WorldWideScience

Sample records for gh cell network

  1. Effects of Huang Bai (Phellodendri Cortex and Three Other Herbs on GnRH and GH Levels in GT1–7 and GH3 Cells

    Directory of Open Access Journals (Sweden)

    Sun Haeng Lee

    2016-01-01

    Full Text Available The present study was to evaluate the effects of Huang Bai, Zhi Mu, Mai Ya, and Xia Ku Cao on hormone using the GT1–7 and GH3 cells. The GT1–7 and GH3 cell lines were incubated with DW; DMSO; and 30, 100, or 300 μg/mL of one of the four extract solutions in serum-free media for 24 hours. The MTT assay was performed to determine the cytotoxicity of the four herbs. The GT1–7 and GH3 cells were incubated in DW, estradiol (GT1–7 only, or noncytotoxic herb solutions in serum-free medium for 24 hours. A quantitative RT-PCR and western blot were performed to measure the GnRH expression in GT1–7 cells and GH expression in GH3 cells. Huang Bai, Zhi Mu, Xia Ku Cao, and Mai Ya inhibited the GnRH mRNA expression in GT1–7 cells, whereas Huang Bai enhanced GH mRNA expression in GH3 cells. Additionally, Xia Ku Cao inhibited GnRH protein expression in GT1–7 cells and Huang Bai promoted GH protein expression in GH3 cells. The findings suggest that Huang Bai can delay puberty by inhibiting GnRH synthesis in the hypothalamus while also accelerating growth by promoting GH synthesis and secretion in the pituitary.

  2. The effect of suppressor of cytokine signaling 3 on GH signaling in beta-cells

    DEFF Research Database (Denmark)

    Rønn, Sif G; Hansen, Johnny A; Lindberg, Karen

    2002-01-01

    GH is an important regulator of cell growth and metabolism. In the pancreas, GH stimulates mitogenesis as well as insulin production in beta-cells. The cellular effects of GH are exerted mainly through activation of the Janus kinase-signal transducer and activator of transcription (STAT) pathway...... stable transfection of the beta-cell lines with plasmids expressing SOCS-3 under the control of an inducible promoter, a time- and dose-dependent expression of SOCS-3 in the cells was obtained. EMSA showed that SOCS-3 is able to inhibit GH-induced DNA binding of both STAT3 and STAT5 in RIN-5AH cells...

  3. GH mediates exercise-dependent activation of SVZ neural precursor cells in aged mice.

    Directory of Open Access Journals (Sweden)

    Daniel G Blackmore

    Full Text Available Here we demonstrate, both in vivo and in vitro, that growth hormone (GH mediates precursor cell activation in the subventricular zone (SVZ of the aged (12-month-old brain following exercise, and that GH signaling stimulates precursor activation to a similar extent to exercise. Our results reveal that both addition of GH in culture and direct intracerebroventricular infusion of GH stimulate neural precursor cells in the aged brain. In contrast, no increase in neurosphere numbers was observed in GH receptor null animals following exercise. Continuous infusion of a GH antagonist into the lateral ventricle of wild-type animals completely abolished the exercise-induced increase in neural precursor cell number. Given that the aged brain does not recover well after injury, we investigated the direct effect of exercise and GH on neural precursor cell activation following irradiation. This revealed that physical exercise as well as infusion of GH promoted repopulation of neural precursor cells in irradiated aged animals. Conversely, infusion of a GH antagonist during exercise prevented recovery of precursor cells in the SVZ following irradiation.

  4. GH Mediates Exercise-Dependent Activation of SVZ Neural Precursor Cells in Aged Mice

    Science.gov (United States)

    Blackmore, Daniel G.; Vukovic, Jana; Waters, Michael J.; Bartlett, Perry F.

    2012-01-01

    Here we demonstrate, both in vivo and in vitro, that growth hormone (GH) mediates precursor cell activation in the subventricular zone (SVZ) of the aged (12-month-old) brain following exercise, and that GH signaling stimulates precursor activation to a similar extent to exercise. Our results reveal that both addition of GH in culture and direct intracerebroventricular infusion of GH stimulate neural precursor cells in the aged brain. In contrast, no increase in neurosphere numbers was observed in GH receptor null animals following exercise. Continuous infusion of a GH antagonist into the lateral ventricle of wild-type animals completely abolished the exercise-induced increase in neural precursor cell number. Given that the aged brain does not recover well after injury, we investigated the direct effect of exercise and GH on neural precursor cell activation following irradiation. This revealed that physical exercise as well as infusion of GH promoted repopulation of neural precursor cells in irradiated aged animals. Conversely, infusion of a GH antagonist during exercise prevented recovery of precursor cells in the SVZ following irradiation. PMID:23209615

  5. Muscular dystrophy-related quantitative and chemical changes in adenohypophysis GH-cells in golden retrievers

    DEFF Research Database (Denmark)

    de Lima, A R; Nyengaard, Jens Randel; Jorge, A A L

    2007-01-01

    investigated the morphological aspects of the adenohypophysis as well as the total number and size of GH-granulated cells using design-based stereological methods in a limited number of dystrophic and healthy golden retrievers. GH-cells were larger (32.4%) in dystrophic dogs than in healthy animals (p=0...

  6. GH32 family activity: a topological approach through protein contact networks.

    Science.gov (United States)

    Cimini, Sara; Di Paola, Luisa; Giuliani, Alessandro; Ridolfi, Alessandra; De Gara, Laura

    2016-11-01

    The application of Protein Contact Networks methodology allowed to highlight a novel response of border region between the two domains to substrate binding. Glycoside hydrolases (GH) are enzymes that mainly hydrolyze the glycosidic bond between two carbohydrates or a carbohydrate and a non-carbohydrate moiety. These enzymes are involved in many fundamental and diverse biological processes in plants. We have focused on the GH32 family, including enzymes very similar in both sequence and structure, each having however clear specificities of substrate preferences and kinetic properties. Structural and topological differences among proteins of the GH32 family have been here identified by means of an emerging approach (Protein Contact network, PCN) based on the formalization of 3D structures as contact networks among amino-acid residues. The PCN approach proved successful in both reconstructing the already known functional domains and in identifying the structural counterpart of the properties of GH32 enzymes, which remain uncertain, like their allosteric character. The main outcome of the study was the discovery of the activation upon binding of the border (cleft) region between the two domains. This reveals the allosteric nature of the enzymatic activity for all the analyzed forms in the GH32 family, a character yet to be highlighted in biochemical studies. Furthermore, we have been able to recognize a topological signature (graph energy) of the different affinity of the enzymes towards small and large substrates.

  7. Human metastatic melanoma cell lines express high levels of growth hormone receptor and respond to GH treatment

    DEFF Research Database (Denmark)

    Sustarsic, Elahu G; Junnila, Riia K; Kopchick, John J.

    2013-01-01

    cell lines tested. Further analysis revealed GH-induced activation of STAT5 and mTOR in a cell line dependent manner. In conclusion, we have identified cell lines and cancer types that are ideal to study the role of GH and PRL in cancer, yet have been largely overlooked. Furthermore, we found...

  8. Impact of environmental chemicals on the thyroid hormone function in pituitary rat GH3 cells

    DEFF Research Database (Denmark)

    Ghisari, Mandana; Bonefeld-Jørgensen, Eva

    2005-01-01

    -nonylphenol, 4-octylphenol), pesticides (prochloraz, iprodion, chlorpyrifos), PCB metabolites (OH-PCB 106, OH-PCB 121, OH-PCB 69) and brominated flame-retardants (tetrabromobisphenol A). The ED potential of a chemical was determined by its effect on the cell proliferation of TH-dependent rat pituitary GH3 cell...

  9. Male bovine GH transgenic mice have decreased adiposity with an adipose depot-specific increase in immune cell populations.

    Science.gov (United States)

    Benencia, Fabian; Harshman, Stephanie; Duran-Ortiz, Silvana; Lubbers, Ellen R; List, Edward O; Householder, Lara; Al-Naeeli, Mawadda; Liang, Xiaoyu; Welch, Lonnie; Kopchick, John J; Berryman, Darlene E

    2015-05-01

    White adipose tissue (WAT) is composed of mature adipocytes and a stromal vascular fraction (SVF), which contains a variety of cells, including immune cells that vary among the different WAT depots. Growth hormone (GH) impacts immune function and adiposity in an adipose depot-specific manner. However, its effects on WAT immune cell populations remain unstudied. Bovine GH transgenic (bGH) mice are commonly used to study the in vivo effects of GH. These giant mice have an excess of GH action, impaired glucose metabolism, decreased adiposity, increased lean mass, and a shortened lifespan. Therefore, the purpose of this study was to characterize the WAT depot-specific differences in immune cell populations in the presence of excess GH in vivo. Three WAT depots were assessed: inguinal (sc), epididymal (EPI), and mesenteric (MES). Subcutaneous and MES bGH WAT depots showed a significantly higher number of total SVF cells, yet only MES bGH WAT had higher leukocyte counts compared with control samples. By means of flow cytometry analysis of the SVF, we detected greater macrophage and regulatory T-cell infiltration in sc and MES bGH WAT depots compared with controls. However, no differences were observed in the EPI WAT depot. RNA-sequencing confirmed significant alterations in pathways related to T-cell infiltration and activation in the sc depot with fewer significant changes in the EPI bGH WAT depot. These findings collectively point to a previously unrecognized role for GH in influencing the distribution of WAT immune cell populations in a depot-specific manner.

  10. Suppression of prolactin gene expression in GH cells correlates with site-specific DNA methylation.

    Science.gov (United States)

    Zhang, Z X; Kumar, V; Rivera, R T; Pasion, S G; Chisholm, J; Biswas, D K

    1989-10-01

    Prolactin- (PRL) producing and nonproducing subclones of the GH line of (rat) pituitary tumor cells have been compared to elucidate the regulatory mechanisms of PRL gene expression. Particular emphasis was placed on delineating the molecular basis of the suppressed state of the PRL gene in the prolactin-nonproducing (PRL-) GH subclone (GH(1)2C1). We examined six methylatable cytosine residues (5, -CCGG- and 1, -GCGC-) within the 30-kb region of the PRL gene in these subclones. This analysis revealed that -CCGG-sequences of the transcribed region, and specifically, one in the fourth exon of the PRL gene, were heavily methylated in the PRL-, GH(1)2C1 cells. Furthermore, the inhibition of PRL gene expression in GH(1)2C1 was reversed by short-term treatment of the cells with a sublethal concentration of azacytidine (AzaC), an inhibitor of DNA methylation. The reversion of PRL gene expression by AzaC was correlated with the concurrent demethylation of the same -CCGG- sequences in the transcribed region of PRL gene. An inverse correlation between PRL gene expression and the level of methylation of the internal -C- residues in the specific -CCGG-sequence of the transcribed region of the PRL gene was demonstrated. The DNase I sensitivity of these regions of the PRL gene in PRL+, PRL-, and AzaC-treated cells was also consistent with an inverse relationship between methylation state, a higher order of structural modification, and gene expression.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Genetic and biochemical characterization of the GH72 family of cell wall transglycosylases in Neurospora crassa.

    Science.gov (United States)

    Ao, Jie; Free, Stephen J

    2017-04-01

    The Neurospora crassa genome encodes five GH72 family transglycosylases, and four of these enzymes (GEL-1, GEL-2, GEL-3 and GEL-5) have been found to be present in the cell wall proteome. We carried out an extensive genetic analysis on the role of these four transglycosylases in cell wall biogenesis and demonstrated that the transglycosylases are required for the formation of a normal cell wall. As suggested by the proteomic analysis, we found that multiple transglycosylases were being expressed in N. crassa cells and that different combinations of the enzymes are required in different cell types. The combination of GEL-1, GEL-2 and GEL-5 is required for the growth of vegetative hyphae, while the GEL-1, GEL-2, GEL-3 combination is needed for the production of aerial hyphae and conidia. Our data demonstrates that the enzymes are redundant with partially overlapping enzymatic activities, which provides the fungus with a robust cell wall biosynthetic system. Characterization of the transglycosylase-deficient mutants demonstrated that the incorporation of cell wall proteins was severely compromised. Interestingly, we found that the transglycosylase-deficient mutant cell walls contained more β-1,3-glucan than the wild type cell wall. Our results demonstrate that the GH72 transglycosylases are not needed for the incorporation of β-1,3-glucan into the cell wall, but they are required for the incorporation of cell wall glycoprotein into the cell wall. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Tx1, from Phoneutria nigriventer spider venom, interacts with dihydropyridine sensitive-calcium channels in GH3 cells

    International Nuclear Information System (INIS)

    Gouvea dos Santos, R.; Soares, M.A.; Pimenta, A.M.; De Lima, M.E.; ICB, UFMG, Belo Horizonte

    2006-01-01

    The aim of this work was to use the binding assay of tritiated-dihydropyridine and radioiodinated Tx1, isolated from the Phoneutria nigriventer venom, in order to show the presence of Ca v 1 calcium channels on pituitary tumour cell (GH3). We showed that GH3 cells have specific sites for 125 I-Tx1, which are sensitive to nifedipine (∼20%). Reverse competition assay with 3 H-PN200-110 (40% inhibition) and electrophysiological data (50% inhibition) suggest that Ca v 1 calcium channels are target sites for this toxin. To summarize, Tx1 binds to specific sites on GH3 cells and this interaction results in Ca v 1 calcium channel blockade. 3 H-PN200-110 and 125 I-Tx1 binding assays proved to be useful tools to show the presence of calcium channels on GH3 cells. (author)

  13. Immune function during GH treatment in GH-deficient adults

    DEFF Research Database (Denmark)

    Sneppen, S B; Mersebach, H; Ullum, H

    2002-01-01

    investigated were unaltered. CONCLUSIONS: GH deficiency was associated with changes in lymphocyte subsets and impaired unstimulated and stimulated natural killer cell activity, but these remained abnormal during 18 months of GH replacement therapy. Extra-pituitary GH gene expression in, e.g. lymphoid tissues...

  14. The Cytoplasmic Tail Domain of Epstein-Barr Virus gH Regulates Membrane Fusion Activity through Altering gH Binding to gp42 and Epithelial Cell Attachment

    Directory of Open Access Journals (Sweden)

    Jia Chen

    2016-11-01

    Full Text Available Epstein-Barr virus (EBV is associated with infectious mononucleosis and a variety of cancers as well as lymphoproliferative disorders in immunocompromised patients. EBV mediates viral entry into epithelial and B cells using fusion machinery composed of four glycoproteins: gB, the gH/gL complex, and gp42. gB and gH/gL are required for both epithelial and B cell fusion. The specific role of gH/gL in fusion has been the most elusive among the required herpesvirus entry glycoproteins. Previous mutational studies have focused on the ectodomain of EBV gH and not on the gH cytoplasmic tail domain (CTD. In this study, we chose to examine the function of the gH CTD by making serial gH truncation mutants as well as amino acid substitution mutants to determine the importance of the gH CTD in epithelial and B cell fusion. Truncation of 8 amino acids (aa 698 to 706 of the gH CTD resulted in diminished fusion activity using a virus-free syncytium formation assay and fusion assay. The importance of the amino acid composition of the gH CTD was also investigated by amino acid substitutions that altered the hydrophobicity or hydrophilicity of the CTD. These mutations also resulted in diminished fusion activity. Interestingly, some of the gH CTD truncation mutants and hydrophilic tail substitution mutants lost the ability to bind to gp42 and epithelial cells. In summary, our studies indicate that the gH CTD is an important functional domain.

  15. Regulatory role of melatonin and BMP-4 in prolactin production by rat pituitary lactotrope GH3 cells.

    Science.gov (United States)

    Ogura-Ochi, Kanako; Fujisawa, Satoshi; Iwata, Nahoko; Komatsubara, Motoshi; Nishiyama, Yuki; Tsukamoto-Yamauchi, Naoko; Inagaki, Kenichi; Wada, Jun; Otsuka, Fumio

    2017-08-01

    The effects of melatonin on prolactin production and its regulatory mechanism remain uncertain. We investigated the regulatory role of melatonin in prolactin production using rat pituitary lactotrope GH3 cells by focusing on the bone morphogenetic protein (BMP) system. Melatonin receptor activation, induced by melatonin and its receptor agonist ramelteon, significantly suppressed basal and forskolin-induced prolactin secretion and prolactin mRNA expression in GH3 cells. The melatonin MT2 receptor was predominantly expressed in GH3 cells, and the inhibitory effects of melatonin on prolactin production were reversed by treatment with the receptor antagonist luzindole, suggesting functional involvement of MT2 action in the suppression of prolactin release. Melatonin receptor activation also suppressed BMP-4-induced prolactin expression by inhibiting phosphorylation of Smad and transcription of the BMP-target gene Id-1, while BMP-4 treatment upregulated MT2 expression. Melatonin receptor activation suppressed basal, BMP-4-induced and forskolin-induced cAMP synthesis; however, BtcAMP-induced prolactin mRNA expression was not affected by melatonin or ramelteon, suggesting that MT2 activation leads to inhibition of prolactin production through the suppression of Smad signaling and cAMP synthesis. Experiments using intracellular signal inhibitors revealed that the ERK pathway is, at least in part, involved in prolactin induction by GH3 cells. Thus, a new regulatory role of melatonin involving BMP-4 in prolactin secretion was uncovered in lactotrope GH3 cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Human metastatic melanoma cell lines express high levels of growth hormone receptor and respond to GH treatment

    Energy Technology Data Exchange (ETDEWEB)

    Sustarsic, Elahu G. [Edison Biotechnology Institute, 1 Watertower Drive, Athens, OH (United States); Department of Biological Sciences, Ohio University, Athens, OH (United States); Junnila, Riia K. [Edison Biotechnology Institute, 1 Watertower Drive, Athens, OH (United States); Kopchick, John J., E-mail: kopchick@ohio.edu [Edison Biotechnology Institute, 1 Watertower Drive, Athens, OH (United States); Department of Biological Sciences, Ohio University, Athens, OH (United States); Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH (United States)

    2013-11-08

    Highlights: •Most cancer types of the NCI60 have sub-sets of cell lines with high GHR expression. •GHR is highly expressed in melanoma cell lines. •GHR is elevated in advanced stage IV metastatic tumors vs. stage III. •GH treatment of metastatic melanoma cell lines alters growth and cell signaling. -- Abstract: Accumulating evidence implicates the growth hormone receptor (GHR) in carcinogenesis. While multiple studies show evidence for expression of growth hormone (GH) and GHR mRNA in human cancer tissue, there is a lack of quantification and only a few cancer types have been investigated. The National Cancer Institute’s NCI60 panel includes 60 cancer cell lines from nine types of human cancer: breast, CNS, colon, leukemia, melanoma, non-small cell lung, ovarian, prostate and renal. We utilized this panel to quantify expression of GHR, GH, prolactin receptor (PRLR) and prolactin (PRL) mRNA with real-time RT qPCR. Both GHR and PRLR show a broad range of expression within and among most cancer types. Strikingly, GHR expression is nearly 50-fold higher in melanoma than in the panel as a whole. Analysis of human metastatic melanoma biopsies confirmed GHR gene expression in melanoma tissue. In these human biopsies, the level of GHR mRNA is elevated in advanced stage IV tumor samples compared to stage III. Due to the novel finding of high GHR in melanoma, we examined the effect of GH treatment on three NCI60 melanoma lines (MDA-MB-435, UACC-62 and SK-MEL-5). GH increased proliferation in two out of three cell lines tested. Further analysis revealed GH-induced activation of STAT5 and mTOR in a cell line dependent manner. In conclusion, we have identified cell lines and cancer types that are ideal to study the role of GH and PRL in cancer, yet have been largely overlooked. Furthermore, we found that human metastatic melanoma tumors express GHR and cell lines possess active GHRs that can modulate multiple signaling pathways and alter cell proliferation. Based on

  17. Point mutations in EBV gH that abrogate or differentially affect B cell and epithelial cell fusion

    International Nuclear Information System (INIS)

    Wu Liguo; Hutt-Fletcher, Lindsey M.

    2007-01-01

    Cell fusion mediated by Epstein-Barr virus requires three conserved glycoproteins, gB and gHgL, but activation is cell type specific. B cell fusion requires interaction between MHC class II and a fourth virus glycoprotein, gp42, which complexes non-covalently with gHgL. Epithelial cell fusion requires interaction between gHgL and a novel epithelial cell coreceptor and is blocked by excess gp42. We show here that gp42 interacts directly with gH and that point mutations in the region of gH recognized by an antibody that differentially inhibits epithelial and B cell fusion significantly impact both the core fusion machinery and cell-specific events. Substitution of alanine for glycine at residue 594 completely abrogates fusion with either B cells or epithelial cells. Substitution of alanine for glutamic acid at residue 595 reduces fusion with epithelial cells, greatly enhances fusion with B cells and allows low levels of B cell fusion even in the absence of gL

  18. 64 kDa protein is a candidate for a thyrotropin-releasing hormone receptor in prolactin-producing rat pituitary tumor cells (GH4C1 cells)

    International Nuclear Information System (INIS)

    Wright, M.; Hogset, A.; Alestrom, P.; Gautvik, K.M.

    1988-01-01

    A thyrotropin-releasing hormone (TRH) binding protein of 64 kDa has been identified by covalently crosslinking [ 3 H]TRH to GH4C1 cells by ultraviolet illumination. The crosslinkage of [ 3 H]TRH is UV-dose dependent and is inhibited by an excess of unlabeled TRH. A 64 kDa protein is also detected on immunoblots using an antiserum raised against GH4C1 cell surface epitopes. In a closely related cell line (GH12C1) which does not bind [ 3 H]TRH, the 64 kDa protein cannot be demonstrated by [ 3 H]TRH crosslinking nor by immunoblotting. These findings indicate that the 64 kDa protein is a candidate for a TRH-receptor protein in GH4C1 cells

  19. GH3::GUS reflects cell-specific developmental patterns and stress-induced changes in wood anatomy in the poplar stem.

    Science.gov (United States)

    Teichmann, Thomas; Bolu-Arianto, Waode Hamsinah; Olbrich, Andrea; Langenfeld-Heyser, Rosemarie; Göbel, Cornelia; Grzeganek, Peter; Feussner, Ivo; Hänsch, Robert; Polle, Andrea

    2008-09-01

    GH3 genes related to the auxin-inducible Glycine max (L.) Merr. GmGH3 gene encode enzymes that conjugate amino acids to auxin. To investigate the role of GH3 enzymes in stress responses and normal wood development, Populus x canescens (Ait.) was transformed with the promoter-reporter construct GH3::GUS containing a GH3 promoter and the 5' UTR from soybean. beta-Glucuronidase (GUS) activity was present in the vascular tissues of leaves and in developing lateral roots and was inducible in silent tissues by external auxin application. A decrease in GUS activity from the stem apex to the bottom corresponded to decreases in auxin concentrations in these tissues. High auxin concentration and high GH3::GUS activity were present in the pith tissue, which may provide storage for auxin compounds. GH3 reporter was active in ray cells, paratracheal parenchyma cells, maturing vessels and in cells surrounding maturing phloem fibers but not in the cambium and immature phloem, despite high auxin concentrations in the latter tissues. However, the GH3 promoter in these tissues became active when the plants were exposed to abiotic stresses, like bending or salinity, causing changes in wood anatomy. We suggest that adjustment of the internal auxin balance in wood in response to environmental cues involves GH3 auxin conjugate synthases.

  20. Phosphorylation of intracellular proteins related to the multihormonal regulation of prolactin: comparison of normal anterior pituitary cells in culture with the tumor-derived GH cell lines

    International Nuclear Information System (INIS)

    Beretta, L.; Boutterin, M.C.; Sobel, A.

    1988-01-01

    We have previously identified a group of cytoplasmic phosphoproteins (proteins 1-11) whose phosphorylation could be related, on a pharmacological basis, to the multihormonal regulation of PRL synthesis and release in the anterior pituitary tumor-derived GH cell lines. Phosphoproteins with identical migration properties on two-dimensional electrophoresis gels were also detectable in normal rat anterior pituitary cells in culture. We designed appropriate culture and [ 32 P] phosphate-labeling conditions allowing to analyze the regulation of the phosphorylation of these proteins in normal pituitary cells. TRH, 12-O-tetradecanoylphorbol-13-acetate, and vasoactive intestinal peptide induced the same qualitative changes in phosphorylation of proteins 1-11 in normal as in GH cells. Quantitative differences observed are most likely due to the heterogeneity of primary pituitary cultures. Phosphorylation changes affecting proteins 14-16, not previously detected in GH cells, were also observed with normal anterior pituitary cells. GH cell lines have lost the sensitivity of pituitary lactotrophs for dopamine, an important physiological inhibitor of PRL synthesis and release. In normal anterior pituitary cells in culture, dopamine inhibited also the TRH-stimulated phosphorylation of proteins 1-10, thus strengthening the correlation between phosphorylation of these proteins and multihormonal regulation of pituitary cell functions. Our results indicate: 1) that the same phosphoproteins as in GH cells are related to the multihormonal regulation of nontumoral, normal anterior pituitary cells in culture; 2) that dopamine acts by interfering with the phosphorylation of these proteins

  1. The Long Intron 1 of Growth Hormone Gene from Reeves’ Turtle (Chinemys reevesii Correlates with Negatively Regulated GH Expression in Four Cell Lines

    Directory of Open Access Journals (Sweden)

    Wen-Sheng Liu

    2016-04-01

    Full Text Available Turtles grow slowly and have a long lifespan. Ultrastructural studies of the pituitary gland in Reeves’ turtle (Chinemys reevesii have revealed that the species possesses a higher nucleoplasmic ratio and fewer secretory granules in growth hormone (GH cells than other animal species in summer and winter. C. reevesii GH gene was cloned and species-specific similarities and differences were investigated. The full GH gene sequence in C. reevesii contains 8517 base pairs (bp, comprising five exons and four introns. Intron 1 was found to be much longer in C. reevesii than in other species. The coding sequence (CDS of the turtle’s GH gene, with and without the inclusion of intron 1, was transfected into four cell lines, including DF-1 chicken embryo fibroblasts, Chinese hamster ovary (CHO cells, human embryonic kidney 293FT cells, and GH4C1 rat pituitary cells; the turtle growth hormone (tGH gene mRNA and protein expression levels decreased significantly in the intron-containing CDS in these cell lines, compared with that of the corresponding intronless CDS. Thus, the long intron 1 of GH gene in Reeves’ turtle might correlate with downregulated gene expression.

  2. Peptide gH625 enters into neuron and astrocyte cell lines and crosses the blood–brain barrier in rats

    Directory of Open Access Journals (Sweden)

    Valiante S

    2015-03-01

    Full Text Available Salvatore Valiante,1,* Annarita Falanga,2,3,* Luisa Cigliano,1 Giuseppina Iachetta,1 Rosa Anna Busiello,1 Valeria La Marca,1 Massimiliano Galdiero,4 Assunta Lombardi,1 Stefania Galdiero1,2 1Department of Biology, 2Department of Pharmacy, 3DFM Scarl, University of Naples Federico II, 4Department of Experimental Medicine, II University of Naples, Naples, Italy *These authors contributed equally to this paper and are considered joint first authors Abstract: Peptide gH625, derived from glycoprotein H of herpes simplex virus type 1, can enter cells efficiently and deliver a cargo. Nanoparticles armed with gH625 are able to cross an in vitro model of the blood–brain barrier (BBB. In the present study, in vitro experiments were performed to investigate whether gH625 can enter and accumulate in neuron and astrocyte cell lines. The ability of gH625 to cross the BBB in vivo was also evaluated. gH625 was administered in vivo to rats and its presence in the liver and in the brain was detected. Within 3.5 hours of intravenous administration, gH625 can be found beyond the BBB in proximity to cell neurites. gH625 has no toxic effects in vivo, since it does not affect the maximal oxidative capacity of the brain or the mitochondrial respiration rate. Our data suggest that gH625, with its ability to cross the BBB, represents a novel nanocarrier system for drug delivery to the central nervous system. These results open up new possibilities for direct delivery of drugs into patients in the field of theranostics and might address the treatment of several human diseases. Keywords: drug delivery, neurons, astrocytes, blood–brain barrier, peptide

  3. Synergistic Inhibition of Delayed Rectifier K+ and Voltage-Gated Na+ Currents by Artemisinin in Pituitary Tumor (GH3) Cells.

    Science.gov (United States)

    So, Edmund Cheung; Wu, Sheng-Nan; Wu, Ping-Ching; Chen, Hui-Zhen; Yang, Chia-Jung

    2017-01-01

    Artemisinin (ART) is an anti-malarial agent reported to influence endocrine function. Effects of ART on ionic currents and action potentials (APs) in pituitary tumor (GH3) cells were evaluated by patch clamp techniques. ART inhibited the amplitude of delayed-rectifier K+ current (IK(DR)) in response to membrane depolarization and accelerated the process of current inactivation. It exerted an inhibitory effect on IK(DR) with an IC50 value of 11.2 µM and enhanced IK(DR) inactivation with a KD value of 14.7 µM. The steady-state inactivation curve of IK(DR) was shifted to hyperpolarization by 10 mV. Pretreatment of chlorotoxin (1 µM) or iloprost (100 nM) did not alter the magnitude of ART-induced inhibition of IK(DR) in GH3 cells. ART also decreased the peak amplitude of voltage-gated Na+ current (INa) with a concentration-dependent slowing in inactivation rate. Application of KMUP-1, an inhibitor of late INa, was effective at reversing ART-induced prolongation in inactivation time constant of INa. Under current-clamp recordings, ART alone reduced the amplitude of APs and prolonged the duration of APs. Under ART exposure, the inhibitory actions on both IK(DR) and INa could be a potential mechanisms through which this drug influences membrane excitability of endocrine or neuroendocrine cells appearing in vivo. © 2017 The Author(s). Published by S. Karger AG, Basel.

  4. Phorbol esters alter adenylate cyclase responses to vasoactive intestinal peptide and forskolin in the GH cell line

    Energy Technology Data Exchange (ETDEWEB)

    Summers, S.; Florio, T.; Cronin, M.

    1986-05-01

    Activation of protein kinase C with phorbol ester modifies cyclic AMP production in several anterior pituitary cell systems. In the GH cell line from a rat pituitary tumor, exposure to phorbol 12-myristate 13-acetate (PMA: 100 nM) for 30 minutes significantly reduces vasoactive intestinal peptide (VIP: 100 nM) stimulated adenylate cyclase (AC) activity in subsequent membrane preparations to 62 + 4% of control (n = 6 independent studies). In contrast, these same membrane preparations respond to forskolin (1 ..mu..M) with significantly more activity, 130 +/- 6% of controls (n = 6 independent studies). Finally, phorbol ester does not block an inhibitory hormone input into the AC system; somatostatin (100 nM) reduction of VIP-stimulated AC activity is not significantly different in membrane preparations from PMA treated and control cells (n = 3 independent studies). These other findings lead the authors to propose that protein kinase C can modify several sites in the AC complex in anterior pituitary cells.

  5. Effects of polybrominated diphenyl ethers (PBDEs) and their derivatives on protein disulfide isomerase activity and growth hormone release of GH3 cells.

    Science.gov (United States)

    Hashimoto, Shoko; Yoshimura, Hiromi; Okada, Kazushi; Uramaru, Naoto; Sugihara, Kazumi; Kitamura, Shigeyuki; Imaoka, Susumu

    2012-03-19

    Polybrominated diphenyl ethers (PBDEs) have been used in a variety of consumer products such as flame retardants and recently have been known to be widespread environmental pollutants, which probably affect biological functions of mammalian cells. However, the risk posed by PBDE metabolites has not been clarified. Our previous study suggested that bisphenol A (BPA), an endocrine-disrupting chemical, binds to protein disulfide isomerase (PDI) and inhibits its activity. PDI is an isomerase enzyme in the endoplasmic reticulum and facilitates the formation or cleavage of disulfide bonds. PDI consists of a, b, b', and a' domains and the c region, with the a and a' domains having isomerase active sites. In the present study, we tested the effects of 10 kinds of PBDE compounds and their metabolites on PDI. OH-PBDEs specifically inhibited the isomerase activity of PDI, with 4'-OH-PBDE more effective than 2' (or 2)-OH-PBDEs. 4'-OH-PBDE inhibited the isomerase activity of the b'a'c fragment but not that of ab and a'c, suggesting that the b' domain of PDI is essential for the inhibition by 4'-OH-PBDE. We also investigated the effects of these chemicals on the production of growth hormone (GH) in GH3 cells. In GH3 cells, levels of mRNA and protein of GH stimulated by T(3) were reduced by 4'-OH-PBDE and 4'-MeO-PBDE. The reduction in GH expression caused by these compounds was not changed by the overexpression or knockdown of PDI in GH3 cells, while these manipulations of PDI levels significantly suppressed the expression of GH. These results suggest that the biological effects of PBDEs differed depending on their brominated and hydroxylated positions. © 2011 American Chemical Society

  6. Transcription elongation factors are involved in programming hormone production in pituitary neuroendocrine GH4C1 cells.

    Science.gov (United States)

    Fujita, Toshitsugu; Piuz, Isabelle; Schlegel, Werner

    2010-05-05

    Transcription elongation of many eukaryotic genes is regulated. Two negative transcription elongation factors, 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) sensitivity-inducing factor (DSIF) and negative elongation factor (NELF) are known to stall collaboratively RNA polymerase II promoter proximally. We discovered that DSIF and NELF are linked to hormone expression in rat pituitary GH4C1 cells. When NELF-E, a subunit of NELF or Spt5, a subunit of DSIF was stably knocked-down, prolactin (PRL) expression was increased both at the mRNA and protein levels. In contrast, stable knock-down of only Spt5 abolished growth hormone (GH) expression. Transient NELF-E knock-down increased coincidentally PRL expression and enhanced transcription of a PRL-promoter reporter gene. However, no direct interaction of NELF with the PRL gene could be demonstrated by chromatin immuno-precipitation. Thus, NELF suppressed PRL promoter activity indirectly. In conclusion, transcription regulation by NELF and DSIF is continuously involved in the control of hormone production and may contribute to neuroendocrine cell differentiation. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  7. Vitamin D across growth hormone (GH) disorders: From GH deficiency to GH excess.

    Science.gov (United States)

    Ciresi, A; Giordano, C

    2017-04-01

    The interplay between vitamin D and the growth hormone (GH)/insulin-like growth factor (IGF)-I system is very complex and to date it is not fully understood. GH directly regulates renal 1 alpha-hydroxylase activity, although the action of GH in modulating vitamin D metabolism may also be IGF-I mediated. On the other hand, vitamin D increases circulating IGF-I and the vitamin D deficiency should be normalized before measurement of IGF-I concentrations to obtain reliable and unbiased IGF-I values. Indeed, linear growth after treatment of nutritional vitamin D deficiency seems to be mediated through activation of the GH/IGF-I axis and it suggests an important role of vitamin D as a link between the proliferating cartilage cells of the growth plate and GH/IGF-I secretion. Vitamin D levels are commonly lower in patients with GH deficiency (GHD) than in controls, with a variable prevalence of insufficiency or deficiency, and this condition may worsen the already known cardiovascular and metabolic risk of GHD, although this finding is not common to all studies. In addition, data on the impact of GH treatment on vitamin D levels in GHD patients are quite conflicting. Conversely, in active acromegaly, a condition characterized by a chronic GH excess, both increased and decreased vitamin D levels have been highlighted, and the interplay between vitamin D and the GH/IGF-I axis becomes even more complicated when we consider the acromegaly treatment, both medical and surgical. The current review summarizes the available data on vitamin D in the main disorders of the GH/IGF-I axis, providing an overview of the current state of the art. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. HoxD10 gene delivery using adenovirus/adeno-associate hybrid virus inhibits the proliferation and tumorigenicity of GH4 pituitary lactotrope tumor cells

    International Nuclear Information System (INIS)

    Cho, Mi Ae; Yashar, Parham; Kim, Suk Kyoung; Noh, Taewoong; Gillam, Mary P.; Lee, Eun Jig; Jameson, J. Larry

    2008-01-01

    Prolactinoma is one of the most common types of pituitary adenoma. It has been reported that a variety of growth factors and cytokines regulating cell growth and angiogenesis play an important role in the growth of prolactinoma. HoxD10 has been shown to impair endothelial cell migration, block angiogenesis, and maintain a differentiated phenotype of cells. We investigated whether HoxD10 gene delivery could inhibit the growth of prolactinoma. Rat GH4 lactotrope tumor cells were infected with adenovirus/adeno-associated virus (Ad/AAV) hybrid vectors carrying the mouse HoxD10 gene (Hyb-HoxD10) or the β-galactosidase gene (Hyb-Gal). Hyb-HoxD10 expression inhibited GH4 cell proliferation in vitro. The expression of FGF-2 and cyclin D2 was inhibited in GH4 cells infected with Hyb-HoxD10. GH4 cells transduced with Hyb-HoxD10 did not form tumors in nude mice. These results indicate that the delivery of HoxD10 could potentially inhibit the growth of PRL-secreting tumors. This approach may be a useful tool for targeted therapy of prolactinoma and other neoplasms

  9. Networks in Cell Biology

    Science.gov (United States)

    Buchanan, Mark; Caldarelli, Guido; De Los Rios, Paolo; Rao, Francesco; Vendruscolo, Michele

    2010-05-01

    Introduction; 1. Network views of the cell Paolo De Los Rios and Michele Vendruscolo; 2. Transcriptional regulatory networks Sarath Chandra Janga and M. Madan Babu; 3. Transcription factors and gene regulatory networks Matteo Brilli, Elissa Calistri and Pietro Lió; 4. Experimental methods for protein interaction identification Peter Uetz, Björn Titz, Seesandra V. Rajagopala and Gerard Cagney; 5. Modeling protein interaction networks Francesco Rao; 6. Dynamics and evolution of metabolic networks Daniel Segré; 7. Hierarchical modularity in biological networks: the case of metabolic networks Erzsébet Ravasz Regan; 8. Signalling networks Gian Paolo Rossini; Appendix 1. Complex networks: from local to global properties D. Garlaschelli and G. Caldarelli; Appendix 2. Modelling the local structure of networks D. Garlaschelli and G. Caldarelli; Appendix 3. Higher-order topological properties S. Ahnert, T. Fink and G. Caldarelli; Appendix 4. Elementary mathematical concepts A. Gabrielli and G. Caldarelli; References.

  10. Ghrelin stimulates angiogenesis in human microvascular endothelial cells: Implications beyond GH release

    International Nuclear Information System (INIS)

    Li Aihua; Cheng Guangli; Zhu Genghui; Tarnawski, Andrzej S.

    2007-01-01

    Ghrelin, a peptide hormone isolated from the stomach, releases growth hormone and stimulates appetite. Ghrelin is also expressed in pancreas, kidneys, cardiovascular system and in endothelial cells. The precise role of ghrelin in endothelial cell functions remains unknown. We examined the expression of ghrelin and its receptor (GHSR1) mRNAs and proteins in human microvascular endothelial cells (HMVEC) and determined whether ghrelin affects in these cells proliferation, migration and in vitro angiogenesis; and whether MAPK/ERK2 signaling is important for the latter action. We found that ghrelin and GHSR1 are constitutively expressed in HMVEC. Treatment of HMVEC with exogenous ghrelin significantly increased in these cells proliferation, migration, in vitro angiogenesis and ERK2 phosphorylation. MEK/ERK2 inhibitor, PD 98059 abolished ghrelin-induced in vitro angiogenesis. This is First demonstration that ghrelin and its receptor are expressed in human microvascular endothelial cells and that ghrelin stimulates HMVEC proliferation, migration, and angiogenesis through activation of ERK2 signaling

  11. Growth hormone (GH) binding and effects of GH analogs in transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Bartke, A.; Steger, R.W. [Southern Illinois Univ., Carbondale, IL (United States); Turyn, D. [UBA-CONICET, Buenos Aires (Argentina)] [and others

    1994-12-31

    Overexpression of human (h) or bovine (b) growth hormone (GH) in transgenic mice is associated with marked (2- to 12-fold) and significant increase in hepatic binding of GH and prolactin (PRL). This is due to an increase in the number of GH and PRL receptors (GHR, PRLR) per mg of microsomal protein without changes in binding affinity. Comparison of results obtained in transgenic animals expressing bGH with a mouse metallothionein (MT) or a rat phosphoenolpyruvate carboxykinase (PEPCK) promoter suggests that effects of bGH on hepatic GHR and PRLR do not require GH overexpression during fetal life and, within the dose range tested, the effects on PRLR are not dose dependent. The increase in hepatic GHR was accompanied by significant increases in plasma GH-binding protein (GHBP) and in mean residence time of injected GH. Thus life-long elevation of peripheral GH levels alters the availability of both free GH and GHR. Site-directed in vitro mutagenesis was used to produce hGH and bGH analogs mutated within one of the sites involved in binding to GHR and PRLR. Mutating hGH to produce amino acid identity with bGH at Position 11, 18 (within Helix 1), 57, or 60 (within the loop between Helix 1 and 2) did not affect binding to GHR in vitro, or somatotropic activity in transgenic mice in vivo but reduced lactogenic activity in Nb{sub 2} cells by 22%-45%. Mutations of bGH designed to produce amino acid identity with hGH at one to four of the corresponding positions in the bGH molecule did not interfere with binding to GHR or somatotropic activity in vivo, and failed to produce significant binding to PRLR but resulted in alterations in the effects on the hypothalamic and anterior pituitary function in transgenic mice. Apparently region(s) outside the domains examined are essential for lactogenic activity of hGH, and different portions of the GH molecule are responsible for its diverse actions in vivo. 35 refs.

  12. Human GH Receptor-IGF-1 Receptor Interaction: Implications for GH Signaling

    Science.gov (United States)

    Gan, Yujun; Buckels, Ashiya; Liu, Ying; Zhang, Yue; Paterson, Andrew J.; Jiang, Jing; Zinn, Kurt R.

    2014-01-01

    GH signaling yields multiple anabolic and metabolic effects. GH binds the transmembrane GH receptor (GHR) to activate the intracellular GHR-associated tyrosine kinase, Janus kinase 2 (JAK2), and downstream signals, including signal transducer and activator of transcription 5 (STAT5) activation and IGF-1 gene expression. Some GH effects are partly mediated by GH-induced IGF-1 via IGF-1 receptor (IGF-1R), a tyrosine kinase receptor. We previously demonstrated in non-human cells that GH causes formation of a GHR-JAK2-IGF-1R complex and that presence of IGF-1R (even without IGF-1 binding) augments proximal GH signaling. In this study, we use human LNCaP prostate cancer cells as a model system to further study the IGF-1R's role in GH signaling. GH promoted JAK2 and GHR tyrosine phosphorylation and STAT5 activation in LNCaP cells. By coimmunoprecipitation and a new split luciferase complementation assay, we find that GH augments GHR/IGF-1R complex formation, which is inhibited by a Fab of an antagonistic anti-GHR monoclonal antibody. Short hairpin RNA-mediated IGF-1R silencing in LNCaP cells reduced GH-induced GHR, JAK2, and STAT5 phosphorylation. Similarly, a soluble IGF-1R extracellular domain fragment (sol IGF-1R) interacts with GHR in response to GH and blunts GH signaling. Sol IGF-1R also markedly inhibits GH-induced IGF-1 gene expression in both LNCaP cells and mouse primary osteoblast cells. On the basis of these and other findings, we propose a model in which IGF-1R augments GH signaling by allowing a putative IGF-1R-associated molecule that regulates GH signaling to access the activated GHR/JAK2 complex and envision sol IGF-1R as a dominant-negative inhibitor of this IGF-1R-mediated augmentation. Physiological implications of this new model are discussed. PMID:25211187

  13. The GH/IGF axis in the mouse kidney

    NARCIS (Netherlands)

    V. Cingel-Ristic

    2004-01-01

    textabstractGrowth hormone (GH) is a protein hormone synthesized and secreted by somatotroph cells within the anterior pituitary predominantly under regulation of hypothalamic peptides, GH releasing hormone (GHRH) and somatostatin (SS) (1-3) (Figure 1). Further, production of GH is modulated by

  14. Production and characterisation of glycoside hydrolases from GH3, GH5, GH10, GH11 and GH61 for chemo-enzymatic synthesis of xylo- and mannooligosaccharides

    DEFF Research Database (Denmark)

    Dilokpimol, Adiphol

    Produktion og karakterisering af glykosid hydrolaser fro GH3, GH5, GH10, GH11 og GH61 til chemo-enzymatisk syntese af xylo- og mannooligosakkarider Biprodukter fra hydrolyse af plantecellevægge er kilder til oligosakkarider, som potentielt kan fungere som prebiotika ved at stimulere væksten af...... omfatter karakterisering af de producerede enzymer samt cDNA kloning af formodet GH61 endo Produktion og karakterisering af glykosid hydrolaser fro GH3, GH5, GH10, GH11 og GH61 til chemo-enzymatisk syntese af xylo- og mannooligosakkarider Biprodukter fra hydrolyse af plantecellevægge er kilder til...

  15. The Cu-Zn superoxide dismutase (SOD1) inhibits ERK phosphorylation by muscarinic receptor modulation in rat pituitary GH3 cells

    International Nuclear Information System (INIS)

    Secondo, Agnese; De Mizio, Mariarosaria; Zirpoli, Laura; Santillo, Mariarosaria; Mondola, Paolo

    2008-01-01

    The Cu-Zn superoxide dismutase (SOD1) belongs to a family of isoenzymes that are able to dismutate the oxygen superoxide in hydrogen peroxide and molecular oxygen. This enzyme is secreted by many cellular lines and it is also released trough a calcium-dependent depolarization mechanism involving SNARE protein SNAP 25. Using rat pituitary GH3 cells that express muscarinic receptors we found that SOD1 inhibits P-ERK1/2 pathway trough an interaction with muscarinic M1 receptor. This effect is strengthened by oxotremorine, a muscarinic M agonist and partially reverted by pyrenzepine, an antagonist of M1 receptor; moreover this effect is independent from increased intracellular calcium concentration induced by SOD1. Finally, P-ERK1/2 inhibition was accompanied by the reduction of GH3 cell proliferation. These data indicate that SOD1 beside the well studied antioxidant properties can be considered as a neuromodulator able to affect mitogen-activated protein kinase in rat pituitary cells trough a M1 muscarinic receptor

  16. MSM enhances GH signaling via the Jak2/STAT5b pathway in osteoblast-like cells and osteoblast differentiation through the activation of STAT5b in MSCs.

    Directory of Open Access Journals (Sweden)

    Youn Hee Joung

    Full Text Available Methylsulfonylmethane (MSM is a naturally occurring sulfur compound with well-known anti-oxidant properties and anti-inflammatory activities. But, its effects on bone are unknown. Growth hormone (GH is regulator of bone growth and bone metabolism. GH activates several signaling pathways such as the Janus kinase (Jak/signal transducers and activators of transcription (STAT pathway, thereby regulating expression of genes including insulin-like growth factor (IGF-1. GH exerts effects both directly and via IGF-1, which signals by activating the IGF-1 receptor (IGF-1R. In this study, we investigated the effects of MSM on the GH signaling via the Jak/STAT pathway in osteoblasts and the differentiation of primary bone marrow mesenchymal stem cells (MSCs. MSM was not toxic to osteoblastic cells and MSCs. MSM increased the expression of GH-related proteins including IGF-1R, p-IGF-1R, STAT5b, p-STAT5b, and Jak2 in osteoblastic cells and MSCs. MSM increased IGF-1R and GHR mRNA expression in osteoblastic cells. The expression of MSM-induced IGF-1R and GHR was inhibited by AG490, a Jak2 kinase inhibitor. MSM induced binding of STAT5 to the IGF-1R and increased IGF-1 and IGF-1R promoter activities. Analysis of cell extracts by immunoprecipitation and Western blot showed that MSM enhanced GH-induced activation of Jak2/STAT5b. We found that MSM and GH, separately or in combination, activated GH signaling via the Jak2/STAT5b pathway in UMR-106 cells. Using siRNA analysis, we found that STAT5b plays an essential role in GH signaling activation in C3H10T1/2 cells. Osteogenic marker genes (ALP, ON, OCN, BSP, OSX, and Runx2 were activated by MSM, and siRNA-mediated STAT5b knockdown inhibited MSM-induced expression of osteogenic markers. Furthermore, MSM increased ALP activity and the mineralization of MSCs. Taken together, these results indicated that MSM can promote osteogenic differentiation of MSCs through activation of STAT5b.

  17. Growth hormone (GH)-releasing activity of chicken GH-releasing hormone (GHRH) in chickens.

    Science.gov (United States)

    Harvey, S; Gineste, C; Gaylinn, B D

    2014-08-01

    Two peptides with sequence similarities to growth hormone releasing hormone (GHRH) have been identified by analysis of the chicken genome. One of these peptides, chicken (c) GHRH-LP (like peptide) was previously found to poorly bind to chicken pituitary membranes or to cloned and expressed chicken GHRH receptors and had little, if any, growth hormone (GH)-releasing activity in vivo or in vitro. In contrast, a second more recently discovered peptide, cGHRH, does bind to cloned and expressed cGHRH receptors and increases cAMP activity in transfected cells. The possibility that this peptide may have in vivo GH-releasing activity was therefore assessed. The intravenous (i.v.) administration of cGHRH to immature chickens, at doses of 3-100 μg/kg, significantly increased circulating GH concentrations within 10 min of injection and the plasma GH levels remained elevated for at least 30 min after the injection of maximally effective doses. The plasma GH responses to cGHRH were comparable with those induced by human (h) or porcine (p) GHRH preparations and to that induced by thyrotropin releasing hormone (TRH). In marked contrast, the i.v. injection of cGHRH-LP had no significant effect on circulating GH concentrations in immature chicks. GH release was also increased from slaughterhouse chicken pituitary glands perifused for 5 min with cGHRH at doses of 0.1 μg/ml or 1.0 μg/ml, comparable with GH responses to hGHRH1-44. In contrast, the perifusion of chicken pituitary glands with cGHRH-LP had no significant effect on GH release. In summary, these results demonstrate that cGHRH has GH-releasing activity in chickens and support the possibility that it is the endogenous ligand of the cGHRH receptor. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. CaV 3.1 and CaV 3.3 account for T-type Ca2+ current in GH3 cells

    Directory of Open Access Journals (Sweden)

    M.A. Mudado

    2004-06-01

    Full Text Available T-type Ca2+ channels are important for cell signaling by a variety of cells. We report here the electrophysiological and molecular characteristics of the whole-cell Ca2+ current in GH3 clonal pituitary cells. The current inactivation at 0 mV was described by a single exponential function with a time constant of 18.32 ± 1.87 ms (N = 16. The I-V relationship measured with Ca2+ as a charge carrier was shifted to the left when we applied a conditioning pre-pulse of up to -120 mV, indicating that a low voltage-activated current may be present in GH3 cells. Transient currents were first activated at -50 mV and peaked around -20 mV. The half-maximal voltage activation and the slope factors for the two conditions are -35.02 ± 2.4 and 6.7 ± 0.3 mV (pre-pulse of -120 mV, N = 15, and -27.0 ± 0.97 and 7.5 ± 0.7 mV (pre-pulse of -40 mV, N = 9. The 8-mV shift in the activation mid-point was statistically significant (P < 0.05. The tail currents decayed bi-exponentially suggesting two different T-type Ca2+ channel populations. RT-PCR revealed the presence of a1G (CaV3.1 and a1I (CaV3.3 T-type Ca2+ channel mRNA transcripts.

  19. The basic route of the nuclear translocation porcine growth hormone (GH)-growth hormone receptor (GHR) complex (pGH/GHR) in porcine hepatocytes.

    Science.gov (United States)

    Hainan, Lan; Huilin, Liu; Khan, Mahamad; Xin, Zheng; YuJiang, Yang; Hui, Zhang; Naiquan, Yao

    2018-06-08

    Traditional views suggest that growth hormone and the growth hormone receptor (GH/GHR complex) exert their functions only on the plasma membrane. This paradigm, however, has been challenged by recent new findings that the GH/GHR complex could translocate into cell nuclei where they could still exhibit important physiological functions. We also reported the nuclear localization of porcine GH/GHR and their potential functions in porcine hepatocytes. However, the basic path of pGH/GHR's nuclear translocation remains unclear. Combining previous research results and our current findings, we proposed two basic routes of pGH/GHR's nuclear transportation as follows: 1) after pGH binding to GHR, pGH/GHR enters into the cytoplasm though clathrin- or caveolin-mediated endocytosis, then the pGH/GHR complex enters into early endosomes (Rab5-positive), and the endosome carries the GH/GHR complex to the endoplasmic reticulum (ER). After endosome docking on the ER, the endosome starts fission, and the pGH/GHR complex enters into the ER lumen. Then the pGH/GHR complex transports into the cytoplasm, possibly by the ERAD pathway. Subsequently, the pGH/GHR complex interacts with IMPα/β, which, in turn, mediates GH/GHR nuclear localization; 2) pGH binds with the GHR on the cell membrane and, subsequently, pGH/GHR internalizes into the cell and enters into the endosome (this endosome may belong to a class of endosomes called envelope-associated endosomes (NAE)). Then, the endosome carries the pGH/GHR to the nuclear membrane. After docking on the nuclear membrane, the pGH/GHR complex fuses with the nuclear membrane and then enters into the cell nucleus. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Defective membrane expression of human growth hormone (GH) receptor causes Laron-type GH insensitivity syndrome.

    Science.gov (United States)

    Duquesnoy, P; Sobrier, M L; Amselem, S; Goossens, M

    1991-01-01

    Mutations in the growth hormone receptor (GHR) gene can cause growth hormone (GH) resistance. Given the sequence homology between the extracellular domain of the GHR and a soluble GH-binding protein (GH-BP), it is remarkable that GH-BP binding activity is absent from the serum of patients with Laron-type GH insensitivity, a hereditary form of severe dwarfism. We have previously identified a mutation within the extracellular domain of this receptor, replacing phenylalanine by serine at position 96 of the mature protein, in a patient with Laron syndrome. We have now investigated the effect of this Phe----Ser substitution on hormone binding activity by expressing the total human GHR cDNA and mutant form in eukaryotic cells. The wild-type protein expressed was able to bind GH but no plasma membrane binding was detectable on cells transfected with the mutant cDNA; this was also the case of cells transfected with a Phe96----Ala mutant cDNA, suggesting that the lack of binding activity is not due to a posttranslational modification of serine. Examination of the variant proteins in subcellular fractions revealed the presence of specific GH binding activity in the lysosomal fraction, whereas immunofluorescence studies located mutant proteins in the cytosol. Our findings suggest that these mutant GHRs fail to follow the correct intracellular transport pathway and underline the potential importance of this phenylalanine residue, which is conserved among the GH, prolactin, and erythropoietin receptors that belong to the same cytokine receptor superfamily. Images PMID:1719554

  1. Requirement of tyrosine residues 333 and 338 of the growth hormone (GH) receptor for selected GH-stimulated function

    DEFF Research Database (Denmark)

    Lobie, P E; Allevato, G; Norstedt, G

    1995-01-01

    We have examined the involvement of tyrosine residues 333 and 338 of the growth hormone (GH) receptor in the cellular response to GH. Stable Chinese hamster ovary (CHO) cell clones expressing a receptor with tyrosine residues at position 333 and 338 of the receptor substituted for phenylalanine (...

  2. Energy homeostasis targets chromosomal reconfiguration of the human GH1 locus.

    Science.gov (United States)

    Vakili, Hana; Jin, Yan; Cattini, Peter A

    2014-11-01

    Levels of pituitary growth hormone (GH), a metabolic homeostatic factor with strong lipolytic activity, are decreased in obese individuals. GH declines prior to the onset of weight gain in response to excess caloric intake and hyperinsulinemia; however, the mechanism by which GH is reduced is not clear. We used transgenic mice expressing the human GH (hGH) gene, GH1, to assess the effect of high caloric intake on expression as well as the local chromosome structure of the intact GH1 locus. Animals exposed to 3 days of high caloric intake exhibited hyperinsulinemia without hyperglycemia and a decrease in both hGH synthesis and secretion, but no difference in endogenous production of murine GH. Efficient GH1 expression requires a long-range intrachromosomal interaction between remote enhancer sequences and the proximal promoter region through "looping" of intervening chromatin. High caloric intake disrupted this interaction and decreased both histone H3/H4 hyperacetylation and RNA polymerase II occupancy at the GH1 promoter. Incorporation of physical activity muted the effects of excess caloric intake on insulin levels, GH1 promoter hyperacetylation, chromosomal architecture, and expression. These results indicate that energy homeostasis alters postnatal hGH synthesis through dynamic changes in the 3-dimensional chromatin structure of the GH1 locus, including structures required for cell type specificity during development.

  3. Expression of Lymphocyte-derived Growth Hormone (GH) and GH-releasing Hormone Receptors in Aging Rats

    OpenAIRE

    Weigent, Douglas A.

    2013-01-01

    In the present study, we show that higher levels of lymphocyte GH are expressed in spleen cells from aging animals compared to young animals. Further, leukocytes from primary and secondary immune tissues and splenic T and B cells from aging rats all express higher levels of GHRH receptors compared to younger animals. Bone marrow and splenic T cells express the highest levels of GHRH receptor in aging animals. Spleen cells from aging animals showed no significant change in proliferation or GH ...

  4. Effect of GH/IGF-1 on Bone Metabolism and Osteoporsosis

    Directory of Open Access Journals (Sweden)

    Vittorio Locatelli

    2014-01-01

    Full Text Available Background. Growth hormone (GH and insulin-like growth factor (IGF-1 are fundamental in skeletal growth during puberty and bone health throughout life. GH increases tissue formation by acting directly and indirectly on target cells; IGF-1 is a critical mediator of bone growth. Clinical studies reporting the use of GH and IGF-1 in osteoporosis and fracture healing are outlined. Methods. A Pubmed search revealed 39 clinical studies reporting the effects of GH and IGF-1 administration on bone metabolism in osteopenic and osteoporotic human subjects and on bone healing in operated patients with normal GH secretion. Eighteen clinical studies considered the effect with GH treatment, fourteen studies reported the clinical effects with IGF-1 administration, and seven related to the GH/IGF-1 effect on bone healing. Results. Both GH and IGF-1 administration significantly increased bone resorption and bone formation in the most studies. GH/IGF-1 administration in patients with hip or tibial fractures resulted in increased bone healing, rapid clinical improvements. Some conflicting results were evidenced. Conclusions. GH and IGF-1 therapy has a significant anabolic effect. GH administration for the treatment of osteoporosis and bone fractures may greatly improve clinical outcome. GH interacts with sex steroids in the anabolic process. GH resistance process is considered.

  5. Effect of GH/IGF-1 on Bone Metabolism and Osteoporsosis

    Science.gov (United States)

    Locatelli, Vittorio; Bianchi, Vittorio E.

    2014-01-01

    Background. Growth hormone (GH) and insulin-like growth factor (IGF-1) are fundamental in skeletal growth during puberty and bone health throughout life. GH increases tissue formation by acting directly and indirectly on target cells; IGF-1 is a critical mediator of bone growth. Clinical studies reporting the use of GH and IGF-1 in osteoporosis and fracture healing are outlined. Methods. A Pubmed search revealed 39 clinical studies reporting the effects of GH and IGF-1 administration on bone metabolism in osteopenic and osteoporotic human subjects and on bone healing in operated patients with normal GH secretion. Eighteen clinical studies considered the effect with GH treatment, fourteen studies reported the clinical effects with IGF-1 administration, and seven related to the GH/IGF-1 effect on bone healing. Results. Both GH and IGF-1 administration significantly increased bone resorption and bone formation in the most studies. GH/IGF-1 administration in patients with hip or tibial fractures resulted in increased bone healing, rapid clinical improvements. Some conflicting results were evidenced. Conclusions. GH and IGF-1 therapy has a significant anabolic effect. GH administration for the treatment of osteoporosis and bone fractures may greatly improve clinical outcome. GH interacts with sex steroids in the anabolic process. GH resistance process is considered. PMID:25147565

  6. The role of GH receptor tyrosine phosphorylation in Stat5 activation

    DEFF Research Database (Denmark)

    Hansen, J A; Hansen, L H; Wang, X

    1997-01-01

    Stimulation of GH receptors leads to rapid activation of Jak2 kinase and subsequent tyrosine phosphorylation of the GH receptor. Three specific tyrosines located in the C-terminal domain of the GH receptor have been identified as being involved in GH-stimulated transcription of the Spi 2.1 promoter....... Mutated GH receptors lacking all but one of these three tyrosines are able to mediate a transcriptional response when transiently transfected into CHO cells together with a Spi 2.1 promoter/luciferase construct. Similarly, these GH receptors were found to be able to mediate activation of Stat5 DNA......-binding activity, whereas the GH receptor mutant lacking all intracellular tyrosines was not. Synthetic tyrosine phosphorylated peptides corresponding to the GH receptor sequence around the three tyrosines inhibited Stat5 DNA-binding activity while their non-phosphorylated counterparts were ineffective. Tyrosine...

  7. The effects of magnetite (Fe3O4 nanoparticles on electroporation-induced inward currents in pituitary tumor (GH3 cells and in RAW 264.7 macrophages

    Directory of Open Access Journals (Sweden)

    Liu YC

    2012-03-01

    Full Text Available Yen-Chin Liu1, Ping-Ching Wu2, Dar-Bin Shieh2–5, Sheng-Nan Wu3,6,71Department of Anesthesiology, 2Institute of Oral Medicine and Department of Stomatology, 3Department of Physiology, National Cheng Kung University Hospital, College of Medicine, 4Advanced Optoelectronic Technology Center, 5Center for Micro/Nano Science and Technology, National Cheng Kung University, 6Innovation Center for Advanced Medical Device Technology, National Cheng Kung University, 7Department of Anatomy and Cell Biology, National Cheng Kung University Medical College, Tainan, TaiwanAims: Fe3O4 nanoparticles (NPs have been known to provide a distinct image contrast effect for magnetic resonance imaging owing to their super paramagnetic properties on local magnetic fields. However, the possible effects of these NPs on membrane ion currents that concurrently induce local magnetic field perturbation remain unclear.Methods: We evaluated whether amine surface-modified Fe3O4 NPs have any effect on ion currents in pituitary tumor (GH3 cells via voltage clamp methods.Results: The addition of Fe3O4 NPs decreases the amplitude of membrane electroporation-induced currents (IMEP with a half-maximal inhibitory concentration at 45 µg/mL. Fe3O4 NPs at a concentration of 3 mg/mL produced a biphasic response in the amplitude of IMEP, ie, an initial decrease followed by a sustained increase. A similar effect was also noted in RAW 264.7 macrophages.Conclusion: The modulation of magnetic electroporation-induced currents by Fe3O4 NPs constitutes an important approach for cell tracking under various imaging modalities or facilitated drug delivery.Keywords: iron oxide, ion current, free radical

  8. 1,2-Diacylglycerols, but not phorbol esters, activate a potential inhibitory pathway for protein kinase C in GH3 pituitary cells. Evidence for involvement of a sphingomyelinase.

    Science.gov (United States)

    Kolesnick, R N; Clegg, S

    1988-05-15

    It has been suggested that sphingoid bases may serve as physiologic inhibitors of protein kinase C. Because 1,2-diacylglycerols, but not phorbol esters, enhance sphingomyelin degradation via a sphingomyelinase in GH3 pituitary cells (Kolesnick, R. N. (1987) J. Biol. Chem. 262, 16759-16762), the effects of phorbol esters, 1,2-diacylglycerols, and sphingomyelinase on protein kinase C activation were assessed. Under basal conditions, the inactive cytosolic form of protein kinase C predominated. 1,2-Diacylglycerols stimulated transient protein kinase C redistribution to the membrane. 1,2-Dioctanoylglycerol (200 micrograms/ml) reduced cytosolic protein kinase C activity to 67% of control from 72 to 48 pmol.min-1.10(6) cells-1 and enhanced membrane-bound activity to 430% of control from 6 to 25 pmol.min-1.10(6) cells-1 after 4 min of stimulation. Thereafter, protein kinase C activity returned to the cytosol. In contrast, the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), stimulated redistribution to the membrane without return to the cytosol. Exogenous sphingomyelinase reduced membrane-bound protein kinase C activity to 30% of control, yet did not alter cytosolic activity. Sphingomyelinase, added after phorbol ester-induced redistribution was completed, restored activity to the cytosol. In these studies, TPA (10(-8) M) reduced cytosolic activity to 62% of control and elevated membrane-bound protein kinase C activity to 650% of control. Sphingomyelinase restored cytosolic activity to 84% of control and reduced membrane-bound activity to 297% of control. Similarly, the free sphingoid bases, sphingosine, sphinganine, and phytosphingosine, reversed phorbol ester-induced protein kinase C redistribution. Since 1,2-diacylglycerols activate a sphingomyelinase and sphingomyelinase action can reverse protein kinase C activation, these studies suggest that a pathway involving a sphingomyelinase might comprise a physiologic negative effector system for protein kinase C

  9. Growth hormone (GH) treatment reverses early atherosclerotic changes in GH-deficient adults.

    Science.gov (United States)

    Pfeifer, M; Verhovec, R; Zizek, B; Prezelj, J; Poredos, P; Clayton, R N

    1999-02-01

    functional atherosclerotic changes in major arteries and, if maintained, may reduce vascular morbidity and mortality. GH seems to act via IGF-I, which is known to have important effects on endothelial cell function.

  10. Effects of methimazole treatment on growth hormone (GH) response to GH-releasing hormone in patients with hyperthyroidism.

    Science.gov (United States)

    Giustina, A; Ferrari, C; Bodini, C; Buffoli, M G; Legati, F; Schettino, M; Zuccato, F; Wehrenberg, W B

    1990-12-01

    In vitro studies have demonstrated that thyroid hormones can enhance basal and stimulated growth hormone secretion by cultured pituitary cells. However, both in man and in the rat the effects of high thyroid hormone levels on GH secretion are unclear. The aim of our study was to test the GH response to human GHRH in hyperthyroid patients and to evaluate the effects on GH secretion of short- and long-term pharmacological decrease of circulating thyroid hormones. We examined 10 hyperthyroid patients with recent diagnosis of Graves' disease. Twelve healthy volunteers served as controls. All subjects received a bolus iv injection of GHRH(1-29)NH2, 100 micrograms. Hyperthyroid patients underwent a GHRH test one and three months after starting antithyroid therapy with methimazole, 10 mg/day po. GH levels at 15, 30, 45, 60 min and GH peak after stimulus were significantly lower in hyperthyroid patients than in normal subjects. The GH peak was also delayed in hyperthyroid patients. After one month of methimazole therapy, most of the hyperthyroid patients had thyroid hormone levels in the normal range, but they did not show significant changes in GH levels after GHRH, and the GH peak was again delayed. After three months of therapy with methimazole, the hyperthyroid patients did not show a further significant decrease in serum thyroid hormone levels. However, mean GH levels from 15 to 60 min were significantly increased compared with the control study. The GH peak after GHRH was also earlier than in the pre-treatment study.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Growth hormone (GH) activity is associated with increased serum oestradiol and reduced Anti-Müllerian Hormone in healthy male volunteers treated with GH and a GH antagonist

    DEFF Research Database (Denmark)

    Andreassen, M; Frystyk, Jan; Faber, J

    2013-01-01

    Growth hormone (GH) and insulin-like growth factor I (IGF-I) receptors are present on pituitary gonadotrophs and on testicular Leydig and Sertoli cells. Thus, the GH/IGF-I system may modulate the pituitary-gonadal axis in males. This is a randomized cross-over study. Eight healthy male volunteers...... (160-290) vs. 106 (97-157) μg/L, p = 0.001) and oestradiol (86 ± 28 vs. 79 ± 25 pm, p = 0.060) decreased. No significant changes or trends in the other reproductive hormones occurred during the two treatment regimens. GH/IGF-I activity was positively associated with serum oestradiol, suggesting that GH...

  12. Mortality and GH deficiency

    DEFF Research Database (Denmark)

    Stochholm, Kirstine; Gravholt, Claus Højbjerg; Laursen, Torben

    2007-01-01

    into childhood onset (CO) and adult onset (AO), discriminated by an age cutoff below or above 18 years at onset of GHD. METHOD: Data on death were identified in national registries. Sex- and cause-specific mortalities were identified in CO and AO GHD when compared with controls. RESULTS: Mortality was increased......OBJECTIVE: To estimate the mortality in Denmark in patients suffering from GH deficiency (GHD). DESIGN: Mortality was analyzed in 1794 GHD patients and 8014 controls matched on age and gender. All records in GHD patients were studied and additional morbidity noted. Patients were divided...... in CO and AO GHD in both genders, when compared with controls. The hazard ratio (HR) for CO males was 8.3 (95% confidence interval (CI) 4.5-15.1) and for females 9.4 (CI 4.6-19.4). For AO males, HR was 1.9 (CI 1.7-2.2) and for females 3.4 (CI 2.9-4.0). We found a significantly higher HR in AO females...

  13. GH Travel & Mission Support System

    Data.gov (United States)

    US Agency for International Development — HTRAMS is a travel data collection system for GH that collects information on both the basic details of an employee's trips (destination, length, purpose, etc.) and...

  14. Proliferative and anti-proliferative effects of dietary levels of phytoestrogens in rat pituitary GH3/B6/F10 cells - the involvement of rapidly activated kinases and caspases

    International Nuclear Information System (INIS)

    Jeng, Yow-Jiun; Watson, Cheryl S

    2009-01-01

    Phytoestogens are a group of lipophillic plant compounds that can have estrogenic effects in animals; both tumorigenic and anti-tumorigenic effects have been reported. Prolactin-secreting adenomas are the most prevalent form of pituitary tumors in humans and have been linked to estrogen exposures. We examined the proliferative effects of phytoestrogens on a rat pituitary tumor cell line, GH 3 /B 6 /F 10 , originally subcloned from GH 3 cells based on its ability to express high levels of the membrane estrogen receptor-α. We measured the proliferative effects of these phytoestrogens using crystal violet staining, the activation of several mitogen-activated protein kinases (MAPKs) and their downstream targets via a quantitative plate immunoassay, and caspase enzymatic activities. Four phytoestrogens (coumestrol, daidzein, genistein, and trans-resveratrol) were studied over wide concentration ranges. Except trans-resveratrol, all phytoestrogens increased GH 3 /B 6 /F 10 cell proliferation at some concentration relevant to dietary levels. All four phytoestrogens attenuated the proliferative effects of estradiol when administered simultaneously. All phytoestrogens elicited MAPK and downstream target activations, but with time course patterns that often differed from that of estradiol and each other. Using selective antagonists, we determined that MAPKs play a role in the ability of these phytoestrogens to elicit these responses. In addition, except for trans-resveratrol, a serum removal-induced extrinsic apoptotic pathway was blocked by these phytoestrogens. Phytoestrogens can block physiological estrogen-induced tumor cell growth in vitro and can also stimulate growth at high dietary concentrations in the absence of endogenous estrogens; these actions are correlated with slightly different signaling response patterns. Consumption of these compounds should be considered in strategies to control endocrine tumor cell growth, such as in the pituitary

  15. GH/IGF-I axis and matrix adaptation of the musculotendinous tissue to exercise in humans

    DEFF Research Database (Denmark)

    Heinemeier, K M; Mackey, Abigail; Doessing, S

    2012-01-01

    cells (satellite cells), as increased satellite cell numbers are found in human muscle with increased GH/IGF-I levels, despite no change in myofibrillar protein synthesis. Although advanced age is associated with both a reduction in the GH/IGF-I axis activity, and in skeletal muscle mass (sarcopenia...

  16. Aqueous leaf extract of Averrhoa carambola L. (Oxalidaceae reduces both the inotropic effect of BAY K 8644 on the guinea pig atrium and the calcium current on GH3cells

    Directory of Open Access Journals (Sweden)

    Carla M. L. Vasconcelos

    Full Text Available It was previously showed that aqueous leaf extract (AqEx of Averrhoa carambola depresses the guinea pig atrial inotropism. Therefore, experiments were carried out on guinea pig left atrium and on pituitary GH3 cells in order to evaluate the effect of AqEx on the cellular calcium influx. The atrium was mounted in an organ chamber (5 mL, Tyrode, 27 ± 0.1 ºC, 95 % O2, 5 % CO2, stretched to 10 mN, and paced at 2 Hz (0.5 ms, 400 V and GH3 cells were submitted to a whole cell voltage clamp configuration. In the atrium, the AqEx (1500 µg/mL shifted to the right the concentration-effect curve of the positive inotropic effect produced by (± BAY K 8644, an L-type calcium channel agonist. The AqEx increased EC50 (concentration required to promote 50% of the maximum effect of the inotropic effect of BAY K 8644 from 7.8 ± 0.38 to 115.1 ± 0.44 nM (N = 3; p < 0.05. In GH3 cells assayed with 500 µg/mL of AqEx, the L-type calcium inward current declined 30 % (from 282 to 190 pA. Nevertheless, the extract did not change the voltage correspondent to the peak current. These data suggest that, at least in part, the negative inotropic effect of AqEx on the guinea pig atrium is due to a reduction of the L-type calcium current.

