Sample records for ggsp1 predicts bone

  1. Phalangeal bone mineral density predicts incident fractures

    Friis-Holmberg, Teresa; Brixen, Kim; Rubin, Katrine Hass


    This prospective study investigates the use of phalangeal bone mineral density (BMD) in predicting fractures in a cohort (15,542) who underwent a BMD scan. In both women and men, a decrease in BMD was associated with an increased risk of fracture when adjusted for age and prevalent fractures....... PURPOSE: The aim of this study was to evaluate the ability of a compact and portable scanner using radiographic absorptiometry (RA) to predict major osteoporotic fractures. METHODS: This prospective study included a cohort of 15,542 men and women aged 18-95 years, who underwent a BMD scan in Danish Health...... Examination Survey 2007-2008. BMD at the middle phalanges of the second, third and fourth digits of the non-dominant hand was measured using RA (Alara MetriScan®). These data were merged with information on incident fractures retrieved from the Danish National Patient Registry comprising the International...

  2. Predicting vertebral bone strength by vertebral static histomorphometry

    Thomsen, Jesper Skovhus; Ebbesen, Ebbe Nils; Mosekilde, Lis


    The study investigates the relationship between static histomorphometry and bone strength of human lumbar vertebral bone. The ability of vertebral histomorphometry to predict vertebral bone strength was compared with that of vertebral densitometry, and also with histomorphometry and bone strength...... of the entire vertebral bodies (L-2) were used for histomorphometry. The other iliac crest biopsies and the L-3 were destructively tested by compression. High correlation was found between BV/TV or Tb.Sp and vertebral bone strength (absolute value of r = 0.86 in both cases). Addition of Tb.Th significantly...... of improving the prediction of bone strength of the vertebral body. The correlations between BV/TV of L-2 and bone strength of L-3 were comparable with the correlation obtained by quantitative computed tomography (QCT), peripheral QCT (pQCT), and dual-energy X-ray absorptrometry (DEXA) of L-3 and bone strength...

  3. A predictive bone drilling force model for haptic rendering with experimental validation using fresh cadaveric bone.

    Lin, Yanping; Chen, Huajiang; Yu, Dedong; Zhang, Ying; Yuan, Wen


    Bone drilling simulators with virtual and haptic feedback provide a safe, cost-effective and repeatable alternative to traditional surgical training methods. To develop such a simulator, accurate haptic rendering based on a force model is required to feedback bone drilling forces based on user input. Current predictive bone drilling force models based on bovine bones with various drilling conditions and parameters are not representative of the bone drilling process in bone surgery. The objective of this study was to provide a bone drilling force model for haptic rendering based on calibration and validation experiments in fresh cadaveric bones with different bone densities. Using a commonly used drill bit geometry (2 mm diameter), feed rates (20-60 mm/min) and spindle speeds (4000-6000 rpm) in orthognathic surgeries, the bone drilling forces of specimens from two groups were measured and the calibration coefficients of the specific normal and frictional pressures were determined. The comparison of the predicted forces and the measured forces from validation experiments with a large range of feed rates and spindle speeds demonstrates that the proposed bone drilling forces can predict the trends and average forces well. The presented bone drilling force model can be used for haptic rendering in surgical simulators.

  4. Prediction of bone density around orthopedic implants delivering bisphosphonate.

    Stadelmann, Vincent A; Terrier, Alexandre; Gauthier, O; Bouler, J-M; Pioletti, Dominique P


    The fixation of an orthopedic implant depends strongly upon its initial stability. Peri-implant bone may resorb shortly after the surgery. This resorption is directly followed by new bone formation and implants fixation strengthening, the so-called secondary fixation. If the initial stability is not reached, the resorption continues and the implant fixation weakens, which leads to implant loosening. Studies with rats and dogs have shown that a solution to prevent peri-implant resorption is to deliver bisphosphonate from the implant surface. The aims of the study were, first, to develop a model of bone remodeling around an implant delivering bisphosphonate, second, to predict the bisphosphonate dose that would induce the maximal peri-implant bone density, and third to verify in vivo that peri-implant bone density is maximal with the calculated dose. The model consists of a bone remodeling equation and a drug diffusion equation. The change in bone density is driven by a mechanical stimulus and a drug stimulus. The drug stimulus function and the other numerical parameters were identified from experimental data. The model predicted that a dose of 0.3 microg of zoledronate on the implant would induce a maximal bone density. Implants with 0.3 microg of zoledronate were then implanted in rat femurs for 3, 6 and 9 weeks. We measured that peri-implant bone density was 4% greater with the calculated dose compared to the dose empirically described as best. The approach presented in this paper could be used in the design and analysis processes of experiments in local delivery of drug such as bisphosphonate.

  5. How useful is SBF in predicting in vivo bone bioactivity?

    Kokubo, Tadashi; Takadama, Hiroaki


    The bone-bonding ability of a material is often evaluated by examining the ability of apatite to form on its surface in a simulated body fluid (SBF) with ion concentrations nearly equal to those of human blood plasma. However, the validity of this method for evaluating bone-bonding ability has not been assessed systematically. Here, the history of SBF, correlation of the ability of apatite to form on various materials in SBF with their in vivo bone bioactivities, and some examples of the development of novel bioactive materials based on apatite formation in SBF are reviewed. It was concluded that examination of apatite formation on a material in SBF is useful for predicting the in vivo bone bioactivity of a material, and the number of animals used in and the duration of animal experiments can be reduced remarkably by using this method.

  6. Prediction of trabecular bone qualitative properties using scanning quantitative ultrasound

    Qin, Yi-Xian; Lin, Wei; Mittra, Erik; Xia, Yi; Cheng, Jiqi; Judex, Stefan; Rubin, Clint; Müller, Ralph


    Microgravity induced bone loss represents a critical health problem in astronauts, particularly occurred in weight-supporting skeleton, which leads to osteopenia and increase of fracture risk. Lack of suitable evaluation modality makes it difficult for monitoring skeletal status in long term space mission and increases potential risk of complication. Such disuse osteopenia and osteoporosis compromise trabecular bone density, and architectural and mechanical properties. While X-ray based imaging would not be practical in space, quantitative ultrasound may provide advantages to characterize bone density and strength through wave propagation in complex trabecular structure. This study used a scanning confocal acoustic diagnostic and navigation system (SCAN) to evaluate trabecular bone quality in 60 cubic trabecular samples harvested from adult sheep. Ultrasound image based SCAN measurements in structural and strength properties were validated by μCT and compressive mechanical testing. This result indicated a moderately strong negative correlations observed between broadband ultrasonic attenuation (BUA) and μCT-determined bone volume fraction (BV/TV, R2=0.53). Strong correlations were observed between ultrasound velocity (UV) and bone's mechanical strength and structural parameters, i.e., bulk Young's modulus (R2=0.67) and BV/TV (R2=0.85). The predictions for bone density and mechanical strength were significantly improved by using a linear combination of both BUA and UV, yielding R2=0.92 for BV/TV and R2=0.71 for bulk Young's modulus. These results imply that quantitative ultrasound can characterize trabecular structural and mechanical properties through measurements of particular ultrasound parameters, and potentially provide an excellent estimation for bone's structural integrity.

  7. Bone Marrow Pathology Predicts Mortality in Chronic Hemodialysis Patients

    Cheng-Hao Weng


    Full Text Available Introduction. A bone marrow biopsy is a useful procedure for the diagnosis and staging of various hematologic and systemic diseases. The objective of this study was to investigate whether the findings of bone marrow studies can predict mortality in chronic hemodialysis patients. Methods. Seventy-eight end-stage renal disease patients on maintenance hemodialysis underwent bone marrow biopsies between 2000 and 2011, with the most common indication being unexplained anemia followed by unexplained leukocytosis and leukopenia. Results. The survivors had a higher incidence of abnormal megakaryocyte distribution P=0.001, band and segmented cells P=0.021, and lymphoid cells P=0.029 than the nonsurvivors. The overall mortality rate was 38.5% (30/78, and the most common cause of mortality was sepsis (83.3% followed by respiratory failure (10%. In multivariate Cox regression analysis, both decreased (OR 3.714, 95% CI 1.671–8.253, P=0.001 and absent (OR 9.751, 95% CI 2.030–45.115, P=0.004 megakaryocyte distribution (normal megakaryocyte distribution as the reference group, as well as myeloid/erythroid ratio (OR 1.054, CI 1.012–1.098, P=0.011, were predictive of mortality. Conclusion. The results of a bone marrow biopsy can be used to assess the pathology, and, in addition, myeloid/erythroid ratio and abnormal megakaryocyte distribution can predict mortality in chronic hemodialysis patients.

  8. Trabecular bone structure analysis of the spine using clinical MDCT: can it predict vertebral bone strength?

    Baum, Thomas; Gräbeldinger, Martin; Räth, Christoph; Garcia, Eduardo Grande; Burgkart, Rainer; Patsch, Janina M; Rummeny, Ernst J; Link, Thomas M; Bauer, Jan S


    Recent technical improvements have made it possible to determine trabecular bone structure parameters of the spine using clinical multi-detector computed tomography (MDCT). Therefore, the purpose of this study was to analyze trabecular bone structure parameters obtained from clinical MDCT in relation to high resolution peripheral quantitative computed tomography (HR-pQCT) as a standard of reference and to investigate whether clinical MDCT can predict vertebral bone strength. Fourteen functional spinal segment units between T7 and L3 were harvested from 14 formalin-fixed human cadavers (11 women and 3 men; age 84 ± 10 years). All functional spinal segment units were examined using HR-pQCT (isotropic voxel size of 41 μm(3)) and a clinical whole-body MDCT (interpolated voxel size of 146 × 146 × 300 μm(3)). Trabecular bone structure analyses (histomorphometric and texture measures) were performed in the HR-pQCT as well as MDCT images. Vertebral failure load (FL) of the functional spinal segment units was determined in an uniaxial biomechanical test. The HR-pQCT and MDCT derived trabecular bone structure parameters showed correlations ranging from r = 0.60 to r = 0.90 (p parameters and FL amounted up to r = 0.86 (p parameters obtained with HR-pQCT and MDCT were not significantly different (p > 0.05). In this cadaver model, the spatial resolution of clinically available whole-body MDCT scanners was suitable for trabecular bone structure analysis of the spine and to predict vertebral bone strength.

  9. Prediction of trabecular bone qualitative properties using scanning quantitative ultrasound

    Qin, Yi-Xian; Lin, Wei; Mittra, Erik; Xia, Yi; Cheng, Jiqi; Judex, Stefan; Rubin, Clint; Müller, Ralph


    Microgravity induced bone loss represents a critical health problem in astronauts, particularly occurred in weight-supporting skeleton, which leads to osteopenia and increase of fracture risk. Lack of suitable evaluation modality makes it difficult for monitoring skeletal status in long term space mission and increases potential risk of complication. Such disuse osteopenia and osteoporosis compromise trabecular bone density, and architectural and mechanical properties. While X-ray based imaging would not be practical in space, quantitative ultrasound may provide advantages to characterize bone density and strength through wave propagation in complex trabecular structure. This study used a scanning confocal acoustic diagnostic and navigation system (SCAN) to evaluate trabecular bone quality in 60 cubic trabecular samples harvested from adult sheep. Ultrasound image based SCAN measurements in structural and strength properties were validated by μCT and compressive mechanical testing. This result indicated a moderately strong negative correlations observed between broadband ultrasonic attenuation (BUA) and μCT-determined bone volume fraction (BV/TV, R2=0.53). Strong correlations were observed between ultrasound velocity (UV) and bone’s mechanical strength and structural parameters, i.e., bulk Young’s modulus (R2=0.67) and BV/TV (R2=0.85). The predictions for bone density and mechanical strength were significantly improved by using a linear combination of both BUA and UV, yielding R2=0.92 for BV/TV and R2=0.71 for bulk Young’s modulus. These results imply that quantitative ultrasound can characterize trabecular structural and mechanical properties through measurements of particular ultrasound parameters, and potentially provide an excellent estimation for bone’s structural integrity. PMID:23976803

  10. Can bone scintigraphy predict the final outcome of pasteurized autografts?

    Eid, Ahmed Shawky [Ain Shams University, Department of Orthopedic Surgery, Cairo (Egypt); Jeon, Dae-Geun; Cho, Wan Hyeong [Korea Cancer Center Hospital, Department of Orthopedic Surgery, Seoul (Korea)


    As pasteurization is becoming more widely used in limb salvage reconstruction, more study is required to understand about host-graft junction healing, graft revascularization and incorporation, and the incidence and type of complications among pasteurized autografts. This was mainly achieved by follow-up radiography. We aimed to clarify whether Tc99m bone scanning can be considered a reliable method in determining these three parameters. Twenty-seven osteosarcoma patients with pasteurized autograft reconstructions were retrospectively reviewed using available scintigraphic and radiographic follow-up every 6 months postoperatively for 36 months. Follow-up of the unhealed cases was continued for the maximum follow-up period available for each case beyond the original study period, ranging from 1 to 15 months. Tc99m uptake was classified as cold, faint, moderate and high uptake. Junction healing was classified as none, partial and complete healing. Seventy percent of junctions united with a mean of 22 months. Ninety to 100% of junctions showed increased uptake (high or moderate) at one time of the study regardless of final outcome. 85% of the pasteurized grafts showed the characteristic ''tramline appearance''. Four grafts (15%) were complicated: pseudoarthrosis and implant failure (1), fractured plate (1), intramedullary nail (IMN) fracture (1), and prosthesis stem loosening in the host bone (1), with underlying unhealed junctions in all cases. Bone scanning can determine the stages of the graft's rim revascularization and incorporation; however, it cannot detect or predict junction healing or occurrence of complications. Supplementary treatment of unhealed junctions showing either decreased junctional uptake or graft quiescence may be warranted. Otherwise, detection of distant metastasis and early local recurrence remains the main application of Tc99m scanning in the management of bone sarcomas. (orig.)

  11. In vitro induction of alkaline phosphatase levels predicts in vivo bone forming capacity of human bone marrow stromal cells

    Henk-Jan Prins


    Full Text Available One of the applications of bone marrow stromal cells (BMSCs that are produced by ex vivo expansion is for use in in vivo bone tissue engineering. Cultured stromal cells are a mixture of cells at different stages of commitment and expansion capability, leading to a heterogeneous cell population that each time can differ in the potential to form in vivo bone. A parameter that predicts for in vivo bone forming capacity is thus far lacking. We employed single colony-derived BMSC cultures to identify such predictive parameters. Using limiting dilution, we have produced sixteen single CFU-F derived BMSC cultures from human bone marrow and found that only five of these formed bone in vivo. The single colony-derived BMSC strains were tested for proliferation, osteogenic-, adipogenic- and chondrogenic differentiation capacity and the expression of a variety of associated markers. The only robust predictors of in vivo bone forming capacity were the induction of alkaline phosphatase, (ALP mRNA levels and ALP activity during in vitro osteogenic differentiation. The predictive value of in vitro ALP induction was confirmed by analyzing “bulk-cultured” BMSCs from various bone marrow biopsies. Our findings show that in BMSCs, the additional increase in ALP levels over basal levels during in vitro osteogenic differentiation is predictive of in vivo performance.

  12. Lumbar bone mass predicts low back pain in males

    Hoozemans, M.J.M.; Koppes, L.L.J.; Twisk, J.W.R.; Dieën, J.H. van


    STUDY DESIGN.: Longitudinal study of lumbar bone mass as predictor of low back pain (LBP). OBJECTIVE.: To investigate whether low bone mineral content (BMC) and bone mineral density (BMD) values at the age of 36 years are associated with the prevalence of LBP at the age of 42 years among the study p

  13. Strain energy density gradients in bone marrow predict osteoblast and osteoclast activity: a finite element study.

    Webster, Duncan; Schulte, Friederike A; Lambers, Floor M; Kuhn, Gisela; Müller, Ralph


    Huiskes et al. hypothesized that mechanical strains sensed by osteocytes residing in trabecular bone dictate the magnitude of load-induced bone formation. More recently, the mechanical environment in bone marrow has also been implicated in bone׳s response to mechanical stimulation. In this study, we hypothesize that trabecular load-induced bone formation can be predicted by mechanical signals derived from an integrative µFE model, incorporating a description of both the bone and marrow phase. Using the mouse tail loading model in combination with in vivo micro-computed tomography (µCT) we tracked load induced changes in the sixth caudal vertebrae of C57BL/6 mice to quantify the amount of newly mineralized and eroded bone volumes. To identify the mechanical signals responsible for adaptation, local morphometric changes were compared to micro-finite element (µFE) models of vertebrae prior to loading. The mechanical parameters calculated were strain energy density (SED) on trabeculae at bone forming and resorbing surfaces, SED in the marrow at the boundary between bone forming and resorbing surfaces, along with SED in the trabecular bone and marrow volumes. The gradients of each parameter were also calculated. Simple regression analysis showed mean SED gradients in the trabecular bone matrix to significantly correlate with newly mineralized and eroded bone volumes R(2)=0.57 and 0.41, respectively, pbone marrow plays a significant role in determining osteoblast and osteoclast activity.

  14. Hyoid bone fusion and bone density across the lifespan: prediction of age and sex.

    Fisher, Ellie; Austin, Diane; Werner, Helen M; Chuang, Ying Ji; Bersu, Edward; Vorperian, Houri K


    The hyoid bone supports the important functions of swallowing and speech. At birth, the hyoid bone consists of a central body and pairs of right and left lesser and greater cornua. Fusion of the greater cornua with the body normally occurs in adulthood, but may not occur at all in some individuals. The aim of this study was to quantify hyoid bone fusion across the lifespan, as well as assess developmental changes in hyoid bone density. Using a computed tomography imaging studies database, 136 hyoid bones (66 male, 70 female, ages 1-to-94) were examined. Fusion was ranked on each side and hyoid bones were classified into one of four fusion categories based on their bilateral ranks: bilateral distant non-fusion, bilateral non-fusion, partial or unilateral fusion, and bilateral fusion. Three-dimensional hyoid bone models were created and used to calculate bone density in Hounsfield units. Results showed a wide range of variability in the timing and degree of hyoid bone fusion, with a trend for bilateral non-fusion to decrease after age 20. Hyoid bone density was significantly lower in adult female scans than adult male scans and decreased with age in adulthood. In sex and age estimation models, bone density was a significant predictor of sex. Both fusion category and bone density were significant predictors of age group for adult females. This study provides a developmental baseline for understanding hyoid bone fusion and bone density in typically developing individuals. Findings have implications for the disciplines of forensics, anatomy, speech pathology, and anthropology.

  15. Low bone mineral density in noncholestatic liver cirrhosis: prevalence, severity and prediction

    Figueiredo Fátima Aparecida Ferreira


    Full Text Available BACKGROUND: Metabolic bone disease has long been associated with cholestatic disorders. However, data in noncholestatic cirrhosis are relatively scant. AIMS: To determine prevalence and severity of low bone mineral density in noncholestatic cirrhosis and to investigate whether age, gender, etiology, severity of underlying liver disease, and/or laboratory tests are predictive of the diagnosis. PATIENTS/METHODS: Between March and September/1998, 89 patients with noncholestatic cirrhosis and 20 healthy controls were enrolled in a cross-sectional study. All subjects underwent standard laboratory tests and bone densitometry at lumbar spine and femoral neck by dual X-ray absorptiometry. RESULTS: Bone mass was significantly reduced at both sites in patients compared to controls. The prevalence of low bone mineral density in noncholestatic cirrhosis, defined by the World Health Organization criteria, was 78% at lumbar spine and 71% at femoral neck. Bone density significantly decreased with age at both sites, especially in patients older than 50 years. Bone density was significantly lower in post-menopausal women patients compared to pre-menopausal and men at both sites. There was no significant difference in bone mineral density among noncholestatic etiologies. Lumbar spine bone density significantly decreased with the progression of liver dysfunction. No biochemical variable was significantly associated with low bone mineral density. CONCLUSIONS: Low bone mineral density is highly prevalent in patients with noncholestatic cirrhosis. Older patients, post-menopausal women and patients with severe hepatic dysfunction experienced more advanced bone disease. The laboratory tests routinely determined in patients with liver disease did not reliably predict low bone mineral density.

  16. Bone scintigraphy predicts the risk of spinal cord compression in hormone-refractory prostate cancer

    Soerdjbalie-Maikoe, Vidija; Pelger, Rob C.M.; Nijeholt, Guus A.B. Lycklama [Department of Urology, Leiden University Medical Center, Leiden (Netherlands); Arndt, Jan-Willem [Department of Nuclear Medicine, Leiden University Medical Center, Leiden (Netherlands); Zwinderman, Aeilko H. [Department of Medical Statistics, Leiden University Medical Center, Leiden (Netherlands); Bril, Herman [Department of Pathology, Reinier de Graaf Hospital, Delft (Netherlands); Papapoulos, Socrates E.; Hamdy, Neveen A.T. [Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden (Netherlands)


    In prostate cancer, confirmation of metastatic involvement of the skeleton has traditionally been achieved by bone scintigraphy, although the widespread availability of prostate-specific antigen (PSA) measurements has tended to eliminate the need for this investigation. The potential of bone scintigraphy to predict skeletal-related events, particularly spinal cord compression, after the onset of hormone refractoriness has never been investigated. The aim of this study was to establish whether a new method of evaluating bone scintigraphy would offer a better predictive value for this complication of the metastatic process than is achieved with currently available grading methods. We studied 84 patients with hormone-refractory prostate cancer who had undergone bone scintigraphy at the time of hormone escape. Tumour grading and parameters of tumour load (PSA and alkaline phosphatase activity) were available in all patients. The incidence of spinal cord compression was documented and all patients were followed up until death. Bone scintigraphy was evaluated by the conventional Soloway grading and by an additional analysis determining total or partial involvement of individual vertebrae. In contrast to the Soloway method, the new method was able to predict spinal cord compression at various spinal levels. Our data suggest that there is still a place for bone scintigraphy in the management of hormone-refractory prostate cancer. (orig.)

  17. Digestive efficiency mediated by serum calcium predicts bone mineral density in the common marmoset (Callithrix jacchus).

    Jarcho, Michael R; Power, Michael L; Layne-Colon, Donna G; Tardif, Suzette D


    Two health problems have plagued captive common marmoset (Callithrix jacchus) colonies for nearly as long as those colonies have existed: marmoset wasting syndrome and metabolic bone disease. While marmoset wasting syndrome is explicitly linked to nutrient malabsorption, we propose metabolic bone disease is also linked to nutrient malabsorption, although indirectly. If animals experience negative nutrient balance chronically, critical nutrients may be taken from mineral stores such as the skeleton, thus leaving those stores depleted. We indirectly tested this prediction through an initial investigation of digestive efficiency, as measured by apparent energy digestibility, and serum parameters known to play a part in metabolic bone mineral density of captive common marmoset monkeys. In our initial study on 12 clinically healthy animals, we found a wide range of digestive efficiencies, and subjects with lower digestive efficiency had lower serum vitamin D despite having higher food intakes. A second experiment on 23 subjects including several with suspected bone disease was undertaken to measure digestive and serum parameters, with the addition of a measure of bone mineral density by dual-energy X-ray absorptiometry (DEXA). Bone mineral density was positively associated with apparent digestibility of energy, vitamin D, and serum calcium. Further, digestive efficiency was found to predict bone mineral density when mediated by serum calcium. These data indicate that a poor ability to digest and absorb nutrients leads to calcium and vitamin D insufficiency. Vitamin D absorption may be particularly critical for indoor-housed animals, as opposed to animals in a more natural setting, because vitamin D that would otherwise be synthesized via exposure to sunlight must be absorbed from their diet. If malabsorption persists, metabolic bone disease is a possible consequence in common marmosets. These findings support our hypothesis that both wasting syndrome and metabolic bone

  18. A Femur-Implant Model for the Prediction of Bone Remodeling Behavior Induced by Cementless Stem

    He Gong; Lingyan Kong; Rui Zhang; Juan Fang; Meisheng Zhao


    Bone remodeling simulation is an effective tool for the prediction of long-term effect of implant on the bone tissue,as well as the selection of an appropriate implant in terms of architecture and material.In this paper,a finite element model of proximal femur was develop.ed to simulate the structures of internal trabecular and cortical bones by incorporating quantitative bone functional adaptation theory with finite element analysis.Cementless stems made of titanium,two types of Functionally Graded Material (FGM) and flexible 'iso-elastic' material as comparison were implanted in the structure of proximal femur respectively to simulate the bone remodeling behaviors of host bone.The distributions of bone density,von Mises stress,and interface shear stress were obtained.All the prosthetic stems had effects on the bone remodeling behaviors of proximal femur,but the degrees of stress shielding were different.The amount of bone loss caused by titanium implant was in agreement with the clinical observation.The FGM stems caused less bone loss than that of the titanium stem,in which FGM I stem (titanium richer at the top to more HAP/Col towards the bottom) could relieve stress shielding effectively,and the interface shear stresses were more evenly distributed in the model with FGM I stem in comparison with those in the models with FGM II (titanium and bioglass) and titanium stems.The numerical simulations in the present study provided theoretical basis for FGM as an appropriate material of femoral implant from a biomechanical point of view.The next steps are to fabricate FGM stem and to conduct animal experiments to investigate the effects of FGM stem on the remodeling behaviors using animal model.

  19. Can Hip Fracture Prediction in Women be Estimated beyond Bone Mineral Density Measurement Alone?

    Geusens, Piet; van Geel, Tineke; van den Bergh, Joop


    The etiology of hip fractures is multifactorial and includes bone and fall-related factors. Low bone mineral density (BMD) and BMD-related and BMD-independent geometric components of bone strength, evaluated by hip strength analysis (HSA) and finite element analysis analyses on dual-energy X-ray absorptiometry (DXA) images, and ultrasound parameters are related to the presence and incidence of hip fracture. In addition, clinical risk factors contribute to the risk of hip fractures, independent of BMD. They are included in the fracture risk assessment tool (FRAX) case finding algorithm to estimate in the individual patient the 10-year risk of hip fracture, with and without BMD. Fall risks are not included in FRAX, but are included in other case finding tools, such as the Garvan algorithm, to predict the 5- and 10-year hip fracture risk. Hormones, cytokines, growth factors, markers of bone resorption and genetic background have been related to hip fracture risk. Vitamin D deficiency is endemic worldwide and low serum levels of 25-hydroxyvitamin D [25(OH)D] predict hip fracture risk. In the context of hip fracture prevention calculation of absolute fracture risk using clinical risks, BMD, bone geometry and fall-related risks is feasible, but needs further refinement by integrating bone and fall-related risk factors into a single case finding algorithm for clinical use. PMID:22870438

  20. Prediction models for 90Sr in shed deciduous teeth and infant bone

    Aarkrog, Asker


    Shed deciduous teeth were collected in 1966-69 in Denmark, the Faroes and Greenland from children born in the period 1953-63. 235 samples of crowns were analysed for 90Sr. The 90Sr levels in deciduous tooth crowns were related to the fall-out rate and the accumulated fall-out. The tooth levels...... in children born in 1950-62 could be described with the same equation as the 90Sr bone levels in 1-yr-old infants born in 1962-68. The prediction models for 90Sr in teeth and bones showed that for given amount of fall-out the Faroese levels became nearly twice as high as the Danish. The maximum teeth and bone...... levels were found in children born in 1963, where the Faroese level was estimated from the prediction model to be 24 pCi 90Sr/g Ca....

  1. Bone

    Helmberger, Thomas K.; Hoffmann, Ralf-Thorsten

    The typical clinical signs in bone tumours are pain, destruction and destabilization, immobilization, neurologic deficits, and finally functional impairment. Primary malignant bone tumours are a rare entity, accounting for about 0.2% of all malignancies. Also benign primary bone tumours are in total rare and mostly asymptomatic. The most common symptomatic benign bone tumour is osteoid osteoma with an incidence of 1:2000.

  2. Long-term prediction of three-dimensional bone architecture in simulations of pre-, peri- and post-menopausal microstructural bone remodeling.

    Müller, Ralph


    The mechanical behavior of trabecular bone depends on the internal bone structure. It is generally accepted now that the trabecular bone structure is a result of a load adaptive bone remodeling. The mathematical laws that relate bone remodeling to the local state of stress and strain, however, are still under investigation. The aim of this project was to investigate if changes in the trabecular architecture as observed with age-related bone loss and osteoporosis can be predicted from a computer model that simulates bone resorption after hormone depletion based on realistic models of trabecular microstructure using micro-computed tomography (muCT). A compact desktop muCT providing a nominal isotropic resolution of 14 mum was used to measure two groups of seven trabecular bone specimens from pre-menopausal and post-menopausal women respectively. A novel algorithm was developed to simulate age-related bone loss for the specimens in the first group. The algorithm, also referred to as simulated bone atrophy (SIBA), describes a truly three-dimensional approach and is based directly on cellular bone remodeling with an underlying realistic time frame. Bone resorption is controlled by osteoclastic penetration depth and bone formation is governed by the efficiency level of the osteoblasts. The simulation itself describes an iterative process with a cellular remodeling cycle of 197 days. Activation frequency is controllable and can be adjusted for the different phases of pre-, peri- and post-menopause. For our simulations, osteoblastic and osteoclastic activities were in balance until the onset of menopause, set to be at the age of 50 years. In that period, the structure remained almost constant. After the onset of menopause an imbalance in the cell activities was modeled resulting in a net bone loss. The doubling of the activation frequency in the peri-menopausal phase caused a pronounced loss. Using advanced animation tools and quantitative bone morphometry, the changes in

  3. Prediction of progression of radiographic knee osteoarthritis using tibial trabecular bone texture

    Woloszynski, T; Podsiadlo, P; Stachowiak, G W


    OBJECTIVE.: To develop a system for prediction of progression of radiographic knee osteoarthritis (OA) using tibial trabecular bone (TB) texture. METHODS.: We studied 203 knees with (n=68) or without (n=135) radiographic tibiofemoral OA in 105 subjects (90 men, 15 women, mean age 54 years) who had...

  4. Improved prediction of meat and bone meal metabolizable energy content for ducks through in vitro methods

    Apparent metabolizable energy (AME) of meat and bone meal (MBM) for poultry is highly variable, but impractical to measure routinely. Previous efforts at developing an in vitro method for predicting AME have had limited success. The present study uses data from a previous publication on the AME of...

  5. Prediction of autosomal STR typing success in ancient and Second World War bone samples.

    Zupanič Pajnič, Irena; Zupanc, Tomaž; Balažic, Jože; Geršak, Živa Miriam; Stojković, Oliver; Skadrić, Ivan; Črešnar, Matija


    Human-specific quantitative PCR (qPCR) has been developed for forensic use in the last 10 years and is the preferred DNA quantification technique since it is very accurate, sensitive, objective, time-effective and automatable. The amount of information that can be gleaned from a single quantification reaction using commercially available quantification kits has increased from the quantity of nuclear DNA to the amount of male DNA, presence of inhibitors and, most recently, to the degree of DNA degradation. In skeletal remains samples from disaster victims, missing persons and war conflict victims, the DNA is usually degraded. Therefore the new commercial qPCR kits able to assess the degree of degradation are potentially able to predict the success of downstream short tandem repeat (STR) typing. The goal of this study was to verify the quantification step using the PowerQuant kit with regard to its suitability as a screening method for autosomal STR typing success on ancient and Second World War (WWII) skeletal remains. We analysed 60 skeletons excavated from five archaeological sites and four WWII mass graves from Slovenia. The bones were cleaned, surface contamination was removed and the bones ground to a powder. Genomic DNA was obtained from 0.5g of bone powder after total demineralization. The DNA was purified using a Biorobot EZ1 device. Following PowerQuant quantification, DNA samples were subjected to autosomal STR amplification using the NGM kit. Up to 2.51ng DNA/g of powder were extracted. No inhibition was detected in any of bones analysed. 82% of the WWII bones gave full profiles while 73% of the ancient bones gave profiles not suitable for interpretation. Four bone extracts yielded no detectable amplification or zero quantification results and no profiles were obtained from any of them. Full or useful partial profiles were produced only from bone extracts where short autosomal (Auto) and long degradation (Deg) PowerQuant targets were detected. It is

  6. A pediatric bone mass scan has poor ability to predict adult bone mass: a 28-year prospective study in 214 children.

    Buttazzoni, Christian; Rosengren, Bjorn E; Tveit, Magnus; Landin, Lennart; Nilsson, Jan-Åke; Karlsson, Magnus K


    As the correlation of bone mass from childhood to adulthood is unclear, we conducted a long-term prospective observational study to determine if a pediatric bone mass scan could predict adult bone mass. We measured cortical bone mineral content (BMC [g]), bone mineral density (BMD [g/cm(2)]), and bone width (cm) in the distal forearm by single photon absorptiometry in 120 boys and 94 girls with a mean age of 10 years (range 3-17) and mean 28 years (range 25-29) later. We calculated individual and age-specific bone mass Z scores, using the control cohort included at baseline as reference, and evaluated correlations between the two measurements with Pearson's correlation coefficient. Individual Z scores were also stratified in quartiles to register movements between quartiles from growth to adulthood. BMD Z scores in childhood and adulthood correlated in both boys (r = 0.35, p pediatric bone scan with a value in the lowest quartile had a sensitivity of 48% (95% confidence interval [CI] 27-69%) and a specificity of 76% (95% CI 66-84%) to identify individuals who would remain in the lowest quartile also in adulthood. Childhood forearm BMD explained 12% of the variance in adult BMD in men and 25% in women. A pediatric distal forearm BMD scan has poor ability to predict adult bone mass.

  7. Strength prediction of the distal radius by bone densitometry--evaluation using biomechanical tests.

    Eckstein, Felix; Kuhn, Volker; Lochmüller, Eva-Maria


    Osteoporotic fractures represent an important medical problem as they are often early predictors of future fractures at other skeletal sites. The distal radius is one such fracture site. To determine the individual's risk of fracture, different measurement techniques have been developed. These methods differ in physical background, measurement site, output parameters, and cost. If correctly applied, biomechanical testing can be an efficient tool for the preclinical evaluation of these techniques. With biomechanical testing it is possible to determine the structural strength of bone which can then be correlated with various densitometric parameters. Here we will review experimental work performed in this context. Biomechanical testing conditions vary considerably from study to study with 3-point bending (shaft), axial compression (metaphysis), and fall simulations being some of the techniques used. Experimental evidence suggests that site-specific osteodensitometric measurements can predict the mechanical strength of the distal radius with moderate to high accuracy, but that measurements at remote sites display considerably lower predictive value. Geometry-based parameters of cortical bone are also good predictors, but have not been shown to offer significant advantage over measurement of bone mass. Some (but not all) studies have found that quantitative ultrasound and microstructural parameters contribute significant additional information to bone mass measurement. The most accurate prediction of distal radius fractures, however, appears to be (patient-specific) microstructural finite element modeling.

  8. Preoperative implant planning considering alveolar bone grafting needs and complication prediction using panoramic versus CBCT images

    Guerrero, Maria Eugenia; Jacobs, Reinhilde [OIC, OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, University of Leuven, Leuven (Belgium); Noriega, Jorge [Master of Periodontology, Universidad San Martin de Porres, Lima (Peru)


    This study was performed to determine the efficacy of observers' prediction for the need of bone grafting and presence of perioperative complications on the basis of cone-beam computed tomography (CBCT) and panoramic radiographic (PAN) planning as compared to the surgical outcome. One hundred and eight partially edentulous patients with a need for implant rehabilitation were referred for preoperative imaging. Imaging consisted of PAN and CBCT images. Four observers carried out implant planning using PAN image datasets, and at least one month later, using CBCT image datasets. Based on their own planning, the observers assessed the need for bone graft augmentation as well as complication prediction. The implant length and diameter, the need for bone graft augmentation, and the occurrence of anatomical complications during planning and implant placement were statistically compared. In the 108 patients, 365 implants were installed. Receiver operating characteristic analyses of both PAN and CBCT preoperative planning showed that CBCT performed better than PAN-based planning with respect to the need for bone graft augmentation and perioperative complications. The sensitivity and the specificity of CBCT for implant complications were 96.5% and 90.5%, respectively, and for bone graft augmentation, they were 95.2% and 96.3%, respectively. Significant differences were found between PAN-based planning and the surgery of posterior implant lengths. Our findings indicated that CBCT-based preoperative implant planning enabled treatment planning with a higher degree of prediction and agreement as compared to the surgical standard. In PAN-based surgery, the prediction of implant length was poor.

  9. Bad to the bone: facial structure predicts unethical behaviour.

    Haselhuhn, Michael P; Wong, Elaine M


    Researchers spanning many scientific domains, including primatology, evolutionary biology and psychology, have sought to establish an evolutionary basis for morality. While researchers have identified social and cognitive adaptations that support ethical behaviour, a consensus has emerged that genetically determined physical traits are not reliable signals of unethical intentions or actions. Challenging this view, we show that genetically determined physical traits can serve as reliable predictors of unethical behaviour if they are also associated with positive signals in intersex and intrasex selection. Specifically, we identify a key physical attribute, the facial width-to-height ratio, which predicts unethical behaviour in men. Across two studies, we demonstrate that men with wider faces (relative to facial height) are more likely to explicitly deceive their counterparts in a negotiation, and are more willing to cheat in order to increase their financial gain. Importantly, we provide evidence that the link between facial metrics and unethical behaviour is mediated by a psychological sense of power. Our results demonstrate that static physical attributes can indeed serve as reliable cues of immoral action, and provide additional support for the view that evolutionary forces shape ethical judgement and behaviour.

  10. Prediction of Local Ultimate Strain and Toughness of Trabecular Bone Tissue by Raman Material Composition Analysis

    Roberto Carretta


    Full Text Available Clinical studies indicate that bone mineral density correlates with fracture risk at the population level but does not correlate with individual fracture risk well. Current research aims to better understand the failure mechanism of bone and to identify key determinants of bone quality, thus improving fracture risk prediction. To get a better understanding of bone strength, it is important to analyze tissue-level properties not influenced by macro- or microarchitectural factors. The aim of this pilot study was to identify whether and to what extent material properties are correlated with mechanical properties at the tissue level. The influence of macro- or microarchitectural factors was excluded by testing individual trabeculae. Previously reported data of mechanical parameters measured in single trabeculae under tension and bending and its compositional properties measured by Raman spectroscopy was evaluated. Linear and multivariate regressions show that bone matrix quality but not quantity was significantly and independently correlated with the tissue-level ultimate strain and postyield work (r=0.65–0.94. Principal component analysis extracted three independent components explaining 86% of the total variance, representing elastic, yield, and ultimate components according to the included mechanical parameters. Some matrix parameters were both included in the ultimate component, indicating that the variation in ultimate strain and postyield work could be largely explained by Raman-derived compositional parameters.

  11. Model-based Comparative Prediction of Transcription-Factor Binding Motifs in Anabolic Responses in Bone

    Andy; B.; Chen; Kazunori; Hamamura; Guohua; Wang; Weirong; Xing; Subburaman; Mohan; Hiroki; Yokota; Yunlong; Liu


    Understanding the regulatory mechanism that controls the alteration of global gene expression patterns continues to be a challenging task in computational biology. We previously developed an ant algorithm, a biologically-inspired computational technique for microarray data, and predicted putative transcription-factor binding motifs (TFBMs) through mimicking interactive behaviors of natural ants. Here we extended the algorithm into a set of web-based software, Ant Modeler, and applied it to investigate the transcriptional mechanism underlying bone formation. Mechanical loading and administration of bone morphogenic proteins (BMPs) are two known treatments to strengthen bone. We addressed a question: Is there any TFBM that stimulates both "anabolic responses of mechanical loading" and "BMP-mediated osteogenic signaling"? Although there is no significant overlap among genes in the two responses, a comparative model-based analysis suggests that the two independent osteogenic processes employ common TFBMs, such as a stress responsive element and a motif for peroxisome proliferator-activated recep- tor (PPAR). The post-modeling in vitro analysis using mouse osteoblast cells sup- ported involvements of the predicted TFBMs such as PPAR, Ikaros 3, and LMO2 in response to mechanical loading. Taken together, the results would be useful to derive a set of testable hypotheses and examine the role of specific regulators in complex transcriptional control of bone formation.

  12. Validation of adult height prediction based on automated bone age determination in the Paris Longitudinal Study of healthy children

    Martin, David D. [Tuebingen University Children' s Hospital, Tuebingen (Germany); Filderklinik, Filderstadt (Germany); Schittenhelm, Jan [Tuebingen University Children' s Hospital, Tuebingen (Germany); Thodberg, Hans Henrik [Visiana, Holte (Denmark)


    An adult height prediction model based on automated determination of bone age was developed and validated in two studies from Zurich, Switzerland. Varied living conditions and genetic backgrounds might make the model less accurate. To validate the adult height prediction model on children from another geographical location. We included 51 boys and 58 girls from the Paris Longitudinal Study of children born 1953 to 1958. Radiographs were obtained once or twice a year in these children from birth to age 18. Bone age was determined using the BoneXpert method. Radiographs in children with bone age greater than 6 years were considered, in total 1,124 images. The root mean square deviation between the predicted and the observed adult height was 2.8 cm for boys in the bone age range 6-15 years and 3.1 cm for girls in the bone age range 6-13 years. The bias (the average signed difference) was zero, except for girls below bone age 12, where the predictions were 0.8 cm too low. The accuracy of the BoneXpert method in terms of root mean square error was as predicted by the model, i.e. in line with what was observed in the Zurich studies. (orig.)

  13. A Pediatric Bone Mass Scan has Poor Ability to Predict Peak Bone Mass: An 11-Year Prospective Study in 121 Children.

    Buttazzoni, Christian; Rosengren, Bjorn E; Karlsson, Caroline; Dencker, Magnus; Nilsson, Jan-Åke; Karlsson, Magnus K


    This 11-year prospective longitudinal study examined how a pre-pubertal pediatric bone mass scan predicts peak bone mass. We measured bone mineral content (BMC; g), bone mineral density (BMD; g/cm(2)), and bone area (cm(2)) in femoral neck, total body and lumbar spine by dual-energy X-ray absorptiometry in a population-based cohort including 65 boys and 56 girls. At baseline all participants were pre-pubertal with a mean age of 8 years (range 6-9), they were re-measured at a mean 11 years (range 10-12) later. The participants were then mean 19 years (range 18-19), an age range that corresponds to peak bone mass in femoral neck in our population. We calculated individual BMC, BMD, and bone size Z scores, using all participants at each measurement as reference and evaluated correlations between the two measurements. Individual Z scores were also stratified in quartiles to register movements between quartiles from pre-pubertal age to peak bone mass. The correlation coefficients (r) between pre-pubertal and young adulthood measurements for femoral neck BMC, BMD, and bone area varied between 0.37 and 0.65. The reached BMC value at age 8 years explained 42 % of the variance in the BMC peak value; the corresponding values for BMD were 31 % and bone area 14 %. Among the participants with femoral neck BMD in the lowest childhood quartile, 52 % had left this quartile at peak bone mass. A pediatric bone scan with a femoral neck BMD value in the lowest quartile had a sensitivity of 47 % [95 % confidence interval (CI) 28, 66] and a specificity of 82 % (95 % CI 72, 89) to identify individuals who would remain in the lowest quartile at peak bone mass. The pre-pubertal femoral neck BMD explained only 31 % of the variance in femoral neck peak bone mass. A pre-pubertal BMD scan in a population-based sample has poor ability to predict individuals who are at risk of low peak bone mass.

  14. Prediction of Splint Therapy Efficacy Using Bone Scan in Patients with Unilateral Temporomandibular Disorder

    Lee, Sang Mi; Lee, Won Woo; Yun, Pil Young; Kim, Young Kyun; Kim, Sang Eun [Seoul National University Bundang Hospital, Seoul (Korea, Republic of)


    It is not known whether bone scan is useful for the prediction of the prognosis of patients with temporomandibular disorders (TMD). The aim of the present study was to identify useful prognostic markers on bone scan for the pre-therapeutic assessment of patients with unilateral TMD. Between January 2005 and July 2007, 55 patients (M:F=9:46; mean age, 34.7{+-}14.1 y) with unilateral TMD that underwent a pre-therapeutic bone scan were enrolled. Uptake of Tc-99m HDP in each temporomandibular joint (TMJ) was quantitated using a 13X13 pixel-square region-of-interest over TMJ and parietal skull area as background. TMJ uptake ratios and asymmetric indices were calculated. TMD patients were classified as improved or not improved and the bone scan findings associated with each group were investigated. Forty-six patients were improved, whereas 9 patients were not improved. There was no significant difference between the two groups of patients regarding the TMJ uptake ratio of the involved joint, the TMJ uptake ratio of the non-involved joint, and the asymmetric index (p>0.05). However, in a subgroup analysis, the patients with an increased uptake of Tc-99m HDP at the disease-involved TMJ, by visual assessment, could be easily identified by the asymmetric index; the patients that improved had a higher asymmetric index than the patients that did not improve (1.32{+-}0.35 vs. 1.08{+-}0.04, p=0.023), The Tc-99m HDP bone scan may help predict the prognosis of patients with unilateral TMD after splint therapy when the TMD-involved joint reveals increased uptake by visual assessment.


    Ricardo Araújo Castilho


    Full Text Available ABSTRACT The prediction of metabolizable energy (ME of meat and bone meal (MBM for pigs is an interesting tool, however, used models to predict these values must be validated in order to garantee higher precision. The aim of this study was to determine the chemical and energetic composition of different types of MBM for pigs and to adjust and validate models to better predict the ME based on the chemical composition. Thirty-two barrows, averaging an initial weight of 26.75 ± 1.45 kg, were individually allotted in a randomized block design with eight treatments and four replicates. The treatments consisted of seven types of MBM that replaced 20% of the basal diet. A stepwise procedure was the statistical procedure used to adjust the prediction equations and the ME was the dependent parameter. The validation of the adjusted models was performed using an independent databank of chemical and energetic composition of theBrazilian and international MBM. The metabolizable energy of different meat and bone meals ranged from 1645 to 2645 kcal kg-1. The equations that provide a good prediction of metabolizable energy of meat and bone meal for swine in Brazil are EM1 = -4233.58 + 0.4134GE + 72CP + 89.62ash - 159.06Ca; EM2 = 2087.49 + 0.3446GE + 31.82ash - 189.18Ca; EM3 = 2140.13 + 0.3845GE - 112.33Ca; EM4 = -346.58 + 0.656GE; EM5 = 3221.27 + 178.96fat - 76.55ash; and EM6 = 5356.45 - 84.75ash.

  16. Establishment of a biomarker model for predicting bone metastasis in resected stage III non-small cell lung cancer

    Zhou Zhen


    Full Text Available Abstract Background This study was designed to establish a biomarker risk model for predicting bone metastasis in stage III non-small cell lung cancer (NSCLC. Methods The model consists of 105 cases of stage III NSCLC, who were treated and followed up. The patients were divided into bone metastasis group (n = 45 and non-bone metastasis group (other visceral metastasis and those without recurrence (n = 60. Tissue microarrays were constructed for immunohistochemical study of 10 molecular markers associated with bone metastasis, based on which a model was established via logistic regression analysis for predicting the risk of bone metastases. The model was prospectively validated in another 40 patients with stage III NSCLC. Results The molecular model for predicting bone metastasis was logit (P = − 2.538 + 2.808 CXCR4 +1.629 BSP +0.846 OPN-2.939 BMP4. ROC test showed that when P ≥ 0.408, the sensitivity was up to 71% and specificity of 70%. Model validation in the 40 cases in clinical trial (NCT 01124253 demonstrated that the prediction sensitivity of the model was 85.7%, specificity 66.7%, Kappa: 0.618, with a high degree of consistency. Conclusion The molecular model combining CXCR4, BSP, OPN and BMP4 could help predict the risk of bone metastasis in stage IIIa and IIIb resected NSCLC.

  17. An Easy Tool to Predict Survival in Patients Receiving Radiation Therapy for Painful Bone Metastases

    Westhoff, Paulien G., E-mail: [Department of Radiotherapy, University Medical Center Utrecht, Utrecht (Netherlands); Graeff, Alexander de [Department of Medical Oncology, University Medical Center Utrecht, Utrecht (Netherlands); Monninkhof, Evelyn M. [Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht (Netherlands); Bollen, Laurens; Dijkstra, Sander P. [Department of Orthopedic Surgery, Leiden University Medical Center (Netherlands); Steen-Banasik, Elzbieta M. van der [ARTI Institute for Radiation Oncology Arnhem, Arnhem (Netherlands); Vulpen, Marco van [Department of Radiotherapy, University Medical Center Utrecht, Utrecht (Netherlands); Leer, Jan Willem H. [Department of Radiotherapy, University Medical Center Nijmegen, Nijmegen (Netherlands); Marijnen, Corrie A.; Linden, Yvette M. van der [Department of Clinical Oncology, Leiden University Medical Center, Leiden (Netherlands)


    Purpose: Patients with bone metastases have a widely varying survival. A reliable estimation of survival is needed for appropriate treatment strategies. Our goal was to assess the value of simple prognostic factors, namely, patient and tumor characteristics, Karnofsky performance status (KPS), and patient-reported scores of pain and quality of life, to predict survival in patients with painful bone metastases. Methods and Materials: In the Dutch Bone Metastasis Study, 1157 patients were treated with radiation therapy for painful bone metastases. At randomization, physicians determined the KPS; patients rated general health on a visual analogue scale (VAS-gh), valuation of life on a verbal rating scale (VRS-vl) and pain intensity. To assess the predictive value of the variables, we used multivariate Cox proportional hazard analyses and C-statistics for discriminative value. Of the final model, calibration was assessed. External validation was performed on a dataset of 934 patients who were treated with radiation therapy for vertebral metastases. Results: Patients had mainly breast (39%), prostate (23%), or lung cancer (25%). After a maximum of 142 weeks' follow-up, 74% of patients had died. The best predictive model included sex, primary tumor, visceral metastases, KPS, VAS-gh, and VRS-vl (C-statistic = 0.72, 95% CI = 0.70-0.74). A reduced model, with only KPS and primary tumor, showed comparable discriminative capacity (C-statistic = 0.71, 95% CI = 0.69-0.72). External validation showed a C-statistic of 0.72 (95% CI = 0.70-0.73). Calibration of the derivation and the validation dataset showed underestimation of survival. Conclusion: In predicting survival in patients with painful bone metastases, KPS combined with primary tumor was comparable to a more complex model. Considering the amount of variables in complex models and the additional burden on patients, the simple model is preferred for daily use. In addition, a risk table for survival is

  18. Dietary Intake Can Predict and Protect Against Changes in Bone Metabolism during Spaceflight and Recovery (Pro K)

    Smith, Scott M.; Zwart, S. R.; Shackelford, L.; Heer, M.


    Bone loss is not only a well-documented effect of spaceflight on astronauts, but also a condition that affects millions of men and women on Earth each year. Many countermeasures aimed at preventing bone loss during spaceflight have been proposed, and many have been evaluated to some degree. To date, those showing potential have focused on either exercise or pharmacological interventions, but none have targeted dietary intake alone as a factor to predict or minimize bone loss during spaceflight. The "Dietary Intake Can Predict and Protect against Changes in Bone Metabolism during Spaceflight and Recovery" investigation ("Pro K") is one of the first inflight evaluations of a dietary countermeasure to lessen bone loss of astronauts. This protocol will test the hypothesis that the ratio of acid precursors to base precursors (specifically animal protein to potassium) in the diet can predict directional changes in bone mineral during spaceflight and recovery. The ratio of animal protein to potassium in the diet will be controlled for multiple short (4-day) periods before and during flight. Based on multiple sets of bed rest data, we hypothesize that a higher ratio of the intake of animal protein to the intake of potassium will yield higher concentrations of markers of bone resorption and urinary calcium excretion during flight and during recovery from bone mineral loss after long-duration spaceflight.

  19. Dietary Intake Can Predict and Protect Against Changes in Bone Metabolism during Spaceflight and Recovery (Pro K)

    Smith, Scott M.; Zwart, S. R.; Shackelford, L.; Heer, M.


    Bone loss is not only a well-documented effect of spaceflight on astronauts, but also a condition that affects millions of men and women on Earth each year. Many countermeasures aimed at preventing bone loss during spaceflight have been proposed, and many have been evaluated to some degree. To date, those showing potential have focused on either exercise or pharmacological interventions, but none have targeted dietary intake alone as a factor to predict or minimize bone loss during spaceflight. The "Dietary Intake Can Predict and Protect against Changes in Bone Metabolism during Spaceflight and Recovery" investigation ("Pro K") is one of the first inflight evaluations of a dietary countermeasure to lessen bone loss of astronauts. This protocol will test the hypothesis that the ratio of acid precursors to base precursors (specifically animal protein to potassium) in the diet can predict directional changes in bone mineral during spaceflight and recovery. The ratio of animal protein to potassium in the diet will be controlled for multiple short (4-day) periods before and during flight. Based on multiple sets of bed rest data, we hypothesize that a higher ratio of the intake of animal protein to the intake of potassium will yield higher concentrations of markers of bone resorption and urinary calcium excretion during flight and during recovery from bone mineral loss after long-duration spaceflight.

  20. Optimizing finite element predictions of local subchondral bone structural stiffness using neural network-derived density-modulus relationships for proximal tibial subchondral cortical and trabecular bone.

