaluate global time-series production-based and consumption-based GHG emissions. ► We focus on both CO 2 and non-CO 2 GHG emissions, broken down by region and by sector. ► Including non-CO 2 GHG emissions is important in agricultural sector. ► In agriculture, differences in accountings are dependent on production structures. ► In manufacturing sector, differences in accountings are determined by economic level.

  10. Life-cycle analysis on energy consumption and GHG emission intensities of alternative vehicle fuels in China

    International Nuclear Information System (INIS)

    Ou, Xunmin; Yan, Xiaoyu; Zhang, Xiliang; Liu, Zhen

    2012-01-01

    Highlights: ► We analyzed the life cycle energy intensity and GHG emissions of about 40 pathways of alternative vehicle fuels in China. ► Coal-based liquid fuel has higher life cycle energy intensities and first generation technology bio-fuel has relatively lower intensity. ► By 2020 electricity will have significantly lower GHG intensity and second generation technology bio-fuel will have near zero intensities. -- Abstract: Fossil energy consumption (FEC) and greenhouse gas (GHG) emission intensities of major alternative vehicle fuels (AVFs) in China are calculated and compared with conventional fuels by means of full life-cycle analysis. Currently most of the AVFs have not relatively obvious GHG emission reduction when compared to the gasoline pathway: (1) coal-based AVF has higher intensities in terms of both the FEC and GHG emissions; (2) electricity from the average Chinese grid has the GHG emission intensity similar to that of gasoline pathway although relatively lower FEC intensity; and (3) first generation technology bio-fuel has relatively lower GHG emission intensity and substantially lower FEC intensity. It is forecasted that by 2020 when still comparing to the gasoline pathway: (1) coal-based AVF will still have FEC and GHG emission intensities that are 1.5–1.8 and 1.8–2.5 time those of gasoline pathway, and the application of carbon capture and storage technology can reduce the GHG emission intensity of coal-based AVF; (2) electricity will have significantly lower GHG intensity; and (3) second generation technology bio-fuel will have near zero FEC and GHG intensities.

  11. Emissions leakage and subsidies for pollution abatement. Pay the polluter or the supplier of the remedy?

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Carolyn; Greaker, Mads; Rosendahl, Knut Einar

    2012-07-01

    Asymmetric regulation of a global pollutant between countries can alter the competitiveness of industries and lead to emissions leakage. For most types of pollution, abatement technologies are available for firms to produce with lower emissions. However, the suppliers of those technologies tend to be less than perfectly competitive, particularly when both emissions regulations and advanced technologies are new. In this context of twin market failures, we consider the relative effects and desirability of subsidies for abatement technology. We find a more robust recommendation for upstream subsidies than for downstream subsidies. Downstream subsidies tend to increase global abatement technology prices, reduce pollution abatement abroad and increase emission leakage. On the contrary, upstream subsidies reduce abatement technology prices, and hence also emissions leakage.(Author)

  12. Trends and Projected Estimates of GHG Emissions from Indian Livestock in Comparisons with GHG Emissions from World and Developing Countries

    Directory of Open Access Journals (Sweden)

    Amlan Kumar Patra

    2014-04-01

    Full Text Available This study presents trends and projected estimates of methane and nitrous oxide emissions from livestock of India vis-à-vis world and developing countries over the period 1961 to 2010 estimated based on IPCC guidelines. World enteric methane emission (EME increased by 54.3% (61.5 to 94.9 ×109 kg annually from the year 1961 to 2010, and the highest annual growth rate (AGR was noted for goat (2.0%, followed by buffalo (1.57% and swine (1.53%. Global EME is projected to increase to 120×109 kg by 2050. The percentage increase in EME by Indian livestock was greater than world livestock (70.6% vs 54.3% between the years 1961 to 2010, and AGR was highest for goat (1.91%, followed by buffalo (1.55%, swine (1.28%, sheep (1.25% and cattle (0.70%. In India, total EME was projected to grow by 18.8×109 kg in 2050. Global methane emission from manure (MEM increased from 6.81 ×109 kg in 1961 to 11.4×109 kg in 2010 (an increase of 67.6%, and is projected to grow to 15×109 kg by 2050. In India, the annual MEM increased from 0.52×109 kg to 1.1×109 kg (with an AGR of 1.57% in this period, which could increase to 1.54×109 kg in 2050. Nitrous oxide emission from manure in India could be 21.4×106 kg in 2050 from 15.3×106 kg in 2010. The AGR of global GHG emissions changed a small extent (only 0.11% from developed countries, but increased drastically (1.23% for developing countries between the periods of 1961 to 2010. Major contributions to world GHG came from cattle (79.3%, swine (9.57% and sheep (7.40%, and for developing countries from cattle (68.3%, buffalo (13.7% and goat (5.4%. The increase of GHG emissions by Indian livestock was less (74% vs 82% over the period of 1961 to 2010 than the developing countries. With this trend, world GHG emissions could reach 3,520×109 kg CO2-eq by 2050 due to animal population growth driven by increased demands for meat and dairy products in the world.

  13. Evaluating the effectiveness of urban energy conservation and GHG mitigation measures: The case of Xiamen city, China

    International Nuclear Information System (INIS)

    Lin Jianyi; Cao Bin; Cui Shenghui; Wang Wei; Bai Xuemei

    2010-01-01

    To assess the effectiveness of urban energy conservation and GHG mitigation measures, a detailed Long-range Energy Alternatives Planning (LEAP) model is developed and applied to analyze the future trends of energy demand and GHG emissions in Xiamen city. Two scenarios have been designed to describe the future energy strategies in relation to the development of Xiamen city. The 'Business as Usual' scenario assumes that the government will do nothing to influence the long-term trends of urban energy demand. An 'Integrated' scenario, on the other hand, is generated to assess the cumulative impact of a series of available reduction measures: clean energy substitution, industrial energy conservation, combined heat and power generation, energy conservation in building, motor vehicle control, and new and renewable energy development and utilization. The reduction potentials in energy consumption and GHG emissions are estimated for a time span of 2007-2020 under these different scenarios. The calculation results in Xiamen show that the clean energy substitution measure is the most effective in terms of energy saving and GHG emissions mitigation, while the industrial sector has the largest abatement potential.

  14. Connections between population density, energy use, and GHG emissions in water networks

    Energy Technology Data Exchange (ETDEWEB)

    Filion, Y.R. [Queen' s Univ., Kingston, ON (Canada). Dept. of Civil Engineering

    2007-07-01

    There is a growing concern that urban sprawl and highly dispersed urban infrastructure in cities is posing significant environmental impacts. However, there is no agreement on the suitability of interventions such as population intensification on reducing environmental impacts. This paper investigated the connection between population intensification and environmental impact in water distribution networks. Specifically, it examined the relationship between population density, annual per capita energy use, and annual per capita greenhouse gas (GHG) emissions in water distribution networks. It also examined which population densities produce low levels of annual per capita energy use and GHG emissions. An analytical model of a trunk main was developed to connect population density to energy use and GHG emissions. The model considered energy use in five life activities of the trunk main, namely pipe fabrication, pipe repair, water pumping, and pipe recycling and/or disposal. The energy use model was combined with emission factors and electricity fuel-source mixtures from four Canadian regions (Atlantic Provinces, Quebec, Ontario, and Alberta) to compute representative levels of annual per capita GHGs emitted by the trunk main. It was concluded that increasing population density from 10 ca/ha to 150 ca/ha reduced energy use and GHG emissions by 67per cent and that increasing population density beyond 150 ca/ha produces no significant decrease in annual per capita energy use and GHG emissions. Further analysis on looped networks is required to verify these preliminary findings. 10 refs., 3 tabs., 2 figs.

  15. 40 CFR 98.413 - Calculating GHG emissions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Calculating GHG emissions. 98.413 Section 98.413 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Industrial Greenhouse Gases § 98.413 Calculating...

  16. Managing Risk Aversion for Low-Carbon Supply Chains with Emission Abatement Outsourcing.

    Science.gov (United States)

    Wang, Qinpeng; He, Longfei

    2018-02-21

    Reducing carbon emissions, including emission abatement outsourcing at the supply-chain level, is becoming a significant but challenging problem in practice. Confronting this challenge, we therefore break down the practice to focus on a low-carbon supply chain consisting of one supplier, one manufacturer and one third-party emission-reducing contractor. The contractor offers a carbon reduction service to the manufacturer. In view of the increasing proportion of Greenhouse Gases (GHG) emissions and absence of carbon reduction policies in developing countries, we adopt the prospect of consumers' low-carbon preferences to capture the demand sensitivity on carbon emission. By exploiting the Mean-Variance (MV) model, we develop a supply chain game model considering risk aversion. Comparing the supply chain performances of the cases under risk neutrality and risk aversion, we investigate the impact of the risk aversion of the supplier and the manufacturer on the low-carbon supply chain performances, respectively. We show that the risk aversion of chain members will not influence the relationship underlain by the profit-sharing contract between the manufacturer and contractor, whereas they may extend the supplier's concerning range. Although the manufacturer's risk aversion has a positive impact on the wholesale price, interestingly, the supplier's impact on the wholesale price is negative. Furthermore, we propose a contract to coordinate the risk-averse low-carbon supply chain by tuning the aversion levels of the supplier and the manufacturer, respectively. Through numerical study, we draw on managerial insights for industrial practitioners to adopt a low carbon strategy potentially by managing the risk attitudes along the supply chain channel.

  17. Managing GHG emissions : performance to the end of 2003 and forecast to 2008

    International Nuclear Information System (INIS)

    2004-10-01

    This paper presents statistics of greenhouse gas (GHG) emissions for Shell Canada Ltd., one of the largest integrated oil and gas companies in Canada. Strategies for future emissions reductions were also presented. Since 1995, Shell has both set and met targets to reduce emissions in base businesses. They have increased their target reductions to a further 6 per cent by 2008. Strategies included reductions in energy consumption and improvements in energy efficiency. Challenges presented by new governmental regulations were discussed. Alternate energy sources are being considered as a means of expanding the Shell energy business portfolio. Principles and management plans guiding the emissions reduction strategy were presented, as well as details of the Shell management structure and climate change advisory panel. Figures and statistics of emissions reductions were provided in relation to changes in business activity; energy efficiency; formation gas; energy in declining fields; and fuel mix. An emissions forecast to 2010 was presented with newly adjusted goals. In 2003, overall refinery energy efficiency improved by over 4 per cent. Statistics of refinery energy intensity were presented. Exploration and production businesses achieved a reduction of 6 per cent, with energy intensity per unit of production presented. Oil sands projects achieved a GHG emissions intensity of 69 kilograms per barrel of bitumen. In addition, the voluntary GHG management plan introduced a number of offsets including tree planting programs and the purchase of voluntary GHG credits. The methodology used to calculate GHG emissions was also provided. tabs., figs

  18. Sensitivity analysis of GHG emissions from biofuels in Canada

    International Nuclear Information System (INIS)

    2006-01-01

    This report identified key factors influencing the life-cycle greenhouse gas (GHG) emissions of ethanol and biodiesel production pathways in Canada. The report was prepared for use by policy makers in order to facilitate decision making that positively impacts the lifecycle GHG performance of renewable fuels. Four ethanol production pathways were considered: (1) ethanol production from corn; (2) ethanol production from wheat in conventional starch ethanol facilities; (3) ethanol produced from wheat straw using lignocellulosic technology; and (4) ethanol from sugar cane imported into Canada. For the pathway analysis, ethanols were blended at low levels with sulphur gasoline or used as E85 with low levels of gasoline. All ethanol scenarios were modelled for light duty vehicles. Results of the study demonstrated that all 4 pathways showed significant reductions in GHG emissions when compared to low sulphur gasoline. Differences in vehicle operation emissions between gasoline and ethanol-blended gasoline were related to a combination of the difference in the carbon content per unit of energy and the energy efficiency improvement. The study examined land use changes and feedstock production as well as all other lifecycle processes for diesel, canola, soy, palm, tallow, tallow grease, and yellow grease. A variety of transportation distances were considered. It was concluded that the alternative uses of co-products such as combustion to provide thermal energy resulted in improved GHG results. 17 refs., 117 tabs., 13 figs

  19. Optimizing production with energy and GHG emission constraints in Greece: An input-output analysis

    International Nuclear Information System (INIS)

    Hristu-Varsakelis, D.; Karagianni, S.; Pempetzoglou, M.; Sfetsos, A.

    2010-01-01

    Under its Kyoto and EU obligations, Greece has committed to a greenhouse gas (GHG) emissions increase of at most 25% compared to 1990 levels, to be achieved during the period 2008-2012. Although this restriction was initially regarded as being realistic, information derived from GHG emissions inventories shows that an increase of approximately 28% has already taken place between 1990 and 2005, highlighting the need for immediate action. This paper explores the reallocation of production in Greece, on a sector-by-sector basis, in order to meet overall demand constraints and GHG emissions targets. We pose a constrained optimization problem, taking into account the Greek environmental input-output matrix for 2005, the amount of utilized energy and pollution reduction options. We examine two scenarios, limiting fluctuations in sectoral production to at most 10% and 15%, respectively, compared to baseline (2005) values. Our results indicate that (i) GHG emissions can be reduced significantly with relatively limited effects on GVP growth rates, and that (ii) greater cutbacks in GHG emissions can be achieved as more flexible production scenarios are allowed.

  20. Assessment of GHG emissions of biomethane from energy cereal crops in Umbria, Italy

    International Nuclear Information System (INIS)

    Buratti, C.; Barbanera, M.; Fantozzi, F.

    2013-01-01

    Highlights: • GHG emissions of biomethane from energy crops cultivated in a central Italian farm were investigated. • Electricity consumption of the biogas plant was monitored. • Current scenario does not allow to achieve a GHG saving according to Renewable Energy Directive. • GHG emissions could be reduced by covering the storage tanks of digestate and installing a CHP plant. - Abstract: Biomethane from energy crops is a renewable energy carrier and therefore it potentially contributes to climate change mitigation. However, significant greenhouse gas (GHG) emissions resulting from cultivation and processing must be considered. Among those, the production and use of nitrogen fertilizers, the resulting nitrous oxide (N 2 O) emissions, the methane emissions from digestate storage and the energy consumption of the biogas plant are crucial factors. In the present paper an integrated life cycle assessment (LCA) of GHG emissions from biomethane production is carried out, taking into account own measurements and experience data from a modern biogas plant located in Umbria, Italy. The study is also focused on the electricity consumption of the biogas plant, assessing the specific absorption power of each machinery. The analysis is based on the methodology defined by the European Union Renewable Energy Directive 2009/28/EC (RED). The main result is that the biomethane chain exceeds the minimum value of GHG saving (35%) mainly due to the open storage of digestate. However by varying the system, using heat and electricity from a biogas CHP plant and covering digestate storage tank, a reduction of 68.9% could be obtained

  1. GHG emission mitigation measures and technologies in the Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Tichy, M. [Energy Efficiency Center, Prague (Czech Republic)

    1996-12-31

    The paper presents a short overview of main results in two fields: projection of GHG emission from energy sector in the Czech Republic and assessment of technologies and options for GHG mitigation. The last part presents an overview of measures that were prepared for potential inclusion to the Czech Climate Change Action Plan.

  2. The role of abatement costs in GHG permit allocations : a global reduction scenario with the World-MARKAL model

    International Nuclear Information System (INIS)

    Vaillancourt, K.; Kanudia, A.

    2004-01-01

    The World-MARKAL model was used to examine a permit trading system to stabilize greenhouse gas emissions. The model considered the participation of all countries, including developing countries. Allocation schemes aimed at fair distribution of net abatement costs among world regions were proposed. The net abatement costs for each region are good indicators of where more abatement measures are needed. Equity issues relative to permit allocations and burden sharing were also presented along with the allocation methodology. The gross abatement costs before permit trading were calculated for each region. The main advantages and disadvantages of this approach were listed. It was concluded that permit allocation schemes based on cost distribution make it possible to obtain solutions with equalized net costs per gross domestic product for all regions. 30 refs., 6 tabs., 3 figs

  3. 40 CFR 98.73 - Calculating GHG emissions.

    Science.gov (United States)

    2010-07-01

    ...). MW = Molecular weight of the gaseous feedstock (kg/kg-mole). MVC = Molar volume conversion factor... stream (kg/kg-mole). MVC = Molar volume conversion factor (849.5 scf per kg-mole at standard conditions... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.73 Calculating GHG emissions. You...

  4. Energy consumption and GHG emissions of six biofuel pathways by LCA in China

    Energy Technology Data Exchange (ETDEWEB)

    Ou, Xunmin [School of Public Policy and Management (SPPM), Tsinghua University, Beijing 100084 (China); China Automotive Energy Research Center (CAERC), Tsinghua University, Beijing 100084 (China); Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China); Zhang, Xiliang; Chang, Shiyan; Guo, Qingfang [China Automotive Energy Research Center (CAERC), Tsinghua University, Beijing 100084 (China); Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China)

    2009-11-15

    This paper presents life-cycle-analysis (LCA) energy consumption (EC) and greenhouse gas (GHG) emissions of China's current six biofuel pathways, which are: corn-derived ethanol (CE); cassava-derived ethanol (KE); sweet sorghum-derived ethanol (SE); soybean-derived bio-diesel (SB); jatropha fruit-derived bio-diesel (JB); and used cooking oil (UCO)-derived bio-diesel (UB). The tool utilized here is the WTW (Well-to-Wheels) module of Tsinghua-CA3EM model covering the entire lifecycle including: raw materials cultivation (or feedstock collection); fuel production; transportation and distribution; and application in automobile engines, compared with Conventional Petroleum-based gasoline and diesel Pathways (CPP). The results indicate: (1) the fossil energy inputs are about 1.0-1.5 times the energy contained in the fuel for the CE, SE and SB pathways, but 0.5-0.9 times for the KE, UB and JB pathways; (2) compared with CPP, the JB, KE and UB pathways can reduce both fossil fuel consumption and GHG emissions; the CE and SB pathways can only reduce fossil fuel consumption, but increase GHG emission; the SE pathway increases not only fossil fuel consumption but also GHG emission; and (3) the main factors inducing high EC and GHG emission levels include: high EC levels during the fuel production stage and high fertilizer application rates during the planting of raw feedstocks. Conclusions are that of the aforementioned biofuel pathways in China: (1) only the JB, KE and UB pathways have energy-saving merits as indicated by the LCA energy inputs and outputs; (2) compared with CPP, all but the SE pathway reduces fossil fuel consumption. However, the SB and CE pathway increase GHG emission; (3) all six displace petroleum by utilizing more coal; and (4) feedstock productivity levels must be increased, and there must be a reduction in fertilizer utilization and EC consumption during the cultivation and transportation stages in order to achieve the goals of energy balance and

  5. Energy consumption and GHG emissions of six biofuel pathways by LCA in China

    International Nuclear Information System (INIS)

    Ou Xunmin; Zhang Xiliang; Chang Shiyan; Guo Qingfang

    2009-01-01

    This paper presents life-cycle-analysis (LCA) energy consumption (EC) and greenhouse gas (GHG) emissions of China's current six biofuel pathways, which are: corn-derived ethanol (CE); cassava-derived ethanol (KE); sweet sorghum-derived ethanol (SE); soybean-derived bio-diesel (SB); jatropha fruit-derived bio-diesel (JB); and used cooking oil (UCO)-derived bio-diesel (UB). The tool utilized here is the WTW (Well-to-Wheels) module of Tsinghua-CA3EM model covering the entire lifecycle including: raw materials cultivation (or feedstock collection); fuel production; transportation and distribution; and application in automobile engines, compared with Conventional Petroleum-based gasoline and diesel Pathways (CPP). The results indicate: (1) the fossil energy inputs are about 1.0-1.5 times the energy contained in the fuel for the CE, SE and SB pathways, but 0.5-0.9 times for the KE, UB and JB pathways; (2) compared with CPP, the JB, KE and UB pathways can reduce both fossil fuel consumption and GHG emissions; the CE and SB pathways can only reduce fossil fuel consumption, but increase GHG emission; the SE pathway increases not only fossil fuel consumption but also GHG emission; and (3) the main factors inducing high EC and GHG emission levels include: high EC levels during the fuel production stage and high fertilizer application rates during the planting of raw feedstocks. Conclusions are that of the aforementioned biofuel pathways in China: (1) only the JB, KE and UB pathways have energy-saving merits as indicated by the LCA energy inputs and outputs; (2) compared with CPP, all but the SE pathway reduces fossil fuel consumption. However, the SB and CE pathway increase GHG emission; (3) all six displace petroleum by utilizing more coal; and (4) feedstock productivity levels must be increased, and there must be a reduction in fertilizer utilization and EC consumption during the cultivation and transportation stages in order to achieve the goals of energy balance and GHG

  6. 0-6696 : incorporating greenhouse gas (GHG) emissions in long-range transportation planning : [project summary].

    Science.gov (United States)

    2013-08-01

    Greenhouse gas (GHG) emissions continue to be : an important focus area for state, local, and : federal agencies. The transportation sector is the : second biggest contributor to GHG emissions in : the United States, and Texas contributes the : highe...

  7. Opportunities to integrate solar technologies into the Chilean lithium mining industry - reducing process related GHG emissions of a strategic storage resource

    Science.gov (United States)

    Telsnig, Thomas; Potz, Christian; Haas, Jannik; Eltrop, Ludger; Palma-Behnke, Rodrigo

    2017-06-01

    The arid northern regions of Chile are characterized by an intensive mineral mining industry and high solar irradiance levels. Besides Chile's main mining products, copper, molybdenum and iron, the production of lithium carbonate from lithium containing brines has become strategically important due to the rising demand for battery technologies worldwide. Its energy-intensive production may affect the ecological footprint of the product and the country's climate targets. Thus, the use of solar technologies for electricity and heat production might constitute an interesting option for CO2 mitigation. This study aims to quantify the impacts of the lithium carbonate production processes in Chile on climate change, and to identify site-specific integration options of solar energy technologies to reduce GHG life-cycle emissions. The considered solar integration options include a parabolic trough power plant with a molten salt storage, a solar tower power plant with molten salt receiver and molten salt storage, a one-axis tracking photovoltaic energy system for electricity, and two solar thermal power plants with Ruths storage (steam accumulator) for thermal heat production. CSP plants were identified as measures with the highest GHG mitigation potential reducing the CO2 emissions for the entire production chain and the lithium production between 16% and 33%. In a scenario that combines solar technologies for electricity and thermal energy generation, up to 59% of the CO2 emissions at the lithium production sites in Chile can be avoided. A comparison of the GHG abatement costs of the proposed solar integration options indicates that the photovoltaic system, the solar thermal plant with limited storage and the solar tower power plant are the most cost effective options.

  8. A core framework and scenario for deep GHG reductions at the city scale

    International Nuclear Information System (INIS)

    Lazarus, Michael; Chandler, Chelsea; Erickson, Peter

    2013-01-01

    Trends in increasing urbanization, paired with a lack of ambitious action on larger scales, uniquely position cities to resume leadership roles in climate mitigation. While many cities have adopted ambitious long-term emission reduction goals, few have articulated how to reach them. This paper presents one of the first long-term scenarios of deep greenhouse gas abatement for a major U.S. city. Using a detailed, bottom-up scenario analysis, we investigate how Seattle might achieve its recently stated goal of carbon neutrality by the year 2050. The analysis demonstrates that a series of ambitious strategies could achieve per capita GHG reductions of 34% in 2020, and 91% in 2050 in Seattle's “core” emissions from the buildings, transportation, and waste sectors. We examine the pros and cons of options to get to, or beyond, net zero emissions in these sectors. We also discuss methodological innovations for community-scale emissions accounting frameworks, including a “core” emissions focus that excludes industrial activity and a consumption perspective that expands the emissions footprint and scope of policy solutions. As in Seattle, other communities may find the mitigation strategies and analytical approaches presented here are useful for crafting policies to achieve deep GHG-reduction goals. - Highlights: ► Cities can play a pivotal role in mitigating climate change. ► Strategies modeled achieve per-capita GHG reductions of 91% by 2050 in Seattle. ► We discuss methodological innovations in community-scale accounting frameworks. ► We weigh options for getting to, or beyond, zero GHG emissions. ► Other cities may adapt these measures and analytical approaches to curb emissions

  9. High-tech and climate change : promoting the application of enabling and high-tech solutions to reduce GHG emissions : final report

    International Nuclear Information System (INIS)

    2003-03-01

    This report identifies the greenhouse gas (GHG) reducing potential of the high-tech sector with particular reference to the following 5 key technology convergence groups: biotechnology and bio-products; intelligent systems; information and communications technology; advanced materials; and, nanotechnology. It was noted that Canada's efforts to reduce GHG emissions in the abatement of climate change can drive innovation, stimulate economic growth and attain international leadership in technology solutions. Although Canada's strong economic growth has resulted in the creation of more highly skilled jobs, expansion in innovation and new infrastructure, there is a challenge of preserving the environmental and social quality within communities, and ensuring that productivity within companies does not lapse. In response, the government is shaping policy responses that drive innovation, productivity and prosperity and which help Canadian companies capitalize on emerging global opportunities while minimizing environmental and social impacts. This report includes information on climate change and the Kyoto Protocol, Canada's Climate Change Action Plan and the emerging carbon marketplace. It also describes the role of technology innovation and the opportunity of convergence in spurring innovation. Several actions have been proposed to Industry Canada by different technology sectors to help climate change providers generate innovative solutions, commercialize products and expand market presence. This report includes those initiatives which further promote the convergence, growth and development of different enabling and high-tech sectors to develop climate change solutions; promote the opportunities that are emerging to apply innovative high-tech and enabling technologies to reduce GHG emissions; and help Canada meet its Kyoto commitments. 50 refs., 1 tab., 2 figs

  10. Assessing GHG emissions, ecological footprint, and water linkage for different fuels.

    Science.gov (United States)

    Chavez-Rodriguez, Mauro F; Nebra, Silvia A

    2010-12-15

    Currently, transport is highly dependent on fossil fuels and responsible for about 23% of world energy-related GHG (greenhouse gas) emissions. Ethanol from sugar cane and corn emerges as an alternative for gasoline in order to mitigate GHG emissions. Additionally, deeper offshore drilling projects such as in the Brazilian Pre-Salt reservoirs and mining projects of nonconventional sources like Tar Sands in Canada could be a solution for supplying demand of fossil fuels in the short and midterm. Based on updated literature, this paper presents an assessment of GHG emissions for four different fuels: ethanol from sugar cane and from corn and gasoline from conventional crude oil and from tar sands. An Ecological Footprint analysis is also presented, which shows that ethanol from sugar cane has the lowest GHG emissions and requires the lowest biocapacity per unit of energy produced among these fuels. Finally, an analysis using the Embodied Water concept is made with the introduction of a new concept, the "CO(2)-Water", to illustrate the impacts of releasing carbon from underground to atmosphere and of the water needed to sequestrate it over the life cycle of the assessed fuels. Using this method resulted that gasoline from fossil fuels would indirectly "require" on average as much water as ethanol from sugar cane per unit of fuel energy produced.

  11. CO2 emissions abatement and geologic sequestration - industrial innovations and stakes - status of researches in progress

    International Nuclear Information System (INIS)

    2005-01-01

    This colloquium was jointly organized by the French institute of petroleum (IFP), the French agency of environmental and energy mastery (Ademe) and the geological and mining research office (BRGM). This press kit makes a status of the advances made in CO 2 emissions abatement and geological sequestration: technological advances of CO 2 capture and sequestration, geological reservoir dimensioning with respect to the problem scale, duration of such an interim solution, CO 2 emissions abatement potentialities of geological sequestration, regulatory, economical and financial implications, international stakes of greenhouse gas emissions. This press kit comprises a press release about the IFP-Ademe-BRGM colloquium, a slide presentation about CO 2 abatement and sequestration, and four papers: a joint IFP-Ademe-BRGM press conference, IFP's answers to CO 2 emissions abatement, Ademe's actions in CO 2 abatement and sequestration, and BRGM's experience in CO 2 sequestration and climatic change expertise. (J.S.)

  12. Managing Risk Aversion for Low-Carbon Supply Chains with Emission Abatement Outsourcing

    Science.gov (United States)

    Wang, Qinpeng; He, Longfei

    2018-01-01

    Reducing carbon emissions, including emission abatement outsourcing at the supply-chain level, is becoming a significant but challenging problem in practice. Confronting this challenge, we therefore break down the practice to focus on a low-carbon supply chain consisting of one supplier, one manufacturer and one third-party emission-reducing contractor. The contractor offers a carbon reduction service to the manufacturer. In view of the increasing proportion of Greenhouse Gases (GHG) emissions and absence of carbon reduction policies in developing countries, we adopt the prospect of consumers’ low-carbon preferences to capture the demand sensitivity on carbon emission. By exploiting the Mean-Variance (MV) model, we develop a supply chain game model considering risk aversion. Comparing the supply chain performances of the cases under risk neutrality and risk aversion, we investigate the impact of the risk aversion of the supplier and the manufacturer on the low-carbon supply chain performances, respectively. We show that the risk aversion of chain members will not influence the relationship underlain by the profit-sharing contract between the manufacturer and contractor, whereas they may extend the supplier’s concerning range. Although the manufacturer’s risk aversion has a positive impact on the wholesale price, interestingly, the supplier’s impact on the wholesale price is negative. Furthermore, we propose a contract to coordinate the risk-averse low-carbon supply chain by tuning the aversion levels of the supplier and the manufacturer, respectively. Through numerical study, we draw on managerial insights for industrial practitioners to adopt a low carbon strategy potentially by managing the risk attitudes along the supply chain channel. PMID:29466281

  13. Managing Risk Aversion for Low-Carbon Supply Chains with Emission Abatement Outsourcing

    Directory of Open Access Journals (Sweden)

    Qinpeng Wang

    2018-02-01

    Full Text Available Reducing carbon emissions, including emission abatement outsourcing at the supply-chain level, is becoming a significant but challenging problem in practice. Confronting this challenge, we therefore break down the practice to focus on a low-carbon supply chain consisting of one supplier, one manufacturer and one third-party emission-reducing contractor. The contractor offers a carbon reduction service to the manufacturer. In view of the increasing proportion of Greenhouse Gases (GHG emissions and absence of carbon reduction policies in developing countries, we adopt the prospect of consumers’ low-carbon preferences to capture the demand sensitivity on carbon emission. By exploiting the Mean-Variance (MV model, we develop a supply chain game model considering risk aversion. Comparing the supply chain performances of the cases under risk neutrality and risk aversion, we investigate the impact of the risk aversion of the supplier and the manufacturer on the low-carbon supply chain performances, respectively. We show that the risk aversion of chain members will not influence the relationship underlain by the profit-sharing contract between the manufacturer and contractor, whereas they may extend the supplier’s concerning range. Although the manufacturer’s risk aversion has a positive impact on the wholesale price, interestingly, the supplier’s impact on the wholesale price is negative. Furthermore, we propose a contract to coordinate the risk-averse low-carbon supply chain by tuning the aversion levels of the supplier and the manufacturer, respectively. Through numerical study, we draw on managerial insights for industrial practitioners to adopt a low carbon strategy potentially by managing the risk attitudes along the supply chain channel.

  14. A Pedagogical Note on Modeling the Economic Benefit of Emissions Abatement vs. the Economic Harm from Emissions

    OpenAIRE

    Christopher S. Decker

    2012-01-01

    The number of undergraduate-level textbooks on environmental economics has increased in recent years, but the textbook treatment of optimal emissions (abatement) varies markedly from textbook to textbook. In particular, there is no consensus as to whether to model the economic “bad” (i.e. emissions) or the economic “good” (abatement). This inconsistency can lead to some needless confusion for students introduced to environmental economics for the first time, particularly those students outsid...

  15. 40 CFR 98.173 - Calculating GHG emissions.

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Iron and Steel Production § 98.173 Calculating GHG emissions... for the process as specified in paragraphs (b)(1)(i) through (b)(1)(vii) of this section. The... the gaseous fuel (kg/kg-mole). MVC = Molar volume conversion factor (849.5 scf per kg-mole at standard...

  16. 40 CFR 98.163 - Calculating GHG emissions.

    Science.gov (United States)

    2010-07-01

    ... = Molecular weight of the gaseous fuel and feedstock (kg/kg-mole). MVC = Molar volume conversion factor (849.5... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Hydrogen Production § 98.163 Calculating GHG emissions. You... = Volume of the gaseous fuel and feedstock used in month n (scf (at standard conditions of 68 °F and...

  17. Programs and measures to reduce GHG emissions in agriculture and waste treatment in Slovakia

    Energy Technology Data Exchange (ETDEWEB)

    Mareckova, K.; Bratislava, S.; Kucirek, S.

    1996-12-31

    Slovakia is a UN FCCC Annex I country and is obliged to limit its anthropogenic GHG emissions in the year 2000 to 1990 level. The key greenhouse gas in Slovakia is CO{sub 2} resulting mainly from fuel combustion processes. However the share of CH{sub 4} and N{sub 2}O is approximately 20% of the total emissions on GWP basis. These gases are occurring mainly in non-energy sectors. The construction of the non-CO{sub 2} emission scenarios to reduce GHG and the uncertainty in N{sub 2}O and CH{sub 4} emission estimation are discussed focusing on agriculture and waste treatment. The presentation will also include information on emission trends of CH{sub 4} and N{sub 2}O since 1988. There are already implemented measures reducing GHG emissions in Slovakia, however, not motivated by global warming. A short view of implemented measures with an assessment of their benefit concerning non-CO{sub 2} GHG emissions reduction and some proposed mitigation options for agriculture and waste treatment are shown. Expected difficulties connected with preparing scenarios and with implementation of reducing measures are discussed.

  18. ON THE STUDY OF GHG (GREENHOUSE GAS EMISSIONS IN RICE PRODUCTION SYSTEMS IN DARGAZ, IRAN

    Directory of Open Access Journals (Sweden)

    Ghorbanali RASSAM

    2015-12-01

    Full Text Available The most important issue which has attracted the attention of many scientists is the climate change and global warming due to greenhouse gas emission which has caused the world faced with a great human and environmental disaster. In this study, the amount of greenhouse gas (GHG emissions was estimated in the semi-traditional and semi-mechanized rice production systems in Dargaz region, Iran. All the agricultural and consuming inputs procedures responsible for greenhouse gas emissions were collected and recorded in both systems. The amount of GHG emission in semi-traditional and semi-mechanized was 813.17 and 968.31 kg CO2-eq ha-1, respectively. The fuel consumption with the share of 38.22% in semi-traditional method and 43.32% in semi-mechanized system had the largest share in GHG emission and using Nitrogen fertilizer on farms with the share of 31.97% in semi-traditional method and 26.91% in semi-mechanized system is in the second place of GHG emission. The semi-traditional system had greater GHG emissions in the unit of tone of harvested grain and unit of energy output. The use of alternative methods such as conservation tillage and organic fertilizers can be effective in improving the environmental status of the production area.

  19. A national inventory of greenhouse gas (GHG), criteria air contaminants (CAC) and hydrogen sulphide (H2S) emissions by the upstream oil and gas industry : volume 1, overview of the GHG emissions inventory : technical report

    International Nuclear Information System (INIS)

    2004-09-01

    A detailed inventory of greenhouse gas (GHG) emissions from the upstream oil and gas sector in Canada was presented along with explanations of the methodologies and data sources used. This report is based on previous work done on methane and volatile organic compound emissions from the upstream oil and gas sector for the period of 1990 to 1995, but it includes key improvements in identifying primary types of emissions sources such as emissions from fuel combustion, flaring, venting, fugitive equipment leaks and accidental releases. It also includes criteria air contaminants and hydrogen sulfide emissions, an analysis of GHG emission intensities and a change in the definition of volatile organic compounds from comprising all non-methane hydrocarbons to comprising all non-methane and non-ethane hydrocarbons. The report covers portions of the upstream oil and gas industry in Canada plus the natural gas transmission and natural gas distribution industries with reference to well drilling, oil production, and natural gas production, processing, transmission and distribution. Accidents and equipment failures are also included. The report reveals the total GHG emissions by source type, sub-sector, facility type and sub-type for the year 2000 at the national level. In 2000, the total carbon dioxide equivalent GHG emissions from the entire oil and gas sector were 101,211 kilo tonnes. For the upstream oil and gas sector alone, total GHG emissions were 84,355 kilo tonnes, representing 12 per cent of Canada's total national emissions of GHGs in 2000. This is an increase of about 25 per cent from 1995 levels. The biggest primary source of these emissions is fuel combustion, which accounts for 40.8 per cent of the total. This report also includes a provincial breakdown of GHG emissions for the natural gas transmission, storage and distribution sub-sectors in Canada for the year 2000. refs., tabs., figs

  20. Regional disparity of urban passenger transport associated GHG (greenhouse gas) emissions in China: A review

    International Nuclear Information System (INIS)

    Hao, Han; Geng, Yong; Wang, Hewu; Ouyang, Minggao

    2014-01-01

    With China’s urbanization and motorization, greenhouse gas (GHG) emissions from urban passenger transport increased rapidly over recent years. As we estimated, China’s urban passenger transport associated motorized travel, energy consumption and lifecycle GHG emissions reached 2815 billion passenger kilometers (pkm), 77 million tons of oil equivalent (toe) and 335 million ton CO 2 equivalent in 2010, over half of which were located in eastern provinces. Over national level, GHG emissions by private passenger vehicles, business passenger vehicles, taxis, motorcycles, E-bikes, transit buses and urban rails accounted for 57.7%, 13.0%, 7.7%, 8.6%, 1.8%, 10.5% and 0.7% of the total. Significant regional disparity was observed. The province-level per capita GHG emissions ranged from 285 kg/capita in Guizhou to 1273 kg/capita in Beijing, with national average of 486 kg/capita. Depending on province context and local policy orientation, the motorization pathways of China’s several highest motorized provinces are quite diverse. We concluded that motorization rate and transport structure were the substantial factors determining urban passenger transport associated GHG emissions. Considering the great potential of urban passenger transport growth in China, policies guiding the optimization of transport structure should be in place with priority in eastern provinces. - Highlights: • Province-leveled motorized travel, energy consumption and GHG emissions in China were studied. • Significant regional disparities on urban passenger transport were observed. • Region-specific sustainable transport energy policies were discussed

  1. Fuel conservation and GHG (Greenhouse gas) emissions mitigation scenarios for China’s passenger vehicle fleet

    International Nuclear Information System (INIS)

    Hao, Han; Wang, Hewu; Ouyang, Minggao

    2011-01-01

    Passenger vehicles are the main consumers of gasoline in China. We established a bottom-up model which focuses on the simulation of energy consumptions and greenhouse gas (GHG) emissions growth by China’s passenger vehicle fleet. The fuel conservation and GHG emissions mitigation effects of five measures including constraining vehicle registration, reducing vehicle travel, strengthening fuel consumption rate (FCR) limits, vehicle downsizing and promoting electric vehicle (EV) penetration were evaluated. Based on the combination of these measures, the fuel conservation and GHG emissions mitigation scenarios for China’s passenger vehicle fleet were analyzed. Under reference scenario with no measures implemented, the fuel consumptions and life cycle GHG emissions will reach 520 million tons of oil equivalent (Mtoe) and 2.15 billion tons in 2050, about 8.1 times the level in 2010. However, substantial fuel conservation can be achieved by implementing the measures. By implementing all five measures together, the fuel consumption will reach 138 Mtoe in 2030 and decrease to 126 Mtoe in 2050, which is only 37.1% and 24.3% of the consumption under reference scenario. Similar potential lies in GHG mitigation. The results and scenarios provided references for the Chinese government’s policy-making. -- Highlights: ► We established a bottom-up model to simulate the fuel consumptions and GHG (Greenhouse gas) emissions growth by China’s passenger vehicle fleet. ► Five measures including constraining vehicle registration, reducing vehicle travel, improving fuel efficiency, vehicle downsizing and promoting EV penetration were evaluated. ► The fuel conservation and GHG emissions mitigation scenarios for China’s passenger vehicle fleet were provided as references for policy-making.

  2. Lifecycle GHG emissions of palm biodiesel: Unintended market effects negate direct benefits of the Malaysian Economic Transformation Plan (ETP)

    International Nuclear Information System (INIS)

    Abdul-Manan, Amir F.N.

    2017-01-01

    Biodiesel expansion can lead to unintended effects that offset the direct GHG benefits of biofuels. Two documented unintended effects are the indirect land use change (ILUC) and indirect energy use change (IEUC). ILUC has been included in many lifecycle GHG studies of biofuels, but IEUC has remained relatively elusive. This paper presents an updated assessment of the lifecycle GHG emissions of palm biodiesel from Malaysia and, for the first time, incorporating the two estimated indirect effects simultaneously. Future GHG emissions of palm biodiesel are projected by taking into account of Malaysia's Economic Transformation Programme (ETP) that aims to reform the oil palm industry in order to achieve a high-income nation. Uncertainties associated with lifecycle GHG models were dealt with using Monte Carlo simulation in order to identify the breadth and likelihood of GHG reductions relative to petroleum-based fuels in the context of the European directives. This study has shown that the ETP, if successfully implemented, can significantly improve the direct GHG emissions of palm biodiesel, but the benefits are offset by the rise in global emissions due to ILUC and IEUC. Biofuel policies should also include IEUC, in addition to ILUC, to avoid GHG emissions leakages. - Highlights: • Estimate current and future lifecycle GHG emissions of Malaysian palm biodiesel. • Evaluate the GHG effects of Malaysia's Economic Transformation Plan (ETP). • Direct GHG benefits of biodiesel offset by indirect market effects. • Palm biodiesel unlikely to enable global GHG emissions reductions. • Global biofuel policy must account for indirect effects.

  3. Ammonia emissions from livestock industries in Canada: Feasibility of abatement strategies

    International Nuclear Information System (INIS)

    Carew, Richard

    2010-01-01

    An updated national ammonia (NH 3 ) emissions inventory was employed to study the relationship between NH 3 emissions and livestock industries in Canada. Emissions from animal agriculture accounted for 322 kilotonnes (kt) or 64% of Canadian NH 3 emissions in 2002. Cattle and swine accounted for the bulk of livestock emissions. The provinces of Alberta, Ontario, Quebec, and Saskatchewan accounted for 28.1%, 22.0%, 18.7%, and 13.1% of total livestock emissions, respectively. Emissions from Ontario and Quebec were attributed to the intensive production of dairy, hogs and poultry. Dairy cattle emissions per hectolitre of milk were higher in Ontario and Quebec than in other provinces, while swine emissions per livestock unit were higher than either beef or dairy cattle. A review of the abatement literature indicated diet manipulation to improve N efficiency and land spreading methods are very effective techniques to lower NH 3 emissions. Future research is required to evaluate the feasibility of biofilters and feces/urine separation methods. - Livestock NH 3 emissions are higher in areas characterized by intensive livestock production with diet manipulation and land spreading offering the greatest potential for NH 3 abatement options.

  4. Socio-technological impact analysis using an energy IO approach to GHG emissions issues in South Korea

    International Nuclear Information System (INIS)

    Chung, Whan-Sam; Tohno, Susumu; Choi, Ki-Hong

    2011-01-01

    Highlights: → Using the Sato-Vartia index for the three periods of 1985-1995, 1995-2000, and 2000-2005, the changes in three factors affecting GHG emissions in South Korea were analyzed. → A total emission matrix including both direct and indirect GHG emissions showed plain shape; however, ripple effects were observed in some sectors. → This process is useful in measuring national energy policies. → Several limitations of the Divisia decomposition analysis were pointed out. -- Abstract: Through energy input-output (E-IO) analyses from 1985 to 2005, the changes in three factors affecting GHG emissions in South Korea were analyzed. Based on the E-IO results, the changes in the direct and total (embodied) GHG emissions from the pertinent sectors were decomposed into three factors-the energy consumption effect, the social effect, and the technological effect-using the Sato-Vartia index for the three periods of 1985-1995, 1995-2000, and 2000-2005. The decomposition analysis demonstrated that a total emission matrix including both direct and indirect GHG emissions showed an evolution pattern that was very similar to the changes in direct GHG emissions; however, ripple effects were observed in the case of emissions from sector number -59 (Synthetic resins, synthetic rubber-p). The results showed that national energy policies such as those pertaining to the diversification of energy sources, shifts in the energy consumption structure (social effect), and the transformation to a low-carbon energy economy (technology effect) were effective. Finally, several limitations of the Divisia decomposition analysis were pointed out.

  5. GHG emission factors developed for the recycling and composting of municipal waste in South African municipalities

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Elena, E-mail: Friedriche@ukzn.ac.za; Trois, Cristina

    2013-11-15

    Highlights: • GHG emission factors for local recycling of municipal waste are presented. • GHG emission factors for two composting technologies for garden waste are included. • Local GHG emission factors were compared to international ones and discussed. • Uncertainties and limitations are presented and areas for new research highlighted. - Abstract: GHG (greenhouse gas) emission factors for waste management are increasingly used, but such factors are very scarce for developing countries. This paper shows how such factors have been developed for the recycling of glass, metals (Al and Fe), plastics and paper from municipal solid waste, as well as for the composting of garden refuse in South Africa. The emission factors developed for the different recyclables in the country show savings varying from −290 kg CO{sub 2} e (glass) to −19 111 kg CO{sub 2} e (metals – Al) per tonne of recyclable. They also show that there is variability, with energy intensive materials like metals having higher GHG savings in South Africa as compared to other countries. This underlines the interrelation of the waste management system of a country/region with other systems, in particular with energy generation, which in South Africa, is heavily reliant on coal. This study also shows that composting of garden waste is a net GHG emitter, releasing 172 and 186 kg CO{sub 2} e per tonne of wet garden waste for aerated dome composting and turned windrow composting, respectively. The paper concludes that these emission factors are facilitating GHG emissions modelling for waste management in South Africa and enabling local municipalities to identify best practice in this regard.

  6. GHG emission factors developed for the recycling and composting of municipal waste in South African municipalities

    International Nuclear Information System (INIS)

    Friedrich, Elena; Trois, Cristina

    2013-01-01

    Highlights: • GHG emission factors for local recycling of municipal waste are presented. • GHG emission factors for two composting technologies for garden waste are included. • Local GHG emission factors were compared to international ones and discussed. • Uncertainties and limitations are presented and areas for new research highlighted. - Abstract: GHG (greenhouse gas) emission factors for waste management are increasingly used, but such factors are very scarce for developing countries. This paper shows how such factors have been developed for the recycling of glass, metals (Al and Fe), plastics and paper from municipal solid waste, as well as for the composting of garden refuse in South Africa. The emission factors developed for the different recyclables in the country show savings varying from −290 kg CO 2 e (glass) to −19 111 kg CO 2 e (metals – Al) per tonne of recyclable. They also show that there is variability, with energy intensive materials like metals having higher GHG savings in South Africa as compared to other countries. This underlines the interrelation of the waste management system of a country/region with other systems, in particular with energy generation, which in South Africa, is heavily reliant on coal. This study also shows that composting of garden waste is a net GHG emitter, releasing 172 and 186 kg CO 2 e per tonne of wet garden waste for aerated dome composting and turned windrow composting, respectively. The paper concludes that these emission factors are facilitating GHG emissions modelling for waste management in South Africa and enabling local municipalities to identify best practice in this regard

  7. Vehicle lightweighting vs. electrification: Life cycle energy and GHG emissions results for diverse powertrain vehicles

    International Nuclear Information System (INIS)

    Lewis, Anne Marie; Kelly, Jarod C.; Keoleian, Gregory A.

    2014-01-01

    Highlights: • We modeled life cycle energy and greenhouse gas (GHG) emissions from diverse powertrain vehicles. • Lightweight versions of the vehicle models were compared against baseline models. • Maximum energy and GHG emissions occur with aluminum vs. advanced high strength steel. • Design harmonization method shows 0.2–0.3 kg of support required per 1 kg powertrain mass increase. - Abstract: This work assesses the potential of electrified vehicles and mass reduction to reduce life cycle energy and greenhouse gas (GHG) emissions. Life cycle assessment (LCA) is used to account for processes upstream and downstream of the vehicle operation, thereby incorporating regional variation of energy and GHG emissions due to electricity production and distinct energy and GHG emissions due to conventional and lightweight materials. Design harmonization methods developed in previous work are applied to create baseline and lightweight vehicle models of an internal combustion vehicle (ICV), hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV). Thus, each vehicle is designed to be functionally equivalent and incorporate the structural support required for heavier powertrains. Lightweight vehicles are designed using body-in-white (BIW) mass reduction scenarios with aluminum and advanced/high strength steel (A/HSS). For the mass reduction scenarios considered in this work, results indicate that the greatest life cycle energy and GHG emissions reductions occur when steel is replaced by aluminum. However, since A/HSS requires less energy to produce as compared to aluminum, the energy and GHG reductions per unit mass removed is greatest for A/HSS. Results of the design harmonization modeling method show that 0.2–0.3 kg of structural support is required per unit increase in powertrain mass, thus extending previous methods

  8. Estimating GHG emission mitigation supply curves of large-scale biomass use on a country level

    International Nuclear Information System (INIS)

    Dornburg, Veronika; Dam, Jinke van; Faaij, Andre

    2007-01-01

    This study evaluates the possible influences of a large-scale introduction of biomass material and energy systems and their market volumes on land, material and energy market prices and their feedback to greenhouse gas (GHG) emission mitigation costs. GHG emission mitigation supply curves for large-scale biomass use were compiled using a methodology that combines a bottom-up analysis of biomass applications, biomass cost supply curves and market prices of land, biomaterials and bioenergy carriers. These market prices depend on the scale of biomass use and the market volume of materials and energy carriers and were estimated using own-price elasticities of demand. The methodology was demonstrated for a case study of Poland in the year 2015 applying different scenarios on economic development and trade in Europe. For the key technologies considered, i.e. medium density fibreboard, poly lactic acid, electricity and methanol production, GHG emission mitigation costs increase strongly with the scale of biomass production. Large-scale introduction of biomass use decreases the GHG emission reduction potential at costs below 50 Euro /Mg CO 2eq with about 13-70% depending on the scenario. Biomaterial production accounts for only a small part of this GHG emission reduction potential due to relatively small material markets and the subsequent strong decrease of biomaterial market prices at large scale of production. GHG emission mitigation costs depend strongly on biomass supply curves, own-price elasticity of land and market volumes of bioenergy carriers. The analysis shows that these influences should be taken into account for developing biomass implementations strategies

  9. Cost effectiveness of GHG mitigation options and policy implication

    Energy Technology Data Exchange (ETDEWEB)

    Lim, K. S. [Korea Institute for Industrial Economics and Trade, Seoul (Korea, Republic of)

    1998-04-01

    This paper represents the summary findings and conclusions of several studies implemented about microeconomics and macroeconomics marginal costs of GHG abatement policies. Financial, economic, and, where possible, environmental microeconomics costs of reducing GHGs are estimated by a World Bank team. Six energy-related CO{sub 2} mitigation policy options are applied to estimate the macroeconomics costs of GHG emission reduction, the macroeconomics impacts on the Chinese economy. In terms of policy, conservation is a better option to cope with a restrictive mitigation constraint, assuming a developing country can achieve planned energy-saving targets. Without a CO{sub 2} emission constraint or with less restrictive CO{sub 2} emission constraints, however, the simulation results indicate that a conservation strategy may be less attractive than fuel substitution in a developing country, mainly due to the economic dampening effect of reduced production in the energy sectors. This finding suggests that an often-cited costless or negative-cost energy conservation policy may not be a better option when a less restrictive mitigation target is in force. This does not mean that the potential for energy efficiency improvements in a developing country is not worthwhile, but that the overall macroeconomics impacts should be considered before implementing the policy option. (author). 9 refs., 3 figs., 3 tabs.

  10. Crowd-Sourcing Management Activity Data to Drive GHG Emission Inventories in the Land Use Sector

    Science.gov (United States)

    Paustian, K.; Herrick, J.

    2015-12-01

    Greenhouse gas (GHG) emissions from the land use sector constitute the largest source category for many countries in Africa. Enhancing C sequestration and reducing GHG emissions on managed lands in Africa has to potential to attract C financing to support adoption of more sustainable land management practices that, in addition to GHG mitigation, can provide co-benefits of more productive and climate-resilient agroecosystems. However, robust systems to measure and monitor C sequestration/GHG reductions are currently a significant barrier to attracting more C financing to land use-related mitigation efforts.Anthropogenic GHG emissions are driven by a variety of environmental factors, including climate and soil attributes, as well as human-activities in the form of land use and management practices. GHG emission inventories typically use empirical or process-based models of emission rates that are driven by environmental and management variables. While a lack of field-based flux and C stock measurements are a limiting factor for GHG estimation, we argue that an even greater limitation may be availabiity of data on the management activities that influence flux rates, particularly in developing countries in Africa. In most developed countries there is a well-developed infrastructure of agricultural statistics and practice surveys that can be used to drive model-based GHG emission estimations. However, this infrastructure is largely lacking in developing countries in Africa. While some activity data (e.g. land cover change) can be derived from remote sensing, many key data (e.g., N fertilizer practices, residue management, manuring) require input from the farmers themselves. The explosive growth in cellular technology, even in many of the poorest parts of Africa, suggests the potential for a new crowd-sourcing approach and direct engagement with farmers to 'leap-frog' the land resource information model of developed countries. Among the many benefits of this approach

  11. Adoption of Emissions Abating Technologies by U.S. Electricity Producing Firms Under the SO2 Emission Allowance Market

    Science.gov (United States)

    Creamer, Gregorio Bernardo

    The objective of this research is to determine the adaptation strategies that coal-based, electricity producing firms in the United States utilize to comply with the emission control regulations imposed by the SO2 Emissions Allowance Market created by the Clean Air Act Amendment of 1990, and the effect of market conditions on the decision making process. In particular, I take into consideration (1) the existence of carbon contracts for the provision of coal that may a affect coal prices at the plant level, and (2) local and geographical conditions, as well as political arrangements that may encourage firms to adopt strategies that appear socially less efficient. As the electricity producing sector is a regulated sector, firms do not necessarily behave in a way that maximizes the welfare of society when reacting to environmental regulations. In other words, profit maximization actions taken by the firm do not necessarily translate into utility maximization for society. Therefore, the environmental regulator has to direct firms into adopting strategies that are socially efficient, i.e., that maximize utility. The SO 2 permit market is an instrument that allows each firm to reduce marginal emissions abatement costs according to their own production conditions and abatement costs. Companies will be driven to opt for a cost-minimizing emissions abatement strategy or a combination of abatement strategies when adapting to new environmental regulations or markets. Firms may adopt one or more of the following strategies to reduce abatement costs while meeting the emission constraints imposed by the SO2 Emissions Allowance Market: (1) continue with business as usual on the production site while buying SO2 permits to comply with environmental regulations, (2) switch to higher quality, lower sulfur coal inputs that will generate less SO2 emissions, or (3) adopting new emissions abating technologies. A utility optimization condition is that the marginal value of each input

  12. Modeling of energy consumption and related GHG (greenhouse gas) intensity and emissions in Europe using general regression neural networks

    International Nuclear Information System (INIS)

    Antanasijević, Davor; Pocajt, Viktor; Ristić, Mirjana; Perić-Grujić, Aleksandra

    2015-01-01

    This paper presents a new approach for the estimation of energy-related GHG (greenhouse gas) emissions at the national level that combines the simplicity of the concept of GHG intensity and the generalization capabilities of ANNs (artificial neural networks). The main objectives of this work includes the determination of the accuracy of a GRNN (general regression neural network) model applied for the prediction of EC (energy consumption) and GHG intensity of energy consumption, utilizing general country statistics as inputs, as well as analysis of the accuracy of energy-related GHG emissions obtained by multiplying the two aforementioned outputs. The models were developed using historical data from the period 2004–2012, for a set of 26 European countries (EU Members). The obtained results demonstrate that the GRNN GHG intensity model provides a more accurate prediction, with the MAPE (mean absolute percentage error) of 4.5%, than tested MLR (multiple linear regression) and second-order and third-order non-linear MPR (multiple polynomial regression) models. Also, the GRNN EC model has high accuracy (MAPE = 3.6%), and therefore both GRNN models and the proposed approach can be considered as suitable for the calculation of GHG emissions. The energy-related predicted GHG emissions were very similar to the actual GHG emissions of EU Members (MAPE = 6.4%). - Highlights: • ANN modeling of GHG intensity of energy consumption is presented. • ANN modeling of energy consumption at the national level is presented. • GHG intensity concept was used for the estimation of energy-related GHG emissions. • The ANN models provide better results in comparison with conventional models. • Forecast of GHG emissions for 26 countries was made successfully with MAPE of 6.4%

  13. Fleet view of electrified transportation reveals smaller potential to reduce GHG emissions

    International Nuclear Information System (INIS)

    Meinrenken, Christoph J.; Lackner, Klaus S.

    2015-01-01

    Highlights: • Novel framework compares GHG of plugins vs. hybrids for any vehicle type/performance. • Fleet GHG can be compared without forecasting market penetrations of vehicle sizes. • GHG/km for pure electrics must account for limited range using novel, modified Utility Factor. • Applied to the US, this points to smaller GHG reduction at fleet level than traditional fleet analyses. - Abstract: Plugin and hybrid vehicles have been shown to offer possible reductions in greenhouse gas (GHG) emissions, depending on grid-carbon-intensity, range and thus life-cycle battery emissions and vehicle weight, and on trip patterns. We present a framework that enables GHG comparisons (well-to-wheel plus storage manufacturing) for three drivetrains (pure-electric, gasoline-hybrid, and plugin-hybrid), both for individual vehicles and for fleets. The framework captures effects of grid- versus vehicle-based electricity generation, grid transmission and charging losses, and manufacturing and carrying batteries. In contrast to previous work, GHG comparisons can be obtained for heterogeneous fleets of varying vehicle sizes (cars, vans, buses, trucks) and performances, without requiring forecasting of such vehicle specs and their respective market penetrations. Further, we show how a novel adaptation of the Utility Factor concept from plug-in-hybrids to mixed fleets of battery-only and gasoline-hybrids is crucial to quantifying battery-only-vehicles’ impact on fleet-wide GHG. To account for regional variations and possible future technology improvements, we show scenarios over a wide spectrum of grid-carbon-intensities (50–1200 g CO 2 e/kW h at wall), vehicle range (∼5–500 km), battery energy densities, and battery life-cycle GHG. Model uncertainties are quantified via sensitivity tests. Applying the framework to trip patterns of US passenger transportation, we find that owing to the interplay of GHG/km, battery size, all-electric range, and trip patterns, GHG

  14. Examination of the optimal operation of building scale combined heat and power systems under disparate climate and GHG emissions rates

    International Nuclear Information System (INIS)

    Howard, B.; Modi, V.

    2017-01-01

    Highlights: • CHP attributable reductions, not viable by electric generation alone, are defined. • Simplified operating strategy heuristics are optimal under specific circumstances. • Phosphoric acid fuel cells yield the largest reductions except in the extremes. • Changes in baseline emissions affect the optimal system capacity and operating hours. - Abstract: This work aims to elucidate notions concerning the ideal operation and greenhouse gas (GHG) emissions benefits of combined heat and power (CHP) systems by investigating how various metrics change as a function of the GHG emissions from the underlying electricity source, building use type and climate. Additionally, a new term entitled “CHP Attributable” reductions is introduced to quantify the benefits from the simultaneous use of thermal and electric energy, removing benefits achieved solely from fuel switching and generating electricity more efficiently. The GHG emission benefits from implementing internal combustion engine, microturbines, and phosphoric acid (PA) fuel cell based CHP systems were evaluated through an optimization approach considering energy demands of prototypical hospital, office, and residential buildings in varied climates. To explore the effect of electric GHG emissions rates, the ideal operation of the CHP systems was evaluated under three scenarios: “High” GHG emissions rates, “Low” GHG emissions rates, and “Current” GHG emissions rate for a specific location. The analysis finds that PA fuel cells achieve the highest GHG emission reductions in most cases considered, though there are exceptions. Common heuristics, such as electric load following and thermal load following, are the optimal operating strategy under specific conditions. The optimal CHP capacity and operating hours both vary as a function of building type, climate and GHG emissions rates from grid electricity. GHG emissions reductions can be as high as 49% considering a PA fuel cell for a

  15. Reducing GHG emissions in agricultural production process for production of biofuels by growing legumes and production-technical measures

    International Nuclear Information System (INIS)

    Gurgel, Andreas; Schiemenz, Katja

    2017-01-01

    The reduction of greenhouse gases (GHG) emissions in the supply chain for biofuels is a big challenge especially for the German and European cultivation of energy crops. The production of nitrogen fertilizers and field emissions are the main factors of GHG emissions. The amount of field emissions depends very strongly on the nitrogen effort and the intensity of tillage. The main objective is to reduce GHG emissions in field cropping systems within the biofuel production chains. An inclusion of legumes into crop rotations is particularly important because their cultivation does not require nitrogen fertilizer. Data base for the project is a complex field experiment with the biofuel crops winter rape and winter wheat. Previous crops are winter wheat, peas and lupins. ln each case tilling systems are compared with non-tilling. The first results of the field experiments are nitrogen functions depending on previous crops, sites and tilling system. Calculation models for GHG reduction models were developed on the bases of these results. By growing legumes as previous crops before wheat and rape it is possible to reduce GHG emissions from 2 to 10 g CO_2_e_q per MJ. The best reduction of GHG emissions is possible by combining legumes as previous crops with a reduced nitrogen effort.

  16. Cradle to grave GHG emissions analysis of shale gas hydraulic fracking in Western Australia

    Directory of Open Access Journals (Sweden)

    Bista Sangita

    2017-01-01

    Full Text Available Western Australia has globally significant onshore gas resources, with over 280 trillion cubic feet of economically recoverable gas located in five shale basins. The Western Australian Government and gas industry have promoted the development of these resources as a “clean energy source” that would “help to reduce global carbon emissions” and provide a “transition fuel” to a low carbon economy. This research examines those claims by reviewing existing literature and published data to estimate the life cycle greenhouse gas (GHG pollution that would result from the development of Western Australia’s onshore gas basins using hydraulic fracking. Estimates of carbon pollution from each stage in gas development, processing, transport and end-use are considered in order to establish total life-cycle emissions in tonnes of carbon-dioxide equivalent (CO2e. The emissions estimates draw from published research on emissions from shale gas development in other jurisdictions as well as industry or government reported emissions from current technology for gas processing and end-use as applicable. The current policy and regulatory environment for carbon pollution and likely resulting GHG mitigation measures has also been considered, as well as the potential for the gas to displace or substitute for other energy sources. In areas where there is uncertainty, conservative emissions estimates have been used. Modelling of GHG emissions has been undertaken for two comparison resource development and utilisation scenarios; Australian domestic and 100% export i.e. no domestic use. Each scenario corresponds to a different proportionate allocation of emissions accounted for domestic emissions in Australia and emissions accounted for in other jurisdictions. Emissions estimates for the two scenarios are 245–502 MTCO2e/year respectively over a resource development timeframe of 20 years. This is roughly the same as Australia’s total GHG emissions in 2014

  17. End-user GHG emissions from energy. Reallocation of emissions from energy industries to end users 2005-2009

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, R. (European Environment Agency (EEA), Copenhagen (Denmark)); Watterson, J. (AEA Technology plc - EEA' s European Topic Centre on Air Pollution and Climate Change Mitigation (ETC/ACM) (United Kingdom))

    2011-12-15

    The objective of this report is to help improve the understanding of past greenhouse gas (GHG) emission trends in the energy sector from the demand or end-user side. To do this, the report develops a methodology to redistributes emissions from energy industries to the final users (by sector) of that energy. This reallocation is done on the basis of Eurostat's energy balances and GHG inventories for the energy sector as reported to the United Nations Framework Convention on Climate Change (UNFCCC), for the period 2005-2009. (Author)

  18. End-user GHG emissions from energy. Reallocation of emissions from energy industries to end users 2005-2010

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, R. [European Environment Agency (EEA), Copenhagen (Denmark); Watterson, J. [AEA Technology plc - EEA' s European Topic Centre on Air Pollution and Climate Change Mitigation (ETC/ACM) (United Kingdom)

    2012-12-15

    The objective of this report is to help improve the understanding of past GHG emission trends in the energy sector from the demand or end-user side. To do this, the report develops a methodology to redistributes emissions from energy industries to the final users (by sector) of that energy. This reallocation is done on the basis of Eurostat's energy balances and GHG inventories for the energy sector as reported to the United Nations Framework Convention on Climate Change (UNFCCC), for the period 2005-2010. (Author)

  19. GHG emission control and solid waste management for megacities with inexact inputs: A case study in Beijing, China

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Hongwei, E-mail: luhw@ncepu.edu.cn; Sun, Shichao; Ren, Lixia; He, Li

    2015-03-02

    Highlights: • This study advances an integrated MSW management model under inexact input information. • The model can minimize net system cost and mitigate GHG emissions. • The model is particularly developed for the city of Beijing, China. • It reduces system cost by [45, 61]% and mitigates GHG emissions by [141, 179]%. • It could provide implications to megacities regarding GHG emissions control. - Abstract: This study advances an integrated MSW management model under inexact input information for the city of Beijing, China. The model is capable of simultaneously generating MSW management policies, performing GHG emission control, and addressing system uncertainty. Results suggest that: (1) a management strategy with minimal system cost can be obtained even when suspension of certain facilities becomes unavoidable through specific increments of the remaining ones; (2) expansion of facilities depends only on actual needs, rather than enabling the full usage of existing facilities, although it may prove to be a costly proposition; (3) adjustment of waste-stream diversion ratio directly leads to a change in GHG emissions from different disposal facilities. Results are also obtained from the comparison of the model with a conventional one without GHG emissions consideration. It is indicated that (1) the model would reduce the net system cost by [45, 61]% (i.e., [3173, 3520] million dollars) and mitigate GHG emissions by [141, 179]% (i.e., [76, 81] million tons); (2) increased waste would be diverted to integrated waste management facilities to prevent overmuch CH{sub 4} emission from the landfills.

  20. System-wide and Superemitter Policy Options for the Abatement of Methane Emissions from the U.S. Natural Gas System

    Science.gov (United States)

    Mayfield, E. N.; Robinson, A. L.; Cohon, J. L.

    2017-12-01

    This work assesses trade-offs between system-wide and superemitter policy options for reducing methane emissions from compressor stations in the U.S. transmission and storage system. Leveraging recently collected national emissions and activity data sets, we developed a new process-based emissions model implemented in a Monte Carlo simulation framework to estimate emissions for each component and facility in the system. We find that approximately 83% of emissions, given the existing suite of technologies, have the potential to be abated, with only a few emission categories comprising a majority of emissions. We then formulate optimization models to determine optimal abatement strategies. Most emissions across the system (approximately 80%) are efficient to abate, resulting in net benefits ranging from 160M to 1.2B annually across the system. The private cost burden is minimal under standard and tax instruments, and if firms market the abated natural gas, private net benefits may be generated. Superemitter policies, namely, those that target the highest emitting facilities, may reduce the private cost burden and achieve high emission reductions, especially if emissions across facilities are highly skewed. However, detection across all facilities is necessary regardless of the policy option and there are nontrivial net benefits resulting from abatement of relatively low-emitting sources.

  1. China’s regional industrial energy efficiency and carbon emissions abatement costs

    International Nuclear Information System (INIS)

    Wang, Ke; Wei, Yi-Ming

    2014-01-01

    Graphical abstract: Major cities in eight economy-geography regions of China. - Highlights: • Industrial energy and emissions efficiency were evaluated for China’s major cities. • Shadow prices of CO 2 emissions were estimated for China’s major cities. • Efficiency increase potentials on energy utilization and CO 2 emissions are 19% and 17%. • N-shaped EKC exists between levels of CO 2 emissions efficiency and income. • Average industrial CO 2 emissions abatement cost for China’s major cities is 45 US$. - Abstract: Evaluating the energy and emissions efficiency, measuring the energy saving and emissions reduction potential, and estimating the carbon price in China at the regional level are considered a crucial way to identify the regional efficiency levels and efficiency promotion potentials, as well as to explore the marginal abatement costs of carbon emissions in China. This study applies a newly developed Data Envelopment Analysis (DEA) based method to evaluate the regional energy and emissions efficiencies and the energy saving and emissions reduction potentials of the industrial sector of 30 Chinese major cities during 2006–2010. In addition, the CO 2 shadow prices, i.e., the marginal abatement costs of CO 2 emissions from industrial sector of these cities are estimated during the same period. The main findings are: (i) The coast area cities have the highest total factor industrial energy and emissions efficiency, but efficiency of the west area cities are lowest, and there is statistically significant efficiency difference between these cities. (ii) Economically well-developed cities evidence higher efficiency, and there is still obviously unbalanced and inequitable growth in the nationwide industrial development of China. (iii) Fortunately, the energy utilization and CO 2 emissions efficiency gaps among different Chinese cities were decreasing since 2006, and the problem of inequitable nationwide development has started to mitigate. (iv

  2. Cattle ranching intensification in Brazil can reduce global greenhouse gas emissions by sparing land from deforestation.

    Science.gov (United States)

    Cohn, Avery S; Mosnier, Aline; Havlík, Petr; Valin, Hugo; Herrero, Mario; Schmid, Erwin; O'Hare, Michael; Obersteiner, Michael

    2014-05-20

    This study examines whether policies to encourage cattle ranching intensification in Brazil can abate global greenhouse gas (GHG) emissions by sparing land from deforestation. We use an economic model of global land use to investigate, from 2010 to 2030, the global agricultural outcomes, land use changes, and GHG abatement resulting from two potential Brazilian policies: a tax on cattle from conventional pasture and a subsidy for cattle from semi-intensive pasture. We find that under either policy, Brazil could achieve considerable sparing of forests and abatement of GHGs, in line with its national policy targets. The land spared, particularly under the tax, is far less than proportional to the productivity increased. However, the tax, despite prompting less adoption of semi-intensive ranching, delivers slightly more forest sparing and GHG abatement than the subsidy. This difference is explained by increased deforestation associated with increased beef consumption under the subsidy and reduced deforestation associated with reduced beef consumption under the tax. Complementary policies to directly limit deforestation could help limit these effects. GHG abatement from either the tax or subsidy appears inexpensive but, over time, the tax would become cheaper than the subsidy. A revenue-neutral combination of the policies could be an element of a sustainable development strategy for Brazil and other emerging economies seeking to balance agricultural development and forest protection.

  3. GHG emissions, GDP growth and the Kyoto Protocol: A revisit of Environmental Kuznets Curve hypothesis

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Wei Ming; Lee, Grace W.M. [Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Road, Taipei 106 (China); Wu, Chih Cheng [Energy and Air Pollution Control Section, New Materials R and D Department, China Steel Corporation, 1, Chung-Kang Road, Siaogang District, Kaohsiung 81233 (China)

    2008-01-15

    The Kyoto Protocol attempts through political negotiations to guide participating industrialized countries' greenhouse gas (GHG) emissions from a positive growing trend, to reach a peak point (or turning point), and then be reduced to a negative growth. That means the relationship between decreasing GHG emissions and economic growth may be described by an inverted-U curve (or called a bell-shaped curve), which is consistent with the concept of the Environmental Kuznets Curve (EKC) hypothesis. This research observed that the economic development and GHG emissions in Economies in Transition (EITs) exhibit a hockey-stick curve trend (or called quasi-L-shape curve), that also generates a lot of 'hot air' which is significant to the implementation of the Kyoto Protocol. In addition, through the analysis of single-country time series data and GDP data, this research demonstrated that statistical data for most of the Annex II countries do not possess evidence that supports the EKC hypothesis for GHG emissions. The results from this study also indicated that the 38 industrialized countries are unable to meet their targets under the Kyoto Protocol within the specified time period, which are probably caused by the econometric method's inability to predict accurately the extents and development of innovative technologies and Clean Development Mechanism (CDM) projects. If the international community truly wants to reduce the GHG emissions, the effectiveness of the existing international framework for emissions reduction needs to be reconsidered seriously, and the global cooperation mechanism also needs to be greatly enhanced. (author)

  4. GHG emissions, GDP growth and the Kyoto Protocol: A revisit of Environmental Kuznets Curve hypothesis

    Energy Technology Data Exchange (ETDEWEB)

    Huang Weiming [Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Road, Taipei 106, Taiwan (China); Lee, Grace W.M. [Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Road, Taipei 106, Taiwan (China)], E-mail: gracelee@ntu.edu.tw; Wu Chihcheng [Energy and Air Pollution Control Section, New Materials R and D Department, China Steel Corporation, 1, Chung-Kang Road, Siaogang District, Kaohsiung 81233, Taiwan (China)

    2008-01-15

    The Kyoto Protocol attempts through political negotiations to guide participating industrialized countries' greenhouse gas (GHG) emissions from a positive growing trend, to reach a peak point (or turning point), and then be reduced to a negative growth. That means the relationship between decreasing GHG emissions and economic growth may be described by an inverted-U curve (or called a bell-shaped curve), which is consistent with the concept of the Environmental Kuznets Curve (EKC) hypothesis. This research observed that the economic development and GHG emissions in Economies in Transition (EITs) exhibit a hockey-stick curve trend (or called quasi-L-shape curve), that also generates a lot of 'hot air' which is significant to the implementation of the Kyoto Protocol. In addition, through the analysis of single-country time series data and GDP data, this research demonstrated that statistical data for most of the Annex II countries do not possess evidence that supports the EKC hypothesis for GHG emissions. The results from this study also indicated that the 38 industrialized countries are unable to meet their targets under the Kyoto Protocol within the specified time period, which are probably caused by the econometric method's inability to predict accurately the extents and development of innovative technologies and Clean Development Mechanism (CDM) projects. If the international community truly wants to reduce the GHG emissions, the effectiveness of the existing international framework for emissions reduction needs to be reconsidered seriously, and the global cooperation mechanism also needs to be greatly enhanced.