  17. New diagnostic tests of GH reserve.

    Science.gov (United States)

    Martul, P; Pineda, J; Pombo, M; Peñalva, A; Bokser, L; Dieguez, C

    1993-01-01

    Pharmacological tests are essential for the diagnosis of growth hormone (GH) insufficiency. Obesity is a pathological state associated with blunted GH response to all the classical stimuli tested. In the present study, three new pharmacological stimuli for GH reserve were evaluated in three groups of subjects: Normal, GH-insufficient and normal growing obese children. Dexamethasone provokes a clear GH-response in normal children, whereas the response in the other 2 groups of patients is significantly diminished. Galanin-induced GH-secretion is significantly higher in normal than in obese children. GHRP-6 causes a potent GH release in normal children, higher than in GH-insufficiency or obesity. The overlap shown between GH-insufficient patients and normal children reduces the usefulness of the tests. Similar to the classical stimuli, the response to these new tests is also decreased in obesity.

  18. The characterization of six auxin-induced tomato GH3 genes uncovers a member, SlGH3.4, strongly responsive to arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Liao, Dehua; Chen, Xiao; Chen, Aiqun; Wang, Huimin; Liu, Jianjian; Liu, Junli; Gu, Mian; Sun, Shubin; Xu, Guohua

    2015-04-01

    In plants, the GH3 gene family is widely considered to be involved in a broad range of plant physiological processes, through modulation of hormonal homeostasis. Multiple GH3 genes have been functionally characterized in several plant species; however, to date, limited works to study the GH3 genes in tomato have been reported. Here, we characterize the expression and regulatory profiles of six tomato GH3 genes, SlGH3.2, SlGH3.3, SlGH3.4, SlGH3.7, SlGH3.9 and SlGH3.15, in response to different phytohormone applications and arbuscular mycorrhizal (AM) fungal colonization. All six GH3 genes showed inducible responses to external IAA, and three members were significantly up-regulated in response to AM symbiosis. In particular, SlGH3.4, the transcripts of which were barely detectable under normal growth conditions, was strongly activated in the IAA-treated and AM fungal-colonized roots. A comparison of the SlGH3.4 expression in wild-type plants and M161, a mutant with a defect in AM symbiosis, confirmed that SlGH3.4 expression is highly correlated to mycorrhizal colonization. Histochemical staining demonstrated that a 2,258 bp SlGH3.4 promoter fragment could drive β-glucuronidase (GUS) expression strongly in root tips, steles and cortical cells of IAA-treated roots, but predominantly in the fungal-colonized cells of mycorrhizal roots. A truncated 654 bp promoter failed to direct GUS expression in IAA-treated roots, but maintained the symbiosis-induced activity in mycorrhizal roots. In summary, our results suggest that a mycorrhizal signaling pathway that is at least partially independent of the auxin signaling pathway has evolved for the co-regulation of the auxin- and mycorrhiza-activated GH3 genes in plants. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Fuel cells for telephone networks

    International Nuclear Information System (INIS)

    Wells, J.D.; Scott, D.S.

    1993-01-01

    Critical telephone network systems are currently protected from electric utility power failures by a backup system consisting of lead-acid batteries and an engine-alternator. It is considered here an alternate power system where less expensive off-peak commercial electricity electrolyses water, while fuel cells draw continuously on the stored gas products to provide direct current for the protected equipment. The lead acid batteries are eliminated. The benefits and costs of the existing and alternate systems in scenarios with various system efficiencies, capital costs, and electric utility rates and incentives, are compared. In today's conditions, the alternate system is not economical; however, cost and performance feasibility domains are identified. 2 figs., 4 tabs., 12 refs

  20. Domestication-driven Gossypium profilin 1 (GhPRF1) gene transduces early flowering phenotype in tobacco by spatial alteration of apical/floral-meristem related gene expression.

    Science.gov (United States)

    Pandey, Dhananjay K; Chaudhary, Bhupendra

    2016-05-13

    Plant profilin genes encode core cell-wall structural proteins and are evidenced for their up-regulation under cotton domestication. Notwithstanding striking discoveries in the genetics of cell-wall organization in plants, little is explicit about the manner in which profilin-mediated molecular interplay and corresponding networks are altered, especially during cellular signalling of apical meristem determinacy and flower development. Here we show that the ectopic expression of GhPRF1 gene in tobacco resulted in the hyperactivation of apical meristem and early flowering phenotype with increased flower number in comparison to the control plants. Spatial expression alteration in CLV1, a key meristem-determinacy gene, is induced by the GhPRF1 overexpression in a WUS-dependent manner and mediates cell signalling to promote flowering. But no such expression alterations are recorded in the GhPRF1-RNAi lines. The GhPRF1 transduces key positive flowering regulator AP1 gene via coordinated expression of FT4, SOC1, FLC1 and FT1 genes involved in the apical-to-floral meristem signalling cascade which is consistent with our in silico profilin interaction data. Remarkably, these positive and negative flowering regulators are spatially controlled by the Actin-Related Protein (ARP) genes, specifically ARP4 and ARP6 in proximate association with profilins. This study provides a novel and systematic link between GhPRF1 gene expression and the flower primordium initiation via up-regulation of the ARP genes, and an insight into the functional characterization of GhPRF1 gene acting upstream to the flowering mechanism. Also, the transgenic plants expressing GhPRF1 gene show an increase in the plant height, internode length, leaf size and plant vigor. Overexpression of GhPRF1 gene induced early and increased flowering in tobacco with enhanced plant vigor. During apical meristem determinacy and flower development, the GhPRF1 gene directly influences key flowering regulators through ARP

  1. Analysis of Surface Binding Sites (SBS) within GH62, GH13, and GH77

    DEFF Research Database (Denmark)

    Wilkens, Casper; Cockburn, Darrell; Andersen, Susan

    2015-01-01

    Certain interactions between carbohydrate active enzymes and polysaccharides involve surface binding sites (SBS) situated on catalytic domains outside of the active site. We recently undertook to develop a toolbox for SBS identification and characterization. In affinity gel electrophoresis (AGE...... of the reported SBSs. In GH13 SBSs have been seen in 17 subfamilies including SBSs with highly diverse functions in the same enzyme. Circumstantial evidence is provided for an SBS in the GH77 MalQ from Escherichia coli, the bacterial orthologue of Arabidopsis DPE2 involved in starch metabolism. Furthermore...

  2. Networks of Cells and Petri Nets

    OpenAIRE

    Bernardini, Francesco; Gheorgue, Marian; Margenstern, Maurice; Verlan, Sergey

    2007-01-01

    We introduce a new class of P systems, called networks of cells, with rules allowing several cells to simultaneously interact with each other in order to produce some new objects inside some other output cells. We define different types of behavior for networks of cells by considering alternative strategies for the application of the rules: sequential application, free parallelism, maximal parallelism, locally-maximal parallelism and minimal parallelism. We devise a way for tra...

  3. Dynamical Adaptation in Terrorist Cells/Networks

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar; Ahmed, Zaki

    2010-01-01

    Typical terrorist cells/networks have dynamical structure as they evolve or adapt to changes which may occur due to capturing or killing of a member of the cell/network. Analytical measures in graph theory like degree centrality, betweenness and closeness centralities are very common and have long...

  4. Distinct cytoplasmic domains of the growth hormone receptor are required for glucocorticoid- and phorbol ester-induced decreases in growth hormone (GH) binding. These domains are different from that reported for GH-induced receptor internalization

    DEFF Research Database (Denmark)

    King, A P; Tseng, M J; Logsdon, C D

    1996-01-01

    Glucocorticoids inhibit growth in children and antagonize the growth-promoting action of GH in peripheral tissues. Recently, they have been shown to decrease GH binding. In this study we examine the molecular mechanisms by which the glucocorticoid dexamethasone (DEX) and the phorbol ester phorbol...... of GH binding are also observed in a Chinese hamster ovary (CHO) cell line stably transfected with a rat liver GHR cDNA, further arguing that DEX and PMA act post-translationally on GHR. Using mutant GHRs stably expressed in CHO cells, amino acids 455-506 and tyrosines 333 and/or 338 of GHR were shown...... to be required for maximal DEX-induced inhibition of GH binding. DEX decreased GH binding to a GHR mutant F346A, which is reported to be deficient in ligand-induced internalization, suggesting that DEX decreases GH binding by a mechanism distinct from that of ligand-induced GHR internalization. PMA reduced GH...

  5. Small cell networks deployment, management, and optimization

    CERN Document Server

    Claussen, Holger; Ho, Lester; Razavi, Rouzbeh; Kucera, Stepan

    2018-01-01

    Small Cell Networks: Deployment, Management, and Optimization addresses key problems of the cellular network evolution towards HetNets. It focuses on the latest developments in heterogeneous and small cell networks, as well as their deployment, operation, and maintenance. It also covers the full spectrum of the topic, from academic, research, and business to the practice of HetNets in a coherent manner. Additionally, it provides complete and practical guidelines to vendors and operators interested in deploying small cells. The first comprehensive book written by well-known researchers and engineers from Nokia Bell Labs, Small Cell Networks begins with an introduction to the subject--offering chapters on capacity scaling and key requirements of future networks. It then moves on to sections on coverage and capacity optimization, and interference management. From there, the book covers mobility management, energy efficiency, and small cell deployment, ending with a section devoted to future trends and applicat...

  6. Direct lifts of coupled cell networks

    Science.gov (United States)

    Dias, A. P. S.; Moreira, C. S.

    2018-04-01

    In networks of dynamical systems, there are spaces defined in terms of equalities of cell coordinates which are flow-invariant under any dynamical system that has a form consistent with the given underlying network structure—the network synchrony subspaces. Given a network and one of its synchrony subspaces, any system with a form consistent with the network, restricted to the synchrony subspace, defines a new system which is consistent with a smaller network, called the quotient network of the original network by the synchrony subspace. Moreover, any system associated with the quotient can be interpreted as the restriction to the synchrony subspace of a system associated with the original network. We call the larger network a lift of the smaller network, and a lift can be interpreted as a result of the cellular splitting of the smaller network. In this paper, we address the question of the uniqueness in this lifting process in terms of the networks’ topologies. A lift G of a given network Q is said to be direct when there are no intermediate lifts of Q between them. We provide necessary and sufficient conditions for a lift of a general network to be direct. Our results characterize direct lifts using the subnetworks of all splitting cells of Q and of all split cells of G. We show that G is a direct lift of Q if and only if either the split subnetwork is a direct lift or consists of two copies of the splitting subnetwork. These results are then applied to the class of regular uniform networks and to the special classes of ring networks and acyclic networks. We also illustrate that one of the applications of our results is to the lifting bifurcation problem.

  7. GH-replacement therapy in adults

    DEFF Research Database (Denmark)

    Christiansen, J S; Jørgensen, J O; Pedersen, S A

    1991-01-01

    Growth hormone (GH) deficiency in adults, whether GH deficient since childhood or patients rendered GH deficient in adult life, is associated with psychosocial maladjustment, reduced muscle strength and reduced exercise capacity. Body composition is significantly altered with increased fat and de...

  8. GH and IGF1: Roles in Energy Metabolism of Long-Living GH Mutant Mice

    OpenAIRE

    Brown-Borg, Holly M.; Bartke, Andrzej

    2012-01-01

    Of the multiple theories to explain exceptional longevity, the most robust of these has centered on the reduction of three anabolic protein hormones, growth hormone (GH), insulin-like growth factor, and insulin. GH mutant mice live 50% longer and exhibit significant differences in several aspects of energy metabolism as compared with wild-type mice. Mitochondrial metabolism is upregulated in the absence of GH, whereas in GH transgenic mice and dwarf mice treated with GH, multiple aspects of t...

  9. Quality of porcine blastocysts produced in vitro in the presence of absence of GH

    NARCIS (Netherlands)

    Kidson, A.; Rubio-Pomar, F.J.; Knegsel, van A.; Tol, van H.T.A.; Hazeleger, W.; Ducro-Steverink, D.W.B.; Colenbrander, B.; Dieleman, S.J.; Bevers, M.M.

    2004-01-01

    GH receptor (GHR) mRNA is expressed in bovine in vitro produced embryos up to the blastocyst stage and GH improves the quality of bovine embryos by increasing blastocyst cell numbers and reducing the incidence of apoptosis as evaluated by DNA strand-break labelling. Porcine in vitro produced

  10. A remote but significant sequence homology between glycoside hydrolase clan GH-H and glycoside hydrolase family GH 31

    DEFF Research Database (Denmark)

    Janecek, S.; Svensson, Birte; MacGregor, E.A.

    2007-01-01

    Although both the α-amylase super-family, i.e. the glycoside hydrolase (GH) clan GH-H (the GH families 13, 70 and 77), and family GH31 share some characteristics, their different catalytic machinery prevents classification of GH31 in clan GH-H. A significant but remote evolutionary relatedness is...

  11. Multipathway modulation of exercise and glucose stress effects upon GH secretion in healthy men.

    Science.gov (United States)

    Veldhuis, Johannes D; Olson, Thomas P; Takahashi, Paul Y; Miles, John M; Joyner, Michael J; Yang, Rebecca J; Wigham, Jean

    2015-09-01

    Exercise evokes pulsatile GH release followed by autonegative feedback, whereas glucose suppresses GH release followed by rebound-like GH release (feedforward escape). Here we test the hypothesis that age, sex steroids, insulin, body composition and physical power jointly determine these dynamic GH responses. This was a prospectively randomized glucose-blinded study conducted in the Mayo Center for Advancing Translational Sciences in healthy men ages 19-77 years (N=23). Three conditions, fasting/rest/saline, fasting/exercise/saline and fasting/rest/iv glucose infusions, were used to drive GH dynamics during 10-min blood sampling for 6h. Linear correlation analysis was applied to relate peak/nadir GH dynamics to age, sex steroids, insulin, CT-estimated abdominal fat and physical power (work per unit time). Compared with the fasting/rest/saline (control) day, fasting/exercise/saline infusion evoked peak GH within 1h, followed by negative feedback 3-5h later. The dynamic GH excursion was strongly (R(2)=0.634) influenced by (i) insulin negatively (P=0.011), (ii) power positively (P=0.0008), and (iii) E2 positively (P=0.001). Dynamic glucose-modulated GH release was determined by insulin negatively (P=0.0039) and power positively (P=0.0034) (R(2)=0.454). Under rest/saline, power (P=0.031) and total abdominal fat (P=0.012) (R(2)=0.267) were the dominant correlates of GH excursions. In healthy men, dynamic GH perturbations induced by exercise and glucose are strongly related to physical power, insulin, estradiol, and body composition, thus suggesting a network of regulatory pathways. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. CellNet: Network Biology Applied to Stem Cell Engineering

    Science.gov (United States)

    Cahan, Patrick; Li, Hu; Morris, Samantha A.; da Rocha, Edroaldo Lummertz; Daley, George Q.; Collins, James J.

    2014-01-01

    SUMMARY Somatic cell reprogramming, directed differentiation of pluripotent stem cells, and direct conversions between differentiated cell lineages represent powerful approaches to engineer cells for research and regenerative medicine. We have developed CellNet, a network biology platform that more accurately assesses the fidelity of cellular engineering than existing methodologies and generates hypotheses for improving cell derivations. Analyzing expression data from 56 published reports, we found that cells derived via directed differentiation more closely resemble their in vivo counterparts than products of direct conversion, as reflected by the establishment of target cell-type gene regulatory networks (GRNs). Furthermore, we discovered that directly converted cells fail to adequately silence expression programs of the starting population, and that the establishment of unintended GRNs is common to virtually every cellular engineering paradigm. CellNet provides a platform for quantifying how closely engineered cell populations resemble their target cell type and a rational strategy to guide enhanced cellular engineering. PMID:25126793

  13. Fabrication of microstamps and patterned cell network

    International Nuclear Information System (INIS)

    Seong, Nak Seon; Pak, James Jung Ho; Choi, Ju Hee; Ahn, Dong June; Hwang, Seong Min; Lee, Kyung J.

    2002-01-01

    Elastomeric stamps with micrometer-sized grids are fabricated for building biological cell networks by design. Polymerized polydimethyl-siloxane (PDMS) stamps are cast in a variety of different molds prepared by micro-electro mechanical systems (MEMS) technology. Micro square-grid patterns of 3-aminopropyl triethoxy silane (APS) are successfully imprinted on glass plates, and patterned networks of cardiac cells are obtained as designed. The resulting cellular networks clearly demonstrate that cell attachment and growth are greatly favored on APS-treated thin tracks. Here, we report the technical details related to the fabrication of microstamps, to the stamping procedure, and to the culture method. The potential applications of patterned cellular networks are also discussed

  14. Increased fibrosis: A novel means by which GH influences white adipose tissue function.

    Science.gov (United States)

    Householder, Lara A; Comisford, Ross; Duran-Ortiz, Silvana; Lee, Kevin; Troike, Katie; Wilson, Cody; Jara, Adam; Harberson, Mitchell; List, Edward O; Kopchick, John J; Berryman, Darlene E

    2018-04-01

    White adipose tissue (WAT) fibrosis - the buildup of extracellular matrix (ECM) proteins, primarily collagen - is now a recognized hallmark of tissue dysfunction and is increased with obesity and lipodystrophy. While growth hormone (GH) is known to increase collagen in several tissues, no previous research has addressed its effect on ECM in WAT. Thus, the purpose of this study is to determine if GH influences WAT fibrosis. This study examined WAT from four distinct strains of GH-altered mice (bGH and GHA transgenic mice as well as two tissue specific GH receptor gene disrupted lines, fat growth hormone receptor knockout or FaGHRKO and liver growth hormone receptor knockout or LiGHRKO mice). Collagen content and adipocyte size were studied in all cohorts and compared to littermate controls. In addition, mRNA expression of fibrosis-associated genes was assessed in one cohort (6month old male bovine GH transgenic and WT mice) and cultured 3T3-L1 adipocytes treated with GH. Collagen stained area was increased in WAT from bGH mice, was depot-dependent, and increased with age. Furthermore, increased collagen content was associated with decreased adipocyte size in all depots but more dramatic changes in the subcutaneous fat pad. Notably, the increase in collagen was not associated with an increase in collagen gene expression or other genes known to promote fibrosis in WAT, but collagen gene expression was increased with acute GH administration in 3T3-LI cells. In contrast, evaluation of 6month old GH antagonist (GHA) male mice showed significantly decreased collagen in the subcutaneous depot. Lastly, to assess if GH induced collagen deposition directly or indirectly (via IGF-1), fat (Fa) and liver (Li) specific GHRKO mice were evaluated. Decreased fibrosis in FaGHRKO and increased fibrosis in LiGHRKO mice suggest GH is primarily responsible for the alterations in collagen. Our results show that GH action is positively associated with an increase in WAT collagen content as

  15. Ghrelin- and GH-induced insulin resistance

    DEFF Research Database (Denmark)

    Vestergaard, Esben Thyssen; Krag, Morten B; Poulsen, Morten M

    2013-01-01

    Supraphysiological levels of ghrelin and GH induce insulin resistance. Serum levels of retinol-binding protein-4 (RBP4) correlate inversely with insulin sensitivity in patients with type 2 diabetes. We aimed to determine whether ghrelin and GH affect RBP4 levels in human subjects.......Supraphysiological levels of ghrelin and GH induce insulin resistance. Serum levels of retinol-binding protein-4 (RBP4) correlate inversely with insulin sensitivity in patients with type 2 diabetes. We aimed to determine whether ghrelin and GH affect RBP4 levels in human subjects....

  16. Growth Hormone (GH) and Cardiovascular System

    Science.gov (United States)

    Díaz, Oscar; Devesa, Pablo

    2018-01-01

    This review describes the positive effects of growth hormone (GH) on the cardiovascular system. We analyze why the vascular endothelium is a real internal secretion gland, whose inflammation is the first step for developing atherosclerosis, as well as the mechanisms by which GH acts on vessels improving oxidative stress imbalance and endothelial dysfunction. We also report how GH acts on coronary arterial disease and heart failure, and on peripheral arterial disease, inducing a neovascularization process that finally increases flow in ischemic tissues. We include some preliminary data from a trial in which GH or placebo is given to elderly people suffering from critical limb ischemia, showing some of the benefits of the hormone on plasma markers of inflammation, and the safety of GH administration during short periods of time, even in diabetic patients. We also analyze how Klotho is strongly related to GH, inducing, after being released from the damaged vascular endothelium, the pituitary secretion of GH, most likely to repair the injury in the ischemic tissues. We also show how GH can help during wound healing by increasing the blood flow and some neurotrophic and growth factors. In summary, we postulate that short-term GH administration could be useful to treat cardiovascular diseases. PMID:29346331

  17. Growth hormone (GH) differentially regulates NF-kB activity in preadipocytes and macrophages: implications for GH's role in adipose tissue homeostasis in obesity.

    Science.gov (United States)

    Kumar, P Anil; Chitra, P Swathi; Lu, Chunxia; Sobhanaditya, J; Menon, Ram

    2014-06-01

    Adipose tissue remodeling in obesity involves macrophage infiltration and chronic inflammation. NF-kB-mediated chronic inflammation of the adipose tissue is directly implicated in obesity-associated insulin resistance. We have investigated the effect of growth hormone (GH) on NF-kB activity in preadipocytes (3T3-F442A) and macrophages (J774A.1). Our studies indicate that whereas GH increases NF-kB activity in preadipocytes, it decreases NF-kB activity in macrophages. This differential response of NF-kB activity to GH correlates with the GH-dependent expression of a cadre of NF-kB-activated cytokines in these two cell types. Activation of NF-kB by GH in preadipocytes heightens inflammatory response by stimulating production of multiple cytokines including TNF-α, IL-6, and MCP-1, the mediators of both local and systemic insulin resistance and chemokines that recruit macrophages. Our studies also suggest differential regulation of miR132 and SIRT1 expression as a mechanism underlying the observed variance in GH-dependent NF-kB activity and altered cytokine profile in preadipocytes and macrophages. These findings further our understanding of the complex actions of GH on adipocytes and insulin sensitivity.

  18. Pioglitazone treatment increases spontaneous growth hormone (GH) secretion and stimulated GH levels in polycystic ovary syndrome

    DEFF Research Database (Denmark)

    Glintborg, Dorte; Støving, René Klinkby; Hagen, Claus

    2005-01-01

    BACKGROUND: Low GH levels, probably due to insulin resistance and increased abdominal fat mass, are well described in polycystic ovary syndrome (PCOS). GH acts as an important ovarian cogonadotropin, and GH disturbances may be an additional pathogenic factor in PCOS. Decreased abdominal fat mass...

  19. The robustness of diagnostic tests for GH deficiency in adults

    DEFF Research Database (Denmark)

    Andersen, Marianne

    2015-01-01

    with recombinant human GH. There is, however, an ongoing debate on how to diagnose GHD, especially in adults. A GH response below the cut-off limit of a GH-stimulation test is required in most cases for establishing GHD in adults. No 'gold standard' GH-stimulation test exists, but some GH stimulation tests may...

  20. The genetic network controlling plasma cell differentiation.

    Science.gov (United States)

    Nutt, Stephen L; Taubenheim, Nadine; Hasbold, Jhagvaral; Corcoran, Lynn M; Hodgkin, Philip D

    2011-10-01

    Upon activation by antigen, mature B cells undergo immunoglobulin class switch recombination and differentiate into antibody-secreting plasma cells, the endpoint of the B cell developmental lineage. Careful quantitation of these processes, which are stochastic, independent and strongly linked to the division history of the cell, has revealed that populations of B cells behave in a highly predictable manner. Considerable progress has also been made in the last few years in understanding the gene regulatory network that controls the B cell to plasma cell transition. The mutually exclusive transcriptomes of B cells and plasma cells are maintained by the antagonistic influences of two groups of transcription factors, those that maintain the B cell program, including Pax5, Bach2 and Bcl6, and those that promote and facilitate plasma cell differentiation, notably Irf4, Blimp1 and Xbp1. In this review, we discuss progress in the definition of both the transcriptional and cellular events occurring during late B cell differentiation, as integrating these two approaches is crucial to defining a regulatory network that faithfully reflects the stochastic features and complexity of the humoral immune response. 2011 Elsevier Ltd. All rights reserved.

  1. Different growth hormone (GH) response to GH-releasing peptide and GH-releasing hormone in hyperthyroidism.

    Science.gov (United States)

    Ramos-Dias, J C; Pimentel-Filho, F; Reis, A F; Lengyel, A M

    1996-04-01

    Altered GH responses to several pharmacological stimuli, including GHRH, have been found in hyperthyroidism. The mechanisms underlying these disturbances have not been fully elucidated. GH-releasing peptide-6 (GHRP-6) is a synthetic hexapeptide that specifically stimulates GH release both in vitro and in vivo. The mechanism of action of GHRP-6 is unknown, but it probably acts by inhibiting the effects of somatostatin on GH release. The aim of this study was to evaluate the effects of GHRP-6 on GH secretion in patients with hyperthyroidism (n = 9) and in control subjects (n = 9). Each subject received GHRP-6 (1 microg/kg, iv), GHRH (100 microg, iv), and GHRP-6 plus GHRH on 3 separate days. GH peak values (mean +/- SE; micrograms per L) were significantly lower in hyperthyroid patients compared to those in control subjects after GHRH alone (9.0 +/- 1.3 vs. 27.0 +/- 5.2) and GHRP-6 plus GHRH (22.5 +/- 3.5 vs. 83.7 +/- 15.2); a lack of the normal synergistic effect of the association of both peptides was observed in thyrotoxicosis. However, a similar GH response was seen in both groups after isolated GHRP-6 injection (31.9 +/- 5.7 vs. 23.2 +/- 3.9). In summary, we have shown that hyperthyroid patients have a normal GH response to GHRP-6 together with a blunted GH responsiveness to GHRH. Our data suggest that thyroid hormones modulate GH release induced by these two peptides in a differential way.

  2. Herpes simplex virus glycoproteins gB and gH function in fusion between the virion envelope and the outer nuclear membrane.

    Science.gov (United States)

    Farnsworth, Aaron; Wisner, Todd W; Webb, Michael; Roller, Richard; Cohen, Gary; Eisenberg, Roselyn; Johnson, David C

    2007-06-12

    Herpesviruses must traverse the nuclear envelope to gain access to the cytoplasm and, ultimately, to exit cells. It is believed that herpesvirus nucleocapsids enter the perinuclear space by budding through the inner nuclear membrane (NM). To reach the cytoplasm these enveloped particles must fuse with the outer NM and the unenveloped capsids then acquire a second envelope in the trans-Golgi network. Little is known about the process by which herpesviruses virions fuse with the outer NM. Here we show that a herpes simplex virus (HSV) mutant lacking both the two putative fusion glycoproteins gB and gH failed to cross the nuclear envelope. Enveloped virions accumulated in the perinuclear space or in membrane vesicles that bulged into the nucleoplasm (herniations). By contrast, mutants lacking just gB or gH showed only minor or no defects in nuclear egress. We concluded that either HSV gB or gH can promote fusion between the virion envelope and the outer NM. It is noteworthy that fusion associated with HSV entry requires the cooperative action of both gB and gH, suggesting that the two types of fusion (egress versus entry) are dissimilar processes.

  3. Biphasic action of cyclic adenosine 3',5'- monophosphate in gonadotropin-releasing hormone (GnRH) analog-stimulated hormone release from GH3 cells stably transfected with GnRH receptor complementary deoxyribonucleic acid.

    Science.gov (United States)

    Stanislaus, D; Arora, V; Awara, W M; Conn, P M

    1996-03-01

    GH3 cells are a PRL-secreting adenoma cell line derived from pituitary lactotropes. These cells have been stably transfected with rat GnRH receptor complementary DNA to produce four cell lines: GGH(3)1', GGH(3)2', GGH(3)6', and GGH(3)12'. In response to either GnRH or Buserelin (a metabolically stable GnRH agonist), these cell lines synthesize PRL in a cAMP-dependent manner. Only GGH(3)6' cells desensitize in response to persistent treatment with 10(-7) g/ml Buserelin. GGH(3)1', GGH(3)2', and GGH(3)12' cells, however, can be made refractory to Buserelin stimulation by raising cAMP levels either by the addition of (Bu)2cAMP to the medium or by treatment with cholera toxin. In GGH(3) cells, low levels of cAMP fulfill the requirements for a second messenger, whereas higher levels appear to mediate the development of desensitization. The observation that in GGH(3)6' cells, cAMP production persists after the onset of desensitization is consistent with the view that the mechanism responsible for desensitization is distal to the production of cAMP. Moreover, the absence of any significant difference in the amount of cAMP produced per cell in GGH(3)2', GGH(3)6', or GGH(3)12' cells suggests that elevated cAMP production per cell does not explain the development of desensitization in GGH(3)6' cells. We suggest that Buserelin-stimulated PRL synthesis in GGH(3)6' cells is mediated by a different cAMP-dependent protein kinase pool(s) than that in nondesensitizing GGH(3) cells. Such a protein kinase A pool(s) may be more susceptible to degradation via cAMP-mediated mechanisms than the protein kinase pools mediating the Buserelin response in nondesensitizing GGH(3) cells. A similar mechanism has been reported in other systems.

  4. GH activity and markers of inflammation

    DEFF Research Database (Denmark)

    Andreassen, Mikkel; Frystyk, Jan; Faber, Jens

    2012-01-01

    The GH/IGF1 axis may modulate inflammatory processes. However, the relationship seems complicated as both pro- and anti-inflammatory effects have been demonstrated.......The GH/IGF1 axis may modulate inflammatory processes. However, the relationship seems complicated as both pro- and anti-inflammatory effects have been demonstrated....

  5. The effect of 30 months of low-dose replacement therapy with recombinant human growth hormone (rhGH) on insulin and C-peptide kinetics, insulin secretion, insulin sensitivity, glucose effectiveness, and body composition in GH-deficient adults

    DEFF Research Database (Denmark)

    Rosenfalck, A M; Maghsoudi, S; Fisker, S

    2000-01-01

    The aim of the present study was to evaluate the long-term (30 months) metabolic effects of recombinant human GH (rhGH) given in a mean dose of 6.7 microg/kg x day (= 1.6 IU/day), in 11 patients with adult GH deficiency. Glucose metabolism was evaluated by an oral glucose tolerance test and an iv...... (frequently sampled iv glucose tolerance test) glucose tolerance test, and body composition was estimated by dual-energy x-ray absorptiometry. Treatment with rhGH induced persistent favorable changes in body composition, with a 10% increase in lean body mass (P ... in glucose tolerance, beta-cell response was still inappropriate. Our conclusion is that long-term rhGH-replacement therapy in GH deficiency adults induced a significant deterioration in glucose tolerance, profound changes in kinetics of C-peptide, and insulin and prehepatic insulin secretion, despite...

  6. CellNet: network biology applied to stem cell engineering.

    Science.gov (United States)

    Cahan, Patrick; Li, Hu; Morris, Samantha A; Lummertz da Rocha, Edroaldo; Daley, George Q; Collins, James J

    2014-08-14

    Somatic cell reprogramming, directed differentiation of pluripotent stem cells, and direct conversions between differentiated cell lineages represent powerful approaches to engineer cells for research and regenerative medicine. We have developed CellNet, a network biology platform that more accurately assesses the fidelity of cellular engineering than existing methodologies and generates hypotheses for improving cell derivations. Analyzing expression data from 56 published reports, we found that cells derived via directed differentiation more closely resemble their in vivo counterparts than products of direct conversion, as reflected by the establishment of target cell-type gene regulatory networks (GRNs). Furthermore, we discovered that directly converted cells fail to adequately silence expression programs of the starting population and that the establishment of unintended GRNs is common to virtually every cellular engineering paradigm. CellNet provides a platform for quantifying how closely engineered cell populations resemble their target cell type and a rational strategy to guide enhanced cellular engineering. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Different cell fates from cell-cell interactions: core architectures of two-cell bistable networks.

    Science.gov (United States)

    Rouault, Hervé; Hakim, Vincent

    2012-02-08

    The acquisition of different fates by cells that are initially in the same state is central to development. Here, we investigate the possible structures of bistable genetic networks that can allow two identical cells to acquire different fates through cell-cell interactions. Cell-autonomous bistable networks have been previously sampled using an evolutionary algorithm. We extend this evolutionary procedure to take into account interactions between cells. We obtain a variety of simple bistable networks that we classify into major subtypes. Some have long been proposed in the context of lateral inhibition through the Notch-Delta pathway, some have been more recently considered and others appear to be new and based on mechanisms not previously considered. The results highlight the role of posttranscriptional interactions and particularly of protein complexation and sequestration, which can replace cooperativity in transcriptional interactions. Some bistable networks are entirely based on posttranscriptional interactions and the simplest of these is found to lead, upon a single parameter change, to oscillations in the two cells with opposite phases. We provide qualitative explanations as well as mathematical analyses of the dynamical behaviors of various created networks. The results should help to identify and understand genetic structures implicated in cell-cell interactions and differentiation. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Circulating growth hormone (GH)-binding protein complex: a major constituent of plasma GH in man

    International Nuclear Information System (INIS)

    Baumann, G.; Amburn, K.; Shaw, M.A.

    1988-01-01

    The recent discovery of a specific binding protein for human GH (hGH) in human plasma suggests that hGH circulates in part as a complex in association with the binding protein(s). However, the magnitude of the complexed fraction prevailing under physiological conditions is unknown because of 1) dissociation of the complex during analysis and 2) potential differences in the binding characteristics of radiolabeled and native hGH. We conducted experiments designed to minimize dissociation during analysis (gel filtration in prelabeled columns, frontal analysis, and batch molecular sieving) with both native and radioiodinated hGH. All three methods yielded similar estimates for the complexed fraction. In normal plasma the bound fraction for 22 K hGH averaged 50.1% (range, 39-59%), that for 20 K hGH averaged 28.5% (range, 26-31%). Above a hGH level of about 20 ng/ml the bound fraction declines in concentration-dependent manner due to saturation of the binding protein. We conclude that a substantial part of circulating hGH is complexed with carrier proteins. This concept has important implications for the metabolism, distribution, and biological activity of hGH

  9. Immobilization of Glycoside Hydrolase Families GH1, GH13, and GH70: State of the Art and Perspectives

    Directory of Open Access Journals (Sweden)

    Natália G. Graebin

    2016-08-01

    Full Text Available Glycoside hydrolases (GH are enzymes capable to hydrolyze the glycosidic bond between two carbohydrates or even between a carbohydrate and a non-carbohydrate moiety. Because of the increasing interest for industrial applications of these enzymes, the immobilization of GH has become an important development in order to improve its activity, stability, as well as the possibility of its reuse in batch reactions and in continuous processes. In this review, we focus on the broad aspects of immobilization of enzymes from the specific GH families. A brief introduction on methods of enzyme immobilization is presented, discussing some advantages and drawbacks of this technology. We then review the state of the art of enzyme immobilization of families GH1, GH13, and GH70, with special attention on the enzymes β-glucosidase, α-amylase, cyclodextrin glycosyltransferase, and dextransucrase. In each case, the immobilization protocols are evaluated considering their positive and negative aspects. Finally, the perspectives on new immobilization methods are briefly presented.

  10. Arginine induces GH gene expression by activating NOS/NO signaling in rat isolated hemi-pituitaries

    Directory of Open Access Journals (Sweden)

    S.C.F. Olinto

    2012-11-01

    Full Text Available The amino acid arginine (Arg is a recognized secretagogue of growth hormone (GH, and has been shown to induce GH gene expression. Arg is the natural precursor of nitric oxide (NO, which is known to mediate many of the effects of Arg, such as GH secretion. Arg was also shown to increase calcium influx in pituitary cells, which might contribute to its effects on GH secretion. Although the mechanisms involved in the effects of Arg on GH secretion are well established, little is known about them regarding the control of GH gene expression. We investigated whether the NO pathway and/or calcium are involved in the effects of Arg on GH gene expression in rat isolated pituitaries. To this end, pituitaries from approximately 170 male Wistar rats (~250 g were removed, divided into two halves, pooled (three hemi-pituitaries and incubated or not with Arg, as well as with different pharmacological agents. Arg (71 mM, the NO donor sodium nitroprusside (SNP, 1 and 0.1 mM and a cyclic guanosine monophosphate (cGMP analogue (8-Br-cGMP, 1 mM increased GH mRNA expression 60 min later. The NO acceptor hemoglobin (0.3 µM blunted the effect of SNP, and the combined treatment with Arg and L-NAME (a NO synthase (NOS inhibitor, 55 mM abolished the stimulatory effect of Arg on GH gene expression. The calcium channel inhibitor nifedipine (3 µM also abolished Arg-induced GH gene expression. The present study shows that Arg directly induces GH gene expression in hemi-pituitaries isolated from rats, excluding interference from somatostatinergic neurons, which are supposed to be inhibited by Arg. Moreover, the data demonstrate that the NOS/NO signaling pathway and calcium mediate the Arg effects on GH gene expression.

  11. Arginine induces GH gene expression by activating NOS/NO signaling in rat isolated hemi-pituitaries

    Energy Technology Data Exchange (ETDEWEB)

    Olinto, S.C.F. [Faculdade de Ciências Integradas do Pontal, Universidade Federal de Uberlândia, Ituiutaba, MG (Brazil); Adrião, M.G. [Departamento de Morfologia e Fisiologia, Universidade Federal Rural de Pernambuco, Recife, PE (Brazil); Castro-Barbosa, T.; Goulart-Silva, F.; Nunes, M.T. [Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil)

    2012-06-01

    The amino acid arginine (Arg) is a recognized secretagogue of growth hormone (GH), and has been shown to induce GH gene expression. Arg is the natural precursor of nitric oxide (NO), which is known to mediate many of the effects of Arg, such as GH secretion. Arg was also shown to increase calcium influx in pituitary cells, which might contribute to its effects on GH secretion. Although the mechanisms involved in the effects of Arg on GH secretion are well established, little is known about them regarding the control of GH gene expression. We investigated whether the NO pathway and/or calcium are involved in the effects of Arg on GH gene expression in rat isolated pituitaries. To this end, pituitaries from approximately 170 male Wistar rats (∼250 g) were removed, divided into two halves, pooled (three hemi-pituitaries) and incubated or not with Arg, as well as with different pharmacological agents. Arg (71 mM), the NO donor sodium nitroprusside (SNP, 1 and 0.1 mM) and a cyclic guanosine monophosphate (cGMP) analogue (8-Br-cGMP, 1 mM) increased GH mRNA expression 60 min later. The NO acceptor hemoglobin (0.3 µM) blunted the effect of SNP, and the combined treatment with Arg and L-NAME (an NO synthase (NOS) inhibitor, 55 mM) abolished the stimulatory effect of Arg on GH gene expression. The calcium channel inhibitor nifedipine (3 µM) also abolished Arg-induced GH gene expression. The present study shows that Arg directly induces GH gene expression in hemi-pituitaries isolated from rats, excluding interference from somatostatinergic neurons, which are supposed to be inhibited by Arg. Moreover, the data demonstrate that the NOS/NO signaling pathway and calcium mediate the Arg effects on GH gene expression.

  12. Arginine induces GH gene expression by activating NOS/NO signaling in rat isolated hemi-pituitaries

    International Nuclear Information System (INIS)

    Olinto, S.C.F.; Adrião, M.G.; Castro-Barbosa, T.; Goulart-Silva, F.; Nunes, M.T.

    2012-01-01

    The amino acid arginine (Arg) is a recognized secretagogue of growth hormone (GH), and has been shown to induce GH gene expression. Arg is the natural precursor of nitric oxide (NO), which is known to mediate many of the effects of Arg, such as GH secretion. Arg was also shown to increase calcium influx in pituitary cells, which might contribute to its effects on GH secretion. Although the mechanisms involved in the effects of Arg on GH secretion are well established, little is known about them regarding the control of GH gene expression. We investigated whether the NO pathway and/or calcium are involved in the effects of Arg on GH gene expression in rat isolated pituitaries. To this end, pituitaries from approximately 170 male Wistar rats (∼250 g) were removed, divided into two halves, pooled (three hemi-pituitaries) and incubated or not with Arg, as well as with different pharmacological agents. Arg (71 mM), the NO donor sodium nitroprusside (SNP, 1 and 0.1 mM) and a cyclic guanosine monophosphate (cGMP) analogue (8-Br-cGMP, 1 mM) increased GH mRNA expression 60 min later. The NO acceptor hemoglobin (0.3 µM) blunted the effect of SNP, and the combined treatment with Arg and L-NAME (an NO synthase (NOS) inhibitor, 55 mM) abolished the stimulatory effect of Arg on GH gene expression. The calcium channel inhibitor nifedipine (3 µM) also abolished Arg-induced GH gene expression. The present study shows that Arg directly induces GH gene expression in hemi-pituitaries isolated from rats, excluding interference from somatostatinergic neurons, which are supposed to be inhibited by Arg. Moreover, the data demonstrate that the NOS/NO signaling pathway and calcium mediate the Arg effects on GH gene expression

  13. GH and IGF1: roles in energy metabolism of long-living GH mutant mice.

    Science.gov (United States)

    Brown-Borg, Holly M; Bartke, Andrzej

    2012-06-01

    Of the multiple theories to explain exceptional longevity, the most robust of these has centered on the reduction of three anabolic protein hormones, growth hormone (GH), insulin-like growth factor, and insulin. GH mutant mice live 50% longer and exhibit significant differences in several aspects of energy metabolism as compared with wild-type mice. Mitochondrial metabolism is upregulated in the absence of GH, whereas in GH transgenic mice and dwarf mice treated with GH, multiple aspects of these pathways are suppressed. Core body temperature is markedly lower in dwarf mice, yet whole-body metabolism, as measured by indirect calorimetry, is surprisingly higher in Ames dwarf and Ghr-/- mice compared with normal controls. Elevated adiponectin, a key antiinflammatory cytokine, is also very likely to contribute to longevity in these mice. Thus, several important components related to energy metabolism are altered in GH mutant mice, and these differences are likely critical in aging processes and life-span extension.

  14. Does the GH/IGF-1 axis contribute to skeletal sexual dimorphism? Evidence from mouse studies.

    Science.gov (United States)

    Liu, Zhongbo; Mohan, Subburaman; Yakar, Shoshana

    2016-04-01

    The contribution of the gonadotropic axis to skeletal sexual dimorphism (SSD) was clarified in recent years. Studies with animal models of estrogen receptor (ER) or androgen receptor (AR) null mice, as well as mice with bone cell-specific ablation of ER or AR, revealed that both hormones play major roles in skeletal acquisition, and that estrogen regulates skeletal accrual in both sexes. The growth hormone (GH) and its downstream effector, the insulin-like growth factor-1 (IGF-1) are also major determinants of peak bone mass during puberty and young adulthood, and play important roles in maintaining bone integrity during aging. A few studies in both humans and animal models suggest that in addition to the differences in sex steroid actions on bone, sex-specific effects of GH and IGF-1 play essential roles in SSD. However, the contributions of the somatotropic (GH/IGF-1) axis to SSD are controversial and data is difficult to interpret. GH/IGF-1 are pleotropic hormones that act in an endocrine and autocrine/paracrine fashion on multiple tissues, affecting body composition as well as metabolism. Thus, understanding the contribution of the somatotropic axis to SSD requires the use of mouse models that will differentiate between these two modes of action. Elucidation of the relative contribution of GH/IGF-1 axis to SSD is significant because GH is approved for the treatment of normal children with short stature and children with congenital growth disorders. Thus, if the GH/IGF-1 axis determines SSD, treatment with GH may be tailored according to sex. In the following review, we give an overview of the roles of sex steroids in determining SSD and how they may interact with the GH/IGF-1 axis in bone. We summarize several mouse models with impaired somatotropic axis and speculate on the possible contribution of that axis to SSD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Plerocercoid growth factor (PGF), a human growth hormone (hGH) analogue produced by the tapeworm Spirometra mansonoides, has direct insulin-like action in adipose tissue of normal rats in vitro

    International Nuclear Information System (INIS)

    Salem, M.A.M.; Phares, C.K.

    1986-01-01

    The metabolic actions of GH can be divided into acute (insulin-like) and chronic (lipolytic/anti-insulin). The insulin-like actions of GH are most readily elicited in GH-deficient animals as GH induces resistance to its own insulin-like action. Like GH, PGF stimulates growth and cross-reacts with anti-hGH antibodies. Independent experiments were conducted comparing the direct actions of PGF to insulin or hGH in vitro. Insulin-like effects were determined by the ability of PGF, insulin or hGH to stimulate [U- 14 C]glucose metabolism in epidydimal fat pads from normal rats and by inhibition of epinephrine-stimulated lipolysis. Direct stimulation of lipolysis was used as anti-insulin activity. To determine if PGF competes for insulin or GH receptors, adipocytes (3 x 10 5 cells/ml) were incubated with either [ 125 I]insulin or [ 125 I]hGH +/- PGF, +/- insulin or +/- hGH. PGF stimulated glucose oxidation and 14 C-incorporation into lipids. Insulin, hGH and PGF inhibited lipolysis (33%, 29% and 34%, respectively). Adipose tissue was very sensitive to the lipolytic effect of hGH but PGF was neither lipolytic nor did it confer refractoriness to its insulin-like action. PGF bound to GH but not to insulin receptors. Therefore, PGF had direct insulin-like effects but did not stimulate lipolysis in tissue from normal rats in vitro

  16. Correlation between GH and IGF-1 during treatment for acromegaly.

    Science.gov (United States)

    Oldfield, Edward H; Jane, John A; Thorner, Michael O; Pledger, Carrie L; Sheehan, Jason P; Vance, Mary Lee

    2017-06-01

    OBJECTIVE The relationship between growth hormone (GH) and insulin-like growth factor-1 (IGF-1) in patients with acromegaly as serial levels drop over time after treatment has not been examined previously. Knowledge of this relationship is important to correlate pretreatment levels that best predict response to treatment. To examine the correlation between GH and IGF-1 and IGF-1 z-scores over a wide range of GH levels, the authors examined serial GH and IGF-1 levels at intervals before and after surgery and radiosurgery for acromegaly. METHODS This retrospective analysis correlates 414 pairs of GH and IGF-1 values in 93 patients with acromegaly. RESULTS Absolute IGF-1 levels increase linearly with GH levels only up to a GH of 4 ng/ml, and with IGF-1 z-scores only to a GH level of 1 ng/ml. Between GH levels of 1 and 10 ng/ml, increases in IGF-1 z-scores relative to changes in GH diminish and then plateau at GH concentrations of about 10 ng/ml. From patient to patient there is a wide range of threshold GH levels beyond which IGF-1 increases are no longer linear, GH levels at which the IGF-1 response plateaus, IGF-1 levels at similar GH values after the IGF-1 response plateaus, and of IGF-1 levels at similar GH levels. CONCLUSIONS In acromegaly, although IGF-1 levels represent a combination of the integrated effects of GH secretion and GH action, the tumor produces GH, not IGF-1. Nonlinearity between GH and IGF-1 occurs at GH levels far below those previously recognized. To monitor tumor activity and tumor viability requires measurement of GH levels.

  17. A Method to Design Synthetic Cell-Cycle Networks

    International Nuclear Information System (INIS)

    Ke-Ke, Miao

    2009-01-01

    The interactions among proteins, DNA and RNA in an organism form elaborate cell-cycle networks which govern cell growth and proliferation. Understanding the common structure of cell-cycle networks will be of great benefit to science research. Here, inspired by the importance of the cell-cycle regulatory network of yeast which has been studied intensively, we focus on small networks with 11 nodes, equivalent to that of the cell-cycle regulatory network used by Li et al. [Proc. Natl. Acad. Sci. USA 101(2004)4781] Using a Boolean model, we study the correlation between structure and function, and a possible common structure. It is found that cascade-like networks with a great number of interactions between nodes are stable. Based on these findings, we are able to construct synthetic networks that have the same functions as the cell-cycle regulatory network. (condensed matter: structure, mechanical and thermal properties)

  18. Growth hormone (GH) secretion and pituitary size in children with short stature. Efficacy of GH therapy in GH-deficient children, depending on the pituitary size.

    Science.gov (United States)

    Hilczer, Maciej; Szalecki, Mieczysław; Smyczynska, Joanna; Stawerska, Renata; Kaniewska, Danuta; Lewinski, Andrzej

    2005-10-01

    Certain relationships between pituitary size and growth hormone (GH) secretion have previously been observed, however they are still a matter of controversy. Organic abnormalities of the hypothalamic-hypophyseal region are important for predicting growth response to GH therapy. Evaluation of relations between GH secretion and the pituitary size in short children and estimation of the efficacy of GH therapy in children with GH deficiency (GHD). The analysis comprised 216 short children (159 boys). Two GH stimulation tests, as well as magnetic resonance image (MRI) examination, were performed in each patient. All the patients with GHD were treated with GH for, at least, one year. Significant correlations were found between pituitary height and GH secretion (p < 0.05). Patients were classified into three (3) groups: 1) pituitary hypoplasia (HP) for height age; 2) HP for the chronological age but not for the height age; 3) normal pituitary size. Significant differences in GH secretion were observed among the groups (6.1+/-5.3 vs. 8.1+/-4.4 vs. 12.3+/-9.1 ng/mL, respectively). There was a negative correlation between GH peak and height gain during GH therapy (r = -0.34). The highest growth improvement was noticed in patients with HP for the height age. Pituitary hypoplasia for the height age is related to more severe GH deficiency and the best response to GH therapy.

  19. Chitinase family GH18: evolutionary insights from the genomic history of a diverse protein family

    Directory of Open Access Journals (Sweden)

    Aronson Nathan N

    2007-06-01

    Full Text Available Abstract Background Chitinases (EC.3.2.1.14 hydrolyze the β-1,4-linkages in chitin, an abundant N-acetyl-β-D-glucosamine polysaccharide that is a structural component of protective biological matrices such as insect exoskeletons and fungal cell walls. The glycoside hydrolase 18 (GH18 family of chitinases is an ancient gene family widely expressed in archea, prokaryotes and eukaryotes. Mammals are not known to synthesize chitin or metabolize it as a nutrient, yet the human genome encodes eight GH18 family members. Some GH18 proteins lack an essential catalytic glutamic acid and are likely to act as lectins rather than as enzymes. This study used comparative genomic analysis to address the evolutionary history of the GH18 multiprotein family, from early eukaryotes to mammals, in an effort to understand the forces that shaped the human genome content of chitinase related proteins. Results Gene duplication and loss according to a birth-and-death model of evolution is a feature of the evolutionary history of the GH18 family. The current human family likely originated from ancient genes present at the time of the bilaterian expansion (approx. 550 mya. The family expanded in the chitinous protostomes C. elegans and D. melanogaster, declined in early deuterostomes as chitin synthesis disappeared, and expanded again in late deuterostomes with a significant increase in gene number after the avian/mammalian split. Conclusion This comprehensive genomic study of animal GH18 proteins reveals three major phylogenetic groups in the family: chitobiases, chitinases/chitolectins, and stabilin-1 interacting chitolectins. Only the chitinase/chitolectin group is associated with expansion in late deuterostomes. Finding that the human GH18 gene family is closely linked to the human major histocompatibility complex paralogon on chromosome 1, together with the recent association of GH18 chitinase activity with Th2 cell inflammation, suggests that its late expansion

  20. Regulation of the growth hormone (GH) receptor and GH-binding protein mRNA

    Energy Technology Data Exchange (ETDEWEB)

    Kaji, Hidesuke; Ohashi, Shin-Ichirou; Abe, Hiromi; Chihara, Kazuo [Kobe Univ. School of Medicine, Kobe (Japan)

    1994-12-31

    In fasting rats, a transient increase in growth hormone-binding protein (GHBP) mRNA levels was observed after 1 day, in muscle, heart, and liver, but not in fat tissues. The liver GH receptor (GHR) mRNA level was significantly increased after 1 day (but not after 5 days) of bovine GH (bGH) treatment in fed rats. Both the liver GHR mRNA level and the net increment of plasma IGF-I markedly decreased after 5 days of bGH administration in fasting rats. These findings suggest that GHR and GHBP mRNAs in the liver are expressed in a different way and that the expression of GHBP mRNA is regulated differently between tissues, at least in rats. The results also suggest that refractoriness to GH in a sustained fasting state might be beneficial in preventing anabolic effects of GH. In humans, GHR mRNA in lymphocytes, from subjects with either GH-deficiency or acromegaly, could be detected by the reverse transcription-polymerase chain reaction method. In one patient with partial GH insensitivity, a heterozygous missense mutation (P561T) was identified in the cytoplasmic domain of GHR. 15 refs., 4 figs.

  1. Response to GH treatment in adult GH deficiency is predicted by gender, age, and IGF1 SDS but not by stimulated GH-peak

    DEFF Research Database (Denmark)

    Feldt-Rasmussen, Ulla; Brabant, Georg; Maiter, Dominique

    2013-01-01

    We studied whether the severity of GH deficiency (GHD) defined as i) GH-peak on stimulation tests (insulin tolerance test (ITT), arginine, and glucagon), ii) number of additional pituitary deficits, or iii) baseline IGF1 SDS could impact the response to GH treatment. We further explored whether iv...

  2. Cellular expression of gH confers resistance to herpes simplex virus type-1 entry

    International Nuclear Information System (INIS)

    Scanlan, Perry M.; Tiwari, Vaibhav; Bommireddy, Susmita; Shukla, Deepak

    2003-01-01

    Entry of herpes simplex virus-1 (HSV-1) into cells requires a concerted action of four viral glycoproteins gB, gD, and gH-gL. Previously, cell surface expression of gD had been shown to confer resistance to HSV-1 entry. To investigate any similar effects caused by other entry glycoproteins, gB and gH-gL were coexpressed with Nectin-1 in Chinese hamster ovary (CHO) cells. Interestingly, cellular expression of gB had no effect on HSV-1(KOS) entry. In contrast, entry was significantly reduced in cells expressing gH-gL. This effect was further analyzed by expressing gH and gL separately. Cells expressing gL were normally susceptible, whereas gH-expressing cells were significantly resistant. Further experiments suggested that the gH-mediated interference phenomenon was not specific to any particular gD receptor and was also observed in gH-expressing HeLa cells. Moreover, contrary to a previous report, gL-independent cell surface expression of gH was detected in stably transfected CHO cells, possibly implicating cell surface gH in the interference phenomenon. Thus, taken together these findings indicate that cellular expression of gH interferes with HSV-1 entry

  3. Hypophysectomy eliminates and growth hormone (GH) maintains the midpregnancy elevation in GH receptor and serum binding protein in the mouse

    International Nuclear Information System (INIS)

    Sanchez-Jimenez, F.; Fielder, P.J.; Martinez, R.R.; Smith, W.C.; Talamantes, F.

    1990-01-01

    [ 125 I]Iodomouse GH [( 125 I]iodo-mGH) binding to samples of serum and hepatic microsomal membranes was measured in hypophysectomized pregnant, sham-operated pregnant, intact pregnant, and intact adult virgin mice. Surgeries were carried out on day 11 of pregnancy, and the animals were killed on day 14. The binding of mGH to both serum and hepatic microsomal membranes of intact virgin mice was much lower than to those of intact pregnant mice. In hypophysectomized mice, the mGH-binding capacity of both serum and hepatic microsomes decreased to values similar to those of nonpregnant mice. No significant differences were observed between intact and sham-operated pregnant animals in the maternal serum mGH concentration, the serum GH-binding protein concentration, or the hepatic GH receptor concentration. GH receptor and binding protein-encoding mRNAs were also higher in intact and sham-operated pregnant mice than in virgin and hypophysectomized mice. Hypophysectomized mice were treated with 200 micrograms/day bovine GH, administered by osmotic minipump; after 3 days of treatment, a significant elevation of hepatic GH receptor and serum GH-binding protein levels was observed. These results demonstrate an up-regulation of hepatic GH receptors and serum GH-binding protein by GH during pregnancy in the mouse

  4. Cell outage compensation in LTE networks: Algorithms and performance assessment

    NARCIS (Netherlands)

    Amirijoo, M.; Jorguseski, L.; Litjens, R.; Schmelz, L.C.

    2011-01-01

    Cell outage compensation is a self-healing function and as such part of the Self-Organising Networks concept for mobile wireless networks. It aims at mitigating the degradation of coverage, capacity and service quality caused by a cell or site level outage. Upon detection of such an outage, cell

  5. A Gossypium hirsutum GDSL lipase/hydrolase gene (GhGLIP) appears to be involved in promoting seed growth in Arabidopsis.

    Science.gov (United States)

    Ma, Rendi; Yuan, Hali; An, Jing; Hao, Xiaoyun; Li, Hongbin

    2018-01-01

    GDSL lipase (GLIP) plays a pivotal role in plant cell growth as a multifunctional hydrolytic enzyme. Herein, a cotton (Gossypium hirsutum L. cv Xuzhou 142) GDSL lipase gene (GhGLIP) was obtained from developing ovules and fibers. The GhGLIP cDNA contained an open reading frame (ORF) of 1,143 base pairs (bp) and encodes a putative polypeptide of 380 amino acid residues. Sequence alignment indicated that GhGLIP includes four enzyme catalytic amino acid residue sites of Ser (S), Gly (G), Asn (N) and His (H), located in four conserved blocks. Phylogenetic tree analysis showed that GhGLIP belongs to the typical class IV lipase family with potential functions in plant secondary metabolism. Subcellular distribution analysis demonstrated that GhGLIP localized to the nucleus, cytoplasm and plasma membrane. GhGLIP was expressed predominantly at 5-15 day post anthesis (dpa) in developing ovules and elongating fibers, measured as mRNA levels and enzyme activity. Ectopic overexpression of GhGLIP in Arabidopsis plants resulted in enhanced seed development, including length and fresh weight. Meanwhile, there was increased soluble sugar and protein storage in transgenic Arabidopsis plants, coupled with the promotion of lipase activity. Moreover, the expression of cotton GhGLIP is induced by ethylene (ETH) treatment in vitro. A 1,954-bp GhGLIP promoter was isolated and expressed high activity in driving green fluorescence protein (GFP) expression in tobacco leaves. Cis-acting element analysis of the GhGLIP promoter (pGhGLIP) indicated the presence of an ethylene-responsive element (ERE), and transgenic tobacco leaves with ectopic expression of pGhGLIP::GFP-GUS showed increased GUS activity after ETH treatment. In summary, these results suggest that GhGLIP is a functional enzyme involved in ovule and fiber development and performs significant roles in seed development.

  6. GH administration and discontinuation in healthy elderly men

    DEFF Research Database (Denmark)

    Lange, K H; Isaksson, F; Rasmussen, M H

    2001-01-01

    GH administration results in increased lean body mass (LBM), decreased fat mass (FM) and increased energy expenditure (EE). GH therapy may therefore have potential benefits, especially in the elderly, who are known to have decreased function of the GH/IGF-I axis. Several studies have focused...... discontinuation on body composition, resting oxygen uptake (VO2), resting heart rate (HR) and GH related serum markers in healthy elderly men....

  7. Overall and cause-specific mortality in GH-deficient adults on GH replacement

    DEFF Research Database (Denmark)

    Gaillard, Rolf C; Mattsson, Anders F; Akerblad, Ann-Charlotte

    2012-01-01

    Hypopituitarism is associated with an increased mortality rate but the reasons underlying this have not been fully elucidated. The purpose of this study was to evaluate mortality and associated factors within a large GH-replaced population of hypopituitary patients.......Hypopituitarism is associated with an increased mortality rate but the reasons underlying this have not been fully elucidated. The purpose of this study was to evaluate mortality and associated factors within a large GH-replaced population of hypopituitary patients....

  8. IDENTIFICATION OF GH|ALUI AND GHR|ALUI GENES POLYMORPHISMS IN INDONESIAN BUFFALO

    Directory of Open Access Journals (Sweden)

    E. Andreas

    2014-10-01

    Full Text Available Growth hormone (GH is an anabolic hormone which sintesized and secreted by somatrotop cell inpituitary anterior lobe. GH exert its effect on growth and metabolism by interacting with a specificreceptor on the surface of the target cells. Growth hormone receptor (GHR has been suggested ascandidate gene for traits related to meat production in Bovidae. The objectives of this study were toidentify polymorphism of GH and GHR genes in buffalo. The 452 DNA samples buffalo were collectedfrom five populations in Indonesia (Siborong-Borong-Medan (65, Lebak-Banten (29, Pandeglang-Banten (180, Semarang-Central Java, and Mataram-West Nusa Tenggara (103. A gene fragment of theGH|AluI gene at 432 bp located on exon 3 and GHR|AluI gene at 298 bp on exon 10 were successfullyamplified by using the techniques of a PCR (polymerase chain reaction and genotyped by PCR-RFLP(restriction fragment length polymorphism then -SSCP (single strand conformation polymorphism. Theresults showed no polymorphisms were detected in these genes. All buffaloes tested had LL genotype forlocus GH|AluI and AA genotype for locus GHR|AluI.

  9. Nano-topography Enhances Communication in Neural Cells Networks

    KAUST Repository

    Onesto, V.; Cancedda, L.; Coluccio, M. L.; Nanni, M.; Pesce, M.; Malara, N.; Cesarelli, M.; Di Fabrizio, Enzo M.; Amato, F.; Gentile, F.

    2017-01-01

    Neural cells are the smallest building blocks of the central and peripheral nervous systems. Information in neural networks and cell-substrate interactions have been heretofore studied separately. Understanding whether surface nano-topography can

  10. Growth hormone (GH) and atherosclerosis: changes in morphology and function of major arteries during GH treatment.

    Science.gov (United States)

    Pfeifer, M; Verhovec, R; Zizek, B

    1999-04-01

    Patients with hypopituitarism have increased carotid artery intima-media thickness and reduced arterial distensibility. The effect of 2 years of growth hormone (GH) replacement therapy on these parameters was studied in 11 GH-deficient men (age range, 24-49 years) with hypopituitarism and compared with 12 healthy, age-matched men with no evidence of pituitary or vascular disease. Before treatment the intima-media of the common carotid arteries and the carotid bifurcations were significantly thicker in patients (P < 0.001) than in the control group. Treatment with GH normalized the intima-media thickness of the common carotid artery within 6 months and of the carotid bifurcation within 3 months. The changes in intima-media thickness of the carotid artery were negatively correlated with changes in serum levels of insulin-like growth factor I during treatment. There was a significant improvement in flow-mediated, endothelium-dependent dilation of the brachial artery at 3 months, which was sustained at 6, 18 and 24 months of GH treatment (P < 0.05). Thus, GH replacement therapy in GH-deficient men reverses early morphological and functional atherosclerotic changes in major arteries, and may reduce rates of vascular morbidity and mortality.

  11. GH receptor signaling in skeletal muscle and adipose tissue in human subjects following exposure to an intravenous GH bolus

    DEFF Research Database (Denmark)

    Jørgensen, Jens O L; Jessen, Niels; Pedersen, Steen Bønløkke

    2006-01-01

    Growth hormone (GH) regulates muscle and fat metabolism, which impacts on body composition and insulin sensitivity, but the underlying GH signaling pathways have not been studied in vivo in humans. We investigated GH signaling in biopsies from muscle and abdominal fat obtained 30 (n = 3) or 60 (n...... was measured by in vitro phosphorylation of PI. STAT5 DNA binding activity was assessed with EMSA, and the expression of IGF-I and SOCS mRNA was measured by real-time RT-PCR. GH induced a 52% increase in circulating FFA levels with peak values after 155 min (P = 0.03). Tyrosine-phosphorylated STAT5...... tended to increase after GH in muscle and fat, respectively. We conclude that 1) STAT5 is acutely activated in human muscle and fat after a GH bolus, but additional downstream GH signaling was significant only in fat; 2) the direct GH effects in muscle need further characterization; and 3) this human...

  12. Continuous infusion versus daily injections of growth hormone (GH) for 4 weeks in GH-deficient patients

    DEFF Research Database (Denmark)

    Laursen, Torben; Jørgensen, Jens Otto Lunde; Jakobsen, Grethe

    1995-01-01

    effects with constant and pulsatile GH delivery. This study was carried out to compare the metabolic effects of longer term continuous infusion vs. daily injections of GH. Thirteen GH-deficient patients were studied in a cross-over design. The patients were randomized to receive GH as a continuous sc...... infusion by means of a portable pump for 1 month and as daily sc injections (at 1900 h) for another month. An average daily GH dosage (+/- SEM) of 3.15 +/- 0.27 IU was administered during both periods. Steady state 24-h profiles of GH, IGF-I, IGF-binding proteins (IGFBPs), insulin, glucose, lipid.......35 (infusion); P infusion induced higher nighttime than daytime GH levels (P = 0.01), indicating a diurnal variation in the absorption or clearance of GH. Serum IGF-I levels (micrograms per L) were slightly higher (P infusion [312...

  13. Evaluation of the Role of the opgGH Operon in Yersinia pseudotuberculosis and Its Deletion during the Emergence of Yersinia pestis

    Science.gov (United States)

    Quintard, Kévin; Dewitte, Amélie; Reboul, Angéline; Madec, Edwige; Bontemps-Gallo, Sébastien; Dondeyne, Jacqueline; Marceau, Michaël; Simonet, Michel

    2015-01-01

    The opgGH operon encodes glucosyltransferases that synthesize osmoregulated periplasmic glucans (OPGs) from UDP-glucose, using acyl carrier protein (ACP) as a cofactor. OPGs are required for motility, biofilm formation, and virulence in various bacteria. OpgH also sequesters FtsZ in order to regulate cell size according to nutrient availability. Yersinia pestis (the agent of flea-borne plague) lost the opgGH operon during its emergence from the enteropathogen Yersinia pseudotuberculosis. When expressed in OPG-negative strains of Escherichia coli and Dickeya dadantii, opgGH from Y. pseudotuberculosis restored OPGs synthesis, motility, and virulence. However, Y. pseudotuberculosis did not produce OPGs (i) under various growth conditions or (ii) when overexpressing its opgGH operon, its galUF operon (governing UDP-glucose), or the opgGH operon or Acp from E. coli. A ΔopgGH Y. pseudotuberculosis strain showed normal motility, biofilm formation, resistance to polymyxin and macrophages, and virulence but was smaller. Consistently, Y. pestis was smaller than Y. pseudotuberculosis when cultured at ≥37°C, except when the plague bacillus expressed opgGH. Y. pestis expressing opgGH grew normally in serum and within macrophages and was fully virulent in mice, suggesting that small cell size was not advantageous in the mammalian host. Lastly, Y. pestis expressing opgGH was able to infect Xenopsylla cheopis fleas normally. Our results suggest an evolutionary scenario whereby an ancestral Yersinia strain lost a factor required for OPG biosynthesis but kept opgGH (to regulate cell size). The opgGH operon was presumably then lost because OpgH-dependent cell size control became unnecessary. PMID:26150539

  14. Evaluation of the Role of the opgGH Operon in Yersinia pseudotuberculosis and Its Deletion during the Emergence of Yersinia pestis.

    Science.gov (United States)

    Quintard, Kévin; Dewitte, Amélie; Reboul, Angéline; Madec, Edwige; Bontemps-Gallo, Sébastien; Dondeyne, Jacqueline; Marceau, Michaël; Simonet, Michel; Lacroix, Jean-Marie; Sebbane, Florent

    2015-09-01

    The opgGH operon encodes glucosyltransferases that synthesize osmoregulated periplasmic glucans (OPGs) from UDP-glucose, using acyl carrier protein (ACP) as a cofactor. OPGs are required for motility, biofilm formation, and virulence in various bacteria. OpgH also sequesters FtsZ in order to regulate cell size according to nutrient availability. Yersinia pestis (the agent of flea-borne plague) lost the opgGH operon during its emergence from the enteropathogen Yersinia pseudotuberculosis. When expressed in OPG-negative strains of Escherichia coli and Dickeya dadantii, opgGH from Y. pseudotuberculosis restored OPGs synthesis, motility, and virulence. However, Y. pseudotuberculosis did not produce OPGs (i) under various growth conditions or (ii) when overexpressing its opgGH operon, its galUF operon (governing UDP-glucose), or the opgGH operon or Acp from E. coli. A ΔopgGH Y. pseudotuberculosis strain showed normal motility, biofilm formation, resistance to polymyxin and macrophages, and virulence but was smaller. Consistently, Y. pestis was smaller than Y. pseudotuberculosis when cultured at ≥ 37°C, except when the plague bacillus expressed opgGH. Y. pestis expressing opgGH grew normally in serum and within macrophages and was fully virulent in mice, suggesting that small cell size was not advantageous in the mammalian host. Lastly, Y. pestis expressing opgGH was able to infect Xenopsylla cheopis fleas normally. Our results suggest an evolutionary scenario whereby an ancestral Yersinia strain lost a factor required for OPG biosynthesis but kept opgGH (to regulate cell size). The opgGH operon was presumably then lost because OpgH-dependent cell size control became unnecessary. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Defective distal regulatory element at the 5' upstream of rat prolactin gene of steroid-nonresponsive GH-subclone.

    Science.gov (United States)

    Kumar, V; Wong, D T; Pasion, S G; Biswas, D K

    1987-12-08

    The prolactin-nonproducing (PRL-) GH cell strains (rat pituitary tumor cells in culture). GH12C1 and F1BGH12C1, do not respond to steroid hormones estradiol or hydrocortisone (HC). However, the stimulatory effect of estradiol and the inhibitory effect of hydrocortisone on prolactin synthesis can be demonstrated in the prolactin-producing GH cell strain, GH4C1. In this investigation we have examined the 5' end flanking region of rat prolactin (rat PRL) gene of steroid-responsive, GH4C1 cells to identify the positive and negative regulatory elements and to verify the status of these elements in steroid-nonresponsive F1BGH12C1 cells. Results presented in this report demonstrate that the basel level expression of the co-transferred Neo gene (neomycin phosphoribosyl transferase) is modulated by the distal upstream regulatory elements of rat PRL gene in response to steroid hormones. The expression of adjacent Neo gene is inhibited by dexamethasone and is stimulated by estradiol in transfectants carrying distal regulatory elements (SRE) of steroid-responsive cells. These responses are not observed in transfectants with the rat PRL upstream sequences derived from steroid-nonresponsive cells. The basal level expression of the host cell alpha-2 tubulin gene is not affected by dexamethasone. We report here the identification of the distal steroid regulatory element (SRE) located between 3.8 and 7.8 kb upstream of the transcription initiation site of rat PRL gene. Both the positive and the negative effects of steroid hormones can be identified within this upstream sequence. This distal SRE appears to be nonfunctional in steroid-nonresponsive cells. Though the proximal SRE is functional, the defect in the distal SRE makes the GH substrain nonresponsive to steroid hormones. These results suggest that both the proximal and the distal SREs are essential for the mediation of action of steroid hormones in GH cells.

  16. Long-term effects of growth hormone (GH) replacement in men with childhood-onset GH deficiency

    NARCIS (Netherlands)

    ter Maaten, JC; De Boer, H; Kamp, O; Stuurman, L; Van der Veen, EA

    Short term GH replacement therapy has been shown to improve body composition and exercise capacity. It is not yet known whether GH replacement remains beneficial over the long term. We assessed the effects of long term GH replacement on body composition, bone mineral density, and cardiac function.

  17. Functional Role of N-Linked Glycosylation in Pseudorabies Virus Glycoprotein gH.

    Science.gov (United States)

    Vallbracht, Melina; Rehwaldt, Sascha; Klupp, Barbara G; Mettenleiter, Thomas C; Fuchs, Walter

    2018-05-01

    Many viral envelope proteins are modified by asparagine (N)-linked glycosylation, which can influence their structure, physicochemical properties, intracellular transport, and function. Here, we systematically analyzed the functional relevance of N-linked glycans in the alphaherpesvirus pseudorabies virus (PrV) glycoprotein H (gH), which is an essential component of the conserved core herpesvirus fusion machinery. Upon gD-mediated receptor binding, the heterodimeric complex of gH and gL activates gB to mediate fusion of the viral envelope with the host cell membrane for viral entry. gH contains five potential N-linked glycosylation sites at positions 77, 162, 542, 604, and 627, which were inactivated by conservative mutations (asparagine to glutamine) singly or in combination. The mutated proteins were tested for correct expression and fusion activity. Additionally, the mutated gH genes were inserted into the PrV genome for analysis of function during virus infection. Our results demonstrate that all five sites are glycosylated. Inactivation of the PrV-specific N77 or the conserved N627 resulted in significantly reduced in vitro fusion activity, delayed penetration kinetics, and smaller virus plaques. Moreover, substitution of N627 greatly affected transport of gH in transfected cells, resulting in endoplasmic reticulum (ER) retention and reduced surface expression. In contrast, mutation of N604, which is conserved in the Varicellovirus genus, resulted in enhanced in vitro fusion activity and viral cell-to-cell spread. These results demonstrate a role of the N-glycans in proper localization and function of PrV gH. However, even simultaneous inactivation of all five N-glycosylation sites of gH did not severely inhibit formation of infectious virus particles. IMPORTANCE Herpesvirus infection requires fusion of the viral envelope with cellular membranes, which involves the conserved fusion machinery consisting of gB and the heterodimeric gH/gL complex. The bona fide

  18. Observation and inverse problems in coupled cell networks

    International Nuclear Information System (INIS)

    Joly, Romain

    2012-01-01

    A coupled cell network is a model for many situations such as food webs in ecosystems, cellular metabolism and economic networks. It consists in a directed graph G, each node (or cell) representing an agent of the network and each directed arrow representing which agent acts on which. It yields a system of differential equations .x(t)=f(x(t)), where the component i of f depends only on the cells x j (t) for which the arrow j → i exists in G. In this paper, we investigate the observation problems in coupled cell networks: can one deduce the behaviour of the whole network (oscillations, stabilization, etc) by observing only one of the cells? We show that the natural observation properties hold for almost all the interactions f

  19. Insulin and GH signaling in human skeletal muscle in vivo following exogenous GH exposure: impact of an oral glucose load.