    Nazemi, S Majid; Amini, Morteza; Kontulainen, Saija A; Milner, Jaques S; Holdsworth, David W; Masri, Bassam A; Wilson, David R; Johnston, James D


    Quantitative computed tomography based subject-specific finite element modeling has potential to clarify the role of subchondral bone alterations in knee osteoarthritis initiation, progression, and pain. However, it is unclear what density-modulus equation(s) should be applied with subchondral cortical and subchondral trabecular bone when constructing finite element models of the tibia. Using a novel approach applying neural networks, optimization, and back-calculation against in situ experimental testing results, the objective of this study was to identify subchondral-specific equations that optimized finite element predictions of local structural stiffness at the proximal tibial subchondral surface. Thirteen proximal tibial compartments were imaged via quantitative computed tomography. Imaged bone mineral density was converted to elastic moduli using multiple density-modulus equations (93 total variations) then mapped to corresponding finite element models. For each variation, root mean squared error was calculated between finite element prediction and in situ measured stiffness at 47 indentation sites. Resulting errors were used to train an artificial neural network, which provided an unlimited number of model variations, with corresponding error, for predicting stiffness at the subchondral bone surface. Nelder-Mead optimization was used to identify optimum density-modulus equations for predicting stiffness. Finite element modeling predicted 81% of experimental stiffness variance (with 10.5% error) using optimized equations for subchondral cortical and trabecular bone differentiated with a 0.5g/cm(3) density. In comparison with published density-modulus relationships, optimized equations offered improved predictions of local subchondral structural stiffness. Further research is needed with anisotropy inclusion, a smaller voxel size and de-blurring algorithms to improve predictions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Effects of dose reduction on bone strength prediction using finite element analysis

    Anitha, D.; Subburaj, Karupppasamy; Mei, Kai; Kopp, Felix K.; Foehr, Peter; Noel, Peter B.; Kirschke, Jan S.; Baum, Thomas


    This study aimed to evaluate the effect of dose reduction, by means of tube exposure reduction, on bone strength prediction from finite-element (FE) analysis. Fresh thoracic mid-vertebrae specimens (n = 11) were imaged, using multi-detector computed tomography (MDCT), at different intensities of X-ray tube exposures (80, 150, 220 and 500 mAs). Bone mineral density (BMD) was estimated from the mid-slice of each specimen from MDCT images. Differences in image quality and geometry of each specimen were measured. FE analysis was performed on all specimens to predict fracture load. Paired t-tests were used to compare the results obtained, using the highest CT dose (500 mAs) as reference. Dose reduction had no significant impact on FE-predicted fracture loads, with significant correlations obtained with reference to 500 mAs, for 80 mAs (R2  = 0.997, p analysis. Reduced CT dose will enable early diagnosis and advanced monitoring of osteoporosis and associated fracture risk.

  2. Urinary Acid Excretion Can Predict Changes in Bone Metabolism During Space Flight

    Zwart, Sara R.; Smith, Scott M.


    Mitigating space flight-induced bone loss is critical for space exploration, and a dietary countermeasure would be ideal. We present here preliminary data from a study where we examined the role of dietary intake patterns as one factor that can influence bone mineral loss in astronauts during space flight. Crewmembers (n=5) were asked to consume a prescribed diet with either a low (0.3-0.6) or high (1.0-1.3) ratio of animal protein to potassium (APro:K) before and during space flight for 4-d periods. Diets were controlled for energy, total protein, calcium, and sodium. 24-h urine samples were collected on the last day of each of the 4-d controlled diet sessions. 24-h urinary acid excretion, which was predicted by dietary potential renal acid load, was correlated with urinary n-telopeptide (NTX, Pearson R = 0.99 and 0.80 for the high and low APro:K sessions, respectively, p<0.001). The amount of protein when expressed as the percentage of total energy (but not as total grams) was also correlated with urinary NTX (R = 0.66, p<0.01). These results, from healthy individuals in a unique environment, will be important to better understand diet and bone interrelationships during space flight as well as on Earth. The study was funded by the NASA Human Research Program.

  3. Prediction of Areal Bone Mineral Density and Bone Mineral Content in Children and Adolescents Living With HIV Based on Anthropometric Variables.

    Lima, Luiz Rodrigo Augustemak de; Krug, Rodrigo de Rosso; Silva, Rosane Carla Rosendo da; Carvalho, Aroldo Prohmann de; González-Chica, David Alejandro; Back, Isabela de Carlos; Petroski, Edio Luiz


    Children and adolescents living with HIV have low bone mass for age. There are reliable and accurate methods for evaluation of bone mass, however, alternative methods are necessary, especially, for application in limited-resource scenarios. Anthropometry is a noninvasive and low cost method that can predict bone mass in healthy youths. The aim of the study was to develop predictive equations for bone mineral content and bone mineral density in children and adolescents living with HIV based on anthropometric variables. Forty-eight children and adolescents of both sexes (24 females) from 7 to 17 years, living in greater Florianopolis area, Santa Catarina, Brazil, who were under clinical follow-up at "Hospital Infantil Joana de Gusmão", participated in the study. Dual-energy X-ray absorptiometry was used to evaluate whole-body bone mineral content (BMC) and areal bone mineral density (aBMD). Height, body weight, bone diameters, arm circumference, and triceps skinfold were measured and the body mass index and arm muscle area were calculated. Multiple regression models were fitted to predict BMC and aBMD, using backward selection (p ≥ 0.05). Two predictive models with high R(2) values (84%-94%) were developed. Model 1 to estimate aBMD [Y = -0.1450124 + (height × 0.0033807) + (age × 0.0146381) + (body mass index × 0.0158838) + (skin color × 0.0421068)], and model 2 to estimate BMC [Y = 1095.1 + (body weight × 45.66973) + (age × 31.36516) + (arm circumference × -53.27204) + (femoral diameter × -9.594018)].The predictive models using anthropometry provided reliable estimates and can be useful to monitor aBMD and BMC in children and adolescents living with human immunodeficiency virus where limited resources are available.

  4. Prediction of bone loss in elderly female subjects by MR perfusion imaging and spectroscopy

    Griffith, James F.; Yeung, David K.W. [Chinese University of Hong Kong, Department of Imaging and Interventional Radiology, Prince of Wales Hospital, Shatin, New Territories (China); Leung, Jason Chi Shun; Leung, Ping C. [Chinese University of Hong Kong, Jockey Club Centre for Osteoporosis Care and Control, Prince of Wales Hospital, Shatin (China); Kwok, Timothy C.Y. [Chinese University of Hong Kong, Department of Medicine and Therapeutics, Prince of Wales Hospital, Shatin (China)


    To determine whether MR perfusion indices or marrow fat content at baseline can predict areal bone mineral density (BMDa) loss. Repeat dual x-ray absorptiometry (DXA) of the hip was performed in female subjects at 2 years (n = 52) and 4 years (n = 45) following baseline MR perfusion imaging and spectroscopy of the hip. Percentage reduction in femoral neck BMDa at 4 years post-baseline was greater in subjects with below median acetabulum enhancement slope (E{sup slope}) (-5.6 {+-} 1.2 Vs -1.1 {+-} 1.2 (mean {+-} standard error) p = 0.014) or muscle maximum enhancement (E{sup max}) (-5.7 {+-} 1.2 Vs -0.23 {+-} 1.2, p = 0.009) after adjusting for baseline co-variables. Baseline MR parameters correlated with reduction in BMDa at 4 years (acetabulum E{sup slope} r = 0.517, p = 0.0003; muscle E{sup max} r = 0.306, p = 0.043) as well as traditionally applied clinical risk factors. Acetabulum E{sup slope}, femoral neck E{sup max} and marrow fat content at baseline had sensitivities of 89%, 81% and 72% respectively at distinguishing between fast (>1%/annum) (n = 18) and slow (<1%/annum) (n = 27) BMD losers. Elderly female subjects with reduced perfusion indices at baseline had increased femoral neck bone loss at 4 years. Selected perfusion indices and marrow fat content have a moderate to high sensitivity in discriminating between fast and slow bone losers. (orig.)

  5. Improved prediction of meat and bone meal metabolizable energy content for ducks through in vitro methods.

    Garcia, R A; Phillips, J G; Adeola, O


    Apparent metabolizable energy (AME) of meat and bone meal (MBM) for poultry is highly variable, but impractical to measure routinely. Previous efforts at developing an in vitro method for predicting AME have had limited success. The present study uses data from a previous publication on the AME of 12 MBM samples, determined using 288 White Pekin ducks, as well as composition data on these samples. Here, we investigate the hypothesis that 2 noncompositional attributes of MBM, particle size and protease resistance, will have utility in improving predictions of AME based on in vitro measurements. Using the same MBM samples as the previous study, 2 measurements of particle size were recorded and protease resistance was determined using a modified pepsin digestibility assay. Analysis of the results using a stepwise construction of multiple linear regression models revealed that the measurements of particle size were useful in building models for AME, but the measure of protease resistance was not. Relatively simple (4-term) and complex (7-term) models for both AME and nitrogen-corrected AME were constructed, with R-squared values ranging from 0.959 to 0.996. The rather minor analytical effort required to conduct the measurements involved is discussed. Although the generality of the results are limited by the number of samples involved and the species used, they suggest that AME for poultry can be accurately predicted through simple and inexpensive in vitro methods.

  6. High SPARC Expression Starting from Dysplasia, Associated with Breast Carcinoma, Is Predictive for Bone Metastasis without Enhancement of Plasma Levels

    Maroni, Paola; Bendinelli, Paola; Morelli, Daniele; Drago, Lorenzo; Luzzati, Alessandro; Perrucchini, Giuseppe; Bonini, Chiara; Matteucci, Emanuela; Desiderio, Maria Alfonsina


    In order to become established in the skeleton, metastatic cells disseminating from the breast carcinoma need to acquire organ-specific traits. There are no effective predictors for who will develop bone metastasis to guide long-term predictive therapy. Our purpose was to individuate events critical for bone colonization to make a molecular classification of breast carcinoma useful for bone-metastasis outcome. In dysplasia adjacent to carcinoma and in pair-matched specimens of bone metastasis we examined SPARC expression and localization as well as Endothelin 1/ETAR signals by immunohistochemistry, and the evaluation of plasma levels of SPARC by ELISA was also performed. In patients with breast carcinoma metastasizing to bone, SPARC and Endothelin 1/ETAR axis were highly expressed from dysplasia until bone metastasis, but the SPARC plasma level was as low as that of normal women, in contrast to patients that never develop bone metastasis, suggesting that circulating SPARC was counter adhesive. Altogether, the early identification of SPARC/Endothelin 1/ETAR in dysplastic lesions would be important to devise therapies preventing metastasis engraftment, since often carcinoma cells spread to distant organs at the time or even before patients present with cancer. PMID:26703564

  7. Predictability of bone density at posterior mandibular implant sites using cone-beam computed tomography intensity values.

    Alkhader, Mustafa; Hudieb, Malik; Khader, Yousef


    The aim of this study was to investigate the predictability of bone density at posterior mandibular implant sites using cone-beam computed tomography (CBCT) intensity values. CBCT cross-sectional images for 436 posterior mandibular implant sites were selected for the study. Using Invivo software (Anatomage, San Jose, California, USA), two observers classified the bone density into three categories: low, intermediate, and high, and CBCT intensity values were generated. Based on the consensus of the two observers, 15.6% of sites were of low bone density, 47.9% were of intermediate density, and 36.5% were of high density. Receiver-operating characteristic analysis showed that CBCT intensity values had a high predictive power for predicting high density sites (area under the curve [AUC] =0.94, P density sites (AUC = 0.81, P density sites was 218 (sensitivity = 0.77 and specificity = 0.76) and the best cut-off value for intensity to predict high density sites was 403 (sensitivity = 0.93 and specificity = 0.77). CBCT intensity values are considered useful for predicting bone density at posterior mandibular implant sites.

  8. Predicting low bone density in children and young adults with quadriplegic cerebral palsy.

    Henderson, Richard C; Kairalla, John; Abbas, Almas; Stevenson, Richard D


    Many children and young adults with cerebral palsy (CP) have diminished bone mineral density (BMD) and a propensity to fracture with minimal trauma. The aim of this study was to identify variables which are routinely assessed as part of standard clinical care and that might be used to identify those individuals with CP who are most likely to have low BMD. One hundred and seven participants (ages 2 years 1 month to 21 years 1 month; mean age 10 years 11 months, SD 4 years 2 months) with moderate to severe spastic CP were assessed in detail. This included gathering clinical data, taking anthropometric measures of growth and nutrition, as well as dual energy X-ray absorptiometry measures of BMD. Seventeen participants were ambulatory with assistance (Gross Motor Function Classification System [GMFCS] level III), and 90 were capable of little or no ambulation even with assistance (26 GMFCS level IV and 64 GMFCS level V). Weight z score proved to be the best predictor of BMD z score. Declining BMD z scores also correlated with increasing age and greater severity of involvement. It can be predicted, with reasonable reliability, that a 10-year-old non-ambulatory child with quadriplegic CP and a 'typical' weight z score of -2 will have a BMD z score that is at best -2. Prior fractures, use of anticonvulsants, and feeding difficulties further reduce predicted BMD.

  9. A "bone marrow score" for predicting hematological disease in immunocompetent patients with fevers of unknown origin.

    Wang, Hao-Yuan; Yang, Ching-Fen; Chiou, Tzeon-Jye; Yang, Sheng-Hsiang; Gau, Jyh-Pyng; Yu, Yuan-Bin; Liu, Chun-Yu; Liu, Jin-Hwang; Chen, Po-Min; Hsu, Hui-Chi; Fung, Chang-Phone; Tzeng, Cheng-Hwai; Hsiao, Liang-Tsai


    Delayed diagnosis of hematological malignancies in immunocompetent patients with fever of unknown origin (FUO) remains an exhausting challenge for non-hematologist physicians. This retrospective cohort study aimed to establish a scoring system, "bone marrow (BM) score", to identify FUO patients who require early bone marrow biopsy (BMB) to diagnose hematological disease. Two cohorts, comprising 85 (training) and 20 (validation) eligible immunocompetent patients, with FUOs diagnosed between January 1, 2006 and July 31, 2013, underwent BMBs and were enrolled in the study. Demographic, laboratory, imaging, diagnostic, and outcome data were collected and retrospectively analyzed. Factors associated with hematological etiologies diagnosed using BMBs in the training cohort were identified and scored according to the relative hazards. These were further validated using the validation cohort. For the training cohort, 29 of 85 (34.1%) patients had hematological etiologies diagnosed using BMB. Seven factors significantly predicted the diagnostic yield of hematological diseases in the BM and were scored, with the 6 points for leucoerythroblastic changes in peripheral blood smears, 5.5 for elevated ferritin level (>1000 ng/mL), 4 for splenomegaly, 2 for thrombocytopenia, 1.5 for each of elevated lactate dehydrogenase levels and anemia, and 1 for neutropenia. When the cut-off value of the scoring system was set to 6, its sensitivity and specificity to diagnose hematological diseases in the BM of immunocompetent FUO patients were 93% and 58%, respectively. For the validation cohort, 7 of 20 (35%) patients had hematological disease, and all had BM scores higher than the cut-off, with the sensitivity and specificity at 100% and 77%, respectively. As immunocompetent FUO patients with hematological disease have poor prognoses, the "BM score" is valuable for non-hematologist physicians to identify immunocompetent FUO patients requiring early BMB.

  10. Uniaxial and Multiaxial Fatigue Life Prediction of the Trabecular Bone Based on Physiological Loading: A Comparative Study.

    Fatihhi, S J; Harun, M N; Abdul Kadir, Mohammed Rafiq; Abdullah, Jaafar; Kamarul, T; Öchsner, Andreas; Syahrom, Ardiyansyah


    Fatigue assessment of the trabecular bone has been developed to give a better understanding of bone properties. While most fatigue studies are relying on uniaxial compressive load as the method of assessment, in various cases details are missing, or the uniaxial results are not very realistic. In this paper, the effect of three different load histories from physiological loading applied on the trabecular bone were studied in order to predict the first failure surface and the fatigue lifetime. The fatigue behaviour of the trabecular bone under uniaxial load was compared to that of multiaxial load using a finite element simulation. The plastic strain was found localized at the trabecular structure under multiaxial load. On average, applying multiaxial loads reduced more than five times the fatigue life of the trabecular bone. The results provide evidence that multiaxial loading is dominated in the low cycle fatigue in contrast to the uniaxial one. Both bone volume fraction and structural model index were best predictors of failure (p < 0.05) in fatigue for both types of loading, whilst uniaxial loading has indicated better values in most cases.

  11. Biochemical markers for prediction of 4-year response in bone mass during bisphosphonate treatment for prevention of postmenopausal osteoporosis

    Ravn, Pernille; Thompson, Desmond E; Ross, Philip D;


    .47 [total OC (ELISA)], and r = -0.43 and r = -0.41 [total OC (RIA)], all P analyse the ability of the bone markers to predict a change in spine BMD greater than 0%. The best performance [defined as the maximum value of (sensitivity plus specificity)] was found at the cut...... measured at 6-month intervals. The correlation between 6-month change in uCTX and 4-year change in spine and hip bone mineral density (BMD) was r = -0.41 and r = -0.42, respectively (P r = -0.53 and r = -0.42 (uNTX), r = -0.46 and r = -0...

  12. Effects of loading frequency on the functional adaptation of trabeculae predicted by bone remodeling simulation.

    Kameo, Yoshitaka; Adachi, Taiji; Hojo, Masaki


    The process of bone remodeling is regulated by metabolic activities of many bone cells. While osteoclasts and osteoblasts are responsible for bone resorption and formation, respectively, activities of these cells are believed to be controlled by a mechanosensory system of osteocytes embedded in the extracellular bone matrix. Several experimental and theoretical studies have suggested that the strain-derived interstitial fluid flow in lacuno-canalicular porosity serves as the prime mover for bone remodeling. Previously, we constructed a mathematical model for trabecular bone remodeling that interconnects the microscopic cellular activities with the macroscopic morphological changes in trabeculae through the mechanical hierarchy. This model assumes that fluid-induced shear stress acting on osteocyte processes is a driving force for bone remodeling. The validity of this model has been demonstrated with a remodeling simulation using a two-dimensional trabecular model. In this study, to investigate the effects of loading frequency, which is thought to be a significant mechanical factor in bone remodeling, we simulated morphological changes of a three-dimensional single trabecula under cyclic uniaxial loading with various frequencies. The results of the simulation show the trabecula reoriented to the loading direction with the progress of bone remodeling. Furthermore, as the imposed loading frequency increased, the diameter of the trabecula in the equilibrium state was enlarged by remodeling. These results indicate that our simulation model can successfully evaluate the relationship between loading frequency and trabecular bone remodeling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Additively Manufactured Scaffolds for Bone Tissue Engineering and the Prediction of their Mechanical Behavior: A Review

    Xiang-Yu Zhang


    Full Text Available Additive manufacturing (AM, nowadays commonly known as 3D printing, is a revolutionary materials processing technology, particularly suitable for the production of low-volume parts with high shape complexities and often with multiple functions. As such, it holds great promise for the fabrication of patient-specific implants. In recent years, remarkable progress has been made in implementing AM in the bio-fabrication field. This paper presents an overview on the state-of-the-art AM technology for bone tissue engineering (BTE scaffolds, with a particular focus on the AM scaffolds made of metallic biomaterials. It starts with a brief description of architecture design strategies to meet the biological and mechanical property requirements of scaffolds. Then, it summarizes the working principles, advantages and limitations of each of AM methods suitable for creating porous structures and manufacturing scaffolds from powdered materials. It elaborates on the finite-element (FE analysis applied to predict the mechanical behavior of AM scaffolds, as well as the effect of the architectural design of porous structure on its mechanical properties. The review ends up with the authors’ view on the current challenges and further research directions.

  14. Use of CT densitometry to predict lung toxicity in bone marrow transplant patients

    el-Khatib, E.E.; Freeman, C.R.; Rybka, W.B.; Lehnert, S.; Podgorsak, E.B.


    Total body irradiation (TBI) is considered an integral part of the preparation of patients with hematological malignancies for marrow transplantation. One of the major causes of death following bone marrow transplantation is interstitial pneumonia. Its pathogenesis is complex but radiation may play a major role in its development. Computed tomography (CT) has been used in animal and human studies as a sensitive non-invasive method for detecting changes in the lung following radiotherapy. In the present study CT scans are studied before and up to 1 year after TBI. Average lung densities measured before TBI showed large variations among the individual patients. On follow-up scans, lung density decreases were measured for patients who did not develop lung complications. Significant lung density increases were measured in patients who subsequently had lung complications. These lung density increases were observed prior to the onset of respiratory complications and could be correlated with the clinical course of the patients, suggesting the possibility for the usage of CT lung densitometry to predict lung complications before the onset of clinical symptoms.

  15. Prediction of the long-term creep behaviour of hydroxyapatite-filled polyethylmethacrylate bone cements.

    Arnold, J C; Venditti, Nicholas P


    The creep behaviour of bone cements based on polyethylmethacrylate, with and without addition of hydroxyapatite filler has been investigated, in order to determine the effect of hydroxyapatite filling and to investigate methods of predicting the long-term creep behaviour from short-term tests. The materials were produced under laboratory conditions and tested in tension in Ringer's solution, as the study was intended to investigate the inherent materials behaviour rather than to simulate realistic conditions. The effects of adding hydroxyapatite were to increase the short-term stiffness and more significantly to decrease the creep rate. Short-term creep tests of up to 10(6) s were conducted at various temperatures, stresses and ageing states. These were then used to investigate various methods of extrapolation to long-term behaviour. The use of time-temperature superposition was found to be useful, though it takes no account of ongoing physical ageing and so gives a significant overestimate of long-term creep strains. Stress-time superposition was less useful and also excludes ageing effects. The use of 'effective time' theory was more successful, but requires a large number of short-term tests. The most effective method was that of the 'integrated time' approach, which required fewer tests yet still gave good correlations with longer-term data.

  16. Additively Manufactured Scaffolds for Bone Tissue Engineering and the Prediction of their Mechanical Behavior: A Review

    Zhang, Xiang-Yu; Fang, Gang; Zhou, Jie


    Additive manufacturing (AM), nowadays commonly known as 3D printing, is a revolutionary materials processing technology, particularly suitable for the production of low-volume parts with high shape complexities and often with multiple functions. As such, it holds great promise for the fabrication of patient-specific implants. In recent years, remarkable progress has been made in implementing AM in the bio-fabrication field. This paper presents an overview on the state-of-the-art AM technology for bone tissue engineering (BTE) scaffolds, with a particular focus on the AM scaffolds made of metallic biomaterials. It starts with a brief description of architecture design strategies to meet the biological and mechanical property requirements of scaffolds. Then, it summarizes the working principles, advantages and limitations of each of AM methods suitable for creating porous structures and manufacturing scaffolds from powdered materials. It elaborates on the finite-element (FE) analysis applied to predict the mechanical behavior of AM scaffolds, as well as the effect of the architectural design of porous structure on its mechanical properties. The review ends up with the authors’ view on the current challenges and further research directions. PMID:28772411

  17. Additively Manufactured Scaffolds for Bone Tissue Engineering and the Prediction of their Mechanical Behavior: A Review.

    Zhang, Xiang-Yu; Fang, Gang; Zhou, Jie


    Additive manufacturing (AM), nowadays commonly known as 3D printing, is a revolutionary materials processing technology, particularly suitable for the production of low-volume parts with high shape complexities and often with multiple functions. As such, it holds great promise for the fabrication of patient-specific implants. In recent years, remarkable progress has been made in implementing AM in the bio-fabrication field. This paper presents an overview on the state-of-the-art AM technology for bone tissue engineering (BTE) scaffolds, with a particular focus on the AM scaffolds made of metallic biomaterials. It starts with a brief description of architecture design strategies to meet the biological and mechanical property requirements of scaffolds. Then, it summarizes the working principles, advantages and limitations of each of AM methods suitable for creating porous structures and manufacturing scaffolds from powdered materials. It elaborates on the finite-element (FE) analysis applied to predict the mechanical behavior of AM scaffolds, as well as the effect of the architectural design of porous structure on its mechanical properties. The review ends up with the authors' view on the current challenges and further research directions.

  18. Presurgical Cone Beam Computed Tomography Bone Quality Evaluation for Predictable Immediate Implant Placement and Restoration in Esthetic Zone

    Corina Marilena Cristache


    Full Text Available Despite numerous advantages over multislice computed tomography (MSCT, including a lower radiation dose to the patient, shorter acquisition times, affordable cost, and sometimes greater detail with isotropic voxels used in reconstruction, allowing precise measurements, cone beam computed tomography (CBCT is still controversial regarding bone quality evaluation. This paper presents a brief review of the literature on accuracy and reliability of bone quality assessment with CBCT and a case report with step-by-step predictable treatment planning in esthetic zone, based on CBCT scans which enabled the clinician to evaluate, depending on bone volume and quality, whether immediate restoration with CAD-CAM manufactured temporary crown and flapless surgery may be a treatment option.

  19. Mechanical assessment of local bone quality to predict failure of locked plating in a proximal humerus fracture model.

    Röderer, Götz; Brianza, Stefano; Schiuma, Damiano; Schwyn, Ronald; Scola, Alexander; Gueorguiev, Boyko; Gebhard, Florian; Tami, Andrea


    The importance of osteoporosis in proximal humerus fractures is well recognized. However, the local distribution of bone quality in the humeral head may also have a significant effect because it remains unclear in what quality of bone screws of standard implants purchase. The goal of this study was to investigate whether the failure of proximal humerus locked plating can be predicted by the DensiProbe (ARI, Davos, Switzerland). A 2-part fracture with metaphyseal impaction was simulated in 12 fresh-frozen human cadaveric humeri. Using the DensiProbe, local bone quality was determined in the humeral head in the course of 6 proximal screws of a standard locking plate (Philos; Synthes GmbH, Solothurn, Switzerland). Cyclic mechanical testing with increasing axial loading until failure was performed. Bone mineral density (BMD) significantly correlated with cycles until failure. Head migration significantly increased between 1000 and 2000 loading cycles and significantly correlated with BMD after 3000 cycles. DensiProbe peak torque in all screw positions and their respective mean torque correlated significantly with the BMD values. In 3 positions, the peak torque significantly correlated with cycles to failure; here BMD significantly influenced mechanical stability. The validity of the DensiProbe was proven by the correlation between its peak torque measurements and BMD. The correlation between the peak torque and cycles to failure revealed the potential of the DensiProbe to predict the failure of locked plating in vitro. This method provides information about local bone quality, potentially making it suitable for intraoperative use by allowing the surgeon to take measures to improve stability.

  20. Predictive value of ridge dimensions on autologous bone graft resorption in staged maxillary sinus augmentation surgery using Cone-Beam CT.

    Klijn, R.J.; Beucken, J.J.J.P van den; Bronkhorst, E.M.; Berge, S.J.; Meijer, G.J.; Jansen, J.B.M.J.


    INTRODUCTION: No studies are available that provide predictive parameters regarding the expected amount of resorption after maxillary sinus augmentation surgery using autologous bone grafts. Therefore, the aim of this study was to determine parameters influencing the outcome of the bone graft resorp

  1. Stochastic multi-scale prediction on the apparent elastic moduli of trabecular bone considering uncertainties of biological apatite (BAp) crystallite orientation and image-based modelling.

    Basaruddin, Khairul Salleh; Takano, Naoki; Nakano, Takayoshi


    An assessment of the mechanical properties of trabecular bone is important in determining the fracture risk of human bones. Many uncertainty factors contribute to the dispersion of the estimated mechanical properties of trabecular bone. This study was undertaken in order to propose a computational scheme that will be able to predict the effective apparent elastic moduli of trabecular bone considering the uncertainties that are primarily caused by image-based modelling and trabecular stiffness orientation. The effect of image-based modelling which focused on the connectivity was also investigated. A stochastic multi-scale method using a first-order perturbation-based and asymptotic homogenisation theory was applied to formulate the stochastically apparent elastic properties of trabecular bone. The effective apparent elastic modulus was predicted with the introduction of a coefficient factor to represent the variation of bone characteristics due to inter-individual differences. The mean value of the predicted effective apparent Young's modulus in principal axis was found at approximately 460 MPa for respective 15.24% of bone volume fraction, and this is in good agreement with other experimental results. The proposed method may provide a reference for the reliable evaluation of the prediction of the apparent elastic properties of trabecular bone.

  2. Bone mineralisation in premature infants cannot be predicted from serum alkaline phosphatase or serum phosphate

    Faerk, J; Peitersen, Birgit; Petersen, S


    BACKGROUND: The bone mineral content of premature infants at term is lower than in mature infants at the same postconceptional age. Serum alkaline phosphatase and serum phosphate are often used as indicators of bone mineralisation. OBJECTIVE: To analyse the association between bone mineral content...... and serum alkaline phosphatase and serum phosphate. METHODS: Serum alkaline phosphatase and phosphate were measured at weekly intervals during admission in 108 premature infants of gestational age below 32 weeks (mean (SD) gestational age 29 (2) weeks; mean (SD) birth weight 1129 (279) g). Bone mineral...... content was measured at term (mean gestational age 41 weeks) by dual energy x ray absorptiometry and corrected for body size. RESULTS: Serum alkaline phosphatase was significantly negatively associated with serum phosphate (p serum alkaline...

  3. Gene expression markers in circulating tumor cells may predict bone metastasis and response to hormonal treatment in breast cancer.

    Wang, Haiying; Molina, Julian; Jiang, John; Ferber, Matthew; Pruthi, Sandhya; Jatkoe, Timothy; Derecho, Carlo; Rajpurohit, Yashoda; Zheng, Jian; Wang, Yixin


    Circulating tumor cells (CTCs) have recently attracted attention due to their potential as prognostic and predictive markers for the clinical management of metastatic breast cancer patients. The isolation of CTCs from patients may enable the molecular characterization of these cells, which may help establish a minimally invasive assay for the prediction of metastasis and further optimization of treatment. Molecular markers of proven clinical value may therefore be useful in predicting disease aggressiveness and response to treatment. In our earlier study, we identified a gene signature in breast cancer that appears to be significantly associated with bone metastasis. Among the genes that constitute this signature, trefoil factor 1 (TFF1) was identified as the most differentially expressed gene associated with bone metastasis. In this study, we investigated 25 candidate gene markers in the CTCs of metastatic breast cancer patients with different metastatic sites. The panel of the 25 markers was investigated in 80 baseline samples (first blood draw of CTCs) and 30 follow-up samples. In addition, 40 healthy blood donors (HBDs) were analyzed as controls. The assay was performed using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) with RNA extracted from CTCs captured by the CellSearch system. Our study indicated that 12 of the genes were uniquely expressed in CTCs and 10 were highly expressed in the CTCs obtained from patients compared to those obtained from HBDs. Among these genes, the expression of keratin 19 was highly correlated with the CTC count. The TFF1 expression in CTCs was a strong predictor of bone metastasis and the patients with a high expression of estrogen receptor β in CTCs exhibited a better response to hormonal treatment. Molecular characterization of these genes in CTCs may provide a better understanding of the mechanism underlying tumor metastasis and identify gene markers in CTCs for predicting disease progression and

  4. How Precise Is Dental Volumetric Tomography in the Prediction of Bone Density?

    Hakan Bilhan


    Full Text Available Objectives. The aim of this study was to review the bone density assessment techniques and evaluate the macroscopic structure of bone specimens scored by Hounsfield Units (HUs and decide if they are always in congruence. Methods. The mandible of a formalin-fixed human cadaver was scanned by dental volumetric tomography (DVT for planning of the specimen positions and fabrication of a surgical guide and a surgical stent was fabricated afterwards. Bone cylinders of 3.5 mm diameter and 5 mm length, were excised from the mandible using the surgical stent with a slow speed trephine drill. After removal of the cylinders two more scans were performed and the images of the first scan were used for the determination of the HU values. The removed bone cylinder was inspected macroscopically as well by micro-CT scan. Results. The highest HU values were recorded in the interforaminal region, especially in the midline (408–742. Posterior regions showed lower HU values, especially the first molar regions (22–61 for the right; 14–66 for the left first molar regions. Conclusion. Within the limitations of this pilot study, it can be concluded that HU values alone could be a misleading diagnostic tool for the determination of bone density.

  5. Objectively measured physical activity predicts hip and spine bone mineral content in children and adolescents ages 5 - 15 years: Iowa Bone Development Study

    Kathleen F Janz


    Full Text Available This study examined the association between physical activity (PA and bone mineral content (BMC; g from middle childhood to middle adolescence and compared the impact of vigorous-intensity PA (VPA over moderate- to vigorous-intensity PA (MVPA. Participants from the Iowa Bone Development Study were examined at ages 5, 8, 11, 13, and 15 yr (n=369, 449, 452, 410, 307, respectively. MVPA and VPA (min/day were measured using ActiGraph accelerometers. Anthropometry was used to measure body size and somatic maturity. Spine BMC and hip BMC were measured via dual-energy x-ray absorptiometry. Sex-specific multi-level linear models were fit for spine BMC and hip BMC, adjusted for weight (kg, height (cm, linear age (yr, non-linear age (yr2, and maturity (pre peak height velocity vs. at/post peak height velocity. The interaction effects of PA×maturity and PA×age were tested. We also examined differences in spine BMC and hip BMC between the least (10th percentile and most (90th percentile active participants at each examination period. Results indicated that PA added to prediction of BMC throughout the 10-year follow-up, except MVPA did not predict spine BMC in females. Maturity and age did not modify the PA effect for males nor females. At age 5, the males at the 90th percentile for VPA had 8.5% more hip BMC than males in the 10th percentile for VPA. At age 15, this difference was 2.0%. Females at age 5 in the 90th percentile for VPA had 6.1% more hip BMC than those in the 10th percentile for VPA. The age 15 difference was 1.8%. VPA was associated with BMC at weight-bearing skeletal sites from childhood to adolescence, and the effect was not modified by maturity or age. Our findings indicate the importance of early and sustained interventions that focus on VPA. Approaches focused on MVPA may be inadequate for optimal bone health, particularly for females.

  6. Finite Element Analysis for Prediction of Shear and Stress Concentration & Distribution in Femoral Bone

    Suhendra, N.; Gustiono, D.; Nugroho, E. A.; Masmui; Yuliani, H.


    The effect of micromotion on the shear shielding and size of yielding region in the bone asperity in contact with metal of femoral stem was investigated. The main objective of this work was to gain an understanding of bone wear particleformation mechanism from the two-dimensional finite element model of cementless femoral stem type. To assess the influence of the parameters of interest, different friction coefficients and sliding distance (micromotion)were used in the numerical simulations. Results from the finite element analysis showed that the increase ofthe yielding region is strongly influenced by the rise in sliding distance (micromotion), which is related to the generation of bone wear particle formations. Finite element bone wearparticle formation model, based on strain discontinuities, was therefore proposed for further works. The results obtained in this study can lead to the development of an accurate finite element wearparticle formation mechanism model that would be of use in the assessment of an artificial implant performance and their development.

  7. An easy tool to predict survival in patients receiving radiation therapy for painful bone metastases

    Westhoff, P.G.; Graeff, A. de; Monninkhof, E.M.; Bollen, L.; Dijkstra, S.P.; Steen-Banasik, E.M. van der; Vulpen, M. van; Leer, J.W.H.; Marijnen, C.A.; Linden, Y.M. van der; Study, G.


    PURPOSE: Patients with bone metastases have a widely varying survival. A reliable estimation of survival is needed for appropriate treatment strategies. Our goal was to assess the value of simple prognostic factors, namely, patient and tumor characteristics, Karnofsky performance status (KPS), and p

  8. Tooth counts do not predict bone mineral density in early postmenopausal Caucasian women. EPIC study group

    Earnshaw, S A; Keating, N; Hosking, D J;


    BACKGROUND: It has been suggested that poor dental status may be a suitable criterion for bone densitometry referral in early postmenopausal women. We evaluated this hypothesis in a cohort of 1365 Caucasian women aged between 45 and 59 years, who were enrolled into an international multi-centre t...... loss. Tooth counts therefore cannot be used to identify individuals at risk of osteoporosis....

  9. Magnetic resonance imaging findings in 84 patients with early rheumatoid arthritis: bone marrow oedema predicts erosive progression

    Haavardsholm, Espen A; Bøyesen, Pernille; Ostergaard, Mikkel


    Objectives: To examine the spectrum and severity of magnetic resonance imaging (MRI) findings in patients with early rheumatoid arthritis (RA), and to investigate the predictive value of MRI findings for subsequent development of conventional radiographic (CR) damage and MRI erosions. Methods: 84...... consecutive patients with RA with disease duration hands and wrists and MRI of the dominant wrist. MR...... images were scored according to the OMERACT rheumatoid arthritis magnetic resonance imaging score (RAMRIS), and conventional radiographs according to the van der Heijde modified Sharp score. Results: MRI findings reflecting inflammation (synovitis, bone marrow oedema and tenosynovitis) decreased during...

  10. Magnetic resonance imaging findings in 84 patients with early rheumatoid arthritis: bone marrow oedema predicts erosive progression

    Haavardsholm, E.A.; Boyesen, P.; Østergaard, Morten


    OBJECTIVES: To examine the spectrum and severity of magnetic resonance imaging (MRI) findings in patients with early rheumatoid arthritis (RA), and to investigate the predictive value of MRI findings for subsequent development of conventional radiographic (CR) damage and MRI erosions. METHODS: 84...... consecutive patients with RA with disease duration hands and wrists and MRI of the dominant wrist. MR...... images were scored according to the OMERACT rheumatoid arthritis magnetic resonance imaging score (RAMRIS), and conventional radiographs according to the van der Heijde modified Sharp score. RESULTS: MRI findings reflecting inflammation (synovitis, bone marrow oedema and tenosynovitis) decreased during...

  11. Predicting Hip Fracture Type With Cortical Bone Mapping (CBM) in the Osteoporotic Fractures in Men (MrOS) Study.

    Treece, Graham M; Gee, Andrew H; Tonkin, Carol; Ewing, Susan K; Cawthon, Peggy M; Black, Dennis M; Poole, Kenneth E S


    Hip fracture risk is known to be related to material properties of the proximal femur, but fracture prediction studies adding richer quantitative computed tomography (QCT) measures to dual-energy X-ray (DXA)-based methods have shown limited improvement. Fracture types have distinct relationships to predictors, but few studies have subdivided fracture into types, because this necessitates regional measurements and more fracture cases. This work makes use of cortical bone mapping (CBM) to accurately assess, with no prior anatomical presumptions, the distribution of properties related to fracture type. CBM uses QCT data to measure the cortical and trabecular properties, accurate even for thin cortices below the imaging resolution. The Osteoporotic Fractures in Men (MrOS) study is a predictive case-cohort study of men over 65 years old: we analyze 99 fracture cases (44 trochanteric and 55 femoral neck) compared to a cohort of 308, randomly selected from 5994. To our knowledge, this is the largest QCT-based predictive hip fracture study to date, and the first to incorporate CBM analysis into fracture prediction. We show that both cortical mass surface density and endocortical trabecular BMD are significantly different in fracture cases versus cohort, in regions appropriate to fracture type. We incorporate these regions into predictive models using Cox proportional hazards regression to estimate hazard ratios, and logistic regression to estimate area under the receiver operating characteristic curve (AUC). Adding CBM to DXA-based BMD leads to a small but significant (p fracture, with AUC increasing from 0.78 to 0.79, assessed using leave-one-out cross-validation. For specific fracture types, the improvement is more significant (p fractures and 0.76 to 0.82 for femoral neck fractures. In contrast, adding DXA-based BMD to a CBM-based predictive model does not result in any significant improvement. © 2015 The Authors. Journal of Bone and Mineral Research published by

  12. Temperature Prediction Model for Bone Drilling Based on Density Distribution and In Vivo Experiments for Minimally Invasive Robotic Cochlear Implantation.

    Feldmann, Arne; Anso, Juan; Bell, Brett; Williamson, Tom; Gavaghan, Kate; Gerber, Nicolas; Rohrbach, Helene; Weber, Stefan; Zysset, Philippe


    Surgical robots have been proposed ex vivo to drill precise holes in the temporal bone for minimally invasive cochlear implantation. The main risk of the procedure is damage of the facial nerve due to mechanical interaction or due to temperature elevation during the drilling process. To evaluate the thermal risk of the drilling process, a simplified model is proposed which aims to enable an assessment of risk posed to the facial nerve for a given set of constant process parameters for different mastoid bone densities. The model uses the bone density distribution along the drilling trajectory in the mastoid bone to calculate a time dependent heat production function at the tip of the drill bit. Using a time dependent moving point source Green's function, the heat equation can be solved at a certain point in space so that the resulting temperatures can be calculated over time. The model was calibrated and initially verified with in vivo temperature data. The data was collected in minimally invasive robotic drilling of 12 holes in four different sheep. The sheep were anesthetized and the temperature elevations were measured with a thermocouple which was inserted in a previously drilled hole next to the planned drilling trajectory. Bone density distributions were extracted from pre-operative CT data by averaging Hounsfield values over the drill bit diameter. Post-operative [Formula: see text]CT data was used to verify the drilling accuracy of the trajectories. The comparison of measured and calculated temperatures shows a very good match for both heating and cooling phases. The average prediction error of the maximum temperature was less than 0.7 °C and the average root mean square error was approximately 0.5 °C. To analyze potential thermal damage, the model was used to calculate temperature profiles and cumulative equivalent minutes at 43 °C at a minimal distance to the facial nerve. For the selected drilling parameters, temperature elevation profiles and

  13. Dietary and Urinary Sulfur can Predict Changes in Bone Metabolism During Space Flight

    Zwart, Sara R.; Heer, Martina; Shackelford, Linda; Smith, Scott M.


    Mitigating space flight-induced bone loss is critical for space exploration, and diet can play a major role in this effort. Previous ground-based studies provide evidence that dietary composition can influence bone resorption during bed rest. In this study we examined the role of dietary intake patterns as one factor that can influence bone mineral loss in astronauts during space flight. Crew members were asked to consume, for 4 days at a time, prescribed menus with either a low (0.3-0.6 g/mEq) or high (1.0-1.3 g/mEq) ratio of animal protein to potassium (APro:K). Menus were developed for each crewmember, and were designed to meet both crew preferences and study constraints. Intakes of energy, total protein, calcium, and sodium were held relatively constant between the two diets. The order of the menus was randomized, and crews completed each set (low and high) once before and twice during space flight, for a total of 6 controlled diet sessions. One inflight session and three postflight sessions (R+30, R+180, R+365) monitored typical dietary intake. As of this writing, data are available from 14 crew members. The final three subjects' inflight samples are awaiting return from the International Space Station via Space-X. On the last day of each of the 4-d controlled diet sessions, 24-h urine samples were collected, along with a fasting blood sample on the morning of the 5th day. Preliminary analyses show that urinary excretion of sulfate (normalized to lean body mass) is a significant predictor of urinary n-telopeptide (NTX). Dietary sulfate (normalized to lean body mass) is also a significant predictor of urinary NTX. The results from this study, will be important to better understand diet and bone interrelationships during space flight as well as on Earth. This study was funded by the Human Health Countermeasures Element of the NASA Human Research Program.

  14. The metaphyseal bone defect predicts outcome in reverse shoulder arthroplasty for proximal humerus fracture sequelae.

    Greiner, Stefan; Uschok, Stephan; Herrmann, Sebastian; Gwinner, Clemens; Perka, Carsten; Scheibel, Markus


    Reverse shoulder arthroplasty (RSA) represents an established procedure for treatment of fracture sequelae (FS) after proximal humerus fractures. The present work evaluates which factors are of influence for the clinical outcome. Fifty cases (mean age 69, range 44-89) have been evaluated postoperatively clinically [Constant Score (CS)] and radiographically (mean FU 34; range 24-93 months). The type of primary treatment, the amount of a metaphyseal bone defect, the preoperative status of the rotator cuff, the number of previous operative interventions and the type of FS according to Boileau were analysed whether they are of influence for clinical outcome. The mean CS increased significantly from 16.9 ± 6.7 preoperatively to 54.1 ± 15.7 points postoperatively. The CS of primary conservative treatment was significantly higher in comparison to primary operative treatment. Patients with a metaphyseal bone defect of more than 3 cm had significantly lower CS results. Degenerative changes of the teres minor muscle also had a significant negative influence on clinical results. Score results decreased with increasing number of previous operations. There were no significant difference in between patients classified as Boileau type I and II (category 1) compared to types III and IV (category 2). RSA significantly improved the clinical result. A metaphyseal bone defect and preoperative degeneration of the teres minor showed to be negative prognostic factors. Primary operative treatment and the number of previous operations also negatively influenced the clinical result.

  15. Analysis of factors predicting the success of the bone conduction device headband trial in patients with single-sided deafness.

    Faber, Hubert T; Kievit, Hanneke; de Wolf, Maarten J F; Cremers, Cor W R J; Snik, Ad F M; Hol, Myrthe K S


    To determine factors predicting whether patients with single-sided deafness (SSD) opt for a bone conduction device (BCD) for the contralateral routing of sound (CROS) after a regular trial with a BCD on a headband. Retrospective case-control study. Nijmegen, the Netherlands. Thirty consecutive patients with SSD. Patients received a trial with a BCD headband as part of the regular workup for SSD. The patients were divided into 2 groups according to their decision to opt for a BCD (BCD+) or not (BCD-). Patients completed a questionnaire on satisfaction with the BCD headband, patient- and BCD-related factors, and benefit in listening situations. Fourteen patients (47%) chose a percutaneous BCD application after the BCD headband trial. Hearing loss of the contralateral ear at 4.0 kHz was significantly larger in the BCD+ group for bone and air conduction (P = .05 and P = .02, respectively). Patients in the BCD+ group experienced more problems in several listening situations and used the BCD headband more frequently than patients did in the BCD- group. Several individual factors influence the decision of patients with SSD to opt for a BCD. Hearing loss in the contralateral ear at high frequencies seems to be a relevant factor to predict the success of the BCD headband trial. It is advisable to offer all patients with SSD the option to participate in the BCD headband trial for at least 1 week and create a realistic expectation for patients based on their unaided subjective hearing handicaps.

  16. Monitoring of alendronate treatment and prediction of effect on bone mass by biochemical markers in the early postmenopausal intervention cohort study

    Ravn, Pernille; Hosking, D; Thompson, D;


    To establish whether biochemical markers could be used to monitor alendronate (ALN) treatment and predict long-term response in bone mass, we used results from an ongoing, randomized trial of ALN treatment for prevention of postmenopausal osteoporosis (n = 1202). In women treated with ALN (5 mg......-point, validly identified women who responded, on ALN treatment, with a stabilization or an increase in bone mass. However, lack of decrease below the cut-point in NTX or OC could not be used to identify women with a bone loss during ALN treatment....

  17. Bone Density Is Directly Associated With Glomerular Filtration and Metabolic Acidosis but Do Not Predict Fragility Fractures in Men With Moderate Chronic Kidney Disease.

    Lima, Guilherme Alcantara Cunha; de Paula Paranhos-Neto, Francisco; Silva, Luciana Colonese; de Mendonça, Laura Maria Carvalho; Delgado, Alvimar Gonçalves; Leite, Maurilo; Gomes, Carlos Perez; Farias, Maria Lucia Fleiuss


    Hyperparathyroidism, vitamin D deficiency, increased fibroblast growth factor-23 (FGF-23), and metabolic acidosis promote bone fragility in chronic kidney disease (CKD). Although useful in predicting fracture risk in the general population, the role of dual-energy X-ray absorptiometry (DXA) in CKD remains uncertain. This cross-sectional study included 51 men aged 50-75 yr with moderate CKD. The stage 4 CKD patients had higher levels of parathyroid hormone (pmetabolic acidosis for bone impairment and to the inadequacy of DXA to evaluate bone fragility in CKD patients.

  18. A new model to predict remission status in AML patients based on day 14 bone marrow biopsy.

    Norkin, Maxim; Chang, Myron; An, Qi; Leather, Helen; Katragadda, Lakshmikanth; Li, Ying; Moreb, Jan S; May, W Stratford; Brown, Randy A; Hsu, Jack W; Hiemenz, John W; Wingard, John R; Cogle, Christopher R


    Although bone marrow evaluation on day 14 after initiation of induction chemotherapy (D14 BM) is a widely accepted practice in patients with acute myeloid leukemia (AML), it has suboptimal predictive value for predicting complete remission. We retrospectively analyzed pretreatment characteristics and post-induction response in a cohort of AML patients to determine if adding clinical and laboratory characteristics can improve the predictive value of the D14 BM evaluation. Among 297 patients treated for AML at the single institution 183 patients (61%) had leukemia-positive D14 BM. Of those, 94 were given reinduction chemotherapy and 89 were not. Of the 89 patients who did not receive reinduction, 32 (36%) subsequently achieved complete remission (CR) or complete remission with incomplete count recovery (CRi), and 57 (64%) had persistent disease. Persistent disease after positive D14 BM was more likely associated with higher percentage of D14 myeloblasts, a history of relapsed disease before induction, and higher risk disease compared to patients who subsequently achieved CR. Age, diagnostic white blood cell count, and the D14 BM cellularity did not influence the subsequent likelihood of achieving remission in patients with a positive D14 BM. A new mathematical equation was created and resulted in a positive predictive value of 83%, negative predictive value 90% and accuracy 88% for correctly identifying remission status after positive D14 BM in AML. The accuracy of predicting response using these additional parameters was significantly higher than without (0.88 vs. 0.80, P=0.002). Our new model provides better accuracy for predicting the likelihood of achieving remission and if validated in future studies may be useful for managing AML patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Increase of bone marrow macrophages and CD8(+) T lymphocytes predict graft failure after allogeneic bone marrow or cord blood transplantation.

    Kawashima, N; Terakura, S; Nishiwaki, S; Koyama, D; Ozawa, Y; Ito, M; Miyamura, K


    Graft failure (GF) remains an obstacle to survival after allogeneic hematopoietic stem cell transplantation. However, differentiating GF from delayed engraftment (DE) can be difficult. Host CD8(+) lymphocytes have been reported to mediate graft rejection, but the impact of macrophages on DE or GF is yet to be clarified. Peri-engraftment bone marrow (BM) specimens of 32 adult patients with normal engraftment, DE or GF were retrospectively evaluated to identify the potential associations of CD163(+) macrophage and CD8(+) lymphocyte infiltration into BM. The macrophage or CD8(+) lymphocyte number/total nucleated cell number was defined as the Mac ratio and CD8 ratio, respectively. Both DE and GF groups had significantly higher Mac ratios at day 14 than the normal group (PGF groups (P=1.000). The CD8 ratio at day 14 was significantly higher in the GF than in the normal group (P=0.005), whereas the CD8 ratios of the DE and normal groups were similar (P=0.07). A high Mac ratio at day 14 was associated with a risk of DE or subsequent GF. Patients with increased CD8 ratio at day 14 had a further risk of GF. The Mac ratio and the CD8 ratio appear to be well suited for predicting engraftment status.

  20. Digital radiographic evaluation of hand-wrist bone maturation and prediction of age in South Indian adolescents.

    Mohammed, Rezwana Begum; Reddy, M Asha Lata; Jain, Megha; Singh, Johar Rajvinder; Sanghvi, Praveen; Thetay, Anshuj Ajay Rao


    In the growing years, indicators of the level of maturational development of the individual provide the best means for evaluating biologic age and the associated timing of skeletal growth. The relative stage of maturity of a child may be determined by comparing the child's hand-wrist radiograph to the known standards of skeletal development. In this study, we assessed various levels of skeletal maturation and also identified the relationship between chronological age (CA) and maturation stage using the hand-wrist radiographs in adolescents of Indian origin. Three hundred and thirty hand-wrist digital radiographs of individuals aged 8 to 18 years were evaluated for skeletal maturity levels using Fishman's method. The data was analysed using the SPSS software package (version 12, SPSS Inc., Chicago, IL, USA). Regression analysis was performed for calculating bone age of both males and females. Spearman's rank-order correlation coefficients were estimated separately for males and females to assess the relation between CA and maturation level. An association between skeletal maturation indicator stages and CA (r = 0.82) was significant. Interestingly, female subjects were observed to be advanced in skeletal maturity compared to males. Regression equations were derived to calculate bone age in males, females and the whole sample. The results of this study showed significant association between hand-wrist skeletal maturation levels and CA. Digital radiographic assessment of hand-wrist skeletal maturation can be used as a better choice for predicting average bone age of an individual because of its simplicity, reliability and lesser radiation exposure.

  1. Development of a nomogram model predicting current bone scan positivity in patients treated with androgen-deprivation therapy for prostate cancer

    Michael eKattan


    Full Text Available Purpose: To develop a nomogram predictive of current bone scan positivity in patients receiving androgen-deprivation therapy (ADT for advanced prostate cancer; to augment clinical judgment and highlight patients in need of additional imaging investigations.Materials and Methods: A retrospective chart review of bone scan records (conventional 99mTc-scintigraphy of 1,293 patients who received ADT at the Memorial Sloan-Kettering Cancer Center from 2000 to 2011. Multivariable logistic regression analysis was used to identify variables suitable for inclusion in the nomogram. The probability of current bone scan positivity was determined using these variables and the predictive accuracy of the nomogram was quantified by concordance index.Results: In total, 2,681 bone scan records were analyzed and 636 patients had a positive result. Overall, the median pre-scan prostate-specific antigen (PSA level was 2.4 ng/ml; median PSA doubling time (PSADT was 5.8 months. At the time of a positive scan, median PSA level was 8.2 ng/ml; 53% of patients had PSA <10 ng/ml; median PSADT was 4.0 months. Five variables were included in the nomogram: number of previous negative bone scans after initiating ADT, PSA level, Gleason grade sum, and history of radical prostatectomy and radiotherapy. A concordance index value of 0.721 was calculated for the nomogram. This was a retrospective study based on limited data in patients treated in a large cancer centre who underwent conventional 99mTc bone scans, which themselves have inherent limitations. Conclusions: This is the first nomogram to predict current bone scan positivity in ADT-treated prostate cancer patients, providing high predictive accuracy.

  2. Biochemical markers can predict the response in bone mass during alendronate treatment in early postmenopausal women. Alendronate Osteoporosis Prevention Study Group

    Ravn, Pernille; Clemmesen, B; Christiansen, C


    Data from the Danish cohort (n = 67) of a multicenter trial of oral alendronate in the prevention of postmenopausal osteoporosis were used to evaluate the capacity of the biochemical markers to predict changes in bone mineral density (BMD). A panel of markers were measured: serum N-terminal midfr......Data from the Danish cohort (n = 67) of a multicenter trial of oral alendronate in the prevention of postmenopausal osteoporosis were used to evaluate the capacity of the biochemical markers to predict changes in bone mineral density (BMD). A panel of markers were measured: serum N...