  5. GHG emissions, GDP growth and the Kyoto Protocol: A revisit of Environmental Kuznets Curve hypothesis

    International Nuclear Information System (INIS)

    Huang Weiming; Lee, Grace W.M.; Wu Chihcheng

    2008-01-01

    The Kyoto Protocol attempts through political negotiations to guide participating industrialized countries' greenhouse gas (GHG) emissions from a positive growing trend, to reach a peak point (or turning point), and then be reduced to a negative growth. That means the relationship between decreasing GHG emissions and economic growth may be described by an inverted-U curve (or called a bell-shaped curve), which is consistent with the concept of the Environmental Kuznets Curve (EKC) hypothesis. This research observed that the economic development and GHG emissions in Economies in Transition (EITs) exhibit a hockey-stick curve trend (or called quasi-L-shape curve), that also generates a lot of 'hot air' which is significant to the implementation of the Kyoto Protocol. In addition, through the analysis of single-country time series data and GDP data, this research demonstrated that statistical data for most of the Annex II countries do not possess evidence that supports the EKC hypothesis for GHG emissions. The results from this study also indicated that the 38 industrialized countries are unable to meet their targets under the Kyoto Protocol within the specified time period, which are probably caused by the econometric method's inability to predict accurately the extents and development of innovative technologies and Clean Development Mechanism (CDM) projects. If the international community truly wants to reduce the GHG emissions, the effectiveness of the existing international framework for emissions reduction needs to be reconsidered seriously, and the global cooperation mechanism also needs to be greatly enhanced

  6. Estimate of Fuel Consumption and GHG Emission Impact on an Automated Mobility District: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yuche; Young, Stanley; Gonder, Jeff; Qi, Xuewei

    2015-12-11

    This study estimates the range of fuel and emissions impact of an automated-vehicle (AV) based transit system that services campus-based developments, termed an automated mobility district (AMD). The study develops a framework to quantify the fuel consumption and greenhouse gas (GHG) emission impacts of a transit system comprised of AVs, taking into consideration average vehicle fleet composition, fuel consumption/GHG emission of vehicles within specific speed bins, and the average occupancy of passenger vehicles and transit vehicles. The framework is exercised using a previous mobility analysis of a personal rapid transit (PRT) system, a system which shares many attributes with envisioned AV-based transit systems. Total fuel consumption and GHG emissions with and without an AMD are estimated, providing a range of potential system impacts on sustainability. The results of a previous case study based of a proposed implementation of PRT on the Kansas State University (KSU) campus in Manhattan, Kansas, serves as the basis to estimate personal miles traveled supplanted by an AMD at varying levels of service. The results show that an AMD has the potential to reduce total system fuel consumption and GHG emissions, but the amount is largely dependent on operating and ridership assumptions. The study points to the need to better understand ride-sharing scenarios and calls for future research on sustainability benefits of an AMD system at both vehicle and system levels.

  7. A feasibility study of microgrids for reducing energy use and GHG emissions in an industrial application

    International Nuclear Information System (INIS)

    Li, Mengyu; Zhang, Xiongwen; Li, Guojun; Jiang, Chaoyang

    2016-01-01

    Highlights: • A life cycle assessment is conducted on the microgrids for an industry application. • The effect of renewable energy on the LCA performances of microgrids is illustrated. • The minimal life cycle energy use and GHG emissions of microgrids are evaluated. • The LCA of different pathways for electricity, heat and hydrogen are presented. - Abstract: Microgrids provide a new energy paradigm with the benefits of higher energy supply reliability, lower greenhouse gas (GHG) emissions through a higher penetration of renewable sources, higher energy efficiencies through the use of local waste heat and the avoidance of losses in transmission and distribution. This study reports a life cycle assessment (LCA) of microgrids for an industry application of an ammonia plant in central Inner Mongolia, China. The life cycle energy use and GHG emissions of the microgrids are evaluated and compared to the existing fossil fuel-based energy system. The electricity, heat and hydrogen fuel loads of the ammonia plant are all modelled in the study. An optimization model is developed to estimate the minimum life cycle energy use and GHG emissions with the microgrids under three scenarios (natural gas (NG)-based, optimized, and maximum renewable energy microgrids). The results indicate that the use of wind and solar in the NG-based microgrid can only slightly reduce the energy use and GHG emissions. If there are no land area limitations on the deployment of solar and wind power, the maximum renewable energy microgrid offers significant reductions of fossil fuel energy of up to 56.9% and GHG emissions reductions of up to 66.3% compared to the existing energy system.

  8. Comparative evaluation of GHG emissions from the use of Miscanthus for bio-hydrocarbon production via fast pyrolysis and bio-oil upgrading

    International Nuclear Information System (INIS)

    Shemfe, Mobolaji B.; Whittaker, Carly; Gu, Sai; Fidalgo, Beatriz

    2016-01-01

    Highlights: • GHG emissions from the upgrading of pyrolysis-derived bio-oil is quantified.. • Soil organic carbon sequestration rate had a significant effect on GHG emission. • Increasing plant scale could improve the environmental performance of the system. • Nitrogen to the pyrolysis reactor had significant impact on GHG emissions. - Abstract: This study examines the GHG emissions associated with producing bio-hydrocarbons via fast pyrolysis of Miscanthus. The feedstock is then upgraded to bio-oil products via hydroprocessing and zeolite cracking. Inventory data for this study were obtained from current commercial cultivation practices of Miscanthus in the UK and state-of-the-art process models developed in Aspen Plus®. The system boundary considered spans from the cultivation of Miscanthus to conversion of the pyrolysis-derived bio-oil into bio-hydrocarbons up to the refinery gate. The Miscanthus cultivation subsystem considers three scenarios for soil organic carbon (SOC) sequestration rates. These were assumed as follows: (i) excluding (SOC), (ii) low SOC and (iii) high (SOC) for best and worst cases. Overall, Miscanthus cultivation contributed moderate to negative values to GHG emissions, from analysis of excluding SOC to high SOC scenarios. Furthermore, the rate of SOC in the Miscanthus cultivation subsystem has significant effects on total GHG emissions. Where SOC is excluded, the fast pyrolysis subsystem shows the highest positive contribution to GHG emissions, while the credit for exported electricity was the main ‘negative’ GHG emission contributor for both upgrading pathways. Comparison between the bio-hydrocarbons produced from the two upgrading routes and fossil fuels indicates GHG emission savings between 68% and 87%. Sensitivity analysis reveals that bio-hydrocarbon yield and nitrogen gas feed to the fast pyrolysis reactor are the main parameters that influence the total GHG emissions for both pathways.

  9. GHG emissions inventory for on-road transportation in the town of Sassari (Sardinia, Italy)

    Science.gov (United States)

    Sanna, Laura; Ferrara, Roberto; Zara, Pierpaolo; Duce, Pierpaolo

    2016-04-01

    The IPCC Fifth Assessment Report (AR5) accounts an increase of the total annual anthropogenic GHG emissions between 2000 and 2010 that directly came from the transport sector. In 2010, 14% of GHG emissions were released by transport and fossil-fuel-related CO2 emissions reached about 32 GtCO2 per year. The report also considers adaptation and mitigation as complementary strategies for reducing the risks of climate change for sustainable development of urban areas. This paper describes the on-road traffic emission estimated in the framework of a Sardinian regional project [1] for the town of Sassari (Sardinia, Italy), one of the Sardinian areas where the fuel consumption for on-road transportation purposes is higher [2]. The GHG emissions have been accounted (a) by a calculation-based methodology founded on a linear relationship between source activity and emission, and (b) by the COPERT IV methodology through the EMITRA (EMIssions from road TRAnsport) software tool [3]. Inventory data for annual fossil fuel consumption associated with on-road transportation (diesel, gasoline, gas) have been collected through the Dogane service, the ATP and ARST public transport services and vehicle fleet data are available from the Public Vehicle Database (PRA), using 2010 as baseline year. During this period, the estimated CO2 emissions accounts for more than 180,000 tCO2. The calculation of emissions due to on-road transport quantitatively estimates CO2 and other GHG emissions and represents a useful baseline to identify possible adaptation and mitigation strategies to face the climate change risks at municipal level. Acknowledgements This research was funded by the Sardinian Regional Project "Development, functional checking and setup of an integrated system for the quantification of CO2 net exchange and for the evaluation of mitigation strategies at urban and territorial scale", (Legge Regionale 7 agosto 2007, No. 7). References [1] Sanna L., Ferrara R., Zara P. & Duce P. (2014

  10. Reduction potentials of energy demand and GHG emissions in China's road transport sector

    International Nuclear Information System (INIS)

    Yan Xiaoyu; Crookes, Roy J.

    2009-01-01

    Rapid growth of road vehicles, private vehicles in particular, has resulted in continuing growth in China's oil demand and imports, which has been widely accepted as a major factor effecting future oil availability and prices, and a major contributor to China's GHG emission increase. This paper is intended to analyze the future trends of energy demand and GHG emissions in China's road transport sector and to assess the effectiveness of possible reduction measures. A detailed model has been developed to derive a reliable historical trend of energy demand and GHG emissions in China's road transport sector between 2000 and 2005 and to project future trends. Two scenarios have been designed to describe the future strategies relating to the development of China's road transport sector. The 'Business as Usual' scenario is used as a baseline reference scenario, in which the government is assumed to do nothing to influence the long-term trends of road transport energy demand. The 'Best Case' scenario is considered to be the most optimized case where a series of available reduction measures such as private vehicle control, fuel economy regulation, promoting diesel and gas vehicles, fuel tax and biofuel promotion, are assumed to be implemented. Energy demand and GHG emissions in China's road transport sector up to 2030 are estimated in these two scenarios. The total reduction potentials in the 'Best Case' scenario and the relative reduction potentials of each measure have been estimated

  11. Time series GHG emission estimates for residential, commercial, agriculture and fisheries sectors in India

    Science.gov (United States)

    Mohan, Riya Rachel

    2018-04-01

    Green House Gas (GHG) emissions are the major cause of global warming and climate change. Carbon dioxide (CO2) is the main GHG emitted through human activities, at the household level, by burning fuels for cooking and lighting. As per the 2006 methodology of the Inter-governmental Panel on Climate Change (IPCC), the energy sector is divided into various sectors like electricity generation, transport, fugitive, 'other' sectors, etc. The 'other' sectors under energy include residential, commercial, agriculture and fisheries. Time series GHG emission estimates were prepared for the residential, commercial, agriculture and fisheries sectors in India, for the time period 2005 to 2014, to understand the historical emission changes in 'other' sector. Sectoral activity data, with respect to fuel consumption, were collected from various ministry reports like Indian Petroleum and Natural Gas Statistics, Energy Statistics, etc. The default emission factor(s) from IPCC 2006 were used to calculate the emissions for each activity and sector-wise CO2, CH4, N2O and CO2e emissions were compiled. It was observed that the residential sector generates the highest GHG emissions, followed by the agriculture/fisheries and commercial sector. In the residential sector, LPG, kerosene, and fuelwood are the major contributors of emissions, whereas diesel is the main contributor to the commercial, agriculture and fisheries sectors. CO2e emissions have been observed to rise at a cumulative annual growth rate of 0.6%, 9.11%, 7.94% and 5.26% for the residential, commercial, agriculture and fisheries sectors, respectively. In addition to the above, a comparative study of the sectoral inventories from the national inventories, published by Ministry of Environment, Forest and Climate Change, for 2007 and 2010 was also performed.

  12. Implications of a consumer-based perspective for the estimation of GHG emissions. The illustrative case of Luxembourg

    International Nuclear Information System (INIS)

    Caro, Dario; Rugani, Benedetto; Pulselli, Federico Maria; Benetto, Enrico

    2015-01-01

    The Kyoto protocol has established an accounting system for national greenhouse gas (GHG) emissions according to a geographic criterion (producer perspective), such as that proposed by the IPCC guidelines for national GHG inventories. However, the representativeness of this approach is still being debated, because the role of final consumers (consumer perspective) is not considered in the emission allocation system. This paper explores the usefulness of a hybrid analysis, including input–output (IO) and process inventory data, as a complementary tool for estimating and allocating national GHG emissions according to both consumer- and producer-based perspectives. We assess the historical GHG impact profile (from 1995 to 2009) of Luxembourg, which is taken as a case study. The country's net consumption over time is estimated to generate about 28,700 Gg CO 2 e/year on average. Compared to the conventional IPCC inventory, the IO-based framework typically shows much higher emission estimations. This relevant discrepancy is mainly due to the different points of view obtained from the hybrid model, in particular with regard to the contribution of imported goods and services. Detailing the GHG inventory by economic activity and considering a wider system boundary make the hybrid IO method advantageous as compared to the IPCC approach, but its effective implementation is still limited by the relatively complex modeling system, as well as the lack of coordination and scarce availability of datasets at the national level. - Highlights: • GHG emissions for Luxembourg are assessed using hybrid input–output (IO) modeling. • Consumer and producer perspectives are compared for the period 1995–2009. • IO-based GHG profiles are remarkably higher than traditional IPCC inventorying. • IO-based GHG accounting presents some advantages but is limited in implementation. • Key-aspects of IPCC and IO-based methods are extensively investigated and compared

  13. Implications of a consumer-based perspective for the estimation of GHG emissions. The illustrative case of Luxembourg

    Energy Technology Data Exchange (ETDEWEB)

    Caro, Dario, E-mail: caro2@unisi.it [Ecodynamics Group/DEEPS, Department of Environment, Earth and Physical Sciences, University of Siena, Via A. Moro, 2, I-53100 Siena (Italy); Department of Animal Science, University of California, Davis, CA 95616 (United States); Rugani, Benedetto [Public Research Centre Henri Tudor (CRPHT), Resource Centre for Environmental Technologies (CRTE), 6A, avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette (Luxembourg); Pulselli, Federico Maria [Ecodynamics Group/DEEPS, Department of Environment, Earth and Physical Sciences, University of Siena, Via A. Moro, 2, I-53100 Siena (Italy); Benetto, Enrico [Public Research Centre Henri Tudor (CRPHT), Resource Centre for Environmental Technologies (CRTE), 6A, avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette (Luxembourg)

    2015-03-01

    The Kyoto protocol has established an accounting system for national greenhouse gas (GHG) emissions according to a geographic criterion (producer perspective), such as that proposed by the IPCC guidelines for national GHG inventories. However, the representativeness of this approach is still being debated, because the role of final consumers (consumer perspective) is not considered in the emission allocation system. This paper explores the usefulness of a hybrid analysis, including input–output (IO) and process inventory data, as a complementary tool for estimating and allocating national GHG emissions according to both consumer- and producer-based perspectives. We assess the historical GHG impact profile (from 1995 to 2009) of Luxembourg, which is taken as a case study. The country's net consumption over time is estimated to generate about 28,700 Gg CO{sub 2}e/year on average. Compared to the conventional IPCC inventory, the IO-based framework typically shows much higher emission estimations. This relevant discrepancy is mainly due to the different points of view obtained from the hybrid model, in particular with regard to the contribution of imported goods and services. Detailing the GHG inventory by economic activity and considering a wider system boundary make the hybrid IO method advantageous as compared to the IPCC approach, but its effective implementation is still limited by the relatively complex modeling system, as well as the lack of coordination and scarce availability of datasets at the national level. - Highlights: • GHG emissions for Luxembourg are assessed using hybrid input–output (IO) modeling. • Consumer and producer perspectives are compared for the period 1995–2009. • IO-based GHG profiles are remarkably higher than traditional IPCC inventorying. • IO-based GHG accounting presents some advantages but is limited in implementation. • Key-aspects of IPCC and IO-based methods are extensively investigated and compared.

  14. The influence of urban form on GHG emissions in the U.S. household sector

    International Nuclear Information System (INIS)

    Lee, Sungwon; Lee, Bumsoo

    2014-01-01

    To better understand the role of sustainable urban development in greenhouse gas (GHG) mitigation, this study examines the paths by which urban form influences an individual household's carbon dioxide emissions in the 125 largest urbanized areas in the U.S. Our multilevel SEM analyses show that doubling population-weighted density is associated with a reduction in CO 2 emissions from household travel and residential energy consumption by 48% and 35%, respectively. Centralized population and polycentric structures have only a moderate impact in our analyses. Given that household travel and residential energy use account for 42% of total U.S. carbon dioxide emissions, these findings highlight the importance of smart growth policies to build more compact and transit friendly cities as a crucial part of any strategic efforts to mitigate GHG emissions and to stabilize climate. - Highlights: • We examine how urban form influences household CO 2 emissions using a multilevel SEM. • Doubling population-weighted density is associated with a 48% reduction in CO 2 emissions from household travel. • Doubling population-weighted density is associated with a 35% reduction in CO 2 emissions from residential energy use. • Doubling per capita transit subsidy is associated with a 46% lower VMT and 18% reduction in transportation CO 2 emissions. • Smart growth policies should be a crucial part of any strategic efforts to mitigate GHG emissions and stabilize climate

  15. The Padanian LiMeS. Spatial Interpretation of Local GHG Emission Data

    Directory of Open Access Journals (Sweden)

    Michèle Pezzagno

    2015-04-01

    Full Text Available The relevant role of spatial planning in the enforcement of climate change mitigation, managing the development of new low-carbon infrastructures and increasing system-wide efficiencies across sectors, has been addressed at global level (IPCC, 2014 WGIII. In this context, local GHG inventories appear a relevant tool toward the definition of a coherent, inter-sectorial background for local planning, mitigation, and adaptation policies.Taking advantage of consistent GHG emissions data availability in the Lombard context, local maps of direct GHG emissions have been linked with geographic data, including municipal boundaries, population data, and land-use information, produced and organized within the research PRIN 2007 From metropolitan city to metropolitan corridor: the case of the Po Valley Corridor.The results of this mapping exercise have been evaluated on the background of consolidated knowledge about northern Italy urban patterns, including the Linear Metropolitan System – LiMeS – and preliminary observations about characteristics, potential, and limits of the tool are proposed.

  16. Effect of aeration interval on oxygen consumption and GHG emission during pig manure composting.

    Science.gov (United States)

    Zeng, Jianfei; Yin, Hongjie; Shen, Xiuli; Liu, Ning; Ge, Jinyi; Han, Lujia; Huang, Guangqun

    2018-02-01

    To verify the optimal aeration interval for oxygen supply and consumption and investigate the effect of aeration interval on GHG emission, reactor-scale composting was conducted with different aeration intervals (0, 10, 30 and 50 min). Although O 2 was sufficiently supplied during aeration period, it could be consumed to  0.902), suggesting that lengthening the duration of aeration interval to some extent could effectively reduce GHG emission. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Decoupling urban transport from GHG emissions in Indian cities-A critical review and perspectives

    International Nuclear Information System (INIS)

    Li Jun

    2011-01-01

    How to sustain rapid economic and urban growth with minimised detriment to environment is a key challenge for sustainable development and climate change mitigation in developing countries, which face constraints of technical and financial resources scarcity as well as dearth of infrastructure governance capacity. This paper attempts to address this question by investigating the driving forces of transport demand and relevant policy measures that facilitate mitigating GHG emissions in the urban transport sector in Indian cities based on a critical review of the literature. Our overview of existing literature and international experiences suggests that it is critical to improve urban governance in transport infrastructure quality and develop efficient public transport, coupled with integrated land use/transport planning as well as economic instruments. This will allow Indian cities to embark on a sustainable growth pathway by decoupling transport services demand of GHG emissions in the longer term. Appropriate policy instruments need to be selected to reconcile the imperatives of economic and urban growth, aspiration to higher quality of life, improvements in social welfare, urban transport-related energy consumption and GHG emissions mitigation target in Indian cities. - Highlights: → Investigating the relevant policies that facilitate mitigating GHG emissions in urban transport in Indian cities. → Determining the factors of increase in energy demand and carbon emissions in transport. → Improving urban governance in transport infrastructure with integrated transport planning. → Designing and implementing the policy and economic instruments for low-carbon urban transport in India.

  18. Tradeable emission permit in Dutch acidification abatement policy

    Energy Technology Data Exchange (ETDEWEB)

    Ruyssenaars, P.; Sliggers, J. [Ministry of Environment (Netherlands)

    1995-12-31

    Target groups as well as the government are under the spell of economic instruments as part of environmental policy. Under this heading fall (regulatory) taxes and tradeable emission permits (VER). Of the two, VER, particularly, receive a lot of attention. From the target groups, because the flexibility of VER means working cost-effectively, which could lead to cost savings. From the government, because it can have more faith in the viability of emission ceilings, and has less need to pass detailed legislation. The latter conforms nicely to the philosophy `government at arm`s length`. The Ministry of Environment has had a study made on the feasibility of VER in the context of the acidification abatement policy in the Netherlands. The development and implementation of policy concerning acidification abatement is at an advanced stage, with deposition targets already set for 2000 and 2010 (2400 and 1400 acid equivalents/ha/year, respectively, averaged for afforested areas). From these, also emission reduction targets per target group are deduced, which can be used in a VER system. The main starting point of the study was to gain more insight into the practical aspects of VER. One important question is what form a VER system for the Netherlands should have to take. Also, an investigation was made into the activities which are necessary to introduce a VER system as well as the time, manpower and money these activities entail

  19. Tradeable emission permit in Dutch acidification abatement policy

    Energy Technology Data Exchange (ETDEWEB)

    Ruyssenaars, P; Sliggers, J [Ministry of Environment (Netherlands)

    1996-12-31

    Target groups as well as the government are under the spell of economic instruments as part of environmental policy. Under this heading fall (regulatory) taxes and tradeable emission permits (VER). Of the two, VER, particularly, receive a lot of attention. From the target groups, because the flexibility of VER means working cost-effectively, which could lead to cost savings. From the government, because it can have more faith in the viability of emission ceilings, and has less need to pass detailed legislation. The latter conforms nicely to the philosophy `government at arm`s length`. The Ministry of Environment has had a study made on the feasibility of VER in the context of the acidification abatement policy in the Netherlands. The development and implementation of policy concerning acidification abatement is at an advanced stage, with deposition targets already set for 2000 and 2010 (2400 and 1400 acid equivalents/ha/year, respectively, averaged for afforested areas). From these, also emission reduction targets per target group are deduced, which can be used in a VER system. The main starting point of the study was to gain more insight into the practical aspects of VER. One important question is what form a VER system for the Netherlands should have to take. Also, an investigation was made into the activities which are necessary to introduce a VER system as well as the time, manpower and money these activities entail

  20. Modeling GHG emission and energy consumption in selected greenhouses in Iran

    Energy Technology Data Exchange (ETDEWEB)

    Yousefi, M.; Omid, M.; Rafiee, SH.; Khoshnevisan, B. [Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj (Iran, Islamic Republic of)

    2013-07-01

    It is crucial to determine energy efficiency and environmental effects of greenhouse productions. Such study can be a viable solution in probing challenges and existing defects. The aims of this study were to analyze energy consumption and greenhouse gas (GHG) emissions for pepper production using biological method inside greenhouses which used natural gas (NG) heating system in Esfahan province. Data were collected from 22 greenhouse holders using a face to face questionnaire method, in 2010-2011. Also, functional area was selected 1000 m2. Total energy input, total energy output, energy ratio, energy productivity, specific energy, net energy gain and total GHG emissions were calculated as 297799.9 MJ area-1, 3851.84 MJ area-1, 0.013, 0.016 kg MJ-1, 61.85 MJ kg-1, -293948 MJ area-1 and 14390.85 kg CO2 equivalent area-1, respectively. Result revealed that replacing diesel fuel with NG will not be an effective way of reducing energy consumption for greenhouse production. However, it is crucial to focus on energy management in order to enhance the energy and environmental indices. One way to supply adequate input energy and a reduction in GHG emissions is the utilization of renewable and clean energy sources instead of NG and diesel fuel. Also, it is suggested to adopt solar greenhouses in the region and to supply electricity from non-fossil sources seriously.

  1. Introducing renewable energy and industrial restructuring to reduce GHG emission: Application of a dynamic simulation model

    International Nuclear Information System (INIS)

    Song, Junnian; Yang, Wei; Higano, Yoshiro; Wang, Xian’en

    2015-01-01

    Highlights: • Renewable energy development is expanded and introduced into socioeconomic activities. • A dynamic optimization simulation model is developed based on input–output approach. • Regional economic, energy and environmental impacts are assessed dynamically. • Industrial and energy structure is adjusted optimally for GHG emission reduction. - Abstract: Specifying the renewable energy development as new energy industries to be newly introduced into current socioeconomic activities, this study develops a dynamic simulation model with input–output approach to make comprehensive assessment of the impacts on economic development, energy consumption and GHG emission under distinct levels of GHG emission constraints involving targeted GHG emission reduction policies (ERPs) and industrial restructuring. The model is applied to Jilin City to conduct 16 terms of dynamic simulation work with GRP as objective function subject to mass, value and energy balances aided by the extended input–output table with renewable energy industries introduced. Simulation results indicate that achievement of GHG emission reduction target is contributed by renewable energy industries, ERPs and industrial restructuring collectively, which reshape the terminal energy consumption structure with a larger proportion of renewable energy. Wind power, hydropower and biomass combustion power industries account for more in the power generation structure implying better industrial prospects. Mining, chemical, petroleum processing, non-metal, metal and thermal power industries are major targets for industrial restructuring. This method is crucial for understanding the role of renewable energy development in GHG mitigation efforts and other energy-related planning settings, allowing to explore the optimal level for relationships among all socioeconomic activities and facilitate to simultaneous pursuit of economic development, energy utilization and environmental preservation

  2. Life cycle assessment of energy consumption and GHG emissions of olefins production from alternative resources in China

    International Nuclear Information System (INIS)

    Xiang, Dong; Yang, Siyu; Li, Xiuxi; Qian, Yu

    2015-01-01

    Highlights: • Conduct a life cycle energy use and GHG emissions of olefins production processes. • Analyse effects of carbon capture and efficiency on alternative olefins production. • Analyse life cycle performance of Chinese olefins industry in three key periods. • Present the advantages and challenges of alternative olefins routes. - Abstract: Olefins are important platform chemicals widely used in industry. In terms of the short supply of oil resources, natural gas and coal are two significant alternative feedstocks. In this paper, energy consumption and GHG emissions of olefins production are analysed with life cycle assessment methods. Results showed the energy consumption and GHG emissions of natural gas-to-olefins are roughly equivalent to those of oil-to-olefins, while coal-to-olefins suffers from higher energy consumption and serious GHG emissions, including 5793 kg eq. CO 2 /t olefins of direct emissions and 5714 kg eq. CO 2 /t olefins of indirect emissions. To address the problem, the effect of carbon capture on coal-to-olefins is investigated. In comprehensive consideration of energy utilization, environmental impact, and economic benefit, the coal-to-olefins with 80% CO 2 capture of the direct emissions is found to be an appropriate choice. With this carbon capture configuration, the direct emissions of the coal-to-olefins are reduced to 1161 kg eq. CO 2 /t olefins. However, the indirect emissions are still not captured, which should be strictly monitored and significantly reduced. Finally, a scenario analysis is conducted to estimate resource utilization and GHG emissions of olefins production of China in 2020. Several suggestions are also proposed for policy making on the sustainable development of olefins industry

  3. GHG emission factors developed for the collection, transport and landfilling of municipal waste in South African municipalities

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Elena, E-mail: Friedriche@ukzn.ac.za [CRECHE Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Engineering, Civil Engineering Programme, University of KwaZulu-Natal, Howard College Campus, Durban (South Africa); Trois, Cristina [CRECHE Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Engineering, Civil Engineering Programme, University of KwaZulu-Natal, Howard College Campus, Durban (South Africa)

    2013-04-15

    Highlights: ► An average GHG emission factor for the collection and transport of municipal solid waste in South Africa is calculated. ► A range of GHG emission factors for different types of landfills (including dumps) in South Africa are calculated. ► These factors are compared internationally and their implications for South Africa and developing countries are discussed . ► Areas for new research are highlighted. - Abstract: Greenhouse gas (GHG) emission factors are used with increased frequency for the accounting and reporting of GHG from waste management. However, these factors have been calculated for developed countries of the Northern Hemisphere and are lacking for developing countries. This paper shows how such factors have been developed for the collection, transport and landfilling of municipal waste in South Africa. As such it presents a model on how international results and methodology can be adapted and used to calculate country-specific GHG emission factors from waste. For the collection and transport of municipal waste in South Africa, the average diesel consumption is around 5 dm{sup 3} (litres) per tonne of wet waste and the associated GHG emissions are about 15 kg CO{sub 2} equivalents (CO{sub 2} e). Depending on the type of landfill, the GHG emissions from the landfilling of waste have been calculated to range from −145 to 1016 kg CO{sub 2} e per tonne of wet waste, when taking into account carbon storage, and from 441 to 2532 kg CO{sub 2} e per tonne of wet waste, when carbon storage is left out. The highest emission factor per unit of wet waste is for landfill sites without landfill gas collection and these are the dominant waste disposal facilities in South Africa. However, cash strapped municipalities in Africa and the developing world will not be able to significantly upgrade these sites and reduce their GHG burdens if there is no equivalent replacement of the Clean Development Mechanism (CDM) resulting from the Kyoto agreement

  4. Alternative U.S. biofuel mandates and global GHG emissions: The role of land use change, crop management and yield growth

    International Nuclear Information System (INIS)

    Mosnier, A.; Havlík, P.; Valin, H.; Baker, J.; Murray, B.; Feng, S.; Obersteiner, M.; McCarl, B.A.; Rose, S.K.; Schneider, U.A.

    2013-01-01

    We investigate the impacts of the U.S. renewable fuel standard (RFS2) and several alternative biofuel policy designs on global GHG emissions from land use change and agriculture over the 2010–2030 horizon. Analysis of the scenarios relies on GLOBIOM, a global, multi-sectoral economic model based on a detailed representation of land use. Our results reveal that RFS2 would substantially increase the portion of agricultural land needed for biofuel feedstock production. U.S. exports of most agricultural products would decrease as long as the biofuel target would increase leading to higher land conversion and nitrogen use globally. In fact, higher levels of the mandate mean lower net emissions within the U.S. but when the emissions from the rest of the world are considered, the US biofuel policy results in almost no change on GHG emissions for the RFS2 level and higher global GHG emissions for higher levels of the mandate or higher share of conventional corn-ethanol in the mandate. Finally, we show that if the projected crop productivity would be lower globally, the imbalance between domestic U.S. GHG savings and additional GHG emissions in the rest of the world would increase, thus deteriorating the net global impact of U.S. biofuel policies. - Highlights: ► We model the impact of the U.S. renewable fuel standard (RFS2). ► RFS2 would require more agricultural land and nitrogen globally. ► Increasing the mandates reduce GHG emissions within the U.S. ► Increasing the mandates increase GHG emissions in the rest of the world. ► Total GHG emissions increase with higher levels of mandate; higher share of corn-ethanol; lower productivity growth

  5. The liability rules under international GHG emissions trading

    International Nuclear Information System (INIS)

    Zhong Xiang Zhang

    2001-01-01

    Article 17 of the Kyoto Protocol authorizes emissions trading, but the rules governing emissions trading have been deferred to subsequent conferences. In designing and implementing an international greenhouse gas (GHG) emissions trading scheme, assigning liability rules has been considered to be one of the most challenging issues. In general, a seller-beware liability works well in a strong enforcement environment. In the Kyoto Protocol, however, it may not always work. By contrast, a buyer-beware liability could be an effective deterrent to non-compliance, but the costs of imposing it are expected to be very high. To strike a middle ground, we suggest a combination of preventive measures with strong but feasible end-of-period punishments to ensure compliance with the Kyoto emissions commitments. Such measures aim to maximize efficiency gains from emissions trading and at the same time, to minimize over-selling risks. (author)

  6. Should a vehicle fuel economy standard be combined with an economy-wide greenhouse gas emissions constraint? Implications for energy and climate policy in the United States

    International Nuclear Information System (INIS)

    Karplus, Valerie J.; Paltsev, Sergey; Babiker, Mustafa; Reilly, John M.

    2013-01-01

    The United States has adopted fuel economy standards that require increases in the on-road efficiency of new passenger vehicles, with the goal of reducing petroleum use and (more recently) greenhouse gas (GHG) emissions. Understanding the cost and effectiveness of fuel economy standards, alone and in combination with economy-wide policies that constrain GHG emissions, is essential to inform coordinated design of future climate and energy policy. We use a computable general equilibrium model, the MIT Emissions Prediction and Policy Analysis (EPPA) model, to investigate the effect of combining a fuel economy standard with an economy-wide GHG emissions constraint in the United States. First, a fuel economy standard is shown to be at least six to fourteen times less cost effective than a price instrument (fuel tax) when targeting an identical reduction in cumulative gasoline use. Second, when combined with a cap-and-trade (CAT) policy, a binding fuel economy standard increases the cost of meeting the GHG emissions constraint by forcing expensive reductions in passenger vehicle gasoline use, displacing more cost-effective abatement opportunities. Third, the impact of adding a fuel economy standard to the CAT policy depends on the availability and cost of abatement opportunities in transport—if advanced biofuels provide a cost-competitive, low carbon alternative to gasoline, the fuel economy standard does not bind and the use of low carbon fuels in passenger vehicles makes a significantly larger contribution to GHG emissions abatement relative to the case when biofuels are not available. This analysis underscores the potentially large costs of a fuel economy standard relative to alternative policies aimed at reducing petroleum use and GHG emissions. It further emphasizes the need to consider sensitivity to vehicle technology and alternative fuel availability and costs as well as economy-wide responses when forecasting the energy, environmental, and economic outcomes of

  7. Russia at GHG Market

    International Nuclear Information System (INIS)

    Golub, A.; Strukova, E.

    2004-01-01

    In the first Kyoto commitment period Russia could be the major supplier for the greenhouse gases (GHG) emissions market. Potential Russian supply depends on the ability of Russia to keep GHG emissions lower than the Kyoto target. In the literature there is no common understanding of the total trading potential of Russia at the international carbon market. In this paper we focus on CO2 emission, which constituted nearly 80% of Russian GHG emission. We compare different projections of Russian CO2 emission and analyze the most important factors, which predetermine the CO2 emission growth. In a transition economy these factors are: Gross Domestic Product (GDP) dynamic, changes of GDP structure, innovation activity, transformation of export-import flows and response to the market signals. The input-output macroeconomic model with the two different input-output tables representing old and new production technologies has been applied for the analysis to simulate technological innovations and structural changes in the Russian economy during transition period. The Russian supply at the international GHG market without forest sector may be up to 3 billion metric ton of CO2 equivalent. Earlier actions to reduce CO2 emission are critical to insure the Russian supply at the international carbon market. With regard to the current status of the Russian capital market, the forward trading with OECD countries is only the possibility to raise initial investments to roll no-regret and low-cost GHG reduction. This paper discusses uncertainties of Russian CO2 emission dynamics and analyzes the different incentives to lower the emission pathway

  8. The relative magnitude of the impacts and effects of GHG-related emission reductions

    International Nuclear Information System (INIS)

    Chiotti, Q.; Urquizo, N.

    2000-01-01

    A preliminary assessment of the current knowledge related to the co-benefits associated with climate change mitigation was provided in this document. One of the benefits of the reduction of greenhouse gas emissions is the reduction of other pollutants like sulphur dioxide, nitrogen oxides, carbon monoxide, volatile organic compounds, particulate matter, ground-level ozone, heavy metals and other toxic pollutants. Since these pollutants have an effect on acid deposition, ozone depletion and air quality, the environment, social welfare and human health, this paper provided an initial outline of the complex processes, interactions and uncertainties associated with this issue. Fossil fuels represent the major source of greenhouse gas (GHG) emissions in Canada. The reduction of emissions of GHG could have an impact on the Long Range Transport of air toxic substances, would help increase oxygen concentrations in the Northern Hemisphere, and lead to less carbon monoxide being released in the atmosphere, among others effects. Reductions of GHG emissions would also have an impact on ecosystems by reducing ground-level ozone concentrations. There would be less acid deposition and more dissolved organic carbon, allowing less ultraviolet-B penetration in aquatic ecosystems. In the case of human health, improved air quality impacts on the avoidance of premature mortality and reduced morbidity. Numerous other co-benefits were listed and discussed in this document. The first section stated the purpose and objectives. In section 2, that authors described the science and policy context and discussed building an analytical framework in section 3. The impact of GHG emission reductions on atmospheric pollution and ecosystems was dealt with in section 4 and section 5 was devoted to providing an assessment of the relative magnitude of effects. In section 6, the significance of scope was reviewed, and the authors concluded with section 7 in which they discussed the next steps: phase II

  9. The impact of the economic crisis and policy actions on GHG emissions from road transport in Spain

    International Nuclear Information System (INIS)

    Sobrino, Natalia; Monzon, Andres

    2014-01-01

    Road traffic is the greatest contributor to the carbon footprint of the transport sector and reducing it has become one of the main targets of sustainable transport policies. An analysis of the main factors influencing greenhouse gas (GHG) emissions is essential for designing new energy- and environmentally efficient strategies for the road transport. This paper addresses this need by (i) identifying factors which influence the carbon footprint, including traffic activity, fuel economy and socioeconomic development; and (ii) proposing a methodological framework which uses Modified Laspeyres Index decomposition to analyze the effect of important drivers on the changes in emissions of road transport in Spain during the period from 1990 to 2010. The results demonstrate that the country's economic growth has been closely linked to the rise in GHG emissions. The innovative contribution of this paper is the special analysis of the changes in mobility patterns and GHG emissions during the economic crisis, when, for the first time, Spanish road traffic emissions decreased. The reduction of road transport and improved energy efficiency has been powerful contributors to this decrease, demonstrating the effectiveness of energy-saving measures. On the basis of this analysis, several tailored policy recommendations have been suggested for future implementation. - Highlights: • Drivers contributing to GHG emissions of road transport are identified and analyzed. • Decomposition analysis based on Modified Laspeyres Index (MLI) is applied to the Spanish case. • Economic crisis and changes in mobility patterns and GHG emissions are analyzed. • Policies for the decarbonization of road transport are recommended

  10. GHG emission factors for bioelectricity, biomethane, and bioethanol quantified for 24 biomass substrates with consequential life-cycle assessment

    DEFF Research Database (Denmark)

    Tonini, Davide; Hamelin, Lorie; Alvarado-Morales, Merlin

    2016-01-01

    Greenhouse gas (GHG) emission savings from biofuels dramatically depend upon the source of energy displaced and the effects induced outside the energy sector, for instance land-use changes (LUC). Using consequential life-cycle assessment and including LUC effects, this study provides GHG emission...

  11. Reporting and Recording Post 2012 GHG Mitigation Commitments, Actions and Support

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This study assesses the long-term economic and environmental effects of introducing price caps and price floors in hypothetical climate change mitigation architecture, which aims to reduce global energy-related CO2 emissions by 50% by 2050. Based on abatement costs in IPCC and IEA reports, this quantitative analysis confirms what qualitative analyses have already suggested: introducing price caps could significantly reduce economic uncertainty. This uncertainty stems primarily from unpredictable economic growth and energy prices, and ultimately unabated emission trends. In addition, the development of abatement technologies is uncertain. With price caps, the expected costs could be reduced by about 50% and the uncertainty on economic costs could be one order of magnitude lower. Reducing economic uncertainties may spur the adoption of more ambitious policies by helping to alleviate policy makers' concerns of economic risks. Meanwhile, price floors would reduce the level of emissions beyond the objective if the abatement costs ended up lower than forecasted. If caps and floors are commensurate with the ambition of the policy pursued and combined with slightly tightened emission objectives, climatic results could be on average similar to those achieved with 'straight' objectives (i.e. with no cost-containment mechanism). This papers reviews current proposals in the UNFCCC negotiations for future mechanisms to report and record Parties' GHG mitigation actions and commitments, as well as support provided for such actions. It explores the possible purposes, coverage and form of a reporting/recording mechanism post-2012 and highlights the decision points that are needed in order to establish such a mechanism. It examines what information such a mechanism could include in terms of actions, commitments and support, as well as the institutional implications of different design options.

  12. Applying optimization techniques to improve of energy efficiency and GHG (greenhouse gas) emissions of wheat production

    International Nuclear Information System (INIS)

    Nabavi-Pelesaraei, Ashkan; Hosseinzadeh-Bandbafha, Homa; Qasemi-Kordkheili, Peyman; Kouchaki-Penchah, Hamed; Riahi-Dorcheh, Farshid

    2016-01-01

    In this study a non-parametric method of DEA (Data Envelopment Analysis) and MOGA (Multi-Objective Genetic Algorithm) were used to estimate the energy efficiency and greenhouse gas emissions reduction of wheat farmers in Ahvaz county of Iran. Data were collected using a face-to-face questionnaire method from 39 farmers. The results showed that based on constant returns to scale model, 41.02% of wheat farms were efficient, though based on variable returns to scale model it was 53.23%. The average of technical, pure technical and scale efficiency of wheat farms were 0.94, 0.95 and 0.98, respectively. By following the recommendations of this study, 3640.90 MJ ha"−"1 could be saved (9.13% of total input energy). Moreover, 42 optimal units were found by MOGA. The total energy required and GHG (greenhouse gas) emissions of the best generation of MOGA were about 23105 MJ ha"−"1 and 340 kgCO_2_e_q_. ha"−"1, respectively. The results revealed that the total energy required of MOGA was less than DEA, significantly. Also, the GHG emissions of present, DEA and MOGA farms were about 903, 837 and 340 kgCO_2_e_q_. ha"−"1, respectively. - Highlights: • We analyze the energy efficiency and GHG emissions of wheat production in Iran. • The technical and pure technical efficiencies were 0.94 and 0.95 respectively. • DEA can be saved total energy and GHG emissions 9.13% and 7.28% respectively. • MOGA can be reduced total energy and GHG emissions more than DEA significantly.

  13. Reducing greenhouse gas emissions through strategic management of highway pavement roughness

    International Nuclear Information System (INIS)

    Wang, Ting; Harvey, John; Kendall, Alissa

    2014-01-01

    On-road vehicle use is responsible for about a quarter of US annual greenhouse gas (GHG) emissions. Changes in vehicles, travel behavior and fuel are likely required to meet long-term climate change mitigation goals, but may require a long time horizon to deploy. This research examines a near-term opportunity: management of pavement network roughness. Maintenance and rehabilitation treatments can make pavements smoother and reduce vehicle rolling resistance. However, these treatments require material production and equipment operation, thus requiring a life cycle perspective for benefits analysis. They must also be considered in terms of their cost-effectiveness in comparison with other alternatives for affecting climate change. This letter describes a life cycle approach to assess changes in total GHG (measured in CO 2 -e) emissions from strategic management of highway pavement roughness. Roughness values for triggering treatments are developed to minimize GHG considering both treatment and use phase vehicle emission. With optimal triggering for GHG minimization, annualized reductions on the California state highway network over a 10-year analysis period are calculated to be 0.82, 0.57 and 1.38 million metric tons compared with historical trigger values, recently implemented values and no strategic intervention (reactive maintenance), respectively. Abatement costs calculated using $/metric-ton CO 2 -e are higher than those reported for other transportation sector abatement measures, however, without considering all benefits associated with pavement smoothness, such as vehicle life and maintenance, or the time needed for deployment. (paper)

  14. Potential for reducing GHG emissions and energy consumption from implementing the aluminum intensive vehicle fleet in China

    International Nuclear Information System (INIS)

    Du, J.D.; Han, W.J.; Peng, Y.H.; Gu, C.C.

    2010-01-01

    The automobile industry in China has rapidly developed in recent years which resulted in an increase in gasoline usage and greenhouse gas (GHG) emissions. Focus on climate change has also accelerated to grow pressure on reducing vehicle weight and improving fuel efficiency. Aluminum (Al) as a light metal has demonstrated a great potential for weight savings in applications such as engine blocks, cylinder heads, wheels, hoods, tailgates etc. However, primary Al production requires intensive energy and the cost of Al is more than traditional steel, which may affect the total benefits realized from using Al in automobiles. Therefore, it is very essential to conduct a study to quantify the life cycle GHG emissions and energy consumption if the plan is to achieve fleet-wide Al intensive vehicles. This paper describes a life cycle assessment (LCA) methodology and the general modeling assumptions used to evaluate the impact of Al intensive vehicle on GHG emissions and energy consumption. The results indicated that the reductions in life cycle GHG emissions and energy consumption were not significant when the maximum Al content in an automobile is 145 kg, which is the average level of Al usage in automobiles in North America. A neural network methodology was used to forecast the vehicle stock in China from 2010 to 2020 and a vehicle fleet model was established to track GHG emissions and energy consumption of the vehicle fleet. A material availability factor was also introduced into the LCA methodology to further assist decision makers in providing rational proposals for a widespread implementation of Al in automobiles. A sensitivity analysis was also conducted to study the impact of the Al content in a vehicle on the final outcomes. The GHG emissions and energy consumption could be further reduced when the Al content in an automobile increases.

  15. The effect of carbon tax on carbon emission abatement and GDP: a case study

    Science.gov (United States)

    Liu, Xiao; Leung, Yee; Xu, Yuan; Yung, Linda Chor Wing

    2017-10-01

    Carbon tax has been advocated as an effective economic instrument for the abatement of CO2 emission by various countries, including China, the world's biggest carbon emission country. However, carbon emission abatement cannot be done while ignoring the impact on economic growth. A delicate balance needs to be achieved between the two to find an appropriate pathway for sustainable development. This paper applies a multi-objective optimization approach to analyze the impact of levying carbon tax on the energy-intensive sectors of Guangdong province in China under the constraint of emission reduction target. This approach allows us to evaluate carbon emission minimization while maximizing GDP. For policy analysis, we construct five scenarios for evaluation and optimal choice. The results of the analysis show that a lower initial carbon tax rate is not necessarily better, and that a carbon tax is an effective means to reduce CO2 emissions while maintaining a certain level of GDP growth.

  16. Energy-saving and emission-abatement potential of Chinese coal-fired power enterprise: A non-parametric analysis

    International Nuclear Information System (INIS)

    Wei, Chu; Löschel, Andreas; Liu, Bing

    2015-01-01

    In the context of soaring demand for electricity, mitigating and controlling greenhouse gas emissions is a great challenge for China's power sector. Increasing attention has been placed on the evaluation of energy efficiency and CO 2 abatement potential in the power sector. However, studies at the micro-level are relatively rare due to serious data limitations. This study uses the 2004 and 2008 Census data of Zhejiang province to construct a non-parametric frontier in order to assess the abatement space of energy and associated CO 2 emission from China's coal-fired power enterprises. A Weighted Russell Directional Distance Function (WRDDF) is applied to construct an energy-saving potential index and a CO 2 emission-abatement potential index. Both indicators depict the inefficiency level in terms of energy utilization and CO 2 emissions of electric power plants. Our results show a substantial variation of energy-saving potential and CO 2 abatement potential among enterprises. We find that large power enterprises are less efficient in 2004, but become more efficient than smaller enterprises in 2008. State-owned enterprises (SOE) are not significantly different in 2008 from 2004, but perform better than their non-SOE counterparts in 2008. This change in performance for large enterprises and SOE might be driven by the “top-1000 Enterprise Energy Conservation Action” that was implemented in 2006. - Highlights: • Energy-saving potential and CO 2 abatement-potential for Chinese power enterprise are evaluated. • The potential to curb energy and emission shows great variation and dynamic changes. • Large enterprise is less efficient than small enterprise in 2004, but more efficient in 2008. • The state-owned enterprise performs better than non-state-owned enterprise in 2008

  17. Exploring the limits for CO2 emission abatement in the EU power and industry sectors—Awaiting a breakthrough

    International Nuclear Information System (INIS)

    Rootzén, Johan; Johnsson, Filip

    2013-01-01

    This study assesses the prospects for presently available abatement technologies to achieve significant reductions in CO 2 emissions from large stationary sources of CO 2 in the EU up to year 2050. The study covers power generation, petroleum refining, iron and steel, and cement production. By simulating capital stock turnover, scenarios that assume future developments in the technology stock, energy intensities, fuel and production mixes, and the resulting CO 2 emissions were generated for each sector. The results confirm that the EU goal for reductions in Greenhouse Gas Emission in the sectors covered by the EU Emission Trading System, i.e., 21% reduction by 2020 as compared to the levels in 2005, is attainable with the abatement measures that are already available. However, despite the optimism regarding the potential for, and implementation of, available abatement strategies within current production processes, our results indicate that the power and industrial sectors will fail to comply with more stringent reduction targets in both the medium term (2030) and long term (2050). Deliberate exclusion from the analysis of mitigation technologies that are still in the early phases of development (e.g., CO 2 capture and storage) provides an indirect measure of the requirements for novel low-carbon technologies and production processes. - Highlights: • Explore the limits for CO 2 emission abatement within current production processes. • Analysis of scenarios for CO 2 emissions from EU power and industrial sectors 2010–2050. • Short-term (2020) emission targets are attainable with available abatement measures. • Fail to comply with more stringent reduction targets in the long term (2050). • Efforts to develop new low-carbon production processes need to be accelerated

  18. Cost, energy use and GHG emissions for forest biomass harvesting operations

    International Nuclear Information System (INIS)

    Zhang, Fengli; Johnson, Dana M.; Wang, Jinjiang; Yu, Chunxia

    2016-01-01

    For forest-based biomass to become a significant contribution to the United States' energy portfolio, harvesting operations must be physically feasible and economically viable. An assessment of cost, energy and greenhouse gas (GHG) emissions of forest biomass harvesting was conducted. The assessment differentiates harvesting systems by cut-to-length and whole tree; harvest types of 30%, 70%, and 100% cut; and forest types of hardwoods, softwoods, mixed hardwood/softwood, and softwood plantations. Harvesting cost models were developed for economic assessment and life cycle energy and emission assessment was applied to calculate energy and emissions for different harvesting scenarios, considering material and energy inputs (machinery, diesel, etc.) and outputs (GHG emissions) for each harvesting process (felling, forwarding/skidding, etc.). The developed harvesting cost models and the life cycle energy and emission assessment method were applied in Michigan, U.S. using information collected from different sources. A sensitivity analysis was performed for selected input variables for the harvesting operations in order to explore their relative importance. The results indicated that productivity had the largest impact on harvesting cost followed by machinery purchase price, yearly scheduled hours, and expected utilization. Productivity and fuel use, as well as fuel factors, are the most influential environmental impacts of harvesting operations. - Highlights: • Life cycle energy and emissions for forest biomass harvesting operations. • Harvesting cost models were developed for economic assessment. • Productivity had the largest impact on harvesting cost. • Fuel use contributes the most emissions while lubricants contribute the least.

  19. Electric-power systems planning and greenhouse-gas emission management under uncertainty

    International Nuclear Information System (INIS)

    Li, Y.P.; Huang, G.H.

    2012-01-01

    Highlight: ►A multistage stochastic integer programming model is developed for planning electric-power systems. ►Uncertain and dynamic information can be incorporated within a multilayer scenario tree. ►This can help minimize system cost under random energy demand and greenhouse gas (GHG) abatement goal. ►Results can support decisions of facility expansion, electricity supply and GHG mitigation. - Abstract: In this study, a multistage interval-stochastic integer programming model is formulated for managing greenhouse gas (GHG) emissions and planning electric-power systems under uncertainty. The developed model can reflect dynamic, interactive, and uncertain characteristics of energy systems. Besides, the model can be used for answering questions related to types, times, demands and mitigations of energy systems planning practices, with the objective of minimizing system cost over a long-time planning horizon. The solutions can help generate electricity-generation schemes and capacity-expansion plans under different GHG-mitigation options and electricity-demand levels. Tradeoffs among system cost, energy security, and emission management can also be tackled. A high system cost will increase renewable energy supply and reduce GHG emission, while a desire for a low cost will run into risks of a high energy deficiency and a high GHG emission.

  20. Assessment of GHG Emission Reduction Potential from Source-separated Organic Waste (SOW) Management: Case Study in a Higher Educational Institution in Malaysia

    International Nuclear Information System (INIS)

    Ng, C.G.; Sumiani Yusoff

    2015-01-01

    In Malaysia, the greenhouse gases (GHGs) emissions reduction via composting of source-separated organic waste (SOW) in municipal solid waste (MSW) has not been assessed. Assessment of GHG emissions reduction via composting of SOW is important as environmental impacts from waste management are waste-specific and local-specific. The study presents the case study for potential carbon reduction via composting of SOW in University of Malaya (UM). In this study, a series of calculations were used to evaluate the GHG emission of different SOW management scenarios. The calculations based on IPCC calculation methods (AM0025) include GHGs emissions from land filling, fuel consumption in transportation and SOW composting activity. The methods were applied to assess the GHG emissions from five alternative SOW management scenarios in UM. From the baseline scenario (S0), a total of 1,636.18 tCO2e was generated. In conjunction with target of 22 % recycling rate, as shown in S1, 14 % reduction in potential GHG emission can be achieved. The carbon reduction can be further enhanced by increasing the SOW composting capacity. The net GHG emission for S1, S2, S3 and S4 were 1,399.52, 1,161.29, 857.70 and 1,060.48 tCO2e, respectively. In general, waste diversion for composting proved a significant net GHG emission reduction as shown in S3 (47 %), S4 (35 %) and S2 (29 %). Despite the emission due to direct on-site activity, the significant reduction in methane generation at landfill has reduced the net GHG emission. The emission source of each scenario was studied and analysed. (author)

  1. GHG emission control and solid waste management for megacities with inexact inputs: a case study in Beijing, China.

    Science.gov (United States)

    Lu, Hongwei; Sun, Shichao; Ren, Lixia; He, Li

    2015-03-02

    This study advances an integrated MSW management model under inexact input information for the city of Beijing, China. The model is capable of simultaneously generating MSW management policies, performing GHG emission control, and addressing system uncertainty. Results suggest that: (1) a management strategy with minimal system cost can be obtained even when suspension of certain facilities becomes unavoidable through specific increments of the remaining ones; (2) expansion of facilities depends only on actual needs, rather than enabling the full usage of existing facilities, although it may prove to be a costly proposition; (3) adjustment of waste-stream diversion ratio directly leads to a change in GHG emissions from different disposal facilities. Results are also obtained from the comparison of the model with a conventional one without GHG emissions consideration. It is indicated that (1) the model would reduce the net system cost by [45, 61]% (i.e., [3173, 3520] million dollars) and mitigate GHG emissions by [141, 179]% (i.e., [76, 81] million tons); (2) increased waste would be diverted to integrated waste management facilities to prevent overmuch CH4 emission from the landfills. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Applying data envelopment analysis approach to improve energy efficiency and reduce GHG (greenhouse gas) emission of wheat production

    International Nuclear Information System (INIS)

    Khoshnevisan, Benyamin; Rafiee, Shahin; Omid, Mahmoud; Mousazadeh, Hossein

    2013-01-01

    In this study, DEA (data envelopment analysis) was applied to analyze the energy efficiency of wheat farms in order to separate efficient and inefficient growers and to calculate the wasteful uses of energy. Additionally, the degrees of TE (technical efficiency), PTE (pure technical efficiency) and SE (scale efficiency) were determined. Furthermore, the effect of energy optimization on GHG (greenhouse gas) emission was investigated and the total amount of GHG emission of efficient farms was compared with inefficient ones. Based on the results it was revealed that 18% of producers were technically efficient and the average of TE was calculated as 0.82. Based on the BCC (Banker–Charnes–Cooper) model 154 growers (59%) were identified efficient and the mean PTE of these farmers was found to be 0.99. Also, it was concluded that 2075.8 MJ ha −1 of energy inputs can be saved if the performance of inefficient farms rises to a high level. Additionally, it was observed that the total GHG emission from efficient and inefficient producers was 2713.3 and 2740.8 kg CO 2eq . ha −1 , respectively. By energy optimization the total GHG emission can be reduced to the value of 2684.29 kg CO 2eq . ha −1 . - Highlights: • 18% of producers were technically efficient and the average of TE was 0.82. • An average 2075.8 MJ ha −1 from energy input could be saved without reducing the yield. • GHG emission of efficient and inefficient producers was 2713.3 and 2740.8 kg CO 2eq. ha −1 . • Total GHG emission can be reduced to the value of 2684.29 kg CO 2eq. ha −1

  3. EV-GHG Mobile Source

    Data.gov (United States)

    U.S. Environmental Protection Agency — The EV-GHG Mobile Source Data asset contains measured mobile source GHG emissions summary compliance information on light-duty vehicles, by model, for certification...

  4. System expansion for handling co-products in LCA of sugar cane bio-energy systems: GHG consequences of using molasses for ethanol production

    International Nuclear Information System (INIS)

    Nguyen, Thu Lan T.; Hermansen, John E.

    2012-01-01

    Highlights: → A challenging issue in LCA is how to account for co-products' environmental burdens. → The two most commonly used procedures are system expansion and allocation. → System expansion appears to be more appropriate than allocation. → Indirect land use change is a consequence of diverting molasses from feed to fuel. → The inclusion of land use change worsens the GHG balance of molasses ethanol. -- Abstract: This study aims to establish a procedure for handling co-products in life cycle assessment (LCA) of a typical sugar cane system. The procedure is essential for environmental assessment of ethanol from molasses, a co-product of sugar which has long been used mainly for feed. We compare system expansion and two allocation procedures for estimating greenhouse gas (GHG) emissions of molasses ethanol. As seen from our results, system expansion yields the highest estimate among the three. However, no matter which procedure is used, a significant reduction of emissions from the fuel stage in the abatement scenario, which assumes implementation of substituting bioenergy for fossil-based energy to reduce GHG emissions, combined with a negligible level of emissions from the use stage, keeps the estimate of ethanol life cycle GHG emissions below that of gasoline. Pointing out that indirect land use change (ILUC) is a consequence of diverting molasses from feed to fuel, system expansion is the most adequate method when the purpose of the LCA is to support decision makers in weighing the options and consequences. As shown in the sensitivity analysis, an addition of carbon emissions from ILUC worsens the GHG balance of ethanol, with deforestation being a worst-case scenario where the fuel is no longer a net carbon saver but carbon emitter.

  5. Non-CO2 Greenhouse Gas Emissions in China 2012: Inventory and Supply Chain Analysis

    Science.gov (United States)

    Zhang, Bo; Zhang, Yaowen; Zhao, Xueli; Meng, Jing

    2018-01-01

    Reliable inventory information is critical in informing emission mitigation efforts. Using the latest officially released emission data, which is production based, we take a consumption perspective to estimate the non-CO2 greenhouse gas (GHG) emissions for China in 2012. The non-CO2 GHG emissions, which cover CH4, N2O, HFCs, PFCs, and SF6, amounted to 2003.0 Mt. CO2-eq (including 1871.9 Mt. CO2-eq from economic activities), much larger than the total CO2 emissions in some developed countries. Urban consumption (30.1%), capital formation (28.2%), and exports (20.6%) derived approximately four fifths of the total embodied emissions in final demand. Furthermore, the results from structural path analysis help identify critical embodied emission paths and key economic sectors in supply chains for mitigating non-CO2 GHG emissions in Chinese economic systems. The top 20 paths were responsible for half of the national total embodied emissions. Several industrial sectors such as Construction, Production and Supply of Electricity and Steam, Manufacture of Food and Tobacco and Manufacture of Chemicals, and Chemical Products played as the important transmission channels. Examining both production- and consumption-based non-CO2 GHG emissions will enrich our understanding of the influences of industrial positions, final consumption demands, and trades on national non-CO2 GHG emissions by considering the comprehensive abatement potentials in the supply chains.

  6. The emission abatement policy paradox in Australia: evidence from energy-emission nexus.

    Science.gov (United States)

    Ahmed, Khalid; Ozturk, Ilhan

    2016-09-01

    This paper attempts to investigate the emissions embodied in Australia's economic growth and disaggregate primary energy sources used for electricity production. Using time series data over the period of 1990-2012, the ARDL bounds test approach to cointegration technique is applied to test the long-run association among the underlying variables. The regression results validate the long-run equilibrium relationship among all vectors and confirm that CO2 emissions, economic growth, and disaggregate primary energy consumption impact each other in the long-run path. Afterwards, the long- and short-run analyses are conducted using error correction model. The results show that economic growth, coal, oil, gas, and hydro energy sources have positive and statistically significant impact on CO2 emissions both in long and short run, with an exception of renewables which has negative impact only in the long run. The results conclude that Australia faces wide gap between emission abatement policies and targets. The country still relies on emission intensive fossil fuels (i.e., coal and oil) to meet the indigenous electricity demand.

  7. CAP payments and agricultural GHG emissions in Italy. A farm-level assessment.

    Science.gov (United States)

    Coderoni, Silvia; Esposti, Roberto

    2018-06-15

    The Common Agricultural Policy (CAP) is an important external driver of European agricultural production. Nowadays and in its envisioned future structure post-2020, the CAP has among its major objectives tackling climate change, for what concerns both adaptation and mitigation strategies. However, little is known about the link between past CAP reforms and agricultural greenhouse gases (GHG) emissions. This paper investigates the possible role played by the Fischler Reform (FR) on the agricultural GHG emissions at the farm level. The FR represents a major CAP reform for which data availability allows an ex-post analysis about its actual impacts. The empirical analysis concerns a balanced panel of 6542 Italian Farm Accountancy Data Network observed over years the 2003-2007. Multinomial Logit models are estimated in sequence to express how the farm-level production choices, and the respective emissions, vary over time also in response to CAP expenditure. Results suggest that CAP expenditure had a role in the evolution of the farm-level emissions, though the direction of this effect may differ across farms and deserves further investigation. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. GHG-emissions for cars with different power trains over the whole life cycle

    Energy Technology Data Exchange (ETDEWEB)

    Roeder, A [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The method of life-cycle assessment (LCA) has been applied to cars with different power trains. As an example, the results for greenhouse gas (GHG) emissions are presented. They show possibilities and limits for the reduction of these emissions in the transportation sector by means of advanced technology. (author) 2 figs., 4 refs.

  9. Reducing GHG emissions while improving diet quality: exploring the potential of reduced meat, cheese and alcoholic and soft drinks consumption at specific moments during the day.

    Science.gov (United States)

    van de Kamp, Mirjam E; Seves, S Marije; Temme, Elisabeth H M

    2018-02-20

    The typical Western diet is associated with high levels of greenhouse gas (GHG) emissions and with obesity and other diet-related diseases. This study aims to determine the impact of adjustments to the current diet at specific moments of food consumption, to lower GHG emissions and improve diet quality. Food consumption in the Netherlands was assessed by two non-consecutive 24-h recalls for adults aged 19-69 years (n = 2102). GHG emission of food consumption was evaluated with the use of life cycle assessments. The population was stratified by gender and according to tertiles of dietary GHG emission. Scenarios were developed to lower GHG emissions of people in the highest tertile of dietary GHG emission; 1) reducing red and processed meat consumed during dinner by 50% and 75%, 2) replacing 50% and 100% of alcoholic and soft drinks (including fruit and vegetable juice and mineral water) by tap water, 3) replacing cheese consumed in between meals by plant-based alternatives and 4) two combinations of these scenarios. Effects on GHG emission as well as nutrient content of the diet were assessed. The mean habitual daily dietary GHG emission in the highest tertile of dietary GHG emission was 6.7 kg CO 2 -equivalents for men and 5.1 kg CO 2 -equivalents for women. The scenarios with reduced meat consumption and/or replacement of all alcoholic and soft drinks were most successful in reducing dietary GHG emissions (ranging from - 15% to - 34%) and also reduced saturated fatty acid intake and/or sugar intake. Both types of scenarios lead to reduced energy and iron intakes. Protein intake remained adequate. Reducing the consumption of red and processed meat during dinner and of soft and alcoholic drinks throughout the day leads to significantly lower dietary GHG emissions of people in the Netherlands in the highest tertile of dietary GHG emissions, while also having health benefits. For subgroups of the population not meeting energy or iron requirements as a

  10. Reducing GHG emissions while improving diet quality: exploring the potential of reduced meat, cheese and alcoholic and soft drinks consumption at specific moments during the day

    Directory of Open Access Journals (Sweden)

    Mirjam E. van de Kamp

    2018-02-01

    Full Text Available Abstract Background The typical Western diet is associated with high levels of greenhouse gas (GHG emissions and with obesity and other diet-related diseases. This study aims to determine the impact of adjustments to the current diet at specific moments of food consumption, to lower GHG emissions and improve diet quality. Methods Food consumption in the Netherlands was assessed by two non-consecutive 24-h recalls for adults aged 19–69 years (n = 2102. GHG emission of food consumption was evaluated with the use of life cycle assessments. The population was stratified by gender and according to tertiles of dietary GHG emission. Scenarios were developed to lower GHG emissions of people in the highest tertile of dietary GHG emission; 1 reducing red and processed meat consumed during dinner by 50% and 75%, 2 replacing 50% and 100% of alcoholic and soft drinks (including fruit and vegetable juice and mineral water by tap water, 3 replacing cheese consumed in between meals by plant-based alternatives and 4 two combinations of these scenarios. Effects on GHG emission as well as nutrient content of the diet were assessed. Results The mean habitual daily dietary GHG emission in the highest tertile of dietary GHG emission was 6.7 kg CO2-equivalents for men and 5.1 kg CO2-equivalents for women. The scenarios with reduced meat consumption and/or replacement of all alcoholic and soft drinks were most successful in reducing dietary GHG emissions (ranging from − 15% to − 34% and also reduced saturated fatty acid intake and/or sugar intake. Both types of scenarios lead to reduced energy and iron intakes. Protein intake remained adequate. Conclusions Reducing the consumption of red and processed meat during dinner and of soft and alcoholic drinks throughout the day leads to significantly lower dietary GHG emissions of people in the Netherlands in the highest tertile of dietary GHG emissions, while also having health benefits. For subgroups of the

  11. Management of GHG, a successful business approach

    International Nuclear Information System (INIS)

    Gagnier, D.

    2003-01-01

    This PowerPoint presentation provided a brief overview of Alcan, an aluminium producer with operations in Quebec and in several other markets and countries. Alcan's strategy regarding climate change involves both short term and long term objectives and a public commitment to reducing the emissions of greenhouse gases (GHG). Alcan has implemented a company-wide GHG management program called TARGET, which involves measuring, monitoring and better management of emissions inventory. The TARGET program includes: measurement of data, quality assurance and reports; communications and public relations; improved processes; risk management systems; development of emissions trading systems; and support of functional groups. Alcan has also implemented voluntary GHG emissions reductions measures, encourages broad participation of GHG emissions reduction initiatives, and promotes economic growth and long term durability. figs

  12. Modeling of policies for reduction of GHG emissions in energy sector using ANN: case study-Croatia (EU).

    Science.gov (United States)

    Bolanča, Tomislav; Strahovnik, Tomislav; Ukić, Šime; Stankov, Mirjana Novak; Rogošić, Marko

    2017-07-01

    This study describes the development of tool for testing different policies for reduction of greenhouse gas (GHG) emissions in energy sector using artificial neural networks (ANNs). The case study of Croatia was elaborated. Two different energy consumption scenarios were used as a base for calculations and predictions of GHG emissions: the business as usual (BAU) scenario and sustainable scenario. Both of them are based on predicted energy consumption using different growth rates; the growth rates within the second scenario resulted from the implementation of corresponding energy efficiency measures in final energy consumption and increasing share of renewable energy sources. Both ANN architecture and training methodology were optimized to produce network that was able to successfully describe the existing data and to achieve reliable prediction of emissions in a forward time sense. The BAU scenario was found to produce continuously increasing emissions of all GHGs. The sustainable scenario was found to decrease the GHG emission levels of all gases with respect to BAU. The observed decrease was attributed to the group of measures termed the reduction of final energy consumption through energy efficiency measures.

  13. Life Cycle Energy Consumption and Greenhouse Gas Emissions Analysis of Natural Gas-Based Distributed Generation Projects in China

    Directory of Open Access Journals (Sweden)

    Hansi Liu

    2017-10-01

    Full Text Available In this paper, we used the life-cycle analysis (LCA method to evaluate the energy consumption and greenhouse gas (GHG emissions of natural gas (NG distributed generation (DG projects in China. We took the China Resources Snow Breweries (CRSB NG DG project in Sichuan province of China as a base scenario and compared its life cycle energy consumption and GHG emissions performance against five further scenarios. We found the CRSB DG project (all energy input is NG can reduce GHG emissions by 22%, but increase energy consumption by 12% relative to the scenario, using coal combined with grid electricity as an energy input. The LCA also indicated that the CRSB project can save 24% of energy and reduce GHG emissions by 48% relative to the all-coal scenario. The studied NG-based DG project presents major GHG emissions reduction advantages over the traditional centralized energy system. Moreover, this reduction of energy consumption and GHG emissions can be expanded if the extra electricity from the DG project can be supplied to the public grid. The action of combining renewable energy into the NG DG system can also strengthen the dual merit of energy conservation and GHG emissions reduction. The marginal CO2 abatement cost of the studied project is about 51 USD/ton CO2 equivalent, which is relatively low. Policymakers are recommended to support NG DG technology development and application in China and globally to boost NG utilization and control GHG emissions.

  14. Sulphur dioxide and nitrogen oxides in industrial waste gases: emission, legislation and abatement

    International Nuclear Information System (INIS)

    Velzen, D. van

    1991-01-01

    Contains the proceedings of a Eurocourse held in Ispra in September 1990 concerning SO 2 and NO x emission, abatement and legislation. Aspects covered include: emission sources and quantities; atmospheric chemistry and dispersion of pollutants; European Community air pollution legislation; air pollution control technologies; costs of desulphurization and denoxing; and the situation in the USA and Japan. Individual papers are abstracted separately

  15. Costs of CO2 abatement in Egypt using both bottom-up and top-down approaches

    International Nuclear Information System (INIS)

    El Mahgary, Y.; Ibrahim, A.-F.; Shama, M.A.-F.

    1994-01-01

    Within the frame of UNEP's project on the Methodologies of Determining the Costs of Abatement of GHG emissions, a case study on Egypt was undertaken by the Technical Research Centre of Finland (VTT) in cooperation with the Egyptian Environment Affairs Authority (EEAA), together with an expert team from different Egyptian organizations. Both bottom-up and top-down approaches were used. Several measures/technologies, including energy conservation, fuel switching, use of renewable energy and material replacement, were considered to decrease CO 2 emissions. It was found that most of the measures were cost-effective, as a considerable potential for energy conservation exists in Egypt. The impact of energy conservation measures on the economy of the country was found to be positive using a macroeconomic model. (author)

  16. Potential options to reduce GHG emissions in Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, N.; Bonduki, Y.; Perdomo, M.

    1996-12-31

    The Government of Venezuela ratified the United Nations Framework Convention on Climate Change (UNFCCC) in December, 1994. The Convention requires all parties to develop and publish national inventories of anthropogenic greenhouse gas emissions (GHG) as well as national plans to reduce or control emissions, taking into account their common but differentiated responsibilities and their specific national and regional development priorities, objectives, and circumstances. Within this context, the Ministry of Environment and Renewable Natural Resources and the Ministry of Energy and Mines developed the `Venezuelan Case-Study to Address Climate Change`. The study was initiated in October 1993, with the financial and technical assistance of the Government of United States, through the U.S. Country Studies Program (USCSP), and the Global Environment Facility (GEF), through the United Nations Environment Programme (UNEP).

  17. Sustainable passenger road transport scenarios to reduce fuel consumption, air pollutants and GHG (greenhouse gas) emissions in the Mexico City Metropolitan Area

    International Nuclear Information System (INIS)

    Chavez-Baeza, Carlos; Sheinbaum-Pardo, Claudia

    2014-01-01

    This paper presents passenger road transport scenarios that may assist the MCMA (Mexico City Metropolitan Area) in achieving lower emissions in both criteria air pollutants (CO, NO x , NMVOC (non-methane volatile organic compounds), and PM 10 ) and GHG (greenhouse gas) (CH 4 , N 2 O and CO 2 ), while also promoting better mobility and quality of life in this region. We developed a bottom-up model to estimate the historical trends of energy demand, criteria air pollutants and GHG emissions caused by passenger vehicles circulating in the Mexico City Metropolitan Area (MCMA) in order to construct a baseline scenario and two mitigation scenarios that project their impact to 2028. Mitigation scenario “eff” considers increasing fuel efficiencies and introducing new technologies for vehicle emission controls. Mitigation scenario “BRT” considers a modal shift from private car trips to a Bus Rapid Transport system. Our results show significant reductions in air pollutants and GHG emissions. Incentives and environmental regulations are needed to enable these scenarios. - Highlights: • More than 4.2 million passenger vehicles in the MCMA (Mexico City Metropolitan Area) that represent 61% of criteria pollutants and 44% of GHG (greenhouse gas) emissions. • Emissions of CO, NO x and NMVOC (non-methane volatile organic compounds) in baseline scenario decrease with respect to its 2008 value because emission standards. • Emissions of PM 10 and GHG increase in baseline scenario. • Emissions of PM 10 and GHG decrease in eff + BRT scenario from year 2020. • Additional reductions are possible with better standards for diesel vehicles and other technologies

  18. Life cycle energy use and GHG emission assessment of coal-based SNG and power cogeneration technology in China

    International Nuclear Information System (INIS)

    Li, Sheng; Gao, Lin; Jin, Hongguang

    2016-01-01

    Highlights: • Life cycle energy use and GHG emissions are assessed for SNG and power cogeneration. • A model based on a Chinese domestic database is developed for evaluation. • Cogeneration shows lower GHG emissions than coal-power pathway. • Cogeneration has lower life cycle energy use than supercritical coal-power pathway. • Cogeneration is a good option to implement China’s clean coal technologies. - Abstract: Life cycle energy use and GHG emissions are assessed for coal-based synthetic natural gas (SNG) and power cogeneration/polygenereation (PG) technology and its competitive alternatives. Four main SNG applications are considered, including electricity generation, steam production, SNG vehicle and battery electric vehicle (BEV). Analyses show that if SNG is produced from a single product plant, the lower limits of its life cycle energy use and GHG emissions can be comparable to the average levels of coal-power and coal-BEV pathways, but are still higher than supercritical and ultra supercritical (USC) coal-power and coal-BEV pathways. If SNG is coproduced from a PG plant, when it is used for power generation, steam production, and driving BEV car, the life cycle energy uses for PG based pathways are typically lower than supercritical coal-power pathways, but are still 1.6–2.4% higher than USC coal-power pathways, and the average life cycle GHG emissions are lower than those of all coal-power pathways including USC units. If SNG is used to drive vehicle car, the life cycle energy use and GHG emissions of PG-SNGV-power pathway are both much higher than all combined coal-BEV and coal-power pathways, due to much higher energy consumption in a SNG driven car than in a BEV car. The coal-based SNG and power cogeneration technology shows comparable or better energy and environmental performances when compared to other coal-based alternatives, and is a good option to implement China’s clean coal technologies.