    Directory of Open Access Journals (Sweden)

    Thomas Krusenstjerna-Hafstrøm

    2011-05-01

    Full Text Available GH induces acute insulin resistance in skeletal muscle in vivo, which in rodent models has been attributed to crosstalk between GH and insulin signaling pathways. Our objective was to characterize time course changes in signaling pathways for GH and insulin in human skeletal muscle in vivo following GH exposure in the presence and absence of an oral glucose load.Eight young men were studied in a single-blinded randomized crossover design on 3 occasions: 1 after an intravenous GH bolus 2 after an intravenous GH bolus plus an oral glucose load (OGTT, and 3 after intravenous saline plus OGTT. Muscle biopsies were taken at t = 0, 30, 60, and 120. Blood was sampled at frequent intervals for assessment of GH, insulin, glucose, and free fatty acids (FFA.GH increased AUC(glucose after an OGTT (p<0.05 without significant changes in serum insulin levels. GH induced phosphorylation of STAT5 independently of the OGTT. Conversely, the OGTT induced acute phosphorylation of the insulin signaling proteins Akt (ser(473 and thr(308, and AS160.The combination of OGTT and GH suppressed Akt activation, whereas the downstream expression of AS160 was amplified by GH. WE CONCLUDED THE FOLLOWING: 1 A physiological GH bolus activates STAT5 signaling pathways in skeletal muscle irrespective of ambient glucose and insulin levels 2 Insulin resistance induced by GH occurs without a distinct suppression of insulin signaling proteins 3 The accentuation of the glucose-stimulated activation of AS 160 by GH does however indicate a potential crosstalk between insulin and GH.ClinicalTrials.gov NCT00477997.

  20. Management of endocrine disease: GH excess: diagnosis and medical therapy

    DEFF Research Database (Denmark)

    Andersen, Marianne

    2014-01-01

    Acromegaly is predominantly caused by a pituitary adenoma, which secretes an excess of GH resulting in increased IGF-I levels. Most of the GH assays used currently measure only the 22 kDa form of GH. In theory, the diagnostic sensitivity may be lower compared to the previous assays, which used...... polyclonal antibodies. Many GH-secreting adenomas are plurihormonal and may co-secrete prolactin, TSH and α-subunit. Hyperprolactinemia is found in 30-40% of patients with acromegaly and hyperprolactinemia may occasionally be diagnosed before acromegaly is apparent.Although trans-sphenoidal surgery of a GH......-secreting adenoma remains the first treatment at most centres, the role of somatostatin analogues, octreotide LAR and lanreotide Autogel, as primary therapy is still the subject of some debate. While normalization of GH and IGF-I levels is the main objective in all patients with acromegaly, GH and IGF-I levels may...

  1. Mutation of the SHP-2 binding site in growth hormone (GH) receptor prolongs GH-promoted tyrosyl phosphorylation of GH receptor, JAK2, and STAT5B

    DEFF Research Database (Denmark)

    Stofega, M R; Herrington, J; Billestrup, Nils

    2000-01-01

    phosphorylation. Consistent with the effects on STAT5B phosphorylation, tyrosine-to-phenylalanine mutation of tyrosine 595 prolongs the duration of tyrosyl phosphorylation of GHR and JAK2. These data suggest that tyrosine 595 is a major site of interaction of GHR with SHP-2, and that GHR-bound SHP-2 negatively......Binding of GH to GH receptor (GHR) rapidly and transiently activates multiple signal transduction pathways that contribute to the growth-promoting and metabolic effects of GH. While the events that initiate GH signal transduction, such as activation of the Janus tyrosine kinase JAK2, are beginning...

  2. Plasma lactate, GH and GH-binding protein levels in exercise following BCAA supplementation in athletes.

    Science.gov (United States)

    De Palo, E F; Gatti, R; Cappellin, E; Schiraldi, C; De Palo, C B; Spinella, P

    2001-01-01

    Branched chain amino acids (BCAA) stimulate protein synthesis, and growth hormone (GH) is a mediator in this process. A pre-exercise BCAA ingestion increases muscle BCAA uptake and use. Therefore after one month of chronic BCAA treatment (0.2 gkg(-1) of body weight), the effects of a pre-exercise oral supplementation of BCAA (9.64 g) on the plasma lactate (La) were examined in triathletes, before and after 60 min of physical exercise (75% of VO2 max). The plasma levels of GH (pGH) and of growth hormone binding protein (pGHBP) were also studied. The end-exercise La of each athlete was higher than basal. Furthermore, after the chronic BCAA treatment, these end-exercise levels were lower than before this treatment (8.6+/-0.8 mmol L(-1) after vs 12.8+/-1.0 mmol L(-1) before treatment; p BCAA chronic treatment, this end-exercise pGHBP was 738+/-85 pmol L(-1) before vs 1691+/-555 pmol L(-1) after. pGH/pGHBP ratio was unchanged in each athlete and between the groups, but a tendency to increase was observed at end-exercise. The lower La at the end of an intense muscular exercise may reflect an improvement of BCAA use, due to the BCAA chronic treatment. The chronic BCAA effects on pGH and pGHBP might suggest an improvement of muscle activity through protein synthesis.

  3. Neutral space analysis for a Boolean network model of the fission yeast cell cycle network

    Directory of Open Access Journals (Sweden)

    Gonzalo A Ruz

    2014-01-01

    Full Text Available BACKGROUND: Interactions between genes and their products give rise to complex circuits known as gene regulatory networks (GRN that enable cells to process information and respond to external stimuli. Several important processes for life, depend of an accurate and context-specific regulation of gene expression, such as the cell cycle, which can be analyzed through its GRN, where deregulation can lead to cancer in animals or a directed regulation could be applied for biotechnological processes using yeast. An approach to study the robustness of GRN is through the neutral space. In this paper, we explore the neutral space of a Schizosaccharomyces pombe (fission yeast cell cycle network through an evolution strategy to generate a neutral graph, composed of Boolean regulatory networks that share the same state sequences of the fission yeast cell cycle. RESULTS: Through simulations it was found that in the generated neutral graph, the functional networks that are not in the wildtype connected component have in general a Hamming distance more than 3 with the wildtype, and more than 10 between the other disconnected functional networks. Significant differences were found between the functional networks in the connected component of the wildtype network and the rest of the network, not only at a topological level, but also at the state space level, where significant differences in the distribution of the basin of attraction for the G1 fixed point was found for deterministic updating schemes. CONCLUSIONS: In general, functional networks in the wildtype network connected component, can mutate up to no more than 3 times, then they reach a point of no return where the networks leave the connected component of the wildtype. The proposed method to construct a neutral graph is general and can be used to explore the neutral space of other biologically interesting networks, and also formulate new biological hypotheses studying the functional networks in the

  4. T-cell movement on the reticular network.

    Science.gov (United States)

    Donovan, Graham M; Lythe, Grant

    2012-02-21

    The idea that the apparently random motion of T cells in lymph nodes is a result of movement on a reticular network (RN) has received support from dynamic imaging experiments and theoretical studies. We present a mathematical representation of the RN consisting of edges connecting vertices that are randomly distributed in three-dimensional space, and models of lymphocyte movement on such networks including constant speed motion along edges and Brownian motion, not in three-dimensions, but only along edges. The simplest model, in which a cell moves with a constant speed along edges, is consistent with mean-squared displacement proportional to time over intervals long enough to include several changes of direction. A non-random distribution of turning angles is one consequence of motion on a preformed network. Confining cell movement to a network does not, in itself, increase the frequency of cell-cell encounters. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Construction of Injectable Double-Network Hydrogels for Cell Delivery.

    Science.gov (United States)

    Yan, Yan; Li, Mengnan; Yang, Di; Wang, Qian; Liang, Fuxin; Qu, Xiaozhong; Qiu, Dong; Yang, Zhenzhong

    2017-07-10

    Herein we present a unique method of using dynamic cross-links, which are dynamic covalent bonding and ionic interaction, for the construction of injectable double-network (DN) hydrogels, with the objective of cell delivery for cartilage repair. Glycol chitosan and dibenzaldhyde capped poly(ethylene oxide) formed the first network, while calcium alginate formed the second one, and in the resultant DN hydrogel, either of the networks could be selectively removed. The moduli of the DN hydrogel were significantly improved compared to that of the parent single-network hydrogels and were tunable by changing the chemical components. In situ 3D cell encapsulation could be easily performed by mixing cell suspension to the polymer solutions and transferred through a syringe needle before sol-gel transition. Cell proliferation and mediated differentiation of mouse chondrogenic cells were achieved in the DN hydrogel extracellular matrix.

  6. The Murid Herpesvirus-4 gL regulates an entry-associated conformation change in gH.

    Directory of Open Access Journals (Sweden)

    Laurent Gillet

    2008-07-01

    Full Text Available The glycoprotein H (gH/gL heterodimer is crucial for herpesvirus membrane fusion. Yet how it functions is not well understood. The Murid Herpesvirus-4 gH, like that of other herpesviruses, adopts its normal virion conformation by associating with gL. However, gH switched back to a gL-independent conformation after virion endocytosis. This switch coincided with a conformation switch in gB and with capsid release. Virions lacking gL constitutively expressed the down-stream form of gH, prematurely switched gB to its down-stream form, and showed premature capsid release with poor infectivity. These data argue that gL plays a key role in regulating a gH and gB functional switch from cell binding to membrane fusion.

  7. Dynamic Enhanced Inter-Cell Interference Coordination for Realistic Networks

    DEFF Research Database (Denmark)

    Pedersen, Klaus I.; Alvarez, Beatriz Soret; Barcos, Sonia

    2016-01-01

    Enhanced Inter-Cell Interference Coordination (eICIC) is a key ingredient to boost the performance of co-channel Heterogeneous Networks (HetNets). eICIC encompasses two main techniques: Almost Blank Subframes (ABS), during which the macro cell remains silent to reduce the interference, and biased...... and an opportunistic approach exploiting the varying cell conditions. Moreover, an autonomous fast distributed muting algorithm is presented, which is simple, robust, and well suited for irregular network deployments. Performance results for realistic network deployments show that the traditional semi-static e...

  8. Regulation of skeletal growth and mineral acquisition by the GH/IGF-1 axis: Lessons from mouse models.

    Science.gov (United States)

    Yakar, Shoshana; Isaksson, Olle

    2016-06-01

    The growth hormone (GH) and its downstream mediator, the insulin-like growth factor-1 (IGF-1), construct a pleotropic axis affecting growth, metabolism, and organ function. Serum levels of GH/IGF-1 rise during pubertal growth and associate with peak bone acquisition, while during aging their levels decline and associate with bone loss. The GH/IGF-1 axis was extensively studied in numerous biological systems including rodent models and cell cultures. Both hormones act in an endocrine and autocrine/paracrine fashion and understanding their distinct and overlapping contributions to skeletal acquisition is still a matter of debate. GH and IGF-1 exert their effects on osteogenic cells via binding to their cognate receptor, leading to activation of an array of genes that mediate cellular differentiation and function. Both hormones interact with other skeletal regulators, such as sex-steroids, thyroid hormone, and parathyroid hormone, to facilitate skeletal growth and metabolism. In this review we summarized several rodent models of the GH/IGF-1 axis and described key experiments that shed new light on the regulation of skeletal growth by the GH/IGF-1 axis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Morbidity and GH deficiency: a nationwide study

    DEFF Research Database (Denmark)

    Stochholm, K.; Laursen, T.; Green, A.

    2008-01-01

    identified in the National Patient Registry. Lag time until first admission was used as a measure of morbidity. Patients were divided into childhood onset (CO) and adult onset (AO), discriminated by an age cut-off of 18 years at onset of GHD. Method: Sex- and cause-specific hazard ratios (HRs) in CO and AO......Objective: To estimate morbidity in Denmark in all patients with GH deficiency (GHD). Design: Morbidity was analyzed in 1794 GHD patients and 8014 controls matched on age and gender. All records in the GHD patients were studied and additional morbidity noted. Diagnoses and dates of admissions were...

  10. GH62 arabinofuranosidases: Structure, function and applications

    DEFF Research Database (Denmark)

    Wilkens, Casper; Andersen, Susan; Dumon, Claire

    2017-01-01

    Motivated by industrial demands and ongoing scientific discoveries continuous efforts are made to identify and create improved biocatalysts dedicated to plant biomass conversion. α-1,2 and α-1,3 arabinofuranosyl specific α-l-arabinofuranosidases (EC 3.2.1.55) are debranching enzymes catalyzing...... exclusively α-l-arabinofuranosidases and these are of fungal and bacterial origin. Twenty-two GH62 enzymes out of 223 entries in the CAZy database have been characterized and very recently new knowledge was acquired with regard to crystal structures, substrate specificities, and phylogenetics, which overall...

  11. Full-Duplex MIMO Small-Cell Networks: Performance Analysis

    OpenAIRE

    Atzeni, Italo; Kountouris, Marios

    2015-01-01

    Full-duplex small-cell relays with multiple antennas constitute a core element of the envisioned 5G network architecture. In this paper, we use stochastic geometry to analyze the performance of wireless networks with full-duplex multiple-antenna small cells, with particular emphasis on the probability of successful transmission. To achieve this goal, we additionally characterize the distribution of the self-interference power of the full-duplex nodes. The proposed framework reveals useful ins...

  12. Evaluation of growth hormone (GH) action in mice: discovery of GH receptor antagonists and clinical indications.

    Science.gov (United States)

    Kopchick, John J; List, Edward O; Kelder, Bruce; Gosney, Elahu S; Berryman, Darlene E

    2014-04-05

    The discovery of a growth hormone receptor antagonist (GHA) was initially established via expression of mutated GH genes in transgenic mice. Following this discovery, development of the compound resulted in a drug termed pegvisomant, which has been approved for use in patients with acromegaly. Pegvisomant treatment in a dose dependent manner results in normalization of IGF-1 levels in most patients. Thus, it is a very efficacious and safe drug. Since the GH/IGF-1 axis has been implicated in the progression of several types of cancers, many have suggested the use of pegvisomant as an anti-cancer therapeutic. In this manuscript, we will review the use of mouse strains that possess elevated or depressed levels of GH action for unraveling many of GH actions. Additionally, we will describe experiments in which the GHA was discovered, review results of pegvisomant's preclinical and clinical trials, and provide data suggesting pegvisomant's therapeutic value in selected types of cancer. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Should we start and continue growth hormone (GH) replacement therapy in adults with GH deficiency?

    NARCIS (Netherlands)

    ter Maaten, JC

    2000-01-01

    During the last decade, growth hormone deficiency (GHD) in adults has been described as a clinical syndrome. Central features of this entity include increased fat mass, reduced muscle and bone mass, as well as impaired exercise capacity and quality of life. GH replacement therapy has been initiated

  14. Nano-topography Enhances Communication in Neural Cells Networks

    KAUST Repository

    Onesto, V.

    2017-08-23

    Neural cells are the smallest building blocks of the central and peripheral nervous systems. Information in neural networks and cell-substrate interactions have been heretofore studied separately. Understanding whether surface nano-topography can direct nerve cells assembly into computational efficient networks may provide new tools and criteria for tissue engineering and regenerative medicine. In this work, we used information theory approaches and functional multi calcium imaging (fMCI) techniques to examine how information flows in neural networks cultured on surfaces with controlled topography. We found that substrate roughness Sa affects networks topology. In the low nano-meter range, S-a = 0-30 nm, information increases with Sa. Moreover, we found that energy density of a network of cells correlates to the topology of that network. This reinforces the view that information, energy and surface nano-topography are tightly inter-connected and should not be neglected when studying cell-cell interaction in neural tissue repair and regeneration.

  15. Microtubule networks for plant cell division

    NARCIS (Netherlands)

    Keijzer, de Jeroen; Mulder, B.M.; Janson, M.E.

    2014-01-01

    During cytokinesis the cytoplasm of a cell is divided to form two daughter cells. In animal cells, the existing plasma membrane is first constricted and then abscised to generate two individual plasma membranes. Plant cells on the other hand divide by forming an interior dividing wall, the so-called

  16. Primary empty sella and GH deficiency: prevalence and clinical implications

    Directory of Open Access Journals (Sweden)

    Maurizio Poggi

    2012-01-01

    Full Text Available Primary empty sella (PES is a particular anatomical condition characterized by the herniation of liquor within the sella turcica. The pathogenesis of this alteration, frequently observed in general population, is not yet completely understood. Recently reports demonstrated, in these patients, that hormonal pituitary dysfunctions, specially growth hormone (GH/insulin-like growth factor (IGF-I axis ones, could be relevant. The aim of this paper is to evaluate GH/IGF-I axis in a group of adult patients affected by PES and to verify its clinical relevance. We studied a population of 28 patients with a diagnosis of PES. In each patient we performed a basal study of thyroid, adrenal and gonadal - pituitary axis and a dynamic evaluation of GH/IGF-I after GH-releasing hormone (GHRH plus arginine stimulation test. To evaluate the clinical significance of GH/IGF-I axis dysfunction we performed a metabolic and bone status evaluation in every patients. We found the presence of GH deficit in 11 patients (39.2 %. The group that displayed a GH/IGF-I axis dysfunction showed an impairment in metabolic profile and bone densitometry. This study confirms the necessity to screen the pituitary function in patients affected by PES and above all GH/IGF-I axis. Moreover the presence of GH deficiency could be clinically significant.

  17. Small interfering RNAs from bidirectional transcripts of GhMML3_A12 regulate cotton fiber development.

    Science.gov (United States)

    Wan, Qun; Guan, Xueying; Yang, Nannan; Wu, Huaitong; Pan, Mengqiao; Liu, Bingliang; Fang, Lei; Yang, Shouping; Hu, Yan; Ye, Wenxue; Zhang, Hua; Ma, Peiyong; Chen, Jiedan; Wang, Qiong; Mei, Gaofu; Cai, Caiping; Yang, Donglei; Wang, Jiawei; Guo, Wangzhen; Zhang, Wenhua; Chen, Xiaoya; Zhang, Tianzhen

    2016-06-01

    Natural antisense transcripts (NATs) are commonly observed in eukaryotic genomes, but only a limited number of such genes have been identified as being involved in gene regulation in plants. In this research, we investigated the function of small RNA derived from a NAT in fiber cell development. Using a map-based cloning strategy for the first time in tetraploid cotton, we cloned a naked seed mutant gene (N1 ) encoding a MYBMIXTA-like transcription factor 3 (MML3)/GhMYB25-like in chromosome A12, GhMML3_A12, that is associated with fuzz fiber development. The extremely low expression of GhMML3_A12 in N1 is associated with NAT production, driven by its 3' antisense promoter, as indicated by the promoter-driven histochemical staining assay. In addition, small RNA deep sequencing analysis suggested that the bidirectional transcriptions of GhMML3_A12 form double-stranded RNAs and generate 21-22 nt small RNAs. Therefore, in a fiber-specific manner, small RNA derived from the GhMML3_A12 locus can mediate GhMML3_A12 mRNA self-cleavage and result in the production of naked seeds followed by lint fiber inhibition in N1 plants. The present research reports the first observation of gene-mediated NATs and siRNA directly controlling fiber development in cotton. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  18. GH replacement therapy and second neoplasms in adult survivors of childhood cancer: a retrospective study from a single institution.

    Science.gov (United States)

    Brignardello, E; Felicetti, F; Castiglione, A; Fortunati, N; Matarazzo, P; Biasin, E; Sacerdote, C; Ricardi, U; Fagioli, F; Corrias, A; Arvat, E

    2015-02-01

    Growth hormone deficiency (GHD) is the most common endocrine late effect observed in childhood cancer survivors (CCS) previously submitted to cranial irradiation. Radiation therapy can also increase the risk of second neoplasms (SNs). Since in previous studies GH replacement therapy was associated with increased incidence of neoplasia, we explored the association between SNs and GH replacement therapy in a cohort of CCS with GHD. Within the clinical cohort of CCS referred to the Transition Unit for Childhood Cancer Survivors of Turin between November 2001 and December 2012, we considered all patients who developed GHD as a consequence of cancer therapies. GHD was always diagnosed in childhood. To evaluate the quality of data, our cohort was linked to the Childhood Cancer Registry of Piedmont. GHD was diagnosed in 49 out of 310 CCS included in our clinical cohort. At least one SN was diagnosed in 14 patients, meningioma and basal cell carcinoma being the most common SNs. The cumulative incidence of SNs was similar in GH-treated and -untreated patients (8 SNs out of 26 GH-treated and 6 out of 23 GH-untreated patients; p = 0.331). Age, sex and paediatric cancer type had no impact on SNs development. In our CCS, GH replacement therapy does not seem to increase the risk of SNs. Anyway, independently from replacement therapy, in these patients we observed an elevated risk of SNs, possibly related to previous radiation therapy, which suggests the need of a close long-term follow-up.

  19. The dwarf phenotype in GH240B mice, haploinsufficient for the autism candidate gene Neurobeachin, is caused by ectopic expression of recombinant human growth hormone.

    Science.gov (United States)

    Nuytens, Kim; Tuand, Krizia; Fu, Quili; Stijnen, Pieter; Pruniau, Vincent; Meulemans, Sandra; Vankelecom, Hugo; Creemers, John W M

    2014-01-01

    Two knockout mouse models for the autism candidate gene Neurobeachin (Nbea) have been generated independently. Although both models have similar phenotypes, one striking difference is the dwarf phenotype observed in the heterozygous configuration of the GH240B model that is generated by the serendipitous insertion of a promoterless human growth hormone (hGH) genomic fragment in the Nbea gene. In order to elucidate this discrepancy, the dwarfism present in this Nbea mouse model was investigated in detail. The growth deficiency in Nbea+/- mice coincided with an increased percentage of fat mass and a decrease in bone mineral density. Low but detectable levels of hGH were detected in the pituitary and hypothalamus of Nbea+/- mice but not in liver, hippocampus nor in serum. As a consequence, several members of the mouse growth hormone (mGH) signaling cascade showed altered mRNA levels, including a reduction in growth hormone-releasing hormone mRNA in the hypothalamus. Moreover, somatotrope cells were less numerous in the pituitary of Nbea+/- mice and both contained and secreted significantly less mGH resulting in reduced levels of circulating insulin-like growth factor 1. These findings demonstrate that the random integration of the hGH transgene in this mouse model has not only inactivated Nbea but has also resulted in the tissue-specific expression of hGH causing a negative feedback loop, mGH hyposecretion and dwarfism.

  20. The dwarf phenotype in GH240B mice, haploinsufficient for the autism candidate gene Neurobeachin, is caused by ectopic expression of recombinant human growth hormone.

    Directory of Open Access Journals (Sweden)

    Kim Nuytens

    Full Text Available Two knockout mouse models for the autism candidate gene Neurobeachin (Nbea have been generated independently. Although both models have similar phenotypes, one striking difference is the dwarf phenotype observed in the heterozygous configuration of the GH240B model that is generated by the serendipitous insertion of a promoterless human growth hormone (hGH genomic fragment in the Nbea gene. In order to elucidate this discrepancy, the dwarfism present in this Nbea mouse model was investigated in detail. The growth deficiency in Nbea+/- mice coincided with an increased percentage of fat mass and a decrease in bone mineral density. Low but detectable levels of hGH were detected in the pituitary and hypothalamus of Nbea+/- mice but not in liver, hippocampus nor in serum. As a consequence, several members of the mouse growth hormone (mGH signaling cascade showed altered mRNA levels, including a reduction in growth hormone-releasing hormone mRNA in the hypothalamus. Moreover, somatotrope cells were less numerous in the pituitary of Nbea+/- mice and both contained and secreted significantly less mGH resulting in reduced levels of circulating insulin-like growth factor 1. These findings demonstrate that the random integration of the hGH transgene in this mouse model has not only inactivated Nbea but has also resulted in the tissue-specific expression of hGH causing a negative feedback loop, mGH hyposecretion and dwarfism.

  1. Cell fate reprogramming by control of intracellular network dynamics

    Science.gov (United States)

    Zanudo, Jorge G. T.; Albert, Reka

    Identifying control strategies for biological networks is paramount for practical applications that involve reprogramming a cell's fate, such as disease therapeutics and stem cell reprogramming. Although the topic of controlling the dynamics of a system has a long history in control theory, most of this work is not directly applicable to intracellular networks. Here we present a network control method that integrates the structural and functional information available for intracellular networks to predict control targets. Formulated in a logical dynamic scheme, our control method takes advantage of certain function-dependent network components and their relation to steady states in order to identify control targets, which are guaranteed to drive any initial state to the target state with 100% effectiveness and need to be applied only transiently for the system to reach and stay in the desired state. We illustrate our method's potential to find intervention targets for cancer treatment and cell differentiation by applying it to a leukemia signaling network and to the network controlling the differentiation of T cells. We find that the predicted control targets are effective in a broad dynamic framework. Moreover, several of the predicted interventions are supported by experiments. This work was supported by NSF Grant PHY 1205840.

  2. Human cytomegalovirus gH stability and trafficking are regulated by ER-associated degradation and transmembrane architecture.

    Science.gov (United States)

    Gardner, Thomas J; Hernandez, Rosmel E; Noriega, Vanessa M; Tortorella, Domenico

    2016-03-30

    The prototypic betaherpesvirus human cytomegalovirus (CMV) establishes life-long persistence within its human host. While benign in healthy individuals, CMV poses a significant threat to the immune compromised, including transplant recipients and neonates. The CMV glycoprotein complex gH/gL/gO mediates infection of fibroblasts, and together with the gH/gL/UL128/130/131 a pentameric complex permits infection of epithelial, endothethial, and myeloid cells. Given the central role of the gH/gL complex during infection, we were interested in studying cellular trafficking of the gH/gL complex through generation of human cells that stably express gH and gL. When expressed alone, CMV gH and gL were degraded through the ER-associated degradation (ERAD) pathway. However, co-expression of these proteins stabilized the polypeptides and enhanced their cell-surface expression. To further define regulatory factors involved in gH/gL trafficking, a CMV gH chimera in which the gH transmembrane and cytoplasmic tail were replaced with that of human CD4 protein permitted cell surface gH expression in absence of gL. We thus demonstrate the ability of distinct cellular processes to regulate the trafficking of viral glycoproteins. Collectively, the data provide insight into the processing and trafficking requirements of CMV envelope protein complexes and provide an example of the co-opting of cellular processes by CMV.

  3. Capillary network formation from dispersed endothelial cells: Influence of cell traction, cell adhesion, and extracellular matrix rigidity

    Science.gov (United States)

    Ramos, João R. D.; Travasso, Rui; Carvalho, João

    2018-01-01

    The formation of a functional vascular network depends on biological, chemical, and physical processes being extremely well coordinated. Among them, the mechanical properties of the extracellular matrix and cell adhesion are fundamental to achieve a functional network of endothelial cells, able to fully cover a required domain. By the use of a Cellular Potts Model and Finite Element Method it is shown that there exists a range of values of endothelial traction forces, cell-cell adhesion, and matrix rigidities where the network can spontaneously be formed, and its properties are characterized. We obtain the analytical relation that the minimum traction force required for cell network formation must obey. This minimum value for the traction force is approximately independent on the considered cell number and cell-cell adhesion. We quantify how these two parameters influence the morphology of the resulting networks (size and number of meshes).

  4. Cognitive small cell networks: energy efficiency and trade-offs

    NARCIS (Netherlands)

    Wildemeersch, M.; Wildemeersch, Matthias; Quek, T.Q.S.; Slump, Cornelis H.; Rabbachin, A.

    2013-01-01

    Heterogeneous networks using a mix of macrocells and small cells are foreseen as one of the solutions to meet the ever increasing mobile traffic demand. Nevertheless, a massive deployment of small cell access points (SAPs) leads also to a considerable increase in energy consumption. Spurred by

  5. Cell proliferation along vascular islands during microvascular network growth

    Directory of Open Access Journals (Sweden)

    Kelly-Goss Molly R

    2012-06-01

    Full Text Available Abstract Background Observations in our laboratory provide evidence of vascular islands, defined as disconnected endothelial cell segments, in the adult microcirculation. The objective of this study was to determine if vascular islands are involved in angiogenesis during microvascular network growth. Results Mesenteric tissues, which allow visualization of entire microvascular networks at a single cell level, were harvested from unstimulated adult male Wistar rats and Wistar rats 3 and 10 days post angiogenesis stimulation by mast cell degranulation with compound 48/80. Tissues were immunolabeled for PECAM and BRDU. Identification of vessel lumens via injection of FITC-dextran confirmed that endothelial cell segments were disconnected from nearby patent networks. Stimulated networks displayed increases in vascular area, length density, and capillary sprouting. On day 3, the percentage of islands with at least one BRDU-positive cell increased compared to the unstimulated level and was equal to the percentage of capillary sprouts with at least one BRDU-positive cell. At day 10, the number of vascular islands per vascular area dramatically decreased compared to unstimulated and day 3 levels. Conclusions These results show that vascular islands have the ability to proliferate and suggest that they are able to incorporate into the microcirculation during the initial stages of microvascular network growth.

  6. Digital photocontrol of the network of live excitable cells

    Science.gov (United States)

    Erofeev, I. S.; Magome, N.; Agladze, K. I.

    2011-11-01

    Recent development of tissue engineering techniques allows creating and maintaining almost indefinitely networks of excitable cells with desired architecture. We coupled the network of live excitable cardiac cells with a common computer by sensitizing them to light, projecting a light pattern on the layer of cells, and monitoring excitation with the aid of fluorescent probes (optical mapping). As a sensitizing substance we used azobenzene trimethylammonium bromide (AzoTAB). This substance undergoes cis-trans-photoisomerization and trans-isomer of AzoTAB inhibits excitation in the cardiac cells, while cis-isomer does not. AzoTAB-mediated sensitization allows, thus, reversible and dynamic control of the excitation waves through the entire cardiomyocyte network either uniformly, or in a preferred spatial pattern. Technically, it was achieved by coupling a common digital projector with a macroview microscope and using computer graphic software for creating the projected pattern of conducting pathways. This approach allows real time interactive photocontrol of the heart tissue.

  7. Graph analysis of cell clusters forming vascular networks

    Science.gov (United States)

    Alves, A. P.; Mesquita, O. N.; Gómez-Gardeñes, J.; Agero, U.

    2018-03-01

    This manuscript describes the experimental observation of vasculogenesis in chick embryos by means of network analysis. The formation of the vascular network was observed in the area opaca of embryos from 40 to 55 h of development. In the area opaca endothelial cell clusters self-organize as a primitive and approximately regular network of capillaries. The process was observed by bright-field microscopy in control embryos and in embryos treated with Bevacizumab (Avastin), an antibody that inhibits the signalling of the vascular endothelial growth factor (VEGF). The sequence of images of the vascular growth were thresholded, and used to quantify the forming network in control and Avastin-treated embryos. This characterization is made by measuring vessels density, number of cell clusters and the largest cluster density. From the original images, the topology of the vascular network was extracted and characterized by means of the usual network metrics such as: the degree distribution, average clustering coefficient, average short path length and assortativity, among others. This analysis allows to monitor how the largest connected cluster of the vascular network evolves in time and provides with quantitative evidence of the disruptive effects that Avastin has on the tree structure of vascular networks.

  8. Reduction of free fatty acids by acipimox enhances the growth hormone (GH) responses to GH-releasing peptide 2 in elderly men

    NARCIS (Netherlands)

    Smid, HEC; de Vries, WR; Niesink, M; Bolscher, E; Waasdorp, EJ; Dieguez, C; Casanueva, FF; Koppeschaar, HPF

    2000-01-01

    GH release is increased by reducing circulating free fatty acids (FFAs). Aging is associated with decreased plasma GH concentrations. We evaluated GH releasing capacity in nine healthy elderly men after administration of GH-releasing peptide 2 (GHRP-2), with or without pretreatment with the

  9. Increased serum and bone matrix levels of transforming growth factor {beta}1 in patients with GH deficiency in response to GH treatment

    DEFF Research Database (Denmark)

    Ueland, Thor; Lekva, Tove; Otterdal, Kari

    2011-01-01

    Patients with adult onset GH deficiency (aoGHD) have secondary osteoporosis, which is reversed by long-term GH substitution. Transforming growth factor β1 (TGFβ1 or TGFB1) is abundant in bone tissue and could mediate some effects of GH/IGFs on bone. We investigated its regulation by GH/IGF1 in vivo...

  10. The GH/IGF-1 axis in ageing and longevity

    Science.gov (United States)

    List, Edward O.; Berryman, Darlene E.; Murrey, John W.

    2014-01-01

    Secretion of growth hormone (GH), and consequently that of insulin-like growth factor 1 (IGF-1), declines over time until only low levels can be detected in individuals aged ≥60 years. This phenomenon, which is known as the ‘somatopause’, has led to recombinant human GH being widely promoted and abused as an antiageing drug, despite lack of evidence of efficacy. By contrast, several mutations that decrease the tone of the GH/IGF-1 axis are associated with extended longevity in mice. In humans, corresponding or similar mutations have been identified, but whether these mutations alter longevity has yet to be established. The powerful effect of reduced GH activity on lifespan extension in mice has generated the hypothesis that pharmaceutically inhibiting, rather than increasing, GH action might delay ageing. Moreover, mice as well as humans with reduced activity of the GH/IGF-1 axis are protected from cancer and diabetes mellitus, two major ageing-related morbidities. Here, we review data on mouse strains with alterations in the GH/IGF-1 axis and their effects on lifespan. The outcome of corresponding or similar mutations in humans is described, as well as the potential mechanisms underlying increased longevity and the therapeutic benefits and risks of medical disruption of the GH/IGF-1 axis in humans. PMID:23591370

  11. [A case of GH and TSH secreting pituitary macroadenoma].

    Science.gov (United States)

    Gołkowski, Filip; Buziak-Bereza, Monika; Stefańska, Agnieszka; Trofimiuk, Małgorzata; Pantofliński, Jacek; Huszno, Bohdan; Czepko, Ryszard; Adamek, Dariusz

    2006-01-01

    A case of GH and TSH secreting pituitary macroadenoma is reported. A 45-year-old female presented clinical features of acromegaly (the abnormal growth of the hands and feet, with lower jaw protrusion), diabetes mellitus, hypertension, nodular goiter and hyperthyroidism of unclear origin. NMR pituitary imaging revealed intra and extrasellar tumor. The laboratory examinations showed very high plasma levels of GH and IGF-1 and normal level of TSH coexisting with high plasma levels of free thyroid hormones. Pharmacological pretreatment with somatostatin analogues caused the substantial reduction of GH and TSH plasma levels. Histological and immunohistochemical examination of the tissue obtained at transsphenoidal surgery showed GH and TSH secreting adenoma. The laboratory examinations after surgery showed normal GH and IGF-1 plasma levels and reduced insulin requirement, what indicates radical operation. The very low plasma levels of TSH and free thyroid hormones after surgery and immunohistochemical examination suggest central hyperthyroidism due to TSH secreting pituitary tumor (thyrotropinoma).

  12. Connectivity in the yeast cell cycle transcription network: inferences from neural networks.

    Directory of Open Access Journals (Sweden)

    Christopher E Hart

    2006-12-01

    Full Text Available A current challenge is to develop computational approaches to infer gene network regulatory relationships based on multiple types of large-scale functional genomic data. We find that single-layer feed-forward artificial neural network (ANN models can effectively discover gene network structure by integrating global in vivo protein:DNA interaction data (ChIP/Array with genome-wide microarray RNA data. We test this on the yeast cell cycle transcription network, which is composed of several hundred genes with phase-specific RNA outputs. These ANNs were robust to noise in data and to a variety of perturbations. They reliably identified and ranked 10 of 12 known major cell cycle factors at the top of a set of 204, based on a sum-of-squared weights metric. Comparative analysis of motif occurrences among multiple yeast species independently confirmed relationships inferred from ANN weights analysis. ANN models can capitalize on properties of biological gene networks that other kinds of models do not. ANNs naturally take advantage of patterns of absence, as well as presence, of factor binding associated with specific expression output; they are easily subjected to in silico "mutation" to uncover biological redundancies; and they can use the full range of factor binding values. A prominent feature of cell cycle ANNs suggested an analogous property might exist in the biological network. This postulated that "network-local discrimination" occurs when regulatory connections (here between MBF and target genes are explicitly disfavored in one network module (G2, relative to others and to the class of genes outside the mitotic network. If correct, this predicts that MBF motifs will be significantly depleted from the discriminated class and that the discrimination will persist through evolution. Analysis of distantly related Schizosaccharomyces pombe confirmed this, suggesting that network-local discrimination is real and complements well-known enrichment of

  13. Clinical features of GH deficiency and effects of 3 years of GH replacement in adults with controlled Cushing's disease

    DEFF Research Database (Denmark)

    Höybye, Charlotte; Ragnarsson, Oskar; Jönsson, Peter J

    2010-01-01

    Patients in remission from Cushing's disease (CD) have many clinical features that are difficult to distinguish from those of concomitant GH deficiency (GHD). In this study, we evaluated the features of GHD in a large cohort of controlled CD patients, and assessed the effect of GH treatment....

  14. GH Responsiveness to Combined GH-Releasing Hormone and Arginine Administration in Obese Patients with Fibromyalgia Syndrome.

    Science.gov (United States)

    Rigamonti, Antonello E; Grugni, Graziano; Arreghini, Marco; Capodaglio, Paolo; De Col, Alessandra; Agosti, Fiorenza; Sartorio, Alessandro

    2017-01-01

    Reportedly, fibromyalgia (FM) is frequently associated with reduced IGF-1 levels and GH hyporesponsiveness to different GH stimulation tests. Since there is a high prevalence of obesity in FM, and obesity itself is characterized by hyposomatotropism, the aim of this study was to assess IGF-1 levels and GH responsiveness in sixteen severely obese women suffering from FM, who, subdivided into two subgroups on the basis of their age-dependent IGF-1 values (> or BMI than that with normal IGF-1 SDS. GH peak and area under the curve were not correlated with CRP, ESR, or tender point score, while significant correlations were found with fat-free mass and fat mass. In conclusion, this study shows the existence of a high prevalence of GH-IGF-1 dysfunction in patients with both FM and obesity, presumably as a consequence of the obese rather than fibromyalgic condition.

  15. NKT Cell Networks in the Regulation of Tumor Immunity

    Science.gov (United States)

    Robertson, Faith C.; Berzofsky, Jay A.; Terabe, Masaki

    2014-01-01

    CD1d-restricted natural killer T (NKT) cells lie at the interface between the innate and adaptive immune systems and are important mediators of immune responses and tumor immunosurveillance. These NKT cells uniquely recognize lipid antigens, and their rapid yet specific reactions influence both innate and adaptive immunity. In tumor immunity, two NKT subsets (type I and type II) have contrasting roles in which they not only cross-regulate one another, but also impact innate immune cell populations, including natural killer, dendritic, and myeloid lineage cells, as well as adaptive populations, especially CD8+ and CD4+ T cells. The extent to which NKT cells promote or suppress surrounding cells affects the host’s ability to prevent neoplasia and is consequently of great interest for therapeutic development. Data have shown the potential for therapeutic use of NKT cell agonists and synergy with immune response modifiers in both pre-clinical studies and preliminary clinical studies. However, there is room to improve treatment efficacy by further elucidating the biological mechanisms underlying NKT cell networks. Here, we discuss the progress made in understanding NKT cell networks, their consequent role in the regulation of tumor immunity, and the potential to exploit that knowledge in a clinical setting. PMID:25389427

  16. NKT cell networks in the regulation of tumor immunity.

    Science.gov (United States)

    Robertson, Faith C; Berzofsky, Jay A; Terabe, Masaki

    2014-01-01

    CD1d-restricted natural killer T (NKT) cells lie at the interface between the innate and adaptive immune systems and are important mediators of immune responses and tumor immunosurveillance. These NKT cells uniquely recognize lipid antigens, and their rapid yet specific reactions influence both innate and adaptive immunity. In tumor immunity, two NKT subsets (type I and type II) have contrasting roles in which they not only cross-regulate one another, but also impact innate immune cell populations, including natural killer, dendritic, and myeloid lineage cells, as well as adaptive populations, especially CD8(+) and CD4(+) T cells. The extent to which NKT cells promote or suppress surrounding cells affects the host's ability to prevent neoplasia and is consequently of great interest for therapeutic development. Data have shown the potential for therapeutic use of NKT cell agonists and synergy with immune response modifiers in both pre-clinical studies and preliminary clinical studies. However, there is room to improve treatment efficacy by further elucidating the biological mechanisms underlying NKT cell networks. Here, we discuss the progress made in understanding NKT cell networks, their consequent role in the regulation of tumor immunity, and the potential to exploit that knowledge in a clinical setting.

  17. NKT cell networks in the regulation of tumor immunity

    Directory of Open Access Journals (Sweden)

    Faith C Robertson

    2014-10-01

    Full Text Available CD1d-restricted natural killer T (NKT cells lie at the interface between the innate and adaptive immune systems and are important mediators of immune responses and tumor immunosurveillance. These NKT cells uniquely recognize lipid antigens, and their rapid yet specific reactions influence both innate and adaptive immunity. In tumor immunity, two NKT subsets (type I and type II have contrasting roles in which they not only cross-regulate one another, but also impact innate immune cell populations, including natural killer, dendritic and myeloid lineage cells, as well as adaptive populations, especially CD8+ and CD4+ T cells. The extent to which NKT cells promote or suppress surrounding cells affects the host’s ability to prevent neoplasia and is consequently of great interest for therapeutic development. Data have shown the potential for therapeutic use of NKT cell agonists and synergy with immune response modifiers in both pre-clinical studies and preliminary clinical studies. However, there is room to improve treatment efficacy by further elucidating the biological mechanisms underlying NKT cell networks. Here, we discuss the progress made in understanding NKT cell networks, their consequent role in the regulation of tumor immunity, and the potential to exploit that knowledge in a clinical setting.

  18. Phase resetting reveals network dynamics underlying a bacterial cell cycle.

    Science.gov (United States)

    Lin, Yihan; Li, Ying; Crosson, Sean; Dinner, Aaron R; Scherer, Norbert F

    2012-01-01

    Genomic and proteomic methods yield networks of biological regulatory interactions but do not provide direct insight into how those interactions are organized into functional modules, or how information flows from one module to another. In this work we introduce an approach that provides this complementary information and apply it to the bacterium Caulobacter crescentus, a paradigm for cell-cycle control. Operationally, we use an inducible promoter to express the essential transcriptional regulatory gene ctrA in a periodic, pulsed fashion. This chemical perturbation causes the population of cells to divide synchronously, and we use the resulting advance or delay of the division times of single cells to construct a phase resetting curve. We find that delay is strongly favored over advance. This finding is surprising since it does not follow from the temporal expression profile of CtrA and, in turn, simulations of existing network models. We propose a phenomenological model that suggests that the cell-cycle network comprises two distinct functional modules that oscillate autonomously and couple in a highly asymmetric fashion. These features collectively provide a new mechanism for tight temporal control of the cell cycle in C. crescentus. We discuss how the procedure can serve as the basis for a general approach for probing network dynamics, which we term chemical perturbation spectroscopy (CPS).

  19. Primary Cilia, Signaling Networks and Cell Migration

    DEFF Research Database (Denmark)

    Veland, Iben Rønn

    Primary cilia are microtubule-based, sensory organelles that emerge from the centrosomal mother centriole to project from the surface of most quiescent cells in the human body. Ciliary entry is a tightly controlled process, involving diffusion barriers and gating complexes that maintain a unique...... this controls directional cell migration as a physiological response. The ciliary pocket is a membrane invagination with elevated activity of clathrin-dependent endocytosis (CDE). In paper I, we show that the primary cilium regulates TGF-β signaling and the ciliary pocket is a compartment for CDE...... on formation of the primary cilium and CDE at the pocket region. The ciliary protein Inversin functions as a molecular switch between canonical and non-canonical Wnt signaling. In paper II, we show that Inversin and the primary cilium control Wnt signaling and are required for polarization and cell migration...

  20. Detection of GH abuse in sport: Past, present and future.

    Science.gov (United States)

    Barroso, Osquel; Schamasch, Patrick; Rabin, Olivier

    2009-08-01

    Due to its considered performance enhancing effects, human growth hormone (hGH) is abused as a doping agent in sport. Its misuse also carries potentially serious side effects to a person's health. Consequently, hGH and its releasing factors are prohibited in sport, as established in the Prohibited List which is updated and published yearly by the World Anti-Doping Agency (WADA). In order to fight the menace that hGH doping poses to the spirit of sport and to the health of athletes, the sport movement and the anti-doping authorities, initially led by the International Olympic Committee (IOC) and later by WADA, have put substantial efforts into developing tests for its detection. Currently, a primary analytical approach, the isoform differential immunoassay, has been implemented in WADA-accredited laboratories. In parallel, a second, indirect approach for the detection of hGH abuse, based on the quantification of hGH-associated biological markers, has been developed. The final aim is to combine both methodologies to improve the sensitivity and expand the time window to detect doping with hGH. In addition, novel analytical procedures, based on proteomic and genomic technologies as well as the use of mass spectrometry-based methods of detection, are being investigated for future application in hGH anti-doping tests.

  1. Medical Data Transmission Using Cell Phone Networks

    International Nuclear Information System (INIS)

    Voos, J; Centeno, C; Riva, G; Zerbini, C; Gonzalez, E

    2011-01-01

    A big challenge in telemedicine systems is related to have the technical requirements needed for a successful implementation in remote locations where the available hardware and communication infrastructure is not adequate for a good medical data transmission. Despite of the wide standards availability, methodologies, applications and systems integration facilities in telemedicine, in many cases the implementation requirements are not achievable to allow the system execution in remote areas of our country. Therefore, this paper presents an alternative for the messages transmission related to medical studies using the cellular network and the standard HL7 V3 [1] for data modeling. The messages are transmitted to a web server and stored in a centralized database which allows data sharing with other specialists.

  2. Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks

    Science.gov (United States)

    Jorgensen, Charles C.

    1997-01-01

    A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.

  3. GH Responsiveness to Combined GH-Releasing Hormone and Arginine Administration in Obese Patients with Fibromyalgia Syndrome

    Directory of Open Access Journals (Sweden)

    Antonello E. Rigamonti

    2017-01-01

    Full Text Available Reportedly, fibromyalgia (FM is frequently associated with reduced IGF-1 levels and GH hyporesponsiveness to different GH stimulation tests. Since there is a high prevalence of obesity in FM, and obesity itself is characterized by hyposomatotropism, the aim of this study was to assess IGF-1 levels and GH responsiveness in sixteen severely obese women suffering from FM, who, subdivided into two subgroups on the basis of their age-dependent IGF-1 values (> or <−2 SDS, underwent the combined GHRH plus arginine test. Four out of 16 obese women with FM (25% had low IGF-1 SDS values, 2 cases of this subgroup (12.5% failing also to normally respond to the test. Among patients with normal GH responses, 4 showed a delayed GH peak. The subgroup with low IGF-1 SDS values had higher BMI than that with normal IGF-1 SDS. GH peak and area under the curve were not correlated with CRP, ESR, or tender point score, while significant correlations were found with fat-free mass and fat mass. In conclusion, this study shows the existence of a high prevalence of GH-IGF-1 dysfunction in patients with both FM and obesity, presumably as a consequence of the obese rather than fibromyalgic condition.

  4. Nanoscaffold's stiffness affects primary cortical cell network formation

    NARCIS (Netherlands)

    Xie, Sijia; Schurink, Bart; Wolbers, F.; Lüttge, Regina; Hassink, Gerrit Cornelis

    2014-01-01

    Networks of neurons cultured on-chip can provide insights into both normal and disease-state brain function. The ability to guide neuronal growth in specific, artificially designed patterns allows us to study how brain function follows form. Primary cortical cells cultured on nanograting scaffolds,

  5. Crystallization and X-ray diffraction analysis of the CH domain of the cotton kinesin GhKCH2

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Xinghua [China Agricultural University, No. 2 Yuanmingyuanxilu, Haidian District, Beijing 100094, People’s Republic of (China); The Fourth Military Medical University, No. 169 Changlexi Road, Xincheng District, Xi’an 710032, People’s Republic of (China); Chen, Ziwei; Li, Ping; Liu, Guoqin, E-mail: liu@cau.edu.cn [China Agricultural University, No. 2 Yuanmingyuanxilu, Haidian District, Beijing 100094, People’s Republic of (China)

    2016-02-19

    The cloning, expression, purification and crystallization of the CH domain of the plant-specific kinesin GhKCH2 is reported. GhKCH2 belongs to a group of plant-specific kinesins (KCHs) containing an actin-binding calponin homology (CH) domain in the N-terminus. Previous studies revealed that the GhKCH2 CH domain (GhKCH2-CH) had a higher affinity for F-actin (K{sub d} = 0.42 ± 0.02 µM) than most other CH-domain-containing proteins. To understand the underlying mechanism, prokaryotically expressed GhKCH2-CH (amino acids 30–166) was purified and crystallized. Crystals were grown by the sitting-drop vapour-diffusion method using 0.1 M Tris–HCl pH 7.0, 20%(w/v) PEG 8000 as a precipitant. The crystals diffracted to a resolution of 2.5 Å and belonged to space group P2{sub 1}, with unit-cell parameters a = 41.57, b = 81.92, c = 83.00 Å, α = 90.00, β = 97.31, γ = 90.00°. Four molecules were found in the asymmetric unit with a Matthews coefficient of 2.22 Å{sup 3} Da{sup −1}, corresponding to a solvent content of 44.8%.

  6. The cell wall of Arabidopsis thaliana influences actin network dynamics.

    Science.gov (United States)

    Tolmie, Frances; Poulet, Axel; McKenna, Joseph; Sassmann, Stefan; Graumann, Katja; Deeks, Michael; Runions, John

    2017-07-20

    In plant cells, molecular connections link the cell wall-plasma membrane-actin cytoskeleton to form a continuum. It is hypothesized that the cell wall provides stable anchor points around which the actin cytoskeleton remodels. Here we use live cell imaging of fluorescently labelled marker proteins to quantify the organization and dynamics of the actin cytoskeleton and to determine the impact of disrupting connections within the continuum. Labelling of the actin cytoskeleton with green fluorescent protein (GFP)-fimbrin actin-binding domain 2 (FABD2) resulted in a network composed of fine filaments and thicker bundles that appeared as a highly dynamic remodelling meshwork. This differed substantially from the GFP-Lifeact-labelled network that appeared much more sparse with thick bundles that underwent 'simple movement', in which the bundles slightly change position, but in such a manner that the structure of the network was not substantially altered during the time of observation. Label-dependent differences in actin network morphology and remodelling necessitated development of two new image analysis techniques. The first of these, 'pairwise image subtraction', was applied to measurement of the more rapidly remodelling actin network labelled with GFP-FABD2, while the second, 'cumulative fluorescence intensity', was used to measure bulk remodelling of the actin cytoskeleton when labelled with GFP-Lifeact. In each case, these analysis techniques show that the actin cytoskeleton has a decreased rate of bulk remodelling when the cell wall-plasma membrane-actin continuum is disrupted either by plasmolysis or with isoxaben, a drug that specifically inhibits cellulose deposition. Changes in the rate of actin remodelling also affect its functionality, as observed by alteration in Golgi body motility. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Therapeutic Efficacy and Safety of GH in Japanese Children with Down Syndrome Short Stature Accompanied by GH Deficiency

    OpenAIRE

    Meguri, Kyoko; Inoue, Masaru; Narahara, Koji; Sato, Takahiro; Takata, Ami; Ohki, Nobuhiko; Ozono, Keiichi

    2013-01-01

    In this study, we investigated the effects of GH treatment in children with Down syndrome who had been diagnosed with GH deficiency (GHD). A total of 20 subjects were investigated in this study. Fourteen Down syndrome children (5 boys and 9 girls) with short stature due to GHD were treated with GH at Okayama Red Cross General Hospital, and 6 Down syndrome children (4 boys and 2 girls) with short stature due to GHD were registered in the Pfizer International Growth Database (KIGS). Height SD s...

  8. Dominant dwarfism in transgenic rats by targeting human growth hormone (GH) expression to hypothalamic GH-releasing factor neurons.

    OpenAIRE

    Flavell, D M; Wells, T; Wells, S E; Carmignac, D F; Thomas, G B; Robinson, I C

    1996-01-01

    Expression of human growth hormone (hGH) was targeted to growth hormone-releasing (GRF) neurons in the hypothalamus of transgenic rats. This induced dominant dwarfism by local feedback inhibition of GRF. One line, bearing a single copy of a GRF-hGH transgene, has been characterized in detail, and has been termed Tgr (for Transgenic growth-retarded). hGH was detected by immunocytochemistry in the brain, restricted to the median eminence of the hypothalamus. Low levels were also detected in the...

  9. Demographic factors influencing the GH system: Implications for the detection of GH doping in sport.

    Science.gov (United States)

    Nelson, Anne E; Ho, Ken K Y

    2009-08-01

    Application of methods for detecting GH doping depend on being able to discriminate between abnormal levels due to doping and normal physiological levels of circulating proteins that change in response to exogenous administration. Constituents of the IGF and collagen systems have been shown to be promising markers of GH abuse. Their ultimate utility, however, depends on identification of the factors that regulate their concentrations in blood. Among these are demographic factors that are known to influence these markers in the general population. In a large cross-sectional study of the GH-responsive markers in over 1000 elite athletes from 12 countries representing 4 major ethnic groups and 10 sport types, we have shown that there is a significant negative correlation between age and all the IGF and collagen markers we studied, with a rapid decrease in early adolescence. Age was the major contribution to the variability, equivalent to >80% of the attributable variation in IGF-I and the collagen markers. The IGF axis markers were all significantly higher in women, and the collagen markers significantly higher in men, however, the contribution of gender was smaller than that of age, except for IGFBP-3 and ALS. BMI had a minor contribution to variability of the GH-responsive markers. After adjustment for the confounding influences of age, gender and BMI, the effect of ethnicity in elite athletes was trivial except for IGFBP-3 and ALS, which were both lower in Africans and higher in Caucasians. Compared to age and gender, the contribution of sport type was also modest. Our findings on the influence of age, gender, BMI and sport type have also been confirmed in a study of mostly Caucasian elite athletes in the post-competition setting. In conclusion, age and gender are the major determinants of variability for IGF-I and the collagen markers, whereas ethnicity and sport type have a minor influence. Therefore, a test based on IGF-I and the collagen markers must take age

  10. Endurance training and GH administration in elderly women

    DEFF Research Database (Denmark)

    Lange, K H; Lorentsen, J; Isaksson, F

    2001-01-01

    and after completion of the training program. Similarly, no effect on subcutaneous abdominal adipose tissue lipolysis was observed when combining endurance training with rhGH administration. However, in both the placebo and the GH groups, fat oxidation was significantly increased during exercise performed......In the present study, the effect of endurance training alone and endurance training combined with recombinant human growth hormone (rhGH) administration on subcutaneous abdominal adipose tissue lipolysis was investigated. Sixteen healthy women [age 75 +/- 2 yr (mean +/- SE)] underwent a 12-wk...... endurance training program on a cycle ergometer. rhGH was administered in a randomized, double-blinded, placebo-controlled design in addition to the training program. Subcutaneous abdominal adipose tissue lipolysis was estimated by means of microdialysis combined with measurements of subcutaneous abdominal...

  11. Hydrogen and fuel cell research networking in Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Peppley, B.A. [Queen' s-RMC Fuel Cell Research Centre, Kingston, ON (Canada)

    2009-07-01

    This presentation reviewed the activities of the Ontario Fuel Cell Research and Innovation Network since its launch in 2006. Funded by the Ontario Ministry of Research and Innovation, the project involves 17 academic researchers from 8 universities and is supported by 8 industrial partners. The group of researchers has made progress in supporting the developing fuel cell industry in Ontario and in Canada. Their work has the potential to help deploy the province's automotive-oriented manufacturing sector in directions that address the issues of clean air and climate change. New initiatives in the development of hydrogen and fuel cell technologies are instrumental in expanding this network to leverage new business activities in the post financial crisis period. These activities are expected to result in economic benefits for job and economic growth.

  12. Aerosol Observing System Greenhouse Gas (AOS GhG) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Biraud, S. C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Reichl, K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-03-01

    The Greenhouse Gas (GhG) Measurement system is a combination of two systems in series: (1) the Tower Gas Processing (TGP) System, an instrument rack which pulls, pressurizes, and dries air streams from an atmospheric sampling tower through a series of control and monitoring components, and (2) the Picarro model G2301 cavity ringdown spectrometer (CRDS), which measures CO2, CH4, and H2O vapor; the primary measurements of the GhG system.

  13. Cytokine Networks between Innate Lymphoid Cells and Myeloid Cells.

    Science.gov (United States)

    Mortha, Arthur; Burrows, Kyle

    2018-01-01

    Innate lymphoid cells (ILCs) are an essential component of the innate immune system in vertebrates. They are developmentally rooted in the lymphoid lineage and can diverge into at least three transcriptionally distinct lineages. ILCs seed both lymphoid and non-lymphoid tissues and are locally self-maintained in tissue-resident pools. Tissue-resident ILCs execute important effector functions making them key regulator in tissue homeostasis, repair, remodeling, microbial defense, and anti-tumor immunity. Similar to T lymphocytes, ILCs possess only few sensory elements for the recognition of non-self and thus depend on extrinsic cellular sensory elements residing within the tissue. Myeloid cells, including mononuclear phagocytes (MNPs), are key sentinels of the tissue and are able to translate environmental cues into an effector profile that instructs lymphocyte responses. The adaptation of myeloid cells to the tissue state thus influences the effector program of ILCs and serves as an example of how environmental signals are integrated into the function of ILCs via a tissue-resident immune cell cross talks. This review summarizes our current knowledge on the role of myeloid cells in regulating ILC functions and discusses how feedback communication between ILCs and myeloid cells contribute to stabilize immune homeostasis in order to maintain the healthy state of an organ.

  14. Hierarchical feedback modules and reaction hubs in cell signaling networks.

    Science.gov (United States)

    Xu, Jianfeng; Lan, Yueheng

    2015-01-01

    Despite much effort, identification of modular structures and study of their organizing and functional roles remain a formidable challenge in molecular systems biology, which, however, is essential in reaching a systematic understanding of large-scale cell regulation networks and hence gaining capacity of exerting effective interference to cell activity. Combining graph theoretic methods with available dynamics information, we successfully retrieved multiple feedback modules of three important signaling networks. These feedbacks are structurally arranged in a hierarchical way and dynamically produce layered temporal profiles of output signals. We found that global and local feedbacks act in very different ways and on distinct features of the information flow conveyed by signal transduction but work highly coordinately to implement specific biological functions. The redundancy embodied with multiple signal-relaying channels and feedback controls bestow great robustness and the reaction hubs seated at junctions of different paths announce their paramount importance through exquisite parameter management. The current investigation reveals intriguing general features of the organization of cell signaling networks and their relevance to biological function, which may find interesting applications in analysis, design and control of bio-networks.

  15. Hierarchical feedback modules and reaction hubs in cell signaling networks.

    Directory of Open Access Journals (Sweden)

    Jianfeng Xu

    Full Text Available Despite much effort, identification of modular structures and study of their organizing and functional roles remain a formidable challenge in molecular systems biology, which, however, is essential in reaching a systematic understanding of large-scale cell regulation networks and hence gaining capacity of exerting effective interference to cell activity. Combining graph theoretic methods with available dynamics information, we successfully retrieved multiple feedback modules of three important signaling networks. These feedbacks are structurally arranged in a hierarchical way and dynamically produce layered temporal profiles of output signals. We found that global and local feedbacks act in very different ways and on distinct features of the information flow conveyed by signal transduction but work highly coordinately to implement specific biological functions. The redundancy embodied with multiple signal-relaying channels and feedback controls bestow great robustness and the reaction hubs seated at junctions of different paths announce their paramount importance through exquisite parameter management. The current investigation reveals intriguing general features of the organization of cell signaling networks and their relevance to biological function, which may find interesting applications in analysis, design and control of bio-networks.

  16. Hierarchical Feedback Modules and Reaction Hubs in Cell Signaling Networks

    Science.gov (United States)

    Xu, Jianfeng; Lan, Yueheng

    2015-01-01

    Despite much effort, identification of modular structures and study of their organizing and functional roles remain a formidable challenge in molecular systems biology, which, however, is essential in reaching a systematic understanding of large-scale cell regulation networks and hence gaining capacity of exerting effective interference to cell activity. Combining graph theoretic methods with available dynamics information, we successfully retrieved multiple feedback modules of three important signaling networks. These feedbacks are structurally arranged in a hierarchical way and dynamically produce layered temporal profiles of output signals. We found that global and local feedbacks act in very different ways and on distinct features of the information flow conveyed by signal transduction but work highly coordinately to implement specific biological functions. The redundancy embodied with multiple signal-relaying channels and feedback controls bestow great robustness and the reaction hubs seated at junctions of different paths announce their paramount importance through exquisite parameter management. The current investigation reveals intriguing general features of the organization of cell signaling networks and their relevance to biological function, which may find interesting applications in analysis, design and control of bio-networks. PMID:25951347

  17. Cell cycle control by a minimal Cdk network.

    Directory of Open Access Journals (Sweden)

    Claude Gérard

    2015-02-01

    Full Text Available In present-day eukaryotes, the cell division cycle is controlled by a complex network of interacting proteins, including members of the cyclin and cyclin-dependent protein kinase (Cdk families, and the Anaphase Promoting Complex (APC. Successful progression through the cell cycle depends on precise, temporally ordered regulation of the functions of these proteins. In light of this complexity, it is surprising that in fission yeast, a minimal Cdk network consisting of a single cyclin-Cdk fusion protein can control DNA synthesis and mitosis in a manner that is indistinguishable from wild type. To improve our understanding of the cell cycle regulatory network, we built and analysed a mathematical model of the molecular interactions controlling the G1/S and G2/M transitions in these minimal cells. The model accounts for all observed properties of yeast strains operating with the fusion protein. Importantly, coupling the model's predictions with experimental analysis of alternative minimal cells, we uncover an explanation for the unexpected fact that elimination of inhibitory phosphorylation of Cdk is benign in these strains while it strongly affects normal cells. Furthermore, in the strain without inhibitory phosphorylation of the fusion protein, the distribution of cell size at division is unusually broad, an observation that is accounted for by stochastic simulations of the model. Our approach provides novel insights into the organization and quantitative regulation of wild type cell cycle progression. In particular, it leads us to propose a new mechanistic model for the phenomenon of mitotic catastrophe, relying on a combination of unregulated, multi-cyclin-dependent Cdk activities.

  18. Isolated growth hormone deficiency in two siblings because of paternal mosaicism for a mutation in the GH1 gene.

    Science.gov (United States)

    Tsubahara, Mayuko; Hayashi, Yoshitaka; Niijima, Shin-ichi; Yamamoto, Michiyo; Kamijo, Takashi; Murata, Yoshiharu; Haruna, Hidenori; Okumura, Akihisa; Shimizu, Toshiaki

    2012-03-01

      Mutations in the GH1 gene have been identified in patients with isolated growth hormone deficiency (IGHD). Mutations causing aberrant splicing of exon 3 of GH1 that have been identified in IGHD are inherited in an autosomal dominant manner, whereas other mutations in GH1 that have been identified in IGHD are inherited in an autosomal recessive manner.   Two siblings born from nonconsanguineous healthy parents exhibited IGHD. To elucidate the cause, GH1 in all family members was analysed.   Two novel mutations in GH1, a point mutation in intron 3 and a 16-bp deletion in exon 3, were identified by sequence analyses. The intronic mutation was present in both siblings and was predicted to cause aberrant splicing. The deletion was present in one of the siblings as well as the mother with normal stature and was predicted to cause rapid degradation of mRNA through nonsense-mediated mRNA decay. The point mutation was not identified in the parents' peripheral blood DNA; however, it was detected in the DNA extracted from the father's sperms. As a trace of the mutant allele was detected in the peripheral blood of the father using PCR-RFLP, the mutation is likely to have occurred de novo at an early developmental stage before differentiation of somatic cells and germline cells.   This is the first report of mosaicism for a mutation in GH1 in a family with IGHD. It is clear that the intronic mutation plays a dominant role in the pathogenesis of IGHD in this family, as one of the siblings who had only the point mutation was affected. On the other hand, the other sibling was a compound heterozygote for the point mutation and the 16-bp deletion and it may be arguable whether IGHD in this patient should be regarded as autosomal dominant or recessive. © 2012 Blackwell Publishing Ltd.

  19. Approach to testing growth hormone (GH) secretion in obese subjects.

    Science.gov (United States)

    Popovic, Vera

    2013-05-01

    Identification of adults with GH deficiency (GHD) is challenging because clinical features of adult GHD are not distinctive and because clinical suspicion must be confirmed by biochemical tests. Adults are selected for testing for adult GHD if they have a high pretest probability of GHD, ie, if they have hypothalamic-pituitary disease, if they have received cranial irradiation or central nervous system tumor treatment, or if they survived traumatic brain injury or subarachnoid hemorrhage. Testing should only be carried out if a decision has already been made that if deficiency is found it will be treated. There are many pharmacological GH stimulation tests for the diagnosis of GHD; however, none fulfill the requirements for an ideal test having high discriminatory power; being reproducible, safe, convenient, and economical; and not being dependent on confounding factors such as age, gender, nutritional status, and in particular obesity. In obesity, GH secretion is reduced, GH clearance is enhanced, and stimulated GH secretion is reduced, causing a false-positive result. This functional hyposomatotropism in obesity is fully reversed by weight loss. In conclusion, GH stimulation tests should be avoided in obese subjects with very low pretest probability.

  20. Sox17-Mediated XEN Cell Conversion Identifies Dynamic Networks Controlling Cell-Fate Decisions in Embryo-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Angela C.H. McDonald

    2014-10-01

    Full Text Available Little is known about the gene regulatory networks (GRNs distinguishing extraembryonic endoderm (ExEn stem (XEN cells from those that maintain the extensively characterized embryonic stem cell (ESC. An intriguing network candidate is Sox17, an essential transcription factor for XEN derivation and self-renewal. Here, we show that forced Sox17 expression drives ESCs toward ExEn, generating XEN cells that contribute to ExEn when placed back into early mouse embryos. Transient Sox17 expression is sufficient to drive this fate change during which time cells transit through distinct intermediate states prior to the generation of functional XEN-like cells. To orchestrate this conversion process, Sox17 acts in autoregulatory and feedforward network motifs, regulating dynamic GRNs directing cell fate. Sox17-mediated XEN conversion helps to explain the regulation of cell-fate changes and reveals GRNs regulating lineage decisions in the mouse embryo.

  1. Therapeutic Efficacy and Safety of GH in Japanese Children with Down Syndrome Short Stature Accompanied by GH Deficiency.

    Science.gov (United States)

    Meguri, Kyoko; Inoue, Masaru; Narahara, Koji; Sato, Takahiro; Takata, Ami; Ohki, Nobuhiko; Ozono, Keiichi

    2013-10-01

    In this study, we investigated the effects of GH treatment in children with Down syndrome who had been diagnosed with GH deficiency (GHD). A total of 20 subjects were investigated in this study. Fourteen Down syndrome children (5 boys and 9 girls) with short stature due to GHD were treated with GH at Okayama Red Cross General Hospital, and 6 Down syndrome children (4 boys and 2 girls) with short stature due to GHD were registered in the Pfizer International Growth Database (KIGS). Height SD score (SDS) increased throughout the three-year GH treatment period. The overall mean height SDS increased from -3.5 at baseline to -2.5 after 3 yr of treatment. The mean change in height SDS during these 3 yr was 1.1. In addition, height assessment of SD score based on Down syndrome-specific growth data in the Japanese population revealed that the height SDS (Down syndrome) also increased across the 3-yr GH treatment period. The mean change in height SDS (Down syndrome) during these three years was 1.3. GH therapy was effective for Down syndrome short stature accompanied by GHD, and no new safety concerns were found in this study.

  2. A regulatory network of Drosophila germline stem cell self-renewal

    OpenAIRE

    Yan, Dong; Neumüller, Ralph A.; Buckner, Michael; Ayers, Kathleen; Li, Hua; Hu, Yanhui; Yang-Zhou, Donghui; Pan, Lei; Wang, Xiaoxi; Kelley, Colleen; Vinayagam, Arunachalam; Binari, Richard; Randklev, Sakara; Perkins, Lizabeth A.; Xie, Ting

    2014-01-01

    Stem cells possess the capacity to generate two cells of distinct fate upon division; one cell retaining stem cell identity and the other cell destined to differentiate. These cell fates are established by cell-type-specific genetic networks. To comprehensively identify components of these networks, we performed a large-scale RNAi screen in Drosophila female germline stem cells (GSCs) covering ~25% of the genome. The screen identified 366 genes that affect GSC maintenance, differentiation or ...

  3. Discrete dynamic modeling of T cell survival signaling networks

    Science.gov (United States)

    Zhang, Ranran

    2009-03-01

    Biochemistry-based frameworks are often not applicable for the modeling of heterogeneous regulatory systems that are sparsely documented in terms of quantitative information. As an alternative, qualitative models assuming a small set of discrete states are gaining acceptance. This talk will present a discrete dynamic model of the signaling network responsible for the survival and long-term competence of cytotoxic T cells in the blood cancer T-LGL leukemia. We integrated the signaling pathways involved in normal T cell activation and the known deregulations of survival signaling in leukemic T-LGL, and formulated the regulation of each network element as a Boolean (logic) rule. Our model suggests that the persistence of two signals is sufficient to reproduce all known deregulations in leukemic T-LGL. It also indicates the nodes whose inactivity is necessary and sufficient for the reversal of the T-LGL state. We have experimentally validated several model predictions, including: (i) Inhibiting PDGF signaling induces apoptosis in leukemic T-LGL. (ii) Sphingosine kinase 1 and NFκB are essential for the long-term survival of T cells in T-LGL leukemia. (iii) T box expressed in T cells (T-bet) is constitutively activated in the T-LGL state. The model has identified potential therapeutic targets for T-LGL leukemia and can be used for generating long-term competent CTL necessary for tumor and cancer vaccine development. The success of this model, and of other discrete dynamic models, suggests that the organization of signaling networks has an determining role in their dynamics. Reference: R. Zhang, M. V. Shah, J. Yang, S. B. Nyland, X. Liu, J. K. Yun, R. Albert, T. P. Loughran, Jr., Network Model of Survival Signaling in LGL Leukemia, PNAS 105, 16308-16313 (2008).

  4. Artificial Neural Network Based Model of Photovoltaic Cell

    Directory of Open Access Journals (Sweden)

    Messaouda Azzouzi

    2017-03-01

    Full Text Available This work concerns the modeling of a photovoltaic system and the prediction of the sensitivity of electrical parameters (current, power of the six types of photovoltaic cells based on voltage applied between terminals using one of the best known artificial intelligence technique which is the Artificial Neural Networks. The results of the modeling and prediction have been well shown as a function of number of iterations and using different learning algorithms to obtain the best results. 

  5. Hormonal causes of male sexual dysfunctions and their management (hyperprolactinemia, thyroid disorders, GH disorders, and DHEA).