  3. Utilization of bone densitometry for prediction and administration of bisphosphonates to prevent osteoporosis in patients with prostate cancer without bone metastases receiving antiandrogen therapy

    Holt A


    Full Text Available Abby Holt,1 Muhammad A Khan,2 Swetha Gujja,3 Rangaswmy Govindarajan31Arkansas Department of Health, Little Rock, 2White River Health System, Batesville, 3Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USABackground: Prostate cancer subjects with prostate-specific antigen (PSA relapse who are treated with androgen deprivation therapy (ADT are recommended to have baseline and serial bone densitometry and receive bisphosphonates. The purpose of this community population study was to assess the utilization of bone densitometry and bisphosphonate therapy in men receiving ADT for non-metastatic prostate cancer.Methods: A cohort study of men aged 65 years or older with non-metastatic incident diagnoses of prostate cancer was obtained from the Surveillance Epidemiology End Results (SEER-linked Medicare claims between 2004 and 2008. Claims were used to assess prescribed treatment of ADT, bone densitometry, and bisphosphonates.Results: A total of 30,846 incident prostate cancer cases receiving ADT and aged 65 years or older had no bone metastases; 87.3% (n=26,935 on ADT did not receive either bone densitometry or bisphosphonate therapy. Three percent (n=931 of the cases on ADT received bisphosphonate therapy without ever receiving bone densitometry, 8.8% (n=2,702 of the cases on ADT received bone densitometry without receiving intravenous bisphosphonates, while nearly 1% (0.90%, n=278 of the cases on ADT received both bone densitometry and bisphosphonates. Analysis showed treatment differed by patient characteristics.Conclusion: Contrary to the recommendations, bone densitometry and bisphosphonate therapy are underutilized in men receiving ADT for non-metastatic prostate cancer.Keywords: prostatic neoplasms, androgen antagonists, bone densitometry, gonadotropin-releasing hormone, osteoporosis

  4. Predictive Parameters for a Diagnostic Bone Marrow Biopsy Specimen in the Work-Up of Fever of Unknown Origin

    Ben-Baruch, Sharon; Canaani, Jonathan; Braunstein, Rony; Perry, Chava; Ben-Ezra, Jonathan; Polliack, Aaron; Naparstek, Elizabeth; Herishanu, Yair


    Objective To determine the role of bone marrow biopsy (BMBX), performed in association with comprehensive blood and imaging tests, in the evaluation of patients with fever of unknown origin (FUO). Patients and Methods We reviewed the medical records of 475 hospitalized patients who underwent BMBX in our medical center from January 1, 2005, to April 30, 2010. We identified 75 patients who fulfilled the accepted classic Petersdorf criteria for FUO. All patients underwent in-hospital investigation for fever, including chest and abdominal computed tomography. Results In 20 patients (26.7%), BMBX established the final diagnosis. Sixteen patients had hematologic disorders, including 8 patients with non-Hodgkin lymphoma, 2 with acute leukemia, 1 with multiple myeloma, 1 with myelodysplastic syndrome, and 4 with myeloproliferative disorders. The remaining patients with diagnostic BMBX specimens had solid tumors (2 patients), granulomatous disease (1 patient), and hemophagocytic syndrome (1 patient). Multivariate analysis revealed the following as the significant positive predictive parameters for a diagnostic BMBX specimen: male sex (odds ratio [OR], 7.35; 95% confidence interval [CI], 1.19-45.45), clinical lymphadenopathy (OR, 21.98; 95% CI, 1.97-245.66), anemia (OR, 2.21; 95% CI, 1.28-3.80), and increased lactate dehydrogenase levels (OR, 1.003; 95% CI, 1.001-1.006). Conclusion Bone marrow biopsy is still a useful ancillary procedure for establishing the diagnosis of FUO, particularly if used in the appropriate clinical setting. Clinical and laboratory parameters associated with hematologic disease are predictive of a diagnostic BMBX specimen in patients with FUO. PMID:22226833

  5. Mechanistic, mathematical model to predict the dynamics of tissue genesis in bone defects via mechanical feedback and mediation of biochemical factors.

    Shannon R Moore


    Full Text Available The link between mechanics and biology in the generation and the adaptation of bone has been well studied in context of skeletal development and fracture healing. Yet, the prediction of tissue genesis within - and the spatiotemporal healing of - postnatal defects, necessitates a quantitative evaluation of mechano-biological interactions using experimental and clinical parameters. To address this current gap in knowledge, this study aims to develop a mechanistic mathematical model of tissue genesis using bone morphogenetic protein (BMP to represent of a class of factors that may coordinate bone healing. Specifically, we developed a mechanistic, mathematical model to predict the dynamics of tissue genesis by periosteal progenitor cells within a long bone defect surrounded by periosteum and stabilized via an intramedullary nail. The emergent material properties and mechanical environment associated with nascent tissue genesis influence the strain stimulus sensed by progenitor cells within the periosteum. Using a mechanical finite element model, periosteal surface strains are predicted as a function of emergent, nascent tissue properties. Strains are then input to a mechanistic mathematical model, where mechanical regulation of BMP-2 production mediates rates of cellular proliferation, differentiation and tissue production, to predict healing outcomes. A parametric approach enables the spatial and temporal prediction of endochondral tissue regeneration, assessed as areas of cartilage and mineralized bone, as functions of radial distance from the periosteum and time. Comparing model results to histological outcomes from two previous studies of periosteum-mediated bone regeneration in a common ovine model, it was shown that mechanistic models incorporating mechanical feedback successfully predict patterns (spatial and trends (temporal of bone tissue regeneration. The novel model framework presented here integrates a mechanistic feedback system based

  6. Combining areal DXA bone mineral density and vertebrae postero-anterior width improves the prediction of vertebral strength

    Taton, Grzegorz; Rokita, Eugeniusz [Jagiellonian University Medical College, Department of Biophysics, Krakow (Poland); Wrobel, Andrzej [Jagiellonian University, Institute of Physics, Krakow (Poland); Korkosz, Mariusz [Jagiellonian University Medical College, Department of Internal Medicine and Gerontology, Division of Rheumatology, Krakow (Poland)


    Areal bone mineral density (aBMD) measured by dual-energy X-ray absorptiometry (DXA) is an important determinant of bone strength (BS), despite the fact that the correlation between aBMD and BS is relatively weak. Parameters that describe BS more accurately are desired. The aim of this study was to determine whether the geometrical corrections applied to aBMD would improve its ability for BS prediction. We considered new parameters, estimated from a single DXA measurement, as well as BMAD (bone mineral apparent density) reported in the literature. In vitro studies were performed with the L3 vertebrae from 20 cadavers, which were studied with DXA and quantitative computed tomography (QCT). A mechanical strength assessment was carried out. Two new parameters were introduced: vBMD{sub min} = (aBMD)/(W{sub PA}{sup min}) and vBMD{sub av} = (aBMD)/(W{sub PA}{sup av}) (W{sub PA}{sup min} - minimal vertebral body width in postero-anterior (PA) view, W{sub PA}{sup av} - average PA vertebral body width). Volumetric BMD measured by QCT (vBMD), aBMD, BMAD, vBMD{sub min}, and vBMD{sub av} were correlated to ultimate load and ultimate stress (P{sub max}) to find the best predictor of vertebrae BS. The coefficients of correlation between P{sub max} and vBMD{sub min}, vBMD{sub av}, as well as BMAD, were r = 0.626 (p = 0.005), r = 0.610 (p = 0.006) and r = 0.567 (p = 0.012), respectively. Coefficients for vBMD and aBMD are r = 0.648 (p = 0.003) and r = 0.511 (p = 0.03), respectively. Our results showed that aBMD normalized by vertebrae dimensions describes vertebrae BS better than aBMD alone. The considered indices vBMD{sub av}, vBMD{sub min}, and BMAD can be measured in routine PA DXA and considerably improve BS variability prediction. vBMD{sub min} is superior compared to vBMD{sub av} and BMAD. (orig.)

  7. Premature hair greying may predict reduced bone mineral density in Graves' disease.

    Leary, A C


    BACKGROUND: Premature hair greying has been associated with low bone mineral density (BMD), and it may be more frequent in Graves\\' disease. AIMS: To determine whether premature greying is associated with reduced BMD in women with Graves\\' disease and in control women, and to examine whether premature greying is more common in Graves\\' disease. METHODS: Premature greying (> 50% grey by 40 years) and BMD were determined in 44 women with a history of Graves\\' disease and 133 female controls referred for routine BMD measurement. Exclusion criteria included diseases or drugs known to affect BMD. RESULTS: Mean Z and T scores at the lumbar spine were significantly lower (P < 0.04) in subjects with premature greying than in those not prematurely grey among women with Graves\\' disease, but not among control women. Multiple regression confirmed this difference between Graves\\' and control women (P = 0.041). There were no differences at other measurement sites. Of Graves\\' patients, 36% were prematurely grey compared with 25% of control women (P = 0.14). CONCLUSION: Premature greying may be a weak marker for reduced BMD in women with a history of Graves\\' disease, but it is not a marker in normal women.

  8. Evaluation of the pepsin digestibility assay for predicting amino acid digestibility of meat and bone meals.

    Davis, T M; Parsons, C M; Utterback, P L; Kirstein, D


    Sixteen meat and bone meal (MBM) samples were obtained and selected from various company plants to provide a wide range in pepsin nitrogen digestibility values. Pepsin digestibility was determined using either 0.02 or 0.002% pepsin. Amino acid (AA) digestibility of the 16 MBM samples was then determined using a precision-fed cecectomized rooster assay. The 0.02% pepsin digestibility values were numerically higher than the 0.002% pepsin values. The values varied from 77 to 93% for 0.02% pepsin and from 67 to 91% for 0.002% pepsin. The rooster AA digestibility results showed a wide range of values among MBM samples mostly due to the 4 samples having lowest and highest AA digestibility. A precision-fed broiler chick ileal AA digestibility assay confirmed that there were large differences in AA digestibility among the MBM samples having the lowest and highest rooster digestibility values. Correlation analyses between pepsin and AA digestibility values showed that the correlation values (r) were highly significant (P MBM samples were included in the analysis. However, when the MBM samples with the 2 lowest and the 2 highest rooster digestibility values were not included in the correlation analyses, the correlation coefficient values (r) were generally very low and not significant (P > 0.05). The results indicated that the pepsin nitrogen digestibility assay is only useful for detecting large differences in AA digestibility among MBM. There also was no advantage for using 0.02 versus 0.002% pepsin.

  9. Application of the Minkowski functionals in 3D to high-resolution MR images of trabecular bone: prediction of the biomechanical strength by nonlinear topological measures

    Boehm, Holger F.; Link, Thomas M.; Monetti, Roberto A.; Mueller, Dirk; Rummeny, Ernst J.; Newitt, David; Majumdar, Sharmila; Raeth, Christoph W.


    Multi-dimensional convex objects can be characterized with respect to shape, structure, and the connectivity of their components using a set of morphological descriptors known as the Minkowski functionals. In a 3D Euclidian space, these correspond to volume, surface area, mean integral curvature, and the Euler-Poincaré characteristic. We introduce the Minkowski functionals to medical image processing for the morphological analysis of trabecular bone tissue. In the context of osteoporosis-a metabolic disorder leading to a weakening of bone due to deterioration of micro-architecture-the structure of bone increasingly gains attention in the quantification of bone quality. The trabecular architecture of healthy cancellous bone consists of a complex 3D system of inter-connected mineralised elements whereas in osteoporosis the micro-structure is dominated by gaps and disconnections. At present, the standard parameter for diagnosis and assessment of fracture risk in osteoporosis is the bone mineral density (BMD) - a bulk measure of mineralisation irrespective of structural texture characteristics. With the development of modern imaging modalities (high resolution MRI, micro-CT) with spatial resolutions allowing to depict individual trabeculae bone micro-architecture has successfully been analysed using linear, 2- dimensional structural measures adopted from standard histo-morphometry. The preliminary results of our study demonstrate that due to the complex - i.e. the non-linear - network of trabecular bone structures non-linear measures in 3D are superior to linear ones in predicting mechanical properties of trabecular bone from structural information extracted from high resolution MR image data.

  10. Murine bone marrow-derived dendritic cells as a potential in vitro model for predictive identification of chemical sensitizers.

    Pépin, Elsa; Goutet, Michèle; Ban, Masarin


    The identification of potential sensitizing chemicals is a key step in the safety assessment process. To this end, predictive tests that require no or few animals and that are reliable, inexpensive and easy to perform are needed. The aim of this study was to evaluate the performance of murine bone marrow-derived dendritic cells (BMDCs) in an in vitro skin sensitization model. BMDCs were exposed to six well-known allergens (dinitrochlorobenzene, DNCB; dinitrofluorobenzene, DNFB; Bandrowski's base, BB; paraphenylenediamine, PPD; nickel sulfate, NiSO(4); cinnamaldehyde, Cinn). Surface expression of MHC class II, CD40, CD54, and CD86 was measured by flow cytometry after 48h exposure to these chemicals. All the allergens tested induced a significant increase in marker expression, with an augmentation in the percentage of mature cells ranging from 2.3- to 10.5-fold change over control. The level of up-regulation was dependent on the concentration and the strength of the allergens. In contrast, the irritants (sodium dodecyl sulfate, SDS and 4-aminobenzoic acid, pABA) and the negative control (zinc sulfate, ZnSO(4)) tested induced either no modification or a down-regulation of membrane marker expression. Taken together, our data suggest that murine BMDCs may represent a new and valuable in vitro model to predict the sensitizing properties of chemicals.

  11. Optimization the Initial Weights of Artificial Neural Networks via Genetic Algorithm Applied to Hip Bone Fracture Prediction

    Yu-Tzu Chang


    Full Text Available This paper aims to find the optimal set of initial weights to enhance the accuracy of artificial neural networks (ANNs by using genetic algorithms (GA. The sample in this study included 228 patients with first low-trauma hip fracture and 215 patients without hip fracture, both of them were interviewed with 78 questions. We used logistic regression to select 5 important factors (i.e., bone mineral density, experience of fracture, average hand grip strength, intake of coffee, and peak expiratory flow rate for building artificial neural networks to predict the probabilities of hip fractures. Three-layer (one hidden layer ANNs models with back-propagation training algorithms were adopted. The purpose in this paper is to find the optimal initial weights of neural networks via genetic algorithm to improve the predictability. Area under the ROC curve (AUC was used to assess the performance of neural networks. The study results showed the genetic algorithm obtained an AUC of 0.858±0.00493 on modeling data and 0.802 ± 0.03318 on testing data. They were slightly better than the results of our previous study (0.868±0.00387 and 0.796±0.02559, resp.. Thus, the preliminary study for only using simple GA has been proved to be effective for improving the accuracy of artificial neural networks.

  12. A comparison of artificial neural networks with other statistical approaches for the prediction of true metabolizable energy of meat and bone meal.

    Perai, A H; Nassiri Moghaddam, H; Asadpour, S; Bahrampour, J; Mansoori, Gh


    There has been a considerable and continuous interest to develop equations for rapid and accurate prediction of the ME of meat and bone meal. In this study, an artificial neural network (ANN), a partial least squares (PLS), and a multiple linear regression (MLR) statistical method were used to predict the TME(n) of meat and bone meal based on its CP, ether extract, and ash content. The accuracy of the models was calculated by R(2) value, MS error, mean absolute percentage error, mean absolute deviation, bias, and Theil's U. The predictive ability of an ANN was compared with a PLS and a MLR model using the same training data sets. The squared regression coefficients of prediction for the MLR, PLS, and ANN models were 0.38, 0.36, and 0.94, respectively. The results revealed that ANN produced more accurate predictions of TME(n) as compared with PLS and MLR methods. Based on the results of this study, ANN could be used as a promising approach for rapid prediction of nutritive value of meat and bone meal.

  13. Factors Predicting Bone Mineral Density (BMD Changes in Young Women over A One-year Study:Changes in Body Weight and Bone Metabolic Markers during the Menstrual Cycle and Their Effects on BMD



    Full Text Available Currently, 26% of Japanese women in their twenties are under weight, and therefore at risk of developing various metabolic abnormalities due to an inadequate nutrient intake, which in turn affects the acquisition of a peak bone mineral density (BMD. In this study, we aimed to clarify the effects of menstrual cycle-related changes in body weight and bone metabolic marker levels on the BMD changes. The subjects were 42 women (19.6±0.8 years. The levels of osteocalcin (OC, BAP, s-NTx, u-DPD, and E2 in the menstrual and ovulatory phases were measured. The associations between dependent variables (BMD changes/year in the lumbar spine, femur, femoral neck and explanatory variables (body weight changes/year, the levels of OC, BAP, s-NTx, u-DPD were evaluated using multiple regression analysis. Analysis of the correlations between the changes in bone metabolic markers and changes in BMD showed a correlation between the OC level in the menstrual phase and changes in the BMD of the entire femur, suggesting that a high OC level protects against BMD reduction, probably by promoting osteoblast activity, and that bone formation activity suppresses the decrease in BMD. These results suggest that, to predict BMD changes from bone metabolic markers in young women, it is necessary to measure OC levels in the menstrual phase.

  14. Bone mineral density test

    BMD test; Bone density test; Bone densitometry; DEXA scan; DXA; Dual-energy x-ray absorptiometry; p-DEXA; Osteoporosis-BMD ... need to undress. This scan is the best test to predict your risk of fractures. Peripheral DEXA ( ...

  15. Bone tumor

    Tumor - bone; Bone cancer; Primary bone tumor; Secondary bone tumor; Bone tumor - benign ... The cause of bone tumors is unknown. They often occur in areas of the bone that grow rapidly. Possible causes include: Genetic defects ...

  16. Psychological Impact of Predictive Genetic Testing in VCP Inclusion Body Myopathy, Paget Disease of Bone and Frontotemporal Dementia.

    Surampalli, Abhilasha; Khare, Manaswitha; Kubrussi, Georgette; Wencel, Marie; Tanaja, Jasmin; Donkervoort, Sandra; Osann, Kathryn; Simon, Mariella; Wallace, Douglas; Smith, Charles; M McInerney-Leo, Aideen; Kimonis, Virginia


    Inclusion Body Myopathy associated with Paget's disease of bone and Fronto-temporal Dementia, also known as multisystem proteinopathy is an autosomal dominant, late onset neurodegenerative disorder caused by mutations in Valosin containing protein (VCP) gene. This study aimed to assess uptake and decision making for predictive genetic testing and the impact on psychological well-being. Individuals who had participated in the gene discovery study with a 50 % a priori risk of inheriting VCP disease were sent a letter of invitation offering genetic counseling and testing and were also invited to participate in this psychosocial study. A total of 102 individuals received an invitation and 33 individuals participated in genetic counseling and testing (32.3 %) with 29 completing baseline questionnaires. Twenty completed the follow-up post-test Hospital Anxiety and Depression Scale questionnaire including 13 of the 18 who had tested positive. Mean risk perception at baseline was 50.1 %. Reasons for testing included planning for the future, relieving uncertainty, informing children and satisfying curiosity. At baseline, one quarter of the participants had high levels of anxiety. However, scores were normal one year following testing. In this small cohort, one third of individuals at 50 % risk chose pre-symptomatic testing. Although one quarter of those choosing testing had high anxiety at baseline, this was not evident at follow-up.

  17. Early changes in bone density, microarchitecture, bone resorption, and inflammation predict the clinical outcome 12 weeks after conservatively treated distal radius fractures: an exploratory study.

    Meyer, Ursina; de Jong, Joost J; Bours, Sandrine G P; Keszei, András P; Arts, Jacobus J; Brink, Peter R G; Menheere, Paul; van Geel, Tineke A C M; van Rietbergen, Bert; van den Bergh, Joop P W; Geusens, Piet P; Willems, Paul C


    Fracture healing is an active process with early changes in bone and inflammation. We performed an exploratory study evaluating the association between early changes in densitometric, structural, biomechanical, and biochemical bone parameters during the first weeks of fracture healing and wrist-specific pain and disability at 12 weeks in postmenopausal women with a conservatively treated distal radius fracture. Eighteen patients (aged 64 ± 8 years) were evaluated at 1 to 2 and 3 to 4 weeks postfracture, using high-resolution peripheral quantitative computed tomography (HR-pQCT), micro-finite element analysis, serum procollagen type-I N-terminal propeptide (P1NP), carboxy-terminal telopeptide of type I collagen (ICTP), and high-sensitive C-reactive protein (hsCRP). After 12 weeks, patients rated their pain and disability using Patient Rated Wrist Evaluation (PRWE) questionnaire. Additionally, Quick Disability of the Arm Shoulder and Hand (QuickDASH) questionnaire and active wrist range of motion was evaluated. Linear regression models were used to study the relationship between changes in bone parameters and in hsCRP from visit 1 to 2 and PRWE score after 12 weeks. A lower PRWE outcome, indicating better outcome, was significantly related to an early increase in trabecular bone mineral density (BMD) (β -0.96 [95% CI -1.75 to -0.16], R(2)  = 0.37), in torsional stiffness (-0.14 [-0.28 to -0.004], R(2)  = 0.31), and to an early decrease in trabecular separation (209 [15 to 402], R(2)  = 0.33) and in ICTP (12.1 [0.0 to 24.1], R(2)  = 0.34). Similar results were found for QuickDASH. Higher total dorsal and palmar flexion range of motion was significantly related to early increase in hsCRP (9.62 [3.90 to 15.34], R(2)  = 0.52). This exploratory study indicates that the assessment of early changes in trabecular BMD, trabecular separation, calculated torsional stiffness, bone resorption marker ICTP, and hsCRP after a distal radius fracture provides

  18. Prediction of femoral neck and spine bone mineral content from the BMC of the radius or ulna and the relationship between bone strength and BMC

    Wilson, C. R.


    The bone mineral content (BMC) is extensively used to provide information about the status of an entire skeleton. Changes in BMC are employed to evaluate the effect of various drugs, disease states, weightlessness, exercise, renal dialysis and others on the skeleton. Clinical and functional information is discussed that may be derived from the BMC of a limited region of the skeleton. In particular there is a fairly high degree of correlation between the BMC of the radius or ulna and that of the femoral neck, r about 0.85 and a somewhat lower relationship between the BMC of the radius or ulna and the thoracic vertebrae, r about 0.65. Also the BMC is highly related to the strength of bone at that scan site.

  19. Ten-year prediction of osteoporosis from baseline bone mineral density: development of prognostic thresholds in healthy postmenopausal women. The Danish Osteoporosis Prevention Study

    Abrahamsen, Bo; Rejnmark, Lars; Nielsen, Stig Pors;


    Osteopenia is common in healthy women examined in the first year or two following menopause. Short-term fracture risk is low, but we lack algorithms to assess long-term risk of osteoporosis. Because bone loss proceeds at only a few percent per year, we speculated that baseline bone mineral density...... (BMD) would predict a large proportion of 10-year BMD and be useful for deriving predictive thresholds. We aimed to identify prognostic thresholds associated with less than 10% risk of osteoporosis by 10 years in the individual participant, in order to allow rational osteodensitometry and intervention....... We analyzed dual energy X-ray absorptometry (DXA) of the lumbar spine (LS) and femoral neck (FN) from 872 women, who participated in the non-HRT arms of the Danish Osteoporosis Prevention Study and had remained on no HRT, bisphosphonates or raloxifene since inclusion 10 years ago. We defined...

  20. MicroRNAs as Predictive and Prognostic Biomarkers inHuman Neoplasia: With Specific Focus on Colorectal Cancer, Giant Cell Tumor of Bone, and Leukemias

    Mosakhani, Neda


    Recently, discovery of microRNA has provided new insights into cancer research, revealing the role of miRNAs in various biological processes, and evidence shows that their deregulation in many cancers has prognostic and predictive significance. Although specific miRNAs have been discovered in the malignancies studied in this thesis: colorectal cancer (CRC), giant cell tumor of bone (GCTB), acute lymphoblastic leukemia (ALL), and acute myeloid leukemia (AML), very little still is known about t...

  1. Paraphyseal changes on bone-age studies predict risk of delayed radiation-associated skeletal complications following total body irradiation

    Kitazono Hammell, Mary T.; Edgar, J.C.; Jaramillo, Diego [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); Bunin, Nancy [The Children' s Hospital of Philadelphia, Oncology Division, BMT Section, Philadelphia, PA (United States)


    Children undergoing total body irradiation (TBI) often develop delayed skeletal complications. Bone-age studies in these children often reveal subtle paraphyseal changes including physeal widening, metaphyseal irregularity and paraphyseal exostoses. To investigate whether paraphyseal changes on a bone-age study following TBI indicate a predisposition toward developing other radiation-associated skeletal complications. We retrospectively reviewed medical records and bone-age studies of 77 children receiving TBI at our institution between 1995 and 2008 who had at least 2 years of clinical follow-up and one bone-age study after TBI. We graded bone-age studies according to the severity of paraphyseal changes. All documented skeletal complications following TBI were tabulated. Kendall's tau-b was used to examine associations between degree of paraphyseal change and development of a skeletal complication. Kendall's tau analyses showed that physeal widening and metaphyseal irregularity/sclerosis (tau = 0.87, P < 0.001) and paraphyseal exostoses (tau = 0.68, P < 0.001) seen on bone-age studies were significantly positively associated with the development of delayed skeletal complications following TBI. Thirty percent of children with no or mild paraphyseal changes developed a delayed skeletal complication, compared with 58% of children with moderate paraphyseal changes and 90% of children with severe paraphyseal changes. Paraphyseal changes identified on a bone-age study correlate positively with the development of delayed skeletal complications elsewhere in the skeleton following TBI. (orig.)

  2. The effect of three years of TNF alpha blocking therapy on markers of bone turnover and their predictive value for treatment discontinuation in patients with ankylosing spondylitis : a prospective longitudinal observational cohort study

    Arends, S.; Spoorenberg, A.; Houtman, P.M.; Leijsma, M.K.; Bos, R.; Kallenberg, C.G.; Groen, H.; Brouwer, E.; van der Veer, E.


    Introduction: The aim of this study was to investigate the effect of three years of tumor necrosis factor-alpha (TNF-alpha) blocking therapy on bone turnover as well as to analyze the predictive value of early changes in bone turnover markers (BTM) for treatment discontinuation in patients with

  3. The effect of three years of TNF alpha blocking therapy on markers of bone turnover and their predictive value for treatment discontinuation in patients with ankylosing spondylitis : a prospective longitudinal observational cohort study

    Arends, S.; Spoorenberg, A.; Houtman, P.M.; Leijsma, M.K.; Bos, R.; Kallenberg, C.G.; Groen, H.; Brouwer, E.; van der Veer, E.


    Introduction: The aim of this study was to investigate the effect of three years of tumor necrosis factor-alpha (TNF-alpha) blocking therapy on bone turnover as well as to analyze the predictive value of early changes in bone turnover markers (BTM) for treatment discontinuation in patients with anky

  4. The effect of three years of TNF alpha blocking therapy on markers of bone turnover and their predictive value for treatment discontinuation in patients with ankylosing spondylitis : a prospective longitudinal observational cohort study

    Arends, S.; Spoorenberg, A.; Houtman, P.M.; Leijsma, M.K.; Bos, R.; Kallenberg, C.G.; Groen, H.; Brouwer, E.; van der Veer, E.


    Introduction: The aim of this study was to investigate the effect of three years of tumor necrosis factor-alpha (TNF-alpha) blocking therapy on bone turnover as well as to analyze the predictive value of early changes in bone turnover markers (BTM) for treatment discontinuation in patients with anky

  5. Predicting the Remaining Lifespan and Cultivation-Related Loss of Osteogenic Capacity of Bone Marrow Multipotential Stromal Cells Applicable across a Broad Donor Age Range.

    Churchman, Sarah M; Boxall, Sally A; McGonagle, Dennis; Jones, Elena A


    Background and Objectives. Culture expanded multipotential stromal cells (MSCs) have considerable potential for bone regeneration therapy but their wider use is constrained by the lack of simple and predictive assays of functional potency. Extended passaging leads to loss of multipotency but speed of decline depends on MSC donor age. The aim of this study was to develop an assay predictive of MSC culture longevity applicable to a broad donor age range. Materials and Methods. Bone marrow (BM, n = 7) was obtained from a diverse range (2-72 years) of healthy donors. MSCs were culture expanded to senescence and their osteoprogenitor content, gene expression profiles, epigenetic signature, and telomere behaviour were measured throughout. Output data was combined for modelling purposes. Results. Regardless of donor age, cultures' osteoprogenitor content correlated better with remaining lifespan (population doublings before senescence, PD-BS) than proliferative history (accrued PDs). Individual gene's expression or telomere length did not predict PD-BS but methylation of individual CpG islands did, PRAMEF2 in particular (r = 0.775). Coupling the steep relationship of relative SPARC expression with PD-BS (r = -0.753) the formula SPARC × 1/PREMEF2 gave an improved correlation (r = -0.893). Conclusion. A formula based on SPARC mRNA and PRAMEF2 methylation may be used to predict remaining BM-MSC longevity and related loss of multipotentiality independent of donor age.

  6. Predicting the Remaining Lifespan and Cultivation-Related Loss of Osteogenic Capacity of Bone Marrow Multipotential Stromal Cells Applicable across a Broad Donor Age Range

    Sarah M. Churchman


    Full Text Available Background and Objectives. Culture expanded multipotential stromal cells (MSCs have considerable potential for bone regeneration therapy but their wider use is constrained by the lack of simple and predictive assays of functional potency. Extended passaging leads to loss of multipotency but speed of decline depends on MSC donor age. The aim of this study was to develop an assay predictive of MSC culture longevity applicable to a broad donor age range. Materials and Methods. Bone marrow (BM, n=7 was obtained from a diverse range (2–72 years of healthy donors. MSCs were culture expanded to senescence and their osteoprogenitor content, gene expression profiles, epigenetic signature, and telomere behaviour were measured throughout. Output data was combined for modelling purposes. Results. Regardless of donor age, cultures’ osteoprogenitor content correlated better with remaining lifespan (population doublings before senescence, PD-BS than proliferative history (accrued PDs. Individual gene’s expression or telomere length did not predict PD-BS but methylation of individual CpG islands did, PRAMEF2 in particular (r=0.775. Coupling the steep relationship of relative SPARC expression with PD-BS (r=-0.753 the formula SPARC × 1/PREMEF2 gave an improved correlation (r=-0.893. Conclusion. A formula based on SPARC mRNA and PRAMEF2 methylation may be used to predict remaining BM-MSC longevity and related loss of multipotentiality independent of donor age.

  7. Fast trabecular bone strength predictions of HR-pQCT and individual trabeculae segmentation-based plate and rod finite element model discriminate postmenopausal vertebral fractures.

    Liu, X Sherry; Wang, Ji; Zhou, Bin; Stein, Emily; Shi, Xiutao; Adams, Mark; Shane, Elizabeth; Guo, X Edward


    Although high-resolution peripheral quantitative computed tomography (HR-pQCT) has advanced clinical assessment of trabecular bone microstructure, nonlinear microstructural finite element (µFE) prediction of yield strength using a HR-pQCT voxel model is impractical for clinical use due to its prohibitively high computational costs. The goal of this study was to develop an efficient HR-pQCT-based plate and rod (PR) modeling technique to fill the unmet clinical need for fast bone strength estimation. By using an individual trabecula segmentation (ITS) technique to segment the trabecular structure into individual plates and rods, a patient-specific PR model was implemented by modeling each trabecular plate with multiple shell elements and each rod with a beam element. To validate this modeling technique, predictions by HR-pQCT PR model were compared with those of the registered high-resolution micro-computed tomography (HR-µCT) voxel model of 19 trabecular subvolumes from human cadaveric tibia samples. Both the Young's modulus and yield strength of HR-pQCT PR models strongly correlated with those of µCT voxel models (r²  = 0.91 and 0.86). Notably, the HR-pQCT PR models achieved major reductions in element number (>40-fold) and computer central processing unit (CPU) time (>1200-fold). Then, we applied PR model µFE analysis to HR-pQCT images of 60 postmenopausal women with (n = 30) and without (n = 30) a history of vertebral fracture. HR-pQCT PR model revealed significantly lower Young's modulus and yield strength at the radius and tibia in fracture subjects compared to controls. Moreover, these mechanical measurements remained significantly lower in fracture subjects at both sites after adjustment for areal bone mineral density (aBMD) T-score at the ultradistal radius or total hip. In conclusion, we validated a novel HR-pQCT PR model of human trabecular bone against µCT voxel models and demonstrated its ability to discriminate vertebral fracture

  8. Bone Biopsy

    ... News Physician Resources Professions Site Index A-Z Bone Biopsy Bone biopsy uses a needle and imaging ... the limitations of Bone Biopsy? What is a Bone Biopsy? A bone biopsy is an image-guided ...

  9. Bone age estimation and prediction of final height in patients with {beta}-thalassaemia major: a comparison between the two most common methods

    Christoforidis, Athanasios; Katzos, George; Athanassiou-Metaxa, Miranda [Aristotle University of Thessaloniki, 1st Paediatric Department, Thessaloniki (Greece); Badouraki, Maria [Ippokratio Hospital, Paediatric Radiology Department, Thessaloniki (Greece)


    Thalassaemic patients are in need of frequent assessment of bone age because of growth failure and pubertal disorders. To compare the ''rapid'' Greulich and Pyle (G and P) method with the third edition of the Tanner and Whitehouse (TW3) method for determining skeletal maturity and predicting final height in thalassaemic patients. A total of 191 radiographs from 58 patients (28 male, 30 female) were retrospectively evaluated by two investigators, one for each method. In 47 radiographs from 15 patients having attained their adult height, predicted final height was calculated according to each method. The mean bone ages determined by both the G and P and TW3 methods were lower than mean chronological age, although the differences were not statistically significant (10.04 {+-} 3.69 years and 9.98 {+-} 3.39 years vs. 10.78 {+-} 3.96 years, respectively). Both methods had a tendency to over-estimate final height. Overall, the TW3 method seemed to be more accurate than the G and P method (mean absolute error 3.21 {+-} 2.51 years vs. 3.99 {+-} 2.99 years, respectively, P=0.048). The same method should be used when serial assessments are performed, as both methods provide similarly reliable, although not equivalent, results. The TW3 height prediction method seemed to be more accurate in patients with {beta}-thalassaemia major than the G and P method, albeit with a large confidence interval. (orig.)

  10. A regression method including chronological and bone age for predicting final height in Turner's syndrome, with a comparison of existing methods.

    van Teunenbroek, A; Stijnen, T; Otten, B; de Muinck Keizer-Schrama, S; Naeraa, R W; Rongen-Westerlaken, C; Drop, S


    A total of 235 measurement points of 57 Dutch women with Turner's syndrome (TS), including women with spontaneous menarche and oestrogen treatment, served to develop a new Turner-specific final height (FH) prediction method (PTS). Analogous to the Tanner and Whitehouse mark 2 method (TW) for normal children, smoothed regression coefficients are tabulated for PTS for height (H), chronological age (CA) and bone age (BA), both TW RUS and Greulich and Pyle (GP). Comparison between all methods on 40 measurement points of 21 Danish TS women showed small mean prediction errors (predicted minus observed FH) and corresponding standard deviation (ESD) of both PTSRUS and PTSGP, in particular at the "younger" ages. Comparison between existing methods on the Dutch data indicated a tendency to overpredict FH. Before the CA of 9 years the mean prediction errors of the Bayley and Pinneau and TW methods were markedly higher compared with the other methods. Overall, the simplest methods--projected height (PAH) and its modification (mPAH)--were remarkably good at most ages. Although the validity of PTSRUS and PTSGP remains to be tested below the age of 6 years, both gave small mean prediction errors and a high accuracy. FH prediction in TS is important in the consideration of growth-promoting therapy or in the evaluation of its effects.

  11. Bone Densitometry (Bone Density Scan)

    ... News Physician Resources Professions Site Index A-Z Bone Densitometry (DEXA) Bone densitometry, also called dual-energy ... limitations of DEXA Bone Densitometry? What is a Bone Density Scan (DEXA)? Bone density scanning, also called ...

  12. Using a Truss-Inspired Model with the Uniform Strength Optimization Theory to Predict Spongy Bone Geometry in Proximal Femur

    Hamed Pishdast


    Full Text Available This paper presents a new naïve approach for simulating bone remodeling process. It is based on the uniform strength theory of optimization and employs a truss-like model for bone. The truss was subjected to external loads including 5 point loads simulating the hip joint contact forces and 3 muscular forces at the attachment sites of the muscles to the bone and the rest are reactions of ligaments. The strain in the links was calculated and the links with high strains were identified. The initial truss is modified by introducing new links wherever the strain exceeds a prescribed or critical value. The critical value was assumed to be equal to an average of the absolute value of strains in the initial model. Each link which undergoes a high strain is replaced by several new links by adding new nodes around it using Delaunay method. Introducing the new links to the truss, which is conducted according to a weighted arithmetic mean formula, will strengthen the structure and reduce the strain within the respective zone. This procedure was repeated for several times. Convergence was achieved when there were no critical links remaining. This method was used to study the 2D shape of proximal femur in the frontal plane and provided results which are in a fairly good agreement with CT image of the human proximal femur.

  13. Antibodies to cyclic citrullinated protein and erythrocyte sedimentation rate predict hand bone loss in patients with rheumatoid arthritis of short duration: a longitudinal study.

    Bøyesen, Pernille; Hoff, Mari; Odegård, Sigrid; Haugeberg, Glenn; Syversen, Silje W; Gaarder, Per I; Okkenhaug, Cecilie; Kvien, Tore K


    Radiographic progression in rheumatoid arthritis (RA) has in several studies been shown to be predicted by serological markers widely used in daily clinical practice. The objective of this longitudinal study was to examine if these serological markers also predict hand bone mineral density (BMD) loss in patients with RA of short disease duration. 163 patients with RA of short disease duration (2.4 years) were included and followed longitudinally. Antibodies to cyclic citrullinated protein (anti-CCP), rheumatoid factor (RF), erythrocyte sedimentation rate (ESR), and C-reactive protein (CRP) were analysed from baseline blood-samples. Hand BMD was measured by digital X-ray radiogrammetry (DXR) based on hand and wrist radiographs obtained at baseline and 1, 2 and 5-year follow-up. During the study period, DXR-BMD decreased by median (inter quartile range) 1.7% (4.1 to 0.4), 2.8% (5.3 to 0.9) and 5.6% (11.7 to 2.3) after 1, 2 and 5 years, respectively. Elevated baseline anti-CCP, RF, ESR and CRP levels were in univariate linear regression analyses consistently associated with DXR-BMD change at all time-points. Anti-CCP and ESR were independently associated with hand DXR-BMD in multivariate linear regression analyses. Elevated anti-CCP levels were consistent and independent predictors of loss in cortical hand bone during the study period, with the odds ratios (95% confidence interval) 2.2 (1.0 to 4.5), 2.6 (1.1 to 6.2) and 4.9 (1.4 to 16.7) for the 1, 2, and 5-year follow-up periods, respectively. Anti-CCP and ESR were found to be independent predictors of early localised BMD loss. This finding adds to the understanding of anti-CCP and ESR as important predictors of bone involvement in RA.

  14. An Updated Look at the Pro K Experiment: Urinary Acid Excretion Can Predict Changes in Bone Metabolism During Space Flight

    Zwart, Sara R.; Heer, Martina; Shackelford, Linda; Smith, Scott M.


    Mitigating space flight-induced bone loss is critical for space exploration, and diet can play a major role in this effort (1). Previous ground-based studies provide evidence that dietary composition can influence bone resorption during bed rest (2). In this study we examined the role of dietary intake patterns as one factor that can influence bone mineral loss in astronauts during space flight. Crew members were asked to consume, for 4 days at a time, prescribed menus with either a low (0.3-0.6 g/mEq) or high (1.0-1.3 g/mEq) ratio of animal protein to potassium (APro:K). Menus were developed for each crewmember, and were designed to meet both crew preferences and study constraints. Intakes of energy, total protein, calcium, and sodium were held relatively constant between the two diets. The order of the menus was randomized, and crews completed each set (low and high) once before and twice during space flight, for a total of 6 controlled diet sessions. One inflight session and three postflight sessions (R+30, R+180, R+365) monitored typical dietary intake. As of this writing, data are available from 14 crew members. Two subject's samples are awaiting return from ISS via Space-X, and the final subject has one more collection session planned in November 2014. On the last day of each of the 4-d controlled diet sessions, 24-h urine samples were collected, along with a fasting blood sample on the morning of the 5th day. Preliminary analyses will show the relationships between diet and flight on markers of bone metabolism. The results from this study, which represent healthy individuals in a unique environment, will be important to better understand diet and bone interrelationships during space flight as well as on Earth. These data will be important as nutritional requirements and food systems are developed for future exploration-class missions. This study was funded by the Human Health Countermeasures Element of NASA Human Research Program.

  15. CT Measures of Bone Mineral Density and Muscle Mass Can Be Used to Predict Noncancer Death in Men with Prostate Cancer.

    McDonald, Andrew M; Swain, Thomas A; Mayhew, David L; Cardan, Rex A; Baker, Christopher B; Harris, David M; Yang, Eddy S; Fiveash, John B


    Purpose To determine if computed tomographic (CT) metrics of bone mineral density and muscle mass can improve the prediction of noncancer death in men with localized prostate cancer. Materials and Methods Institutional review board approval was obtained, with waiver of informed consent. All patients who underwent radiation therapy for localized prostate cancer between 2001 and 2012 with height, weight, and past medical history documented and who underwent CT that included the L4-5 vertebral interspace were included. On a single axial CT section obtained at the mid-L5 level, the mean CT attenuation of the trabecular bone of the L5 vertebral body (L5HU) was measured. The height-normalized psoas cross-sectional area (PsoasL4-5) was measured on a single CT section obtained at the L4-5 vertebral interface. Multivariable Cox proportional hazards models were used to assess effects on noncancer death. By using parameter estimates from an adjusted model, a prognostic index for prediction of noncancer death was generated and compared with age-adjusted Charlson Comorbidity Index (CCI) by using the Harrell c statistic. Results Six hundred fifty-three men met the inclusion criteria. Prostate cancer risk grouping, androgen deprivation, race, age-adjusted CCI, L5HU, and PsoasL4-5 were included in a multivariable model. Age-adjusted CCI (hazard ratio [HR] = 1.36, P < .001), L5HU (HR = 2.88 for L5HU < 105 HU, HR = 1.42 for 105 HU ≤ L5HU ≤ 150 HU, P < .001), PsoasL4-5 (HR = 1.95 for PsoasL4-5 < 7.5 cm(2)/m(2), P = .003), and race (HR = 1.68 for African American race, HR = 1.77 for other nonwhite race, P = .019) were independent predictors of noncancer death. The prognostic index yielded a c value of 0.747 for the prediction of noncancer death versus 0.718 for age-adjusted CCI alone. Conclusion L5HU and PsoasL4-5, which are surrogates for bone mineral density and muscle mass, respectively, were independent predictors of noncancer death. The prognostic index that incorporated

  16. Pulmonary fungal infections after bone marrow transplantation: the value of high-resolution computed tomography in predicting their etiology

    LI Xiang-sheng; ZHU Hong-xian; FAN Hong-xia; ZHU Ling; WANG Heng-xiang; SONG Yun-long


    Background The correct diagnosis of etiology of fungal infection after bone marrow transplantation is very important to the choice of antifungal drugs and a premise for improvement of therapeutic efficacy.This study aimed to compare high-resolution computed tomography (HRCT) findings of the pulmonary fungal infections to determine whether the etiology of various fungal infections could be diagnosed with HRCT.Methods Eighty-five cases were enrolled.According to the pathogens responsible for fungal infections,the patients were classified into three groups including invasive aspergillosis (n=52),candidiasis (n=19) and cryptococcosis (n=14)groups.All the patients underwent HRCT scans.Two independent radiologists retrospectively analyzed the HRCT scans regarding CT patterns and distribution of lung abnormality.Results Most fungal infections in the three groups occurred in the neutropenic phase.There was no significant difference in the constituent ratio of fungal infections at different phases after bone marrow transplantation among the three groups.Agreement between the two observers for all the CT characteristics of fungal infections was excellent (k>0.75).There was a significant difference in occurrence ratio of mass among the three groups (P=0.02).Occurrence ratio of mass (43.3%,13/30) in the group with invasive aspergillosis was higher than in each of other two groups (20.0%,2/10;14.3%,1/7).There was no significant difference in other CT characteristics of nodules or masses; including number,margin,halo sign,cavitation and air-crescent sign.There was no significant difference in number,margin,air bronchogram and distribution of air-space consolidation.Conclusions The HRCT appearance of various pulmonary fungal infections has a great deal of overlap and is nonspecific.Mass is more common in invasive aspergillosis,which is helpful to the diagnosis of invasive aspergillosis after bone marrow transplantation.

  17. Bone within a bone

    Williams, H.J.; Davies, A.M. E-mail:; Chapman, S


    The 'bone within a bone' appearance is a well-recognized radiological term with a variety of causes. It is important to recognize this appearance and also to be aware of the differential diagnosis. A number of common conditions infrequently cause this appearance. Other causes are rare and some remain primarily of historical interest, as they are no longer encountered in clinical practice. In this review we illustrate some of the conditions that can give the bone within a bone appearance and discuss the physiological and pathological aetiology of each where known.

  18. Predictive value of [{sup 18}F]-fluoride PET for monitoring bone remodeling in patients with orthopedic conditions treated with a Taylor spatial frame

    Sanchez-Crespo, Alejandro [Karolinska University Hospital, Department of Hospital Physics, Nuclear Medicine, Stockholm (Sweden); Karolinska University Hospital, Stockholm (Sweden); Christiansson, Frederik [Nykoepings Hospital, Department of Radiology, Nykoeping (Sweden); Karlsson Thur, Charlotte; Lundblad, Henrik [Karolinska Institutet, Department of Molecular Medicine and Surgery, Stockholm (Sweden); Sundin, Anders [Uppsala University Hospital, Department of Radiology and Molecular Imaging, Uppsala (Sweden)


    The Taylor Spatial Frame (TSF) is used to correct orthopedic conditions such as correction osteotomies in delayed fracture healing and pseudarthrosis. Long-term TSF-treatments are common and may lead to complications. Current conventional radiological methods are often unsatisfactory for therapy monitoring. Hence, an imaging technique capable of quantifying bone healing progression would be advantageous. A cohort of 24 patients with different orthopedic conditions, pseudarthrosis (n = 10), deformities subjected to correction osteotomy (n = 9), and fracture (n = 5) underwent dynamic [{sup 18}F]-fluoride (Na{sup 18}F) PET/CT at 8 weeks and 4 months, respectively, after application of a TSF. Parametric images, corresponding to the net transport rate of [{sup 18}F]-fluoride from plasma to bone, K{sub i} were calculated. The ratio of the maximum K{sub i} at PET scan 2 and 1 (anti K{sub i,max}) as well as the ratio of the maximum Standard Uptake Value at PET scan 2 and 1 (SUV {sub max}) were calculated for each individual. Different treatment end-points were scored, and the overall treatment outcome score was compared with the osteoblastic activity progression as scored with anti K{sub i,max} or SUV {sub max}. anti K{sub i,max} and SUV {sub max} were not correlated within each orthopedic group (p > 0.1 for all groups), nor for the pooled population (p = 0.12). The distribution of anti K{sub i,max} was found significantly different among the different orthopedic groups (p = 0.0046) - also for SUV {sub max} (p = 0.022). The positive and negative treatment predictive values for anti K{sub i,max} were 66.7 % and 77.8 %, respectively. Corresponding values for SUV {sub max} were 25 % and 33.3 % The anti K{sub i,max} obtained from dynamic [{sup 18}F]-fluoride-PET imaging is a promising predictive factor to evaluate changes in bone healing in response to TSF treatment. (orig.)

  19. Geometry of the Proximal Phalanx of Hallux and First Metatarsal Bone to Predict Hallux Abducto Valgus: A Radiological Study

    Perez Boal, Eduardo; Becerro de Bengoa Vallejo, Ricardo; Fuentes Rodriguez, Miguel; Lopez Lopez, Daniel


    Background Hallux abducto valgus (HAV) is one of the most common forefoot deformities in adulthood with a variable prevalence but has been reported as high as 48%. The study proposed that HAV development involves a skeletal parameter of the first metatarsal bone and proximal phalanx hallux (PPH) to determine if the length measurements of the metatarsal and PPH can be used to infer adult HAV. Methods All consecutive patients over 21 years of age with HAV by roentgenographic evaluation were included in a cross-sectional study. The control group included patients without HAV. The study included 160 individuals. We identified and assessed the following radiographic measurements to evaluate HAV: the distances from the medial (LDM), central (LDC), and lateral (LDL) aspects of the base to the corresponding regions of the head of the PPH. The difference between the medial and lateral aspect of PPH was also calculated. Results The reliability of the variables measured in 40 radiographic films show perfect reliability ranging from 0.941 to 1 with a small error ranging from 0.762 to 0. Also, there were no systematic errors between the two measurements for any variable (P > 0.05). The LDM PPH showed the highest reliability and lowest error. Conclusion It is more suitable to measure the LDM PPH instead of the LDC PPH when calculating the hallux valgus angle based on our reliability results. When the differences of the medial and lateral PPH are greater, the risk for developing HAV increases. PMID:27861517

  20. Prediction of bone strength by μCT and MDCT-based finite-element-models: How much spatial resolution is needed?

    Bauer, Jan S., E-mail: [Department of Radiology, Technische Universität München, Munich (Germany); Department of Radiology, University of California, San Francisco, CA (United States); Max Planck Institute for Extraterrestrial Physics, Garching (Germany); Sidorenko, Irina [Max Planck Institute for Extraterrestrial Physics, Garching (Germany); Mueller, Dirk [Department of Radiology, Universität Köln (Germany); Baum, Thomas [Department of Radiology, Technische Universität München, Munich (Germany); Department of Radiology, University of California, San Francisco, CA (United States); Max Planck Institute for Extraterrestrial Physics, Garching (Germany); Issever, Ahi Sema [Department of Radiology, University of California, San Francisco, CA (United States); Department of Radiology, Charite, Berlin (Germany); Eckstein, Felix [Institute of Anatomy and Musculoskeletal Research, Paracelsus Medical University, Salzburg (Austria); Rummeny, Ernst J. [Department of Radiology, Technische Universität München, Munich (Germany); Link, Thomas M. [Department of Radiology, University of California, San Francisco, CA (United States); Raeth, Christoph W. [Max Planck Institute for Extraterrestrial Physics, Garching (Germany)


    Objectives: Finite-element-models (FEM) are a promising technology to predict bone strength and fracture risk. Usually, the highest spatial resolution technically available is used, but this requires excessive computation time and memory in numerical simulations of large volumes. Thus, FEM were compared at decreasing resolutions with respect to local strain distribution and prediction of failure load to (1) validate MDCT-based FEM and to (2) optimize spatial resolution to save computation time. Materials and methods: 20 cylindrical trabecular bone specimens (diameter 12 mm, length 15–20 mm) were harvested from elderly formalin-fixed human thoracic spines. All specimens were examined by micro-CT (isotropic resolution 30 μm) and whole-body multi-row-detector computed tomography (MDCT, 250 μm × 250 μm × 500 μm). The resolution of all datasets was lowered in eight steps to ∼2000 μm × 2000 μm × 500 μm and FEM were calculated at all resolutions. Failure load was determined by biomechanical testing. Probability density functions of local micro-strains were compared in all datasets and correlations between FEM-based and biomechanically measured failure loads were determined. Results: The distribution of local micro-strains was similar for micro-CT and MDCT at comparable resolutions and showed a shift toward higher average values with decreasing resolution, corresponding to the increasing apparent trabecular thickness. Small micro-strains (ε{sub eff} < 0.005) could be calculated down to 250 μm × 250 μm × 500 μm. Biomechanically determined failure load showed significant correlations with all FEM, up to r = 0.85 and did not significantly change with lower resolution but decreased with high thresholds, due to loss of trabecular connectivity. Conclusion: When choosing connectivity-preserving thresholds, both micro-CT- and MDCT-based finite-element-models well predicted failure load and still accurately revealed the distribution of local micro-strains in

  1. Genetic variants of human granzyme B predict transplant outcomes after HLA matched unrelated bone marrow transplantation for myeloid malignancies.

    Luis J Espinoza

    Full Text Available Serine protease granzyme B plays important roles in infections, autoimmunity, transplant rejection, and antitumor immunity. A triple-mutated granzyme B variant that encodes three amino substitutions (Q48R, P88A, and Y245H has been reported to have altered biological functions. In the polymorphism rs8192917 (2364A>G, the A and G alleles represent wild type QPY and RAH mutant variants, respectively. In this study, we analyzed the impact of granzyme B polymorphisms on transplant outcomes in recipients undergoing unrelated HLA-fully matched T-cell-replete bone marrow transplantation (BMT through the Japan Donor Marrow Program. The granzyme B genotypes were retrospectively analyzed in a cohort of 613 pairs of recipients with hematological malignancies and their unrelated donors. In patients with myeloid malignancies consisting of acute myeloid leukemia and myelodysplastic syndrome, the donor G/G or A/G genotype was associated with improved overall survival (OS; adjusted hazard ratio [HR], 0.60; 95% confidence interval [CI], 0.41-0.89; P = 0.01 as well as transplant related mortality (TRM; adjusted HR, 0.48; 95% CI, 0.27-0.86, P = 0.01. The recipient G/G or A/G genotype was associated with a better OS (adjusted HR, 0.68; 95% CI, 0.47-0.99; P = 0.05 and a trend toward a reduced TRM (adjusted HR, 0.61; 95% CI, 0.35-1.06; P = 0.08. Granzyme B polymorphism did not have any effect on the transplant outcomes in patients with lymphoid malignancies consisting of acute lymphoid leukemia and malignant lymphoma. These data suggest that there is an association between the granzyme B genotype and better clinical outcomes in patients with myeloid malignancies after unrelated BMT.

  2. Quantitative bone marrow lesion size in osteoarthritic knees correlates with cartilage damage and predicts longitudinal cartilage loss

    Price Lori


    Full Text Available Abstract Background Bone marrow lesions (BMLs, common osteoarthritis-related magnetic resonance imaging findings, are associated with osteoarthritis progression and pain. However, there are no articles describing the use of 3-dimensional quantitative assessments to explore the longitudinal relationship between BMLs and hyaline cartilage loss. The purpose of this study was to assess the cross-sectional and longitudinal descriptive characteristics of BMLs with a simple measurement of approximate BML volume, and describe the cross-sectional and longitudinal relationships between BML size and the extent of hyaline cartilage damage. Methods 107 participants with baseline and 24-month follow-up magnetic resonance images from a clinical trial were included with symptomatic knee osteoarthritis. An 'index' compartment was identified for each knee defined as the tibiofemoral compartment with greater disease severity. Subsequently, each knee was evaluated in four regions: index femur, index tibia, non-index femur, and non-index tibia. Approximate BML volume, the product of three linear measurements, was calculated for each BML within a region. Cartilage parameters in the index tibia and femur were measured based on manual segmentation. Results BML volume changes by region were: index femur (median [95% confidence interval of the median] 0.1 cm3 (-0.5 to 0.9 cm3, index tibia 0.5 cm3 (-0.3 to 1.7 cm3, non-index femur 0.4 cm3 (-0.2 to 1.6 cm3, and non-index tibia 0.2 cm3 (-0.1 to 1.2 cm3. Among 44 knees with full thickness cartilage loss, baseline tibia BML volume correlated with baseline tibia full thickness cartilage lesion area (r = 0.63, pr = 0.48 p Conclusions Many regions had no or small longitudinal changes in approximate BML volume but some knees experienced large changes. Baseline BML size was associated to longitudinal changes in area of full thickness cartilage loss.