  19. Impact of electric range and fossil fuel price level on the economics of plug-in hybrid vehicles and greenhouse gas abatement costs

    International Nuclear Information System (INIS)

    Özdemir, Enver Doruk; Hartmann, Niklas

    2012-01-01

    In this paper, the energy consumption shares of plug-in hybrid vehicles (PHEVs) for electricity from the grid and conventional fuel depending on electric driving range are estimated. The resulting mobility costs and greenhouse gas (GHG) abatement costs per vehicle kilometer for the year 2030 are calculated and optimal electric driving range (which indicates the size of the battery) is found for different oil price levels with the help of a MATLAB based model for a typical compact passenger car (e.g. VW Golf). The results show that the optimum electric driving range for minimum mobility costs of a PHEV is between 12 and 32 km. Furthermore, optimum GHG abatement costs are achieved with an electric driving range between 16 and 23 km. These results are considerable lower than most market ready PHEVs (electric driving range of 50 to 100 km), which shows that the automobile industry should concentrate on shorter electric driving range for PHEVs in the near future to offer cost optimum mobility and low GHG abatement costs. However, the oil price level and the consumer driving habits impact heavily on the cost performance as well as the optimum electric driving range of plug-in hybrid vehicles. - Highlights: ► We analyze the energy consumption (and share of grid electricity) of plug-in hybrid vehicles. ► We analyzed the mobility costs and GHG abatement costs depending on electric driving range. ► Mobility costs of plug-in hybrid vehicles can be lower than those of conventional diesel vehicles in 2030. ► The optimum mobility costs are achieved with the electric driving range between 12 and 32 km. ► The optimum GHG abatement costs are achieved with the electric driving range between 16 and 23 km.

  20. Contribution of sugarcane bioenergy to the Country's greenhouse gas emission reduction

    Energy Technology Data Exchange (ETDEWEB)

    Leal, Manoel Regis Lima Verde; Seabra, Joaquim Eugenio A.; Cortez, Luis Augusto B.

    2012-07-01

    Throughout this book several alternatives to improve the sustainability of Brazilian sugarcane bioethanol have been grouped into four themes, as follows: agricultural-industrial technology paths; production systems, environment and land use; certification, indicators and impacts; energy and greenhouse gas balances. The main international legislation covering the qualification of bio fuels (Renewal Fuel Standard - Sfs in USA, Low Carbon Fuel Standard - LCFS in California and the Renewable Energy Directives in the EU) and the most important bio fuel certification programs are unanimous to indicate the greenhouse gas (GHG) abatement potential of bio fuels as a key parameter and the first step in the qualification system. This is easy to understand since bio fuels are considered as ona of the mitigation alternative for GHG emissions from the transport sector, responsible today for the 14% of global emissions, and from the energy source that accounts for 25% of global GHG emissions (WRI, 2009)

  1. Transportation and Greenhouse Gas Emissions Trading. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Steve Winkelman; Tim Hargrave; Christine Vanderlan

    1999-10-01

    The authors conclude in this report that an upstream system would ensure complete regulatory coverage of transportation sector emissions in an efficient and feasible manner, and as such represents a key component of a national least-cost GHG emissions abatement strategy. The broad coverage provided by an upstream system recommends this approach over vehicle-maker based approaches, which would not cover emissions from heavy-duty vehicles and the aviation, marine and off-road sub-sectors. The on-road fleet approach unfairly and inefficiently burdens vehicle manufacturers with responsibility for emissions that they cannot control. A new vehicles approach would exclude emissions from vehicles on the road prior to program inception. The hybrid approach faces significant technical and political complications, and it is not clear that the approach would actually change behavior among vehicle makers and users, which is its main purpose. They also note that a trading system would fail to encourage many land use and infrastructure measures that affect VMT growth and GHG emissions. They recommend that this market failure be addressed by complementing the trading system with a program specifically targeting land use- and infrastructure-related activities. A key issue that must be addressed in designing a national GHG control strategy is whether or not it is necessary to guarantee GHG reductions from the transport sector. Neither an upstream system nor a downstream approach would do so, since both would direct capital to the least-cost abatement opportunities wherever they were found. They review two reasons why it may be desirable to force transportation sector reductions: first, that the long-term response to climate change will require reductions in all sectors; and second, the many ancillary benefits associated with transportation-related, and especially VMT-related, emissions reduction activities. If policy makers find it desirable to establish transportation

  2. Life cycle GHG emissions of sewage sludge treatment and disposal options in Tai Lake Watershed, China

    International Nuclear Information System (INIS)

    Liu, Beibei; Wei, Qi; Zhang, Bing; Bi, Jun

    2013-01-01

    The treatment and disposal of sewage sludge generate considerable amounts of greenhouse gases (GHGs) and pose environmental and economic challenges to wastewater treatment in China. To achieve a more informed and sustainable sludge management, this study conducts a life cycle inventory to investigate the GHG performances of six scenarios involving various sludge treatment technologies and disposal strategies. These scenarios are landfilling (S1), mono-incineration (S2), co-incineration (S3), brick manufacturing (S4), cement manufacturing (S5), and fertilizer for urban greening (S6). In terms of GHG emissions, S2 demonstrates the best performance with its large offset from sludge incineration energy recovery, followed by S4 and S6, whereas S1 demonstrates the poorest performance primarily because of its large quantity of methane leaks. The scenario rankings are affected by the assumptions of GHG offset calculation. In most scenarios, GHG performance could be improved by using waste gas or steam from existing facilities for drying sludge. Furthermore, considering the GHG performance along with economic, health, and other concerns, S6 is recommended. We thus suggest that local governments promote the use of composted sludge as urban greening fertilizers. In addition, the use of sludge with 60% water content, in place of the current standard of 80%, in wastewater treatment plants is proposed to be the new standard for Tai Lake Watershed in China. - Highlights: ► Life-cycle GHG emissions of six sludge handling scenarios are examined. ► Scenario rankings are affected by the assumptions of GHG offset calculation. ► Using heat from existing facilities to dry sludge can improve GHG performance. ► Fertilizer for urban greening is recommended due to its integrated performance. ► The sludge water-content standard is suggested to changed from 80% to 60%

  3. Life cycle GHG emissions of sewage sludge treatment and disposal options in Tai Lake Watershed, China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Beibei [State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093 (China); Department of Geography and Environmental Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States); Wei, Qi [State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093 (China); Zhang, Bing, E-mail: Zhangb@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093 (China); Bi, Jun [State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093 (China)

    2013-03-01

    The treatment and disposal of sewage sludge generate considerable amounts of greenhouse gases (GHGs) and pose environmental and economic challenges to wastewater treatment in China. To achieve a more informed and sustainable sludge management, this study conducts a life cycle inventory to investigate the GHG performances of six scenarios involving various sludge treatment technologies and disposal strategies. These scenarios are landfilling (S1), mono-incineration (S2), co-incineration (S3), brick manufacturing (S4), cement manufacturing (S5), and fertilizer for urban greening (S6). In terms of GHG emissions, S2 demonstrates the best performance with its large offset from sludge incineration energy recovery, followed by S4 and S6, whereas S1 demonstrates the poorest performance primarily because of its large quantity of methane leaks. The scenario rankings are affected by the assumptions of GHG offset calculation. In most scenarios, GHG performance could be improved by using waste gas or steam from existing facilities for drying sludge. Furthermore, considering the GHG performance along with economic, health, and other concerns, S6 is recommended. We thus suggest that local governments promote the use of composted sludge as urban greening fertilizers. In addition, the use of sludge with 60% water content, in place of the current standard of 80%, in wastewater treatment plants is proposed to be the new standard for Tai Lake Watershed in China. - Highlights: ► Life-cycle GHG emissions of six sludge handling scenarios are examined. ► Scenario rankings are affected by the assumptions of GHG offset calculation. ► Using heat from existing facilities to dry sludge can improve GHG performance. ► Fertilizer for urban greening is recommended due to its integrated performance. ► The sludge water-content standard is suggested to changed from 80% to 60%.

  4. GHG emissions quantification at high spatial and temporal resolution at urban scale: the case of the town of Sassari (NW Sardinia - Italy)

    Science.gov (United States)

    Sanna, Laura; Ferrara, Roberto; Zara, Pierpaolo; Duce, Pierpaolo

    2014-05-01

    The European Union has set as priorities the fight against climate change related to greenhouse gas releases. The largest source of these emissions comes from human activities in urban areas that account for more than 70% of the world's emissions and several local governments intend to support the European strategic policies in understanding which crucial sectors drive GHG emissions in their city. Planning for mitigation actions at the community scale starts with the compilation of a GHG inventories that, among a wide range of measurement tools, provide information on the current status of GHG emissions across a specific jurisdiction. In the framework of a regional project for quantitative estimate of the net exchange of CO2 (emissions and sinks) at the municipal level in Sardinia, the town of Sassari represents a pilot site where a spatial and temporal high resolution GHG emissions inventory is built in line with European and international standard protocols to establish a baseline for tracking emission trends. The specific purpose of this accurate accounting is to obtain an appropriate allocation of CO2 and other GHG emissions at the fine building and hourly scale. The aim is to test the direct measurements needed to enable the construction of future scenarios of these emissions and for assessing possible strategies to reduce their impact. The key element of the methodologies used to construct this GHG emissions inventory is the Global Protocol for Community-Scale Greenhouse Gas Emissions (GPC) (March 2012) that identifies four main types of emission sources: (i) Stationary Units, (ii) Mobile Units, (iii) Waste, and (iv) Industrial Process and Product Use Emissions. The development of the GHG emissions account in Sassari consists in the collection of a range of alternative data sources (primary data, IPCC emission factors, national and local statistic, etc.) selected on the base on relevance and completeness criteria performed for 2010, as baseline year, using

  5. Energy consumption and GHG emissions from the upstream oil and gas sector in Canada: an overview

    International Nuclear Information System (INIS)

    Bhargava, A.; Timilsina, G.

    2004-01-01

    After electricity generation, the oil and gas sector is the most emission intensive industry in Canada. This paper presents statistical data and research by the Canadian Energy Research Institute (CERI). The aim of the research was to provide a comparative evaluation between Alberta's energy consumption and Canada-wide consumption. Data revealed that energy consumption and greenhouse gas (GHG) emissions have increased faster in Alberta in comparison to the rest of Canada, but have slowed since 1997, while emissions in the rest of Canada still continued to increase. Aggregate emission intensities were presented. It was noted that there were no significant changes in fuel mix in either Alberta or the country as a whole. Key factors contributing to rapid increase in energy consumption and GHG emissions after 1996 were: increased energy intensive production and increased use of natural gas. Charts of oil and gas use were presented in energy consumption, economic output and GHG emissions, also indicating that Canadian trends followed Alberta trends. A list of reduction measures in the oil and gas sector were provided, with figures of total reductions and cost. Future actions were outlined and included: ratification of the Kyoto Accord, the negotiation of sectoral agreements, important elements such as cost cap and percentages of reduction; the limited ability to reduce emissions at lower cost per tonne within the oil and gas sector; technology breakthroughs; and adoption of new practices such as the use of alternate fuels in energy intensive processes. tabs, figs

  6. Energy consumption and GHG emissions from the upstream oil and gas sector in Canada: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Bhargava, A.; Timilsina, G. [Canadian Energy Research Inst., Calgary, AB (Canada)

    2004-07-01

    After electricity generation, the oil and gas sector is the most emission intensive industry in Canada. This paper presents statistical data and research by the Canadian Energy Research Institute (CERI). The aim of the research was to provide a comparative evaluation between Alberta's energy consumption and Canada-wide consumption. Data revealed that energy consumption and greenhouse gas (GHG) emissions have increased faster in Alberta in comparison to the rest of Canada, but have slowed since 1997, while emissions in the rest of Canada still continued to increase. Aggregate emission intensities were presented. It was noted that there were no significant changes in fuel mix in either Alberta or the country as a whole. Key factors contributing to rapid increase in energy consumption and GHG emissions after 1996 were: increased energy intensive production and increased use of natural gas. Charts of oil and gas use were presented in energy consumption, economic output and GHG emissions, also indicating that Canadian trends followed Alberta trends. A list of reduction measures in the oil and gas sector were provided, with figures of total reductions and cost. Future actions were outlined and included: ratification of the Kyoto Accord, the negotiation of sectoral agreements, important elements such as cost cap and percentages of reduction; the limited ability to reduce emissions at lower cost per tonne within the oil and gas sector; technology breakthroughs; and adoption of new practices such as the use of alternate fuels in energy intensive processes. tabs, figs.

  7. A dynamic modelling approach to evaluate GHG emissions from wastewater treatment plants

    DEFF Research Database (Denmark)

    Flores-Alsina, Xavier; Arnell, Magnus; Amerlinck, Youri

    2012-01-01

    The widened scope for wastewater treatment plants (WWTP) to consider not only water quality and cost, but also greenhouse gas (GHG) emissions and climate change calls for new tools to evaluate operational strategies/treatment technologies. The IWA Benchmark Simulation Model no. 2 (BSM2) has been ...

  8. Comparative life cycle GHG emissions from local electricity generation using heavy oil, natural gas, and MSW incineration in Macau

    DEFF Research Database (Denmark)

    Song, Qingbin; Wang, Zhishi; Li, Jinhui

    2018-01-01

    Wh, respectively. The mean value for aggregated GHG emissions of the local power grid (imported electricity excluded) was 0.69kg CO2 per kWh, noticeably lower than many neighboring countries and regions, such as mainland China, Taiwan, and Japan. Our scenario analysis indicated that the development of natural gas......, for changing GHG emissions, and should be allocated to the highest priority for GHG reduction. All the obtained results could be useful for decisions makers, with providing a robust support for assessing the environmental performance and drawing up the appropriate improvement planning of power systems....

  9. Analyzing the Effects of Car Sharing Services on the Reduction of Greenhouse Gas (GHG Emissions

    Directory of Open Access Journals (Sweden)

    Jiyeon Jung

    2018-02-01

    Full Text Available This study examines the environmental impacts of roundtrip car sharing services by investigating transportation behavior. Car sharing should contribute to reduced greenhouse gas GHG emissions; however, such schemes include both positive and negative environmental effects, including: (1 reduced CO2e (carbon dioxide equivalent from substituting private vehicle use for more fuel-efficient car sharing vehicles, (2 increased CO2e as car-less individuals switch from public transit to car sharing vehicles and (3 reduced CO2e due to fewer vehicles. This study examines the impacts of this modal shift on greenhouse gas (GHG emissions using three types of models: a mixed logit model to analyze car sharing service preferences; a binary logit model to analyze whether individuals are willing to forgo vehicle ownership or planned purchases to use car sharing services; and a linear regression to determine how much private vehicle or public transportation use would be replaced by car sharing and the resulting effects on mobility. Total emissions from the current car sharing market equal 1,025,589.36 t CO2e/year. However, an increase in electric vehicle (EV charging stations to 50% of the number of gasoline-fuel stations would increase the probability of electric car sharing vehicle use, thereby reducing emissions by 655,773 t CO2e. This study shows that forgoing vehicle purchases does not offset the increased GHG emissions caused by the shift from public transportation or private vehicle use to car sharing.

  10. Optimal Coordination Strategy of Regional Vertical Emission Abatement Collaboration in a Low-Carbon Environment

    Directory of Open Access Journals (Sweden)

    Daming You

    2018-02-01

    Full Text Available This study introduces a time factor into a low-carbon context, and supposes the contamination control state of local government and the ability of polluting enterprise to abate emissions as linear increasing functions in a regional low-carbon emission abatement cooperation chain. The local government effectuates and upholds the low-carbon development within the jurisdiction that is primarily seeking to transform regional economic development modes, while the polluting enterprise abates the amounts of emitted carbon in the entire period of product through simplifying production, facilitating decontamination, and adopting production technology, thus leading to less contamination. On that basis, we infer that the coordinated joint carbon reduction model and two decentralization contracts expound the dynamic coordination strategy for a regional cooperation chain in terms of vertical carbon abatement. Furthermore, feedback equilibrium strategies that are concerned with several diverse conditions are compared and analyzed. The main results show that a collaborative centralized contract is able to promote the regional low-carbon cooperation chain in order to achieve a win–win situation in both economic and environmental performance. Additionally, the optimal profits of the entire regional low-carbon cooperation channel under an integration scenario evidently outstrip that of two non-collaborative decentralization schemes. Eventually, the validity of the conclusions is verified with a case description and numerical simulation, and the sensitivity of the relevant parameters is analyzed in order to lay a theoretical foundation and thus facilitate the sustainable development of a regional low-carbon environment.

  11. GHG trading awaits early action credit

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    The challenges facing the Canadian government in implementing a green house gas (GHG) emissions trading program were discussed. The government of Canada is proposing to establish a program offering credit for early action on GHG reduction. However, the program is proving to be difficult to design because Canada's national implementation strategy for climate change has not yet been defined. The program is intended to reveal how emitters can invest in GHG reduction now, and use them against future regulations limiting emissions. The intention is to design the program on the principle that any company which decreases GHG emissions below its 'business-as-usual' level will receive a credit which can later be sold to another source which wants to offset its emissions. Nevertheless, the government is looking for real reductions in the sense that it is trying to bend the 'business-as-usual' forecast down towards the Kyoto targets, and is trying to ensure that the system is a rigorous one before any credits are issued

  12. Efficiency and abatement costs of energy-related CO2 emissions in China: A slacks-based efficiency measure

    International Nuclear Information System (INIS)

    Choi, Yongrok; Zhang, Ning; Zhou, P.

    2012-01-01

    Highlights: ► We employ a slacks-based DEA model to estimate the energy efficiency and shadow prices of CO 2 emissions in China. ► The empirical study shows that China was not performing CO 2 -efficiently. ► The average of estimated shadow prices of CO 2 emissions is about $7.2. -- Abstract: This paper uses nonparametric efficiency analysis technique to estimate the energy efficiency, potential emission reductions and marginal abatement costs of energy-related CO 2 emissions in China. We employ a non-radial slacks-based data envelopment analysis (DEA) model for estimating the potential reductions and efficiency of CO 2 emissions for China. The dual model of the slacks-based DEA model is then used to estimate the marginal abatement costs of CO 2 emissions. An empirical study based on China’s panel data (2001–2010) is carried out and some policy implications are also discussed.

  13. Save water to save carbon and money: developing abatement costs for expanded greenhouse gas reduction portfolios.

    Science.gov (United States)

    Stokes, Jennifer R; Hendrickson, Thomas P; Horvath, Arpad

    2014-12-02

    The water-energy nexus is of growing interest for researchers and policy makers because the two critical resources are interdependent. Their provision and consumption contribute to climate change through the release of greenhouse gases (GHGs). This research considers the potential for conserving both energy and water resources by measuring the life-cycle economic efficiency of greenhouse gas reductions through the water loss control technologies of pressure management and leak management. These costs are compared to other GHG abatement technologies: lighting, building insulation, electricity generation, and passenger transportation. Each cost is calculated using a bottom-up approach where regional and temporal variations for three different California water utilities are applied to all alternatives. The costs and abatement potential for each technology are displayed on an environmental abatement cost curve. The results reveal that water loss control can reduce GHGs at lower cost than other technologies and well below California's expected carbon trading price floor. One utility with an energy-intensive water supply could abate 135,000 Mg of GHGs between 2014 and 2035 and save--rather than spend--more than $130/Mg using the water loss control strategies evaluated. Water loss control technologies therefore should be considered in GHG abatement portfolios for utilities and policy makers.

  14. A Methodology for Constructing Marginal Abatement Cost Curves for Climate Action in Cities

    Directory of Open Access Journals (Sweden)

    Nadine Ibrahim

    2016-03-01

    Full Text Available As drivers of climate action, cities are taking measures to reduce greenhouse gas (GHG emissions, which if left unabated pose a challenge to meeting long-term climate targets. The economics of climate action needs to be at the forefront of climate dialogue to prioritize investments among competing mitigation measures. A marginal abatement cost (MAC curve is an effective visualization of climate action that initiates a technical and economic discussion of the cost-effectiveness and abatement potential of such actions among local leaders, policy makers, and climate experts. More commonly demonstrated for countries, MAC curves need to be developed for cities because of their heterogeneity, which vary in their urban activities, energy supply, infrastructure stock, and commuting patterns. The methodology for constructing bottom-up MAC curves for cities is presented for technologies that offer fuel switching and/or energy efficiencies, while considering technology lifetimes, city-specific electricity and fuel prices, and emission intensities. Resulting MAC curves are unique to every city, and chart the pathway towards low-carbon growth by prioritizing measures based on cost-effectiveness. A case study of Toronto’s climate targets demonstrates the prioritization of select technologies. Leveraging MAC curves to support climate programs enables cities to strategically invest in financing climate action and designing incentives.

  15. Scenarios for the use of GHG-reduction instruments - how can policy-instruments as carbon emission trading and tradable green certificates be used simultaneously to reach a common GHG-reduction target?

    International Nuclear Information System (INIS)

    Morthorst, P.E.

    2000-01-01

    According to the agreed burden sharing in the EU, a number of member states have to reduce their emissions of greenhouse gases substantially. To achieve these reductions various policy-instruments - national as well as international - are on hand. Two international instruments are emphasized in this paper: tradable quotas for limiting carbon emissions and tradable green certificates for promoting the deployment of renewable energy technologies. In the analyses of these two instruments two main questions are considered: (1) Will there be any international trade in green certificates, if no GHG-credits are attached to them? (2) Will it make any difference if the EU sets the targets to be achieved by the two instruments or alternatively the individual member countries do? An incentive-analysis in which four scenarios are set up and discussed is performed for the EU member states. The main conclusion is that if no GHG-credits are attached to the green certificates there seems to be limited of no incentives for a permanent international trade in certificates. On the other hand, if GHG-credits are attached to the certificates an efficient international trade will take place regardless of whether the EU or the member countries fix the quotas. Thus, the use of international instruments as tradable green certificates and tradable emissions permits will not lead to an optimal GHG-reduction strategy unless GHG-credits are attached to the certificates. (author)

  16. Availability of Biomass Residues for Co-Firing in Peninsular Malaysia: Implications for Cost and GHG Emissions in the Electricity Sector

    OpenAIRE

    W. Michael Griffin; Jeremy Michalek; H. Scott Matthews; Mohd Nor Azman Hassan

    2014-01-01

    Fossil fuels comprise 93% of Malaysia’s electricity generation and account for 36% of the country’s 2010 Greenhouse Gas (GHG) emissions. The government has targeted the installation of 330 MW of biomass electricity generation capacity by 2015 to avoid 1.3 Mt of CO 2 emissions annually and offset some emissions due to increased coal use. One biomass option is to co-fire with coal, which can result in reduced GHG emissions, coal use, and costs of electricity. A linear optimization cost model wa...

  17. Sensitivity of Technical Choices on the GHG Emissions and Expended Energy of Hydrotreated Renewable Jet Fuel from Microalgae

    Directory of Open Access Journals (Sweden)

    Patouillard Laure

    2016-01-01

    Full Text Available Taking into account the environmental impacts of biofuel production is essential to develop new and innovative low-emission processes. The assessment of life cycle GreenHouse Gas (GHG emissions of biofuel is mandatory for the countries of the European Union. New biomass resources that hardly compete with food crops are been developed increasingly. Microalgae are an interesting alternative to terrestrial biomass thanks to their high photosynthetic efficiency and their ability to accumulate lipids. This article provides an analysis of potential environmental impacts of the production of algal biofuel for aviation using the Life Cycle Assessment (LCA. Evaluated impacts are GHG emissions and the primary energy consumption, from extraction of raw materials to final waste treatment. This study compared two management choices for oilcakes generated after oil extraction from microalgae. In the first system, these cakes are treated by energetic allocation and in the second by anaerobic digestion. In both cases, the steps of cultivation and harvesting have the highest impact on the results. Sensitivity analyzes are performed on technical choices of operating systems (choice of the type of nutrients, mode of harvesting, drying and oil extraction as well as a Monte-Carlo analysis on key parameter values for GHG emissions (concentration of microalgae in ponds, productivity and oil content. The results highlight the impact of the use of chemical fertilizers and the importance of the concentration of algae on GHG emissions and energy consumption.

  18. Urban GHG emissions and resource flows: Methods for understanding the complex functioning of cities

    International Nuclear Information System (INIS)

    Yetano Roche, María

    2015-01-01

    This paper sums up the recent developments in concepts and methods being used to measure the impacts of cities on environmental sustainability. It differentiates between a dominant trend in research literature that concentrates on the accounting and allocation of greenhouse gas (GHG) emissions and energy use to cities, and a re-emergence of studies focusing on the direct and indirect urban material and resource flows. The availability of reliable data and standard protocols is greater in the GHG accounting field and continues to grow rapidly

  19. Potential impact on air pollution from ambitious national CO2 emission abatement strategies in the Nordic countries – environmental links between the UNFCCC and the UNECE – CLRTAP

    International Nuclear Information System (INIS)

    Åström, Stefan; Tohka, Antti; Bak, Jesper; Lindblad, Maria; Arnell, Jenny

    2013-01-01

    This article presents results from a meta-study of Nordic low carbon dioxide (CO 2 ) emission scenarios. The focus of the study was to explore possible environmental impacts if selected Nordic low CO 2 emission scenarios were achieved by 2020. The impacts of concern were climate change, acidification, eutrophication and human health. Results from this study indicate that large scale reduction of CO 2 emissions by 2020 in a Nordic energy system requires large scale penetration of technical measures and structural changes. The environmental improvements achieved would most often facilitate achievement of air pollution targets as well as post-Kyoto targets for greenhouse gas (GHG) emissions. All scenarios do, however, not imply co-benefits between air pollution and CO 2 emission reductions and the net impact on climate change could be smaller than anticipated. A conclusion is that co-benefits and risks for trade-offs between air quality and climate change should be emphasised in the development of low-CO 2 energy and emission strategies. - Highlights: ► CO 2 abatement strategies differ in impact on environment, human health and climate. ► Bio fuel CO 2 strategies can imply smaller climate and environmental benefits. ► Nordic ‘clean’ electricity export can give environmental benefits if replacing coal.

  20. Emerging biorefinery technologies for Indian forest industry to reduce GHG emissions.

    Science.gov (United States)

    Sharma, Naman; Nainwal, Shubham; Jain, Shivani; Jain, Siddharth

    2015-11-01

    The production of biofuels as alternative energy source over fossil fuels has gained immense interest over the years as it can contribute significantly to reduce the greenhouse gas (GHG) emissions from energy production and utilization. Also with rapidly increasing fuel price and fall in oil wells, the present scenario forces us to look for an alternative source of energy that will help us in the operation of industrial as well as the transportation sector. The pulp mills in India are one of the many options. The pulp mills in India can help us to produce bio-fuels by thermo-chemical/biochemical conversion of black liquor and wood residues. These technologies include extraction of hemi-cellulose from wooden chips and black liquor, lignin from black liquor, methanol from evaporator condensates, biogas production from waste sludge, syngas production from biomass using gasification and bio-oil production from biomass using pyrolysis. The objective of this paper is to overview these emerging bio-refinery technologies that can be implemented in Indian Forest Industry to get bio-fuels, bio-chemicals and bio-energy to reduce GHG emissions. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Reassessing the Links between GHG Emissions, Economic Growth, and the UNFCCC: A Difference-in-Differences Approach

    Directory of Open Access Journals (Sweden)

    Eren Cifci

    2018-01-01

    Full Text Available International climate agreements such as the Kyoto Protocol of 1997 and, more recently, the Paris Climate Agreement are fragile because, at a national level, political constituencies’ value systems may conflict with the goal of reducing greenhouse gas (GHG emissions to sustainable levels. Proponents cite climate change as the most pressing challenge of our time, contending that international cooperation will play an essential role in addressing this challenge. Political opponents argue that the disproportionate requirements on developed nations to shoulder the financial burden will inhibit their economic growth. We find empirical evidence that both arguments are likely to be correct. We use standard regression techniques to analyze a multi-country dataset of GHG emissions, GDP per capita growth, and other factors. We estimate that after the Kyoto Protocol (KP entered into force ‘Annex I’ countries reduced GHG emissions on average by roughly 1 million metric tons of CO2 equivalent (MTCO2e, relative to non-Annex I countries. However, our estimates reveal that these countries also experienced an average reduction in GDP per capita growth rates of around 1–2 percentage points relative to non-Annex I countries.

  2. Understanding the issues around quantifying GHG emissions in the financial sector

    International Nuclear Information System (INIS)

    Jacono, Caline; Poivet, Romain; Havette, Didier; Maille, Catherine; Jaubert, Nathalie; Grandjean, Alain; Cottenceau, Jean-Baptiste; Finidori, Esther; Le Teno, Helene; Cochard, Eric; Sanchez, Thomas; Michaux, Elisabeth; Courcier, Jerome; Marie Lapalle; Guez, Herve; Mia, Ladislas; Agnes Guiral; Martinez, Emmanuel; Rose, Antoine; Breton, Herve; Meyssonier, Guillaume; Arndt, Matthew; Saichs, Nancy; Desfosses, Philippe; Bonnet, Olivier; Rouchon, Jean-Philippe; Smart, Lauren; Lenoel, Benjamin; Dupre, Stanislas; Chenet, Hugues; Lavaud, Patricia; Laviale, Michel; Lucas-Leclin, Valery; Bernasconi, Maxime; Merlin, Alexis; Delettang, Catherine; Gerardi, Anne

    2016-01-01

    In the face of climate change, the financial sector shows a need to have access to methods and tools for quantifying GHG emissions. This guide proposes to address multiple needs of financial institutions (Investment banks, insurers, retail bank, commercial bank, asset managers...) in terms of financed emissions quantification. It meets two objectives: Make formal methodological recommendations for financial institutions about their operating related emissions, and propose methodological recommendations to quantify financed emissions (Scop3 - Poste 15 'Investments'). The guide is divided in three parts. Volume 1 gives background, identifies sectorial challenges related to climate change and offers an overview of the main existing quantification methods and tools. Volume 2 offers practical and operational guidance for estimating emissions from organisation's back-office functions into the financial sector. Volume 3 (through case studies) offers methodological information to quantify the financed emissions through a 'top-down' approach, with an 'excel' tool to calculate emission factors related to this method

  3. Solar energy and the abatement of atmospheric emissions

    International Nuclear Information System (INIS)

    Mirasgedis, S.; Diakoulaki, D.; Assimacopoulos, D.

    1996-01-01

    In spite of the fact that solar energy is a ''clean'' energy form, gaseous pollutants are emitted during the manufacturing of the systems necessary for its utilisation. An attempt is made in this paper to estimate the level of atmospheric pollutants emitted during the successive stages which make up the manufacture process for solar water heating (SWH) systems, and to evaluate these results in comparison with the respective pollutant emission levels attributed to the generation of electricity in Greece's conventional power plants. As energy consumption is recognised as the main source of atmospheric pollution, a Life Cycle Analysis (LCA) method was applied, focusing on the most energy-consuming stages of the SWH system production process. The conclusions of the analysis indicate that the emissions of gaseous pollutants associated with the utilisation of solar energy are considerably lower than those caused by the production of electricity in conventional systems, thereby substantiating that solar energy utilisation can make a notable contribution to the abatement of atmospheric pollution. (author)

  4. Activities of four bus terminals of Semarang City gateway and the related GHG emission

    Science.gov (United States)

    Huboyo, H. S.; Wardhana, I. W.; Sutrisno, E.; Wangi, L. S.; Lina, R. A.

    2018-01-01

    The activities of the bus terminal, including loading-unloading passengers, bus idling, and bus movements at the terminal, will emit GHG’s emission. This research analyzes GHG emission from four terminals, i.e., Mangkang, Terboyo, Penggaron, and Sukun in Semarang City. The emission was estimated by observing detail activities of public transport means, especially for moving and idling time. The emission was calculated by Tier 2 method based on the vehicle type as well as fuel consumption. The highest CO2e during vehicle movements at Sukun area was contributed by large bus about 2.08 tons/year, while at Terboyo terminal was contributed by medium bus about 347.97 tons/year. At Mangkang terminals, the highest emission for vehicle movements was attributed by medium bus as well of about 53.18 tons/year. At last, Penggaron terminal’s highest GHG emission was attributed by BRT about 26.47 tons/year. During idling time, the highest contributor to CO2e was the large bus at the three terminals, i.e., Sukun of 43.53 tons/year, Terboyo of 196.56 tons/year, and Mangkang of 84.26 tons/year, while at Penggaron, BRT dominated with CO2e of 26.47 tons/year. The management of public transport in terminals is crucial to mitigate the emission related to bus terminals activities.

  5. EU emission trading scheme and the effect on the price of electricity

    International Nuclear Information System (INIS)

    2004-01-01

    The Electricity Market Working Group and the Climate Change Policy Working Group of the Nordic Council of Ministers, has commissioned ECON Analysis to prepare this report. The report analyses the demand and supply of GHG emission allowances and the price of emission allowances for the period 2005-2007 and 2008-2012 and the effect on the electricity price in the Nordic electricity market. The demand for emissions allowances has then been estimated for different scenarios, with different assumption on burden sharing between sectors and international participation and the supply of emission allowances is determined by the marginal abatement costs. Based on available information on abatement costs the supply of allowances is then estimated. The market balance between the demand and supply for allowances then determines the price of emission allowances. The effect on the electricity price is simulated with ECON's model for the Nordic power market to quantitatively estimate the effect from emissions trading on the electricity price, production, consumption, trade, etc. (BA)

  6. Alternative policy impacts on US GHG emissions and energy security: A hybrid modeling approach

    International Nuclear Information System (INIS)

    Sarica, Kemal; Tyner, Wallace E.

    2013-01-01

    This study addresses the possible impacts of energy and climate policies, namely corporate average fleet efficiency (CAFE) standard, renewable fuel standard (RFS) and clean energy standard (CES), and an economy wide equivalent carbon tax on GHG emissions in the US to the year 2045. Bottom–up and top–down modeling approaches find widespread use in energy economic modeling and policy analysis, in which they differ mainly with respect to the emphasis placed on technology of the energy system and/or the comprehensiveness of endogenous market adjustments. For this study, we use a hybrid energy modeling approach, MARKAL–Macro, that combines the characteristics of two divergent approaches, in order to investigate and quantify the cost of climate policies for the US and an equivalent carbon tax. The approach incorporates Macro-economic feedbacks through a single sector neoclassical growth model while maintaining sectoral and technological detail of the bottom–up optimization framework with endogenous aggregated energy demand. Our analysis is done for two important objectives of the US energy policy: GHG reduction and increased energy security. Our results suggest that the emission tax achieves results quite similar to the CES policy but very different results in the transportation sector. The CAFE standard and RFS are more expensive than a carbon tax for emission reductions. However, the CAFE standard and RFS are much more efficient at achieving crude oil import reductions. The GDP losses are 2.0% and 1.2% relative to the base case for the policy case and carbon tax. That difference may be perceived as being small given the increased energy security gained from the CAFE and RFS policy measures and the uncertainty inherent in this type of analysis. - Highlights: • Evaluates US impacts of three energy/climate policies and a carbon tax (CT) • Analysis done with bottom–up MARKAL model coupled with a macro model • Electricity clean energy standard very close to

  7. 50% REDUCTION IN GLOBAL GHG EMISSION BY 2050 AND ITS IMPLICATION

    Science.gov (United States)

    Fujimori, Shinichiro; Masui, Toshihiko; Matsuoka, Yuzuru

    To prevent the global temperature increase by two degrees, global greenhouse gas emission in 2050 should be cut by half relative to its 1990 level. This study shows following three things by using multi regions and sectors recursive dynamic type computable general equilibrium model. One is the feasibility of that global emission target. The others are the counter measures and the impact on the macro economy, if that target were feasible. In addition, the scenarios with and without international emission trading are implemented and the effect of the trading is analyzed. As a result, that target can be achieved. The marginal abatement cost is 750/tCO2-eq in 2050. Energy efficiency improvement, renewable energy and carbon capture and storage technologies are the main players as counter measures. If the emission trading is available freely, GDP loss is 4.5% globally in 2050. Otherwise, the loss is increased to 6.1%. The emission trading mechanism is also one of the important measures.

  8. A modified GHG intensity indicator: Toward a sustainable global economy based on a carbon border tax and emissions trading

    International Nuclear Information System (INIS)

    Farrahi Moghaddam, Reza; Farrahi Moghaddam, Fereydoun; Cheriet, Mohamed

    2013-01-01

    It will be difficult to gain the agreement of all the actors on any proposal for climate change management, if universality and fairness are not considered. In this work, a universal measure of emissions to be applied at the international level is proposed, based on a modification of the Greenhouse Gas Intensity (GHG-INT) measure. It is hoped that the generality and low administrative cost of this measure, which we call the Modified Greenhouse Gas Intensity measure (MGHG-INT), will eliminate any need to classify nations. The core of the MGHG-INT is what we call the IHDI-adjusted Gross Domestic Product (IDHIGDP), based on the Inequality-adjusted Human Development Index (IHDI). The IDHIGDP makes it possible to propose universal measures, such as MGHG-INT. We also propose a carbon border tax applicable at national borders, based on MGHG-INT and IDHIGDP. This carbon tax is supported by a proposed global Emissions Trading System (ETS). The proposed carbon tax is analyzed in a short-term scenario, where it is shown that it can result in a significant reduction in global emissions while keeping the economy growing at a positive rate. In addition to annual GHG emissions, cumulative GHG emissions over two decades are considered with almost the same results. - Highlights: ► An IHDI-adjusted GDP (IHDIGDP) is introduced to universally account the activities of nations. ► A modified GHG emission intensity (MGHG-INT) is introduced based on the IHDIGDP. ► Based on green and red scenarios, admissible emissions and RED percentage are introduced. ► The RED percentage is used to define a border carbon tax (BCT) and emission trading system. ► The MGHG-INT can provide a universal control on emissions while allowing high economical growth

  9. Approximated EU GHG inventory: Early estimates for 2011

    Energy Technology Data Exchange (ETDEWEB)

    Herold, A. [Oeko-Institut (Oeko), Freiburg (Germany); Fernandez, R. [European Environment Agency (EEA), Copenhagen (Denmark)

    2012-10-15

    The objective of this report is to provide an early estimate of greenhouse gas (GHG) emissions in the EU-15 and EU-27 for the year 2011. The official submission of 2011 data to the United Nations Framework Convention on Climate Change (UNFCCC) will occur in 2013. In recent years, the EEA and its European Topic Centre on Air Pollution and Climate Change Mitigation have developed a methodology to estimate GHG emissions using a bottom up approach - based on data or estimates for individual countries, sectors and gases - to derive EU GHG estimates in the preceding year (t-1). For transparency, this report shows the country-level GHG estimates from which the EU estimates have been derived. The 2011 estimates are based on the latest activity data available at country level and assume no change in emission factors or methodologies as compared to the official 2012 submissions to UNFCCC (which relate to emissions in 2010). Some Member States estimate and publish their own early estimates of GHG emissions for the preceding year. Where such estimates exist they are clearly referenced in this report in order to ensure complete transparency regarding the different GHG estimates available. Member State early estimates were also used for quality assurance and quality control of the EEA's GHG early estimates for 2011. Finally, the EEA has also used the early estimates of 2011 GHG emissions produced by EEA member countries to assess progress towards the Kyoto targets in its annual trends and projections report (due to be published alongside the present report). In that report, the EEA's early estimates for 2011 were only used for countries that lack their own early estimates to track progress towards national and EU targets. (LN)

  10. Approximated EU GHG inventory: Early estimates for 2010

    Energy Technology Data Exchange (ETDEWEB)

    Herold, A.; Busche, J.; Hermann, H.; Joerss, W.; Scheffler, M. (OEko-Institut, Freiburg (Germany))

    2011-10-15

    The objective of this report is to provide an early estimate of greenhouse gas (GHG) emissions in the EU-15 and EU-27 for the year 2010. The official submission of 2010 data to the United Nations Framework Convention on Climate Change (UNFCCC) will occur in 2012. In recent years, the EEA and its European Topic Centre on Air Pollution and Climate Change Mitigation have developed a methodology to estimate GHG emissions using a bottom up approach - based on data or estimates for individual countries, sectors and gases - to derive EU GHG estimates in the preceding year (t-1). For transparency, this report shows the country-level GHG estimates from which the EU estimates have been derived. The 2010 estimates are based on the latest activity data available at country level and assume no change in emission factors or methodologies as compared to the official 2011 submissions to UNFCCC (which re-late to emissions in 2009). Some Member States estimate and publish their own early estimates of GHG emissions for the preceding year. Where such estimates exist they are clearly referenced in this report in order to ensure complete transparency regarding the different GHG estimates available. Member State early estimates were also used for quality assurance and quality control of the EEA's GHG early estimates for 2010. Finally, EEA has also used the early estimates of 2010 GHG emissions produced by EEA member countries to assess progress towards the Kyoto targets in its annual trends and projections report (due to be published alongside the present report). In that report, the EEA's early estimates for 2010 were only used for countries that lack their own early estimates to track progress towards national and EU targets. (Author)

  11. Freer markets and the abatement of carbon emissions. The electricity-generating sector in India

    International Nuclear Information System (INIS)

    Khanna, Madhu; Zilberman, David

    1999-01-01

    This paper develops a framework to explore the implications of trade and domestic policy distortions for the magnitude of carbon emissions and for the welfare costs of abating these emissions. An application to the electricity-generating sector in India shows that economic policy reforms can also be effective environmental policy instruments and reduce carbon emissions even in the absence of an emissions tax. This reduction in emissions is accompanied by an increase in domestic welfare, an increase in electricity output, and conservation of coal. Coordinating trade and domestic policy reform with an emissions tax policy reduces emissions further, while leading to gains in welfare that are greater than those under an emissions tax policy alone

  12. Estimation of greenhouse gas (GHG) emission and energy use efficiency (EUE) analysis in rainfed canola production (case study: Golestan province, Iran)

    International Nuclear Information System (INIS)

    Kazemi, Hossein; Bourkheili, Saeid Hassanpour; Kamkar, Behnam; Soltani, Afshin; Gharanjic, Kambiz; Nazari, Noor Mohammad

    2016-01-01

    Increasing the use of energy inputs in agricultural section has been led to numerous environmental concerns such as greenhouse gas (GHG) emissions, high consumption of non-renewable resources, loss of biodiversity and environment pollutions. The study was aimed to analyze the energy use efficiency (EUE) and estimation of GHG emissions from rainfed–based canola production systems (RCPSs) in Iran. In this study, data were collected from 35 farms in Golestan province (northeast of Iran) by a face to face questionnaire performed and statistical yearbooks of 2014. The amount of GHG emissions (per hectare) from inputs used in RCPSs was calculated using CO 2 emissions coefficient of agricultural inputs. Results showed that the EUE and net energy (NE) were as 3.44 and 35,537.81 MJ ha −1 , respectively. The value of these indices for the study area indicated that surveyed fields are approximately efficient in the use of energy for canola production. The highest share of energy consumption belonged to nitrogen fertilizer (42.09%) followed by diesel fuel (39.81%). In production of rainfed canola, GHG emission was estimated as 1009.91 kg CO 2 equivalent per hectare. Based on the results, nitrogen fertilizer (44.15%), diesel fuel (30.16%) and machinery (14.49%) for field operations had the highest share of GHG emission. The total consumed energy by inputs could be classified as direct energy (40.09%), and indirect energy (59.91%) or renewable energy (2.02%) and nonrenewable energy (97.98%). These results demonstrate that the share of renewable energies in canola production is very low in the studied region and agriculture in Iran is very much dependent on non-renewable energies. In this study, the energy use status in RCPSs has analyzed and the main involved causes have been interpreted. - Highlights: • Fertilizers had the highest share in GHG emission. • The share of renewable energy was low in canola production. • Canola production is efficient in Iran.

  13. Modeling the Heterogeneous Effects of GHG Mitigation Policies on Global Agriculture and Forestry

    Science.gov (United States)

    Golub, A.; Henderson, B.; Hertel, T. W.; Rose, S. K.; Sohngen, B.

    2010-12-01

    agriculture and timber products. We analyze regional changes in land use, output, competitiveness, and food consumption under climate change mitigation policy regimes which differ by participation/exclusion of agricultural sectors and non-Annex I countries, as well as policy instruments. While responsible for only a third of global GHG emissions, under the global carbon tax the land using sectors could contribute half of all economically efficient mitigation in the near term, at modest carbon prices. The imposition of a carbon tax in agriculture, however, has adverse effects on food consumption, especially in developing countries. These effects are much smaller if an agricultural producer subsidy is introduced to compensate for carbon tax the producers pay. The global forest carbon sequestration subsidy effectively controls emission leakage when the carbon tax is imposed only in Annex I regions, since the sequestration subsidy bids land away from agriculture in non-Annex I regions. Though the sequestration subsidy yields GHG abatement benefit, the policy may adversely affect food security and agricultural development in developing countries.

  14. Towards the development of a GHG emissions baseline for the Agriculture, Forestry and Other Land Use (AFOLU sector, South Africa

    Directory of Open Access Journals (Sweden)

    Luanne B. Stevens

    2016-12-01

    Full Text Available South Africa is a signatory to the United Nations Framework Convention on Climate Change (UNFCCC and as such is required to report on Greenhouse gas (GHG emissions from the Energy, Transport, Waste and the Agriculture, Forestry and Other Land Use (AFOLU sectors every two years in national inventories. The AFOLU sector is unique in that it comprises both sources and sinks for GHGs. Emissions from the AFOLU sector are estimated to contribute a quarter of the total global greenhouse gas emissions. GHG emissions sources from agriculture include enteric fermentation; manure management; manure deposits on pastures, and soil fertilization. Emissions sources from Forestry and Other Land Use (FOLU include anthropogenic land use activities such as: management of croplands, forests and grasslands and changes in land use cover (the conversion of one land use to another. South Africa has improved the quantification of AFOLU emissions and the understanding of the dynamic relationship between sinks and sources over the past decade through projects such as the 2010 GHG Inventory, the Mitigation Potential Analysis (MPA, and the National Terrestrial Carbon Sinks Assessment (NTCSA. These projects highlight key mitigation opportunities in South Africa and discuss their potentials. The problem remains that South Africa does not have an emissions baseline for the AFOLU sector against which the mitigation potentials can be measured. The AFOLU sector as a result is often excluded from future emission projections, giving an incomplete picture of South Africa’s mitigation potential. The purpose of this project was to develop a robust GHG emissions baseline for the AFOLU sector which will enable South Africa to project emissions into the future and demonstrate its contribution towards the global goal of reducing emissions.

  15. Climate-Smart Livestock Systems: An Assessment of Carbon Stocks and GHG Emissions in Nicaragua.

    Directory of Open Access Journals (Sweden)

    Lucía Gaitán

    Full Text Available Livestock systems in the tropics can contribute to mitigate climate change by reducing greenhouse gas (GHG emissions and increasing carbon accumulation. We quantified C stocks and GHG emissions of 30 dual-purpose cattle farms in Nicaragua using farm inventories and lifecycle analysis. Trees in silvo-pastoral systems were the main C stock above-ground (16-24 Mg ha-1, compared with adjacent secondary forests (43 Mg C ha-1. We estimated that methane from enteric fermentation contributed 1.6 kg CO2-eq., and nitrous oxide from excreta 0.4 kg CO2-eq. per kg of milk produced. Seven farms that we classified as climate-smart agriculture (CSA out of 16 farms had highest milk yields (6.2 kg cow-1day-1 and lowest emissions (1.7 kg CO2-eq. per kg milk produced. Livestock on these farms had higher-quality diets, especially during the dry season, and manure was managed better. Increasing the numbers of CSA farms and improving CSA technology will require better enabling policy and incentives such as payments for ecosystem services.

  16. Climate-Smart Livestock Systems: An Assessment of Carbon Stocks and GHG Emissions in Nicaragua.

    Science.gov (United States)

    Gaitán, Lucía; Läderach, Peter; Graefe, Sophie; Rao, Idupulapati; van der Hoek, Rein

    2016-01-01

    Livestock systems in the tropics can contribute to mitigate climate change by reducing greenhouse gas (GHG) emissions and increasing carbon accumulation. We quantified C stocks and GHG emissions of 30 dual-purpose cattle farms in Nicaragua using farm inventories and lifecycle analysis. Trees in silvo-pastoral systems were the main C stock above-ground (16-24 Mg ha-1), compared with adjacent secondary forests (43 Mg C ha-1). We estimated that methane from enteric fermentation contributed 1.6 kg CO2-eq., and nitrous oxide from excreta 0.4 kg CO2-eq. per kg of milk produced. Seven farms that we classified as climate-smart agriculture (CSA) out of 16 farms had highest milk yields (6.2 kg cow-1day-1) and lowest emissions (1.7 kg CO2-eq. per kg milk produced). Livestock on these farms had higher-quality diets, especially during the dry season, and manure was managed better. Increasing the numbers of CSA farms and improving CSA technology will require better enabling policy and incentives such as payments for ecosystem services.

  17. A meta-analysis of the greenhouse gas abatement of bioenergy factoring in land use changes.

    Science.gov (United States)

    El Akkari, M; Réchauchère, O; Bispo, A; Gabrielle, B; Makowski, D

    2018-06-04

    Non-food biomass production is developing rapidly to fuel the bioenergy sector and substitute dwindling fossil resources, which is likely to impact land-use patterns worldwide. Recent publications attempting to factor this effect into the climate mitigation potential of bioenergy chains have come to widely variable conclusions depending on their scope, data sources or methodology. Here, we conducted a first of its kind, systematic review of scientific literature on this topic and derived quantitative trends through a meta-analysis. We showed that second-generation biofuels and bioelectricity have a larger greenhouse gas (GHG) abatement potential than first generation biofuels, and stand the best chances (with a 80 to 90% probability range) of achieving a 50% reduction compared to fossil fuels. Conversely, directly converting forest ecosystems to produce bioenergy feedstock appeared as the worst-case scenario, systematically leading to negative GHG savings. On the other hand, converting grassland appeared to be a better option and entailed a 60% chance of halving GHG emissions compared to fossil energy sources. Since most climate mitigation scenarios assume still larger savings, it is critical to gain better insight into land-use change effects to provide a more realistic estimate of the mitigation potential associated with bioenergy.

  18. The life cycle greenhouse gas emissions implications of power and hydrogen production for oil sands operations

    International Nuclear Information System (INIS)

    McKellar, J.M.; Bergerson, J.A.; MacLean, H.L.

    2009-01-01

    'Full text:' The Alberta Oil Sands represent a major economic opportunity for Canada, but the industry is also a significant source of greenhouse gas (GHG) emissions. One of the sources of these emissions is the use of natural gas for the production of electricity, steam and hydrogen. Due to concerns around resource availability and price volatility, there has been considerable discussion regarding the potential replacement of natural gas with an alternative fuel. While some of the options are non-fossil and could potentially reduce GHG emissions (e.g., nuclear, geothermal, biomass), others have the potential to increase emissions. A comparative life cycle assessment was completed to investigate the relative GHG emissions, energy consumption and financial implications of replacing natural gas with coal, coke, asphaltenes or bitumen for the supply of electricity, steam and hydrogen to oil sands operations. The potential use of carbon capture and storage (CCS) was also investigated as a means of reducing GHG emissions. Preliminary results indicate that, without CCS, the natural gas systems currently in use have lower life cycle GHG emissions than gasification systems using any of the alternative fuels analysed. However, when CCS is implemented in both the coke gasification and natural gas systems, the coke systems have lower GHG emissions and financial costs than the natural gas systems (assuming a 30-year project life and a natural gas price of 6.5 USD/gigajoule). The use of CCS does impose a financial penalty though, indicating that it is unlikely to be implemented without some financial incentive. While this study has limitations and uncertainties, the preliminary results indicate that although the GHG emissions of oil sands development pose a challenge to Canada, there are opportunities available for their abatement. (author)

  19. Payback Period for Emissions Abatement Alternatives: Role of Regulation and Fuel Prices

    DEFF Research Database (Denmark)

    Zis, Thalis; Angeloudis, Panagiotis; Bell, Michael G. H.

    2016-01-01

    As of January 2015, the new maximum limit of fuel sulfur content for ships sailing within emission control areas has been reduced to 0.1%. A critical decision for ship owners in advance of the new limits was the selection of an abatement method that complies with the regulations. Two main options...... exist: investing in scrubber systems that remove sulfur dioxide emissions from the exhaust and switching to low-sulfur fuel when sailing in regulated waters. The first option would involve significant capital costs, while the latter would lead to operating cost increases because of the higher price...

  20. CO{sub 2} emissions abatement and geologic sequestration - industrial innovations and stakes - status of researches in progress; Reduction des emissions et stockage geologique du CO{sub 2} - innovation et enjeux industriels - le point des recherches en cours

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This colloquium was jointly organized by the French institute of petroleum (IFP), the French agency of environmental and energy mastery (Ademe) and the geological and mining research office (BRGM). This press kit makes a status of the advances made in CO{sub 2} emissions abatement and geological sequestration: technological advances of CO{sub 2} capture and sequestration, geological reservoir dimensioning with respect to the problem scale, duration of such an interim solution, CO{sub 2} emissions abatement potentialities of geological sequestration, regulatory, economical and financial implications, international stakes of greenhouse gas emissions. This press kit comprises a press release about the IFP-Ademe-BRGM colloquium, a slide presentation about CO{sub 2} abatement and sequestration, and four papers: a joint IFP-Ademe-BRGM press conference, IFP's answers to CO{sub 2} emissions abatement, Ademe's actions in CO{sub 2} abatement and sequestration, and BRGM's experience in CO{sub 2} sequestration and climatic change expertise. (J.S.)

  1. Greenhouse gas emissions reduction in different economic sectors: Mitigation measures, health co-benefits, knowledge gaps, and policy implications.

    Science.gov (United States)

    Gao, Jinghong; Hou, Hongli; Zhai, Yunkai; Woodward, Alistair; Vardoulakis, Sotiris; Kovats, Sari; Wilkinson, Paul; Li, Liping; Song, Xiaoqin; Xu, Lei; Meng, Bohan; Liu, Xiaobo; Wang, Jun; Zhao, Jie; Liu, Qiyong

    2018-05-15

    To date, greenhouse gas (GHG) emissions, mitigation strategies and the accompanying health co-benefits in different economic sectors have not been fully investigated. The purpose of this paper is to review comprehensively the evidence on GHG mitigation measures and the related health co-benefits, identify knowledge gaps, and provide recommendations to promote further development and implementation of climate change response policies. Evidence on GHG emissions, abatement measures and related health co-benefits has been observed at regional, national and global levels, involving both low- and high-income societies. GHG mitigation actions have mainly been taken in five sectors: energy generation, transport, food and agriculture, household and industry, consistent with the main sources of GHG emissions. GHGs and air pollutants to a large extent stem from the same sources and are inseparable in terms of their atmospheric evolution and effects on ecosystem; thus, GHG reductions are usually, although not always, estimated to have cost effective co-benefits for public health. Some integrated mitigation strategies involving multiple sectors, which tend to create greater health benefits. The pros and cons of different mitigation measures, issues with existing knowledge, priorities for research, and potential policy implications were also discussed. Findings from this study can play a role not only in motivating large GHG emitters to make decisive changes in GHG emissions, but also in facilitating cooperation at international, national and regional levels, to promote GHG mitigation policies that protect public health from climate change and air pollution simultaneously. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. A multi-objective programming model for assessment the GHG emissions in MSW management

    Energy Technology Data Exchange (ETDEWEB)

    Mavrotas, George, E-mail: mavrotas@chemeng.ntua.gr [National Technical University of Athens, Iroon Polytechniou 9, Zografou, Athens, 15780 (Greece); Skoulaxinou, Sotiria [EPEM SA, 141 B Acharnon Str., Athens, 10446 (Greece); Gakis, Nikos [FACETS SA, Agiou Isidorou Str., Athens, 11471 (Greece); Katsouros, Vassilis [Athena Research and Innovation Center, Artemidos 6 and Epidavrou Str., Maroussi, 15125 (Greece); Georgopoulou, Elena [National Observatory of Athens, Thisio, Athens, 11810 (Greece)

    2013-09-15

    Highlights: • The multi-objective multi-period optimization model. • The solution approach for the generation of the Pareto front with mathematical programming. • The very detailed description of the model (decision variables, parameters, equations). • The use of IPCC 2006 guidelines for landfill emissions (first order decay model) in the mathematical programming formulation. - Abstract: In this study a multi-objective mathematical programming model is developed for taking into account GHG emissions for Municipal Solid Waste (MSW) management. Mathematical programming models are often used for structure, design and operational optimization of various systems (energy, supply chain, processes, etc.). The last twenty years they are used all the more often in Municipal Solid Waste (MSW) management in order to provide optimal solutions with the cost objective being the usual driver of the optimization. In our work we consider the GHG emissions as an additional criterion, aiming at a multi-objective approach. The Pareto front (Cost vs. GHG emissions) of the system is generated using an appropriate multi-objective method. This information is essential to the decision maker because he can explore the trade-offs in the Pareto curve and select his most preferred among the Pareto optimal solutions. In the present work a detailed multi-objective, multi-period mathematical programming model is developed in order to describe the waste management problem. Apart from the bi-objective approach, the major innovations of the model are (1) the detailed modeling considering 34 materials and 42 technologies, (2) the detailed calculation of the energy content of the various streams based on the detailed material balances, and (3) the incorporation of the IPCC guidelines for the CH{sub 4} generated in the landfills (first order decay model). The equations of the model are described in full detail. Finally, the whole approach is illustrated with a case study referring to the

  3. A multi-objective programming model for assessment the GHG emissions in MSW management

    International Nuclear Information System (INIS)

    Mavrotas, George; Skoulaxinou, Sotiria; Gakis, Nikos; Katsouros, Vassilis; Georgopoulou, Elena

    2013-01-01

    Highlights: • The multi-objective multi-period optimization model. • The solution approach for the generation of the Pareto front with mathematical programming. • The very detailed description of the model (decision variables, parameters, equations). • The use of IPCC 2006 guidelines for landfill emissions (first order decay model) in the mathematical programming formulation. - Abstract: In this study a multi-objective mathematical programming model is developed for taking into account GHG emissions for Municipal Solid Waste (MSW) management. Mathematical programming models are often used for structure, design and operational optimization of various systems (energy, supply chain, processes, etc.). The last twenty years they are used all the more often in Municipal Solid Waste (MSW) management in order to provide optimal solutions with the cost objective being the usual driver of the optimization. In our work we consider the GHG emissions as an additional criterion, aiming at a multi-objective approach. The Pareto front (Cost vs. GHG emissions) of the system is generated using an appropriate multi-objective method. This information is essential to the decision maker because he can explore the trade-offs in the Pareto curve and select his most preferred among the Pareto optimal solutions. In the present work a detailed multi-objective, multi-period mathematical programming model is developed in order to describe the waste management problem. Apart from the bi-objective approach, the major innovations of the model are (1) the detailed modeling considering 34 materials and 42 technologies, (2) the detailed calculation of the energy content of the various streams based on the detailed material balances, and (3) the incorporation of the IPCC guidelines for the CH 4 generated in the landfills (first order decay model). The equations of the model are described in full detail. Finally, the whole approach is illustrated with a case study referring to the application

  4. Economic and game-theoretical analysis of CO{sub 2} emission abatement

    Energy Technology Data Exchange (ETDEWEB)

    Tahvonen, O [Helsinki School of Economics, Helsinki (Finland)

    1997-12-31

    Current decisions on greenhouse gas emissions may have effects on human well being for centuries. This project has aimed to extend the economic models designed for analyzing this particular issue. A closely related topic follows from the fact that emitting CO{sub 2} can be interpreted as a utilization of a free access resource, i.e., when countries gain from utilizing cheap fossil fuels (relative to noncarbon energy sources), the possible loss any country suffers from climate change is only a negligible fraction of the total loss of all countries. Thus, from a global point of view, the incentives for an individual country to abate emissions is low. Economic understanding of these problems calls for dynamic game-theoretical models

  5. Economic and game-theoretical analysis of CO{sub 2} emission abatement

    Energy Technology Data Exchange (ETDEWEB)

    Tahvonen, O. [Helsinki School of Economics, Helsinki (Finland)

    1996-12-31

    Current decisions on greenhouse gas emissions may have effects on human well being for centuries. This project has aimed to extend the economic models designed for analyzing this particular issue. A closely related topic follows from the fact that emitting CO{sub 2} can be interpreted as a utilization of a free access resource, i.e., when countries gain from utilizing cheap fossil fuels (relative to noncarbon energy sources), the possible loss any country suffers from climate change is only a negligible fraction of the total loss of all countries. Thus, from a global point of view, the incentives for an individual country to abate emissions is low. Economic understanding of these problems calls for dynamic game-theoretical models

  6. Accounting for greenhouse gas emissions outside the national borders in FENCH-GHG energy planning

    International Nuclear Information System (INIS)

    Vate, J.F. van de

    1996-01-01

    This paper aims at providing guidance to the workshop discussion on the accountability of full-energy-chain greenhouse gas emissions from the use of energy sources if emissions did not take place inside the national borders of a country. Examples of such emissions are those from the generation of imported electricity or from mining and transportation of coal and natural gas. The FENCH-GHG approach, if used in energy planning, would automatically take such greenhouse gas emissions, which are inherent to energy systems, into account. The paper raises the basics, practicality and the feasibility of dealing with extra-boundary emissions in energy planning. (author). 3 refs

  7. Energy-saving behavior and marginal abatement cost for household CO2 emissions

    International Nuclear Information System (INIS)

    Hamamoto, Mitsutsugu

    2013-01-01

    This paper attempts to measure consumers' perceived net benefits (or net costs) of energy-saving measures in using energy-consuming durable goods. Using the estimated net costs and the volume of CO 2 reduced by the measures, a marginal abatement cost (MAC) curve for the average household's CO 2 emissions is produced. An analysis using the curve suggests that in order to provide households with an incentive to take actions that can lead to CO 2 emission reductions in using energy-consuming durables, a high level of carbon price is needed. In addition, a regression analysis reveals that the net benefits of the measures are larger for households that put a higher priority on energy saving, for those living in detached houses, for those with a smaller number of persons living together, and for those with less income. The result of the analysis using the MAC curve may suggest that promoting energy-saving behavior will require not only a policy to provide economic incentives but also interventions to influence psychological factors of household behavior. - Highlights: • Consumers' perceived net costs of energy-saving measures in using energy-consuming durables are measured. • Using the estimated net costs, a marginal abatement cost (MAC) curve for the average household's CO 2 emissions is produced. • A high carbon price is needed in order to provide households with an incentive to take actions for energy-savings. • Households' attributes affecting their energy-saving behavior are revealed by a regression analysis

  8. Efficient air pollution abatement for regions in China

    Energy Technology Data Exchange (ETDEWEB)

    Hu, J.L. [National Chiao Tung University, Taipei (Taiwan). Inst. for Business & Management

    2006-08-15

    This paper computes the efficient air pollution abatement ratios of 30 regions in China during the period 1996-2002. Three air emissions (SO{sub 2}, soot and dust) are considered. Data envelopment analysis (DEA) with a single output (real GDP) and five inputs (labour, real capital stock, SO{sub 2}, dust and soot emissions) is used to compute the target emissions of each region for each year. The efficient abatement ratios of each region in each year are then obtained by dividing the target emission by the actual emission of an air pollutant. Our major findings are: 1. The eastern area is the most efficient region with respect to SO{sub 2}, soot and dust emissions in every year during the research period. 2. The eastern, central and western areas have the lowest, medium and highest 1996-2002 average target abatement ratios of SO, (22.09%, 42.23% and 57.58%), soot (26.19%, 56.34% and 66.37%) and dust (15.20%, 29.09% and 40.59%), respectively. 3. These results are consistent with the Environmental Kuznets Curve (EKC) theory, whereby a more developed area will use environmental goods more efficiently than a less developed area. 4. Compared to dust emission, the average target abatement ratios for SO{sub 2} and soot emissions (as direct outcomes of burning coal) are relatively much higher for all three areas.

  9. Cofiring versus biomass-fired power plants: GHG (Greenhouse Gases) emissions savings comparison by means of LCA (Life Cycle Assessment) methodology

    International Nuclear Information System (INIS)

    Sebastian, F.; Royo, J.; Gomez, M.

    2011-01-01

    One way of producing nearly CO 2 free electricity is by using biomass as a combustible. In many cases, removal of CO 2 in biomass grown is almost the same as the emissions for the bioelectricity production at the power plant. For this reason, bioelectricity is generally considered CO 2 neutral. For large-scale biomass electricity generation two alternatives can be considered: biomass-only fired power plants, or cofiring in an existing coal power plant. Among other factors, two important aspects should be analyzed in order to choose between the two options. Firstly, which is the most appealing alternative if their Greenhouse Gases (GHG) Emissions savings are taken into account. Secondly, which biomass resource is the best, if the highest impact reduction is sought. In order to quantify all the GHG emissions related to each system, a Life Cycle Assessment (LCA) methodology has been performed and all the processes involved in each alternative have been assessed in a cradle-to-grave manner. Sensitivity analyses of the most dominant parameters affecting GHG emissions, and comparisons between the obtained results, have also been carried out.

  10. GHG and black carbon emission inventories from Mezquital Valley: The main energy provider for Mexico Megacity

    Energy Technology Data Exchange (ETDEWEB)

    Montelongo-Reyes, M.M.; Otazo-Sánchez, E.M.; Romo-Gómez, C.; Gordillo-Martínez, A.J.; Galindo-Castillo, E.

    2015-09-15

    The greenhouse gases and black carbon emission inventory from IPCC key category Energy was accomplished for the Mezquital Valley, one of the most polluted regions in Mexico, as the Mexico City wastewater have been continuously used in agricultural irrigation for more than a hundred years. In addition, thermoelectric, refinery, cement and chemistry industries are concentrated in the southern part of the valley, near Mexico City. Several studies have reported air, soil, and water pollution data and its main sources for the region. Paradoxically, these sources contaminate the valley, but boosted its economic development. Nevertheless, no research has been done concerning GHG emissions, or climate change assessment. This paper reports inventories performed by the 1996 IPCC methodology for the baseline year 2005. Fuel consumption data were derived from priority sectors such as electricity generation, refineries, manufacturing & cement industries, transportation, and residential use. The total CO{sub 2} emission result was 13,894.9 Gg, which constituted three-quarters of Hidalgo statewide energy category. The principal CO{sub 2} sources were energy transformation (69%) and manufacturing (19%). Total black carbon emissions were estimated by a bottom-up method at 0.66 Gg. The principal contributor was on-road transportation (37%), followed by firewood residential consumption (26%) and cocked brick manufactures (22%). Non-CO{sub 2} gas emissions were also significant, particularly SO{sub 2} (255.9 Gg), which accounts for 80% of the whole Hidalgo State emissions. Results demonstrated the negative environmental impact on Mezquital Valley, caused by its role as a Megacity secondary fuel and electricity provider, as well as by the presence of several cement industries. - Highlights: • First GHG & black carbon inventory for Mezquital Valley: Mexico City energy supplier • Energy industries caused the largest CO{sub 2} and SO{sub 2} emissions from residual fuel oil. • Diesel

  11. Availability of Biomass Residues for Co-Firing in Peninsular Malaysia: Implications for Cost and GHG Emissions in the Electricity Sector

    Directory of Open Access Journals (Sweden)

    W. Michael Griffin

    2014-02-01

    Full Text Available Fossil fuels comprise 93% of Malaysia’s electricity generation and account for 36% of the country’s 2010 Greenhouse Gas (GHG emissions. The government has targeted the installation of 330 MW of biomass electricity generation capacity by 2015 to avoid 1.3 Mt of CO2 emissions annually and offset some emissions due to increased coal use. One biomass option is to co-fire with coal, which can result in reduced GHG emissions, coal use, and costs of electricity. A linear optimization cost model was developed using seven types of biomass residues for Peninsular Malaysia. Results suggest that about 12 Mt/year of residues are available annually, of which oil-palm residues contribute 77%, and rice and logging residues comprise 17%. While minimizing the cost of biomass and biomass residue transport, co-firing at four existing coal plants in Peninsular Malaysia could meet the 330 MW biomass electricity target and reduce costs by about $24 million per year compared to coal use alone and reduces GHG emissions by 1.9 Mt of CO2. Maximizing emissions reduction for biomass co-firing results in 17 Mt of CO2 reductions at a cost of $23/t of CO2 reduced.

  12. Nitrogen Cycling and GHG Emissions of Natural and Managed Tropical Ecosystems at Mt. Kilimanjaro

    Science.gov (United States)

    Gutlein, A.; Ralf, K.; Gerschlauer, F.; Dannenmann, M.; Butterbach-Bahl, K.; Diaz-Pines, E.

    2016-12-01

    In a rapidly changing world understanding of natural ecosystems response to human perturbations such as land use and climate changes as well as habitat destruction is crucial with respect to sustainability of ecosystem services. This is particularily true for tropical forest ecosystems which have significant effects on the major biogeochemical cycles and global climate. Here we present a comprehensive dataset of nitrogen cycling and GHG emissions of natural and managed ecosystems along land use and climate gradients at Mt. Kilimanjaro, Tanzania including different forest ecosystems, homegardens, and coffee plantations. Soil N turnover rates were highest in the Ocotea forest and progressively decreased with decreasing annual rainfall and increasing land use intensity. Nitrogen production and immobilization rates positively correlated with soil organic C and total N concentrations as well as substrate availability of dissolved organic C and N, but correlated less with soil ammonium and nitrate concentrations. By using indicators of N retention and characteristics of soil nutrient status, we observed a grouping of faster, but tighter N cycling in the (semi-) natural savanna, Helychrysum and Ocotea forest. This contrasted with a more open N cycle in managed systems (homegarden and coffee plantation) where N was more prone to leaching or gaseous losses due to high nitrate production rates. The partly disturbed lower montane forest ranged in between these two groups. These finding could be supported by differences in natural 15N abundance of litter and soil across all sites. Comparing GHG emissions at the land use gradient showed, that with increasing intensification (lower montane forest - homegarden - coffee plantation) N2O emissions increased but at the same time the soil sink for atmospheric CH4 decreased. GHG emission measurements at the climate gradient (savanna, lower montane, Ocotea and Podocarpus forest, Helychrysum) revealed that differences in soil moisture

  13. Reducing greenhouse gas emissions: Lessons from state climate action plans

    Energy Technology Data Exchange (ETDEWEB)

    Pollak, Melisa, E-mail: mpollak@umn.edu [Humphrey Institute of Public Affairs, University of Minnesota, 301 19th Avenue South, Minneapolis, MN 55455 (United States); Meyer, Bryn, E-mail: meye1058@umn.edu [Humphrey Institute of Public Affairs, University of Minnesota, 301 19th Avenue South, Minneapolis, MN 55455 (United States); Wilson, Elizabeth, E-mail: ewilson@umn.edu [Humphrey Institute of Public Affairs, University of Minnesota, 301 19th Avenue South, Minneapolis, MN 55455 (United States)

    2011-09-15

    We examine how state-level factors affect greenhouse gas (GHG) reduction policy preference across the United States by analyzing climate action plans (CAPs) developed in 11 states and surveying the CAP advisory group members. This research offers insights into how states approach the problem of choosing emissions-abatement options that maximize benefits and minimize costs, given their unique circumstances and the constellation of interest groups with power to influence state policy. The state CAPs recommended ten popular GHG reduction strategies to accomplish approximately 90% of emissions reductions, but they recommended these popular strategies in different proportions: a strategy that is heavily relied on in one state's overall portfolio may play a negligible role in another state. This suggests that any national policy to limit GHG emissions should encompass these key strategies, but with flexibility to allow states to balance their implementation for the state's unique geographic, economic, and political circumstances. Survey results strongly support the conclusion that decisions regarding GHG reductions are influenced by the mix of actors at the table. Risk perception is associated with job type for all strategies, and physical and/or geographic factors may underlie the varying reliance on certain GHG reduction strategies across states. - Highlights: > This study analyzed climate action plans from 12 states and surveyed the advisory group members. > Ten strategies supply 90% of recommended emission reductions, but states weigh them differently. > Advisory group members perceived different opportunities and risks in the top-ten strategies. > Both geographic and socio-political factors may underlie the varying reliance on certain strategies. > Cost, business practices and consumer behavior were ranked as the top barriers to reducing emissions.

  14. Reducing greenhouse gas emissions: Lessons from state climate action plans

    International Nuclear Information System (INIS)

    Pollak, Melisa; Meyer, Bryn; Wilson, Elizabeth

    2011-01-01

    We examine how state-level factors affect greenhouse gas (GHG) reduction policy preference across the United States by analyzing climate action plans (CAPs) developed in 11 states and surveying the CAP advisory group members. This research offers insights into how states approach the problem of choosing emissions-abatement options that maximize benefits and minimize costs, given their unique circumstances and the constellation of interest groups with power to influence state policy. The state CAPs recommended ten popular GHG reduction strategies to accomplish approximately 90% of emissions reductions, but they recommended these popular strategies in different proportions: a strategy that is heavily relied on in one state's overall portfolio may play a negligible role in another state. This suggests that any national policy to limit GHG emissions should encompass these key strategies, but with flexibility to allow states to balance their implementation for the state's unique geographic, economic, and political circumstances. Survey results strongly support the conclusion that decisions regarding GHG reductions are influenced by the mix of actors at the table. Risk perception is associated with job type for all strategies, and physical and/or geographic factors may underlie the varying reliance on certain GHG reduction strategies across states. - Highlights: → This study analyzed climate action plans from 12 states and surveyed the advisory group members. → Ten strategies supply 90% of recommended emission reductions, but states weigh them differently. → Advisory group members perceived different opportunities and risks in the top-ten strategies. → Both geographic and socio-political factors may underlie the varying reliance on certain strategies. → Cost, business practices and consumer behavior were ranked as the top barriers to reducing emissions.

  15. Research and Development of a DNDC Online Model for Farmland Carbon Sequestration and GHG Emissions Mitigation in China.