    Science.gov (United States)

    Maggi, Mario; Buvat, Jaques; Corona, Giovanni; Guay, André; Torres, Luiz Otavio

    2013-03-01

    Besides hypogonadism, other endocrine disorders have been associated with male sexual dysfunction (MSD). To review the role of the pituitary hormone prolactin (PRL), growth hormone (GH), thyroid hormones, and adrenal androgens in MSD. A systematic search of published evidence was performed using Medline (1969 to September 2011). Oxford Centre for Evidence-Based Medicine-Levels of Evidence (March 2009) was applied when possible. The most important evidence regarding the role played by PRL, GH, thyroid, and adrenal hormone was reviewed and discussed. Only severe hyperprolactinemia (>35 ng/mL or 735 mU/L), often related to a pituitary tumor, has a negative impact on sexual function, impairing sexual desire, testosterone production, and, through the latter, erectile function due to a dual effect: mass effect and PRL-induced suppression on gonadotropin secretion. The latter is PRL-level dependent. Emerging evidence indicates that hyperthyroidism is associated with an increased risk of premature ejaculation and might also be associated with erectile dysfunction (ED), whereas hypothyroidism mainly affects sexual desire and impairs the ejaculatory reflex. However, the real incidence of thyroid dysfunction in subjects with sexual problems needs to be evaluated. Prevalence of ED and decreased libido increase in acromegalic patients; however, it is still a matter of debate whether GH excess (acromegaly) may create effects due to a direct overproduction of GH/insulin-like growth factor 1 or because of the pituitary mass effects on gonadotropic cells, resulting in hypogonadism. Finally, although dehydroepiandrosterone (DHEA) and its sulfate have been implicated in a broad range of biological derangements, controlled trials have shown that DHEA administration is not useful for improving male sexual function. While the association between hyperprolactinemia and hypoactive sexual desire is well defined, more studies are needed to completely understand the role of other hormones in

  6. Effect of cessation of GH treatment on cognition during transition phase in Prader-Willi syndrome: Results of a 2-year crossover GH trial

    NARCIS (Netherlands)

    R.J. Kuppens (Renske); Mahabier, E.F.; N.E. Bakker (Nienke); E.P.C. Siemensma (Elbrich); S.H. Donze (Stephanie); A.C.S. Hokken-Koelega (Anita)

    2016-01-01

    textabstractBackground: Patients with Prader-Willi syndrome (PWS) have a cognitive impairment. Growth hormone (GH) treatment during childhood improves cognitive functioning, while cognition deteriorates in GH-untreated children with PWS. Cessation of GH treatment at attainment of adult height (AH)

  7. IGF-I bioactivity might reflect different aspects of quality of life than total IGF-I in gh-deficient patients during GH treatment

    NARCIS (Netherlands)

    A.J. Varewijck (Aimee); S.W.J. Lamberts (Steven); S.J.C.M.M. Neggers (Bas); L.J. Hofland (Leo); J.A.M.J.L. Janssen (Joseph)

    2013-01-01

    textabstractContext: No relationship has been found between improvement in quality of life (QOL) and total IGF-I during GH therapy. Aim: Our aim was to investigate the relationship between IGF-I bioactivity and QOL in GH-deficient (GHD) patients receiving GH for 12 months. Methods: Of 106 GHD

  8. GhZFP1, a novel CCCH-type zinc finger protein from cotton, enhances salt stress tolerance and fungal disease resistance in transgenic tobacco by interacting with GZIRD21A and GZIPR5.

    Science.gov (United States)

    Guo, Ying-Hui; Yu, Yue-Ping; Wang, Dong; Wu, Chang-Ai; Yang, Guo-Dong; Huang, Jin-Guang; Zheng, Cheng-Chao

    2009-01-01

    * Zinc finger proteins are a superfamily involved in many aspects of plant growth and development. However, CCCH-type zinc finger proteins involved in plant stress tolerance are poorly understood. * A cDNA clone designated Gossypium hirsutum zinc finger protein 1 (GhZFP1), which encodes a novel CCCH-type zinc finger protein, was isolated from a salt-induced cotton (G. hirsutum) cDNA library using differential hybridization screening and further studied in transgenic tobacco Nicotiana tabacum cv. NC89. Using yeast two-hybrid screening (Y2H), proteins GZIRD21A (GhZFP1 interacting and responsive to dehydration protein 21A) and GZIPR5 (GhZFP1 interacting and pathogenesis-related protein 5), which interacted with GhZFP1, were isolated. * GhZFP1 contains two typical zinc finger motifs (Cx8Cx5Cx3H and Cx5Cx4Cx3H), a putative nuclear export sequence (NES) and a potential nuclear localization signal (NLS). Transient expression analysis using a GhZFP1::GFP fusion gene in onion epidermal cells indicated a nuclear localization for GhZFP1. RNA blot analysis showed that the GhZFP1 transcript was induced by salt (NaCl), drought and salicylic acid (SA). The regions in GhZFP1 that interact with GZIRD21A and GZIPR5 were identified using truncation mutations. * Overexpression of GhZFP1 in transgenic tobacco enhanced tolerance to salt stress and resistance to Rhizoctonia solani. Therefore, it appears that GhZFP1 might be involved as an important regulator in plant responses to abiotic and biotic stresses.

  9. Introduction of exogenous growth hormone receptors augments growth hormone-responsive insulin biosynthesis in rat insulinoma cells

    DEFF Research Database (Denmark)

    Billestrup, N; Møldrup, A; Serup, P

    1990-01-01

    The stimulation of insulin biosynthesis in the pancreatic insulinoma cell line RIN5-AH by growth hormone (GH) is initiated by GH binding to specific receptors. To determine whether the recently cloned rat hepatic GH receptor is able to mediate the insulinotropic effect of GH, we have transfected ...

  10. Improved growth response to GH treatment in irradiated children

    International Nuclear Information System (INIS)

    Lannering, B.; Albertsson-Wikland, K.

    1989-01-01

    The growth response to two years of GH treatment was studied in fifteen children after radiotherapy for a cranial tumour. The growth response was compared to that of short children (-2 SD) and that of children with idiopathic growth hormone deficiency (GHD) of similar ages. All children were treated with hGH 0.1 IU/kg/day s.c.; which is a higher dose and frequency than previously reported for irradiated children. On this protocol the growth rate increased 5.0 +- 0.5 cm/y (mean +- SEM) the first year and 3.8 +- 0.7 cm/y the second year compared to the growth rate the year before GH-treatment. Although the net gain in growth was higher than previously reported, the first year growth response was significantly reduced (p less than 0.05) compared to that of GHD-children (7.6 +- 0.5 cm/y) but exceeded (p less than 0.05) that of short children (3.4 +- 0.3 cm/y). The median spontaneous 24 h-GH secretion was 209 mU/l in the short children, 52 mU/l in the irradiated children and 16 mU/l in the idiopathic GHD children. Thus the growth increment varied inversely to the spontaneous GH secretion observed in the three groups

  11. Growth and adult height in GH-treated children with nonacquired GH deficiency and idiopathic short stature: the influence of pituitary magnetic resonance imaging findings.

    Science.gov (United States)

    Coutant, R; Rouleau, S; Despert, F; Magontier, N; Loisel, D; Limal, J M

    2001-10-01

    We analyzed the final height of 146 short children with either nonacquired GH deficiency or idiopathic short stature. Our purpose was 1) to assess growth according to the pituitary magnetic resonance imaging findings in the 63 GH-treated children with GH deficiency and 2) to compare the growth of the GH-deficient patients with normal magnetic resonance imaging (n = 48) to that of 32 treated and 51 untreated children with idiopathic short stature (GH peak to provocative tests >10 microg/liter). The mean GH dose was 0.44 IU/kg.wk (0.15 mg/kg.wk), given for a mean duration of 4.6 yr. Among the GH-deficient children, 15 had hypothalamic-pituitary abnormalities (stalk agenesis), all with total GH deficiency (GH peak imaging, had better catch-up growth (+2.7 +/- 0.9 vs. +1.3 +/- 0.8 SD score; P imaging, there was no difference in catch-up growth and final height between partial and total GH deficiencies. GH-deficient subjects with normal magnetic resonance imaging and treated and untreated patients with idiopathic short stature had comparable auxological characteristics, age at evaluation, and target height. Although they had different catch-up growth (+1.3 +/- 0.8, +0.9 +/- 0.6, and +0.7 +/- 0.9 SD score, respectively; P imaging findings show the heterogeneity within the group of nonacquired GH deficiency and help to predict the response to GH treatment in these patients. The similarities in growth between the GH-deficient children with normal magnetic resonance imaging and those with idiopathic short stature suggest that the short stature in the former subjects is at least partly due to factors other than GH deficiency.

  12. How pathogens use linear motifs to perturb host cell networks

    KAUST Repository

    Via, Allegra; Uyar, Bora; Brun, Christine; Zanzoni, Andreas

    2015-01-01

    Molecular mimicry is one of the powerful stratagems that pathogens employ to colonise their hosts and take advantage of host cell functions to guarantee their replication and dissemination. In particular, several viruses have evolved the ability to interact with host cell components through protein short linear motifs (SLiMs) that mimic host SLiMs, thus facilitating their internalisation and the manipulation of a wide range of cellular networks. Here we present convincing evidence from the literature that motif mimicry also represents an effective, widespread hijacking strategy in prokaryotic and eukaryotic parasites. Further insights into host motif mimicry would be of great help in the elucidation of the molecular mechanisms behind host cell invasion and the development of anti-infective therapeutic strategies.

  13. Auxological criteria for the diagnosis of GH-dependent short stature and prescription of rGH: problems and pitfalls

    Directory of Open Access Journals (Sweden)

    Giulio Gilli

    2007-12-01

    Full Text Available Recombinant growth hormone (rGH administration is a cornerstone in the treatment of short stature secondary to GH deficit. Since its introduction in the 80s, the population of short patients with an indication to rGH therapy has clearly broadened, probably because of increased awareness by patients and physicians. Since rGH therapy is demanding for patients and expensive, the Italian National Health Service, like other third payers and regulatory authorities, regulates its prescription according to criteria listed in the Nota AIFA 39. This paper illustrates pitfalls and difficulties paediatricians may encounter when assessing short stature patients in order to decide upon the opportunity and possibility to initiate rGH therapy through the exposition of four emblematic, though hypothetical, clinical histories. In the discussion, the Authors highlight some of the most critical points in the formulation of the Nota 39, among which are the lack of clear reference values, neglecting of parental height targets and therapeutic responses, as well as some omissions in methodology specifications.

  14. Cell dynamic morphology classification using deep convolutional neural networks.

    Science.gov (United States)

    Li, Heng; Pang, Fengqian; Shi, Yonggang; Liu, Zhiwen

    2018-05-15

    Cell morphology is often used as a proxy measurement of cell status to understand cell physiology. Hence, interpretation of cell dynamic morphology is a meaningful task in biomedical research. Inspired by the recent success of deep learning, we here explore the application of convolutional neural networks (CNNs) to cell dynamic morphology classification. An innovative strategy for the implementation of CNNs is introduced in this study. Mouse lymphocytes were collected to observe the dynamic morphology, and two datasets were thus set up to investigate the performances of CNNs. Considering the installation of deep learning, the classification problem was simplified from video data to image data, and was then solved by CNNs in a self-taught manner with the generated image data. CNNs were separately performed in three installation scenarios and compared with existing methods. Experimental results demonstrated the potential of CNNs in cell dynamic morphology classification, and validated the effectiveness of the proposed strategy. CNNs were successfully applied to the classification problem, and outperformed the existing methods in the classification accuracy. For the installation of CNNs, transfer learning was proved to be a promising scheme. © 2018 International Society for Advancement of Cytometry. © 2018 International Society for Advancement of Cytometry.

  15. A Comprehensive Nuclear Receptor Network for Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ralf Kittler

    2013-02-01

    Full Text Available In breast cancer, nuclear receptors (NRs play a prominent role in governing gene expression, have prognostic utility, and are therapeutic targets. We built a regulatory map for 24 NRs, six chromatin state markers, and 14 breast-cancer-associated transcription factors (TFs that are expressed in the breast cancer cell line MCF-7. The resulting network reveals a highly interconnected regulatory matrix where extensive crosstalk occurs among NRs and other breast -cancer-associated TFs. We show that large numbers of factors are coordinately bound to highly occupied target regions throughout the genome, and these regions are associated with active chromatin state and hormone-responsive gene expression. This network also provides a framework for stratifying and predicting patient outcomes, and we use it to show that the peroxisome proliferator-activated receptor delta binds to a set of genes also regulated by the retinoic acid receptors and whose expression is associated with poor prognosis in breast cancer.

  16. Detection of silent cells, synchronization and modulatory activity in developing cellular networks.

    Science.gov (United States)

    Hjorth, Johannes J J; Dawitz, Julia; Kroon, Tim; Pires, Johny; Dassen, Valerie J; Berkhout, Janna A; Emperador Melero, Javier; Nadadhur, Aish G; Alevra, Mihai; Toonen, Ruud F; Heine, Vivi M; Mansvelder, Huibert D; Meredith, Rhiannon M

    2016-04-01

    Developing networks in the immature nervous system and in cellular cultures are characterized by waves of synchronous activity in restricted clusters of cells. Synchronized activity in immature networks is proposed to regulate many different developmental processes, from neuron growth and cell migration, to the refinement of synapses, topographic maps, and the mature composition of ion channels. These emergent activity patterns are not present in all cells simultaneously within the network and more immature "silent" cells, potentially correlated with the presence of silent synapses, are prominent in different networks during early developmental periods. Many current network analyses for detection of synchronous cellular activity utilize activity-based pixel correlations to identify cellular-based regions of interest (ROIs) and coincident cell activity. However, using activity-based correlations, these methods first underestimate or ignore the inactive silent cells within the developing network and second, are difficult to apply within cell-dense regions commonly found in developing brain networks. In addition, previous methods may ignore ROIs within a network that shows transient activity patterns comprising both inactive and active periods. We developed analysis software to semi-automatically detect cells within developing neuronal networks that were imaged using calcium-sensitive reporter dyes. Using an iterative threshold, modulation of activity was tracked within individual cells across the network. The distribution pattern of both inactive and active, including synchronous cells, could be determined based on distance measures to neighboring cells and according to different anatomical layers. © 2015 Wiley Periodicals, Inc.

  17. A Gly65Val substitution in an actin, GhACT_LI1, disrupts cell polarity and membrane anchoring of F-actin resulting in dwarf, lintless Li1 cotton plants

    Science.gov (United States)

    • Actin polymerizes to form the cytoskeleton and organize polar growth in all eukaryotic cells. Species with numerous actin genes are especially useful for the dissection of actin molecular function due to redundancy and neofunctionalization. Here, we investigated the role of a cotton (Gossypium hi...

  18. Bioavailability and bioactivity of three different doses of nasal growth hormone (GH) administered to GH-deficient patients

    DEFF Research Database (Denmark)

    Laursen, Torben; Grandjean, Birgitte; Jørgensen, Jens Otto Lunde

    1996-01-01

    different occasions. On three occasions GH was administered intranasally in doses of 0.05, 0.10 and 0.20 IU/kg, using didecanoyl-L-alpha-phosphatidylcholine as an enhancer. On the other two occasions the patients received an sc injection (0.10 IU/kg) and an i.v. injection (0.015 IU/kg) of GH, respectively....... The absolute bioavailability of GH following s.c. relative to i.v. administration was 49.5%. The bioavailabilities of the nasal doses were: 7.8% (0.05 IU). 8.9% (0.10 IU) and 3.8% (0.20 IU). Serum insulin-like growth factor I (IGF-I) levels increased significantly after s.c. administration only. Mean levels...... of the i.v. (p insulin and blood glucose (p

  19. Impact of mobility on call block, call drops and optimal cell size in small cell networks

    OpenAIRE

    Ramanath , Sreenath; Voleti , Veeraruna Kavitha; Altman , Eitan

    2011-01-01

    We consider small cell networks and study the impact of user mobility. Assuming Poisson call arrivals at random positions with random velocities, we discuss the characterization of handovers at the boundaries. We derive explicit expressions for call block and call drop probabilities using tools from spatial queuing theory. We also derive expressions for the average virtual server held up time. These expressions are used to derive optimal cell sizes for various profile of velocities in small c...

  20. Information in a Network of Neuronal Cells: Effect of Cell Density and Short-Term Depression

    KAUST Repository

    Onesto, Valentina

    2016-05-10

    Neurons are specialized, electrically excitable cells which use electrical to chemical signals to transmit and elaborate information. Understanding how the cooperation of a great many of neurons in a grid may modify and perhaps improve the information quality, in contrast to few neurons in isolation, is critical for the rational design of cell-materials interfaces for applications in regenerative medicine, tissue engineering, and personalized lab-on-a-chips. In the present paper, we couple an integrate-and-fire model with information theory variables to analyse the extent of information in a network of nerve cells. We provide an estimate of the information in the network in bits as a function of cell density and short-term depression time. In the model, neurons are connected through a Delaunay triangulation of not-intersecting edges; in doing so, the number of connecting synapses per neuron is approximately constant to reproduce the early time of network development in planar neural cell cultures. In simulations where the number of nodes is varied, we observe an optimal value of cell density for which information in the grid is maximized. In simulations in which the posttransmission latency time is varied, we observe that information increases as the latency time decreases and, for specific configurations of the grid, it is largely enhanced in a resonance effect.

  1. Information in a Network of Neuronal Cells: Effect of Cell Density and Short-Term Depression

    Directory of Open Access Journals (Sweden)

    Valentina Onesto

    2016-01-01

    Full Text Available Neurons are specialized, electrically excitable cells which use electrical to chemical signals to transmit and elaborate information. Understanding how the cooperation of a great many of neurons in a grid may modify and perhaps improve the information quality, in contrast to few neurons in isolation, is critical for the rational design of cell-materials interfaces for applications in regenerative medicine, tissue engineering, and personalized lab-on-a-chips. In the present paper, we couple an integrate-and-fire model with information theory variables to analyse the extent of information in a network of nerve cells. We provide an estimate of the information in the network in bits as a function of cell density and short-term depression time. In the model, neurons are connected through a Delaunay triangulation of not-intersecting edges; in doing so, the number of connecting synapses per neuron is approximately constant to reproduce the early time of network development in planar neural cell cultures. In simulations where the number of nodes is varied, we observe an optimal value of cell density for which information in the grid is maximized. In simulations in which the posttransmission latency time is varied, we observe that information increases as the latency time decreases and, for specific configurations of the grid, it is largely enhanced in a resonance effect.

  2. Information in a Network of Neuronal Cells: Effect of Cell Density and Short-Term Depression

    KAUST Repository

    Onesto, Valentina; Cosentino, Carlo; Di Fabrizio, Enzo M.; Cesarelli, Mario; Amato, Francesco; Gentile, Francesco

    2016-01-01

    Neurons are specialized, electrically excitable cells which use electrical to chemical signals to transmit and elaborate information. Understanding how the cooperation of a great many of neurons in a grid may modify and perhaps improve the information quality, in contrast to few neurons in isolation, is critical for the rational design of cell-materials interfaces for applications in regenerative medicine, tissue engineering, and personalized lab-on-a-chips. In the present paper, we couple an integrate-and-fire model with information theory variables to analyse the extent of information in a network of nerve cells. We provide an estimate of the information in the network in bits as a function of cell density and short-term depression time. In the model, neurons are connected through a Delaunay triangulation of not-intersecting edges; in doing so, the number of connecting synapses per neuron is approximately constant to reproduce the early time of network development in planar neural cell cultures. In simulations where the number of nodes is varied, we observe an optimal value of cell density for which information in the grid is maximized. In simulations in which the posttransmission latency time is varied, we observe that information increases as the latency time decreases and, for specific configurations of the grid, it is largely enhanced in a resonance effect.

  3. A system of recurrent neural networks for modularising, parameterising and dynamic analysis of cell signalling networks.

    Science.gov (United States)

    Samarasinghe, S; Ling, H

    In this paper, we show how to extend our previously proposed novel continuous time Recurrent Neural Networks (RNN) approach that retains the advantage of continuous dynamics offered by Ordinary Differential Equations (ODE) while enabling parameter estimation through adaptation, to larger signalling networks using a modular approach. Specifically, the signalling network is decomposed into several sub-models based on important temporal events in the network. Each sub-model is represented by the proposed RNN and trained using data generated from the corresponding ODE model. Trained sub-models are assembled into a whole system RNN which is then subjected to systems dynamics and sensitivity analyses. The concept is illustrated by application to G1/S transition in cell cycle using Iwamoto et al. (2008) ODE model. We decomposed the G1/S network into 3 sub-models: (i) E2F transcription factor release; (ii) E2F and CycE positive feedback loop for elevating cyclin levels; and (iii) E2F and CycA negative feedback to degrade E2F. The trained sub-models accurately represented system dynamics and parameters were in good agreement with the ODE model. The whole system RNN however revealed couple of parameters contributing to compounding errors due to feedback and required refinement to sub-model 2. These related to the reversible reaction between CycE/CDK2 and p27, its inhibitor. The revised whole system RNN model very accurately matched dynamics of the ODE system. Local sensitivity analysis of the whole system model further revealed the most dominant influence of the above two parameters in perturbing G1/S transition, giving support to a recent hypothesis that the release of inhibitor p27 from Cyc/CDK complex triggers cell cycle stage transition. To make the model useful in a practical setting, we modified each RNN sub-model with a time relay switch to facilitate larger interval input data (≈20min) (original model used data for 30s or less) and retrained them that produced

  4. Cell-type-specific predictive network yields novel insights into mouse embryonic stem cell self-renewal and cell fate.

    Directory of Open Access Journals (Sweden)

    Karen G Dowell

    Full Text Available Self-renewal, the ability of a stem cell to divide repeatedly while maintaining an undifferentiated state, is a defining characteristic of all stem cells. Here, we clarify the molecular foundations of mouse embryonic stem cell (mESC self-renewal by applying a proven Bayesian network machine learning approach to integrate high-throughput data for protein function discovery. By focusing on a single stem-cell system, at a specific developmental stage, within the context of well-defined biological processes known to be active in that cell type, we produce a consensus predictive network that reflects biological reality more closely than those made by prior efforts using more generalized, context-independent methods. In addition, we show how machine learning efforts may be misled if the tissue specific role of mammalian proteins is not defined in the training set and circumscribed in the evidential data. For this study, we assembled an extensive compendium of mESC data: ∼2.2 million data points, collected from 60 different studies, under 992 conditions. We then integrated these data into a consensus mESC functional relationship network focused on biological processes associated with embryonic stem cell self-renewal and cell fate determination. Computational evaluations, literature validation, and analyses of predicted functional linkages show that our results are highly accurate and biologically relevant. Our mESC network predicts many novel players involved in self-renewal and serves as the foundation for future pluripotent stem cell studies. This network can be used by stem cell researchers (at http://StemSight.org to explore hypotheses about gene function in the context of self-renewal and to prioritize genes of interest for experimental validation.

  5. Growth hormone (GH)-independent dimerization of GH receptor by a leucine zipper results in constitutive activation

    DEFF Research Database (Denmark)

    Behncken, S N; Billestrup, Nils; Brown, R

    2000-01-01

    Growth hormone initiates signaling by inducing homodimerization of two GH receptors. Here, we have sought to determine whether constitutively active receptor can be created in the absence of the extracellular domain by substituting it with high affinity leucine zippers to create dimers of the gro......Growth hormone initiates signaling by inducing homodimerization of two GH receptors. Here, we have sought to determine whether constitutively active receptor can be created in the absence of the extracellular domain by substituting it with high affinity leucine zippers to create dimers...

  6. Design and Activation of a LOX/GH Chemical Steam Generator

    Science.gov (United States)

    Saunders, G. P.; Mulkey, C. A.; Taylor, S. A.

    2009-01-01

    The purpose of this paper is to give a detailed description of the design and activation of the LOX/GH fueled chemical steam generator installed in Cell 2 of the E3 test facility at Stennis Space Center, MS (SSC). The steam generator uses a liquid oxygen oxidizer with gaseous hydrogen fuel. The combustion products are then quenched with water to create steam at pressures from 150 to 450 psig at temperatures from 350 to 750 deg F (from saturation to piping temperature limits).

  7. Verifying cell loss requirements in high-speed communication networks

    Directory of Open Access Journals (Sweden)

    Kerry W. Fendick

    1998-01-01

    Full Text Available In high-speed communication networks it is common to have requirements of very small cell loss probabilities due to buffer overflow. Losses are measured to verify that the cell loss requirements are being met, but it is not clear how to interpret such measurements. We propose methods for determining whether or not cell loss requirements are being met. A key idea is to look at the stream of losses as successive clusters of losses. Often clusters of losses, rather than individual losses, should be regarded as the important “loss events”. Thus we propose modeling the cell loss process by a batch Poisson stochastic process. Successive clusters of losses are assumed to arrive according to a Poisson process. Within each cluster, cell losses do not occur at a single time, but the distance between losses within a cluster should be negligible compared to the distance between clusters. Thus, for the purpose of estimating the cell loss probability, we ignore the spaces between successive cell losses in a cluster of losses. Asymptotic theory suggests that the counting process of losses initiating clusters often should be approximately a Poisson process even though the cell arrival process is not nearly Poisson. The batch Poisson model is relatively easy to test statistically and fit; e.g., the batch-size distribution and the batch arrival rate can readily be estimated from cell loss data. Since batch (cluster sizes may be highly variable, it may be useful to focus on the number of batches instead of the number of cells in a measurement interval. We also propose a method for approximately determining the parameters of a special batch Poisson cell loss with geometric batch-size distribution from a queueing model of the buffer content. For this step, we use a reflected Brownian motion (RBM approximation of a G/D/1/C queueing model. We also use the RBM model to estimate the input burstiness given the cell loss rate. In addition, we use the RBM model to

  8. Overexpression of a cotton (Gossypium hirsutum) WRKY gene, GhWRKY34, in Arabidopsis enhances salt-tolerance of the transgenic plants.

    Science.gov (United States)

    Zhou, Li; Wang, Na-Na; Gong, Si-Ying; Lu, Rui; Li, Yang; Li, Xue-Bao

    2015-11-01

    Soil salinity is one of the most serious threats in world agriculture, and often influences cotton growth and development, resulting in a significant loss in cotton crop yield. WRKY transcription factors are involved in plant response to high salinity stress, but little is known about the role of WRKY transcription factors in cotton so far. In this study, a member (GhWRKY34) of cotton WRKY family was functionally characterized. This protein containing a WRKY domain and a zinc-finger motif belongs to group III of cotton WRKY family. Subcellular localization assay indicated that GhWRKY34 is localized to the cell nucleus. Overexpression of GhWRKY34 in Arabidopsis enhanced the transgenic plant tolerance to salt stress. Several parameters (such as seed germination, green cotyledons, root length and chlorophyll content) in the GhWRKY34 transgenic lines were significantly higher than those in wild type under NaCl treatment. On the contrary, the GhWRKY34 transgenic plants exhibited a substantially lower ratio of Na(+)/K(+) in leaves and roots dealing with salt stress, compared with wild type. Growth status of the GhWRKY34 transgenic plants was much better than that of wild type under salt stress. Expressions of the stress-related genes were remarkably up-regulated in the transgenic plants under salt stress, compared with those in wild type. Based on the data presented in this study, we hypothesize that GhWRKY34 as a positive transcription regulator may function in plant response to high salinity stress through maintaining the Na(+)/K(+) homeostasis as well as activating the salt stress-related genes in cells. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  9. Network signatures of cellular immortalization in human lymphoblastoid cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Sung-Mi; Jung, So-Young; Nam, Hye-Young; Kim, Hye-Ryun; Lee, Mee-Hee; Kim, Jun-Woo; Han, Bok-Ghee [National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Osong 363-951 (Korea, Republic of); Jeon, Jae-Pil, E-mail: jaepiljeon@hanmail.net [Division of Brain Diseases, Center for Biomedical Science, Korea National Institute of Health, Osong 363-951 (Korea, Republic of)

    2013-11-15

    Highlights: •We identified network signatures of LCL immortalization from transcriptomic profiles. •More than 41% of DEGs are possibly regulated by miRNAs in LCLs. •MicroRNA target genes in LCLs are involved in apoptosis and immune-related functions. •This approach is useful to find functional miRNA targets in specific cell conditions. -- Abstract: Human lymphoblastoid cell line (LCL) has been used as an in vitro cell model in genetic and pharmacogenomic studies, as well as a good model for studying gene expression regulatory machinery using integrated genomic analyses. In this study, we aimed to identify biological networks of LCL immortalization from transcriptomic profiles of microRNAs and their target genes in LCLs. We first selected differentially expressed genes (DEGs) and microRNAs (DEmiRs) between early passage LCLs (eLCLs) and terminally differentiated late passage LCLs (tLCLs). The in silico and correlation analysis of these DEGs and DEmiRs revealed that 1098 DEG–DEmiR pairs were found to be positively (n = 591 pairs) or negatively (n = 507 pairs) correlated with each other. More than 41% of DEGs are possibly regulated by miRNAs in LCL immortalizations. The target DEGs of DEmiRs were enriched for cellular functions associated with apoptosis, immune response, cell death, JAK–STAT cascade and lymphocyte activation while non-miRNA target DEGs were over-represented for basic cell metabolisms. The target DEGs correlated negatively with miR-548a-3p and miR-219-5p were significantly associated with protein kinase cascade, and the lymphocyte proliferation and apoptosis, respectively. In addition, the miR-106a and miR-424 clusters located in the X chromosome were enriched in DEmiR–mRNA pairs for LCL immortalization. In this study, the integrated transcriptomic analysis of LCLs could identify functional networks of biologically active microRNAs and their target genes involved in LCL immortalization.

  10. Parallel studies of His-DTrp-Ala-Trp-DPhe-Lys-NH2 and human pancreatic growth hormone-releasing factor-44-NH2 in rat primary pituitary cell monolayer culture.

    Science.gov (United States)

    Sartor, O; Bowers, C Y; Chang, D

    1985-03-01

    His-DTrp-Ala-Trp-DPhe-Lys-NH2 (GH-RP-6) is a synthetic hexapeptide that specifically releases GH both in vivo and in vitro in pituitary incubates. In this study, for the first time, GH-RP-6 was studied in primary pituitary cell monolayer culture. Parallel studies were performed with human pancreatic GH-releasing factor-44 (hpGRF-44). Culture conditions optimal for GH-RP-6 were not optimal for hpGRF-44. Both peptides released GH in a dose- and time-dependent manner. In this assay system, the ED50 for GH-RP-6 was 9 nM, and the ED50 for hp-GRF-44 was 1.6 nM. Calcium-blocking agents inhibited the GH responses of both peptides as well as basal GH release. Pretreatment with GH-RP-6 decreased the subsequent response to both GH-RP-6 and hpGRF-44. hpGRF-44 down regulated itself but not GH-RP-6. Rat sera potentiated the GH response of hpGRF-44 but not that of GH-RP-6. GH-RP-6 and hpGRF-44 GH responses were additive. These results suggest that GH-RP-6 and hpGRF-44 stimulate GH release via different somatotroph receptors.

  11. Longitudinal study of serum placental GH in 455 normal pregnancies

    DEFF Research Database (Denmark)

    Chellakooty, Marla; Skibsted, Lillian; Skouby, Sven O

    2002-01-01

    women with normal singleton pregnancies at approximately 19 and 28 wk gestation. Serum placental GH concentrations were measured by a highly specific immunoradiometric assay, and fetal size was measured by ultrasound. Data on birth weight, gender, prepregnancy body mass index (BMI), parity, and smoking...

  12. Association of genetic polymorphism in GH gene with milk ...

    Indian Academy of Sciences (India)

    Associations were analysed between polymorphisms of the growth hormone gene (GH-MspI) (localized in intron 3) and milk production traits of Beijing Holstein cows (a total of 543 cows). Polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) method was used for identification of various ...

  13. Health Alert: Adrenal Crisis Causes Death in Some People Who Were Treated with hGH

    Science.gov (United States)

    ... Were Treated with hGH Health Alert: Adrenal Crisis Causes Death in Some People Who Were Treated with hGH ... Adrenal crisis is a serious condition that can cause death in people who lack the pituitary hormone ACTH. ...

  14. Effect of cessation of GH treatment on cognition during transition phase in Prader-Willi syndrome: results of a 2-year crossover GH trial

    Directory of Open Access Journals (Sweden)

    R. J. Kuppens

    2016-11-01

    Full Text Available Abstract Background Patients with Prader-Willi syndrome (PWS have a cognitive impairment. Growth hormone (GH treatment during childhood improves cognitive functioning, while cognition deteriorates in GH-untreated children with PWS. Cessation of GH treatment at attainment of adult height (AH might deteriorate their GH-induced improved cognition, while continuation might benefit them. We, therefore, investigated the effects of placebo versus GH administration on cognition in young adults with PWS who were GH-treated for many years during childhood and had attained AH. Method Two-year, randomized, double-blind, placebo-controlled cross-over study in 25 young adults with PWS. Cross-over intervention with placebo and GH (0.67 mg/m2/day, both during 1 year. Results Total (TIQ, verbal (VIQ and performance IQ (PIQ did not deteriorate during 1 year of placebo, compared to GH treatment (p > 0.322. Young adults with a lower TIQ had significantly more loss of TIQ points during placebo versus GH, in particular VIQ decreased more in those with a lower VIQ. The effect of placebo versus GH on TIQ, VIQ and PIQ was not different for gender or genotype. Conclusions Compared to GH treatment, 1 year of placebo did not deteriorate cognitive functioning of GH-treated young adults with PWS who have attained AH. However, patients with a lower cognitive functioning had more loss in IQ points during placebo versus GH treatment. The reassuring finding that 1 year of placebo does not deteriorate cognitive functioning does, however, not exclude a gradual deterioration of cognitive functioning on the long term. Trial registration ISRCTN24648386 , NTR1038 , Dutch Trial Register, www.trialregister.nl . Registered 16 August 2007.

  15. Effect of cessation of GH treatment on cognition during transition phase in Prader-Willi syndrome: results of a 2-year crossover GH trial.

    Science.gov (United States)

    Kuppens, R J; Mahabier, E F; Bakker, N E; Siemensma, E P C; Donze, S H; Hokken-Koelega, A C S

    2016-11-16

    Patients with Prader-Willi syndrome (PWS) have a cognitive impairment. Growth hormone (GH) treatment during childhood improves cognitive functioning, while cognition deteriorates in GH-untreated children with PWS. Cessation of GH treatment at attainment of adult height (AH) might deteriorate their GH-induced improved cognition, while continuation might benefit them. We, therefore, investigated the effects of placebo versus GH administration on cognition in young adults with PWS who were GH-treated for many years during childhood and had attained AH. Two-year, randomized, double-blind, placebo-controlled cross-over study in 25 young adults with PWS. Cross-over intervention with placebo and GH (0.67 mg/m 2 /day), both during 1 year. Total (TIQ), verbal (VIQ) and performance IQ (PIQ) did not deteriorate during 1 year of placebo, compared to GH treatment (p > 0.322). Young adults with a lower TIQ had significantly more loss of TIQ points during placebo versus GH, in particular VIQ decreased more in those with a lower VIQ. The effect of placebo versus GH on TIQ, VIQ and PIQ was not different for gender or genotype. Compared to GH treatment, 1 year of placebo did not deteriorate cognitive functioning of GH-treated young adults with PWS who have attained AH. However, patients with a lower cognitive functioning had more loss in IQ points during placebo versus GH treatment. The reassuring finding that 1 year of placebo does not deteriorate cognitive functioning does, however, not exclude a gradual deterioration of cognitive functioning on the long term. ISRCTN24648386 , NTR1038 , Dutch Trial Register, www.trialregister.nl . Registered 16 August 2007.

  16. The growth hormone (GH) response to GH-releasing peptide (His-DTrp-Ala-Trp-DPhe-Lys-NH2), GH-releasing hormone, and thyrotropin-releasing hormone in acromegaly.

    Science.gov (United States)

    Alster, D K; Bowers, C Y; Jaffe, C A; Ho, P J; Barkan, A L

    1993-09-01

    In patients with acromegaly, GH-producing pituitary tumors release GH in response to specific stimuli such as GH-releasing hormone (GHRH) and are also responsive to a variety of nonspecific stimuli, such as TRH or GnRH, and may exhibit paradoxical responses to glucose and dopamine. In healthy humans, the synthetic peptide GH-releasing peptide (GHRP) (His-D-Trp-Ala-Trp-D-Phe-Lys-NH2) releases GH by a putative mechanism of action that is independent of GHRH. How these tumors respond to GHRP is not well characterized. We studied the GH responses to GHRH, GHRP, and TRH stimulation in 11 patients with active acromegaly. The peak GH responses to GHRP and GHRH were not correlated (r = 0.57; P = 0.066). In contrast, the peak GH responses to GHRP and TRH were highly correlated (r = 0.95; P < 0.001). In conclusion, in patients with acromegaly, the GH response to GHRP is qualitatively normal and does not appear to depend on GHRH.

  17. Changes in bone mineral density, body composition, and lipid metabolism during growth hormone (GH) treatment in children with GH deficiency

    NARCIS (Netherlands)

    A.M. Boot (Annemieke); M.A. Engels (Melanie); G.J.M. Boerma (Geert); E.P. Krenning (Eric); S.M.P.F. de Muinck Keizer-Schrama (Sabine)

    1997-01-01

    textabstractAdults with childhood onset GH deficiency (GHD) have reduced bone mass, increased fat mass, and disorders of lipid metabolism. The aim of the present study was to evaluate bone mineral density (BMD), bone metabolism, body composition, and lipid metabolism in

  18. Reduced recruitment and survival of primordial and growing follicles in GH receptor-deficient mice

    NARCIS (Netherlands)

    Slot, K.A.; Kastelijn, J.; Bachelot, A.; Kelly, P.A.; Binart, N.; Teerds, K.J.

    2006-01-01

    GH influences female fertility. The goal of the present study was to obtain more insight into the effect of loss of GH signalling, as observed in humans suffering from Laron syndrome, on ovarian function. Therefore, serial paraffin sections of ovaries of untreated and IGF-I-treated female GH

  19. Disruption of the GH Receptor Gene in Adult Mice Increases Maximal Lifespan in Females

    DEFF Research Database (Denmark)

    Junnila, Riia K.; Duran-Ortiz, Silvana; Suer, Ozan

    2016-01-01

    GH and IGF-1 are important for a variety of physiological processes including growth, development, and aging. Mice with reduced levels of GH and IGF-1 have been shown to live longer than wild-type controls. Our laboratory has previously found that mice with a GH receptor gene knockout (GHRKO) fro...

  20. A Novel Tool for Peptide Pattern Recognition Identifies 13 Subgroups of the GH61 Family

    DEFF Research Database (Denmark)

    Busk, Peter Kamp; Lange, Mette; Lange, Lene

    2011-01-01

    Proteins of the glycosyl hydrolase family 61 (gh61) are important proteins for fungal degradation of biomass. There are 132 entries for gh61 in the CAZY database, no subfamilies have been defined and each fungus may have several gh61s with very different sequences. Alignment of highly divergent s...

  1. Sex steroids and the GH axis: Implications for the management of hypopituitarism.

    Science.gov (United States)

    Birzniece, Vita; Ho, Ken K Y

    2017-02-01

    Growth hormone (GH) regulates somatic growth, substrate metabolism and body composition. Sex hormones exert profound effect on the secretion and action of GH. Estrogens stimulate the secretion of GH, but inhibit the action of GH on the liver, an effect that occurs when administered orally. Estrogens suppress GH receptor signaling by stimulating the expression proteins that inhibit cytokine receptor signaling. This effect of estrogens is avoided when physiological doses of estrogens are administered via a non-oral route. Estrogen-like compounds, such as selective estrogen receptor modulators, possess dual properties of inhibiting the secretion as well as the action of GH. In contrast, androgens stimulate GH secretion, driving IGF-1 production. In the periphery, androgens enhance the action of GH. The differential effects of estrogens and androgens influence the dose of GH replacement in patients with hypopituitarism on concomitant treatment with sex steroids. Where possible, a non-oral route of estrogen replacement is recommended for optimizing cost-benefit of GH replacement in women with GH deficiency. Adequate androgen replacement in conjunction with GH replacement is required to achieve the full anabolic effect in men with hypopituitarism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Stability of Control Networks in Autonomous Homeostatic Regulation of Stem Cell Lineages.

    Science.gov (United States)

    Komarova, Natalia L; van den Driessche, P

    2018-05-01

    Design principles of biological networks have been studied extensively in the context of protein-protein interaction networks, metabolic networks, and regulatory (transcriptional) networks. Here we consider regulation networks that occur on larger scales, namely the cell-to-cell signaling networks that connect groups of cells in multicellular organisms. These are the feedback loops that orchestrate the complex dynamics of cell fate decisions and are necessary for the maintenance of homeostasis in stem cell lineages. We focus on "minimal" networks that are those that have the smallest possible numbers of controls. For such minimal networks, the number of controls must be equal to the number of compartments, and the reducibility/irreducibility of the network (whether or not it can be split into smaller independent sub-networks) is defined by a matrix comprised of the cell number increments induced by each of the controlled processes in each of the compartments. Using the formalism of digraphs, we show that in two-compartment lineages, reducible systems must contain two 1-cycles, and irreducible systems one 1-cycle and one 2-cycle; stability follows from the signs of the controls and does not require magnitude restrictions. In three-compartment systems, irreducible digraphs have a tree structure or have one 3-cycle and at least two more shorter cycles, at least one of which is a 1-cycle. With further work and proper biological validation, our results may serve as a first step toward an understanding of ways in which these networks become dysregulated in cancer.

  3. Structural-Functional Analysis Reveals a Specific Domain Organization in Family GH20 Hexosaminidases.

    Science.gov (United States)

    Val-Cid, Cristina; Biarnés, Xevi; Faijes, Magda; Planas, Antoni

    2015-01-01

    Hexosaminidases are involved in important biological processes catalyzing the hydrolysis of N-acetyl-hexosaminyl residues in glycosaminoglycans and glycoconjugates. The GH20 enzymes present diverse domain organizations for which we propose two minimal model architectures: Model A containing at least a non-catalytic GH20b domain and the catalytic one (GH20) always accompanied with an extra α-helix (GH20b-GH20-α), and Model B with only the catalytic GH20 domain. The large Bifidobacterium bifidum lacto-N-biosidase was used as a model protein to evaluate the minimal functional unit due to its interest and structural complexity. By expressing different truncated forms of this enzyme, we show that Model A architectures cannot be reduced to Model B. In particular, there are two structural requirements general to GH20 enzymes with Model A architecture. First, the non-catalytic domain GH20b at the N-terminus of the catalytic GH20 domain is required for expression and seems to stabilize it. Second, the substrate-binding cavity at the GH20 domain always involves a remote element provided by a long loop from the catalytic domain itself or, when this loop is short, by an element from another domain of the multidomain structure or from the dimeric partner. Particularly, the lacto-N-biosidase requires GH20b and the lectin-like domain at the N- and C-termini of the catalytic GH20 domain to be fully soluble and functional. The lectin domain provides this remote element to the active site. We demonstrate restoration of activity of the inactive GH20b-GH20-α construct (model A architecture) by a complementation assay with the lectin-like domain. The engineering of minimal functional units of multidomain GH20 enzymes must consider these structural requirements.

  4. Effects of short-term glucocorticoid deprivation on growth hormone (GH) response to GH-releasing peptide-6: Studies in normal men and in patients with adrenal insufficiency

    OpenAIRE

    Pinto, Ana Claudia de Assis Rocha [UNIFESP; Dias-da-Silva, Magnus Régios [UNIFESP; Martins, Manoel R. [UNIFESP; Brunner, Elisa [UNIFESP; Lengyel, Ana Maria Judith [UNIFESP

    2000-01-01

    There are no data in the literature about the effects of glucocorticoid deprivation on GH-releasing peptide-g (GHRP-6)-induced GH release. the aims of this study were to evaluate GH responsiveness to GHRP-6 1) after metyrapone administration in normal men, and 2) in patients with chronic hypocortisolism after glucocorticoid withdrawal for 72 h. in normal subjects, metyrapone ingestion did not alter significantly GH responsiveness to GHRP-6 [n = 8; peak, 39.3 +/- 7.1 mu g/L; area under the cur...

  5. Representation of fracture networks as grid cell conductivities

    International Nuclear Information System (INIS)

    Svensson, Urban

    1999-12-01

    A method to represent fracture networks as grid cell conductivities is described and evaluated. The method is developed for a fracture system of the kind found in the Aespoe area, i.e. a sparsely fractured rock with a conductivity field that is dominated by a set of major fracture zones. For such a fracture system it is believed that an accurate description of the correlation and anisotropy structure is essential. The proposed method will capture these features of the fracture system. The method will be described in two reports. The first one, this report, evaluates the accuracy by comparisons with analytical solutions and established theories. The second report is an application to the Aespoe Hard Rock Laboratory. The general conclusion from this report is that the method is accurate enough for practical groundwater simulations. This statement is based on the results from three test cases with analytical solution and two test cases where results are compared with those from established theories

  6. Impact of Users Identities and Access Conditions on Downlink Performance in Closed Small-Cell Networks

    KAUST Repository

    Radaydeh, Redha; Gaaloul, Fakhreddine; Alouini, Mohamed-Slim

    2015-01-01

    This paper investigates the effect of various operation parameters on the downlink user performance in overlaid small-cell networks. The case study considers closed-access small cells (e.g., femtocells), wherein only active authorized user

  7. An Experimental Study of Advanced Receivers in a Practical Dense Small Cells Network

    DEFF Research Database (Denmark)

    Assefa, Dereje; Berardinelli, Gilberto; Tavares, Fernando Menezes Leitão

    2016-01-01

    leads to significant limitations on the network throughput in such deployments. In addition, network densification introduces difficulty in network deployment. This paper presents a study on the benefits of advanced receiver in a practical uncoordinated dense small cells deployment. Our aim is to show...

  8. The production of nitric oxide in EL4 lymphoma cells overexpressing growth hormone.

    Science.gov (United States)

    Arnold, Robyn E; Weigent, Douglas A

    2003-01-01

    Growth hormone (GH) is produced by immunocompetent cells and has been implicated in the regulation of a multiplicity of functions in the immune system involved in growth and activation. However, the actions of endogenous or lymphocyte GH and its contribution to immune reactivity when compared with those of serum or exogenous GH are still unclear. In the present study, we overexpressed lymphocyte GH in EL4 lymphoma cells, which lack the GH receptor (GHR), to determine the role of endogenous GH in nitric oxide (NO) production and response to genotoxic stress. Western blot analysis demonstrated that the levels of GH increased approximately 40% in cells overexpressing GH (GHo) when compared with cells with vector alone. The results also show a substantial increase in NO production in cells overexpressing GH that could be blocked by N(G)-monomethyl-L-arginine (L-NMMA), an L-arginine analogue that competitively inhibits all three isoforms of nitric oxide synthase (NOS). No evidence was obtained to support an increase in peroxynitrite in cells overexpressing GH. Overexpression of GH increased NOS activity, inducible nitric oxide synthase (iNOS) promoter activity, and iNOS protein expression, whereas endothelial nitric oxide synthase and neuronal nitric oxide synthase protein levels were essentially unchanged. In addition, cells overexpressing GH showed increased arginine transport ability and intracellular arginase activity when compared with control cells. GH overexpression appeared to protect cells from the toxic effects of the DNA alkylating agent methyl methanesulfonate. This possibility was suggested by maintenance of the mitochondrial transmembrane potential in cells overexpressing GH when compared with control cells that could be blocked by L-NMMA. Taken together, the data support the notion that lymphocyte GH, independently of the GH receptor, may play a key role in the survival of lymphocytes exposed to stressful stimuli via the production of NO.

  9. Growth hormone dose regimens in adult GH deficiency: effects on biochemical growth markers and metabolic parameters

    DEFF Research Database (Denmark)

    Møller, Jens; Jørgensen, Jens Otto Lunde; Laursen, Torben

    1993-01-01

    Abstract OBJECTIVE: We examined the effects of different doses of GH on insulin-like growth factor I (IGF-I), IGF binding protein 3 (IGFBP-3), body composition, energy expenditure, and various metabolites in GH deficient adults, in order to approach a metabolically appropriate GH dosage in young GH......-I in an age and sex matched control group was 248 +/- 25 micrograms/l. Corresponding serum IGFBP-3 levels also increased from 1860 +/- 239 to 3261 +/- 379, 3762 +/- 434 and 4384 +/- 652 micrograms/l (P = 0.01) respectively. Significant increases in diurnal serum insulin levels after 4 IU/m2 were recorded......, whereas plasma glucose levels remained unchanged. Lipid intermediates increased dose independently during GH administration. GH caused a significant increase in resting energy expenditure, whereas the respiratory exchange ratio was unaltered. Fat mass was increased without GH therapy and decreased during...

  10. CD8+ Tumor-Infiltrating T Cells Are Trapped in the Tumor-Dendritic Cell Network

    Directory of Open Access Journals (Sweden)

    Alexandre Boissonnas

    2013-01-01

    Full Text Available Chemotherapy enhances the antitumor adaptive immune T cell response, but the immunosuppressive tumor environment often dominates, resulting in cancer relapse. Antigen-presenting cells such as tumor-associated macrophages (TAMs and tumor dendritic cells (TuDCs are the main protagonists of tumor-infiltrating lymphocyte (TIL immuno-suppression. TAMs have been widely investigated and are associated with poor prognosis, but the immuno-suppressive activity of TuDCs is less well understood. We performed two-photon imaging of the tumor tissue to examine the spatiotemporal interactions between TILs and TuDCs after chemotherapy. In a strongly immuno-suppressive murine tumor model, cyclophosphamide-mediated chemotherapy transiently enhanced the antitumor activity of adoptively transferred ovalbumin-specific CD8+ T cell receptor transgenic T cells (OTI but barely affected TuDC compartment within the tumor. Time lapse imaging of living tumor tissue showed that TuDCs are organized as a mesh with dynamic interconnections. Once infiltrated into the tumor parenchyma, OTI T cells make antigen-specific and long-lasting contacts with TuDCs. Extensive analysis of TIL infiltration on histologic section revealed that after chemotherapy the majority of OTI T cells interact with TuDCs and that infiltration is restricted to TuDC-rich areas. We propose that the TuDC network exerts antigen-dependent unproductive retention that trap T cells and limit their antitumor effectiveness.

  11. Insulin, IGF-1, and GH Receptors Are Altered in an Adipose Tissue Depot-Specific Manner in Male Mice With Modified GH Action.

    Science.gov (United States)

    Hjortebjerg, Rikke; Berryman, Darlene E; Comisford, Ross; Frank, Stuart J; List, Edward O; Bjerre, Mette; Frystyk, Jan; Kopchick, John J

    2017-05-01

    Growth hormone (GH) is a determinant of glucose homeostasis and adipose tissue (AT) function. Using 7-month-old transgenic mice expressing the bovine growth hormone (bGH) gene and growth hormone receptor knockout (GHR-/-) mice, we examined whether changes in GH action affect glucose, insulin, and pyruvate tolerance and AT expression of proteins involved in the interrelated signaling pathways of GH, insulinlike growth factor 1 (IGF-1), and insulin. Furthermore, we searched for AT depot-specific differences in control mice. Glycated hemoglobin levels were reduced in bGH and GHR-/- mice, and bGH mice displayed impaired gluconeogenesis as judged by pyruvate tolerance testing. Serum IGF-1 was elevated by 90% in bGH mice, whereas IGF-1 and insulin were reduced by 97% and 61% in GHR-/- mice, respectively. Igf1 RNA was increased in subcutaneous, epididymal, retroperitoneal, and brown adipose tissue (BAT) depots in bGH mice (mean increase ± standard error of the mean in all five depots, 153% ± 27%) and decreased in all depots in GHR-/- mice (mean decrease, 62% ± 4%). IGF-1 receptor expression was decreased in all AT depots of bGH mice (mean decrease, 49% ± 6%) and increased in all AT depots of GHR-/- mice (mean increase, 94% ± 8%). Insulin receptor expression was reduced in retroperitoneal, mesenteric, and BAT depots in bGH mice (mean decrease in all depots, 56% ± 4%) and augmented in subcutaneous, retroperitoneal, mesenteric, and BAT depots in GHR-/- mice (mean increase: 51% ± 1%). Collectively, our findings indicate a role for GH in influencing hormone signaling in AT in a depot-dependent manner. Copyright © 2017 Endocrine Society.

  12. Liver-derived IGF-I contributes to GH-dependent increases in lean mass and bone mineral density in mice with comparable levels of circulating GH.

    Science.gov (United States)

    Nordstrom, Sarah M; Tran, Jennifer L; Sos, Brandon C; Wagner, Kay-Uwe; Weiss, Ethan J

    2011-07-01

    The relative contributions of circulating and locally produced IGF-I in growth remain controversial. The majority of circulating IGF-I is produced by the liver, and numerous mouse models have been developed to study the endocrine actions of IGF-I. A common drawback to these models is that the elimination of circulating IGF-I disrupts a negative feedback pathway, resulting in unregulated GH secretion. We generated a mouse with near total abrogation of circulating IGF-I by disrupting the GH signaling mediator, Janus kinase (JAK)2, in hepatocytes. We then crossed these mice, termed JAK2L, to GH-deficient little mice (Lit). Compound mutant (Lit-JAK2L) and control (Lit-Con) mice were treated with equal amounts of GH such that the only difference between the two groups was hepatic GH signaling. Both groups gained weight in response to GH but there was a reduction in the final weight of GH-treated Lit-JAK2L vs. Lit-Con mice. Similarly, lean mass increased in both groups, but there was a reduction in the final lean mass of Lit-JAK2L vs. Lit-Con mice. There was an equivalent increase in skeletal length in response to GH in Lit-Con and Lit-JAK2L mice. There was an increase in bone mineral density (BMD) in both groups, but Lit-JAK2L had lower BMD than Lit-Con mice. In addition, GH-mediated increases in spleen and kidney mass were absent in Lit-JAK2L mice. Taken together, hepatic GH-dependent production of IGF-I had a significant and nonredundant role in GH-mediated acquisition of lean mass, BMD, spleen mass, and kidney mass; however, skeletal length was dependent upon or compensated for by locally produced IGF-I.

  13. Detection of silent cells, synchronization and modulatory activity in developing cellular networks.

    NARCIS (Netherlands)

    Hjorth, J.J.J.; Dawitz, J.; Kroon, T.; da Silva Dias Pires, J.H.; Dassen, V.J.; Berkhout, J.A.; Emperador Melero, J.; Nadadhur, A.G.; Alevra, M.; Toonen, R.F.G.; Heine, V.M.; Mansvelder, H.D.; Meredith, R.M.

    2016-01-01

    Developing networks in the immature nervous system and in cellular cultures are characterized by waves of synchronous activity in restricted clusters of cells. Synchronized activity in immature networks is proposed to regulate many different developmental processes, from neuron growth and cell

  14. Substrate recognition and catalysis by GH47 α-mannosidases involved in Asn-linked glycan maturation in the mammalian secretory pathway

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Yong; Karaveg, Khanita; Moremen, Kelley W.

    2016-11-17

    Asn-linked glycosylation of newly synthesized polypeptides occurs in the endoplasmic reticulum of eukaryotic cells. Glycan structures are trimmed and remodeled as they transit the secretory pathway, and processing intermediates play various roles as ligands for folding chaperones and signals for quality control and intracellular transport. Key steps for the generation of these trimmed intermediates are catalyzed by glycoside hydrolase family 47 (GH47) α-mannosidases that selectively cleave α1,2-linked mannose residues. Despite the sequence and structural similarities among the GH47 enzymes, the molecular basis for residue-specific cleavage remains obscure. The present studies reveal enzyme–substrate complex structures for two related GH47 α-mannosidases and provide insights into how these enzymes recognize the same substrates differently and catalyze the complementary glycan trimming reactions necessary for glycan maturation.

  15. Cell Deployment Optimization for Cloud Radio Access Networks using Teletraffic Theory

    DEFF Research Database (Denmark)

    Popovska Avramova, Andrijana; Christiansen, Henrik Lehrmann; Iversen, Villy Bæk

    2015-01-01

    Cloud Radio Access Network (C-RAN) is a new mobile radio access network design based on centralized and pooled processing. It offers potential cost savings by utilizing the so-called tidal effect due to user mobility in cellular networks. This paper provides a quantitative analysis...... to dynamically re-assign cells to a pool of baseband units. The re-assignment is based on the cell load and traffic characteristics such that effective utilization of the baseband resources is assured....

  16. Cell transfection as a tool to study growth hormone action

    DEFF Research Database (Denmark)

    Norstedt, G; Enberg, B; Francis, S

    1994-01-01

    The isolation of growth hormone receptor (GHR) cDNA clones has made possible the transfection of GHRs into cultured cells. Our aim in this minireview is to show how the application of such approaches have benefited GHR research. GH stimulation of cells expressing GHR cDNAs can cause an alteration...... is important in GH action. The GH signals are transmitted to the nucleus and GH regulated genes have now begun to be characterized. The ability to use cell transfection for mechanistic studies of GH action will be instrumental to define domains within the receptor that are of functional importance...

  17. Endothelial function and vascular oxidative stress in long-lived GH/IGF-deficient Ames dwarf mice.

    Science.gov (United States)

    Csiszar, Anna; Labinskyy, Nazar; Perez, Viviana; Recchia, Fabio A; Podlutsky, Andrej; Mukhopadhyay, Partha; Losonczy, Gyorgy; Pacher, Pal; Austad, Steven N; Bartke, Andrzej; Ungvari, Zoltan

    2008-11-01

    Hypopituitary Ames dwarf mice have low circulating growth hormone (GH)/IGF-I levels, and they have extended longevity and exhibit many symptoms of delayed aging. To elucidate the vascular consequences of Ames dwarfism we compared endothelial O2(-) and H2O2 production, mitochondrial reactive oxygen species (ROS) generation, expression of antioxidant enzymes, and nitric oxide (NO) production in aortas of Ames dwarf and wild-type control mice. In Ames dwarf aortas endothelial O2(-) and H2O2 production and ROS generation by mitochondria were enhanced compared with those in vessels of wild-type mice. In Ames dwarf aortas there was a less abundant expression of Mn-SOD, Cu,Zn-SOD, glutathione peroxidase (GPx)-1, and endothelial nitric oxide synthase (eNOS). NO production and acetylcholine-induced relaxation were also decreased in aortas of Ames dwarf mice. In cultured wild-type mouse aortas and in human coronary arterial endothelial cells treatment with GH and IGF significantly reduced cellular O2(-) and H2O2 production and ROS generation by mitochondria and upregulated expression of Mn-SOD, Cu,Zn-SOD, GPx-1, and eNOS. Thus GH and IGF-I promote antioxidant phenotypic changes in the endothelial cells, whereas Ames dwarfism leads to vascular oxidative stress.

  18. The growth hormone (GH)-insulin-like growth factor axis during testosterone replacement therapy in GH-treated hypopituitary males

    DEFF Research Database (Denmark)

    Fisker, Sidse; Nørrelund, Helene; Juul, A

    2001-01-01

    in relation to two testosterone injections. Mean baseline IGF-I levels were 352 +/- 135 microg/L, and they remained unaltered during the study period (analysis of variance (ANOVA), P = 0.88). Free IGF-I levels did not change either (ANOVA, P = 0.35). Serum IGF binding protein-3 (IGFBP-3) and acid......-labile subunit decreased (ANOVA, P = 0.04 and P = 0.02 respectively) but post hoc analysis did not reveal a particular difference between days. IGFBP-1 increased following testosterone administration (ANOVA, P = 0.05), whereas GH binding protein levels tended to decrease following testosterone administration...... (ANOVA, P = 0.08). Prostate-specific antigen tended slightly to increase after each testosterone injection (ANOVA, P = 0.08, post hoc, NS). We conclude that major changes in total IGF-I are not induced during conventional intramuscular testosterone replacement in GH-treated hypopituitary males...

  19. The absence of GH signaling affects the susceptibility to high-fat diet-induced hypothalamic inflammation in male mice

    DEFF Research Database (Denmark)

    Baquedano, Eva; Ruiz-Lopez, Ana M; Sustarsic, Elahu G

    2014-01-01

    GH is important in metabolic control, and mice with disruption of the gene encoding the GH receptor (GHR) and GH binding protein (GHR-/- mice) are dwarf with low serum IGF-1 and insulin levels, high GH levels, and increased longevity, despite their obesity and altered lipid and metabolic profiles...

  20. Osteogenic stimulatory conditions enhance growth and maturation of endothelial cell microvascular networks in culture with mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Torbjorn O Pedersen

    2012-12-01

    Full Text Available To optimize culture conditions for in vitro prevascularization of tissue-engineered bone constructs, the development of organotypic blood vessels under osteogenic stimulatory conditions (OM was investigated. Coculture of endothelial cells and mesenchymal stem cells was used to assess proangiogenic effects of mesenchymal stem cells on endothelial cells. Four different culture conditions were evaluated for their effect on development of microvascular endothelial cell networks. Mineralization, deposition of extracellular matrix, and perivascular gene expression were studied in OM. After 3 days, endothelial cells established elongated capillary-like networks, and upregulated expression of vascular markers was seen. After 15 days, all parameters evaluated were significantly increased for cultures in OM. Mature networks developed in OM presented lumens enveloped by basement membrane-like collagen IV, with obvious mineralization and upregulated perivascular gene expression from mesenchymal stem cells. Our results suggest osteogenic stimulatory conditions to be appropriate for in vitro development of vascularized bone implants for tissue engineering.

  1. The effect of growth hormone (GH) replacement on muscle strength in patients with GH-deficiency: a meta-analysis.

    LENUS (Irish Health Repository)

    Widdowson, W Matthew

    2012-02-01

    CONTEXT\\/OBJECTIVES: GH replacement increases muscle mass and reduces body fat in growth hormone deficiency (GHD) adults. A recent meta-analysis has demonstrated that this improvement in body composition is associated with improved exercise performance. The current meta-analysis was carried out to determine whether high-quality evidence exists to support a beneficial effect of GH replacement on strength. DESIGN\\/METHODS: An extensive Medline search\\/literature review identified eight studies with utilizable, robust data, involving 231 patients in nine cohorts. Previously unpublished data were sought from authors and obtained in two cases. All studies included were randomized, double-blind, placebo-controlled, of parallel or cross-over design and of an average 6.7 months duration. Information was retrieved in uniform format, with data pertaining to patient numbers, study-design, GH-dose, mean age, IGF-I levels and muscle strength measurements (isometric or isokinetic quadriceps strength) recorded. Data were analysed using a fixed-effects model, utilizing continuous data measured on different scales. A summary effect measure (d(s)) was derived for individual strength variables, whereas an overall summary effect was derived from the sum of all studies incorporating different variables; 95% CIs were calculated from the weighted variances of individual study effects. RESULTS: Analysis revealed no significant improvement, neither when all studies were combined (d(s) = +0.01 +\\/- 0.26) nor when measured individually (isometric quadriceps strength, d(s) = +0.02 +\\/- 0.32 and isokinetic quadriceps strength, d(s) = 0.00 +\\/- 0.45). CONCLUSIONS: Evidence from short-term controlled studies fails to support a benefit on muscle strength of GH replacement in GHD patients, which is likely to occur over a longer time-course, as seen in open-label studies.

  2. Determining Regulatory Networks Governing the Differentiation of Embryonic Stem Cells to Pancreatic Lineage

    Science.gov (United States)

    Banerjee, Ipsita

    2009-03-01

    Knowledge of pathways governing cellular differentiation to specific phenotype will enable generation of desired cell fates by careful alteration of the governing network by adequate manipulation of the cellular environment. With this aim, we have developed a novel method to reconstruct the underlying regulatory architecture of a differentiating cell population from discrete temporal gene expression data. We utilize an inherent feature of biological networks, that of sparsity, in formulating the network reconstruction problem as a bi-level mixed-integer programming problem. The formulation optimizes the network topology at the upper level and the network connectivity strength at the lower level. The method is first validated by in-silico data, before applying it to the complex system of embryonic stem (ES) cell differentiation. This formulation enables efficient identification of the underlying network topology which could accurately predict steps necessary for directing differentiation to subsequent stages. Concurrent experimental verification demonstrated excellent agreement with model prediction.

  3. A single amino acid substitution in the exoplasmic domain of the human growth hormone (GH) receptor confers familial GH resistance (Laron syndrome) with positive GH-binding activity by abolishing receptor homodimerization.

    Science.gov (United States)

    Duquesnoy, P; Sobrier, M L; Duriez, B; Dastot, F; Buchanan, C R; Savage, M O; Preece, M A; Craescu, C T; Blouquit, Y; Goossens, M

    1994-01-01

    Growth hormone (GH) elicits a variety of biological activities mainly mediated by the GH receptor (GHR), a transmembrane protein that, based on in vitro studies, seemed to function as a homodimer. To test this hypothesis directly, we investigated patients displaying the classic features of Laron syndrome (familial GH resistance characterized by severe dwarfism and metabolic dysfunction), except for the presence of normal binding activity of the plasma GH-binding protein, a molecule that derives from the exoplasmic-coding domain of the GHR gene. In two unrelated families, the same GHR mutation was identified, resulting in the substitution of a highly conserved aspartate residue by histidine at position 152 (D152H) of the exoplasmic domain, within the postulated interface sequence involved in homodimerization. The recombinant mutated receptor protein was correctly expressed at the plasma membrane. It displayed subnormal GH-binding activity, a finding in agreement with the X-ray crystal structure data inferring this aspartate residue outside the GH-binding domain. However, mAb-based studies suggested the critical role of aspartate 152 in the proper folding of the interface area. We show that a recombinant soluble form of the mutant receptor is unable to dimerize, the D152H substitution also preventing the formation of heterodimers of wild-type and mutant molecules. These results provide in vivo evidence that monomeric receptors are inactive and that receptor dimerization is involved in the primary signalling of the GH-associated growth-promoting and metabolic actions. Images PMID:8137822

  4. Excessive growth hormone expression in male GH transgenic mice adversely alters bone architecture and mechanical strength.

    Science.gov (United States)

    Lim, S V; Marenzana, M; Hopkinson, M; List, E O; Kopchick, J J; Pereira, M; Javaheri, B; Roux, J P; Chavassieux, P; Korbonits, M; Chenu, C

    2015-04-01

    Patients with acromegaly have a higher prevalence of vertebral fractures despite normal bone mineral density (BMD), suggesting that GH overexpression has adverse effects on skeletal architecture and strength. We used giant bovine GH (bGH) transgenic mice to analyze the effects of high serum GH levels on BMD, architecture, and mechanical strength. Five-month-old hemizygous male bGH mice were compared with age- and sex-matched nontransgenic littermates controls (NT; n=16/group). Bone architecture and BMD were analyzed in tibia and lumbar vertebrae using microcomputed tomography. Femora were tested to failure using three-point bending and bone cellular activity determined by bone histomorphometry. bGH transgenic mice displayed significant increases in body weight and bone lengths. bGH tibia showed decreases in trabecular bone volume fraction, thickness, and number compared with NT ones, whereas trabecular pattern factor and structure model index were significantly increased, indicating deterioration in bone structure. Although cortical tissue perimeter was increased in transgenic mice, cortical thickness was reduced. bGH mice showed similar trabecular BMD but reduced trabecular thickness in lumbar vertebra relative to controls. Cortical BMD and thickness were significantly reduced in bGH lumbar vertebra. Mechanical testing of femora confirmed that bGH femora have decreased intrinsic mechanical properties compared with NT ones. Bone turnover is increased in favor of bone resorption in bGH tibia and vertebra compared with controls, and serum PTH levels is also enhanced in bGH mice. These data collectively suggest that high serum GH levels negatively affect bone architecture and quality at multiple skeletal sites.

  5. Effects of up to 15 years of recombinant human GH (rhGH) replacement on bone metabolism in adults with growth hormone deficiency (GHD): the Leiden Cohort Study.

    Science.gov (United States)

    Appelman-Dijkstra, Natasha M; Claessen, Kim M J A; Hamdy, Neveen A T; Pereira, Alberto M; Biermasz, Nienke R

    2014-11-01

    Growth hormone deficiency (GHD) in adulthood may be associated with a decreased bone mineral density (BMD), a decreased bone mineral content (BMC) and an increased fracture risk. Recombinant human GH (rhGH) replacement induces a progressive increase in BMD for up to 5-7 years of treatment. Data on longer follow-up are, however, scarce. Two hundred and thirty-adult GHD patients (mean age 47·1 years, 52·6% female), of whom 88% patients had adult-onset (AO) GHD, receiving rhGH replacement for ≥5 years were included in the study. Most patients had multiple pituitary hormone deficiencies. Bone turnover markers, BMC and BMD and T-scores at the lumbar spine and femoral neck were evaluated at baseline, and after 5, 10 and 15 years of rhGH replacement. In addition, clinical fracture incidence was assessed. Mean lumbar spine BMD, lumbar spine BMC and T-scores gradually increased during the first 10 years of rhGH replacement and remained stable thereafter. Largest effects of rhGH supplementation were found in men. In the small subset of patients using bisphosphonates, use of bisphosphonates did not impact additional beneficial effects in the long term. Low baseline BMD positively affected the change in BMD and BMC over time, but there was a negative effect of high GH dose at 1 year on the change in BMD and BMC over time. Clinical fracture incidence during long-term rhGH replacement was 20.1/1000 py. Fifteen years of rhGH replacement in GHD adults resulted in a sustained increase in BMD values at the lumbar spine, particularly in men, and stabilization of BMD values at the femoral neck. Clinical fracture incidence was suggested not to be increased during long-term rhGH replacement. © 2014 John Wiley & Sons Ltd.

  6. Determining the control networks regulating stem cell lineages in colonic crypts

    OpenAIRE

    Yang, J; Axelrod, DE; Komarova, NL

    2017-01-01

    The question of stem cell control is at the center of our understanding of tissue functioning, both in healthy and cancerous conditions. It is well accepted that cellular fate decisions (such as divisions, differentiation, apoptosis) are orchestrated by a network of regulatory signals emitted by different cell populations in the lineage and the surrounding tissue. The exact regulatory network that governs stem cell lineages in a given tissue is usually unknown. Here we propose an algorithm to...

  7. Cell cycle gene expression networks discovered using systems biology: Significance in carcinogenesis

    Science.gov (United States)

    Scott, RE; Ghule, PN; Stein, JL; Stein, GS

    2015-01-01

    The early stages of carcinogenesis are linked to defects in the cell cycle. A series of cell cycle checkpoints are involved in this process. The G1/S checkpoint that serves to integrate the control of cell proliferation and differentiation is linked to carcinogenesis and the mitotic spindle checkpoint with the development of chromosomal instability. This paper presents the outcome of systems biology studies designed to evaluate if networks of covariate cell cycle gene transcripts exist in proliferative mammalian tissues including mice, rats and humans. The GeneNetwork website that contains numerous gene expression datasets from different species, sexes and tissues represents the foundational resource for these studies (www.genenetwork.org). In addition, WebGestalt, a gene ontology tool, facilitated the identification of expression networks of genes that co-vary with key cell cycle targets, especially Cdc20 and Plk1 (www.bioinfo.vanderbilt.edu/webgestalt). Cell cycle expression networks of such covariate mRNAs exist in multiple proliferative tissues including liver, lung, pituitary, adipose and lymphoid tissues among others but not in brain or retina that have low proliferative potential. Sixty-three covariate cell cycle gene transcripts (mRNAs) compose the average cell cycle network with p = e−13 to e−36. Cell cycle expression networks show species, sex and tissue variability and they are enriched in mRNA transcripts associated with mitosis many of which are associated with chromosomal instability. PMID:25808367

  8. A Robust Optimization Based Energy-Aware Virtual Network Function Placement Proposal for Small Cell 5G Networks with Mobile Edge Computing Capabilities

    OpenAIRE

    Blanco, Bego; Taboada, Ianire; Fajardo, Jose Oscar; Liberal, Fidel

    2017-01-01

    In the context of cloud-enabled 5G radio access networks with network function virtualization capabilities, we focus on the virtual network function placement problem for a multitenant cluster of small cells that provide mobile edge computing services. Under an emerging distributed network architecture and hardware infrastructure, we employ cloud-enabled small cells that integrate microservers for virtualization execution, equipped with additional hardware appliances. We develop an energy-awa...