  3. Bone scan

    ... legs, or spine fractures) Diagnose a bone infection (osteomyelitis) Diagnose or determine the cause of bone pain, ... 2015:chap 43. Read More Broken bone Metabolism Osteomyelitis Review Date 12/10/2015 Updated by: Jatin ...

  4. Bone Cancer

    Cancer that starts in a bone is uncommon. Cancer that has spread to the bone from another ... more common. There are three types of bone cancer: Osteosarcoma - occurs most often between ages 10 and ...

  5. Bone Diseases

    Your bones help you move, give you shape and support your body. They are living tissues that rebuild constantly ... childhood and your teens, your body adds new bone faster than it removes old bone. After about ...

  6. Bone Markers

    ... markers may be seen in conditions such as: Osteoporosis Paget disease Cancer that has spread to the bone (metastatic bone disease) Hyperparathyroidism Hyperthyroidism Osteomalacia in adults and rickets in children—lack of bone mineralization, ...

  7. Prediction of Incident Major Osteoporotic and Hip Fractures by Trabecular Bone Score (TBS) and Prevalent Radiographic Vertebral Fracture in Older Men.

    Schousboe, John T; Vo, Tien; Taylor, Brent C; Cawthon, Peggy M; Schwartz, Ann V; Bauer, Douglas C; Orwoll, Eric S; Lane, Nancy E; Barrett-Connor, Elizabeth; Ensrud, Kristine E


    Trabecular bone score (TBS) has been shown to predict major osteoporotic (clinical vertebral, hip, humerus, and wrist) and hip fractures in postmenopausal women and older men, but the association of TBS with these incident fractures in men independent of prevalent radiographic vertebral fracture is unknown. TBS was estimated on anteroposterior (AP) spine dual-energy X-ray absorptiometry (DXA) scans obtained at the baseline visit for 5979 men aged ≥65 years enrolled in the Osteoporotic Fractures in Men (MrOS) Study and its association with incident major osteoporotic and hip fractures estimated with proportional hazards models. Model discrimination was tested with Harrell's C-statistic and with a categorical net reclassification improvement index, using 10-year risk cutpoints of 20% for major osteoporotic and 3% for hip fractures. For each standard deviation decrease in TBS, there were hazard ratios of 1.27 (95% confidence interval [CI] 1.17 to 1.39) for major osteoporotic fracture, and 1.20 (95% CI 1.05 to 1.39) for hip fracture, adjusted for FRAX with bone mineral density (BMD) 10-year fracture risks and prevalent radiographic vertebral fracture. In the same model, those with prevalent radiographic vertebral fracture compared with those without prevalent radiographic vertebral fracture had hazard ratios of 1.92 (95% CI 1.49 to 2.48) for major osteoporotic fracture and 1.86 (95% CI 1.26 to 2.74) for hip fracture. There were improvements of 3.3%, 5.2%, and 6.2%, respectively, of classification of major osteoporotic fracture cases when TBS, prevalent radiographic vertebral fracture status, or both were added to FRAX with BMD and age, with minimal loss of correct classification of non-cases. Neither TBS nor prevalent radiographic vertebral fracture improved discrimination of hip fracture cases or non-cases. In conclusion, TBS and prevalent radiographic vertebral fracture are associated with incident major osteoporotic fractures in older men independent of each other

  8. Expression of CD105 and CD34 receptors controls BMP-induced in vitro mineralization of mouse adipose-derived stem cells but does not predict their in vivo bone-forming potential.

    Madhu, Vedavathi; Kilanski, Allison; Reghu, Nikitha; Dighe, Abhijit S; Cui, Quanjun


    Adipose-derived stem cells (ADSCs) can be excellent alternative to bone marrow derived stem cells for enhancing fracture repair since ADSCs can be isolated comparatively in large numbers from discarded lipoaspirates. However, osteogenic potential of ADSCs in vivo is very controversial. We hypothesized that adipose-derived stem cells (ADSCs) that respond maximally to bone morphogenetic proteins (BMPs) in vitro would possess maximum bone-forming potential. Four purified populations of mouse ADSCs: CD105(+) CD34(+), CD105(-) CD34(-), CD105(+) CD34(-) and CD105(-) CD34(+) were obtained using fluorescence-activated cell sorting (FACS) and their BMP-responsiveness was determined in vitro. CD105(+) CD34(-) population showed the strongest response to BMPs in terms of robust increase in mineralization. Expression of CD105 correlated with high BMP-responsive phenotype and larger cell size while expression of CD34 correlated with low BMP-responsive phenotype and smaller cell size. CD105(+) CD34(-) population displayed higher gene expression of Alk1 or Alk6 receptors in comparison with other populations. However, CD105(+) CD34(-) ADSCs failed to induce ectopic bone formation in vivo after they were transplanted into syngeneic mice, indicating that in vitro BMP-responsiveness is not a good indicator to predict in vivo bone forming potential of ADSCs. Therefore greater precautions should be executed during selection of competent ADSCs for bone repair. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  9. {sup 99m}Tc(V)DMSA quantitatively predicts {sup 188}Re(V)DMSA distribution in patients with prostate cancer metastatic to bone

    Blower, P.J.; Kettle, A.G.; O' Doherty, M.J.; Coakley, A.J. [Kent and Canterbury Hospital, Canterbury (United Kingdom). Nuclear Medicine Dept.; Knapp, F.F. Jr. [Nuclear Medicine Group, Oak Ridge National Lab., Oak Ridge, TN (United States)


    Rhenium-188 dimercaptosuccinic acid complex [{sup 188}Re(V)DMSA], a potential therapeutic analogue of the tumour imaging agent {sup 99m}Tc(V)DMSA, is selectively taken up in bone metastases in patients with prostate cancer. It would be helpful in planning palliative radionuclide therapy if {sup 99m}Tc(V)DMSA could be used to predict tumour and kidney retention of {sup 188}Re(V)DMSA. The aim of this study was to determine the correlation between tumour-to-normal tissue ratios and kidney-to-soft tissue ratios of {sup 99m}Tc(V)DMSA and {sup 188}Re(V)DMSA. This would determine whether a scan with {sup 99m}Tc(V)DMSA, could be used to identify patients for whom {sup 188}Re(V)DMSA treatment would be contra-indicated, and enable prediction of relative kidney and tumour radiation absorbed dose in {sup 188}Re(V)DMSA treatment. Ten patients with prostate carcinoma were recruited following observation of disseminated bone metastases on a recent {sup 99m}Tc-hydroxydiphosphonate bone scan. Whole-body planar scans were obtained at ca. 4 h and 24 h after hydration and injection of 600 MBq {sup 99m}Tc(V)DMSA, and a week later, at similar times after hydration and injection of 370 MBq {sup 188}Re(V)DMSA. A triple-energy window (TEW) scatter correction was applied to the {sup 188}Re scans. Counts per pixel were determined in regions of interest drawn over metastatic sites, kidneys and normal soft tissue. Tumour-to-soft tissue ratios were significantly lower (by a factor of approximately 0.8 after the TEW was applied) on {sup 188}Re scans than on {sup 99m}Tc scans, but the two were highly linearly correlated both in all individual patients and in tumours pooled from all patients together both at 4 h and at 24 h. Kidney-to-soft tissue ratios were similarly correlated and were lower for {sup 188}Re than for {sup 99m}Tc by a similar factor. Both tumour- and kidney-to-soft tissue ratios increased between 4 and 24 h but the latter increased more. In conclusion, only minor differences were

  10. Hypercalciuric Bone Disease

    Favus, Murray J.


    Hypercalciuria plays an important causal role in many patients with calcium oxalate (CaOx) stones. The source of the hypercalciuria includes increased intestinal Ca absorption and decreased renal tubule Ca reabsorption. In CaOx stone formers with idiopathic hypercalciuria (IH), Ca metabolic balance studies have revealed negative Ca balance and persistent hypercalciuria in the fasting state and during low dietary Ca intake. Bone resorption may also contribute to the high urine Ca excretion and increase the risk of bone loss. Indeed, low bone mass by DEXA scanning has been discovered in many IH patients. Thiazide diuretic agents reduce urine Ca excretion and may increase bone mineral density (BMD), thereby reducing fracture risk. Dietary Ca restriction that has been used unsuccessfully in the treatment of CaOx nephrolithiasis in the past may enhance negative Ca balance and accelerate bone loss. DEXA scans may demonstrate low BMD at the spine, hip, or forearm, with no predictable pattern. The unique pattern of bone histologic changes in IH differs from other causes of low DEXA bone density including postmenopausal osteoporosis, male hypogonadal osteoporosis, and glucocorticoid-induced osteoporosis. Hypercalciuria appears to play an important pathologic role in the development of low bone mass, and therefore correction of urine Ca losses should be a primary target for treatment of the bone disease accompanying IH.

  11. Prediction

    Sornette, Didier


    This chapter first presents a rather personal view of some different aspects of predictability, going in crescendo from simple linear systems to high-dimensional nonlinear systems with stochastic forcing, which exhibit emergent properties such as phase transitions and regime shifts. Then, a detailed correspondence between the phenomenology of earthquakes, financial crashes and epileptic seizures is offered. The presented statistical evidence provides the substance of a general phase diagram for understanding the many facets of the spatio-temporal organization of these systems. A key insight is to organize the evidence and mechanisms in terms of two summarizing measures: (i) amplitude of disorder or heterogeneity in the system and (ii) level of coupling or interaction strength among the system's components. On the basis of the recently identified remarkable correspondence between earthquakes and seizures, we present detailed information on a class of stochastic point processes that has been found to be particu...

  12. Predicting the elastic properties of selective laser sintered PCL/β-TCP bone scaffold materials using computational modelling.

    Doyle, Heather; Lohfeld, Stefan; McHugh, Peter


    This study assesses the ability of finite element (FE) models to capture the mechanical behaviour of sintered orthopaedic scaffold materials. Individual scaffold struts were fabricated from a 50:50 wt% poly-ε-caprolactone (PCL)/β-tricalcium phosphate (β-TCP) blend, using selective laser sintering. The tensile elastic modulus of single struts was determined experimentally. High resolution FE models of single struts were generated from micro-CT scans (28.8 μm resolution) and an effective strut elastic modulus was calculated from tensile loading simulations. Three material assignment methods were employed: (1) homogeneous PCL elastic constants, (2) composite PCL/β-TCP elastic constants based on rule of mixtures, and (3) heterogeneous distribution of micromechanically-determined elastic constants. In comparison with experimental results, the use of homogeneous PCL properties gave a good estimate of strut modulus; however it is not sufficiently representative of the real material as it neglects the β-TCP phase. The rule of mixtures method significantly overestimated strut modulus, while there was no significant difference between strut modulus evaluated using the micromechanically-determined elastic constants and experimentally evaluated strut modulus. These results indicate that the multi-scale approach of linking micromechanical modelling of the sintered scaffold material with macroscale modelling gives an accurate prediction of the mechanical behaviour of the sintered structure.

  13. High total metabolic tumor volume in PET/CT predicts worse prognosis in diffuse large B cell lymphoma patients with bone marrow involvement in rituximab era.

    Song, Moo-Kon; Yang, Deok-Hwan; Lee, Gyeong-Won; Lim, Sung-Nam; Shin, Seunghyeon; Pak, Kyoung June; Kwon, Seong Young; Shim, Hye Kyung; Choi, Bong-Hoi; Kim, In-Suk; Shin, Dong-Hoon; Kim, Seong-Geun; Oh, So-Yeon


    Bone marrow involvement (BMI) in diffuse large B cell lymphoma (DLBCL) was naively regarded as an adverse clinical factor. However, it has been unknown which factor would separate clinical outcomes in DLBCL patients with BMI. Recently, metabolic tumor volume (MTV) on positron emission tomography/computed tomography (PET/CT) was suggested to predict prognosis in several lymphoma types. Therefore, we investigated whether MTV would separate the outcomes in DLBCL patients with BMI. MTV on PET/CT was defined as an initial tumor burden as target lesion ≥ standard uptake value, 2.5 in 107 patients with BMI. Intramedullary (IM) MTV was defined as extent of BMI and total MTV was as whole tumor burden. 260.5 cm(3) and 601.2 cm(3) were ideal cut-off values for dividing high and low MTV status in the IM and total lymphoma lesions in Receiver Operating Curve analysis. High risk NCCN-IPI (phigh IM MTV status (phigh total MTV status (phigh risk NCCN-IPI (PFS, p=0.006; OS, p=0.013), concordant subtype (PFS, p=0.005; OS, p=0.007), and high total MTV status (PFS, p<0.001; OS, p<0.001) had independent clinical impacts. MTV had prognostic significances for survivals in DLBCL with BMI.

  14. Macrophage inflammatory protein-1α shows predictive value as a risk marker for subjects and sites vulnerable to bone loss in a longitudinal model of aggressive periodontitis.

    Daniel H Fine

    Full Text Available Improved diagnostics remains a fundamental goal of biomedical research. This study was designed to assess cytokine biomarkers that could predict bone loss (BL in localized aggressive periodontitis. 2,058 adolescents were screened. Two groups of 50 periodontally healthy adolescents were enrolled in the longitudinal study. One group had Aggregatibacter actinomycetemcomitans (Aa, the putative pathogen, while the matched cohort did not. Cytokine levels were assessed in saliva and gingival crevicular fluid (GCF. Participants were sampled, examined, and radiographed every 6 months for 2-3 years. Disease was defined as radiographic evidence of BL. Saliva and GCF was collected at each visit, frozen, and then tested retrospectively after detection of BL. Sixteen subjects with Aa developed BL. Saliva from Aa-positive and Aa-negative healthy subjects was compared to subjects who developed BL. GCF was collected from 16 subjects with BL and from another 38 subjects who remained healthy. GCF from BL sites in the 16 subjects was compared to healthy sites in these same subjects and to healthy sites in subjects who remained healthy. Results showed that cytokines in saliva associated with acute inflammation were elevated in subjects who developed BL (i.e., MIP-1α MIP-1β IL-α, IL-1β and IL-8; p<0.01. MIP-1α was elevated 13-fold, 6 months prior to BL. When MIP-1α levels were set at 40 pg/ml, 98% of healthy sites were below that level (Specificity; whereas, 93% of sites with BL were higher (Sensitivity, with comparable Predictive Values of 98%; p<0.0001; 95% C.I. = 42.5-52.7. MIP-1α consistently showed elevated levels as a biomarker for BL in both saliva and GCF, 6 months prior to BL. MIP-1α continues to demonstrate its strong candidacy as a diagnostic biomarker for both subject and site vulnerability to BL.

  15. Transcutaneous Raman Spectroscopy of Bone

    Maher, Jason R.

    Clinical diagnoses of bone health and fracture risk typically rely upon measurements of bone density or structure, but the strength of a bone is also dependent upon its chemical composition. One technology that has been used extensively in ex vivo, exposed-bone studies to measure the chemical composition of bone is Raman spectroscopy. This spectroscopic technique provides chemical information about a sample by probing its molecular vibrations. In the case of bone tissue, Raman spectra provide chemical information about both the inorganic mineral and organic matrix components, which each contribute to bone strength. To explore the relationship between bone strength and chemical composition, our laboratory has contributed to ex vivo, exposed-bone animal studies of rheumatoid arthritis, glucocorticoid-induced osteoporosis, and prolonged lead exposure. All of these studies suggest that Raman-based predictions of biomechanical strength may be more accurate than those produced by the clinically-used parameter of bone mineral density. The utility of Raman spectroscopy in ex vivo, exposed-bone studies has inspired attempts to perform bone spectroscopy transcutaneously. Although the results are promising, further advancements are necessary to make non-invasive, in vivo measurements of bone that are of sufficient quality to generate accurate predictions of fracture risk. In order to separate the signals from bone and soft tissue that contribute to a transcutaneous measurement, we developed an overconstrained extraction algorithm that is based upon fitting with spectral libraries derived from separately-acquired measurements of the underlying tissue components. This approach allows for accurate spectral unmixing despite the fact that similar chemical components (e.g., type I collagen) are present in both soft tissue and bone and was applied to experimental data in order to transcutaneously detect, to our knowledge for the first time, age- and disease-related spectral

  16. Biochemical markers of bone turnover

    Kim, Deog Yoon [College of Medicine, Kyunghee Univ., Seoul (Korea, Republic of)


    Biochemical markers of bone turnover has received increasing attention over the past few years, because of the need for sensitivity and specific tool in the clinical investigation of osteoporosis. Bone markers should be unique to bone, reflect changes of bone less, and should be correlated with radiocalcium kinetics, histomorphometry, or changes in bone mass. The markers also should be useful in monitoring treatment efficacy. Although no bone marker has been established to meet all these criteria, currently osteocalcin and pyridinium crosslinks are the most efficient markers to assess the level of bone turnover in the menopausal and senile osteoporosis. Recently, N-terminal telopeptide (NTX), C-terminal telopeptide (CTX) and bone specific alkaline phosphatase are considered as new valid markers of bone turnover. Recent data suggest that CTX and free deoxypyridinoline could predict the subsequent risk of hip fracture of elderly women. Treatment of postmenopausal women with estrogen, calcitonin and bisphosphonates demonstrated rapid decrease of the levels of bone markers that correlated with the long-term increase of bone mass. Factors such as circadian rhythms, diet, age, sex, bone mass and renal function affect the results of biochemical markers and should be appropriately adjusted whenever possible. Each biochemical markers of bone turnover may have its own specific advantages and limitations. Recent advances in research will provide more sensitive and specific assays.

  17. Bone Densitometry (Bone Density Scan)

    ... of DXA Bone Densitometry? What is a Bone Density Scan (DXA)? Bone density scanning, also called dual-energy x-ray absorptiometry ( ... is today's established standard for measuring bone mineral density (BMD). An x-ray (radiograph) is a noninvasive ...

  18. Bone marrow aspiration

    Iliac crest tap; Sternal tap; Leukemia - bone marrow aspiration; Aplastic anemia - bone marrow aspiration; Myelodysplastic syndrome - bone marrow aspiration; Thrombocytopenia - bone marrow aspiration; Myelofibrosis - bone marrow aspiration

  19. Metal-ion Speciation in Blood Plasma as a Tool in Predicting the "in vivo" Behaviour of Potential Bone-Seeking Radiopharmaceuticals

    Zeevaart, J.R.


    In a quest for more effective radiopharmaceuticals for palliation of pain experienced by metastatic bone cancer patients, results obtained with the therapeutic radionuclides 153 SM, 166 Ho and 117mSn complexed to bone-seeking phopsphate ligands are related. As phosphonates are known to enhance the r


    张春秋; 朱兴华


    松质骨是骨的重要组成部分,结构疏松、多孔,由针状、片状骨小梁组成多种胞体,其结构称为胞元结构。正常生理状态下,骨质的形成与吸收呈平衡态,骨结构稳定。当骨所处的力学环境发生变化时,骨的结构形态也随之变化。松质骨细观结构数值模拟变化的力学环境与骨结构的关系目前未见报道。本文是采用带有生理限定应力的自适应生理模型与有限元相结合的方法,在力学环境发生变化后用计算机预测松质骨胞元结构;定量的研究了松质骨胞元结构从一种优化平衡态到另一种平衡态与其力学环境的关系,模拟了松质骨胞元结构的变化与力学环境的适应性,把这种骨结构预测从宏观水平提高到细观水平。%Cancellous bone is an important part of bone, which is porous, made of an interconnecting framework of trabeculae. Its basic makeup are cellular structures. The formation and resorption of bone in adult normally keep balance, and the bone structure remains stable. There is the significance of theory and clinic to predict cancellous structure. The bone structure, however, changes with the variation of the mechanical environment to which it is exposed. Few papers on cancellous structure have been reported in literature. The paper on the relations between the mechanical condition and change of cancellous structure haven′t been reported. In the paper, cancellous cellular structure of bone is predicted using the physiologically controlling model with physiologically limiting stress, integrated with the finite element method. First, by the example of prediction of a sort of cancellous cellular structure bone, the process of prediction using the model is detailedly described. Then, from same cancellous cellular structure as initial structure, the cancellous cellular structures according with different loading conditions are predicted. Finally., from different cancellous

  1. High bone sialoprotein (BSP expression correlates with increased tumor grade and predicts a poorer prognosis of high-grade glioma patients.

    Tao Xu

    Full Text Available OBJECTIVES: To investigate the expression and prognostic value of bone sialoprotein (BSP in glioma patients. METHODS: We determined the expression of BSP using real-time RT-PCR and immunohistochemistry in tissue microarrays containing 15 normal brain and 270 glioma samples. Cumulative survival was calculated by the Kaplan-Meier method and analyzed by the log-rank test. Univariate and multivariate analyses were performed by the stepwise forward Cox regression model. RESULTS: Both BSP mRNA and protein levels were significantly elevated in high-grade glioma tissues compared with those of normal brain and low-grade glioma tissues, and BSP expression positively correlated with tumor grade (P<0.001. Univariate and multivariate analysis showed high BSP expression was an independent prognostic factor for a shorter progression-free survival (PFS and overall survival (OS in both grade III and grade IV glioma patients [hazard ratio (HR = 2.549 and 3.154 for grade III glioma, and HR = 1.637 and 1.574 for grade IV glioma, respectively]. Patients with low BSP expression had a significantly longer median OS and PFS than those with high BSP expression. Small extent of resection and lineage of astrocyte served as independent risk factors of both shorter PFS and OS in grade III glioma patients; GBM patients without O(6-methylguanine (O(6-meG DNA methyltransferase (MGMT methylation and Karnofsky performance score (KPS less than 70 points were related to poor prognosis. Lack of radiotherapy related to shorter OS but not affect PFS in both grade III and grade IV glioma patients. CONCLUSION: High BSP expression occurs in a significant subset of high-grade glioma patients and predicts a poorer outcome. The study identifies a potentially useful molecular marker for the categorization and targeted therapy of gliomas.

  2. [Frostbite of the upper and lower limbs in an expert mountain climber: the value of bone scan in the prediction of amputation level].

    Banzo, J; Martínez Villén, G; Abós, M D; Morandeira, J R; Prats, E; García López, F; Razola, P; Ubieto, M A


    A 38 year old man was admitted to our hospital 10 days after suffering a frostbite injury in hands and feet while practicing mountain climbing, at 8,100 meters of altitude, while he was trying to reach the top of the K2 mountain. A 99mTc-MDP bone scan performed in aseptic conditions showed: in hands: absence of bone uptake in the 3rd phalanx and distal portion of 2nd phalanx of the 5th finger of the left hand, and multiple areas of increased uptake in the distal portion of both hands. In feet: uptake decreases in the 2nd phalanx of the first toe of the left foot, and absence of bone uptake in the 3rd phalanx of the 2nd toe of the left foot, and in 2nd phalanx of the 1st toe and 3rd phalanx of the 2nd, 3rd and 4th toes of the right foot. As in the hands, there were multiple areas of increased uptake in the distal portion of both feet. The phalanges with absence of bone uptake had to be amputated, while those that presented increased uptake recovered with conservative treatment. Bone scan is indicated in the evaluation of frostbite injuries and helps to establish the prognosis early.

  3. Bone cutting.

    Giraud, J Y; Villemin, S; Darmana, R; Cahuzac, J P; Autefage, A; Morucci, J P


    Bone cutting has always been a problem for surgeons because bone is a hard living material, and many osteotomes are still very crude tools. Technical improvement of these surgical tools has first been their motorization. Studies of the bone cutting process have indicated better features for conventional tools. Several non-conventional osteotomes, particularly ultrasonic osteotomes are described. Some studies on the possible use of lasers for bone cutting are also reported. Use of a pressurised water jet is also briefly examined. Despite their advantages, non-conventional tools still require improvement if they are to be used by surgeons.

  4. Parameters in three-dimensional osteospheroids of telomerized human mesenchymal (stromal) stem cells grown on osteoconductive scaffolds that predict in vivo bone-forming potential

    Burns, Jorge S; Hansen, Pernille Lund; Larsen, Kenneth H;


    Osteoblastic differentiation of human mesenchymal stem cells (hMSC) in monolayer culture is artefactual, lacking an organized bone-like matrix. We present a highly reproducible microwell protocol generating three-dimensional ex vivo multicellular aggregates of telomerized hMSC (hMSC-telomerase re...

  5. Age-predicted values for lumbar spine, proximal femur, and whole-body bone mineral density: results from a population of normal children aged 3 to 18 years

    Webber, C.E. [Hamilton Health Sciences, Dept. of Nuclear Medicine, Hamilton, Ontario (Canada); McMaster Univ., Dept. of Radiology, Hamilton, Ontario (Canada)]. E-mail:; Beaumont, L.F. [Hamilton Health Sciences, Dept. of Nuclear Medicine, Hamilton, Ontario (Canada); Morrison, J. [McMaster Children' s Hospital, Hamilton, Ontario (Canada); Sala, A. [McMaster Children' s Hospital, Hamilton, Ontario (Canada); McMaster Univ., Dept. of Pediatrics, Hamilton, Ontario (Canada); Univ. of Milan-Bicocca, Monza (Italy); Barr, R.D. [McMaster Children' s Hospital, Hamilton, Ontario (Canada); McMaster Univ., Dept. of Pediatrics, Hamilton, Ontario (Canada)


    We measured areal bone mineral density (BMD) with dual-energy X-ray absorptiometry (DXA) at the lumbar spine and the proximal femur and for the total body in 179 subjects (91 girls and 88 boys) with no known disorders that might affect calcium metabolism. Results are also reported for lumbar spine bone mineral content (BMC) and for the derived variable, bone mineral apparent density (BMAD). Expected-for-age values for each variable were derived for boys and girls by using an expression that represented the sum of a steady increase due to growth plus a rapid increase associated with puberty. Normal ranges were derived by assuming that at least 95% of children would be included within 1.96 population standard deviations (SD) of the expected-for-age value. The normal range for lumbar spine BMD derived from our population of children was compared with previously published normal ranges based on results obtained from different bone densitometers in diverse geographic locations. The extent of agreement between the various normal ranges indicates that the derived expressions can be used for reporting routine spine, femur, and whole-body BMD measurements in children and adolescents. The greatest difference in expected-for-age values among the various studies was that arising from intermanufacturer variability. The application of published conversion factors derived from DXA measurements in adults did not account fully for these differences, especially in younger children. (author)

  6. Application of bone scintigraphy in therapy response monitoring and prognosis prediction in patients with bone metastasis from lung cancer and prostate cancer%骨扫描在肺癌和前列腺癌骨转移疗效监测及预后判断中的应用价值

    潘懿范; 刘建军; 黄钢; 马玉波


    目的 探讨全身骨扫描在肺癌和前列腺癌骨转移疗效监测及预后判断中的应用价值.方法 将40例肺癌患者和31例前列腺癌患者在系统治疗前1个月内及治疗≥3个月后分别行全身骨扫描,观察治疗前后骨转移灶的变化与肿瘤临床综合疗效的相关性.采用Kaplan-Meier法计算生存率,Log-rank检验及Cox回归模型分析影响肺癌或前列腺癌骨转移预后的危险因素.结果 肿瘤临床综合治疗有效者( 59.68%,37/62)的骨转移疗效明显好于无效者(40.32%,25/62)(P<0.05).肺癌骨转移患者的1年生存率为54.5%,2年生存率为22.6%;前列腺癌骨转移患者的1年生存率为87.3%,2年生存率为72.3%.单因素及Cox多因素分析均显示:肺癌和前列腺癌骨转移患者的生存率与肿瘤类型及骨转移时长相关(P<0.05).肺癌与前列腺癌分组行Cox多因素分析结果显示:肺癌骨转移的预后危险因素为病理类型、治疗前骨扫描病变范围及骨转移时长;而前列腺癌骨转移的预后与骨转移时长有关.结论 全身骨扫描为肺癌和前列腺癌骨转移的疗效监测及预后判断提供了更丰富、更准确的信息.%Objective To investigate the application of bone scintigraphy in therapy response monitoring and prognosis prediction in patients with bone metastasis from lung cancer and prostate cancer. Methods Whole-body bone scintigraphy was performed in 40 patients with lung cancer and 31 patients with prostate cancer one month before systematic therapy and no less than 3 months after treatment. The changes of bone metastasis lesions were observed before and after treatment, and the correlation of bone metastasis with therapy response was explored. Survival rates were calculated by Kaplan-Meier method, and prognostic factors for survival were analysed by Log-rank test and Cox regression model. Results The therapeutic effect of bone metastasis in clinical therapy responders in primary

  7. Computed tomographic imaging of subchondral fatigue cracks in the distal end of the third metacarpal bone in the thoroughbred racehorse can predict crack micromotion in an ex-vivo model.

    Marie-Soleil Dubois

    Full Text Available Articular stress fracture arising from the distal end of the third metacarpal bone (MC3 is a common serious injury in Thoroughbred racehorses. Currently, there is no method for predicting fracture risk clinically. We describe an ex-vivo biomechanical model in which we measured subchondral crack micromotion under compressive loading that modeled high speed running. Using this model, we determined the relationship between subchondral crack dimensions measured using computed tomography (CT and crack micromotion. Thoracic limbs from 40 Thoroughbred racehorses that had sustained a catastrophic injury were studied. Limbs were radiographed and examined using CT. Parasagittal subchondral fatigue crack dimensions were measured on CT images using image analysis software. MC3 bones with fatigue cracks were tested using five cycles of compressive loading at -7,500N (38 condyles, 18 horses. Crack motion was recorded using an extensometer. Mechanical testing was validated using bones with 3 mm and 5 mm deep parasagittal subchondral slots that modeled naturally occurring fatigue cracks. After testing, subchondral crack density was determined histologically. Creation of parasagittal subchondral slots induced significant micromotion during loading (p<0.001. In our biomechanical model, we found a significant positive correlation between extensometer micromotion and parasagittal crack area derived from reconstructed CT images (SR = 0.32, p<0.05. Correlations with transverse and frontal plane crack lengths were not significant. Histologic fatigue damage was not significantly correlated with crack dimensions determined by CT or extensometer micromotion. Bones with parasagittal crack area measurements above 30 mm2 may have a high risk of crack propagation and condylar fracture in vivo because of crack micromotion. In conclusion, our results suggest that CT could be used to quantify subchondral fatigue crack dimensions in racing Thoroughbred horses in-vivo to

  8. Prediction of density and mechanical properties of human trabecular bone in vitro by using ultrasound transmission and backscattering measurements at 0.2 6.7 MHz frequency range

    Hakulinen, Mikko A.; Day, Judd S.; Töyräs, Juha; Timonen, Matti; Kröger, Heikki; Weinans, Harrie; Kiviranta, Ilkka; Jurvelin, Jukka S.


    The ultrasound (US) backscattering method has been introduced as an alternative for the through-transmission measurement of sound attenuation and speed in diagnosis of osteoporosis. Both attenuation and backscattering depend strongly on the US frequency. In this study, 20 human trabecular bone samples were measured in transmission and pulse-echo geometry in vitro. The aim of the study was to find the most sensitive frequency range for the quantitative ultrasound (QUS) analyses. Normalized broadband US attenuation (nBUA), speed of sound (SOS), broadband US backscatter (BUB) and integrated reflection coefficient (IRC) were determined for each sample. The samples were spatially scanned with five pairs of US transducers covering a frequency range of 0.2-6.7 MHz. Furthermore, mechanical properties and density of the same samples were determined. At all frequencies, SOS, BUB and IRC showed statistically significant linear correlations with the mechanical properties or density of human trabecular bone (0.51 < r < 0.82, 0.54 < r < 0.81 and 0.70 < r < 0.85, respectively). In contrast to SOS, IRC and BUB, nBUA showed statistically significant correlations with mechanical parameters or density at the centre frequency of 1 MHz only. Our results suggest that frequencies up to 5 MHz can be useful in QUS analyses for the prediction of bone mechanical properties and density. Since the use of higher frequencies provides better axial and spatial resolution, improved structural analyses may be possible. While extensive attenuation of high frequencies in trabecular bone limits the clinically feasible frequency range, selection of optimal frequency range for in vivo QUS application should be carefully considered.

  9. Risk factors and prediction of inflammatory complications and local secondary osteoporosis in the bone structure of jaws in dental intraosseous implantation in healthy subjects

    Mashchenko I.S.


    Full Text Available As a result of complex clinical, immunologic and biochemical investigations of 48 patients peculiarities of development of inflammatory com¬plications, local osteoporosis and destruction of bone tissue after performed dental intraosseous implantantion were first revealed. It was shown that multiple surgical traumas of soft tissues of jaws and bone tissue of alveolar processes with putting 4 or more implants simultaneously may lead to reducing biocidity of mucosa of jaw tissues; this promotes lesion of oral cavity hygiene and development of inflammatory process in zone of periimplant. It is set that massive accumulation of soft coat and dental calculus in the area of implant, superconstruction and marked deficit of sIgA production of oral mucosa promote development of periimplant mucositis in remote post-operative period. A sharp production of secretory ІL -1β is a risk factor in formation of general-destructive process in a periimplant zone, development of dental periimplant.

  10. Bone x-ray

    ... or broken bone Bone tumors Degenerative bone conditions Osteomyelitis (inflammation of the bone caused by an infection) ... Multiple myeloma Osgood-Schlatter disease Osteogenesis imperfecta Osteomalacia Osteomyelitis Paget disease of the bone Rickets X-ray ...

  11. Sequential analysis of biochemical markers of bone resorption and bone densitometry in multiple myeloma

    Abildgaard, Niels; Brixen, Kim; Eriksen, Erik Fink


    BACKGROUND AND OBJECTIVES: Bone lesions often occur in multiple myeloma (MM), but no tests have proven useful in identifying patients with increased risk. Bone marker assays and bone densitometry are non-invasive methods that can be used repeatedly at low cost. This study was performed to evaluate...... 6 weeks, DEXA-scans performed every 3 months, and skeletal radiographs were done every 6 months as well as when indicated. RESULTS: Serum ICTP and urinary NTx were predictive of progressive bone events. Markers of bone formation, bone mineral density assessments, and M component measurements were...

  12. Bone pain

    Frost, Charlotte Ørsted; Hansen, Rikke Rie; Heegaard, Anne-Marie


    Skeletal conditions are common causes of chronic pain and there is an unmet medical need for improved treatment options. Bone pain is currently managed with disease modifying agents and/or analgesics depending on the condition. Disease modifying agents affect the underlying pathophysiology...... of the disease and reduce as a secondary effect bone pain. Antiresorptive and anabolic agents, such as bisphosphonates and intermittent parathyroid hormone (1-34), respectively, have proven effective as pain relieving agents. Cathepsin K inhibitors and anti-sclerostin antibodies hold, due to their disease...... modifying effects, promise of a pain relieving effect. NSAIDs and opioids are widely employed in the treatment of bone pain. However, recent preclinical findings demonstrating a unique neuronal innervation of bone tissue and sprouting of sensory nerve fibers open for new treatment possibilities....

  13. Bone graft

    ... around the area. The bone graft can be held in place with pins, plates, or screws. Why ... Orthopaedic Surgery, San Francosco, CA. Also reviewed by David Zieve, MD, MHA, Isla Ogilvie, PhD, and the ...

  14. Low Bone Density

    ... Information › Bone Density Exam/Testing › Low Bone Density Low Bone Density Low bone density is when your ... compared to people with normal bone density. Detecting Low Bone Density A bone density test will determine ...

  15. Novel Adipokines and Bone Metabolism

    Yuan Liu


    Full Text Available Osteoporosis is a serious social issue nowadays. Both the high morbidity and its common complication osteoporotic fracture load a heavy burden on the whole society. The adipose tissue is the biggest endocrinology organ that has a different function on the bone. The adipocytes are differentiated from the same cell lineage with osteoblast, and they can secrete multiple adipokines with various functions on bone remolding. Recently, several novel adipokines have been identified and investigated thoroughly. In this paper, we would like to highlight the complicated relation between the bone metabolism and the novel adipokines, and it may provide us with a new target for prediction and treatment of osteoporosis.

  16. 遗传算法在鱼粉中肉骨粉近红外光谱检测中的应用%Genetic Algorithm Used for Predicting Meat and Bone Meal Content in Fishmeal by Near Infrared Spectroscopy

    湛小梅; 韩鲁佳; 刘贤; 杨增玲


    为了研究近红外光谱模型的优化方法,提高模型的精度.利用遗传算法对64个掺加了肉骨粉的位粉样品近红外光谱进行变量筛选,采用偏最小二乘法回归建模.并用21个样品进行外部验证.遗传算法共选取310个波长变量,相对于全谱的1556个变壁减少了80%,与全谱范围的偏最小二乘法相比,交互验证相关系数(R_(CV))从0.80提高剑0.90,交.巨验证均方根误差从5.22%降低到3.62%,预测相关系数(R_V )从0.91提高到0.96,预测均方根误差从3.85%降低到2.95%.模型的稳健性和预测精度都显著提高.试验结果表明遗传算法可以改善近红外光谱法预测鱼粉中肉骨粉含量的效果.%For the purpose of optimizing near infrared spectroscopy model, and improving the prediction result, Genetic Algorithm (GA) was used to select wavelength variables of near infrared spectroscopy for fishmeal adulterated with meat and bone meal. 310 wavelengths are selted in genetic algorithm. By contrast with all wavelengths based partial least squares(PLS), GA based PLS reduced 80% of the wavelengths, and gained much better cross validation and prediction results. Related coefficient of cross-validation R_(CV) was improved from 0. 80 to 0.90, while the value of root mean square error of cross-validation (RMSECV) was reduced from 5. 22% to 3.62%. The related coefficient of prediction R\\ was improved from 0.91 to 0.96, while the value of root mean square error of prediction (RMSEP) was reduced from 3. 85% to 2. 95%. GA improved the robustness and predictability of the model. It's indicated that GA was an effective method for variable selection and could improve the prediction result of the meat and bone meal content in fishmeal by near infrared spectroscopy.

  17. Mechanistic fracture criteria for the failure of human cortical bone

    Nalla, Ravi K.; Kinney, John H.; Ritchie, Robert O.


    A mechanistic understanding of fracture in human bone is critical to predicting fracture risk associated with age and disease. Despite extensive work, a mechanistic framework for describing how the underlying microstructure affects the failure mode in bone is lacking.

  18. Bone marrow transplant

    Transplant - bone marrow; Stem cell transplant; Hematopoietic stem cell transplant; Reduced intensity nonmyeloablative transplant; Mini transplant; Allogenic bone marrow transplant; Autologous bone marrow transplant; Umbilical ...

  19. Effects of Resveratrol Supplementation on Bone Growth in Young Rats and Microarchitecture and Remodeling in Ageing Rats

    Lee, Alice M. C.; Tetyana Shandala; Long Nguyen; Beverly S Muhlhausler; Ke-Ming Chen; Peter R Howe; Xian, Cory J.


    Osteoporosis is a highly prevalent skeletal disorder in the elderly that causes serious bone fractures. Peak bone mass achieved at adolescence has been shown to predict bone mass and osteoporosis related risk fracture later in life. Resveratrol, a natural polyphenol compound, may have the potential to promote bone formation and reduce bone resorption. However, it is unclear whether it can aid bone growth and bone mass accumulation during rapid growth and modulate bone metabolism during ageing...

  20. Bone development

    Tatara, M.R.; Tygesen, Malin Plumhoff; Sawa-Wojtanowicz, B.


    The objective of this study was to determine the long-term effect of alpha-ketoglutarate (AKG) administration during early neonatal life on skeletal development and function, with emphasis on bone exposed to regular stress and used to serve for systemic changes monitoring, the rib. Shropshire ram...... the groups were recorded int erms of: (1) growth rate, (2) body weight at days 14, 28 and 130 of age or (3) final body weight. The weight and length of ribs were, however, significantly increased in the lambs given AKG for the first 14 days of neonatal life by 8.2% and 3.2%, respectively (P....01). Furthermore, AKG administration induced significantly higher bone mineral density of the cortical bone by 7.1% (P

  1. [Bone transplant].

    San Julián, M; Valentí, A


    We describe the methodology of the Bone and Soft Tissue Bank, from extraction and storage until use. Since the year 1986, with the creation of the Bone Bank in the University Clinic of Navarra, more than 3,000 grafts have been used for very different types of surgery. Bone grafts can be classified into cortical and spongy; the former are principally used in surgery to save tumour patients, in large post-traumatic reconstructions and in replacement surgery where there are massive bone defects and a structural support is required. The spongy grafts are the most used due to their numerous indications; they are especially useful in filling cavities that require a significant quantity of graft when the autograft is insufficient, or as a complement. They are also of special help in treating fractures when there is bone loss and in the treatment of delays in consolidation and pseudoarthrosis in little vascularized and atrophic zones. They are also used in prosthetic surgery against the presence of cavity type defects. Allografts of soft tissues are specially recognised in multiple ligament injuries that require reconstructions. Nowadays, the most utilised are those employed in surgery of the anterior cruciate ligament although they can be used for filling any ligament or tendon defect. The principal difficulties of the cortical allografts are in the consolidation of the ends with the bone itself and in tumour surgery, given that these are patients immunodepressed by the treatment, the incidence of infection is increased with respect to spongy grafts and soft tissues, which is irrelevant. In short, the increasingly widespread use of allografts is an essential therapeutic weapon in orthopaedic surgery and traumatology. It must be used by expert hands.

  2. Bone mineral content and bone metabolism in young adults with severe periodontitis

    Wowern von, N.; Westergaard, J.; Kollerup, G.


    Bone loss, bone markers, bone metabolism, bone mineral content, osteoporosis, severe periodontitis......Bone loss, bone markers, bone metabolism, bone mineral content, osteoporosis, severe periodontitis...

  3. Predicción del rendimiento en cortes, hueso y grasa en búfalos de agua en Venezuela Yield prediction of boneless cuts, bone and fat trimmings from water buffaloes in Venezuela

    Oscar Atencio-Valladares


    Full Text Available Los objetivos de este estudio fueron determinar la asociación entre rasgos de la canal y el rendimiento en cortes (RCD, rendimiento en hueso y recortes de grasa en búfalos de agua, y desarrollar ecuaciones predictivas para cada variable mencionada. Se utilizaron 48 búfalos de agua (24 castrados y 24 enteros, sacrificados a los 17, 19 y 24 meses de edad con mestizaje de razas Murrah y Mediterránea. Se evaluaron las variables de la canal y del rendimiento en cortes. Se realizaron: pruebas descriptivas, análisis de correlación, residuos y de regresión lineal múltiple. En los castrados, el acabado de grasa y la circunferencia del muslo explicaron la mayor variación en RCD. El espesor de grasa y el porcentaje de grasa renal fueron las variables mayormente asociadas con el rendimiento en hueso. En los enteros, el acabado de grasa y la longitud de la canal explicaron la mayor variación en RCD. El recorte de grasa se asoció más con acabado de grasa, y el rendimiento en hueso se asoció con la conformación. Las ecuaciones obtenidas lograron explicar más del 50% de la variación del RCD. Las ecuaciones para recorte de grasa y rendimiento en hueso tuvieron mayor fuerza predictiva.The objectives of this study were to determine the association between carcass traits and the percentage yield in boneless cuts (PDC, bone, and fat trimmings of water buffalves; and to develop predicted equations for these variables. Forty-eight crossbred Murrah-Mediterránea buffaloes (24 steers and 24 bulls were used slaughtered at 17, 19 and 24 months. Carcass and retail-yield-cut traits were evaluated. The following analyses were made: descriptive test, correlation, residual and multiple lineal regression. In castrated animals, subcutaneous fat and circumference round explained the majority of the variation in PDC. The dorsal fat thickness and the renal fat were the variables mostly associated with bone yield. In bulls, the subcutaneous fat and the carcass length

  4. Bone lesion biopsy

    Bone biopsy; Biopsy - bone ... needle is gently pushed and twisted into the bone. Once the sample is obtained, the needle is ... sample is sent to a lab for examination. Bone biopsy may also be done under general anesthesia ...

  5. Facts about Broken Bones

    ... Room? What Happens in the Operating Room? Broken Bones KidsHealth > For Kids > Broken Bones Print A A ... sticking through the skin . What Happens When a Bone Breaks? It hurts to break a bone! It's ...

  6. Calcium and bones

    Bone strength and calcium ... calcium (as well as phosphorus) to make healthy bones. Bones are the main storage site of calcium in ... your body does not absorb enough calcium, your bones can get weak or will not grow properly. ...

  7. Broken Bones (For Parents)

    ... Feeding Your 1- to 2-Year-Old Broken Bones KidsHealth > For Parents > Broken Bones Print A A ... bone fragments in place. When Will a Broken Bone Heal? Fractures heal at different rates, depending upon ...

  8. Bone biopsy (image)

    A bone biopsy is performed by making a small incision into the skin. A biopsy needle retrieves a sample of bone and it ... examination. The most common reasons for bone lesion biopsy are to distinguish between benign and malignant bone ...

  9. Bone densitometry

    Ravn, Pernille; Alexandersen, P; Møllgaard, A


    The bisphosphonates have been introduced as alternatives to hormone replacement therapy (HRT) for the treatment and prevention of postmenopausal osteoporosis. The expected increasing application in at clinical practice demands cost-effective and easily handled methods to monitor the effect on bone...

  10. Osteoclasts prefer aged bone

    Henriksen, K; Leeming, Diana Julie; Byrjalsen, I


    We investigated whether the age of the bones endogenously exerts control over the bone resorption ability of the osteoclasts, and found that osteoclasts preferentially develop and resorb bone on aged bone. These findings indicate that the bone matrix itself plays a role in targeted remodeling...... of aged bones....

  11. Absence of TGF-βRII predicts bone and lung metastasis and is associated with poor prognosis in stage III breast tumors

    Paiva, Carlos Eduardo; Serrano, Sérgio Vicente; Paiva, Bianca Sakamoto Ribeiro


    of TGF-βRII in BC samples. TGF-βRII protein expression was evaluated using immunohistochemistry on a tissue microarray containing 110 TNM stage III BC samples obtained prior to doxorubicin-based neoadjuvant chemotherapy (NAC). Our results demonstrate that TGF-βRII did not predict the response to NAC...

  12. Connecting mechanics and bone cell activities in the bone remodeling process: an integrated finite element modeling.

    Hambli, Ridha


    Bone adaptation occurs as a response to external loadings and involves bone resorption by osteoclasts followed by the formation of new bone by osteoblasts. It is directly triggered by the transduction phase by osteocytes embedded within the bone matrix. The bone remodeling process is governed by the interactions between osteoblasts and osteoclasts through the expression of several autocrine and paracrine factors that control bone cell populations and their relative rate of differentiation and proliferation. A review of the literature shows that despite the progress in bone remodeling simulation using the finite element (FE) method, there is still a lack of predictive models that explicitly consider the interaction between osteoblasts and osteoclasts combined with the mechanical response of bone. The current study attempts to develop an FE model to describe the bone remodeling process, taking into consideration the activities of osteoclasts and osteoblasts. The mechanical behavior of bone is described by taking into account the bone material fatigue damage accumulation and mineralization. A coupled strain-damage stimulus function is proposed, which controls the level of autocrine and paracrine factors. The cellular behavior is based on Komarova et al.'s (2003) dynamic law, which describes the autocrine and paracrine interactions between osteoblasts and osteoclasts and computes cell population dynamics and changes in bone mass at a discrete site of bone remodeling. Therefore, when an external mechanical stress is applied, bone formation and resorption is governed by cells dynamic rather than adaptive elasticity approaches. The proposed FE model has been implemented in the FE code Abaqus (UMAT routine). An example of human proximal femur is investigated using the model developed. The model was able to predict final human proximal femur adaptation similar to the patterns observed in a human proximal femur. The results obtained reveal complex spatio-temporal bone

  13. Limb bone morphology, bone strength, and cursoriality in lagomorphs.

    Young, Jesse W; Danczak, Robert; Russo, Gabrielle A; Fellmann, Connie D


    The primary aim of this study is to broadly evaluate the relationship between cursoriality (i.e. anatomical and physiological specialization for running) and limb bone morphology in lagomorphs. Relative to most previous studies of cursoriality, our focus on a size-restricted, taxonomically narrow group of mammals permits us to evaluate the degree to which 'cursorial specialization' affects locomotor anatomy independently of broader allometric and phylogenetic trends that might obscure such a relationship. We collected linear morphometrics and μCT data on 737 limb bones covering three lagomorph species that differ in degree of cursoriality: pikas (Ochotona princeps, non-cursorial), jackrabbits (Lepus californicus, highly cursorial), and rabbits (Sylvilagus bachmani, level of cursoriality intermediate between pikas and jackrabbits). We evaluated two hypotheses: cursoriality should be associated with (i) lower limb joint mechanical advantage (i.e. high 'displacement advantage', permitting more cursorial species to cycle their limbs more quickly) and (ii) longer, more gracile limb bones, particularly at the distal segments (as a means of decreasing rotational inertia). As predicted, highly cursorial jackrabbits are typically marked by the lowest mechanical advantage and the longest distal segments, non-cursorial pikas display the highest mechanical advantage and the shortest distal segments, and rabbits generally display intermediate values for these variables. Variation in long bone robusticity followed a proximodistal gradient. Whereas proximal limb bone robusticity declined with cursoriality, distal limb bone robusticity generally remained constant across the three species. The association between long, structurally gracile limb bones and decreased maximal bending strength suggests that the more cursorial lagomorphs compromise proximal limb bone integrity to improve locomotor economy. In contrast, the integrity of distal limb bones is maintained with increasing

  14. The role of {sup 18}F-fluorodeoxyglucose uptake of bone marrow on PET/CT in predicting clinical outcomes in non-small cell lung cancer patients treated with chemoradiotherapy

    Lee, Jeong Won [Catholic Kwandong University College of Medicine, International St. Mary' s Hospital, Department of Nuclear Medicine, Incheon (Korea, Republic of); Catholic Kwandong University College of Medicine, International St. Mary' s Hospital, Institute for Integrative Medicine, Incheon (Korea, Republic of); Seo, Ki Hyun [Soonchunhyang University Cheonan Hospital, Division of Pulmonary Medicine, Department of Internal Medicine, Cheonan (Korea, Republic of); Kim, Eun-Seog [Soonchunhyang University Cheonan Hospital, Department of Radiation Oncology, Cheonan (Korea, Republic of); Lee, Sang Mi [Soonchunhyang University Cheonan Hospital, Department of Nuclear Medicine, Cheonan, Chungcheongnam-do (Korea, Republic of)


    This study aimed to assess the relationship between bone marrow (BM) FDG uptake on PET/CT and serum inflammatory markers and to evaluate the prognostic value of BM FDG uptake for predicting clinical outcomes in non-small cell lung cancer (NSCLC) patients. One hundred and six NSCLC patients who underwent FDG PET/CT for staging work-up and received chemoradiotherapy were enrolled. Mean BM FDG uptake (BM SUV) and BM-to-liver uptake ratio (BLR) were measured, along with volumetric parameters of PET/CT. The relationship of BM SUV and BLR with hematologic parameters and serum inflammatory markers was evaluated. Prognostic values of BM SUV and BLR for predicting progression-free survival (PFS) and overall survival (OS) were assessed. BM SUV and BLR were significantly correlated with white blood cell count and C-reactive protein level. On univariate analysis, BLR was a significant prognostic factor for both PFS and OS. On multivariate analysis, TNM stage and BLR were independent prognostic factors for PFS, and only TNM stage was an independent prognostic factor for OS. In NSCLC patients, FDG uptake of BM reflects the systemic inflammatory response and can be used as a biomarker to identify patients with poor prognosis. (orig.)

  15. ErbB2 overexpression on occult metastatic cells in bone marrow predicts poor clinical outcome of stage I-III breast cancer patients.

    Braun, S; Schlimok, G; Heumos, I; Schaller, G; Riethdorf, L; Riethmüller, G; Pantel, K


    Occult hematogenous micrometastases are the major cause for metastatic relapse and cancer-related death in patients with operable primary breast cancer. Although sensitive immunocytochemical and molecular methods allow detection of individual breast cancer cells in bone marrow (BM), a major site of metastatic relapse, current detection techniques cannot discriminate between nonviable shed tumor cells and seminal metastatic cells. To address this problem, we analyzed the relevance of erbB2 overexpression on disseminated cytokeratin-18-positive breast cancer cells in the BM of 52 patients with locoregionally restricted primary breast cancer using immunocytochemical double labeling with monoclonal antibody 9G6 to the p185erbB2 oncoprotein. Expression of p185erbB2 on BM micrometastases was detected in 31 of 52 (60%) patients independent of established risk factors such as lymph node involvement, primary tumor size, differentiation grade, or expression of p185erbB2 on primary tumor cells. After a median follow-up of 64 months, patients with p185erbB2-positive BM micrometastases had developed fatal metastatic relapses more frequently than patients with p185erbB2-negative micrometastases (21 versus 7 events; P = 0.032). In multivariate analysis, the presence of p185erbB2-positive micrometastases was an independent prognostic factor with a hazard ratio of 2.78 (95% confidence interval, 1.11-6.96) for overall survival (P = 0.029). We therefore conclude that erbB2 overexpression characterizes a clinically relevant subset of breast cancer micrometastases.

  16. 肠杆菌科细菌在热鲜肉上生长预测模型的建立与验证%Establishment and verification of predictive growth model of Enterobacteriaceae in hot-boned pork

    翁丽华; 徐幸莲; 周光宏; 江芸


    The pollution free hot-boned pork was inoculated with Enterobacteriaceae,put on aseptic plate and stored at 5,10,15,25 and 30℃. respectively. The dynamic growth model of Enterobacteriaceae was established and verified. SPSS 17. 0 software was used to fit the status of growth at different temperatures. The results indicated that the modified Gompertz model could well describe the growth of Enterobacteriaceae in hot-boned pork. The regression of Belehradek model finely described the effect of temperatures on the maximum specific growth rale and the lag phase,and correlation coefficients of determination were 0. 97 and 0. 98. The validation of the built model was carried out by comparing the actual and predicted growth curves of Enterobacteriaceae in hot-boned pork at 8℃ and 22℃ respectively. By calculating bias factor,accuracy factor,the sum of squares due to error and root mean square error,we found that the established model had high reliability and could predict the growth of Enterobacteriaceae on hot-boned pork in the range of temperature from 5 t to 30℃ effectively.%将肠杆菌科细菌接种到宰后1h的无污染的热鲜肉上,置于灭菌培养皿上并分别于5、10、15、25和30℃贮藏,建立肠杆菌科细菌在热鲜肉上的生长预测模型,并对模型进行验证.采用SPSS 17.0统计软件拟合特定温度下的生长情况.结果表明:修正的Gompertz模型能很好地描述不同温度下肠杆菌科细菌在热鲜肉上的生长状况.对最大比生长速率和延滞时间建立平方根模型,结果呈良好的线性关系,相关系数(R2)分别为0.97和0.98.用贮藏在8和22℃热鲜肉中肠杆菌科细菌的生长试验值验证所建立的模型,并对偏差度、准确度、残差平方和及均方根误差进行计算和分析,结果表明:建立的模型可靠性高,可有效预测5~30℃肠杆菌科细菌在热鲜肉上的生长.