    Science.gov (United States)

    Jiang, Zaidi; Yin, Shan; Zhang, Xianxian; Li, Changsheng; Shen, Guangrong; Zhou, Pei; Liu, Chunjiang

    2017-12-01

    Appropriate agricultural practices for carbon sequestration and emission mitigation have a significant influence on global climate change. However, various agricultural practices on farmland carbon sequestration usually have a major impact on greenhouse gas (GHG) emissions. It is very important to accurately quantify the effect of agricultural practices. This study developed a platform-the Denitrification Decomposition (DNDC) online model-for simulating and evaluating the agricultural carbon sequestration and emission mitigation based on the scientific process of the DNDC model, which is widely used in the simulation of soil carbon and nitrogen dynamics. After testing the adaptability of the platform on two sampling fields, it turned out that the simulated values matched the measured values well for crop yields and GHG emissions. We used the platform to estimate the effect of three carbon sequestration practices in a sampling field: nitrogen fertilization reduction, straw residue and midseason drainage. The results indicated the following: (1) moderate decrement of the nitrogen fertilization in the sampling field was able to decrease the N₂O emission while maintaining the paddy rice yield; (2) ground straw residue had almost no influence on paddy rice yield, but the CH₄ emission and the surface SOC concentration increased along with the quantity of the straw residue; (3) compared to continuous flooding, midseason drainage would not decrease the paddy rice yield and could lead to a drop in CH₄ emission. Thus, this study established the DNDC online model, which is able to serve as a reference and support for the study and evaluation of the effects of agricultural practices on agricultural carbon sequestration and GHG emissions mitigation in China.

  16. Searching for solutions to mitigate greenhouse gas emissions by agricultural policy decisions — Application of system dynamics modeling for the case of Latvia

    International Nuclear Information System (INIS)

    Dace, Elina; Muizniece, Indra; Blumberga, Andra; Kaczala, Fabio

    2015-01-01

    A system dynamics model is developed for estimating agricultural GHG emissions. • Effect of decisions and measures on agricultural GHG emissions is assessed. • Feedback links of an agricultural system are demonstrated. • A limited number of options exist for limiting agricultural GHG emissions. • Reaching GHG abatement targets will be challenging for Latvia

  17. Searching for solutions to mitigate greenhouse gas emissions by agricultural policy decisions — Application of system dynamics modeling for the case of Latvia

    Energy Technology Data Exchange (ETDEWEB)

    Dace, Elina, E-mail: elina.dace@rtu.lv [Institute of Energy Systems and Environment, Riga Technical University, Azenes 12/1, Riga LV1048 (Latvia); Muizniece, Indra; Blumberga, Andra [Institute of Energy Systems and Environment, Riga Technical University, Azenes 12/1, Riga LV1048 (Latvia); Kaczala, Fabio [Department of Biology and Environmental Science, Faculty of Health & Life Sciences, Linnaeus University, SE-39182 Kalmar (Sweden)

    2015-09-15

    A system dynamics model is developed for estimating agricultural GHG emissions. • Effect of decisions and measures on agricultural GHG emissions is assessed. • Feedback links of an agricultural system are demonstrated. • A limited number of options exist for limiting agricultural GHG emissions. • Reaching GHG abatement targets will be challenging for Latvia.

  18. Data supporting the assessment of biomass based electricity and reduced GHG emissions in Cuba.

    Science.gov (United States)

    Sagastume Gutiérrez, Alexis; Cabello Eras, Juan J; Vandecasteele, Carlo; Hens, Luc

    2018-04-01

    Assessing the biomass based electricity potential of developing nations like Cuba can help to reduce the fossil fuels dependency and the greenhouse gas emissions. The data included in this study present the evolution of electricity production and greenhouse gas emissions in Cuba. Additionally, the potentialities to produce biomass based electricity by using the most significant biomass sources in Cuba are estimated. Furthermore, estimations of the potential reductions of greenhouse gas emissions, resulting from implementing the biomass based electricity potential of the different sources discussed in the study, are included. Results point to the most promising biomass sources for electricity generation and their potential to reduce GHG emissions.

  19. Development and testing of technical measures for the abatement of PM10 emissions from poultry housings

    Energy Technology Data Exchange (ETDEWEB)

    Ogink, N.W.M.; Aarnink, A.J.A.; Mosquera, J.; Winkel, A. [Wageningen UR Livestock Research, Wageningen (Netherlands)

    2010-07-01

    In order to comply with the European Union's ambient air quality standards, the Netherlands must reduce emissions of PM10. As a contributor to PM10, the poultry industry must implement mitigation measures before 2012. An extensive research and development program was launched in 2008 to provide abatement technology for broiler and layer houses. This paper presented results from studies carried out in 2008 and 2009 by Wageningen UR Livestock Research. The supply industry and poultry farmers participated in the study in which different methods and approaches were examined, including bedding material, light schedules, oil spraying systems, ionization systems, water scrubbers, combined scrubbers, electrostatic filters, and dry filters. Most methods were first tested and optimized in small units at an experimental poultry facility Lelystad. Several methods were validated in a next step on poultry farms, where PM10 emissions were measured to establish official emission factors. The oil spraying system and ionization system were tested in broiler houses and are nearing implementation. Reductions in PM10 emissions by different methods ranged from no effect to levels of 60 per cent. An outlook on adequate dust abatement measures for poultry housings was also provided.

  20. A Systems Approach to Reducing Institutional GHG Emissions

    Science.gov (United States)

    Williamson, Sean R.

    2012-01-01

    Purpose: The purpose of this paper is to establish necessity and methods for considering greenhouse gas (GHG) mitigation policies at a system-level. The research emphasizes connecting narrowly focused GHG mitigation objectives (e.g. reduce single occupancy vehicle travel) with broader institutional objectives (e.g. growth in student population) to…

  1. Broadening GHG accounting with LCA: application to a waste management business unit.

    Science.gov (United States)

    Fallaha, Sophie; Martineau, Geneviève; Bécaert, Valérie; Margni, Manuele; Deschênes, Louise; Samson, Réjean; Aoustin, Emmanuelle

    2009-11-01

    In an effort to obtain the most accurate climate change impact assessment, greenhouse gas (GHG) accounting is evolving to include life-cycle thinking. This study (1) identifies similarities and key differences between GHG accounting and life-cycle assessment (LCA), (2) compares them on a consistent basis through a case study on a waste management business unit. First, GHG accounting is performed. According to the GHG Protocol, annual emissions are categorized into three scopes: direct GHG emissions (scope 1), indirect emissions related to electricity, heat and steam production (scope 2) and other indirect emissions (scope 3). The LCA is then structured into a comparable framework: each LCA process is disaggregated into these three scopes, the annual operating activities are assessed, and the environmental impacts are determined using the IMPACT2002+ method. By comparing these two approaches it is concluded that both LCA and GHG accounting provide similar climate change impact results as the same major GHG contributors are determined for scope 1 emissions. The emissions from scope 2 appear negligible whereas emissions from scope 3 cannot be neglected since they contribute to around 10% of the climate change impact of the waste management business unit. This statement is strengthened by the fact that scope 3 generates 75% of the resource use damage and 30% of the ecosystem quality damage categories. The study also shows that LCA can help in setting up the framework for a annual GHG accounting by determining the major climate change contributors.

  2. Hexane abatement and spore emission control in a fungal biofilter-photoreactor hybrid unit

    Energy Technology Data Exchange (ETDEWEB)

    Saucedo-Lucero, J.O. [Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid (Spain); IPICyT, Instituto Potosino de Investigación Científica y Tecnológica, División de Ciencias Ambientales, Camino a la Presa San José No. 2055, C.P., 78216 San Luis Potosí (Mexico); Quijano, G. [Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid (Spain); Arriaga, S. [IPICyT, Instituto Potosino de Investigación Científica y Tecnológica, División de Ciencias Ambientales, Camino a la Presa San José No. 2055, C.P., 78216 San Luis Potosí (Mexico); Muñoz, R., E-mail: mutora@iq.uva.es [Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid (Spain)

    2014-07-15

    Highlights: • A fungal biofilter/photoreactor was evaluated in terms of hexane and spore removal. • Biofilter supported elimination capacities of ≈35 g m{sup −3} h{sup −1} and CO{sub 2} yields of ≈75%. • The photocatalytic process slightly boosted the hexane abatement performance. • Biofilter emitted fungal spores at concentrations of 2.4 × 10{sup 3}–9.0 × 10{sup 4} CFU m{sup −3}. • Photo-assisted post-treatments resulted in spore deactivation efficiencies of 98%. - Abstract: The performance of a fungal perlite-based biofilter coupled to a post-treatment photoreactor was evaluated over 234 days in terms of n-hexane removal, emission and deactivation of fungal spores. The biofilter and photoreactor were operated at gas residence times of 1.20 and 0.14 min, respectively, and a hexane loading rate of 115 ± 5 g m{sup −3} h{sup −1}. Steady n-hexane elimination capacities of 30–40 g m{sup −3} h{sup −1} were achieved, concomitantly with pollutant mineralization efficiencies of 60–90%. No significant influence of biofilter irrigation frequency or irrigation nitrogen concentration on hexane abatement was recorded. Photolysis did not support an efficient hexane post-treatment likely due to the short EBRT applied in the photoreactor, while overall hexane removal and mineralization enhancements of 25% were recorded when the irradiated photoreactor was packed with ZnO-impregnated perlite. However, a rapid catalyst deactivation was observed, which required a periodic reactivation every 48 h. Biofilter irrigation every 3 days supported fungal spore emissions at concentrations ranging from 2.4 × 10{sup 3} to 9.0 × 10{sup 4} CFU m{sup −3}. Finally, spore deactivation efficiencies of ≈98% were recorded for the photolytic and photocatalytic post-treatment processes. This study confirmed the potential of photo-assisted post-treatment processes to mitigate the emission of hazardous fungal spores and boost the abatement performance of

  3. Sustainable extensification as an alternative model for reducing GHG emissions from agriculture. The case of an extensively managed organic farm in Denmark

    DEFF Research Database (Denmark)

    Bluwstein, Jevgeniy; Braun, Martin; Henriksen, Christian Bugge

    2015-01-01

    GHG emissions of an extensively managed Danish organic farm were estimated upstream and on-farm. The results were compared to Danish national levels based on land area and output. Overall, the farm emitted 2.12 t CO2eq ha−1 yr−1. Excluding land use, land use change, and forestry (LULUCF) related...... emissions, the combined GHG emissions from energy- and agriculture-based activities at the case farm were 47% lower (per unit area) and 12% higher (per unit output), than GHG emissions from Danish agriculture. With current livestock density (0.64 LU ha−1) and crop production area, the case study farm would...... supply at average 1,466 kcal per inhabitant per day in Denmark, if the farm was scaled up to Danish national level. With a reduction of livestock density to 0.36 LU ha−1 and proportional cropland area expansion for food production (ceteris paribus), the case study farm could supply around 4,940 kcal...

  4. Broadening the Appeal of Marginal Abatement Cost Curves: Capturing Both Carbon Mitigation and Development Benefits of Clean Energy Technologies; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Cowlin, S.; Cochran, J.; Cox, S.; Davison, C.; van der Gaast, Y.

    2012-08-01

    Low emission development strategies (LEDS) articulate policies and implementation plans that enable countries to advance sustainable, climate-resilient development and private sector growth while significantly reducing the greenhouse gas (GHG) emissions traditionally associated with economic growth. In creating a LEDS, policy makers often have access to information on abatement potential and costs for clean energy technologies, but there is a scarcity of economy-wide approaches for evaluating and presenting information on other dimensions of importance to development, such as human welfare, poverty alleviation, and energy security. To address this shortcoming, this paper proposes a new tool for communicating development benefits to policy makers as part of a LEDS process. The purpose of this tool is two-fold: 1. Communicate development benefits associated with each clean energy-related intervention; 2. Facilitate decision-making on which combination of interventions best contributes to development goals. To pilot this tool, the authors created a visual using data on developmental impacts identified through the Technology Needs Assessment (TNA) project in Montenegro. The visual will then be revised to reflect new data established through the TNA that provides information on cost, GHG mitigation, as well as the range and magnitude of developmental impacts.

  5. Results of mitigation studies from Pakistan

    International Nuclear Information System (INIS)

    1998-01-01

    At the international level, Pakistan's contractual obligations to the United Nations Framework Convention on Climate Change (UNFCCC) include the preparation of a greenhouse gas (GHG) emissions abatement program, a national communication on climate change, and the formulation of a least-cost GHG abatement action plan and strategy. Pakistan ratified the UNFCCC in June 1994. The ratification of the Convention has lead to the undertaking of activities such as the Asia Least-cost Greenhouse Gas Abatement Strategy (ALGAS) Project, which aims to build capacity in Asian countries in the preparation of GHG inventories and mitigation programs. (au)

  6. Scenario analysis on alternative fuel/vehicle for China's future road transport: Life-cycle energy demand and GHG emissions

    International Nuclear Information System (INIS)

    Ou Xunmin; Zhang Xiliang; Chang Shiyan

    2010-01-01

    The rapid growth of vehicles has resulted in continuing growth in China's oil demand. This paper analyzes future trends of both direct and life cycle energy demand (ED) and greenhouse gas (GHG) emissions in China's road transport sector, and assesses the effectiveness of possible reduction measures by using alternative vehicles/fuels. A model is developed to derive a historical trend and to project future trends. The government is assumed to do nothing additional in the future to influence the long-term trends in the business as usual (BAU) scenario. Four specific scenarios are used to describe the future cases where different alternative fuel/vehicles are applied. The best case scenario is set to represent the most optimized case. Direct ED and GHG emissions would reach 734 million tonnes of oil equivalent and 2384 million tonnes carbon dioxide equivalent by 2050 in the BAU case, respectively, more than 5.6 times of 2007 levels. Compared with the BAU case, the relative reductions achieved in the best case would be 15.8% and 27.6% for life cycle ED and GHG emissions, respectively. It is suggested for future policy implementation to support sustainable biofuel and high efficient electric-vehicles, and the deployment of coal-based fuels accompanied with low-carbon technology.

  7. Advanced biofuels - GHG emissions and energy balances. A report to IEA bioenergy task 39

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, Don [S and T 2 Consultants Inc., Delta, British Columbia (Canada)

    2013-05-25

    In this work, a number of advanced biofuel pathways were examined with respect to their energy balances and GHG emission performance. Some of these pathways have relatively detailed public techno-economic modelling studies available on which the energy and GHG lifecycle modelling has been based. However there is a continuum in the quality of publicly available data and, for some of the pathways a significant number of assumptions had to be made in order to generate results. Some caution is therefore warranted when the results of different systems are compared. Furthermore, none of the modelling data is based on actual operating systems, as the processes being assessed are not yet in commercial operation; rather, they are each in different stages of research, development and demonstration.

  8. GHG Emissions and Costs of Developing Biomass Energy in Malaysia: Implications on Energy Security in the Transportation and Electricity Sector

    Science.gov (United States)

    Hassan, Mohd Nor Azman

    Malaysia's transportation sector accounts for 48% of the country's total energy use. The country is expected to become a net oil importer by the year 2011. To encourage renewable energy development and relieve the country's emerging oil dependence, in 2006 the government mandated blending 5% palm-oil biodiesel in petroleum diesel. Malaysia produced 16 million tonnes of palm oil in 2007, mainly for food use. This study addresses maximizing bioenergy use from oil-palm to support Malaysia's energy initiative while minimizing greenhouse gas emissions from land use change. When converting primary and secondary forests to oil-palm plantations between 270 - 530 g and 120 -190 g CO2 equivalent (CO2-eq) per MJ of biodiesel produced, respectively, is released. However, converting degraded lands results in the capture of between 23 to 85 g CO2-eq per MJ of biodiesel produced. Using various combinations of land types, Malaysia could meet the 5% biodiesel target with a net GHG savings of about 1.03 million tonnes (4.9% of the transportation sector's diesel emissions) when accounting for the emissions savings from the diesel fuel displaced. Fossil fuels contributed about 93% to Malaysia's electricity generation mix and emit about 65 million tonnes (Mt) or 36% of the country's 2010 Greenhouse Gas (GHG) emissions. The government has set a target to install 330 MW biomass electricity by 2015, which is hoped to avoid 1.3 Mt of GHG emissions annually. The availability of seven types of biomass residues in Peninsular Malaysia is estimated based on residues-to-product ratio, recoverability and accessibility factor and other competing uses. It was found that there are approximately 12.2 Mt/yr of residues. Oil-palm residues contribute about 77% to the total availability with rice and forestry residues at 17%. Electricity from biomass can be produced via direct combustion in dedicated power plants or co-fired with coal. The co-firing of the residues at four existing coal plants in

  9. Greenhouse Gas Mitigation Options Database and Tool - Data repository of GHG mitigation technologies.

    Science.gov (United States)

    Industry and electricity production facilities generate over 50 percent of greenhouse gas (GHG) emissions in the United States. There is a growing consensus among scientists that the primary cause of climate change is anthropogenic greenhouse gas (GHG) emissions. Reducing GHG emi...

  10. The capacity for integrated community energy solutions policies to reduce urban greenhouse gas emissions

    Energy Technology Data Exchange (ETDEWEB)

    Bataille, C.; Goldberg, S.; Sharp, J.; Melton, N.; Peters, J.; Wolinetz, M. [Quality Urban Energy Systems of Tomorrow, Ottawa, ON (Canada); Miller, E. [University of Toronto, Toronto, ON (Canada); Cavens, D. [University of British Columbia, Vancouver, BC (Canada)

    2010-08-26

    The implementation of policies promoting integrated urban energy solutions (ICES) could allow a reduction in Canada's urban greenhouse gas (GHG) emissions by 2050. The concept and its related policies impact all urban sectors of the economy, such as residential, commercial, urban and inter-city personal transportation, freight transportation, waste and water. ICES policies are considered feasible and necessary, and many cities around the world, like Stockholm and Utrecht, have implemented them successfully. Sustainable land use policies should be the first to be developed since all urban form, transportation, and energy use decisions are made within the framework they generate. In the long term, moderate to aggressive ICES policies generate reductions of GHG emission and energy use but also an increase of 0.3-0.9% of the GDP. Aggressive ICES policies also allow a reduction in the structural unemployment and an increase of the number of jobs. While the effects of the implementation of targeted abatement policies such as the carbon tax or technology regulations are observed within a few years, ICES produce effects on a longer term. In the short term, they allow the release of money that could be spent by households to reduce the economic burden generated by abatement policies. In the longer term, they allow reductions to take over the effects of the short term policies, taking into consideration the increasing size of the population and the economy. Therefore, ICES policies seem to be an important part of comprehensive policy efforts intending to satisfy Canada's energy use and GHG emissions objectives. 218 refs., 49 tabs., 41 figs.

  11. Marginal Abatement Cost of CO2 in China Based on Directional Distance Function: An Industry Perspective

    Directory of Open Access Journals (Sweden)

    Bowen Xiao

    2017-01-01

    Full Text Available Industrial sectors account for around 70% of the total energy-related CO2 emissions in China. It is of great importance to measure the potential for CO2 emissions reduction and calculate the carbon price in industrial sectors covered in the Emissions Trading Scheme and carbon tax. This paper employs the directional distance function to calculate the marginal abatement costs of CO2 emissions during 2005–2011 and makes a comparative analysis between our study and the relevant literature. Our empirical results show that the marginal abatement costs vary greatly from industry to industry: high marginal abatement costs occur in industries with low carbon intensity, and vice versa. In the application of the marginal abatement cost, the abatement distribution scheme with minimum cost is established under different abatement targets. The conclusions of abatement distribution scheme indicate that those heavy industries with low MACs and high carbon intensity should take more responsibility for emissions reduction and vice versa. Finally, the policy implications for marginal abatement cost are provided.

  12. Electricity price, energy production and emissions impact : evaluating proposed GHG emission reduction frameworks for the Alberta electricity industry : updated reference case and sensitivity results prepared for CASA EPT Greenhouse Gas Allocation Subgroup

    International Nuclear Information System (INIS)

    2004-01-01

    This document presents the results of a study which quantified the potential impact of various greenhouse gas (GHG) policy scenarios on Alberta generators' energy production, airborne emissions and electricity wholesale market price. The study examined proactive policy frameworks compared to business as usual scenarios. A reference case scenario was included to represent the status quo environment where electricity demand continues on its current path. Five additional sensitivity cases were examined, of which 3 evaluated the impact of many key assumptions regarding progressive GHG reduction levels and costs related to meeting GHG requirements. The other two evaluated an all-coal future electricity supply both with and without GHG emission reduction costs. Environmental costs were also evaluated in terms of emissions of nitrous oxides, sulphurous oxides, mercury and particulate matter. The impact of generation retirement and renewable energy source development was also analyzed. Demand and supply forecasts for oil, natural gas, electric energy and energy sales were presented along with generation supply forecasts for the reference case scenario, coal generation and natural gas fired retirements. refs., tabs., figs

  13. Policy Considerations for Greenhouse Gas Emissions from Freshwater Reservoirs

    Directory of Open Access Journals (Sweden)

    Kirsi Mäkinen

    2010-06-01

    Full Text Available Emerging concern over greenhouse gas (GHG emissions from wetlands has prompted calls to address the climate impact of dams in climate policy frameworks. Existing studies indicate that reservoirs can be significant sources of emissions, particularly in tropical areas. However, knowledge on the role of dams in overall national emission levels and abatement targets is limited, which is often cited as a key reason for political inaction and delays in formulating appropriate policies. Against this backdrop, this paper discusses the current role of reservoir emissions in existing climate policy frameworks. The distance between a global impact on climate and a need for local mitigation measures creates a challenge for designing appropriate mechanisms to combat reservoir emissions. This paper presents a range of possible policy interventions at different scales that could help address the climate impact of reservoirs. Reservoir emissions need to be treated like other anthropogenic greenhouse gases. A rational treatment of the issue requires applying commonly accepted climate change policy principles as well as promoting participatory water management plans through integrated water resource management frameworks. An independent global body such as the UN system may be called upon to assess scientific information and develop GHG emissions policy at appropriate levels.

  14. The use of Meta-Regression Analysis to harmonize LCA literature: an application to GHG emissions of 2. and 3. generation biofuels

    International Nuclear Information System (INIS)

    Menten, Fabio; Cheze, Benoit; Patouillard, Laure; Bouvart, Frederique

    2013-01-01

    This article presents the results of a literature review performs with a meta-regression analysis (MRA) that focuses on the estimates of advanced biofuel Greenhouse Gas (GHG) emissions assessed with a Life Cycle Assessment (LCA) approach. The mean GHG emissions of both second (G2) and third generation (G3) biofuels and the effects of factors influencing these estimates are identified and quantified by means of specific statistical methods. 47 LCA studies are included in the database, providing 593 estimates. Each study estimate of the database is characterized by i) technical data/characteristics, ii) author's methodological choices and iii) typology of the study under consideration. The database is composed of both the vector of these estimates - expressed in grams of CO 2 equivalent per MJ of biofuel (g CO 2 eq/MJ) - and a matrix containing vectors of predictor variables which can be continuous or dummy variables. The former is the dependent variable while the latter corresponds to the explanatory variables of the meta-regression model. Parameters are estimated by mean of econometrics methods. Our results clearly highlight a hierarchy between G3 and G2 biofuels: life cycle GHG emissions of G3 biofuels are statistically higher than those of Ethanol which, in turn, are superior to those of BtL. Moreover, this article finds empirical support for many of the hypotheses formulated in narrative literature surveys concerning potential factors which may explain estimates variations. Finally, the MRA results are used to address the harmonization issue in the field of advanced biofuels GHG emissions thanks to the technique of benefits transfer using meta-regression models. The range of values hence obtained appears to be lower than the fossil fuel reference (about 83.8 in g CO 2 eq/ MJ). However, only Ethanol and BtL do comply with the GHG emission reduction thresholds for biofuels defined in both the American and European directives. (authors)

  15. Carbon dioxide abatement as a differential game

    International Nuclear Information System (INIS)

    Tahvonen, O.

    1993-01-01

    The report combines predictions on greenhouse warming, CO 2 abatement costs and adaptation costs in a differential game framework. The specified model makes it possible to solve the payoffs of the subgame perfect solution of a two state variable nonautonomous problem with N unequal countries. Abatement cost parameters are calibrated with a global energy sector model and climate parameters are based on empirical time series. Simulation suggests that the backstop technology assumption in the abatement cost model may imply drastic cuts in optimal emission levels. Compared to the Nash noncooperative equilibrium a pareto optimal agreement is found to be beneficial for developing countries but more costly for the industrial world. Given the present damage estimates, the losses due to an emission stabilizing agreement may be 400 times higher than maximum potential gains from cooperation

  16. Model and algorithm for bi-fuel vehicle routing problem to reduce GHG emissions.

    Science.gov (United States)

    Abdoli, Behroz; MirHassani, Seyed Ali; Hooshmand, Farnaz

    2017-09-01

    Because of the harmful effects of greenhouse gas (GHG) emitted by petroleum-based fuels, the adoption of alternative green fuels such as biodiesel and compressed natural gas (CNG) is an inevitable trend in the transportation sector. However, the transition to alternative fuel vehicle (AFV) fleets is not easy and, particularly at the beginning of the transition period, drivers may be forced to travel long distances to reach alternative fueling stations (AFSs). In this paper, the utilization of bi-fuel vehicles is proposed as an operational approach. We present a mathematical model to address vehicle routing problem (VRP) with bi-fuel vehicles and show that the utilization of bi-fuel vehicles can lead to a significant reduction in GHG emissions. Moreover, a simulated annealing algorithm is adopted to solve large instances of this problem. The performance of the proposed algorithm is evaluated on some random instances.

  17. Approaches to greenhouse gas accounting methods for biomass carbon

    International Nuclear Information System (INIS)

    Downie, Adriana; Lau, David; Cowie, Annette; Munroe, Paul

    2014-01-01

    This investigation examines different approaches for the GHG flux accounting of activities within a tight boundary of biomass C cycling, with scope limited to exclude all other aspects of the lifecycle. Alternative approaches are examined that a) account for all emissions including biogenic CO 2 cycling – the biogenic method; b) account for the quantity of C that is moved to and maintained in the non-atmospheric pool – the stock method; and c) assume that the net balance of C taken up by biomass is neutral over the short-term and hence there is no requirement to include this C in the calculation – the simplified method. This investigation demonstrates the inaccuracies in both emissions forecasting and abatement calculations that result from the use of the simplified method, which is commonly accepted for use. It has been found that the stock method is the most accurate and appropriate approach for use in calculating GHG inventories, however short-comings of this approach emerge when applied to abatement projects, as it does not account for the increase in biogenic CO 2 emissions that are generated when non-CO 2 GHG emissions in the business-as-usual case are offset. Therefore the biogenic method or a modified version of the stock method should be used to accurately estimate GHG emissions abatement achieved by a project. This investigation uses both the derivation of methodology equations from first principles and worked examples to explore the fundamental differences in the alternative approaches. Examples are developed for three project scenarios including; landfill, combustion and slow-pyrolysis (biochar) of biomass. -- Highlights: • Different approaches can be taken to account for the GHG emissions from biomass. • Simplification of GHG accounting methods is useful, however, can lead to inaccuracies. • Approaches used currently are often inadequate for practises that store carbon. • Accounting methods for emissions forecasting can be inadequate for

  18. Waste Management Pinch Analysis (WAMPA): Application of Pinch Analysis for greenhouse gas (GHG) emission reduction in municipal solid waste management

    International Nuclear Information System (INIS)

    Ho, Wai Shin; Hashim, Haslenda; Lim, Jeng Shiun; Lee, Chew Tin; Sam, Kah Chiin; Tan, Sie Ting

    2017-01-01

    Highlights: • A novel method known as Waste Management Pinch Analysis (WAMPA) is presented. • WAMPA aims to identify waste management strategies based on specific target. • WAMPA is capable to examine the capacity of waste management strategies through graphical representation. - Abstract: Improper waste management happened in most of the developing country where inadequate disposal of waste in landfill is commonly practiced. Apart from disposal, MSW can turn into valuable product through recycling, energy recovery, and biological recovery action as suggested in the hierarchy of waste management. This study presents a method known as Waste Management Pinch Analysis (WAMPA) to examine the implication of a dual-objective – landfill and GHG emission reduction target in sustainable waste management. WAMPA is capable to identify the capacity of each waste processing strategy through graphical representation. A general methodology of WAMPA is presented through a demonstration of a SWM case followed by a detailed representation of WAMPA for five waste types. Application of the WAMPA is then applied on a case study for sustainable waste management planning from year 2015 to 2035. Three waste management strategies are incorporated into the case study – landfill, Waste-to-Energy (WtE), and reduce, reuse, and recycle (3R). The results show a 13.5% of total GHG emission reduction and 54.6% of total reduction of landfill are achieved. The major contributor of GHG emission which are from food waste (landfill emission) and plastic (WtE emission) is reduced.

  19. Marginal abatement cost curves and the optimal timing of mitigation measures

    International Nuclear Information System (INIS)

    Vogt-Schilb, Adrien; Hallegatte, Stéphane

    2014-01-01

    Decision makers facing abatement targets need to decide which abatement measures to implement, and in which order. Measure-explicit marginal abatement cost curves depict the cost and abating potential of available mitigation options. Using a simple intertemporal optimization model, we demonstrate why this information is not sufficient to design emission reduction strategies. Because the measures required to achieve ambitious emission reductions cannot be implemented overnight, the optimal strategy to reach a short-term target depends on longer-term targets. For instance, the best strategy to achieve European's −20% by 2020 target may be to implement some expensive, high-potential, and long-to-implement options required to meet the −75% by 2050 target. Using just the cheapest abatement options to reach the 2020 target can create a carbon-intensive lock-in and make the 2050 target too expensive to reach. Designing mitigation policies requires information on the speed at which various measures to curb greenhouse gas emissions can be implemented, in addition to the information on the costs and potential of such measures provided by marginal abatement cost curves. - Highlights: • Classification of existing Marginal Abatement Cost Curves (MACC). • MACCs do not provide separated data on the speed at which measures can be implemented. • Optimal measures to reach a short-term target depend on longer-term targets. • Unique carbon price or aggregated emission-reduction target may be insufficient. • Room for short-term sectoral policies if agents are myopic or governments cannot commit

  20. An Evaluation of the Potential for Shifting of Freight from Truck to Rail and Its Impacts on Energy Use and GHG Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yan [Argonne National Lab. (ANL), Argonne, IL (United States); Vyas, Anant D. [Argonne National Lab. (ANL), Argonne, IL (United States); Guo, Zhaomiao [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-06-01

    This report summarizes our evaluation of the potential energy-use and GHG-emissions reduction achieved by shifting freight from truck to rail under a most-likely scenario. A sensitivity analysis is also included. The sensitivity analysis shows changes in energy use and GHG emissions when key parameters are varied. The major contribution and distinction from previous studies is that this study considers the rail level of service (LOS) and commodity movements at the origin-destination (O-D) level. In addition, this study considers the fragility and time sensitivity of each commodity type.

  1. A regional assessment of the cost and effectiveness of mitigation measures for reducing nutrient losses to water and greenhouse gas emissions to air from pastoral farms.

    Science.gov (United States)

    Vibart, Ronaldo; Vogeler, Iris; Dennis, Samuel; Kaye-Blake, William; Monaghan, Ross; Burggraaf, Vicki; Beautrais, Josef; Mackay, Alec

    2015-06-01

    Using a novel approach that links geospatial land resource information with individual farm-scale simulation, we conducted a regional assessment of nitrogen (N) and phosphorous (P) losses to water and greenhouse gas (GHG) emissions to air from the predominant mix of pastoral industries in Southland, New Zealand. An evaluation of the cost-effectiveness of several nutrient loss mitigation strategies applied at the farm-scale, set primarily for reducing N and P losses and grouped by capital cost and potential ease of adoption, followed an initial baseline assessment. Grouped nutrient loss mitigation strategies were applied on an additive basis on the assumption of full adoption, and were broadly identified as 'improved nutrient management' (M1), 'improved animal productivity' (M2), and 'restricted grazing' (M3). Estimated annual nitrate-N leaching losses occurring under representative baseline sheep and beef (cattle) farms, and representative baseline dairy farms for the region were 10 ± 2 and 32 ± 6 kg N/ha (mean ± standard deviation), respectively. Both sheep and beef and dairy farms were responsive to N leaching loss mitigation strategies in M1, at a low cost per kg N-loss mitigated. Only dairy farms were responsive to N leaching loss abatement from adopting M2, at no additional cost per kg N-loss mitigated. Dairy farms were also responsive to N leaching loss abatement from adopting M3, but this reduction came at a greater cost per kg N-loss mitigated. Only dairy farms were responsive to P-loss mitigation strategies, in particular by adopting M1. Only dairy farms were responsive to GHG abatement; greater abatement was achieved by the most intensified dairy farm system simulated. Overall, M1 provided for high levels of regional scale N- and P-loss abatement at a low cost per farm without affecting overall farm production, M2 provided additional N-loss abatement but only marginal P-loss abatement, whereas M3 provided the greatest N-loss abatement, but

  2. GHG legislation: Lessons from Taiwan

    International Nuclear Information System (INIS)

    Huang, W.M.; Lee, Grace W.M.

    2009-01-01

    Taiwan has drafted a Greenhouse Gas (GHG) Reduction Bill in 2006, which is currently undergoing the legislative process in the Congress. The purpose of this study is to reexamine the legal framework and contents of this Bill, evaluate potential problems and propose recommendations. This study advocates that setting the GHG reduction targets should be settled in this Bill. In addition, based on the analysis of international experiences, it is recommenced that emissions trading scheme in the Bill should be focused on large emission sources and the share of allowance auction should be increased to reduce gratis allocation. Furthermore, from the calculation results based on the long-range energy alternative planning (LEAP) model, a conflict is observed for the existing energy policy and GHG reduction efforts in Taiwan. That is, coal-burning power plants will be the most important source of energy for Taiwan in the future. In order to reduce this conflict, the authors have recommended that the Bill should also be integrated with other relevant existing legislation to achieve a complementary effect.

  3. Life cycle GHG analysis of rice straw bio-DME production and application in Thailand

    International Nuclear Information System (INIS)

    Silalertruksa, Thapat; Gheewala, Shabbir H.; Sagisaka, Masayuki; Yamaguchi, Katsunobu

    2013-01-01

    Highlights: • Life cycle GHG emissions of rice straw bio-DME production in Thailand are assessed. • Bio-DME replaces diesel in engines and supplements LPG for household application. • Rice straw bio-DME in both cases of substitution helps reduce GHG emissions. - Abstract: Thailand is one of the leading countries in rice production and export; an abundance of rice straw, therefore, is left in the field nowadays and is commonly burnt to facilitate quick planting of the next crop. The study assesses the life cycle greenhouse gas (GHG) emissions of using rice straw for bio-DME production in Thailand. The analysis is divided into two scenarios of rice straw bio-DME utilization i.e. used as automotive fuel for diesel engines and used as LPG supplement for household application. The results reveal that that utilization of rice straw for bio-DME in the two scenarios could help reduce GHG emissions by around 14–70% and 2–66%, respectively as compared to the diesel fuel and LPG substituted. In case rice straw is considered as a by-product of rice cultivation, the cultivation of rice straw will be the major source of GHG emission contributing around 50% of the total GHG emissions of rice straw bio-DME production. Several factors that can affect the GHG performance of rice straw bio-DME production are discussed along with measures to enhance GHG performance of rice straw bio-DME production and utilization

  4. Future needs for ship emission abatement and technical measures

    Directory of Open Access Journals (Sweden)

    Teresa ANTES

    2013-01-01

    Full Text Available The International Maritime Organization (IMO has revised air pollution regulations in MARPOL Annex VI. In 2012 Emission Control Areas (ECA will limit fuel sulphur content to 1% and from 2015 to 0.1%. NOx emissions based on ships engine speed are also reduced for new vessels (2012 & 2016. Facing this legislation, ship owners have the alternative either to operate ships with costly low-sulphur fuels, or to keep using HFO but together with a gas cleaning equipment at the ship stack in order to reduce the rejected amount of SO2 gas in the atmosphere. To achieve this requirement, research and development organizations came out with proposing a solution that uses a device for cleaning exhaust gas of marine diesel engines. The paper presents a short communication about the DEECON project, which aim is to create a novel on-board after-treatment unit more advanced than any currently available. Each sub-unit of the system will be optimized to remove a specific primary pollutant. In particular, the technology within the DEECON system is based on novel or improved abatement techniques for reducing SOx, NOx, Particulate Matter (PM, CO and Volatile Organic Compounds (VOC. Some of these technologies are completely new for the maritime sector and they will represent a breakthrough in the reduction of the atmospheric emissions of ships, moving forward the performance of exhaust gas cleaning systems and fostering and anticipating the adoption of future and tighter regulatory requirements. In addition, an after-treatment strategy enables the possible adoption of alternative fuels, which often have their own emissions characteristics.

  5. Greenhouse gases mitigation potential and costs for Brazil's energy system from 2010 to 2030

    Energy Technology Data Exchange (ETDEWEB)

    Borba, Bruno S.M.C.; Lucena, Andre F.P. de; Rathmann, Regis; Costa, Isabella V.L. da; Nogueira, Larissa P.P.; Rochedo, Pedro R.R.; H. Junior, Mauricio F.; Szklo, Alexandre; Schaeffer, Roberto [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PPE/COPPE/UFRJ), RJ (Brazil). Programa de Planejamento Energetico

    2012-07-01

    This paper analyses the potential for energy-related greenhouse gas (GHG) emission reductions and their abatement costs in the energy system of Brazil. The analysis of mitigation options and their costs focuses on the following sectors: industry, transportation and energy supply (electricity generation and oil refining), given their large contribution to the Brazil's GHGs emissions. For the industrial and oil refining sectors, the paper estimated abatement costs based on the investments along with the energy and operational costs of the measures considered. Two discount rates were used: 15% a year (private discount rate) and 8% a year (social discount rate). Compared to a business-as-usual reference scenario, results show a potential to reduce future energy-related GHG emissions by 27% in 2030. This study shows, however, that in relation to a reference year (2007), the examined abatement measures, along with the socioeconomic dynamics of an emerging country such as Brazil, would not be enough to attain absolute reductions in GHG emissions by 2030. This result is valid both each sector individually and for the sum of the emissions from all the sectors analyzed. (author)

  6. The macroeconomic consequences of controlling greenhouse gases: a survey

    International Nuclear Information System (INIS)

    Boero, Gianna; Clarke, Rosemary; Winters, L.A.

    1991-01-01

    This is the summary of a major report which provides a survey of existing estimates of the macroeconomic consequences of controlling greenhouse gas emissions, particularly carbon dioxide (CO 2 ). There are broadly speaking two main questions. What are the consequences of global warming for economic activity and welfare? What, if any, are the economic consequences of reducing the levels of greenhouse gas (GHG) emissions? This survey covers only those studies which quantify the overall (macroeconomic) costs of abating greenhouse gas emissions. It is not concerned with whether any particular degree of abatement is sufficient to reduce global warming, nor whether it is worth undertaking in the light of its benefits. These are topics for other researchers and other papers. Here we are concerned only to map the relationship between economic welfare and GHG abatement. (author)

  7. Progress toward an Integrated Global GHG Information System (IG3IS)

    Science.gov (United States)

    DeCola, Philip

    2016-04-01

    Accurate and precise atmospheric measurements of greenhouse gas (GHG) concentrations have shown the inexorable rise of global GHG concentrations due to human socioeconomic activity. Scientific observations also show a resulting rise in global temperatures and evidence of negative impacts on society. In response to this amassing evidence, nations, states, cities and private enterprises are accelerating efforts to reduce emissions of GHGs, and the UNFCCC process recently forged the Paris Agreement. Emission reduction strategies will vary by nation, region, and economic sector (e.g., INDCs), but regardless of the strategies and mechanisms applied, the ability to implement policies and manage them effectively over time will require consistent, reliable and timely information. A number of studies [e.g., Verifying Greenhouse Gas Emissions: Methods to Support International Climate Agreements (2010); GEO Carbon Strategy (2010); IPCC Task Force on National GHG Inventories: Expert Meeting Report on Uncertainty and Validation of Emission Inventories (2010)] have reported on the state of carbon cycle research, observations and models and the ability of these atmospheric observations and models to independently validate and improve the accuracy of self-reported emission inventories based on fossil fuel usage and land use activities. These studies concluded that by enhancing our in situ and remote-sensing observations and atmospheric data assimilation modeling capabilities, a GHG information system could be achieved in the coming decade to serve the needs of policies and actions to reduce GHG emissions. Atmospheric measurements and models are already being used to provide emissions information on a global and continental scale through existing networks, but these efforts currently provide insufficient information at the human-dimensions where nations, states, cities, and private enterprises can take valuable, and additional action that can reduce emissions for a specific GHG

  8. Future energy loads for a large-scale adoption of electric vehicles in the city of Los Angeles: Impacts on greenhouse gas (GHG) emissions

    International Nuclear Information System (INIS)

    Kim, Jae D.; Rahimi, Mansour

    2014-01-01

    Using plug-in electric vehicles (PEVs) has become an important component of greenhouse gas (GHG) emissions reduction strategy in the transportation sector. Assessing the net effect of PEVs on GHG emissions, however, is dependent on factors such as type and scale of electricity generation sources, adoption rate, and charging behavior. This study creates a comprehensive model that estimates the energy load and GHG emissions impacts for the years 2020 and 2030 for the city of Los Angeles. For 2020, model simulations show that the PEV charging loads will be modest with negligible effects on the overall system load profile. Contrary to previous study results, the average marginal carbon intensity is higher if PEV charging occurs during off-peak hours. These results suggest that current economic incentives to encourage off-peak charging result in greater GHG emissions. Model simulations for 2030 show that PEV charging loads increase significantly resulting in potential generation shortages. There are also significant grid operation challenges as the region's energy grid is required to ramp up and down rapidly to meet PEV loads. For 2030, the average marginal carbon intensity for off-peak charging becomes lower than peak charging mainly due to the removal of coal from the power generation portfolio. - Highlights: • Future energy load from PEV charging in the city of Los Angeles is modeled. • Changes in the marginal carbon intensity of the region's electric grid are modeled. • In the short run, offpeak charging results in higher marginal carbon intensity. • There is a mismatch between emissions and economic incentives for charging

  9. Mitigation options for methane emissions from rice fields in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Lantin, R.S.; Buendia, L.V.; Wassmann, R. [International Rice Research Institute, Laguna (Philippines)] [and others

    1996-12-31

    The contribution of Philippine rice production to global methane emission and breakthroughs in methane emission studies conducted in the country are presented in this paper. A significant impact in the reduction of GHG emissions from agriculture can be achieved if methane emissions from ricefields can be abated. This study presents the contribution of Philippine rice cultivation to global methane emission and breakthroughs in methane emission studies in the country which address the issue of mitigation. Using the derived emission factors from local measurements, rice cultivation contributes 566.6 Gg of methane emission in the Philippines. This value is 62% of the total methane emitted from the agriculture sector. The emission factors employed which are 78% of the IPCC value for irrigated rice and 95% for rainfed rice were derived from measurements with an automatic system taken during the growth duration in the respective ecosystems. Plots drained for 2 weeks at midtillering and before harvest gave a significant reduction in methane emission as opposed to continuously flooded plots and plots drained before harvest. The cultivar Magat reduced methane emission by 50% as compared to the check variety IR72. The application of ammonium sulfate instead of urea reduced methane emission by 10% to 34%. Addition of 6 t ha{sup {minus}1} phosphogypsum in combination with urea reduced emission by 74% as opposed to plots applied with urea alone. It is also from the results of such measurements that abatement strategies are based as regards to modifying treatments such as water management, fertilization, and choice of rice variety. It is not easy to identify and recommend mitigation strategies that will fit a particular cropping system. However, the identified mitigation options provide focus for the abatement of methane emission from ricefields.

  10. Modeling Water Resource Systems Accounting for Water-Related Energy Use, GHG Emissions and Water-Dependent Energy Generation in California

    Science.gov (United States)

    Escriva-Bou, A.; Lund, J. R.; Pulido-Velazquez, M.; Medellin-Azuara, J.

    2015-12-01

    Most individual processes relating water and energy interdependence have been assessed in many different ways over the last decade. It is time to step up and include the results of these studies in management by proportionating a tool for integrating these processes in decision-making to effectively understand the tradeoffs between water and energy from management options and scenarios. A simple but powerful decision support system (DSS) for water management is described that includes water-related energy use and GHG emissions not solely from the water operations, but also from final water end uses, including demands from cities, agriculture, environment and the energy sector. Because one of the main drivers of energy use and GHG emissions is water pumping from aquifers, the DSS combines a surface water management model with a simple groundwater model, accounting for their interrelationships. The model also explicitly includes economic data to optimize water use across sectors during shortages and calculate return flows from different uses. Capabilities of the DSS are demonstrated on a case study over California's intertied water system. Results show that urban end uses account for most GHG emissions of the entire water cycle, but large water conveyance produces significant peaks over the summer season. Also the development of more efficient water application on the agricultural sector has increased the total energy consumption and the net water use in the basins.

  11. Scenario analysis on alternative fuel/vehicle for China's future road transport: Life-cycle energy demand and GHG emissions

    Energy Technology Data Exchange (ETDEWEB)

    Ou Xunmin, E-mail: oxm07@mails.tsinghua.edu.c [Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China); China Automotive Energy Research Center (CAERC), Tsinghua University, Beijing 100084 (China); School of Public Policy and Management (SPPM), Tsinghua University, Beijing 100084 (China); Zhang Xiliang, E-mail: zhang_xl@tsinghua.edu.c [Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China); China Automotive Energy Research Center (CAERC), Tsinghua University, Beijing 100084 (China); Chang Shiyan [Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China); China Automotive Energy Research Center (CAERC), Tsinghua University, Beijing 100084 (China)

    2010-08-15

    The rapid growth of vehicles has resulted in continuing growth in China's oil demand. This paper analyzes future trends of both direct and life cycle energy demand (ED) and greenhouse gas (GHG) emissions in China's road transport sector, and assesses the effectiveness of possible reduction measures by using alternative vehicles/fuels. A model is developed to derive a historical trend and to project future trends. The government is assumed to do nothing additional in the future to influence the long-term trends in the business as usual (BAU) scenario. Four specific scenarios are used to describe the future cases where different alternative fuel/vehicles are applied. The best case scenario is set to represent the most optimized case. Direct ED and GHG emissions would reach 734 million tonnes of oil equivalent and 2384 million tonnes carbon dioxide equivalent by 2050 in the BAU case, respectively, more than 5.6 times of 2007 levels. Compared with the BAU case, the relative reductions achieved in the best case would be 15.8% and 27.6% for life cycle ED and GHG emissions, respectively. It is suggested for future policy implementation to support sustainable biofuel and high efficient electric-vehicles, and the deployment of coal-based fuels accompanied with low-carbon technology.

  12. Scenario analysis on alternative fuel/vehicle for China's future road transport. Life-cycle energy demand and GHG emissions

    Energy Technology Data Exchange (ETDEWEB)

    Ou, Xunmin [Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China); China Automotive Energy Research Center (CAERC), Tsinghua University, Beijing 100084 (China); School of Public Policy and Management (SPPM), Tsinghua University, Beijing 100084 (China); Zhang, Xiliang; Chang, Shiyan [Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China); China Automotive Energy Research Center (CAERC), Tsinghua University, Beijing 100084 (China)

    2010-08-15

    The rapid growth of vehicles has resulted in continuing growth in China's oil demand. This paper analyzes future trends of both direct and life cycle energy demand (ED) and greenhouse gas (GHG) emissions in China's road transport sector, and assesses the effectiveness of possible reduction measures by using alternative vehicles/fuels. A model is developed to derive a historical trend and to project future trends. The government is assumed to do nothing additional in the future to influence the long-term trends in the business as usual (BAU) scenario. Four specific scenarios are used to describe the future cases where different alternative fuel/vehicles are applied. The best case scenario is set to represent the most optimized case. Direct ED and GHG emissions would reach 734 million tonnes of oil equivalent and 2384 million tonnes carbon dioxide equivalent by 2050 in the BAU case, respectively, more than 5.6 times of 2007 levels. Compared with the BAU case, the relative reductions achieved in the best case would be 15.8% and 27.6% for life cycle ED and GHG emissions, respectively. It is suggested for future policy implementation to support sustainable biofuel and high efficient electric-vehicles, and the deployment of coal-based fuels accompanied with low-carbon technology. (author)

  13. Potential and cost of clean development mechanism options in the energy sector. Inventory of options in non-Annex I countries to reduce GHG-emissions

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, J.C.; Van der Linden, N.H.; Martens, J.W.; Ormel, F.; Van Rooijen, S.N.M. [ECN Policy Studies, Petten (Netherlands); Heaps, C.; Kartha, S.; Lazarus, M.; Ruth, M. [Stockholm Environment Institute SEI, Boston (United States); Lee, R.; Mendis, M. [Alternative Energy Development, Inc., Silver Spring (United States)

    1999-12-01

    An assessment is presented of the potential and cost of the Clean Development Mechanism as an instrument to partially meet the Greenhouse Gases emission limitation commitments of the Netherlands for the first budget period, 2008-2012. Information about the cost and emission reduction potential in the energy sector has been collected from national mitigation studies. In total, some 300 GHG emission reduction options in 24 non-Annex I countries have been collected Together, these countries account for two-thirds of current non-Annex I GHG emissions. The mitigation potential in non-Annex I countries is significant when compared with Annex I reduction requirements. The inventory of mitigation options suggests that an annual mitigation potential in the first budget period at costs up to 1990 USD 10/ton CO2 is approximately 1.7 Gt CO2 equivalents. However, this estimate should be viewed with caution, as the mitigation studies on which this estimate is based have been carried out as capacity-building exercises and they should not be viewed as definitive, technically rigorous, exhaustive, analysis of national GHG mitigation potential. 15 refs.

  14. National Framework for GHG Emission Trading in Russia

    International Nuclear Information System (INIS)

    Kotov, V.; Nikitina, E.

    2003-01-01

    If Russia ratifies the Kyoto Protocol to the United Nations Framework Convention on Climate Change (UNFCCC), domestic implementation of its international commitments under this international regime will require special national responses, i.e. institutional capacity building for application of its mechanisms. The Kyoto Protocol and its mechanisms, particularly, international emission trading (IET) and joint implementation (JI), mark a turning point, with opportunities for Russia to benefit from an economic and environmental standpoint from international cooperation. Russia might wish to sell to other parties a surplus in its assigned amount for the first commitment period in 2008-2012, as according to existing estimates its GHG emissions are expected to be below their 1990 base level. In order to participate in international emission trading, Russia has to meet several international requirements, including providing national inventory and reporting and establishing national registry compatible with the standard international format. It is to establish a domestic institutional regime defining laws and rules of behaviour for its participants, the administrative frameworks, and designing major schemes for domestic emission trading programme. Russia's emission trading system is not formed yet. This is a challenging innovation for Russia, as in its previous environmental management practices it did not have any experience in domestic emission trading with other air pollutants. The paper examines the key elements suggested in a number of existing proposals, assessments, and approaches of the government, parliamentarians and non-governmental experts for its institutional design which is at the core of ongoing climate policy debates in the country. These approaches and practical suggestions define the current state-of-the-art in domestic emission trading regime formation and channel the paths of its institutional development in the future. This paper analyses peculiarities

  15. Reducing GHG emissions in agricultural production process for production of biofuels by growing legumes and production-technical measures; Senkung der THG-Emissionen in landwirtschaftlichen Produktionsverfahren zur Erzeugung von Biokraftstoffen durch Leguminosenanbau und produktionstechnische Massnahmen

    Energy Technology Data Exchange (ETDEWEB)

    Gurgel, Andreas [Landesforschungsanstalt fuer Landwirtschaft und Fischerei Mecklenburg-Vorpommern, Guelzow-Pruezen (Germany). Sachgebiet Nachwachsende Rohstoffe; Schiemenz, Katja

    2017-08-01

    The reduction of greenhouse gases (GHG) emissions in the supply chain for biofuels is a big challenge especially for the German and European cultivation of energy crops. The production of nitrogen fertilizers and field emissions are the main factors of GHG emissions. The amount of field emissions depends very strongly on the nitrogen effort and the intensity of tillage. The main objective is to reduce GHG emissions in field cropping systems within the biofuel production chains. An inclusion of legumes into crop rotations is particularly important because their cultivation does not require nitrogen fertilizer. Data base for the project is a complex field experiment with the biofuel crops winter rape and winter wheat. Previous crops are winter wheat, peas and lupins. ln each case tilling systems are compared with non-tilling. The first results of the field experiments are nitrogen functions depending on previous crops, sites and tilling system. Calculation models for GHG reduction models were developed on the bases of these results. By growing legumes as previous crops before wheat and rape it is possible to reduce GHG emissions from 2 to 10 g CO{sub 2eq} per MJ. The best reduction of GHG emissions is possible by combining legumes as previous crops with a reduced nitrogen effort.

  16. Life cycle GHG emissions from Malaysian oil palm bioenergy development: The impact on transportation sector's energy security

    International Nuclear Information System (INIS)

    Hassan, Mohd Nor Azman; Jaramillo, Paulina; Griffin, W. Michael

    2011-01-01

    Malaysia's transportation sector accounts for 41% of the country's total energy use. The country is expected to become a net oil importer by the year 2011. To encourage renewable energy development and relieve the country's emerging oil dependence, in 2006 the government mandated blending 5% palm-oil biodiesel in petroleum diesel. Malaysia produced 16 million tonnes of palm oil in 2007, mainly for food use. This paper addresses maximizing bioenergy use from oil-palm to support Malaysia's energy initiative while minimizing greenhouse-gas emissions from land-use change. When converting primary and secondary forests to oil-palm plantations between 270-530 and 120-190 g CO 2 -equivalent per MJ of biodiesel produced, respectively, is released. However, converting degraded lands results in the capture of between 23 and 85 g CO 2 -equivalent per MJ of biodiesel produced. Using various combinations of land types, Malaysia could meet the 5% biodiesel target with a net GHG savings of about 1.03 million tonnes (4.9% of the transportation sector's diesel emissions) when accounting for the emissions savings from the diesel fuel displaced. These findings are used to recommend policies for mitigating GHG emissions impacts from the growth of palm oil use in the transportation sector. - Research highlights: → We modeled greenhouse gas emissions in the production of palm-biodiesel. → Five land types were included to model emissions associated with land-use change. → Land-use change has the biggest impact on the emissions in making palm-biodiesel. → Emissions from fertilizer use and effluent treatment are still significant. → At 5% biodiesel grown on suitable lands Malaysia would obtain an emissions savings.

  17. Marginal abatement cost curves for NOx incorporating both controls and alternative measures

    Science.gov (United States)

    A marginal abatement cost curve (MACC) traces out the efficient marginal abatement cost level for any aggregate emissions target when a least cost approach is implemented. In order for it to represent the efficient MAC level, all abatement opportunities across all sectors and loc...

  18. A consumption-based GHG inventory for the U.S. state of Oregon.

    Science.gov (United States)

    Erickson, Peter; Allaway, David; Lazarus, Michael; Stanton, Elizabeth A

    2012-04-03

    Many U.S. states conduct greenhouse gas (GHG) inventories to inform their climate change planning efforts. These inventories usually follow a production-based method adapted from the Intergovernmental Panel on Climate Change. States could also take a consumption-based perspective, however, and estimate all emissions released to support consumption in their state, regardless of where the emissions occur. In what may be the first such comprehensive inventory conducted for a U.S. state, we find that consumption-based emissions for Oregon are 47% higher than those released in-state. This finding implies that Oregon's contribution to global greenhouse gas emissions (carbon footprint) is considerably higher than traditional production-based methods would suggest. Furthermore, the consumption-based inventory helps highlight the role of goods and services (and associated purchasing behaviors) more so than do production-based methods. Accordingly, a consumption-based perspective opens new opportunities for many states and their local government partners to reduce GHG emissions, such as initiatives to advance lower-carbon public sector or household consumption, that are well within their sphere of influence. State and local governments should consider conducting consumption-based GHG inventories and adopting consumption-based emission reductions targets in order to broaden the reach and effectiveness of state and local actions in reducing global GHG emissions. Consumption-based frameworks should be viewed as a complement to, but not a substitute for, production-based (in-state) GHG emissions inventories and targets.

  19. On the cost-effective abatement of CO2-options taking consumer behaviour into account

    International Nuclear Information System (INIS)

    Wietschel, M.; Rentz, O.

    1995-01-01

    The current ecopolitical discussion focusses on the greenhouse effect and the consequent political aim to abate anthropogenic CO 2 emissions. Studies on individual measures for CO 2 abatement and on the development of efficient abatement strategies are already at hand. There is one aspect, however, that has hardly been dealt with as yet: If CO 2 abatement suceeds as it is planned by the Federal Government, then energy and prices will rise considerably, and this will curb the demand for energy. Any efficient abatement strategy must take this into account. The article presents a new concept for energy-emission models that takes consumer behaviour into account and discusses efficient CO 2 abatement strategies following from the application of such models. (orig.) [de

  20. Plug-in hybrid vehicle GHG impacts in California: Integrating consumer-informed recharge profiles with an electricity-dispatch model

    International Nuclear Information System (INIS)

    Axsen, Jonn; Kurani, Kenneth S.; McCarthy, Ryan; Yang, Christopher

    2011-01-01

    This paper explores how Plug-in Hybrid Vehicles (PHEVs) may reduce source-to-wheel Greenhouse Gas (GHG) emissions from passenger vehicles. The two primary advances are the incorporation of (1) explicit measures of consumer interest in and potential use of different types of PHEVs and (2) a model of the California electricity grid capable of differentiating hourly and seasonal GHG emissions by generation source. We construct PHEV emissions scenarios to address inherent relationships between vehicle design, driving and recharging behaviors, seasonal and time-of-day variation in GHG-intensity of electricity, and total GHG emissions. A sample of 877 California new vehicle buyers provide data on driving, time of day recharge access, and PHEV design interests. The elicited data differ substantially from the assumptions used in previous analyses. We construct electricity demand profiles scaled to one million PHEVs and input them into an hourly California electricity supply model to simulate GHG emissions. Compared to conventional vehicles, consumer-designed PHEVs cut marginal (incremental) GHG emissions by more than one-third in current California energy scenarios and by one-quarter in future energy scenarios-reductions similar to those simulated for all-electric PHEV designs. Across the emissions scenarios, long-term GHG reductions depends on reducing the carbon intensity of the grid. - Research highlights: → We estimate California Plug-in Hybrid Vehicle (PHEV) GHGs using consumer data and an electricity supply model. → Consumer-designed (mostly 'blended') PHEVs can reduce GHG emissions compared to conventional vehicles. → These PHEVs can also reduce GHG emissions relative to 'all-electric' PHEV designs. → 'All-electric' designs may further reduce GHG emissions as electricity carbon intensity falls. → Ranking of GHG savings from off-peak versus daytime charging scenarios depends on electricity carbon intensity.

  1. Energy and GHG Analysis of Rural Household Biogas Systems in China

    Directory of Open Access Journals (Sweden)

    Lixiao Zhang

    2014-02-01

    Full Text Available The Chinese government has taken great efforts to popularize rural household scale biogas digesters, since they are regarded as an effective approach to address energy shortage issues in rural areas and as a potential way of reducing greenhouse gas (GHG emissions. Focusing on a typical rural household biogas system, the aim of this study is to systematically quantify its total direct and indirect energy, concentrating on non-renewable energy and the associated GHG emission cost over the entire life cycle to understand its net dynamic benefits. The results show that the total energetic cost for biogas output is 2.19 J/J, of which 0.56 J is from non-renewable energy sources and the GHG emission cost is 4.54 × 10−5 g CO2-equivalent (CO2-eq, with respect to its design life cycle of 20 years. Correspondingly, a net non-renewable energy saving of 9.89 × 1010 J and GHG emission reduction of 50.45 t CO2-eq can be obtained considering the coal substitution and manure disposal. However, it must be run for at least 10 and 3 years, to obtain positive net non-renewable energy savings and GHG emission reduction benefits, respectively. These results have policy implications for development orientation, follow-up services, program management and even national financial subsidy methods.

  2. Estimating the National Carbon Abatement Potential of City Policies: A Data- Driven Approach

    Energy Technology Data Exchange (ETDEWEB)

    Eric O’Shaughnessy, Jenny Heeter, David Keyser, Pieter Gagnon, and Alexandra Aznar

    2016-10-01

    Cities are increasingly taking actions such as building code enforcement, urban planning, and public transit expansion to reduce emissions of carbon dioxide in their communities and municipal operations. However, many cities lack the quantitative information needed to estimate policy impacts and prioritize city actions in terms of carbon abatement potential and cost effectiveness. This report fills this research gap by providing methodologies to assess the carbon abatement potential of a variety of city actions. The methodologies are applied to an energy use data set of 23,458 cities compiled for the U.S. Department of Energy’s City Energy Profile tool. The analysis estimates the national carbon abatement potential of the most commonly implemented actions in six specific policy areas. The results of this analysis suggest that, in aggregate, cities could reduce nationwide carbon emissions by about 210 million metric tons of carbon dioxide (MMT CO2) per year in a "moderate abatement scenario" by 2035 and 480 MMT CO2/year in a "high abatement scenario" by 2035 through these common actions typically within a city’s control in the six policy areas. The aggregate carbon abatement potential of these specific areas equates to a reduction of 3%-7% relative to 2013 U.S. emissions. At the city level, the results suggest the average city could reduce carbon emissions by 7% (moderate) to 19% (high) relative to current city-level emissions. City carbon abatement potential is sensitive to national and state policies that affect the carbon intensity of electricity and transportation. Specifically, the U.S. Clean Power Plan and further renewable energy cost reductions could reduce city carbon emissions overall, helping cities achieve their carbon reduction goals.

  3. The impacts of climate change on irrigation and crop production in Northeast China and implications for energy use and GHG Emission

    Science.gov (United States)

    Yan, Tingting; Wang, Jinxia; Huang, Jikun; Xie, Wei; Zhu, Tingju

    2018-06-01

    The water-food-energy-GHG nexus under climate change has been gaining increasing attention from both the research and policy communities, especially over the past several years. However, most existing nexus studies are qualitative and explorative in nature. So far, very few studies provide integrated analysis of this nexus across all the four sectors. The purpose of this paper is to examine this nexus by assessing the effects of climate change on agricultural production through the change in water availability, evaluating the adjustment responses and resulting energy consumption and GHG emission, with the Northeast China as a case study. Based on our simulation results, by 2030, climate change is projected to increase water supply and demand gap for irrigation in Northeast China. Due to the increase in water scarcity, irrigated areas will decrease, and the cropping pattern will be adjusted by increasing maize sown areas and decreasing rice sown areas. As a result, the total output of crops and profits will clearly be reduced. Finally, energy consumption and GHG emission from irrigation will be reduced. This study suggests that climate change impact assessment fully consider the nexus among water, food, energy and GHG; however, more studies need to be conducted in the future.

  4. The Challenge of Limiting Greenhouse Gas Emissions Through Activities implemented Jointly in Developing Countries: A Brazilian Perspective

    Energy Technology Data Exchange (ETDEWEB)

    La Rovere, E.L.

    1998-11-01

    This paper addresses, from the Brazilian perspective, the main problems with Joint Implementation/Activities Implemented Jointly (JI/AIJ) between industrialized (Annex I) and developing (non-Annex I) countries, as defined by the United Nations Framework Convention on Climate Change (UNFCCC). Four possible GHG emissions abatement measures are presented for Brazil: forest protection, reforestation projects for carbon sequestration or charcoal manufacturing, use of ethanol produced from sugar cane as a car fuel, and electrical energy conservation through an increase in end-use efficiencies. These four case studies form the basis of a discussion regarding the validity of developing countries' concerns about JI/AIJ. Recommendations are offered for overcoming the present shortcomings of JI/AIJ in developing countries. The primary conclusion is that Annex I countries' funding of JI/AIJ projects in developing countries in return for GHG emissions credits is not the best means to implement the UNFCCC. However, JI/AIJ projects can be a productive means of preventing global climate change if combined with other measures, including GHG emissions reduction targets for all countries involved in JI/AIJ projects and limits on the percentage of industrialized countries' emissions reductions that can be met through projects in developing countries.

  5. Assessment of Air Pollution and GHG Mitigation Strategies in Malaysia using the GAINS Model

    International Nuclear Information System (INIS)

    Kumar, M.

    2013-01-01

    Planning for future energy development, taking into account the national obligations to mitigate climate change and air quality pressures is a major challenge faced by Malaysia. This research facilitates the impact assessment of simultaneous control of air pollution and GHG abatement through a set of emission scenarios while considering current and future Malaysian policies. The IIASAs GAINS (Greenhouse Gas-Air Pollution Interactions and Synergies) model is used for the estimation of emissions and costs, and the outputs of the MESSAGE and MAED energy models provide the underlying energy projections by 2050. Results show that current air-quality policies are efficient in keeping emissions growth at moderate rate, however, significant reduction potential exists if best available control technologies are introduced. Malaysian climate policies - modeled here for power sector - aiming at the -40 % decrease in carbon-intensity, result in important reductions of air pollutants, while the overall co-benefits can be substantial if other sectors are tackled by climate strategies. Initial results indicate the reduction of air pollutant control cost due to climate measures is comparable to the invoked cost-increase in power sector by 2030. Thereby, these co-benefits help to moderate total expenditures for meeting national climate policy targets. (author)

  6. Reductions in greenhouse gas emissions and cost by shipping at lower speeds

    International Nuclear Information System (INIS)

    Lindstad, Haakon; Asbjornslett, Bjorn E.; Stromman, Anders H.

    2011-01-01

    CO 2 emissions from maritime transport represent a significant part of total global greenhouse gas (GHG) emissions. According to the International Maritime Organization (), maritime transport emitted 1046 million tons (all tons are metric) of CO 2 in 2007, representing 3.3% of the world's total CO 2 emissions. The International Maritime Organization (IMO) is currently debating both technical and market-based measures for reducing greenhouse gas emissions from shipping. This paper presents investigations on the effects of speed reductions on the direct emissions and costs of maritime transport, for which the selection of ship classes was made to facilitate an aggregated representation of the world fleet. The results show that there is a substantial potential for reducing CO 2 emissions in shipping. Emissions can be reduced by 19% with a negative abatement cost (cost minimization) and by 28% at a zero abatement cost. Since these emission reductions are based purely on lower speeds, they can in part be performed now. - Highlights: → We investigates the effects of speed reductions for maritime transport. → The selection of ship classes represent the words fleet. → The transport volumes are kept constant. → The model includes both cost and emissions as a function of speed. → The results show that there is a substantial potential for reducing CO 2 emissions from shipping.

  7. Accounting for time-dependent changes in GHG emissions in the Ribeiro appellation (NW Spain): Are land use changes an important driver?

    International Nuclear Information System (INIS)

    Villanueva-Rey, Pedro; Vázquez-Rowe, Ian; Otero, Marta; Moreira, María Teresa; Feijoo, Gumersindo

    2015-01-01

    Highlights: • The environmental profile of a wine appellation was assessed for a 20 year period. • LUCs and LCA methods were linked to assess the GHG emissions in the appellation. • Winegrowing operations and land use were monitored up to the gate of the winery. • Different trends were found depending on the period assessed. • Demographic and social changes triggered changes in the carbon stocks. - Abstract: Land use changes (LUCs) constitute a crucial source of environmental impact in production systems, which are mostly associated with greenhouse gas (GHG) emissions. This circumstance is especially important for the agricultural sector, since these imply an important proportion of the total GHG emissions occurring worldwide. Wine and grape production is a key sector in Spain, representing the largest surface area at European level. In the past decades, important wine related LUCs have been observed due to changes in farming methods/type, number of Denominations of Origin, and the establishment of larger wineries that have enhanced exports. The current study presents a temporally based Life Cycle Assessment (LCA) study of the Ribeiro appellation in NW Spain, in which the gradual changes in the land use, as well as the technological improvements are analyzed in detail in order to understand how the environmental profile of this specific wine producing area has shifted in the past two decades (i.e., from 1990 to 2009). On the one hand, phenomena such as afforestation and agricultural intensification are analyzed throughout the appellation to estimate the impact due to GHG emissions linked to LUCs, based on IPCC standards. On the other hand, trends linked to technological improvements, operational changes, such as changes in the use and management of plant protection agents or fertilizers or the change in the energy sources for machinery on the vineyards, were assessed in detail

  8. Forest biomass supply chains in Ireland: A life cycle assessment of GHG emissions and primary energy balances

    International Nuclear Information System (INIS)

    Murphy, Fionnuala; Devlin, Ger; McDonnell, Kevin

    2014-01-01

    Highlights: • Wood energy supply chains are analysed for energy requirements and GHG emissions. • Use of residues and stumps for energy is evaluated for Irish conditions. • Results highlight transportation as the most energy and GHG emission intensive step. • Wood energy compares favourably with other biomass sources and fossil fuels. - Abstract: The demand for wood for energy production in Ireland is predicted to double from 1.5 million m 3 over bark (OB) in 2011 to 3 million m 3 OB by 2020. There is a large potential for additional biomass recovery for energetic purposes from both thinning forest stands and by harvesting of tops and branches, and stumps. This study builds on research within the wood-for-energy concept in Ireland by analysing the energy requirements and greenhouse gas emissions associated with thinning, residue bundling and stump removal for energy purposes. To date there have been no studies on harvesting of residues and stumps in terms of energy balances and greenhouse gas emissions across the life cycle in Ireland. The results of the analysis on wood energy supply chains highlights transport as the most energy and greenhouse gas emissions intensive step in the life cycle. This finding illustrates importance of localised production and use of forest biomass. Production of wood chip, and shredded bundles and stumps, compares favourably with both other sources of biomass in Ireland and fossil fuels

  9. The complexity and challenges of determining GHG (greenhouse gas) emissions from grid electricity consumption and conservation in LCA (life cycle assessment) – A methodological review

    International Nuclear Information System (INIS)

    Soimakallio, Sampo; Kiviluoma, Juha; Saikku, Laura

    2011-01-01

    The way in which GHG (greenhouse gas) emissions associated with grid electricity consumption is handled in different LCA (life cycle assessment) studies, varies significantly. Apart from differences in actual research questions, methodological choices and data set selection have a significant impact on the outcomes. These inconsistencies result in difficulties to compare the findings of various LCA studies. This review paper explores the issue from a methodological point of view. The perspectives of ALCA (attributional life cycle assessment) and CLCA (consequential life cycle assessment) are reflected. Finally, the paper summarizes the key issues and provides suggestions on the way forward. The major challenge related to both of the LCA categories is to determine the GHG emissions of the power production technologies under consideration. Furthermore, the specific challenge in ALCA is to determine the appropriate electricity production mix, and in CLCA, to identify the marginal technologies affected and related consequences. Significant uncertainties are involved, particularly in future-related LCAs, and these should not be ignored. Harmonization of the methods and data sets for various purposes is suggested, acknowledging that selections might be subjective. -- Highlights: ► Methods to assess GHG emissions from grid electricity consumption in LCA vary. ► We explored the major challenges related to various methods. ► Significant uncertainties are involved particularly in future-related GHG emissions. ► The most appropriate method depends on the equity viewpoints.

  10. Fossil energy and GHG saving potentials of pig farming in the EU

    International Nuclear Information System (INIS)

    Nguyen, Thu Lan T.; Hermansen, John E.; Mogensen, Lisbeth

    2010-01-01

    In Europe, the highly developed livestock industry places a high burden on resource use and environmental quality. This paper examines pig meat production in North-West Europe as a base case and runs different scenarios to investigate how improvements in terms of energy and greenhouse gas (GHG) savings can be feasibly achieved. As shown in the results of the analysis, pig farming in the EU has a high potential to reduce fossil energy use and GHG emissions by taking improvement measures in three aspects: (i) feed use; (ii) manure management; and (iii) manure utilization. In particular, a combination of improvements in all mentioned aspects offers the highest savings potential of up to 61% fossil energy and 49% GHG emissions. In weighing these three aspects, manure utilization for energy production is found to be the most important factor in reducing fossil energy use and GHG emissions. However, when GHG implications of land use change and land opportunity cost associated with the production of feed crops (e.g. soy meal, cereals) are considered, reducing feed use becomes the main factor in improving GHG performance of EU pork.

  11. Fossil energy and GHG saving potentials of pig farming in the EU

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thu Lan T.; Hermansen, John E.; Mogensen, Lisbeth [Department of Agroecology and Environment, Aarhus University, Tjele (Denmark)

    2010-05-15

    In Europe, the highly developed livestock industry places a high burden on resource use and environmental quality. This paper examines pig meat production in North-West Europe as a base case and runs different scenarios to investigate how improvements in terms of energy and greenhouse gas (GHG) savings can be feasibly achieved. As shown in the results of the analysis, pig farming in the EU has a high potential to reduce fossil energy use and GHG emissions by taking improvement measures in three aspects: (i) feed use; (2) manure management; and (3) manure utilization. In particular, a combination of improvements in all mentioned aspects offers the highest savings potential of up to 61% fossil energy and 49% GHG emissions. In weighing these three aspects, manure utilization for energy production is found to be the most important factor in reducing fossil energy use and GHG emissions. However, when GHG implications of land use change and land opportunity cost associated with the production of feed crops (e.g. soy meal, cereals) are considered, reducing feed use becomes the main factor in improving GHG performance of EU pork. (author)

  12. Uncertainty of forest carbon stock changes. Implications to the total uncertainty of GHG inventory of Finland

    International Nuclear Information System (INIS)

    Monni, S.; Savolainen, I.; Peltoniemi, M.; Lehtonen, A.; Makipaa, R.; Palosuo, T.