  9. Dynamics of the cell-cycle network under genome-rewiring perturbations

    International Nuclear Information System (INIS)

    Katzir, Yair; Elhanati, Yuval; Braun, Erez; Averbukh, Inna

    2013-01-01

    The cell-cycle progression is regulated by a specific network enabling its ordered dynamics. Recent experiments supported by computational models have shown that a core of genes ensures this robust cycle dynamics. However, much less is known about the direct interaction of the cell-cycle regulators with genes outside of the cell-cycle network, in particular those of the metabolic system. Following our recent experimental work, we present here a model focusing on the dynamics of the cell-cycle core network under rewiring perturbations. Rewiring is achieved by placing an essential metabolic gene exclusively under the regulation of a cell-cycle's promoter, forcing the cell-cycle network to function under a multitasking challenging condition; operating in parallel the cell-cycle progression and a metabolic essential gene. Our model relies on simple rate equations that capture the dynamics of the relevant protein–DNA and protein–protein interactions, while making a clear distinction between these two different types of processes. In particular, we treat the cell-cycle transcription factors as limited ‘resources’ and focus on the redistribution of resources in the network during its dynamics. This elucidates the sensitivity of its various nodes to rewiring interactions. The basic model produces the correct cycle dynamics for a wide range of parameters. The simplicity of the model enables us to study the interface between the cell-cycle regulation and other cellular processes. Rewiring a promoter of the network to regulate a foreign gene, forces a multitasking regulatory load. The higher the load on the promoter, the longer is the cell-cycle period. Moreover, in agreement with our experimental results, the model shows that different nodes of the network exhibit variable susceptibilities to the rewiring perturbations. Our model suggests that the topology of the cell-cycle core network ensures its plasticity and flexible interface with other cellular processes

  10. GH/IGF-I Transgene Expression on Muscle Homeostasis

    Science.gov (United States)

    Schwartz, Robert J.

    1999-01-01

    We propose to test the hypothesis that the growth hormone/ insulin like growth factor-I axis through autocrine/paracrine mechanisms may provide long term muscle homeostasis under conditions of prolonged weightlessness. As a key alternative to hormone replacement therapy, ectopic production of hGH, growth hormone releasing hormone (GHRH), and IGF-I will be studied for its potential on muscle mass impact in transgenic mice under simulated microgravity. Expression of either hGH or IGF-I would provide a chronic source of a growth-promoting protein whose biosynthesis or secretion is shut down in space. Muscle expression of the IGF-I transgene has demonstrated about a 20% increase in hind limb muscle mass over control nontransgenic litter mates. These recent experiments, also establish the utility of hind-limb suspension in mice as a workable model to study atrophy in weight bearing muscles. Thus, transgenic mice will be used in hind-limb suspension models to determine the role of GH/IGF-I on maintenance of muscle mass and whether concentric exercises might act in synergy with hormone treatment. As a means to engineer and ensure long-term protein production that would be workable in humans, gene therapy technology will be used by to monitor muscle mass preservation during hind-limb suspension, after direct intramuscular injection of a genetically engineered muscle-specific vector expressing GHRH. Effects of this gene-based therapy will be assessed in both fast twitch (medial gastrocnemius) and slow twitch muscle (soleus). End-points include muscle size, ultrastructure, fiber type, and contractile function, in normal animals, hind limb suspension, and reambutation.

  11. Reverse-engineering of gene networks for regulating early blood development from single-cell measurements.

    Science.gov (United States)

    Wei, Jiangyong; Hu, Xiaohua; Zou, Xiufen; Tian, Tianhai

    2017-12-28

    Recent advances in omics technologies have raised great opportunities to study large-scale regulatory networks inside the cell. In addition, single-cell experiments have measured the gene and protein activities in a large number of cells under the same experimental conditions. However, a significant challenge in computational biology and bioinformatics is how to derive quantitative information from the single-cell observations and how to develop sophisticated mathematical models to describe the dynamic properties of regulatory networks using the derived quantitative information. This work designs an integrated approach to reverse-engineer gene networks for regulating early blood development based on singel-cell experimental observations. The wanderlust algorithm is initially used to develop the pseudo-trajectory for the activities of a number of genes. Since the gene expression data in the developed pseudo-trajectory show large fluctuations, we then use Gaussian process regression methods to smooth the gene express data in order to obtain pseudo-trajectories with much less fluctuations. The proposed integrated framework consists of both bioinformatics algorithms to reconstruct the regulatory network and mathematical models using differential equations to describe the dynamics of gene expression. The developed approach is applied to study the network regulating early blood cell development. A graphic model is constructed for a regulatory network with forty genes and a dynamic model using differential equations is developed for a network of nine genes. Numerical results suggests that the proposed model is able to match experimental data very well. We also examine the networks with more regulatory relations and numerical results show that more regulations may exist. We test the possibility of auto-regulation but numerical simulations do not support the positive auto-regulation. In addition, robustness is used as an importantly additional criterion to select candidate

  12. Sum rate maximization in the uplink of multi-cell OFDMA networks

    KAUST Repository

    Tabassum, Hina; Alouini, Mohamed-Slim; Dawy, Zaher

    2012-01-01

    of each cell, while ignoring the significant effect of inter-cell interference. This paper investigates the problem of resource allocation (i.e., subcarriers and powers) in the uplink of a multi-cell OFDMA network. The problem has a non

  13. A model of cell wall expansion based on thermodynamics of polymer networks

    Science.gov (United States)

    Veytsman, B. A.; Cosgrove, D. J.

    1998-01-01

    A theory of cell wall extension is proposed. It is shown that macroscopic properties of cell walls can be explained through the microscopic properties of interpenetrating networks of cellulose and hemicellulose. The qualitative conclusions of the theory agree with the existing experimental data. The dependence of the cell wall yield threshold on the secretion of the wall components is discussed.

  14. Structure of the GH1 domain of guanylate kinase-associated protein from Rattus norvegicus

    International Nuclear Information System (INIS)

    Tong, Junsen; Yang, Huiseon; Eom, Soo Hyun; Chun, ChangJu; Im, Young Jun

    2014-01-01

    Graphical abstract: - Highlights: • The crystal structure of GKAP homology domain 1 (GH1) was determined. • GKAP GH1 is a three-helix bundle connected by short flexible loops. • The predicted helix α4 associates weakly with the helix α3, suggesting dynamic nature of the GH1 domain. - Abstract: Guanylate-kinase-associated protein (GKAP) is a scaffolding protein that links NMDA receptor-PSD-95 to Shank–Homer complexes by protein–protein interactions at the synaptic junction. GKAP family proteins are characterized by the presence of a C-terminal conserved GKAP homology domain 1 (GH1) of unknown structure and function. In this study, crystal structure of the GH1 domain of GKAP from Rattus norvegicus was determined in fusion with an N-terminal maltose-binding protein at 2.0 Å resolution. The structure of GKAP GH1 displays a three-helix bundle connected by short flexible loops. The predicted helix α4 which was not visible in the crystal structure associates weakly with the helix α3 suggesting dynamic nature of the GH1 domain. The strict conservation of GH1 domain across GKAP family members and the lack of a catalytic active site required for enzyme activity imply that the GH1 domain might serve as a protein–protein interaction module for the synaptic protein clustering

  15. Structure and kinetic investigation of Streptococcus pyogenes family GH38 alpha-mannosidase.

    Directory of Open Access Journals (Sweden)

    Michael D L Suits

    2010-02-01

    Full Text Available The enzymatic hydrolysis of alpha-mannosides is catalyzed by glycoside hydrolases (GH, termed alpha-mannosidases. These enzymes are found in different GH sequence-based families. Considerable research has probed the role of higher eukaryotic "GH38" alpha-mannosides that play a key role in the modification and diversification of hybrid N-glycans; processes with strong cellular links to cancer and autoimmune disease. The most extensively studied of these enzymes is the Drosophila GH38 alpha-mannosidase II, which has been shown to be a retaining alpha-mannosidase that targets both alpha-1,3 and alpha-1,6 mannosyl linkages, an activity that enables the enzyme to process GlcNAc(Man(5(GlcNAc(2 hybrid N-glycans to GlcNAc(Man(3(GlcNAc(2. Far less well understood is the observation that many bacterial species, predominantly but not exclusively pathogens and symbionts, also possess putative GH38 alpha-mannosidases whose activity and specificity is unknown.Here we show that the Streptococcus pyogenes (M1 GAS SF370 GH38 enzyme (Spy1604; hereafter SpGH38 is an alpha-mannosidase with specificity for alpha-1,3 mannosidic linkages. The 3D X-ray structure of SpGH38, obtained in native form at 1.9 A resolution and in complex with the inhibitor swainsonine (K(i 18 microM at 2.6 A, reveals a canonical GH38 five-domain structure in which the catalytic "-1" subsite shows high similarity with the Drosophila enzyme, including the catalytic Zn(2+ ion. In contrast, the "leaving group" subsites of SpGH38 display considerable differences to the higher eukaryotic GH38s; features that contribute to their apparent specificity.Although the in vivo function of this streptococcal GH38 alpha-mannosidase remains unknown, it is shown to be an alpha-mannosidase active on N-glycans. SpGH38 lies on an operon that also contains the GH84 hexosaminidase (Spy1600 and an additional putative glycosidase. The activity of SpGH38, together with its genomic context, strongly hints at a function

  16. The GH/IGF-1 axis in obesity: pathophysiology and therapeutic considerations.

    Science.gov (United States)

    Berryman, Darlene E; Glad, Camilla A M; List, Edward O; Johannsson, Gudmundur

    2013-06-01

    Obesity has become one of the most common medical problems in developed countries, and this disorder is associated with high incidences of hypertension, dyslipidaemia, cardiovascular disease, type 2 diabetes mellitus and specific cancers. Growth hormone (GH) stimulates the production of insulin-like growth factor 1 in most tissues, and together GH and insulin-like growth factor 1 exert powerful collective actions on fat, protein and glucose metabolism. Clinical trials assessing the effects of GH treatment in patients with obesity have shown consistent reductions in total adipose tissue mass, in particular abdominal and visceral adipose tissue depots. Moreover, studies in patients with abdominal obesity demonstrate a marked effect of GH therapy on body composition and on lipid and glucose homeostasis. Therefore, administration of recombinant human GH or activation of endogenous GH production has great potential to influence the onset and metabolic consequences of obesity. However, the clinical use of GH is not without controversy, given conflicting results regarding its effects on glucose metabolism. This Review provides an introduction to the role of GH in obesity and summarizes clinical and preclinical data that describe how GH can influence the obese state.

  17. Structure of the GH1 domain of guanylate kinase-associated protein from Rattus norvegicus

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Junsen; Yang, Huiseon [College of Pharmacy, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Eom, Soo Hyun [School of Life Sciences, Steitz Center for Structural Biology, and Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Chun, ChangJu, E-mail: cchun1130@jnu.ac.kr [College of Pharmacy, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Im, Young Jun, E-mail: imyoungjun@jnu.ac.kr [College of Pharmacy, Chonnam National University, Gwangju 500-757 (Korea, Republic of)

    2014-09-12

    Graphical abstract: - Highlights: • The crystal structure of GKAP homology domain 1 (GH1) was determined. • GKAP GH1 is a three-helix bundle connected by short flexible loops. • The predicted helix α4 associates weakly with the helix α3, suggesting dynamic nature of the GH1 domain. - Abstract: Guanylate-kinase-associated protein (GKAP) is a scaffolding protein that links NMDA receptor-PSD-95 to Shank–Homer complexes by protein–protein interactions at the synaptic junction. GKAP family proteins are characterized by the presence of a C-terminal conserved GKAP homology domain 1 (GH1) of unknown structure and function. In this study, crystal structure of the GH1 domain of GKAP from Rattus norvegicus was determined in fusion with an N-terminal maltose-binding protein at 2.0 Å resolution. The structure of GKAP GH1 displays a three-helix bundle connected by short flexible loops. The predicted helix α4 which was not visible in the crystal structure associates weakly with the helix α3 suggesting dynamic nature of the GH1 domain. The strict conservation of GH1 domain across GKAP family members and the lack of a catalytic active site required for enzyme activity imply that the GH1 domain might serve as a protein–protein interaction module for the synaptic protein clustering.

  18. Targeting either GH or IGF-I during somatostatin analogue treatment in patients with acromegaly

    DEFF Research Database (Denmark)

    Dal, Jakob; Klose, Marianne; Heck, Ansgar

    2018-01-01

    CONTEXT: Discordant GH and IGF-I values are frequent in acromegaly. The clinical significance and its dependence on treatment modality and of glucose-suppressed GH (GHnadir) measurements remain uncertain. OBJECTIVE: To evaluate the effects of targeting either IGF-I or GH during somatostatin analog...... (SA) treatment. PATIENTS AND METHODS: 84 patients with controlled acromegaly after surgery (n=23) or SA (n=61) underwent a GH-profile including an OGTT, at baseline and after 12 months. SA patients were randomized to monitoring according to either IGF-I (n= 33) or GHnadir (n=28). SA dose escalation...

  19. Growth hormone increases vascular cell adhesion molecule 1 expression

    DEFF Research Database (Denmark)

    Hansen, Troels Krarup; Fisker, Sanne; Dall, Rolf

    2004-01-01

    We investigated the impact of GH administration on endothelial adhesion molecules, vascular cell adhesion molecule-1 (VCAM-1) and E-selectin, in vivo and in vitro. Soluble VCAM-1, E-selectin, and C-reactive protein concentrations were measured before and after treatment in 25 healthy subjects...... and 25 adult GH-deficient (GHD) patients randomized to GH treatment or placebo. Furthermore, we studied the direct effect of GH and IGF-I and serum from GH-treated subjects on basal and TNF alpha-stimulated expression of VCAM-1 and E-selectin on cultured human umbilical vein endothelial cells. Baseline......% confidence interval: 95.0-208.7 microg/liter); P cells, there was no direct stimulatory effect of either GH or IGF-I on the expression of VCAM-1 and E-selectin, but serum from GH-treated healthy subjects significantly increased the expression of VCAM-1 (P

  20. Elucidation of the Interaction Mechanism with Liposomes of gH625-Peptide Functionalized Dendrimers

    Science.gov (United States)

    Falanga, Annarita; Tarallo, Rossella; Carberry, Thomas; Galdiero, Massimiliano; Weck, Marcus; Galdiero, Stefania

    2014-01-01

    We have demonstrated that amide-based dendrimers functionalized with the membrane-interacting peptide gH625 derived from the herpes simplex virus type 1 (HSV-1) envelope glycoprotein H enter cells mainly through a non-active translocation mechanism. Herein, we investigate the interaction between the peptide-functionalized dendrimer and liposomes composed of PC/Chol using fluorescence spectroscopy, isothermal titration calorimetry, and surface plasmon resonance to get insights into the mechanism of internalization. The affinity for the membrane bilayer is very high and the interaction between the peptide-dendrimer and liposomes took place without evidence of pore formation. These results suggest that the presented peptidodendrimeric scaffold may be a promising material for efficient drug delivery. PMID:25423477

  1. Pituitary size in patients with Laron syndrome (primary GH insensitivity).

    Science.gov (United States)

    Kornreich, Liora; Horev, Gadi; Schwarz, Michael; Karmazyn, Boaz; Laron, Zvi

    2003-03-01

    The purpose of the present study was to investigate whether lifelong secretion of high levels of GH, characteristic of Laron syndrome, leads to an increase in the size of the pituitary gland. Eleven patients (six females, five males) with Laron syndrome underwent magnetic resonance imaging of the pituitary region with a system operating at 0.5 T. There were nine adults aged 36-68 Years and two children, a 4-Year-old boy and a 9-Year-old girl. The latter patient had been treated with IGF-I (150-180 mg/kg per day) since the age of 3 Years; all the other patients were untreated. The height of the adenohypophysis was measured on the sagittal images and compared with reference values for age and sex. The height of the adenohypophysis was within the normal range for age and gender in all patients, except for one male, who had a small gland. No congenital anomalies of the pituitary-hypothalamic region were detected. Despite the lifelong high levels of GH, no pituitary hypertrophy was detected. The anatomy of the pituitary-hypothalamic region in Laron syndrome is normal.

  2. Growth hormone (GH) treatment increases serum insulin-like growth factor binding protein-3, bone isoenzyme alkaline phosphatase and forearm bone mineral content in young adults with GH deficiency of childhood onset

    DEFF Research Database (Denmark)

    Juul, A; Pedersen, S A; Sørensen, S

    1994-01-01

    Recent studies have demonstrated that growth hormone (GH)-deficient adults have a markedly decreased bone mineral content compared to healthy adults. However, there are conflicting results regarding the effects of GH treatment on bone mineral content in GH-deficient adults. Therefore, we evaluated...... the effect of GH treatment on a marker of bone formation (bone alkaline phosphatase), hepatic excretory function and distal forearm bone mineral content in GH-deficient adults. Growth hormone was administered subcutaneously in 21 adults (13 males and 8 females) with GH deficiency of childhood onset for 4...

  3. Adiabatic superconducting cells for ultra-low-power artificial neural networks

    Directory of Open Access Journals (Sweden)

    Andrey E. Schegolev

    2016-10-01

    Full Text Available We propose the concept of using superconducting quantum interferometers for the implementation of neural network algorithms with extremely low power dissipation. These adiabatic elements are Josephson cells with sigmoid- and Gaussian-like activation functions. We optimize their parameters for application in three-layer perceptron and radial basis function networks.

  4. Idiotypic networks incorporating T-B cell co-operation. The conditions for percolation

    NARCIS (Netherlands)

    Boer, R.J. de; Hogeweg, P.

    1989-01-01

    Previous work was concerned with symmetric immune networks of idiotypic interactions amongst B cell clones. The behaviour of these networks was contrary to expectations. This was caused by an extensive percolation of idiotypic signals. Idiotypic activation was thus expected to affect almost all

  5. Oversight and Management of a Cell Therapy Clinical Trial Network: Experience and Lessons Learned

    OpenAIRE

    Moyé, Lemuel A.; Sayre, Shelly L.; Westbrook, Lynette; Jorgenson, Beth C.; Handberg, Eileen; Anwaruddin, Saif; Wagner, Kristi A.; Skarlatos, Sonia I.

    2011-01-01

    The Cardiovascular Cell Therapy Research Network (CCTRN), sponsored by the National Heart, Lung, and Blood Institute (NHLBI), was established to develop, coordinate, and conduct multiple collaborative protocols testing the effects of cell therapy on cardiovascular diseases. The Network was born into a difficult political and ethical climate created by the recent removal of a dozen drugs from the US formulary and the temporary halting of 27 gene therapy trials due to safety concerns. This arti...

  6. Dynamic Modeling of Cell-Free Biochemical Networks Using Effective Kinetic Models

    Science.gov (United States)

    2015-03-03

    based whole-cell models of E. coli [6]. Conversely , highly abstracted kinetic frameworks, such as the cybernetic framework, represented a paradigm shift...metabolic objective function has been the optimization of biomass formation [18], although other metabolic objectives have also been estimated [19...experimental data. Toward these questions, we explored five hypothetical cell-free networks. Each network shared the same enzymatic connectivity, but

  7. Synaptic network activity induces neuronal differentiation of adult hippocampal precursor cells through BDNF signaling

    Directory of Open Access Journals (Sweden)

    Harish Babu

    2009-09-01

    Full Text Available Adult hippocampal neurogenesis is regulated by activity. But how do neural precursor cells in the hippocampus respond to surrounding network activity and translate increased neural activity into a developmental program? Here we show that long-term potential (LTP-like synaptic activity within a cellular network of mature hippocampal neurons promotes neuronal differentiation of newly generated cells. In co-cultures of precursor cells with primary hippocampal neurons, LTP-like synaptic plasticity induced by addition of glycine in Mg2+-free media for 5 min, produced synchronous network activity and subsequently increased synaptic strength between neurons. Furthermore, this synchronous network activity led to a significant increase in neuronal differentiation from the co-cultured neural precursor cells. When applied directly to precursor cells, glycine and Mg2+-free solution did not induce neuronal differentiation. Synaptic plasticity-induced neuronal differentiation of precursor cells was observed in the presence of GABAergic neurotransmission blockers but was dependent on NMDA-mediated Ca2+ influx. Most importantly, neuronal differentiation required the release of brain-derived neurotrophic factor (BDNF from the underlying substrate hippocampal neurons as well as TrkB receptor phosphorylation in precursor cells. This suggests that activity-dependent stem cell differentiation within the hippocampal network is mediated via synaptically evoked BDNF signaling.

  8. From genomes to in silico cells via metabolic networks

    DEFF Research Database (Denmark)

    Borodina, Irina; Nielsen, Jens

    2005-01-01

    Genome-scale metabolic models are the focal point of systems biology as they allow the collection of various data types in a form suitable for mathematical analysis. High-quality metabolic networks and metabolic networks with incorporated regulation have been successfully used for the analysis...... of phenotypes from phenotypic arrays and in gene-deletion studies. They have also been used for gene expression analysis guided by metabolic network structure, leading to the identification of commonly regulated genes. Thus, genome-scale metabolic modeling currently stands out as one of the most promising...

  9. New insights into the mechanism and actions of growth hormone (GH) in poultry.

    Science.gov (United States)

    Vasilatos-Younken, R; Wang, X H; Zhou, Y; Day, J R; McMurtry, J P; Rosebrough, R W; Decuypere, E; Buys, N; Darras, V; Beard, J L; Tomas, F

    1999-10-01

    Despite well documented anabolic effects of GH in mammals, a clear demonstration of such responses in domestic poultry is lacking. Recently, comprehensive dose-response studies of GH have been conducted in broilers during late post-hatch development (8 to 9 weeks of age). GH reduced feed intake (FI) and body weight gain in a dose-dependent manner, whereas birds pair-fed to the level of voluntary FI of GH-infused birds did not differ from controls. The reduction in voluntary FI may involve centrally mediated mechanisms, as hypothalamic neuropeptide Y protein and mRNA were reduced with GH, coincident with the maximal depression in FI. Growth of breast muscle was also reduced in a dose-dependent manner. Circulating IGF-I was not enhanced by GH, despite evidence that early events in the GH signaling pathway were intact. A GH dose-dependent increase in circulating 3,3',5-triiodothyronine(T3) paralleled decreases in hepatic 5D-III monodeiodinase activity, whereas 5'D-I activity was not altered. This confirms that a marked hyperthyroid response to GH occurs in late posthatch chickens, resulting from a decrease in the degradative pathway of T3 metabolism. This secondary hyperthyroidism would account for the decreased skeletal muscle mass (52) and lack of enhanced IGF-I (53) in GH-treated birds. Based upon these studies, it is now evident that GH does in fact have significant effects in poultry, but metabolic responses may confound the anabolic potential of the hormone.

  10. Polymorphisms in genes involved in GH1 release and their association with breast cancer risk.

    Science.gov (United States)

    Wagner, Kerstin; Hemminki, Kari; Grzybowska, Ewa; Klaes, Rüdiger; Burwinkel, Barbara; Bugert, Peter; Schmutzler, Rita K; Wappenschmidt, Barbara; Butkiewicz, Dorota; Pamula, Jolanta; Pekala, Wioletta; Försti, Asta

    2006-09-01

    The regulation of growth hormone 1 (GH1) and insulin-like-growth factor-1 (IGF-1) release is under the influence of three pituitary hormones [growth hormone releasing hormone (GHRH), ghrelin (GHRL) and somatostatin (SST)], which act in an autocrine/paracrine fashion in the breast. By binding to their respective receptors, they control cell proliferation, differentiation and apoptosis in a GH1/IGF-1-dependent manner. We investigated single nucleotide polymorphisms (SNPs) in the GHRH, GHRHR, GHRL, GHSR, SST and SSTR2 gene regions in a Polish and a German cohort of 798 breast cancer cases and 1011 controls. Our study revealed an association of a novel TC repeat polymorphism in the SST promoter with a decreased breast cancer risk in the Polish study population [odds ratio (OR), 0.65; 95% confidence interval (CI), 0.44-0.96]. The closely linked SNP IVS1 A+46G showed the same trend. For both polymorphisms the association was stronger in women above the age of 50 (OR, 0.33; 95% CI, 0.14-0.76 and OR, 0.39; 95% CI, 0.18-0.87, respectively). The protective effect of these polymorphisms was confirmed in a haplotype analysis among women above 50 years of age and carrying the two variant alleles (OR, 0.37; 95% CI, 0.17-0.80). In the independent German population, we observed slightly decreased ORs among women above the age of 50 years. In the SSTR2 gene, carriers of the promoter 21/21 TG repeat genotype were at a decreased breast cancer risk (OR, 0.62; 95% CI, 0.41-0.94) compared to carriers of the other genotypes in the Polish population. Furthermore, we identified a protective effect of the GHRHR C-261T SNP in both populations (joint analysis CT+TT versus CC: OR, 0.80; 95% CI, 0.65-0.99). This effect was carried by a haplotype containing the protective allele. Thus, our study concludes a possible protective influence of distinct polymorphisms in genes involved in GH1 release on breast cancer risk.

  11. Growth hormone (GH) effects on bone and collagen turnover in healthy adults and its potential as a marker of GH abuse in sports: a double blind, placebo-controlled study. The GH-2000 Study Group.

    Science.gov (United States)

    Longobardi, S; Keay, N; Ehrnborg, C; Cittadini, A; Rosén, T; Dall, R; Boroujerdi, M A; Bassett, E E; Healy, M L; Pentecost, C; Wallace, J D; Powrie, J; Jørgensen, J O; Saccà, L

    2000-04-01

    The effects of GH on bone remodeling in healthy adults have not been systematically investigated. An analysis of these effects might provide insights into GH physiology and might yield data useful for the detection of GH doping in sports. The aim of this study was to evaluate the effects of GH administration on biochemical markers of bone and collagen turnover in healthy volunteers. Ninety-nine healthy volunteers of both sexes were enrolled in a multicenter, randomized, double blind, placebo-controlled study and assigned to receive either placebo (40 subjects) or recombinant human GH (0.1 IU/kg day in 29 subjects and 0.2 IU/kg x day in 30 subjects). The treatment duration was 28 days, followed by a 56-day wash-out period. The biochemical markers evaluated were the bone formation markers osteocalcin and C-terminal propeptide of type I procollagen, the resorption marker type I collagen telopeptide, and the soft tissue marker procollagen type III. All variables increased on days 21 and 28 in the two active treatment groups vs. levels in both the baseline (P < 0.01) and placebo (P < 0.01) groups. The increment was more pronounced in the 0.2 IU/kg-day group and remained significant on day 84 for procollagen type III (from 0.53 +/- 0.13 to 0.61 +/- 0.14 kU/L; P < 0.02) and osteocalcin (from 12.2 + 2.9 to 14.6 +/- 3.6 UG/L; P < 0.02), whereas levels of C-terminal propeptide of type I procollagen and type I collagen telopeptide declined after day 42 and were no longer significantly above baseline on day 84 (from 3.9 +/- 1.2 to 5.1 +/-1.5 microg/L and from 174 +/- 60 to 173 +/- 53 microg/L, respectively). Gender-related differences were observed in the study; females were less responsive than males to GH administration with respect to procollagen type III and type I collagen telopeptide (P < 0.001). In conclusion, exogenous GH administration affects the biochemical parameters of bone and collagen turnover in a dose- and gender-dependent manner. As GH-induced modifications

  12. Gene expression of a truncated and the full-length growth hormone (GH) receptor in subcutaneous fat and skeletal muscle in GH-deficient adults

    DEFF Research Database (Denmark)

    Fisker, Sidse; Kristensen, K; Rosenfalck, A M

    2001-01-01

    the relationship of circulating GHBP and body composition to GHR and GHRtr gene expression. Eleven adult GH-deficient patients were studied before and after 4 months of GH substitution therapy. Abdominal fat obtained by liposuction and femoral muscle biopsies were taken at baseline and after 4 months. Gene...... expression of GHR and GHRtr in adipose tissue and skeletal muscle was determined and expressed relative to the expression of beta-actin. Gene expression of GHR in abdominal sc adipose tissue was not altered, whereas the expression of GHRtr increased significantly. In skeletal muscle inverse changes were seen...... in the expression of messenger ribonucleic acid (mRNA) levels for the two GH receptor forms: expression of GHR increased significantly, whereas mRNA levels for GHRtr decreased. As expected, body composition changed with reduction of body fat mass after 4 months of GH treatment. Levels of circulating GHBP decreased...

  13. The hematopoietic chemokine CXCL12 promotes integration of human endothelial colony forming cell-derived cells into immature vessel networks.

    Science.gov (United States)

    Newey, Sarah E; Tsaknakis, Grigorios; Khoo, Cheen P; Athanassopoulos, Thanassi; Camicia, Rosalba; Zhang, Youyi; Grabowska, Rita; Harris, Adrian L; Roubelakis, Maria G; Watt, Suzanne M

    2014-11-15

    Proangiogenic factors, vascular endothelial growth factor (VEGF), and fibroblast growth factor-2 (FGF-2) prime endothelial cells to respond to "hematopoietic" chemokines and cytokines by inducing/upregulating expression of the respective chemokine/cytokine receptors. Coculture of human endothelial colony forming cell (ECFC)-derived cells with human stromal cells in the presence of VEGF and FGF-2 for 14 days resulted in upregulation of the "hematopoietic" chemokine CXCL12 and its CXCR4 receptor by day 3 of coculture. Chronic exposure to the CXCR4 antagonist AMD3100 in this vasculo/angiogenesis assay significantly reduced vascular tubule formation, an observation recapitulated by delayed AMD3100 addition. While AMD3100 did not affect ECFC-derived cell proliferation, it did demonstrate a dual action. First, over the later stages of the 14-day cocultures, AMD3100 delayed tubule organization into maturing vessel networks, resulting in enhanced endothelial cell retraction and loss of complexity as defined by live cell imaging. Second, at earlier stages of cocultures, we observed that AMD3100 significantly inhibited the integration of exogenous ECFC-derived cells into established, but immature, vascular networks. Comparative proteome profiler array analyses of ECFC-derived cells treated with AMD3100 identified changes in expression of potential candidate molecules involved in adhesion and/or migration. Blocking antibodies to CD31, but not CD146 or CD166, reduced the ECFC-derived cell integration into these extant vascular networks. Thus, CXCL12 plays a key role not only in endothelial cell sensing and guidance, but also in promoting the integration of ECFC-derived cells into developing vascular networks.

  14. Investigation of membrane mechanics using spring networks: application to red-blood-cell modelling.

    Science.gov (United States)

    Chen, Mingzhu; Boyle, Fergal J

    2014-10-01

    In recent years a number of red-blood-cell (RBC) models have been proposed using spring networks to represent the RBC membrane. Some results predicted by these models agree well with experimental measurements. However, the suitability of these membrane models has been questioned. The RBC membrane, like a continuum membrane, is mechanically isotropic throughout its surface, but the mechanical properties of a spring network vary on the network surface and change with deformation. In this work spring-network mechanics are investigated in large deformation for the first time via an assessment of the effect of network parameters, i.e. network mesh, spring type and surface constraint. It is found that a spring network is conditionally equivalent to a continuum membrane. In addition, spring networks are employed for RBC modelling to replicate the optical tweezers test. It is found that a spring network is sufficient for modelling the RBC membrane but strain-hardening springs are required. Moreover, the deformation profile of a spring network is presented for the first time via the degree of shear. It is found that spring-network deformation approaches continuous as the mesh density increases. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Changes in growth hormone (GH) messenger RNA (GH mRNA) expression in the rat anterior pituitary after single interferon (IFN) alpha administration

    International Nuclear Information System (INIS)

    Romanowski, W.; Braczkowski, R.; Nowakowska-Zajdel, E.; Muc-Wierzgon, M.; Zubelewicz-Szkodzinska, B.; Kosiewicz, J.; Korzonek, I.

    2006-01-01

    Introduction: Interferon a (IFN-a) is a cytokine with pleiotropic effects which, via different pathways, influences the secretion of certain cytokines and hormones. Growth hormone (GH) secreted from the pituitary has physiological effects on various target tissues. The question is how IFN-a administered in various types of disease influences GH secretion. This study investigated the acute effect of IFN-a on GH mRNA expression in the rat anterior pituitary. Objective: The aim of the study was to measure the cellular expression of GH mRNA by in situ hybridisation in the anterior pituitary after a single administration of IFN-a. Material and methods: Rats were administered an intraperitoneal injection of IFN-a or saline. The rat pituitaries were taken 2 and 4 hours after IFN/saline administration and kept frozen until in situ hybridisation histochemistry. A 31 - base 35S -labelled oligonucleotide probe complementary to part of the exonic mRNA sequence coding for GH mRNA was used. All control and experimental sections were hybridised in the same hybridisation reaction. Results: Acute administration of interferon a increased GH mRNA expression in the anterior pituitary in the 4-hour group in comparison with the control group, and there was no difference between the control group and the 2-hour rats. Conclusion: A single IFN-a administration was found to exert an influence on anterior pituitary GH mRNA expression. These observations may pave the way for presenting a possible new action of IFN-a. (author) GH mRNA, anterior pituitary, interferon

  16. Sensorimotor Functional and Structural Networks after Intracerebral Stem Cell Grafts in the Ischemic Mouse Brain.

    Science.gov (United States)

    Green, Claudia; Minassian, Anuka; Vogel, Stefanie; Diedenhofen, Michael; Beyrau, Andreas; Wiedermann, Dirk; Hoehn, Mathias

    2018-02-14

    Past investigations on stem cell-mediated recovery after stroke have limited their focus on the extent and morphological development of the ischemic lesion itself over time or on the integration capacity of the stem cell graft ex vivo However, an assessment of the long-term functional and structural improvement in vivo is essential to reliably quantify the regenerative capacity of cell implantation after stroke. We induced ischemic stroke in nude mice and implanted human neural stem cells (H9 derived) into the ipsilateral cortex in the acute phase. Functional and structural connectivity changes of the sensorimotor network were noninvasively monitored using magnetic resonance imaging for 3 months after stem cell implantation. A sharp decrease of the functional sensorimotor network extended even to the contralateral hemisphere, persisting for the whole 12 weeks of observation. In mice with stem cell implantation, functional networks were stabilized early on, pointing to a paracrine effect as an early supportive mechanism of the graft. This stabilization required the persistent vitality of the stem cells, monitored by bioluminescence imaging. Thus, we also observed deterioration of the early network stabilization upon vitality loss of the graft after a few weeks. Structural connectivity analysis showed fiber-density increases between the cortex and white matter regions occurring predominantly on the ischemic hemisphere. These fiber-density changes were nearly the same for both study groups. This motivated us to hypothesize that the stem cells can influence, via early paracrine effect, the functional networks, while observed structural changes are mainly stimulated by the ischemic event. SIGNIFICANCE STATEMENT In recent years, research on strokes has made a shift away from a focus on immediate ischemic effects and towards an emphasis on the long-range effects of the lesion on the whole brain. Outcome improvements in stem cell therapies also require the understanding of

  17. Ghrelin- and GH-induced insulin resistance: no association with retinol-binding protein-4

    DEFF Research Database (Denmark)

    Vestergaard, Esben Thyssen; Krag, Morten B; Poulsen, Morten M

    2013-01-01

    Supraphysiological levels of ghrelin and GH induce insulin resistance. Serum levels of retinol-binding protein-4 (RBP4) correlate inversely with insulin sensitivity in patients with type 2 diabetes. We aimed to determine whether ghrelin and GH affect RBP4 levels in human subjects....

  18. Substrate Metabolism and Insulin Sensitivity During Fasting in Obese Human Subjects: Impact of GH Blockade.

    Science.gov (United States)

    Pedersen, Morten Høgild; Svart, Mads Vandsted; Lebeck, Janne; Bidlingmaier, Martin; Stødkilde-Jørgensen, Hans; Pedersen, Steen Bønløkke; Møller, Niels; Jessen, Niels; Jørgensen, Jens O L

    2017-04-01

    Insulin resistance and metabolic inflexibility are features of obesity and are amplified by fasting. Growth hormone (GH) secretion increases during fasting and GH causes insulin resistance. To study the metabolic effects of GH blockade during fasting in obese subjects. Nine obese males were studied thrice in a randomized design: (1) after an overnight fast (control), (2) after 72 hour fasting (fasting), and (3) after 72 hour fasting with GH blockade (pegvisomant) [fasting plus GH antagonist (GHA)]. Each study day consisted of a 4-hour basal period followed by a 2-hour hyperinsulinemic, euglycemic clamp combined with indirect calorimetry, assessment of glucose and palmitate turnover, and muscle and fat biopsies. GH levels increased with fasting (P fasting-induced reduction of serum insulin-like growth factor I was enhanced by GHA (P Fasting increased lipolysis and lipid oxidation independent of GHA, but fasting plus GHA caused a more pronounced suppression of lipid intermediates in response to hyperinsulinemic, euglycemic clamp. Fasting-induced insulin resistance was abrogated by GHA (P Fasting plus GHA also caused elevated glycerol levels and reduced levels of counterregulatory hormones. Fasting significantly reduced the expression of antilipolytic signals in adipose tissue independent of GHA. Suppression of GH activity during fasting in obese subjects reverses insulin resistance and amplifies insulin-stimulated suppression of lipid intermediates, indicating that GH is an important regulator of substrate metabolism, insulin sensitivity, and metabolic flexibility also in obese subjects. Copyright © 2017 by the Endocrine Society

  19. Expression and ontogeny of growth hormone (Gh) in the protogynous hermaphroditic ricefield eel (Monopterus albus).

    Science.gov (United States)

    Chen, Dong; Liu, Jiang; Chen, Wanping; Shi, Shuxia; Zhang, Weimin; Zhang, Lihong

    2015-12-01

    Growth hormone (GH) is a single-chain polypeptide hormone mainly secreted by somatotropes of the anterior pituitary gland and is an important regulator of somatic growth in vertebrates including teleosts. In this study, a polyclonal antiserum against ricefield eel Gh was generated and the expression of Gh at the mRNA and protein levels was analyzed. Both RT-PCR and western blot analysis showed that Gh was predominantly expressed in the pituitary glands of ricefield eels. The immunoreactive Gh signals were localized to the multicellular layers of the adenohypophysis adjacent to the neurohypophysis in ricefield eels. Ontogenetic analysis showed that immunoreactive Gh signals could be detected in the pituitary glands of ricefield eel embryos as early as 3 days post-fertilization. During the sex change from female to male, the levels of the immunoreactive Gh signals in the pituitary glands of the ricefield eels peaked at the intersexual stage. These results suggest that Gh in the pituitary glands may be associated with embryonic development before hatching, as well as with the sex change in the adult ricefield eels, possibly via the classical endocrine manner.

  20. Growth hormone replacement does not elevate albuminuria in GH-deficient adults

    NARCIS (Netherlands)

    Beentjes, JAM; Dullaart, RPF

    2002-01-01

    Minor elevations in urinary albumin excretion rate (Ualb.V) are likely to be associated with renal function loss and increased cardiovascular risk. Since urinary albumin excretion is affected by the growth hormone (GH)-insulin-like growth factor-1 (IGF-1) axis, we evaluated the effect of 6 months GH

  1. Induction of chronic growth hormone deficiency by anti-GH serum

    Science.gov (United States)

    Grindeland, R. E.; Smith, A. T.; Ellis, S.; Evans, E. S.

    1974-01-01

    The observations reported indicate that the growth rate of neonatal rats can be specifically inhibited for at least 78 days following the administration of antisera against growth hormone (GH) for only four days after birth. The inhibition can be correlated with a marked deficit of tibial growth promoting activity in the pituitary but not with the plasma concentrations of immuno-reactive GH.

  2. Reconstruction and signal propagation analysis of the Syk signaling network in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Aurélien Naldi

    2017-03-01

    Full Text Available The ability to build in-depth cell signaling networks from vast experimental data is a key objective of computational biology. The spleen tyrosine kinase (Syk protein, a well-characterized key player in immune cell signaling, was surprisingly first shown by our group to exhibit an onco-suppressive function in mammary epithelial cells and corroborated by many other studies, but the molecular mechanisms of this function remain largely unsolved. Based on existing proteomic data, we report here the generation of an interaction-based network of signaling pathways controlled by Syk in breast cancer cells. Pathway enrichment of the Syk targets previously identified by quantitative phospho-proteomics indicated that Syk is engaged in cell adhesion, motility, growth and death. Using the components and interactions of these pathways, we bootstrapped the reconstruction of a comprehensive network covering Syk signaling in breast cancer cells. To generate in silico hypotheses on Syk signaling propagation, we developed a method allowing to rank paths between Syk and its targets. We first annotated the network according to experimental datasets. We then combined shortest path computation with random walk processes to estimate the importance of individual interactions and selected biologically relevant pathways in the network. Molecular and cell biology experiments allowed to distinguish candidate mechanisms that underlie the impact of Syk on the regulation of cortactin and ezrin, both involved in actin-mediated cell adhesion and motility. The Syk network was further completed with the results of our biological validation experiments. The resulting Syk signaling sub-networks can be explored via an online visualization platform.

  3. Growth hormone (GH) treatment increases serum insulin-like growth factor binding protein-3, bone isoenzyme alkaline phosphatase and forearm bone mineral content in young adults with GH deficiency of childhood onset

    DEFF Research Database (Denmark)

    Juul, A; Pedersen, S A; Sørensen, S

    1994-01-01

    Recent studies have demonstrated that growth hormone (GH)-deficient adults have a markedly decreased bone mineral content compared to healthy adults. However, there are conflicting results regarding the effects of GH treatment on bone mineral content in GH-deficient adults. Therefore, we evaluated...... the effect of GH treatment on a marker of bone formation (bone alkaline phosphatase), hepatic excretory function and distal forearm bone mineral content in GH-deficient adults. Growth hormone was administered subcutaneously in 21 adults (13 males and 8 females) with GH deficiency of childhood onset for 4...... months in a double-blind, placebo-controlled GH trial, while 13 of the patients then received further GH for an additional 14 months. Serum insulin-like growth factor I (IGF-I) increased significantly from 100 to 279 micrograms/l and IGF binding protein-3 (IGFBP-3) from 1930 to 3355 micrograms/l after 4...

  4. Comprehensive Mapping of Pluripotent Stem Cell Metabolism Using Dynamic Genome-Scale Network Modeling

    Directory of Open Access Journals (Sweden)

    Sriram Chandrasekaran

    2017-12-01

    Full Text Available Summary: Metabolism is an emerging stem cell hallmark tied to cell fate, pluripotency, and self-renewal, yet systems-level understanding of stem cell metabolism has been limited by the lack of genome-scale network models. Here, we develop a systems approach to integrate time-course metabolomics data with a computational model of metabolism to analyze the metabolic state of naive and primed murine pluripotent stem cells. Using this approach, we find that one-carbon metabolism involving phosphoglycerate dehydrogenase, folate synthesis, and nucleotide synthesis is a key pathway that differs between the two states, resulting in differential sensitivity to anti-folates. The model also predicts that the pluripotency factor Lin28 regulates this one-carbon metabolic pathway, which we validate using metabolomics data from Lin28-deficient cells. Moreover, we identify and validate metabolic reactions related to S-adenosyl-methionine production that can differentially impact histone methylation in naive and primed cells. Our network-based approach provides a framework for characterizing metabolic changes influencing pluripotency and cell fate. : Chandrasekaran et al. use computational modeling, metabolomics, and metabolic inhibitors to discover metabolic differences between various pluripotent stem cell states and infer their impact on stem cell fate decisions. Keywords: systems biology, stem cell biology, metabolism, genome-scale modeling, pluripotency, histone methylation, naive (ground state, primed state, cell fate, metabolic network

  5. Data-driven quantification of the robustness and sensitivity of cell signaling networks

    International Nuclear Information System (INIS)

    Mukherjee, Sayak; Seok, Sang-Cheol; Vieland, Veronica J; Das, Jayajit

    2013-01-01

    Robustness and sensitivity of responses generated by cell signaling networks has been associated with survival and evolvability of organisms. However, existing methods analyzing robustness and sensitivity of signaling networks ignore the experimentally observed cell-to-cell variations of protein abundances and cell functions or contain ad hoc assumptions. We propose and apply a data-driven maximum entropy based method to quantify robustness and sensitivity of Escherichia coli (E. coli) chemotaxis signaling network. Our analysis correctly rank orders different models of E. coli chemotaxis based on their robustness and suggests that parameters regulating cell signaling are evolutionary selected to vary in individual cells according to their abilities to perturb cell functions. Furthermore, predictions from our approach regarding distribution of protein abundances and properties of chemotactic responses in individual cells based on cell population averaged data are in excellent agreement with their experimental counterparts. Our approach is general and can be used to evaluate robustness as well as generate predictions of single cell properties based on population averaged experimental data in a wide range of cell signaling systems. (paper)

  6. Natural history of the classical form of primary growth hormone (GH) resistance (Laron syndrome).

    Science.gov (United States)

    Laron, Z

    1999-04-01

    A description of the clinical, biochemical and endocrinological features of the classical form of the syndrome of primary growth hormone (GH) resistance (Laron syndrome) is presented including the progressive changes during follow-up from infancy into adulthood. The main diagnostic features are: severe growth retardation, acromicria, small gonads and genitalia, and obesity. Serum GH levels are elevated and insulin-like growth factor-I (IGF-I) values are low and do not rise upon stimulation by exogenous hGH. The pathogenesis of this syndrome is due to various molecular defects from exon deletion to nonsense, frameshift, splice and missense mutations in the GH receptor (GH-R) gene or in its post-receptor pathways.

  7. Upland cotton gene GhFPF1 confers promotion of flowering time and shade-avoidance responses in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Xiaoyan Wang

    Full Text Available Extensive studies on floral transition in model species have revealed a network of regulatory interactions between proteins that transduce and integrate developmental and environmental signals to promote or inhibit the transition to flowering. Previous studies indicated FLOWERING PROMOTING FACTOR 1 (FPF1 gene was involved in the promotion of flowering, but the molecular mechanism was still unclear. Here, FPF1 homologous sequences were screened from diploid Gossypium raimondii L. (D-genome, n = 13 and Gossypium arboreum L. genome (A-genome, n = 13 databases. Orthologous genes from the two species were compared, suggesting that distinctions at nucleic acid and amino acid levels were not equivalent because of codon degeneracy. Six FPF1 homologous genes were identified from the cultivated allotetraploid Gossypium hirsutum L. (AD-genome, n = 26. Analysis of relative transcripts of the six genes in different tissues revealed that this gene family displayed strong tissue-specific expression. GhFPF1, encoding a 12.0-kDa protein (Accession No: KC832319 exerted more transcripts in floral apices of short-season cotton, hinting that it could be involved in floral regulation. Significantly activated APETALA 1 and suppressed FLOWERING LOCUS C expression were induced by over-expression of GhFPF1 in the Arabidopsis Columbia-0 ecotype. In addition, transgenic Arabidopsis displayed a constitutive shade-avoiding phenotype that is characterized by long hypocotyls and petioles, reduced chlorophyll content, and early flowering. We propose that GhFPF1 may be involved in flowering time control and shade-avoidance responses.

  8. The tensile behavior of GH3535 superalloy at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Han, F.F.; Zhou, B.M.; Huang, H.F.; Leng, B.; Lu, Y.L. [Thorium Molten Salts Reactor Center, Shanghai Institute of Applied Physics, Chinese Academy of Sciences (China); Dong, J.S. [Superalloy Division, Institute of Metal Research, Chinese Academy of Sciences (China); Li, Z.J., E-mail: lizhijun@sinap.ac.cn [Thorium Molten Salts Reactor Center, Shanghai Institute of Applied Physics, Chinese Academy of Sciences (China); Zhou, X.T. [Thorium Molten Salts Reactor Center, Shanghai Institute of Applied Physics, Chinese Academy of Sciences (China)

    2016-10-01

    The tensile behavior of GH3535 alloy has been investigated at strain rates of 8.33 × 10{sup −5}/s{sup −1}–8.33 × 10{sup −3}/s{sup −1}, in the temperature range of 25–800 °C. The results showed that the ultimate tensile strength was decreased with increasing temperature and increased with rising strain rate, whereas the yield strength kept almost a constant value at the temperature range from 550 to 800 °C in all strain rates test. The formation of M{sub 12}C carbides at the grain boundary during the tension process played an important role in increasing the yield strength of the alloy at elevated temperatures. But inhomogeneous deformation at 650 °C resulted in the minimum ductility of the alloy. Additionally, various types of serrations were noticed on the stress-strain curves for the alloy tested in the temperature range of 500–800 °C. Normal Portevin-Le Chatelier (PLC) effect and positive strain rate sensitivity were observed in this alloy. Type A and A + B serrations were presented to stress-strain curves at temperatures below 650 °C, whereas type C serration was noticed when the temperature rose above 650 °C. The analysis suggested that the interactions between substitutional solutes migration and mobile dislocations were the main reason for the serrated flow behavior in this alloy. - Highlights: • The tensile behavior of GH3535 alloy at elevated temperature was studied. • The yield strength anomaly was observed in the temperature range from 550 to 800 °C. • The formation of M{sub 12}C improves the grain boundary strength to a certain extent. • Inhomogeneous deformation at 650 °C results in the ductility loss of the alloy. • The interaction between solute atoms and dislocations results in the PLC effect.

  9. Genes and Gene Networks Involved in Sodium Fluoride-Elicited Cell Death Accompanying Endoplasmic Reticulum Stress in Oral Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Yoshiaki Tabuchi

    2014-05-01

    Full Text Available Here, to understand the molecular mechanisms underlying cell death induced by sodium fluoride (NaF, we analyzed gene expression patterns in rat oral epithelial ROE2 cells exposed to NaF using global-scale microarrays and bioinformatics tools. A relatively high concentration of NaF (2 mM induced cell death concomitant with decreases in mitochondrial membrane potential, chromatin condensation and caspase-3 activation. Using 980 probe sets, we identified 432 up-regulated and 548 down-regulated genes, that were differentially expressed by >2.5-fold in the cells treated with 2 mM of NaF and categorized them into 4 groups by K-means clustering. Ingenuity® pathway analysis revealed several gene networks from gene clusters. The gene networks Up-I and Up-II included many up-regulated genes that were mainly associated with the biological function of induction or prevention of cell death, respectively, such as Atf3, Ddit3 and Fos (for Up-I and Atf4 and Hspa5 (for Up-II. Interestingly, knockdown of Ddit3 and Hspa5 significantly increased and decreased the number of viable cells, respectively. Moreover, several endoplasmic reticulum (ER stress-related genes including, Ddit3, Atf4 and Hapa5, were observed in these gene networks. These findings will provide further insight into the molecular mechanisms of NaF-induced cell death accompanying ER stress in oral epithelial cells.

  10. Dynamic assembly of ultrasoft colloidal networks enables cell invasion within restrictive fibrillar polymers

    Science.gov (United States)

    Douglas, Alison M.; Fragkopoulos, Alexandros A.; Gaines, Michelle K.; Lyon, L. Andrew; Fernandez-Nieves, Alberto; Barker, Thomas H.

    2017-01-01

    In regenerative medicine, natural protein-based polymers offer enhanced endogenous bioactivity and potential for seamless integration with tissue, yet form weak hydrogels that lack the physical robustness required for surgical manipulation, making them difficult to apply in practice. The use of higher concentrations of protein, exogenous cross-linkers, and blending synthetic polymers has all been applied to form more mechanically robust networks. Each relies on generating a smaller network mesh size, which increases the elastic modulus and robustness, but critically inhibits cell spreading and migration, hampering tissue regeneration. Here we report two unique observations; first, that colloidal suspensions, at sufficiently high volume fraction (ϕ), dynamically assemble into a fully percolated 3D network within high-concentration protein polymers. Second, cells appear capable of leveraging these unique domains for highly efficient cell migration throughout the composite construct. In contrast to porogens, the particles in our system remain embedded within the bulk polymer, creating a network of particle-filled tunnels. Whereas this would normally physically restrict cell motility, when the particulate network is created using ultralow cross-linked microgels, the colloidal suspension displays viscous behavior on the same timescale as cell spreading and migration and thus enables efficient cell infiltration of the construct through the colloidal-filled tunnels.

  11. Effect of rTMP-GH recombinant fusion protein on thrombocytopoiesis in irradiation injured mice

    International Nuclear Information System (INIS)

    Xu Yang; Wang Junping; Chen Fang; Shen Mingqiang; Chen Mo; Wang Song; Ran Xinze; Su Yongping; Kai Li

    2009-01-01

    Objective: To investigate the in vivo effects of rTMP-GH recombinant fusion protein on thrombocytopoiesis in mice with thrombopenia inflicted by irradiation. Methods: BALB/C mice weighting around 20 g were irradiated with 5 Gy of 60 Co γ-ray irradiation to generate thrombopenia. The irradiation injured mice were injected with rTMP-GH or rhGH subcutaneously at the dose of 200 (μg ·kg -1 · d -1 for 7 days. From the 6 th day, the platelets in blood samples from vena caudalis were counted routinely, and the pathological changes of bone marrow were determined by morphological observation. Results: From the 10 th day, the levels of blood platelet in rTMP-GH treated mice were much higher than those of rhGH treatment group and normal saline (NS) control group, especially at the nadir (P < 0.01). On the 22 nd day, the platelet count has recovered up to 80% of normal level in rTMP-GH treatment group, while it has just recovered up to 30% in NS control group. Morphological observation showed that there was obvious reconstruction of bone marrow in mice treated with rTMP-GH, compared with NS group.The number of megarkaryoblasts and megakaryocytes in bone marrow of rTMP-GH treated mice (3.07 ± 0.32) was much higher than those of rhGH treatment group (2.20 ± 0.22, P < 0.05) and NS control group (0.87 ± 0.19, P <0.01). Conclusions: rTMP-GH has potent effects on the recovery of blood platelet by promoting megarkaryocytopoiesis in irradiation injuried mice. (authors)

  12. Molecular engineering of fungal GH5 and GH26 beta-(1,4-mannanases toward improvement of enzyme activity.

    Directory of Open Access Journals (Sweden)

    Marie Couturier

    Full Text Available Microbial mannanases are biotechnologically important enzymes since they target the hydrolysis of hemicellulosic polysaccharides of softwood biomass into simple molecules like manno-oligosaccharides and mannose. In this study, we have implemented a strategy of molecular engineering in the yeast Yarrowia lipolytica to improve the specific activity of two fungal endo-mannanases, PaMan5A and PaMan26A, which belong to the glycoside hydrolase (GH families GH5 and GH26, respectively. Following random mutagenesis and two steps of high-throughput enzymatic screening, we identified several PaMan5A and PaMan26A mutants that displayed improved kinetic constants for the hydrolysis of galactomannan. Examination of the three-dimensional structures of PaMan5A and PaMan26A revealed which of the mutated residues are potentially important for enzyme function. Among them, the PaMan5A-G311S single mutant, which displayed an impressive 8.2-fold increase in kcat /KM due to a significant decrease of KM, is located within the core of the enzyme. The PaMan5A-K139R/Y223H double mutant revealed modification of hydrolysis products probably in relation to an amino-acid substitution located nearby one of the positive subsites. The PaMan26A-P140L/D416G double mutant yielded a 30% increase in kcat /KM compared to the parental enzyme. It displayed a mutation in the linker region (P140L that may confer more flexibility to the linker and another mutation (D416G located at the entrance of the catalytic cleft that may promote the entrance of the substrate into the active site. Taken together, these results show that the directed evolution strategy implemented in this study was very pertinent since a straightforward round of random mutagenesis yielded significantly improved variants, in terms of catalytic efiiciency (kcat/KM.

  13. Best Signal Quality in Cellular Networks: Asymptotic Properties and Applications to Mobility Management in Small Cell Networks

    Directory of Open Access Journals (Sweden)

    Baccelli François

    2010-01-01

    Full Text Available The quickly increasing data traffic and the user demand for a full coverage of mobile services anywhere and anytime are leading mobile networking into a future of small cell networks. However, due to the high-density and randomness of small cell networks, there are several technical challenges. In this paper, we investigate two critical issues: best signal quality and mobility management. Under the assumptions that base stations are uniformly distributed in a ring-shaped region and that shadowings are lognormal, independent, and identically distributed, we prove that when the number of sites in the ring tends to infinity, then (i the maximum signal strength received at the center of the ring tends in distribution to a Gumbel distribution when properly renormalized, and (ii it is asymptotically independent of the interference. Using these properties, we derive the distribution of the best signal quality. Furthermore, an optimized random cell scanning scheme is proposed, based on the evaluation of the optimal number of sites to be scanned for maximizing the user data throughput.

  14. Accurate path integration in continuous attractor network models of grid cells.

    Science.gov (United States)

    Burak, Yoram; Fiete, Ila R

    2009-02-01

    Grid cells in the rat entorhinal cortex display strikingly regular firing responses to the animal's position in 2-D space and have been hypothesized to form the neural substrate for dead-reckoning. However, errors accumulate rapidly when velocity inputs are integrated in existing models of grid cell activity. To produce grid-cell-like responses, these models would require frequent resets triggered by external sensory cues. Such inadequacies, shared by various models, cast doubt on the dead-reckoning potential of the grid cell system. Here we focus on the question of accurate path integration, specifically in continuous attractor models of grid cell activity. We show, in contrast to previous models, that continuous attractor models can generate regular triangular grid responses, based on inputs that encode only the rat's velocity and heading direction. We consider the role of the network boundary in the integration performance of the network and show that both periodic and aperiodic networks are capable of accurate path integration, despite important differences in their attractor manifolds. We quantify the rate at which errors in the velocity integration accumulate as a function of network size and intrinsic noise within the network. With a plausible range of parameters and the inclusion of spike variability, our model networks can accurately integrate velocity inputs over a maximum of approximately 10-100 meters and approximately 1-10 minutes. These findings form a proof-of-concept that continuous attractor dynamics may underlie velocity integration in the dorsolateral medial entorhinal cortex. The simulations also generate pertinent upper bounds on the accuracy of integration that may be achieved by continuous attractor dynamics in the grid cell network. We suggest experiments to test the continuous attractor model and differentiate it from models in which single cells establish their responses independently of each other.

  15. Interference statistics and capacity analysis for uplink transmission in two-tier small cell networks: A geometric probability approach

    KAUST Repository

    Tabassum, Hina; Dawy, Zaher; Hossain, Ekram; Alouini, Mohamed-Slim

    2014-01-01

    This paper presents a novel framework to derive the statistics of the interference considering dedicated and shared spectrum access for uplink transmission in two-tier small cell networks such as the macrocell-femtocell networks. The framework

  16. Effects of growth hormone (GH) administration on homocyst(e)ine levels in men with GH deficiency: a randomized controlled trial.

    Science.gov (United States)

    Sesmilo, G; Biller, B M; Llevadot, J; Hayden, D; Hanson, G; Rifai, N; Klibanski, A

    2001-04-01

    GH deficiency is associated with increased cardiovascular mortality and early manifestations of atherosclerosis. Elevated serum homocyst(e)ine levels have been found to be associated with increased cardiovascular risk. The effect of GH replacement on homocyst(e)ine has not been investigated to date. We evaluated the effect of GH replacement on fasting homocyst(e)inemia in a group of men with adult-onset GH deficiency in a randomized, single blind, placebo-controlled trial. Forty men with adult-onset GH deficiency were randomized to GH or placebo for 18 months, with dose adjustments made according to serum insulin-like growth factor I (IGF-I) levels. Fasting serum homocyst(e)ine, folate, vitamin B12, and total T(3) levels were determined at baseline and 6 and 18 months. Anthropometry, IGF-I levels, insulin, and glucose were measured at 1, 3, 6, 12, and 18 months. Nutritional assessment, body composition, total T(4), thyroid hormone binding index, and free T(4) index were assessed every 6 months. Homocyst(e)ine decreased in the GH-treated group compared with that in the placebo group (net difference, -1.2 +/- 0.6 micromol/L; confidence interval, -2.4, -0.02 micromol/L; P = 0.047). Homocyst(e)ine at baseline was negatively correlated with plasma levels of folate (r = -0.41; P = 0.0087). Total T(3) increased in the GH-treated group vs. that in the placebo group (net difference, 0.17 +/- 0.046 ng/dL; confidence interval, 0.071, 0.26 nmol/L; P = 0.0012). Folate and vitamin B12 levels did not significantly change between groups. Changes in homocyst(e)ine were negatively correlated with changes in IGF-I. For each 1 nmol/L increase in IGF-I, homocyst(e)ine decreased by 0.04 +/- 0.02 micromol/L (P = 0.029). In contrast, changes in homocyst(e)ine did not correlate with changes in folate, vitamin B12, total T(3), C-reactive protein, interleukin-6, or insulin levels. This study shows that GH replacement decreases fasting homocyst(e)ine levels compared with placebo. This may be

  17. Carbohydrate metabolism during long-term growth hormone (GH) treatment and after discontinuation of GH treatment in girls with Turner syndrome participating in a randomized dose-response study. Dutch Advisory Group on Growth Hormone

    NARCIS (Netherlands)

    T.C.J. Sas (Theo); S.M.P.F. de Muinck Keizer-Schrama (Sabine); Th. Stijnen (Theo); H-J. Aanstoot (Henk-Jan); S.L.S. Drop (Stenvert)

    2000-01-01

    textabstractTo assess possible side-effects of GH treatment with supraphysiological doses on carbohydrate (CH) metabolism in girls with Turner syndrome (TS) during long term GH treatment and after discontinuation of GH treatment, the results of oral glucose tolerance

  18. Growth hormone (GH) provocative retesting of 108 young adults with childhood-onset GH deficiency and the diagnostic value of insulin-like growth factor I (IGF-I) and IGF-binding protein-3

    DEFF Research Database (Denmark)

    Juul, A; Kastrup, K W; Pedersen, S A

    1997-01-01

    .e. 45% of patients treated with GH during childhood because of isolated GHD had a normal GH response when retested in adulthood. Multiple regression analysis revealed that peak GH levels were dependent on the degree of hypopituitarism, body mass index, and duration of disease. IGF-I levels were below -2...

  19. Experimental and computational tools for analysis of signaling networks in primary cells

    DEFF Research Database (Denmark)

    Schoof, Erwin M; Linding, Rune

    2014-01-01

    Cellular information processing in signaling networks forms the basis of responses to environmental stimuli. At any given time, cells receive multiple simultaneous input cues, which are processed and integrated to determine cellular responses such as migration, proliferation, apoptosis, or differ......Cellular information processing in signaling networks forms the basis of responses to environmental stimuli. At any given time, cells receive multiple simultaneous input cues, which are processed and integrated to determine cellular responses such as migration, proliferation, apoptosis......; this information is critical when trying to elucidate key proteins involved in specific cellular responses. Here, methods to generate high-quality quantitative phosphorylation data from cell lysates originating from primary cells, and how to analyze the generated data to construct quantitative signaling network...

  20. Protein Signaling Networks from Single Cell Fluctuations and Information Theory Profiling

    Science.gov (United States)

    Shin, Young Shik; Remacle, F.; Fan, Rong; Hwang, Kiwook; Wei, Wei; Ahmad, Habib; Levine, R.D.; Heath, James R.

    2011-01-01

    Protein signaling networks among cells play critical roles in a host of pathophysiological processes, from inflammation to tumorigenesis. We report on an approach that integrates microfluidic cell handling, in situ protein secretion profiling, and information theory to determine an extracellular protein-signaling network and the role of perturbations. We assayed 12 proteins secreted from human macrophages that were subjected to lipopolysaccharide challenge, which emulates the macrophage-based innate immune responses against Gram-negative bacteria. We characterize the fluctuations in protein secretion of single cells, and of small cell colonies (n = 2, 3,···), as a function of colony size. Measuring the fluctuations permits a validation of the conditions required for the application of a quantitative version of the Le Chatelier's principle, as derived using information theory. This principle provides a quantitative prediction of the role of perturbations and allows a characterization of a protein-protein interaction network. PMID:21575571

  1. Molecular cloning, overexpression, purification and crystallographic analysis of a GH43 β-xylosidase from Bacillus licheniformis.

    Science.gov (United States)

    Diogo, José Alberto; Zanphorlin, Leticia Maria; Sato, Hélia Harumi; Murakami, Mario Tyago; Ruller, Roberto

    2015-08-01

    β-Xylosidases (EC 3.2.1.37) catalyze the hydrolysis of short xylooligosaccharides into xylose, which is an essential step in the complete depolymerization of xylan, the major hemicellulosic polysaccharide of plant cell walls, and has great biotechnological relevance for the production of lignocellulose-based biofuels and the paper industry. In this study, a GH43 β-xylosidase identified from the bacterium Bacillus licheniformis (BlXylA) was cloned into the the pET-28a bacterial expression vector, recombinantly overexpressed in Escherichia coli BL21(DE3) cells and purified to homogeneity by metal-affinity and size-exclusion chromatography. The protein was crystallized in the presence of the organic solvent 2-methyl-2,4-pentanediol and a single crystal diffracted to 2.49 Å resolution. The X-ray diffraction data were indexed in the monoclinic space group C2, with unit-cell parameters a = 152.82, b = 41.9, c = 71.79 Å, β = 91.7°. Structural characterization of this enzyme will contribute to a better understanding of the structural requirements for xylooligosaccharide specificity within the GH43 family.

  2. Histamine-induced paradoxical GH response to TRH/GnRH in men and women: dependence on gonadal steroid hormones

    DEFF Research Database (Denmark)

    Knigge, U; Thuesen, B; Dejgaard, A

    1990-01-01

    .025), but not during the early follicular phase of the cycle (GH peak: 1.7 +/- 0.5 vs 1.6 +/- 0.3 micrograms/l). In luteal-phase women the GH response to TRH/GnRH correlated with the serum estradiol-17 beta level (GH area/E2: r = 0.98; p less than 0.005) and the serum estrone level (GH area/E1: r = 0.81; p less than 0...

  3. Cooperation among cancer cells as public goods games on Voronoi networks.

    Science.gov (United States)

    Archetti, Marco

    2016-05-07

    Cancer cells produce growth factors that diffuse and sustain tumour proliferation, a form of cooperation that can be studied using mathematical models of public goods in the framework of evolutionary game theory. Cell populations, however, form heterogeneous networks that cannot be described by regular lattices or scale-free networks, the types of graphs generally used in the study of cooperation. To describe the dynamics of growth factor production in populations of cancer cells, I study public goods games on Voronoi networks, using a range of non-linear benefits that account for the known properties of growth factors, and different types of diffusion gradients. The results are surprisingly similar to those obtained on regular graphs and different from results on scale-free networks, revealing that network heterogeneity per se does not promote cooperation when public goods diffuse beyond one-step neighbours. The exact shape of the diffusion gradient is not crucial, however, whereas the type of non-linear benefit is an essential determinant of the dynamics. Public goods games on Voronoi networks can shed light on intra-tumour heterogeneity, the evolution of resistance to therapies that target growth factors, and new types of cell therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Ghrelin-induced hippocampal neurogenesis and enhancement of cognitive function are mediated independently of GH/IGF-1 axis: lessons from the spontaneous dwarf rats.

    Science.gov (United States)

    Li, Endan; Kim, Yumi; Kim, Sehee; Park, Seungjoon

    2013-01-01

    We recently have reported that ghrelin modulates adult hippocampal neurogenesis. However, there is a possibility that the action of ghrelin on hippocampal neurogenesis could be, in part, due to the ability of ghrelin to stimulate the GH/insulin-like growth factor (IGF)-1 axis, where both GH and IGF-1 infusions are known to increase hippocampal neurogenesis. To explore this possibility, we assessed the impact of ghrelin on progenitor cell proliferation and differentiation in the dentate gyrus (DG) of spontaneous dwarf rats (SDRs), a dwarf strain with a mutation of the GH gene resulting in total loss of GH. Double immunohistochemical staining revealed that Ki-67-positive progenitor cells and doublecortin (DCX)-positive neuroblasts in the DG of the SDRs expressed ghrelin receptors. We found that ghrelin treatment in the SDRs significantly increased the number of proliferating cell nuclear antigen- and BrdU-labeled cells in the DG. The number of DCX-labeled cells in the DG of ghrelin-treated SDRs was also significantly increased compared with the vehicle-treated controls. To test whether ghrelin has a direct effect on cognitive performance independently of somatotropic axis, hippocampus-dependent learning and memory were assessed using the Y-maze and novel object recognition (NOR) test in the SDRs. Ghrelin treatment for 4 weeks by subcutaneous osmotic pump significantly increased alternation rates in the Y-maze and exploration time for novel object in the NOR test compared to vehicle-treated controls. Our results indicate that ghrelin-induced adult hippocampal neurogenesis and enhancement of cognitive function are mediated independently of somatotropic axis.

  5. A summary of the influence of exogenous estrogen administration across the lifespan on the GH/IGF-1 axis and implications for bone health.

    Science.gov (United States)

    Southmayd, Emily A; De Souza, Mary Jane

    2017-02-01

    Bone growth, development, and remodeling are modulated by numerous circulating hormones. Throughout the lifespan, the extent to which each of the hormones impacts bone differs. Understanding the independent and combined impact of these hormones on controlling bone remodeling allows for the development of more informed decision making regarding pharmacology, specifically the use of hormonal medication, at all ages. Endocrine control of bone health in women is largely dictated by the growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis and the hypothalamic-pituitary-ovarian (HPO) axis. Growth hormone, secreted from the pituitary gland, stimulates cells in almost every tissue to secrete IGF-1, although the majority of circulating IGF-1 is produced hepatically. Indeed, systemic IGF-1 concentrations have been found to be correlated with bone mineral density (BMD) in both pre- and post-menopausal women and is often used as a marker of bone formation. Sex steroids produced by the ovaries, namely estradiol, mediate bone resorption through binding to estrogen receptors on osteoclasts and osteoblasts. Specifically, by increasing osteoclast apoptosis and decreasing osteoblast apoptosis, adequate estrogen levels prevent excessive bone resorption, which helps to explain the rapid decline in bone mass that occurs with the menopausal decrease in estrogen production. Though there are documented correlations between endogenous estrogen concentrations and GH/IGF-1 dynamics, this relationship changes across the lifespan as sex-steroid dynamics fluctuate and, possibly, as tissue responsiveness to GH stimulation decreases. Aside from the known role of endogenous sex steroids on bone health, the impact of exogenous estrogen administration is of interest, as exogenous formulations further modulate GH and IGF-1 production. However, the effect and extent of GH and IGF-1 modulation seems to be largely dependent on age at administration and route of administration. Specifically

  6. Distribution of mitochondrial nucleoids upon mitochondrial network fragmentation and network reintegration in HEPG2 cells

    Czech Academy of Sciences Publication Activity Database

    Tauber, Jan; Dlasková, Andrea; Šantorová, Jitka; Smolková, Katarína; Alán, Lukáš; Špaček, Tomáš; Plecitá-Hlavatá, Lydie; Ježek, Petr

    2013-01-01

    Roč. 45, č. 3 (2013), s. 593-603 ISSN 1357-2725 R&D Projects: GA ČR(CZ) GAP302/10/0346; GA ČR(CZ) GPP304/10/P204; GA ČR(CZ) GAP305/12/1247 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : mitochondrial DNA nucleoids * mitochondrial fission * mitochondrial network fragmentation * mitochondrial network reintegration Subject RIV: ED - Physiology Impact factor: 4.240, year: 2013

  7. A novel VIGS method by agroinoculation of cotton seeds and application for elucidating functions of GhBI-1 in salt-stress response.

    Science.gov (United States)

    Zhang, Jingxia; Wang, Furong; Zhang, Chuanyun; Zhang, Junhao; Chen, Yu; Liu, Guodong; Zhao, Yanxiu; Hao, Fushun; Zhang, Jun

    2018-06-04

    A VIGS method by agroinoculation of cotton seeds was developed for gene silencing in young seedlings and roots, and applied in functional analysis of GhBI-1 in response to salt stress. Virus-induced gene silencing (VIGS) has been widely used to investigate the functions of genes expressed in mature leaves, but not yet in young seedlings or roots of cotton (Gossypium hirsutum L.). Here, we developed a simple and effective VIGS method for silencing genes in young cotton seedlings and roots by soaking naked seeds in Agrobacterium cultures carrying tobacco rattle virus (TRV)-VIGS vectors. When the naked seeds were soaked in Agrobacterium cultures with an OD600 of 1.5 for 90 min, it was optimal for silencing genes effectively in young seedlings as clear photo-bleaching phenotype in the newly emerging leaves of pTRV:GhCLA1 seedlings were observed at 12-14 days post inoculation. Silencing of GhPGF (cotton pigment gland formation) by this method resulted in a 90% decrease in transcript abundances of the gene in roots at the early development stage. We further used the tool to investigate function of GhBI-1 (cotton Bax inhibitor-1) gene in response to salt stress and demonstrated that GhBI-1 might play a protective role under salt stress by suppressing stress-induced cell death in cotton. Our results showed that the newly established VIGS method is a powerful tool for elucidating functions of genes in cotton, especially the genes expressed in young seedlings and roots.

  8. Continuous 24-hour intravenous infusion of recombinant human growth hormone (GH)-releasing hormone-(1-44)-amide augments pulsatile, entropic, and daily rhythmic GH secretion in postmenopausal women equally in the estrogen-withdrawn and estrogen-supplemented states.