  17. Predicting the 10-year risk of hip and major osteoporotic fracture in rheumatoid arthritis and in the general population: an independent validation and update of UK FRAX without bone mineral density.

    Klop, Corinne; de Vries, Frank; Bijlsma, Johannes W J; Leufkens, Hubert G M; Welsing, Paco M J


    FRAX incorporates rheumatoid arthritis (RA) as a dichotomous predictor for predicting the 10-year risk of hip and major osteoporotic fracture (MOF). However, fracture risk may deviate with disease severity, duration or treatment. Aims were to validate, and if needed to update, UK FRAX for patients with RA and to compare predictive performance with the general population (GP). Cohort study within UK Clinical Practice Research Datalink (CPRD) (RA: n=11 582, GP: n=38 755), also linked to hospital admissions for hip fracture (CPRD-Hospital Episode Statistics, HES) (RA: n=7221, GP: n=24 227). Predictive performance of UK FRAX without bone mineral density was assessed by discrimination and calibration. Updating methods included recalibration and extension. Differences in predictive performance were assessed by the C-statistic and Net Reclassification Improvement (NRI) using the UK National Osteoporosis Guideline Group intervention thresholds. UK FRAX significantly overestimated fracture risk in patients with RA, both for MOF (mean predicted vs observed 10-year risk: 13.3% vs 8.4%) and hip fracture (CPRD: 5.5% vs 3.1%, CPRD-HES: 5.5% vs 4.1%). Calibration was good for hip fracture in the GP (CPRD-HES: 2.7% vs 2.4%). Discrimination was good for hip fracture (RA: 0.78, GP: 0.83) and moderate for MOF (RA: 0.69, GP: 0.71). Extension of the recalibrated UK FRAX using CPRD-HES with duration of RA disease, glucocorticoids (>7.5 mg/day) and secondary osteoporosis did not improve the NRI (0.01, 95% CI -0.04 to 0.05) or C-statistic (0.78). UK FRAX overestimated fracture risk in RA, but performed well for hip fracture in the GP after linkage to hospitalisations. Extension of the recalibrated UK FRAX did not improve predictive performance. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to

  18. Biomimetically Enhanced Demineralized Bone Matrix for Bone Regenerative Applications

    Sriram eRavindran


    Full Text Available Demineralized bone matrix (DBM is one of the most widely used bone graft materials in dentistry. However, the ability of DBM to reliably and predictably induce bone regeneration has always been a cause for concern. The quality of DBM varies greatly depending on several donor dependent factors and also manufacturing techniques. In order to standardize the quality and to enable reliable and predictable bone regeneration, we have generated a biomimetically-enhanced version of DBM (BE-DBM using clinical grade commercial DBM as a control. We have generated the BE-DBM by incorporating a cell-derived pro-osteogenic extracellular matrix (ECM within clinical grade DBM. In the present study, we have characterized the BE-DBM and evaluated its ability to induce osteogenic differentiation of human marrow derived stromal cells (HMSCs with respect to clinical grade commercial DBM. Our results indicate that the BE-DBM contains significantly more pro-osteogenic factors than DBM and enhances HMSC differentiation and mineralized matrix formation in vitro and in vivo. Based on our results, we envision that the BE-DBM has the potential to replace DBM as the bone graft material of choice.

  19. Statistical shape and appearance models of bones.

    Sarkalkan, Nazli; Weinans, Harrie; Zadpoor, Amir A


    When applied to bones, statistical shape models (SSM) and statistical appearance models (SAM) respectively describe the mean shape and mean density distribution of bones within a certain population as well as the main modes of variations of shape and density distribution from their mean values. The availability of this quantitative information regarding the detailed anatomy of bones provides new opportunities for diagnosis, evaluation, and treatment of skeletal diseases. The potential of SSM and SAM has been recently recognized within the bone research community. For example, these models have been applied for studying the effects of bone shape on the etiology of osteoarthritis, improving the accuracy of clinical osteoporotic fracture prediction techniques, design of orthopedic implants, and surgery planning. This paper reviews the main concepts, methods, and applications of SSM and SAM as applied to bone.

  20. Dating of cremated bones

    Lanting, JN; Aerts-Bijma, AT; van der Plicht, J; Boaretto, E.; Carmi, I.


    When dating unburnt bone, bone collagen, the organic fraction of the bone, is used. Collagen does not survive the heat of the cremation pyre, so dating of cremated bone has been considered impossible. Structural carbonate in the mineral fraction of the bone, however, survives the cremation process.

  1. Dynamic contrast-enhanced MRI to predict response to vinorelbine-cisplatin alone or with rh-endostatin in patients with non-small cell lung cancer and bone metastases: a randomised, double-blind, placebo-controlled trial.

    Zhang, Rui; Wang, Zhi-Yu; Li, Yue-Hua; Lu, Yao-Hong; Wang, Shuai; Yu, Wen-Xi; Zhao, Hui


    lung cancer and bone metastases. Quantitative analysis using dynamic contrast-enhanced MRI can be used to evaluate therapeutic response and to predict survival of bone metastases after anti-angiogenesis therapy. Limitations of this study include the small number of patients and the single-centre design. National Natural Science Foundation of China [grant number 81201628]. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Identifying A Molecular Phenotype for Bone Marrow Stromal Cells With In Vivo Bone Forming Capacity

    Larsen, Kenneth H; Frederiksen, Casper M; Burns, Jorge S


    Abstract The ability of bone marrow stromal cells (BMSCs) to differentiate into osteoblasts is being exploited in cell-based therapy for repair of bone defects. However, the phenotype of ex vivo cultured BMSCs predicting their bone forming capacity is not known. Thus, we employed DNA microarrays...... (17% versus 5%) and a larger percentage of genes with predicted SP3 transcription factor binding sites in their promoter region (21% versus 8%). On the other hand, hBMSC-TERT(-Bone) cells expressed a larger number of immune-response related genes (26% versus 8%). In order to test for the predictive...... value of these markers, we studied the correlation between their expression levels in 6 different hBMSC-derived clones and the ability to form bone in vivo. We found a significant correlation for, decorin, lysyl oxidase-like 4, natriuretic peptide receptor C, and tetranectin. No significant positive...

  3. Smoking and Bone Health

    ... supported by your browser. Home Bone Basics Lifestyle Smoking and Bone Health Publication available in: PDF (85 ... late to adopt new habits for healthy bones. Smoking and Osteoporosis Cigarette smoking was first identified as ...

  4. Anorexia nervosa and bone

    Misra, Madhusmita; Klibanski, Anne


    Anorexia nervosa (AN) is a condition of severe low weight that is associated with low bone mass, impaired bone structure, and reduced bone strength, all of which contribute to increased fracture risk...

  5. Menopause and Bone Loss

    Fact Sheet & Menopause Bone Loss How are bone loss and menopause related? Throughout life your body keeps a balance between the ... lose bone faster than it can be replaced. Menopause—the time when menstrual periods end, which usually ...

  6. Adaptive scapula bone remodeling computational simulation: Relevance to regenerative medicine

    Sharma, Gulshan B., E-mail: [Emory University, Department of Radiology and Imaging Sciences, Spine and Orthopaedic Center, Atlanta, Georgia 30329 (United States); University of Pittsburgh, Swanson School of Engineering, Department of Bioengineering, Pittsburgh, Pennsylvania 15213 (United States); University of Calgary, Schulich School of Engineering, Department of Mechanical and Manufacturing Engineering, Calgary, Alberta T2N 1N4 (Canada); Robertson, Douglas D., E-mail: [Emory University, Department of Radiology and Imaging Sciences, Spine and Orthopaedic Center, Atlanta, Georgia 30329 (United States); University of Pittsburgh, Swanson School of Engineering, Department of Bioengineering, Pittsburgh, Pennsylvania 15213 (United States)


    Shoulder arthroplasty success has been attributed to many factors including, bone quality, soft tissue balancing, surgeon experience, and implant design. Improved long-term success is primarily limited by glenoid implant loosening. Prosthesis design examines materials and shape and determines whether the design should withstand a lifetime of use. Finite element (FE) analyses have been extensively used to study stresses and strains produced in implants and bone. However, these static analyses only measure a moment in time and not the adaptive response to the altered environment produced by the therapeutic intervention. Computational analyses that integrate remodeling rules predict how bone will respond over time. Recent work has shown that subject-specific two- and three dimensional adaptive bone remodeling models are feasible and valid. Feasibility and validation were achieved computationally, simulating bone remodeling using an intact human scapula, initially resetting the scapular bone material properties to be uniform, numerically simulating sequential loading, and comparing the bone remodeling simulation results to the actual scapula’s material properties. Three-dimensional scapula FE bone model was created using volumetric computed tomography images. Muscle and joint load and boundary conditions were applied based on values reported in the literature. Internal bone remodeling was based on element strain-energy density. Initially, all bone elements were assigned a homogeneous density. All loads were applied for 10 iterations. After every iteration, each bone element’s remodeling stimulus was compared to its corresponding reference stimulus and its material properties modified. The simulation achieved convergence. At the end of the simulation the predicted and actual specimen bone apparent density were plotted and compared. Location of high and low predicted bone density was comparable to the actual specimen. High predicted bone density was greater than

  7. Controlling Bone Graft Substitute Microstructure to Improve Bone Augmentation.

    Sheikh, Zeeshan; Drager, Justin; Zhang, Yu Ling; Abdallah, Mohamed-Nur; Tamimi, Faleh; Barralet, Jake


    Vertical bone augmentation procedures are frequently carried out to allow successful placement of dental implants in otherwise atrophic ridges and represent one of the most common bone grafting procedures currently performed. Onlay autografting is one of the most prevalent and predictable techniques to achieve this; however, there are several well documented complications and drawbacks associated with it and synthetic alternatives are being sought. Monetite is a bioresorbable dicalcium phosphate with osteoconductive and osteoinductive potential that has been previously investigated for onlay bone grafting and it is routinely made by autoclaving brushite to simultaneously sterilize and phase convert. In this study, monetite disc-shaped grafts are produced by both wet and dry heating methods which alter their physical properties such as porosity, surface area, and mechanical strength. Histological observations after 12 weeks of onlay grafting on rabbit calvaria reveal higher bone volume (38%) in autoclaved monetite grafts in comparison with the dry heated monetite grafts (26%). The vertical bone height gained is similar for both the types of monetite grafts (up to 3.2 mm). However, it is observed that the augmented bone height is greater in the lateral than the medial areas of both types of monetite grafts. It is also noted that the higher porosity of autoclaved monetite grafts increases the bioresorbability, whereas the dry heated monetite grafts having lower porosity but higher surface area resorb to a significantly lesser extent. This study provides information regarding two types of monetite onlay grafts prepared with different physical properties that can be further investigated for clinical vertical bone augmentation applications.

  8. 骨生化指标在骨肿瘤中的临床应用进展%Clinical application progress of bone biochemical markers in bone tumors

    周定; 张琪琪; 胡勇


    Bone tumors refer to benign and malignant tumors which originate from mesenchymal stem cells and occur in bone tissues and their accessory structures. The pathogenesis and etiology of bone tumors still remain unclear, and the diagnosis methods of bone tumors are stagnating now. X-ray, computed tomography ( CT ) and magnetic resonance imaging ( MRI ) are important in diagnosing and evaluating bone tumors, but they cannot detect the lesions until the bone destruction reaches a certain degree. Isotope bone scan can detect the microscopic lesions of bone, whereas it is too expensive and the speciifcity is poor, with high false positive rates. At present, the golden standard for the diagnosis of bone tumors is the histopathological examination of bone. However, it is dififcult to achieve early diagnosis, and it is likely to miss the best treatment period. Every disease is inevitably accompanied by molecular biological changes in the body. Biochemical markers can promptly detect the property changes of bone tumor cells, including unlimited proliferation, apoptosis, active neoangiogenesis, inifltrative growth, metastatic growth and so on. Therefore, it is of great signiifcance for the diagnosis of bone tumors to detect appropriate biochemical markers in the patients. The normal bone metabolism is maintained by the dynamic balance of bone resorption and bone formation. When bone tumors occur, the balance will be disturbed. The bone biochemical markers which relfect bone resorption and bone formation are sensitive indicators of early abnormal bone metabolism. Recently, a large number of studies have explored the significance of bone biochemical markers in patients with bone tumors. The functions of bone biochemical markers in patients with bone tumors mainly include making an early detection of microscopic tumor lesions to start early treatment ( diagnostic effects ), evaluating the effects ( therapeutic monitoring ), evaluating the prognosis and predicting the risk of

  9. Bone grafting: An overview

    D. O. Joshi


    Full Text Available Bone grafting is the process by which bone is transferred from a source (donor to site (recipient. Due to trauma from accidents by speedy vehicles, falling down from height or gunshot injury particularly in human being, acquired or developmental diseases like rickets, congenital defects like abnormal bone development, wearing out because of age and overuse; lead to bone loss and to replace the loss we need the bone grafting. Osteogenesis, osteoinduction, osteoconduction, mechanical supports are the four basic mechanisms of bone graft. Bone graft can be harvested from the iliac crest, proximal tibia, proximal humerus, proximal femur, ribs and sternum. An ideal bone graft material is biologically inert, source of osteogenic, act as a mechanical support, readily available, easily adaptable in terms of size, shape, length and replaced by the host bone. Except blood, bone is grafted with greater frequency. Bone graft indicated for variety of orthopedic abnormalities, comminuted fractures, delayed unions, non-unions, arthrodesis and osteomyelitis. Bone graft can be harvested from the iliac crest, proximal tibia, proximal humerus, proximal femur, ribs and sternum. By adopting different procedure of graft preservation its antigenicity can be minimized. The concept of bone banking for obtaining bone grafts and implants is very useful for clinical application. Absolute stability require for successful incorporation. Ideal bone graft must possess osteogenic, osteoinductive and osteocon-ductive properties. Cancellous bone graft is superior to cortical bone graft. Usually autologous cancellous bone graft are used as fresh grafts where as allografts are employed as an alloimplant. None of the available type of bone grafts possesses all these properties therefore, a single type of graft cannot be recomm-ended for all types of orthopedic abnormalities. Bone grafts and implants can be selected as per clinical problems, the equipments available and preference of

  10. Mathematical model for bone mineralization

    Svetlana V Komarova


    Full Text Available Defective bone mineralization has serious clinical manifestations, including deformities and fractures, but the regulation of this extracellular process is not fully understood. We have developed a mathematical model consisting of ordinary differential equations that describe collagen maturation, production and degradation of inhibitors, and mineral nucleation and growth. We examined the roles of individual processes in generating normal and abnormal mineralization patterns characterized using two outcome measures: mineralization lag time and degree of mineralization. Model parameters describing the formation of hydroxyapatite mineral on the nucleating centers most potently affected the degree of mineralization, while the parameters describing inhibitor homeostasis most effectively changed the mineralization lag time. Of interest, a parameter describing the rate of matrix maturation emerged as being capable of counter-intuitively increasing both the mineralization lag time and the degree of mineralization. We validated the accuracy of model predictions using known diseases of bone mineralization such as osteogenesis imperfecta and X-linked hypophosphatemia. The model successfully describes the highly non-linear mineralization dynamics, which includes an initial lag phase when osteoid is present but no mineralization is evident, then fast primary mineralization, followed by secondary mineralization characterized by a continuous slow increase in bone mineral content. The developed model can potentially predict the function for a mutated protein based on the histology of pathologic bone samples from mineralization disorders of unknown etiology.

  11. Bone Marrow Diseases

    Bone marrow is the spongy tissue inside some of your bones, such as your hip and thigh bones. It contains stem cells. The stem cells can ... the platelets that help with blood clotting. With bone marrow disease, there are problems with the stem ...

  12. Orchestration of bone remodeling

    Moester, Martiene Johanna Catharina


    In healthy individuals, a balance exists between bone formation and resorption. Disruption of this balance can lead to higher or lower bone mass, and disease such as osteoporosis. Treatment for osteoporosis generally inhibits bone resorption, but does not rebuild bone to a healthy strength. More kno

  13. Bone grafts in dentistry

    Prasanna Kumar


    Full Text Available Bone grafts are used as a filler and scaffold to facilitate bone formation and promote wound healing. These grafts are bioresorbable and have no antigen-antibody reaction. These bone grafts act as a mineral reservoir which induces new bone formation.

  14. The use of absorbable membranes for Guided Bone Regeneration in horizontal localized bone defects.

    Adamantia VLACHAKI


    Full Text Available SUMMARY: One of the most widely used techniques for the reconstruction of horizontal alveolar defects is Guided Bone Regeneration (GBR. Aim of this literature review is to present and evaluate the clinical techniques for horizontal GBR in localized bone defects with the use of bone grafts and barrier absorbable membranes. In order to accomplish this literature review, a survey in website Pubmed was carried out, with key words: GBR in horizontal defects, GBR in localized defects, bone substitutes, absorbable membranes. Experimental animal studies, studies which described the autogenous block techniques and studies which described GBR with nonabsorbable membranes were excluded from this literature review. GBR was found to be a well document and predictable technique for horizontal localized bone defects, in order to place dental implants. Also the use of xenogenous bone graft in combination with absorbable membrane presents a lot of encouraging results, with high success and survival implant rate.

  15. A new biological approach to guided bone and tissue regeneration.

    Montanari, Marco; Callea, Michele; Yavuz, Izzet; Maglione, Michele


    The purpose of this study was to determine the potential of platelet-rich fibrin (PRF) membranes used for guided bone and tissue regeneration. A patient with insufficient alveolar ridge width in aesthetic zone was enrolled. The patient's blood was centrifuged to obtain PRF membranes. Autogenous bone graft was mixed with bovine hydroxyapatite, PRF particles and applied to fill the defect. Five PRF membranes were placed over the bone mix. After 4 months a cone-beam CT was performed to evaluate bone regeneration. The use of PRF as cover membrane permitted a rapid epithelisation and represented an effective barrier versus epithelial cell penetration. After 4 months the site appeared precociously healed and the bone volume increased. This new approach represents a predictable method of augmenting deficient alveolar ridges. Guided bone regeneration with PRF showed limitation compared with guided bone regeneration using collagen membrane in terms of bone gain. The association of collagen membrane and PRF could be a good association.

  16. The Multifactorial Role of Peripheral Nervous System in Bone Growth

    Ioannis Gkiatas


    Full Text Available Bone alters its metabolic and anabolic activities in response to the variety of systemic and local factors such as hormones and growth factors. Classical observations describing abundance of the nerve fibers in bone also predict a paradigm that the nervous system influences bone metabolism and anabolism. Since 1916 several investigators tried to analyze the effect of peripheral nervous system in bone growth and most of them advocated for the positive effect of innervation in the bones of growing organisms. Moreover, neuronal tissue controls bone formation and remodeling. The purpose of this mini-review is to present the most recent data concerning the influence of innervation on bone growth, the current understanding of the skeletal innervation and their proposed physiological effects on bone metabolism as well as the implication of denervation in human skeletal biology in the developing organism since the peripheral neural trauma as well as peripheral neuropathies are common and they have impact on the growing skeleton.

  17. Bone Health and Osteoporosis.

    Lupsa, Beatrice C; Insogna, Karl


    Osteoporosis is characterized by low bone mass and microarchitectural deterioration of bone tissue leading to decreased bone strength and an increased risk of low-energy fractures. Central dual-energy X-ray absorptiometry measurements are the gold standard for determining bone mineral density. Bone loss is an inevitable consequence of the decrease in estrogen levels during and following menopause, but additional risk factors for bone loss can also contribute to osteoporosis in older women. A well-balanced diet, exercise, and smoking cessation are key to maintaining bone health as women age. Pharmacologic agents should be recommended in patients at high risk for fracture.




    Full Text Available Osteopetrosis, a generalized developmental bone disease due to genetic disturbances, characterized by failure of bone re sorption and continuous bone formation making the bone hard, dense and brittle. Bones of intramembranous ossification and enchondrial ossification are affected genetically and symmetrically. During the process of disease the excess bone formation obliterates the cranial foramina and presses the optic, auditory and facial nerves resulting in defective vision, impaired hearing and facial paralysis. The bone formation in osteopetrosis affects bone marrow function leading to severe anemia and deficient of blood cells. The bone devoid of blood supply due to compression of blood vessels by excess formation of bone are prone to osteomyelitic changes with suppuration and pathological fracture if exposed to infection. Though the condition is chronic progressive, it produces changes leading to fatal condition, it should be studied thoroughly by everyone and hence this article presents a classical case of osteopetrosis with detailed description and discussion for the benefit of readers

  19. Bone cysts: unicameral and aneurysmal bone cyst.

    Mascard, E; Gomez-Brouchet, A; Lambot, K


    Simple and aneurysmal bone cysts are benign lytic bone lesions, usually encountered in children and adolescents. Simple bone cyst is a cystic, fluid-filled lesion, which may be unicameral (UBC) or partially separated. UBC can involve all bones, but usually the long bone metaphysis and otherwise primarily the proximal humerus and proximal femur. The classic aneurysmal bone cyst (ABC) is an expansive and hemorrhagic tumor, usually showing characteristic translocation. About 30% of ABCs are secondary, without translocation; they occur in reaction to another, usually benign, bone lesion. ABCs are metaphyseal, excentric, bulging, fluid-filled and multicameral, and may develop in all bones of the skeleton. On MRI, the fluid level is evocative. It is mandatory to distinguish ABC from UBC, as prognosis and treatment are different. UBCs resolve spontaneously between adolescence and adulthood; the main concern is the risk of pathologic fracture. Treatment in non-threatening forms consists in intracystic injection of methylprednisolone. When there is a risk of fracture, especially of the femoral neck, surgery with curettage, filling with bone substitute or graft and osteosynthesis may be required. ABCs are potentially more aggressive, with a risk of bone destruction. Diagnosis must systematically be confirmed by biopsy, identifying soft-tissue parts, as telangiectatic sarcoma can mimic ABC. Intra-lesional sclerotherapy with alcohol is an effective treatment. In spinal ABC and in aggressive lesions with a risk of fracture, surgical treatment should be preferred, possibly after preoperative embolization. The risk of malignant transformation is very low, except in case of radiation therapy.

  20. Numerical analysis of an osseointegrated prosthesis fixation with reduced bone failure risk and periprosthetic bone loss.

    Tomaszewski, P K; van Diest, M; Bulstra, S K; Verdonschot, N; Verkerke, G J


    Currently available implants for direct attachment of prosthesis to the skeletal system after transfemoral amputation (OPRA system, Integrum AB, Sweden and ISP Endo/Exo prosthesis, ESKA Implants AG, Germany) show many advantages over the conventional socket fixation. However, restraining biomechanical issues such as considerable bone loss around the stem and peri-prosthetic bone fractures are present. To overcome these limiting issues a new concept of the direct intramedullary fixation was developed. We hypothesize that the new design will reduce the peri-prosthetic bone failure risk and adverse bone remodeling by restoring the natural load transfer in the femur. Generic CT-based finite element models of an intact femur and amputated bones implanted with 3 analyzed implants were created and loaded with a normal walking and a forward fall load. The strain adaptive bone remodeling theory was used to predict long-term bone changes around the implants and the periprosthetic bone failure risk was evaluated by the von Mises stress criterion. The results show that the new design provides close to physiological distribution of stresses in the bone and lower bone failure risk for the normal walking as compared to the OPRA and the ISP implants. The bone remodeling simulations did not reveal any overall bone loss around the new design, as opposed to the OPRA and the ISP implants, which induce considerable bone loss in the distal end of the femur. This positive outcome shows that the presented concept has a potential to considerably improve safety of the rehabilitation with the direct fixation implants.

  1. Can the material properties of regenerate bone be predicted with non-invasive methods of assessment? Exploring the correlation between dual X-ray absorptiometry and compression testing to failure in an animal model of distraction osteogenesis

    Monsell, Fergal; Hughes, Andrew William; Turner, James; Bellemore, Michael C; Bilston, Lynne


    ... accurately the structural properties of the regenerate. Dual X-ray absorptiometry (DXA) is a widely available non-invasive imaging modality that, unlike X-ray, can be used to measure bone mineral content (BMC...

  2. Regulation of Bone Metabolism

    Shahi, Maryam; Peymani, Amir; Sahmani, Mehdi


    Bone is formed through the processes of endochondral and intramembranous ossification. In endochondral ossification primary mesenchymal cells differentiate to chondrocytes and then are progressively substituted by bone, while in intramembranous ossification mesenchymal stem cells (MSCs) differentiate directly into osteoblasts to form bone. The steps of osteogenic proliferation, differentiation, and bone homeostasis are controlled by various markers and signaling pathways. Bone needs to be remodeled to maintain integrity with osteoblasts, which are bone-forming cells, and osteoclasts, which are bone-degrading cells.In this review we considered the major factors and signaling pathways in bone formation; these include fibroblast growth factors (FGFs), bone morphogenetic proteins (BMPs), wingless-type (Wnt) genes, runt-related transcription factor 2 (RUNX2) and osteoblast-specific transcription factor (osterix or OSX). PMID:28367467

  3. Regulation of Bone Metabolism.

    Shahi, Maryam; Peymani, Amir; Sahmani, Mehdi


    Bone is formed through the processes of endochondral and intramembranous ossification. In endochondral ossification primary mesenchymal cells differentiate to chondrocytes and then are progressively substituted by bone, while in intramembranous ossification mesenchymal stem cells (MSCs) differentiate directly into osteoblasts to form bone. The steps of osteogenic proliferation, differentiation, and bone homeostasis are controlled by various markers and signaling pathways. Bone needs to be remodeled to maintain integrity with osteoblasts, which are bone-forming cells, and osteoclasts, which are bone-degrading cells.In this review we considered the major factors and signaling pathways in bone formation; these include fibroblast growth factors (FGFs), bone morphogenetic proteins (BMPs), wingless-type (Wnt) genes, runt-related transcription factor 2 (RUNX2) and osteoblast-specific transcription factor (osterix or OSX).

  4. Effect of load on the bone around bone-anchored amputation prostheses.

    Stenlund, Patrik; Trobos, Margarita; Lausmaa, Jukka; Brånemark, Rickard; Thomsen, Peter; Palmquist, Anders


    Osseointegrated transfemoral amputation prostheses have proven successful as an alternative method to the conventional socket-type prostheses. The method improves prosthetic use and thus increases the demands imposed on the bone-implant system. The hypothesis of the present study was that the loads applied to the bone-anchored implant system of amputees would result in locations of high stress and strain transfer to the bone tissue and thus contribute to complications such as unfavourable bone remodeling and/or elevated inflammatory response and/or compromised sealing function at the tissue-abutment interface. In the study, site-specific loading measurements were made on amputees and used as input data in finite element analyses to predict the stress and strain distribution in the bone tissue. Furthermore, a tissue sample retrieved from a patient undergoing implant revision was characterized in order to evaluate the long-term tissue response around the abutment. Within the limit of the evaluated bone properties in the present experiments, it is concluded that the loads applied to the implant system may compromise the sealing function between the bone and the abutment, contributing to resorption of the bone in direct contact with the abutment at the most distal end. This was supported by observations in the retrieved clinical sample of bone resorption and the formation of a soft tissue lining along the abutment interface. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.

  5. Using Natural Stable Calcium Isotopes to Rapidly Assess Changes in Bone Mineral Balance Using a Bed Rest Model to Induce Bone Loss

    Morgan, J. L. L.; Skulan, J. L.; Gordon, G. E.; Smith, Scott M.; Romaniello, S. J.; Anbar, A. D.


    Metabolic bone diseases like osteoporosis result from the disruption of normal bone mineral balance (BMB) resulting in bone loss. During spaceflight astronauts lose substantial bone. Bed rest provides an analog to simulate some of the effects of spaceflight; including bone and calcium loss and provides the opportunity to evaluate new methods to monitor BMB in healthy individuals undergoing environmentally induced-bone loss. Previous research showed that natural variations in the Ca isotope ratio occur because bone formation depletes soft tissue of light Ca isotopes while bone resorption releases that isotopically light Ca back into soft tissue (Skulan et al, 2007). Using a bed rest model, we demonstrate that the Ca isotope ratio of urine shifts in a direction consistent with bone loss after just 7 days of bed rest, long before detectable changes in bone mineral density (BMD) occur. The Ca isotope variations tracks changes observed in urinary N-teleopeptide, a bone resorption biomarker. Bone specific alkaline phosphatase, a bone formation biomarker, is unchanged. The established relationship between Ca isotopes and BMB can be used to quantitatively translate the changes in the Ca isotope ratio to changes in BMD using a simple mathematical model. This model predicts that subjects lost 0.25 0.07% ( SD) of their bone mass from day 7 to day 30 of bed rest. Given the rapid signal observed using Ca isotope measurements and the potential to quantitatively assess bone loss; this technique is well suited to study the short-term dynamics of bone metabolism.

  6. What causes bone loss?

    ... bone biology. In: Melmed S, Polonsky KS, Larsen PR, Kronenberg HM, eds. Williams Textbook of Endocrinology . 13th ed. Philadelphia, PA: Elsevier; 2016:chap 29. Maes C, Kronenberg HM. Bone development and remodeling. In: Jameson JL, ...

  7. Osteochondroma (Bone Tumor)

    ... to be the most common benign bone tumor, accounting for 35% to 40% of all benign bone ... imaging scans. Doctors may also request computed tomography (CT) scans or magnetic resonance imaging (MRI) scans to ...

  8. What Is Bone Cancer?

    ... arms, and jaw are most often affected. Giant cell tumor of bone: This type of primary bone ... Our Volunteers More ACS Sites Bookstore Shop Cancer Atlas Press Room Cancer Statistics Center Volunteer Learning Center ...

  9. Bone substitute biomaterials

    Mallick, K


    Bone substitute biomaterials are fundamental to the biomedical sector, and have recently benefitted from extensive research and technological advances aimed at minimizing failure rates and reducing the need for further surgery. This book reviews these developments, with a particular focus on the desirable properties for bone substitute materials and their potential to encourage bone repair and regeneration. Part I covers the principles of bone substitute biomaterials for medical applications. One chapter reviews the quantification of bone mechanics at the whole-bone, micro-scale, and non-scale levels, while others discuss biomineralization, osteoductivization, materials to fill bone defects, and bioresorbable materials. Part II focuses on biomaterials as scaffolds and implants, including multi-functional scaffolds, bioceramics, and titanium-based foams. Finally, Part III reviews further materials with the potential to encourage bone repair and regeneration, including cartilage grafts, chitosan, inorganic poly...

  10. Implementation and Integration of a Finite Element Model into the Bone Remodeling Model to Characterize Skeletal Loading

    Werner, C. R.; Lewandowski, B.; Boppana, A.; Pennline, J. A.


    NASA's Digital Astronaut Project is developing a bone physiology model to predict changes in bone mineral density over the course of a space mission. The model intends to predict bone loss due to exposure in microgravity as well as predicting bone maintenance due to mechanical stimulus generated by exercise countermeasures. These predictions will be used to inform exercise device efficacy and to help design exercise protocols that will maintain bone mineral density during long exposures to microgravity during spaceflight. The mechanical stimulus and the stresses that are exhibited on the bone are important factors for bone remodeling. These stresses are dependent on the types of exercise that are performed and vary throughout the bone due to the geometry. A primary area of focus for bone health is the proximal femur. This location is critical in transmitting loads between the upper and lower body and have been known to be a critical failure point in older individuals with conditions like osteoporosis.

  11. Gracile bone dysplasias

    Kozlowski, Kazimierz [Department of Medical Imaging, The Children' s Hospital at Westmead, Locked Bag 4001, Westmead 2145, NSW (Australia); Masel, John [Department of Radiology, Royal Children' s Hospital, Brisbane (Australia); Sillence, David O. [Department of Paediatrics and Child Health, The University of Sydney (Australia); Arbuckle, Susan [Department of Anatomical Pathology, The Children' s Hospital at Westmead, NSW (Australia); Juttnerova, Vera [Oddeleni Lekarske Genetiky, Hradec Kralove (Czech Republic)


    Gracile bone dysplasias constitute a group of disorders characterised by extremely slender bones with or without fractures. We report four newborns, two of whom showed multiple fractures. Two babies had osteocraniostenosis and one had features of oligohydramnios sequence. The diagnosis in the fourth newborn, which showed thin long bones and clavicles and extremely thin, poorly ossified ribs, is uncertain. Exact diagnosis of a gracile bone dysplasia is important for genetic counselling and medico-legal reasons. (orig.)

  12. Androgens and bone.

    Vanderschueren, Dirk; Vandenput, Liesbeth; Boonen, Steven; Lindberg, Marie K; Bouillon, Roger; Ohlsson, Claes


    Loss of estrogens or androgens increases the rate of bone remodeling by removing restraining effects on osteoblastogenesis and osteoclastogenesis, and also causes a focal imbalance between resorption and formation by prolonging the lifespan of osteoclasts and shortening the lifespan of osteoblasts. Conversely, androgens, as well as estrogens, maintain cancellous bone mass and integrity, regardless of age or sex. Although androgens, via the androgen receptor (AR), and estrogens, via the estrogen receptors (ERs), can exert these effects, their relative contribution remains uncertain. Recent studies suggest that androgen action on cancellous bone depends on (local) aromatization of androgens into estrogens. However, at least in rodents, androgen action on cancellous bone can be directly mediated via AR activation, even in the absence of ERs. Androgens also increase cortical bone size via stimulation of both longitudinal and radial growth. First, androgens, like estrogens, have a biphasic effect on endochondral bone formation: at the start of puberty, sex steroids stimulate endochondral bone formation, whereas they induce epiphyseal closure at the end of puberty. Androgen action on the growth plate is, however, clearly mediated via aromatization in estrogens and interaction with ERalpha. Androgens increase radial growth, whereas estrogens decrease periosteal bone formation. This effect of androgens may be important because bone strength in males seems to be determined by relatively higher periosteal bone formation and, therefore, greater bone dimensions, relative to muscle mass at older age. Experiments in mice again suggest that both the AR and ERalpha pathways are involved in androgen action on radial bone growth. ERbeta may mediate growth-limiting effects of estrogens in the female but does not seem to be involved in the regulation of bone size in males. In conclusion, androgens may protect men against osteoporosis via maintenance of cancellous bone mass and

  13. Enzymatic maceration of bone

    Uhre, Marie-Louise; Eriksen, Anne Marie; Simonsen, Kim Pilkjær;


    the bones. The DNA analysis showed that DNA was preserved on all the pieces of bones which were examined. Finally, the investigation suggests that enzyme maceration could be gentler on the bones, as the edges appeared less frayed. The enzyme maceration was also a quicker method; it took three hours compared...

  14. Top down and bottom up engineering of bone.

    Knothe Tate, Melissa L


    The goal of this retrospective article is to place the body of my lab's multiscale mechanobiology work in context of top-down and bottom-up engineering of bone. We have used biosystems engineering, computational modeling and novel experimental approaches to understand bone physiology, in health and disease, and across time (in utero, postnatal growth, maturity, aging and death, as well as evolution) and length scales (a single bone like a femur, m; a sample of bone tissue, mm-cm; a cell and its local environment, μm; down to the length scale of the cell's own skeleton, the cytoskeleton, nm). First we introduce the concept of flow in bone and the three calibers of porosity through which fluid flows. Then we describe, in the context of organ-tissue, tissue-cell and cell-molecule length scales, both multiscale computational models and experimental methods to predict flow in bone and to understand the flow of fluid as a means to deliver chemical and mechanical cues in bone. Addressing a number of studies in the context of multiple length and time scales, the importance of appropriate boundary conditions, site specific material parameters, permeability measures and even micro-nanoanatomically correct geometries are discussed in context of model predictions and their value for understanding multiscale mechanobiology of bone. Insights from these multiscale computational modeling and experimental methods are providing us with a means to predict, engineer and manufacture bone tissue in the laboratory and in the human body.

  15. Oxytocin and bone

    Sun, Li; Zaidi, Mone; Zallone, Alberta


    One of the most meaningful results recently achieved in bone research has been to reveal that the pituitary hormones have profound effect on bone, so that the pituitary-bone axis has become one of the major topics in skeletal physiology. Here, we discuss the relevant evidence about the posterior pituitary hormone oxytocin (OT), previously thought to exclusively regulate parturition and breastfeeding, which has recently been established to directly regulate bone mass. Both osteoblasts and osteoclasts express OT receptors (OTR), whose stimulation enhances bone mass. Consistent with this, mice deficient in OT or OTR display profoundly impaired bone formation. In contrast, bone resorption remains unaffected in OT deficiency because, even while OT stimulates the genesis of osteoclasts, it inhibits their resorptive function. Furthermore, in addition to its origin from the pituitary, OT is also produced by bone marrow osteoblasts acting as paracrine-autocrine regulator of bone formation modulated by estrogens. In turn, the power of estrogen to increase bone mass is OTR-dependent. Therefore, OTR−/− mice injected with 17β-estradiol do not show any effects on bone formation parameters, while the same treatment increases bone mass in wild-type mice. These findings together provide evidence for an anabolic action of OT in regulating bone mass and suggest that bone marrow OT may enhance the bone-forming action of estrogen through an autocrine circuit. This established new physiological role for OT in the maintenance of skeletal integrity further suggests the potential use of this hormone for the treatment of osteoporosis. PMID:25209411

  16. Bone regeneration with cultured human bone grafts

    Yoshikawa, T.; Nakajima, H. [Nara Medical Univ., Kashihara City (Japan). Dept. of Pathology; Nara Medical Univ., Kashihara City (Japan). Dept. of Orthopedic Surgery; Ohgushi, H.; Ueda, Y.; Takakura, Y. [Nara Medical Univ., Kashihara City (Japan). Dept. of Orthopedic Surgery; Uemura, T.; Tateishi, T. [National Inst. for Advanced Interdisciplinary Research (NAIR), Ibaraki (Japan). Tsukuba Research Center; Enomoto, Y.; Ichijima, K. [Nara Medical Univ., Kashihara City (Japan). Dept. of Pathology


    From 73 year old female patient, 3 ml of bone marrow was collected from the ilium. The marrow was cultured to concentrate and expand the marrow mesenchymal cells on a culture dish. The cultured cells were then subculturedeither on another culture dish or in porous areas of hydroxyapatite ceramics in the presence of dexamethasone and beta-glycerophosphate (osteo genic medium). The subculturedtissues on the dishes were analyzed by scanning electron microscopy (SEM), and subculturedtissues in the ceramics were implanted intraperitoneally into athymic nude mice. Vigorous growth of spindle-shaped cells and a marked formation of bone matrix beneath the cell layers was observed on the subculture dishes by SEM. The intraperitoneally implanted ceramics with cultured tissues revealed thick layer of lamellar bone together with active osteoblasts lining in many pore areas of the ceramics after 8 weeks. The in vitro bone formations on the culture dishes and in vivo bone formation in porous ceramics were detected. These results indicate that we can assemble an in vitro bone/ceramic construct, and due to the porous framework of the ceramic, the construct has osteogenic potential similar to that of autologous cancellous bone. A significant benefit of this method is that the construct can be made with only a small amount of aspirated marrow cells from aged patients with little host morbidity. (orig.)

  17. Cytology of Bone.

    Barger, Anne M


    Cytology of bone is a useful diagnostic tool. Aspiration of lytic or proliferative lesions can assist with the diagnosis of inflammatory or neoplastic processes. Bacterial, fungal, and protozoal organisms can result in significant osteomyelitis, and these organisms can be identified on cytology. Neoplasms of bone including primary bone tumors such as osteosarcoma, chondrosarcoma, fibrosarcoma, synovial cell sarcoma, and histiocytic sarcoma and tumors of bone marrow including plasma cell neoplasia and lymphoma and metastatic neoplasia can result in significant bone lysis or proliferation and can be diagnosed effectively with cytology. Copyright © 2016 Elsevier Inc. All rights reserved.


    Wijianto Wijianto


    Full Text Available This paper discuss about ceramics in application as bone implant. Bioceramics for instance Hydroxyapatite, usually is abbreviated with HA or HAp, is a mineral that is very good physical properties as bone replacement in human body. To produce Hydroxyapatite, coating process is used which have good potential as they can exploit the biocompatible and bone bonding properties of the ceramic. There are many advantages and disadvantages of bioceramics as bone implant. Advantages of hydroxyapatite as bone implant are rapidly integrated into the human body, and is most interesting property that will bond to bone forming indistinguishable unions. On contrary, disadvantages of hydroxyapatite as bone implant are poor mechanical properties (in particular fatigue properties mean that hydroxyapatite cannot be used in bulk form for load bearing applications such as orthopaedics and poor adhesion between the calcium phosphate coating and the material implant will occur.

  19. Bone scintiscanning updated.

    Lentle, B C; Russell, A S; Percy, J S; Scott, J R; Jackson, F I


    Use of modern materials and methods has given bone scintiscanning a larger role in clinical medicine, The safety and ready availability of newer agents have led to its greater use in investigating both benign and malignant disease of bone and joint. Present evidence suggests that abnormal accumulation of 99mTc-polyphosphate and its analogues results from ionic deposition at crystal surfaces in immature bone, this process being facilitated by an increase in bone vascularity. There is, also, a component of matrix localization. These factors are in keeping with the concept that abnormal scintiscan sites represent areas of increased osteoblastic activity, although this may be an oversimplification. Increasing evidence shows that the bone scintiscan is more sensitive than conventional radiography in detecting focal disease of bone, and its ability to reflect the immediate status of bone further complements radiographic findings. The main limitation of this method relates to nonspecificity of the results obtained.

  20. Bone disease in diabetes

    Shanbhogue, Vikram V.; Hansen, Stinus; Frost, Morten


    Type 1 and type 2 diabetes are generally accepted to be associated with increased bone fracture risk. However, the pathophysiological mechanisms of diabetic bone disease are poorly understood, and whether the associated increased skeletal fragility is a comorbidity or a complication of diabetes...... remains under debate. Although there is some indication of a direct deleterious effect of microangiopathy on bone, the evidence is open to question, and whether diabetic osteopathy can be classified as a chronic, microvascular complication of diabetes remains uncertain. Here, we review the current...... knowledge of potential contributory factors to diabetic bone disease, particularly the association between diabetic microangiopathy and bone mineral density, bone structure, and bone turnover. Additionally, we discuss and propose a pathophysiological model of the effects of diabetic microvascular disease...

  1. The Digital Astronaut Project Computational Bone Remodeling Model (Beta Version) Bone Summit Summary Report

    Pennline, James; Mulugeta, Lealem


    Under the conditions of microgravity, astronauts lose bone mass at a rate of 1% to 2% a month, particularly in the lower extremities such as the proximal femur [1-3]. The most commonly used countermeasure against bone loss in microgravity has been prescribed exercise [4]. However, data has shown that existing exercise countermeasures are not as effective as desired for preventing bone loss in long duration, 4 to 6 months, spaceflight [1,3,5,6]. This spaceflight related bone loss may cause early onset of osteoporosis to place the astronauts at greater risk of fracture later in their lives. Consequently, NASA seeks to have improved understanding of the mechanisms of bone demineralization in microgravity in order to appropriately quantify this risk, and to establish appropriate countermeasures [7]. In this light, NASA's Digital Astronaut Project (DAP) is working with the NASA Bone Discipline Lead to implement well-validated computational models to help predict and assess bone loss during spaceflight, and enhance exercise countermeasure development. More specifically, computational modeling is proposed as a way to augment bone research and exercise countermeasure development to target weight-bearing skeletal sites that are most susceptible to bone loss in microgravity, and thus at higher risk for fracture. Given that hip fractures can be debilitating, the initial model development focused on the femoral neck. Future efforts will focus on including other key load bearing bone sites such as the greater trochanter, lower lumbar, proximal femur and calcaneus. The DAP has currently established an initial model (Beta Version) of bone loss due to skeletal unloading in femoral neck region. The model calculates changes in mineralized volume fraction of bone in this segment and relates it to changes in bone mineral density (vBMD) measured by Quantitative Computed Tomography (QCT). The model is governed by equations describing changes in bone volume fraction (BVF), and rates of

  2. Material model of pelvic bone based on modal analysis: a study on the composite bone.

    Henyš, Petr; Čapek, Lukáš


    Digital models based on finite element (FE) analysis are widely used in orthopaedics to predict the stress or strain in the bone due to bone-implant interaction. The usability of the model depends strongly on the bone material description. The material model that is most commonly used is based on a constant Young's modulus or on the apparent density of bone obtained from computer tomography (CT) data. The Young's modulus of bone is described in many experimental works with large variations in the results. The concept of measuring and validating the material model of the pelvic bone based on modal analysis is introduced in this pilot study. The modal frequencies, damping, and shapes of the composite bone were measured precisely by an impact hammer at 239 points. An FE model was built using the data pertaining to the geometry and apparent density obtained from the CT of the composite bone. The isotropic homogeneous Young's modulus and Poisson's ratio of the cortical and trabecular bone were estimated from the optimisation procedure including Gaussian statistical properties. The performance of the updated model was investigated through the sensitivity analysis of the natural frequencies with respect to the material parameters. The maximal error between the numerical and experimental natural frequencies of the bone reached 1.74 % in the first modal shape. Finally, the optimised parameters were matched with the data sheets of the composite bone. The maximal difference between the calibrated material properties and that obtained from the data sheet was 34 %. The optimisation scheme of the FE model based on the modal analysis data provides extremely useful calibration of the FE models with the uncertainty bounds and without the influence of the boundary conditions.

  3. Diabetes, Biochemical Markers of Bone Turnover, Diabetes Control, and Bone

    Starup-Linde, Jakob


    Diabetes mellitus is known to have late complications including micro vascular and macro vascular disease. This review focuses on another possible area of complication regarding diabetes; bone. Diabetes may affect bone via bone structure, bone density, and biochemical markers of bone turnover. The aim of the present review is to examine in vivo from humans on biochemical markers of bone turnover in diabetics compared to non-diabetics. Furthermore, the effect of glycemic control on bone marker...

  4. Changes of Bone Turnover Markers in Long Bone Nonunions Treated with a Regenerative Approach

    Donatella Granchi


    Full Text Available In this clinical trial, we investigated if biochemical bone turnover markers (BTM changed according to the progression of bone healing induced by autologous expanded MSC combined with a biphasic calcium phosphate in patients with delayed union or nonunion of long bone fractures. Bone formation markers, bone resorption markers, and osteoclast regulatory proteins were measured by enzymatic immunoassay before surgery and after 6, 12, and 24 weeks. A satisfactory bone healing was obtained in 23 out of 24 patients. Nine subjects reached a good consolidation already at 12 weeks, and they were considered as the “early consolidation” group. We found that bone-specific alkaline phosphatase (BAP, C-terminal propeptide of type I procollagen (PICP, and beta crosslaps collagen (CTX changed after the regenerative treatment, BAP and CTX correlated to the imaging results collected at 12 and 24 weeks, and BAP variation along the healing course differed in patients who had an “early consolidation.” A remarkable decrease in BAP and PICP was observed at all time points in a single patient who experienced a treatment failure, but the predictive value of BTM changes cannot be determined. Our findings suggest that BTM are promising tools for monitoring cell therapy efficacy in bone nonunions, but studies with larger patient numbers are required to confirm these preliminary results.

  5. Abnormal fetal nasal bone in prediction of 21-trisomy in the second and third trimester%中晚孕期胎儿鼻骨异常预测21-三体

    刘彦英; 钱隽; 李谊; 赵晓虹; 郭汉涛; 许少兰; 丛淑珍


    Objective To explore the value of abnormal fetal nasal bone for screening trisomy 21 in the second and third trimester.Methods Data of 5460 pregnant women underwent prenatal ultrasound were analyzed.Routine ultrasound was performed to detect fetus and appendages.When abnormalities of fetal nasal bone were found,amniocentesis or removable cord blood karyotype were performed.Results Abnormalities of fetal nasal bone were found in 10 fetuses.Among 4 fetal nasal bone absent,1 appeared skeletal dysplasia and normal chromosome,3 were trisomy 21 combined with cardiac or other systems abnormalities.Among 6 fetuses of nasal bone hypoplasia,short nasal,one-side nasal absence or poor nasal bone ossification were detected,1 was trisomy 21 combined with other systems abnormalities,1 was normal chromosome combined with thalassemia,and the rest 4 had normal chromosome and solitary nasal bone hypoplasia not combined with other system anomalities.Conclusion Nasal bone absence is often found with ultrasound in trisomy 21 fetuses,but the value of solitary nasal bone hypoplasia for screening trisomy 21 needs further research.%目的 评价中晚孕期胎儿鼻骨异常对21-三体的诊断价值.方法 分析在我院接受胎儿产前超声检查的5460名孕妇的资料,以常规超声检查胎儿及其附属物,如发现胎儿鼻骨异常,行羊膜腔穿刺或抽取脐带血进行染色体核型分析.结果 共发现10胎鼻骨异常.4胎鼻骨缺失,其中1胎骨骼发育障碍,染色体正常;余3胎均为21-三体合并心脏或其他系统异常.6胎鼻骨发育不良,表现为鼻骨短小、一侧鼻骨缺失或鼻骨骨化不良,其中1胎为21-三体合并其他系统异常;1胎为地中海贫血,染色体正常;余4胎未合并其他系统异常,为孤立性鼻骨发育不良,染色体正常.结论 鼻骨缺失是21-三体的超声常见表现,但孤立性鼻骨发育不良对21-三体的诊断价值需要进一步探讨.

  6. Impact Analysis of Serum PSA Combined Gleason Score and Clinical Stage of Prostate Cancer Bone Scintigraphy to Predict%血清PSA联合Gleason评分与临床分期预测前列腺癌核素骨显像的影响分析



    Objective To explore the serum PSA combined Gleason score and clinical stage of prostate cancer hormone predict bone imaging relationship. Methods The patients were randomly selected 117 cases of prostate cancer from March 2010 to March 2014 in our hospital, according to serum PSA and Gleason score, comparing the different threshold NPV, PPV, and predictive analysis bone imaging.Results PSA0-10 ng/mL, Gleason score less than 8 minutes patients, PPV, NPV were 71%, 100%; PSA greater than 100 ng/mL/Gleason score greater than 7 points patient, NPV, PPV 42%, 93%, suggesting that serum PSA level and Gleason score and clinical stage, prostate cancer is an independent predictor of bone scintigraphy.Conclusion In the treatment of T1, T2 stage underwent ECT bone imaging, can reduce treatment response, and T3, T4 patients with bone metastasis has occurred.%目的:探究血清PSA联合Gleason评分与临床分期预测前列腺癌素骨显像结果关系。方法随机选取2010年3月至2014年3月我院收治的前列腺癌患者117例,根据血清PSA与Gleason评分,对比各不同临界值的NPV、PPV,并预测分析骨显像结果。结果PSA0~10 ng/mL、Gleason评分<8分患者,PPV、NPV分别为71%、100%;PSA>100 ng/mL/Gleason评分>7分患者,NPV、PPV分别为42%、93%,提示血清PSA水平与Gleason评分及临床分期,都是前列腺癌骨显像的独立预测因子。结论在诊疗上,对T1、T2分期患者行ECT骨显像,可降低治疗反应,而T3、T4期患者,骨转移已经发生。

  7. In-Vivo Electrical Impedance Measurement in Mastoid Bone.

    Wyss Balmer, Thomas; Ansó, Juan; Muntane, Enric; Gavaghan, Kate; Weber, Stefan; Stahel, Andreas; Büchler, Philippe


    Nerve monitoring is a safety mechanism to detect the proximity between surgical instruments and important nerves during surgical bone preparation. In temporal bone, this technique is highly specific and sensitive at distances below 0.1 mm, but remains unreliable for distances above this threshold. A deeper understanding of the patient-specific bone electric properties is required to improve this range of detection. A sheep animal model has been used to characterize bone properties in vivo. Impedance measurements have been performed at low frequencies (drilled into the sheep mastoid bone. An electric circuit composed of a resistor and a Fricke constant phase element was able to accurately describe the experimental measurements. Bone resistivity was shown to be linearly dependent on the inter-electrode distance and the local bone density. Based on this model, the amount of bone material between the electrodes could be predicted with an error of 0.7 mm. Our results indicate that bone could be described as an ideal resistor while the electrochemical processes at the electrode-tissue interface are characterized by a constant phase element. These results should help increasing the safety of surgical drilling procedures by better predicting the distance to critical nerve structures.

  8. Bone building with bortezomib

    Roodman, G. David


    In this issue of the JCI, Mukherjee et al. report that bortezomib, a clinically available proteasome inhibitor active against myeloma, induces the differentiation of mesenchymal stem/progenitor cells (MSCs) — rather than mature osteoprogenitor cells — into osteoblasts, resulting in new bone formation (see the related article beginning on page 491). These results were observed when MSCs were implanted subcutaneously in mice or were used to treat a mouse model of postmenopausal bone loss. Others have reported that immunomodulatory drugs (e.g., thalidomide and lenalidomide), which are active against myeloma, also block the activity of bone-resorbing osteoclasts. These results reflect the utility of targeting endogenous MSCs for the purpose of tissue repair and suggest that combining different classes of agents that are antineoplastic and also inhibit bone destruction and increase bone formation should be very beneficial for myeloma patients suffering from severe bone disease. PMID:18219395

  9. Adrenal gland and bone.

    Hardy, Rowan; Cooper, Mark S


    The adrenal gland synthesizes steroid hormones from the adrenal cortex and catecholamines from the adrenal medulla. Both cortisol and adrenal androgens can have powerful effects on bone. The overproduction of cortisol in Cushing's disease leads to a dramatic reduction in bone density and an increase risk of fracture. Overproduction of adrenal androgens in congenital adrenal hyperplasia (CAH) leads to marked changes in bone growth and development with early growth acceleration but ultimately a significant reduction in final adult height. The role of more physiological levels of glucocorticoids and androgens on bone metabolism is less clear. Cortisol levels measured in elderly individuals show a weak correlation with measures of bone density and change in bone density over time with a high cortisol level associated with lower bone density and more rapid bone loss. Cortisol levels and the dynamics of cortisol secretion change with age which could also explain some age related changes in bone physiology. It is also now clear that adrenal steroids can be metabolized within bone tissue itself. Local synthesis of cortisol within bone from its inactive precursor cortisone has been demonstrated and the amount of cortisol produced within osteoblasts appears to increase with age. With regard to adrenal androgens there is a dramatic reduction in levels with aging and several studies have examined the impact that restoration of these levels back to those seen in younger individuals has on bone health. Most of these studies show small positive effects in women, not men, but the skeletal sites where benefits are seen varies from study to study.