    2007-01-01

    Uncertainty analysis facilitates identification of the most important categories affecting greenhouse gas (GHG) inventory uncertainty and helps in prioritisation of the efforts needed for development of the inventory. This paper presents an uncertainty analysis of GHG emissions of all Kyoto sectors and gases for Finland consolidated with estimates of emissions/removals from LULUCF categories. In Finland, net GHG emissions in 2003 were around 69 Tg (±15 Tg) CO2 equivalents. The uncertainties in forest carbon sink estimates in 2003 were larger than in most other emission categories, but of the same order of magnitude as in carbon stock change estimates in other land use, land-use change and forestry (LULUCF) categories, and in N2O emissions from agricultural soils. Uncertainties in sink estimates of 1990 were lower, due to better availability of data. Results of this study indicate that inclusion of the forest carbon sink to GHG inventories reported to the UNFCCC increases uncertainties in net emissions notably. However, the decrease in precision is accompanied by an increase in the accuracy of the overall net GHG emissions due to improved completeness of the inventory. The results of this study can be utilised when planning future GHG mitigation protocols and emission trading schemes and when analysing environmental benefits of climate conventions

  13. How to reduce household carbon emissions: A review of experience and policy design considerations

    International Nuclear Information System (INIS)

    Zhang, Xiaoling; Wang, Yue

    2017-01-01

    Global warming and environment problems caused by the excessive emission of greenhouse gases (GHGs), along with rapid economic development has attracted the attention of many countries and regions of the world. Reducing GHG emissions is essential to mitigate the threat of global warming. Household carbon (dioxide) emissions have been recognized as one of the most important contributors to climate change, with a significant impact on both the local and global environment, and various policy instruments have been implemented by governments to bring about the reduction. This paper reviews these carbon abatement policy measures from demand-side and supply-side perspectives based on 144 countries across the world. The advantages and disadvantages of the policies are analyzed and it is found that income level largely affects the choice of policy, with high-income countries being mostly associated with demand-side policy instruments. Low-income countries adopt less demand-side policy measures and mainly depend on supply-side polices such as targets and regulations. Geographic location is also an important factor influencing the choice of policy instruments due to the different climates between different regions, although targets, regulations and carbon taxes are dominant GHG reduction policy measures worldwide. In America, tendering and net metering are popular, while in Europe feed-in-tariff (FIT) policies are implemented for more than 70% of the time. In Asia, policy measures, whether supply-side or demand-side, are comparatively weakly implemented and influenced by location, urbanization and economic growth. This paper suggests that, although the economic level is different, low-income countries and particularly developing countries can promote carbon abatement as well as the financial market by gradually changing from supply-side policy instruments to demand-side policies. This critical review provides a systematic understanding of various carbon emission policies in

  14. Contributing to local policy making on GHG emission reduction through inventorying and attribution: A case study of Shenyang, China

    International Nuclear Information System (INIS)

    Xi Fengming; Geng Yong; Chen Xudong; Zhang Yunsong; Wang Xinbei; Xue Bing; Dong Huijuan; Liu Zhu; Ren Wanxia; Fujita, Tsuyoshi; Zhu Qinghua

    2011-01-01

    Cities consumed 84% of commercial energy in China, which indicates cities should be the main areas for GHG emissions reduction. Our case study of Shenyang in this paper shows how a clear inventory analysis on GHG emissions at city level can help to identify the major industries and societal sectors for reduction efforts so as to facilitate low-carbon policy-making. The results showed total carbon emission in 2007 was 57 Mt CO 2 equivalents (CO 2 e), of which 41 Mt CO 2 e was in-boundary emissions and 16 Mt CO 2 e was out-of-boundary emissions. The energy sector was dominant in the emission inventory, accounting for 93.1% of total emissions. Within energy sector, emissions from energy production industry, manufacturing and construction industry accounted for 88.4% of this sector. Our analysis showed that comparing with geographical boundary, setting system boundary based on single process standard could provide better information to decision makers for carbon emission reduction. After attributing electricity and heating consumption to final users, the resident and commercial sector became the largest emitter, accounting for 28.5% of total emissions. Spatial analysis of emissions showed that industrial districts such as Shenbei and Tiexi had the large potential to reduce their carbon emissions. Implications of results are finally discussed. - Highlights: → An inventory analysis can help identify key industries and societal sectors for reduction efforts. → Setting system boundary can provide better information for carbon emission reduction. → Urban districts with heavy industrial plants have potential to reduce their carbon emissions. → Policies that support urban energy structure optimization can accelerate low-carbon development.

  15. Biomass direct-fired power generation system in China: An integrated energy, GHG emissions, and economic evaluation for Salix

    International Nuclear Information System (INIS)

    Wang, Changbo; Zhang, Lixiao; Chang, Yuan; Pang, Mingyue

    2015-01-01

    To gain a better understanding of the options of biomass power generation in China, this study presented an integrated energy, environmental, and economic evaluation for Salix in China, and a typical Salix direct-fired power generation system (SDPGS) in Inner Mongolia was selected for case study. A tiered hybrid life cycle assessment (LCA) model was developed to calculate the “planting-to-wire” (PTW) energy consumption, greenhouse gas (GHG) emissions, and economic cost and profit of the SDPGS, including feedstock cultivation, power plant construction and operation, and on-grid price with/without government subsidies. The results show that the PTW energy consumption and GHG emissions of Salix are 0.8 MJ/kWh and 114 g CO 2 -eq/kWh, respectively, indicating an energy payback time (EPBT) of 3.2 years. The SDPGS is not economically feasible without government subsidies. The PTW costs are dominated by feedstock cultivation. The energy saving and GHG mitigation benefits are still robust, even when the power plant runs at only 60% design capacity. For future development of biomass power in China, scientific planning is necessary to guarantee a sufficient feedstock supply. In addition, technology progress, mature industrial chains, and reasonable price setting policy are required to enable potential energy and environmental advantages of biomass power moving forward. -- Highlights: •A hybrid LCA model was used to evaluate overall performance of the SDPGS. •On-site processes dominate the “planting-to-wire” footprints. •The energy saving and GHG mitigation benefits of the SDPGS are robust. •The economic profit of the SDPGS is feeble without government subsidies. •Generating efficiency promotion has a comprehensive positive effect on the system

  16. Hydroelectric dams in Amazon as source of GHG

    International Nuclear Information System (INIS)

    Rosa, L.P.; Schaeffer, R.; Santos, M.A.

    1996-01-01

    A recent paper by Fearnside points out that hydroelectric development in Amazonia is a significant source of greenhouse gases (GHG) emissions. This conclusion is in contrast to the common belief that hydroelectric dams are better than fossil fuel use in electric power generation, from the view point of GHG emissions. The authors have considered both CH 4 and CO 2 emissions taking into account the instantaneous radiative forcing due to a unit increase in the concentration of gases, the decay times of gases in the atmosphere and the emissions patterns of emissions vary depending on biomass density and type of the forest area flooded, as well as on depth of flooding. As the Fearnside paper is more concerned with CO 2 emissions from the above water biomass, the authors' focus will be restricted to the formulae for calculating the cumulative effect of CO 2

  17. GHG emissions from slurry and digestates during storage and after field application

    DEFF Research Database (Denmark)

    Baral, Khagendra Raj; Nguyen, Quan Van; Petersen, Søren O

    The BioChain project focuses on value chains for biogas production in Denmark. Biogas production is based on liquid manure (slurry) from agriculture and other biomasses to increase the energy yield. To a great extent the digestates are recycled to agricultural lands as a valuable fertilizer...... of volatile solids (VS) is critical for predicting GHG emissions and the effect of biogas treatment. Volatile solids may be considered to have an easily degradable VS (VSd) and a slowly degradable VS (VSnd) fraction. A new approach to estimate VSd was investigated using the short-term evolution of CO2-C from...... are determined in a pilot-scale study with digested materials from Maabjerg Bioenergy and Fredericia Wastewater Treatment Facility, using untreated cattle and pig slurry as reference. These and other results will be used to model the effect of temperature and pre-treatment on CH4 emissions. The composition...

  18. Measurements of environmental policy for air pollution abatement

    International Nuclear Information System (INIS)

    Friedrich, R.

    1993-01-01

    The first part of the study goes into the determination of efficient strategies for the reduction of air pollutants. The developed method is not only derived theoretically but is tested with the concrete example of emissions sources of a German state. The second part goes into the question what the government can do in order to attain that air pollution abatement measures recognized as being efficient will be put into practice. As market economy mechanisms have advantages over central state planning in the allocation of economic resources the question arises if not also for environmental protection market economy tools may contribute to an improvement of the efficiency of air pollution abatement. Therefore the suitability of different tools of environmental policy for the realization of efficient air pollution abatement is investigated and evaluated. This is again not done abstractly but with existing emission sources. (orig./HSCH). 32 figs., 12 tabs [de

  19. Employing a CGE model in analysing the environmental and economy-wide impacts of CO2 emission abatement policies in Malaysia.

    Science.gov (United States)

    Yahoo, Masoud; Othman, Jamal

    2017-04-15

    The impact of global warming has received much international attention in recent decades. To meet climate-change mitigation targets, environmental policy instruments have been designed to transform the way goods and services are produced as well as alter consumption patterns. The government of Malaysia is strongly committed to reducing CO 2 gas emissions as a proportion of GDP by 40% from 2005 levels by the year 2020. This study evaluates the economy-wide impacts of implementing two different types of CO 2 emission abatement policies in Malaysia using market-based (imposing a carbon tax) and command-and-control mechanism (sectoral emission standards). The policy simulations conducted involve the removal of the subsidy on petroleum products by the government. A carbon emission tax in conjunction with the revenue neutrality assumption is seen to be more effective than a command-and-control policy as it provides a double dividend. This is apparent as changes in consumption patterns lead to welfare enhancements while contributing to reductions in CO 2 emissions. The simulation results show that the production of renewable energies is stepped up when the imposition of carbon tax and removal of the subsidy is augmented by revenue recycling. This study provides an economy-wide assessment that compares two important tools for assisting environment policy makers evaluate carbon emission abatement initiatives in Malaysia. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Summary of Fast Pyrolysis and Upgrading GHG Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Snowden-Swan, Lesley J.; Male, Jonathan L.

    2012-12-07

    The Energy Independence and Security Act (EISA) of 2007 established new renewable fuel categories and eligibility requirements (EPA 2010). A significant aspect of the National Renewable Fuel Standard 2 (RFS2) program is the requirement that the life cycle greenhouse gas (GHG) emissions of a qualifying renewable fuel be less than the life cycle GHG emissions of the 2005 baseline average gasoline or diesel fuel that it replaces. Four levels of reduction are required for the four renewable fuel standards. Table 1 lists these life cycle performance improvement thresholds. Table 1. Life Cycle GHG Thresholds Specified in EISA Fuel Type Percent Reduction from 2005 Baseline Renewable fuel 20% Advanced biofuel 50% Biomass-based diesel 50% Cellulosic biofuel 60% Notably, there is a specialized subset of advanced biofuels that are the cellulosic biofuels. The cellulosic biofuels are incentivized by the Cellulosic Biofuel Producer Tax Credit (26 USC 40) to stimulate market adoption of these fuels. EISA defines a cellulosic biofuel as follows (42 USC 7545(o)(1)(E)): The term “cellulosic biofuel” means renewable fuel derived from any cellulose, hemicellulose, or lignin that is derived from renewable biomass and that has lifecycle greenhouse gas emissions, as determined by the Administrator, that are at least 60 percent less than the baseline lifecycle greenhouse gas emissions. As indicated, the Environmental Protection Agency (EPA) has sole responsibility for conducting the life cycle analysis (LCA) and making the final determination of whether a given fuel qualifies under these biofuel definitions. However, there appears to be a need within the LCA community to discuss and eventually reach consensus on discerning a 50–59 % GHG reduction from a ≥ 60% GHG reduction for policy, market, and technology development. The level of specificity and agreement will require additional development of capabilities and time for the sustainability and analysis community, as illustrated

  1. Green-house gasses reduction in the energy sector

    International Nuclear Information System (INIS)

    Todorovski, Mirko; Markovska, Natasha; Boshevski, Tome; Pop-Jordanov, Jordan

    2004-01-01

    As a follow-up activity of the Macedonian First National Communication under the UNFC-CC, Technology Needs Assessment is conducted, evaluating by GACMO model the measures related mainly to energy efficient and renewable energy technologies. An abatement cost curve is constructed and used as an illustrative tool for recognizing priorities in GHG abatement policy. About half of the measures are shown to be of 'win-win' type, reducing 3% of the baseline GHG emissions, while the total reduction which can be achieved by all measures amounts to 20%. For each measure difficulties for implementation are identified, being the highest for the measures with largest GHG abatement potential. Generally, these difficulties include lack of financing and low prospects for attracting foreign investments as well as legislative and administrative barriers. It must be recognized that climate change issues could not be of high priority in a country with economy in transition. Consequently, in our case the main issues which should be integrated within the framework of ongoing transition reforms, in an effort to implement a GHG emission reduction policy, would be: institutional capacity building, attracting foreign investment, emphasis on energy efficiency and considering the switch toward less carbon intensive fuels. (Author)

  2. Quantification of greenhouse gas (GHG) emissions from wastewater treatment plants using a ground-based remote sensing approach

    Science.gov (United States)

    Delre, Antonio; Mønster, Jacob; Scheutz, Charlotte

    2016-04-01

    The direct release of nitrous oxide (N2O) and methane (CH4) from wastewater treatment plants (WWTP) is important because it contributes to the global greenhouse gases (GHGs) release and strongly effects the WWTP carbon footprint. Biological nitrogen removal technologies could increase the direct emission of N2O (IPCC, 2006), while CH4 losses are of environmental, economic and safety concern. Currently, reporting of N2O and CH4 emissions from WWTPs are performed mainly using methods suggested by IPCC which are not site specific (IPCC, 2006). The dynamic tracer dispersion method (TDM), a ground based remote sensing approach implemented at DTU Environment, was demonstrated to be a novel and successful tool for full-scale CH4 and N2O quantification from WWTPs. The method combines a controlled release of tracer gas from the facility with concentration measurements downwind of the plant (Mønster et al., 2014; Yoshida et al., 2014). TDM in general is based on the assumption that a tracer gas released at an emission source, in this case a WWTP, disperses into the atmosphere in the same way as the GHG emitted from process units. Since the ratio of their concentrations remains constant along their atmospheric dispersion, the GHG emission rate can be calculated using the following expression when the tracer gas release rate is known: EGHG=Qtr*(CGHG/Ctr)*(MWGHG/MWtr) EGHG is the GHG emission in mass per time, Qtr is the tracer release in mass per time, CGHG and Ctr are the concentrations measured downwind in parts per billion subtracted of their background values and integrated over the whole plume, and MWGHG and MWtr are the molar weights of GHG and tracer gas respectively (Mønster et al. 2014). In this study, acetylene (C2H2) was used as tracer. Downwind plume concentrations were measured driving along transects with two cavity ring down spectrometers (Yoshida et al., 2014). TDM was successfully applied in different seasons at several Scandinavian WWTPs characterized by

  3. Assessment of GHG mitigation and CDM technology in urban transport sector of Chandigarh, India.

    Science.gov (United States)

    Bhargava, Nitin; Gurjar, Bhola Ram; Mor, Suman; Ravindra, Khaiwal

    2018-01-01

    The increase in number of vehicles in metropolitan cities has resulted in increase of greenhouse gas (GHG) emissions in urban environment. In this study, emission load of GHGs (CO, N 2 O, CO 2 ) from Chandigarh road transport sector has been estimated using Vehicular Air Pollution Inventory (VAPI) model, which uses emission factors prevalent in Indian cities. Contribution of 2-wheelers (2-w), 3-wheelers (3-w), cars, buses, and heavy commercial vehicles (HCVs) to CO, N 2 O, CO 2 , and total GHG emissions was calculated. Potential for GHG mitigation through clean development mechanism (CDM) in transport sector of Chandigarh under two scenarios, i.e., business as usual (BAU) and best estimate scenario (BES) using VAPI model, has been explored. A major contribution of GHG load (~ 50%) in Chandigarh was from four-wheelers until 2011; however, it shows a declining trend after 2011 until 2020. The estimated GHG emission from motor vehicles in Chandigarh has increased more than two times from 1065 Gg in 2005 to 2486 Gg by 2011 and is expected to increase to 4014 Gg by 2020 under BAU scenario. Under BES scenario, 30% of private transport has been transformed to public transport; GHG load was possibly reduced by 520 Gg. An increase of 173 Gg in GHGs load is projected from additional scenario (ADS) in Chandigarh city if all the diesel buses are transformed to CNG buses by 2020. Current study also offers potential for other cities to plan better GHG reduction strategies in transport sector to reduce their climate change impacts.

  4. Target-aimed versus wishful-thinking in designing efficient GHG reduction strategies for a metropolitan city: Taipei

    International Nuclear Information System (INIS)

    Liu, C.-M.; Liou, M.-L.; Yeh, S.-C.; Shang, N.-C.

    2009-01-01

    In recent years, many national and local governments claim for a specific GHG (greenhouse gas) reduction goal targeted for many years later. In 2005, the Taipei City government announced that Taipei's total GHG emission in 2015 will reach the same level as that in 2005 and then down to 75% of that level at year 2030. However, based on the estimated energy consumption and GHG emission and the proposed emission reduction plans from the local government, it is clear that these goals are not going to be accomplished. In Taipei, the residential and commercial sector contributes more than 78% of the total GHG emission. Thus, in a business as usual scenario, the total GHG emission in 2030 would be 79% more than that in 2005, far more than the target value proclaimed. As many key factors are uncontrollable by the local government, a target-aimed strategy designing process by looking into changes in Taipei and identifying major targets is proposed in this study. It is demonstrated that such a universally applicable approach will give more confidence to the public on working toward the expected GHG reduction goal

  5. Life cycle GHG evaluation of organic rice production in northern Thailand.

    Science.gov (United States)

    Yodkhum, Sanwasan; Gheewala, Shabbir H; Sampattagul, Sate

    2017-07-01

    Greenhouse gas (GHG) emission is one of the serious international environmental issues that can lead to severe damages such as climate change, sea level rise, emerging disease and many other impacts. Rice cultivation is associated with emissions of potent GHGs such as methane and nitrous oxide. Thai rice has been massively exported worldwide however the markets are becoming more competitive than ever since the green market has been hugely promoted. In order to maintain the same level or enhance of competitiveness, Thai rice needs to be considered for environmentally conscious products to meet the international environmental standards. Therefore, it is necessary to evaluate the greenhouse gas emissions throughout the life cycle of rice production in order to identify the major emission sources and possible reduction strategies. In this research, the rice variety considered is Khao Dawk Mali 105 (KDML 105) cultivated by organic practices. The data sources were Don-Chiang Organic Agricultural Cooperative (DCOAC), Mae-teang district, Chiang Mai province, Thailand and the Office of Agricultural Economics (OAE) of Thailand with onsite records and interviews of farmers in 2013. The GHG emissions were calculated from cradle-to-farm by using the Life Cycle Assessment (LCA) approach and the 2006 IPCC Guideline for National Greenhouse Gas Inventories. The functional unit is defined as 1 kg of paddy rice at farm gate. Results showed that the total GHG emissions of organic rice production were 0.58 kg CO 2 -eq per kg of paddy rice. The major source of GHG emission was from the field emissions accounting for 0.48 kg CO 2 -eq per kg of paddy rice, about 83% of total, followed by land preparation, harvesting and other stages (planting, cultivation and transport of raw materials) were 9, 5 and 3% of total, respectively. The comparative results clearly showed that the GHG emissions of organic paddy rice were considerably lower than conventional rice production due to the

  6. The Welfare Costs of GHG Reduction with Renewable Energy Policies in the US

    OpenAIRE

    Khanna, Madhu; Oliver, Anthony

    2013-01-01

    A range of policies have been implemented in the agricultural, transportation, and electric power sectors, which comprise the majority of GHG emissions in the US. Two prominent policy sets are the national RFS and state-level RPSs. The purpose of this research is to examine the GHG implications of the state RPSs and their welfare costs of mitigating GHG emissions. We also analyze the interactions between the RFS and state RPS policies and the extent to which these policies create competition ...

  7. Multigas reduction strategy under climate stabilization target

    Energy Technology Data Exchange (ETDEWEB)

    Kurosawa, A. [Inst. of Applied Energy, Tokyo (Japan)

    2005-07-01

    Global warming can be mitigated through the abatement of carbon dioxide (CO{sub 2}), methane (CH{sub 4}), nitrous oxide (N{sub 2}O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs) and sulfur hexafluoride (SF{sub 6}). This study argued that multiple gas reduction flexibility should be assessed when considering effective greenhouse gas (GHG) mitigation strategies. Emissions of non-CO{sub 2} GHGs were calculated endogenously using an integrated assessment model. Multigas reduction potential was measured in relation to long-term atmospheric temperature targets, and the effects on gas life as well as abatement timing uncertainty were considered in terms of cost and technological availability. The model consisted of 5 nodules which considered issues related to energy, climate, land use, macroeconomics, and environmental impacts. The time horizon of the model was 2000 to 2100. An economic utility maximization technology was used to consider global trade balances. Emissions of non-CO{sub 2} gases from specific sources was calculated by multiplying the emission factor and the endogenous parameters within the model. Results were presented for GHG emissions and concentrations in 2 simulation cases: (1) a no climate policy case (NCP); and (2) a transient temperature stabilization (TTS) case. Actions to reduce non-CO{sub 2} GHGs included activity level changes in production and consumption, and additional reductions in abatement costs without sector activity changes. Results of the study showed that reducing global dependency on fossil fuels was an effective way to reduce GHG effects from CO{sub 2}, CH{sub 4} and N{sub 2}O. Additional abatements to reduce N{sub 2}O emissions are required in the agricultural sector. Economic incentives and public outreach programs are needed to offset the high transaction costs of GHG mitigation strategies. It was concluded that both short-term and long-term policies are required to reduce GHG in all sectors. Multigas mitigation is needed to

  8. 75 FR 62739 - 2017 and Later Model Year Light Duty Vehicle GHG Emissions and CAFE Standards; Notice of Intent

    Science.gov (United States)

    2010-10-13

    ... Model Year Light Duty Vehicle GHG Emissions and CAFE Standards; Notice of Intent AGENCIES: Environmental... fuel economy (CAFE) standards in accordance with the Energy Policy and Conservation Act (EPCA), as... FR 49454, 49460 (September 28, 2009). The NHTSA CAFE standards are only based on technologies that...

  9. Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2002-07-31

    as requiring specific technology improvements or an increase in fuel efficiency. Site-specific project activities can also be undertaken to help decrease GHG emissions, although the use of such measures is less common. Sample activities include switching to less GHG-intensive vehicle options, such as electric vehicles (EVs) or hybrid electric vehicles (HEVs). As emissions from transportation activities continue to rise, it will be necessary to promote both types of abatement activities in order to reverse the current emissions path. This Resource Guide focuses on site- and project-specific transportation activities. .

  10. GHG policies and the role of innovations

    International Nuclear Information System (INIS)

    Erdmann, Georg

    1999-01-01

    The recent debate about the use of economic instruments aiming at achieving the GHG goals led to a number of important insights and conclusions. However, the implementation of these instruments is still rather weak. One reason is that the proposed GHG solutions (particularly CO 2 -taxes) are faced with some ambiguities and shortcomings, which require further analysis and discussion. Another reason is that any democratic government has problems to solve problems being identified through scientific analyses but not through daily experience. Any progress in implementing GHG policies requires to convince the larger public about the necessity of an active GHG policy and the unavoidability of costs associated to this policy. In this dilemma situation the change to implement GHG strategies can be improved by a sophisticated combination of voluntary agreements and monetary as well as non-monetary incentives to environmental innovations. According to the game theoretical view, voluntary agreements can't perform better than CO 2 -taxes that will be implemented in case of non-compliance. The paper argues that voluntary agreements can improve the credibility of governmental threats to implement hard measures at a later time. Still voluntary agreement s alone are negligible with respect to GHG emission reductions beyond business as usual. But they may be useful for focusing private business plans on ecological innovations. As far as such innovations become feasible they contribute to the low cost GHG reduction potential as well as the public support for a more active GHG policy. (Author)

  11. Long-term optimal energy mix planning towards high energy security and low GHG emission

    International Nuclear Information System (INIS)

    Thangavelu, Sundar Raj; Khambadkone, Ashwin M.; Karimi, Iftekhar A.

    2015-01-01

    Highlights: • We develop long-term energy planning considering the future uncertain inputs. • We analyze the effect of uncertain inputs on the energy cost and energy security. • Conventional energy mix prone to cause high energy cost and energy security issues. • Stochastic and optimal energy mix show benefits over conventional energy planning. • Nuclear option consideration reduces the energy cost and carbon emissions. - Abstract: Conventional energy planning focused on energy cost, GHG emission and renewable contribution based on future energy demand, fuel price, etc. Uncertainty in the projected variables such as energy demand, volatile fuel price and evolution of renewable technologies will influence the cost of energy when projected over a period of 15–30 years. Inaccurate projected variables could affect energy security and lead to the risk of high energy cost, high emission and low energy security. The energy security is an ability of generation capacity to meet the future energy demand. In order to minimize the risks, a generic methodology is presented to determine an optimal energy mix for a period of around 15 years. The proposed optimal energy mix is a right combination of energy sources that minimize the risk caused due to future uncertainties related to the energy sources. The proposed methodology uses stochastic optimization to address future uncertainties over a planning horizon and minimize the variations in the desired performance criteria such as energy security and costs. The developed methodology is validated using a case study for a South East Asian region with diverse fuel sources consists of wind, solar, geothermal, coal, biomass and natural gas, etc. The derived optimal energy mix decision outperformed the conventional energy planning by remaining stable and feasible against 79% of future energy demand scenarios at the expense of 0–10% increase in the energy cost. Including the nuclear option in the energy mix resulted 26

  12. Projections of multi-gas emissions and carbon sinks, and marginal abatement cost functions modelling for land-use related sources

    NARCIS (Netherlands)

    Graveland C; Bouwman AF; Vries B de; Eickhout B; Strengers BJ; MNV

    2003-01-01

    This report presents estimates of the costs of abatement of greenhouse gas emissions associated with landfills as a source of methane (CH4), sewage as a source of methane and nitrous oxide (CH4 and N2O, respectively) and carbon (C) sequestration in forest plantations. This is done in the form of

  13. Essays on the U.S. biofuel policies: Welfare impacts and the potential for reduction of GHG emission

    Science.gov (United States)

    Hossiso, Kassu Wamisho

    This dissertation study investigates the impact of the US biofuel policies related to greenhouse gas (GHG) emission regulation, tax credit and renewable fuel standard (RFS2) mandate over production and consumption of ethanol as well as technical and environmental performance of corn ethanol plants. The study develops analytical models and provides quantitative estimation of the impact of various biofuel policies in each of the three chapters. Chapter 1 of this dissertation examines the tradeoff between achieving the environmental goal of minimizing life cycle GHG emissions and minimizing production costs in recently built dry-grind corn ethanol plants. The results indicate that the average ethanol plant is able to reduce GHG emissions by 36 % relative to the level under cost minimization, but production costs are 22 % higher. To move from least cost to least emissions allocations, ethanol plants would on average produce 25 % more of wet byproduct and 47% less of dry byproduct. Using a multi-output, multi-input partial equilibrium model, Chapter 2 explores the impact of the tax credit and RFS2 mandate policy on market price of ethanol, byproducts, corn, and other factor inputs employed in the production of corn ethanol. In the short-run, without tax credit ethanol plants will not have the incentive to produce the minimum level of ethanol required by RFS2. In the long-run, if ethanol plants to have the incentive to produce the minimum RFS2 mandate without tax credit policy, gasoline price will need to increase by order of 50% or more relative to the 2011 price. Chapter 3 develop meta-regression model to investigate the extent to which statistical heterogeneity among results of multiple studies on soil organic carbon (SOC) sequestration rates can be related to one or more characteristics of the studies in response to conventional tillage (CT) and no-till (NT). Regarding the difference in the rate of SOC sequestration between NT and CT, our results shows that the

  14. Estimating the National Carbon Abatement Potential of City Policies: A Data-Driven Approach

    Energy Technology Data Exchange (ETDEWEB)

    O' Shaughnessy, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heeter, Jenny [National Renewable Energy Lab. (NREL), Golden, CO (United States); Keyser, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gagnon, Pieter [National Renewable Energy Lab. (NREL), Golden, CO (United States); Aznar, Alexandra [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-10-01

    Cities are increasingly taking actions such as building code enforcement, urban planning, and public transit expansion to reduce emissions of carbon dioxide in their communities and municipal operations. However, many cities lack the quantitative information needed to estimate policy impacts and prioritize city actions in terms of carbon abatement potential and cost effectiveness. This report fills this research gap by providing methodologies to assess the carbon abatement potential of a variety of city actions. The methodologies are applied to an energy use data set of 23,458 cities compiled for the U.S. Department of Energy City Energy Profile tool. The analysis develops a national estimate of the carbon abatement potential of realizable city actions in six specific policy areas encompassing the most commonly implemented city actions. The results of this analysis suggest that, in aggregate, cities could reduce nationwide carbon emissions by about 210 million metric tons of carbon dioxide (MMT CO2) per year in a 'moderate abatement scenario' by 2035 and 480 MMT CO2/year in a 'high abatement scenario' by 2035 through these common actions typically within a city's control in the six policy areas. The aggregate carbon abatement potential of these specific areas equates to a reduction of 3%-7% relative to 2013 U.S. emissions. At the city level, the results suggest the average city could reduce carbon emissions by 7% (moderate) to 19% (high) relative to current city-level emissions. In the context of U.S. climate commitments under the 21st session of the Conference of the Parties (COP21), the estimated national abatement potential of the city actions analyzed in this report equates to about 15%-35% of the remaining carbon abatement necessary to achieve the U.S. COP21 target. Additional city actions outside the scope of this report, such as community choice aggregation (city-level purchasing of renewable energy), zero energy districts, and multi

  15. Setting up GHG-based energy efficiency targets in buildings: The Ecolabel

    International Nuclear Information System (INIS)

    José Vinagre Díaz, Juan; Richard Wilby, Mark; Belén Rodríguez González, Ana

    2013-01-01

    The European Union has recently updated the regulations for energy performance of buildings and on the certification of energy-related products. The world is in the process of constructing policy frameworks to underwrite carbon emission reduction targets, best exemplified by the Kyoto Protocol. This requires complex technical and economical concepts to be presented in an understandable, transparent, and justifiable format. A building's energy efficiency was traditionally determined based on its annual consumption relative to some average performance level. Emissions are calculated as a derivative of consumptions and their aggregated values allow verification of the level of fulfillment of the objectives. Here we take a different approach: considering that the greenhouse gas emissions (GHG) objectives must be achieved; hence, we fix the efficiency standard based on emissions objectives, and then derive the corresponding reference values of consumption. Accordingly, we propose a certification scheme for energy efficiency in buildings based on targets of GHG emissions levels. This proposed framework includes both a label, namely the Ecolabel, and a fiche showing a set of indices and complementary information. The Ecolabel is designed to provide a flexible, evolvable, simple to use at the point of application, and transparent framework. - Highlights: • In this paper we consider the interaction between greenhouse gas emission reduction targets and building energy efficiency. • Specifically we propose an ‘‘Ecolabel” for buildings that is a GHG emissions liability index, which forms a labeling process. • The label follows the Kyoto Protocol philosophy and translates national GHG targets to targets for each and every building. • The approach provides both a new form of efficiency rating on which emissions reduction policy can be based

  16. Toward a Multi-City Framework for Urban GHG Estimation in the United States: Methods, Uncertainties, and Future Goals

    Science.gov (United States)

    Mueller, K. L.; Callahan, W.; Davis, K. J.; Dickerson, R. R.; Duren, R. M.; Gurney, K. R.; Karion, A.; Keeling, R. F.; Kim, J.; Lauvaux, T.; Miller, C. E.; Shepson, P. B.; Turnbull, J. C.; Weiss, R. F.; Whetstone, J. R.

    2017-12-01

    City and State governments are increasingly interested in mitigating greenhouse gas (GHG) emissions to improve sustainability within their jurisdictions. Estimation of urban GHG emissions remains an active research area with many sources of uncertainty. To support the effort of improving measurement of trace gas emissions in city environments, several federal agencies along with academic, research, and private entities have been working within a handful of domestic metropolitan areas to improve both (1) the assessment of GHG emissions accuracy using a variety of measurement technologies, and (2) the tools that can better assess GHG inventory data at urban mitigation scales based upon these measurements. The National Institute of Standards and Technology (NIST) activities have focused on three areas, or testbeds: Indianapolis (INFLUX experiment), Los Angeles (the LA Megacities project), and the Northeastern Corridor areas encompassing Washington and Baltimore (the NEC/BW GHG Measurements project). These cities represent diverse meteorological, terrain, demographic, and emissions characteristics having a broad range of complexities. To date this research has involved multiple measurement systems and integrated observing approaches, all aimed at advancing development of a robust, science-base upon which higher accuracy quantification approaches can rest. Progress toward such scientifically robust, widely-accepted emissions quantification methods will rely upon continuous performance assessment. Such assessment is challenged by the complexities of cities themselves (e.g., population, urban form) along with the many variables impacting a city's technological ability to estimate its GHG emissions (e.g., meteorology, density of observations). We present the different NIST testbeds and a proposal to initiate conceptual development of a reference framework supporting the comparison of multi-city GHG emissions estimates. Such a reference framework has potential to provide

  17. The Copenhagen Accord: abatement costs and carbon prices resulting from the submissions

    International Nuclear Information System (INIS)

    Elzen, Michel G.J. den; Hof, Andries F.; Mendoza Beltran, Angelica; Grassi, Giacomo; Roelfsema, Mark; Ruijven, Bas van; Vliet, Jasper van; Vuuren, Detlef P. van

    2011-01-01

    As part of the Copenhagen Accord, individual countries have submitted greenhouse gas reduction proposals for the year 2020. This paper analyses the implications for emission reductions, the carbon price, and abatement costs of these submissions. The submissions of the Annex I (industrialised) countries are estimated to lead to a total reduction target of 12-18% below 1990 levels. The submissions of the seven major emerging economies are estimated to lead to an 11-14% reduction below baseline emissions, depending on international (financial) support. Global abatement costs in 2020 are estimated at about USD 60-100 billion, assuming that at least two-thirds of Annex I emission reduction targets need to be achieved domestically. The largest share of these costs are incurred by Annex I countries, although the costs as share of GDP are similar for Annex I as a group and the seven emerging economies as a group, even when assuming substantial international transfers from Annex I countries to the emerging economies to finance their abatement costs. If the restriction of achieving two-thirds of the emission reduction target domestically is abandoned, it would more than double the international carbon price and at the same time reduce global abatement costs by almost 25%.

  18. Evaluation of the potentialities to reduce greenhouse gases (GHG) emissions resulting from various treatments of municipal solid wastes (MSW) in moist tropical climates: application to Yaounde.

    Science.gov (United States)

    Ngnikam, Emmanuel; Tanawa, Emile; Rousseaux, Patrick; Riedacker, Arthur; Gourdon, Rémy

    2002-12-01

    The authors here analyse the emission of greenhouse gases (GHG) resulting from the various treatment of municipal solid waste found in the town of Yaounde. Four management systems have been taken as the basis for analyses. System 1 is the traditional collection and landfill disposal, while in system 2 the hiogas produced in the landfill is recuperated to produce electricity. In systems 3 and 4, in addition to the collection, we have introduced a centralised composting or biogas plant before the landfilling disposal of refuse. A Life Cycle Inventory (LCI) of the four systems was made; this enable us to quantify the flux of matter and of energy, consumed or produced by the systems. Following this, only the greenhouse effect was taken into account to evaluate the ecological consequences of the MSW management systems. The method used to evaluate this impact takes into consideration on the one hand, GHG emissions or avoided emission following the substitution of fuel with methane recovered from landfills or produced in the digesters, and on the other hand, sequestrated carbon in the soil following the regular deposit of compost. Landfilling without recuperation of methane is the most emitting solution for greenhouse gas: it leads to the emission of 1.7 ton of carbon dioxide equivalent (tCO2E) per ton of household waste. Composting and methanisation allow one to have a comparable level of emission reduction, either respectively 1.8 and 2 tCO2E/t of MSW. In order to reduce the emission of GHG in the waste management systems, it is advisable to avoid first of all the emissions of methane coming from the landfills. System 2 seems to be a solution that would reduce the emissions of GHG at low cost (2.2 to 4 $/tCO2E). System 2 is calculated as the most effective at the environmental and economic level in the context of Yaounde. Therefore traditional collection, landfill disposal and biogas recuperation to produce electricity is preferable in moist tropical climates.

  19. Energy Innovations-GHG Emissions Nexus: Fresh Empirical Evidence from OECD Countries

    International Nuclear Information System (INIS)

    Álvarez-Herránz, Agustín; Balsalobre, Daniel; Cantos, José María; Shahbaz, Muhammad

    2017-01-01

    This study explores the impact of improvements in energy research development (ERD) on greenhouse gas (GHG) emissions using environmental Kuznets curve hypothesis for 28 OECD countries over the period of 1990–2014. In doing so, we have employed a panel data where public budget in energy research development and demonstration (ERD&D) has transformed into a finite inverted V-lag distribution model developed by De Leeuw (1962). This model considers that energy innovation accumulates in time and presents empirical evidence, how energy innovation contributes in reducing energy intensity and environmental pollution as well. Our results indicate that energy innovation measures require lapses of time to reach their full effect i.e. innovation applied to measures for environmental correction does not reach its whole effect immediately, requiring instead a certain amount of time to pass. Innovation policies have recommended for improving environmental quality. - Highlights: • This study analyses the impact of public budget in energy RD&D for 28 OECD countries on environmental quality. • Energy innovation contributes positively to reduce greenhouse gas emissions. • Advances in energy technology seem to be the key of improved environmental quality.

  20. The importance of health co-benefits in macroeconomic assessments of UK Greenhouse Gas emission reduction strategies

    DEFF Research Database (Denmark)

    Jensen, Henning Tarp; Keogh-Brown, Marcus R.; Smith, Richard D.

    2013-01-01

    . In contrast to previous assessment studies, our main focus is on health co-benefits additional to those from reduced local air pollution. We employ a conservative cost-effectiveness methodology with a zero net cost threshold. Our urban transport strategy (with cleaner vehicles and increased active travel......) brings important health co-benefits and is likely to be strongly cost-effective; our food and agriculture strategy (based on abatement technologies and reduction in livestock production) brings worthwhile health co-benefits, but is unlikely to eliminate net costs unless new technological measures...... to achieve future emission targets and longer-term benefits from GHG reduction. Cost-effectiveness of GHG strategies is likely to require technological mitigation interventions and/or demand-constraining interventions with important health co-benefits and other efficiency-enhancing policies that promote...

  1. Life cycle GHG emissions from Malaysian oil palm bioenergy development: The impact on transportation sector's energy security

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Mohd Nor Azman, E-mail: mohdnorh@andrew.cmu.ed [Department of Engineering and Public Policy, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15203 (United States); Jaramillo, Paulina [Department of Engineering and Public Policy, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15203 (United States); Griffin, W. Michael [Department of Engineering and Public Policy, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15203 (United States); Tepper School of Business, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15203 (United States)

    2011-05-15

    Malaysia's transportation sector accounts for 41% of the country's total energy use. The country is expected to become a net oil importer by the year 2011. To encourage renewable energy development and relieve the country's emerging oil dependence, in 2006 the government mandated blending 5% palm-oil biodiesel in petroleum diesel. Malaysia produced 16 million tonnes of palm oil in 2007, mainly for food use. This paper addresses maximizing bioenergy use from oil-palm to support Malaysia's energy initiative while minimizing greenhouse-gas emissions from land-use change. When converting primary and secondary forests to oil-palm plantations between 270-530 and 120-190 g CO{sub 2}-equivalent per MJ of biodiesel produced, respectively, is released. However, converting degraded lands results in the capture of between 23 and 85 g CO{sub 2}-equivalent per MJ of biodiesel produced. Using various combinations of land types, Malaysia could meet the 5% biodiesel target with a net GHG savings of about 1.03 million tonnes (4.9% of the transportation sector's diesel emissions) when accounting for the emissions savings from the diesel fuel displaced. These findings are used to recommend policies for mitigating GHG emissions impacts from the growth of palm oil use in the transportation sector. - Research highlights: {yields} We modeled greenhouse gas emissions in the production of palm-biodiesel. {yields} Five land types were included to model emissions associated with land-use change. {yields} Land-use change has the biggest impact on the emissions in making palm-biodiesel. {yields} Emissions from fertilizer use and effluent treatment are still significant. {yields} At 5% biodiesel grown on suitable lands Malaysia would obtain an emissions savings.

  2. Global climate targets and future consumption level: an evaluation of the required GHG intensity

    International Nuclear Information System (INIS)

    Girod, Bastien; Van Vuuren, Detlef Peter; Hertwich, Edgar G

    2013-01-01

    Discussion and analysis on international climate policy often focuses on the rather abstract level of total national and regional greenhouse gas (GHG) emissions. At some point, however, emission reductions need to be translated to consumption level. In this article, we evaluate the implications of the strictest IPCC representative concentration pathway for key consumption categories (food, travel, shelter, goods, services). We use IPAT style identities to account for possible growth in global consumption levels and indicate the required change in GHG emission intensity for each category (i.e. GHG emission per calorie, person kilometer, square meter, kilogram, US dollar). The proposed concept provides guidance for product developers, consumers and policymakers. To reach the 2 °C climate target (2.1 tCO 2 -eq. per capita in 2050), the GHG emission intensity of consumption has to be reduced by a factor of 5 in 2050. The climate targets on consumption level allow discussion of the feasibility of this climate target at product and consumption level. In most consumption categories products in line with this climate target are available. For animal food and air travel, reaching the GHG intensity targets with product modifications alone will be challenging and therefore structural changes in consumption patterns might be needed. The concept opens up possibilities for further research on potential solutions on the consumption and product level to global climate mitigation. (letter)

  3. Embodied greenhouse gas emission by Macao

    International Nuclear Information System (INIS)

    Li, J.S.; Chen, G.Q.; Lai, T.M.; Ahmad, B.; Chen, Z.M.; Shao, L.; Ji, Xi

    2013-01-01

    Comprehensive inventory of cities' greenhouse gas emissions (GHG) is the basis for cities to make appropriate mitigation plans. However, previous studies on cities' GHG emissions consider emissions occurring within the city boundary (Scope 1) and out of boundary electricity emissions (Scope 2), but neglect indirect emissions associated with commodities consumed by cities (Scope 3), resulting in emission leakage. To cope with this problem, a systematic accounting covering all 3 scopes is presented in a case study of Macao for the years 2005–2009, based on the latest embodied emission intensity databases for China and for the world. The results show that total emissions are dominated by indirect emissions mainly embodied in imports, which is 3–4 times direct emissions during the period concerned. It is verified that accounting under Scopes 1 and 2 cannot capture the full picture of cities' emissions, especially cities like Macao which are dominated by service industry and inevitably sustained by massive materials and services from other regions. Our study suggests that Macao should adjust its current GHG mitigation policies which consider only its emissions occurring within its border, as Macao is a net GHG emissions importer. This work is the first assessment of Macao's embodied GHG emissions. - Highlights: • A systematic accounting procedure is presented to inventory a city's GHG emissions. • A comprehensive review of GHG emissions is performed for Macao. • Indirect GHG emissions dominate Macao's embodied GHG emissions. • Macao induced large amount of GHG emissions in other regions through trade. • The variation in GHG emission structure against socio-economic changes is revealed

  4. Prospective life cycle carbon abatement for pyrolysis biochar systems in the UK

    International Nuclear Information System (INIS)

    Hammond, Jim; Shackley, Simon; Sohi, Saran; Brownsort, Peter

    2011-01-01

    Life cycle assessment (LCA) of slow pyrolysis biochar systems (PBS) in the UK for small, medium and large scale process chains and ten feedstocks was performed, assessing carbon abatement and electricity production. Pyrolysis biochar systems appear to offer greater carbon abatement than other bioenergy systems. Carbon abatement of 0.7-1.3 t CO 2 equivalent per oven dry tonne of feedstock processed was found. In terms of delivered energy, medium to large scale PBS abates 1.4-1.9 t CO 2 e/MWh, which compares to average carbon emissions of 0.05-0.30 t CO 2 e/MWh for other bioenergy systems. The largest contribution to PBS carbon abatement is from the feedstock carbon stabilised in biochar (40-50%), followed by the less certain indirect effects of biochar in the soil (25-40%)-mainly due to increase in soil organic carbon levels. Change in soil organic carbon levels was found to be a key sensitivity. Electricity production off-setting emissions from fossil fuels accounted for 10-25% of carbon abatement. The LCA suggests that provided 43% of the carbon in the biochar remains stable, PBS will out-perform direct combustion of biomass at 33% efficiency in terms of carbon abatement, even if there is no beneficial effect upon soil organic carbon levels from biochar application. - Research highlights: → Biochar systems offer greater carbon abatement than combustion or gasification. → Carbon abatement of 0.7-1.4t CO 2 e/dry tonne of feedstock processed was found. → Change in soil organic carbon stocks induced by biochar is the key sensitivity. → Biochar systems produce less electricity then combustion or gasification.

  5. Modelling the impacts of challenging 2050 European climate mitigation targets on Ireland’s energy system

    International Nuclear Information System (INIS)

    Chiodi, Alessandro; Gargiulo, Maurizio; Rogan, Fionn; Deane, J.P.; Lavigne, Denis; Rout, Ullash K.; Ó Gallachóir, Brian P.

    2013-01-01

    The Copenhagen Accord established political consensus on the 2 °C limit (in global temperature increase) and for deep cuts in greenhouse gas (GHG) emissions levels to achieve this goal. The European Union has set ambitious GHG targets for the year 2050 (80–95% below 1990 levels), with each Member State developing strategies to contribute to these targets. This paper focuses on mitigation targets for one Member State, Ireland, an interesting case study due to the growth in GHG emissions (24% increase between 1990 and 2005) and the high share of emissions from agriculture (30% of total GHG emissions). We use the Irish TIMES energy systems modelling tool to build a number of scenarios delivering an 80% emissions reduction target by 2050, including accounting for the limited options for agriculture GHG abatement by increasing the emissions reduction target for the energy system. We then compare the scenario results in terms of changes in energy technology, the role of energy efficiency and renewable energy. We also quantify the economic impacts of the mitigation scenarios in terms of marginal CO 2 abatement costs and energy system costs. The paper also sheds light on the impacts of short term targets and policies on long term mitigation pathways. - Highlights: ► We developed a techno-economic energy model of Ireland to the year 2050. ► Reductions between 80% and 95% of GHG emissions can be technically achieved. ► A 50% emissions cut in agriculture requires a 95% reductions from the energy system. ► Extending current policies implies greater electrification and efficiency measures. ► The additional cost to achieve mitigation remain less than 2% of GDP levels in 2050.

  6. Changes of energy-related GHG emissions in China: An empirical analysis from sectoral perspective

    International Nuclear Information System (INIS)

    Xu, Xianshuo; Zhao, Tao; Liu, Nan; Kang, Jidong

    2014-01-01

    Highlights: • We analyzed the factors impacting China’s emissions from a sectoral perspective. • Sector-specific policies and measures for emissions mitigation were evaluated. • Economic growth dominantly increased the emissions in the economic sectors. • Energy intensity decrease primarily reduced the emissions in the economic sectors. • Residential emissions growth was mainly driven by increase in per-capita energy use. - Abstract: In order to better understand sectoral greenhouse gas (GHG) emissions in China, this study utilized a logarithmic mean Divisia index (LMDI) decomposition analysis to study emission changes from a sectoral perspective. Based on the decomposition results, recently implemented policies and measures for emissions mitigation in China were evaluated. The results show that for the economic sectors, economic growth was the dominant factor in increasing emissions from 1996 to 2011, whereas the decline in energy intensity was primarily responsible for the emission decrease. As a result of the expansion of industrial development, economic structure change also contributed to growth in emissions. For the residential sector, increased emissions were primarily driven by an increase in per-capita energy use, which is partially confirmed by population migration. For all sectors, the shift in energy mix and variation in emission coefficient only contributed marginally to the emissions changes. The decomposition results imply that energy efficiency policy in China has been successful during the past decade, i.e., Top 1000 Priorities, Ten-Key Projects programs, the establishment of fuel consumption limits and vehicle emission standards, and encouragement of efficient appliances. Moreover, the results also indicate that readjusting economic structure and promoting clean and renewable energy is urgently required in order to further mitigate emissions in China

  7. How large a carbon tax is justified by the secondary benefits of CO2 abatement?

    International Nuclear Information System (INIS)

    Ekins, Paul

    1996-01-01

    The combustion of fossil fuels emits a range of damaging pollutants, the emissions of which are reduced if fossil fuel use is reduced in order to achieve CO 2 abatement. These reductions are termed the secondary benefits of such abatement. The paper reviews estimates of the size of these benefits at current levels of emissions of the relevant pollutants. Although the estimates are few and uncertain, their mid-range suggests that the secondary benefits are of the same order of magnitude as the gross costs of medium to high levels of CO 2 abatement, and are substantially larger than the (equally uncertain) estimates of the primary benefits of CO 2 abatement, except where these benefits derive from consideration of damages from unabated global warming in the very long term. The paper then reviews these calculations in the light of the limits on SO 2 emissions mandated by the Second Sulphur Protocol (SSP). It finds that the secondary benefits from abating SO 2 alone beyond the limits of the SSP still provide a substantial offset to the costs of a carbon tax. The paper concludes that the existence of significant secondary benefits greatly reinforces the economic case for an aggressive policy of CO 2 abatement

  8. Net farm income and land use under a U.S. greenhouse gas cap and trade

    Science.gov (United States)

    Justin S. Baker; Bruce A. McCarl; Brian C. Murray; Steven K. Rose; Ralph J. Alig; Darius Adams; Greg Latta; Robert Beach; Adam. Daigneault

    2010-01-01

    During recent years, the U.S. agricultural sector has experienced high prices for energy related inputs and commodities, and a rapidly developing bioenergy market. Greenhouse gas (GHG) emissions mitigation would further alter agricultural markets and increase land competition in forestry and agriculture by shifting input costs, creating an agricultural GHG abatement...

  9. Analysis of potential for reducing emissions of greenhouse gases in municipal solid waste in Brazil, in the state and city of Rio de Janeiro

    International Nuclear Information System (INIS)

    Loureiro, S.M.; Rovere, E.L.L.; Mahler, C.F.

    2013-01-01

    Highlights: ► We constructed future scenarios of emissions of greenhouse gases in waste. ► Was used the IPCC methodology for calculating emission inventories. ► We calculated the costs of abatement for emissions reduction in landfill waste. ► The results were compared to Brazil, state and city of Rio de Janeiro. ► The higher the environmental passive, the greater the possibility of use of biogas. - Abstract: This paper examines potential changes in solid waste policies for the reduction in GHG for the country of Brazil and one of its major states and cities, Rio de Janeiro, from 2005 to 2030. To examine these policy options, trends in solid waste quantities and associated GHG emissions are derived. Three alternative policy scenarios are evaluated in terms of effectiveness, technology, and economics and conclusions posited regarding optimal strategies for Brazil to implement. These scenarios are been building on the guidelines for national inventories of GHG emissions (IPCC, 2006) and adapted to Brazilian states and municipalities’ boundaries. Based on the results, it is possible to say that the potential revenue from products of solid waste management is more than sufficient to transform the current scenario in this country into one of financial and environmental gains, where the negative impacts of climate change have created a huge opportunity to expand infrastructure for waste management

  10. Thoughts on abatement and adaptation

    International Nuclear Information System (INIS)

    Revelle, R.R.

    1991-01-01

    A number of questions having to do with the themes of abatement and adaptation are discussed. Under the first rubric are questions of future concentrations of radiatively active trace gases, the linkage of these gases with greenhouse warming, and other environmental problems. Also examined in the abatement context are opportunities to reduce fossil fuel use and therefore the emission of greenhouse gases, and the likelihood that natural forest expansion may provide an opportunity to control the rate of carbon dioxide (CO2) accumulation in the atmosphere. Also discussed are the possible effects of greenhouse warming on agriculture in the United States and in the developing world. Finally, some suggestions are given on capturing and retaining interest in greenhouse warming on the part of the decision making public

  11. Valuation of marginal CO2 abatement options for electric power plants in Korea

    International Nuclear Information System (INIS)

    Park, Hojeong; Lim, Jaekyu

    2009-01-01

    The electricity generation sector in Korea is under pressure to mitigate greenhouse gases as directed by the Kyoto Protocol. The principal compliance options for power companies under the cap-and-trade include the application of direct CO 2 emission abatement and the procurement of emission allowances. The objective of this paper is to provide an analytical framework for assessing the cost-effectiveness of these options. We attempt to derive the marginal abatement cost for CO 2 using the output distance function and analyze the relative advantages of emission allowance procurement option as compared to direct abatement option. Real-option approach is adopted to incorporate emission allowance price uncertainty. Empirical result shows the marginal abatement cost with an average of Euro 14.04/ton CO 2 for fossil-fueled power plants and confirms the existence of substantial cost heterogeneity among plants which is sufficient to achieve trading gains in allowance market. The comparison of two options enables us to identify the optimal position of the compliance for each plant. Sensitivity analyses are also presented with regard to several key parameters including the initial allowance prices and interest rate. The result of this paper may help Korean power plants to prepare for upcoming regulations targeted toward the reduction of domestic greenhouse gases.

  12. Regional differences in China's CO2 abatement cost

    International Nuclear Information System (INIS)

    He, Xiaoping

    2015-01-01

    Under a framework of output distance function with multiple outputs, the study discusses the carbon abatement cost at provincial and regional levels in China, using the shadow price analysis. The findings show that the abatement cost, reflecting the marginal opportunity cost of carbon reduction, varies greatly among the provinces. On average, the abatement cost of the eastern region was much higher than that of the mid-western region during the observed period. The findings provide evidence that the carbon prices in the current ETS pilots have been much lower than desired levels, implying inefficiency of the markets. The wide range of the abatement cost estimates supports that the equi-marginal principle does not hold for the regulations on carbon pollution at regional levels. The regional cost differences indicate the huge potential for China to minimize the total abatement cost with policy instruments that may motive the emissions moving from areas of low abatement cost to where the abatement cost is higher. For a few undeveloped provinces that are environmentally fragile and have high abatement cost, supplementary measures will be needed to reduce the negative impact of carbon cutbacks on the poor to the minimum. - Highlights: • The marginal abatement cost of CO 2 is defined by the shadow price measure. • A linear programming model based on distance function is established. • Marginal abatement costs at provincial level are empirical investigated. • The abatement cost varies across provinces and regions in China. • The findings provide evidence that the current ETS pilots are inefficient

  13. Life cycle greenhouse gas (GHG) impacts of a novel process for converting food waste to ethanol and co-products

    International Nuclear Information System (INIS)

    Ebner, Jacqueline; Babbitt, Callie; Winer, Martin; Hilton, Brian; Williamson, Anahita

    2014-01-01

    Highlights: • Co-fermentation using SSF at ambient temperature has potential as an ethanol pathway. • Bio-refinery GHG emissions are similar to corn and MSW ethanol production processes. • Net production GHG impact is negative with inclusion of waste disposal avoidance. • Food waste diversion from landfills is the largest contributor to GHG benefits. - Abstract: Waste-to-ethanol conversion is a promising technology to provide renewable transportation fuel while mitigating feedstock risks and land use conflicts. It also has the potential to reduce environmental impacts from waste management such as greenhouse gas (GHG) emissions that contribute to climate change. This paper analyzes the life cycle GHG emissions associated with a novel process for the conversion of food processing waste into ethanol (EtOH) and the co-products of compost and animal feed. Data are based on a pilot plant co-fermenting retail food waste with a sugary industrial wastewater, using a simultaneous saccharification and fermentation (SSF) process at room temperature with a grinding pretreatment. The process produced 295 L EtOH/dry t feedstock. Lifecycle GHG emissions associated with the ethanol production process were 1458 gCO 2 e/L EtOH. When the impact of avoided landfill emissions from diverting food waste to use as feedstock are considered, the process results in net negative GHG emissions and approximately 500% improvement relative to corn ethanol or gasoline production. This finding illustrates how feedstock and alternative waste disposal options have important implications in life cycle GHG results for waste-to-energy pathways

  14. The political economy of a tradable GHG permit market in the European Union

    DEFF Research Database (Denmark)

    Markussen, P.; Svendsen, Gert Tinggaard; Vesterdal, Morten

    2002-01-01

    The EU has committed itself to meet an 8% greenhouse gas (GHG) reduction target level following the Kyoto agreement. Therefore, the EU Commission has just proposed a new directive establishing a framework for GHG emissions trading within the European Union. This proposal is the outcome of a policy...... that the dominant interest groups indeed influenced the final design of an EU GHG market....

  15. Effects of forest fertilization on C sequestration and GHG emissions

    International Nuclear Information System (INIS)

    Prescott, C.E.; Grayston, S.J.; Basiliko, N.; Seely, B.A.; Weetman, G.F.; Bull, G.Q.; Northway, S.; Mohn, W.W.

    2005-01-01

    This study evaluated the potential to create carbon credits from the increased storage in all carbon pools on the forest landscape. It was conducted in response to the Kyoto Protocol provision which allows the inclusion of carbon sinks. The productivity of Canada's forest landbase is limited by availability of nutrients, particularly nitrogen (N). Studies have shown that forest fertilization not only increases productivity of many forest type, but offers the associated benefit of increased carbon (C) sequestration in biomass. There is increasing evidence that N fertilization will also increase C sequestration in soil organic matter, since higher N availability appears to interfere with litter decomposition causing more C to become humified. Many long-term fertilization experiments in British Columbia have provided an opportunity to quantify the effects of N addition on C sequestration in vegetation and soil organic matter. It was noted that determining the effects of fertilization on emission of nitrous oxides (N 2 O) and consumption of methane (CH 4 ) is critical since the greenhouse warming potential of these gases is much greater than that of carbon dioxide (CO 2 ). This study also used state-of-the-art molecular methods to identify the soil microorganisms responsible for N 2 O production and CH 4 oxidation in order to determine the complex and often contradictory effects of fertilizers on N 2 O emission and CH 4 oxidation in forest soils. The actual N 2 O, CO 2 , and CH 4 fluxes from these soils were also measured. The main objective of the project was the development of microbial indicators as tools to detect soil GHG emission activity

  16. Lack of Energy Efficiency Legislation in the Malaysian Building Sector Contributes to Malaysia’s Growing GHG Emissions

    Directory of Open Access Journals (Sweden)

    Zaid Suzaini M.

    2014-01-01

    Full Text Available Malaysia’s carbon emissions grew by +235.6% from 1990 to 2005, largely due to an increase in national energy demand of 210.7% from 1990 to 2004. This unparalleled carbon emission growth, along with business-as-usual (BAU practices will put Malaysia at high risk for carbon lock-in and a very unsustainable path of development. Malaysia clearly needs to make significant and urgent changes in its policy, economy, industries and lifestyle in order to reduce its climate change impacts. In 2010 Malaysia announced a voluntary commitment to reduce 40% of its greenhouse gases (GHG emissions by 2020 (from 1990 levels. Without emissions mitigation and conservation policies, Malaysia is unlikely to meet its emissions reduction targets. Presently, Malaysia has no energy efficiency legislation in its growing building sector. This paper reviews existing building policies and energy efficiency measures in Malaysia and highlights the need to implement mandatory energy efficiency building codes in reducing the sector’s impact on climate change.

  17. Successful pilot of thermosyphon process heater reduces GHG emissions and operating costs

    International Nuclear Information System (INIS)

    Arnold, W.A.; Neulander, J.I.

    1999-01-01

    A joint pilot study was conducted by Hudson Products Corporation and PanCanadian Petroleum Ltd. to test the feasibility of using a thermosyphon as a part of a thermal recovery process for cold heavy oil reservoir exploitation in the Western Canada Sedimentary Basin. A thermosyphon process heater can transfer heat from an external combustion chamber to a liquid inside a tank. This paper described the pilot project in which such a heater was successfully tested in a heavy oil field production tank. The field trial was conducted at the Marwayne Field in northeastern Alberta. The results of the pilot study demonstrated that the thermosyphon not only improved process efficiency, but also reduced greenhouse gas (GHG) emissions, lowered operating costs and improved safety. 5 refs., 3 tabs., 1 fig., 3 appendices

  18. Dynamics of carbon abatement in the Second Generation Model

    International Nuclear Information System (INIS)

    Sands, Ronald D.

    2004-01-01

    The Second Generation Model (SGM) is a collection of computable-general-equilibrium models developed for analysis of policies to reduce greenhouse gas emissions. Behavior of the Second Generation Model, with respect to changes in carbon prices, can be summarized using marginal abatement cost curves. Marginal abatement costs vary over time, as capital stocks adjust to a new set of prices, and across countries, depending in part on the mix of fuels in the existing energy system. This paper documents the production structure in SGM, marginal abatement cost curves derived from SGM with constant-carbon-price experiments, an application to several Energy Modeling Forum scenarios, and a methodology for including carbon capture and disposal in SGM

  19. Perceptions of Health Co-Benefits in Relation to Greenhouse Gas Emission Reductions: A Survey among Urban Residents in Three Chinese Cities

    Science.gov (United States)

    Gao, Jinghong; Xu, Guozhang; Ma, Wenjun; Zhang, Yong; Woodward, Alistair; Vardoulakis, Sotiris; Kovats, Sari; Wilkinson, Paul; He, Tianfeng; Lin, Hualiang; Liu, Tao; Gu, Shaohua; Wang, Jun; Li, Jing; Yang, Jun; Liu, Xiaobo; Li, Jing; Wu, Haixia; Liu, Qiyong

    2017-01-01

    Limited information is available on the perceptions of stakeholders concerning the health co-benefits of greenhouse gas (GHG) emission reductions. The purpose of this study was to investigate the perceptions of urban residents on the health co-benefits involving GHG abatement and related influencing factors in three cities in China. Beijing, Ningbo and Guangzhou were selected for this survey. Participants were recruited from randomly chosen committees, following quotas for gender and age in proportion to the respective population shares. Chi-square or Fisher’s exact tests were employed to examine the associations between socio-demographic variables and individuals’ perceptions of the health co-benefits related to GHG mitigation. Unconditional logistic regression analysis was performed to investigate the influencing factors of respondents’ awareness about the health co-benefits. A total of 1159 participants were included in the final analysis, of which 15.9% reported that they were familiar with the health co-benefits of GHG emission reductions. Those who were younger, more educated, with higher family income, and with registered urban residence, were more likely to be aware of health co-benefits. Age, attitudes toward air pollution and governmental efforts to improve air quality, suffering from respiratory diseases, and following low carbon lifestyles are significant predictors of respondents’ perceptions on the health co-benefits. These findings may not only provide information to policy-makers to develop and implement public welcome policies of GHG mitigation, but also help to bridge the gap between GHG mitigation measures and public engagement as well as willingness to change health-related behaviors. PMID:28335404

  20. A comparability analysis of global burden sharing GHG reduction scenarios

    International Nuclear Information System (INIS)

    Ciscar, Juan-Carlos; Saveyn, Bert; Soria, Antonio; Szabo, Laszlo; Van Regemorter, Denise; Van Ierland, Tom

    2013-01-01

    The distribution of the mitigation burden across countries is a key issue regarding the post-2012 global climate policies. This article explores the economic implications of alternative allocation rules, an assessment made in the run-up to the COP15 in Copenhagen (December 2009). We analyse the comparability of the allocations across countries based on four single indicators: GDP per capita, GHG emissions per GDP, GHG emission trends in the recent past, and population growth. The multi-sectoral computable general equilibrium model of the global economy, GEM-E3, is used for that purpose. Further, the article also compares a perfect carbon market without transaction costs with the case of a gradually developing carbon market, i.e. a carbon market with (gradually diminishing) transaction costs. - Highlights: ► Burden sharing of global mitigation efforts should consider equity and efficiency. ► The comparability of allocations across countries is based on four indicators. ► The four indicators are GDP/capita, GHG/GDP, population growth, and GHG trend. ► Any possible agreement on effort comparability needs a combination of indicators. ► We analyse the role played by the degree of flexibility in global carbon trading

  1. The fundamentals of the future international emissions trading system

    International Nuclear Information System (INIS)

    Stankeviciute, Loreta; Kitous, Alban; Criqui, Patrick

    2008-01-01

    The study aims to analyze the sectoral marginal abatements cost curves for a number of EU countries as well as to examine the efficiency aspects and the economic impacts for the major sectors of the ETS under different carbon market configurations in 2010 and 2020. To produce a consistent and realistic assessment, we employ sources such as GHG National Inventories, NAPs and POLES world energy model to constitute the sectoral base year and 2010, 2020 emission levels in different countries and regions. We then use the market analysis tool ASPEN, which enables to derive supply and demand from sectoral MACCs produced with the POLES model, and to evaluate the economic impacts on the carbon market participants. The paper shows that, in compliance with the Kyoto targets, the benefits of an enlarged carbon market are significant, since more than 50% of the abatement in the short term have to be achieved in ETS sectors, which may indeed use CDM or JI credits. A second major conclusion is that in 2020 the new flexibility margins provided by the adjustment of investments in new capacities compensate for the increase in pressure towards stronger emission reductions. This reduces the relative importance of the enlarged carbon market

  2. Genetic mitigation strategies to tackle agricultural GHG emissions: The case for biological nitrification inhibition technology.

    Science.gov (United States)

    Subbarao, G V; Arango, J; Masahiro, K; Hooper, A M; Yoshihashi, T; Ando, Y; Nakahara, K; Deshpande, S; Ortiz-Monasterio, I; Ishitani, M; Peters, M; Chirinda, N; Wollenberg, L; Lata, J C; Gerard, B; Tobita, S; Rao, I M; Braun, H J; Kommerell, V; Tohme, J; Iwanaga, M

    2017-09-01

    Accelerated soil-nitrifier activity and rapid nitrification are the cause of declining nitrogen-use efficiency (NUE) and enhanced nitrous oxide (N 2 O) emissions from farming. Biological nitrification inhibition (BNI) is the ability of certain plant roots to suppress soil-nitrifier activity, through production and release of nitrification inhibitors. The power of phytochemicals with BNI-function needs to be harnessed to control soil-nitrifier activity and improve nitrogen-cycling in agricultural systems. Transformative biological technologies designed for genetic mitigation are needed, so that BNI-enabled crop-livestock and cropping systems can rein in soil-nitrifier activity, to help reduce greenhouse gas (GHG) emissions and globally make farming nitrogen efficient and less harmful to environment. This will reinforce the adaptation or mitigation impact of other climate-smart agriculture technologies. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. What can we learn from field experiments about the development of SOC and GHG emissions under different management practices?

    Science.gov (United States)

    Spiegel, Heide; Lehtinen, Taru; Schlatter, Norman; Haslmayr, Hans-Peter; Baumgarten, Andreas; ten Berge, Hein

    2015-04-01

    Successful agricultural management practices are required to maintain or enhance soil quality; at the same time climate change mitigation is becoming increasingly important. Within the EU project CATCH-C we analysed the effects of different agricultural practices not only on crop productivity, but also on soil quality indicators (e.g. soil organic carbon (SOC)) and climate change (CC) mitigation indicators (e.g. CO2, CH4, N2O emissions). European data sets and associated literature, mainly from long-term experiments were evaluated. This evaluation of agricultural management practices was carried out comparing a set of improved ("best") and often applied ("current") management practices. Positive and negative effects occurred when best management practices are adopted. As expected, none of the investigated practices could comply with all objectives simultaneously, i.e. maintaining high yields, mitigating climate change and improving chemical, physical and biological soil quality. The studied soil management practices "non-inversion tillage", "organic fertilisation" (application of farm yard manure, slurry, compost) and "incorporation of crop residues" represent important management practices for farmers to increase SOC, thus improving soil quality. However, CO2 and, especially, N2O emissions may rise as well. The evaluation of CC mitigation is often limited by the lack of data from - preferably - continuous GHG emission measurements. Thus, more long-term field studies are needed to better assess the CO2, CH4 and, especially, N2O emissions following the above mentioned favorably rated MPs. Only if SOC and GHG emissions are measured in the same field experiments, it will be possible to compute overall balances of necessary CO2-C equivalent emissions. CATCH-C is funded within the 7th Framework Programme for Research, Technological Development and Demonstration, Theme 2 - Biotechnologies, Agriculture & Food. (Grant Agreement N° 289782).

  4. Energy self-reliance, net-energy production and GHG emissions in Danish organic cash crop farms

    DEFF Research Database (Denmark)

    Halberg, Niels; Dalgaard, Randi; Olesen, Jørgen E

    2008-01-01

    -energy production were modeled. Growing rapeseed on 10% of the land could produce bio-diesel to replace 50-60% of the tractor diesel used on the farm. Increasing grass-clover area to 20% of the land and using half of this yield for biogas production could change the cash crop farm to a net energy producer......, and reduce GHG emissions while reducing the overall output of products only marginally. Increasing grass-clover area would improve the nutrient management on the farm and eliminate dependence on conventional pig slurry if the biogas residues were returned to cash crop fields...

  5. Impact of non-petroleum vehicle fuel economy on GHG mitigation potential

    International Nuclear Information System (INIS)

    Luk, Jason M; Saville, Bradley A; MacLean, Heather L

    2016-01-01

    The fuel economy of gasoline vehicles will increase to meet 2025 corporate average fuel economy standards (CAFE). However, dedicated compressed natural gas (CNG) and battery electric vehicles (BEV) already exceed future CAFE fuel economy targets because only 15% of non-petroleum energy use is accounted for when determining compliance. This study aims to inform stakeholders about the potential impact of CAFE on life cycle greenhouse gas (GHG) emissions, should non-petroleum fuel vehicles displace increasingly fuel efficient petroleum vehicles. The well-to-wheel GHG emissions of a set of hypothetical model year 2025 light-duty vehicles are estimated. A reference gasoline vehicle is designed to meet the 2025 fuel economy target within CAFE, and is compared to a set of dedicated CNG vehicles and BEVs with different fuel economy ratings, but all vehicles meet or exceed the fuel economy target due to the policy’s dedicated non-petroleum fuel vehicle incentives. Ownership costs and BEV driving ranges are estimated to provide context, as these can influence automaker and consumer decisions. The results show that CNG vehicles that have lower ownership costs than gasoline vehicles and BEVs with long distance driving ranges can exceed the 2025 CAFE fuel economy target. However, this could lead to lower efficiency CNG vehicles and heavier BEVs that have higher well-to-wheel GHG emissions than gasoline vehicles on a per km basis, even if the non-petroleum energy source is less carbon intensive on an energy equivalent basis. These changes could influence the effectiveness of low carbon fuel standards and are not precluded by the light-duty vehicle GHG emissions standards, which regulate tailpipe but not fuel production emissions. (letter)

  6. Review of the Fuel Saving, Life Cycle GHG Emission, and Ownership Cost Impacts of Lightweighting Vehicles with Different Powertrains.

    Science.gov (United States)

    Luk, Jason M; Kim, Hyung Chul; De Kleine, Robert; Wallington, Timothy J; MacLean, Heather L

    2017-08-01

    The literature analyzing the fuel saving, life cycle greenhouse gas (GHG) emission, and ownership cost impacts of lightweighting vehicles with different powertrains is reviewed. Vehicles with lower powertrain efficiencies have higher fuel consumption. Thus, fuel savings from lightweighting internal combustion engine vehicles can be higher than those of hybrid electric and battery electric vehicles. However, the impact of fuel savings on life cycle costs and GHG emissions depends on fuel prices, fuel carbon intensities and fuel storage requirements. Battery electric vehicle fuel savings enable reduction of battery size without sacrificing driving range. This reduces the battery production cost and mass, the latter results in further fuel savings. The carbon intensity of electricity varies widely and is a major source of uncertainty when evaluating the benefits of fuel savings. Hybrid electric vehicles use gasoline more efficiently than internal combustion engine vehicles and do not require large plug-in batteries. Therefore, the benefits of lightweighting depend on the vehicle powertrain. We discuss the value proposition of the use of lightweight materials and alternative powertrains. Future assessments of the benefits of vehicle lightweighting should capture the unique characteristics of emerging vehicle powertrains.

  7. Effects of forest fertilization on C sequestration and GHG emissions

    Energy Technology Data Exchange (ETDEWEB)

    Prescott, C.E.; Grayston, S.J.; Basiliko, N.; Seely, B.A.; Weetman, G.F. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Forest Sciences; Bull, G.Q.; Northway, S. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Forest Resources Management; Mohn, W.W. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Microbiology and Immunology

    2005-07-01

    This study evaluated the potential to create carbon credits from the increased storage in all carbon pools on the forest landscape. It was conducted in response to the Kyoto Protocol provision which allows the inclusion of carbon sinks. The productivity of Canada's forest landbase is limited by availability of nutrients, particularly nitrogen (N). Studies have shown that forest fertilization not only increases productivity of many forest type, but offers the associated benefit of increased carbon (C) sequestration in biomass. There is increasing evidence that N fertilization will also increase C sequestration in soil organic matter, since higher N availability appears to interfere with litter decomposition causing more C to become humified. Many long-term fertilization experiments in British Columbia have provided an opportunity to quantify the effects of N addition on C sequestration in vegetation and soil organic matter. It was noted that determining the effects of fertilization on emission of nitrous oxides (N{sub 2}O) and consumption of methane (CH{sub 4}) is critical since the greenhouse warming potential of these gases is much greater than that of carbon dioxide (CO{sub 2}). This study also used state-of-the-art molecular methods to identify the soil microorganisms responsible for N{sub 2}O production and CH{sub 4} oxidation in order to determine the complex and often contradictory effects of fertilizers on N{sub 2}O emission and CH{sub 4} oxidation in forest soils. The actual N{sub 2}O, CO{sub 2}, and CH{sub 4} fluxes from these soils were also measured. The main objective of the project was the development of microbial indicators as tools to detect soil GHG emission activity.

  8. How to determine the GHG budget of a pasture field with grazing animals

    Science.gov (United States)

    Ammann, Christof; Neftel, Albrecht; Felber, Raphael

    2016-04-01

    Up to now the scientific investigation and description of the agriculture related greenhouse gas (GHG) exchange has been largely separated into (i) direct animal related and (ii) ecosystem area related processes and measurement methods. An overlap of the two usually separated topics occurs for grazed pastures, where direct animal and pasture area emissions are relevant. In the present study eddy covariance (EC) flux measurements on the field scale were combined with a source location attribution (footprint) model and with GPS position measurements of the individual animals. The experiment was performed on a pasture field in Switzerland under a rotational full grazing regime with dairy cows. The exchange fluxes of CH4, CO2, and N2O were measured simultaneously over the entire year. The observed CH4 emission fluxes correlated well with the presence of cows in the flux footprint. When converted to average emission per cow, the results agreed with published values from respiration chamber experiments with similar cows. For CO2 a sophisticated partitioning algorithm was applied to separate the pasture and animal contributions, because both were in the same order of magnitude. The N2O exchange fully attributable to the pasture soil showed considerable and continuous emissions through the entire seasonal course mainly modulated by soil moisture and temperature. The resulting GHG budget shows that the largest GHG effect of the pasture system was due to enteric CH4 emissions followed by soil N2O emissions, but that the carbon storage change was affected by a much larger uncertainty. The results demonstrate that the EC technique in combination with animal position information allows to consistently quantify the exchange of all three GHG on the pasture and to adequately distinguish between direct animal and diffuse area sources (and sinks). Yet questions concerning a standardized attribution of animal related emissions to the pasture GHG budget still need to be resolved.