    Science.gov (United States)

    Evans, W S; Anderson, S M; Hull, L T; Azimi, P P; Bowers, C Y; Veldhuis, J D

    2001-02-01

    How estrogen amplifies GH secretion in the human is not known. The present study tests the clinical hypothesis that estradiol modulates the stimulatory actions of a primary GH feedforward signal, GHRH. To this end, we investigated the ability of short-term (7- to 12-day) supplementation with oral estradiol vs. placebo to modulate basal, pulsatile, entropic, and 24-h rhythmic GH secretion driven by a continuous iv infusion of recombinant human GHRH-(1--44)-amide vs. saline in nine healthy postmenopausal women. Volunteers underwent concurrent blood sampling every 10 min for 24 h on four occasions in a prospectively randomized, single blind, within-subject cross-over design (placebo/saline, placebo/GHRH, estradiol/saline, estradiol/GHRH). Intensively sampled serum GH concentrations were quantitated by ultrasensitive chemiluminescence assay. Basal, pulsatile, entropic (feedback-sensitive), and 24-h rhythmic modes of GH secretion were appraised by deconvolution analysis, the approximate entropy (ApEn) statistic, and cosine regression, respectively. ANOVA revealed that continuous iv infusion of GHRH in the estrogen-withdrawn (control) milieu 1) amplified individual basal (P = 0.00011) and pulsatile (P < 10(-13)) GH secretion rates by 12- and 11-fold, respectively; 2) augmented GH secretory burst mass and amplitude each by 10-fold (P < 10(-11)), without altering GH secretory burst frequency, duration, or half-life; 3) increased the disorderliness (ApEn) of GH release patterns (P = 0.0000002); 4) elevated the mesor (cosine mean) and amplitude of the 24-h rhythm in serum GH concentrations by nearly 30-fold (both P < 10(-12)); 5) induced a phase advance in the clocktime of the GH zenith (P = 0.021); and 6) evoked a new 24-h rhythm in GH secretory burst mass with a maximum at 0018 h GH (P < 10(-3)), while damping the mesor of the 24-h rhythm in GH interpulse intervals (P < 0.025). Estradiol supplementation alone 1) increased the 24-h mean and integrated serum GH concentration

  9. Maximizing performance of fuel cell using artificial neural network approach for smart grid applications

    International Nuclear Information System (INIS)

    Bicer, Y.; Dincer, I.; Aydin, M.

    2016-01-01

    This paper presents an artificial neural network (ANN) approach of a smart grid integrated proton exchange membrane (PEM) fuel cell and proposes a neural network model of a 6 kW PEM fuel cell. The data required to train the neural network model are generated by a model of 6 kW PEM fuel cell. After the model is trained and validated, it is used to analyze the dynamic behavior of the PEM fuel cell. The study results demonstrate that the model based on neural network approach is appropriate for predicting the outlet parameters. Various types of training methods, sample numbers and sample distribution methods are utilized to compare the results. The fuel cell stack efficiency considerably varies between 20% and 60%, according to input variables and models. The rapid changes in the input variables can be recovered within a short time period, such as 10 s. The obtained response graphs point out the load tracking features of ANN model and the projected changes in the input variables are controlled quickly in the study. - Highlights: • An ANN approach of a proton exchange membrane (PEM) fuel cell is proposed. • Dynamic behavior of the PEM fuel cell is analyzed. • The effects of various variables on model accuracy are investigated. • Response curves indicate the load following characteristics of the model.

  10. Tracing of shading effect on underachieving SPV cell of an SPV grid using wireless sensor network

    OpenAIRE

    Kaundal, Vivek; Mondal, Amit Kumar; Sharma, Paawan; Bansal, Kamal

    2015-01-01

    The environmental and economic merits of converting solar energy into electricity via photovoltaic cells have led to its enormous growth in this sector. Besides material and design parameters, there are many other factors which locally affect Photovoltaic cell like partial shading, humidity, dust, bird droppings, air velocity etc. However, the effect due to a single solar photo voltaic cell being connected to a serial or parallel network (to form a grid) has never been deliberated extensively...

  11. Networked T cell death following macrophage infection by Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Stephen H-F Macdonald

    Full Text Available BACKGROUND: Depletion of T cells following infection by Mycobacterium tuberculosis (Mtb impairs disease resolution, and interferes with clinical test performance that relies on cell-mediated immunity. A number of mechanisms contribute to this T cell suppression, such as activation-induced death and trafficking of T cells out of the peripheral circulation and into the diseased lungs. The extent to which Mtb infection of human macrophages affects T cell viability however, is not well characterised. METHODOLOGY/PRINCIPAL FINDINGS: We found that lymphopenia (<1.5 × 10(9 cells/l was prevalent among culture-positive tuberculosis patients, and lymphocyte counts significantly improved post-therapy. We previously reported that Mtb-infected human macrophages resulted in death of infected and uninfected bystander macrophages. In the current study, we sought to examine the influence of infected human alveolar macrophages on T cells. We infected primary human alveolar macrophages (the primary host cell for Mtb or PMA-differentiated THP-1 cells with Mtb H37Ra, then prepared cell-free supernatants. The supernatants of Mtb-infected macrophages caused dose-dependent, caspase-dependent, T cell apoptosis. This toxic effect of infected macrophage secreted factors did not require TNF-α or Fas. The supernatant cytotoxic signal(s were heat-labile and greater than 50 kDa in molecular size. Although ESAT-6 was toxic to T cells, other Mtb-secreted factors tested did not influence T cell viability; nor did macrophage-free Mtb bacilli or broth from Mtb cultures. Furthermore, supernatants from Mycobacterium bovis Bacille de Calmette et Guerin (BCG- infected macrophages also elicited T cell death suggesting that ESAT-6 itself, although cytotoxic, was not the principal mediator of T cell death in our system. CONCLUSIONS: Mtb-Infected macrophages secrete heat-labile factors that are toxic to T cells, and may contribute to the immunosuppression seen in tuberculosis as well as

  12. Jointly Amplified Basal and Pulsatile Growth Hormone (GH) Secretion and Increased Process Irregularity in Women with Anorexia Nervosa

    DEFF Research Database (Denmark)

    Støving, R K; Veldhuis, J D; Flyvbjerg, A

    1999-01-01

    Anorexia nervosa (AN) is associated with multiple endocrine alterations. In the majority of AN patients, basal and GHRH-stimulated serum GH levels are increased. The metabolic effects of GH are known to be related to its pulsatile secretory pattern. The present study was performed to examine GH...

  13. Administration route-dependent effects of estrogens on IGF-I levels during fixed GH replacement in women with hypopituitarism

    NARCIS (Netherlands)

    van der Klaauw, Agatha A.; Biermasz, Nienke R.; Zelissen, Pierre M. J.; Pereira, Alberto M.; Lentjes, Eef G. W. M.; Smit, Johannes W. A.; van Thiel, Sjoerd W.; Romijn, Johannes A.; Roelfsema, Ferdinand

    2007-01-01

    GH-deficient women using oral estradiol treatment require higher doses of recombinant human GH (rhGH) to achieve similar IGF-I levels when compared with men and women on transdermal estradiol replacement. The aim of this study was to evaluate the effects of oral versus transdermal estrogen

  14. Phenotypic stability and plasticity in GMP-derived cells as determined by their underlying regulatory network.

    Science.gov (United States)

    Ramírez, Carlos; Mendoza, Luis

    2018-04-01

    Blood cell formation has been recognized as a suitable system to study celular differentiation mainly because of its experimental accessibility, and because it shows characteristics such as hierarchical and gradual bifurcated patterns of commitment, which are present in several developmental processes. Although hematopoiesis has been extensively studied and there is a wealth of molecular and cellular data about it, it is not clear how the underlying molecular regulatory networks define or restrict cellular differentiation processes. Here, we infer the molecular regulatory network that controls the differentiation of a blood cell subpopulation derived from the granulocyte-monocyte precursor (GMP), comprising monocytes, neutrophils, eosinophils, basophils and mast cells. We integrate published qualitative experimental data into a model to describe temporal expression patterns observed in GMP-derived cells. The model is implemented as a Boolean network, and its dynamical behavior is studied. Steady states of the network can be clearly identified with the expression profiles of monocytes, mast cells, neutrophils, basophils, and eosinophils, under wild-type and mutant backgrounds. All scripts are publicly available at https://github.com/caramirezal/RegulatoryNetworkGMPModel. lmendoza@biomedicas.unam.mx. Supplementary data are available at Bioinformatics online.

  15. An attempt to understand glioma stem cell biology through centrality analysis of a protein interaction network.

    Science.gov (United States)

    Mallik, Mrinmay Kumar

    2018-02-07

    Biological networks can be analyzed using "Centrality Analysis" to identify the more influential nodes and interactions in the network. This study was undertaken to create and visualize a biological network comprising of protein-protein interactions (PPIs) amongst proteins which are preferentially over-expressed in glioma cancer stem cell component (GCSC) of glioblastomas as compared to the glioma non-stem cancer cell (GNSC) component and then to analyze this network through centrality analyses (CA) in order to identify the essential proteins in this network and their interactions. In addition, this study proposes a new centrality analysis method pertaining exclusively to transcription factors (TFs) and interactions amongst them. Moreover the relevant molecular functions, biological processes and biochemical pathways amongst these proteins were sought through enrichment analysis. A protein interaction network was created using a list of proteins which have been shown to be preferentially expressed or over-expressed in GCSCs isolated from glioblastomas as compared to the GNSCs. This list comprising of 38 proteins, created using manual literature mining, was submitted to the Reactome FIViz tool, a web based application integrated into Cytoscape, an open source software platform for visualizing and analyzing molecular interaction networks and biological pathways to produce the network. This network was subjected to centrality analyses utilizing ranked lists of six centrality measures using the FIViz application and (for the first time) a dedicated centrality analysis plug-in ; CytoNCA. The interactions exclusively amongst the transcription factors were nalyzed through a newly proposed centrality analysis method called "Gene Expression Associated Degree Centrality Analysis (GEADCA)". Enrichment analysis was performed using the "network function analysis" tool on Reactome. The CA was able to identify a small set of proteins with consistently high centrality ranks that

  16. Development and function of human cerebral cortex neural networks from pluripotent stem cells in vitro.

    Science.gov (United States)

    Kirwan, Peter; Turner-Bridger, Benita; Peter, Manuel; Momoh, Ayiba; Arambepola, Devika; Robinson, Hugh P C; Livesey, Frederick J

    2015-09-15

    A key aspect of nervous system development, including that of the cerebral cortex, is the formation of higher-order neural networks. Developing neural networks undergo several phases with distinct activity patterns in vivo, which are thought to prune and fine-tune network connectivity. We report here that human pluripotent stem cell (hPSC)-derived cerebral cortex neurons form large-scale networks that reflect those found in the developing cerebral cortex in vivo. Synchronised oscillatory networks develop in a highly stereotyped pattern over several weeks in culture. An initial phase of increasing frequency of oscillations is followed by a phase of decreasing frequency, before giving rise to non-synchronous, ordered activity patterns. hPSC-derived cortical neural networks are excitatory, driven by activation of AMPA- and NMDA-type glutamate receptors, and can undergo NMDA-receptor-mediated plasticity. Investigating single neuron connectivity within PSC-derived cultures, using rabies-based trans-synaptic tracing, we found two broad classes of neuronal connectivity: most neurons have small numbers (40). These data demonstrate that the formation of hPSC-derived cortical networks mimics in vivo cortical network development and function, demonstrating the utility of in vitro systems for mechanistic studies of human forebrain neural network biology. © 2015. Published by The Company of Biologists Ltd.

  17. Standard cell-based implementation of a digital optoelectronic neural-network hardware.

    Science.gov (United States)

    Maier, K D; Beckstein, C; Blickhan, R; Erhard, W

    2001-03-10

    A standard cell-based implementation of a digital optoelectronic neural-network architecture is presented. The overall structure of the multilayer perceptron network that was used, the optoelectronic interconnection system between the layers, and all components required in each layer are defined. The design process from VHDL-based modeling from synthesis and partly automatic placing and routing to the final editing of one layer of the circuit of the multilayer perceptrons are described. A suitable approach for the standard cell-based design of optoelectronic systems is presented, and shortcomings of the design tool that was used are pointed out. The layout for the microelectronic circuit of one layer in a multilayer perceptron neural network with a performance potential 1 magnitude higher than neural networks that are purely electronic based has been successfully designed.

  18. Lukasiewicz-Topos Models of Neural Networks, Cell Genome and Interactome Nonlinear Dynamic Models

    CERN Document Server

    Baianu, I C

    2004-01-01

    A categorical and Lukasiewicz-Topos framework for Lukasiewicz Algebraic Logic models of nonlinear dynamics in complex functional systems such as neural networks, genomes and cell interactomes is proposed. Lukasiewicz Algebraic Logic models of genetic networks and signaling pathways in cells are formulated in terms of nonlinear dynamic systems with n-state components that allow for the generalization of previous logical models of both genetic activities and neural networks. An algebraic formulation of variable 'next-state functions' is extended to a Lukasiewicz Topos with an n-valued Lukasiewicz Algebraic Logic subobject classifier description that represents non-random and nonlinear network activities as well as their transformations in developmental processes and carcinogenesis.

  19. Quantitative studies of subdiffusion in living cells and actin networks

    DEFF Research Database (Denmark)

    Munteanu, Emilia-Laura; Olsen, Anja Lea; Tolic-Nørrelykke, Iva Marija

    2006-01-01

    Optical tweezers are a versatile tool in biophysics and have matured from a tool of manipulation to a tool of precise measurements. We argue here that the data analysis with advantage can be developed to a level of sophistication that matches that of the instrument. We review methods of analysis...... of optical tweezers data, primarily baed on the power spectra of time series of postions for trapped spherical objects. The majority of precise studies in the literature are performed on in vitro systems, whereas in the present work, an example of an in vivo system is presented for which precise power...... spectral analysis is both useful and necessary. The biological system is the cytoplasm of fission yeast, S. pombe, in which we observe subdiffusion of lipid granuli. in a search for the cause of subdiffusion, we chemically disrupt the actin network in the cytoplasm and further consider in vitro networks...

  20. Evolution of GH secretion in urine during an in-patient slimming course in obese children.

    Science.gov (United States)

    Lehingue, Y; Locard, E; Vivant, J F; Mounier, A; Serban, A; Remontet, L; Porquet, D; Joly, M O; Mamelle, N

    2000-03-01

    To estimate the change in GH excretion in urine (GH-U) during a slimming course, and if increased, to assess the components of the course related to the increase in obese children. Observational follow-up study of patients admitted for primary obesity to an in-patient slimming course lasting at least 10 weeks. 48 complete observations out of 54 consecutive pre-pubertal patients admitted to a paediatric centre for treatment of primary obesity (BMI greater than the 90th percentile of the national reference curves). GH excretion in urine by immunoradiometric assay, at entry and after 10 weeks, various anthropometric measurements, nutritional intake and departure from the prescribed diet, time spent in physical activity, sleep duration. A mean decrease of 0.90 standard deviations for BMI was accompanied by a 34% increase of GH-U. Time spent in physical activity was the only component of the course found to be related to the magnitude of GH-U increase. The results of this observational study confirm that GH-U is increased after a slimming course in children, and suggest that physical activity is a major contributor to the restoration of normal GH-U levels.

  1. Mathematical and theoretical neuroscience cell, network and data analysis

    CERN Document Server

    Nieus, Thierry

    2017-01-01

    This volume gathers contributions from theoretical, experimental and computational researchers who are working on various topics in theoretical/computational/mathematical neuroscience. The focus is on mathematical modeling, analytical and numerical topics, and statistical analysis in neuroscience with applications. The following subjects are considered: mathematical modelling in Neuroscience, analytical  and numerical topics;  statistical analysis in Neuroscience; Neural Networks; Theoretical Neuroscience. The book is addressed to researchers involved in mathematical models applied to neuroscience.

  2. Long-term effects of continuous subcutaneous infusion versus daily subcutaneous injections of growth hormone (GH) on the insulin-like growth factor system, insulin sensitivity, body composition, and bone and lipoprotein metabolism in GH-deficient adults

    DEFF Research Database (Denmark)

    Laursen, Torben; Gravholt, Claus Højbjerg; Heickendorff, Lene

    2001-01-01

    injections (inj) in the evening as usual, and 7 received a continuous infusion (inf) of GH by means of a portable pump. The GH dose was kept unchanged before and during the study. Serum levels of insulin-like growth factor I (IGF-I) tended to increase in the patients switched to constant infusion (from 175...... for 6 months are comparable with respect to the IGF-IGFBP axis, whereas intermittent exposure may be of importance for the lipolytic effect of GH. The data on insulin sensitivity and lipoproteins suggest that constant GH exposure is as safe as intermittent GH administration....

  3. Trail networks formed by populations of immune cells

    International Nuclear Information System (INIS)

    Yang, Taeseok Daniel; Kwon, Tae Goo; Park, Jin-sung; Lee, Kyoung J

    2014-01-01

    Populations of biological cells that communicate with each other can organize themselves to generate large-scale patterns. Examples can be found in diverse systems, ranging from developing embryos, cardiac tissues, chemotaxing ameba and swirling bacteria. The similarity, often shared by the patterns, suggests the existence of some general governing principle. On the other hand, rich diversity and system-specific properties are exhibited, depending on the type of involved cells and the nature of their interactions. The study on the similarity and the diversity constitutes a rapidly growing field of research. Here, we introduce a new class of self-organized patterns of cell populations that we term as ‘cellular trail networks’. They were observed with populations of rat microglia, the immune cells of the brain and the experimental evidence suggested that haptotaxis is the key element responsible for them. The essential features of the observed patterns are well captured by the mathematical model cells that actively crawl and interact with each other through a decomposing but non-diffusing chemical attractant laid down by the cells. Our finding suggests an unusual mechanism of socially cooperative long-range signaling for the crawling immune cells. (paper)

  4. Niche-dependent development of functional neuronal networks from embryonic stem cell-derived neural populations

    Directory of Open Access Journals (Sweden)

    Siebler Mario

    2009-08-01

    Full Text Available Abstract Background The present work was performed to investigate the ability of two different embryonic stem (ES cell-derived neural precursor populations to generate functional neuronal networks in vitro. The first ES cell-derived neural precursor population was cultivated as free-floating neural aggregates which are known to form a developmental niche comprising different types of neural cells, including neural precursor cells (NPCs, progenitor cells and even further matured cells. This niche provides by itself a variety of different growth factors and extracellular matrix proteins that influence the proliferation and differentiation of neural precursor and progenitor cells. The second population was cultivated adherently in monolayer cultures to control most stringently the extracellular environment. This population comprises highly homogeneous NPCs which are supposed to represent an attractive way to provide well-defined neuronal progeny. However, the ability of these different ES cell-derived immature neural cell populations to generate functional neuronal networks has not been assessed so far. Results While both precursor populations were shown to differentiate into sufficient quantities of mature NeuN+ neurons that also express GABA or vesicular-glutamate-transporter-2 (vGlut2, only aggregate-derived neuronal populations exhibited a synchronously oscillating network activity 2–4 weeks after initiating the differentiation as detected by the microelectrode array technology. Neurons derived from homogeneous NPCs within monolayer cultures did merely show uncorrelated spiking activity even when differentiated for up to 12 weeks. We demonstrated that these neurons exhibited sparsely ramified neurites and an embryonic vGlut2 distribution suggesting an inhibited terminal neuronal maturation. In comparison, neurons derived from heterogeneous populations within neural aggregates appeared as fully mature with a dense neurite network and punctuated

  5. Inference of Transcriptional Network for Pluripotency in Mouse Embryonic Stem Cells

    International Nuclear Information System (INIS)

    Aburatani, S

    2015-01-01

    In embryonic stem cells, various transcription factors (TFs) maintain pluripotency. To gain insights into the regulatory system controlling pluripotency, I inferred the regulatory relationships between the TFs expressed in ES cells. In this study, I applied a method based on structural equation modeling (SEM), combined with factor analysis, to 649 expression profiles of 19 TF genes measured in mouse Embryonic Stem Cells (ESCs). The factor analysis identified 19 TF genes that were regulated by several unmeasured factors. Since the known cell reprogramming TF genes (Pou5f1, Sox2 and Nanog) are regulated by different factors, each estimated factor is considered to be an input for signal transduction to control pluripotency in mouse ESCs. In the inferred network model, TF proteins were also arranged as unmeasured factors that control other TFs. The interpretation of the inferred network model revealed the regulatory mechanism for controlling pluripotency in ES cells

  6. Neural network control of focal position during time-lapse microscopy of cells.

    Science.gov (United States)

    Wei, Ling; Roberts, Elijah

    2018-05-09

    Live-cell microscopy is quickly becoming an indispensable technique for studying the dynamics of cellular processes. Maintaining the specimen in focus during image acquisition is crucial for high-throughput applications, especially for long experiments or when a large sample is being continuously scanned. Automated focus control methods are often expensive, imperfect, or ill-adapted to a specific application and are a bottleneck for widespread adoption of high-throughput, live-cell imaging. Here, we demonstrate a neural network approach for automatically maintaining focus during bright-field microscopy. Z-stacks of yeast cells growing in a microfluidic device were collected and used to train a convolutional neural network to classify images according to their z-position. We studied the effect on prediction accuracy of the various hyperparameters of the neural network, including downsampling, batch size, and z-bin resolution. The network was able to predict the z-position of an image with ±1 μm accuracy, outperforming human annotators. Finally, we used our neural network to control microscope focus in real-time during a 24 hour growth experiment. The method robustly maintained the correct focal position compensating for 40 μm of focal drift and was insensitive to changes in the field of view. About ~100 annotated z-stacks were required to train the network making our method quite practical for custom autofocus applications.

  7. D2D-Enabled Small Cell Network Control Scheme Based on the Dynamic Stackelberg Game

    Directory of Open Access Journals (Sweden)

    Sungwook Kim

    2017-01-01

    Full Text Available For current and future cellular networks, small cell structure with licensed and unlicensed bandwidth, caching content provisioning, and device-to-device (D2D communications is seen as a necessary architecture. Recently, a series of control methods have been developed to address a myriad of challenges in next-generation small cell networks. In this study, we focus on the design of novel D2D-enabled small cell network control scheme by allowing caching and unlicensed D2D communications. Motivated by game theory and learning algorithm, the proposed scheme adaptively selects caching contents and splits the available bandwidth for licensed and unlicensed communications. Under dynamically changing network environments, we capture the dynamics of the network system and design a new dynamic Stackelberg game model. Based on a hierarchical and feedback based control manner, small base stations and users can be leaders or followers dynamically while improving 5G network performance. Simulations and performance analysis verify the efficiency of the proposed scheme, showing that our approach can outperform existing schemes by about 5%~15% in terms of bandwidth utilization, cache hit ratio, and system throughput.

  8. Demonstration of Hydrogen Energy Network and Fuel Cells in Residential Homes

    International Nuclear Information System (INIS)

    Hirohisa Aki; Tetsuhiko Maeda; Itaru Tamura; Akeshi Kegasa; Yoshiro Ishikawa; Ichiro Sugimoto; Itaru Ishii

    2006-01-01

    The authors proposed the setting up of an energy interchange system by establishing energy networks of electricity, hot water, and hydrogen in residential homes. In such networks, some homes are equipped with fuel cell stacks, fuel processors, hydrogen storage devices, and large storage tanks for hot water. The energy network enables the flexible operation of the fuel cell stacks and fuel processors. A demonstration project has been planned in existing residential homes to evaluate the proposal. The demonstration will be presented in a small apartment building. The building will be renovated and will be equipped with a hydrogen production facility, a hydrogen interchange pipe, and fuel cell stacks with a heat recovery device. The energy flow process from hydrogen production to consumption in the homes will be demonstrated. This paper presents the proposed energy interchange system and demonstration project. (authors)

  9. Model-based design of RNA hybridization networks implemented in living cells.

    Science.gov (United States)

    Rodrigo, Guillermo; Prakash, Satya; Shen, Shensi; Majer, Eszter; Daròs, José-Antonio; Jaramillo, Alfonso

    2017-09-19

    Synthetic gene circuits allow the behavior of living cells to be reprogrammed, and non-coding small RNAs (sRNAs) are increasingly being used as programmable regulators of gene expression. However, sRNAs (natural or synthetic) are generally used to regulate single target genes, while complex dynamic behaviors would require networks of sRNAs regulating each other. Here, we report a strategy for implementing such networks that exploits hybridization reactions carried out exclusively by multifaceted sRNAs that are both targets of and triggers for other sRNAs. These networks are ultimately coupled to the control of gene expression. We relied on a thermodynamic model of the different stable conformational states underlying this system at the nucleotide level. To test our model, we designed five different RNA hybridization networks with a linear architecture, and we implemented them in Escherichia coli. We validated the network architecture at the molecular level by native polyacrylamide gel electrophoresis, as well as the network function at the bacterial population and single-cell levels with a fluorescent reporter. Our results suggest that it is possible to engineer complex cellular programs based on RNA from first principles. Because these networks are mainly based on physical interactions, our designs could be expanded to other organisms as portable regulatory resources or to implement biological computations. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. The Resource Mapping Algorithm of Wireless Virtualized Networks for Saving Energy in Ultradense Small Cells

    Directory of Open Access Journals (Sweden)

    Sai Zou

    2015-01-01

    Full Text Available As the current network is designed for peak loads, it results in insufficient resource utilization and energy waste. Virtualized technology makes it possible that intelligent energy perception network could be deployed and resource sharing could become an effective energy saving technology. How to make more small cells into sleeping state for energy saving in ultradense small cell system has become a research hot spot. Based on the mapping feature of virtualized network, a new wireless resource mapping algorithm for saving energy in ultradense small cells has been put forward when wireless resource amount is satisfied in every small cell. First of all, the method divides the virtual cells. Again through the alternate updating between small cell mapping and wireless resource allocation, least amount of small cells is used and other small cells turn into sleeping state on the premise of guaranteeing users’ QoS. Next, the energy consumption of the wireless access system, wireless resource utilization, and the convergence of the proposed algorithm are analyzed in theory. Finally, the simulation results demonstrate that the algorithm can effectively reduce the system energy consumption and required wireless resource amount under the condition of satisfying users’ QoS.

  11. STIMULASI PERTUMBUHAN JUVENIL ABALON, Haliotis squamata DENGAN PEMBERIAN HORMON REKOMBINAN IKAN rElGH

    Directory of Open Access Journals (Sweden)

    Fitriyah Husnul Khotimah

    2017-01-01

    Full Text Available Masalah yang paling utama dalam budidaya abalon tropis adalah pertumbuhan yang lambat. Penggunaan rElGH (recombinant giant grouper, Epinephelus lanceolatus growth hormone untuk menstimulasi pertumbuhan beberapa spesies ikan sudah dilakukan. Penelitian ini bertujuan untuk menguji akselerasi pertumbuhan juvenil abalon tropis, Haliotis squamata setelah diberi perlakuan perendaman hormon rekombinan ikan kerapu kertang, Epinephelus lanceolatus pada frekuensi yang berbeda. Ada empat perlakuan frekuensi perendaman rElGH yaitu 4, 9, 16 kali, dan tanpa perendaman (kontrol. Masing-masing perlakuan diulang tiga kali. Perendaman dilakukan selama tiga jam, dengan interval waktu empat hari. Kepadatan abalon tropis 100 ekor/L air laut yang mengandung 30 mg rElGH. Wadah untuk perendaman berupa beaker glass yang dilengkapi dengan aerasi. Penelitian dilakukan selama tujuh bulan. Hasil penelitian menunjukkan bahwa abalon tropis yang direndam rElGH dengan frekuensi empat kali menghasilkan pertumbuhan bobot tubuh dan panjang cangkang tertinggi dan berbeda nyata dengan perlakuan lainnya (P<0,05. Sintasan abalon tropis yang diberi perlakuan perendaman hormon rElGH lebih tinggi dibandingkan perlakuan kontrol. The most crucial problem in tropical abalone aquaculture is the slow growth of the species. Studies investigating the use of rElGH (recombinant giant grouper, Epinephelus lanceolatus growth hormone for promoting growth have been performed in various species. This research aimed to examine the growth acceleration of tropical abalone, Haliotis squamata juvenile after being treated in different immersion frequencies of recombinant giant grouper, Epinephelus lanceolatus growth hormone (rElGH. There were four treatments of rElGH immersion frequency: 4, 9, 16 times and without rElGH immersion (control. Each treatment was performed in triplicates. Immersion was performed for 3 hours, at 4-day intervals and a density of 100 tropical abalones in 1 L seawater containing 30

  12. Multilayer network representation of membrane potential and cytosolic calcium concentration dynamics in beta cells

    International Nuclear Information System (INIS)

    Gosak, Marko; Dolenšek, Jurij; Markovič, Rene; Slak Rupnik, Marjan; Marhl, Marko; Stožer, Andraž

    2015-01-01

    Highlights: • Physiological processes within and among pancreatic beta cells are very complex. • We analyze the simultaneous recordings of membrane potential and calcium dynamics. • We represent the interaction patterns among beta cells as a multilayer network. • The nature of the intracellular dynamics is found to rely on the network structure. - Abstract: Modern theory of networks has been recognized as a very successful methodological concept for the description and analysis of complex systems. However, some complex systems are more complex than others. For instance, several real-life systems are constituted by interdependent subsystems and their elements are subjected to different types of interactions that can also change with time. Recently, the multilayer network formalism has been proposed as a general theoretical framework for the description and analysis of such multi-dimensional complex systems and is acquiring more and more prominence in terms of a new research direction. In the present study, we use this methodology for the description of functional connectivity patterns and signal propagation between pancreatic beta cells in an islet of Langerhans at the levels of membrane potential (MP) and cytosolic calcium concentration ([Ca"2"+]_c) dynamics to study the extent of overlap in the two networks and to clarify whether time lags between the two signals in individual cells are in any way dependent on the role these cells play in the functional networks. The two corresponding network layers are constructed on the basis of signal directions and pairwise correlations, whereas the interlayer connections represent the time lag between both measured signals. Our results confirm our previous finding that both MP and [Ca"2"+]_c change spread across an islet in the form of a depolarization and a [Ca"2"+]_c wave, respectively. Both types of waves follow nearly the same path and the networks in both layers have a similar but not entirely the same structure

  13. Realizations of highly heterogeneous collagen networks via stochastic reconstruction for micromechanical analysis of tumor cell invasion

    Science.gov (United States)

    Nan, Hanqing; Liang, Long; Chen, Guo; Liu, Liyu; Liu, Ruchuan; Jiao, Yang

    2018-03-01

    Three-dimensional (3D) collective cell migration in a collagen-based extracellular matrix (ECM) is among one of the most significant topics in developmental biology, cancer progression, tissue regeneration, and immune response. Recent studies have suggested that collagen-fiber mediated force transmission in cellularized ECM plays an important role in stress homeostasis and regulation of collective cellular behaviors. Motivated by the recent in vitro observation that oriented collagen can significantly enhance the penetration of migrating breast cancer cells into dense Matrigel which mimics the intravasation process in vivo [Han et al. Proc. Natl. Acad. Sci. USA 113, 11208 (2016), 10.1073/pnas.1610347113], we devise a procedure for generating realizations of highly heterogeneous 3D collagen networks with prescribed microstructural statistics via stochastic optimization. Specifically, a collagen network is represented via the graph (node-bond) model and the microstructural statistics considered include the cross-link (node) density, valence distribution, fiber (bond) length distribution, as well as fiber orientation distribution. An optimization problem is formulated in which the objective function is defined as the squared difference between a set of target microstructural statistics and the corresponding statistics for the simulated network. Simulated annealing is employed to solve the optimization problem by evolving an initial network via random perturbations to generate realizations of homogeneous networks with randomly oriented fibers, homogeneous networks with aligned fibers, heterogeneous networks with a continuous variation of fiber orientation along a prescribed direction, as well as a binary system containing a collagen region with aligned fibers and a dense Matrigel region with randomly oriented fibers. The generation and propagation of active forces in the simulated networks due to polarized contraction of an embedded ellipsoidal cell and a small group

  14. Parallel and convergent processing in grid cell, head-direction cell, boundary cell, and place cell networks.

    Science.gov (United States)

    Brandon, Mark P; Koenig, Julie; Leutgeb, Stefan

    2014-03-01

    The brain is able to construct internal representations that correspond to external spatial coordinates. Such brain maps of the external spatial topography may support a number of cognitive functions, including navigation and memory. The neuronal building block of brain maps are place cells, which are found throughout the hippocampus of rodents and, in a lower proportion, primates. Place cells typically fire in one or few restricted areas of space, and each area where a cell fires can range, along the dorsoventral axis of the hippocampus, from 30 cm to at least several meters. The sensory processing streams that give rise to hippocampal place cells are not fully understood, but substantial progress has been made in characterizing the entorhinal cortex, which is the gateway between neocortical areas and the hippocampus. Entorhinal neurons have diverse spatial firing characteristics, and the different entorhinal cell types converge in the hippocampus to give rise to a single, spatially modulated cell type-the place cell. We therefore suggest that parallel information processing in different classes of cells-as is typically observed at lower levels of sensory processing-continues up into higher level association cortices, including those that provide the inputs to hippocampus. WIREs Cogn Sci 2014, 5:207-219. doi: 10.1002/wcs.1272 Conflict of interest: The authors have declared no conflicts of interest for this article. For further resources related to this article, please visit the WIREs website. © 2013 John Wiley & Sons, Ltd.

  15. Immune Cells and Molecular Networks in Experimentally Induced Pulpitis.

    Science.gov (United States)

    Renard, E; Gaudin, A; Bienvenu, G; Amiaud, J; Farges, J C; Cuturi, M C; Moreau, A; Alliot-Licht, B

    2016-02-01

    Dental pulp is a dynamic tissue able to resist external irritation during tooth decay by using immunocompetent cells involved in innate and adaptive responses. To better understand the immune response of pulp toward gram-negative bacteria, we analyzed biological mediators and immunocompetent cells in rat incisor pulp experimentally inflamed by either lipopolysaccharide (LPS) or saline solution (phosphate-buffered saline [PBS]). Untreated teeth were used as control. Expression of pro- and anti-inflammatory cytokines, chemokine ligands, growth factors, and enzymes were evaluated at the transcript level, and the recruitment of the different leukocytes in pulp was measured by fluorescence-activated cell-sorting analysis after 3 h, 9 h, and 3 d post-PBS or post-LPS treatment. After 3 d, injured rat incisors showed pulp wound healing and production of reparative dentin in both LPS and PBS conditions, testifying to the reversible pulpitis status of this model. IL6, IL1-β, TNF-α, CCL2, CXCL1, CXCL2, MMP9, and iNOS gene expression were significantly upregulated after 3 h of LPS stimulation as compared with PBS. The immunoregulatory cytokine IL10 was also upregulated after 3 h, suggesting that LPS stimulates not only inflammation but also immunoregulation. Fluorescence-activated cell-sorting analysis revealed a significant, rapid, and transient increase in leukocyte levels 9 h after PBS and LPS stimulation. The quantity of dendritic cells was significantly upregulated with LPS versus PBS. Interestingly, we identified a myeloid-derived suppressor cell-enriched cell population in noninjured rodent incisor dental pulp. The percentage of this population, known to regulate immune response, was higher 9 h after inflammation triggered with PBS and LPS as compared with the control. Taken together, these data offer a better understanding of the mechanisms involved in the regulation of dental pulp immunity that may be elicited by gram-negative bacteria. © International & American

  16. Regulation of glucose transport and c-fos and egr-1 expression in cells with mutated or endogenous growth hormone receptors

    DEFF Research Database (Denmark)

    Gong, T W; Meyer, D J; Liao, J

    1998-01-01

    To identify mechanisms by which GH receptors (GHR) mediate downstream events representative of growth and metabolic responses to GH, stimulation by GH of c-fos and egr-1 expression and glucose transport activity were examined in Chinese hamster ovary (CHO) cells expressing mutated GHR. In CHO cel...

  17. The Medial Ventrothalamic Circuitry: Cells Implicated in a Bimodal Network

    Directory of Open Access Journals (Sweden)

    Tomas Vega-Zuniga

    2018-02-01

    Full Text Available Previous avian thalamic studies have shown that the medial ventral thalamus is composed of several nuclei located close to the lateral wall of the third ventricle. Although the general connectivity is known, detailed morphology and connectivity pattern in some regions are still elusive. Here, using the intracellular filling technique in the chicken, we focused on two neural structures, namely, the retinorecipient neuropil of the n. geniculatus lateralis pars ventralis (GLv, and the adjacent n. intercalatus thalami (ICT. We found that the GLv-ne cells showed two different neuronal types: projection cells and horizontal interneurons. The projection cells showed variable morphologies and dendritic arborizations with axons that targeted the n. lentiformis mesencephali (LM, griseum tectale (GT, ICT, n. principalis precommissuralis (PPC, and optic tectum (TeO. The horizontal cells showed a widespread mediolateral neural process throughout the retinorecipient GLv-ne. The ICT cells, on the other hand, had multipolar somata with wide dendritic fields that extended toward the lamina interna of the GLv, and a projection pattern that targeted the n. laminaris precommissuralis (LPC. Together, these results elucidate the rich complexity of the connectivity pattern so far described between the GLv, ICT, pretectum, and tectum. Interestingly, the implication of some of these neural structures in visuomotor and somatosensory roles strongly suggests that the GLv and ICT are part of a bimodal circuit that may be involved in the generation/modulation of saccades, gaze control, and space perception.

  18. Life on magnets: stem cell networking on micro-magnet arrays.

    Directory of Open Access Journals (Sweden)

    Vitalii Zablotskii

    Full Text Available Interactions between a micro-magnet array and living cells may guide the establishment of cell networks due to the cellular response to a magnetic field. To manipulate mesenchymal stem cells free of magnetic nanoparticles by a high magnetic field gradient, we used high quality micro-patterned NdFeB films around which the stray field's value and direction drastically change across the cell body. Such micro-magnet arrays coated with parylene produce high magnetic field gradients that affect the cells in two main ways: i causing cell migration and adherence to a covered magnetic surface and ii elongating the cells in the directions parallel to the edges of the micro-magnet. To explain these effects, three putative mechanisms that incorporate both physical and biological factors influencing the cells are suggested. It is shown that the static high magnetic field gradient generated by the micro-magnet arrays are capable of assisting cell migration to those areas with the strongest magnetic field gradient, thereby allowing the build up of tunable interconnected stem cell networks, which is an elegant route for tissue engineering and regenerative medicine.

  19. Life on magnets: stem cell networking on micro-magnet arrays.

    Science.gov (United States)

    Zablotskii, Vitalii; Dejneka, Alexandr; Kubinová, Šárka; Le-Roy, Damien; Dumas-Bouchiat, Frédéric; Givord, Dominique; Dempsey, Nora M; Syková, Eva

    2013-01-01

    Interactions between a micro-magnet array and living cells may guide the establishment of cell networks due to the cellular response to a magnetic field. To manipulate mesenchymal stem cells free of magnetic nanoparticles by a high magnetic field gradient, we used high quality micro-patterned NdFeB films around which the stray field's value and direction drastically change across the cell body. Such micro-magnet arrays coated with parylene produce high magnetic field gradients that affect the cells in two main ways: i) causing cell migration and adherence to a covered magnetic surface and ii) elongating the cells in the directions parallel to the edges of the micro-magnet. To explain these effects, three putative mechanisms that incorporate both physical and biological factors influencing the cells are suggested. It is shown that the static high magnetic field gradient generated by the micro-magnet arrays are capable of assisting cell migration to those areas with the strongest magnetic field gradient, thereby allowing the build up of tunable interconnected stem cell networks, which is an elegant route for tissue engineering and regenerative medicine.

  20. Three-Dimensional Vascular Network Assembly From Diabetic Patient-Derived Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Chan, Xin Yi; Black, Rebecca; Dickerman, Kayla; Federico, Joseph; Lévesque, Mathieu; Mumm, Jeff; Gerecht, Sharon

    2015-12-01

    In diabetics, hyperglycemia results in deficient endothelial progenitors and cells, leading to cardiovascular complications. We aim to engineer 3-dimensional (3D) vascular networks in synthetic hydrogels from type 1 diabetes mellitus (T1D) patient-derived human-induced pluripotent stem cells (hiPSCs), to serve as a transformative autologous vascular therapy for diabetic patients. We validated and optimized an adherent, feeder-free differentiation procedure to derive early vascular cells (EVCs) with high portions of vascular endothelial cadherin-positive cells from hiPSCs. We demonstrate similar differentiation efficiency from hiPSCs derived from healthy donor and patients with T1D. T1D-hiPSC-derived vascular endothelial cadherin-positive cells can mature to functional endothelial cells-expressing mature markers: von Willebrand factor and endothelial nitric oxide synthase are capable of lectin binding and acetylated low-density lipoprotein uptake, form cords in Matrigel and respond to tumor necrosis factor-α. When embedded in engineered hyaluronic acid hydrogels, T1D-EVCs undergo morphogenesis and assemble into 3D networks. When encapsulated in a novel hypoxia-inducible hydrogel, T1D-EVCs respond to low oxygen and form 3D networks. As xenografts, T1D-EVCs incorporate into developing zebrafish vasculature. Using our robust protocol, we can direct efficient differentiation of T1D-hiPSC to EVCs. Early endothelial cells derived from T1D-hiPSC are functional when mature. T1D-EVCs self-assembled into 3D networks when embedded in hyaluronic acid and hypoxia-inducible hydrogels. The capability of T1D-EVCs to assemble into 3D networks in engineered matrices and to respond to a hypoxic microenvironment is a significant advancement for autologous vascular therapy in diabetic patients and has broad importance for tissue engineering. © 2015 American Heart Association, Inc.

  1. Is increase in bone mineral content caused by increase in skeletal muscle mass/strength in adult patients with GH-treated GH deficiency? A systematic literature analysis

    DEFF Research Database (Denmark)

    Klefter, O.; Feldt-Rasmussen, U.

    2009-01-01

    to a muscle modulating effect, and if treatment with GH would primarily increase muscle mass and strength with a secondary increase in BMD/BMC, thus supporting the present physiological concept that mass and strength of bones are mainly determined by dynamic loads from the skeletal muscles. METHOD: We...... performed a systematic literature analysis, including 51 clinical trials published between 1996 and 2008, which had studied the development in muscle mass, muscle strength, BMD, and/or BMC in GH-treated adult GHD patients. RESULTS: GH therapy had an anabolic effect on skeletal muscle. The largest increase...... in muscle mass occurred during the first 12 months of therapy. Most trials measuring BMD/BMC reported significant increases from baseline values. The significant increases in BMD/BMC occurred after 12-18 months of treatment, i.e. usually later than the increases in muscle parameters. Only seven trials...

  2. Is increase in bone mineral content caused by increase in skeletal muscle mass/strength in adult patients with GH-treated GH deficiency?

    DEFF Research Database (Denmark)

    Klefter, Oliver; Feldt-Rasmussen, Ulla

    2009-01-01

    to a muscle modulating effect, and if treatment with GH would primarily increase muscle mass and strength with a secondary increase in BMD/BMC, thus supporting the present physiological concept that mass and strength of bones are mainly determined by dynamic loads from the skeletal muscles. METHOD: We...... performed a systematic literature analysis, including 51 clinical trials published between 1996 and 2008, which had studied the development in muscle mass, muscle strength, BMD, and/or BMC in GH-treated adult GHD patients. RESULTS: GH therapy had an anabolic effect on skeletal muscle. The largest increase...... in muscle mass occurred during the first 12 months of therapy. Most trials measuring BMD/BMC reported significant increases from baseline values. The significant increases in BMD/BMC occurred after 12-18 months of treatment, i.e. usually later than the increases in muscle parameters. Only seven trials...

  3. Diversity and plasticity of Th cell types predicted from regulatory network modelling.

    Directory of Open Access Journals (Sweden)

    Aurélien Naldi

    Full Text Available Alternative cell differentiation pathways are believed to arise from the concerted action of signalling pathways and transcriptional regulatory networks. However, the prediction of mammalian cell differentiation from the knowledge of the presence of specific signals and transcriptional factors is still a daunting challenge. In this respect, the vertebrate hematopoietic system, with its many branching differentiation pathways and cell types, is a compelling case study. In this paper, we propose an integrated, comprehensive model of the regulatory network and signalling pathways controlling Th cell differentiation. As most available data are qualitative, we rely on a logical formalism to perform extensive dynamical analyses. To cope with the size and complexity of the resulting network, we use an original model reduction approach together with a stable state identification algorithm. To assess the effects of heterogeneous environments on Th cell differentiation, we have performed a systematic series of simulations considering various prototypic environments. Consequently, we have identified stable states corresponding to canonical Th1, Th2, Th17 and Treg subtypes, but these were found to coexist with other transient hybrid cell types that co-express combinations of Th1, Th2, Treg and Th17 markers in an environment-dependent fashion. In the process, our logical analysis highlights the nature of these cell types and their relationships with canonical Th subtypes. Finally, our logical model can be used to explore novel differentiation pathways in silico.

  4. Quantitative proteomics reveals middle infrared radiation-interfered networks in breast cancer cells.

    Science.gov (United States)

    Chang, Hsin-Yi; Li, Ming-Hua; Huang, Tsui-Chin; Hsu, Chia-Lang; Tsai, Shang-Ru; Lee, Si-Chen; Huang, Hsuan-Cheng; Juan, Hsueh-Fen

    2015-02-06

    Breast cancer is one of the leading cancer-related causes of death worldwide. Treatment of triple-negative breast cancer (TNBC) is complex and challenging, especially when metastasis has developed. In this study, we applied infrared radiation as an alternative approach for the treatment of TNBC. We used middle infrared (MIR) with a wavelength range of 3-5 μm to irradiate breast cancer cells. MIR significantly inhibited cell proliferation in several breast cancer cells but did not affect the growth of normal breast epithelial cells. We performed iTRAQ-coupled LC-MS/MS analysis to investigate the MIR-triggered molecular mechanisms in breast cancer cells. A total of 1749 proteins were identified, quantified, and subjected to functional enrichment analysis. From the constructed functionally enriched network, we confirmed that MIR caused G2/M cell cycle arrest, remodeled the microtubule network to an astral pole arrangement, altered the actin filament formation and focal adhesion molecule localization, and reduced cell migration activity and invasion ability. Our results reveal the coordinative effects of MIR-regulated physiological responses in concentrated networks, demonstrating the potential implementation of infrared radiation in breast cancer therapy.

  5. Input dependent cell assembly dynamics in a model of the striatal medium spiny neuron network

    Directory of Open Access Journals (Sweden)

    Adam ePonzi

    2012-03-01

    Full Text Available The striatal medium spiny neuron (MSNs network is sparsely connected with fairly weak GABAergic collaterals receiving an excitatory glutamatergic cortical projection. Peri stimulus time histograms (PSTH of MSN population response investigated in various experimental studies display strong firing rate modulations distributed throughout behavioural task epochs. In previous work we have shown by numerical simulation that sparse random networks of inhibitory spiking neurons with characteristics appropriate for UP state MSNs form cell assemblies which fire together coherently in sequences on long behaviourally relevant timescales when the network receives a fixed pattern of constant input excitation. Here we first extend that model to the case where cortical excitation is composed of many independent noisy Poisson processes and demonstrate that cell assembly dynamics is still observed when the input is sufficiently weak. However if cortical excitation strength is increased more regularly firing and completely quiescent cells are found, which depend on the cortical stimulation. Subsequently we further extend previous work to consider what happens when the excitatory input varies as it would in when the animal is engaged in behavior. We investigate how sudden switches in excitation interact with network generated patterned activity. We show that sequences of cell assembly activations can be locked to the excitatory input sequence and delineate the range of parameters where this behaviour is shown. Model cell population PSTH display both stimulus and temporal specificity, with large population firing rate modulations locked to elapsed time from task events. Thus the random network can generate a large diversity of temporally evolving stimulus dependent responses even though the input is fixed between switches. We suggest the MSN network is well suited to the generation of such slow coherent task dependent response

  6. Input dependent cell assembly dynamics in a model of the striatal medium spiny neuron network.

    Science.gov (United States)

    Ponzi, Adam; Wickens, Jeff

    2012-01-01

    The striatal medium spiny neuron (MSN) network is sparsely connected with fairly weak GABAergic collaterals receiving an excitatory glutamatergic cortical projection. Peri-stimulus time histograms (PSTH) of MSN population response investigated in various experimental studies display strong firing rate modulations distributed throughout behavioral task epochs. In previous work we have shown by numerical simulation that sparse random networks of inhibitory spiking neurons with characteristics appropriate for UP state MSNs form cell assemblies which fire together coherently in sequences on long behaviorally relevant timescales when the network receives a fixed pattern of constant input excitation. Here we first extend that model to the case where cortical excitation is composed of many independent noisy Poisson processes and demonstrate that cell assembly dynamics is still observed when the input is sufficiently weak. However if cortical excitation strength is increased more regularly firing and completely quiescent cells are found, which depend on the cortical stimulation. Subsequently we further extend previous work to consider what happens when the excitatory input varies as it would when the animal is engaged in behavior. We investigate how sudden switches in excitation interact with network generated patterned activity. We show that sequences of cell assembly activations can be locked to the excitatory input sequence and outline the range of parameters where this behavior is shown. Model cell population PSTH display both stimulus and temporal specificity, with large population firing rate modulations locked to elapsed time from task events. Thus the random network can generate a large diversity of temporally evolving stimulus dependent responses even though the input is fixed between switches. We suggest the MSN network is well suited to the generation of such slow coherent task dependent response which could be utilized by the animal in behavior.

  7. pKa modulation of the acid/base catalyst within GH32 and GH68: a role in substrate/inhibitor specificity?

    Directory of Open Access Journals (Sweden)

    Shuguang Yuan

    Full Text Available Glycoside hydrolases of families 32 (GH32 and 68 (GH68 belong to clan GH-J, containing hydrolytic enzymes (sucrose/fructans as donor substrates and fructosyltransferases (sucrose/fructans as donor and acceptor substrates. In GH32 members, some of the sugar substrates can also function as inhibitors, this regulatory aspect further adding to the complexity in enzyme functionalities within this family. Although 3D structural information becomes increasingly available within this clan and huge progress has been made on structure-function relationships, it is not clear why some sugars bind as inhibitors without being catalyzed. Conserved aspartate and glutamate residues are well known to act as nucleophile and acid/bases within this clan. Based on the available 3D structures of enzymes and enzyme-ligand complexes as well as docking simulations, we calculated the pKa of the acid-base before and after substrate binding. The obtained results strongly suggest that most GH-J members show an acid-base catalyst that is not sufficiently protonated before ligand entrance, while the acid-base can be fully protonated when a substrate, but not an inhibitor, enters the catalytic pocket. This provides a new mechanistic insight aiming at understanding the complex substrate and inhibitor specificities observed within the GH-J clan. Moreover, besides the effect of substrate entrance on its own, we strongly suggest that a highly conserved arginine residue (in the RDP motif rather than the previously proposed Tyr motif (not conserved provides the proton to increase the pKa of the acid-base catalyst.

  8. Identification and expression profiling of novel plant cell wall degrading enzymes from a destructive pest of palm trees, Rhynchophorus ferrugineus.

    Science.gov (United States)

    Antony, B; Johny, J; Aldosari, S A; Abdelazim, M M

    2017-08-01

    Plant cell wall degrading enzymes (PCWDEs) from insects were recently identified as a multigene family of proteins that consist primarily of glycoside hydrolases (GHs) and carbohydrate esterases (CEs) and play essential roles in the degradation of the cellulose/hemicellulose/pectin network in the invaded host plant. Here we applied transcriptomic and degenerate PCR approaches to identify the PCWDEs from a destructive pest of palm trees, Rhynchophorus ferrugineus, followed by a gut-specific and stage-specific differential expression analysis. We identified a total of 27 transcripts encoding GH family members and three transcripts of the CE family with cellulase, hemicellulase and pectinase activities. We also identified two GH9 candidates, which have not previously been reported from Curculionidae. The gut-specific quantitative expression analysis identified key cellulases, hemicellulases and pectinases from R. ferrugineus. The expression analysis revealed a pectin methylesterase, RferCE8u02, and a cellulase, GH45c34485, which showed the highest gut enriched expression. Comparison of PCWDE expression patterns revealed that cellulases and pectinases are significantly upregulated in the adult stages, and we observed specific high expression of the hemicellulase RferGH16c4170. Overall, our study revealed the potential of PCWDEs from R. ferrugineus, which may be useful in biotechnological applications and may represent new tools in R. ferrugineus pest management strategies. © 2017 The Royal Entomological Society.

  9. A cortical attractor network with Martinotti cells driven by facilitating synapses.

    Directory of Open Access Journals (Sweden)

    Pradeep Krishnamurthy

    Full Text Available The population of pyramidal cells significantly outnumbers the inhibitory interneurons in the neocortex, while at the same time the diversity of interneuron types is much more pronounced. One acknowledged key role of inhibition is to control the rate and patterning of pyramidal cell firing via negative feedback, but most likely the diversity of inhibitory pathways is matched by a corresponding diversity of functional roles. An important distinguishing feature of cortical interneurons is the variability of the short-term plasticity properties of synapses received from pyramidal cells. The Martinotti cell type has recently come under scrutiny due to the distinctly facilitating nature of the synapses they receive from pyramidal cells. This distinguishes these neurons from basket cells and other inhibitory interneurons typically targeted by depressing synapses. A key aspect of the work reported here has been to pinpoint the role of this variability. We first set out to reproduce quantitatively based on in vitro data the di-synaptic inhibitory microcircuit connecting two pyramidal cells via one or a few Martinotti cells. In a second step, we embedded this microcircuit in a previously developed attractor memory network model of neocortical layers 2/3. This model network demonstrated that basket cells with their characteristic depressing synapses are the first to discharge when the network enters an attractor state and that Martinotti cells respond with a delay, thereby shifting the excitation-inhibition balance and acting to terminate the attractor state. A parameter sensitivity analysis suggested that Martinotti cells might, in fact, play a dominant role in setting the attractor dwell time and thus cortical speed of processing, with cellular adaptation and synaptic depression having a less prominent role than previously thought.

  10. Bioavailability and bioactivity of intravenous vs subcutaneous infusion of growth hormone in GH-deficient patients

    DEFF Research Database (Denmark)

    Laursen, Torben; Møller, Jens; Ørskov, Hans

    1996-01-01

    Abstract OBJECTIVE: The bioavailability of GH immunoreactive serum concentrations is reduced following subcutaneous (s.c.) as compared with intravenous (i.v.) administration. Whether this difference also translates into a different biological activity remains to be investigated. The aim of the pr......Abstract OBJECTIVE: The bioavailability of GH immunoreactive serum concentrations is reduced following subcutaneous (s.c.) as compared with intravenous (i.v.) administration. Whether this difference also translates into a different biological activity remains to be investigated. The aim...... = 0.09) were observed on the two occasions. CONCLUSIONS: A reduced bioavailability of s.c. as compared with i.v. administered GH has been recorded with two independent GH assays, and this was also accompanied by a significant, albeit modest, reduction in biological activity....

  11. Structural Basis for Prereceptor Modulation of Plant Hormones by GH3 Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Westfall, Corey S.; Zubieta, Chloe; Herrmann, Jonathan; Kapp, Ulrike; Nanao, Max H.; Jez, Joseph M. (WU); (EMBL); (ESRF)

    2013-04-08

    Acyl acid amido synthetases of the GH3 family act as critical prereceptor modulators of plant hormone action; however, the molecular basis for their hormone selectivity is unclear. Here, we report the crystal structures of benzoate-specific Arabidopsis thaliana AtGH3.12/PBS3 and jasmonic acid-specific AtGH3.11/JAR1. These structures, combined with biochemical analysis, define features for the conjugation of amino acids to diverse acyl acid substrates and highlight the importance of conformational changes in the carboxyl-terminal domain for catalysis. We also identify residues forming the acyl acid binding site across the GH3 family and residues critical for amino acid recognition. Our results demonstrate how a highly adaptable three-dimensional scaffold is used for the evolution of promiscuous activity across an enzyme family for modulation of plant signaling molecules.

  12. Development of additional pituitary hormone deficiencies in pediatric patients originally diagnosed with idiopathic isolated GH deficiency

    NARCIS (Netherlands)

    W.F. Blum (Werner); C.L. Deal (Cheri Lynn); A.G. Zimmermann (Alan); E.P. Shavrikova (Elena); C.J. Child (Christopher); C.A. Quigley (Charmian); S.L.S. Drop (Stenvert); G. Cutler (Gordon); R.G. Rosenfeld (Ron)

    2014-01-01

    textabstractObjective: We assessed the characteristics of children initially diagnosed with idiopathic isolated GH deficiency (IGHD) who later developed additional (multiple) pituitary hormone deficiencies (MPHD). Design: Data were analyzed for 5805 pediatric patients with idiopathic IGHD, who were

  13. Use of human GH in elderly patients with accidental hip fracture

    NARCIS (Netherlands)

    A-J. van der Lely (Aart-Jan); S.W.J. Lamberts (Steven); K.W. Jauch; B.A. Swierstra (Bart); H. Hertlein; D. de Vries (Danielle); M.A. Birkett; P.C. Bates; W.F. Blum (Werner); A.F. Attanasio (Andrea)

    2000-01-01

    textabstractOBJECTIVE: To investigate whether early intervention with recombinant human growth hormone (hGH) after hip fracture improves functional recovery and long-term outcome. SUBJECTS AND METHODS: Functional recovery after hip fracture is often incomplete. The catabolic

  14. Effects of growth hormone (GH) treatment on body fluid distribution in patients undergoing elective abdominal surgery

    DEFF Research Database (Denmark)

    Møller, Jacob; Jensen, Martin Bach; Frandsen, E.

    1998-01-01

    OBJECTIVE: To investigate the possible beneficial effects of growth hormone (GH) in catabolic patients we examined the impact of GH on body fluid distribution in patients with ulcerative colitis undergoing elective abdominal surgery. DESIGN AND MEASUREMENTS: Twenty-four patients (14 female, 10 male...... at day -2 and at day 7, and body composition was estimated by dual X-ray absorptiometry and bioimpedance. Changes in body weight and fluid balance were recorded and hence intracellular volume was assessed. RESULTS: During placebo treatment body weight decreased 4.3 +/- 0.6 kg; during GH treatment body.......05). Plasma renin and aldosterone remained unchanged in both study groups. CONCLUSION: Body weight, plasma volume and intracellular volume is preserved during GH treatment in catabolic patients and ECV is increased. From a therapeutic point of view these effects may be desirable under conditions of surgical...

  15. Examination of Growth Hormone (GH) Gene Polymorphism and its Association with Body Weight and Selected Body Dimensions in Ducks.

    Science.gov (United States)

    Mazurowski, Artur; Frieske, Anna; Kokoszynski, Dariusz; Mroczkowski, Sławomir; Bernacki, Zenon; Wilkanowska, Anna

    2015-01-01

    The main objective of the study was to assess the polymorphism in intron 2 of the GH gene and its association with some morphological traits (body weight--BW, length of trunk with neck--LTN, length of trunk--LT, chest girth--CG, length of breast bone--LBB, length of shank--LS). Polymorphism in intron 2 of the GH gene was evaluated for four duck populations (Pekin ducks AF51, Muscovy ducks from a CK and CRAMMLCFF mother and Mulard ducks). Genetic polymorphism was determined with the PCR-RFLP method using the BsmFI restriction enzyme. In the studied duck sample two alleles (GH(C) and GH(T)) and three genotypes (GH/TT, GH/CT, GH/CC) were found at locus GH/BsmFI. In both groups of Muscovies and in Mulards the dominant allele was GH(T). On the contrary in Pekin ducks AF51, the frequency of both alleles was found to be similar. The most frequent genotype in the examined ducks was GH/TT. In Pekin ducks AF51 three genotypes were observed, while in Mulard ducks and in male Muscovy ducks from a mother marked as CK, two genotypes (GH/TT and GH/CT) were identified. Muscovy duck females from a CK mother and all males and females of Muscovy duck from a CRAMMLCFF mother were monomorphic with only the GH/TTgenotype detected. The results showed that males of Pekin duck AF51 with the GH/TT genotype were characterized by higher (P ducks AF51, this same trend was observed; individuals with GH/TT genotype were superior (P ducks with the GH/TT genotype were distinguished by higher values of all evaluated traits compared to ducks with GH/CT and GH/CC genotypes, however most of the recorded differences were not significant. The only trait markedly impacted (P < 0.05) by the polymorphism of the GH gene intron 2 was the LS value in males.

  16. Cirugía transesfenoidal: primera opción de tratamiento para adenomas hipofisarios secretores de GH Transsphenoidal surgery: first treatment option for GH secreting hypophyseal adenomas

    OpenAIRE

    Omar López Arbolay; Justo Luis González González; Osmany Morales Sabina; Lorenzo Nedel Valdés

    2004-01-01

    La elevación de los niveles de hormona del crecimiento (GH) promueve el crecimiento grotesco de partes acras (acromegalia) o incremento de la talla (gigantismo) según la edad, así como trastornos metabólicos de relevancia biológica. La adenomectomía selectiva clasifica entre las modalidades de tratamiento. El objetivo del presente trabajo fue evaluar los resultados del tratamiento microquirúrgico por vía transeptoesfenoidal de los adenomas productores de GH en nuestro medio. Presentamos un es...

  17. Sequentially switching cell assemblies in random inhibitory networks of spiking neurons in the striatum.

    Science.gov (United States)

    Ponzi, Adam; Wickens, Jeff

    2010-04-28

    The striatum is composed of GABAergic medium spiny neurons with inhibitory collaterals forming a sparse random asymmetric network and receiving an excitatory glutamatergic cortical projection. Because the inhibitory collaterals are sparse and weak, their role in striatal network dynamics is puzzling. However, here we show by simulation of a striatal inhibitory network model composed of spiking neurons that cells form assemblies that fire in sequential coherent episodes and display complex identity-temporal spiking patterns even when cortical excitation is simply constant or fluctuating noisily. Strongly correlated large-scale firing rate fluctuations on slow behaviorally relevant timescales of hundreds of milliseconds are shown by members of the same assembly whereas members of different assemblies show strong negative correlation, and we show how randomly connected spiking networks can generate this activity. Cells display highly irregular spiking with high coefficients of variation, broadly distributed low firing rates, and interspike interval distributions that are consistent with exponentially tailed power laws. Although firing rates vary coherently on slow timescales, precise spiking synchronization is absent in general. Our model only requires the minimal but striatally realistic assumptions of sparse to intermediate random connectivity, weak inhibitory synapses, and sufficient cortical excitation so that some cells are depolarized above the firing threshold during up states. Our results are in good qualitative agreement with experimental studies, consistent with recently determined striatal anatomy and physiology, and support a new view of endogenously generated metastable state switching dynamics of the striatal network underlying its information processing operations.

  18. Functional Stem Cell Integration into Neural Networks Assessed by Organotypic Slice Cultures.

    Science.gov (United States)

    Forsberg, David; Thonabulsombat, Charoensri; Jäderstad, Johan; Jäderstad, Linda Maria; Olivius, Petri; Herlenius, Eric

    2017-08-14

    Re-formation or preservation of functional, electrically active neural networks has been proffered as one of the goals of stem cell-mediated neural therapeutics. A primary issue for a cell therapy approach is the formation of functional contacts between the implanted cells and the host tissue. Therefore, it is of fundamental interest to establish protocols that allow us to delineate a detailed time course of grafted stem cell survival, migration, differentiation, integration, and functional interaction with the host. One option for in vitro studies is to examine the integration of exogenous stem cells into an existing active neural network in ex vivo organotypic cultures. Organotypic cultures leave the structural integrity essentially intact while still allowing the microenvironment to be carefully controlled. This allows detailed studies over time of cellular responses and cell-cell interactions, which are not readily performed in vivo. This unit describes procedures for using organotypic slice cultures as ex vivo model systems for studying neural stem cell and embryonic stem cell engraftment and communication with CNS host tissue. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  19. SCNS: a graphical tool for reconstructing executable regulatory networks from single-cell genomic data.

    Science.gov (United States)

    Woodhouse, Steven; Piterman, Nir; Wintersteiger, Christoph M; Göttgens, Berthold; Fisher, Jasmin

    2018-05-25

    Reconstruction of executable mechanistic models from single-cell gene expression data represents a powerful approach to understanding developmental and disease processes. New ambitious efforts like the Human Cell Atlas will soon lead to an explosion of data with potential for uncovering and understanding the regulatory networks which underlie the behaviour of all human cells. In order to take advantage of this data, however, there is a need for general-purpose, user-friendly and efficient computational tools that can be readily used by biologists who do not have specialist computer science knowledge. The Single Cell Network Synthesis toolkit (SCNS) is a general-purpose computational tool for the reconstruction and analysis of executable models from single-cell gene expression data. Through a graphical user interface, SCNS takes single-cell qPCR or RNA-sequencing data taken across a time course, and searches for logical rules that drive transitions from early cell states towards late cell states. Because the resulting reconstructed models are executable, they can be used to make predictions about the effect of specific gene perturbations on the generation of specific lineages. SCNS should be of broad interest to the growing number of researchers working in single-cell genomics and will help further facilitate the generation of valuable mechanistic insights into developmental, homeostatic and disease processes.

  20. Dynamic Modeling of Cell-Free Biochemical Networks Using Effective Kinetic Models

    Directory of Open Access Journals (Sweden)

    Joseph A. Wayman

    2015-03-01

    Full Text Available Cell-free systems offer many advantages for the study, manipulation and modeling of metabolism compared to in vivo processes. Many of the challenges confronting genome-scale kinetic modeling can potentially be overcome in a cell-free system. For example, there is no complex transcriptional regulation to consider, transient metabolic measurements are easier to obtain, and we no longer have to consider cell growth. Thus, cell-free operation holds several significant advantages for model development, identification and validation. Theoretically, genome-scale cell-free kinetic models may be possible for industrially important organisms, such as E. coli, if a simple, tractable framework for integrating allosteric regulation with enzyme kinetics can be formulated. Toward this unmet need, we present an effective biochemical network modeling framework for building dynamic cell-free metabolic models. The key innovation of our approach is the integration of simple effective rules encoding complex allosteric regulation with traditional kinetic pathway modeling. We tested our approach by modeling the time evolution of several hypothetical cell-free metabolic networks. We found that simple effective rules, when integrated with traditional enzyme kinetic expressions, captured complex allosteric patterns such as ultrasensitivity or non-competitive inhibition in the absence of mechanistic information. Second, when integrated into network models, these rules captured classic regulatory patterns such as product-induced feedback inhibition. Lastly, we showed, at least for the network architectures considered here, that we could simultaneously estimate kinetic parameters and allosteric connectivity from synthetic data starting from an unbiased collection of possible allosteric structures using particle swarm optimization. However, when starting with an initial population that was heavily enriched with incorrect structures, our particle swarm approach could converge

  1. Genome-wide analysis of the GH3 family in apple (Malus × domestica).

    Science.gov (United States)

    Yuan, Huazhao; Zhao, Kai; Lei, Hengjiu; Shen, Xinjie; Liu, Yun; Liao, Xiong; Li, Tianhong

    2013-05-02

    Auxin plays important roles in hormone crosstalk and the plant's stress response. The auxin-responsive Gretchen Hagen3 (GH3) gene family maintains hormonal homeostasis by conjugating excess indole-3-acetic acid (IAA), salicylic acid (SA), and jasmonic acids (JAs) to amino acids during hormone- and stress-related signaling pathways. With the sequencing of the apple (Malus × domestica) genome completed, it is possible to carry out genomic studies on GH3 genes to indentify candidates with roles in abiotic/biotic stress responses. Malus sieversii Roem., an apple rootstock with strong drought tolerance and the ancestral species of cultivated apple species, was used as the experimental material. Following genome-wide computational and experimental identification of MdGH3 genes, we showed that MdGH3s were differentially expressed in the leaves and roots of M. sieversii and that some of these genes were significantly induced after various phytohormone and abiotic stress treatments. Given the role of GH3 in the negative feedback regulation of free IAA concentration, we examined whether phytohormones and abiotic stresses could alter the endogenous auxin level. By analyzing the GUS activity of DR5::GUS-transformed Arabidopsis seedlings, we showed that ABA, SA, salt, and cold treatments suppressed the auxin response. These findings suggest that other phytohormones and abiotic stress factors might alter endogenous auxin levels. Previous studies showed that GH3 genes regulate hormonal homeostasis. Our study indicated that some GH3 genes were significantly induced in M. sieversii after various phytohormone and abiotic stress treatments, and that ABA, SA, salt, and cold treatments reduce the endogenous level of axuin. Taken together, this study provides evidence that GH3 genes play important roles in the crosstalk between auxin, other phytohormones, and the abiotic stress response by maintaining auxin homeostasis.

  2. Adiponectin in mice with altered GH action: links to insulin sensitivity and longevity?

    Science.gov (United States)

    Lubbers, Ellen R; List, Edward O; Jara, Adam; Sackman-Sala, Lucila; Cordoba-Chacon, Jose; Gahete, Manuel D; Kineman, Rhonda D; Boparai, Ravneet; Bartke, Andrzej; Kopchick, John J; Berryman, Darlene E

    2013-03-01

    Adiponectin is positively correlated with longevity and negatively correlated with many obesity-related diseases. While there are several circulating forms of adiponectin, the high-molecular-weight (HMW) version has been suggested to have the predominant bioactivity. Adiponectin gene expression and cognate serum protein levels are of particular interest in mice with altered GH signaling as these mice exhibit extremes in obesity that are positively associated with insulin sensitivity and lifespan as opposed to the typical negative association of these factors. While a few studies have reported total adiponectin levels in young adult mice with altered GH signaling, much remains unresolved, including changes in adiponectin levels with advancing age, proportion of total adiponectin in the HMW form, adipose depot of origin, and differential effects of GH vs IGF1. Therefore, the purpose of this study was to address these issues using assorted mouse lines with altered GH signaling. Our results show that adiponectin is generally negatively associated with GH activity, regardless of age. Further, the amount of HMW adiponectin is consistently linked with the level of total adiponectin and not necessarily with previously reported lifespan or insulin sensitivity of these mice. Interestingly, circulating adiponectin levels correlated strongly with inguinal fat mass, implying that the effects of GH on adiponectin are depot specific. Interestingly, rbGH, but not IGF1, decreased circulating total and HMW adiponectin levels. Taken together, these results fill important gaps in the literature related to GH and adiponectin and question the frequently reported associations of total and HMW adiponectin with insulin sensitivity and longevity.

  3. The kidneys play a central role in the clearance of rhGH in rats

    DEFF Research Database (Denmark)

    Vestergaard, Bill; Thygesen, Peter; Kreilgaard, Mads

    2016-01-01

    at treatment of patients with growth hormone disorders. The purpose of this study was to investigate the relative importance of the kidneys in the clearance of rhGH. The study employed a newly validated nephrectomy rat model and a population based pharmacokinetic approach to assess renal clearance of rh...... that renal clearance plays a pivotal role in the elimination of rhGH in rats....

  4. GH receptor blocker administration and muscle-tendon collagen synthesis in humans

    DEFF Research Database (Denmark)

    Nielsen, Rie Harboe; Doessing, Simon; Goto, Kazushige

    2011-01-01

    The growth hormone (GH)/insulin-like growth factor-I (IGF-I) axis stimulates collagen synthesis in tendon and skeletal muscle, but no studies have investigated the effect of reducing IGF-I on collagen synthesis in healthy humans.......The growth hormone (GH)/insulin-like growth factor-I (IGF-I) axis stimulates collagen synthesis in tendon and skeletal muscle, but no studies have investigated the effect of reducing IGF-I on collagen synthesis in healthy humans....

  5. GH dysfunction in Engrailed-2 knockout mice, a model for autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Giovanni eProvenzano

    2014-09-01

    Full Text Available Insulin-like growth factor 1 (IGF-1 signaling promotes brain development and plasticity. Altered IGF-1 expression has been associated to autism spectrum disorders (ASD. IGF-1 levels were found increased in the blood and decreased in the cerebrospinal fluid of ASD children. Accordingly, IGF-1 treatment can rescue behavioral deficits in mouse models of ASD, and IGF-1 trials have been proposed for ASD children. IGF-1 is mainly synthesized in the liver, and its synthesis is dependent on growth hormone (GH produced in the pituitary gland. GH also modulates cognitive functions, and altered levels of GH have been detected in ASD patients.Here we analyzed the expression of GH, IGF-1, their receptors and regulatory hormones in the neuroendocrine system of adult male mice lacking the homeobox transcription factor Engrailed-2 (En2-/- mice. En2-/- mice display ASD-like behaviors (social interactions, defective spatial learning, increased seizure susceptibility accompanied by relevant neuropathological changes (loss of cerebellar and forebrain inhibitory neurons. Recent studies showed that En2 modulates IGF-1 activity during postnatal cerebellar development.We found that GH mRNA expression was markedly deregulated throughout the neuroendocrine axis in En2-/- mice, as compared to wild-type (WT controls. In mutant mice, GH mRNA levels were significantly increased in the pituitary gland, blood and liver, whereas decreased levels were detected in the hippocampus. These changes were paralleled by decreased levels of GH protein in the hippocampus but not other tissues of En2-/- mice. IGF-1 mRNA was significantly up-regulated in the liver and down-regulated in the En2-/- hippocampus, but no differences were detected in the levels of IGF-1 protein between the two genotypes. Our data strengthen the notion that altered GH levels in the hippocampus may be involved in learning disabilities associated to ASD.