  10. Bone scanning in otolaryngology.

    Noyek, A M


    Modern radionuclide bone scanning has introduced a new concept in physiologic and anatomic diagnostic imaging to general medicine. As otolaryngologists must diagnose and treat disease in relation to the bony and/or cartilaginous supporting structures of the neurocranium and upper airway, this modality should be included in the otolaryngologist's diagnostic armamentarium. It is the purpose of this manuscript to study the specific applications of bone scanning to our specialty at this time, based on clinical experience over the past three years. This thesis describes the development of bone scanning in general (history of nuclear medicine and nuclear physics; history of bone scanning in particular). General concepts in nuclear medicine are then presented; these include a discussion of nuclear semantics, principles of radioactive emmissions, the properties 99mTc as a radionuclide, and the tracer principle. On the basis of these general concepts, specific concepts in bone scanning are then brought forth. The physiology of bone and the action of the bone scan agents is presented. Further discussion considers the availability and production of the bone scan agent, patient factors, the gamma camera, the triphasic bone scan and the ultimate diagnostic principle of the bone scan. Clinical applications of bone scanning in otolaryngology are then presented in three sections. Proven areas of application include the evaluation of malignant tumors of the head and neck, the diagnosis of temporomandibular joint disorders, the diagnosis of facial fractures, the evaluation of osteomyelitis, nuclear medicine imaging of the larynx, and the assessment of systemic disease. Areas of adjunctive or supplementary value are also noted, such as diagnostic imaging of meningioma. Finally, areas of marginal value in the application of bone scanning are described.

  11. Modeling and experimentation of bone drilling forces.

    Lee, JuEun; Gozen, B Arda; Ozdoganlar, O Burak


    Prediction and control of bone drilling forces are critical to the success of many orthopaedic operations. Uncontrolled and large forces can cause drill-bit breakage, drill breakthrough, excessive heat generation, and mechanical damage to the bone. This paper presents a mechanistic model for prediction of thrust forces and torques experienced during bone drilling. The model incorporates the radially varying drill-bit geometry and cutting conditions analytically, while capturing the material and friction properties empirically through a specific energy formulation. The forces from the chisel edge are modeled by considering the indentation process that occurs in the vicinity of the drill-bit axis. A procedure is outlined to calibrate the specific energies, where only a small number of calibration experiments are required for a wide range of drilling conditions and drill-bit geometry. The calibration parameters for the cortical portions of bovine tibia are identified through drilling tests. Subsequently, a series of validation tests are conducted under different feed rates and spindle speeds. The thrust forces and torques were observed to vary considerably between bones from different animals. The forces from the model were seen to match well with those from the experimentation within the inherent variations from the bone characteristics. The model can be used to select favorable drilling conditions, to assist in robotic surgeries, and to design optimal orthopaedic drill bits. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Olecranon bone graft: revisited.

    Mersa, Berkan; Ozcelik, Ismail Bulent; Kabakas, Fatih; Sacak, Bulent; Aydin, Atakan


    Autogenous bone grafts are frequently in use in the field of reconstructive upper extremity surgery. Cancellous bone grafts are applied to traumatic osseous defects, nonunions, defects after the resection of benign bone tumors, arthrodesis, and osteotomy procedures. Cancellous bone grafts do not only have benefits such as rapid revascularization, but they also have mechanical advantages. Despite the proximity to the primary surgical field, cancellous olecranon grafts have not gained the popularity they deserve in the field of reconstructive hand surgery. In this study, the properties, advantages, and technical details of harvesting cancellous olecranon grafts are discussed.

  13. Blood: bone equilibrium

    Neuman, M.W.


    The conundrum of blood undersaturation with respect to bone mineralization and its supersaturation with respect to bone's homeostatic function has acquired a new equation. On the supply side, Ca/sup 2 +/ is pumped in across bone cells to provide the needed Ca/sup 2 +/ x P/sub i/ for brushite precipitation. On the demand side, blood is in equilibrium with bone fluid, which is in equilibrium with a mineral more soluble than apatite. The function of potassium in this equation is yet to be found.

  14. Glutamate signalling in bone.

    Karen eBrakspear


    Full Text Available Mechanical loading plays a key role in the physiology of bone, allowing bone to functionally adapt to its environment, however characterisation of the signalling events linking load to bone formation is incomplete. A screen for genes associated with mechanical load-induced bone formation identified the glutamate transporter GLAST, implicating the excitatory amino acid, glutamate, in the mechanoresponse. When an osteogenic load (10N, 10Hz was externally applied to the rat ulna, GLAST (EAAT1 mRNA, was significantly down-regulated in osteocytes in the loaded limb. Functional components from each stage of the glutamate signalling pathway have since been identified within bone, including proteins necessary for calcium-mediated glutamate exocytosis, receptors, transporters and signal propagation. Activation of ionotropic glutamate receptors has been shown to regulate the phenotype of osteoblasts and osteoclasts in vitro and bone mass in vivo. Furthermore, glutamatergic nerves have been identified in the vicinity of bone cells expressing glutamate receptors in vivo. However, it is not yet known how a glutamate signalling event is initiated in bone or its physiological significance. This review will examine the role of the glutamate signalling pathway in bone, with emphasis on the functions of glutamate transporters in osteoblasts.

  15. Characterizing light propagation in bone for photodynamic therapy of osteosarcoma

    Rossi, Vincent M.; Gustafson, Scott B.; Jacques, Steven L.


    This work aims at characterizing how light propagates through bone in order to efficiently guide treatment of osteosarcoma with photodynamic therapy (PDT). Optical properties of various bone tissues need to be characterized in order to have a working model of light propagation in bone. Bone tissues of particular interest include cortical bone, red and yellow marrow, cancellous bone, and bone cancers themselves. With adequate knowledge of optical properties of osseous tissues, light dosimetry can determine how best to deliver adequate light to achieve phototoxic effects within bone. An optical fiber source-collector pair is used for diffuse reflectance spectroscopic measurements in order to determine the scattering and absorption properties of bone tissues. Native absorbers of interest at visible and near-IR wavelengths include water and oxygenated and deoxygenated hemoglobin. A cylindrically symmetric Monte Carlo model is then used, incorporating these results, in order to predict and guide the delivery of light within bone in order to achieve the desired phototoxic effect in PDT.

  16. A bioresorbable polylactide implant used in bone cyst filling.

    Ficek, Krzysztof; Filipek, Jolanta; Wojciechowski, Piotr; Kopec, Konrad; Ewa, Stodolak-Zych; Blazewicz, Stanislaw


    The aims in treating patients diagnosed with critical-sized bone defects resulting from bone cysts are to replace the lost bone mass after its removal and to restore function. The standard treatment is autologous or allogeneic bone transplantation, notwithstanding the known consequences and risks due to possible bone infection, donor site morbidity, bleeding and nerve injury and possible undesirable immune reactions. Additionally, allogeneic grafts are inhomogeneous, with a mosaic of components with difficult-to-predict regenerative potential, because they consist of cancellous bone obtained from different bones from various cadavers. In the present study, a 22-year-old patient with a history of right humerus fracture due to bone cysts was diagnosed with recurrent cystic lesions based on X-ray results. The patient qualified for an experimental program, in which he was treated with the application of a bioresorbable polylactide hybrid sponge filled with autologous platelet-rich plasma. Computed tomography and magnetic resonance imaging performed 3, 6, and 36 months after surgery showed progressive ossification and bone formation inside the defect cavity in the humerus. Three years after treatment with the bone substitute, the patient is pain free, and the cystic lesions have not reoccurred.

  17. Bone volume fraction explains the variation in strength and stiffness of cancellous bone affected by metastatic cancer and osteoporosis.

    Nazarian, Ara; von Stechow, Dietrich; Zurakowski, David; Müller, Ralph; Snyder, Brian D


    Preventing nontraumatic fractures in millions of patients with osteoporosis or metastatic cancer may significantly reduce the associated morbidity and reduce health-care expenditures incurred by these fractures. Predicting fracture occurrence requires an accurate understanding of the relationship between bone structure and the mechanical properties governing bone fracture that can be readily measured. The aim of this study was to test the hypothesis that a single analytic relationship with either bone tissue mineral density or bone volume fraction (BV/TV) as independent variables could predict the strength and stiffness of normal and pathologic cancellous bone affected by osteoporosis or metastatic cancer. After obtaining institutional review board approval and informed consent, 15 patients underwent excisional biopsy of metastatic prostate, breast, lung, ovarian, or colon cancer from the spine and/or femur to obtain 41 metastatic cancer specimens. In addition, 96 noncancer specimens were excised from 43 age- and site-matched cadavers. All specimens were imaged using micro-computed tomography (micro-CT) and backscatter emission imaging and tested mechanically by uniaxial compression and nanoindentation. The minimum BV/TV, measured using quantitative micro-CT, accounted for 84% of the variation in bone stiffness and strength for all cancellous bone specimens. While relationships relating bone density to strength and stiffness have been derived empirically for normal and osteoporotic bone, these relationships have not been applied to skeletal metastases. This simple analytic relationship will facilitate large-scale screening and prediction of fracture risk for normal and pathologic cancellous bone using clinical CT systems to determine the load capacity of bones altered by metastatic cancer, osteoporosis, or both.

  18. Implications of combined ovariectomy/multi-deficiency diet on rat bone with age-related variation in bone parameters and bone loss at multiple skeletal sites by DEXA.

    Govindarajan, Parameswari; Schlewitz, Gudrun; Schliefke, Nathalie; Weisweiler, David; Alt, Volker; Thormann, Ulrich; Lips, Katrin Susanne; Wenisch, Sabine; Langheinrich, Alexander C; Zahner, Daniel; Hemdan, Nasr Y; Böcker, Wolfgang; Schnettler, Reinhard; Heiss, Christian


    Osteoporosis is a multi-factorial, chronic, skeletal disease highly prevalent in post-menopausal women and is influenced by hormonal and dietary factors. Because animal models are imperative for disease diagnostics, the present study establishes and evaluates enhanced osteoporosis obtained through combined ovariectomy and deficient diet by DEXA (dual-energy X-ray absorptiometry) for a prolonged time period. Sprague-Dawley rats were randomly divided into sham (laparotomized) and OVX-diet (ovariectomized and fed with deficient diet) groups. Different skeletal sites were scanned by DEXA at the following time points: M0 (baseline), M12 (12 months post-surgery), and M14 (14 months post-surgery). Parameters analyzed included BMD (bone mineral density), BMC (bone mineral content), bone area, and fat (%). Regression analysis was performed to determine the interrelationships between BMC, BMD, and bone area from M0 to M14. BMD and BMC were significantly lower in OVX-diet rats at M12 and M14 compared to sham rats. The Z-scores were below -5 in OVX-diet rats at M12, but still decreased at M14 in OVX-diet rats. Bone area and percent fat were significantly lower in OVX-diet rats at M14 compared to sham rats. The regression coefficients for BMD vs. bone area, BMC vs. bone area, and BMC vs. BMD of OVX-diet rats increased with time. This is explained by differential percent change in BMD, BMC, and bone area with respect to time and disease progression. Combined ovariectomy and deficient diet in rats caused significant reduction of BMD, BMC, and bone area, with nearly 40% bone loss after 14 months, indicating the development of severe osteoporosis. An increasing regression coefficient of BMD vs. bone area with disease progression emphasizes bone area as an important parameter, along with BMD and BMC, for prediction of fracture risk.

  19. Bone Marrow Aspiration and Biopsy

    ... Advertising & Sponsorship: Policy | Opportunities Bone Marrow Aspiration and Biopsy Share this page: Was this page helpful? Also ... Examination Formal name: Bone Marrow Aspiration; Bone Marrow Biopsy Related tests: Complete Blood Count ; WBC Differential ; Reticulocyte ...

  20. Bone X-Ray (Radiography)

    Full Text Available ... the body. X-rays are the oldest and most frequently used form of medical imaging. A bone ... bones. top of page How should I prepare? Most bone x-rays require no special preparation. You ...

  1. Bone X-Ray (Radiography)

    Full Text Available ... ionizing radiation to produce pictures of any bone in the body. It is commonly used to diagnose ... bone x-ray makes images of any bone in the body, including the hand, wrist, arm, elbow, ...

  2. Association of the presence of bone bars on radiographs and low bone mineral density

    Pitt, Michael J. [University of Alabama at Birmingham, Department of Radiology, School of Medicine, Birmingham (United Kingdom); Morgan, Sarah L. [Schools of Health Professions, Medicine, and Dentistry, Departments of Nutrition Sciences and Medicine, Birmingham (United Kingdom); Lopez-Ben, Robert [University of Alabama at Birmingham, Department of Radiology, School of Medicine, Birmingham (United Kingdom); Steelman, Rebecca E. [University of Alabama, Birmingham (United Kingdom); Nunnally, Nancy; Burroughs, Leandria [UAB Osteoporosis Prevention and Treatment Clinic, Birmingham (United Kingdom); Fineberg, Naomi [University of Alabama at Birmingham, Department of Biostatistics, School of Public Health, Birmingham (United Kingdom)


    Bone bars (BB) are struts of normal trabecular bone that cross the medullary portions of the metaphysis and diaphysis at right angles to the long axis of the shaft. The purpose of this investigation was to determine whether the presence of bone bars (BB) identified on radiographs of the proximal femurs and tibia, predict lower bone mineral density (BMD) as evaluated with dual-energy x-ray absorptiometry (DXA) in the lumbar spine, total hip, or femoral neck. A total of 134 sequential DXA patients underwent radiography of the pelvis, hips, and both knees. The radiographs were evaluated for the presence of BB by two musculoskeletal radiologists who were blinded to DXA results. A t test was used to evaluate the relationship of BB to BMD and a Chi-square test was used to determine if BB were equally distributed among the categories of normal BMD, low bone mass (osteopenia), and osteoporosis. BB were associated with lower BMD at all measured sites. BB at the intertrochanteric and proximal tibial sites were the most predictive of low BMD while supraacetabular and distal femur BB were less predictive. Osteoporosis or osteopenia is seen in 60-91% of those with BB depending on the side and reader. It is only seen in about 40% of those without BB. We conclude that the presence of BB suggest decreased BMD and when correlated with other clinical information, might support further evaluation of BMD. (orig.)

  3. Children's bone health

    I.M. van der Sluis (Inge)


    textabstractThe thesis can be divided in two main parts. In the first part (Chapter 2 to 5) bone mineral density, bone metabolism and body composition in healthy children and young adults have been evaluated, while in the second part (Chapter 6 to 10) these issues were studied in children with vario


    Elementary Science Study, Newton, MA.


  5. Pseudoanaplastic tumors of bone

    Bahk, Won-Jong [Uijongbu St. Mary Hospital, The Catholic University of Korea, Department of Orthopaedic Surgery, Gyunggido, 480-821 (Korea); Mirra, Joseph M. [Orthopaedic Hospital, Orthopedic Oncology, Los Angeles, California (United States)


    To discuss the concept of pseudoanaplastic tumors of bone, which pathologically show hyperchromatism and marked pleomorphism with quite enlarged, pleomorphic nuclei, but with no to extremely rare, typical mitoses, and to propose guidelines for their diagnosis. From a database of 4,262 bone tumors covering from 1971 to 2001, 15 cases of pseudoanaplastic bone tumors (0.35% of total) were retrieved for clinical, radiographic and pathologic review. Postoperative follow-up after surgical treatment was at least 3 years and a maximum of 7 years. There were eight male and seven female patients. Their ages ranged from 10 to 64 years with average of 29.7 years. Pathologic diagnoses of pseudoanaplastic variants of benign bone tumors included: osteoblastoma (4 cases), giant cell tumor (4 cases), chondromyxoid fibroma (3 cases), fibrous dysplasia (2 cases), fibrous cortical defect (1 case) and aneurysmal bone cyst (1 case). Radiography of all cases showed features of a benign bone lesion. Six cases, one case each of osteoblastoma, fibrous dysplasia, aneurysmal bone cyst, chondromyxoid fibroma, giant cell tumor and osteoblastoma, were initially misdiagnosed as osteosarcoma. The remaining cases were referred for a second opinion to rule out sarcoma. Despite the presence of significant cytologic aberrations, none of our cases showed malignant behavior following simple curettage or removal of bony lesions. Our observation justifies the concept of pseudoanaplasia in some benign bone tumors as in benign soft tissue tumors, especially in their late evolutionary stage when bizarre cytologic alterations strongly mimic a sarcoma. (orig.)

  6. Biodegradable synthetic bone composites

    Liu, Gao; Zhao, Dacheng; Saiz, Eduardo; Tomsia, Antoni P.


    The invention provides for a biodegradable synthetic bone composition comprising a biodegradable hydrogel polymer scaffold comprising a plurality of hydrolytically unstable linkages, and an inorganic component; such as a biodegradable poly(hydroxyethylmethacrylate)/hydroxyapatite (pHEMA/HA) hydrogel composite possessing mineral content approximately that of human bone.

  7. Osteotransductive bone cements.

    Driessens, F C; Planell, J A; Boltong, M G; Khairoun, I; Ginebra, M P


    Calcium phosphate bone cements (CPBCs) are osteotransductive, i.e. after implantation in bone they are transformed into new bone tissue. Furthermore, due to the fact that they are mouldable, their osteointegration is immediate. Their chemistry has been established previously. Some CPBCs contain amorphous calcium phosphate (ACP) and set by a sol-gel transition. The others are crystalline and can give as the reaction product dicalcium phosphate dihydrate (DCPD), calcium-deficient hydroxyapatite (CDHA), carbonated apatite (CA) or hydroxyapatite (HA). Mixed-type gypsum-DCPD cements are also described. In vivo rates of osteotransduction vary as follows: gypsum-DCPD > DCPD > CDHA approximately CA > HA. The osteotransduction of CDHA-type cements may be increased by adding dicalcium phosphate anhydrous (DCP) and/or CaCO3 to the cement powder. CPBCs can be used for healing of bone defects, bone augmentation and bone reconstruction. Incorporation of drugs like antibiotics and bone morphogenetic protein is envisaged. Load-bearing applications are allowed for CHDA-type, CA-type and HA-type CPBCs as they have a higher compressive strength than human trabecular bone (10 MPa).

  8. Children's bone health

    I.M. van der Sluis (Inge)


    textabstractThe thesis can be divided in two main parts. In the first part (Chapter 2 to 5) bone mineral density, bone metabolism and body composition in healthy children and young adults have been evaluated, while in the second part (Chapter 6 to 10) these issues were studied in children

  9. Bone Loss in IBD

    ... may notice some back pain or change in posture, this disorder generally produces no symptoms until the bone becomes so weakened that it breaks. Bone fractures due to osteoporosis most often occur in the spine and hips. This is why screening tests for ...

  10. Nanomaterials promise better bone repair

    Qifei Wang; Jianhua Yan; Junlin Yang; Bingyun Li


    Nanomaterials mimicking the nano-features of bones and offering unique smart functions are promising for better bone fracture repair. This review provides an overview of the current state-of-the-art research in developing and using nanomaterials for better bone fracture repair. This review begins with a brief introduction of bone fracture repair processes, then discusses the importance of vascularization, the role of growth factors in bone fracture repair, and the failure of bone fracture rep...

  11. Animal Models and Bone Histomorphometry: Translational Research for the Human Research Program

    Sibonga, Jean D.


    This slide presentation reviews the use of animal models to research and inform bone morphology, in particular relating to human research in bone loss as a result of low gravity environments. Reasons for use of animal models as tools for human research programs include: time-efficient, cost-effective, invasive measures, and predictability as some model are predictive for drug effects.

  12. Bone manipulation procedures in dental implants.

    Mittal, Yuvika; Jindal, Govind; Garg, Sandeep


    The use of dental implants for the rehabilitation of missing teeth has broadened the treatment options for patients and clinicians equally. As a result of advances in research in implant design, materials, and techniques, the use of dental implants has increased dramatically in the past two decades and is expected to expand further in the future. Success of dental implants depends largely on the quality and quantity of the available bone in the recipient site. This however may be compromised or unavailable due to tumor, trauma, periodontal disease, etc., which in turn necessitates the need for additional bone manipulation. This review outlines the various bone manipulation techniques that are used to achieve a predictable long-term success of dental implants.

  13. Proximal femoral bone geometry in osteoporotic hip fractures in Thailand.


    A number of different bone geometries have been reported to be correlated with osteoporosis, bone mineral density and fractures. Those correlations are used for diagnosis, treatment and prediction of fracture risk in osteoporosis cases. However there have been no studies of significant bone parameters predicting osteoporosis and hip fracture in Thailand To evaluate the correlation between geometric parameters of the proximal femur and both the Singh index and bone mineral density as well as to investigate the relationship between those two metrics and osteoporotic hip fracture in the Thai population. Forty-four Thai patients with osteoporotic hip fractures andforty-five healthy Thai people matched for age and gender were included in the present study. Bone mineral density and bone geometry from plain hip radiographs of non-fracture sites in the fracture group and proximal femur radiographs of the same site in the healthy group were measured That data were analyzed to determine levels of correlation. Bone geometries were also analyzed to determine hip fracture predictive capacity. Correlation between the Singh index and bone mineral density was significant (p hip fracture (p = 0.014 and p = 0.035, respectively). Each 1 mm reduction in the width of the femoral medial neck cortex increased the osteoporotic hip fracture risk by a factor of 2.7 (OR = 0.37, 95% CI = 0.15-0.93). In the Thai population, bone geometry from plain radiographs can help predict the risk of osteoporotic hip fracture. Osteoporosis is correlated with a low Singh index value. The width of the femoral medial neck cortex is a reliable predictor of hip fracture risk.

  14. Rescuing loading induced bone formation at senescence.

    Sundar Srinivasan

    Full Text Available The increasing incidence of osteoporosis worldwide requires anabolic treatments that are safe, effective, and, critically, inexpensive given the prevailing overburdened health care systems. While vigorous skeletal loading is anabolic and holds promise, deficits in mechanotransduction accrued with age markedly diminish the efficacy of readily complied, exercise-based strategies to combat osteoporosis in the elderly. Our approach to explore and counteract these age-related deficits was guided by cellular signaling patterns across hierarchical scales and by the insight that cell responses initiated during transient, rare events hold potential to exert high-fidelity control over temporally and spatially distant tissue adaptation. Here, we present an agent-based model of real-time Ca(2+/NFAT signaling amongst bone cells that fully described periosteal bone formation induced by a wide variety of loading stimuli in young and aged animals. The model predicted age-related pathway alterations underlying the diminished bone formation at senescence, and hence identified critical deficits that were promising targets for therapy. Based upon model predictions, we implemented an in vivo intervention and show for the first time that supplementing mechanical stimuli with low-dose Cyclosporin A can completely rescue loading induced bone formation in the senescent skeleton. These pre-clinical data provide the rationale to consider this approved pharmaceutical alongside mild physical exercise as an inexpensive, yet potent therapy to augment bone mass in the elderly. Our analyses suggested that real-time cellular signaling strongly influences downstream bone adaptation to mechanical stimuli, and quantification of these otherwise inaccessible, transient events in silico yielded a novel intervention with clinical potential.

  15. Perfluorodecalin and bone regeneration

    F Tamimi


    Full Text Available Perfluorodecalin (PFD is a chemically and biologically inert biomaterial and, as many perfluorocarbons, is also hydrophobic, radiopaque and has a high solute capacity for gases such as oxygen. In this article we have demonstrated, both in vitro and in vivo, that PFD may significantly enhance bone regeneration. Firstly, the potential benefit of PFD was demonstrated by prolonging the survival of bone marrow cells cultured in anaerobic conditions. These findings translated in vivo, where PFD incorporated into bone-marrow-loaded 3D-printed scaffolds substantially improved their capacity to regenerate bone. Secondly, in addition to biological applications, we have also shown that PFD improves the radiopacity of bone regeneration biomaterials, a key feature required for the visualisation of biomaterials during and after surgical implantation. Finally, we have shown how the extreme hydrophobicity of PFD enables the fabrication of highly cohesive self-setting injectable biomaterials for bone regeneration. In conclusion, perfluorocarbons would appear to be highly beneficial additives to a number of regenerative biomaterials, especially those for bone regeneration.

  16. Pathogenesis of bone metastasis

    Erdinc Nayir


    Full Text Available Bone metastases are more frequently seen as a complication of cancer than primary bone tumors. For example, it can be seen in as many as 70% of advanced stage breast and prostate cancer cases. Metastatic bone disease is generally categorized as osteoblastic, and osteolytic disease. However most of the cancer types demonstrate a wide spectrum between these two extremes. Paracrine interaction between parathyroid hormone–related protein (PTHrP which increases the rate of bone osteolysis, and transforming growth factor-β (TGF-β plays a role in osteolytic metastasis. Increased local bone PTHrP concentration increases expression of receptor activator of nuclear factor kappa-B ligand (RANKL with resultant activation of osteoclastogenesis. Endothelin – 1 (ET-1, and dickkopf homolog -1 (DKK-1 produced by tumor involve in osteoblastic metastasis. DKK-1 is the central regulator of osteoblastic activity, and osteoblastic bone metastasis. For the elaboration of treatment strategies against frequently seen complication, that is, bone metastases, targets involving in pathogenesis of these complications should be taken into consideration.

  17. Mechanotransduction by bone cells in vitro: mechanobiology of bone tissue

    Mullender, M.; El Haj, A.J.; Yang, Y.; van Duin, M.A.; Burger, E.H.; Klein-Nulend, J.


    Mechanical force plays an important role in the regulation of bone remodelling in intact bone and bone repair. In vitro, bone cells demonstrate a high responsiveness to mechanical stimuli. Much debate exists regarding the critical components in the load profile and whether different components, such

  18. Beyond the functional matrix hypothesis: a network null model of human skull growth for the formation of bone articulations.

    Esteve-Altava, Borja; Rasskin-Gutman, Diego


    Craniofacial sutures and synchondroses form the boundaries among bones in the human skull, providing functional, developmental and evolutionary information. Bone articulations in the skull arise due to interactions between genetic regulatory mechanisms and epigenetic factors such as functional matrices (soft tissues and cranial cavities), which mediate bone growth. These matrices are largely acknowledged for their influence on shaping the bones of the skull; however, it is not fully understood to what extent functional matrices mediate the formation of bone articulations. Aiming to identify whether or not functional matrices are key developmental factors guiding the formation of bone articulations, we have built a network null model of the skull that simulates unconstrained bone growth. This null model predicts bone articulations that arise due to a process of bone growth that is uniform in rate, direction and timing. By comparing predicted articulations with the actual bone articulations of the human skull, we have identified which boundaries specifically need the presence of functional matrices for their formation. We show that functional matrices are necessary to connect facial bones, whereas an unconstrained bone growth is sufficient to connect non-facial bones. This finding challenges the role of the brain in the formation of boundaries between bones in the braincase without neglecting its effect on skull shape. Ultimately, our null model suggests where to look for modified developmental mechanisms promoting changes in bone growth patterns that could affect the development and evolution of the head skeleton. © 2014 Anatomical Society.

  19. Acidosis, hypoxia and bone.

    Arnett, Timothy R


    Bone homeostasis is profoundly affected by local pH and oxygen tension. It has long been recognised that the skeleton contains a large reserve of alkaline mineral (hydroxyapatite), which is ultimately available to neutralise metabolic H(+) if acid-base balance is not maintained within narrow limits. Bone cells are extremely sensitive to the direct effects of pH: acidosis inhibits mineral deposition by osteoblasts but it activates osteoclasts to resorb bone and other mineralised tissues. These reciprocal responses act to maximise the availability of OH(-) ions from hydroxyapatite in solution, where they can buffer excess H(+). The mechanisms by which bone cells sense small pH changes are likely to be complex, involving ion channels and receptors in the cell membrane, as well as direct intracellular effects. The importance of oxygen tension in the skeleton has also long been known. Recent work shows that hypoxia blocks the growth and differentiation of osteoblasts (and thus bone formation), whilst strongly stimulating osteoclast formation (and thus bone resorption). Surprisingly, the resorptive function of osteoclasts is unimpaired in hypoxia. In vivo, tissue hypoxia is usually accompanied by acidosis due to reduced vascular perfusion and increased glycolytic metabolism. Thus, disruption of the blood supply can engender a multiple negative impact on bone via the direct actions of reduced pO(2) and pH on bone cells. These observations may contribute to our understanding of the bone disturbances that occur in numerous settings, including ageing, inflammation, fractures, tumours, anaemias, kidney disease, diabetes, respiratory disease and smoking.

  20. Predictive value of prostate-specific antigen and Gleason sum for results of radionuclide bone scintigraphy in patients with prostate cancer%前列腺特异性抗原和Gleason评分对前列腺癌患者核素骨扫描结果的预测价值

    王天昱; 何志嵩; 周利群; 陈晓鹏; 李学松; 贾元歆; 成俊; 张建华; 蔡林; 张争; 龚侃


    该进行骨扫描检查.%Objective: To investigate the predictive value of prostate-specific antigen (PSA) and Gleason sum for results of radionuclide bone scintigraphy in prostate cancer patients, in order to determine when to perform a radionuclide bone scintigraphy in Chinese patients with newly diagnosed prostate cancer. Methods: We retrospectively reviewed the charts of 624 consecutive patients with a pathology diagnosis of prostate cancer hospitalized in Department of Urology, Peking University First Hospital between Jan. 1994 and Dec. 2005, and evaluated the relationships between results of bone scintigraphy and serum tPSA, and between bone scintigraphy and Gleason sum. The receiver operating characteristics ( ROC) curves were analyzed to determine the cut-off values of tPSA and Gleason sum for predicting positive results of bone scintigraphy. Results: In the study, 443 patients underwent both a radionuclide bone scan and a serum PSA test prior to treatment, of whom, 216 (48. 8% ) got positive results, and 338 also possessed the Gleason sum for pathological evaluation. The serum tPSA levels were significantly higher in patients with positive results of the bone scan ( median: 71.00 μg/L; range; 1.30 -2 400.00 μg/L) than those with negative results ( median; 60. 00 μg/L; range; 0. 60 - 201. 00 μg/L; rank P < 0. 001 ) , and the Gleason sums were also significantly higher in positive-bone-scan patients than in negative-bone-scan patients (7.1 ±1.5 vs. 6. 7 ± 1. 8, P <0. 001) . Linear regression analysis suggested significant positive correlation between the results of the bone scan and the two afore-mentioned parameters, respectively (lg[PSA]: r=0.933, B=0.352, P=0.001; Gleason sum; r=0.971, 5=0.096, P< 0.001 ). The incidence of a positive bone scan result was 9. 0% in patients with tPSA < 10 μg/L and 3. 8% in patients with Gleason sum <5. When the indication for bone scan was established as tPSA > 15 μg/L or Gleason sum ≥7, its sensitivity, specificity, positive predictive

  1. Osteosarcoma of jaw bone

    Avani Gandhi Dixit


    Full Text Available Osteosarcoma is the most common primary malignant bone tumor in children. Its radiolographic appearances vary considerably. It may show a number of presentations from onion skin or sunburst appearance. Osteosarcoma of maxilla and mandible are distinct from long bone osteosarcoma and shows a distinct clinical, histologic and prognostic characteristic that when diagnosed and treated properly have a better prognosis from the later. The present article reports a case of osteogenic sarcoma of maxillary alveolar ridge and compares it with long bones osteosarcomas.

  2. A clinical overview of bone marrow edema

    M. Manara


    Full Text Available Bone marrow edema (BME is a descriptive term which identifies a specific magnetic resonance imaging (MRI pattern that can be observed in a number of clinical entities, which are often characterized by pain as their main symptom, but show significant differences in terms of histopathological findings, causal mechanisms and prognosis. Bone marrow lesions in the subchondral bone of subjects with knee osteoarthritis (OA seem to be associated with pain and progression of cartilage damage over time. Some histopathological studies of advanced OA have shown a prevalent fibrosis and bone marrow necrosis. BME of the subchondral bone in rheumatoid arthritis is associated with an infiltrate of inflammatory cells and osteoclasts and has a predictive value of further development of erosions. In spondyloarthritis, BME of the sacroiliac joints identifies an active sacroiliitis and is associated with histological inflammation and radiographic progression, whereas the relationship between BME lesions of the spine and syndesmophyte development is still controversial. BME syndromes (BMES, such as transient osteoporosis of the hip, regional migratory osteoporosis, and transient post-traumatic BMES, are characterized by a BME pattern on MRI and a self-limiting course. The potential evolution of BMES toward osteonecrosis is still controversial.

  3. Optimal management of bone metastases in breast cancer patients

    Wong MH


    Full Text Available MH Wong, N PavlakisDepartment of Medical Oncology, Royal North Shore Hospital, Sydney, NSW, AustraliaAbstract: Bone metastasis in breast cancer is a significant clinical problem. It not only indicates incurable disease with a guarded prognosis, but is also associated with skeletal-related morbidities including bone pain, pathological fractures, spinal cord compression, and hypercalcemia. In recent years, the mechanism of bone metastasis has been further elucidated. Bone metastasis involves a vicious cycle of close interaction between the tumor and the bone microenvironment. In patients with bone metastases, the goal of management is to prevent further skeletal-related events, manage complications, reduce bone pain, and improve quality of life. Bisphosphonates are a proven therapy for the above indications. Recently, a drug of a different class, the RANK ligand antibody, denosumab, has been shown to reduce skeletal-related events more than the bisphosphonate, zoledronic acid. Other strategies of clinical value may include surgery, radiotherapy, radiopharmaceuticals, and, of course, effective systemic therapy. In early breast cancer, bisphosphonates may have an antitumor effect and prevent both bone and non-bone metastases. Whilst two important Phase III trials with conflicting results have led to controversy in this topic, final results from these and other key Phase III trials must still be awaited before a firm conclusion can be drawn about the use of bisphosphonates in this setting. Advances in bone markers, predictive biomarkers, multi-imaging modalities, and the introduction of novel agents have ushered in a new era of proactive management for bone metastases in breast cancer.Keywords: breast cancer, bone metastases, bisphosphonates, denosumab, biomarkers, optimal management

  4. CT assessment of the correlation between clinical examination and bone involvement in oral malignant tumors

    Albuquerque, Marco Antonio Portela; Oliveira, Ilka Regina Souza; Cavalcanti, Marcelo Gusmao Paraiso [Universidade de Sao Paulo (USP), SP (Brazil). Faculdade de Odontologia. Dept. de Radiologia], e-mail:; Kuruoshi, Marcia Etsuko [Universidade de Sao Paulo (USP), SP (Brazil). Hospital Universitario. Dept. de Radiologia


    Oral cancers have a tendency to invade the surrounding bone structures, and this has a direct influence on the treatment management and on outcomes. The objective of this study was to correlate the clinical parameters (location, clinical presentation and TNM staging) of oral malignant tumors that can be associated with a potential of bone invasion and determine the accuracy of clinical examination to predict bone involvement, using computed tomography (CT). Twenty five patients, with oral malignant tumors were submitted to clinical and CT examinations. CT was considered the standard parameter to evaluate the presence of bone involvement. Clinical assessment of location, presentation form and TNM staging of the tumors were then compared to the CT findings in predicting bone involvement. Bone involvement was observed in 68% of the cases. It was predicted that tumors located in the retromolar trigone and hard palate, with a clinical aspect of infiltrative ulcer or nodule and classified in stage IV had a high potential to cause bone involvement. The clinical examination assessment of these tumors showed to be a valuable tool to predict bone invasion, with high sensitivity (82%) and specificity (87.5%), based on the results found in the CT images. No statistical significance was found between the CT and clinical examinations regarding bone involvement. The identification of some clinical parameters such as location, clinical presentation, and TNM stage, associated with a detailed clinical examination, was considered a valuable tool for the assessment of bone destruction by oral malignant tumors. (author)

  5. Oral Health and Bone Disease

    ... low bone mass. Research suggests a link between osteoporosis and bone loss in the jaw. The bone in the jaw supports and anchors the teeth. When the jawbone becomes less dense, tooth loss can occur, a common occurrence in older adults. Skeletal Bone Density and Dental Concerns Periodontal Disease ...

  6. Metastatic Bone Disease

    ... begin in bone are much less common in adults older than 45 years. Other diseases, such as Paget’s sarcoma, post-radiation sarcoma, hyperparathyroidism, and fractures due to osteoporosis, are also possibilities. Additional tests will likely be ...

  7. Exercise and Bone Health

    ... include: Brisk walking and hiking Jogging/running Dancing Jumping rope Tennis Team sports, such as basketball and soccer ... climbing Higher impact activities, such as jogging and jumping rope, increase the weight on bones and provide more ...

  8. Osteopetrosis (marble bone disease

    Alexey Nikolayevich Kalyagin


    Full Text Available We report the data of the history of describing osteopetrosis (marble bone disease, its clinical features, diagnosis, and possible therapy approaches. Our own clinical case is presented.

  9. Calcaneus (Heel Bone) Fractures

    ... metal plates and screws. Recovery Bones have a remarkable capacity to heal. The more severe your injury, ... herein. This information is provided as an educational service and is not intended to serve as medical ...

  10. Immunoregulation of bone remodelling.

    Singh, Ajai; Mehdi, Abbass A; Srivastava, Rajeshwer N; Verma, Nar Singh


    Remodeling, a continuous physiological process maintains the strength of the bones, which maintains a delicate balance between bone formation and resorption process. This review gives an insight to the complex interaction and correlation between the bone remodeling and the corresponding changes in host immunological environment and also summarises the most recent developments occuring in the understanding of this complex field. T cells, both directly and indirectly increase the expression of receptor activator of nuclear factor kB ligand (RANKL); a vital step in the activation of osteoclasts, thus positively regulates the osteoclastogenesis. Though various cytokines, chemikines, transcription factors and co-stimulatory molecules are shared by both skeletal and immune systems, but researches are being conducted to establish and analyse their role and / or control on this complex but vital process. The understanding of this part of research may open new horizons in the management of inflammatory and autoimmune diseases, resulting into bone loss and that of osteoporosis also.

  11. Petrous Bone Cholesteatoma

    Sanna, Mario; Zini, Carlo; Gamoletti, Roberto; Frau, Niccolò; Taibah, Abdel Kader; Russo, Alessandra; Pasanisi, Enrico


    Petrous bone cholesteatoma is a rare pathologic entity and may be a difficult surgical challenge because of potential involvement of the facial nerve, carotid artery, dura mater, otic capsule, and risk of cerebrospinal fluid leak. The objective of this article is to present a personal classification of petrous bone cholesteatomas, a survey of recent surgical attitudes, and our present surgical strategy based on our experience with 54 operations between 1978 and 1990. Radical petromastoid exenteration with marsupialization and the middle cranial fossa approach were used only for small pure infra- or supralabyrinthine cholesteatomas, respectively. The enlarged transcochlear approach with closure of the external auditory canal was used for infralabyrinthine, infralabyrinthine-apical, and massive petrous bone cholesteatomas. Five cases with petrous bone cholesteatomas in different locations are described in detail to present the signs and symptoms together with the management. ImagesFigure 10Figure 11Figure 12Figure 13Figure 14Figure 15Figure 16Figure 17Figure 18 PMID:17170912

  12. Bone changes in leprosy

    Mende, B.; Stein, G.; Kreysel, H.W.


    Bone lesions is a frequent organic manifestation in leprosy. Osseal destructions caused by granulomatous process induced by M. leprae are so-called specific lesions in contrast to non specific lesions based on nerval or arterial diseases. The specific osseal alterations are characterized by cystic brightenings in roentgenograms while non specific osseal changes show absorption to bone structure as akroosterolysis and osteoporosis. Typical radiologic findings in different stages of mutilation are demonstrated.




    Full Text Available INTRODUCTION Human temporal bones are difficult to procure now a days due to various ethical issues. Sheep temporal bone is a good alternative due to morphological similarities, easy to procure and less cost. Many middle ear exercises can be done easily and handling of instruments is done in the procedures like myringoplasty, tympanoplasty, stapedotomy, facial nerve dissection and some middle ear implants. This is useful for resident training programme.

  14. Bone Remodeling Monitor

    Foucar, Charlie; Goldberg, Leslie; Hon, Bodin; Moore, Shannon; Williams, Evan


    The impact of bone loss due to different mechanical loadings in microgravity is a major concern for astronauts upon reintroduction to gravitational forces in exploration missions to the Moon and Mars. it has been shown that astronauts not only lose bone at differing rates, with levels up to 2% per month, but each astronaut will respond to bone loss treatments differently. Pre- and post-flight imaging techniques and frozen urine samples for post-flight laboratory immunoassays To develop a novel, non-invasive, highly . sensitive, portable, intuitive, and low-powered device to measure bone resorption levels in 'real time' to provide rapid and Individualized feedback to maximize the efficacy of bone loss countermeasures 1. Collect urine specimen and analyze the level of bone resorption marker, DPD (deoxypridinoline) excreted. 2. Antibodies specific to DPD conjugated with nanoshells and mixed with specimen, the change in absorbance from agglutination is measured by an optical device. 3. The concentration of DPD is displayed and recorded on a PDA

  15. Guided bone regeneration : the influence of barrier membranes on bone grafts and bone defects

    Gielkens, Pepijn Frans Marie


    Guided bone regeneration (GBR) can be described as the use of a barrier membrane to provide a space available for new bone formation in a bony defect. The barrier membrane protects the defect from in-growth of soft tissue cells and allows bone progenitor cells to develop bone within a blood clot tha


    Aneta Gądek


    Full Text Available A new method for quantification of bone regenerate on the basis of computer-aided analysis of digitized Xray images is presented and its applicability in bone lengthening using Ilizarov method is demonstrated. In contrary to classical methods the internal part of the bone image is taken into consideration instead of the bone edges. Theoretical background of this concept is presented and experimentally verified. Experimental results show that the method proposed allows us for assessment of the bone regenerate, precise choice of the moment of external fixator removal as well as prediction of abnormalities in the osteogenesis process (excluding overall decalcification. However, the rules of interpretation of the results are not discussed in details.

  17. New simulation model for bone formation markers in osteoporosis patients treated with once-weekly teriparatide

    Sakae Tanaka; Taiji Adachi; Tatsuhiko Kuroda; Toshitaka Nakamura; Masataka Shiraki; Toshitsugu Sugimoto; Yasuhiro Takeuchi; Mitsuru Saito; John P Bilezikian


    Daily 20-mg and once-weekly 56.5-mg teriparatide (parathyroid hormone 1–34) treatment regimens increase bone mineral density (BMD) and prevent fractures, but changes in bone turnover markers differ between the two regimens. The aim of the present study was to explain changes in bone turnover markers using once-weekly teriparatide with a simulation model. Temporary increases in bone formation markers and subsequent decreases were observed during once-weekly teriparatide treatment for 72 weeks. These observations support the hypothesis that repeated weekly teriparatide administration stimulates bone remodeling, replacing old bone with new bone and leading to a reduction in the active remodeling surface. A simulation model was developed based on the iterative remodeling cycle that occurs on residual old bone. An increase in bone formation and a subsequent decrease were observed in the preliminary simulation. For each fitted time point, the predicted value was compared to the absolute values of the bone formation and resorption markers and lumbar BMD. The simulation model strongly matched actual changes in bone turnover markers and BMD. This simulation model indicates increased bone formation marker levels in the early stage and a subsequent decrease. It is therefore concluded that remodeling-based bone formation persisted during the entire treatment period with once-weekly teriparatide.

  18. Biomarkers of bone and mineral metabolism following bone marrow transplantation.

    Baek, Ki Hyun; Kang, Moo Il


    The loss of bone mass often occurs after patients undergo bone marrow transplantation (BMT). The rapid impairment of bone formation and the increase in bone resorption, as mirrored by the biochemical markers of bone turnover, might play a role in this bone loss, and especially during the immediate post-BMT period. The possible direct causes for this paradoxical uncoupling are exposure to immunosuppressants, hypogonadism, the changes of cytokines, the changes of the bone growth factors, and the damage to the osteoprogenitor cells because of myeloablative therapy. In this chapter, we discuss the general aspects of post-BMT bone loss with a peculiar focus on the remodeling imbalance of bone and its relation to the use of immunosuppressants and the changes of sex hormones, growth factors, and cytokines.

  19. Porous surface modified bioactive bone cement for enhanced bone bonding.

    Qiang He

    Full Text Available BACKGROUND: Polymethylmethacrylate bone cement cannot provide an adhesive chemical bonding to form a stable cement-bone interface. Bioactive bone cements show bone bonding ability, but their clinical application is limited because bone resorption is observed after implantation. Porous polymethylmethacrylate can be achieved with the addition of carboxymethylcellulose, alginate and gelatin microparticles to promote bone ingrowth, but the mechanical properties are too low to be used in orthopedic applications. Bone ingrowth into cement could decrease the possibility of bone resorption and promote the formation of a stable interface. However, scarce literature is reported on bioactive bone cements that allow bone ingrowth. In this paper, we reported a porous surface modified bioactive bone cement with desired mechanical properties, which could allow for bone ingrowth. MATERIALS AND METHODS: The porous surface modified bioactive bone cement was evaluated to determine its handling characteristics, mechanical properties and behavior in a simulated body fluid. The in vitro cellular responses of the samples were also investigated in terms of cell attachment, proliferation, and osteoblastic differentiation. Furthermore, bone ingrowth was examined in a rabbit femoral condyle defect model by using micro-CT imaging and histological analysis. The strength of the implant-bone interface was also investigated by push-out tests. RESULTS: The modified bone cement with a low content of bioactive fillers resulted in proper handling characteristics and adequate mechanical properties, but slightly affected its bioactivity. Moreover, the degree of attachment, proliferation and osteogenic differentiation of preosteoblast cells was also increased. The results of the push-out test revealed that higher interfacial bonding strength was achieved with the modified bone cement because of the formation of the apatite layer and the osseointegration after implantation in the bony

  20. Role of bone marrow macrophages in controlling homeostasis and repair in bone and bone marrow niches.

    Kaur, Simranpreet; Raggatt, Liza Jane; Batoon, Lena; Hume, David Arthur; Levesque, Jean-Pierre; Pettit, Allison Robyn


    Macrophages, named for their phagocytic ability, participate in homeostasis, tissue regeneration and inflammatory responses. Bone and adjacent marrow contain multiple functionally unique resident tissue macrophage subsets which maintain and regulate anatomically distinct niche environments within these interconnected tissues. Three subsets of bone-bone marrow resident tissue macrophages have been characterised; erythroblastic island macrophages, haematopoietic stem cell niche macrophages and osteal macrophages. The role of these macrophages in controlling homeostasis and repair in bone and bone marrow niches is reviewed in detail.

  1. Bone Engineering of Maxillary Sinus Bone Deficiencies Using Enriched CD90+ Stem Cell Therapy: A Randomized Clinical Trial.

    Kaigler, Darnell; Avila-Ortiz, Gustavo; Travan, Suncica; Taut, Andrei D; Padial-Molina, Miguel; Rudek, Ivan; Wang, Feng; Lanis, Alejandro; Giannobile, William V


    Bone engineering of localized craniofacial osseous defects or deficiencies by stem cell therapy offers strong prospects to improve treatment predictability for patient care. The aim of this phase 1/2 randomized, controlled clinical trial was to evaluate reconstruction of bone deficiencies of the maxillary sinus with transplantation of autologous cells enriched with CD90+ stem cells and CD14+ monocytes. Thirty human participants requiring bone augmentation of the maxillary sinus were enrolled. Patients presenting with 50% to 80% bone deficiencies of the maxillary sinus were randomized to receive either stem cells delivered onto a β-tricalcium phosphate scaffold or scaffold alone. Four months after treatment, clinical, radiographic, and histologic analyses were performed to evaluate de novo engineered bone. At the time of alveolar bone core harvest, oral implants were installed in the engineered bone and later functionally restored with dental tooth prostheses. Radiographic analyses showed no difference in the total bone volume gained between treatment groups; however, density of the engineered bone was higher in patients receiving stem cells. Bone core biopsies showed that stem cell therapy provided the greatest benefit in the most severe deficiencies, yielding better bone quality than control patients, as evidenced by higher bone volume fraction (BVF; 0.5 versus 0.4; p = 0.04). Assessment of the relation between degree of CD90+ stem cell enrichment and BVF showed that the higher the CD90 composition of transplanted cells, the greater the BVF of regenerated bone (r = 0.56; p = 0.05). Oral implants were placed and restored with functionally loaded dental restorations in all patients and no treatment-related adverse events were reported at the 1-year follow-up. These results provide evidence that cell-based therapy using enriched CD90+ stem cell populations is safe for maxillary sinus floor reconstruction and offers potential to accelerate and enhance

  2. Mimicking the nanostructure of bone matrix to regenerate bone

    Robert Kane


    Full Text Available Key features of bone tissue structure and composition are capable of directing cellular behavior toward the generation of new bone tissue. Bone tissue, as well as materials derived from bone, have a long and successful history of use as bone grafting materials. Recent developments in design and processing of synthetic scaffolding systems has allowed the replication of the bone's desirable biological activity in easy to fabricate polymeric materials with nano-scale features exposed on the surface. The biological response to these new tissue-engineering scaffold materials oftentimes exceeds that seen on scaffolds produced using biological materials.

  3. Virtual Temporal Bone Anatomy


    Background The Visible Human Project(VHP) initiated by the U.S. National Library of Medicine has drawn much attention and interests from around the world. The Visible Chinese Human (VCH) project has started in China. The current study aims at acquiring a feasible virtual methodology for reconstructing the temporal bone of the Chinese population, which may provide an accurate 3-D model of important temporal bone structures that can be used in teaching and patient care for medical scientists and clinicians. Methods A series of sectional images of the temporal bone were generated from section slices of a female cadaver head. On each sectional image, SOIs (structures of interest) were segmented by carefully defining their contours and filling their areas with certain gray scale values. The processed volume data were then inducted into the 3D Slicer software(developed by the Surgical Planning Lab at Brigham and Women's Hospital and the MIT AI Lab) for resegmentation and generation of a set of tagged images of the SOIs. 3D surface models of SOIs were then reconstructed from these images. Results The temporal bone and structures in the temporal bone, including the tympanic cavity, mastoid cells, sigmoid sinus and internal carotid artery, were successfully reconstructed. The orientation of and spatial relationship among these structures were easily visualized in the reconstructed surface models. Conclusion The 3D Slicer software can be used for 3-dimensional visualization of anatomic structures in the temporal bone, which will greatly facilitate the advance of knowledge and techniques critical for studying and treating disorders involving the temporal bone.

  4. Bone scintigraphy and magnetic resonance imaging after transtrochanteric rotational osteotomy

    Iwasada, Seiki; Hasegawa, Yukiharu; Iwase, Tosiki; Kitamura, Shinji; Iwata, Hisashi [Department of Orthopaedic Surgery, Nagoya University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466 (Japan)


    Objective. To assess the ability of bone scintigraphy and magnetic resonance imaging (MRI) to predict the outcome of transtrochanteric rotational osteotomy (TRO) for osteonecrosis of the femoral head (ONFH). Design. This study was a prospective evaluation of imaging techniques. Patients and methods. MRI and bone scintigraphy were performed on 20 hips in 18 patients at 3 months after TRO. The radiographic findings at 3 months after TRO, and the MRI and bone scintigraphic findings, were compared with the radiographic findings at final follow-up (mean 39 months). Results and conclusions. On MRI a low-intensity area or a low-intensity band in the new weight-bearing area extending over the acetabular edge on T1-weighted images was related to the presence of collapse on the radiographs at final follow-up. In hips with an area of absent activity in the new weight-bearing surface on bone scintigraphy, collapse was seen more frequently on radiographs at final follow-up than in hips without this feature. Bone scintigraphy was no more specific than radiography in predicting the outcome after TRO. We consider MRI to be superior to bone scintigraphy in predicting the occurrence of collapse, which is one of the major short-term problems after TRO. (orig.) With 8 figs., 4 tabs., 15 refs.

  5. Bone properties by nanoindentation in mild and severe osteogenesis imperfecta.

    Albert, Carolyne; Jameson, John; Toth, Jeffrey M; Smith, Peter; Harris, Gerald


    Osteogenesis imperfecta is a heterogeneous genetic disorder characterized by bone fragility. Previous research suggests that impaired collagen network and abnormal mineralization affect bone tissue properties, however, little data is yet available to describe bone material properties in individuals with this disorder. Bone material properties have not been characterized in individuals with the most common form of osteogenesis imperfecta, type I. Bone tissue elastic modulus and hardness were measured by nanoindentation in eleven osteotomy specimens that were harvested from children with osteogenesis imperfecta during routine surgeries. These properties were compared between osteogenesis imperfecta types I (mild, n=6) and III (severe, n=5), as well as between interstitial and osteonal microstructural regions using linear mixed model analysis. Disease severity type had a small but statistically significant effect on modulus (7%, P=0.02) and hardness (8%, Posteogenesis imperfecta type I had higher modulus and hardness than did those with type III. Overall, mean modulus and hardness values were 13% greater in interstitial lamellar bone regions than in osteonal regions (Posteogenesis imperfecta, i.e., type I. Results indicate that intrinsic bone tissue properties are affected by phenotype. Knowledge of the material properties of bones in osteogenesis imperfecta will contribute to the ability to develop models to assist in predicting fracture risk. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Predicting the 10-year risk of hip and major osteoporotic fracture in rheumatoid arthritis and in the general population : an independent validation and update of UK FRAX without bone mineral density

    Klop, Corinne; de Vries, Frank; Bijlsma, Johannes W J; Leufkens, Hubert G M; Welsing, Paco M J


    OBJECTIVES: FRAX incorporates rheumatoid arthritis (RA) as a dichotomous predictor for predicting the 10-year risk of hip and major osteoporotic fracture (MOF). However, fracture risk may deviate with disease severity, duration or treatment. Aims were to validate, and if needed to update, UK FRAX

  7. Development of Raman spectral markers to assess metastatic bone in breast cancer

    Ding, Hao; Nyman, Jeffry S.; Sterling, Julie A.; Perrien, Daniel S.; Mahadevan-Jansen, Anita; Bi, Xiaohong


    Bone is the most common site for breast cancer metastases. One of the major complications of bone metastasis is pathological bone fracture caused by chronic bone loss and degeneration. Current guidelines for the prediction of pathological fracture mainly rely on radiographs or computed tomography, which are limited in their ability to predict fracture risk. The present study explored the feasibility of using Raman spectroscopy to estimate pathological fracture risk by characterizing the alterations in the compositional properties of metastatic bones. Tibiae with evident bone destruction were investigated using Raman spectroscopy. The carbonation level calculated by the ratio of carbonate/phosphate ν1 significantly increased in the tumor-bearing bone at all the sampling regions at the proximal metaphysis and diaphysis, while tumor-induced elevation in mineralization and crystallinity was more pronounced in the metaphysis. Furthermore, the increased carbonation level is positively correlated to bone lesion size, indicating that this parameter could serve as a unique spectral marker for tumor progression and bone loss. With the promising advances in the development of spatially offset Raman spectroscopy for deep tissue measurement, this spectral marker can potentially be used for future noninvasive evaluation of metastatic bone and prediction of pathological fracture risk.