  9. Scenarios for use of biogas for heavy-duty vehicles in Denmark and related GHG emissions impacts

    DEFF Research Database (Denmark)

    Jensen, Steen Solvang; Winther, Morten; Jørgensen, Uffe

    2017-01-01

    of biogas is of concern. This study has analysed the potential biomass and biogas production from all Danish organic waste sources under different scenario assumptions for future scenario years. The analysis includes energy demand of the road transportation sector by means of transport and fuel types......, and potential use of the limited biogas resource taking into account alternative fuel options available for transportation (electricity, hydrogen, biofuels). Further, the total differences in fuel consumption and GHG emissions due to the replacement of diesel-powered heavy-duty vehicles by gas-powered heavy...

  10. Marginal abatement cost curve for nitrogen oxides incorporating controls, renewable electricity, energy efficiency, and fuel switching.

    Science.gov (United States)

    Loughlin, Daniel H; Macpherson, Alexander J; Kaufman, Katherine R; Keaveny, Brian N

    2017-10-01

    A marginal abatement cost curve (MACC) traces out the relationship between the quantity of pollution abated and the marginal cost of abating each additional unit. In the context of air quality management, MACCs are typically developed by sorting control technologies by their relative cost-effectiveness. Other potentially important abatement measures such as renewable electricity, energy efficiency, and fuel switching (RE/EE/FS) are often not incorporated into MACCs, as it is difficult to quantify their costs and abatement potential. In this paper, a U.S. energy system model is used to develop a MACC for nitrogen oxides (NO x ) that incorporates both traditional controls and these additional measures. The MACC is decomposed by sector, and the relative cost-effectiveness of RE/EE/FS and traditional controls are compared. RE/EE/FS are shown to have the potential to increase emission reductions beyond what is possible when applying traditional controls alone. Furthermore, a portion of RE/EE/FS appear to be cost-competitive with traditional controls. Renewable electricity, energy efficiency, and fuel switching can be cost-competitive with traditional air pollutant controls for abating air pollutant emissions. The application of renewable electricity, energy efficiency, and fuel switching is also shown to have the potential to increase emission reductions beyond what is possible when applying traditional controls alone.

  11. Integrated cost-effectiveness analysis of greenhouse gas emission abatement. The case of Finland

    Energy Technology Data Exchange (ETDEWEB)

    Lehtilae, A.; Tuhkanen, S. [VTT Energy, Espoo (Finland). Energy Systems

    1999-11-01

    In Finland greenhouse gas emissions are expected to increase during the next decades due to economic growth, particularly in the energy intensive industrial sectors. The role of these industries is very central in the national economy. The emission control according to the Kyoto Protocol will therefore be quite difficult and costly. The study analyses the cost-effectiveness of different technical options for reducing the emissions of carbon dioxide, methane, and nitrous oxide in Finland. The analysis is performed with the help of a comprehensive energy system model for Finland, which has been extended to cover all major sources of methane and nitrous oxide emissions in the energy sector, industry, waste management and agriculture. The focus being on technical options, no consideration is given to possible policy measures, emission trading or joint implementation in the study. Under the boundary conditions given for the development of the Finnish energy economy, cost-effective technical measures in the energy system include increases in the use of wood biomass, natural gas and wind energy, increases in the contribution of CHP to the power supply, and intensified energy conservation in all end-use sectors. Additional cost-effective measures are landfill gas recovery, utilisation of the combustible fraction of waste and catalytic conversion of N{sub 2}O in nitric acid production. With baseline assumptions, the direct annual costs of emission abatement are calculated to be about 2000 MFIM (330 M{epsilon}) in 2010. The marginal costs are estimated to be about 230 FIM (40 {epsilon}) per tonne of CO{sub 2}-equivalent in 2010. The cost curie derived from the analysis could be used in further analyses concerning emissions trading. (orig.) 109 refs. SIHTI Research Programme

  12. Cost effectiveness comparison of certain transportation measures to mitigate greenhouse gas emissions in San Diego County, California

    International Nuclear Information System (INIS)

    Silva-Send, Nilmini; Anders, Scott; Narwold, Andrew

    2013-01-01

    California's overarching mandate to achieve 1990 levels of greenhouse gases (GHGs) in 2020 (AB 32, 2005), and the ensuing recent regulations (SB 375, CEQA updates) require local and regional governments to assess GHG mitigation policies, including on-road transportation. The regulations do not make cost-effectiveness a primary criteria for choosing measures but cost remains important to a variety of stakeholders. This communication summarizes results from GHG and cost analysis for seven actual San Diego County road transportation policies: telecommute, vanpools, a bicycle strategy, an increase in mass transit use, parking policies (parking pricing, preferred parking for electric vehicles), an increased local fuel tax and speed harmonization (signal re-timing, roundabouts). Net costs are calculated as the sum of direct costs and benefits to the administering agency, the employer and the individual. Net costs per metric ton GHG abated vary greatly across measures, from negative to high positive (more than US $1000). We find that local GHG cost cannot be sensibly compared to other carbon or GHG policy costs outside the local context for a variety of reasons, but especially because measures have not been adopted primarily for carbon or GHG abatement potential or on the basis of cost effectiveness

  13. Contribution of plastic waste recovery to greenhouse gas (GHG) savings in Spain.

    Science.gov (United States)

    Sevigné-Itoiz, Eva; Gasol, Carles M; Rieradevall, Joan; Gabarrell, Xavier

    2015-12-01

    This paper concentrates on the quantification of greenhouse gas (GHG) emissions of post-consumer plastic waste recovery (material or energy) by considering the influence of the plastic waste quality (high or low), the recycled plastic applications (virgin plastic substitution or non-plastic substitution) and the markets of recovered plastic (regional or global). The aim is to quantify the environmental consequences of different alternatives in order to evaluate opportunities and limitations to select the best and most feasible plastic waste recovery option to decrease the GHG emissions. The methodologies of material flow analysis (MFA) for a time period of thirteen years and consequential life cycle assessment (CLCA) have been integrated. The study focuses on Spain as a representative country for Europe. The results show that to improve resource efficiency and avoid more GHG emissions, the options for plastic waste management are dependent on the quality of the recovered plastic. The results also show that there is an increasing trend of exporting plastic waste for recycling, mainly to China, that reduces the GHG benefits from recycling, suggesting that a new focus should be introduced to take into account the split between local recycling and exporting. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Final Deliverable W6, D6.4: Coal power plants with carbon capture and storage – A sustainability assessment

    NARCIS (Netherlands)

    Ramirez, C.A.; Schakel, W.B.; Wood, R.; Grytli, T.

    2013-01-01

    Carbon Capture and Storage (CCS) is increasingly gaining attention as a strategy for the abatement of greenhouse gas (GHG) emissions. CCS includes the capture of CO2 emissions from electricity generation plants and/or industrial processes, its transport (by pipeline or ships) and sequestration in

  15. Effect of fertilising with pig slurry and chicken manure on GHG emissions from Mediterranean paddies

    Energy Technology Data Exchange (ETDEWEB)

    Maris, S.C., E-mail: stefania@macs.udl.cat [Environment and Soil Science Department, University of Lleida, Av. Alcalde Rovira Roure 191, E-25198 Lleida (Spain); Teira-Esmatges, M.R.; Bosch-Serra, A.D. [Environment and Soil Science Department, University of Lleida, Av. Alcalde Rovira Roure 191, E-25198 Lleida (Spain); Moreno-García, B. [Soils and Irrigation Department, Agrifood Research and Technology Centre of Aragon (CITA), Av. Montañana 930, E-50059 Zaragoza (Spain); Català, M.M. [Ebre Field Station, Institute of Agrifood Research and Technology (IRTA), Ctra. de Balada, km 1, E-43870 Amposta (Spain)

    2016-11-01

    } {sup 1}; high C/N) increases GHG emissions. • Mineral N had no effect on N{sub 2}O, while chicken manure increased CH{sub 4} emission. • The postharvest period was a sink of CH{sub 4} without N{sub 2}O emissions. • During seedling chicken manure increased GHG; mineral N and pig slurry did not.

  16. Global EDGAR v4.1 emissions of air pollutants: analysis of impacts of emissions abatement in industry and road transport on regional and global scale

    Science.gov (United States)

    Janssens-Maenhout, G.; Olivier, J. G.; Doering, U. M.; van Aardenne, J.; Monni, S.; Pagliari, V.; Peters, J. A.

    2010-12-01

    The new version v4.1 of the Emission Database for Global Atmospheric Research (EDGAR) compiled by JRC and PBL provides independent estimates of the global anthropogenic emissions and emission trends of precursors of tropospheric ozone (CO, NMVOC, NOx) and acidifying substances (NOx, NH3, SO2) for the period 1970-2005. All emissions are detailed at country level consistently using the same technology-based methodology, combining activity data (international statistics) from publicly available sources and to the extent possible emission factors as recommended by the EMEP/EEA air pollutant emission inventory guidebook. By using high resolution global grid maps per source category of area sources and point sources, we also compiled datasets with annual emissions on a 0.1x0.1 degree grid, as input for atmospheric models. We provide full and up-to-date inventories per country, also for developing countries. Moreover, the time series back in time to 1970 provides for the trends in official national inventories a historic perspective. As part of our objective to contribute to more reliable inventories by providing a reference emissions database for emission scenarios, inventory comparisons and for atmospheric modellers, we strive to transparently document all data sources used and assumptions made where data was missing, in particular for assumptions made on the shares of technologies where relevant. Technology mixes per country or region were taken from other data sources (such as the Platts database) or estimated using other sources or countries as proxy. The evolution in the adoption of technologies world-wide over the 35 years covered by EDGAR v4.1 will be illustrated for the power industry and the road transport sectors, in particular for Europe and the US. Similarly the regional and global impacts of implemented control measures and end-of pipe abatements will be illustrated by the examples of - NOx and SO2 end-of pipe abatements being implemented since the late

  17. Working Group 'Air pollution abatement' of the University of Stuttgart -ALS. Annual report 1990

    International Nuclear Information System (INIS)

    1991-01-01

    Despite considerable efforts for air pollution abatement - examples are here desulphurization and nitrogen removal in power and large combustion plants as well as catalytic converters for automobiles there are still many problems to solve. Many small and medium-size companies still have to reduce production-related pollutant emissions, traffic still is a major source of pollutants. Air pollution abatement in the new Federal states and other Eastern European countries is a particularly urgent task and reductions of CO 2 emissions from energy production processes with fossil fuels are not least a great challenge. Apart from industry, legislation and administration especially science is called upon to find solutions to these problems. The university of Stuttgart takes up the challenge. Numerous institutes - 17 of 8 faculties -united in the working group ''air pollution abatement'' of the university of Stuttgart which carries out in interdisciplinary cooperation research work in the area of air pollution abatement. In this annual report activities of individual member states institutes in the area of air pollution abatement (fields of study, current research projects, cooperations and publications in 1991) as well as joint projects are presented. (orig./KW) [de

  18. Asia least-cost greenhouse gas abatement strategy identification and assessment of mitigation options for the energy sector

    International Nuclear Information System (INIS)

    Gupta, Sujata; Bhandari, Preety

    1998-01-01

    The focus of the presentation was on greenhouse gas mitigation options for the energy sector for India. Results from the Asia Least-cost Greenhouse gas Abatement Strategies (ALGAS) project were presented. The presentation comprised of a review of the sources of greenhouse gases, the optimisation model, ie the Markal model, used for determining the least-cost options, discussion of the results from the baseline and the abatement scenarios. The second half of the presentation focussed on a multi-criteria assessment of the abatement options using the Analytical Hierarchical Process (AHP) model. The emissions of all greenhouse gases, for India, are estimated to be 986.3 Tg of carbon dioxide equivalent for 1990. The energy sector accounted for 58 percent of the total emissions and over 90 percent of the CO2 emissions. Net emissions form land use change and forestry were zero. (au)

  19. Economic restructuring in Eastern Europe and acid rain abatement strategies

    International Nuclear Information System (INIS)

    Amann, Markus; Klaassen, Ger; Schoepp, Wolfgang; Soerensen, Lene; Hordijk, Leen

    1992-01-01

    Acid rain abatement strategies in Europe are currently being discussed in view of the expiration of the Helsinki Protocol on SO 2 emission reduction. The changing energy situation in Eastern European countries is expected to have an influence on the deposition pattern in Europe. The paper presents a consistent energy scenario for Eastern European countries and compares optimal strategies to reduce SO 2 emissions. These strategies are based on runs with the RAINS model in which environmental targets have been set based on critical loads for sulphur. The analysis shows that economic restructuring and efficiency improvements in Eastern European countries, as well as in Western Europe, may result in significantly lower sulphur abatement costs. Potential assistance to Eastern Europe to guarantee desired environmental standards in Western countries should therefore focus not only on providing emission control devices but also on the success of the economic transition process. (author)

  20. The importance of economies of scale for reductions in greenhouse gas emissions from shipping

    International Nuclear Information System (INIS)

    Lindstad, Haakon; Asbjørnslett, Bjørn E.; Strømman, Anders H.

    2012-01-01

    CO 2 emissions from maritime transport represent 3.3% of the world's total CO 2 emissions and are forecast to increase by 150%–250% by 2050, due to increased freight volumes (). Fulfilling anticipated climate requirements () could require the sector to reduce emissions per freight unit by a factor of five or six. The International Maritime Organization (IMO) is currently debating technical, operational and market-based measures for reducing greenhouse gas emissions from shipping. This paper also investigates the effects of economies of scale on the direct emissions and costs of maritime transport. We compared emissions from the current fleet (2007), with what can be achieved by increasing average vessel size. The comparison is based on the 2007 levels of trade and predictions for 2050. The results show that emissions can be reduced by up to 30% at a negative abatement cost per ton of CO 2 by replacing the existing fleet with larger vessels. Replacing the whole fleet might take as long as 25 years, so the reduction in emissions will be achieved gradually as the current fleet is renewed. - Highlights: ► We investigate the effects of economy of scale for reduction of GHG emissions from shipping. ► Model includes both cost and emission as function of vessel size and type. ► Model is based on operational patterns as of today for the different vessel types and sizes. ► Comparison is based on actual 2007 tonnages and foreseen 2050 levels of trading. ► Results shows that emissions can be reduced by 25%–30% at a negative abatement cost.

  1. Mathematical Optimization Algorithm for Minimizing the Cost Function of GHG Emission in AS/RS Using Positive Selection Based Clonal Selection Principle

    Science.gov (United States)

    Mahalakshmi; Murugesan, R.

    2018-04-01

    This paper regards with the minimization of total cost of Greenhouse Gas (GHG) efficiency in Automated Storage and Retrieval System (AS/RS). A mathematical model is constructed based on tax cost, penalty cost and discount cost of GHG emission of AS/RS. A two stage algorithm namely positive selection based clonal selection principle (PSBCSP) is used to find the optimal solution of the constructed model. In the first stage positive selection principle is used to reduce the search space of the optimal solution by fixing a threshold value. In the later stage clonal selection principle is used to generate best solutions. The obtained results are compared with other existing algorithms in the literature, which shows that the proposed algorithm yields a better result compared to others.

  2. Life-Cycle Energy and GHG Emissions for New and Recovered Softwood Framing Lumber and Hardwood Flooring Considering End-of-Life Scenarios

    Science.gov (United States)

    Richard D. Bergman; Robert H. Falk; Hongmei Gu; Thomas R. Napier; Jamie Meil

    2013-01-01

    Within the green building fields is a growing movement to recover and reuse building materials in lieu of demolition and land fill disposal. However, they lack life-cycle data to help quantify environmental impacts. This study quantifies the primary energy and greenhouse gas (GHG) emissions released from the production of wood recovered from an old house and from new...

  3. Towards a meaningful metric for the quantification of GHG emissions of electric vehicles (EVs)

    International Nuclear Information System (INIS)

    Manjunath, Archana; Gross, George

    2017-01-01

    A key motivator for wider deployment of electric vehicles (EVs) – vehicles that are fully powered by battery charged from grid electricity – is to bring about environmental cleanliness. This goal is based on the fact that EVs produce zero tailpipe emissioon the associated carbon emissins. However, the generation and transmission of the charge electricity produce emissions that are not explicitly accounted by current measurement metrics for EV greenhouse gas (GHG) emissions and as such, the notion of environmental cleanliness of EVs becomes questionable. In this paper, we propose a comprehensive metric to quantify the actual environmental impacts of EVs. The new metric that we call the electric vehicle emissions index (EVEI) captures CO_2 emissions in the electricity production to consumption stages. Our metric is the first that provides transparency in the comparison of total emissions among various EV models, as well as in the side-by-side comparison of an EV with a gasoline vehicle (GV). Illustrative results indicate that the actual environmental impacts of an EV may show wide spatial variations and in some case, these impacts may be even greater than that of GV. Such insights that the EVEI provides may be useful in a wide range of applications, particularly in policy and incentive formulation. - Highlights: • We propose the Electric Vehicle Emission Index (EVEI) metric. • EVEI indicates the EV environmental impacts w.r.t gasoline vehicles (GVs). • Fuel economy and resource mix are the major contributors to emissions. • Results indicate EVs may prove to be dirtier than GVs in certain areas of usage. • Insights may prove to be valuable to policy and incentive formulation.

  4. Examination of the conditions of a broadening of the general tax for polluting activities to the intermediate energy consumptions. Incentive mechanisms for the abatement of greenhouse gas emissions

    International Nuclear Information System (INIS)

    Bureau, D.

    2000-05-01

    Among the various existing incentive mechanisms for the abatement of greenhouse gas emissions, like the pollution regulations and the financial help for energy mastery, this document analyzes the conditions of efficiency of the negotiated voluntary agreements and of the tradable emission quotas and their articulation with the fiscality. (J.S.)

  5. Spectrum analysis of national greenhouse gas emission: a case study of Germany

    International Nuclear Information System (INIS)

    Su, Meirong; Pauleit, Stephan; Xu, Chao

    2016-01-01

    It is essential to abstract the key information from accounting results of greenhouse gas (GHG) emissions because it can provide a highly generalized and clear picture of GHG emissions, which is especially helpful for the public and policy makers. To clearly display the composition of GHG emissions, the concept of spectrum analysis is introduced and defined in this paper. Next, a multilayer analysis framework for national GHG emissions was proposed, which is represented by a pyramid of three layers: total emissions (first layer), emissions decomposed by gas type or sector (second layer), and emissions decomposed by both gas type and sector (third layer). Based on the analysis results from the first to third layers, the main compositional information of national GHG emissions was gradually summarized and analyzed until a spectrum of GHG emissions was acquired. The spectrum of GHG emissions displays the compositional structure of national GHG emissions in the different layers, which is helpful in identifying priorities for emissions reduction. A case study of Germany's GHG emissions during 1990-2012 was conducted, which indicated that CO_2 and the energy sector were the biggest contributors to the total GHG emissions. Some suggestions for reducing GHG emissions are offered based on the obtained results. And the potential development of spectrum analysis for GHG emissions is also expected from aspects of both research and technology. (orig.)

  6. Spectrum analysis of national greenhouse gas emission: a case study of Germany

    Energy Technology Data Exchange (ETDEWEB)

    Su, Meirong [Dongguan University of Technology, School of Chemistry and Environmental Engineering, Dongguan, Guangdong Province (China); Beijing Normal University, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing (China); Technical University of Munich, Strategic Landscape Planning and Management, Freising (Germany); Pauleit, Stephan; Xu, Chao [Technical University of Munich, Strategic Landscape Planning and Management, Freising (Germany)

    2016-10-15

    It is essential to abstract the key information from accounting results of greenhouse gas (GHG) emissions because it can provide a highly generalized and clear picture of GHG emissions, which is especially helpful for the public and policy makers. To clearly display the composition of GHG emissions, the concept of spectrum analysis is introduced and defined in this paper. Next, a multilayer analysis framework for national GHG emissions was proposed, which is represented by a pyramid of three layers: total emissions (first layer), emissions decomposed by gas type or sector (second layer), and emissions decomposed by both gas type and sector (third layer). Based on the analysis results from the first to third layers, the main compositional information of national GHG emissions was gradually summarized and analyzed until a spectrum of GHG emissions was acquired. The spectrum of GHG emissions displays the compositional structure of national GHG emissions in the different layers, which is helpful in identifying priorities for emissions reduction. A case study of Germany's GHG emissions during 1990-2012 was conducted, which indicated that CO{sub 2} and the energy sector were the biggest contributors to the total GHG emissions. Some suggestions for reducing GHG emissions are offered based on the obtained results. And the potential development of spectrum analysis for GHG emissions is also expected from aspects of both research and technology. (orig.)

  7. Abatement of atmospheric emissions in North America: Progress to date and promise for the future

    International Nuclear Information System (INIS)

    Ellis, E.C.; Erbes, R.E.; Grott, J.K.

    1990-01-01

    Much progress has been made in acidic rain abatement in North America. This progress is examined with a focus on man-made emissions of sulfur dioxide and nitrogen oxides that contribute to acidic deposition. A review of US historical trends of SO 2 and nitrogen oxides emissions since 1900 and projections of future emissions through the end of this century shoe emissions of SO 2 decreasing from a peak in 1970 of 29 Tg/yr to about 26 Tg/yr, but nitrogen oxides emissions continuing an upward trend to about 25 Tg/yr. In Canada, SO 2 , NO and NO 2 emissions are less than 20% of those in the US, and the trends are similar, with SO 2 showing future decreases and NO and NO 2 continuing to increase. Future industry in North America is expected to emit much lower levels of SO 2 , NO, and NO 2 . Technology is also available to limit nitrogen oxides emissions from future motor vehicles. Recent acidic deposition legislation in the US Congress to reduce electric utility and industrial emissions of SO 2 by 9 to 13 Tg/yr is reviewed. The estimates of the cost to implement the proposals range from $2 billion to $23 billion over a 5-year period. Retrofitting existing utility and industrial boilers for maximum SO 2 , NO, and NO 2 reduction carries the highest price tag. Several environmental policy options are explored for preventing emission increases and also promoting decreases in future emissions of SO 2 , NO, and NO 2 in North America. Focus on nitrogen oxides emissions may be critical because population growth could cause significant increases in NO and NO 2 from motor vehicle use

  8. Assessment of the GHG Reduction Potential from Energy Crops Using a Combined LCA and Biogeochemical Process Models: A Review

    Directory of Open Access Journals (Sweden)

    Dong Jiang

    2014-01-01

    Full Text Available The main purpose for developing biofuel is to reduce GHG (greenhouse gas emissions, but the comprehensive environmental impact of such fuels is not clear. Life cycle analysis (LCA, as a complete comprehensive analysis method, has been widely used in bioenergy assessment studies. Great efforts have been directed toward establishing an efficient method for comprehensively estimating the greenhouse gas (GHG emission reduction potential from the large-scale cultivation of energy plants by combining LCA with ecosystem/biogeochemical process models. LCA presents a general framework for evaluating the energy consumption and GHG emission from energy crop planting, yield acquisition, production, product use, and postprocessing. Meanwhile, ecosystem/biogeochemical process models are adopted to simulate the fluxes and storage of energy, water, carbon, and nitrogen in the soil-plant (energy crops soil continuum. Although clear progress has been made in recent years, some problems still exist in current studies and should be addressed. This paper reviews the state-of-the-art method for estimating GHG emission reduction through developing energy crops and introduces in detail a new approach for assessing GHG emission reduction by combining LCA with biogeochemical process models. The main achievements of this study along with the problems in current studies are described and discussed.

  9. FUEL/CARBON PRICE VS. ABATEMENT TECHNOLOGY IN FREIGHT TRANSPORT

    Directory of Open Access Journals (Sweden)

    Eugen Ferdinand Spangenberg

    2017-12-01

    Full Text Available The current situation is the exponential increase in greenhouse gases (GHG, which is mainly caused by industrial and transport activities. The recent Paris agreement in 2015 (Framework Convention on Climate Change COP21, UNFCCC made it clear to everyone that CO2 emissions are to be limited in all areas of life. Alternative fuels with a lower environmental impact than carbon (CO2 emissions are hard to find if the overall footprint is to be taken into account. Nevertheless, there are some fuels that have less impact on climate change. One the other hand, the production of biofuels is a controversial matter, although it is a viable alternative to emissions reduction. CNG or LNG-powered vehicles are also better in terms of environmental pollution, but are hardly better with regard to CO2 impact when a Life Cycle Assessment (LCA is carried out. LNG (liquid natural gas, for example, is the future fuel in the maritime sector because of the stricter environmental regulations (SOx,NOx in the shipping industry. The battery-powered vehicle is another example of an environmentally friendly solution. The afore-mentioned measures can be considered as “abatement“ necessary in order to limit CO2 impact. The study shows that there are significant differences in the environmental impact between transport systems and the corresponding drive-system or associated energy base. The polluter should pay, which is a common basic principle in economic research. The Emission Trading Scheme (ETS has been introduced in order to ensure a reduction in CO2 output – emissions come with a price tag. An overall view is necessary, both en-vironmental and economic impact must be reconciled (cf. Spangenberg - TQI. The future viability of the transport system as we know it may change significantly over time if new environmental requirements or e.g. CO2 taxes or ETS are introduced in the freight sector. The abatement of CO2 should be effected primarily through technological

  10. Environmental balance of the UK biogas sector: An evaluation by consequential life cycle assessment

    Energy Technology Data Exchange (ETDEWEB)

    Styles, David, E-mail: d.styles@bangor.ac.uk; Dominguez, Eduardo Mesa; Chadwick, Dave

    2016-08-01

    Anaerobic digestion (AD) is expanding rapidly in the UK. Previous life cycle assessment (LCA) studies have highlighted the sensitivity of environmental outcomes to feedstock type, fugitive emissions, biomethane use, energy conversion efficiency and digestate management. We combined statistics on current and planned AD deployment with operational data from a survey of biogas plant operators to evaluate the environmental balance of the UK biogas sector for the years 2014 and 2017. Consequential LCA was applied to account for all major environmental credits and burdens incurred, including: (i) substitution of composting, incineration, sewer disposal, field decomposition and animal feeding of wastes; (ii) indirect land use change (ILUC) incurred by the cultivation of crops used for biogas production and to compensate for bakery and brewery wastes diverted from animal feed. In 2014, the UK biogas sector reduced greenhouse gas (GHG) emissions by 551–755 Gg CO{sub 2}e excluding ILUC, or 238–755 Gg CO{sub 2}e including ILUC uncertainty. Fossil energy depletion was reduced by 8.9–10.8 PJe, but eutrophication and acidification burdens were increased by 1.8–3.4 Gg PO{sub 4}e and 8.1–14.6 Gg SO{sub 2}e, respectively. Food waste and manure feedstocks dominate GHG abatement, largely through substitution of in-vessel composting and manure storage, whilst food waste and crop feedstocks dominate fossil energy credit, primarily through substitution of natural gas power generation. Biogas expansion is projected to increase environmental credits and loadings by a factor of 2.4 by 2017. If all AD bioelectricity replaced coal generation, or if 90% of biomethane replaced transport diesel or grid natural gas, GHG abatement would increase by 131%, 38% and 20%, respectively. Policies to encourage digestion of food waste and manures could maximize GHG abatement, avoiding the risk of carbon leakage associated with use of crops and wastes otherwise used to feed livestock. Covering

  11. Environmental balance of the UK biogas sector: An evaluation by consequential life cycle assessment

    International Nuclear Information System (INIS)

    Styles, David; Dominguez, Eduardo Mesa; Chadwick, Dave

    2016-01-01

    Anaerobic digestion (AD) is expanding rapidly in the UK. Previous life cycle assessment (LCA) studies have highlighted the sensitivity of environmental outcomes to feedstock type, fugitive emissions, biomethane use, energy conversion efficiency and digestate management. We combined statistics on current and planned AD deployment with operational data from a survey of biogas plant operators to evaluate the environmental balance of the UK biogas sector for the years 2014 and 2017. Consequential LCA was applied to account for all major environmental credits and burdens incurred, including: (i) substitution of composting, incineration, sewer disposal, field decomposition and animal feeding of wastes; (ii) indirect land use change (ILUC) incurred by the cultivation of crops used for biogas production and to compensate for bakery and brewery wastes diverted from animal feed. In 2014, the UK biogas sector reduced greenhouse gas (GHG) emissions by 551–755 Gg CO_2e excluding ILUC, or 238–755 Gg CO_2e including ILUC uncertainty. Fossil energy depletion was reduced by 8.9–10.8 PJe, but eutrophication and acidification burdens were increased by 1.8–3.4 Gg PO_4e and 8.1–14.6 Gg SO_2e, respectively. Food waste and manure feedstocks dominate GHG abatement, largely through substitution of in-vessel composting and manure storage, whilst food waste and crop feedstocks dominate fossil energy credit, primarily through substitution of natural gas power generation. Biogas expansion is projected to increase environmental credits and loadings by a factor of 2.4 by 2017. If all AD bioelectricity replaced coal generation, or if 90% of biomethane replaced transport diesel or grid natural gas, GHG abatement would increase by 131%, 38% and 20%, respectively. Policies to encourage digestion of food waste and manures could maximize GHG abatement, avoiding the risk of carbon leakage associated with use of crops and wastes otherwise used to feed livestock. Covering digestate stores could

  12. Life-Cycle Energy and GHG Emissions of Forest Biomass Harvest and Transport for Biofuel Production in Michigan

    Directory of Open Access Journals (Sweden)

    Fengli Zhang

    2015-04-01

    Full Text Available High dependence on imported oil has increased U.S. strategic vulnerability and prompted more research in the area of renewable energy production. Ethanol production from renewable woody biomass, which could be a substitute for gasoline, has seen increased interest. This study analysed energy use and greenhouse gas emission impacts on the forest biomass supply chain activities within the State of Michigan. A life-cycle assessment of harvesting and transportation stages was completed utilizing peer-reviewed literature. Results for forest-delivered ethanol were compared with those for petroleum gasoline using data specific to the U.S. The analysis from a woody biomass feedstock supply perspective uncovered that ethanol production is more environmentally friendly (about 62% less greenhouse gas emissions compared with petroleum based fossil fuel production. Sensitivity analysis was conducted with key inputs associated with harvesting and transportation operations. The results showed that research focused on improving biomass recovery efficiency and truck fuel economy further reduced GHG emissions and energy consumption.

  13. Life cycle GHG assessment of fossil fuel power plants with carbon capture and storage

    International Nuclear Information System (INIS)

    Odeh, Naser A.; Cockerill, Timothy T.

    2008-01-01

    The evaluation of life cycle greenhouse gas emissions from power generation with carbon capture and storage (CCS) is a critical factor in energy and policy analysis. The current paper examines life cycle emissions from three types of fossil-fuel-based power plants, namely supercritical pulverized coal (super-PC), natural gas combined cycle (NGCC) and integrated gasification combined cycle (IGCC), with and without CCS. Results show that, for a 90% CO 2 capture efficiency, life cycle GHG emissions are reduced by 75-84% depending on what technology is used. With GHG emissions less than 170 g/kWh, IGCC technology is found to be favorable to NGCC with CCS. Sensitivity analysis reveals that, for coal power plants, varying the CO 2 capture efficiency and the coal transport distance has a more pronounced effect on life cycle GHG emissions than changing the length of CO 2 transport pipeline. Finally, it is concluded from the current study that while the global warming potential is reduced when MEA-based CO 2 capture is employed, the increase in other air pollutants such as NO x and NH 3 leads to higher eutrophication and acidification potentials

  14. Pakistan - Nuclear power for GHG mitigation and sustainable energy development

    International Nuclear Information System (INIS)

    Ahmad, Mohammad; Jalal, A.I.; Mumtaz, A.; Latif, M.

    2000-01-01

    Although Pakistan's contribution to global GHG emissions is very small (currently only 0.3% of world-wide emissions), it shares with the world community the concerns of climate change due to the build-up of GHGs. Pakistan is committed to co-operating with global efforts to avert the potential threat of global warming and is already working towards its own socio-economic development in a sustainable manner. However, due to the country's limited technical and financial capabilities, its efforts are diluted and limited to only high priority areas of national interest. There is a large potential for expanding these efforts, if the necessary technical and financial support can be made available, and such an expansion would contribute significantly to the collective global objective of sustainable development. One such step is the reduction of GHG emissions from Pakistan's power sector by introducing advanced cleaner technologies. Nuclear power is one such technology

  15. Modelling methane emissions from natural wetlands by development and application of the TRIPLEX-GHG model

    Science.gov (United States)

    Zhu, Qing; Liu, Jinxun; Peng, C.; Chen, H.; Fang, X.; Jiang, H.; Yang, G.; Zhu, D.; Wang, W.; Zhou, X.

    2014-01-01

    A new process-based model TRIPLEX-GHG was developed based on the Integrated Biosphere Simulator (IBIS), coupled with a new methane (CH4) biogeochemistry module (incorporating CH4 production, oxidation, and transportation processes) and a water table module to investigate CH4 emission processes and dynamics that occur in natural wetlands. Sensitivity analysis indicates that the most sensitive parameters to evaluate CH4 emission processes from wetlands are r (defined as the CH4 to CO2 release ratio) and Q10 in the CH4 production process. These two parameters were subsequently calibrated to data obtained from 19 sites collected from approximately 35 studies across different wetlands globally. Being heterogeneously spatially distributed, r ranged from 0.1 to 0.7 with a mean value of 0.23, and the Q10 for CH4 production ranged from 1.6 to 4.5 with a mean value of 2.48. The model performed well when simulating magnitude and capturing temporal patterns in CH4 emissions from natural wetlands. Results suggest that the model is able to be applied to different wetlands under varying conditions and is also applicable for global-scale simulations.

  16. Methane emissions abatement by multi-ion-exchanged zeolite A prepared from both commercial-grade zeolite and coal fly ash.

    Science.gov (United States)

    Hui, K S; Chao, C Y H

    2008-10-01

    The performance of multimetal-(Cu, Cr, Zn, Ni, and Co)-ion-exchanged zeolite A prepared from both a commercial-grade sample and one produced from coal fly ash in methane emissions abatement was evaluated in this study. The ion-exchange process was used to load the metal ions in zeolite A samples. The methane conversion efficiency by the samples was studied under various parameters including the amount of metal loading (7.3-19.4 wt%), reaction temperature (25-500 degrees C), space velocity (8400-41 900 h(-1)), and methane concentration (0.5-3.2 vol %). At 500 degrees C, the original commercial-grade zeolite A catalyzed 3% of the methane only, whereas the addition of different percentages of metals in the sample enhanced the methane conversion efficiency by 40-85%. Greater methane conversion was observed by increasing the percentage of metals added to the zeolite even though the BET surface area of the zeolite consequently decreased. Higher percentage methane conversion over the multi-ion-exchanged samples was observed at lower space velocities indicating the importance of the mass diffusion of reactants and products in the zeolite. Compared to the multi-ion-exchanged zeolite A prepared from the commercial-grade zeolite, the one produced from coal fly ash demonstrated similar performances in methane emissions abatement, showing the potential use of this low cost recycled material in gaseous pollutant treatment.

  17. How can French agriculture contribute to reducing greenhouse gas emissions? Abatement potential and cost of ten technical measures. Summary of the study report conducted by INRA on behalf of ADEME, MAAF and MEDDE

    International Nuclear Information System (INIS)

    Pellerin, Sylvain; Bamiere, Laure; Savini, Isabelle; Pardon, Lenaic; Chemineau, Philippe; Schmitt, Bertrand; Angers, D.; Beline, F.; Benoit, M.; Butault, J.P.; Chenu, C.; Colnenne-David, C.; De Cara, S.; Delame, N.; Doreau, M.; Dupraz, P.; Faverdin, P.; Garcia-Launay, F.; Hassouna, M.; Henault, C.; Jeuffroy, M.H.; Klumpp, K.; Metay, A.; Moran, D.; Recous, S.; Samson, E.

    2013-07-01

    The agricultural industry produces nearly one-fifth of France's greenhouse gas emissions (GHGs). But it also has a strong potential for carbon sequestration. ADEME and the French Ministries for Agriculture and the Environment asked INRA to carry out a study on French agriculture to develop and analyse various measures on farming practices that could boost carbon sequestration and minimise GHGs. There are four key ways agriculture can be a part of the solution of reducing GHG emissions: Lower emissions of nitrous oxide (N 2 O, a powerful GHG released during fertiliser processing or manure spreading) and methane (CH 4 , a GHG that comes mostly from livestock); Increase carbon sequestration in soil and biomass; Reduce energy use and produce energy from biomass (agro-fuels or biogas, which lower emissions as substitutes for fossil fuels); Produce materials from biomass. The study specified that eligible measures be based on farming practices that farmers have a say in changing, lead to reductions affecting commercial farms at least in part, do not require major changes to the production system and do not reduce yields by more than 10%. For each of the chosen measures, the study analysed the potential emissions reductions and gains versus tradeoffs for farmers if implemented. The ten measures are centered around nitrogen management (nitrogen fertilizer, pulses), practices that help increase carbon sequestration in soil and biomass (fallow land, agro-forestry, intermediate crops and inter-cropping, pasture management), animal feed (rations that minimise nitrogen excretion or methane production) and the production and consumption of energy by farming (methanation, fossil fuel economies). The study highlights a strong potential for the agricultural sector to reduce emissions through these measures. According to the experts' calculations, if all ten were adopted, France could achieve a cumulative annual reduction of 32 million tons of CO 2 equivalent by 2030. However, only

  18. GHG reduction potential of changes in consumption patterns and higher quality levels: Evidence from Swiss household consumption survey

    Energy Technology Data Exchange (ETDEWEB)

    Girod, Bastien, E-mail: bastien.girod@env.ethz.c [ETH Zurich, Institute for Environmental Decisions, Natural and Social Science Interface, Universitaetstrasse 22, CHN J72.1, 8092 Zurich (Switzerland); Haan, Peter de [ETH Zurich, Institute for Environmental Decisions, Natural and Social Science Interface, Universitaetstrasse 22, CHN J72.1, 8092 Zurich (Switzerland)

    2009-12-15

    An effective consumer-oriented climate policy requires knowing the GHG reduction potential of sustainable consumption. The aim of this study is to draw lessons from differences in consumption between households with high and low GHG emissions. We evaluate a survey of 14,500 households and use a method that allows measuring changes in price level of consumption. Comparing the 10% of households with the highest GHG emissions per capita with the lowest 10% - controlling for differences in expenditure level and household structure - we find a range 5-17 tons of CO{sub 2}-equivalent per capita and year. The observed differences stem mainly from heating, electricity use, car use, and travel by aircraft. Consumption patterns with low GHG emissions are characterized by less spending on mobility, but more on leisure and quality oriented consumption (leading to higher prices per unit). Further characteristics are: a higher share of organic food, low meat consumption and fewer detached single family houses. Our findings imply that a significant reduction in GHG emissions would be possible by adopting real-world consumption patterns observable in society. The twin challenge is to shift consumption towards more climate friendly patterns, and to prevent any trend towards high emitting consumption patterns.

  19. GHG reduction potential of changes in consumption patterns and higher quality levels. Evidence from Swiss household consumption survey

    Energy Technology Data Exchange (ETDEWEB)

    Girod, Bastien; De Haan, Peter [ETH Zurich, Institute for Environmental Decisions, Natural and Social Science Interface, Universitaetstrasse 22, CHN J72.1, 8092 Zurich (Switzerland)

    2009-12-15

    An effective consumer-oriented climate policy requires knowing the GHG reduction potential of sustainable consumption. The aim of this study is to draw lessons from differences in consumption between households with high and low GHG emissions. We evaluate a survey of 14,500 households and use a method that allows measuring changes in price level of consumption. Comparing the 10% of households with the highest GHG emissions per capita with the lowest 10% - controlling for differences in expenditure level and household structure - we find a range 5-17 tons of CO{sub 2}-equivalent per capita and year. The observed differences stem mainly from heating, electricity use, car use, and travel by aircraft. Consumption patterns with low GHG emissions are characterized by less spending on mobility, but more on leisure and quality oriented consumption (leading to higher prices per unit). Further characteristics are: a higher share of organic food, low meat consumption and fewer detached single family houses. Our findings imply that a significant reduction in GHG emissions would be possible by adopting real-world consumption patterns observable in society. The twin challenge is to shift consumption towards more climate friendly patterns, and to prevent any trend towards high emitting consumption patterns. (author)

  20. GHG reduction potential of changes in consumption patterns and higher quality levels: Evidence from Swiss household consumption survey

    International Nuclear Information System (INIS)

    Girod, Bastien; Haan, Peter de

    2009-01-01

    An effective consumer-oriented climate policy requires knowing the GHG reduction potential of sustainable consumption. The aim of this study is to draw lessons from differences in consumption between households with high and low GHG emissions. We evaluate a survey of 14,500 households and use a method that allows measuring changes in price level of consumption. Comparing the 10% of households with the highest GHG emissions per capita with the lowest 10% - controlling for differences in expenditure level and household structure - we find a range 5-17 tons of CO 2 -equivalent per capita and year. The observed differences stem mainly from heating, electricity use, car use, and travel by aircraft. Consumption patterns with low GHG emissions are characterized by less spending on mobility, but more on leisure and quality oriented consumption (leading to higher prices per unit). Further characteristics are: a higher share of organic food, low meat consumption and fewer detached single family houses. Our findings imply that a significant reduction in GHG emissions would be possible by adopting real-world consumption patterns observable in society. The twin challenge is to shift consumption towards more climate friendly patterns, and to prevent any trend towards high emitting consumption patterns.

  1. Can we trust corporates GHG inventories? An investigation among Canada's large final emitters

    International Nuclear Information System (INIS)

    Talbot, David; Boiral, Olivier

    2013-01-01

    In the public sphere and the literature on climate strategies, the measurability of corporate GHG emissions tends to be taken for granted, and few empirical studies have examined the reliability of such data. The present case study, which was conducted among 10 Canadian companies considered as large final emitters and three auditing firms, focuses on the factors which could affect the perceived credibility of GHG inventories and the strategic implications of these. The qualitative, inductive study allows identifying three main factors which affect trust in business inventories: technical issues and complexity of GHG measurements, lack of transparency on the part of the companies and unreliability of verification mechanisms. The study also makes it possible to evaluate the implications of uncertainties concerning GHG inventories which are of strategic importance for companies and policy makers. While the reliability of GHG measurement is taken for granted at the political level, uncertainties in this area can in fact have a huge impact on the establishment of the cap and trade system. The study also contributes to the literature on carbon accounting by shedding light on underexplored ethical issues, including the lack of independence of auditors and its implications. - Highlights: • The complexity of GHG emission measurement is underestimated in the public sphère. • The data disclosed by companies to the different stakeholders lack transparency. • The auditors' lack of competence and independence undermine the credibility of audit reports

  2. Marginal abatement cost curves in general equilibrium: The influence of world energy prices

    International Nuclear Information System (INIS)

    Klepper, Gernot; Peterson, Sonja

    2006-01-01

    Marginal abatement cost curves (MACCs) are a favorite instrument to analyze international emissions trading. This paper focuses on the question of how to define MACCs in a general equilibrium context where the global abatement level influences energy prices and in turn national MACCs. We discuss the mechanisms theoretically and then use the CGE model DART for quantitative simulations. The result is, that changes in energy prices resulting from different global abatement levels do indeed affect national MACCs. Also, we compare different possibilities of defining MACCs-of which some are robust against changes in energy prices while others vary considerably. (author)

  3. Biofuels that cause land-use change may have much larger non-GHG air quality emissions than fossil fuels.

    Science.gov (United States)

    Tsao, C-C; Campbell, J E; Mena-Carrasco, M; Spak, S N; Carmichael, G R; Chen, Y

    2012-10-02

    Although biofuels present an opportunity for renewable energy production, significant land-use change resulting from biofuels may contribute to negative environmental, economic, and social impacts. Here we examined non-GHG air pollution impacts from both indirect and direct land-use change caused by the anticipated expansion of Brazilian biofuels production. We synthesized information on fuel loading, combustion completeness, and emission factors, and developed a spatially explicit approach with uncertainty and sensitivity analyses to estimate air pollution emissions. The land-use change emissions, ranging from 6.7 to 26.4 Tg PM(2.5), were dominated by deforestation burning practices associated with indirect land-use change. We also found Brazilian sugar cane ethanol and soybean biodiesel including direct and indirect land-use change effects have much larger life-cycle emissions than conventional fossil fuels for six regulated air pollutants. The emissions magnitude and uncertainty decrease with longer life-cycle integration periods. Results are conditional to the single LUC scenario employed here. After LUC uncertainty, the largest source of uncertainty in LUC emissions stems from the combustion completeness during deforestation. While current biofuels cropland burning policies in Brazil seek to reduce life-cycle emissions, these policies do not address the large emissions caused by indirect land-use change.

  4. GHG mitigation of agricultural peatlands requires coherent policies

    DEFF Research Database (Denmark)

    Regina, Kristina; Budiman, Arif; Greve, Mogens Humlekrog

    2016-01-01

    As soon as peat soil is drained for agricultural production, the peat starts to degrade, which causes emissions to the atmosphere. In countries with large peatland areas, the GHG mitigation potential related to management of these soils is often estimated as the highest amongst the measures...

  5. A dual tracer ratio method for comparative emission measurements in an experimental dairy housing

    Science.gov (United States)

    Mohn, Joachim; Zeyer, Kerstin; Keck, Margret; Keller, Markus; Zähner, Michael; Poteko, Jernej; Emmenegger, Lukas; Schrade, Sabine

    2018-04-01

    Agriculture, and in particular dairy farming, is an important source of ammonia (NH3) and non-carbon dioxide greenhouse gas (GHG) emissions. This calls for the development and quantification of effective mitigation strategies. Our study presents the implementation of a dual tracer ratio method in a novel experimental dairy housing with two identical, but spatially separated housing areas. Modular design and flexible floor elements allow the assessment of structural, process engineering and organisational abatement measures at practical scale. Thereby, the emission reduction potential of specific abatement measures can be quantified in relation to a reference system. Emissions in the naturally ventilated housing are determined by continuous dosing of two artificial tracers (sulphur hexafluoride SF6, trifluoromethylsulphur pentafluoride SF5CF3) and their real-time detection in the ppt range with an optimized GC-ECD method. The two tracers are dosed into different experimental sections, which enables the independent assessment of both housing areas. Mass flow emissions of NH3 and GHGs are quantified by areal dosing of tracer gases and multipoint sampling as well as real-time analysis of both tracer and target gases. Validation experiments demonstrate that the technique is suitable for both areal and point emission sources and achieves an uncertainty of less than 10% for the mass emissions of NH3, methane (CH4) and carbon dioxide (CO2), which is superior to other currently available methods. Comparative emission measurements in this experimental dairy housing will provide reliable, currently unavailable information on emissions for Swiss dairy farming and demonstrate the reduction potential of mitigation measures for NH3, GHGs and potentially other pollutants.

  6. Summary report on GHG emission markets. Experiences and projects. Version from December 18, 2000, completed with the update from January 27, 2003

    International Nuclear Information System (INIS)

    2003-01-01

    This document provides a brief and succinct overview of all the initiatives taken by governments, parliaments and industry in a number of countries to examine or establish systems for trading greenhouse gas (GHG) emissions. It is intended chiefly for non-specialists (details of the precise mechanisms at work in each system have been purposely omitted in order to emphasize only the fundamental principles adopted in each case). We note a remarkable trend (especially in the English speaking world) in preparing such systems, which are felt to be an effective way of reducing companies' GHG emissions. France will need to adopt a much more proactive approach in this area if it wants to play any role in defining the future international system and if its industry and authorities are to be ready to take part in it. This document is based in part on a much more detailed report by the NHO (Federation of Norwegian Companies) and on the MIES/Industry document entitled 'Implementing an emission credits trading system in France to optimise industry's contribution to reducing greenhouse gases'. Having proven its ability to meet an environmental objective at a low cost, the system consisting of setting targets and trading emissions is now widely recognized as being the most effective tool for tackling the problem of how to reduce greenhouse gas emissions in the manufacturing sector. The last three years have witnessed an intense process of research, preparation, simulation and real life experimentation, chiefly in the UK, North America, Europe, the Nordic countries, Australia,... Simulations has shown just how easy it is to implement such a system, the speed with which those involved can learn to master the tool, and the market's effectiveness in encouraging actors to make the necessary investment once has been established a long-term vision of the objectives to be achieved in a system of unchanging rules. Real life experience has shown that by setting a

  7. Analysis of environmental and economic tradeoffs in switchgrass supply chains for biofuel production

    International Nuclear Information System (INIS)

    Zhong, Jia; Yu, T. Edward; Larson, James A.; English, Burton C.; Fu, Joshua S.; Calcagno, James

    2016-01-01

    This study considered the environmental advantages of switchgrass, along with the economic challenges in its logistics, in the design of a sustainable switchgrass supply chain in Tennessee. Applying a multi-objective optimization model to high-resolution spatial data, potential tradeoffs among the objectives of minimizing feedstock costs, GHG (greenhouse gas) emissions, and soil erosion were identified for a set of conversion facilities on an efficient frontier. The tradeoff relationship was primarily driven by the type of agricultural land converted to switchgrass. Hay and pasture lands were more cost effective but resulted in higher soil carbon losses and soil erosion after being converted to switchgrass. Converting crop lands reduced GHG emissions and soil erosion but caused higher feedstock cost primarily due to the higher opportunity cost of land use. The respective average costs of abating GHG emissions and soil erosion on the efficient frontier were $2378 Mg"−"1 and $10 Mg"−"1. The compromise solution conversion facility site generated 63% higher feedstock cost compared to the cost minimizing location, while reducing soil erosion by 70 fold and diminishing GHG emissions by 27%. Reducing soil erosion may be a more cost effective environmental criterion than reducing GHG emissions in developing a sustainable switchgrass supply chain in Tennessee. - Highlights: • Multi-objective optimization is applied to a switchgrass supply chain in Tennessee. • Tradeoffs are identified among costs, greenhouse gas, and soil erosion in supply chain. • The type of agricultural land converted to feedstock is a key factor to the tradeoffs. • Abating soil erosion rather than greenhouse gas is more cost effective in Tennessee.

  8. Assessment of soil GHG emission in different functional zones of Moscow urbanized areas

    Science.gov (United States)

    Vizirskaya, Maria; Epikhina, Anna; Vasenev, Ivan; Valentini, Riccardo; Mazirov, Il'ya

    2014-05-01

    Atmospheric greenhouse-gas concentrations are increasing rapidly, causing global climate changes. Growing concentrations of CO2, CH4 and N2O are occurring not only as a result of industry activity, but also from changes in land use and type of land management due to urbanization. Up to now there were not so many studies in Russia that dealt with urbanization effects (functional zoning, land-use type, soil contamination etc.) on GHG emission from the soil in spatial-temporal variability at the local and regional scale. The aim of our study is to provide the analysis of soil CO2, N2O and CH4 efflux's response to different biotic and abiotic factors, as well as to management activities and anthropogenic impact in different functional zones of the city. The principal objects of our study are representative urban landscapes with different land-use practices, typical for urbanized area. The varieties of urban ecosystems are represented by urban forest, green lawns with different functional subzoning and agro landscapes (16 sites in total). Forest sites have been studied during 7 years and they are differing in mezorelief (small hill summit and two slopes). Green lawns vary in level of human impact (normal, medium and high) and are represented by managed and non-managed lawns. Agro landscapes are represented by two crop types: barley and grass mixture (oats and vetch) with till and no-till cultivation. In each plot we measured: soil respiration in field conditions using system based on IR-gas analyzer Li- COR 820, CH4 and N2O emission using the method of exposition chamber. Samples were taken from soil exposition chamber by syringe, and then analyzed on gas chromatograph. The measurements with Li-COR have been done on 10 days base since June till October 2013, and till September by exposition chamber in 5 replicas per plot. The conducted research have shown high spatial and temporal variability of CO2, CH4 and N2O fluxes due to functional zoning, slope, vegetation type

  9. Technology Roadmap: Energy and GHG reductions in the chemical industry via catalytic processes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    The chemical industry is a large energy user; but chemical products and technologies also are used in a wide array of energy saving and/or renewable energy applications so the industry has also an energy saving role. The chemical and petrochemical sector is by far the largest industrial energy user, accounting for roughly 10% of total worldwide final energy demand and 7% of global GHG emissions. The International Council of Chemical Associations (ICCA) has partnered with the IEA and DECHEMA (Society for Chemical Engineering and Biotechnology) to describe the path toward further improvements in energy efficiency and GHG reductions in the chemical sector. The roadmap looks at measures needed from the chemical industry, policymakers, investors and academia to press on with catalysis technology and unleash its potential around the globe. The report uncovers findings and best practice opportunities that illustrate how continuous improvements and breakthrough technology options can cut energy use and bring down greenhouse gas (GHG) emission rates. Around 90% of chemical processes involve the use of catalysts – such as added substances that increase the rate of reaction without being consumed by it – and related processes to enhance production efficiency and reduce energy use, thereby curtailing GHG emission levels. This work shows an energy savings potential approaching 13 exajoules (EJ) by 2050 – equivalent to the current annual primary energy use of Germany.

  10. Household Solar Photovoltaics: Supplier of Marginal Abatement, or Primary Source of Low-Emission Power?

    Directory of Open Access Journals (Sweden)

    Graham Palmer

    2013-03-01

    Full Text Available With declining system costs and assuming a short energy payback period, photovoltaics (PV should, at face value, be able to make a meaningful contribution to reducing the emission intensity of Australia’s electricity system. However, solar is an intermittent power source and households remain completely dependent on a “less than green” electricity grid for reliable electricity. Further, much of the energy impact of PV occurs outside of the conventional boundaries of PV life-cycle analyses (LCA. This paper examines these competing observations and explores the broader impacts of a high penetration of household PV using Melbourne, Victoria as a reference. It concludes that in a grid dominated by unsequestered coal and gas, PV provides a legitimate source of emission abatement at high, but declining costs, with the potential for network and peak demand support. It may be technically possible to integrate a high penetration of PV, but the economic and energy cost of accommodating high-penetration PV erodes much of the benefits. Future developments in PV, storage, and integration technologies may allow PV to take on a greater long term role, but in the time horizon usually discussed in climate policy, a large-scale expansion of household PV may hinder rather than assist deep cuts to the emission intensity of Australia’s electricity system.

  11. On-Grid Solar PV versus Diesel Electricity Generation in Sub-Saharan Africa: Economics and GHG Emissions

    Directory of Open Access Journals (Sweden)

    Saule Baurzhan

    2017-03-01

    Full Text Available Many power utilities in sub-Saharan Africa (SSA have inadequate generation capacity, unreliable services, and high costs. They also face capital constraints that restrict them from making the investments necessary for capacity expansion. Capacity shortages have compelled power utilities to use leased emergency power-generating units, mainly oil-fired diesel generators, as a short-term solution. An economic analysis is carried out to compare the economic net present value (ENPV of fuel savings, as well as the greenhouse gas (GHG savings, from investing capital in a solar PV power-generation plant with those from investing the same amount of funds into a diesel power plant. The results show that ENPV is negative for the solar PV plant, whereas it has a large positive value for the diesel plant. In addition, the diesel plant would be almost three times as effective in reducing GHG emissions as the same value of investment in the solar PV plant. Even with solar investment costs falling, it will take 12 to 24 years of continuous decline before solar PV becomes cost-effective for SSA. The capital cost of solar PV would need to drop to US$1058.4 per kW to yield the same level of ENPV as the diesel plant.

  12. Climate Leadership Award for Excellence in GHG Management (Goal Achievement Award)

    Science.gov (United States)

    Apply to the Climate Leadership Award for Excellence in GHG Management (Goal Achievement Award), which publicly recognizes organizations that achieve publicly-set aggressive greenhouse gas emissions reduction goals.

  13. Climate Leadership Award for Excellence in GHG Management (Goal Setting Certificate)

    Science.gov (United States)

    Apply to the Climate Leadership Award for Excellence in GHG Management (Goal Achievement Award), which publicly recognizes organizations that achieve publicly-set aggressive greenhouse gas emissions reduction goals.

  14. Upscaling of greenhouse gas emissions in upland forestry following clearfell

    Science.gov (United States)

    Toet, Sylvia; Keane, Ben; Yamulki, Sirwan; Blei, Emanuel; Gibson-Poole, Simon; Xenakis, Georgios; Perks, Mike; Morison, James; Ineson, Phil

    2016-04-01

    Data on greenhouse gas (GHG) emissions caused by forest management activities are limited. Management such as clearfelling may, however, have major impacts on the GHG balance of forests through effects of soil disturbance, increased water table, and brash and root inputs. Besides carbon dioxide (CO2), the biogenic GHGs nitrous oxide (N2O) and methane (CH4) may also contribute to GHG emissions from managed forests. Accurate flux estimates of all three GHGs are therefore necessary, but, since GHG emissions usually show large spatial and temporal variability, in particular CH4 and N2O fluxes, high-frequency GHG flux measurements and better understanding of their controls are central to improve process-based flux models and GHG budgets at multiple scales. In this study, we determined CO2, CH4 and N2O emissions following felling in a mature Sitka spruce (Picea sitchensis) stand in an upland forest in northern England. High-frequency measurements were made along a transect using a novel, automated GHG chamber flux system ('SkyLine') developed at the University of York. The replicated, linear experiment aimed (1) to quantify GHG emissions from three main topographical features at the clearfell site, i.e. the ridges on which trees had been planted, the hollows in between and the drainage ditches, and (2) to determine the effects of the green-needle component of the discarded brash. We also measured abiotic soil and climatic factors alongside the 'SkyLine' GHG flux measurements to identify drivers of the observed GHG emissions. All three topographic features were overall sources of GHG emissions (in CO2 equivalents), and, although drainage ditches are often not included in studies, GHG emissions per unit area were highest from ditches, followed by ridges and lowest in hollows. The CO2 emissions were most important in the GHG balance of ridges and hollows, but CH4 emissions were very high from the drainage ditches, contributing to over 50% of their overall net GHG emissions

  15. Harmonised GHG accounting of decentralized rapeseed fuel production in Bavaria; Harmonisierte THG-Bilanzierung der dezentralen Rapsoelkraftstoffproduktion in Bayern

    Energy Technology Data Exchange (ETDEWEB)

    Dressler, Daniela [Technologie- und Foerderzentrum (TFZ), Straubing (Germany); Engelmann, Karsten; Remmele, Edgar; Thuneke, Klaus

    2016-08-01

    The Directive 2009/28/EG (RED) requires a minimum level of greenhouse gas reduction for biofuels to be marketed. Site-specific production conditions are not considered in default values, which are specified by RED for calculating the greenhouse gas emissions. However, calculations of regional and farm specific GHG balances in accordance to the method of ExpRessBio for the production of rape seed show a considerable range of GHG-emissions in CO{sup 2}-eq (25.2-43.6 g MJ{sup -1}). For the complete product system of decentralized rapeseed oil fuel production in Bavaria a GHG reduction of 58 % can be achieved. This is slightly higher than the default value of 57 % as specified in Directive 2009/28/EG. The reason for this is that the default value under Directive 2009/28/EG is based on an industrial oil production process whereas decentralized production leads to less GHG emissions. In comparison to the application of the energy allocation method the substitution method for the assessment of rape seed cake as protein feed leads to a distinct higher GHG reduction rate of 85%.

  16. System expansion for handling co-products in LCA of sugar cane bio-energy systems

    DEFF Research Database (Denmark)

    Nguyen, T Lan T; Hermansen, John Erik

    2012-01-01

    This study aims to establish a procedure for handling co-products in life cycle assessment (LCA) of a typical sugar cane system. The procedure is essential for environmental assessment of ethanol from molasses, a co-product of sugar which has long been used mainly for feed. We compare system...... expansion and two allocation procedures for estimating greenhouse gas (GHG) emissions of molasses ethanol. As seen from our results, system expansion yields the highest estimate among the three. However, no matter which procedure is used, a significant reduction of emissions from the fuel stage...... in the abatement scenario, which assumes implementation of substituting bioenergy for fossil-based energy to reduce GHG emissions, combined with a negligible level of emissions from the use stage, keeps the estimate of ethanol life cycle GHG emissions below that of gasoline. Pointing out that indirect land use...

  17. Technical efficiency and CO2 abatement policies in the Dutch glasshouse industry

    NARCIS (Netherlands)

    Oude Lansink, A.G.J.M.

    2003-01-01

    This paper develops a short-run microeconomic simulation model of the Dutch glasshouse industry in order to investigate the relation between technical efficiency and marginal abatement costs of CO2 emission. The model is also used to determine the effects of an emission tax and systems of tradable

  18. Greenhouse gas emissions from nitrogen fertilizer use in China

    International Nuclear Information System (INIS)

    Kahrl, Fredrich; Li, Yunju; Su, Yufang; Tennigkeit, Timm; Wilkes, Andreas; Xu, Jianchu

    2010-01-01

    The use of synthetic nitrogen (N) fertilizers is an important driver of energy use and greenhouse gas (GHG) emissions in China. This paper develops a GHG emission factor for synthetic N fertilizer application in China. Using this emission factor, we estimate the scale of GHG emissions from synthetic nitrogen fertilizer use in Chinese agriculture and explore the potential for GHG emission reductions from efficiency improvements in N fertilizer production and use. The paper concludes with a discussion on costs and financing for a large-scale fertilizer efficiency improvement program in China, and how a GHG mitigation framework might contribute to program design.

  19. Greenhouse Gas Emissions from Asphalt Pavement Construction: A Case Study in China.

    Science.gov (United States)

    Ma, Feng; Sha, Aimin; Lin, Ruiyu; Huang, Yue; Wang, Chao

    2016-03-22

    In China, the construction of asphalt pavement has a significant impact on the environment, and energy use and greenhouse gas (GHG) emissions from asphalt pavement construction have been receiving increasing attention in recent years. At present, there is no universal criterion for the evaluation of GHG emissions in asphalt pavement construction. This paper proposes to define the system boundaries for GHG emissions from asphalt pavement by using a process-based life cycle assessment method. A method for evaluating GHG emissions from asphalt pavement construction is suggested. The paper reports a case study of GHG emissions from a typical asphalt pavement construction project in China. The results show that the greenhouse gas emissions from the mixture mixing phase are the highest, and account for about 54% of the total amount. The second highest GHG emission phase is the production of raw materials. For GHG emissions of cement stabilized base/subbase, the production of raw materials emits the most, about 98%. The GHG emission for cement production alone is about 92%. The results indicate that any measures to reduce GHG emissions from asphalt pavement construction should be focused on the raw materials manufacturing stage. If the raw materials production phase is excluded, the measures to reduce GHG emissions should be aimed at the mixture mixing phase.

  20. BC Hydro shops for GHG offsets

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    BC Hydro is reported to have offered to purchase one million tonnes of carbon dioxide reductions in Canada's Greenhouse Gas Emissions Reduction Trading program (GERT). The program uses a baseline and credit system, where emitters purchase measurable quantities of site-specific GHG reductions. Since mid-1998, the program registered five bilateral trades and seven offers to sell. BC Hydro's recent offer is the first offer to buy. BC Hydro has made the offer to buy in expectation of the introduction of the start of the Kyoto Protocol reductions, and expects to be in the game for some time to come if it is to meet its obligations under the Kyoto Protocol. Preference will be given to projects located in Canada, but BC Hydro will consider reductions created anywhere in the world. The financial range of a single trade is between $50,000 and $1 million. (GHG offsets are currently trading in North America for between $.50 and $3.00 Cdn per metric tonne of carbon dioxide equivalent.) At present, offsets are selling at a heavily discounted price because of the uncertainty that investments made now will be credited against future regulations curbing emitters. Consequently, buying now while prices are low, may lead to sizable benefits later, depending on the actual regulations when they are promulgated. Trading now will also give BC Hydro greater credibility and assurance to have its voice heard when discussions about emissions trading and the implementation of emission trading rules reaches the serious stage

  1. Voluntary GHG reduction of industrial sectors in Taiwan.

    Science.gov (United States)

    Chen, Liang-Tung; Hu, Allen H

    2012-08-01

    The present paper describes the voluntary greenhouse gas (GHG) reduction agreements of six different industrial sectors in Taiwan, as well as the fluorinated gases (F-gas) reduction agreement of the semiconductor and Liquid Crystal Display (LCD) industries. The operating mechanisms, GHG reduction methods, capital investment, and investment effectiveness are also discussed. A total of 182 plants participated in the voluntary energy saving and GHG reduction in six industrial sectors (iron and steel, petrochemical, cement, paper, synthetic fiber, and textile printing and dyeing), with 5.35 Mt reduction from 2004 to 2008, or 33% higher than the target goal (4.02 Mt). The reduction accounts for 1.6% annual emission or 7.8% during the 5-yr span. The petrochemical industry accounts for 49% of the reduction, followed by the cement sector (21%) and the iron and steel industry (13%). The total investment amounted to approximately USD 716 million, in which, the majority of the investment went to the modification of the manufacturing process (89%). The benefit was valued at around USD 472 million with an average payback period of 1.5 yr. Moreover, related energy saving was achieved through different approaches, e.g., via electricity (iron and steel), steam and oil consumption (petrochemical) and coal usage (cement). The cost for unit CO(2) reduction varies per industry, with the steel and iron industrial sector having the highest cost (USD 346 t(-1) CO(2)) compared with the average cost of the six industrial sectors (USD 134 t(-1) CO(2)). For the semiconductor and Thin-Film Transistor LCD industries, F-gas emissions were reduced from approximately 4.1 to about 1.7 Mt CO(2)-eq, and from 2.2 to about 1.1 Mt CO(2)-eq, respectively. Incentive mechanisms for participation in GHG reduction are also further discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Identifying breakthrough technologies for the production of basic chemicals. A long term view on the sustainable production of ammonia, olefins and aromatics in the European region

    Energy Technology Data Exchange (ETDEWEB)

    Benner, J.; Van Lieshout, M.; Croezen, H.

    2012-01-15

    The European Commission's Roadmap for a competitive and low carbon economy in 2050 indicates that greenhouse gas emissions (GHG) in all sectors should be significantly reduced to meet the European Union (EU) objective of 80 to 95% greenhouse gas emission reductions by 2050 compared to 1990 levels. The European Commission indicated in the Roadmap that the EU's industrial sectors should reduce emissions by 83 to 87% domestically by 2050 compared to 1990 levels. The objective of this study is to explore breakthrough abatement technologies in three processes in the European chemical industry that can considerably contribute to achieving the required greenhouse gas emission reductions. In this context we have assessed the processes for the production of: (1) Ammonia; (2) Olefins; (3) Aromatics (BTX). For all three processes possible breakthrough abatement technologies were found, allowing for reductions in GHG emissions varying between 50 and 100% compared to the conventional processes. Our finding regarding the chemical industry and our earlier findings regarding options in the steel, cement and pulp and paper industries show that promising breakthrough abatement technologies are available for European energy-intensive industries to contribute to a low-carbon economy. However, large scale deployment requires an integrated EU industry and energy policy allowing for a resource efficient and sustainable use of available biomass, CCS storage capacity and renewable energy capacity.

  3. Identifying breakthrough technologies for the production of basic chemicals. A long term view on the sustainable production of ammonia, olefins and aromatics in the European region

    Energy Technology Data Exchange (ETDEWEB)

    Benner, J.; Van Lieshout, M.; Croezen, H.

    2012-01-15

    The European Commission's Roadmap for a competitive and low carbon economy in 2050 indicates that greenhouse gas emissions (GHG) in all sectors should be significantly reduced to meet the European Union (EU) objective of 80 to 95% greenhouse gas emission reductions by 2050 compared to 1990 levels. The European Commission indicated in the Roadmap that the EU's industrial sectors should reduce emissions by 83 to 87% domestically by 2050 compared to 1990 levels. The objective of this study is to explore breakthrough abatement technologies in three processes in the European chemical industry that can considerably contribute to achieving the required greenhouse gas emission reductions. In this context we have assessed the processes for the production of: (1) Ammonia; (2) Olefins; (3) Aromatics (BTX). For all three processes possible breakthrough abatement technologies were found, allowing for reductions in GHG emissions varying between 50 and 100% compared to the conventional processes. Our finding regarding the chemical industry and our earlier findings regarding options in the steel, cement and pulp and paper industries show that promising breakthrough abatement technologies are available for European energy-intensive industries to contribute to a low-carbon economy. However, large scale deployment requires an integrated EU industry and energy policy allowing for a resource efficient and sustainable use of available biomass, CCS storage capacity and renewable energy capacity.

  4. Greenhouse gas emissions accounting of urban residential consumption: a household survey based approach.

    Directory of Open Access Journals (Sweden)

    Tao Lin

    Full Text Available Devising policies for a low carbon city requires a careful understanding of the characteristics of urban residential lifestyle and consumption. The production-based accounting approach based on top-down statistical data has a limited ability to reflect the total greenhouse gas (GHG emissions from residential consumption. In this paper, we present a survey-based GHG emissions accounting methodology for urban residential consumption, and apply it in Xiamen City, a rapidly urbanizing coastal city in southeast China. Based on this, the main influencing factors determining residential GHG emissions at the household and community scale are identified, and the typical profiles of low, medium and high GHG emission households and communities are identified. Up to 70% of household GHG emissions are from regional and national activities that support household consumption including the supply of energy and building materials, while 17% are from urban level basic services and supplies such as sewage treatment and solid waste management, and only 13% are direct emissions from household consumption. Housing area and household size are the two main factors determining GHG emissions from residential consumption at the household scale, while average housing area and building height were the main factors at the community scale. Our results show a large disparity in GHG emissions profiles among different households, with high GHG emissions households emitting about five times more than low GHG emissions households. Emissions from high GHG emissions communities are about twice as high as from low GHG emissions communities. Our findings can contribute to better tailored and targeted policies aimed at reducing household GHG emissions, and developing low GHG emissions residential communities in China.

  5. Greenhouse Gas Emissions Accounting of Urban Residential Consumption: A Household Survey Based Approach

    Science.gov (United States)

    Lin, Tao; Yu, Yunjun; Bai, Xuemei; Feng, Ling; Wang, Jin

    2013-01-01

    Devising policies for a low carbon city requires a careful understanding of the characteristics of urban residential lifestyle and consumption. The production-based accounting approach based on top-down statistical data has a limited ability to reflect the total greenhouse gas (GHG) emissions from residential consumption. In this paper, we present a survey-based GHG emissions accounting methodology for urban residential consumption, and apply it in Xiamen City, a rapidly urbanizing coastal city in southeast China. Based on this, the main influencing factors determining residential GHG emissions at the household and community scale are identified, and the typical profiles of low, medium and high GHG emission households and communities are identified. Up to 70% of household GHG emissions are from regional and national activities that support household consumption including the supply of energy and building materials, while 17% are from urban level basic services and supplies such as sewage treatment and solid waste management, and only 13% are direct emissions from household consumption. Housing area and household size are the two main factors determining GHG emissions from residential consumption at the household scale, while average housing area and building height were the main factors at the community scale. Our results show a large disparity in GHG emissions profiles among different households, with high GHG emissions households emitting about five times more than low GHG emissions households. Emissions from high GHG emissions communities are about twice as high as from low GHG emissions communities. Our findings can contribute to better tailored and targeted policies aimed at reducing household GHG emissions, and developing low GHG emissions residential communities in China. PMID:23405187

  6. Aspects related to 'emission trading'

    International Nuclear Information System (INIS)

    Tutuianu, Ovidiu

    1999-01-01

    The paper presents the aspects of international GHG (greenhouse gases) emission trading, such as: quality of GHG emission data, possible partners, monitoring activity, market mechanisms and difficulties. The following conclusions are drown: - debates on international trade with GHG emissions are currently in a very early stage; - actions are possible and feasible, particularly after Kyoto Conference, as versatile mechanism (besides the Joint Implementation Projects) which have in view the lowering of the global emission costs in different zones of the planet; - difficulties concerning monitoring, reporting and verification, practically preclude implementing a system of emission trading covering all the GHG, all the sources and reservoirs; - an international viable system of emission trading could initiate with a limited number of participants and consideration of only emission categories easy to be confined and surveyed; - existence of a national market and corresponding institutions for monitoring which could booster an international system development

  7. Heterogeneous condensation for submicronic particles abatement

    OpenAIRE

    Tammaro, Marco

    2010-01-01

    It is now well established that the emission of sub-micrometric particulate matter entrained in flue gases of industry and vehicles exhausts, is one of the most critical treats for human health because of the toxicological effects of ultrafine particles on the respiratory system and their ability to cross alveoli’s membranes reaching the circulatory system too. Albeit this scenario, the traditional particle abatement devices are mainly designed and optimised to treat particles larger tha...

  8. Climate and air quality-driven scenarios of ozone and aerosol precursor abatement

    International Nuclear Information System (INIS)

    Rypdal, Kristin; Rive, Nathan; Berntsen, Terje; Fagerli, Hilde; Klimont, Zbigniew; Mideksa, Torben K.; Fuglestvedt, Jan S.

    2009-01-01

    In addition to causing domestic and regional environmental effects, many air pollutants contribute to radiative forcing (RF) of the climate system. However, climate effects are not considered when cost-effective abatement targets for these pollutants are established, nor are they included in current international climate agreements. We construct air pollution abatement scenarios in 2030 which target cost-effective reductions in RF in the EU, USA, and China and compare these to abatement scenarios which instead target regional ozone effects and particulate matter concentrations. Our analysis covers emissions of PM (fine, black carbon and organic carbon), SO 2 , NO x , CH 4 , VOCs, and CO. We find that the effect synergies are strong for PM/BC, VOC, CO and CH 4 . While an air quality strategy targeted at reducing ozone will also reduce RF, this will not be the case for a strategy targeting particulate matter. Abatement in China dominates RF reduction, but there are cheap abatement options also available in the EU and USA. The justification for international cooperation on air quality issues is underlined when the co-benefits of reduced RF are considered. Some species, most importantly SO 2 , contribute a negative forcing on climate. We suggest that given current knowledge, NO x and SO 2 should be ignored in RF-targeted abatement policies.