  6. Effects of dietary genistein on GH/IGF-I axis of Nile tilapia Oreochromis niloticus

    Science.gov (United States)

    Chen, Dong; Wang, Wei; Ru, Shaoguo

    2016-09-01

    There is considerable concern that isoflavones, such as genistein in fish feed composed of soybean protein, aff ects somatic growth in fish. Our previous works demonstrated that 30 and 300 μg/g dietary genistein had no significant eff ect on growth performance in Nile tilapia ( Oreochromis niloticus), but the higher level of genistein (3 000 μg/g) significantly depressed growth. This study was conducted to further examine the eff ects of dietary genistein on the endocrine disruption on growth hormone/insulin-like growth factor-I (GH/IGF-I) axis in Nile tilapia ( O. niloticus). Juvenile fish were fed by hand twice daily to satiation with one of four isonitrogenous and isoenergetic diets, each containing either 0, 30, 300 or 3 000 μg/g genistein. Following an 8-week feeding period, plasma GH and IGF-I levels were investigated by radioimmunoassay and gene expression levels of gh, ghrelin, gnrhs, ghr, npy, npyrs, pacap, ghrs, i gf-I, igf-Ir, and igfbp3 were examined by real-time PCR. The results show that no significant change in plasma GH and IGF-I levels in fish fed with diets containing 30 μg/g and 300 μg/g genistein. mRNA expression of genes along the GH/IGF-I axis remained unaff ected, except for igf-Ir, which was stimulated by the 300 μg/g genistein diet. While in fish fed the 3 000 μg/g genistein diet, the plasma GH and IGF-I levels decreased, and mRNA expression of gh, ghr2, npyr1, igf-I, and igf-Ir were also significantly depressed. In contrast, npy and igfbp3 mRNA expression were enhanced. This study provides convincing evidence for growth impediment by genistein by disturbing the GH/IGF-I axis in Nile tilapia O. niloticus.

  7. GhNAC18 , a novel cotton ( Gossypium hirsutum L.) NAC gene, is ...

    African Journals Online (AJOL)

    GhNAC18 is a novel NAC gene that was isolated from cotton (Gossypium hirsutum L.). The full-length cDNA was 1511 bp including an open reading frame of 1260 bp in length and encodes a protein of 419 amino acids. With qRT-PCR analysis, GhNAC18 was downregulated during natural and dark-induced senescence, ...

  8. Primary Phenomenon in the Network Formation of Endothelial Cells: Effect of Charge.

    Science.gov (United States)

    Arai, Shunto

    2015-12-07

    Blood vessels are essential organs that are involved in the supply of nutrients and oxygen and play an important role in regulating the body's internal environment, including pH, body temperature, and water homeostasis. Many studies have examined the formation of networks of endothelial cells. The results of these studies have revealed that vascular endothelial growth factor (VEGF) affects the interactions of these cells and modulates the network structure. Though almost all previous simulation studies have assumed that the chemoattractant VEGF is present before network formation, vascular endothelial cells secrete VEGF only after the cells bind to the substrate. This suggests VEGF is not essential for vasculogenesis especially at the early stage. Using a simple experiment, we find chain-like structures which last quite longer than it is expected, unless the energetically stable cluster should be compact. Using a purely physical model and simulation, we find that the hydrodynamic interaction retard the compaction of clusters and that the chains are stabilized through the effects of charge. The charge at the surface of the cells affect the interparticle potential, and the resulting repulsive forces prevent the chains from folding. The ions surrounding the cells may also be involved in this process.

  9. Growth hormone biases amygdala network activation after fear learning.

    Science.gov (United States)

    Gisabella, B; Farah, S; Peng, X; Burgos-Robles, A; Lim, S H; Goosens, K A

    2016-11-29

    Prolonged stress exposure is a risk factor for developing posttraumatic stress disorder, a disorder characterized by the 'over-encoding' of a traumatic experience. A potential mechanism by which this occurs is through upregulation of growth hormone (GH) in the amygdala. Here we test the hypotheses that GH promotes the over-encoding of fearful memories by increasing the number of neurons activated during memory encoding and biasing the allocation of neuronal activation, one aspect of the process by which neurons compete to encode memories, to favor neurons that have stronger inputs. Viral overexpression of GH in the amygdala increased the number of amygdala cells activated by fear memory formation. GH-overexpressing cells were especially biased to express the immediate early gene c-Fos after fear conditioning, revealing strong autocrine actions of GH in the amygdala. In addition, we observed dramatically enhanced dendritic spine density in GH-overexpressing neurons. These data elucidate a previously unrecognized autocrine role for GH in the regulation of amygdala neuron function and identify specific mechanisms by which chronic stress, by enhancing GH in the amygdala, may predispose an individual to excessive fear memory formation.

  10. [Cellular adhesion signal transduction network of tumor necrosis factor-alpha induced hepatocellular carcinoma cells].

    Science.gov (United States)

    Zheng, Yongchang; Du, Shunda; Xu, Haifeng; Xu, Yiyao; Zhao, Haitao; Chi, Tianyi; Lu, Xin; Sang, Xinting; Mao, Yilei

    2014-11-18

    To systemically explore the cellular adhesion signal transduction network of tumor necrosis factor-alpha (TNF-α)-induced hepatocellular carcinoma cells with bioinformatics tools. Published microarray dataset of TNF-α-induced HepG2, human transcription factor database HTRI and human protein-protein interaction database HPRD were used to construct and analyze the signal transduction network. In the signal transduction network, MYC and SP1 were the key nodes of signaling transduction. Several genes from the network were closely related with cellular adhesion.Epidermal growth factor receptor (EGFR) is a possible key gene of effectively regulating cellular adhesion during the induction of TNF-α. EGFR is a possible key gene for TNF-α-induced metastasis of hepatocellular carcinoma.

  11. Oversight and management of a cell therapy clinical trial network: experience and lessons learned.

    Science.gov (United States)

    Moyé, Lemuel A; Sayre, Shelly L; Westbrook, Lynette; Jorgenson, Beth C; Handberg, Eileen; Anwaruddin, Saif; Wagner, Kristi A; Skarlatos, Sonia I

    2011-09-01

    The Cardiovascular Cell Therapy Research Network (CCTRN), sponsored by the National Heart, Lung, and Blood Institute (NHLBI), was established to develop, coordinate, and conduct multiple collaborative protocols testing the effects of cell therapy on cardiovascular diseases. The Network was born into a difficult political and ethical climate created by the recent removal of a dozen drugs from the US formulary and the temporary halting of 27 gene therapy trials due to safety concerns. This article describes the Network's challenges as it initiated three protocols in a polarized cultural atmosphere at a time when oversight bodies were positioning themselves for the tightest vigilance of promising new therapies. Effective strategies involving ongoing education, open communication, and relationship building with the oversight community are discussed. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Improving Spiking Dynamical Networks: Accurate Delays, Higher-Order Synapses, and Time Cells.

    Science.gov (United States)

    Voelker, Aaron R; Eliasmith, Chris

    2018-03-01

    Researchers building spiking neural networks face the challenge of improving the biological plausibility of their model networks while maintaining the ability to quantitatively characterize network behavior. In this work, we extend the theory behind the neural engineering framework (NEF), a method of building spiking dynamical networks, to permit the use of a broad class of synapse models while maintaining prescribed dynamics up to a given order. This theory improves our understanding of how low-level synaptic properties alter the accuracy of high-level computations in spiking dynamical networks. For completeness, we provide characterizations for both continuous-time (i.e., analog) and discrete-time (i.e., digital) simulations. We demonstrate the utility of these extensions by mapping an optimal delay line onto various spiking dynamical networks using higher-order models of the synapse. We show that these networks nonlinearly encode rolling windows of input history, using a scale invariant representation, with accuracy depending on the frequency content of the input signal. Finally, we reveal that these methods provide a novel explanation of time cell responses during a delay task, which have been observed throughout hippocampus, striatum, and cortex.

  13. Relay-aided multi-cell broadcasting with random network coding

    DEFF Research Database (Denmark)

    Lu, Lu; Sun, Fan; Xiao, Ming

    2010-01-01

    We investigate a relay-aided multi-cell broadcasting system using random network codes, where the focus is on devising efficient scheduling algorithms between relay and base stations. Two scheduling algorithms are proposed based on different feedback strategies; namely, a one-step scheduling...

  14. A Stochastic Geometry Framework for LOS/NLOS Propagation in Dense Small Cell Networks

    DEFF Research Database (Denmark)

    Galiotto, Carlo; Kiilerich Pratas, Nuno; Marchetti, Nicola

    2015-01-01

    The need to carry out analytical studies of wireless systems often motivates the usage of simplified models which, despite their tractability, can easily lead to an overestimation of the achievable performance. In the case of dense small cells networks, the standard single slope path-loss model h...

  15. Bio-inspired fuel cells for miniaturized body-area-networks applications

    NARCIS (Netherlands)

    Xu, Wei; Gao, Lu; Danilov, Dmitri; Pop, V.; Notten, Peter

    2010-01-01

    The improvement in quality of modern health-care is closely related to the need for medical autonomous systems that enable people to ‘carry’ their personal wireless Body-Area-Network (BAN). Bio-inspired fuel cells (BFC) are a promising approach of energy harvesting to achieve autonomy and

  16. Resource allocation via sum-rate maximization in the uplink of multi-cell OFDMA networks

    KAUST Repository

    Tabassum, Hina; Alouini, Mohamed-Slim; Dawy, Zaher

    2012-01-01

    In this paper, we consider maximizing the sum rate in the uplink of a multi-cell orthogonal frequency-division multiple access network. The problem has a non-convex combinatorial structure and is known to be NP-hard. Because of the inherent

  17. GhWRKY68 reduces resistance to salt and drought in transgenic Nicotiana benthamiana.

    Directory of Open Access Journals (Sweden)

    Haihong Jia

    Full Text Available The WRKY transcription factors modulate numerous physiological processes, including plant growth, development and responses to various environmental stresses. Currently, our understanding of the functions of the majority of the WRKY family members and their possible roles in signalling crosstalk is limited. In particular, very few WRKYs have been identified and characterised from an economically important crop, cotton. In this study, we characterised a novel group IIc WRKY gene, GhWRKY68, which is induced by different abiotic stresses and multiple defence-related signalling molecules. The β-glucuronidase activity driven by the GhWRKY68 promoter was enhanced after exposure to drought, salt, abscisic acid (ABA and H2O2. The overexpression of GhWRKY68 in Nicotiana benthamiana reduced resistance to drought and salt and affected several physiological indices. GhWRKY68 may mediate salt and drought responses by modulating ABA content and enhancing the transcript levels of ABA-responsive genes. GhWRKY68-overexpressing plants exhibited reduced tolerance to oxidative stress after drought and salt stress treatments, which correlated with the accumulation of reactive oxygen species (ROS, reduced enzyme activities, elevated malondialdehyde (MDA content and altered ROS-related gene expression. These results indicate that GhWRKY68 is a transcription factor that responds to drought and salt stresses by regulating ABA signalling and modulating cellular ROS.

  18. GH response to intravenous clonidine challenge correlates with history of childhood trauma in personality disorder.

    Science.gov (United States)

    Lee, Royce J; Fanning, Jennifer R; Coccaro, Emil F

    2016-05-01

    Childhood trauma is a risk factor for personality disorder. We have previously shown that childhood trauma is associated with increased central corticotrophin-releasing hormone concentration in adults with personality disorder. In the brain, the release of corticotrophin-releasing hormone can be stimulated by noradrenergic neuronal activity, raising the possibility that childhood trauma may affect the hypothalamic-pituitary adrenal (HPA) axis by altering brain noradrenergic function. In this study, we sought to test the hypothesis that childhood trauma is associated with blunted growth hormone response to the α-2 adrenergic autoreceptor agonist clonidine. All subjects provided written informed consent. Twenty personality disordered and twenty healthy controls (without personality disorder or Axis I psychopathology) underwent challenge with clonidine, while plasma Growth Hormone (GH) concentration was monitored by intravenous catheter. On a different study session, subjects completed the Childhood Trauma Questionnaire and underwent diagnostic interviews. Contrary to our a priori hypothesis, childhood trauma was associated with enhanced GH response to clonidine. This positive relationship was present in the group of 40 subjects and in the subgroup 20 personality disordered subjects, but was not detected in the healthy control subjects when analyzed separately. The presence of personality disorder was unrelated to the magnitude of GH response. Childhood trauma is positively correlated with GH response to clonidine challenge in adults with personality disorder. Enhanced rather that blunted GH response differentiates childhood trauma from previously identified negative predictors of GH response, such as anxiety or mood disorder. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Antimicrobial peptide GH12 suppresses cariogenic virulence factors of Streptococcus mutans

    Science.gov (United States)

    Wang, Yufei; Wang, Xiuqing; Jiang, Wentao; Wang, Kun; Luo, Junyuan; Li, Wei; Zhou, Xuedong; Zhang, Linglin

    2018-01-01

    ABSTRACT Cariogenic virulence factors of Streptococcus mutans include acidogenicity, aciduricity, and extracellular polysaccharides (EPS) synthesis. The de novo designed antimicrobial peptide GH12 has shown bactericidal effects on S. mutans, but its interaction with virulence and regulatory systems of S. mutans remains to be elucidated. The objectives were to investigate the effects of GH12 on virulence factors of S. mutans, and further explore the function mechanisms at enzymatic and transcriptional levels. To avoid decrease in bacterial viability, we limited GH12 to subinhibitory levels. We evaluated effects of GH12 on acidogenicity of S. mutans by pH drop, lactic acid measurement and lactate dehydrogenase (LDH) assay, on aciduricity through survival rate at pH 5.0 and F1F0-ATPase assay, and on EPS synthesis using quantitative measurement, morphology observation, vertical distribution analyses and biomass calculation. Afterwards, we conducted quantitative real-time PCR to acquire the expression profile of related genes. GH12 at 1/2 MIC (4 mg/L) inhibited acid production, survival rate, EPS synthesis, and biofilm formation. The enzymatic activity of LDH and F1F0-ATPase was inhibited, and ldh, gtfBCD, vicR, liaR, and comDE genes were significantly downregulated. In conclusion, GH12 inhibited virulence factors of S. mutans, through reducing the activity of related enzymes, downregulating virulence genes, and inactivating specific regulatory systems. PMID:29503706

  20. Purification and characterization of a GH43 β-xylosidase from Enterobacter sp. identified and cloned from forest soil bacteria.

    Science.gov (United States)

    Campos, Eleonora; Negro Alvarez, María José; Sabarís di Lorenzo, Gonzalo; Gonzalez, Sergio; Rorig, Marcela; Talia, Paola; Grasso, Daniel H; Sáez, Felicia; Manzanares Secades, Paloma; Ballesteros Perdices, Mercedes; Cataldi, Angel A

    2014-01-01

    The use of lignocellulosic biomass for second generation biofuels requires optimization of enzymatic breakdown of plant cell walls. In this work, cellulolytic bacteria were isolated from a native and two cultivated forest soil samples. Amplification of glycosyl hydrolases was attempted by using a low stringency-degenerate primer PCR strategy, using total soil DNA and bulk DNA pooled from positive colonies as template. A set of primers was designed based on Acidothermus cellulolyticus genome, by search of conserved domains of glycosyl hydrolases (GH) families of interest. Using this approach, a fragment containing an open reading frame (ORF) with 98% identity to a putative GH43 beta-xylosidase coding gene from Enterobacter cloacae was amplified and cloned. The full protein was expressed in Escherichia coli as N-terminal or C-terminal His-tagged fusions and purified under native conditions. Only N-terminal fusion protein, His-Xyl43, presented beta-xylosidase activity. On pNPX, optimal activity was achieved at pH 6 and 40 °C and Km and Kcat values were 2.92 mM and 1.32 seg(-1), respectively. Activity was also demonstrated on xylobiose (X2), with Km 17.8 mM and Kcat 380 s(-1). These results demonstrated that Xyl43 is a functional beta-xylosidase and it is the first evidence of this activity for Enterobacter sp. Copyright © 2013 Elsevier GmbH. All rights reserved.

  1. Daphnia magna and Xenopus laevis as in vivo models to probe toxicity and uptake of quantum dots functionalized with gH625

    Directory of Open Access Journals (Sweden)

    Galdiero E

    2017-04-01

    Full Text Available Emilia Galdiero,1 Annarita Falanga,2 Antonietta Siciliano,1 Valeria Maselli,1 Marco Guida,1 Rosa Carotenuto,1 Margherita Tussellino,1 Lucia Lombardi,3 Giovanna Benvenuto,4 Stefania Galdiero2 1Department of Biology, 2Department of Pharmacy and CiRPEB, University of Naples Federico II, 3Department of Experimental Medicine, Second University of Naples, 4Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy Abstract: The use of quantum dots (QDs for nanomedicine is hampered by their potential toxicologic effects and difficulties with delivery into the cell interior. We accomplished an in vivo study exploiting Daphnia magna and Xenopus laevis to evaluate both toxicity and uptake of QDs coated with the membranotropic peptide gH625 derived from the glycoprotein H of herpes simplex virus and widely used for drug delivery studies. We evaluated and compared the effects of QDs and gH625-QDs on the survival, uptake, induction of several responsive pathways and genotoxicity in D. magna, and we found that QDs coating plays a key role. Moreover, studies on X. laevis embryos allowed to better understand their cell/tissue localization and delivery efficacy. X. laevis embryos raised in Frog Embryo Teratogenesis Assay-Xenopus containing QDs or gH625-QDs showed that both nanoparticles localized in the gills, lung and intestine, but they showed different distributions, indicating that the uptake of gH625-QDs was enhanced; the functionalized QDs had a significantly lower toxic effect on embryos’ survival and phenotypes. We observed that D. magna and X. laevis are useful in vivo models for toxicity and drug delivery studies. Keywords: membranotropic peptide, delivery, blood–brain barrier, nanoparticles, genotoxicity

  2. Glycoprotein H of herpes simplex virus type 1 requires glycoprotein L for transport to the surfaces of insect cells

    NARCIS (Netherlands)

    Westra, DF; Glazenburg, KL; Harmsen, MC; Tiran, A; Scheffer, AJ; Welling, GW; The, TH; WellingWester, S

    In mammalian cells, formation of heterooligomers consisting of the glycoproteins H and L (gH and gL) of herpes simplex virus type 1 is essential for the cell-to-cell spread of virions and for the penetration of virions into cells. We examined whether formation of gH1/gL1 heterooligomers and cell

  3. Integrative modelling of the influence of MAPK network on cancer cell fate decision.

    Directory of Open Access Journals (Sweden)

    Luca Grieco

    2013-10-01

    Full Text Available The Mitogen-Activated Protein Kinase (MAPK network consists of tightly interconnected signalling pathways involved in diverse cellular processes, such as cell cycle, survival, apoptosis and differentiation. Although several studies reported the involvement of these signalling cascades in cancer deregulations, the precise mechanisms underlying their influence on the balance between cell proliferation and cell death (cell fate decision in pathological circumstances remain elusive. Based on an extensive analysis of published data, we have built a comprehensive and generic reaction map for the MAPK signalling network, using CellDesigner software. In order to explore the MAPK responses to different stimuli and better understand their contributions to cell fate decision, we have considered the most crucial components and interactions and encoded them into a logical model, using the software GINsim. Our logical model analysis particularly focuses on urinary bladder cancer, where MAPK network deregulations have often been associated with specific phenotypes. To cope with the combinatorial explosion of the number of states, we have applied novel algorithms for model reduction and for the compression of state transition graphs, both implemented into the software GINsim. The results of systematic simulations for different signal combinations and network perturbations were found globally coherent with published data. In silico experiments further enabled us to delineate the roles of specific components, cross-talks and regulatory feedbacks in cell fate decision. Finally, tentative proliferative or anti-proliferative mechanisms can be connected with established bladder cancer deregulations, namely Epidermal Growth Factor Receptor (EGFR over-expression and Fibroblast Growth Factor Receptor 3 (FGFR3 activating mutations.

  4. Lumbar Myeloid Cell Trafficking into Locomotor Networks after Thoracic Spinal Cord Injury

    Science.gov (United States)

    Hansen, Christopher N.; Norden, Diana M.; Faw, Timothy D.; Deibert, Rochelle; S.Wohleb, Eric; Sheridan, John F.; P.Godbout, Jonathan; Basso, D. Michele

    2016-01-01

    Spinal cord injury (SCI) promotes inflammation along the neuroaxis that jeopardizes plasticity, intrinsic repair and recovery. While inflammation at the injury site is well-established, less is known within remote spinal networks. The presence of bone marrow-derived immune (myeloid) cells in these areas may further impede functional recovery. Previously, high levels of the gelatinase, matrix metalloproteinase-9 (MMP-9) occurred within the lumbar enlargement after thoracic SCI and impeded activity-dependent recovery. Since SCI-induced MMP-9 potentially increases vascular permeability, myeloid cell infiltration may drive inflammatory toxicity in locomotor networks. Therefore, we examined neurovascular reactivity and myeloid cell infiltration in the lumbar cord after thoracic SCI. We show evidence of region-specific recruitment of myeloid cells into the lumbar but not cervical region. Myeloid infiltration occurred with concomitant increases in chemoattractants (CCL2) and cell adhesion molecules (ICAM-1) around lumbar vasculature 24 hours and 7 days post injury. Bone marrow GFP chimeric mice established robust infiltration of bone marrow-derived myeloid cells into the lumbar gray matter 24 hours after SCI. This cell infiltration occurred when the blood-spinal cord barrier was intact, suggesting active recruitment across the endothelium. Myeloid cells persisted as ramified macrophages at 7 days post injury in parallel with increased inhibitory GAD67 labeling. Importantly, macrophage infiltration required MMP-9. PMID:27191729

  5. Characteristics of DNA-AuNP networks on cell membranes and real-time movies for viral infection.

    Science.gov (United States)

    Li, Chunmei; Zheng, Linling; Yang, Xiaoxi; Wan, Xiaoyan; Wu, Wenbi; Zhen, Shujun; Li, Yuanfang; Luo, Lingfei; Huang, Chengzhi

    2016-03-01

    This data article provides complementary data for the article entitled "DNA-AuNP networks on cell membranes as a protective barrier to inhibit viral attachment, entry and budding" Li et al. (2016) [1]. The experimental methods for the preparation and characterization of DNA-conjugated nanoparticle networks on cell membranes were described. Confocal fluorescence images, agarose gel electrophoresis images and hydrodynamic diameter of DNA-conjugated gold nanoparticle (DNA-AuNP) networks were presented. In addition, we have prepared QDs-labeled RSV (QDs-RSV) to real-time monitor the RSV infection on HEp-2 cells in the absence and presence of DNA-AuNP networks. Finally, the cell viability of HEp-2 cells coated by six types of DNA-nanoparticle networks was determined after RSV infection.

  6. Mucosal Ecological Network of Epithelium and Immune Cells for Gut Homeostasis and Tissue Healing.

    Science.gov (United States)

    Kurashima, Yosuke; Kiyono, Hiroshi

    2017-04-26

    The intestinal epithelial barrier includes columnar epithelial, Paneth, goblet, enteroendocrine, and tuft cells as well as other cell populations, all of which contribute properties essential for gastrointestinal homeostasis. The intestinal mucosa is covered by mucin, which contains antimicrobial peptides and secretory IgA and prevents luminal bacteria, fungi, and viruses from stimulating intestinal immune responses. Conversely, the transport of luminal microorganisms-mediated by M, dendritic, and goblet cells-into intestinal tissues facilitates the harmonization of active and quiescent mucosal immune responses. The bacterial population within gut-associated lymphoid tissues creates the intratissue cohabitations for harmonized mucosal immunity. Intermolecular and intercellular communication among epithelial, immune, and mesenchymal cells creates an environment conducive for epithelial regeneration and mucosal healing. This review summarizes the so-called intestinal mucosal ecological network-the complex but vital molecular and cellular interactions of epithelial mesenchymal cells, immune cells, and commensal microbiota that achieve intestinal homeostasis, regeneration, and healing.

  7. A Neural Network Based Workstation for Automated Cell Proliferation Analysis

    Science.gov (United States)

    2001-10-25

    work was supported by the Programa de Apoyo a Proyectos de Desarrollo e Investigacíon en Informática REDII 2000. We thank Blanca Itzel Taboada for...Meléndez1, G. Corkidi.2 1Centro de Instrumentos, UNAM. P.O. Box 70-186, México 04510, D.F. 2Instituto de Biotecnología, UNAM. P.O. Box 510-3, 62250...proliferation analysis, of cytological microscope images. The software of the system assists the expert biotechnologist during cell proliferation and

  8. In Vitro Reconstruction of Neuronal Networks Derived from Human iPS Cells Using Microfabricated Devices.

    Directory of Open Access Journals (Sweden)

    Yuzo Takayama

    Full Text Available Morphology and function of the nervous system is maintained via well-coordinated processes both in central and peripheral nervous tissues, which govern the homeostasis of organs/tissues. Impairments of the nervous system induce neuronal disorders such as peripheral neuropathy or cardiac arrhythmia. Although further investigation is warranted to reveal the molecular mechanisms of progression in such diseases, appropriate model systems mimicking the patient-specific communication between neurons and organs are not established yet. In this study, we reconstructed the neuronal network in vitro either between neurons of the human induced pluripotent stem (iPS cell derived peripheral nervous system (PNS and central nervous system (CNS, or between PNS neurons and cardiac cells in a morphologically and functionally compartmentalized manner. Networks were constructed in photolithographically microfabricated devices with two culture compartments connected by 20 microtunnels. We confirmed that PNS and CNS neurons connected via synapses and formed a network. Additionally, calcium-imaging experiments showed that the bundles originating from the PNS neurons were functionally active and responded reproducibly to external stimuli. Next, we confirmed that CNS neurons showed an increase in calcium activity during electrical stimulation of networked bundles from PNS neurons in order to demonstrate the formation of functional cell-cell interactions. We also confirmed the formation of synapses between PNS neurons and mature cardiac cells. These results indicate that compartmentalized culture devices are promising tools for reconstructing network-wide connections between PNS neurons and various organs, and might help to understand patient-specific molecular and functional mechanisms under normal and pathological conditions.

  9. Signaling network of dendritic cells in response to pathogens: a community-input supported knowledgebase

    Directory of Open Access Journals (Sweden)

    Nudelman Irina

    2010-10-01

    Full Text Available Abstract Background Dendritic cells are antigen-presenting cells that play an essential role in linking the innate and adaptive immune systems. Much research has focused on the signaling pathways triggered upon infection of dendritic cells by various pathogens. The high level of activity in the field makes it desirable to have a pathway-based resource to access the information in the literature. Current pathway diagrams lack either comprehensiveness, or an open-access editorial interface. Hence, there is a need for a dependable, expertly curated knowledgebase that integrates this information into a map of signaling networks. Description We have built a detailed diagram of the dendritic cell signaling network, with the goal of providing researchers with a valuable resource and a facile method for community input. Network construction has relied on comprehensive review of the literature and regular updates. The diagram includes detailed depictions of pathways activated downstream of different pathogen recognition receptors such as Toll-like receptors, retinoic acid-inducible gene-I-like receptors, C-type lectin receptors and nucleotide-binding oligomerization domain-like receptors. Initially assembled using CellDesigner software, it provides an annotated graphical representation of interactions stored in Systems Biology Mark-up Language. The network, which comprises 249 nodes and 213 edges, has been web-published through the Biological Pathway Publisher software suite. Nodes are annotated with PubMed references and gene-related information, and linked to a public wiki, providing a discussion forum for updates and corrections. To gain more insight into regulatory patterns of dendritic cell signaling, we analyzed the network using graph-theory methods: bifan, feedforward and multi-input convergence motifs were enriched. This emphasis on activating control mechanisms is consonant with a network that subserves persistent and coordinated responses to

  10. Signaling network of dendritic cells in response to pathogens: a community-input supported knowledgebase.

    Science.gov (United States)

    Patil, Sonali; Pincas, Hanna; Seto, Jeremy; Nudelman, German; Nudelman, Irina; Sealfon, Stuart C

    2010-10-07

    Dendritic cells are antigen-presenting cells that play an essential role in linking the innate and adaptive immune systems. Much research has focused on the signaling pathways triggered upon infection of dendritic cells by various pathogens. The high level of activity in the field makes it desirable to have a pathway-based resource to access the information in the literature. Current pathway diagrams lack either comprehensiveness, or an open-access editorial interface. Hence, there is a need for a dependable, expertly curated knowledgebase that integrates this information into a map of signaling networks. We have built a detailed diagram of the dendritic cell signaling network, with the goal of providing researchers with a valuable resource and a facile method for community input. Network construction has relied on comprehensive review of the literature and regular updates. The diagram includes detailed depictions of pathways activated downstream of different pathogen recognition receptors such as Toll-like receptors, retinoic acid-inducible gene-I-like receptors, C-type lectin receptors and nucleotide-binding oligomerization domain-like receptors. Initially assembled using CellDesigner software, it provides an annotated graphical representation of interactions stored in Systems Biology Mark-up Language. The network, which comprises 249 nodes and 213 edges, has been web-published through the Biological Pathway Publisher software suite. Nodes are annotated with PubMed references and gene-related information, and linked to a public wiki, providing a discussion forum for updates and corrections. To gain more insight into regulatory patterns of dendritic cell signaling, we analyzed the network using graph-theory methods: bifan, feedforward and multi-input convergence motifs were enriched. This emphasis on activating control mechanisms is consonant with a network that subserves persistent and coordinated responses to pathogen detection. This map represents a navigable

  11. Protein and signaling networks in vertebrate photoreceptor cells

    Directory of Open Access Journals (Sweden)

    Karl-Wilhelm eKoch

    2015-11-01

    Full Text Available Vertebrate photoreceptor cells are exquisite light detectors operating under very dim and bright illumination. The photoexcitation and adaptation machinery in photoreceptor cells consists of protein complexes that can form highly ordered supramolecular structures and control the homeostasis and mutual dependence of the secondary messengers cGMP and Ca2+. The visual pigment in rod photoreceptors, the G protein-coupled receptor rhodopsin is organized in tracks of dimers thereby providing a signaling platform for the dynamic scaffolding of the G protein transducin. Illuminated rhodopsin is turned off by phosphorylation catalyzed by rhodopsin kinase GRK1 under control of Ca2+-recoverin. The GRK1 protein complex partly assembles in lipid raft structures, where shutting off rhodopsin seems to be more effective. Re-synthesis of cGMP is another crucial step in the recovery of the photoresponse after illumination. It is catalyzed by membrane bound sensory guanylate cyclases and is regulated by specific neuronal Ca2+-sensor proteins called GCAPs. At least one guanylate cyclase (ROS-GC1 was shown to be part of a multiprotein complex having strong interactions with the cytoskeleton and being controlled in a multimodal Ca2+-dependent fashion. The final target of the cGMP signaling cascade is a cyclic nucleotide-gated channel that is a hetero-oligomeric protein located in the plasma membrane and interacting with accessory proteins in highly organized microdomains. We summarize results and interpretations of findings related to the inhomogeneous organization of signaling units in photoreceptor outer segments.

  12. GH97 is a new family of glycoside hydrolases, which is related to the α-galactosidase superfamily

    Directory of Open Access Journals (Sweden)

    Naumoff Daniil G

    2005-08-01

    Full Text Available Abstract Background As a rule, about 1% of genes in a given genome encode glycoside hydrolases and their homologues. On the basis of sequence similarity they have been grouped into more than ninety GH families during the last 15 years. The GH97 family has been established very recently and initially included only 18 bacterial proteins. However, the evolutionary relationship of the genes encoding proteins of this family remains unclear, as well as their distribution among main groups of the living organisms. Results The extensive search of the current databases allowed us to double the number of GH97 family proteins. Five subfamilies were distinguished on the basis of pairwise sequence comparison and phylogenetic analysis. Iterative sequence analysis revealed the relationship of the GH97 family with the GH27, GH31, and GH36 families of glycosidases, which belong to the α-galactosidase superfamily, as well as a more distant relationship with some other glycosidase families (GH13 and GH20. Conclusion The results of this study show an unexpected sequence similarity of GH97 family proteins with glycoside hydrolases from several other families, that have (β/α8-barrel fold of the catalytic domain and a retaining mechanism of the glycoside bond hydrolysis. These data suggest a common evolutionary origin of glycosidases representing different families and clans.

  13. Modeling of a 5-cell direct methanol fuel cell using adaptive-network-based fuzzy inference systems

    Science.gov (United States)

    Wang, Rongrong; Qi, Liang; Xie, Xiaofeng; Ding, Qingqing; Li, Chunwen; Ma, ChenChi M.

    The methanol concentrations, temperature and current were considered as inputs, the cell voltage was taken as output, and the performance of a direct methanol fuel cell (DMFC) was modeled by adaptive-network-based fuzzy inference systems (ANFIS). The artificial neural network (ANN) and polynomial-based models were selected to be compared with the ANFIS in respect of quality and accuracy. Based on the ANFIS model obtained, the characteristics of the DMFC were studied. The results show that temperature and methanol concentration greatly affect the performance of the DMFC. Within a restricted current range, the methanol concentration does not greatly affect the stack voltage. In order to obtain higher fuel utilization efficiency, the methanol concentrations and temperatures should be adjusted according to the load on the system.

  14. Modeling of a 5-cell direct methanol fuel cell using adaptive-network-based fuzzy inference systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Rongrong; Li, Chunwen [Department of Automation, Tsinghua University, Beijing 100084 (China); Qi, Liang; Xie, Xiaofeng [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Ding, Qingqing [Department of Electrical Engineering, Tsinghua University, Beijing 100084 (China); Ma, ChenChi M. [National Tsing Hua University, Hsinchu 300 (China)

    2008-12-01

    The methanol concentrations, temperature and current were considered as inputs, the cell voltage was taken as output, and the performance of a direct methanol fuel cell (DMFC) was modeled by adaptive-network-based fuzzy inference systems (ANFIS). The artificial neural network (ANN) and polynomial-based models were selected to be compared with the ANFIS in respect of quality and accuracy. Based on the ANFIS model obtained, the characteristics of the DMFC were studied. The results show that temperature and methanol concentration greatly affect the performance of the DMFC. Within a restricted current range, the methanol concentration does not greatly affect the stack voltage. In order to obtain higher fuel utilization efficiency, the methanol concentrations and temperatures should be adjusted according to the load on the system. (author)

  15. Distributed Multi-Cell Resource Allocation with Price Based ICI Coordination in Downlink OFDMA Networks

    Science.gov (United States)

    Lv, Gangming; Zhu, Shihua; Hui, Hui

    Multi-cell resource allocation under minimum rate request for each user in OFDMA networks is addressed in this paper. Based on Lagrange dual decomposition theory, the joint multi-cell resource allocation problem is decomposed and modeled as a limited-cooperative game, and a distributed multi-cell resource allocation algorithm is thus proposed. Analysis and simulation results show that, compared with non-cooperative iterative water-filling algorithm, the proposed algorithm can remarkably reduce the ICI level and improve overall system performances.

  16. Estimating immunoregulatory gene networks in human herpesvirus type 6-infected T cells

    International Nuclear Information System (INIS)

    Takaku, Tomoiku; Ohyashiki, Junko H.; Zhang, Yu; Ohyashiki, Kazuma

    2005-01-01

    The immune response to viral infection involves complex network of dynamic gene and protein interactions. We present here the dynamic gene network of the host immune response during human herpesvirus type 6 (HHV-6) infection in an adult T-cell leukemia cell line. Using a pathway-focused oligonucleotide DNA microarray, we found a possible association between chemokine genes regulating Th1/Th2 balance and genes regulating T-cell proliferation during HHV-6B infection. Gene network analysis using an integrated comprehensive workbench, VoyaGene, revealed that a gene encoding a TEC-family kinase, ITK, might be a putative modulator in the host immune response against HHV-6B infection. We conclude that Th2-dominated inflammatory reaction in host cells may play an important role in HHV-6B-infected T cells, thereby suggesting the possibility that ITK might be a therapeutic target in diseases related to dysregulation of Th1/Th2 balance. This study describes a novel approach to find genes related with the complex host-virus interaction using microarray data employing the Bayesian statistical framework

  17. Using Regularization to Infer Cell Line Specificity in Logical Network Models of Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Sébastien De Landtsheer

    2018-05-01

    Full Text Available Understanding the functional properties of cells of different origins is a long-standing challenge of personalized medicine. Especially in cancer, the high heterogeneity observed in patients slows down the development of effective cures. The molecular differences between cell types or between healthy and diseased cellular states are usually determined by the wiring of regulatory networks. Understanding these molecular and cellular differences at the systems level would improve patient stratification and facilitate the design of rational intervention strategies. Models of cellular regulatory networks frequently make weak assumptions about the distribution of model parameters across cell types or patients. These assumptions are usually expressed in the form of regularization of the objective function of the optimization problem. We propose a new method of regularization for network models of signaling pathways based on the local density of the inferred parameter values within the parameter space. Our method reduces the complexity of models by creating groups of cell line-specific parameters which can then be optimized together. We demonstrate the use of our method by recovering the correct topology and inferring accurate values of the parameters of a small synthetic model. To show the value of our method in a realistic setting, we re-analyze a recently published phosphoproteomic dataset from a panel of 14 colon cancer cell lines. We conclude that our method efficiently reduces model complexity and helps recovering context-specific regulatory information.

  18. Structure-function relationships of family GH70 glucansucrase and 4,6-α-glucanotransferase enzymes, and their evolutionary relationships with family GH13 enzymes

    NARCIS (Netherlands)

    Meng, Xiangfeng; Gangoiti, Joana; Bai, Yuxiang; Pijning, Tjaard; Van Leeuwen, Sander S; Dijkhuizen, Lubbert

    2016-01-01

    Lactic acid bacteria (LAB) are known to produce large amounts of α-glucan exopolysaccharides. Family GH70 glucansucrase (GS) enzymes catalyze the synthesis of these α-glucans from sucrose. The elucidation of the crystal structures of representative GS enzymes has advanced our understanding of their

  19. Effects of a 7-day continuous infusion of octreotide on circulating levels of growth factors and binding proteins in growth hormone (GH)-treated GH-deficient patients

    DEFF Research Database (Denmark)

    Laursen, Torben; Møller, Jens; Fisker, Sanne

    1999-01-01

    Abstract In patients with acromegaly, clinical improvement has been reported after octreotide (OCT) treatment, even in cases of only a moderate suppression of growth hormone (GH) levels. In rats, OCT suppresses IGF-I mRNA expression and generation of serum and tissue IGF-I levels. A direct effect...

  20. Networking

    OpenAIRE

    Rauno Lindholm, Daniel; Boisen Devantier, Lykke; Nyborg, Karoline Lykke; Høgsbro, Andreas; Fries, de; Skovlund, Louise

    2016-01-01

    The purpose of this project was to examine what influencing factor that has had an impact on the presumed increasement of the use of networking among academics on the labour market and how it is expressed. On the basis of the influence from globalization on the labour market it can be concluded that the globalization has transformed the labour market into a market based on the organization of networks. In this new organization there is a greater emphasis on employees having social qualificati...

  1. A Neural-Network-Based Approach to White Blood Cell Classification

    Directory of Open Access Journals (Sweden)

    Mu-Chun Su

    2014-01-01

    Full Text Available This paper presents a new white blood cell classification system for the recognition of five types of white blood cells. We propose a new segmentation algorithm for the segmentation of white blood cells from smear images. The core idea of the proposed segmentation algorithm is to find a discriminating region of white blood cells on the HSI color space. Pixels with color lying in the discriminating region described by an ellipsoidal region will be regarded as the nucleus and granule of cytoplasm of a white blood cell. Then, through a further morphological process, we can segment a white blood cell from a smear image. Three kinds of features (i.e., geometrical features, color features, and LDP-based texture features are extracted from the segmented cell. These features are fed into three different kinds of neural networks to recognize the types of the white blood cells. To test the effectiveness of the proposed white blood cell classification system, a total of 450 white blood cells images were used. The highest overall correct recognition rate could reach 99.11% correct. Simulation results showed that the proposed white blood cell classification system was very competitive to some existing systems.

  2. Single-Cell Network Analysis Identifies DDIT3 as a Nodal Lineage Regulator in Hematopoiesis

    Directory of Open Access Journals (Sweden)

    Cristina Pina

    2015-06-01

    Full Text Available We explore cell heterogeneity during spontaneous and transcription-factor-driven commitment for network inference in hematopoiesis. Since individual genes display discrete OFF states or a distribution of ON levels, we compute and combine pairwise gene associations from binary and continuous components of gene expression in single cells. Ddit3 emerges as a regulatory node with positive linkage to erythroid regulators and negative association with myeloid determinants. Ddit3 loss impairs erythroid colony output from multipotent cells, while forcing Ddit3 in granulo-monocytic progenitors (GMPs enhances self-renewal and impedes differentiation. Network analysis of Ddit3-transduced GMPs reveals uncoupling of myeloid networks and strengthening of erythroid linkages. RNA sequencing suggests that Ddit3 acts through development or stabilization of a precursor upstream of GMPs with inherent Meg-E potential. The enrichment of Gata2 target genes in Ddit3-dependent transcriptional responses suggests that Ddit3 functions in an erythroid transcriptional network nucleated by Gata2.

  3. Characterization of pituitary function with emphasis on GH secretion in the chronic fatigue syndrome.

    Science.gov (United States)

    Moorkens, G; Berwaerts, J; Wynants, H; Abs, R

    2000-07-01

    Previous studies have revealed that hormonal disturbances may accompany the chronic fatigue syndrome (CFS). Changes in the secretion of the pituitary-adrenal axis have been demonstrated, as well as abnormalities in the GH-IGF-I axis. However, data have not always been well characterized and were sometimes conflicting. The small number of CFS patients investigated in earlier studies may have played a role in the interpretation of the results. Hormonal testing was performed in 73 nonobese CFS patients and nonobese 21 age-and gender-matched healthy controls. We investigated GH, ACTH and cortisol responses to insulin-induced hypoglycaemia. In a subgroup of patients arginine and clonidine stimulation for GH was also performed. Nocturnal secretion of GH, ACTH and cortisol were determined. Serum levels of IGF-I, prolactin, TSH, and free thyroxine were also measured. Visceral fat mass was assessed by CT scanning. GH response to insulin induced hypoglycaemia assessed by peak value (17.0 +/- 13.1 microg/l vs. 22. 1 +/- 9.8 microg/l; P = 0.01) and by AUC (450.0 +/- 361.3 microg/l vs. 672.3 +/- 393.0 microg/l; P = 0.002) was significantly decreased in CFS patients vs. controls. Nocturnal GH secretion assessed by GH peak value (5.4 +/- 3.7 vs. 9.0 +/- 5.1 microg/l; P = 0.44) and by AUC (34.4 +/- 20.2 vs. 67.4 +/- 43.1; P = 0.045) was also significantly impaired in CFS patients. Arginine and clonidine administration showed no differences in GH secretion between CFS patients and controls. In the CFS group, GH peak values were significantly higher after ITT than after arginine (P = 0.017) or clonidine (P = 0.001). No differences in serum IGF-I levels were found between CFS patients and controls. Except for a significantly lower nocturnal cortisol peak value, no differences were found in ACTH and cortisol secretion between CFS patients and controls. Significantly higher serum prolactin levels (7.4 +/- 4.7 microg/l vs. 4.4 +/- 1.3 microg/l; P = 0.004) and significantly higher serum

  4. Cytotoxic Vibrio T3SS1 Rewires Host Gene Expression to Subvert Cell Death Signaling and Activate Cell Survival Networks

    Science.gov (United States)

    De Nisco, Nicole J.; Kanchwala, Mohammed; Li, Peng; Fernandez, Jessie; Xing, Chao; Orth, Kim

    2017-01-01

    Bacterial effectors are potent manipulators of host signaling pathways. The marine bacterium Vibrio parahaemolyticus (V. para), delivers effectors into host cells through two type three secretion systems (T3SS). The ubiquitous T3SS1 is vital for V. para survival in the environment, whereas T3SS2 causes acute gastroenteritis in human hosts. Although the natural host is undefined, T3SS1 effectors attack highly conserved cellular processes and pathways to orchestrate non-apoptotic cell death. Much is known about how T3SS1 effectors function in isolation, but we wanted to understand how their concerted action globally affects host cell signaling. To assess the host response to T3SS1, we compared gene expression changes over time in primary fibroblasts infected with V. para that have a functional T3SS1 (T3SS1+) to those in cells infected with V. para lacking T3SS1 (T3SS1−). Overall, the host transcriptional response to both T3SS1+ and T3SS1− V. para was rapid, robust, and temporally dynamic. T3SS1 re-wired host gene expression by specifically altering the expression of 398 genes. Although T3SS1 effectors target host cells at the posttranslational level to cause cytotoxicity, network analysis indicated that V. para T3SS1 also precipitates a host transcriptional response that initially activates cell survival and represses cell death networks. The increased expression of several key pro-survival transcripts mediated by T3SS1 was dependent on a host signaling pathway that is silenced later in infection by the posttranslational action of T3SS1. Taken together, our analysis reveals a complex interplay between roles of T3SS1 as both a transcriptional and posttranslational manipulator of host cell signaling. PMID:28512145

  5. Working memory cells' behavior may be explained by cross-regional networks with synaptic facilitation.

    Directory of Open Access Journals (Sweden)

    Sergio Verduzco-Flores

    2009-08-01

    Full Text Available Neurons in the cortex exhibit a number of patterns that correlate with working memory. Specifically, averaged across trials of working memory tasks, neurons exhibit different firing rate patterns during the delay of those tasks. These patterns include: 1 persistent fixed-frequency elevated rates above baseline, 2 elevated rates that decay throughout the tasks memory period, 3 rates that accelerate throughout the delay, and 4 patterns of inhibited firing (below baseline analogous to each of the preceding excitatory patterns. Persistent elevated rate patterns are believed to be the neural correlate of working memory retention and preparation for execution of behavioral/motor responses as required in working memory tasks. Models have proposed that such activity corresponds to stable attractors in cortical neural networks with fixed synaptic weights. However, the variability in patterned behavior and the firing statistics of real neurons across the entire range of those behaviors across and within trials of working memory tasks are typical not reproduced. Here we examine the effect of dynamic synapses and network architectures with multiple cortical areas on the states and dynamics of working memory networks. The analysis indicates that the multiple pattern types exhibited by cells in working memory networks are inherent in networks with dynamic synapses, and that the variability and firing statistics in such networks with distributed architectures agree with that observed in the cortex.

  6. Parentally-adjusted deficit of height as a prognostic factor of the effectiveness of growth hormone (GH) therapy in children with GH deficiency.

    Science.gov (United States)

    Hilczer, Maciej; Smyczyńska, Joanna; Lewiński, Andrzej

    2006-01-01

    Parental height is the most important identifiable factor influencing final height (FH) of children with growth hormone (GH) deficiency (GHD), treated with GH. Assessment of FH of patients with GHD--classified into familial short stature (FSS) and non-familial short stature (non-FSS) according to parentally adjusted deficit of height. The analysis comprised 101 patients (76 boys) with childhood-onset GHD. Final height was compared with patients' height before GH therapy, predicted adult height (PAH) and target height (TH). Both GH peak in stimulating tests and height standard deviation score (SDS) before the therapy were significantly lower in non-FSS than in FSS. Target height was significantly lower in FSS than in non-FSS. Parentally-adjusted deficit of height was significantly more profound in non-FSS than in FSS. The prognosis of adult height was very similar in both groups of patients, being significantly worse in non-FSS than in FSS while corrected by TH. The absolute FH was similar in FSS and non-FSS, being, however, significantly lower in non-FSS than in FSS while corrected by TH. Improvement of height was significantly better in non-FSS than in FSS. In both groups, FH SDS was significantly better than height SDS before the therapy (H0SDS). In FSS group, PAH was similar to TH, moreover, FH corresponded to both PAH and TH. In non-FSS group FH was significantly higher than PAH, but both FH and PAH were significantly lower than TH. 1) Growth hormone therapy was more effective in the patients with non-FSS than in those with FSS. 2) Parentally-adjusted deficit of height is an important prognostic factor of GH therapy effectiveness.

  7. A combined Bodian-Nissl stain for improved network analysis in neuronal cell culture.

    Science.gov (United States)

    Hightower, M; Gross, G W

    1985-11-01

    Bodian and Nissl procedures were combined to stain dissociated mouse spinal cord cells cultured on coverslips. The Bodian technique stains fine neuronal processes in great detail as well as an intracellular fibrillar network concentrated around the nucleus and in proximal neurites. The Nissl stain clearly delimits neuronal cytoplasm in somata and in large dendrites. A combination of these techniques allows the simultaneous depiction of neuronal perikarya and all afferent and efferent processes. Costaining with little background staining by either procedure suggests high specificity for neurons. This procedure could be exploited for routine network analysis of cultured neurons.

  8. Gender and age influence the relationship between serum GH and IGF-I in patients with acromegaly.

    Science.gov (United States)

    Parkinson, C; Renehan, A G; Ryder, W D J; O'Dwyer, S T; Shalet, S M; Trainer, P J

    2002-07-01

    In patients with acromegaly serum IGF-I is increasingly used as a marker of disease activity. As a result, the relationship between serum GH and IGF-I is of profound interest. Healthy females secrete three times more GH than males but have broadly similar serum IGF-I levels, and women with GH deficiency require 30-50% more exogenous GH to maintain the same serum IGF-I as GH-deficient men. In a selected cohort of patients with active acromegaly, studied off medical therapy using a single fasting serum GH and IGF-I measurement, we have reported previously that, for a given GH level, women have significantly lower circulating IGF-I. To evaluate the influence of age and gender on the relationship between serum GH and IGF-I in an unselected cohort of patients with acromegaly independent of disease control and medical therapy. Sixty (34 male) unselected patients with acromegaly (median age 51 years (range 24-81 years) attending a colonoscopy screening programme were studied. Forty-five had previously received pituitary radiotherapy. Patients had varying degrees of disease control and received medical therapy where appropriate. Mean serum GH was calculated from an eight-point day profile (n = 45) and values obtained during a 75-g oral glucose tolerance test (n = 15). Serum IGF-I, IGFBP-3 and acid-labile subunit were measured and the dependency of these factors on covariates such as log10 mean serum GH, sex, age and prior radiotherapy was assessed using regression techniques. The median calculated GH value was 4.7 mU/l (range 1-104). A significant linear association was observed between serum IGF-I and log10 mean serum GH for the cohort (R = 0.5, P fall by 0.37 nmol/l per year (P = 0.04, 95% CI 0.015-0.72). In keeping with previous observations of relative GH resistance in normal and GH-deficient females we have observed lower serum IGF-I levels for equivalent mean serum GH levels in females patients with acromegaly. This gender-dependent difference is independent of

  9. Vasoprotective effects of life span-extending peripubertal GH replacement in Lewis dwarf rats.

    Science.gov (United States)

    Ungvari, Zoltan; Gautam, Tripti; Koncz, Peter; Henthorn, Jim C; Pinto, John T; Ballabh, Praveen; Yan, Han; Mitschelen, Matthew; Farley, Julie; Sonntag, William E; Csiszar, Anna

    2010-11-01

    In humans, growth hormone deficiency (GHD) and low circulating levels of insulin-like growth factor 1 (IGF-1) significantly increase the risk for cerebrovascular disease. Genetic growth hormone (GH)/IGF-1 deficiency in Lewis dwarf rats significantly increases the incidence of late-life strokes, similar to the effects of GHD in elderly humans. Peripubertal treatment of Lewis dwarf rats with GH delays the occurrence of late-life stroke, which results in a significant extension of life span. The present study was designed to characterize the vascular effects of life span-extending peripubertal GH replacement in Lewis dwarf rats. Here, we report, based on measurements of dihydroethidium fluorescence, tissue isoprostane, GSH, and ascorbate content, that peripubertal GH/IGF-1 deficiency in Lewis dwarf rats increases vascular oxidative stress, which is prevented by GH replacement. Peripubertal GHD did not alter superoxide dismutase or catalase activities in the aorta nor the expression of Cu-Zn-SOD, Mn-SOD, and catalase in the cerebral arteries of dwarf rats. In contrast, cerebrovascular expression of glutathione peroxidase 1 was significantly decreased in dwarf vessels, and this effect was reversed by GH treatment. Peripubertal GHD significantly decreases expression of the Nrf2 target genes NQO1 and GCLC in the cerebral arteries, whereas it does not affect expression and activity of endothelial nitric oxide synthase and vascular expression of IGF-1, IGF-binding proteins, and inflammatory markers (tumor necrosis factor alpha, interluekin-6, interluekin-1β, inducible nitric oxide synthase, intercellular adhesion molecule 1, and monocyte chemotactic protein-1). In conclusion, peripubertal GH/IGF-1 deficiency confers pro-oxidative cellular effects, which likely promote an adverse functional and structural phenotype in the vasculature, and results in accelerated vascular impairments later in life.

  10. Growth Hormone Research Society perspective on biomarkers of GH action in children and adults.

    Science.gov (United States)

    Johannsson, Gudmundur; Bidlingmaier, Martin; Biller, Beverly M K; Boguszewski, Margaret; Casanueva, Felipe F; Chanson, Philippe; Clayton, Peter E; Choong, Catherine S; Clemmons, David; Dattani, Mehul; Frystyk, Jan; Ho, Ken; Hoffman, Andrew R; Horikawa, Reiko; Juul, Anders; Kopchick, John J; Luo, Xiaoping; Neggers, Sebastian; Netchine, Irene; Olsson, Daniel S; Radovick, Sally; Rosenfeld, Ron; Ross, Richard J; Schilbach, Katharina; Solberg, Paulo; Strasburger, Christian; Trainer, Peter; Yuen, Kevin C J; Wickstrom, Kerstin; Jorgensen, Jens O L

    2018-03-01

    The Growth Hormone Research Society (GRS) convened a Workshop in 2017 to evaluate clinical endpoints, surrogate endpoints and biomarkers during GH treatment of children and adults and in patients with acromegaly. GRS invited 34 international experts including clinicians, basic scientists, a regulatory scientist and physicians from the pharmaceutical industry. Current literature was reviewed and expert opinion was utilized to establish the state of the art and identify current gaps and unmet needs. Following plenary presentations, breakout groups discussed questions framed by the planning committee. The attendees re-convened after each breakout session to share the group reports. A writing team compiled the breakout session reports into a document that was subsequently discussed and revised by participants. This was edited further and circulated for final review after the meeting. Participants from pharmaceutical companies were not part of the writing process. The clinical endpoint in paediatric GH treatment is adult height with height velocity as a surrogate endpoint. Increased life expectancy is the ideal but unfeasible clinical endpoint of GH treatment in adult GH-deficient patients (GHDA) and in patients with acromegaly. The pragmatic clinical endpoints in GHDA include normalization of body composition and quality of life, whereas symptom relief and reversal of comorbidities are used in acromegaly. Serum IGF-I is widely used as a biomarker, even though it correlates weakly with clinical endpoints in GH treatment, whereas in acromegaly, normalization of IGF-I may be related to improvement in mortality. There is an unmet need for novel biomarkers that capture the pleiotropic actions of GH in relation to GH treatment and in patients with acromegaly. © 2018 Growth Hormone Research Society.

  11. Large-size, high-uniformity, random silver nanowire networks as transparent electrodes for crystalline silicon wafer solar cells.

    Science.gov (United States)

    Xie, Shouyi; Ouyang, Zi; Jia, Baohua; Gu, Min

    2013-05-06

    Metal nanowire networks are emerging as next generation transparent electrodes for photovoltaic devices. We demonstrate the application of random silver nanowire networks as the top electrode on crystalline silicon wafer solar cells. The dependence of transmittance and sheet resistance on the surface coverage is measured. Superior optical and electrical properties are observed due to the large-size, highly-uniform nature of these networks. When applying the nanowire networks on the solar cells with an optimized two-step annealing process, we achieved as large as 19% enhancement on the energy conversion efficiency. The detailed analysis reveals that the enhancement is mainly caused by the improved electrical properties of the solar cells due to the silver nanowire networks. Our result reveals that this technology is a promising alternative transparent electrode technology for crystalline silicon wafer solar cells.

  12. The cell envelope stress response of Bacillus subtilis: from static signaling devices to dynamic regulatory network.

    Science.gov (United States)

    Radeck, Jara; Fritz, Georg; Mascher, Thorsten

    2017-02-01

    The cell envelope stress response (CESR) encompasses all regulatory events that enable a cell to protect the integrity of its envelope, an essential structure of any bacterial cell. The underlying signaling network is particularly well understood in the Gram-positive model organism Bacillus subtilis. It consists of a number of two-component systems (2CS) and extracytoplasmic function σ factors that together regulate the production of both specific resistance determinants and general mechanisms to protect the envelope against antimicrobial peptides targeting the biogenesis of the cell wall. Here, we summarize the current picture of the B. subtilis CESR network, from the initial identification of the corresponding signaling devices to unraveling their interdependence and the underlying regulatory hierarchy within the network. In the course of detailed mechanistic studies, a number of novel signaling features could be described for the 2CSs involved in mediating CESR. This includes a novel class of so-called intramembrane-sensing histidine kinases (IM-HKs), which-instead of acting as stress sensors themselves-are activated via interprotein signal transfer. Some of these IM-HKs are involved in sensing the flux of antibiotic resistance transporters, a unique mechanism of responding to extracellular antibiotic challenge.

  13. Networks of neuroblastoma cells on porous silicon substrates reveal a small world topology

    KAUST Repository

    Marinaro, Giovanni; La Rocca, Rosanna; Toma, Andrea; Barberio, Marianna; Cancedda, Laura; Di Fabrizio, Enzo M.; Decuzzi, Paolo C W; Gentile, Francesco T.

    2015-01-01

    The human brain is a tightly interweaving network of neural cells where the complexity of the network is given by the large number of its constituents and its architecture. The topological structure of neurons in the brain translates into its increased computational capabilities, low energy consumption, and nondeterministic functions, which differentiate human behavior from artificial computational schemes. In this manuscript, we fabricated porous silicon chips with a small pore size ranging from 8 to 75 nm and large fractal dimensions up to Df ∼ 2.8. In culturing neuroblastoma N2A cells on the described substrates, we found that those cells adhere more firmly to and proliferate on the porous surfaces compared to the conventional nominally flat silicon substrates, which were used as controls. More importantly, we observed that N2A cells on the porous substrates create highly clustered, small world topology patterns. We conjecture that neurons with a similar architecture may elaborate information more efficiently than in random or regular grids. Moreover, we hypothesize that systems of neurons on nano-scale geometry evolve in time to form networks in which the propagation of information is maximized. This journal is

  14. Tracing of shading effect on underachieving SPV cell of an SPV grid using wireless sensor network

    Directory of Open Access Journals (Sweden)

    Vivek Kaundal

    2015-09-01

    Full Text Available The environmental and economic merits of converting solar energy into electricity via photovoltaic cells have led to its enormous growth in this sector. Besides material and design parameters, there are many other factors which locally affect Photovoltaic cell like partial shading, humidity, dust, bird droppings, air velocity etc. However, the effect due to a single solar photo voltaic cell being connected to a serial or parallel network (to form a grid has never been deliberated extensively. In this paper a system design that will detect the underperforming panel in the entire grid is proposed and validated. All the Photo voltaic panels in a grid are connected with current sensors, which are connected to microcontrollers and these microcontrollers are locally connected with the wireless sensor network. With the help of wireless sensor network, grid monitoring for individual panel has been achieved for the first time with proposed system. The grid and control room is also connected wirelessly which enables the engineer monitoring the grid to meticulously locate the individual solar photovoltaic cell which is underachieving and solve the issue pertaining the same. The proposed system design has been validated with the help of data obtained with Centre for Wind Energy Technology (CWET, Govt. of India.”.

  15. Synaptic integration of transplanted interneuron progenitor cells into native cortical networks.

    Science.gov (United States)

    Howard, MacKenzie A; Baraban, Scott C

    2016-08-01

    Interneuron-based cell transplantation is a powerful method to modify network function in a variety of neurological disorders, including epilepsy. Whether new interneurons integrate into native neural networks in a subtype-specific manner is not well understood, and the therapeutic mechanisms underlying interneuron-based cell therapy, including the role of synaptic inhibition, are debated. In this study, we tested subtype-specific integration of transplanted interneurons using acute cortical brain slices and visualized patch-clamp recordings to measure excitatory synaptic inputs, intrinsic properties, and inhibitory synaptic outputs. Fluorescently labeled progenitor cells from the embryonic medial ganglionic eminence (MGE) were used for transplantation. At 5 wk after transplantation, MGE-derived parvalbumin-positive (PV+) interneurons received excitatory synaptic inputs, exhibited mature interneuron firing properties, and made functional synaptic inhibitory connections to native pyramidal cells that were comparable to those of native PV+ interneurons. These findings demonstrate that MGE-derived PV+ interneurons functionally integrate into subtype-appropriate physiological niches within host networks following transplantation. Copyright © 2016 the American Physiological Society.

  16. Modelling cell cycle synchronisation in networks of coupled radial glial cells.

    Science.gov (United States)

    Barrack, Duncan S; Thul, Rüdiger; Owen, Markus R

    2015-07-21

    Radial glial cells play a crucial role in the embryonic mammalian brain. Their proliferation is thought to be controlled, in part, by ATP mediated calcium signals. It has been hypothesised that these signals act to locally synchronise cell cycles, so that clusters of cells proliferate together, shedding daughter cells in uniform sheets. In this paper we investigate this cell cycle synchronisation by taking an ordinary differential equation model that couples the dynamics of intracellular calcium and the cell cycle and extend it to populations of cells coupled via extracellular ATP signals. Through bifurcation analysis we show that although ATP mediated calcium release can lead to cell cycle synchronisation, a number of other asynchronous oscillatory solutions including torus solutions dominate the parameter space and cell cycle synchronisation is far from guaranteed. Despite this, numerical results indicate that the transient and not the asymptotic behaviour of the system is important in accounting for cell cycle synchronisation. In particular, quiescent cells can be entrained on to the cell cycle via ATP mediated calcium signals initiated by a driving cell and crucially will cycle in near synchrony with the driving cell for the duration of neurogenesis. This behaviour is highly sensitive to the timing of ATP release, with release at the G1/S phase transition of the cell cycle far more likely to lead to near synchrony than release during mid G1 phase. This result, which suggests that ATP release timing is critical to radial glia cell cycle synchronisation, may help us to understand normal and pathological brain development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Identification of Cell Cycle-Regulated Genes by Convolutional Neural Network.

    Science.gov (United States)

    Liu, Chenglin; Cui, Peng; Huang, Tao

    2017-01-01

    The cell cycle-regulated genes express periodically with the cell cycle stages, and the identification and study of these genes can provide a deep understanding of the cell cycle process. Large false positives and low overlaps are big problems in cell cycle-regulated gene detection. Here, a computational framework called DLGene was proposed for cell cycle-regulated gene detection. It is based on the convolutional neural network, a deep learning algorithm representing raw form of data pattern without assumption of their distribution. First, the expression data was transformed to categorical state data to denote the changing state of gene expression, and four different expression patterns were revealed for the reported cell cycle-regulated genes. Then, DLGene was applied to discriminate the non-cell cycle gene and the four subtypes of cell cycle genes. Its performances were compared with six traditional machine learning methods. At last, the biological functions of representative cell cycle genes for each subtype are analyzed. Our method showed better and more balanced performance of sensitivity and specificity comparing to other machine learning algorithms. The cell cycle genes had very different expression pattern with non-cell cycle genes and among the cell-cycle genes, there were four subtypes. Our method not only detects the cell cycle genes, but also describes its expression pattern, such as when its highest expression level is reached and how it changes with time. For each type, we analyzed the biological functions of the representative genes and such results provided novel insight to the cell cycle mechanisms. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Early growth hormone (GH) treatment promotes relevant motor functional improvement after severe frontal cortex lesion in adult rats.

    Science.gov (United States)

    Heredia, Margarita; Fuente, A; Criado, J; Yajeya, J; Devesa, J; Riolobos, A S

    2013-06-15

    A number of studies, in animals and humans, describe the positive effects of the growth hormone (GH) treatment combined with rehabilitation on brain reparation after brain injury. We examined the effect of GH treatment and rehabilitation in adult rats with severe frontal motor cortex ablation. Thirty-five male rats were trained in the paw-reaching-for-food task and the preferred forelimb was recorded. Under anesthesia, the motor cortex contralateral to the preferred forelimb was aspirated or sham-operated. Animals were then treated with GH (0.15 mg/kg/day, s.c) or vehicle during 5 days, commencing immediately or 6 days post-lesion. Rehabilitation was applied at short- and long-term after GH treatment. Behavioral data were analized by ANOVA following Bonferroni post hoc test. After sacrifice, immunohistochemical detection of glial fibrillary acid protein (GFAP) and nestin were undertaken in the brain of all groups. Animal group treated with GH immediately after the lesion, but not any other group, showed a significant improvement of the motor impairment induced by the motor lesion, and their performances in the motor test were no different from sham-operated controls. GFAP immunolabeling and nestin immunoreactivity were observed in the perilesional area in all injured animals; nestin immunoreactivity was higher in GH-treated injured rats (mainly in animals GH-treated 6 days post-lesion). GFAP immunoreactivity was similar among injured rats. Interestingly, nestin re-expression was detected in the contralateral undamaged motor cortex only in GH-treated injured rats, being higher in animals GH-treated immediately after the lesion than in animals GH-treated 6 days post-lesion. Early GH treatment induces significant recovery of the motor impairment produced by frontal cortical ablation. GH effects include increased neurogenesis for reparation (perilesional area) and for increased brain plasticity (contralateral motor area). Copyright © 2013 Elsevier B.V. All rights

  19. Hat das humane Wachtumshormon (hGH eine Relevanz in der Kontrolle der penilen Erektion?

    Directory of Open Access Journals (Sweden)

    Ückert St

    2003-01-01

    Full Text Available Allgemeines: Schon seit langem wird die Frage einer Beteiligung des Hypophysenhormons Human Growth Hormone (Wachstumshormon, hGH, GH an der Kontrolle der sexuellen Maturation und der Reproduktionsfunktion des Menschen diskutiert. Die Symptome eines GH-Defizits beim Mann sind u. a. allgemeine Antriebslosigkeit, Oligo- oder Azoospermie, eine Verminderung der Libido sowie eine Beeinträchtigung der normalen Erektionsfähigkeit. Es wird vermutet, daß die biologischen Effekte des GH eine durch das Somatomedin Insulin-like Growth Factor 1 (IGF-1 vermittelte Stimulation der Produktion von Stickoxid (NO durch die endotheliale und neuronale Form des Enzyms NO-Synthase einschließen. So konnte gezeigt werden, daß physiologische Konzentrationen von GH den adrenergen Tonus isolierter Streifenpräparate humaner Schwellkörpermuskulatur antagonisieren und den Gewebegehalt des Second Messengers cGMP erhöhen. Im Rahmen dieser Studie haben wir in einem Kollektiv gesunder Männer und in einer Gruppe von Patienten mit erektiler Dysfunktion (ED die systemischen und cavernösen Serumkonzentrationen von GH während verschiedener peniler Funktionszustände, d. h. verschiedener Stadien der sexuellen Erregung, untersucht. Methoden: 35 gesunden männlichen Probanden und 45 Patienten mit einer ED organogener oder psychogener Genese wurden während der penilen Flakzidität, Tumeszenz, Rigidität - dieses Stadium wurde nur von den Gesunden erreicht - und Detumeszenz zeitgleich Blutproben aus einer Cubitalvene und dem Corpus cavernosum penis entnommen. Tumeszenz und Rigidität wurden durch visuelle und taktile Stimulation ausgelöst. Die Quantifizierung von GH in Aliquots der Serumfraktionen erfolgte mit immunradiometrischen Methoden (IRMA. Ergebnisse: In der Gruppe der gesunden Männer stieg die mittlere systemische und cavernöse Serumkonzentration von GH während der Tumeszenz an, während in den Phasen der Rigidität und Detumeszenz eine Abnahme registriert wurde

  20. Cell Identification based on Received Signal Strength Fingerprints: Concept and Application towards Energy Saving in Cellular Networks

    Directory of Open Access Journals (Sweden)

    Elke Roth-Mandutz

    2014-09-01

    Full Text Available The increasing deployment of small cells aimed at off-loading data traffic from macrocells in heterogeneous networks has resulted in a drastic increase in energy consumption in cellular networks. Energy consumption can be optimized in a selforganized way by adapting the number of active cells in response to the current traffic demand. In this paper we concentrate on the complex problem of how to identify small cells to be reactivated in situations where multiple cells are concurrently inactive. Solely based on the received signal strength, we present cell-specific patterns for the generation of unique cell fingerprints. The cell fingerprints of the deactivated cells are matched with measurements from a high data rate demanding mobile device to identify the most appropriate candidate. Our scheme results in a matching success rate of up to 100% to identify the best cell depending on the number of cells to be activated.

  1. The synaptic properties of cells define the hallmarks of interval timing in a recurrent neural network.

    Science.gov (United States)

    Pérez, Oswaldo; Merchant, Hugo

    2018-04-03

    Extensive research has described two key features of interval timing. The bias property is associated with accuracy and implies that time is overestimated for short intervals and underestimated for long intervals. The scalar property is linked to precision and states that the variability of interval estimates increases as a function of interval duration. The neural mechanisms behind these properties are not well understood. Here we implemented a recurrent neural network that mimics a cortical ensemble and includes cells that show paired-pulse facilitation and slow inhibitory synaptic currents. The network produces interval selective responses and reproduces both bias and scalar properties when a Bayesian decoder reads its activity. Notably, the interval-selectivity, timing accuracy, and precision of the network showed complex changes as a function of the decay time constants of the modeled synaptic properties and the level of background activity of the cells. These findings suggest that physiological values of the time constants for paired-pulse facilitation and GABAb, as well as the internal state of the network, determine the bias and scalar properties of interval timing. Significant Statement Timing is a fundamental element of complex behavior, including music and language. Temporal processing in a wide variety of contexts shows two primary features: time estimates exhibit a shift towards the mean (the bias property) and are more variable for longer intervals (the scalar property). We implemented a recurrent neural network that includes long-lasting synaptic currents, which can not only produce interval selective responses but also follow the bias and scalar properties. Interestingly, only physiological values of the time constants for paired-pulse facilitation and GABAb, as well as intermediate background activity within the network can reproduce the two key features of interval timing. Copyright © 2018 the authors.

  2. Nonalcoholic fatty liver in patients with Laron syndrome and GH gene deletion - preliminary report.

    Science.gov (United States)

    Laron, Zvi; Ginsberg, Shira; Webb, Muriel

    2008-10-01

    There is little information on the relationship between growth hormone/insulin-like growth factor-I (GH/IGF-I) deficiency or IGF-I treatment on nonalcoholic fatty liver disease (NAFLD) a disorder linked to obesity and insulin resistance. To find out whether the markedly obese patients with Laron syndrome (LS) and GH gene deletion have fatty livers. We studied 11 untreated adult patients with LS (5M, 6F), five girls with LS treated by IGF-I and five adult patients with GH gene deletion (3M, 3F), four previously treated by hGH in childhood. Fatty liver was quantitatively evaluated by ultrasonography using a phase array US system (HITACHI 6500, Japan). Body adiposity was determined by DEXA, and insulin resistance was estimated by HOMA-IR using the fasting serum glucose and insulin values. Six out of 11 adult patients with LS, two out of the five IGF-I treated girls with LS and three out of five adult hGH gene deletion patients were found to have NAFLD (nonalcoholic fatty liver disease). NAFLD is a frequent complication in untreated and treated congenital IGF-I deficiency. No correlation between NAFLD and age, sex, degree of obesity, blood lipids, or degree of insulin resistance was observed.

  3. Effects of High Intensity Interval Training on Plasma Levels of GH and IGF-I

    Directory of Open Access Journals (Sweden)

    Seyyed Mahmoud Hejazi

    2017-04-01

    Full Text Available Introduction: It is well-recognized that exercise has a significant impact on the GH/IGF system but less is known about the effects of HIIT on this axis. Aim of the present study was to evaluate the effect of ten weeks of HIIT on plasma levels of GH and IGF-I in healthy men. Methods: Twenty young men (age 23.34 ± 2.56 weight 72.47 ± 12.01 height 174.10 ± 5.75 recruited and randomly assigned into control (n=10 and HIIT (n=12 groups. HIIT protocol was started with 4 cycles. Then, every two weeks one cycle was added to the previous ones. Finally, it was to 8 cycles/ session in tenth weeks that lasted 16 minutes. Blood samples were collected prior to and after HIIT program for all subjects and IGF-I and GH levels were measured. Result: HIIT subjects showed a significant increase in IGF-I (P=0.002, F=12.38. However, no significant change was shown in GH levels (P=0.716, F=0.62. Discussion and conclusion: Our findings indicate that the HIIT caused increase in circulating levels of IGF-I independently from GH levels. Both hormones may contribute to positive effects of anabolic conditions.