  8. Trabecular bone structure in the primate wrist.

    Schilling, Ann-Marie; Tofanelli, Sergio; Hublin, Jean-Jacques; Kivell, Tracy L


    Trabecular (or cancellous) bone has been shown to respond to mechanical loading throughout ontogeny and thus can provide unique insight into skeletal function and locomotion in comparative studies of living and fossil mammalian morphology. Trabecular bone of the hand may be particularly functionally informative because the hand has more direct contact with the substrate compared with the remainder of the forelimb during locomotion in quadrupedal mammals. This study investigates the trabecular structure within the wrist across a sample of haplorhine primates that vary in locomotor behaviour (and thus hand use) and body size. High-resolution microtomographic scans were collected of the lunate, scaphoid, and capitate in 41 individuals and eight genera (Homo, Gorilla, Pan, Papio, Pongo, Symphalangus, Hylobates, and Ateles). We predicted that particular trabecular parameters would 1) vary across suspensory, quadrupedal, and bipedal primates based on differences in hand use and load, and 2) scale with carpal size following similar allometric patterns found previously in other skeletal elements across a larger sample of mammals and primates. Analyses of variance (trabecular parameters analysed separately) and principal component analyses (trabecular parameters analysed together) revealed no clear functional signal in the trabecular structure of any of the three wrist bones. Instead, there was a large degree of variation within suspensory and quadrupedal locomotor groups, as well as high intrageneric variation within some taxa, particularly Pongo and Gorilla. However, as predicted, Homo sapiens, which rarely use their hands for locomotion and weight support, were unique in showing lower relative bone volume (BV/TV) compared with all other taxa. Furthermore, parameters used to quantify trabecular structure within the wrist scale with size generally following similar allometric patterns found in trabeculae of other mammalian skeletal elements. We discuss the challenges

  9. Muscle: Bone ratios in beef rib sections.

    Dolezal, H G; Murphey, C E; Smith, G C; Carpenter, Z L; McCartor, M


    Thirty-eight steers and thirty heifers (14 to 17 months of age, from F(1) Hereford × Brahman cows bred to Angus or Hereford bulls), were either forage-fed for 123 days on millet-bermudagrass pasture or grain-fed for 90 days on a high-concentrate diet and were then commercially slaughtered. Warm carcass weights ranged from 167·8 kg to 324·3 kg. At 24 h post mortem, Texas Agricultural Experiment Station personnel (1) assigned scores or took measurements on each carcass for all factors used in yield grading and quality grading, (2) measured the length of hind leg (HL) and carcass length (CL) and (3) assigned a score for carcass muscling (MS) and, as appropriate, made an adjusted longissimus muscle area (ALA) evaluation. The 9th-10th-11th rib section from one side of each carcass was physically separated into longissimus muscle, fat, 'other soft tissue' and bone and ether extract determinations of the longissimus muscle and 'other soft tissue' components were made and used to adjust the yields of each of these components to a fat-free basis. Muscle to bone ratios ranged from 2·38 to 4·37. With both age and carcass weight held constant, diet, breed and sex explained only 35·8% of the variation in muscle to bone ratio. The best simple correlation with muscle to bone ratio was ALA/CL (r = ·59). Other measures significantly correlated with muscle to bone ratio included ALA (r = 0·55), MS (r = 0·50) and carcass weight (r = 0·49). Multiple regression analyses identified a three-variable subset comprised of ALA, carcass weight and CL which was related (P carcass measures useful for predicting muscle to bone ratio.

  10. Computation of bone remodelling after Duracon knee arthroplasty using a thermodynamic-based model.

    Bougherara, H; Nazgooei, S; Sayyidmousavi, A; Marsik, F; Marík, I A


    The present study utilizes a recently developed literature model for the bone remodelling process to predict the evolution of bone density following Duracon total knee arthroplasty (TKA). In this model, which is based on chemical kinetics and irreversible thermodynamics, bone is treated as a self-organizing system capable of exchanging matter, energy, and entropy with its surroundings. Unlike previous models in which mechanical loading is regarded as the only stimulus for bone remodelling, the present model establishes a unique coupling between mechanical loading and the chemical reactions involved in the process of bone remodelling. This model was incorporated into the finite element software ANSYS by means of a macro to compute density distribution in distal femoral bone both before and after TKA. Consistent with dual-energy X-ray absorptiometry (DEXA) scans reported in the literature, the results showed that the most severe bone loss occurs in the anterior region of the distal femur and that there is more bone resorption in the lateral than the medial condyle following TKA. Furthermore, the bone density distribution predicted using the present model showed a gradual and uniform pattern and thus a more realistic bone evolution contrary to the strain energy density model, where there is no gradual bone density evolution.


    Shirvaikar, Mukul; Huang, Ning; Dong, Xuanliang Neil


    In this paper, statistical methods for the estimation of bone quality to predict the risk of fracture are reported. Bone mineral density and bone architecture properties are the main contributors of bone quality. Dual-energy X-ray Absorptiometry (DXA) is the traditional clinical measurement technique for bone mineral density, but does not include architectural information to enhance the prediction of bone fragility. Other modalities are not practical due to cost and access considerations. This study investigates statistical parameters based on the Gray Level Co-occurrence Matrix (GLCM) extracted from two-dimensional projection images and explores links with architectural properties and bone mechanics. Data analysis was conducted on Micro-CT images of 13 trabecular bones (with an in-plane spatial resolution of about 50μm). Ground truth data for bone volume fraction (BV/TV), bone strength and modulus were available based on complex 3D analysis and mechanical tests. Correlation between the statistical parameters and biomechanical test results was studied using regression analysis. The results showed Cluster-Shade was strongly correlated with the microarchitecture of the trabecular bone and related to mechanical properties. Once the principle thesis of utilizing second-order statistics is established, it can be extended to other modalities, providing cost and convenience advantages for patients and doctors.

  12. Role of Bone Biopsy in Stages 3 to 4 Chronic Kidney Disease

    Gal-Moscovici, Anca; Sprague, Stuart M.


    Secondary hyperparathyroidism develops relatively early in chronic kidney disease as a consequence of impaired phosphate, calcium, and vitamin D homeostasis. The disease state in chronic kidney disease, which includes the histologic features of bone disease, defined as renal osteodystrophy, and the hormonal and biochemical disturbances, have recently been redefined as a disease syndrome and is referred to as “chronic kidney disease–mineral and bone disorder.” As chronic kidney disease progresses, specific histologic disturbances in the bone develop, which may or may not be predictable from the biochemical and hormonal changes that are associated with chronic kidney disease. In addition, patients may have had underlying bone disease before developing kidney failure or may have been treated with agents that will alter the classical pathologic findings of the bones in chronic kidney disease and their relation to parathyroid hormone. Thus, in stage 5 chronic kidney disease, bone biopsy with quantitative histomorphometric analysis is considered the gold standard in the diagnosis of renal osteodystrophy. In contrast to stage 5 chronic kidney disease, there are very few data on the histologic changes in bone in earlier stages of chronic kidney disease. There also is no adequate information on the etiopathogenesis of bone disease in stages 3 and 4 chronic kidney disease. Thus, because biochemical data cannot predict bone pathology in stages 3 and 4 chronic kidney disease, bone biopsy should be used to define these bone changes and to allow appropriate therapeutic approaches. PMID:18988703

  13. Serum bone turnover markers (PINP and ICTP) for the early detection of bone metastases in patients with prostate cancer : A longitudinal approach

    Koopmans, N.; de Jong, I. J.; van der Veer, E.; Breeuwsma, J.


    Purpose: An increase in bone turnover markers in patients with prostate cancer may predict bone metastases but it can also reflect the effects of androgen deprivation treatment. To assess the diagnostic efficacy of early detection of skeletal metastases we retrospectively performed serial measuremen

  14. Inca bones at asterion

    Prashant E Natekar


    Full Text Available Background: Surgical approach towards asterion has to be done with caution as many surgeons are unfamiliar with the anatomical variations. The asterion corresponds to the site of the posterolateral (mastoid fontanelle of the neonatal skull which closes at the end of the first year. Inca bones provide information as markers for various diseases, and can mislead in the diagnosis of fractures. Observation and Results: 150 dry skull bones from the Department of Anatomy at Goa Medical College, India and other neighboring medical colleges by examining the asterion, and its sutural articulations with parietal, temporal and occipital bones and also anatomical variations if any in adults. Discussion: The anatomical landmarks selected must be reliable and above all easy to identify. Bony structures are more suitable than soft tissue or cartilaginous landmarks because of their rigid and reliable location. Presence of these bones provides false impressions of fractures or the fractures may be interpreted for inca bones especially in the region of asterion either radiologically or clinically which may lead to complications during burr hole surgeries.

  15. Bone metabolism during pregnancy.

    Salles, Jean Pierre


    During pregnancy, mineral concentrations, of calcium and phosphorus in particular, are maintained at a high level in fetal blood so that the developing skeleton may accrete adequate mineral content. The placenta actively transports minerals for this purpose. Maternal intestinal absorption increases in order to meet the fetal demand for calcium, which is only partly dependent on calcitriol. Mineral regulation is essentially dependent on parathyroid hormone (PTH) and PTH-related protein (PTHrP). The calcium-sensing receptor (CaSR) regulates PTH and PTHrP production. If calcium intake is insufficient, the maternal skeleton will undergo resorption due to PTHrP. After birth, a switch from fetal to neonatal homeostasis occurs through increase in PTH and calcitriol, and developmental adaptation of the kidneys and intestines with bone turnover contributing additional mineral to the circulation. Calcium absorption becomes progressively active and dependent on calcitriol. The postnatal skeleton can transiently present with osteoposis but adequate mineral diet usually allows full restoration. Cases of primary osteoporosis must be identified. Loss of trabecular mineral content occurs during lactation in order to provide calcium to the newborn. This programmed bone loss is dependent on a "brain-breast-bone" circuit. The physiological bone resorption during reproduction does not normally cause fractures or persistent osteoporosis. Women who experience fracture are likely to have other causes of bone loss. Copyright © 2016. Published by Elsevier Masson SAS.

  16. Bilateral maxillary sinus floor augmentation with tissue-engineered autologous osteoblasts and demineralized freeze-dried bone

    Aashish Deshmukh


    Full Text Available The pneumatization of the maxillary sinus often results in a lack of sufficient alveolar bone for implant placement. In the last decades, maxillary sinus lift has become a very popular procedure with predictable results. Sinus floor augmentation procedures are generally carried out using autologous bone grafts, bone substitutes, or composites of bone and bone substitutes. However, the inherent limitations associated with each of these, have directed the attention of investigators to new technologies like bone tissue engineering. Bone marrow stromal cells have been regarded as multi-potent cells residing in bone marrow. These cells can be harvested from a person, multiplied outside his body using bioengineering principles and technologies and later introduced into a tissue defect. We present a case where tissue-engineered autologous osteoblasts were used along with demineralized freeze-dried bone for sinus floor augmentation.

  17. Bone printing: new frontiers in the treatment of bone defects.

    Arealis, Georgios; Nikolaou, Vasileios S


    Bone defects can be congenital or acquired resulting from trauma, infection, neoplasm and failed arthroplasty. The osseous reconstruction of these defects is challenging. Unfortunately, none of the current techniques for the repair of bone defects has proven to be fully satisfactory. Bone tissue engineering (BTE) is the field of regenerative medicine (RM) that focuses on alternative treatment options for bone defects that will ideally address all the issues of the traditional techniques in treating large bone defects. However, current techniques of BTE is laborious and have their own shortcomings. More recently, 2D and 3D bone printing has been introduced to overcome most of the limitations of bone grafts and BTE. So far, results are extremely promising, setting new frontiers in the management of bone defects.

  18. Is there a role of whole-body bone scan in patients with esophageal squamous cell carcinoma

    Li Shau-Hsuan


    Full Text Available Abstract Background Correct detection of bone metastases in patients with esophageal squamous cell carcinoma is pivotal for prognosis and selection of an appropriate treatment regimen. Whole-body bone scan for staging is not routinely recommended in patients with esophageal squamous cell carcinoma. The aim of this study was to investigate the role of bone scan in detecting bone metastases in patients with esophageal squamous cell carcinoma. Methods We retrospectively evaluated the radiographic and scintigraphic images of 360 esophageal squamous cell carcinoma patients between 1999 and 2008. Of these 360 patients, 288 patients received bone scan during pretreatment staging, and sensitivity, specificity, positive predictive value, and negative predictive value of bone scan were determined. Of these 360 patients, surgery was performed in 161 patients including 119 patients with preoperative bone scan and 42 patients without preoperative bone scan. Among these 161 patients receiving surgery, 133 patients had stages II + III disease, including 99 patients with preoperative bone scan and 34 patients without preoperative bone scan. Bone recurrence-free survival and overall survival were compared in all 161 patients and 133 stages II + III patients, respectively. Results The diagnostic performance for bone metastasis was as follows: sensitivity, 80%; specificity, 90.1%; positive predictive value, 43.5%; and negative predictive value, 97.9%. In all 161 patients receiving surgery, absence of preoperative bone scan was significantly associated with inferior bone recurrence-free survival (P = 0.009, univariately. In multivariate comparison, absence of preoperative bone scan (P = 0.012, odds ratio: 5.053 represented the independent adverse prognosticator for bone recurrence-free survival. In 133 stages II + III patients receiving surgery, absence of preoperative bone scan was significantly associated with inferior bone recurrence

  19. Analysis of bone biopsies.

    Goodrich, J A; Difiore, R J; Tippens, J K


    The orthopedic surgeon is frequently confronted with the decision of when to perform a bone biopsy and whether to do a needle biopsy or an open biopsy. Frequently consultations are received from other services requesting bone biopsies with questionable indications. The indications and contraindications for performing bone biopsies are discussed as well as advantages and disadvantages of either closed or open technique. Four selective cases are discussed with illustrations. The challenge of undiagnosed osseous lesions is best met by rational evaluation of each individual case and coordinated with the team effort of the primary care physician, surgeon, pathologist, and radiologist. The decision for either an open or closed biopsy technique must be based on the experience and skills of the surgeon and pathologist.

  20. Bone healing in 2016

    Buza, John A.; Einhorn, Thomas


    Summary Delayed fracture healing and nonunion occurs in up to 5–10% of all fractures, and can present a challenging clinical scenario for the treating physician. Methods for the enhancement of skeletal repair may benefit patients that are at risk of, or have experienced, delayed healing or nonunion. These methods can be categorized into either physical stimulation therapies or biological therapies. Physical stimulation therapies include electrical stimulation, low-intensity pulsed ultrasonography, or extracorporeal shock wave therapy. Biological therapies can be further classified into local or systemic therapy based on the method of delivery. Local methods include autologous bone marrow, autologous bone graft, fibroblast growth factor-2, platelet-rich plasma, platelet-derived growth factor, and bone morphogenetic proteins. Systemic therapies include parathyroid hormone and bisphosphonates. This article reviews the current applications and supporting evidence for the use of these therapies in the enhancement of fracture healing. PMID:27920804

  1. Alveolar bone grafting

    Lilja Jan


    Full Text Available In patients with cleft lip and palate, bone grafting in the mixed dentition in the residual alveolar cleft has become a well-established procedure. The main advantages can be summarised as follows: stabilisation of the maxillary arch; facilitation of eruption of the canine and sometimes facilitation of the lateral incisor eruption; providing bony support to the teeth adjacent to the cleft; raising the alar base of the nose; facilitation of closure of an oro-nasal fistula; making it possible to insert a titanium fixture in the grafted site and to obtain favourable periodontal conditions of the teeth within and adjacent to the cleft. The timing of the ABG surgery take into consideration not only eruption of the canine but also that of the lateral incisor, if present. The best time for bone grafting surgery is when a thin shell of bone still covers the soon erupting lateral incisor or canine tooth close to the cleft.

  2. Bone pathology inpsoriatic arthritis

    V. V. Badokin


    Full Text Available Objective. To study different variants of osteolysis in pts with psoriatic arthritis (PA and to reveal their relationship with other clinico-radiological features of joint damage. Material and methods. 370 pts with definite PA having different variants of joint damage were included. Radiological examination of bones and joints (in some cases large picture frame was performed. Morphological evaluation of synovial biopsies was done in 34 pts with PA and 10 pts with rheumatoid arthritis (RA. Results. Different types of osteolysis were revealed in 80 (21,6% pts. Osteolytic variant of joint damage was present in 29 pts. 33 pts had acral, 48 — intra-articular osteolysis and 16 - true bone atrophy. Frequency and intensity of bone resorption were associated with severity of PA. Acral osteolysis correlated with arthritis of distal interphalangeal joints and onychodystrophy. Intra-articular osteolysis was most often present in distal interphalangeal joints of hands and metacarpophalangeal joints (39,6% and 41,7% respectively. Characteristic feature of PA was combination of prominent resorption with formation of bone ankylosis and periosteal reaction. Ankylosis was present in 33,3% of pts with intra-articular osteolysis and in 60% of pts with combination of different osteolysis variants. Systemic reaction of microcirculation in synovial biopsies was most prominent in osteolytic variant: marked thickening of capillary and venule basal membrane with high level of acid phosphatase, increased capillary and precapillary blood flow with stasis features, vascular lymphocyte and macrophage infiltration, productive vasculitis with annular wall thickening, thrombovasculitis and villi deep layer sclerosis. Conclusion. Different variants of osteolysis show bone involvement in PA. Acral and intra- articular osteolysis association with bone ankylosis and periostitis proves their common pathogenetic entity.

  3. Archival bone marrow samples

    Lund, Bendik; Najmi, Laeya A; Wesolowska-Andersen, Agata;


    AB Archival samples represent a significant potential for genetic studies, particularly in severe diseases with risk of lethal outcome, such as in cancer. In this pilot study, we aimed to evaluate the usability of archival bone marrow smears and biopsies for DNA extraction and purification, whole...... with samples stored for 4 to 10 years. Acceptable call rates for SNPs were detected for 7 of 42 archival samples. In conclusion, archival bone marrow samples are suitable for DNA extraction and multiple marker analysis, but WGA was less successful, especially when longer fragments were analyzed. Multiple SNP...

  4. Sex steroids and bone.

    Manolagas, S C; Kousteni, S; Jilka, R L


    The adult skeleton is periodically remodeled by temporary anatomic structures that comprise juxtaposed osteoclast and osteoblast teams and replace old bone with new. Estrogens and androgens slow the rate of bone remodeling and protect against bone loss. Conversely, loss of estrogen leads to increased rate of remodeling and tilts the balance between bone resorption and formation in favor of the former. Studies from our group during the last 10 years have elucidated that estrogens and androgens decrease the number of remodeling cycles by attenuating the birth rate of osteoclasts and osteoblasts from their respective progenitors. These effects result, in part, from the transcriptional regulation of genes responsible for osteoclastogenesis and mesenchymal cell replication and/or differentiation and are exerted through interactions of the ligand-activated receptors with other transcription factors. However, increased remodeling alone cannot explain why loss of sex steroids tilts the balance of resorption and formation in favor of the former. Estrogens and androgens also exert effects on the lifespan of mature bone cells: pro-apoptotic effects on osteoclasts but anti-apoptotic effects on osteoblasts and osteocytes. These latter effects stem from a heretofore unexpected function of the classical "nuclear" sex steroid receptors outside the nucleus and result from activation of a Src/Shc/extracellular signal-regulated kinase signal transduction pathway probably within preassembled scaffolds called caveolae. Strikingly, estrogen receptor (ER) alpha or beta or the androgen receptor can transmit anti-apoptotic signals with similar efficiency, irrespective of whether the ligand is an estrogen or an androgen. More importantly, these nongenotropic, sex-nonspecific actions are mediated by the ligand-binding domain of the receptor and can be functionally dissociated from transcriptional activity with synthetic ligands. Taken together, these lines of evidence strongly suggest that

  5. Biochemical Bone Turnover Markers and Osteoporosis in Older Men: Where Are We?

    Pawel Szulc


    Full Text Available In men aged less than 60, the association of serum and urinary levels of biochemical bone turnover markers (BTMs and bone mineral density (BMD is weak or not significant. After this age, higher BTM levels are correlated weakly, but significantly, with lower BMD and faster bone loss. Limited data from the cohort studies suggest that BTM measurement does not improve the prediction of fragility fractures in older men in comparison with age, BMD, history of falls and fragility fractures. Testosterone replacement therapy (TRT decreases bone resorption. During TRT, bone formation markers slightly increase (direct effect on osteoblasts, then decrease (slowdown of bone turnover. Bisphosphonates (alendronate, risedronate, ibandronate, zoledronate induce a rapid decrease in bone resorption followed by a milder decrease in bone formation. In men receiving antiresorptive therapy for prostate cancer, zoledronate, denosumab and toremifene decrease significantly levels of bone resorption and bone formation markers. Teriparatide induced a rapid increase in serum concentrations of bone formation markers followed by an increase in bone resorption. We need more studies on the utility of BTM measurement for the improvement of the persistence and adherence to the anti-osteoporotic treatment in men.

  6. Interstitial fluid flow in canaliculi as a mechanical stimulus for cancellous bone remodeling: in silico validation.

    Kameo, Yoshitaka; Adachi, Taiji


    Cancellous bone has a dynamic 3-dimensional architecture of trabeculae, the arrangement of which is continually reorganized via bone remodeling to adapt to the mechanical environment. Osteocytes are currently believed to be the major mechanosensory cells and to regulate osteoclastic bone resorption and osteoblastic bone formation in response to mechanical stimuli. We previously developed a mathematical model of trabecular bone remodeling incorporating the possible mechanisms of cellular mechanosensing and intercellular communication in which we assumed that interstitial fluid flow activates the osteocytes to regulate bone remodeling. While the proposed model has been validated by the simulation of remodeling of a single trabecula, it remains unclear whether it can successfully represent in silico the functional adaptation of cancellous bone with its multiple trabeculae. In the present study, we demonstrated the response of cancellous bone morphology to uniaxial or bending loads using a combination of our remodeling model with the voxel finite element method. In this simulation, cancellous bone with randomly arranged trabeculae remodeled to form a well-organized architecture oriented parallel to the direction of loading, in agreement with the previous simulation results and experimental findings. These results suggested that our mathematical model for trabecular bone remodeling enables us to predict the reorganization of cancellous bone architecture from cellular activities. Furthermore, our remodeling model can represent the phenomenological law of bone transformation toward a locally uniform state of stress or strain at the trabecular level.

  7. Bone health in adults treated with endocrine therapy for early breast or prostate cancer.

    Van Poznak, Catherine H


    Bone is a hormonally responsive organ. Sex hormones and calcium regulating hormones, including parathyroid hormone, 1-25 dihydroxy vitamin D, and calcitonin, have effects on bone resorption and bone deposition. These hormones affect both bone quality and bone quantity. The sex hormone estrogen inhibits bone resorption, and estrogen therapy has been developed to prevent and treat osteoporosis. Androgens are an important source of estrogen through the action of the enzyme aromatase and may themselves stimulate bone formation. Hence, the sex steroids play a role in bone metabolism. Breast cancer and prostate cancer are frequently hormonally responsive and may be treated with antiestrogens or antiandrogens respectfully. In addition, chemotherapy and supportive medications may alter the patient's endocrine system. In general, the suppression of sex hormones has a predictable affect on bone health, as seen by loss of bone mineral density and increased risk of fragility fractures. The bone toxicity of cancer-directed endocrine therapy can be mitigated through screening, counseling on optimization of calcium and vitamin D intake, exercise, and other lifestyle/behavioral actions, as well as the use of medications when the fracture risk is high. Maintaining bone health in patients who are treated with endocrine therapy for breast and prostate cancer is the focus of this review.

  8. Experimentally-based multiscale model of the elastic moduli of bovine trabecular bone and its constituents

    Hamed, Elham [University of Illinois at Urbana-Champaign, Department of Mechanical Science and Engineering, 1206 West Green Street, Urbana, IL 61801 (United States); Novitskaya, Ekaterina, E-mail: [University of California, San Diego, Department of Mechanical and Aerospace Engineering, Materials Science and Engineering Program, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Li, Jun; Jasiuk, Iwona [University of Illinois at Urbana-Champaign, Department of Mechanical Science and Engineering, 1206 West Green Street, Urbana, IL 61801 (United States); McKittrick, Joanna [University of California, San Diego, Department of Mechanical and Aerospace Engineering, Materials Science and Engineering Program, 9500 Gilman Dr., La Jolla, CA 92093 (United States)


    The elastic moduli of trabecular bone were modeled using an analytical multiscale approach. Trabecular bone was represented as a porous nanocomposite material with a hierarchical structure spanning from the collagen–mineral level to the trabecular architecture level. In parallel, compression testing was done on bovine femoral trabecular bone samples in two anatomical directions, parallel to the femoral neck axis and perpendicular to it, and the measured elastic moduli were compared with the corresponding theoretical results. To gain insights on the interaction of collagen and minerals at the nanoscale, bone samples were deproteinized or demineralized. After such processing, the treated samples remained as self-standing structures and were tested in compression. Micro-computed tomography was used to characterize the hierarchical structure of these three bone types and to quantify the amount of bone porosity. The obtained experimental data served as inputs to the multiscale model and guided us to represent bone as an interpenetrating composite material. Good agreement was found between the theory and experiments for the elastic moduli of the untreated, deproteinized, and demineralized trabecular bone. - Highlights: • A multiscale model was used to predict the elastic moduli of trabecular bone. • Samples included demineralized, deproteinized and untreated bone. • The model portrays bone as a porous, interpenetrating two phase composite. • The experimental elastic moduli for trabecular bone fell between theoretical bounds.

  9. Drilling in cortical bone: a finite element model and experimental investigations.

    Lughmani, Waqas A; Bouazza-Marouf, Kaddour; Ashcroft, Ian


    Bone drilling is an essential part of many orthopaedic surgery procedures, including those for internal fixation and for attaching prosthetics. Estimation and control of bone drilling forces are critical to prevent drill-bit breakthrough, excessive heat generation, and mechanical damage to the bone. An experimental and computational study of drilling in cortical bone has been conducted. A 3D finite element (FE) model for prediction of thrust forces experienced during bone drilling has been developed. The model incorporates the dynamic characteristics involved in the process along with geometrical considerations. An elastic-plastic material model is used to predict the behaviour of cortical bone during drilling. The average critical thrust forces and torques obtained using FE analysis are found to be in good agreement with the experimental results.

  10. The Application of Bone Marrow Transplantation to the Treatment of Genetic Diseases

    Parkman, Robertson


    Genetic diseases can be treated by transplantation of either normal allogeneic bone marrow or, potentially, autologous bone marrow into which the normal gene has been inserted in vitro (gene therapy). Histocompatible allogeneic bone marrow transplantation is used for the treatment of genetic diseases whose clinical expression is restricted to lymphoid or hematopoietic cells. The therapeutic role of bone marrow transplantation in the treatment of generalized genetic diseases, especially those affecting the central nervous system, is under investigation. The response of a generalized genetic disease to allogeneic bone marrow transplantation may be predicted by experiments in vitro. Gene therapy can be used only when the gene responsible for the disease has been characterized. Success of gene therapy for a specific genetic disease may be predicted by its clinical response to allogeneic bone marrow transplantation.

  11. Computerized geometric features of carpal bone for bone age estimation

    Chi-Wen Hsieh; Tai-Lang Jong; Yi-Hong Chou; Chui-Mei Tiu


    Background Bone age development is one of the significant indicators depicting the growth status of children.However, bone age assessment is an heuristic and tedious work for pediatricians. We developed a computerized bone age estimation system based on the analysis of geometric features of carpal bones.Methods The geometric features of carpals were extracted and analyzed to judge the bone age of children by computerized shape and area description. Four classifiers, linear, nearest neighbor, back-propagation neural network,and radial basis function neural network, were adopted to categorize bone age. Principal component and discriminate analyses were employed to improve assorting accuracy.Results The hand X-ray films of 465 boys and 444 girls served as our database. The features were extracted from carpal bone images, including shape, area, and sequence. The proposed normalization area ratio method was effective in bone age classification by simulation. Besides, features statistics showed similar results between the standard of the Greulich and Pyle atlas and our database.Conclusions The bone area has a higher discriminating power to judge bone age. The ossification sequence of trapezium and trapezoid bones between Taiwanese and the atlas of the GP method is quite different. These results also indicate that carpal bone assessment with classification of neural networks can be correct and practical.

  12. Vitamin D, Calcium, and Bone Health

    ... in Balance › Vitamin D, Calcium, and Bone Health Vitamin D, Calcium, and Bone Health March 2012 Download ... also helps keep your bones strong. Why are vitamin D and calcium important to bone health? Vitamin ...

  13. Vitamin D, Calcium, and Bone Health

    ... Bone Health Featured Resource Find an Endocrinologist Search Vitamin D, Calcium, and Bone Health March 2012 Download ... also helps keep your bones strong. Why are vitamin D and calcium important to bone health? Vitamin ...

  14. Bone X-Ray (Radiography)

    Full Text Available ... little information about muscles, tendons or joints. An MRI may be more useful in identifying bone and ... bones and the spinal cord can be evaluated). MRI can also detect subtle or occult fractures or ...

  15. Bone X-Ray (Radiography)

    Full Text Available ... reductions. look for injury, infection, arthritis , abnormal bone growths and bony changes seen in metabolic conditions. assist ... of the unaffected limb, or of a child's growth plate (where new bone is forming), for comparison ...

  16. Exercise, lifestyle, and your bones

    Osteoporosis - exercise; Low bone density - exercise; Osteopenia - exercise ... your bones strong and lower your risk of osteoporosis and fractures as you get older. Before you begin an exercise program, talk with your health care provider if: ...

  17. Bone X-Ray (Radiography)

    Full Text Available ... the limitations of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) ... diagnosis and disease management. top of page How is the procedure performed? The technologist, an individual specially ...

  18. Vitamin A and Bone Health

    ... supported by your browser. Home Bone Basics Nutrition Vitamin A and Bone Health Publication available in: PDF ( ... Find More Information? For Your Information What Is Vitamin A? Vitamin A is a family of compounds ...

  19. Bone X-Ray (Radiography)

    Full Text Available ... Us News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses ... assess trauma patients in emergency departments. A CT scan can image complicated fractures, subtle fractures or dislocations. ...

  20. Bone X-Ray (Radiography)

    Full Text Available ... produce pictures of any bone in the body. It is commonly used to diagnose fractured bones or ... pass through most objects, including the body. Once it is carefully aimed at the part of the ...

  1. Bone X-Ray (Radiography)

    Full Text Available ... your doctor to view and assess bone fractures, injuries and joint abnormalities. This exam requires little to ... fusion, joint replacement and fracture reductions. look for injury, infection, arthritis , abnormal bone growths and bony changes ...

  2. Marijuana May Blunt Bone Health

    ... page: Marijuana May Blunt Bone Health Study finds heavy users ... 19, 2016 WEDNESDAY, Oct. 19, 2016 (HealthDay News) -- Marijuana may be bad to the bone, a new ...

  3. Breast Cancer and Bone Loss

    ... Menopause Map Featured Resource Find an Endocrinologist Search Breast Cancer and Bone Loss July 2010 Download PDFs English ... G. Komen Foundation What is the link between breast cancer and bone loss? Certain treatments for breast cancer ...

  4. Nanomaterials promise better bone repair

    Qifei Wang


    Full Text Available Nanomaterials mimicking the nano-features of bones and offering unique smart functions are promising for better bone fracture repair. This review provides an overview of the current state-of-the-art research in developing and using nanomaterials for better bone fracture repair. This review begins with a brief introduction of bone fracture repair processes, then discusses the importance of vascularization, the role of growth factors in bone fracture repair, and the failure of bone fracture repair. Next, the review discusses the applications of nanomaterials for bone fracture repair, with a focus on the recent breakthroughs such as nanomaterials leading to precise immobilization of growth factors at the molecular level, promoting vascularization without the use of growth factors, and re-loading therapeutic agents after implantation. The review concludes with perspectives on challenges and future directions for developing nanomaterials for improved bone fracture repair.

  5. Bone X-Ray (Radiography)

    Full Text Available ... produce pictures of any bone in the body. It is commonly used to diagnose fractured bones or ... pass through most objects, including the body. Once it is carefully aimed at the part of the ...

  6. Implant fixation by bone ingrowth.

    Kienapfel, H; Sprey, C; Wilke, A; Griss, P


    The term osseointegration referred originally to an intimate contact of bone tissue with the surface of a titanium implant; the term bone ingrowth refers to bone formation within an irregular (beads, wire mesh, casting voids, cut grooves) surface of an implant. The section dealing with the historical background describes the development of macroporous, microporous, and textured surfaces with an emphasis on the evolution of porous and textured metal surfaces. The principal requirements for osseointegration and bone ingrowth are systematically reviewed as follows: i) the physiology of osseointegration and bone ingrowth, including biomaterial biocompatibility with respect to cellular and matrix response at the interface; ii) the implant surface geometry characteristics; iii) implant micromotion and fixation modes; and iv) the implant-bone interface distances. Based on current methods of bone ingrowth assessment, this article comparatively reviews and discusses the results of experimental studies with the objective of determining local and systemic factors that enhance bone ingrowth fixation.

  7. Bone X-Ray (Radiography)

    Full Text Available ... your doctor to view and assess bone fractures, injuries and joint abnormalities. This exam requires little to ... fusion, joint replacement and fracture reductions. look for injury, infection, arthritis , abnormal bone growths and bony changes ...

  8. Mechanobiological simulations of peri-acetabular bone ingrowth: a comparative analysis of cell-phenotype specific and phenomenological algorithms.

    Mukherjee, Kaushik; Gupta, Sanjay


    Several mechanobiology algorithms have been employed to simulate bone ingrowth around porous coated implants. However, there is a scarcity of quantitative comparison between the efficacies of commonly used mechanoregulatory algorithms. The objectives of this study are: (1) to predict peri-acetabular bone ingrowth using cell-phenotype specific algorithm and to compare these predictions with those obtained using phenomenological algorithm and (2) to investigate the influences of cellular parameters on bone ingrowth. The variation in host bone material property and interfacial micromotion of the implanted pelvis were mapped onto the microscale model of implant-bone interface. An overall variation of 17-88 % in peri-acetabular bone ingrowth was observed. Despite differences in predicted tissue differentiation patterns during the initial period, both the algorithms predicted similar spatial distribution of neo-tissue layer, after attainment of equilibrium. Results indicated that phenomenological algorithm, being computationally faster than the cell-phenotype specific algorithm, might be used to predict peri-prosthetic bone ingrowth. The cell-phenotype specific algorithm, however, was found to be useful in numerically investigating the influence of alterations in cellular activities on bone ingrowth, owing to biologically related factors. Amongst the host of cellular activities, matrix production rate of bone tissue was found to have predominant influence on peri-acetabular bone ingrowth.

  9. Adult stem cells in the use of jaw bone regeneration: current and prospective research.

    Zigdon-Giladi, Hadar; Khoury, Nizar; Evron, Ayelet


    Concomitant to the increased use of dental implants to replace lost dentition, there is a growing need to regenerate atrophic jaw bone to allow dental implant placement. Current surgical techniques for jaw bone augmentation share several limitations, such as operator sensitivity and relatively low predictability and high morbidity rates. Therefore, alternative treatment approaches have been developed in the field of tissue engineering. Bone tissue engineering integrates the use of different scaffolds, growth factors, and stem cells. This method aims to induce bone augmentation of large bone defects by mimicking biologic processes that occur during embryogenesis. This review will present available sources for adult stem cells, the rationale for using stem cells for bone regeneration, and recent studies that use mesenchymal stem cells (MSC) and endothelial progenitor cells (EPC) to induce bone augmentation.

  10. Bone density does not reflect mechanical properties in early-stage arthrosis

    Ding, Ming; Danielsen, CC; Hvid, I


    : medial arthrosis, lateral control, normal medial and normal lateral controls. The specimens were tested in compression to determine mechanical properties and then physical/compositional properties. Compared to the normal medial control, we found reductions in ultimate stress, Young's modulus, and failure...... cancellous bone and the 3 controls. None of the mechanical properties of arthrotic cancellous bone could be predicted by the physical/compositional properties measured. The increase in bone tissue in early-stage arthrotic cancellous bone did not make up for the loss of mechanical properties, which suggests...... energy, and an increase in ultimate strain of arthrotic cancellous bone. Bone volume fraction, apparent density, apparent ash density, and collagen density were higher in cancellous bone with arthrosis, but no differences were found in tissue density, mineral and collagen concentrations between arthrotic...

  11. Bone healing around nanocrystalline hydroxyapatite, deproteinized bovine bone mineral, biphasic calcium phosphate, and autogenous bone in mandibular bone defects

    Broggini, Nina; Bosshardt, Dieter D; Jensen, Simon S


    The individual healing profile of a given bone substitute with respect to osteogenic potential and substitution rate must be considered when selecting adjunctive grafting materials for bone regeneration procedures. In this study, standardized mandibular defects in minipigs were filled with nanocr......The individual healing profile of a given bone substitute with respect to osteogenic potential and substitution rate must be considered when selecting adjunctive grafting materials for bone regeneration procedures. In this study, standardized mandibular defects in minipigs were filled...

  12. Chemical makeup of microdamaged bone differs from undamaged bone.

    Ruppel, Meghan E; Burr, David B; Miller, Lisa M


    Microdamage naturally occurs in bone tissue as a result of cyclic loading placed on the body from normal daily activities. While it is usually repaired through the bone turnover process, accumulation of microdamage may result in reduced bone quality and increased fracture risk. It is unclear whether certain areas of bone are more susceptible to microdamage than others due to compositional differences. This study examines whether areas of microdamaged bone are chemically different than undamaged areas of bone. Bone samples (L3 vertebrae) were harvested from 15 dogs. Samples were stained with basic fuchsin, embedded in poly-methylmethacrylate, and cut into 5-microm-thick sections. Fuchsin staining was used to identify regions of microdamage, and synchrotron infrared microspectroscopic imaging was used to determine the local bone composition. Results showed that microdamaged areas of bone were chemically different than the surrounding undamaged areas. Specifically, the mineral stoichiometry was altered in microdamaged bone, where the carbonate/protein ratio and carbonate/phosphate ratio were significantly lower in areas of microdamage, and the acid phosphate content was higher. No differences were observed in tissue mineralization (phosphate/protein ratio) or crystallinity between the microdamaged and undamaged bone, indicating that the microdamaged regions of bone were not over-mineralized. The collagen cross-linking structure was also significantly different in microdamaged areas of bone, consistent with ruptured cross-links and reduced fracture resistance. All differences in composition had well-defined boundaries in the microcrack region, strongly suggesting that they occurred after microcrack formation. Even so, because microdamage results in an altered bone composition, an accumulation of microdamage might result in a long-term reduction in bone quality.

  13. Bone X-Ray (Radiography)

    Full Text Available ... Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small ... X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive medical ...

  14. Fibromatosis of bone in children

    Capusten, B.M.; Azouz, E.M.; Rosman, M.A.


    Radiographs, computed tomograms, and radionuclide bone scans were obtained preoperatively in three children with fibromatosis involving the bones and soft tissues of the extremities. Two of the children had identical scar-like bone lesions of the proximal tibia, which, to the author's knowledge, have not been reported before in this disease. The lesions recurred in two children.

  15. Playing with bone and fat

    Gimble, Jeffrey M.; Zvonic, Sanjin; Floyd, Z. Elisabeth


    The relationship between bone and fat formation within the bone marrow microenvironment is complex and remains an area of active investigation. Classical in vitro and in vivo studies strongly support an inverse relationship between the commitment of bone marrow-derived mesenchymal stem cells...

  16. Bone regeneration during distraction osteogenesis

    Amir, L.R.; Everts, V.; Bronckers, A.L.J.J.


    Bone has the capacity to regenerate in response to injury. During distraction osteogenesis, the renewal of bone is enhanced by gradual stretching of the soft connec- tive tissues in the gap area between two separated bone segments. This procedure has received much clinical atten- tion as a way to co

  17. Gout: Value of bone scanning

    Oliva, J.P.; Cardenas, R.; Bell, L.; Gonzalez Griego, J.


    11 male patients with gout were studied by means of bone scintigraphy with /sup 99m/TcMDP. This diagnostic method rendered possible the diagnosis of clinically or roentgenologically occult bone involvement. Bone scintigraphy may be useful procedure to monitor therapy of gout.

  18. Healthy Bones at Every Age

    .org Healthy Bones at Every Age Page ( 1 ) Bone health is important at every age and stage of life. The skeleton is our body’s storage bank for ... are many things we can do at every age to keep our bones strong and healthy. Peak ...

  19. Breast Cancer and Bone Loss

    ... Balance › Breast Cancer and Bone Loss Fact Sheet Breast Cancer and Bone Loss July, 2010 Download PDFs English ... JoAnn Pinkerton, MD What is the link between breast cancer and bone loss? Certain treatments for breast cancer ...

  20. Bone Marrow Matters

    Dunne, Mark; Maklad, Rania; Heaney, Emma


    As a final-year student teacher specialising in primary science, Emma Heaney faced the challenge of having to plan, organise, and conduct a small-scale, classroom-based research project. She had to teach about bones in the final block practice session and thought it would be a good idea to bring in some biological specimens obtained from the local…

  1. Bones of the Earth

    Correa, Jose Miguel


    The film "Bones of the Earth" (Riglin, Cunninham & Correa, 2014) is an experience in collective inquiry and visual creation based on arts-based research. Starting from the meeting of different subjectivities and through dialogue, planning, shooting and editing, an audiovisual text that reconstructs a reflexive process of collective…

  2. Are Bones Alive?

    Caravita, Silvia; Falchetti, Elisabetta


    Many studies have investigated the classification of living things. Our study deals with a different problem: the attribution of life to one component of a living organism, specifically the bones. The task involves not only specifying what we mean by "alive", but also requires "informed thinking" leading to an understanding of…

  3. Bone island and leprosy

    Carpintero, P.; Garcia-Frasquet, A. [Department of Orthopaedic Surgery, Cordoba University, Medical School, Reina Sofia University Hospital, Cordoba (Spain); Tarradas, E. [Department of Imaging, Cordoba University, Medical School, Cordoba (Spain); Logrono, C. [Department of Dermatology, Reina Sofia University Hospital, Cordoba (Spain); Carrascal, A. [Department of Radiology, Infanta Elena Hospital, Huelva (Spain); Carreto, A. [Department of Radiology, Reina Sofia University Hospital, Cordoba (Spain)


    Objective. To determine the incidence of bone islands in leprosy patients. Design. X-rays of feet and hands of patients with Hansen`s disease (leprosy) were reviewed retrospectively. A second group of related age- and sex-matched patients who did not have Hansen`s disease was used for control purposes. Controls had undergone hand or foot X-rays during diagnosis of other pathologies. The patients with Hansen`s disease were compared with the control group, and were also analyzed as subgroups with different types of leprosy. The results were subjected to statistical analysis. Patients. Ninety patients with Hansen`s disease were randomly selected for this study. Patients who had had ulcers on hands or feet were excluded from the study. Results and conclusions. Bone islands were demonstrated in 20 patients with Hansen`s disease; no bone islands were observed in the controls. This was statistically significant (P<0.01). Bone islands were only seen in patients with lepromatous leprosy and borderline types but were not demonstrated in patients with tuberculoid leprosy. There was also a statistically significant relationship for a disease duration of 15 years or more. The cause of this raised incidence of enostosis in leprosy patients is not clear, but there may be a genetic predisposition in patients with leprosy, or it may be a side effect of leprosy, especially the lepromatous form. (orig.) With 4 figs., 2 tabs., 9 refs.

  4. Bone scintigraphy in psoriasis

    Hahn, K.; Thiers, G.; Eissner, D.; Holzmann, H.


    Since 1973 bone scintigraphy using sup(99m)Tc-phosphate-complexes was carried out in 382 patients with psoriasis. For comparison with the results of nuclear medicine, roentgenologic and clinical findings a group af 121 patients with psoriasis aged between 11 and 74 years was compared to a group of 42 patients aged between 20 and 49 years without roentgenologic and clinical signs of psoriasis arthritis. We found by means of isotope investigation that an essentially greater part of the bones adjacent to the joints was involved than was expected according to X-ray and clinical findings. In addition, in 205 patients with psoriasis whole-body scintigraphy, using sup(99m)Tc-MDP, was carried out since 1977/78. In 17 patients we found an increased accumulation of activity in the region of extraarticular structures of the skull as well as of the skeletal thorax. According to these results we conclude that in addition to the clinically and roentgenologically defined psoriatic arthritis in patients with psoriasis an osteopathy may exist, which can only be demonstrated by skeletal scintigraphy and which is localized in bones adjacent to the joints but can also be demonstrated in the region of extraarticular bones.

  5. Performing a bone gammagraphy

    Marta Corbacho Martín


    Full Text Available In the Nuclear Medicine service multitude of diagnostic tests are performed, being one of them the bone gammagraphy that acquires a very important role both by the high demand for this test, because of its simplicity and in the realization by its high sensitivity.The bone gammagraphy as opposed to conventional radiological techniques not only provides an anatomical view, but also adds a functional imaging that provides information on bone metabolism. Addition is not restricted to malignant bone disease (primary or metastatic tumors, but it is very useful for most benign osteoarticular processes. It would be interesting to bring to the nursing knowledge of this test for a proper implementation of it, because it is a very defendant but unknown to many nurses, thus going to unify the standards of performance. The need for nursing professionals during the performance of this technique because the patient remains in these units for quite some time, being responsible for the care while they remain in the unit, taking their physical, psychological and social. We also have a key role in providing information and reassurance when the patient arrives at the unit and it is therefore necessary to have information and training necessary to answer these key questions.

  6. Temporal bone imaging

    Lemmerling, Marc [Algemeen Ziekenhuis Sint-Lucas, Gent (Belgium). Dept. of Radiology; Foer, Bert de (ed.) [Sint-Augustinus Ziekenhuis, Wilrijk (Belgium). Dept. of Radiology


    Complete overview of imaging of normal and diseased temporal bone. Straightforward structure to facilitate learning. Detailed consideration of newer imaging techniques, including the hot topic of diffusion-weighted imaging. Includes a chapter on anatomy that will be of great help to the novice interpreter of imaging findings. Excellent illustrations throughout. This book provides a complete overview of imaging of normal and diseased temporal bone. After description of indications for imaging and the cross-sectional imaging anatomy of the area, subsequent chapters address the various diseases and conditions that affect the temporal bone and are likely to be encountered regularly in clinical practice. The classic imaging methods are described and discussed in detail, and individual chapters are included on newer techniques such as functional imaging and diffusion-weighted imaging. There is also a strong focus on postoperative imaging. Throughout, imaging findings are documented with the aid of numerous informative, high-quality illustrations. Temporal Bone Imaging, with its straightforward structure based essentially on topography, will prove of immense value in daily practice.

  7. Bone scintigraphy in chondroblastoma

    Humphry, A.; Gilday, D.L.; Brown, R.G.


    Scintigraphy in 3 patients with chondroblastoma showed that the tumors were hyperemic and avidly accumulated the radionuclide. These changes were also present in adjacent normal bone, but to a lesser degree. This suggests that radionuclide uptake in chondroblastoma is a function of the blood supply to the tumor rather than primary matrix extraction.

  8. Chondroblastoma of temporal bone

    Tanohta, K.; Noda, M.; Katoh, H.; Okazaki, A.; Sugiyama, S.; Maehara, T.; Onishi, S.; Tanida, T.


    The case of a 55-year-old female with chondroblastoma arising from the left temporal bone is presented. Although 10 cases of temporal chondroblastoma have been reported, this is the first in which plain radiography, pluridirectional tomography, computed tomography (CT) and angiography were performed. We discuss the clinical and radiological aspects of this rare tumor.

  9. Management of Bone Sarcoma.

    Gutowski, Christina J; Basu-Mallick, Atrayee; Abraham, John A


    Treatment of bone sarcoma requires careful planning and involvement of an experienced multidisciplinary team. Significant advancements in systemic therapy, radiation, and surgery in recent years have contributed to improved functional and survival outcomes for patients with these difficult tumors, and emerging technologies hold promise for further advancement. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Surgery for Bone Cancer

    ... be amputated mid-thigh, the lower leg and foot can be rotated and attached to the thigh bone. The old ankle joint becomes the new knee joint. This surgery is called rotationplasty (roh-TAY-shun-PLAS-tee). A prosthesis is used to make the new leg the ...

  11. Bone vascularization: a way to study bone microarchitecture?

    Blery, P.; Autrusseau, F.; Crauste, E.; Freuchet, Erwan; Weiss, Pierre; Guédon, J.-P.; Amouriq, Y.


    Trabecular bone and its microarchitecture are of prime importance for health. Studying vascularization helps to better know the relationship between bone and vascular microarchitecture. This research is an animal study (nine Lewis rats), based on the perfusion of vascularization by a contrast agent (a mixture of 50% barium sulfate with 1.5% of gelatin) before euthanasia. The samples were studied by micro CT at a resolution of 9μm. Softwares were used to show 3D volumes of bone and vessels, to calculate bone and vessels microarchitecture parameters. This study aims to understand simultaneously the bone microarchitecture and its vascular microarchitecture.

  12. Dual-energy X-ray absorptiometry assessment of postmenopausal women with vertebral fragility fracture and its relationship with serum bone turnover and bone metabolism indexes

    Wei Li


    Objective:To study the relationship between dual-energy X-ray bone mass density measurement results of postmenopausal women with vertebral fragility fracture and the serum bone turnover as well as bone metabolism indexes.Methods:A total of 158 postmenopausal women who received DXA tests in our hospital between April 2012 and December 2015 were selected, were divided into osteoporosis group, osteopenia group and normal bone mass group according to the bone mineral density measurement results, and were divided into no vertebral fracture group, thoracic vertebral fracture group, lumbar vertebral fracture group and thoracolumbar vertebral fracture group according to the thoracolumbar vertebral anterioposterior and lateral film results, and serum was collected to determine bone turnover and bone metabolism indexes.Results: Femoral neck, hip and lumbar vertebra L1-4 bone mineral density of subjects with thoracic vertebral fracture and thoracolumbar vertebral fracture were significantly lower than those of the subjects without vertebral fracture, and femoral neck, hip and lumbar vertebra L1-4 bone mineral density of subjects with lumbar vertebral fracture were not significantly different from those of the subjects without vertebral fracture; serum PINP, ICTP, CTX, TRACP-5b, MMP13, OPG and OPN content of osteoporosis group and osteopenia group were significantly higher than those of normal bone mass group while 25(OH)D, BGP and ON content were significantly lower than those of normal bone mass group; serum PINP, ICTP, CTX, TRACP-5b, MMP13, OPG and OPN content of osteoporosis group were significantly higher than those of osteopenia group while 25(OH)D, BGP and ON content were significantly lower than those of osteopenia group.Conclusions: Dual-energy X-ray bone densitometry has clear prediction value for postmenopausal women with thoracic vertebral fragility fracture and thoracolumbar vertebral fragility fracture, and is closely related to the changes of bone turnover and

  13. Monetite granules versus particulate autologous bone in bone regeneration.

    Torres, Jesús; Tamimi, Iskandar; Cabrejos-Azama, Jatsue; Tresguerres, Isabel; Alkhraisat, Mohammad; López-Cabarcos, Enrique; Hernández, Gonzalo; Tamimi, Faleh


    The aim of this study was to test bone tissue response to monetite granules in comparison with intramembranous autologous bone graft in a rabbit calvaria critical size defect model. Novel monetite granules were synthesized by thermal conversion of set brushite cement. Eight female New Zealand rabbits were used for this study. Two identical 10mm diameter bicortical cranial defects were created in each animal. One of the defects was grafted with monetite granules while the contralateral was grafted with granules of intramembranous autologous bone as control. Animals were sacrificed 8 weeks after surgery and biopsies were taken for histological and histomorphometrical evaluation under light microscopy. Wilcoxon test was used for statistical analysis. The bone defects treated with either autologous bone or monetite granules were able to heal within the study period. Upon histological observation the defects treated with autologous bone granules resembled the adjacent intact calvaria, whereas the defects treated with monetite showed a high infiltration of new bone and only 13.4±8.4% of remaining granules. The percentage of bone volume in the defects of the control group (71±9%) was 16% higher than in the study group (55±10%) (p0.05). The amount of augmented mineralized tissue in the bone defects obtained with monetite granules was not significantly different from that obtained with autologous bone. This study confirms the potential of monetite based biomaterials as an alternative to autologous bone graft. Copyright © 2015 Elsevier GmbH. All rights reserved.

  14. Bone marrow oedema associated with benign and malignant bone tumours

    James, S.L.J. [Department of Radiology, Royal Orthopaedic Hospital, Birmingham, B31 2AP (United Kingdom)], E-mail:; Panicek, D.M. [Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021 (United States); Davies, A.M. [Department of Radiology, Royal Orthopaedic Hospital, Birmingham, B31 2AP (United Kingdom)


    Bone marrow oedema is associated with a wide variety of pathological processes including both benign and malignant bone tumours. This imaging finding in relation to intraosseous tumours can aid in providing a more focused differential diagnosis. In this review, we will discuss the MR imaging of bone marrow oedema surrounding intraosseous neoplasms. The different pulse sequences used in differentiating underlying tumour from surrounding oedema are discussed along with the role of dynamic contrast enhanced MRI. Benign lesions commonly associated with bone marrow oedema include osteoid osteoma, osteoblastoma, chondroblastoma and Langerhan's cell histiocytosis. Metastases and malignant primary bone tumours such as osteosarcoma, Ewing's sarcoma and chondrosarcoma may also be surrounded by bone marrow oedema. The imaging findings of these conditions are reviewed and illustrated. Finally, the importance of bone marrow oedema in assessment of post chemotherapeutic response is addressed.