  9. Direct crowding out, optimal taxation and pollution abatement

    Energy Technology Data Exchange (ETDEWEB)

    Van der Ploeg, Frederick [FEE, University of Amsterdam, Amsterdam (Netherlands); Bovenberg, A. Lans [CentER, Tilburg University, Tilburg (Netherlands)

    1993-05-01

    The interactions between direct crowding out, the provision of public goods, optimal taxation and environmental policy are explored. Greener preferences induce a larger tax rate by raising the non-distortionary level of the tax rate. If the marginal productivity of public abatement diminishes rapidly environmental quality improves mainly through a fall in economic activity and emissions. In this case, public consumption increases which crowds out labour supply and private consumption. However, if environmental policy is very effective public consumption falls in order to make room for public abatement. In this case, if labour supply is inelastic with respect to the after-tax wage and direct crowding in is strong, labour supply and economic activity may expand. 1 fig., 7 refs.

  10. Greenhouse gas emission reduction policies in developing countries

    International Nuclear Information System (INIS)

    Halsnaes, K.

    2001-01-01

    The chapter begins with an introduction of the main arguments for why global cost-effectiveness in GHG emission reduction policies will suggest that an international collaboration about the policies is established such as initiated by the Kyoto Protocol of the United Nations Framework Convention on Climate Change. A general conceptual overview is given on the cost concepts that are relevant to apply to the evaluation of GHG emission reduction policies, and the methodological framework of GHG emission reduction cost studies for developing countries are introduced. The studies have in particular focussed on GHG emission reduction options in the energy sector, and a number of costing results are reported for this sector. Finally, the chapter considers potential local side-impacts on development, the local environment, and social policy objectives of GHG emission reduction projects seen from the perspective of developing countries. It is concluded that there is a potential for combining global cost-effectiveness principles for GHG emission reduction policies, and local policy objectives of developing countries. (LN)

  11. Amazon peatlands: quantifying ecosytem's stocks, GHG fluxes and their microbial connections

    Science.gov (United States)

    Cadillo-Quiroz, Hinsby; Lähteenoja, Outi; Buessecker, Steffen; van Haren, Joost

    2017-04-01

    Reports of hundreds of peatlands across basins in the West and Central Amazon suggest they play an important, previously not considered regional role in organic carbon (OC) and GHG dynamics. Amazon peatlands store ˜3-6 Gt of OC in their waterlogged soils with strong potential for conversion and release of GHG, in fact our recent, and others', efforts have confirmed variable levels of GHG emissions (CO2, N2O, CH4), as well as variable microbial communities across rich to poor soil peatlands. Here, we report early results of quantification of different components making up the aboveground C stocks, the rates and paths for GHG release, and microbial organisms occurring in three ecologically distinct peatland types in the Pastaza-Marañon region of the Peruvian Amazon. Evaluations were done in duplicated continuous monitoring plots established since 2015 at a "palm swamp" (PS), poor "pole forest" (pPF) and a rich "forested" (rF) peatlands. Although overall vegetation "structure" with a few dominant plus several low frequency species was common across the three sites, their botanical composition and tree density was highly contrasting. Aboveground C stocks content showed the following order among sites: rF>PS>pPF, and hence we tested whether this differences can have a direct effect on CH4 emissions rates. CH4 emissions rates from soils were observed in average at 11, 6, and 0.8 mg-C m-2 h-1for rF, PS, and pPF respectively. However, these estimated fluxes needed to be revised when we develop quantifications of CH4 emissions from tree stems. Tree stem fluxes were detected showing a broad variation with nearly nill emissions in some species all the way to maximum fluxes near to ˜90 mg-C m-2 h-1 in other species. Mauritia flexuosa, a highly dominant palm species in PS and ubiquitous to the region, showed the highest ranges of CH4 flux. In the PS site, overall CH4 flux estimate increased by ˜50% when including stem emission weighted by trees' species, density and heights

  12. Management effects on net ecosystem carbon and GHG budgets at European crop sites

    DEFF Research Database (Denmark)

    Ceschia, Eric; Bêziat, P; Dejoux, J.F.

    2010-01-01

    The greenhouse gas budgets of 15 European crop sites covering a large climatic gradient and corresponding to 41 site-years were estimated. The sites included a wide range of management practices (organic and/or mineral fertilisation, tillage or ploughing, with or without straw removal....... The variability of the different terms and their relative contributions to the net ecosystem carbon budget (NECB) were analysed for all site-years, and the effect of management on NECB was assessed. To account for greenhouse gas (GHG) fluxes that were not directly measured on site, we estimated the emissions...... caused by field operations (EFO) for each site using emission factors from the literature. The EFO were added to the NECB to calculate the total GHG budget (GHGB) for a range of cropping systems and management regimes. N2O emissions were calculated following the IPCC (2007) guidelines, and CH4 emissions...

  13. No tillage and liming reduce greenhouse gas emissions from poorly drained agricultural soils in Mediterranean regions

    International Nuclear Information System (INIS)

    García-Marco, Sonia; Abalos, Diego; Espejo, Rafael; Vallejo, Antonio; Mariscal-Sancho, Ignacio

    2016-01-01

    No tillage (NT) has been associated to increased N_2O emission from poorly drained agricultural soils. This is the case for soils with a low permeable Bt horizon, which generates a perched water layer after water addition (via rainfall or irrigation) over a long period of time. Moreover, these soils often have problems of acidity and require liming application to sustain crop productivity; changes in soil pH have large implications for the production and consumption of soil greenhouse gas (GHG) emissions. Here, we assessed in a split-plot design the individual and interactive effects of tillage practices (conventional tillage (CT) vs. NT) and liming (Ca-amendment vs. not-amendment) on N_2O and CH_4 emissions from poorly drained acidic soils, over a field experiment with a rainfed triticale crop. Soil mineral N concentrations, pH, temperature, moisture, water soluble organic carbon, GHG fluxes and denitrification capacity were measured during the experiment. Tillage increased N_2O emissions by 68% compared to NT and generally led to higher CH_4 emissions; both effects were due to the higher soil moisture content under CT plots. Under CT, liming reduced N_2O emissions by 61% whereas no effect was observed under NT. Under both CT and NT, CH_4 oxidation was enhanced after liming application due to decreased Al"3"+ toxicity. Based on our results, NT should be promoted as a means to improve soil physical properties and concurrently reduce N_2O and CH_4 emissions. Raising the soil pH via liming has positive effects on crop yield; here we show that it may also serve to mitigate CH_4 emissions and, under CT, abate N_2O emissions. - Highlights: • The effect of tillage and liming on GHG was studied in poorly drained acidic soils. • NT reduced N_2O emissions, global warming potential and greenhouse gases intensity. • Liming reduced N_2O and CH_4 emissions under CT; no effect was observed under NT. • NT and liming provide an opportunity for N_2O and CH_4 mitigation.

  14. No tillage and liming reduce greenhouse gas emissions from poorly drained agricultural soils in Mediterranean regions

    Energy Technology Data Exchange (ETDEWEB)

    García-Marco, Sonia, E-mail: sonia.garcia@upm.es [Departamento de Química y Tecnología de los Alimentos, E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Abalos, Diego, E-mail: diego.abalosrodriguez@wur.nl [Departamento de Química y Tecnología de los Alimentos, E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Espejo, Rafael, E-mail: rafael.espejo@upm.es [Departamento de Producción Agraria, E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Vallejo, Antonio, E-mail: antonio.vallejo@upm.es [Departamento de Química y Tecnología de los Alimentos, E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Mariscal-Sancho, Ignacio, E-mail: i.mariscal@upm.es [Departamento de Producción Agraria, E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain)

    2016-10-01

    No tillage (NT) has been associated to increased N{sub 2}O emission from poorly drained agricultural soils. This is the case for soils with a low permeable Bt horizon, which generates a perched water layer after water addition (via rainfall or irrigation) over a long period of time. Moreover, these soils often have problems of acidity and require liming application to sustain crop productivity; changes in soil pH have large implications for the production and consumption of soil greenhouse gas (GHG) emissions. Here, we assessed in a split-plot design the individual and interactive effects of tillage practices (conventional tillage (CT) vs. NT) and liming (Ca-amendment vs. not-amendment) on N{sub 2}O and CH{sub 4} emissions from poorly drained acidic soils, over a field experiment with a rainfed triticale crop. Soil mineral N concentrations, pH, temperature, moisture, water soluble organic carbon, GHG fluxes and denitrification capacity were measured during the experiment. Tillage increased N{sub 2}O emissions by 68% compared to NT and generally led to higher CH{sub 4} emissions; both effects were due to the higher soil moisture content under CT plots. Under CT, liming reduced N{sub 2}O emissions by 61% whereas no effect was observed under NT. Under both CT and NT, CH{sub 4} oxidation was enhanced after liming application due to decreased Al{sup 3+} toxicity. Based on our results, NT should be promoted as a means to improve soil physical properties and concurrently reduce N{sub 2}O and CH{sub 4} emissions. Raising the soil pH via liming has positive effects on crop yield; here we show that it may also serve to mitigate CH{sub 4} emissions and, under CT, abate N{sub 2}O emissions. - Highlights: • The effect of tillage and liming on GHG was studied in poorly drained acidic soils. • NT reduced N{sub 2}O emissions, global warming potential and greenhouse gases intensity. • Liming reduced N{sub 2}O and CH{sub 4} emissions under CT; no effect was observed under NT

  15. The relevance of supply chain characteristics in GHG emissions: The carbon footprint of Maltese juices.

    Science.gov (United States)

    Roibás, L; Rodríguez-García, S; Valdramidis, V P; Hospido, A

    2018-05-01

    Foods and drinks are major contributors (17%) to the greenhouse gas (GHG) emissions caused by private consumption in Europe. The carbon footprint (CF) of a certain product expresses the total GHG emissions over its whole life cycle, and its calculation for foodstuff is a necessary first step to reduce their contribution to global warming. The calculation of the CF of Maltese food products is especially relevant for two reasons: the economic characteristics of the island, whose food sector is highly dependent on imports, implying longer transport distances; and the Maltese electricity production mix, based almost exclusively on oil combustion. The CF of ten multi-fruit juices marketed in Malta has been determined, covering all the processes from the agricultural stage to the distribution of the final products. As a functional unit (FU), a 250 ml bottle of packaged product arriving at the retailer has been considered. The Maltese orange juice, the only final product in which only local ingredients are used, presents the lowest CF (0.50 kgCO 2 /FU), while the remaining ones range from 0.67 kgCO 2 /FU to 0.80 kgCO 2 /FU. The major contributor to all the CFs is juice processing at the Maltese plant (0.42 kgCO 2 /FU), mainly due to the use of electricity (78%). The influence of both the electricity mix and the Maltese supply chain in the CF of the final products has been demonstrated. Alternatives to reduce the impacts of the final products have been proposed and evaluated that could lower the average CF of the juices by 32%. The calculation of the CF of Maltese juices represents an innovative case study due to the characteristics of the island, and it is expected to act as a first step to lower their environmental impacts. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Integrated assessment of energy efficiency technologies and CO_2 abatement cost curves in China’s road passenger car sector

    International Nuclear Information System (INIS)

    Peng, Bin-Bin; Fan, Ying; Xu, Jin-Hua

    2016-01-01

    Highlights: • Energy efficiency technologies in Chinese passenger cars are classified in detail. • CO_2-reduction potential and abatement cost are analyzed for technology bundles. • Marginal abatement cost curve is established from both micro and macro perspectives. • Spark ignition, diesel and hybrid electric vehicle paths should be firstly promoted. • Technology promotion should start from the area of taxies and high-performance cars. - Abstract: Road transport is one of the main sources of energy consumption and CO_2 emissions. It is essential to conserve energy and reduce emissions by promoting energy efficiency technologies (EETs) in this sector. This study first identifies EETs for the passenger cars and then classifies them into various technology bundles. It then analyzes the CO_2-reduction potentials and emissions abatement costs of 55 type-path, 246 type-path-technology, and 465 type-path-subtechnology bundles from micro-vehicular and macro-industrial perspectives during 2010–2030, based on which marginal abatement cost (MAC) curve for China’s road passenger car sector is established. Results show that the cumulative CO_2-reduction potential of EETs on passenger cars in China during 2010–2030 is about 2698.8 Mt, but only 4% is cost-effective. The EETs with low emissions abatement costs are mainly available in the spark ignition (SI), diesel, and hybrid electric vehicle (HEV) paths on the taxis and high-performance cars, and also in the transmission, vehicle body and SI technologies on the private cars, which could be promoted at present. The technologies with large emissions reduction potential are mainly available in the plug-in hybrid electric vehicle (PHEV) and electric vehicle (EV) paths, which would be the main channels for reducing carbon emissions in the long run.

  17. Making or buying environmental public goods: do consumers care?

    OpenAIRE

    Bougherara, Douadia; Costa, Sandrine; Teisl, Mario

    2012-01-01

    Firms may voluntary abate pollution using one of two options: internalizing its own external effects and incuring abatement costs ("making") or delegating environmental protection by purchasing offsets ("buying"). We aim to elicit consumers' WTP for producers' use of the "making" option as compared to the "buying" option, controlling for spatial effects (joint local public goods) and level of GHG emissions. Using a stated choice survey with 722 respondents, we find consumers are more willing ...

  18. Land use efficiency: anticipating future demand for land-sector greenhouse gas emissions abatement and managing trade-offs with agriculture, water, and biodiversity.

    Science.gov (United States)

    Bryan, Brett A; Crossman, Neville D; Nolan, Martin; Li, Jing; Navarro, Javier; Connor, Jeffery D

    2015-11-01

    Competition for land is increasing, and policy needs to ensure the efficient supply of multiple ecosystem services from land systems. We modelled the spatially explicit potential future supply of ecosystem services in Australia's intensive agricultural land in response to carbon markets under four global outlooks from 2013 to 2050. We assessed the productive efficiency of greenhouse gas emissions abatement, agricultural production, water resources, and biodiversity services and compared these to production possibility frontiers (PPFs). While interacting commodity markets and carbon markets produced efficient outcomes for agricultural production and emissions abatement, more efficient outcomes were possible for water resources and biodiversity services due to weak price signals. However, when only two objectives were considered as per typical efficiency assessments, efficiency improvements involved significant unintended trade-offs for the other objectives and incurred substantial opportunity costs. Considering multiple objectives simultaneously enabled the identification of land use arrangements that were efficient over multiple ecosystem services. Efficient land use arrangements could be selected that meet society's preferences for ecosystem service provision from land by adjusting the metric used to combine multiple services. To effectively manage competition for land via land use efficiency, market incentives are needed that effectively price multiple ecosystem services. © 2015 John Wiley & Sons Ltd.

  19. Inventory and projection of greenhouse gases emissions for Sumatera Utara Province

    Science.gov (United States)

    Ambarita, H.; Soeharwinto; Ginting, N.; Basyuni, M.; Zen, Z.

    2018-03-01

    Greenhouse Gases (GHGs) emissions which result in global warming is a serious problem for the human being. Total globally anthropogenic GHG emissions were the highest in the history of the year 2000 to 2010 and reached 49 (4.5) Giga ton CO2eq per year in 2010. Many governments addressed their commitment to reducing GHG emission. The Government of Indonesia (GoI) has released a target in reducing its GHG emissions by 26% from level business as usual by 2020, and this target can be increased up to 41% by international aid. In this study, the GHG emissions for Sumatera Utara province are assessed and divided into six sectors. They are Agricultural, Land Use and Forestry, Energy, Transportation, Industrial, and Waste sectors. The results show that total GHG emissions for Sumatera Utara province in the baseline year 2010 is 191.4 million tons CO2eq. The business-as-usual projection of the GHG emission in 2020 is 354.5 million tons CO2eq. Mitigation actions will reduce GHG emissions up to 30.5% from business as usual emission in 2020.

  20. Nuclear Power Generation and CO2 Abatement Scenarios in Taiwan

    OpenAIRE

    Chang-Bin Huang; Fu-Kuang Ko

    2009-01-01

    Taiwan was the first country in Asia to announce "Nuclear-Free Homeland" in 2002. In 2008, the new government released the Sustainable Energy Policy Guidelines to lower the nationwide CO2 emissions some time between 2016 and 2020 back to the level of year 2008, further abatement of CO2 emissions is planed in year 2025 when CO2 emissions will decrease to the level of year 2000. Besides, under consideration of the issues of energy, environment and economics (3E), the new go...

  1. Ex-ante evaluation of EU ETS during 2013–2030: EU-internal abatement

    International Nuclear Information System (INIS)

    Hu, Jing; Crijns-Graus, Wina; Lam, Long; Gilbert, Alyssa

    2015-01-01

    This study investigates CO 2 emission reduction within the EU resulting from the Emissions Trading Scheme (ETS) up to 2030. This is performed by constructing a baseline scenario without the ETS and assessing the impacts of the ETS, as currently designed. The results indicate that the ETS will start to impact emissions primarily after 2025 due to the prevalence of a sizable allowance surplus. The impact of approved (i.e. back-loading and 2.2% linear reduction factor (LRF)) and proposed (i.e. market stability reserve (MSR)) policy interventions and the inclusion of aviation, could accelerate the exhaustion of surplus and increase emission reductions during the investigated period. However, these measures would be insufficient to restore the scarcity of allowances and the corresponding carbon price before the start of ETS Phase IV, and the effectiveness of EU-internal abatement cannot be guaranteed until 2023. The effectiveness could be further reduced in the case of the economic shocks or the exclusion of international aviation. To restore the scarcity of allowances, other reform options are necessary. This paper extends the reasoning for the early removal of the back-loaded 900 Mtonne allowances by 2020 and broadening the scope of ETS to other sectors with potential high demand for allowances. - Highlights: • Quantification of CO 2 emission abatement in the EU resulting from the ETS up to 2030. • The impact of policy interventions and the inclusion of aviation is quantified. • The effectiveness of EU ETS in EU-internal abatement is limited until 2023

  2. Strengthening community participation in reducing GHG emission from forest and peatland fire

    Science.gov (United States)

    Thoha, A. S.; Saharjo, B. H.; Boer, R.; Ardiansyah, M.

    2018-02-01

    Strengthening community participation is needed to find solutions to encourage community more participate in reducing Green House Gas (GHG) from forest and peatland fire. This research aimed to identify stakeholders that have the role in forest and peatland fire control and to formulate strengthening model of community participation through community-based early warning fire. Stakeholder mapping and action research were used to determine stakeholders that had potential influence and interest and to formulate strengthening model of community participation in reducing GHG from forest and peatland fire. There was found that position of key players in the mapping of stakeholders came from the government institution. The existence of community-based fire control group can strengthen government institution through collaborating with stakeholders having strong interest and influence. Moreover, it was found several local knowledge in Kapuas District about how communities predict drought that have potential value for developing the community-based early warning fire system. Formulated institutional model in this research also can be further developed as a model institution in the preservation of natural resources based on local knowledge. In conclusion, local knowledge and community-based fire groups can be integrated within strengthening model of community participation in reducing GHG from forest and peatland fire.

  3. Abatement costs of post-Kyoto climate regimes

    International Nuclear Information System (INIS)

    Elzen, Michel den; Lucas, Paul; Vuuren, Detlef van

    2005-01-01

    This article analyses the abatement costs of three post-Kyoto regimes for differentiating commitments compatible with stabilising atmospheric greenhouse gases concentrations at 550 ppmv CO 2 equivalent in 2100. The three regimes explored are: (1) the Multi-Stage approach assumes a gradual increase in the number of Parties involved who are adopting either emission intensity or reductions targets; (2) the Brazilian Proposal approach, i.e. the allocation or reductions based on countries' contribution to temperature increase; (3) Contraction and Convergence, with full participation in convergence of per capita emission allowances. In 2050, the global costs increase up to about 1% of the world GDP, ranging from 0.5% to 1.5%, depending on baseline scenario and marginal abatement costs. Four groups of regions can be identified on the basis of similar costs (expressed as the percentage of GDP). These are: (1) OECD regions with average costs; (2) FSU, the Middle East and Latin America with high costs; (3) South-East Asia and East Asia (incl. China) with low costs; and (4) South Asia (incl. India) and Africa with net gains from emissions trading for most regimes. The Brazilian Proposal approach gives the highest costs for groups 1 and 2. The distribution of costs for the Contraction and Convergence approach highly depends on the convergence year. The Multi-Stage approach and Contraction and Convergence (convergence year 2050) seem to result in relatively the most even distribution of costs amongst all Parties

  4. Emissions of halocarbons from mobile vehicle air conditioning system in Hong Kong.

    Science.gov (United States)

    Yan, H H; Guo, H; Ou, J M

    2014-08-15

    During the implementation of Montreal Protocol, emission inventories of halocarbons in different sectors at regional scale are fundamental to the formulation of relevant management strategy and inspection of the implementation efficiency. This study investigated the emission profile of halocarbons used in the mobile vehicle air conditioning system, the leading sector of refrigeration industry in terms of the refrigerant bank, market and emission, in the Hong Kong Special Administrative Region, using a bottom-up approach developed by 2006 IPCC Good Practice Guidance. The results showed that emissions of CFC-12 peaked at 53 tons ODP (Ozone Depletion Potential) in 1992 and then gradually diminished, whereas HFC-134a presented an increasing emission trend since 1990s and the emissions of HFC-134a reached 65,000 tons CO2-equivelant (CO2-eq) by the end of 2011. Uncertainty analysis revealed relatively high levels of uncertainties for special-purpose vehicles and government vehicles. Moreover, greenhouse gas (GHG) abatements under different scenarios indicated that potential emission reduction of HFC-134a ranged from 4.1 to 8.4 × 10(5)tons CO2-eq. The findings in this study advance our knowledge of halocarbon emissions from mobile vehicle air conditioning system in Hong Kong. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. GHG sustainability compliance of rapeseed-based biofuels produced in a Danish multi-output biorefinery system

    International Nuclear Information System (INIS)

    Boldrin, Alessio; Astrup, Thomas

    2015-01-01

    Biofuels are likely to play an increasingly important role in the transportation sector in the coming decades. To ensure the sustainability of the biofuel chain, regulatory criteria and reduction targets for greenhouse gases (GHG) emissions have been defined in different legislative frameworks (e.g. the European Renewable Energy Directive, RED). The provided calculation methods, however, leave room for interpretation regarding methodological choices, which could significantly affect the resulting emission factors. In this study, GHG reduction factors for a range of biofuels produced in a Danish biorefinery system were determined using five different emission allocation principles. The results show that emission savings ranged from −34 % to 71 %, indicating the need for a better definition of regulatory calculation principles. The calculated emission factors differed significantly from default values provided in the literature, suggesting that case-specific local conditions should be taken into consideration. A more holistic LCA-based approach proved useful in overcoming some of the issues inherent in the regulatory allocation principles. On this basis, indirect land use change (ILUC) emissions were shown to have the same magnitude as the direct emissions, thus indicating that the overall system should be included when assessing biofuel sustainability criteria. - Highlights: • Fulfillment of the GHG compliance criteria may depend on the calculation criteria. • Default factors may not be representative of local conditions. • Zero burden approach should be excluded. • ILUC should not be neglected

  6. Greenhouse gas emissions for the EU in four future scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Lesschen, J.P.; Rienks, W.; Staritsky, I. [Alterra, Wageningen-UR, Wageningen (Netherlands); Eickhout, B.; Prins, A.G. [Netherlands Environmental Assessment Agency PBL, Bilthoven (Netherlands)

    2009-12-15

    The European Common Agricultural Policy (CAP) will be revised in the near future. A proposed agricultural policy reform will affect many dimensions of the sustainable development of agriculture. One of these dimensions are greenhouse gas (GHG) emissions. The objective of this study was to assess the impact of four scenarios of the future, from the Eururalis study, and the effects of CAP options on GHG emissions from agriculture. The results provide an indication of the range of GHG emissions between the four diverging base scenarios and the differences with current emission levels in Member States and on EU level. Analysis of the possible impact of the measures on GHG emissions showed that this would be much larger from mitigation measures than from CAP options. Full implementation of the mitigation measures could lead to a reduction in GHG emissions from agriculture of 127 Mt CO2 equivalents. This is about a quarter of current GHG emissions from agriculture. Promoting mitigation measures, therefore, is more effective for reducing GHG emissions from agriculture, than influencing income and price subsidies within the CAP. On the global scale, CAP options hardly play a role in total GHG emissions from land use. Much more important are developments in global population, economic growth, policies and technological developments, as depicted in the various scenarios.

  7. Optimal replacement of residential air conditioning equipment to minimize energy, greenhouse gas emissions, and consumer cost in the US

    International Nuclear Information System (INIS)

    De Kleine, Robert D.; Keoleian, Gregory A.; Kelly, Jarod C.

    2011-01-01

    A life cycle optimization of the replacement of residential central air conditioners (CACs) was conducted in order to identify replacement schedules that minimized three separate objectives: life cycle energy consumption, greenhouse gas (GHG) emissions, and consumer cost. The analysis was conducted for the time period of 1985-2025 for Ann Arbor, MI and San Antonio, TX. Using annual sales-weighted efficiencies of residential CAC equipment, the tradeoff between potential operational savings and the burdens of producing new, more efficient equipment was evaluated. The optimal replacement schedule for each objective was identified for each location and service scenario. In general, minimizing energy consumption required frequent replacement (4-12 replacements), minimizing GHG required fewer replacements (2-5 replacements), and minimizing cost required the fewest replacements (1-3 replacements) over the time horizon. Scenario analysis of different federal efficiency standards, regional standards, and Energy Star purchases were conducted to quantify each policy's impact. For example, a 16 SEER regional standard in Texas was shown to either reduce primary energy consumption 13%, GHGs emissions by 11%, or cost by 6-7% when performing optimal replacement of CACs from 2005 or before. The results also indicate that proper servicing should be a higher priority than optimal replacement to minimize environmental burdens. - Highlights: → Optimal replacement schedules for residential central air conditioners were found. → Minimizing energy required more frequent replacement than minimizing consumer cost. → Significant variation in optimal replacement was observed for Michigan and Texas. → Rebates for altering replacement patterns are not cost effective for GHG abatement. → Maintenance levels were significant in determining the energy and GHG impacts.

  8. Automated Vehicle Regulation: An Energy and Emissions Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Aaron

    2016-05-18

    This presentation provides a summary of the current automated vehicles polices in the United States and how they related to reducing greenhouse gas (GHG) emissions. The presentation then looks at future automated vehicle trends that will increase and reduce GHG emissions and what current policies utilized in other areas of law could be adapted for automated vehicle GHG emissions.

  9. Unravelling the potential of energy efficiency in the Colombian oil industry

    NARCIS (Netherlands)

    Yanez Angarita, Edgar Eduardo; Ramirez, Andrea; Uribe, Ariel; Castillo, Edgar; Faaij, Adrianus

    2018-01-01

    The oil and gas sector represents 39% of the world's total industrial final energy consumption, and contributes to around 37% of total greenhouse gas (GHG) emissions. This study investigates the potential for improvements in energy efficiency, and their implications for CO2 abatement, in the

  10. How will greenhouse gas emissions from motor vehicles be constrained in China around 2030?

    International Nuclear Information System (INIS)

    Zheng, Bo; Zhang, Qiang; Borken-Kleefeld, Jens; Huo, Hong; Guan, Dabo; Klimont, Zbigniew; Peters, Glen P.; He, Kebin

    2015-01-01

    Highlights: • We build a projection model to predict vehicular GHG emissions on provincial basis. • Fuel efficiency gains cannot constrain vehicle GHGs in major southern provinces. • We propose an integrated policy set through sensitivity analysis of policy options. • The policy set will peak GHG emissions of 90% provinces and whole China by 2030. - Abstract: Increasing emissions from road transportation endanger China’s objective to reduce national greenhouse gas (GHG) emissions. The unconstrained growth of vehicle GHG emissions are mainly caused by the insufficient improvement of energy efficiency (kilometers traveled per unit energy use) under current policies, which cannot offset the explosion of vehicle activity in China, especially the major southern provinces. More stringent polices are required to decline GHG emissions in these provinces, and thereby help to constrain national total emissions. In this work, we make a provincial-level projection for vehicle growth, energy demand and GHG emissions to evaluate vehicle GHG emission trends under various policy options in China and determine the way to constrain national emissions. Through sensitivity analysis of various single policies, we propose an integrated policy set to assure the objective of peak national vehicle GHG emissions be achieved around 2030. The integrated policy involves decreasing the use of urban light-duty vehicles by 25%, improving fuel economy by 25% by 2035 comparing 2020, and promoting electric vehicles and biofuels. The stringent new policies would allow China to constrain GHG emissions from road transport sector around 2030. This work provides a perspective to understand vehicle GHG emission growth patterns in China’s provinces, and proposes a strong policy combination to constrain national GHG emissions, which can support the achievement of peak GHG emissions by 2030 promised by the Chinese government

  11. CO2 emissions abatement in the Nordic carbon-intensive industry – An end-game in sight?

    International Nuclear Information System (INIS)

    Rootzén, Johan; Johnsson, Filip

    2015-01-01

    Analysing different future trajectories of technological developments we assess the prospects for Nordic carbon-intensive industries to significantly reduce direct CO 2 emissions in the period 2010–2050. This analysis covers petroleum refining, integrated iron and steel production, and cement manufacturing in the four largest Nordic countries of Denmark, Finland, Norway, and Sweden. Our results show that the implementation of currently available abatement measures will not be enough to meet the ambitious emissions reduction targets envisaged for the Year 2050. We show how an extensive deployment of CCS (carbon capture and storage) could result in emissions reductions that are in line with such targets. However, large-scale introduction of CCS would come at a significant price in terms of energy use and the associated flows of captured CO 2 would place high requirements on timely planning of infrastructure for the transportation and storage of CO 2 . Further the assessment highlights the importance of, especially in the absence of successful deployment of CO 2 capture, encouraging increased use of biomass in the cement and integrated iron and steel industries, and of promoting the utilisation of alternative raw materials in cement manufacturing to complement efforts to improve energy efficiency. - Highlights: • Scenarios exploring the potential for reducing CO 2 emissions in Nordic industry. • Current measures not sufficient to comply with stringent emission reduction targets. • CCS enables carbon-intensive industries to comply with stringent reduction targets. • CCS would come at a high price in terms of energy use. • Without CO 2 capture increased use of biomass and alternative raw materials vital

  12. Fighting against VOC emissions; Lutter contre les emissions de COV

    Energy Technology Data Exchange (ETDEWEB)

    Fanlo, J.L. [Ecole des Mines d' Ales, 30 (France); Puech, G. [APAVE, 75 - Paris (France); Patoux, R. [Rhodia Rhoditech (France)] [and others

    2001-12-01

    This document brings together 15 testimonies of experts about the processes used in the industry for the abatement of volatile organic compound (VOC) emissions. The different points approached concern: the first industrial experiments of fight against VOC emissions, how to audit the facilities, how to make a diagnosis, to hierarchized and to measure continuously VOC emissions, how to anticipate the explosion risks linked with VOC treatment processes, the techniques of VOC abatement at the source implemented by industrialists, the implementation of an emission mastery scheme by Crow Cork and Seal company, the implementation of a solvent management plan by Turbomeca company and of a paints strategy by Renault car-making company, the combination of VOC abatement techniques implemented by industrialists, the classification of destruction and recovery processes: the experience feedback of Sanofi Synthelabo and of Air Liquide companies, the combination of upstream and downstream techniques implemented by Pechiney Rhenalu, Ashland Polyester and Quebecor companies. (J.S.)

  13. Marginal abatement cost curves for NOx that account for ...

    Science.gov (United States)

    A marginal abatement cost curve (MACC) traces out the relationship between the quantity of pollution abated and the marginal cost of abating each additional unit. In the context of air quality management, MACCs typically are developed by sorting end-of-pipe controls by their respective cost effectiveness. Alternative measures, such as renewable electricity, energy efficiency, and fuel switching (RE/EE/FS), are not considered as it is difficult to quantify their abatement potential. In this paper, we demonstrate the use of an energy system model to develop a MACC for nitrogen oxides (NOx) that incorporates both end-of-pipe controls and these alternative measures. We decompose the MACC by sector, and evaluate the cost-effectiveness of RE/EE/FS relative to end-of-pipe controls. RE/EE/FS are shown to produce considerable emission reductions after end-of-pipe controls have been exhausted. Furthermore, some RE/EE/FS are shown to be cost-competitive with end-of-pipe controls. Demonstrate how the MARKAL energy system model can be used to evaluate the potential role of renewable electricity, energy efficiency and fuel switching (RE/EE/FS) in achieving NOx reductions. For this particular analysis, we show that RE/EE/FSs are able to increase the quantity of NOx reductions available for a particular marginal cost (ranging from $5k per ton to $40k per ton) by approximately 50%.

  14. Brazilian agribusiness and the greenhouse gases emissions (GHG reduction = O papel do agronegócio brasileiro na redução de emissão de gases de efeito estufa (GEES

    Directory of Open Access Journals (Sweden)

    Fernanda Scharnberg Brandão

    2012-04-01

    Full Text Available In recent decades, climate change has been accelerated by anthropogenic activity and became a currently issue on global discussion. Due to the importance that Brazil has a global supplier of food, this article aims to verify the representativeness of the emissions in the Brazilian agribusiness and the different roles to be played in agriculture to reduce GHG emissions. As methodological approach, a literature review was realized based from 124 articles related to the keywords “climate change” and “agribussiness” in the database. Firstly, we analyses the history of international meetings on climate change, as the Meadows Report (1968, Brundtland Report (1987, Intergovernmental Panel on Climate Change (1988, the United Nations Framework Convention (1992, the Kyoto Protocol (1997, the Stern Report (2006 and Report GHF (2009. The situation created the need for targets to reduce GHG emissions for major world economies, as in the case of Brazil, where it is almost impossible to exclude such liability. The results indicate that Brazil is one of the most responsible for the GHG emissions in the agricultural sector (including forestry, agriculture and livestock mainly due to deforestation. However, it also indicates that the opportunities to significant reduction’s emissions in the upcoming years arise from these agricultural segments. = Nas últimas décadas a ação antropogênica tem acelerado o processo natural de mudança no clima e, consequentemente, as discussões acerca dessa questão estão cada vez mais presentes. Dada a importância que o Brasil tem como fornecedor mundial de alimentos, objetivou-se com o presente trabalho verificar a representatividade nas emissões de GEEs do agronegócio brasileiro e os diferentes papéis a serem desempenhados na agropecuária para reduzi-las. Quanto aos procedimentos técnicos, utilizou-se a pesquisa bibliográfica em diferentes bases de dados, onde foram pesquisados 124 artigos relacionados com

  15. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies

    International Nuclear Information System (INIS)

    Wang, M. Q.

    1998-01-01

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions

  16. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M. Q.

    1998-12-16

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

  17. BP Canada Energy Company energy efficiency and GHG reduction opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, B. [BP Canada Energy Company, Calgary, AB (Canada)

    2004-07-01

    This paper presented an outline of the BP Canada Energy Company's energy efficiency program, which uses an innovative approach that relies on front line operations staff to generate, evaluate and implement ideas for energy reduction projects. An outline of the organization team was presented, with details of the small central Calgary group responsible for coordination, technical support and tracking of data. Key objectives of the team were identified as: the promotion of energy efficiency; sharing of best practices; and coordination of efforts at operations at both the development and corporate level. An outline of BP upstream operations and emissions reduction strategies was provided along with a timeline of BP Canada greenhouse gas (GHG) emissions and sustainable reductions projects. A chart representing energy savings through conversion to natural gas was also presented, sorted by project type. Results included over 400 GHG or energy reduction projects completed, with an average pay out of 30 months as well as 300,000 tonnes equivalent of GHGs reduced at an estimated value of of $13,000,000. Areas of focus for future projects include: compression; fired equipment; flaring; venting; and fugitive emissions. Strategies to reduce emissions in all areas of future research were also provided. tabs, figs.

  18. On the fair division of greenhouse gas abatement cost

    Energy Technology Data Exchange (ETDEWEB)

    Boehringer, Christoph [University of Oldenburg, Department of Economics, Ammerlaender Heerstrasse 114-118, D-26111 Oldenburg (Germany); Centre for European Economic Research (ZEW), Mannheim (Germany); Helm, Carsten [Darmstadt University of Technology, Department of Law and Economics, Marktplatz 15, D-64283 Darmstadt (Germany)

    2008-05-15

    This paper introduces a solution for the fair division of emission reduction costs in the climate change regime. Our primary focus is on the fair division of efficiency gains that arise from exchanging the initial allocation of emission entitlements, rather than the initial allocation itself. We propose to complement the competitive Walrasian solution with welfare bounds, the ethical justification of which rests on commonality of ownership. Simulations with an intertemporal computable general equilibrium model illustrate the relevance of such welfare bounds. For a wide range of initial allocations of emission entitlements - including an equal per capita allocation - we find that developing countries should be fully compensated for their emission abatement efforts, but should not receive any further transfers. (author)

  19. The nitrogen abatement cost in wetlands

    International Nuclear Information System (INIS)

    Bystroem, Olof

    1998-01-01

    The costs of abating agricultural nitrogen pollution in wetlands are estimated. By linking costs for construction of wetlands to the denitrification capacity of wetlands, an abatement cost function can be formed. A construction-cost function and a denitrification function for wetlands is estimated empirically. This paper establishes a link between abatement costs and the nitrogen load on wetlands. Since abatement costs fluctuate with nitrogen load, ignoring this link results in incorrect estimates of abatement costs. The results demonstrate that wetlands have the capacity to provide low cost abatement of nitrogen compounds in runoff. For the Kattegatt region in Sweden, marginal abatement costs for wetlands are shown to be lower than costs of land use changing measures, such as extended land under fallow or cultivation of fuel woods, but higher than the marginal costs of reducing nitrogen fertilizer

  20. GHG and black carbon emission inventories from Mezquital Valley: The main energy provider for Mexico Megacity.

    Science.gov (United States)

    Montelongo-Reyes, M M; Otazo-Sánchez, E M; Romo-Gómez, C; Gordillo-Martínez, A J; Galindo-Castillo, E

    2015-09-15

    The greenhouse gases and black carbon emission inventory from IPCC key category Energy was accomplished for the Mezquital Valley, one of the most polluted regions in Mexico, as the Mexico City wastewater have been continuously used in agricultural irrigation for more than a hundred years. In addition, thermoelectric, refinery, cement and chemistry industries are concentrated in the southern part of the valley, near Mexico City. Several studies have reported air, soil, and water pollution data and its main sources for the region. Paradoxically, these sources contaminate the valley, but boosted its economic development. Nevertheless, no research has been done concerning GHG emissions, or climate change assessment. This paper reports inventories performed by the 1996 IPCC methodology for the baseline year 2005. Fuel consumption data were derived from priority sectors such as electricity generation, refineries, manufacturing & cement industries, transportation, and residential use. The total CO2 emission result was 13,894.9 Gg, which constituted three-quarters of Hidalgo statewide energy category. The principal CO2 sources were energy transformation (69%) and manufacturing (19%). Total black carbon emissions were estimated by a bottom-up method at 0.66 Gg. The principal contributor was on-road transportation (37%), followed by firewood residential consumption (26%) and cocked brick manufactures (22%). Non-CO2 gas emissions were also significant, particularly SO2 (255.9 Gg), which accounts for 80% of the whole Hidalgo State emissions. Results demonstrated the negative environmental impact on Mezquital Valley, caused by its role as a Megacity secondary fuel and electricity provider, as well as by the presence of several cement industries. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Assessing the effects of noise abatement measures on health risks: A case study in Istanbul

    International Nuclear Information System (INIS)

    Ongel, Aybike; Sezgin, Fatih

    2016-01-01

    In recent decades, noise pollution caused by industrialization and increased motorization has become a major concern around the world because of its adverse effects on human well-being. Therefore, transportation agencies have been implementing noise abatement measures in order to reduce road traffic noise. However, limited attention is given to noise in environmental assessment of road transportation systems. This paper presents a framework for a health impact assessment model for road transportation noise emissions. The model allows noise impacts to be addressed with the health effects of air pollutant and greenhouse gas emissions from road transportation. The health damages assessed in the model include annoyance, sleep disturbance, and cardiovascular disease in terms of acute myocardial infarction. The model was applied in a case study in Istanbul in order to evaluate the change in health risks from the implementation of noise abatement strategies. The noise abatement strategies evaluated include altering pavement surfaces in order to absorb noise and introducing speed limits. It was shown that significant improvements in health risks can be achieved using open graded pavement surfaces and introducing speed limits on highways. - Highlights: • Transportation noise has a significant effect on health. • Noise should be included in the environmental assessment of transportation systems. • Traffic noise abatement measures include noise reducing pavements and speed limits. • Noise abatement measures help reduce the health risks of transportation noise. • Speed limit reduction on uncongested roads is an effective way to reduce health risks.

  2. Assessing the effects of noise abatement measures on health risks: A case study in Istanbul

    Energy Technology Data Exchange (ETDEWEB)

    Ongel, Aybike, E-mail: aybike.ongel@eng.bahcesehir.edu.tr [Bahcesehir University, Department of Civil Engineering, Istanbul 34353 (Turkey); Sezgin, Fatih, E-mail: fatih.sezgin@ibb.gov.tr [Istanbul Metropolitan Municipality, Environmental Protection Agency, Istanbul 34169 (Turkey)

    2016-01-15

    In recent decades, noise pollution caused by industrialization and increased motorization has become a major concern around the world because of its adverse effects on human well-being. Therefore, transportation agencies have been implementing noise abatement measures in order to reduce road traffic noise. However, limited attention is given to noise in environmental assessment of road transportation systems. This paper presents a framework for a health impact assessment model for road transportation noise emissions. The model allows noise impacts to be addressed with the health effects of air pollutant and greenhouse gas emissions from road transportation. The health damages assessed in the model include annoyance, sleep disturbance, and cardiovascular disease in terms of acute myocardial infarction. The model was applied in a case study in Istanbul in order to evaluate the change in health risks from the implementation of noise abatement strategies. The noise abatement strategies evaluated include altering pavement surfaces in order to absorb noise and introducing speed limits. It was shown that significant improvements in health risks can be achieved using open graded pavement surfaces and introducing speed limits on highways. - Highlights: • Transportation noise has a significant effect on health. • Noise should be included in the environmental assessment of transportation systems. • Traffic noise abatement measures include noise reducing pavements and speed limits. • Noise abatement measures help reduce the health risks of transportation noise. • Speed limit reduction on uncongested roads is an effective way to reduce health risks.

  3. Recyclables Valorisation as the Best Strategy for Achieving Landfill CO2e Emissions Abatement from Domestic Waste: Game Theory

    Directory of Open Access Journals (Sweden)

    Paul Taboada-González

    2017-07-01

    Full Text Available Various nations in the world have developed technologies and strategies for appropriate waste disposal, and to abate waste generation and greenhouse gasses. Alternatives like recovering materials can help, but they require reliable information to improve planning and management. This study quantifies the Carbon dioxide (CO2 emissions produced by the lack of valorisation of materials in a Mexican city. Two waste characterisations in a lower-class neighbourhood were carried out. For the CO2 emission estimation, two scenarios were considered. DEFRA emission factors for waste treatment processes were used. Waste generation was 0.64 kg/capita/day in the first study, and 0.50 kg/capita/day in the second. The CO2eq emissions of collected waste in the neighbourhood were estimated at 1824 kg for 2013 (0.20 kg/capita/day and 1636 kg for 2015 (0.19 kg/capita/day. The behaviour of solid waste management in the city can be explained by the “prisoner’s dilemma” model, studied in game theory, which is ideally suited to analysing situations affected by multiple agents, but requires an accurate understanding of solid waste actors and social implications.

  4. Korea's emission trading scheme and policy design issues to achieve market-efficiency and abatement targets

    International Nuclear Information System (INIS)

    Park, Hojeong; Hong, Won Kyung

    2014-01-01

    In 2008, the government of Republic of Korea (Korea) announced the national abatement target aiming at 30% reductions from the Business-as-Usual projections by 2020. Accordingly, the Emission Trading Scheme (ETS) will be implemented from 2015 onwards. As ETS performance substantially depends on the structural design, it is critically important to examine the details of Korean ETS for the achievement of cost effectiveness and concurrent development of an active emission trading market. This paper addresses several policy design issues for this purpose. After providing an overview on the current framework of Korean ETS, we propose ways to achieve flexibility, consistency and market efficiency of the program in consideration of the preexisting policies. Issues in policy design are discussed by focusing on allowance allocation, market stabilization measures and price mechanism in the emission and energy markets in Korea. This paper will serve as a practical guideline for establishing sustainable and market-efficient Korean ETS that can be compatible with the international standards as in the EU ETS. - Highlights: • Emission Trading Scheme (ETS) will be implemented from 2015 in Korea to reduce CO 2 . • ETS performance substantially depends on structural design. • We provide policy overview on the current framework of Korean ETS. • Several policy design issues are discussed for developing policy consistency. • We focus on allowance allocation, allowance reserve and market stabilization measures

  5. Global Climate targets and future consumption level: An evaluation of the required GHG intensity

    NARCIS (Netherlands)

    Girod, B.; van Vuuren, D.P.; Hertwich, E.G.

    2013-01-01

    Discussion and analysis on international climate policy often focuses on the rather abstract level of total national and regional greenhouse gas (GHG) emissions. At some point, however, emission reductions need to be translated to consumption level. In this article, we evaluate the implications of

  6. Modeling of greenhouse gas emission from livestock

    Directory of Open Access Journals (Sweden)

    Sanjo eJose

    2016-04-01

    Full Text Available The effects of climate change on humans and other living ecosystems is an area of on-going research. The ruminant livestock sector is considered to be one of the most significant contributors to the existing greenhouse gas (GHG pool. However the there are opportunities to combat climate change by reducing the emission of GHGs from ruminants. Methane (CH4 and nitrous oxide (N2O are emitted by ruminants via anaerobic digestion of organic matter in the rumen and manure, and by denitrification and nitrification processes which occur in manure. The quantification of these emissions by experimental methods is difficult and takes considerable time for analysis of the implications of the outputs from empirical studies, and for adaptation and mitigation strategies to be developed. To overcome these problems computer simulation models offer substantial scope for predicting GHG emissions. These models often include all farm activities while accurately predicting the GHG emissions including both direct as well as indirect sources. The models are fast and efficient in predicting emissions and provide valuable information on implementing the appropriate GHG mitigation strategies on farms. Further, these models help in testing the efficacy of various mitigation strategies that are employed to reduce GHG emissions. These models can be used to determine future adaptation and mitigation strategies, to reduce GHG emissions thereby combating livestock induced climate change.

  7. Mechanism design for refunding emissions payment

    Energy Technology Data Exchange (ETDEWEB)

    Hagem, Cathrine; Holtsmark, Bjart; Sterner, Thomas

    2012-07-01

    We analyze two mechanism designs for refunding emission payments to polluting firms; Output Based (OB) and Expenditure Based (EB) refunding. In both instruments, emissions fees are returned to the polluting industry, possibly making the policy more easily accepted by policymakers than a standard tax. The crucial difference between OB and EB is that the fees are refunded in proportion to output in the former, but in proportion to the firms' expenditure on abatement equipment in the latter. We show that to achieve a given abatement target, the fee level in the OB design exceeds the standard tax rate, whereas the fee level in the EB design is lower. Furthermore, the use of OB and EB refunding may lead to large differences in the distribution of costs across firms. Both designs do, strictly speaking, imply a cost-ineffective provision of abatement as firms put relatively too much effort into reducing emissions through abatement technology compared with emission reductions through reduced output. However, this may be seen as an advantage by policymakers if they seek to avoid activity reduction in the regulated sector. We provide some numerical illustrations based on abatement cost information from the Norwegian NOx fund.(Author)

  8. LMDI decomposition analysis of greenhouse gas emissions in the Korean manufacturing sector

    International Nuclear Information System (INIS)

    Jeong, Kyonghwa; Kim, Suyi

    2013-01-01

    In this article, we decomposed Korean industrial manufacturing greenhouse gas (GHG) emissions using the log mean Divisia index (LMDI) method, both multiplicatively and additively. Changes in industrial CO 2 emissions from 1991 to 2009 may be studied by quantifying the contributions from changes in five different factors: overall industrial activity (activity effect), industrial activity mix (structure effect), sectoral energy intensity (intensity effect), sectoral energy mix (energy-mix effect) and CO 2 emission factors (emission-factor effect). The results indicate that the structure effect and intensity effect played roles in reducing GHG emissions, and the structure effect played a bigger role than the intensity effect. The energy-mix effect increased GHG emissions, and the emission-factor effect decreased GHG emissions. The time series analysis indicates that the GHG emission pattern was changed before and after the International Monetary Fund (IMF) regime in Korea. The structure effect and the intensity effect had contributed more in emission reductions after rather than before the IMF regime in Korea. The structure effect and intensity effect have been stimulated since the high oil price period after 2001. - Highlights: • We decomposed greenhouse gas emissions of Korea's manufacturing industry using LMDI. • The structure effect and intensity effect play a role in reducing GHG emissions. • The role of structure effect was bigger than intensity effect. • The energy-mix effect increased and the emission-factor effect decreased GHG emissions. • The GHG emission pattern has been changed before and after IMF regime in Korea

  9. Biological abatement of cellulase inhibitors.

    Science.gov (United States)

    Cao, Guangli; Ximenes, Eduardo; Nichols, Nancy N; Zhang, Leyu; Ladisch, Michael

    2013-10-01

    Removal of enzyme inhibitors released during lignocellulose pretreatment is essential for economically feasible biofuel production. We tested bio-abatement to mitigate enzyme inhibitor effects observed in corn stover liquors after pretreatment with either dilute acid or liquid hot water at 10% (w/v) solids. Bio-abatement of liquors was followed by enzymatic hydrolysis of cellulose. To distinguish between inhibitor effects on enzymes and recalcitrance of the substrate, pretreated corn stover solids were removed and replaced with 1% (w/v) Solka Floc. Cellulose conversion in the presence of bio-abated liquors from dilute acid pretreatment was 8.6% (0.1x enzyme) and 16% (1x enzyme) higher than control (non-abated) samples. In the presence of bio-abated liquor from liquid hot water pretreated corn stover, 10% (0.1x enzyme) and 13% (1x enzyme) higher cellulose conversion was obtained compared to control. Bio-abatement yielded improved enzyme hydrolysis in the same range as that obtained using a chemical (overliming) method for mitigating inhibitors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Assessment of the potential REDD+ as a new international support measure for GHG reduction

    Science.gov (United States)

    Kim, Y.; Ahn, J.; Kim, H.

    2016-12-01

    As part of the Paris Agreement, the mechanism for reducing emissions from deforestation and forest degradation in developing countries (REDD+) has high potential to simultaneously contribute to greenhouse gas (GHG) mitigation through forest conservation and poverty alleviation. Some of 162 Intended Nationally Determined Contributions (INDCs) submitted by 189 countries representing approximately 98.8% of global GHG emissions include not only unconditional mitigation goals but also conditional goals based on the condition of the provision of international support such as finance, technology transfer and capacity building. Considering REDD+ as one of the main mechanisms to support such work, this study selected ten countries from among Korea's 24 ODA priority partners, taking into consideration their conditional INDC targets alongside sectoral quantified targets such as land use, land-use change and forestry (LULUCF). The ten selected countries are Indonesia, Cambodia, Vietnam, Bangladesh, Sri Lanka, Ghana, Senegal, Colombia, Peru and Paraguay. Of these countries, most REDD+ projects have been conducted in Indonesia mainly due to the fact that 85% of the country's total GHG emissions are caused by forest conversion and peatland degradation. Therefore, GHG reduction rates and associated projected costs of the Indonesia's REDD+ projects were analyzed in order to offer guidance on the potential of REDD+ to contribute to other INDCs' conditional goals. The result showed that about 0.9 t CO2 ha-1 could be reduced at a cost of USD 23 per year. Applying this estimation to the Cambodian case, which has submitted a conditional INDC target of increasing its forest coverage by 60% (currently 57%) by 2030, suggests that financial support of USD 12.8 million would reduce CO2 emissions by about 5.1 million tones by increasing forest coverage. As there is currently no consideration of LULUCF in Cambodia's INDC, this result represents the opportunity for an additional contribution to

  11. Greenhouse gas emissions from Thailand’s transport sector: Trends and mitigation options

    International Nuclear Information System (INIS)

    Pongthanaisawan, Jakapong; Sorapipatana, Chumnong

    2013-01-01

    Rapid growth of population and economy during the past two decades has resulted in continuing growth of transport’s oil demand and greenhouse gas (GHG) emissions. The objectives of this study are to examine pattern and growth in energy demand as well as related GHG emissions from the transport sector and to analyze potential pathways of energy demand and GHG emissions reduction from this sector of the measures being set by the Thai Government. A set of econometric models has been developed to estimate the historical trend of energy demand and GHG emissions in the transport sector during 1989–2007 and to forecast future trends to 2030. Two mitigation option scenarios of fuel switching and energy efficiency options have been designed to analyze pathways of energy consumption and GHG emissions reduction potential in Thailand’s transport sector compared with the baseline business-as-usual (BAU) scenario, which assumed to do nothing influences the long-term trends of transport energy demand. It has been found that these two mitigation options can reduce the GHG emissions differently. The fuel-switching option could significantly reduce the amount of GHG emissions in a relatively short time frame, albeit it will be limited by its supply resources, whereas the energy efficiency option is more effective for GHG emissions mitigation in the long term. Therefore, both measures should be implemented simultaneously for both short and long term mitigation effects in order to more effectively achieve GHG emissions reduction target.

  12. Life cycle assessment of lignocellulosic ethanol: a review of key factors and methods affecting calculated GHG emissions and energy use.

    Science.gov (United States)

    Gerbrandt, Kelsey; Chu, Pei Lin; Simmonds, Allison; Mullins, Kimberley A; MacLean, Heather L; Griffin, W Michael; Saville, Bradley A

    2016-04-01

    Lignocellulosic ethanol has potential for lower life cycle greenhouse gas emissions compared to gasoline and conventional grain-based ethanol. Ethanol production 'pathways' need to meet economic and environmental goals. Numerous life cycle assessments of lignocellulosic ethanol have been published over the last 15 years, but gaps remain in understanding life cycle performance due to insufficient data, and model and methodological issues. We highlight key aspects of these issues, drawing on literature and a case study of corn stover ethanol. Challenges include the complexity of feedstock/ecosystems and market-mediated aspects and the short history of commercial lignocellulosic ethanol facilities, which collectively have led to uncertainty in GHG emissions estimates, and to debates on LCA methods and the role of uncertainty in decision making. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Municipal solid waste management planning considering greenhouse gas emission trading under fuzzy environment.

    Science.gov (United States)

    Zhang, Xiaodong; Huang, Gordon

    2014-03-15

    Waste management activities can release greenhouse gases (GHGs) to the atmosphere, intensifying global climate change. Mitigation of the associated GHG emissions is vital and should be considered within integrated municipal solid waste (MSW) management planning. In this study, a fuzzy possibilistic integer programming (FPIM) model has been developed for waste management facility expansion and waste flow allocation planning with consideration of GHG emission trading in an MSW management system. It can address the interrelationships between MSW management planning and GHG emission control. The scenario of total system GHG emission control is analyzed for reflecting the feature that GHG emission credits may be tradable. An interactive solution algorithm is used to solve the FPIM model based on the uncertainty-averse preferences of decision makers in terms of p-necessity level, which represents the certainty degree of the imprecise objective. The FPIM model has been applied to a hypothetical MSW planning problem, where optimal decision schemes for facility expansion and waste flow allocation have been achieved with consideration of GHG emission control. The results indicate that GHG emission credit trading can decrease total system cost through re-allocation of GHG emission credits within the entire MSW management system. This will be helpful for decision makers to effectively determine the allowable GHG emission permits in practices. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Composting as a strategy to reduce greenhouse gas emissions

    International Nuclear Information System (INIS)

    Paul, J.W.; Wagner-Riddle, C.; Thompson, A.; Fleming, R.; MacAlpine, A.

    2001-01-01

    Composting animal manure has the potential to reduce emissions of nitrous oxide (N 2 O) and methane (CH 4 ) from agriculture. Agriculture has been recognized as a major contributor of greenhouse gases, releasing an estimated 81% and 70% of the anthropogenic emissions of nitrous oxide (N 2 O) and methane (CH 4 ), respectively. A significant amount of methane is emitted during the storage of liquid manure, whereas nitrous oxide is emitted from the storage of manure and from soil following manure or fertilizer application. Composting animal manure can reduce GHG emissions in two ways; by reducing nitrous oxide and methane emissions during manure storage and application, and by reducing the amount of manufactured fertilizers and the GHG associated with their production and use. We will present information of GHG emissions and potentials for reduction based on available data, and on specific composting experiments. Nitrous oxide and methane emissions were monitored on an enclosed composting system processing liquid hog manure. Measurements indicated that total GHG emissions during composting were 24% of the Tier 2 IPCC estimates for traditional liquid hog manure management on that farm. Previous research has also indicated little nitrous oxide emission following application of composted manure to soil. The method of composting has a large impact on GHG emissions, where GHG emissions are higher from outdoor windrow composting systems than from controlled aerated systems. Further research is required to assess the whole manure management system, but composting appears to have great potential to reduce GHG emissions from agriculture. The bonus is that composting also addresses a number of other environmental concerns such as pathogens, surface and groundwater quality and ammonia emissions. (author)

  15. Custo marginal de abatimento de emissões de gases de efeito estufa na recuperação da pastagem = Marginal abatement cost of greenhouse gases emissions in pasture recovery

    Directory of Open Access Journals (Sweden)

    Willian Jun Kimura

    2016-10-01

    financing with the Low Carbon Agriculture Program credit line, using the marginal abatement cost tool. To achieve the proposed goals, financial data from the Center for Advanced Studies in Applied Economics and the Brazilian Confederation of Agriculture and Livestock was used, as well as emissions data from the Intergovernmental Panel on Climate Change and Low Carbon Agriculture Plan in order to simulate an annual net costs and net emissions of current and abatement technologies, represented respectively by a low-tech livestock and a livestock in recovered pasture. The financial and emissions figures of a livestock in a recovered pasture were more favorable in comparison to low-tech livestock. Taking into consideration these two factors, the marginal abatement cost is - R$ 24.72 per tCO2 equivalent. In other words, for each ton of equivalent carbon dioxide mitigated by pasture recovery, the farmer has a financial gain of R$ 24.72 than keeping low-tech livestock. Thus, from a financial and environmental perspective, pasture recovery has shown to be a practice which allows a sustainable increase in food production.

  16. Assessment of GHG mitigation technology measures in Ukraine

    Energy Technology Data Exchange (ETDEWEB)

    Raptsoun, N.; Parasiouk, N.

    1996-12-31

    In June 1992 the representatives of 176 countries including Ukraine met in Rio de Janeiro at the UN Conference to coordinate its efforts in protecting and guarding the environment. Signature of the UN Framework Convention on Climate Change by around 150 countries indicates that climate change is potentially a major threat to the world`s environment and economic development. The project {open_quotes}Country Study on Climate Change in Ukraine{close_quotes} coordinated by the Agency for Rational Energy Use and Ecology (ARENIA-ECO) and supported by the US Country Studies Program Support for Climate Change Studies. The aim of the project is to make the information related to climate change in Ukraine available for the world community by using the potential of Ukrainian research institutes for further concerted actions to solve the problem of climate change on the global scale. The project consists of four elements: (1) the development of the GHG Inventory in Ukraine; (2) assessments of ecosystems-vulnerability to climate change and adaptation options; and (3) mitigation options analysis; (4) public education and outreach activities. This paper contains the main results of the third element for the energy and non-energy sectors. Main tasks of the third element were: (1) to select, test and describe or develop the methodology for mitigation options assessment; (2) to analyze the main sources of GHG emissions in Ukraine; (3) to give the macro economic analysis of Ukrainian development and the development of main economical sectors industry, energy, transport, residential, forestry and agriculture; (4) to forecast GHG emissions for different scenarios of the economic development; and (5) to analyze the main measures to mitigate climate change.

  17. Application of Primary Abatement Technology for Reduction of N2O Emmision in Petrokemija Nitric Acid Production

    Directory of Open Access Journals (Sweden)

    Ćosić, L.

    2013-01-01

    Full Text Available Industrial nitric acid production by oxidation of gaseous ammonia with Ostwald procedure produces an unwanted by-product – colorless nitrous oxide, N2O. As emission of N2O represents a very serious problem due of its huge contribution to global warming, certain measures focused on its maximum reduction should be undertaken. Minimization of N2O emission in nitric acid production can be achieved in different parts of the process flow, depending on the applied available technologies. For the abatement of N2O emissions in Petrokemija's nitric acid production processes from the list of the best available technologies chosen were primary and secondary abatement technologies. The mentioned ensures reduction of N2O by use of improved selective heterogeneous catalysts in the step of gaseous ammonia oxidation. Precious metals in the shape of gauzes are used as selective heterogeneous catalyst in primary technology, while in the case of secondary technology the Fe2 O3 catalyst on Al2O3 support in the shape of spherical pellets is chosen. Shown is the application of primary technology for the abatement of N2O in both nitric acid production facilities and their comparison with classical heterogeneous catalyst and preparation for the installation of secondary selective catalyst. N2O emissions with the application of primary technology in both production facilities were reduced from 12 kg of N2O to 7 kg of N2O per ton of pure HNO3. With the primary reduction in N2O emissions the foundation was established for further reduction with the secondary technology to the final value of 0.7 kg of N2O per ton of pure HNO3, which represents mass concentration in the tail gas below 200 mg m-3 (at n. c.. With the applied technologies for the abatement of N2O emissions in Petrokemija's nitric acid production the future prescribed emission limit value will be satisfied.

  18. The political economy of a tradable GHG permit market in the European Union

    International Nuclear Information System (INIS)

    Markussen, P.; Tinggaard Svendsen, G.; Vesterdal, M.

    2002-01-01

    The EU has committed itself to meet an 8% greenhouse gas (GHG) reduction target level following the Kyoto agreement. Therefore, the EU Commission has just proposed a new directive establishing a framework for GHG emissions trading within the European Union. This proposal is to outcome a policy process started by the EU Commission and its Green Paper from March 2000. The main industrial stake holders all had the opportunity to comment on the Green Paper and from their directive proposal. Here, we find that the dominant interest groups indeed influenced the final design of an EU GHG market. This industrial rent-seeking most prominently lead to a grand fathered permit allocation rule like the one found in the US tradable permit systems. (au)

  19. The political economy of a tradable GHG permit market in the European Union

    Energy Technology Data Exchange (ETDEWEB)

    Markussen, P; Tinggaard Svendsen, G; Vesterdal, M

    2002-07-01

    The EU has committed itself to meet an 8% greenhouse gas (GHG) reduction target level following the Kyoto agreement. Therefore, the EU Commission has just proposed a new directive establishing a framework for GHG emissions trading within the European Union. This proposal is to outcome a policy process started by the EU Commission and its Green Paper from March 2000. The main industrial stake holders all had the opportunity to comment on the Green Paper and from their directive proposal. Here, we find that the dominant interest groups indeed influenced the final design of an EU GHG market. This industrial rent-seeking most prominently lead to a grand fathered permit allocation rule like the one found in the US tradable permit systems. (au)

  20. Substitution elasticities between GHG-polluting and nonpolluting inputs in agricultural production: A meta-regression

    International Nuclear Information System (INIS)

    Liu, Boying; Richard Shumway, C.

    2016-01-01

    This paper reports meta-regressions of substitution elasticities between greenhouse gas (GHG) polluting and nonpolluting inputs in agricultural production, which is the main feedstock source for biofuel in the U.S. We treat energy, fertilizer, and manure collectively as the “polluting input” and labor, land, and capital as nonpolluting inputs. We estimate meta-regressions for samples of Morishima substitution elasticities for labor, land, and capital vs. the polluting input. Much of the heterogeneity of Morishima elasticities can be explained by type of primal or dual function, functional form, type and observational level of data, input categories, number of outputs, type of output, time period, and country categories. Each estimated long-run elasticity for the reference case, which is most relevant for assessing GHG emissions through life-cycle analysis, is greater than 1.0 and significantly different from zero. Most predicted long-run elasticities remain significantly different from zero at the data means. These findings imply that life-cycle analysis based on fixed proportion production functions could provide grossly inaccurate measures of GHG of biofuel. - Highlights: • This paper reports meta-regressions of substitution elasticities between greenhouse-gas (GHG) polluting and nonpolluting inputs in agricultural production, which is the main feedstock source for biofuel in the U.S. • We estimate meta-regressions for samples of Morishima substitution elasticities for labor, land, and capital vs. the polluting input based on 65 primary studies. • We found that each estimated long-run elasticity for the reference case, which is most relevant for assessing GHG emissions through life-cycle analysis, is greater than 1.0 and significantly different from zero. Most predicted long-run elasticities remain significantly different from zero at the data means. • These findings imply that life-cycle analysis based on fixed proportion production functions could

  1. Trends for reduction of greenhouse gases (GHG) in Japan; Kokunai no onshitsu koka gas sakugen doko chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The purpose of this research is to identify the problems and measures for reduction of GHG emissions by conducting research on the GHG emission trends in the energy-conversion, industry, public and transportation sectors, and policies and regulations. Japan`s total emission of CO2 in FY 1994 was 343 million tons in terms of carbon, and the emission per capita was 2.74 tons. These amounts were 7% increase in total CO2 emissions and 6% increase in the emission per capita compared with those in FY 1990. There were high increases in the public and transportation sectors. This trend is expected to continue in the future. Since more than 90% of CO2 emission is derived from energy origin, the climate change problems mean energy and economic problems. To attain Japan`s goal of the year 2000 with maintaining the appropriate economic growth, it is crucial to accelerate energy-efficiency and introduction of new energy. 19 figs., 28 tabs.

  2. Report on a survey in fiscal 1999. Analysis of materials related to IEA Greenhouse Gas R and D Program (IEA/GHG); 1999 nendo EIA/GHG kanren shiryo bunseki chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Materials related to IEA Greenhouse Gas Rand D Program (IEA/GHG) were analyzed. The Sleipner carbon dioxide underground storage workshop is acting to narrow themes for understanding the technologies, observation methods, and research activities. The IEA/GHG has verified the known facts about ocean storage of carbon dioxide, and discussed the important development targets. Researches were made on improving methane recovery efficiency and the possibility of sealing carbon dioxide by injecting carbon dioxide in order to improve recovery of carbon bed methane. The IEA/GHG has developed a methodology for complete fuel cycles of LNG, and evaluated cost and benefit of reducing greenhouse effect gas emission. A process combining electric power generation, carbon dioxide absorption and hot heat energy utilization can reduce emission of carbon dioxide into atmosphere at relatively low cost and low energy loss. The paper also describes reduction of greenhouse effect gas emitted from cement factories, petroleum refining and petro-chemical industries, and offshore petroleum and gas facilities. It also describes influence of forestry on carbon absorption and timber markets. Case studies have discussed effects of modifying power generation plants. (NEDO)

  3. Influence of spatially dependent, modeled soil carbon emission factors on life-cycle greenhouse gas emissions of corn and cellulosic ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Zhangcai [Energy Systems Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Dunn, Jennifer B. [Energy Systems Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Kwon, Hoyoung [Environment and Production Technology Division, International Food Policy Research Institute, 2033 K St. NW Washington DC 20006 USA; Mueller, Steffen [Energy Resources Center, University of Illinois at Chicago, 1309 South Halsted Street Chicago IL 60607 USA; Wander, Michelle M. [Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, 1102 South Goodwin Avenue Urbana IL 61801 USA

    2016-03-03

    Converting land to biofuel feedstock production incurs changes in soil organic carbon (SOC) that can influence biofuel life-cycle greenhouse gas (GHG) emissions. Estimates of these land use change (LUC) and life-cycle GHG emissions affect biofuels’ attractiveness and eligibility under a number of renewable fuel policies in the U.S. and abroad. Modeling was used to refine the spatial resolution and depth-extent of domestic estimates of SOC change for land (cropland, cropland pasture, grasslands, and forests) conversion scenarios to biofuel crops (corn, corn stover, switchgrass, Miscanthus, poplar, and willow). In most regions, conversions from cropland and cropland pasture to biofuel crops led to neutral or small levels of SOC sequestration, while conversion of grassland and forest generally caused net SOC loss. Results of SOC change were incorporated into the Greenhouse Gases, Regulated Emissions, and Energy use in Transportation (GREET) model to assess their influence on life-cycle GHG emissions for the biofuels considered. Total LUC GHG emissions (g CO2eq MJ-1) were 2.1–9.3 for corn, -0.7 for corn stover, -3.4–12.9 for switchgrass, and -20.1–-6.2 for Miscanthus; these varied with SOC modeling assumptions applied. Extending soil depth from 30 to 100cm affected spatially-explicit SOC change and overall LUC GHG emissions; however the influence on LUC GHG emissions estimates were less significant in corn and corn stover than cellulosic feedstocks. Total life-cycle GHG emissions (g CO2eq MJ-1, 100cm) were estimated to be 59–66 for corn ethanol, 14 for stover ethanol, 18-26 for switchgrass ethanol, and -0.6–-7 for Miscanthus ethanol.

  4. The game of trading jobs for emissions

    International Nuclear Information System (INIS)

    Arto, I.; Rueda-Cantuche, J.M.; Andreoni, V.; Mongelli, I.; Genty, A.

    2014-01-01

    Following the debate on the implications of international trade for global climate policy, this paper introduces the topic of the economic benefits from trade obtained by exporting countries in relation to the emissions generated in the production of exports. In 2008, 24% of global greenhouse gas (GHG) emissions and 20% of the employment around the world were linked to international trade. China “exported” 30% of emissions and hosted 37.5% of the jobs generated by trade worldwide. The European Union and the United States of America were the destination of 25% and 18.4% of the GHG emissions embodied in trade. The imports of these two regions contributed to the creation of 45% of the employment generated by international trade. This paper proposes the idea of including trade issues in international climate negotiations, taking into account not only the environmental burden generated by developed countries when displacing emissions to developing countries through their imports, but also the economic benefits of developing countries producing the goods exported to developed countries. - Highlights: • Employment and trade issues should be considered in GHG emission reduction policies. • In 2008 24% of global GHG emissions and 20% of the employment are linked to trade. • 43% of GHG and 45% of employment embedded in trade are due to EU and US imports. • China exports 30% of the GHG and hosts 38% of the jobs generated by trade worldwide

  5. Comparative study of Fischer–Tropsch production and post-combustion CO2 capture at an oil refinery: Economic evaluation and GHG (greenhouse gas emissions) balances

    International Nuclear Information System (INIS)

    Johansson, Daniella; Franck, Per-Åke; Pettersson, Karin; Berntsson, Thore

    2013-01-01

    The impact on CO 2 emissions of integrating new technologies (a biomass-to-Fischer–Tropsch fuel plant and a post-combustion CO 2 capture plant) with a complex refinery has previously been investigated separately by the authors. In the present study these designs are integrated with a refinery and evaluated from the point-of-view of economics and GHG (greenhouse gas emissions) emissions and are compared to a reference refinery. Stand-alone Fischer–Tropsch fuel production is included for comparison. To account for uncertainties in the future energy market, the assessment has been conducted for different future energy market conditions. For the post-combustion CO 2 capture process to be profitable, the present study stresses the importance of a high charge for CO 2 emission. A policy support for biofuels is essential for the biomass-to-Fischer–Tropsch fuel production to be profitable. The level of the support, however, differs depending on scenario. In general, a high charge for CO 2 economically favours Fischer–Tropsch fuel production, while a low charge for CO 2 economically favours Fischer–Tropsch fuel production. Integrated Fischer–Tropsch fuel production is most profitable in scenarios with a low wood fuel price. The stand-alone alternative shows no profitability in any of the studied scenarios. Moreover, the high investment costs make all the studied cases sensitive to variations in capital costs. - Highlights: • Comparison of Fischer–Tropsch (FT) fuel production and CO 2 capture at a refinery. • Subsidies for renewable fuels are essential for FT fuel production to be profitable. • A high charge for CO 2 is essential for post-combustion CO 2 capture to be profitable. • A low charge for CO 2 economically favours FT fuel production. • Of the studied cases, CO 2 capture shows the greatest reduction in GHG emissions

  6. Meat consumption reduction in Italian regions: Health co-benefits and decreases in GHG emissions.

    Science.gov (United States)

    Farchi, Sara; De Sario, Manuela; Lapucci, Enrica; Davoli, Marina; Michelozzi, Paola

    2017-01-01

    Animal agriculture has exponentially grown in recent decades in response to the rise in global demand for meat, even in countries like Italy that traditionally eat a Mediterranean, plant-based diet. Globalization related dietary changes are contributing to the epidemic of non-communicable diseases and to the global climate crisis, and are associated with huge carbon and water footprints. The objective of the study is to assess inequalities in health impacts and in attributable greenhouse gases-GHG emissions in Italy by hypothesizing different scenarios of reduction in red and processed meat consumption towards healthier consumption patterns more compliant with the recommendations of the Mediterranean food pyramid. We used demographic and food consumption patterns from national surveys and risk relationships between meat intake and cardiovascular and colorectal cancer mortality from IARC and other meta-analyses. From the baseline data (year 2005-2006, average 406 gr/week beef and 245 gr/week processed meat), we considered hypothetical meat reduction scenarios according to international dietary guidelines such as the Mediterranean pyramid targets. For each geographical area (Northwest, Northeast, Centre, and South) and gender, we calculated the number of avoidable deaths from colorectal cancer, and cardiovascular disease among the adult population. Moreover, years of life gained by the adult population from 2012 to 2030 and changes in life expectancy of the 2012 birth cohort were quantified using gender-specific life tables. GHG emission reductions under Mediterranean scenario were estimated only for beef by applying the Global Warming Potential (GWP) coefficient to total consumption and to a low carbon food substitution in adult diet. The deaths avoidable (as percentage change compared to baseline) according to the three reduction scenarios for beef consumption were between 2.3% and 4.5% for colorectal cancer, and between 2.1% and 4.0% for cardiovascular disease

  7. Meat consumption reduction in Italian regions: Health co-benefits and decreases in GHG emissions.

    Directory of Open Access Journals (Sweden)

    Sara Farchi

    Full Text Available Animal agriculture has exponentially grown in recent decades in response to the rise in global demand for meat, even in countries like Italy that traditionally eat a Mediterranean, plant-based diet. Globalization related dietary changes are contributing to the epidemic of non-communicable diseases and to the global climate crisis, and are associated with huge carbon and water footprints. The objective of the study is to assess inequalities in health impacts and in attributable greenhouse gases-GHG emissions in Italy by hypothesizing different scenarios of reduction in red and processed meat consumption towards healthier consumption patterns more compliant with the recommendations of the Mediterranean food pyramid.We used demographic and food consumption patterns from national surveys and risk relationships between meat intake and cardiovascular and colorectal cancer mortality from IARC and other meta-analyses. From the baseline data (year 2005-2006, average 406 gr/week beef and 245 gr/week processed meat, we considered hypothetical meat reduction scenarios according to international dietary guidelines such as the Mediterranean pyramid targets. For each geographical area (Northwest, Northeast, Centre, and South and gender, we calculated the number of avoidable deaths from colorectal cancer, and cardiovascular disease among the adult population. Moreover, years of life gained by the adult population from 2012 to 2030 and changes in life expectancy of the 2012 birth cohort were quantified using gender-specific life tables. GHG emission reductions under Mediterranean scenario were estimated only for beef by applying the Global Warming Potential (GWP coefficient to total consumption and to a low carbon food substitution in adult diet.The deaths avoidable (as percentage change compared to baseline according to the three reduction scenarios for beef consumption were between 2.3% and 4.5% for colorectal cancer, and between 2.1% and 4.0% for

  8. Quantifying and reporting greenhouse gas emissions at local level

    Directory of Open Access Journals (Sweden)

    Sόwka Izabela

    2017-01-01

    Full Text Available Cities as global centers of consumption and production often are a significant and growing source of greenhouse gas (GHG emissions. At the same time, local authorities are increasingly taking action on climate change by focusing on reducing GHG emissions and efficiency improvement opportunities. To assess and reduce the overall greenhouse gas emission level from an urban area, it is necessary to identify all the activities and processes which generate these emissions. GHG inventory gives an opportunity to get wider knowledge for city’s community about spatial emission processes and emissions contribution of key sources categories at the local scale. Inventory is being used for decision-making purposes and strategic planning in emission reduction policy. The goal of this paper was to clarify the major methodological challenges of GHG monitoring at the urban level. The paper is based on the discussion of different methods and approaches to assessing GHG emissions at the local level. It is presented sectoral GHGs emission trends in selected urban areas and compared CO2 emission level in different countries and metropolises and variable European cities guidance. The study determines the inventory tools of GHGs emission taking into account the characteristics of main sources at local levels.