  4. Embryonic maturation of epidermal Merkel cells is controlled by a redundant transcription factor network.

    Science.gov (United States)

    Perdigoto, Carolina N; Bardot, Evan S; Valdes, Victor J; Santoriello, Francis J; Ezhkova, Elena

    2014-12-01

    Merkel cell-neurite complexes are located in touch-sensitive areas of the mammalian skin and are involved in recognition of the texture and shape of objects. Merkel cells are essential for these tactile discriminations, as they generate action potentials in response to touch stimuli and induce the firing of innervating afferent nerves. It has been shown that Merkel cells originate from epidermal stem cells, but the cellular and molecular mechanisms of their development are largely unknown. In this study, we analyzed Merkel cell differentiation during development and found that it is a temporally regulated maturation process characterized by a sequential activation of Merkel cell-specific genes. We uncovered key transcription factors controlling this process and showed that the transcription factor Atoh1 is required for initial Merkel cell specification. The subsequent maturation steps of Merkel cell differentiation are controlled by cooperative function of the transcription factors Sox2 and Isl1, which physically interact and work to sustain Atoh1 expression. These findings reveal the presence of a robust transcriptional network required to produce functional Merkel cells that are required for tactile discrimination. © 2014. Published by The Company of Biologists Ltd.

  5. Actin and microtubule networks contribute differently to cell response for small and large strains

    Science.gov (United States)

    Kubitschke, H.; Schnauss, J.; Nnetu, K. D.; Warmt, E.; Stange, R.; Kaes, J.

    2017-09-01

    Cytoskeletal filaments provide cells with mechanical stability and organization. The main key players are actin filaments and microtubules governing a cell’s response to mechanical stimuli. We investigated the specific influences of these crucial components by deforming MCF-7 epithelial cells at small (≤5% deformation) and large strains (>5% deformation). To understand specific contributions of actin filaments and microtubules, we systematically studied cellular responses after treatment with cytoskeleton influencing drugs. Quantification with the microfluidic optical stretcher allowed capturing the relative deformation and relaxation of cells under different conditions. We separated distinctive deformational and relaxational contributions to cell mechanics for actin and microtubule networks for two orders of magnitude of drug dosages. Disrupting actin filaments via latrunculin A, for instance, revealed a strain-independent softening. Stabilizing these filaments by treatment with jasplakinolide yielded cell softening for small strains but showed no significant change at large strains. In contrast, cells treated with nocodazole to disrupt microtubules displayed a softening at large strains but remained unchanged at small strains. Stabilizing microtubules within the cells via paclitaxel revealed no significant changes for deformations at small strains, but concentration-dependent impact at large strains. This suggests that for suspended cells, the actin cortex is probed at small strains, while at larger strains; the whole cell is probed with a significant contribution from the microtubules.

  6. Cloning and characterization of a novel Gladiolus hybridus AFP family gene (GhAFP-like) related to corm dormancy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jian; Seng, Shanshan [Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193 (China); Carianopol, Carina [Department of Biological Sciences, University of Toronto, Toronto, Ontario (Canada); Sui, Juanjuan [College of Biology, Fuyang Normal College, Fuyang, Anhui (China); Yang, Qiuyan; Zhang, Fengqin; Jiang, Huiru [Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193 (China); He, Junna, E-mail: hejunna@cau.edu.cn [Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193 (China); Yi, Mingfang, E-mail: ymfang@cau.edu.cn [Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193 (China)

    2016-02-26

    Abscisic acid (ABA) is an important phytohormone controlling seed dormancy. AFPs (ABA INSENSITIVE FIVE BINDING PROTEINS) are reported to be negative regulators of the ABA signaling pathway. The involvement of AFPs in dormant vegetative organs remains poorly understood. Here, we isolated and characterized a novel AFP family member from Gladiolus dormant cormels, GhAFP-like, containing three conserved domains of the AFP family. Quantitative PCR analysis revealed that GhAFP-like was expressed in dormant organs and its expression was down-regulated along with corm storage. GhAFP-like was verified to be a nuclear-localized protein. Overexpressing GhAFP-like in Arabidopsis thaliana not only showed weaker seed dormancy with insensitivity to ABA, but also changed the expression of some ABA related genes. In addition, a primary root elongation assay showed GhAFP-like may involve in auxin signaling response. The results in this study indicate that GhAFP-like acts as a negative regulator in ABA signaling and is related to dormancy. - Highlights: • GhAFP-like is expessed in dormant corm. • Overexpressing GhAFP-like showed early germination and insensitivity to ABA. • Overexpressing GhAFP-like changed ABI5 downstream genes expression.

  7. Cloning and characterization of a novel Gladiolus hybridus AFP family gene (GhAFP-like) related to corm dormancy

    International Nuclear Information System (INIS)

    Wu, Jian; Seng, Shanshan; Carianopol, Carina; Sui, Juanjuan; Yang, Qiuyan; Zhang, Fengqin; Jiang, Huiru; He, Junna; Yi, Mingfang

    2016-01-01

    Abscisic acid (ABA) is an important phytohormone controlling seed dormancy. AFPs (ABA INSENSITIVE FIVE BINDING PROTEINS) are reported to be negative regulators of the ABA signaling pathway. The involvement of AFPs in dormant vegetative organs remains poorly understood. Here, we isolated and characterized a novel AFP family member from Gladiolus dormant cormels, GhAFP-like, containing three conserved domains of the AFP family. Quantitative PCR analysis revealed that GhAFP-like was expressed in dormant organs and its expression was down-regulated along with corm storage. GhAFP-like was verified to be a nuclear-localized protein. Overexpressing GhAFP-like in Arabidopsis thaliana not only showed weaker seed dormancy with insensitivity to ABA, but also changed the expression of some ABA related genes. In addition, a primary root elongation assay showed GhAFP-like may involve in auxin signaling response. The results in this study indicate that GhAFP-like acts as a negative regulator in ABA signaling and is related to dormancy. - Highlights: • GhAFP-like is expessed in dormant corm. • Overexpressing GhAFP-like showed early germination and insensitivity to ABA. • Overexpressing GhAFP-like changed ABI5 downstream genes expression.

  8. Effects of GhWUS from upland cotton (Gossypium hirsutum L.) on somatic embryogenesis and shoot regeneration.

    Science.gov (United States)

    Xiao, Yanqing; Chen, Yanli; Ding, Yanpeng; Wu, Jie; Wang, Peng; Yu, Ya; Wei, Xi; Wang, Ye; Zhang, Chaojun; Li, Fuguang; Ge, Xiaoyang

    2018-05-01

    The WUSCHEL (WUS) gene encodes a plant-specific homeodomain-containing transcriptional regulator, which plays important roles during embryogenesis, as well as in the formation of shoot and flower meristems. Here, we isolated two homologues of Arabidopsis thaliana WUS (AtWUS), GhWUS1a_At and GhWUS1b_At, from upland cotton (Gossypium hirsutum). Domain analysis suggested that the two putative GhWUS proteins contained a highly conserved DNA-binding HOX domain and a WUS-box. Expression profile analysis showed that GhWUSs were predominantly expressed during the embryoid stage. Ectopic expression of GhWUSs in Arabidopsis could induce somatic embryo and shoot formation from seedling root tips. Furthermore, in the absence of exogenous hormone, overexpression of GhWUSs in Arabidopsis could promote shoot regeneration from excised roots, and in the presence of exogenous auxin, excised roots expressing GhWUS could be induced to produce somatic embryo. In addition, expression of the chimeric GhWUS repressor in cotton callus inhibited embryogenic callus formation. Our results show that GhWUS is an important regulator of somatic embryogenesis and shoot regeneration. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. EXPANSIÓN Y DIVERGENCIA DEL LOCUS GH ENTRE EL MONO ARAÑA Y EL CHIMPANCÉ

    OpenAIRE

    DE MENDOZA, AGNÈS; ESQUIVEL, DOLORES; MARTÍNEZ, IRMA; BARRERA, HUGO

    2005-01-01

    Para precisar la historia muy particular de la hormona del crecimiento (GH) en los primates, se describieron los loci GH del mono araña, un mono del Nuevo Mundo y del chimpancé, una especie cercana al humano. Al menos seis genes integran ambos loci GH: todos del tipo GH en el mono araña, y dos GHs y cuatro lactógenos placentarios (PLs) en el chimpancé. Las regiones intergénicas del locus del chimpancé presentan un tamaño mayor a las del mono araña. Este trabajo conf...

  10. Glycoside Hydrolase (GH) 45 and 5 Candidate Cellulases in Aphelenchoides besseyi Isolated from Bird?s-Nest Fern

    OpenAIRE

    Wu, Guan-Long; Kuo, Tzu-Hao; Tsay, Tung-Tsuan; Tsai, Isheng J.; Chen, Peichen J.

    2016-01-01

    Five Aphelenchoides besseyi isolates collected from bird's-nest ferns or rice possess different parasitic capacities in bird's-nest fern. Two different glycoside hydrolase (GH) 45 genes were identified in the fern isolates, and only one was found in the rice isolates. A Abe GH5-1 gene containing an SCP-like family domain was found only in the fern isolates. Abe GH5-1 gene has five introns suggesting a eukaryotic origin. A maximum likelihood phylogeny revealed that Abe GH5-1 is part of the nem...

  11. Universal Intelligent Small Cell (UnISCell for next generation cellular networks

    Directory of Open Access Journals (Sweden)

    Mohammad Patwary

    2016-11-01

    Full Text Available Exploring innovative cellular architectures to achieve enhanced system capacity and good coverage has become a critical issue towards realizing the next generation of wireless communications. In this context, this paper proposes a novel concept of Universal Intelligent Small Cell (UnISCell for enabling the densification of the next generation of cellular networks. The proposed novel concept envisions an integrated platform of providing a strong linkage between different stakeholders such as street lighting networks, landline telephone networks and future wireless networks, and is universal in nature being independent of the operating frequency bands and traffic types. The main motivating factors for the proposed small cell concept are the need of public infrastructure re-engineering, and the recent advances in several enabling technologies. First, we highlight the main concepts of the proposed UnISCell platform. Subsequently, we present two deployment scenarios for the proposed UnISCell concept considering infrastructure sharing and service sharing as important aspects. We then describe the key future technologies for enabling the proposed UnISCell concept and present a use case example with the help of numerical results. Finally, we conclude this article by providing some interesting future recommendations.

  12. Cirugía transesfenoidal: primera opción de tratamiento para adenomas hipofisarios secretores de GH Transsphenoidal surgery: first treatment option for GH secreting hypophyseal adenomas

    Directory of Open Access Journals (Sweden)

    Omar López Arbolay

    2004-12-01

    Full Text Available La elevación de los niveles de hormona del crecimiento (GH promueve el crecimiento grotesco de partes acras (acromegalia o incremento de la talla (gigantismo según la edad, así como trastornos metabólicos de relevancia biológica. La adenomectomía selectiva clasifica entre las modalidades de tratamiento. El objetivo del presente trabajo fue evaluar los resultados del tratamiento microquirúrgico por vía transeptoesfenoidal de los adenomas productores de GH en nuestro medio. Presentamos un estudio retrospectivo de pacientes intervenidos por vía transeptoesfenoidal, por esta variedad de adenomas, en el servicio de neurocirugía del Hospital "Hermanos Ameijeiras" desde 1996 al 2003. Se analizaron edad, sexo, síntomas cardinales, imaginología, niveles hormonales, complicaciones y evolución posoperatoria. Resultó que las complicaciones relacionadas con el proceder quirúrgico no fueron relevantes y ninguna persistió más allá del mes. La diabetes insípida fue la más frecuente. Los síntomas mejoraron y los títulos de GH descendieron por debajo de los niveles de curación en el 58,06 % de los operados. Se concluye que la adenomectomía transeptoesfenoidal es un proceder seguro y recomendable como tratamiento de elección en estos pacientes.The elevation of the growth hormone (GH levels enhances the grotesque growth of acral parts (acromegaly or the increase of height (gigantism according to age, as well as metabolic disorders of biological relevance. The selective adenotomy is among the treatment modalities. The objective of the present paper was to evaluate the results of the microsurgical transseptosphenoidal treatment of the GH producing adenomas in our setting. A retrospective study of patients that underwent transseptosphenoidal surgery for presenting this variety of adenomas at the neurosurgery service of "Hermanos Ameijeiras" Hospital from 1996 to 2003, was conducted. Age, cardinal symptoms, imaging, hormonal levels

  13. A practical algorithm for optimal operation management of distribution network including fuel cell power plants

    Energy Technology Data Exchange (ETDEWEB)

    Niknam, Taher; Meymand, Hamed Zeinoddini; Nayeripour, Majid [Electrical and Electronic Engineering Department, Shiraz University of Technology, Shiraz (Iran)

    2010-08-15

    Fuel cell power plants (FCPPs) have been taken into a great deal of consideration in recent years. The continuing growth of the power demand together with environmental constraints is increasing interest to use FCPPs in power system. Since FCPPs are usually connected to distribution network, the effect of FCPPs on distribution network is more than other sections of power system. One of the most important issues in distribution networks is optimal operation management (OOM) which can be affected by FCPPs. This paper proposes a new approach for optimal operation management of distribution networks including FCCPs. In the article, we consider the total electrical energy losses, the total electrical energy cost and the total emission as the objective functions which should be minimized. Whereas the optimal operation in distribution networks has a nonlinear mixed integer optimization problem, the optimal solution could be obtained through an evolutionary method. We use a new evolutionary algorithm based on Fuzzy Adaptive Particle Swarm Optimization (FAPSO) to solve the optimal operation problem and compare this method with Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Differential Evolution (DE), Ant Colony Optimization (ACO) and Tabu Search (TS) over two distribution test feeders. (author)

  14. Convolutional Deep Belief Networks for Single-Cell/Object Tracking in Computational Biology and Computer Vision

    OpenAIRE

    Zhong, Bineng; Pan, Shengnan; Zhang, Hongbo; Wang, Tian; Du, Jixiang; Chen, Duansheng; Cao, Liujuan

    2016-01-01

    In this paper, we propose deep architecture to dynamically learn the most discriminative features from data for both single-cell and object tracking in computational biology and computer vision. Firstly, the discriminative features are automatically learned via a convolutional deep belief network (CDBN). Secondly, we design a simple yet effective method to transfer features learned from CDBNs on the source tasks for generic purpose to the object tracking tasks using only limited amount of tra...

  15. Traffic-Adaptive and Energy-Efficient Small Cell Networks-Energy, Delay and Throughput

    OpenAIRE

    Nazrul Alam, Mirza

    2016-01-01

    The low power small cell network has emerged as a promising and feasible solution to address the massive wireless traffic resulting from the aggressive growth of wireless applications. It is also estimated that Internet of things (IoT) will consist of around 50 billion physical objects by 2020. As a result, besides capacity enhancement, other challenges, e.g., energy efficiency, dynamic addressing of UL/DL traffic asymmetry, low latency, multi-hop communications, reliability and coverage have...

  16. HumanViCe: Host ceRNA network in virus infected cells in human

    Directory of Open Access Journals (Sweden)

    Suman eGhosal

    2014-07-01

    Full Text Available Host-virus interaction via host cellular components has been an important field of research in recent times. RNA interference mediated by short interfering RNAs and microRNAs (miRNA, is a widespread anti-viral defence strategy. Importantly, viruses also encode their own miRNAs. In recent times miRNAs were identified as key players in host-virus interaction. Furthermore, viruses were shown to exploit the host miRNA networks to suite their own need. The complex cross-talk between host and viral miRNAs and their cellular and viral targets forms the environment for viral pathogenesis. Apart from protein-coding mRNAs, non-coding RNAs may also be targeted by host or viral miRNAs in virus infected cells, and viruses can exploit the host miRNA mediated gene regulatory network via the competing endogenous RNA effect. A recent report showed that viral U-rich non-coding RNAs called HSUR, expressed in primate virus herpesvirus saimiri (HVS infected T cells, were able to bind to three host miRNAs, causing significant alteration in cellular level for one of the miRNAs. We have predicted protein coding and non protein-coding targets for viral and human miRNAs in virus infected cells. We identified viral miRNA targets within host non-coding RNA loci from AGO interacting regions in three different virus infected cells. Gene ontology (GO and pathway enrichment analysis of the genes comprising the ceRNA networks in the virus infected cells revealed enrichment of key cellular signalling pathways related to cell fate decisions and gene transcription, like Notch and Wnt signalling pathways, as well as pathways related to viral entry, replication and virulence. We identified a vast number of non-coding transcripts playing as potential ceRNAs to the immune response associated genes; e.g. APOBEC family genes, in some virus infected cells. All these information are compiled in HumanViCe, a comprehensive database that provides the potential ceRNA networks in virus

  17. Global phosphoproteome profiling reveals unanticipated networks responsive to cisplatin treatment of embryonic stem cells

    DEFF Research Database (Denmark)

    Pines, Alex; Kelstrup, Christian D; Vrouwe, Mischa G

    2011-01-01

    (stable isotope labeling by amino acids in cell culture)-labeled murine embryonic stem cells with the anticancer drug cisplatin. Network and pathway analyses indicated that processes related to the DNA damage response and cytoskeleton organization were significantly affected. Although the ATM (ataxia...... rearrangements. Integration of transcriptomic and proteomic data revealed a poor correlation between changes in the relative levels of transcripts and their corresponding proteins, but a large overlap in affected pathways at the levels of mRNA, protein, and phosphoprotein. This study provides an integrated view...

  18. Effect and Analysis of Sustainable Cell Rate using MPEG video Traffic in ATM Networks

    Directory of Open Access Journals (Sweden)

    Sakshi Kaushal

    2006-04-01

    Full Text Available The broadband networks inhibit the capability to carry multiple types of traffic – voice, video and data, but these services need to be controlled according to the traffic contract negotiated at the time of the connection to maintain desired Quality of service. Such control techniques use traffic descriptors to evaluate its performance and effectiveness. In case of Variable Bit Rate (VBR services, Peak Cell Rate (PCR and its Cell Delay Variation Tolerance (CDVTPCR are mandatory descriptors. In addition to these, ATM Forum proposed Sustainable Cell Rate (SCR and its Cell delay variation tolerance (CDVTSCR. In this paper, we evaluated the impact of specific SCR and CDVTSCR values on the Usage Parameter Control (UPC performance in case of measured MPEG traffic for improving the efficiency

  19. Single-cell Transcriptional Analysis Reveals Novel Neuronal Phenotypes and Interaction Networks involved In the Central Circadian Clock

    Directory of Open Access Journals (Sweden)

    James Park

    2016-10-01

    Full Text Available Single-cell heterogeneity confounds efforts to understand how a population of cells organizes into cellular networks that underlie tissue-level function. This complexity is prominent in the mammalian suprachiasmatic nucleus (SCN. Here, individual neurons exhibit a remarkable amount of asynchronous behavior and transcriptional heterogeneity. However, SCN neurons are able to generate precisely coordinated synaptic and molecular outputs that synchronize the body to a common circadian cycle by organizing into cellular networks. To understand this emergent cellular network property, it is important to reconcile single-neuron heterogeneity with network organization. In light of recent studies suggesting that transcriptionally heterogeneous cells organize into distinct cellular phenotypes, we characterized the transcriptional, spatial, and functional organization of 352 SCN neurons from mice experiencing phase-shifts in their circadian cycle. Using the community structure detection method and multivariate analytical techniques, we identified previously undescribed neuronal phenotypes that are likely to participate in regulatory networks with known SCN cell types. Based on the newly discovered neuronal phenotypes, we developed a data-driven neuronal network structure in which multiple cell types interact through known synaptic and paracrine signaling mechanisms. These results provide a basis from which to interpret the functional variability of SCN neurons and describe methodologies towards understanding how a population of heterogeneous single cells organizes into cellular networks that underlie tissue-level function.

  20. Molecular networks linked by Moesin drive remodeling of the cell cortex during mitosis

    Science.gov (United States)

    Roubinet, Chantal; Decelle, Barbara; Chicanne, Gaëtan; Dorn, Jonas F.; Payrastre, Bernard; Payre, François; Carreno, Sébastien

    2011-01-01

    The cortical mechanisms that drive the series of mitotic cell shape transformations remain elusive. In this paper, we identify two novel networks that collectively control the dynamic reorganization of the mitotic cortex. We demonstrate that Moesin, an actin/membrane linker, integrates these two networks to synergize the cortical forces that drive mitotic cell shape transformations. We find that the Pp1-87B phosphatase restricts high Moesin activity to early mitosis and down-regulates Moesin at the polar cortex, after anaphase onset. Overactivation of Moesin at the polar cortex impairs cell elongation and thus cytokinesis, whereas a transient recruitment of Moesin is required to retract polar blebs that allow cortical relaxation and dissipation of intracellular pressure. This fine balance of Moesin activity is further adjusted by Skittles and Pten, two enzymes that locally produce phosphoinositol 4,5-bisphosphate and thereby, regulate Moesin cortical association. These complementary pathways provide a spatiotemporal framework to explain how the cell cortex is remodeled throughout cell division. PMID:21969469

  1. Sum rate maximization in the uplink of multi-cell OFDMA networks

    KAUST Repository

    Tabassum, Hina

    2012-10-03

    Resource allocation in orthogonal frequency division multiple access (OFDMA) networks plays an imperative role to guarantee the system performance. However, most of the known resource allocation schemes are focused on maximizing the local throughput of each cell, while ignoring the significant effect of inter-cell interference. This paper investigates the problem of resource allocation (i.e., subcarriers and powers) in the uplink of a multi-cell OFDMA network. The problem has a non-convex combinatorial structure and is known to be NP hard. Firstly, we investigate the upper and lower bounds to the average network throughput due to the inherent complexity of implementing the optimal solution. Later, a centralized sub-optimal resource allocation scheme is developed. We further develop less complex centralized and distributed schemes that are well-suited for practical scenarios. The computational complexity of all schemes has been analyzed and the performance is compared through numerical simulations. Simulation results demonstrate that the distributed scheme achieves comparable performance to the centralized resource allocation scheme in various scenarios. © 2011 IEEE.

  2. Characterizing steady states of genome-scale metabolic networks in continuous cell cultures.

    Directory of Open Access Journals (Sweden)

    Jorge Fernandez-de-Cossio-Diaz

    2017-11-01

    Full Text Available In the continuous mode of cell culture, a constant flow carrying fresh media replaces culture fluid, cells, nutrients and secreted metabolites. Here we present a model for continuous cell culture coupling intra-cellular metabolism to extracellular variables describing the state of the bioreactor, taking into account the growth capacity of the cell and the impact of toxic byproduct accumulation. We provide a method to determine the steady states of this system that is tractable for metabolic networks of arbitrary complexity. We demonstrate our approach in a toy model first, and then in a genome-scale metabolic network of the Chinese hamster ovary cell line, obtaining results that are in qualitative agreement with experimental observations. We derive a number of consequences from the model that are independent of parameter values. The ratio between cell density and dilution rate is an ideal control parameter to fix a steady state with desired metabolic properties. This conclusion is robust even in the presence of multi-stability, which is explained in our model by a negative feedback loop due to toxic byproduct accumulation. A complex landscape of steady states emerges from our simulations, including multiple metabolic switches, which also explain why cell-line and media benchmarks carried out in batch culture cannot be extrapolated to perfusion. On the other hand, we predict invariance laws between continuous cell cultures with different parameters. A practical consequence is that the chemostat is an ideal experimental model for large-scale high-density perfusion cultures, where the complex landscape of metabolic transitions is faithfully reproduced.

  3. Globalization of Stem Cell Science: An Examination of Current and Past Collaborative Research Networks

    Science.gov (United States)

    Luo, Jingyuan; Matthews, Kirstin R. W.

    2013-01-01

    Science and engineering research has becoming an increasingly international phenomenon. Traditional bibliometric studies have not captured the evolution of collaborative partnerships between countries, particularly in emerging technologies such as stem cell science, in which an immense amount of investment has been made in the past decade. Analyzing over 2,800 articles from the top journals that include stem cell research in their publications, this study demonstrates the globalization of stem cell science. From 2000 to 2010, international collaborations increased from 20.9% to 36% of all stem cell publications analyzed. The United States remains the most prolific and the most dominant country in the field in terms of publications in high impact journals. But Asian countries, particularly China are steadily gaining ground. Exhibiting the largest relative growth, the percent of Chinese-authored stem cell papers grew more than ten-fold, while the percent of Chinese-authored international papers increased over seven times from 2000 to 2010. And while the percent of total stem cell publications exhibited modest growth for European countries, the percent of international publications increased more substantially, particularly in the United Kingdom. Overall, the data indicated that traditional networks of collaboration extant in 2000 still predominate in stem cell science. Although more nations are becoming involved in international collaborations and undertaking stem cell research, many of these efforts, with the exception of those in certain Asian countries, have yet to translate into publications in high impact journals. PMID:24069210

  4. Genome-wide RNAi Screen Identifies Networks Involved in Intestinal Stem Cell Regulation in Drosophila

    Directory of Open Access Journals (Sweden)

    Xiankun Zeng

    2015-02-01

    Full Text Available The intestinal epithelium is the most rapidly self-renewing tissue in adult animals and maintained by intestinal stem cells (ISCs in both Drosophila and mammals. To comprehensively identify genes and pathways that regulate ISC fates, we performed a genome-wide transgenic RNAi screen in adult Drosophila intestine and identified 405 genes that regulate ISC maintenance and lineage-specific differentiation. By integrating these genes into publicly available interaction databases, we further developed functional networks that regulate ISC self-renewal, ISC proliferation, ISC maintenance of diploid status, ISC survival, ISC-to-enterocyte (EC lineage differentiation, and ISC-to-enteroendocrine (EE lineage differentiation. By comparing regulators among ISCs, female germline stem cells, and neural stem cells, we found that factors related to basic stem cell cellular processes are commonly required in all stem cells, and stem-cell-specific, niche-related signals are required only in the unique stem cell type. Our findings provide valuable insights into stem cell maintenance and lineage-specific differentiation.

  5. Effects of a physiological GH pulse on interstitial glycerol in abdominal and femoral adipose tissue

    DEFF Research Database (Denmark)

    Gravhølt, C H; Schmitz, Ole; Simonsen, L

    1999-01-01

    .0005). Administration of GH induced an increase in interstitial glycerol in both abdominal and femoral adipose tissue (ANOVA: abdominal, P = 0. 04; femoral, P = 0.03). There was no overall difference in the response to GH in the two regions during the study period as a whole (ANOVA: P = 0.5), but during peak...... stimulation of lipolysis abdominal adipose tissue was, in absolute but not in relative terms, stimulated more markedly than femoral adipose tissue (ANOVA: P = 0. 03 from 45 to 225 min). Peak interstitial glycerol values of 253 +/- 37 and 336 +/- 74 micromol/l were seen after 135 and 165 min in femoral...... and abdominal adipose tissue, respectively. ATBF was not statistically different in the two situations (ANOVA: P = 0.7). In conclusion, we have shown that a physiological pulse of GH increases interstitial glycerol concentrations in both femoral and abdominal adipose tissue, indicating activated lipolysis...

  6. A Robust Optimization Based Energy-Aware Virtual Network Function Placement Proposal for Small Cell 5G Networks with Mobile Edge Computing Capabilities

    Directory of Open Access Journals (Sweden)

    Bego Blanco

    2017-01-01

    Full Text Available In the context of cloud-enabled 5G radio access networks with network function virtualization capabilities, we focus on the virtual network function placement problem for a multitenant cluster of small cells that provide mobile edge computing services. Under an emerging distributed network architecture and hardware infrastructure, we employ cloud-enabled small cells that integrate microservers for virtualization execution, equipped with additional hardware appliances. We develop an energy-aware placement solution using a robust optimization approach based on service demand uncertainty in order to minimize the power consumption in the system constrained by network service latency requirements and infrastructure terms. Then, we discuss the results of the proposed placement mechanism in 5G scenarios that combine several service flavours and robust protection values. Once the impact of the service flavour and robust protection on the global power consumption of the system is analyzed, numerical results indicate that our proposal succeeds in efficiently placing the virtual network functions that compose the network services in the available hardware infrastructure while fulfilling service constraints.

  7. Reported shoes size during GH therapy: is foot overgrowth a myth or reality?

    Science.gov (United States)

    Lago, Débora C F; Coutinho, Cláudia A; Kochi, Cristiane; Longui, Carlos A

    2015-10-01

    To describe population reference values for shoes size, and to identify possible disproportional foot growth during GH therapy. Construction of percentile chart based on 3,651 controls (male: 1,838; female: 1,813). The GH treated group included 13 children with idiopathic short stature (ISS) and 50 children with normal height, but with height prediction below their target height; male: 26 and female: 37 mean ± SD age 13.3 ± 1.9 and 12.9 ± 1.5 years, respectively. GH (0.05 mg/kg/day) was used for 3.2 ± 1.6 years, ranging from 1.0-10.3 years. Height expressed as SDS, target height (TH) SDS, self-reported shoes size and target shoes size (TSS) SDS were recorded. Reference values were established showed as a foot SDS calculator available online at www.clinicalcaselearning.com/v2. Definitive shoes size was attained in controls at mean age of 13y in girls and 14y in boys (average values 37 and 40, respectively). In the study group, shoes size was -0.15 ± 0.9 and -0.02 ± 1.3 SDS, with target feet of 0.08 ± 0.8 and -0.27 ± 0.7 SDS in males and females, respectively. There was a significant positive correlation between shoes size and familial TSS, between shoes size and height and between TSS and TH. There was no correlation between duration of GH treatment and shoes size. Our data suggest that during long-term treatment with GH, patients maintain proportional growth in shoes size and height, and the expected correlation with the familial target. We conclude that there is no excessive increase in the size of foot as estimated by the size of shoes in individuals under long term GH therapy.

  8. Arterial pulse wave velocity, inflammatory markers, pathological GH and IGF states, cardiovascular and cerebrovascular disease

    Directory of Open Access Journals (Sweden)

    Michael R Graham

    2008-12-01

    Full Text Available Michael R Graham1, Peter Evans2, Bruce Davies1, Julien S Baker11Health and Exercise Science Research Unit, Faculty of Health Sport and Science, University of Glamorgan, Pontypridd, Wales, United Kingdom; 2Royal Gwent Hospital, Newport, Gwent, United KingdomAbstract: Blood pressure (BP measurements provide information regarding risk factors associated with cardiovascular disease, but only in a specific artery. Arterial stiffness (AS can be determined by measurement of arterial pulse wave velocity (APWV. Separate from any role as a surrogate marker, AS is an important determinant of pulse pressure, left ventricular function and coronary artery perfusion pressure. Proximal elastic arteries and peripheral muscular arteries respond differently to aging and to medication. Endogenous human growth hormone (hGH, secreted by the anterior pituitary, peaks during early adulthood, declining at 14% per decade. Levels of insulin-like growth factor-I (IGF-I are at their peak during late adolescence and decline throughout adulthood, mirror imaging GH. Arterial endothelial dysfunction, an accepted cause of increased APWV in GH deficiency (GHD is reversed by recombinant human (rh GH therapy, favorably influencing the risk for atherogenesis. APWV is a noninvasive method for measuring atherosclerotic and hypertensive vascular changes increases with age and atherosclerosis leading to increased systolic blood pressure and increased left ventricular hypertrophy. Aerobic exercise training increases arterial compliance and reduces systolic blood pressure. Whole body arterial compliance is lowered in strength-trained individuals. Homocysteine and C-reactive protein are two infl ammatory markers directly linked with arterial endothelial dysfunction. Reviews of GH in the somatopause have not been favorable and side effects of treatment have marred its use except in classical GHD. Is it possible that we should be assessing the combined effects of therapy with rhGH and rh

  9. Insulin and GH secretion in adolescent girls with irregular cycles: polycystic vs multifollicular ovaries.

    Science.gov (United States)

    Villa, P; Rossodivita, A; Fulghesu, A M; Cucinelli, F; Barini, A; Apa, R; Belosi, C; Lanzone, A

    2003-04-01

    In the present study insulin (I) and GH secretion was studied in a group of twenty-five young adolescent girls (mean age: 15 +/- 0.23 yr) with cycle irregularity associated to clinical signs of hyperandrogenism in comparison with that observed in eleven normal matched subjects with regular menses. All patients underwent basal hormone measurements and, on two consecutive days, an oral glucose tolerance test (OGTT) and a GHRH iv test. Therefore, all subjects had a transabdominal US scan for the measurement of ovarian volume and the characterization of ovarian morphology. On the basis of the US examination we found patients with polycystic ovaries (PCO-like group) and subjects with multifollicular ovaries (MFO group). PCO-like group exhibited T (pirregular menses showed plasma concentrations of AUC for I (AUC-I) significantly higher in respect to control group (7359.4 +/- 709 vs 5447 +/- 431 microIU/ml x 180 min, p<0.01) as well as both PCO-like group and MFO group did (p<0.001 and p<0.01) respectively. MFO group showed higher values of the AUC for GH (AUC-GH) (2809 +/- 432 ng/ml x 120 min) in respect to controls (1708 +/- 208 ng/ml x 120 min, p<0.05) and PCO-like subjects (p<0.001), who on the contrary showed the lowest AUC-GH values (618 +/- 119 ng/ml x 120 min). In conclusion, PCO-like patients associated hyperinsulinemia with a blunted GH secretion while MFO patients had higher GH secretion associated with higher AUC-I values in a way suggesting an immature and still developing reproductive system.

  10. Impact of recombinant human growth hormone (rh-GH treatment on psychiatric, neuropsychological and clinical profiles of GH deficient adults: a placebo - controlled trial Impacto do tratamento com hormônio de crescimento recombinante (rh-GH sobre as características psiquiátricas, neuropsicológicas e clínicas de adultos com deficiência de GH: ensaio clínico duplo-cego controlado com placebo

    Directory of Open Access Journals (Sweden)

    CLÁUDIO DE NOVAES SOARES

    1999-06-01

    Full Text Available BACKGROUND: Untreated GH-deficient adults have a diversity of dysfunctions (e.g. reduced muscle strength, emotional instability during stress, depressive symptoms that may cause deleterious effects on quality of life, and may be positively influenced by recombinant human growth hormone (rh-GH therapy. AIM: To evaluate the impact of a clinical intervention with rh-GH therapy on GH - deficient adults. METHOD: The physical, psychiatric and neuropsychological status of 9 GH-deficient adults was determined before and after the administration of rh-GH (0.250 IU/Kg/week in a double blind placebo-controlled trial for six months. Patients then received rh-GH for a further period of 6 months and their status was re-evaluated. RESULTS: Rh-GH was significant better than placebo at 6th month (pINTRODUÇÃO: Pacientes com deficiência de hormônio de crescimento (GH apresentam diversas alterações clínicas (ex: redução de massa muscular e de função cardíaca e psíquicas (ex: quadros fóbicos, sintomas depressivos, déficits cognitivos. OBJETIVO: Avaliar o impacto da terapêutica com rh-GH em adultos com deficiência de GH. MÉTODO: Nove pacientes foram diagnosticados com deficiência de GH e então submetidos a ensaio clínico, duplo-cego, controlado, recebendo rh-GH (0,250UI/Kg/semana ou placebo, por período de 6 meses. RESULTADOS: Houve melhora significativa (p<0,05 em parâmetros clínicos ( aumento de massa muscular, redução do índice de massa corpórea (BMI, aumento de gasto energético, psiquiátricos (sintomas depressivos avaliados pelas escalas de Beck e Hamilton (p= 0,043 e neuropsicológicos (testes de atenção (p= 0,035, fluência verbal (FAS: p= 0,02, além da melhora de eficiência cognitiva (testes do WAIS-R: vocabulário (p= 0,027 , Arranjo de Figuras (p= 0,017, Compreensão (p= 0,01 . CONCLUSÃO: Prejuízos clínicos, psíquicos e neuropsicológicos causados pela deficiência de GH em adultos podem ser reduzidos pela terap

  11. Bioinformatic Integration of Molecular Networks and Major Pathways Involved in Mice Cochlear and Vestibular Supporting Cells.

    Science.gov (United States)

    Requena, Teresa; Gallego-Martinez, Alvaro; Lopez-Escamez, Jose A

    2018-01-01

    Background : Cochlear and vestibular epithelial non-hair cells (ENHCs) are the supporting elements of the cellular architecture in the organ of Corti and the vestibular neuroepithelium in the inner ear. Intercellular and cell-extracellular matrix interactions are essential to prevent an abnormal ion redistribution leading to hearing and vestibular loss. The aim of this study is to define the main pathways and molecular networks in the mouse ENHCs. Methods : We retrieved microarray and RNA-seq datasets from mouse epithelial sensory and non-sensory cells from gEAR portal (http://umgear.org/index.html) and obtained gene expression fold-change between ENHCs and non-epithelial cells (NECs) against HCs for each gene. Differentially expressed genes (DEG) with a log2 fold change between 1 and -1 were discarded. The remaining genes were selected to search for interactions using Ingenuity Pathway Analysis and STRING platform. Specific molecular networks for ENHCs in the cochlea and the vestibular organs were generated and significant pathways were identified. Results : Between 1723 and 1559 DEG were found in the mouse cochlear and vestibular tissues, respectively. Six main pathways showed enrichment in the supporting cells in both tissues: (1) "Inhibition of Matrix Metalloproteases"; (2) "Calcium Transport I"; (3) "Calcium Signaling"; (4) "Leukocyte Extravasation Signaling"; (5) "Signaling by Rho Family GTPases"; and (6) "Axonal Guidance Si". In the mouse cochlea, ENHCs showed a significant enrichment in 18 pathways highlighting "axonal guidance signaling (AGS)" ( p = 4.37 × 10 -8 ) and "RhoGDI Signaling" ( p = 3.31 × 10 -8 ). In the vestibular dataset, there were 20 enriched pathways in ENHCs, the most significant being "Leukocyte Extravasation Signaling" ( p = 8.71 × 10 -6 ), "Signaling by Rho Family GTPases" ( p = 1.20 × 10 -5 ) and "Calcium Signaling" ( p = 1.20 × 10 -5 ). Among the top ranked networks, the most biologically significant network contained the

  12. White blood cells identification system based on convolutional deep neural learning networks.

    Science.gov (United States)

    Shahin, A I; Guo, Yanhui; Amin, K M; Sharawi, Amr A

    2017-11-16

    White blood cells (WBCs) differential counting yields valued information about human health and disease. The current developed automated cell morphology equipments perform differential count which is based on blood smear image analysis. Previous identification systems for WBCs consist of successive dependent stages; pre-processing, segmentation, feature extraction, feature selection, and classification. There is a real need to employ deep learning methodologies so that the performance of previous WBCs identification systems can be increased. Classifying small limited datasets through deep learning systems is a major challenge and should be investigated. In this paper, we propose a novel identification system for WBCs based on deep convolutional neural networks. Two methodologies based on transfer learning are followed: transfer learning based on deep activation features and fine-tuning of existed deep networks. Deep acrivation featues are extracted from several pre-trained networks and employed in a traditional identification system. Moreover, a novel end-to-end convolutional deep architecture called "WBCsNet" is proposed and built from scratch. Finally, a limited balanced WBCs dataset classification is performed through the WBCsNet as a pre-trained network. During our experiments, three different public WBCs datasets (2551 images) have been used which contain 5 healthy WBCs types. The overall system accuracy achieved by the proposed WBCsNet is (96.1%) which is more than different transfer learning approaches or even the previous traditional identification system. We also present features visualization for the WBCsNet activation which reflects higher response than the pre-trained activated one. a novel WBCs identification system based on deep learning theory is proposed and a high performance WBCsNet can be employed as a pre-trained network. Copyright © 2017. Published by Elsevier B.V.

  13. Effects of High Intensity Interval Training on Plasma Levels of GH and IGF-I

    OpenAIRE

    Seyyed Mahmoud Hejazi

    2017-01-01

    Introduction: It is well-recognized that exercise has a significant impact on the GH/IGF system but less is known about the effects of HIIT on this axis. Aim of the present study was to evaluate the effect of ten weeks of HIIT on plasma levels of GH and IGF-I in healthy men. Methods: Twenty young men (age 23.34 ± 2.56 weight 72.47 ± 12.01 height 174.10 ± 5.75) recruited and randomly assigned into control (n=10) and HIIT (n=12) groups. HIIT protocol was started with 4 cycles. Then,...

  14. Growth hormone increases vascular cell adhesion molecule 1 expression

    DEFF Research Database (Denmark)

    Hansen, Troels Krarup; Fisker, Sanne; Dall, Rolf

    2004-01-01

    and 25 adult GH-deficient (GHD) patients randomized to GH treatment or placebo. Furthermore, we studied the direct effect of GH and IGF-I and serum from GH-treated subjects on basal and TNF alpha-stimulated expression of VCAM-1 and E-selectin on cultured human umbilical vein endothelial cells. Baseline...... levels of VCAM-1, but not E-selectin, were significantly lower in GHD patients than in healthy subjects (362 +/- 15 microg/liter vs. 516 +/- 21 microg/liter, P liter (95......% confidence interval: 95.0-208.7 microg/liter); P

  15. The calcium feedback loop and T cell activation: how cytoskeleton networks control intracellular calcium flux.

    Science.gov (United States)

    Joseph, Noah; Reicher, Barak; Barda-Saad, Mira

    2014-02-01

    During T cell activation, the engagement of a T cell with an antigen-presenting cell (APC) results in rapid cytoskeletal rearrangements and a dramatic increase of intracellular calcium (Ca(2+)) concentration, downstream to T cell antigen receptor (TCR) ligation. These events facilitate the organization of an immunological synapse (IS), which supports the redistribution of receptors, signaling molecules and organelles towards the T cell-APC interface to induce downstream signaling events, ultimately supporting T cell effector functions. Thus, Ca(2+) signaling and cytoskeleton rearrangements are essential for T cell activation and T cell-dependent immune response. Rapid release of Ca(2+) from intracellular stores, e.g. the endoplasmic reticulum (ER), triggers the opening of Ca(2+) release-activated Ca(2+) (CRAC) channels, residing in the plasma membrane. These channels facilitate a sustained influx of extracellular Ca(2+) across the plasma membrane in a process termed store-operated Ca(2+) entry (SOCE). Because CRAC channels are themselves inhibited by Ca(2+) ions, additional factors are suggested to enable the sustained Ca(2+) influx required for T cell function. Among these factors, we focus here on the contribution of the actin and microtubule cytoskeleton. The TCR-mediated increase in intracellular Ca(2+) evokes a rapid cytoskeleton-dependent polarization, which involves actin cytoskeleton rearrangements and microtubule-organizing center (MTOC) reorientation. Here, we review the molecular mechanisms of Ca(2+) flux and cytoskeletal rearrangements, and further describe the way by which the cytoskeletal networks feedback to Ca(2+) signaling by controlling the spatial and temporal distribution of Ca(2+) sources and sinks, modulating TCR-dependent Ca(2+) signals, which are required for an appropriate T cell response. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters

  16. Adult height after long-term, continuous growth hormone (GH) treatment in short children born small for gestational age: results of a randomized, double-blind, dose-response GH trial

    NARCIS (Netherlands)

    Y. van Pareren; M. Houdijk; M. Jansen (Maarten); M. Reeser; P.G.H. Mulder (Paul); A.C.S. Hokken-Koelega (Anita)

    2003-01-01

    textabstractThe GH dose-response effect of long-term continuous GH treatment on adult height (AH) was evaluated in 54 short children born small for gestational age (SGA) who were participating in a randomized, double-blind, dose-response trial. Patients were randomly and blindly

  17. strong>A novel oral preparation of human growth hormone (hGH) is absorbed and increases serum IGF-I levels after 7 days administration to GH-deficient adultsstrong>

    DEFF Research Database (Denmark)

    Laursen, Torben; Mindeholm, Linda; Haemmerle, Sibylle

    2007-01-01

    ) as carrier has recently been developed. The aim of this study was to determine if this oral formulation of hGH could be absorbed and be bioactive. Eight GHD men (mean age 50 years) receiving sc hGH therapy were withdrawn from therapy for 7 days and then treated for 7 days orally with tablets of HGH191...

  18. High serum levels of growth hormone (GH) and insulin-like growth factor-I (IGF-I) during high-dose GH treatment in short children born small for gestational age

    NARCIS (Netherlands)

    M. van Dijk (Marije); P.G.H. Mulder (Paul); E.C.A.M. Houdijk (Mieke); J.C. Mulder (Jaap); K. Noordam (Kees); R.J.H. Odink (Roelof); C. Rongen-Westerlaken (Ciska); P.G. Voorhoeve (Paul); J.J.J. Waelkens (Johan); W.H. Stokvis-Brantsma; A.C.S. Hokken-Koelega (Anita)

    2006-01-01

    textabstractContext: Epidemiological studies have indicated that high serum levels of GH and IGF-I are associated with long-term risks. Objective: The objective of the study was to evaluate the changes in serum levels of GH during overnight profiles, IGF-I, and IGF binding protein 3 (IGFBP-3) in

  19. Improvement in insulin sensitivity without concomitant changes in body composition and cardiovascular risk markers following fixed administration of a very low growth hormone (GH) dose in adults with severe GH deficiency

    NARCIS (Netherlands)

    Yuen, Kevin C. J.; Frystyk, Jan; White, Deborah K.; Twickler, Th B.; Koppeschaar, Hans P. F.; Harris, Philip E.; Fryklund, Linda; Murgatroyd, Peter R.; Dunger, David B.

    2005-01-01

    OBJECTIVE: Untreated GH-deficient adults are predisposed to insulin resistance and excess cardiovascular mortality. We showed previously that short-term treatment with a very low GH dose (LGH) enhanced insulin sensitivity in young healthy adults. The present study was therefore designed to explore

  20. Thermal stress management of a solid oxide fuel cell using neural network predictive control

    International Nuclear Information System (INIS)

    Hajimolana, S.A.; Tonekabonimoghadam, S.M.; Hussain, M.A.; Chakrabarti, M.H.; Jayakumar, N.S.; Hashim, M.A.

    2013-01-01

    In SOFC (solid oxide fuel cell) systems operating at high temperatures, temperature fluctuation induces a thermal stress in the electrodes and electrolyte ceramics; therefore, the cell temperature distribution is recommended to be kept as constant as possible. In the present work, a mathematical model based on first principles is presented to avert such temperature fluctuations. The fuel cell running on ammonia is divided into five subsystems and factors such as mass/energy/momentum transfer, diffusion through porous media, electrochemical reactions, and polarization losses inside the subsystems are presented. Dynamic cell-tube temperature responses of the cell to step changes in conditions of the feed streams is investigated. The results of simulation indicate that the transient response of the SOFC is mainly influenced by the temperature dynamics. It is also shown that the inlet stream temperatures are associated with the highest long term start-up time (467 s) among other parameters in terms of step changes. In contrast the step change in fuel velocity has the lowest influence on the start-up time (about 190 s from initial steady state to the new steady state) among other parameters. A NNPC (neural network predictive controller) is then implemented for thermal stress management by controlling the cell tube temperature to avoid performance degradation by manipulating the temperature of the inlet air stream. The regulatory performance of the NNPC is compared with a PI (proportional–integral) controller. The performance of the control system confirms that NNPC is a non-linear-model-based strategy which can assure less oscillating control responses with shorter settling times in comparison to the PI controller. - Highlights: • Effect of the operating parameters on the fuel cell temperature is analysed. • A neural network predictive controller (NNPC) is implemented. • The performance of NNPC is compared with the PI controller. • A detailed model is used for

  1. Automated quantification of neuronal networks and single-cell calcium dynamics using calcium imaging.

    Science.gov (United States)

    Patel, Tapan P; Man, Karen; Firestein, Bonnie L; Meaney, David F

    2015-03-30

    Recent advances in genetically engineered calcium and membrane potential indicators provide the potential to estimate the activation dynamics of individual neurons within larger, mesoscale networks (100s-1000+neurons). However, a fully integrated automated workflow for the analysis and visualization of neural microcircuits from high speed fluorescence imaging data is lacking. Here we introduce FluoroSNNAP, Fluorescence Single Neuron and Network Analysis Package. FluoroSNNAP is an open-source, interactive software developed in MATLAB for automated quantification of numerous biologically relevant features of both the calcium dynamics of single-cells and network activity patterns. FluoroSNNAP integrates and improves upon existing tools for spike detection, synchronization analysis, and inference of functional connectivity, making it most useful to experimentalists with little or no programming knowledge. We apply FluoroSNNAP to characterize the activity patterns of neuronal microcircuits undergoing developmental maturation in vitro. Separately, we highlight the utility of single-cell analysis for phenotyping a mixed population of neurons expressing a human mutant variant of the microtubule associated protein tau and wild-type tau. We show the performance of semi-automated cell segmentation using spatiotemporal independent component analysis and significant improvement in detecting calcium transients using a template-based algorithm in comparison to peak-based or wavelet-based detection methods. Our software further enables automated analysis of microcircuits, which is an improvement over existing methods. We expect the dissemination of this software will facilitate a comprehensive analysis of neuronal networks, promoting the rapid interrogation of circuits in health and disease. Copyright © 2015. Published by Elsevier B.V.

  2. Training echo state networks for rotation-invariant bone marrow cell classification.

    Science.gov (United States)

    Kainz, Philipp; Burgsteiner, Harald; Asslaber, Martin; Ahammer, Helmut

    2017-01-01

    The main principle of diagnostic pathology is the reliable interpretation of individual cells in context of the tissue architecture. Especially a confident examination of bone marrow specimen is dependent on a valid classification of myeloid cells. In this work, we propose a novel rotation-invariant learning scheme for multi-class echo state networks (ESNs), which achieves very high performance in automated bone marrow cell classification. Based on representing static images as temporal sequence of rotations, we show how ESNs robustly recognize cells of arbitrary rotations by taking advantage of their short-term memory capacity. The performance of our approach is compared to a classification random forest that learns rotation-invariance in a conventional way by exhaustively training on multiple rotations of individual samples. The methods were evaluated on a human bone marrow image database consisting of granulopoietic and erythropoietic cells in different maturation stages. Our ESN approach to cell classification does not rely on segmentation of cells or manual feature extraction and can therefore directly be applied to image data.

  3. An effective medium model versus a network model for nano-structured solar cells

    International Nuclear Information System (INIS)

    Minnaert, B.; Grasso, C.; Burgelman, M.

    2006-01-01

    In this paper, two methods are compared to model the I-V curves of nano-structured solar cells. These cells consist of an interpenetrating network of an n-type transparent semiconductor oxide (e.g. TiO 2 ) and a p-type semiconductor absorber (e.g. CdTe, CuInS 2 ), deposited on TCO covered glass. The methods are also applicable when a dye and an electrolyte replace the p-semiconductor, and even to organic bulk heterojunction cells. A network model (NM) with resistors and diodes has been published by us before. Another method which has been proposed in the literature is an effective medium model (EMM). In this model, the whole p-n nano-structure is represented by one single effective semiconductor layer, which then is fed into a standard solar cell device simulator, e.g. SCAPS. In this work, it is shown that the NM and the EMM can describe the same physical structure, when they are set up properly. As an illustration, some problems are described both by EMM and NM, and the results are compared. The EMM in this work confirms the results obtained earlier with a simplified NM (constant R n , R p ): when illuminating the n-side, the structure is tolerant to R n but not to R p ; the interpenetrating geometry is disadvantageous for V oc . (authors)

  4. Artificial neural network-aided image analysis system for cell counting.

    Science.gov (United States)

    Sjöström, P J; Frydel, B R; Wahlberg, L U

    1999-05-01

    In histological preparations containing debris and synthetic materials, it is difficult to automate cell counting using standard image analysis tools, i.e., systems that rely on boundary contours, histogram thresholding, etc. In an attempt to mimic manual cell recognition, an automated cell counter was constructed using a combination of artificial intelligence and standard image analysis methods. Artificial neural network (ANN) methods were applied on digitized microscopy fields without pre-ANN feature extraction. A three-layer feed-forward network with extensive weight sharing in the first hidden layer was employed and trained on 1,830 examples using the error back-propagation algorithm on a Power Macintosh 7300/180 desktop computer. The optimal number of hidden neurons was determined and the trained system was validated by comparison with blinded human counts. System performance at 50x and lO0x magnification was evaluated. The correlation index at 100x magnification neared person-to-person variability, while 50x magnification was not useful. The system was approximately six times faster than an experienced human. ANN-based automated cell counting in noisy histological preparations is feasible. Consistent histology and computer power are crucial for system performance. The system provides several benefits, such as speed of analysis and consistency, and frees up personnel for other tasks.

  5. Engineering better biomass-degrading ability into a GH11 xylanase using a directed evolution strategy

    Directory of Open Access Journals (Sweden)

    Song Letian

    2012-01-01

    Full Text Available Abstract Background Improving the hydrolytic performance of hemicellulases on lignocellulosic biomass is of considerable importance for second-generation biorefining. To address this problem, and also to gain greater understanding of structure-function relationships, especially related to xylanase action on complex biomass, we have implemented a combinatorial strategy to engineer the GH11 xylanase from Thermobacillus xylanilyticus (Tx-Xyn. Results Following in vitro enzyme evolution and screening on wheat straw, nine best-performing clones were identified, which display mutations at positions 3, 6, 27 and 111. All of these mutants showed increased hydrolytic activity on wheat straw, and solubilized arabinoxylans that were not modified by the parental enzyme. The most active mutants, S27T and Y111T, increased the solubilization of arabinoxylans from depleted wheat straw 2.3-fold and 2.1-fold, respectively, in comparison to the wild-type enzyme. In addition, five mutants, S27T, Y111H, Y111S, Y111T and S27T-Y111H increased total hemicellulose conversion of intact wheat straw from 16.7%tot. xyl (wild-type Tx-Xyn to 18.6% to 20.4%tot. xyl. Also, all five mutant enzymes exhibited a better ability to act in synergy with a cellulase cocktail (Accellerase 1500, thus procuring increases in overall wheat straw hydrolysis. Conclusions Analysis of the results allows us to hypothesize that the increased hydrolytic ability of the mutants is linked to (i improved ligand binding in a putative secondary binding site, (ii the diminution of surface hydrophobicity, and/or (iii the modification of thumb flexibility, induced by mutations at position 111. Nevertheless, the relatively modest improvements that were observed also underline the fact that enzyme engineering alone cannot overcome the limits imposed by the complex organization of the plant cell wall and the lignin barrier.

  6. UE-Initiated Cell Reselection Game for Cell Load Balancing in a Wireless Network

    Directory of Open Access Journals (Sweden)

    Jaesung Park

    2018-01-01

    Full Text Available A user changes its serving cell if the quality of experience (QoE provided by the current serving cell is not satisfactory. Since users reselect cells to increase their QoEs selfishly, the system resource efficiency can be deteriorated and a system can be unstable if users are not driven to cooperate appropriately. In this paper, inspired by the minority game (MG model, we design a UE-initiated cell reselection policy. The MG has a salient characteristic that the number of players who win the game converges to a prespecified value even though players act selfishly without knowing the actions taken by the other players. Using the MG model, we devise a rule by which each UE plays a cell reselection game. We also design a criterion that a system controller uses to determine the result of a game and public information sent by a system controller to induce implicit cooperation among UEs. The simulation results show that compared with noncooperative method the proposed method increases not only the system performance, such as cell load balance index and system utility, but also the performance of UEs in terms of a downlink data rate and an outage probability received from a system.

  7. Taguchi Experimental Design for Optimization of Recombinant Human Growth Hormone Production in CHO Cell Lines and Comparing its Biological Activity with Prokaryotic Growth Hormone.

    Science.gov (United States)

    Aghili, Zahra Sadat; Zarkesh-Esfahani, Sayyed Hamid

    2018-02-01

    Growth hormone deficiency results in growth retardation in children and the GH deficiency syndrome in adults and they need to receive recombinant-GH in order to rectify the GH deficiency symptoms. Mammalian cells have become the favorite system for production of recombinant proteins for clinical application compared to prokaryotic systems because of their capability for appropriate protein folding, assembly, post-translational modification and proper signal. However, production level in mammalian cells is generally low compared to prokaryotic hosts. Taguchi has established orthogonal arrays to describe a large number of experimental situations mainly to reduce experimental errors and to enhance the efficiency and reproducibility of laboratory experiments.In the present study, rhGH was produced in CHO cells and production of rhGH was assessed using Dot blotting, western blotting and Elisa assay. For optimization of rhGH production in CHO cells using Taguchi method An M16 orthogonal experimental design was used to investigate four different culture components. The biological activity of rhGH was assessed using LHRE-TK-Luciferase reporter gene system in HEK-293 and compared to the biological activity of prokaryotic rhGH.A maximal productivity of rhGH was reached in the conditions of 1%DMSO, 1%glycerol, 25 µM ZnSO 4 and 0 mM NaBu. Our findings indicate that control of culture conditions such as the addition of chemical components helps to develop an efficient large-scale and industrial process for the production of rhGH in CHO cells. Results of bioassay indicated that rhGH produced by CHO cells is able to induce GH-mediated intracellular cell signaling and showed higher bioactivity when compared to prokaryotic GH at the same concentrations. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Maturation of Cerebellar Purkinje Cell Population Activity during Postnatal Refinement of Climbing Fiber Network

    Directory of Open Access Journals (Sweden)

    Jean-Marc Good

    2017-11-01

    Full Text Available Neural circuits undergo massive refinements during postnatal development. In the developing cerebellum, the climbing fiber (CF to Purkinje cell (PC network is drastically reshaped by eliminating early-formed redundant CF to PC synapses. To investigate the impact of CF network refinement on PC population activity during postnatal development, we monitored spontaneous CF responses in neighboring PCs and the activity of populations of nearby CF terminals using in vivo two-photon calcium imaging. Population activity is highly synchronized in newborn mice, and the degree of synchrony gradually declines during the first postnatal week in PCs and, to a lesser extent, in CF terminals. Knockout mice lacking P/Q-type voltage-gated calcium channel or glutamate receptor δ2, in which CF network refinement is severely impaired, exhibit an abnormally high level of synchrony in PC population activity. These results suggest that CF network refinement is a structural basis for developmental desynchronization and maturation of PC population activity.

  9. Ion pair reinforced semi-interpenetrating polymer network for direct methanol fuel cell applications.

    Science.gov (United States)

    Fang, Chunliu; Julius, David; Tay, Siok Wei; Hong, Liang; Lee, Jim Yang

    2012-06-07

    This paper describes the synthesis of ion-pair-reinforced semi-interpenetrating polymer networks (SIPNs) as proton exchange membranes (PEMs) for the direct methanol fuel cells (DMFCs). Specifically, sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO), a linear polymer proton source, was immobilized in a brominated PPO (BPPO) network covalently cross-linked by ethylenediamine (EDA). The immobilization of SPPO in the SIPN network was accomplished not only by the usual means of mechanical interlocking but also by ion pair formation between the sulfonic acid groups of SPPO and the amine moieties formed during the cross-linking reaction of BPPO with EDA. Through the ion pair interactions, the immobilization of SPPO polymer in the BPPO network was made more effective, resulting in a greater uniformity of sulfonic acid cluster distribution in the membrane. The hydrophilic amine-containing cross-links also compensated for some of the decrease in proton conductivity caused by ion pair formation. The SIPN membranes prepared as such showed good proton conductivity, low methanol permeability, good mechanical properties, and dimensional stability. Consequently, the PPO based SIPN membranes were able to deliver a higher maximum power density than Nafion, demonstrating the potential of the SIPN structure for PEM designs.

  10. A dynamically reconfigurable logic cell: from artificial neural networks to quantum-dot cellular automata

    Science.gov (United States)

    Naqvi, Syed Rameez; Akram, Tallha; Iqbal, Saba; Haider, Sajjad Ali; Kamran, Muhammad; Muhammad, Nazeer

    2018-02-01

    Considering the lack of optimization support for Quantum-dot Cellular Automata, we propose a dynamically reconfigurable logic cell capable of implementing various logic operations by means of artificial neural networks. The cell can be reconfigured to any 2-input combinational logic gate by altering the strength of connections, called weights and biases. We demonstrate how these cells may appositely be organized to perform multi-bit arithmetic and logic operations. The proposed work is important in that it gives a standard implementation of an 8-bit arithmetic and logic unit for quantum-dot cellular automata with minimal area and latency overhead. We also compare the proposed design with a few existing arithmetic and logic units, and show that it is more area efficient than any equivalent available in literature. Furthermore, the design is adaptable to 16, 32, and 64 bit architectures.

  11. Impact of Users Identities and Access Conditions on Downlink Performance in Closed Small-Cell Networks

    KAUST Repository

    Radaydeh, Redha

    2015-05-26

    This paper investigates the effect of various operation parameters on the downlink user performance in overlaid small-cell networks. The case study considers closed-access small cells (e.g., femtocells), wherein only active authorized user equipments (UEs) can be served, and each of which is allocated single downlink channel at a time. On the other hand, the macrocell base station can unconditionally serve macrocell UEs that exist inside its coverage space. The available channels can be shared simultaneously in the macrocell network and the femtocell network. Moreover, a channel can be reused only at the macrocell base station. The analysis provides quantitative approaches to model UEs identities, their likelihoods of being active, and their likelihoods of producing interference, considering UEs classifications, locations, and access capabilities. Moreover, it develops models for various interference sources observed from effective interference femtocells, considering femtocells capacities and operation conditions. The associated formulations to describe a desired UE performance and the impact of the number of available channels as well as the adopted channel assignment approach are thoroughly investigated. The results are generally presented for any channel models of interference sources as well as the desired source of the served UE. Moreover, specific channel models are then adopted, for which generalized closedform analytical results for the desired UE outage probability performance are obtained. Numerical and simulation results are presented to further clarify the main outcomes of the developed analysis.

  12. The cancer cell map initiative: defining the hallmark networks of cancer.

    Science.gov (United States)

    Krogan, Nevan J; Lippman, Scott; Agard, David A; Ashworth, Alan; Ideker, Trey

    2015-05-21

    Progress in DNA sequencing has revealed the startling complexity of cancer genomes, which typically carry thousands of somatic mutations. However, it remains unclear which are the key driver mutations or dependencies in a given cancer and how these influence pathogenesis and response to therapy. Although tumors of similar types and clinical outcomes can have patterns of mutations that are strikingly different, it is becoming apparent that these mutations recurrently hijack the same hallmark molecular pathways and networks. For this reason, it is likely that successful interpretation of cancer genomes will require comprehensive knowledge of the molecular networks under selective pressure in oncogenesis. Here we announce the creation of a new effort, The Cancer Cell Map Initiative (CCMI), aimed at systematically detailing these complex interactions among cancer genes and how they differ between diseased and healthy states. We discuss recent progress that enables creation of these cancer cell maps across a range of tumor types and how they can be used to target networks disrupted in individual patients, significantly accelerating the development of precision medicine. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Performance Evaluation of Moving Small-Cell Network with Proactive Cache

    Directory of Open Access Journals (Sweden)

    Young Min Kwon

    2016-01-01

    Full Text Available Due to rapid growth in mobile traffic, mobile network operators (MNOs are considering the deployment of moving small-cells (mSCs. mSC is a user-centric network which provides voice and data services during mobility. mSC can receive and forward data traffic via wireless backhaul and sidehaul links. In addition, due to the predictive nature of users demand, mSCs can proactively cache the predicted contents in off-peak-traffic periods. Due to these characteristics, MNOs consider mSCs as a cost-efficient solution to not only enhance the system capacity but also provide guaranteed quality of service (QoS requirements to moving user equipment (UE in peak-traffic periods. In this paper, we conduct extensive system level simulations to analyze the performance of mSCs with varying cache size and content popularity and their effect on wireless backhaul load. The performance evaluation confirms that the QoS of moving small-cell UE (mSUE notably improves by using mSCs together with proactive caching. We also show that the effective use of proactive cache significantly reduces the wireless backhaul load and increases the overall network capacity.

  14. A spiking network model of cerebellar Purkinje cells and molecular layer interneurons exhibiting irregular firing

    Directory of Open Access Journals (Sweden)

    William eLennon

    2014-12-01

    Full Text Available While the anatomy of the cerebellar microcircuit is well studied, how it implements cerebellar function is not understood. A number of models have been proposed to describe this mechanism but few emphasize the role of the vast network Purkinje cells (PKJs form with the molecular layer interneurons (MLIs – the stellate and basket cells. We propose a model of the MLI-PKJ network composed of simple spiking neurons incorporating the major anatomical and physiological features. In computer simulations, the model reproduces the irregular firing patterns observed in PKJs and MLIs in vitro and a shift toward faster, more regular firing patterns when inhibitory synaptic currents are blocked. In the model, the time between PKJ spikes is shown to be proportional to the amount of feedforward inhibition from an MLI on average. The two key elements of the model are: (1 spontaneously active PKJs and MLIs due to an endogenous depolarizing current, and (2 adherence to known anatomical connectivity along a parasagittal strip of cerebellar cortex. We propose this model to extend previous spiking network models of the cerebellum and for further computational investigation into the role of irregular firing and MLIs in cerebellar learning and function.

  15. Hypoxia induces a phase transition within a kinase signaling network in cancer cells.

    Science.gov (United States)

    Wei, Wei; Shi, Qihui; Remacle, Francoise; Qin, Lidong; Shackelford, David B; Shin, Young Shik; Mischel, Paul S; Levine, R D; Heath, James R

    2013-04-09

    Hypoxia is a near-universal feature of cancer, promoting glycolysis, cellular proliferation, and angiogenesis. The molecular mechanisms of hypoxic signaling have been intensively studied, but the impact of changes in oxygen partial pressure (pO2) on the state of signaling networks is less clear. In a glioblastoma multiforme (GBM) cancer cell model, we examined the response of signaling networks to targeted pathway inhibition between 21% and 1% pO2. We used a microchip technology that facilitates quantification of a panel of functional proteins from statistical numbers of single cells. We find that near 1.5% pO2, the signaling network associated with mammalian target of rapamycin (mTOR) complex 1 (mTORC1)--a critical component of hypoxic signaling and a compelling cancer drug target--is deregulated in a manner such that it will be unresponsive to mTOR kinase inhibitors near 1.5% pO2, but will respond at higher or lower pO2 values. These predictions were validated through experiments on bulk GBM cell line cultures and on neurosphere cultures of a human-origin GBM xenograft tumor. We attempt to understand this behavior through the use of a quantitative version of Le Chatelier's principle, as well as through a steady-state kinetic model of protein interactions, both of which indicate that hypoxia can influence mTORC1 signaling as a switch. The Le Chatelier approach also indicates that this switch may be thought of as a type of phase transition. Our analysis indicates that certain biologically complex cell behaviors may be understood using fundamental, thermodynamics-motivated principles.

  16. Hypoxia induces a phase transition within a kinase signaling network in cancer cells

    Science.gov (United States)

    Wei, Wei; Shi, Qihui; Remacle, Francoise; Qin, Lidong; Shackelford, David B.; Shin, Young Shik; Mischel, Paul S.; Levine, R. D.; Heath, James R.

    2013-01-01

    Hypoxia is a near-universal feature of cancer, promoting glycolysis, cellular proliferation, and angiogenesis. The molecular mechanisms of hypoxic signaling have been intensively studied, but the impact of changes in oxygen partial pressure (pO2) on the state of signaling networks is less clear. In a glioblastoma multiforme (GBM) cancer cell model, we examined the response of signaling networks to targeted pathway inhibition between 21% and 1% pO2. We used a microchip technology that facilitates quantification of a panel of functional proteins from statistical numbers of single cells. We find that near 1.5% pO2, the signaling network associated with mammalian target of rapamycin (mTOR) complex 1 (mTORC1)—a critical component of hypoxic signaling and a compelling cancer drug target—is deregulated in a manner such that it will be unresponsive to mTOR kinase inhibitors near 1.5% pO2, but will respond at higher or lower pO2 values. These predictions were validated through experiments on bulk GBM cell line cultures and on neurosphere cultures of a human-origin GBM xenograft tumor. We attempt to understand this behavior through the use of a quantitative version of Le Chatelier’s principle, as well as through a steady-state kinetic model of protein interactions, both of which indicate that hypoxia can influence mTORC1 signaling as a switch. The Le Chatelier approach also indicates that this switch may be thought of as a type of phase transition. Our analysis indicates that certain biologically complex cell behaviors may be understood using fundamental, thermodynamics-motivated principles. PMID:23530221

  17. Endothelial network formed with human dermal microvascular endothelial cells in autologous multicellular skin substitutes.

    Science.gov (United States)

    Ponec, Maria; El Ghalbzouri, Abdoelwaheb; Dijkman, Remco; Kempenaar, Johanna; van der Pluijm, Gabri; Koolwijk, Pieter

    2004-01-01

    A human skin equivalent from a single skin biopsy harboring keratinocytes and melanocytes in the epidermal compartment, and fibroblasts and microvascular dermal endothelial cells in the dermal compartment was developed. The results of the study revealed that the nature of the extracellular matrix of the dermal compartments plays an important role in establishment of endothelial network in vitro. With rat-tail type I collagen matrices only lateral but not vertical expansion of endothelial networks was observed. In contrast, the presence of extracellular matrix of entirely human origin facilitated proper spatial organization of the endothelial network. Namely, when human dermal fibroblasts and microvascular endothelial cells were seeded on the bottom of an inert filter and subsequently epidermal cells were seeded on top of it, fibroblasts produced extracellular matrix throughout which numerous branched tubes were spreading three-dimensionally. Fibroblasts also facilitated the formation of basement membrane at the epidermal/matrix interface. Under all culture conditions, fully differentiated epidermis was formed with numerous melanocytes present in the basal epidermal cell layer. The results of the competitive RT-PCR revealed that both keratinocytes and fibroblasts expressed VEGF-A, -B, -C, aFGF and bFGF mRNA, whereas fibroblasts also expressed VEGF-D mRNA. At protein level, keratinocytes produced 10 times higher amounts of VEGF-A than fibroblasts did. The generation of multicellular skin equivalent from a single human skin biopsy will stimulate further developments for its application in the treatment of full-thickness skin defects. The potential development of biodegradable, biocompatible material suitable for these purposes is a great challenge for future research.

  18. The role of signal transducer and activator of transcription 5 in the inhibitory effects of GH on adipocyte differentiation

    DEFF Research Database (Denmark)

    Richter, H E; Albrektsen, T; Billestrup, Nils

    2003-01-01

    GH inhibits primary rat preadipocyte differentiation and expression of late genes required for terminal differentiation. Here we show that GH-mediated inhibition of fatty acid-binding protein aP2 gene expression correlates with the activation of the Janus kinase-2/signal transducer and activator ...

  19. Long-term maintenance of the anabolic effects of GH on the skeleton in successfully treated patients with acromegaly

    NARCIS (Netherlands)

    Biermasz, Nienke R.; Hamdy, Neveen A. T.; Pereira, Alberto M.; Romijn, Johannes A.; Roelfsema, Ferdinand

    2005-01-01

    The anabolic actions of growth hormone (GH) are well documented. In acromegaly, the skeletal effects of chronic GH excess have been mainly addressed by evaluating bone mineral density (BMD). Most data were obtained in patients with active acromegaly, and apparently high or normal BMD was observed in

  20. Cardiac manifestations of GH deficiency after treatment for acromegaly: a comparison to patients with biochemical remission and controls

    NARCIS (Netherlands)

    van der Klaauw, Agatha A.; Bax, Jeroen J.; Bleeker, Gabe B.; Holman, Eduard R.; Delgado, V.; Smit, Johannes W. A.; Romijn, Johannes A.; Pereira, Alberto M.

    2008-01-01

    Both GH excess and GH deficiency (GHD) lead to specific cardiac pathology. The aim of this study was to evaluate cardiac morphology and function in patients with GHD after treatment for acromegaly. Cross-sectional study. Cardiac parameters were studied by conventional two-dimensional

  1. Experimental Modification of Rat Pituitary Growth Hormone Cell Function During and After Spaceflight

    Science.gov (United States)

    Hymer, W. C.; Salada, T.; Nye, P.; Grossman, E. J.; Lane, P. K.; Grindeland, R. E.

    1996-01-01

    Space-flown rats show a number of flight-induced changes in the structure and function of pituitary Growth Hormone (GH) cells after in vitro postflight testing. To evaluate the possible effects of microgravity on GH cells themselves, freshly dispersed rat anterior pituitary gland