  9. Greenhouse gases emission from sanitary landfills in Lombardy: estimation and uncertainty analysis

    International Nuclear Information System (INIS)

    Antognazza, F.; Moretti, M.; Caserini, S.

    2009-01-01

    Quantification of methane emissions from landfills is important to evaluate measures for reduction of greenhouse gas emissions. A census has been conducted across all landfills in Lombardy in order to get a double assessment of greenhouse gas emissions in the period 1973-2007. The first approach is of a deterministic kind: it produced a GHG emission assessment of about 2,240 ktCO 2 (like 2.4% of GHG emission in Lombardy in 2005). The second approach is a probabilistic approach according to Monte Carlo simulation, and allows an assessment of probabilistic distribution of emissions and uncertainty. Uncertainty in GHG emission from landfill in Lombardy is about 20% and efficiency of LFG collection and biodegradable carbon content are the most relevant parameters in this assessment. Also, a projection of GHG emission was made. Two scenarios were analyzed for the 2008-2020 period: a business as usual (BAU) one and an alternative one. It results that we are expecting a 50% reduction of GHG emission, with alternative scenario, from 2007 level: at regional scale it is like a 1% of overall GHG emissions in Lombardy. [it

  10. Greenhouse Gas emissions reporting in Israel: Means to manage energy use

    International Nuclear Information System (INIS)

    Ayalon, Ofira; Lev-On, Miriam; Lev-On, Perry; Goldrath, Tal

    2014-01-01

    Highlights: • We describe and analyze the Israeli GHG Protocol and the GHG Emissions Calculation Tool developed for companies in Israel. • The analysis was conducted for the ‘Pilot Phase’ (2010) and for the first two full years of reporting (2011 and 2012). • We highlight the changes in fuel mix that influence direct emissions from power generation. • We conclude that the Israeli GHG registry is building capacity in both reporting entities and government ministries. • The experience gained in this registry implementation, may serve as an excellent experience for other countries. - Abstract: The subject of publicly disclosing Greenhouse Gas (GHG) emissions by companies and organizations is gaining momentum and a variety of so called ‘GHG Registries’ have been developed in countries around the globe, while specific requirements are being adjusted to local circumstances and needs. Different GHG Registries are currently operating worldwide, either as mandatory or as voluntary programs. Israel launched a voluntary initiative in 2010 known as the Israel GHG Reporting and Registering System. The Israel GHG Reporting Protocol was prepared by the Ministry of Environmental Protection and the Energy and Environment cluster at the Samuel Neaman Institute, in cooperation with a wide range of stakeholders, including other governmental ministries, industry and local government representatives as well as non-governmental organizations. The Israel GHG Protocol is largely based on the World Resources Institute/World Business Council for Sustainable Development (WRI/WBCSD) corporate accounting standard and ISO 14064. While the decision to join the GHG registry in Israel is currently voluntary, once an organization has joined the registry it commits to calculate and report GHG emissions according to the registry’s protocol and methodology guidance to allow for consistency in the reported data and for accurate comparison of the results. The Israeli program is

  11. Greenhouse gas emission accounting for EU member states from 1991 to 2012

    International Nuclear Information System (INIS)

    Su, Meirong; Pauleit, Stephan; Yin, Xuemei; Zheng, Ying; Chen, Shaoqing; Xu, Chao

    2016-01-01

    Highlights: • GHG emissions for the EU28 during 1991–2012 are accounted. • The EU28 are classified into four groups based on GHG emission structure. • It can facilitate classified management of GHG emissions. • The EU case shows the common but differentiated principle in emission reduction. - Abstract: Collectively, the EU is among the world’s largest greenhouse gas (GHG) emitters, though remarkable decreases in GHG emissions have been observed in recent years. In this work the GHG emissions for the 28 EU member states between 1991 and 2012 are accounted for and compared according to the inventory method of the Intergovernmental Panel on Climate Change (IPCC). The structure of GHG emissions at a national level, their distribution between countries, and trends across the period are then analyzed. National emission sources and sinks are decomposed for each country to elucidate the contribution of each sector (energy, industrial processes, solvents and other product use, agriculture, land use/land-use change and forestry, and waste) to the national totals. Germany was the largest emitter, with net emissions totaling 939 Tg CO_2 equivalent in 2012, 60% more than the UK and 89% more than France, the second and third biggest emitters, respectively. The energy sector and agriculture were found to be the largest sources of emissions in most countries. Four quadrants were established to compare countries’ performance in emission intensity, carbon removal rate, and net reduction rate of GHG emissions. Slovenia, Portugal, Sweden, and Finland were located in Quadrant II as they displayed relatively low emission intensities and high carbon removal rates. Conversely, Hungary, Greece, Cyprus, the Czech Republic, and Poland were located in Quadrant IV because of their relatively high emission intensities and low carbon removal rates. Some suggestions for integrating the annual results and the trends both within and among countries into national and regional emissions

  12. UNEP greenhouse gas abatement costing studies

    Energy Technology Data Exchange (ETDEWEB)

    Shakespeare Maya, R. (Southern Centre for Energy and Environment (Zimbabwe)); Muguti, E. (Ministry of Transport and Energy. Department of Energy (Zimbabwe)); Fenhann, J.; Morthorst, P.E. (Risoe National Laboratory. Systems Analysis Department (Denmark))

    1992-08-01

    The UNEP (United Nations Environment Programme) programme of Greenhouse Gas Abatement Costing Studies is intended to clarify the economic issues involved in assessing the costs of limiting emissions of greenhouse gases and to propose approaches to comparable costing studies. Phase 1 of the Zimbabwe country study describes the current energy situation in Zimbabwe related to the national economy, energy supply and demand and amounts of greenhouse gas emissions. Factors regarding the geography, (including a map illustrating the degree and character of land degradation by erosion) population, politics, international relations, land-use and management of the energy sector are dealt with in detail and the text is illustrated with data compiled from the study. It is estimated that Zimbabwe consumed 270.4 Tj of energy during 1988 and emitted 21.7 tonnes of carbon dioxide. An emission intensity of 80.2 tonnes/Tj for the whole economy and 63.6 tonnes/Tj for electric power generation alone was calculated. Forecasting for the year 2020 estimated carbon dioxide emission intensities of 73.5 tonnes/Tj for the whole economy and 43.7 tonnes for power generation. Net carbon dioxide emissions are predicted to be 30-42 tonnes during 2020. (AB).

  13. UNEP greenhouse gas abatement costing studies

    International Nuclear Information System (INIS)

    Shakespeare Maya, R.; Muguti, E.; Fenhann, J.; Morthorst, P.E.

    1992-08-01

    The UNEP (United Nations Environment Programme) programme of Greenhouse Gas Abatement Costing Studies is intended to clarify the economic issues involved in assessing the costs of limiting emissions of greenhouse gases and to propose approaches to comparable costing studies. Phase 1 of the Zimbabwe country study describes the current energy situation in Zimbabwe related to the national economy, energy supply and demand and amounts of greenhouse gas emissions. Factors regarding the geography, (including a map illustrating the degree and character of land degradation by erosion) population, politics, international relations, land-use and management of the energy sector are dealt with in detail and the text is illustrated with data compiled from the study. It is estimated that Zimbabwe consumed 270.4 Tj of energy during 1988 and emitted 21.7 tonnes of carbon dioxide. An emission intensity of 80.2 tonnes/Tj for the whole economy and 63.6 tonnes/Tj for electric power generation alone was calculated. Forecasting for the year 2020 estimated carbon dioxide emission intensities of 73.5 tonnes/Tj for the whole economy and 43.7 tonnes for power generation. Net carbon dioxide emissions are predicted to be 30-42 tonnes during 2020. (AB)

  14. Water quality management and climate change mitigation: cost-effectiveness of joint implementation in the Baltic Sea region

    DEFF Research Database (Denmark)

    Nainggolan, Doan; Hasler, Berit; Andersen, Hans Estrup

    2018-01-01

    of contrasting strategies: single environmental objective management versus joint implementation strategy. The results show that implementing land-based measures with a sole focus on water quality (to meet the HELCOM's 2013 Baltic Sea Action Plan nutrient abatement targets) can produce climate change mitigation......This paper explores the scope for simultaneously managing nutrient abatement and climate change mitigation in the Baltic Sea (BS) region through the implementation of a selection of measures. The analysis is undertaken using a cost-minimisation model for the entire BS region, the BALTCOST model....... In the present research, the model has been extended to include greenhouse gas (GHG) emissions effects, enabling us to analyse the tradeoffs between cost-effective GHG and nutrient load reductions. We run the model for four different scenarios in order to compare the environmental and economic consequences...

  15. Impacts of nationally determined contributions on 2030 global greenhouse gas emissions: uncertainty analysis and distribution of emissions

    Science.gov (United States)

    Benveniste, Hélène; Boucher, Olivier; Guivarch, Céline; Le Treut, Hervé; Criqui, Patrick

    2018-01-01

    Nationally Determined Contributions (NDCs), submitted by Parties to the United Nations Framework Convention on Climate Change before and after the 21st Conference of Parties, summarize domestic objectives for greenhouse gas (GHG) emissions reductions for the 2025-2030 time horizon. In the absence, for now, of detailed guidelines for the format of NDCs, ancillary data are needed to interpret some NDCs and project GHG emissions in 2030. Here, we provide an analysis of uncertainty sources and their impacts on 2030 global GHG emissions based on the sole and full achievement of the NDCs. We estimate that NDCs project into 56.8-66.5 Gt CO2eq yr-1 emissions in 2030 (90% confidence interval), which is higher than previous estimates, and with a larger uncertainty range. Despite these uncertainties, NDCs robustly shift GHG emissions towards emerging and developing countries and reduce international inequalities in per capita GHG emissions. Finally, we stress that current NDCs imply larger emissions reduction rates after 2030 than during the 2010-2030 period if long-term temperature goals are to be fulfilled. Our results highlight four requirements for the forthcoming ‘climate regime’: a clearer framework regarding future NDCs’ design, an increasing participation of emerging and developing countries in the global mitigation effort, an ambitious update mechanism in order to avoid hardly feasible decarbonization rates after 2030 and an anticipation of steep decreases in global emissions after 2030.

  16. The Impacts of Regulations and Financial Development on the Operations of Supply Chains with Greenhouse Gas Emissions

    Science.gov (United States)

    Xiao, Zhuang; Tian, Yixiang; Yuan, Zheng

    2018-01-01

    To establish a micro foundation to understand the impacts of greenhouse gas (GHG) emission regulations and financial development levels on firms’ GHG emissions, we build a two-stage dynamic game model to incorporate GHG emission regulations (in terms of an emission tax) and financial development (represented by the corresponding financing cost) into a two-echelon supply chain. With the subgame perfect equilibrium, we identify the conditions to determine whether an emission regulatory policy and/or financial development can affect GHG emissions in the supply chain. We also reveal the impacts of the strictness of GHG emission regulation, the financial development level, and the unit GHG emission rate on the operations of the supply chain and the corresponding profitability implications. Managerial insights are also discussed. PMID:29470451

  17. Fossil energy and GHG saving potentials of pig farming in the EU

    DEFF Research Database (Denmark)

    Nguyen, T Lan T; Mogensen, Lisbeth; Hermansen, John Erik

    2010-01-01

    ) savings can be feasibly achieved. As shown in the results of the analysis, pig farming in the EU has a high potential to reduce fossil energy use and GHG emissions by taking improvement measures in three aspects: (i) feed use; (ii) manure management; and (iii) manure utilization. In particular......In Europe, the highly developed livestock industry places a high burden on resource use and environmental quality. This paper examines pig meat production in North-West Europe as a base case and runs different scenarios to investigate how improvements in terms of energy and greenhouse gas (GHG...

  18. Climate Impacts From a Removal of Anthropogenic Aerosol Emissions

    Science.gov (United States)

    Samset, B. H.; Sand, M.; Smith, C. J.; Bauer, S. E.; Forster, P. M.; Fuglestvedt, J. S.; Osprey, S.; Schleussner, C.-F.

    2018-01-01

    Limiting global warming to 1.5 or 2.0°C requires strong mitigation of anthropogenic greenhouse gas (GHG) emissions. Concurrently, emissions of anthropogenic aerosols will decline, due to coemission with GHG, and measures to improve air quality. However, the combined climate effect of GHG and aerosol emissions over the industrial era is poorly constrained. Here we show the climate impacts from removing present-day anthropogenic aerosol emissions and compare them to the impacts from moderate GHG-dominated global warming. Removing aerosols induces a global mean surface heating of 0.5-1.1°C, and precipitation increase of 2.0-4.6%. Extreme weather indices also increase. We find a higher sensitivity of extreme events to aerosol reductions, per degree of surface warming, in particular over the major aerosol emission regions. Under near-term warming, we find that regional climate change will depend strongly on the balance between aerosol and GHG forcing.

  19. Energy inputs and greenhouse gases emissions in wheat production in Gorgan, Iran

    International Nuclear Information System (INIS)

    Soltani, Afshin; Rajabi, M.H.; Zeinali, E.; Soltani, Elias

    2013-01-01

    The objectives of this study were to analyze energy use and greenhouse gases (GHG) emissions in various wheat production scenarios in north eastern Iran and to identify measures to reduce energy use and GHG emissions. Three high-input, a low-input, a better crop management and a usual production scenarios were included. All activities and production processes were monitored and recorded. Averages of total energy input and output were 15.58 and 94.4 GJ ha −1 , respectively. Average across scenarios, GHG emissions of 1137 kg CO 2 -eq ha −1 and 291 kg CO 2 -eq t −1 were estimated. The key factors relating to energy use and GHG emissions were seedbed preparation and sowing and applications of nitrogen fertilizer. The better crop management production scenario required 38% lower nitrogen fertilizer (and 33% lower total fertilizer), consumed 11% less input energy and resulted in 33% more grain yield and output energy compared to the usual production scenario. It also resulted in 20% less GHG emissions per unit field area and 40% less GHG emissions per ton of grain. It was concluded that this scenario was the cleaner production scenario in terms of energy use and GHG emissions. Measures of improvement in energy use and GHG emission were identified. - Highlights: ► Wheat production scenarios were evaluated for energy use and greenhouse gases emission. ► A better crop management production scenario was the cleaner production scenario. ► Measures to reduce energy use and greenhouse gases emission were identified

  20. Energy use, cost and CO2 emissions of electric cars

    International Nuclear Information System (INIS)

    van Vliet, Oscar; Brouwer, Anne Sjoerd; Kuramochi, Takeshi; van den Broek, Machteld; Faaij, Andre

    2011-01-01

    We examine efficiency, costs and greenhouse gas emissions of current and future electric cars (EV), including the impact from charging EV on electricity demand and infrastructure for generation and distribution. Uncoordinated charging would increase national peak load by 7% at 30% penetration rate of EV and household peak load by 54%, which may exceed the capacity of existing electricity distribution infrastructure. At 30% penetration of EV, off-peak charging would result in a 20% higher, more stable base load and no additional peak load at the national level and up to 7% higher peak load at the household level. Therefore, if off-peak charging is successfully introduced, electric driving need not require additional generation capacity, even in case of 100% switch to electric vehicles. GHG emissions from electric driving depend most on the fuel type (coal or natural gas) used in the generation of electricity for charging, and range between 0 g km -1 (using renewables) and 155 g km -1 (using electricity from an old coal-based plant). Based on the generation capacity projected for the Netherlands in 2015, electricity for EV charging would largely be generated using natural gas, emitting 35-77 g CO 2 eq km -1 . We find that total cost of ownership (TCO) of current EV are uncompetitive with regular cars and series hybrid cars by more than 800 EUR year -1 . TCO of future wheel motor PHEV may become competitive when batteries cost 400 EUR kWh -1 , even without tax incentives, as long as one battery pack can last for the lifespan of the vehicle. However, TCO of future battery powered cars is at least 25% higher than of series hybrid or regular cars. This cost gap remains unless cost of batteries drops to 150 EUR kWh -1 in the future. Variations in driving cost from charging patterns have negligible influence on TCO. GHG abatement costs using plug-in hybrid cars are currently 400-1400 EUR tonne -1 CO 2eq and may come down to -100 to 300 EUR tonne -1 . Abatement cost using

  1. Biogenic CH4 and N2O emissions overwhelm land CO2 sink in Asia: Toward a full GHG budget

    Science.gov (United States)

    Tian, H.

    2017-12-01

    The recent global assessment indicates the terrestrial biosphere as a net source of greenhouse gases to the atmosphere (Tian et al Nature 2016). The fluxes of greenhouse gases (GHG) vary by region. Both TD and BU approaches indicate that human-caused biogenic fluxes of CO2, CH4 and N2O in the biosphere of Southern Asia led to a large net climate warming effect, because the 100-year cumulative effects of CH4 and N2O emissions together exceed that of the terrestrial CO2 sink. Southern Asia has about 90% of the global rice fields and represents more than 60% of the world's nitrogen fertilizer consumption, with 64%-81% of CH4 emissions and 36%-52% of N2O emissions derived from the agriculture and waste sectors. Given the large footprint of agriculture in Southern Asia, improved fertilizer use efficiency, rice management and animal diets could substantially reduce global agricultural N2O and CH4 emissions. This study highlights the importance of including all three major GHGs in regional climate impact assessments, mitigation option and climate policy development.

  2. Optimal strategies for VOC emission abatement produced by solvent evaporation. The Italian case study; Strategie ottimali per la riduzione delle emissioni di composti organici volatili da uso di solventi: il caso italiano

    Energy Technology Data Exchange (ETDEWEB)

    Vetrella, G.; Cirillo, M.C. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Ambiente

    1998-07-01

    This work analyses technologies and costs of VOC (volatile organic compounds) abatement in the activities which belong to the solvent evaporation sector, and then it singles out the most successful strategies from the costs point of view to reduce the sector emissions on the base of fixed abatement objectives. The Italian case is discussed. [Italian] Il lavoro analizza tecnologie e costi di abbattimento dei COV (composti organici volatili) nel settore evaporazione solventi, e individua la strategia piu' efficace dal punto di vista dei costi per ridurre le emissioni del settore sulla base di prefissati obiettivi di abbattimento. Analizza la situazione italiana.

  3. CLASSIFICATION OF EU COUNTRIES IN TERMS OF THE EVOLUTION OF THE GHG INDICATOR USING CLUSTER ANALYSIS

    Directory of Open Access Journals (Sweden)

    MARINOIU CRISTIAN

    2015-07-01

    Full Text Available Greenhouse gases are one of the main factors that influence the Earth's global temperature variation. As the result of both the beginning of the industrial revolution (the 1750’s and the intensificication and diversification of human activities, the volume of greenhouse gasses increases significantly. The risk of an accelerated global warming can be decreased by reducing the volume of greenhouse gasses emissions resulting from human activities. The annual volume of these emissions is reflected by the Greenhouse gas (GHG indicator. This work carries out a classification of EU countries on the basis of the evolution of the GHG indicator using Partitioning Around Medoids (PAM method.

  4. The importance of health co-benefits in macroeconomic assessments of UK Greenhouse Gas emission reduction strategies.

    Science.gov (United States)

    Jensen, Henning Tarp; Keogh-Brown, Marcus R; Smith, Richard D; Chalabi, Zaid; Dangour, Alan D; Davies, Mike; Edwards, Phil; Garnett, Tara; Givoni, Moshe; Griffiths, Ulla; Hamilton, Ian; Jarrett, James; Roberts, Ian; Wilkinson, Paul; Woodcock, James; Haines, Andy

    We employ a single-country dynamically-recursive Computable General Equilibrium model to make health-focussed macroeconomic assessments of three contingent UK Greenhouse Gas (GHG) mitigation strategies, designed to achieve 2030 emission targets as suggested by the UK Committee on Climate Change. In contrast to previous assessment studies, our main focus is on health co-benefits additional to those from reduced local air pollution. We employ a conservative cost-effectiveness methodology with a zero net cost threshold. Our urban transport strategy (with cleaner vehicles and increased active travel) brings important health co-benefits and is likely to be strongly cost-effective; our food and agriculture strategy (based on abatement technologies and reduction in livestock production) brings worthwhile health co-benefits, but is unlikely to eliminate net costs unless new technological measures are included; our household energy efficiency strategy is likely to breakeven only over the long term after the investment programme has ceased (beyond our 20 year time horizon). We conclude that UK policy makers will, most likely, have to adopt elements which involve initial net societal costs in order to achieve future emission targets and longer-term benefits from GHG reduction. Cost-effectiveness of GHG strategies is likely to require technological mitigation interventions and/or demand-constraining interventions with important health co-benefits and other efficiency-enhancing policies that promote internalization of externalities. Health co-benefits can play a crucial role in bringing down net costs, but our results also suggest the need for adopting holistic assessment methodologies which give proper consideration to welfare-improving health co-benefits with potentially negative economic repercussions (such as increased longevity).

  5. INTRODUCTION OF A SECTORAL APPROACH TO TRANSPORT SECTOR FOR POST-2012 CLIMATE REGIME

    Directory of Open Access Journals (Sweden)

    Atit TIPPICHAI

    2009-01-01

    Full Text Available Recently, the concept of sectoral approaches has been discussed actively under the UNFCCC framework as it could realize GHG mitigations for the Kyoto Protocol and beyond. However, most studies have never introduced this approach to the transport sector explicitly or analyzed its impacts quantitatively. In this paper, we introduce a sectoral approach which aims to set sector-specific emission reduction targets for the transport sector for the post-2012 climate regime. We suppose that developed countries will commit to the sectoral reduction target and key developing countries such as China and India will have the sectoral no-lose targets — no penalties for the failure to meet targets but the right to sell exceeding reductions — for the medium term commitment, i.e. 2013–2020. Six scenarios of total CO2 emission reduction target in the transport sector in 2020, varying from 5% to 30% reductions from the 2005 level are established. The paper preliminarily analyzes shares of emission reductions and abatement costs to meet the targets for key developed countries including the USA, EU-15, Russia, Japan and Canada. To analyze the impacts of the proposed approach, we generate sectoral marginal abatement cost (MAC curves by region through extending a top-down economic model, namely the AIM/CGE model. The total emission reduction targets are analyzed against the developed MAC curves for the transport sector in order to obtain an equal marginal abatement cost which derives optimal emission reduction for each country and minimizes total abatement cost. The results indicate that the USA will play a crucial role in GHG mitigations in the transport sector as it is most responsible for emission reductions (i.e. accounts for more than 70% while Japan will least reduce (i.e. accounts for about 3% for all scenarios. In the case of a 5% reduction, the total abatement is equal to 171.1 MtCO2 with a total cost of 1.61 billion USD; and in the case of a 30

  6. Technical opportunities to reduce global anthropogenic emissions of nitrous oxide

    Science.gov (United States)

    Winiwarter, Wilfried; Höglund-Isaksson, Lena; Klimont, Zbigniew; Schöpp, Wolfgang; Amann, Markus

    2018-01-01

    We describe a consistent framework developed to quantify current and future anthropogenic emissions of nitrous oxide and the available technical abatement options by source sector for 172 regions globally. About 65% of the current emissions derive from agricultural soils, 8% from waste, and 4% from the chemical industry. Low-cost abatement options are available in industry, wastewater, and agriculture, where they are limited to large industrial farms. We estimate that by 2030, emissions can be reduced by about 6% ±2% applying abatement options at a cost lower than 10 €/t CO2-eq. The largest abatement potential at higher marginal costs is available from agricultural soils, employing precision fertilizer application technology as well as chemical treatment of fertilizers to suppress conversion processes in soil (nitrification inhibitors). At marginal costs of up to 100 €/t CO2-eq, about 18% ±6% of baseline emissions can be removed and when considering all available options, the global abatement potential increases to about 26% ±9%. Due to expected future increase in activities driving nitrous oxide emissions, the limited technical abatement potential available means that even at full implementation of reduction measures by 2030, global emissions can be at most stabilized at the pre-2010 level. In order to achieve deeper reductions in emissions, considerable technological development will be required as well as non-technical options like adjusting human diets towards moderate animal protein consumption.

  7. Role of organic amendment application on greenhouse gas emission from soil

    Energy Technology Data Exchange (ETDEWEB)

    Thangarajan, Ramya, E-mail: thary008@mymail.unisa.edu.au [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Adelaide, SA 5095 (Australia); Bolan, Nanthi S. [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Adelaide, SA 5095 (Australia); Tian, Guanglong [Environmental Monitoring and Research Division, Monitoring and Research Dep., Metropolitan Water Reclamation District of Greater Chicago, 6001, Pershing Road, Cicero, IL 60804 (United States); Naidu, Ravi [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Adelaide, SA 5095 (Australia); Kunhikrishnan, Anitha [Chemical Safety Division, Department of Agro-Food Safety, National Academy of Agricultural Science,10 Suwon-si, Gyeonggi-do (Korea, Republic of)

    2013-11-01

    Globally, substantial quantities of organic amendments (OAs) such as plant residues (3.8 × 10{sup 9} Mg/yr), biosolids (10 × 10{sup 7} Mg/yr), and animal manures (7 × 10{sup 9} Mg/yr) are produced. Recycling these OAs in agriculture possesses several advantages such as improving plant growth, yield, soil carbon content, and microbial biomass and activity. Nevertheless, OA applications hold some disadvantages such as nutrient eutrophication and greenhouse gas (GHG) emission. Agriculture sector plays a vital role in GHG emission (carbon dioxide— CO{sub 2}, methane— CH{sub 4}, and nitrous oxide— N{sub 2}O). Though CH{sub 4} and N{sub 2}O are emitted in less quantity than CO{sub 2}, they are 21 and 310 times more powerful in global warming potential, respectively. Although there have been reviews on the role of mineral fertilizer application on GHG emission, there has been no comprehensive review on the effect of OA application on GHG emission in agricultural soils. The review starts with the quantification of various OAs used in agriculture that include manures, biosolids, and crop residues along with their role in improving soil health. Then, it discusses four major OA induced-GHG emission processes (i.e., priming effect, methanogenesis, nitrification, and denitrification) by highlighting the impact of OA application on GHG emission from soil. For example, globally 10 × 10{sup 7} Mg biosolids are produced annually which can result in the potential emission of 530 Gg of CH{sub 4} and 60 Gg of N{sub 2}O. The article then aims to highlight the soil, climatic, and OA factors affecting OA induced-GHG emission and the management practices to mitigate the emission. This review emphasizes the future research needs in relation to nitrogen and carbon dynamics in soil to broaden the use of OAs in agriculture to maintain soil health with minimum impact on GHG emission from agriculture. - Highlights: ► A comprehensive overview for the first time on GHG emission from

  8. Reducing Greenhouse Gas Emissions from Agricultural Wetlands in Borneo

    Science.gov (United States)

    Abdul, H.; Fatah, L.; Nursyamsi, D.; Kazuyuki, I.

    2011-12-01

    At the forum G20 meeting in 2009, Indonesian President delivered Indonesia's commitment to reduce national greenhouse gas (GHG) emissions by 26% in 2020 by unilateral action and by 41% with support of other countries. To achieve the target, Indonesian government has put forestry, agriculture (including peatlands), energy, industry and transportation as main responsible sectors. Development of crop with low GHG emissions, increasing C sequestration and the use of organic fertilizers are among the activities to be carried out in 2010-2020 period to minimize GHG emissions from agricultural sectors. Three experiments have been carried out to elucidate the reflectivity of crop selection, soil ameliorants and organic fertilizers on GHG emissions from agricultural wetlands in Borneo. Firstly, gas samples were collected in weekly basis from oil palm, paddy, and vegetables fields and analyzed for methane (CH4) and nitrous oxide (N2O) concentrations by a gas chromatography. Secondly, coal fly ash, dolomite and ZnSO4 were incorporated into a pot containing peat and/or alluvial soils taken from wetlands in South Kalimantan. The air samples were taken and analyzed for CH4 by a gas chromatography. Finally, microbial consortium are isolated from soil, sediment and cow dung. The microbes were then propagated and used in a rice straw composting processes. The CO2, CH4 and N2O emissions from composting vessel were measured at one, two and four weeks of composting processes. The results showed that shifting the use of peatlands for oil palm to vegetable field reduced the GHG emissions by about 74% and that to paddy field reduce the GHG emissions by about 82%. The CH4 emissions from paddy field can be further reduced by applying dolomite. However, the use of coal fly ash and ZnSO4 increased CH4 emissions from peat soil cultivated to rice. The use of microbe isolated from saline soil could reduce GHG emissions during the composting of rice straw. The social aspect of GHG reduction in

  9. Greenhouse gas emissions from cities and regions: International implications revealed by Hong Kong

    International Nuclear Information System (INIS)

    Harris, Paul G.; Chow, Alice S.Y.; Symons, Jonathan

    2012-01-01

    The diversity of greenhouse gas (GHG) accounting methodologies currently utilized by cities around the world make meaningful comparisons of their emissions almost impossible. Consequently, the 2010 United Nations International Standard for Determining Greenhouse Gas Emissions for Cities promotes a “harmonized protocol for quantifying the GHG emissions attributable to cities and local regions.” The UN's common standard has important implications for comparison, benchmarking and policy assessment related to energy policies. This paper uses Hong Kong as a case study to illustrate these implications. Hong Kong's per capita contribution to GHG emissions are among the highest in the world, yet the local government's official statistics indicate emissions that are far below those reported by most affluent economies. This discrepancy arises from a reporting methodology that does not require inclusion of GHG emissions linked to consumption of imported goods or emissions from aviation and shipping. The Hong Kong case reveals that current inventories do not provide sufficient information to guide policymaking related to energy and climate change. They also do not provide adequate information for comparing policies of cities internationally. Alternative emissions-reporting standards that focus more on pollution from consumption will create avenues for more effective climate-related policies. - Highlights: ► Flawed GHG inventory methodologies can lead cities to adopt misguided policies. ► Diverse GHG inventory methodologies make meaningful comparisons among cities difficult. ► A Hong Kong case study highlights that GHG inventories can misrepresent cities' climate impacts. ► City inventories often exclude GHG emissions linked to imports, aviation and shipping. ► The International Standard for Determining GHG Emissions for Cities can assist climate policy.

  10. Full GHG balance of a drained fen peatland cropped to spring barley and reed canary grass using comparative assessment of CO2 fluxes.

    Science.gov (United States)

    Karki, Sandhya; Elsgaard, Lars; Kandel, Tanka P; Lærke, Poul Erik

    2015-03-01

    Empirical greenhouse gas (GHG) flux estimates from diverse peatlands are required in order to derive emission factors for managed peatlands. This study on a drained fen peatland quantified the annual GHG balance (Carbon dioxide (CO2), nitrous oxide (N2O), methane (CH4), and C exported in crop yield) from spring barley (SB) and reed canary grass (RCG) using static opaque chambers for GHG flux measurements and biomass yield for indirectly estimating gross primary production (GPP). Estimates of ecosystem respiration (ER) and GPP were compared with more advanced but costly and labor-intensive dynamic chamber studies. Annual GHG balance for the two cropping systems was 4.0 ± 0.7 and 8.1 ± 0.2 Mg CO2-Ceq ha(-1) from SB and RCG, respectively (mean ± standard error, n = 3). Annual CH4 emissions were negligible (peatland cropped to SB and RCG and presented a valid alternative to estimating the full GHG balance by dynamic chambers.

  11. Boreal forests can have a remarkable role in reducing greenhouse gas emissions locally: Land use-related and anthropogenic greenhouse gas emissions and sinks at the municipal level

    Energy Technology Data Exchange (ETDEWEB)

    Vanhala, Pekka, E-mail: pekka.vanhala@ymparisto.fi [Finnish Environment Institute, Natural Environment Centre, P.O. Box 140, Mechelininkatu 34 a, FI-00251 Helsinki (Finland); Bergström, Irina [Finnish Environment Institute, Natural Environment Centre, P.O. Box 140, Mechelininkatu 34 a, FI-00251 Helsinki (Finland); Haaspuro, Tiina [University of Helsinki, Department of Environmental Sciences, P.O. Box 65, Viikinkaari 1, 00014 Helsinki (Finland); Kortelainen, Pirkko; Holmberg, Maria; Forsius, Martin [Finnish Environment Institute, Natural Environment Centre, P.O. Box 140, Mechelininkatu 34 a, FI-00251 Helsinki (Finland)

    2016-07-01

    Ecosystem services have become an important concept in policy-making. Carbon (C) sequestration into ecosystems is a significant ecosystem service, whereas C losses can be considered as an ecosystem disservice. Municipalities are in a position to make decisions that affect local emissions and therefore are important when considering greenhouse gas (GHG) mitigation. Integrated estimations of fluxes at a regional level help local authorities to develop land use policies for minimising GHG emissions and maximising C sinks. In this study, the Finnish national GHG accounting system is modified and applied at the municipal level by combining emissions and sinks from agricultural land, forest areas, water bodies and mires (land use-related GHG emissions) with emissions from activities such as energy production and traffic (anthropogenic GHG emissions) into the LUONNIKAS calculation tool. The study area consists of 14 municipalities within the Vanajavesi catchment area located in Southern Finland. In these municipalities, croplands, peat extraction sites, water bodies and undrained mires are emission sources, whereas forests are large carbon sinks that turn the land use-related GHG budget negative, resulting in C sequestration into the ecosystem. The annual land use-related sink in the study area was 78 t CO{sub 2} eq km{sup −2} and 2.8 t CO{sub 2} eq per capita. Annual anthropogenic GHG emissions from the area amounted to 250 t CO{sub 2} eq km{sup −2} and 9.2 t CO{sub 2} eq per capita. Since forests are a significant carbon sink and the efficiency of this sink is heavily affected by forest management practices, forest management policy is a key contributing factor for mitigating municipal GHG emissions. - Highlights: • The significance of natural landscapes in the regional C budgets is shown. • Boreal forests can be remarkable C sinks enabling net C sequestration in ecosystems. • The large area of forest may compensate for all C emissions in the municipality.

  12. Fundamental cooperation project in fiscal 2000 for improving international energy consumption efficiency. Investigations in relation with prevention of global warming (analytical comparison centering around cost effectiveness related to greenhouse effect gas (GHG) reduction in overseas countries); 2000 nendo kokusai energy shohi koritsu ka chosa nado kyoryoku kiso jigyo - chikyu ondanka boshi kanren chosa hokokusho. Kaigai deno GHG sakugen ni kansuru hiyo tai koka wo chushin to shita bunseki hikaku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    In order to provide discussion materials for measures to achieve the GHG emission reduction target, investigations and discussions have been made on the following subjects: cost effectiveness of reducing GHG emission by target countries and target technologies, use of maps and databases on the possible reduction quantity of GHG emission, the targeted countries and business categories. Regarding the target countries, investigations were made on the general situation of the energy consumption efficiency, difference between their energy consumption efficiency by industries and that in Japan, and the GHG emission quantities by sectors. As a result, 31 counties hopeful in reducing CO2 emission were selected. With regard to technologies to reduce CO2 emission, technologies having been practically used and proliferated in Japan were used as the base, whereas 43 technologies were systematized for such departments as industries, business operations, households, and transportation. According to a trial calculation on the effect of CO2 emission reduction, if the 43 technologies are applied to the 31 target countries, CO2 emission reduction of 698 million tons as a whole would be possible, for which the required expense was calculated as 114.4 trillion yen. In evaluating the CO2 emission reducing technologies, the cost effectiveness of each technology was evaluated by cost per GHG emission reduction of 1t-CO2. (NEDO)

  13. Embodiment Analysis for Greenhouse Gas Emissions by Chinese Economy Based on Global Thermodynamic Potentials

    Directory of Open Access Journals (Sweden)

    Lijie Wang

    2011-11-01

    Full Text Available This paper considers the Global Thermodynamic Potential (GTP indicator to perform a unified assessment of greenhouse gas (GHG emissions, and to systematically reveal the emission embodiment in the production, consumption, and international trade of the Chinese economy in 2007 as the most recent year available with input-output table and updated inventory data. The results show that the estimated total direct GHG emissions by the Chinese economy in 2007 amount to 10,657.5 Mt CO2-eq by the GTPs with 40.6% from CH4 emissions in magnitude of the same importance as CO2 emissions. The five sectors of Electric Power/Steam and Hot Water Production and Supply, Smelting and Pressing of Ferrous and Nonferrous Metals, Nonmetal Mineral Products, Agriculture, and Coal Mining and Dressing, are responsible for 83.3% of the total GHG emissions with different emission structures. The demands of coal and coal-electricity determine the structure of emission embodiment to an essential extent. The Construction sector holds the top GHG emissions embodied in both domestic production and domestic consumption. The GHG emission embodied in gross capital formation is more than those in other components of final demand characterized by extensive investment and limited household consumption. China is a net exporter of embodied GHG emissions, with a remarkable share of direct emission induced by international trade, such as textile products, industrial raw materials, and primary machinery and equipment products exports. The fractions of CH4 in the component of embodied GHG emissions in the final demand are much greater than those fractions calculated by the Global Warming Potentials, which highlight the importance of CH4 emissions for the case of China and indicate the essential effect of CH4 emissions on global climate change. To understand the full context to achieve GHG emission mitigation, this study provides a new insight to address China’s GHG emissions status and

  14. Greenhouse gas emissions during composting of dairy manure: Delaying pile mixing does not reduce overall emissions

    Science.gov (United States)

    The effect of the timing of pile mixing on greenhouse gas (GHG) emissions during dairy manure composting was determined using large flux chambers designed to completely cover replicate pilot-scale compost piles. GHG emissions from compost piles that were mixed at 2, 3, 4, or 5 weeks after initial c...

  15. Process industry energy retrofits: the importance of emission baselines for greenhouse gas reductions

    International Nuclear Information System (INIS)

    Aadahl, Anders; Harvey, Simon; Berntsson, Thore

    2004-01-01

    Fuel combustion for heat and/or electric power production is often the largest contributor of greenhouse gas (GHG) emissions from an industrial process plant. Economically feasible options to reduce these emissions include fuel switching and retrofitting the plant's energy system. Process integration methods and tools can be used to evaluate potential retrofit measures. For assessing the GHG emissions reduction potential for the measures considered, it is also necessary to define appropriate GHG emission baselines. This paper presents a systematic GHG emission calculation method for retrofit situations including improved heat exchange, integration of combined heat and power (CHP) units, and combinations of both. The proposed method is applied to five different industrial processes in order to compare the impact of process specific parameters and energy market specific parameters. For potential GHG emission reductions the results from the applied study reveal that electricity grid emissions are significantly more important than differences between individual processes. Based on the results of the study, it is suggested that for sustainable investment decision considerations a conservative emission baseline is most appropriate. Even so, new industrial CHP in the Northern European energy market could play a significant role in the common effort to decrease GHG emissions

  16. Multiple gas reduction strategy

    Energy Technology Data Exchange (ETDEWEB)

    A. Kurosawa [Institute of Applied Energy, Tokyo (Japan)

    2003-07-01

    Future global warming has a close relationship with the abatement potential of six greenhouse gases (GHGs), including carbon dioxide (CO{sub 2}), methane (CH{sub 4}), nitrous oxide (N{sub 2}O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF6). Therefore, multiple gas reduction flexibility should be assessed. The emission of each non-CO{sub 2} GHG is calculated endogenously by the sum of the product of the emission factor and the endogenous activity index using an integrated assessment model, GRAPE (Global Relationship Assessment to Protect the Environment). The model consists of five modules dealing with issues on energy, climate, land use, macroeconomics and environmental impacts. The uncertainty in the non-CO{sub 2} GHG emission inventory and emission factors is discussed. 5 refs., 3 figs., 1 tab.

  17. Estimating criteria pollutant emissions using the California Regional Multisector Air Quality Emissions (CA-REMARQUE model v1.0

    Directory of Open Access Journals (Sweden)

    C. B. Zapata

    2018-04-01

    Full Text Available The California Regional Multisector Air Quality Emissions (CA-REMARQUE model is developed to predict changes to criteria pollutant emissions inventories in California in response to sophisticated emissions control programs implemented to achieve deep greenhouse gas (GHG emissions reductions. Two scenarios for the year 2050 act as the starting point for calculations: a business-as-usual (BAU scenario and an 80 % GHG reduction (GHG-Step scenario. Each of these scenarios was developed with an energy economic model to optimize costs across the entire California economy and so they include changes in activity, fuels, and technology across economic sectors. Separate algorithms are developed to estimate emissions of criteria pollutants (or their precursors that are consistent with the future GHG scenarios for the following economic sectors: (i on-road, (ii rail and off-road, (iii marine and aviation, (iv residential and commercial, (v electricity generation, and (vi biorefineries. Properly accounting for new technologies involving electrification, biofuels, and hydrogen plays a central role in these calculations. Critically, criteria pollutant emissions do not decrease uniformly across all sectors of the economy. Emissions of certain criteria pollutants (or their precursors increase in some sectors as part of the overall optimization within each of the scenarios. This produces nonuniform changes to criteria pollutant emissions in close proximity to heavily populated regions when viewed at 4 km spatial resolution with implications for exposure to air pollution for those populations. As a further complication, changing fuels and technology also modify the composition of reactive organic gas emissions and the size and composition of particulate matter emissions. This is most notably apparent through a comparison of emissions reductions for different size fractions of primary particulate matter. Primary PM2.5 emissions decrease by 4 % in the GHG

  18. Estimating criteria pollutant emissions using the California Regional Multisector Air Quality Emissions (CA-REMARQUE) model v1.0

    Science.gov (United States)

    Zapata, Christina B.; Yang, Chris; Yeh, Sonia; Ogden, Joan; Kleeman, Michael J.

    2018-04-01

    The California Regional Multisector Air Quality Emissions (CA-REMARQUE) model is developed to predict changes to criteria pollutant emissions inventories in California in response to sophisticated emissions control programs implemented to achieve deep greenhouse gas (GHG) emissions reductions. Two scenarios for the year 2050 act as the starting point for calculations: a business-as-usual (BAU) scenario and an 80 % GHG reduction (GHG-Step) scenario. Each of these scenarios was developed with an energy economic model to optimize costs across the entire California economy and so they include changes in activity, fuels, and technology across economic sectors. Separate algorithms are developed to estimate emissions of criteria pollutants (or their precursors) that are consistent with the future GHG scenarios for the following economic sectors: (i) on-road, (ii) rail and off-road, (iii) marine and aviation, (iv) residential and commercial, (v) electricity generation, and (vi) biorefineries. Properly accounting for new technologies involving electrification, biofuels, and hydrogen plays a central role in these calculations. Critically, criteria pollutant emissions do not decrease uniformly across all sectors of the economy. Emissions of certain criteria pollutants (or their precursors) increase in some sectors as part of the overall optimization within each of the scenarios. This produces nonuniform changes to criteria pollutant emissions in close proximity to heavily populated regions when viewed at 4 km spatial resolution with implications for exposure to air pollution for those populations. As a further complication, changing fuels and technology also modify the composition of reactive organic gas emissions and the size and composition of particulate matter emissions. This is most notably apparent through a comparison of emissions reductions for different size fractions of primary particulate matter. Primary PM2.5 emissions decrease by 4 % in the GHG-Step scenario vs

  19. Simulating soil greenhouse emissions from Swiss long-term cropping system trials

    Science.gov (United States)

    Necpalova, Magdalena; Lee, Juhwan; Skinner, Colin; Büchi, Lucie; Berner, Alfred; Mäder, Paul; Mayer, Jochen; Charles, Raphael; van der Heijden, Marcel; Wittwer, Raphael; Gattinger, Andreas; Six, Johan

    2017-04-01

    There is an urgent need to identify and evaluate management practices for their bio-physical potential to mitigate greenhouse gas (GHG) emissions from agriculture. The cost and time required for direct management-specific GHG measurements limit the spatial and temporal resolution and the extent of data that can be collected. Biogeochemical process-based models such as DayCent can be used to bridge data gaps over space and time and estimate soil GHG emissions relevant to various climate change mitigation strategies. Objectives of this study were (a) to parameterize DayCent for common Swiss crops and crop-specific management practices using the Swiss long-term experimental data collected at four sites (Therwil, Frick, Changins, and Reckenholz); (b) to evaluate the model's ability to predict crop productivity, long-term soil carbon dynamics and N2O emissions from Swiss cropping systems; (c) to calculate a net soil GHG balance for all treatments (except for bio-dynamic) studied in long-term field experiments in Switzerland; and (d) to study the management effects and their interactions on soil GHG emissions at each experimental site. Model evaluation indicated that DayCent predicted crop productivity (rRMSE=0.29 r2=0.81, n=2614), change in soil carbon stock (rRMSE=0.14, r2=0.72, n=1289) and cumulative N2O emissions (rRMSE=0.25, r2=0.89, n=8) satisfactorily across all treatments and sites. Net soil GHG emissions were derived from changes in soil carbon, N2O emissions and CH4 oxidation on an annual basis using IPCC (2014) global warming potentials. Modelled net soil GHG emissions calculated for individual treatments over 30 years ranged from -594 to 1654 kg CO2 eq ha-1 yr-1. The highest net soil GHG emissions were predicted for conventional tillage and slurry application treatment at Frick, while soils under organic and reduced tillage management at Reckenholz acted as a net GHG sink. The statistical analyses using linear MIXED models indicated that net soil GHG

  20. The timing of biological carbon sequestration and carbon abatement in the energy sector under optimal strategies against climate risks

    International Nuclear Information System (INIS)

    Gitz, V.; Hourcade, J.Ch.; Ciais, Ph.

    2005-10-01

    This paper addresses the timing of the use of biological carbon sequestration and its capacity to alleviate the carbon constraint on the energy sector. We constructed a stochastic optimal control model balancing the costs of fossil emission abatement, the opportunity costs of lands allocated to afforestation, and the costs of uncertain climate damages. We show that a minor part of the sequestration potential should start immediately as a 'brake', slowing down both the rate of growth of concentrations and the rate of abatement in the energy sector. thus increasing the option value of the emission trajectories. But, most of the potential is put in reserve to be used as a 'safety valve' after the resolution of uncertainty, if a higher and faster decarbonization is required: sequestration cuts off the peaks of costs of fossil abatement and postpones the pivoting of the energy system by up to two decades. (authors)

  1. Emissions from US waste collection vehicles

    International Nuclear Information System (INIS)

    Maimoun, Mousa A.; Reinhart, Debra R.; Gammoh, Fatina T.; McCauley Bush, Pamela

    2013-01-01

    Highlights: ► Life-cycle emissions for alternative fuel technologies. ► Fuel consumption of alternative fuels for waste collection vehicles. ► Actual driving cycle of waste collection vehicles. ► Diesel-fueled waste collection vehicle emissions. - Abstract: This research is an in-depth environmental analysis of potential alternative fuel technologies for waste collection vehicles. Life-cycle emissions, cost, fuel and energy consumption were evaluated for a wide range of fossil and bio-fuel technologies. Emission factors were calculated for a typical waste collection driving cycle as well as constant speed. In brief, natural gas waste collection vehicles (compressed and liquid) fueled with North-American natural gas had 6–10% higher well-to-wheel (WTW) greenhouse gas (GHG) emissions relative to diesel-fueled vehicles; however the pump-to-wheel (PTW) GHG emissions of natural gas waste collection vehicles averaged 6% less than diesel-fueled vehicles. Landfill gas had about 80% lower WTW GHG emissions relative to diesel. Biodiesel waste collection vehicles had between 12% and 75% lower WTW GHG emissions relative to diesel depending on the fuel source and the blend. In 2011, natural gas waste collection vehicles had the lowest fuel cost per collection vehicle kilometer travel. Finally, the actual driving cycle of waste collection vehicles consists of repetitive stops and starts during waste collection; this generates more emissions than constant speed driving

  2. Assessing the health benefits of urban air pollution reductions associated with climate change mitigation (2000-2020): Santiago, São Paulo, México City, and New York City.

    Science.gov (United States)

    Cifuentes, L; Borja-Aburto, V H; Gouveia, N; Thurston, G; Davis, D L

    2001-06-01

    To investigate the potential local health benefits of adopting greenhouse gas (GHG) mitigation policies, we develop scenarios of GHG mitigation for México City, México; Santiago, Chile; São Paulo, Brazil; and New York, New York, USA using air pollution health impact factors appropriate to each city. We estimate that the adoption of readily available technologies to lessen fossil fuel emissions over the next two decades in these four cities alone will reduce particulate matter and ozone and avoid approximately 64,000 (95% confidence interval [CI] 18,000-116,000) premature deaths (including infant deaths), 65,000 (95% CI 22,000-108,000) chronic bronchitis cases, and 46 million (95% CI 35-58 million) person-days of work loss or other restricted activity. These findings illustrate that GHG mitigation can provide considerable local air pollution-related public health benefits to countries that choose to abate GHG emissions by reducing fossil fuel combustion.

  3. Evaluation of the effect of accounting method, IPCC v. LCA, on grass-based and confinement dairy systems' greenhouse gas emissions.

    Science.gov (United States)

    O'Brien, D; Shalloo, L; Patton, J; Buckley, F; Grainger, C; Wallace, M

    2012-09-01

    Life cycle assessment (LCA) and the Intergovernmental Panel on Climate Change (IPCC) guideline methodology, which are the principal greenhouse gas (GHG) quantification methods, were evaluated in this study using a dairy farm GHG model. The model was applied to estimate GHG emissions from two contrasting dairy systems: a seasonal calving pasture-based dairy farm and a total confinement dairy system. Data used to quantify emissions from these systems originated from a research study carried out over a 1-year period in Ireland. The genetic merit of cows modelled was similar for both systems. Total mixed ration was fed in the Confinement system, whereas grazed grass was mainly fed in the grass-based system. GHG emissions from these systems were quantified per unit of product and area. The results of both methods showed that the dairy system that emitted the lowest GHG emissions per unit area did not necessarily emit the lowest GHG emissions possible for a given level of product. Consequently, a recommendation from this study is that GHG emissions be evaluated per unit of product given the growing affluent human population and increasing demand for dairy products. The IPCC and LCA methods ranked dairy systems' GHG emissions differently. For instance, the IPCC method quantified that the Confinement system reduced GHG emissions per unit of product by 8% compared with the grass-based system, but the LCA approach calculated that the Confinement system increased emissions by 16% when off-farm emissions associated with primary dairy production were included. Thus, GHG emissions should be quantified using approaches that quantify the total GHG emissions associated with the production system, so as to determine whether the dairy system was causing emissions displacement. The IPCC and LCA methods were also used in this study to simulate, through a dairy farm GHG model, what effect management changes within both production systems have on GHG emissions. The findings suggest that

  4. Greenhouse gas emissions from MSW incineration in China: Impacts of waste characteristics and energy recovery

    Energy Technology Data Exchange (ETDEWEB)

    Yang Na [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Zhang Hua, E-mail: zhanghua_tj@tongji.edu.cn [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Chen Miao; Shao Liming [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); He Pinjing, E-mail: xhpjk@tongji.edu.cn [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China)

    2012-12-15

    Determination of the amount of greenhouse gas (GHG) emitted during municipal solid waste incineration (MSWI) is complex because both contributions and savings of GHGs exist in the process. To identify the critical factors influencing GHG emissions from MSWI in China, a GHG accounting model was established and applied to six Chinese cities located in different regions. The results showed that MSWI in most of the cities was the source of GHGs, with emissions of 25-207 kg CO{sub 2}-eq t{sup -1} rw. Within all process stages, the emission of fossil CO{sub 2} from the combustion of MSW was the main contributor (111-254 kg CO{sub 2}-eq t{sup -1} rw), while the substitution of electricity reduced the GHG emissions by 150-247 kg CO{sub 2}-eq t{sup -1} rw. By affecting the fossil carbon content and the lower heating value of the waste, the contents of plastic and food waste in the MSW were the critical factors influencing GHG emissions of MSWI. Decreasing food waste content in MSW by half will significantly reduce the GHG emissions from MSWI, and such a reduction will convert MSWI in Urumqi and Tianjin from GHG sources to GHG sinks. Comparison of the GHG emissions in the six Chinese cities with those in European countries revealed that higher energy recovery efficiency in Europe induced much greater reductions in GHG emissions. Recovering the excess heat after generation of electricity would be a good measure to convert MSWI in all the six cities evaluated herein into sinks of GHGs.

  5. Greenhouse gas emissions from MSW incineration in China: impacts of waste characteristics and energy recovery.

    Science.gov (United States)

    Yang, Na; Zhang, Hua; Chen, Miao; Shao, Li-Ming; He, Pin-Jing

    2012-12-01

    Determination of the amount of greenhouse gas (GHG) emitted during municipal solid waste incineration (MSWI) is complex because both contributions and savings of GHGs exist in the process. To identify the critical factors influencing GHG emissions from MSWI in China, a GHG accounting model was established and applied to six Chinese cities located in different regions. The results showed that MSWI in most of the cities was the source of GHGs, with emissions of 25-207 kg CO(2)-eq t(-1) rw. Within all process stages, the emission of fossil CO(2) from the combustion of MSW was the main contributor (111-254 kg CO(2)-eq t(-1) rw), while the substitution of electricity reduced the GHG emissions by 150-247 kg CO(2)-eq t(-1) rw. By affecting the fossil carbon content and the lower heating value of the waste, the contents of plastic and food waste in the MSW were the critical factors influencing GHG emissions of MSWI. Decreasing food waste content in MSW by half will significantly reduce the GHG emissions from MSWI, and such a reduction will convert MSWI in Urumqi and Tianjin from GHG sources to GHG sinks. Comparison of the GHG emissions in the six Chinese cities with those in European countries revealed that higher energy recovery efficiency in Europe induced much greater reductions in GHG emissions. Recovering the excess heat after generation of electricity would be a good measure to convert MSWI in all the six cities evaluated herein into sinks of GHGs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Influence of economic factors on future global emissions

    International Nuclear Information System (INIS)

    Duffey, R.B.; Poehnell, T.G.; Miller, A.I.; Tamm, J.A.

    2001-01-01

    The climate change debate is really about economics, and reducing greenhouse gas (GHG) emissions and climate change potential at a reasonable and acceptable cost for everyone. In this paper, we examine the major economic factors behind defining climate change policies that relate to reducing GHG emissions, and the value to be placed on CO 2 . We examine the impacts and the 'cost of carbon' based on the studies of GHG reduction strategies in the US and the European Union (EU). We show that a series of self-defeating assumptions have been used in the latest analyses regarding relative future energy and power costs, and hence future GHG emissions. We estimate: the 'natural value' of GHG emissions based on world economic factors, the value of electricity and energy based on world data, the cost advantage of using a given new technology, and the value of avoided GHG emissions in future global and national climate change projections. The use of electricity is shown to be key in aiding economic growth for the entire world. Using the latest Intergovernmental Panel on Climate Change (IPCC) 2000 climate change projections as a base, we reflect the impacts of differing energy prices on future global climate conditions and GHG reductions. We conduct a similar analysis for Canada using the latest 'Energy in Canada 2000' projections. We show how the use of advanced technology for the traditional production of electricity, and for hydrogen-based transportation fuels, can stabilize global emissions and assist in managing adverse climate change conditions without causing economic penalties. The method we develop is sufficiently general that it can be used for valuing the economic impact of the emission reductions for any technology. We estimate the embedded value and potential economic benefit of nuclear technology and electric contribution for both the world economy to 2100, and for the latest projections for Canada to 2020. (author)

  7. New power expansion strategy and a low GHG emitting economy in Korea

    International Nuclear Information System (INIS)

    Chung, W. S.; Yun, S. W.; Lee, D. S.; Jeong, J. W.

    2008-01-01

    According to mounting environmental concerns and an increased number of environmental restrictions, a new power expansion strategy is being suggested in Korea. Low carbon emitting technologies are a cost- and environment-effective renewable energy technology for producing electricity (except large hydropower) and the fastest growing market after the launch of the 'The 3. Basic Plan for Long-Term Electricity Supply and Demand' in 2006 in Korea. Even though some renewable power plants don't use any fuel or materials during their operation, they still contribute to climate change. This is due to the emission of greenhouse gases (GHG) from the fossil fuels combusted for their components manufacturing, construction, and dismantling. So the aim of this analysis is to assess the Global Warming Potential (GWP) during the whole life cycle for each candidate technology and to estimate how much they contribute to GHG emissions by introducing low-carbon energy sources up to 2020 in Korea. (authors)

  8. Modeling Greenhouse Gas Emissions from Enteric Fermentation

    NARCIS (Netherlands)

    Kebreab, E.; Tedeschi, L.; Dijkstra, J.; Ellis, J.L.; Bannink, A.; France, J.

    2016-01-01

    Livestock directly contribute to greenhouse gas (GHG) emissions mainly through methane (CH4) and nitrous oxide (N2O) emissions. For cost and practicality reasons, quantification of GHG has been through development of various types of mathematical models. This chapter addresses the utility and

  9. Achieving CO2 reductions in Colombia: Effects of carbon taxes and abatement targets

    International Nuclear Information System (INIS)

    Calderón, Silvia; Alvarez, Andrés Camilo; Loboguerrero, Ana María; Arango, Santiago; Calvin, Katherine; Kober, Tom; Daenzer, Kathryn; Fisher-Vanden, Karen

    2016-01-01

    In this paper we investigate CO 2 emission scenarios for Colombia and the effects of implementing carbon taxes and abatement targets on the energy system. By comparing baseline and policy scenario results from two integrated assessment partial equilibrium models TIAM-ECN and GCAM and two general equilibrium models Phoenix and MEG4C, we provide an indication of future developments and dynamics in the Colombian energy system. Currently, the carbon intensity of the energy system in Colombia is low compared to other countries in Latin America. However, this trend may change given the projected rapid growth of the economy and the potential increase in the use of carbon-based technologies. Climate policy in Colombia is under development and has yet to consider economic instruments such as taxes and abatement targets. This paper shows how taxes or abatement targets can achieve significant CO 2 reductions in Colombia. Though abatement may be achieved through different pathways, taxes and targets promote the entry of cleaner energy sources into the market and reduce final energy demand through energy efficiency improvements and other demand-side responses. The electric power sector plays an important role in achieving CO 2 emission reductions in Colombia, through the increase of hydropower, the introduction of wind technologies, and the deployment of biomass, coal and natural gas with CO 2 capture and storage (CCS). Uncertainty over the prevailing mitigation pathway reinforces the importance of climate policy to guide sectors toward low-carbon technologies. This paper also assesses the economy-wide implications of mitigation policies such as potential losses in GDP and consumption. An assessment of the legal, institutional, social and environmental barriers to economy-wide mitigation policies is critical yet beyond the scope of this paper. - Highlights: • Four energy and economy-wide models under carbon mitigation scenarios are compared. • Baseline results show that CO

  10. Greenhouse Gas Emissions from Agricultural Production

    DEFF Research Database (Denmark)

    Bennetzen, Eskild Hohlmann

    unit. This dissertation presents results and comprehensions from my PhD study on the basis of three papers. The overall aim has been to develop a new identity-based framework, the KPI, to estimate and analyse GHG emissions from agriculture and LUC and apply this on national, regional and global level....... The KPI enables combined analyses of changes in total emissions, emissions per area and emissions per product. Also, the KPI can be used to assess how a change in each GHG emission category affects the change in total emissions; thus pointing to where things are going well and where things are going less...... well in relation to what is actually produced. The KPI framework is scale independent and can be applied at any level from field and farm to global agricultural production. Paper I presents the first attempt to develop the KPI identity framework and, as a case study, GHG emissions from Danish crop...

  11. UNEP greenhouse gas abatement costing studies

    International Nuclear Information System (INIS)

    Maya, R.S.; Nziramasanga, N.; Muguti, E.; Fenhann, J.

    1993-10-01

    The aim was to assess options and cost of reducing emissions of greenhouse gases (with emphasis on carbon dioxide) from human activity in Zimbabwe. A brief description of the country's economy and energy sector, policy and pricing and regulations is given and substantial data related to the country's economy, technology, energy consumption, emission and fuel prices are presented. The energy demand in households and for other sectors in Zimbabwe are assessed, and documented in the case of the former. The reference scenarios on energy demand and supply assess greenhouse gas emissions under conditions whereby the present economic growth trends predominate. Energy efficiency improvements are discussed. Abatement technology options are stated as afforestation for carbon sequestration, more efficient coal-fired industrial boilers, extended use of hydroelectricity, prepayment electric meters, minimum tillage, optimization of coal-fired tobacco barns, industrial power factor correction equipment, domestic biogas digesters, solar water heating systems, time switches in electric geysers, optimization of industrial furnaces, photovoltaic water pumps, production of ammonia from coal for fertilizing purposes, and recovery of coke oven gases for use in thermal power generation. (AB)

  12. Selection of Sustainable Technology for VOC Abatement in an Industry: An Integrated AHP-QFD Approach

    Science.gov (United States)

    Gupta, Alok Kumar; Modi, Bharat A.

    2018-04-01

    Volatile organic compounds (VOCs) are universally present in global atmospheric pollutants. These VOCs are responsible for photo chemical reaction in atmosphere leading to serious harmful effects on human health and environment. VOCs are produced from both natural and man-made sources and may have good commercial value if it can be utilized as alternate fuel. As per data from US EPA, 15% of total VOC emissions are generated from surface coating industry but VOC concentration and exhaust air volume varies to a great extent and is dependent on processes used by industry. Various technologies are available for abatement of VOCs. Physical, Chemical and Biological technologies are available to remove VOCs by either recovery or destruction with many advantages and limitations. With growing environmental awareness and considering the resource limitations of medium and small scale industries, requirement of a tool for selecting appropriate techno economically viable solution for removal of VOCs from industrial process exhaust is envisaged. The aim of the present study is to provide management a tool to determine the overall effect of implementation of VOC abatement technology on business performance and VOC emissions. The primary purpose of this work is to outline a methodology to rate various VOC abatement technologies with respect to the constraint of meeting current and foreseeable future regulatory requirements, operational flexibility and Over All Economics Parameters considering conservation of energy. In this paper an integrated approach has been proposed to select most appropriate abatement technology strategically. Analytical hierarchy process and Quality function deployment have been integrated for Techno-commercial evaluation. A case study on selection of VOC abatement technology for a leading aluminium foil surface coating, lamination and printing facility using this methodology is presented in this study.

  13. Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the UK.

    Science.gov (United States)

    Scarborough, Peter; Appleby, Paul N; Mizdrak, Anja; Briggs, Adam D M; Travis, Ruth C; Bradbury, Kathryn E; Key, Timothy J

    The production of animal-based foods is associated with higher greenhouse gas (GHG) emissions than plant-based foods. The objective of this study was to estimate the difference in dietary GHG emissions between self-selected meat-eaters, fish-eaters, vegetarians and vegans in the UK. Subjects were participants in the EPIC-Oxford cohort study. The diets of 2,041 vegans, 15,751 vegetarians, 8,123 fish-eaters and 29,589 meat-eaters aged 20-79 were assessed using a validated food frequency questionnaire. Comparable GHG emissions parameters were developed for the underlying food codes using a dataset of GHG emissions for 94 food commodities in the UK, with a weighting for the global warming potential of each component gas. The average GHG emissions associated with a standard 2,000 kcal diet were estimated for all subjects. ANOVA was used to estimate average dietary GHG emissions by diet group adjusted for sex and age. The age-and-sex-adjusted mean (95 % confidence interval) GHG emissions in kilograms of carbon dioxide equivalents per day (kgCO 2 e/day) were 7.19 (7.16, 7.22) for high meat-eaters ( > = 100 g/d), 5.63 (5.61, 5.65) for medium meat-eaters (50-99 g/d), 4.67 (4.65, 4.70) for low meat-eaters ( vegans. In conclusion, dietary GHG emissions in self-selected meat-eaters are approximately twice as high as those in vegans. It is likely that reductions in meat consumption would lead to reductions in dietary GHG emissions.

  14. Environmental Pollution Prevention, Control and Abatement

    Science.gov (United States)

    1977-08-30

    AD-A271 117 fDATE August 30. 1977 ASD (ORA&L) Department of Defense Instruction SUBJECT: Environmental Pollution Prevention, Control and Abatement...Ensure that any funds appropriated and apportioned for the prevention, control, and abatement of environmental pollution are not used for any other...77 References (a) Executive Order 11752, "Prevention, Control, and Abatement of Environmental Pollution at Federal Facilities," December 19, 1973 (b

  15. Energy Consumption and Greenhouse Gas Emission of Korean Offshore Fisheries

    Science.gov (United States)

    Lee, Jihoon; Kim, Taeho; Ellingsen, Harald; Hognes, Erik Skontorp; Hwang, Bokyu

    2018-06-01

    This paper presents the energy and greenhouse gas (GHG) emission assessments of Korean offshore fisheries. The consumption of energy by fisheries is a significant concern because of its attendant environmental effect, as well as the cost of the fuel consumed in fishing industry. With the global attention of reducing GHG emission and increasing energy efficiency of fuel, the seafood industry needs to further understand its energy use and reduce its GHG emission. In the present study, the amount of energy consumed and the GHG emission of Korean offshore fisheries in a period from 2009 to 2013 were examined. Offshore fisheries accounted for 24% of Korean production in 2013 and 60% of fuel consumption related GHG emission. Whereas the total GHG emission intensity of this sector improved slightly between 2009 and 2012; as such emission decreased by approximately 1.9%, which increased again in 2013. The average amount of total GHG emission in this five years period was 1.78 × 106 tons of carbon dioxide equivalent/year (t CO2 eq. y-1). Active fishing gear was found to consume 20% more fuel than passive gear. However, the production from passive gear was 28%, lower than 72% from active gear. The reason for this is that less abundant stationary resources are harvested using passive gear. Furthermore, the consumption of fuel was significantly influenced by the fishing method. Implementation and development of new fishing technologies and methods are important for improving energy efficiency and reducing the climate impact on fisheries. To realize these purposes, the fishery management system needs to be established by centralizing on energy efficiency and climate effect.

  16. Life-cycle environmental and economic impacts of energy-crop fuel-chains: an integrated assessment of potential GHG avoidance in Ireland

    International Nuclear Information System (INIS)

    Styles, David; Jones, Michael B.

    2008-01-01

    This paper combines life-cycle analyses and economic analyses for Miscanthus and willow heat and electricity fuel-chains in Ireland. Displaced agricultural land-uses and conventional fuels were considered in fuel-chain permutations. Avoided greenhouse gas (GHG) emissions ranged from 7.7 to 35.2 t CO 2 eq. ha -1 a -1 . Most fuel-chain permutations exhibited positive discounted financial returns, despite losses for particular entities at a farm-gate processed-biomass price of Euro 100 t -1 dry-matter. Attributing a value of Euro 10 t -1 CO 2 eq. to avoided GHG emissions, but subtracting financial returns associated with displaced fuel supplies, resulted in discounted annual national economic benefits (DANEBs) ranging from -457 to 1887 Euro ha -1 a -1 . Extrapolating a plausible combination of fuel-chains up to a national indicative scenario resulted in GHG emission avoidance of 3.56 Mt CO 2 eq. a -1 (5.2% of national emissions), a DANEB of 167 M Euro , and required 4.6% of national agricultural land area. As cost-effective national GHG avoidance options, Miscanthus and willow fuel-chains are robust to variation in yields and CO 2 price, and appear to represent an efficient land-use option (e.g. compared with liquid biofuel production). Policies promoting utilisation of these energy-crops could avoid unnecessary, and environmentally questionable, future purchase of carbon credits, as currently required for national Kyoto compliance

  17. Quebec inventory of greenhouse gas emissions in 2008 and their evolution since 1990

    International Nuclear Information System (INIS)

    Leblond, V.; Paradis, J.; Bougie, R.; Goulet, M.; Leclerc, N.; Nolet, E.

    2010-11-01

    This document presented an inventory of greenhouse gas (GHG) emissions produced by human activity in Quebec between 1990 and 2008. In 2008, 82.7 Mt of carbon dioxide (CO 2 ) equivalent were released in Quebec, which represents a 1.2 percent reduction from 1990 levels. Quebec had the second lowest GHG emissions per capita in 2008 and was 1 of only 3 only provinces in Canada to have a reduction in GHG emissions since 1990. This document also presented data regarding GHG emissions released by sector, notably from industrial combustion such as the TransCanada Energy cogeneration facilities; industrial processes; residential, commercial and institutional buildings; agriculture; sanitary landfills; and electric power production. Quebec's reduction in GHG emissions can be attributed primarily to advances in energy efficiency technology that have been adopted by the industrial sector. In addition, some industrial combustion facilities have been closed and landfill facilities have begun to use systems to capture methane gas. In contrast, automobile traffic increased over the study period, and was responsible for an important increase in GHG emissions since 1990. 6 tabs., 4 figs.

  18. Reducing greenhouse gas emissions from u.s. transportation

    Science.gov (United States)

    2010-01-01

    This report examines the prospects for substantially reducing the greenhouse gas (GHG) emissions from the U.S. transportation sector, which accounts for 27 percent of the GHG emissions of the entire U.S. economy and 30 percent of the world's transpor...

  19. Enhanced flexibility in the EU's 2030 effort sharing agreement: issues and options - Final report

    International Nuclear Information System (INIS)

    Sartor, Oliver; Bart, Istvan; Cochran, Ian; Tuerk, Andreas

    2015-04-01

    The sectors which are not covered by the European carbon market account for around 60% of the EU's GHG emissions. The European Council has set a target to reduce emissions in these sectors by -30% vs. 2005 levels by 2030. Given the way this target is allocated, there is a risk that EU Member States may fail to achieve their national goals by reducing abatement domestically, while others will undertake too little abatement and avoid needing to begin a low-carbon transition in these sectors. This paper therefore proposes a new design for a European financing mechanism to catalyse action in low-income Member States while ensuring that all Member States comply with the EU targets. (authors)

  20. Overlapping carbon pricing and renewable support schemes under political uncertainty: Global lessons from an Australian case study

    International Nuclear Information System (INIS)

    Shahnazari, Mahdi; McHugh, Adam; Maybee, Bryan; Whale, Jonathan

    2017-01-01

    Highlights: •Uncertainty over overlapping energy and climate policies affects investment choices. •An integrated real options and portfolio optimisation model is used in a case study. •Interacting carbon pricing and renewable supports can create private and social hedge. •Political uncertainty may justify overlapping carbon pricing and renewable supports. -- Abstract: The translation of a greenhouse gas (GHG) emissions reduction policy objective to the required investment in low emissions technologies may be hindered by political contest over the policy instruments employed to achieve it. Political contest may also result in enactment of overlapping policy instruments which, from a ‘policy purist’ perspective, may not appear well calibrated to a shared GHG emissions reduction objective. This paper reports insights gained from an integrated real options and portfolio optimisation model of electricity generation investment behaviour under political uncertainty over the futures of interacting carbon pricing and renewable portfolio standard (RPS) instruments. We compare modelling results and actual outcomes in Australia, where an emission reduction target has had bipartisan support but the means to achieve it has not, to test the assertion that overlapping policy instruments must always increase the social costs of GHG abatement. Results suggest that overlapping a politically contested carbon pricing policy with an RPS may result in a lower risk, renewable energy (RE) investment environment, as the overlap allows investors to hedge their portfolio against political uncertainty through RE additions. Consequently, GHG abatement objectives may be achieved at lower cost than would be the case without the policy interaction. The policies overlap can provide a ‘safety valve’ or ‘hedge’ to both private investors and policymakers when deep uncertainties over the future of energy and climate policies influence investment strategies.