  15. Preservation of ancient DNA in thermally damaged archaeological bone

    Ottoni, Claudio; Koon, Hannah E. C.; Collins, Matthew J.; Penkman, Kirsty E. H.; Rickards, Olga; Craig, Oliver E.


    Evolutionary biologists are increasingly relying on ancient DNA from archaeological animal bones to study processes such as domestication and population dispersals. As many animal bones found on archaeological sites are likely to have been cooked, the potential for DNA preservation must be carefully considered to maximise the chance of amplification success. Here, we assess the preservation of mitochondrial DNA in a medieval cattle bone assemblage from Coppergate, York, UK. These bones have variable degrees of thermal alterations to bone collagen fibrils, indicative of cooking. Our results show that DNA preservation is not reliant on the presence of intact collagen fibrils. In fact, a greater number of template molecules could be extracted from bones with damaged collagen. We conclude that moderate heating of bone may enhance the retention of DNA fragments. Our results also indicate that ancient DNA preservation is highly variable, even within a relatively recent assemblage from contexts conducive to organic preservation, and that diagenetic parameters based on protein diagenesis are not always useful for predicting ancient DNA survival.

  16. Changes in chemical composition of bone matrix in ovariectomized (OVX) rats detected by Raman spectroscopy and multivariate analysis

    Oshima, Yusuke; Iimura, Tadahiro; Saitou, Takashi; Imamura, Takeshi


    Osteoporosis is a major bone disease that connotes the risk of fragility fractures resulting from alterations to bone quantity and/or quality to mechanical competence. Bone strength arises from both bone quantity and quality. Assessment of bone quality and bone quantity is important for prediction of fracture risk. In spite of the two factors contribute to maintain the bone strength, only one factor, bone mineral density is used to determine the bone strength in the current diagnosis of osteoporosis. On the other hand, there is no practical method to measure chemical composition of bone tissue including hydroxyapatite and collagen non-invasively. Raman spectroscopy is a powerful technique to analyze chemical composition and material properties of bone matrix non-invasively. Here we demonstrated Raman spectroscopic analysis of the bone matrix in osteoporosis model rat. Ovariectomized (OVX) rat was made and the decalcified sections of tibias were analyzed by a Raman microscope. In the results, Raman bands of typical collagen appeared in the obtained spectra. Although the typical mineral bands at 960 cm-1 (Phosphate) was absent due to decalcified processing, we found that Raman peak intensities of amide I and C-C stretching bands were significantly different between OVX and sham-operated specimens. These differences on the Raman spectra were statistically compared by multivariate analyses, principal component analysis (PCA) and liner discrimination analysis (LDA). Our analyses suggest that amide I and C-C stretching bands can be related to stability of bone matrix which reflects bone quality.

  17. Evolutionary patterns of bone histology and bone compactness in xenarthran mammal long bones.

    Straehl, Fiona R; Scheyer, Torsten M; Forasiepi, Analía M; MacPhee, Ross D; Sánchez-Villagra, Marcelo R


    Bone microstructure reflects physiological characteristics and has been shown to contain phylogenetic and ecological signals. Although mammalian long bone histology is receiving increasing attention, systematic examination of the main clades has not yet been performed. Here we describe the long bone microstructure of Xenarthra based on thin sections representing twenty-two species. Additionally, patterns in bone compactness of humeri and femora are investigated. The primary bone tissue of xenarthran long bones is composed of a mixture of woven, parallel-fibered and lamellar bone. The vascular canals have a longitudinal, reticular or radial orientation and are mostly arranged in an irregular manner. Concentric rows of vascular canals and laminar organization of the tissue are only found in anteater bones. The long bones of adult specimens are marked by dense Haversian bone, a feature that has been noted for most groups of mammals. In the long bones of armadillos, secondary osteons have an oblique orientation within the three-dimensional bone tissue, thus resulting in their irregular shape when the bones are sectioned transversely. Secondary remodeling is generally more extensive in large taxa than in small taxa, and this could be caused by increased loading. Lines of arrested growth are assumed to be present in all specimens, but they are restricted to the outermost layer in bones of armadillos and are often masked by secondary remodeling in large taxa. Parameters of bone compactness show a pattern in the femur that separates Cingulata and Pilosa (Folivora and Vermilingua), with cingulates having a lower compactness than pilosans. In addition, cingulates show an allometric relationship between humeral and femoral bone compactness.

  18. Bone repair and stem cells.

    Ono, Noriaki; Kronenberg, Henry M


    Bones are an important component of vertebrates; they grow explosively in early life and maintain their strength throughout life. Bones also possess amazing capabilities to repair-the bone is like new without a scar after complete repair. In recent years, a substantial progress has been made in our understanding on mammalian bone stem cells. Mouse genetic models are powerful tools to understand the cell lineage, giving us better insights into stem cells that regulate bone growth, maintenance and repair. Recent findings about these stem cells raise new questions that require further investigations.

  19. Digital electronic bone growth stimulator

    Kronberg, James W. (Aiken, SC)


    A device for stimulating bone tissue by applying a low level alternating current signal directly to the patient's skin. A crystal oscillator, a binary divider chain and digital logic gates are used to generate the desired waveforms that reproduce the natural electrical characteristics found in bone tissue needed for stimulating bone growth and treating osteoporosis. The device, powered by a battery, contains a switch allowing selection of the correct waveform for bone growth stimulation or osteoporosis treatment so that, when attached to the skin of the patient using standard skin contact electrodes, the correct signal is communicated to the underlying bone structures.

  20. Digital electronic bone growth stimulator

    Kronberg, J.W.


    A device is described for stimulating bone tissue by applying a low level alternating current signal directly to the patient`s skin. A crystal oscillator, a binary divider chain and digital logic gates are used to generate the desired waveforms that reproduce the natural electrical characteristics found in bone tissue needed for stimulating bone growth and treating osteoporosis. The device, powered by a battery, contains a switch allowing selection of the correct waveform for bone growth stimulation or osteoporosis treatment so that, when attached to the skin of the patient using standard skin contact electrodes, the correct signal is communicated to the underlying bone structures. 5 figs.

  1. Bone changes in ridge split with immediate implant placement: A systematic review

    Mohamed M. Dohiem


    Conclusion: Alveolar ridge splitting might be considered a predictable approach that demonstrates a high implant survival rate, adequate horizontal bone gain and minimal postoperative complications. Weak evidence showed the effect of flap design and immediate implantation on marginal bone loss and survival rate.

  2. Function of osteocytes in bone.

    Aarden, E M; Burger, E H; Nijweide, P J


    Although the structural design of cellular bone (i.e., bone containing osteocytes that are regularly spaced throughout the bone matrix) dates back to the first occurrence of bone as a tissue in evolution, and although osteocytes represent the most abundant cell type of bone, we know as yet little about the role of the osteocyte in bone metabolism. Osteocytes descend from osteoblasts. They are formed by the incorporation of osteoblasts into the bone matrix. Osteocytes remain in contact with each other and with cells on the bone surface via gap junction-coupled cell processes passing through the matrix via small channels, the canaliculi, that connect the cell body-containing lacunae with each other and with the outside world. During differentiation from osteoblasts to mature osteocyte the cells lose a large part of their cell organelles. Their cell processes are packed with microfilaments. In this review we discuss the various theories on osteocyte function that have taken in consideration these special features of osteocytes. These are 1) osteocytes are actively involved in bone turnover; 2) the osteocyte network is through its large cell-matrix contact surface involved in ion exchange; and 3) osteocytes are the mechanosensory cells of bone and play a pivotal role in functional adaptation of bone. In our opinion, especially the last theory offers an exciting concept for which some biomechanical, biochemical, and cell biological evidence is already available and which fully warrants further investigations.

  3. Changes in bone turnover and bone loss in HIV-infected patients changing treatment to tenofovir-emtricitabine or abacavir-lamivudine.

    Hila Haskelberg

    Full Text Available BACKGROUND: Those receiving tenofovir/emtricitabine (TDF-FTC had greater bone loss compared with abacavir/lamivudine (ABC-3TC in a randomized simplification trial (STEAL study. Previous studies associated increased bone turnover and bone loss with initiation of antiretroviral treatment, however it is unclear whether change in bone mineral density (BMD was a result of specific drugs, from immune reconstitution or from suppression of HIV replication. This analysis determined predictors of BMD change in the hip and spine by dual-energy x-ray absorptiometry in virologically suppressed participants through week 96. METHODOLOGY/PRINCIPAL FINDINGS: Bone turnover markers (BTMS tested were: formation [bone alkaline phosphatase, procollagen type 1 N-terminal propeptide (P1NP]; resorption (C-terminal cross-linking telopeptide of type 1 collagen [CTx]; and bone cytokine-signalling (osteoprotegerin, RANK ligand. Independent predictors of BMD change were determined using forward, stepwise, linear regression. BTM changes and fracture risk (FRAX® at week 96 were compared by t-test. Baseline characteristics (n = 301 were: 98% male, mean age 45 years, current protease-inhibitor (PI 23%, tenofovir/abacavir-naïve 52%. Independent baseline predictors of greater hip and spine bone loss were TDF-FTC randomisation (p ≤ 0.013, lower fat mass (p-trend ≤ 0.009, lower P1NP (p = 0.015, and higher hip T score/spine BMD (p-trend ≤ 0.006. Baseline PI use was associated with greater spine bone loss (p = 0.004. TDF-FTC increased P1NP and CTx through Wk96 (p<0.01. Early changes in BTM did not predict bone loss at week 96. No significant between-group difference was found in fracture risk. CONCLUSIONS/SIGNIFICANCE: Tenofovir/emtricitabine treatment, lower bone formation and lower fat mass predicted subsequent bone loss. There was no association between TDF-FTC and fracture risk.

  4. Inducible models of bone loss.

    Doucette, Casey R; Rosen, Clifford J


    Bone is an essential organ that not only confers structural stability to the organism, but also serves as a reservoir for hematopoietic elements and is thought to affect systemic homeostasis through the release of endocrine factors as well as calcium. The loss of bone mass due to an uncoupling of bone formation and bone resorption leads to increased fragility that can result in devastating fractures. Further understanding of the effects of environmental stimuli on the development of bone disease in humans is needed, and they can be studied using animal models. Here, we present established and novel methods for the induction of bone loss in mice, including manipulation of diet and environment, administration of drugs, irradiation, and surgically induced hormone deficiency. All of these models are directly related to human cases, and thus, can be used to investigate the causes of bone loss resulting from these interventions. Copyright © 2014 John Wiley & Sons, Inc.

  5. Bone- and bone marrow scintigraphy in Gaucher disease type 1

    Mikosch, P. [Dept. of Nuclear Medicine and Endocrinology, State Hospital Klagenfurt (Austria); Dept. of Internal Medicine II, State Hospital Klagenfurt (Austria); Zitter, F. [Dept. of Internal Medicine II, State Hospital Klagenfurt (Austria); Gallowitsch, H.J.; Lind, P. [Dept. of Nuclear Medicine and Endocrinology, State Hospital Klagenfurt (Austria); Wuertz, F. [Dept. of Pathology, State Hospital Klagenfurt (Austria); Mehta, A.B.; Hughes, D.A. [Lysosomal Storage Disorder Unit, Dept. of Academic Haematology, Royal Free and Univ. Coll. Medical School, London (United Kingdom)


    Scintigraphy is a method for imaging metabolism and should be viewed as complimentary to morphological imaging. Bone and bone marrow scintigraphy can particularly contribute to the detection of focal disease in Gaucher disease. In bone crises it can discriminate within three days after pain onset between local infection and aseptic necrosis. A further advantage of bone- and bone marrow scintigraphy is the visualization of the whole skeleton within one setting. Whole body imaging for focal lesions might thus be an objective in GD, in particular in patients complaining of several painful sites. Direct imaging of bone marrow deposits in GD by MIBI scintigraphy might be of special interest in children in whom bone marrow undergoes a developmental conversion from red to yellow marrow in the ap-pendicular skeleton. MRI interpretation in young GD patients is thus difficult in order to estimate the exact amount and extent of bone marrow infiltration by Gaucher cells. 99mTc-MIBI scintigraphy with its direct visualization of lipid storage could thus add interesting additional information not shown with other methods including MRI. Although MRI is the most accepted imaging modality in assessing the skeletal status in GD, a selective use of scintigraphy for imaging bone and bone marrow may add information in the evaluation of patients with Gaucher disease.

  6. A unified theory of bone healing and nonunion: BHN theory.

    Elliott, D S; Newman, K J H; Forward, D P; Hahn, D M; Ollivere, B; Kojima, K; Handley, R; Rossiter, N D; Wixted, J J; Smith, R M; Moran, C G


    This article presents a unified clinical theory that links established facts about the physiology of bone and homeostasis, with those involved in the healing of fractures and the development of nonunion. The key to this theory is the concept that the tissue that forms in and around a fracture should be considered a specific functional entity. This 'bone-healing unit' produces a physiological response to its biological and mechanical environment, which leads to the normal healing of bone. This tissue responds to mechanical forces and functions according to Wolff's law, Perren's strain theory and Frost's concept of the "mechanostat". In response to the local mechanical environment, the bone-healing unit normally changes with time, producing different tissues that can tolerate various levels of strain. The normal result is the formation of bone that bridges the fracture - healing by callus. Nonunion occurs when the bone-healing unit fails either due to mechanical or biological problems or a combination of both. In clinical practice, the majority of nonunions are due to mechanical problems with instability, resulting in too much strain at the fracture site. In most nonunions, there is an intact bone-healing unit. We suggest that this maintains its biological potential to heal, but fails to function due to the mechanical conditions. The theory predicts the healing pattern of multifragmentary fractures and the observed morphological characteristics of different nonunions. It suggests that the majority of nonunions will heal if the correct mechanical environment is produced by surgery, without the need for biological adjuncts such as autologous bone graft. Cite this article: Bone Joint J 2016;98-B:884-91.

  7. Quantification of bone mineral density to define osteoporosis in rat.

    Srivastava, M; Mandal, S K; Sengupta, S; Arshad, M; Singh, M M


    The diagnosis of osteoporosis centers on assessment of bone mass and quality. In the absence of evidence-based guidelines to assess bone status in laboratory animals and unsuitability of use of T-/Z-scores meant for clinical application in animal studies, most investigators involved in new drug research and development employ clinical biomarkers and kits to assess bone turnover rate and portray change in bone mineral density (BMD) as percentage of increase/decrease, making comparative assessment of the effect highly impractical. This study proposes threshold boundaries of BMD (rT-score) in colony-bred Sprague-Dawley rats, distinct from those used clinically. Boundaries were obtained keeping fixed Type-I error (alpha=0.025). Femur neck was considered best for defining bone status using BMD measured by dual-energy X-ray absorptiometry. Findings demonstrate that BMD-1.96 and <-0.80 rT-score as osteopenia. Performance of boundaries to ascertain bone status was examined through simulation under different physiological/ hormonal states viz. estrogen deficiency, ageing, estrus cycle, pregnancy, and lactation. The Area Under the Receiver Operating Characteristic curve of 0.98 obtained using BMD of femur neck, being close to unity, shows excellent ability of the proposed rT-score to effectively identify osteoporosis. Further studies using certain hierarchical measures of bone quality such as histomorphometry, mechanical testing etc. could supplement these findings. Since, unlike humans, most laboratory animals including rats only exhibit osteopenia and do not fracture their bones, the proposed thresholds are intended to serve as categorical tools to define bone quality and not to predict fracture risk.

  8. Bone turnover in elderly men: relationships to change in bone mineral density

    Center Jacqueline R


    Full Text Available Abstract Background It is not clear whether bone turnover markers can be used to make inference regarding changes in bone mineral density (BMD in untreated healthy elderly men. The present study was designed to address three specific questions: (i is there a relationship between bone turnover markers and femoral neck BMD within an individual; (ii is there a relationship between baseline measurements of bone turnover markers and subsequent change in BMD; and (iii is there a relationship between changes in bone turnover markers and changes in femoral neck BMD? Methods The present study was part of the on-going Dubbo Osteoporosis Epidemiology Study, which was designed as a prospective investigation. Men who had had at least 3 sequential visits with serum samples available during follow-up were selected from the study population. Serum C-terminal telopeptide of type I collagen (sICTP, N-terminal propeptide of type I collagen (sPINP and femoral neck BMD were measured by competitive radioimmunoassays. Femoral neck bone mineral density (BMD was measured by a densitometer (GE Lunar Corp, Madison, WI. Various mixed-effects models were used to assess the association between the markers and changes in BMD. Results One hundred and one men aged 70 ± 4.1 years (mean ± SD met the criteria of selection for analysis. On average, sPINP decreased by 0.7% per year (p = 0.026, sICTP increased by 1.7% per year (p = 0.0002, and femoral neck BMD decreased by 0.4% per year (p Conclusion These results suggest that in elderly men of Caucasian background, changes in sPINP were inversely related to changes in BMD within an individual. However, neither sPINP nor sICTP was sufficiently sensitive to predict the rate of change in BMD for a group of individuals or for an individual.

  9. [Fractures of carpal bones].

    Lögters, T; Windolf, J


    Fractures of the carpal bones are uncommon. On standard radiographs fractures are often not recognized and a computed tomography (CT) scan is the diagnostic method of choice. The aim of treatment is to restore pain-free and full functioning of the hand. A distinction is made between stable and unstable carpal fractures. Stable non-displaced fractures can be treated conservatively. Unstable and displaced fractures have an increased risk of arthritis and non-union and should be stabilized by screws or k‑wires. If treated adequately, fractures of the carpal bones have a good prognosis. Unstable and dislocated fractures have an increased risk for non-union. The subsequent development of carpal collapse with arthrosis is a severe consequence of non-union, which has a heterogeneous prognosis.

  10. Temporal Bone Localized Chondroblastoma.

    Demirhan, Hasan; Acioğlu, Engin; Durna, Yusuf Muhammed; Yiğit, Özgür; Bozkurt, Erol Rüştü; Karagöz, Yeşim


    Chondroblastoma is a highly destructive tumor originating from immature cartilage cells. Although chondroblastoma is defined as a benign tumor, it may exhibit malign tumor behaviors such as invasion or metastasis on neighboring structures. Magnetic resonance (MR) image is a solid mass lesion, which included heterogeneous hypointense in T2A and heterogeneous minimal hyperintense in T1A with destructive expansile characteristics and millimetric calcifications. Temporal bone chondroblastomas may complicate the diagnosis because of their different histologic characteristics. Microscopically, chondroblastic cell nests and calcification of locally "chicken wire" type around the cells are observed. These tumors secrete s-100 and vimentin and are used for differential diagnosis. In this study, a temporal bone localized chondroblastoma case is presented.

  11. Virtual temporal bone

    QIU Ming-guo; ZHANG Shao-xiang; LIU Zheng-jin; TAN Li-wen; WANG Yu-su; DENG Jun-hui; TANG Ze-sheng


    Objective:To provide the virtual model of the temporal bone for improving 3-dimension (3D) visualization of the inner ear. Methods: Plastination technique was used to make equidistant serial thin sections 1.0 mm in thickness. On SGI workstation, a Contours+Marching Cubes algorithm was selected to reconstruct the temporal bone and intratemporal structures in 3D, then to view the middle ear, inner ear, and intratemporal structures which imitate the scenes observed by the traditional endoscopy. Results: The virtual model of the temporal bone was successfully constructed, with all reconstructed structures being represented individually or jointly and being rotated continuously in any plane. Virtual endoscopy improved 3D visualization of the middle ear, inner ear, and intratemporal structures. Conclusion: The reconstructed model can be used for the medical students to rehearse or review the surgeries on this part and for the surgeons to develop a new approach for operation. Virtual otoscopy stands as a promising new visualization technique for elucidating the structure and relation of the middle ear, inner ear, and intratemporal structures.

  12. Regional variability in secondary remodeling within long bone cortices of catarrhine primates: the influence of bone growth history.

    McFarlin, Shannon C; Terranova, Carl J; Zihlman, Adrienne L; Enlow, Donald H; Bromage, Timothy G


    Secondary intracortical remodeling of bone varies considerably among and within vertebrate skeletons. Although prior research has shed important light on its biomechanical significance, factors accounting for this variability remain poorly understood. We examined regional patterning of secondary osteonal bone in an ontogenetic series of wild-collected primates, at the midshaft femur and humerus of Chlorocebus (Cercopithecus) aethiops (n = 32) and Hylobates lar (n = 28), and the midshaft femur of Pan troglodytes (n = 12). Our major objectives were: 1) to determine whether secondary osteonal bone exhibits significant regional patterning across inner, mid-cortical and outer circumferential cortical rings within cross-sections; and if so, 2) to consider the manner in which this regional patterning may reflect the influence of relative tissue age and other circumstances of bone growth. Using same field-of-view images of 100-microm-thick cross-sections acquired in brightfield and circularly polarized light microscopy, we quantified the percent area of secondary osteonal bone (%HAV) for whole cross-sections and across the three circumferential rings within cross-sections. We expected bone areas with inner and middle rings to exhibit higher %HAV than the outer cortical ring within cross-sections, the latter comprising tissues of more recent depositional history. Observations of primary bone microstructural development provided an additional context in which to evaluate regional patterning of intracortical remodeling. Results demonstrated significant regional variability in %HAV within all skeletal sites. As predicted,%HAV was usually lowest in the outer cortical ring within cross-sections. However, regional patterning across inner vs. mid-cortical rings showed a more variable pattern across taxa, age classes, and skeletal sites examined. Observations of primary bone microstructure revealed that the distribution of endosteally deposited bone had an important influence on

  13. Bone Metabolism on ISS Missions

    Smith, S. M.; Heer, M. A.; Shackelford, L. C.; Zwart, S. R.


    Spaceflight-induced bone loss is associated with increased bone resorption (1, 2), and either unchanged or decreased rates of bone formation. Resistive exercise had been proposed as a countermeasure, and data from bed rest supported this concept (3). An interim resistive exercise device (iRED) was flown for early ISS crews. Unfortunately, the iRED provided no greater bone protection than on missions where only aerobic and muscular endurance exercises were available (4, 5). In 2008, the Advanced Resistive Exercise Device (ARED), a more robust device with much greater resistance capability, (6, 7) was launched to the ISS. Astronauts who had access to ARED, coupled with adequate energy intake and vitamin D status, returned from ISS missions with bone mineral densities virtually unchanged from preflight (7). Bone biochemical markers showed that while the resistive exercise and adequate energy consumption did not mitigate the increased bone resorption, bone formation was increased (7, 8). The typical drop in circulating parathyroid hormone did not occur in ARED crewmembers. In 2014, an updated look at the densitometry data was published. This study confirmed the initial findings with a much larger set of data. In 42 astronauts (33 male, 9 female), the bone mineral density response to flight was the same for men and women (9), and those with access to the ARED did not have the typical decrease in bone mineral density that was observed in early ISS crewmembers with access to the iRED (Figure 1) (7). Biochemical markers of bone formation and resorption responded similarly in men and women. These data are encouraging, and represent the first in-flight evidence in the history of human space flight that diet and exercise can maintain bone mineral density on long-duration missions. However, the maintenance of bone mineral density through bone remodeling, that is, increases in both resorption and formation, may yield a bone with strength characteristics different from those

  14. Bone properties of the humeral head and resistance to screw cutout

    Frich, L. H.; Jensen, N. C.


    anisotropy was also found. We found in particular a lower bone strength and density in the posterior and inferior regions of the humeral head. A rapid decline in bone strength within a few mm below a relatively thin subchondral plate was also reported. Clinical Relevance: We have in this paper explored some...... screw directions will predictably place screws in areas of the humeral head comprising low density and low strength cancellous bone. New concepts of plates and plating techniques for the surgical treatment of complex fractures of the proximal humerus should take bone distribution, strength...

  15. Localized ridge augmentation using autogenous block bone graft followed by dental implant placement

    K V Prabhakara Rao


    Full Text Available The placement of endosseous dental implants is often hampered by unfavourable anatomy of the alveolar bone. Most frequently patients lose their teeth due to alveolar bone loss, tooth extraction; trauma and long term use of removable appliances tend to lose the bone making it difficult for the placement of implant in an optimal prosthetic position. The loss of width of the residual alveolar ridge necessitated measures which could refurbish the lost dimensions. Here we report the successful management of such a condition wherein placement of implant was made possible by placement of autogenous bone block graft obtained from the mandibular symphysis region and predictable osseointegration thus achieved.

  16. Bone morphogenetic proteins: Periodontal regeneration

    Subramaniam M Rao


    Full Text Available Periodontitis is an infectious inflammatory disease that results in attachment loss and bone loss. Regeneration of the periodontal tissues entails de novo formation of cementum, periodontal ligament, and alveolar bone. Several different approaches are currently being explored to achieve complete, reliable, and reproducible regeneration of periodontal tissues. The therapeutic management of new bone formation is one of the key issues in successful periodontal regeneration. Bone morphogenetic proteins form a unique group of proteins within the transforming growth factor superfamily of genes and have a vital role in the regulation in the bone induction and maintenance. The activity of bone morphogenetic proteins was first identified in the 1960s, but the proteins responsible for bone induction were unknown until the purification and cloning of human bone morphogenetic proteins in the 1980s, because of their osteoinductive potential. Bone morphogenetic proteins have gained a lot of interest as therapeutic agents for treating periodontal defects. A systematic search for data related to the use of bone morphogenetic proteins for the regeneration of periodontal defects was performed to recognize studies on animals and human (PUBMED, MEDLINE, COCHRANE, and Google search. All the studies included showed noticeable regeneration of periodontal tissues with the use of BMP.

  17. Bone disease in primary hyperparathyroidism

    Bandeira, Francisco; Cusano, Natalie E.; Silva, Barbara C.; Cassibba, Sara; Almeida, Clarissa Beatriz; Machado, Vanessa Caroline Costa; Bilezikian, John P.


    Bone disease in severe primary hyperparathyroidism (PHPT) is described classically as osteitis fibrosa cystica (OFC). Bone pain, skeletal deformities and pathological fractures are features of OFC. Bone mineral density is usually extremely low in OFC, but it is reversible after surgical cure. The signs and symptoms of severe bone disease include bone pain, pathologic fractures, proximal muscle weakness with hyperreflexia. Bone involvement is typically characterized as salt-and-pepper appearance in the skull, bone erosions and bone resorption of the phalanges, brown tumors and cysts. In the radiography, diffuse demineralization is observed, along with pathological fractures, particularly in the long bones of the extremities. In severe, symptomatic PHPT, marked elevation of the serum calcium and PTH concentrations are seen and renal involvement is manifested by nephrolithiasis and nephrocalcinosis. A new technology, recently approved for clinical use in the United States and Europe, is likely to become more widely available because it is an adaptation of the lumbar spine DXA image. Trabecular bone score (TBS) is a gray-level textural analysis that provides an indirect index of trabecular microarchitecture. Newer technologies, such as high-resolution peripheral quantitative computed tomography (HR-pQCT), have provided further understanding of the microstructural skeletal features in PHPT. PMID:25166047

  18. Prediction of iron deficiency in chronic inflammatory rheumatic disease anaemia.

    Baumann Kurer, S; Seifert, B; Michel, B; Ruegg, R; Fehr, J


    We prospectively studied 45 anaemic patients (37 women, 8 men) with chronic inflammatory rheumatic diseases. The combination of serum ferritin and CRP (as well as ESR) in its predictive capacity for bone marrow iron stores was examined. The relationship between other iron-related measurements (transferrin, transferrin saturation, soluble transferrin receptor, erythrocyte porphyrins and percentage of hypochromic/microcytic erythrocytes) and bone marrow iron stores was also investigated. Stainable bone marrow iron was taken as the most suitable standard to separate iron-deficient from iron-replete patients. 14 patients (31%) were lacking bone marrow iron. Regression analysis showed a good correlation between ferritin and bone marrow iron (adjusted R2 = 0.721, P power for bone marrow iron (adjusted R2 = 0.715) in this cohort of patients with low systemic inflammatory activity. With respect to the bone marrow iron content the best predictive cut-off value of ferritin was 30 micrograms/l (86% sensitivity, 90% specificity). The other iron-related parameters both individually and when combined were less powerful in predicting bone marrow iron than ferritin alone. Only zinc bound erythrocyte protoporphyrin in combination with ferritin slightly improved prediction (adjusted R2 = 0.731). A cut-off point of 11% hypochromic erythrocytes reached a high specificity (90%), but was less sensitive (77%).

  19. Carbon nanohorns accelerate bone regeneration in rat calvarial bone defect

    Kasai, Takao; Iizuka, Tadashi; Kanamori, Takeshi; Yokoyama, Atsuro [Department of Oral Functional Prosthodontics, Division of Oral Functional Science, Graduate School of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8586 (Japan); Matsumura, Sachiko; Shiba, Kiyotaka [Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31, Ariake, koutou-ku, Tokyo 135-8550 (Japan); Yudasaka, Masako; Iijima, Sumio, E-mail: [Nanotube Research Center, National Institute of Advanced Industrial Science and Technology, Central 5, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8565 (Japan)


    A recent study showed that carbon nanohorns (CNHs) have biocompatibility and possible medical uses such as in drug delivery systems. It was reported that some kinds of carbon nanomaterials such as carbon nanotubes were useful for bone formation. However, the effect of CNHs on bone tissue has not been clarified. The purpose of this study was to evaluate the effect of CNHs on bone regeneration and their possible application for guided bone regeneration (GBR). CNHs dispersed in ethanol were fixed on a porous polytetrafluoroethylene membrane by vacuum filtration. Cranial defects were created in rats and covered by a membrane with/without CNHs. At two weeks, bone formation under the membrane with CNHs had progressed more than under that without CNHs and numerous macrophages were observed attached to CNHs. At eight weeks, there was no significant difference in the amount of newly formed bone between the groups and the appearance of macrophages was decreased compared with that at two weeks. Newly formed bone attached to some CNHs directly. These results suggest that macrophages induced by CNHs are related to bone regeneration. In conclusion, the present study indicates that CNHs are compatible with bone tissue and effective as a material for GBR.

  20. Development of Bone Remodeling Model for Spaceflight Bone Physiology Analysis

    Pennline, James A.; Werner, Christopher R.; Lewandowski, Beth; Thompson, Bill; Sibonga, Jean; Mulugeta, Lealem


    Current spaceflight exercise countermeasures do not eliminate bone loss. Astronauts lose bone mass at a rate of 1-2% a month (Lang et al. 2004, Buckey 2006, LeBlanc et al. 2007). This may lead to early onset osteoporosis and place the astronauts at greater risk of fracture later in their lives. NASA seeks to improve understanding of the mechanisms of bone remodeling and demineralization in 1g in order to appropriately quantify long term risks to astronauts and improve countermeasures. NASA's Digital Astronaut Project (DAP) is working with NASA's bone discipline to develop a validated computational model to augment research efforts aimed at achieving this goal.


    O. V. Martynenko


    Full Text Available The review involves clinical and experimental data, constitutive modeling, and computational investigations towards an understanding on how mechanical cyclic loads for long periods of time affect damage evolution in a reconstructed bone, as well as, lifetime reduction of bone graft substitutes after advanced core decompression. The outcome of the integrated model discussed in this paper will be how damage growth in femur after advanced core decompression subjected to mechanical cyclic loading under creep and fatigue conditions may be controlled in order to optimize design and processing of bone graft substitutes, and extend lifetime of bone substitutes.

  2. Carbon nanohorns accelerate bone regeneration in rat calvarial bone defect

    Kasai, Takao; Matsumura, Sachiko; Iizuka, Tadashi; Shiba, Kiyotaka; Kanamori, Takeshi; Yudasaka, Masako; Iijima, Sumio; Yokoyama, Atsuro


    A recent study showed that carbon nanohorns (CNHs) have biocompatibility and possible medical uses such as in drug delivery systems. It was reported that some kinds of carbon nanomaterials such as carbon nanotubes were useful for bone formation. However, the effect of CNHs on bone tissue has not been clarified. The purpose of this study was to evaluate the effect of CNHs on bone regeneration and their possible application for guided bone regeneration (GBR). CNHs dispersed in ethanol were fixed on a porous polytetrafluoroethylene membrane by vacuum filtration. Cranial defects were created in rats and covered by a membrane with/without CNHs. At two weeks, bone formation under the membrane with CNHs had progressed more than under that without CNHs and numerous macrophages were observed attached to CNHs. At eight weeks, there was no significant difference in the amount of newly formed bone between the groups and the appearance of macrophages was decreased compared with that at two weeks. Newly formed bone attached to some CNHs directly. These results suggest that macrophages induced by CNHs are related to bone regeneration. In conclusion, the present study indicates that CNHs are compatible with bone tissue and effective as a material for GBR.

  3. Microgravity and bone cell mechanosensitivity

    Klein-Nulend, J.; Bacabac, R. G.; Veldhuijzen, J. P.; Van Loon, J. J. W. A.


    The capacity of bone tissue to alter its mass and structure in response to mechanical demands has long been recognized but the cellular mechanisms involved remained poorly understood. Bone not only develops as a structure designed specifically for mechanical tasks, but it can adapt during life toward more efficient mechanical performance. Mechanical adaptation of bone is a cellular process and needs a biological system that senses the mechanical loading. The loading information must then be communicated to the effector cells that form new bone or destroy old bone. The in vivo operating cell stress derived from bone loading is likely the flow of interstitial fluid along the surface of osteocytes and lining cells. The response of bone cells in culture to fluid flow includes prostaglandin (PG) synthesis and expression of prostaglandin G/H synthase inducible cyclooxygenase (COX-2). Cultured bone cells also rapidly produce nitric oxide (NO) in response to fluid flow as a result of activation of endothelial nitric oxide synthase (ecNOS), which enzyme also mediates the adaptive response of bone tissue to mechanical loading. Earlier studies have shown that the disruption of the actin-cytoskeleton abolishes the response to stress, suggesting that the cytoskeleton is involved in cellular mechanotransduction. Microgravity, or better near weightlessness, is associated with the loss of bone in astronauts, and has catabolic effects on mineral metabolism in bone organ cultures. This might be explained as resulting from an exceptional form of disuse under near weightlessness conditions. However, under near weightlessness conditions the assembly of cytoskeletal elements may be altered since it has been shown that the direction of the gravity vector determines microtubular pattern formation in vivo. We found earlier that the transduction of mechanical signals in bone cells also involves the cytoskeleton and is related to PGEZ production. Therefore it is possible that the

  4. Bone Replacement Materials and Techniques Used for Achieving Vertical Alveolar Bone Augmentation

    Zeeshan Sheikh


    Full Text Available Alveolar bone augmentation in vertical dimension remains the holy grail of periodontal tissue engineering. Successful dental implant placement for restoration of edentulous sites depends on the quality and quantity of alveolar bone available in all spatial dimensions. There are several surgical techniques used alone or in combination with natural or synthetic graft materials to achieve vertical alveolar bone augmentation. While continuously improving surgical techniques combined with the use of auto- or allografts provide the most predictable clinical outcomes, their success often depends on the status of recipient tissues. The morbidity associated with donor sites for auto-grafts makes these techniques less appealing to both patients and clinicians. New developments in material sciences offer a range of synthetic replacements for natural grafts to address the shortcoming of a second surgical site and relatively high resorption rates. This narrative review focuses on existing techniques, natural tissues and synthetic biomaterials commonly used to achieve vertical bone height gain in order to successfully restore edentulous ridges with implant-supported prostheses.

  5. High Resolution Peripheral Quantitative Computed Tomography for Assessment of Bone Quality

    Kazakia, Galateia


    The study of bone quality is motivated by the high morbidity, mortality, and societal cost of skeletal fractures. Over 10 million people are diagnosed with osteoporosis in the US alone, suffering 1.5 million osteoporotic fractures and costing the health care system over 17 billion annually. Accurate assessment of fracture risk is necessary to ensure that pharmacological and other interventions are appropriately administered. Currently, areal bone mineral density (aBMD) based on 2D dual-energy X-ray absorptiometry (DXA) is used to determine osteoporotic status and predict fracture risk. Though aBMD is a significant predictor of fracture risk, it does not completely explain bone strength or fracture incidence. The major limitation of aBMD is the lack of 3D information, which is necessary to distinguish between cortical and trabecular bone and to quantify bone geometry and microarchitecture. High resolution peripheral quantitative computed tomography (HR-pQCT) enables in vivo assessment of volumetric BMD within specific bone compartments as well as quantification of geometric and microarchitectural measures of bone quality. HR-pQCT studies have documented that trabecular bone microstructure alterations are associated with fracture risk independent of aBMD.... Cortical bone microstructure - specifically porosity - is a major determinant of strength, stiffness, and fracture toughness of cortical tissue and may further explain the aBMD-independent effect of age on bone fragility and fracture risk. The application of finite element analysis (FEA) to HR-pQCT data permits estimation of patient-specific bone strength, shown to be associated with fracture incidence independent of aBMD. This talk will describe the HR-pQCT scanner, established metrics of bone quality derived from HR-pQCT data, and novel analyses of bone quality currently in development. Cross-sectional and longitudinal HR-pQCT studies investigating the impact of aging, disease, injury, gender, race, and

  6. Bone disease and HIV infection.

    Amorosa, Valerianna; Tebas, Pablo


    The high prevalence of bone demineralization among human immunodeficiency virus (HIV)-infected patients in the current therapeutic era has been described in multiple studies, sounding the alarm that we may expect an epidemic of fragility fractures in the future. However, despite noting high overall prevalences of osteopenia and osteoporosis, recent longitudinal studies that we review here have generally not observed accelerated bone loss during antiretroviral therapy beyond the initial period after treatment initiation. We discuss the continued progress toward understanding the mechanisms of HIV-associated bone loss, particularly the effects of HIV infection, antiretroviral therapy, and host immune factors on bone turnover. We summarize results of clinical trials published in the past year that studied the safety and efficacy of treatment of bone loss in HIV-infected patients and provide provisional opinions about who should be considered for bone disease screening and treatment.


    Sacko HB


    Full Text Available Objective: To study the different aspects, clinical, diagnostic and therapeutic of 114 cases of fish bones in the upper digestive tract . Methods: One hundred fourteen patients with fish bones suspected in the upper digestive tract were admitted in our department between February 2010 and October 2012. Results: There was a predominance of the male: 66 men (58%. The average age of the patients was 26 years with extremes 3 to 62 years old. The tongue base and vallecula are constituted the principals locations 66.66%. In the majority of the cases the fish bones were removed by direct pharyngoscopy in 43.86 %. We have not notified any serious complications. Conclusion: Therefore this study shows the foreign fish bones are frequently just as well in children as adult. The fish bones are particularly lodged in tongue base. The classical methods of extraction are permit to remove the all foreign fish bones.

  8. Distribution Principle of Bone Tissue

    Fan, Yifang; Fan, Yubo; Xu, Zongxiang; Li, Zhiyu


    Using the analytic and experimental techniques we present an exploratory study of the mass distribution features of the high coincidence of centre of mass of heterogeneous bone tissue in vivo and its centroid of geometry position. A geometric concept of the average distribution radius of bone issue is proposed and functional relation of this geometric distribution feature between the partition density and its relative tissue average distribution radius is observed. Based upon the mass distribution feature, our results suggest a relative distance assessment index between the center of mass of cortical bone and the bone center of mass and establish a bone strength equation. Analysing the data of human foot in vivo, we notice that the mass and geometric distribution laws have expanded the connotation of Wolff's law, which implies a leap towards the quantitative description of bone strength. We finally conclude that this will not only make a positive contribution to help assess osteoporosis, but will also provide...

  9. Overcoming immunosuppression in bone metastases.

    Reinstein, Zachary Z; Pamarthy, Sahithi; Sagar, Vinay; Costa, Ricardo; Abdulkadir, Sarki A; Giles, Francis J; Carneiro, Benedito A


    Bone metastases are present in up to 70% of advanced prostate and breast cancers and occur at significant rates in a variety of other cancers. Bone metastases can be associated with significant morbidity. The establishment of bone metastasis activates several immunosuppressive mechanisms. Hence, understanding the tumor-bone microenvironment is crucial to inform the development of novel therapies. This review describes the current standard of care for patients with bone metastatic disease and novel treatment options targeting the microenvironment. Treatments reviewed include immunotherapies, cryoablation, and targeted therapies. Combinatorial treatment strategies including targeted therapies and immunotherapies show promise in pre-clinical and clinical studies to overcome the suppressive environment and improve treatment of bone metastases. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Bone-seeking therapeutic radiopharmaceuticals

    Srivastava Suresh C.


    Full Text Available Bone-seeking therapeutic radiopharmaceuticals are utilized on the basis of the radionuclide?s particulate emissions (primarily low to intermediate beta emission. The requirements therefore are different from those of bone imaging agents that consist mainly of short-lived single photon emitters. Lately, the therapeutic bone seeking radiopharmaceuticals have attained increasing importance due to their potential role in alleviating pain from osseous metastases in cancer patients, for the treatment of joint pain resulting from inflamed synovium (radiosynoviorthesis, or radiosynovectomy, or from various other forms of arthritic disease. There is, however, a paucity of published data on the bio-pharmacokinetics of these agents when used following intravenous administration for bone pain palliation. This paper will briefly review and summarize the presently available chemical and biopharmacokinetic information on the various clinically approved as well as experimental bone-localizing therapeutic radiopharmaceuticals, and make projections on their clinical application for the treatment of primary/metastatic cancer in bone.

  11. The influence of anthropometry and body composition on children's bone health

    Heidemann, Malene; Holst, René; Schou, Anders J


    Overweight, physical inactivity and sedentary behaviour have become increasing problems during the past decade. Increased sedentary behaviour may change the body composition (BC) by increasing the fat mass relative to the lean mass (LM). These changes may influence bone health to describe how...... anthropometry and BC predict the development of the bone accruement. The longitudinal study is a part of The CHAMPS study-DK. Children were DXA scanned at baseline and at 2-year follow-up. BC (LM, BF %) and BMC, BMD and BA were measured. The relationship between bone traits, anthropometry and BC was analysed...... by multilevel regression analyses. Of the invited children, 742/800 (93 %) accepted to participate. Of these, 682/742 (92 %) participated at follow-up. Mean (range) of age at baseline was 9.5 years (7.7-12.1). Height, BMI, LM and BF % predicted bone mineral accrual and bone size positively and independently...

  12. Correlation of X-Ray Vector Radiography to Bone Micro-Architecture

    Schaff, Florian; Malecki, Andreas; Potdevin, Guillaume; Eggl, Elena; Noël, Peter B.; Baum, Thomas; Garcia, Eduardo Grande; Bauer, Jan S.; Pfeiffer, Franz


    Besides the overall mass density, strength of trabecular bone depends significantly on its microstructure. However, due to dose constraints in medical CT imaging, it is impossible to gain sufficient information about very fine bone structures in vivo on the micrometer scale. Here we show that a recently developed method of X-ray vector radiography (XVR), an imaging method which uses X-ray scattering information to form an image, allows predictions on the bone microstructure without the explicit need to spatially resolve even individual trabeculae in the bone. We investigated thick human femoral bone samples and compared state-of-the-art μCT data with XVR imaging. A model is presented which proves that XVR imaging yields information directly correlated with the trabecular microstructure. This opens up possibilities of using XVR as a tool to help early diagnosis of bone diseases, such as osteoporosis.

  13. Gonadal dysgenesis and bone metabolism.

    Breuil, V; Euller-Ziegler, L


    Gonadal dysgenesis is defined as congenital hypogonadism related to abnormalities of the sex chromosomes. Because sex steroids play a central role in the acquisition and maintenance of bone mass, studies have been done to investigate bone status in patients with gonadal dysgenesis, particularly Turner's syndrome and Klinefelter's syndrome, which are the two most common types. The severe estrogen deficiency characteristic of Turner's syndrome (44, X0) is associated with a significant bone mass decrease ascribable to increased bone turnover, as shown by histological studies and assays of bone turnover markers. Estrogen therapy is followed by a significant bone mass gain and a return to normal of bone turnover markers, suggesting that it is the estrogen deficiency rather than the chromosomal abnormality that causes the bone mass deficiency, although abnormalities in the renal metabolism of vitamin D have been reported. Combined therapy with estrogens and growth hormone seems beneficial during the prepubertal period. In Klinefelter's syndrome (47XXY), serum testosterone levels are at the lower end of the normal range and dihydrotestosterone levels are low. Histological studies show depressed osteoblast function and a decrease in 5-alpha-reductase activity responsible for partial tissue resistance to androgens. Assays of bone turnover markers show evidence of increased bone turnover. The bone deficiency is most marked at the femoral neck and seems correlated with serum testosterone and estradiol levels. Androgen therapy has favorable effects on the bone only if it is started before puberty. Recent data suggest that estrogens may contribute to the development of demineralization in KS and that bisphosphonate therapy may be beneficial.

  14. Bone disease in primary hypercalciuria

    Sella, Stefania; Cattelan, Catia; Realdi, Giuseppe; Giannini, Sandro


    Primary Hypercalciuria (PH) is very often accompanied with some degrees of bone demineralization. The most frequent clinical condition in which this association has been observed is calcium nephrolithiasis. In patients affected by this disorder bone density is very frequently low and increased susceptibility to fragility fractures is reported. The very poor definition of this bone disease from a histomorphometric point of view is a crucial aspect. At present, the most common finding seems to ...

  15. Biomechanics of the canine mandible during bone transport distraction osteogenesis.

    Zapata, Uriel; Dechow, Paul C; Watanabe, Ikuya; Elsalanty, Mohammed E; Opperman, Lynne A


    This study compared biomechanical patterns between finite element models (FEMs) and a fresh dog mandible tested under molar and incisal physiological loads in order to clarify the effect of the bone transport distraction osteogenesis (BTDO) surgical process. Three FEMs of dog mandibles were built in order to evaluate the effects of BTDO. The first model evaluated the mandibular response under two physiological loads resembling bite processes. In the second model, a 5.0 cm bone defect was bridged with a bone transport reconstruction plate (BTRP). In the third model, new regenerated bony tissue was incorporated within the defect to mimic the surgical process without the presence of the device. Complementarily, a mandible of a male American foxhound dog was mechanically tested in the laboratory both in the presence and absence of a BTRP, and mechanical responses were measured by attaching rosettes to the bone surface of the mandible to validate the FEM predictions. The relationship between real and predicted values indicates that the stress patterns calculated using FEM are a valid predictor of the biomechanics of the BTDO procedures. The present study provides an interesting correlation between the stiffness of the device and the biomechanical response of the mandible affected for bone transport.

  16. Comparing Ancient DNA Preservation in Petrous Bone and Tooth Cementum

    Margaryan, Ashot; Stenderup, Jesper; Lynnerup, Niels; Willerslev, Eske; Allentoft, Morten E.


    Large-scale genomic analyses of ancient human populations have become feasible partly due to refined sampling methods. The inner part of petrous bones and the cementum layer in teeth roots are currently recognized as the best substrates for such research. We present a comparative analysis of DNA preservation in these two substrates obtained from the same human skulls, across a range of different ages and preservation environments. Both substrates display significantly higher endogenous DNA content (average of 16.4% and 40.0% for teeth and petrous bones, respectively) than parietal skull bone (average of 2.2%). Despite sample-to-sample variation, petrous bone overall performs better than tooth cementum (p = 0.001). This difference, however, is driven largely by a cluster of viking skeletons from one particular locality, showing relatively poor molecular tooth preservation (preservation (good/bad) applied to each sample prior to DNA-extraction predicted the above/below 10% endogenous DNA threshold in 80% of the cases. Interestingly, we observe signficantly higher levels of cytosine to thymine deamination damage and lower proportions of mitochondrial/nuclear DNA in petrous bone compared to tooth cementum. Lastly, we show that petrous bones from ancient cremated individuals contain no measurable levels of authentic human DNA. Based on these findings we discuss the pros and cons of sampling the different elements. PMID:28129388

  17. Building bone tissue: matrices and scaffolds in physiology and biotechnology

    Riminucci M.


    Full Text Available Deposition of bone in physiology involves timed secretion, deposition and removal of a complex array of extracellular matrix proteins which appear in a defined temporal and spatial sequence. Mineralization itself plays a role in dictating and spatially orienting the deposition of matrix. Many aspects of the physiological process are recapitulated in systems of autologous or xenogeneic transplantation of osteogenic precursor cells developed for tissue engineering or modeling. For example, deposition of bone sialoprotein, a member of the small integrin-binding ligand, N-linked glycoprotein family, represents the first step of bone formation in ectopic transplantation systems in vivo. The use of mineralized scaffolds for guiding bone tissue engineering has revealed unexpected manners in which the scaffold and cells interact with each other, so that a complex interplay of integration and disintegration of the scaffold ultimately results in efficient and desirable, although unpredictable, effects. Likewise, the manner in which biomaterial scaffolds are "resorbed" by osteoclasts in vitro and in vivo highlights more complex scenarios than predicted from knowledge of physiological bone resorption per se. Investigation of novel biomaterials for bone engineering represents an essential area for the design of tissue engineering strategies.

  18. Bifunctional Bisphosphonates for Delivering Biomolecules to Bone


    different when p< 0.05. RESULTS AND DISCUSSION Bone tissue is the most preferential site for cancer metastasis . Breast, lung , and prostate...skeletal diseases, such as osteoporosis, bone metastasis , Paget’s disease, hypercalcemia, osteoarthritis, etc. Similarly, there are many therapeutic...osteoporotic 19 bone fractures, other bone diseases, such as osteosarcoma and osteoarthritis, also require a surgical replacement of bone

  19. Effects of resveratrol supplementation on bone growth in young rats and microarchitecture and remodeling in ageing rats.

    Lee, Alice M C; Shandala, Tetyana; Nguyen, Long; Muhlhausler, Beverly S; Chen, Ke-Ming; Howe, Peter R; Xian, Cory J


    Osteoporosis is a highly prevalent skeletal disorder in the elderly that causes serious bone fractures. Peak bone mass achieved at adolescence has been shown to predict bone mass and osteoporosis related risk fracture later in life. Resveratrol, a natural polyphenol compound, may have the potential to promote bone formation and reduce bone resorption. However, it is unclear whether it can aid bone growth and bone mass accumulation during rapid growth and modulate bone metabolism during ageing. Using rat models, the current study investigated the potential effects of resveratrol supplementation during the rapid postnatal growth period and in late adulthood (early ageing) on bone microarchitecture and metabolism. In the growth trial, 4-week-old male hooded Wistar rats on a normal chow diet were given resveratrol (2.5 mg/kg/day) or vehicle control for 5 weeks. In the ageing trial, 6-month-old male hooded Wistar rats were treated with resveratrol (20 mg/kg/day) or vehicle for 3 months. Treatment effects in the tibia were examined by μ-computer tomography (μ-CT) analysis, bone histomorphometric measurements and reverse transcription-polymerase chain reaction (RT-PCR) gene expression analysis. Resveratrol treatment did not affect trabecular bone volume and bone remodeling indices in the youth animal model. Resveratrol supplementation in the early ageing rats tended to decrease trabecular bone volume, Sirt1 gene expression and increased expression of adipogenesis-related genes in bone, all of which were statistically insignificant. However, it decreased osteocalcin expression (p = 0.03). Furthermore, serum levels of bone resorption marker C-terminal telopeptides type I collagen (CTX-1) were significantly elevated in the resveratrol supplementation group (p = 0.02) with no changes observed in serum levels of bone formation marker alkaline phosphatase (ALP). These results in rat models suggest that resveratrol supplementation does not significantly affect bone volume

  20. Effects of Resveratrol Supplementation on Bone Growth in Young Rats and Microarchitecture and Remodeling in Ageing Rats

    Alice M. C. Lee


    Full Text Available Osteoporosis is a highly prevalent skeletal disorder in the elderly that causes serious bone fractures. Peak bone mass achieved at adolescence has been shown to predict bone mass and osteoporosis related risk fracture later in life. Resveratrol, a natural polyphenol compound, may have the potential to promote bone formation and reduce bone resorption. However, it is unclear whether it can aid bone growth and bone mass accumulation during rapid growth and modulate bone metabolism during ageing. Using rat models, the current study investigated the potential effects of resveratrol supplementation during the rapid postnatal growth period and in late adulthood (early ageing on bone microarchitecture and metabolism. In the growth trial, 4-week-old male hooded Wistar rats on a normal chow diet were given resveratrol (2.5 mg/kg/day or vehicle control for 5 weeks. In the ageing trial, 6-month-old male hooded Wistar rats were treated with resveratrol (20 mg/kg/day or vehicle for 3 months. Treatment effects in the tibia were examined by μ-computer tomography (μ-CT analysis, bone histomorphometric measurements and reverse transcription-polymerase chain reaction (RT-PCR gene expression analysis. Resveratrol treatment did not affect trabecular bone volume and bone remodeling indices in the youth animal model. Resveratrol supplementation in the early ageing rats tended to decrease trabecular bone volume, Sirt1 gene expression and increased expression of adipogenesis-related genes in bone, all of which were statistically insignificant. However, it decreased osteocalcin expression (p = 0.03. Furthermore, serum levels of bone resorption marker C-terminal telopeptides type I collagen (CTX-1 were significantly elevated in the resveratrol supplementation group (p = 0.02 with no changes observed in serum levels of bone formation marker alkaline phosphatase (ALP. These results in rat models suggest that resveratrol supplementation does not significantly affect bone

  1. Bone health in cancer patients

    Coleman, R; Body, J J; Aapro, M


    There are three distinct areas of cancer management that make bone health in cancer patients of increasing clinical importance. First, bone metastases are common in many solid tumours, notably those arising from the breast, prostate and lung, as well as multiple myeloma, and may cause major...... in the metastatic processes required for cancer dissemination, and there are emerging data showing that, at least in some clinical situations, the use of bone-targeted treatments can reduce metastasis to bone and has potential impact on patient survival....

  2. Unexplained Bone Pain Is an Independent Risk Factor for Bone Metastases in Newly Diagnosed Prostate Cancer

    Zacho, Helle D; Mørch, Carsten D; Barsi, Tamás;


    OBJECTIVE: To determine the relationship between bone pain and bone metastases in newly diagnosed prostate cancer. PATIENTS AND METHODS: This prospective study of bone scintigraphy enrolled 567 consecutive patients with newly diagnosed prostate cancer. The presence of all-cause bone pain, known b......: Unexplained bone pain was a strong independent risk factor for bone metastasis. Guidelines should recommend staging bone scintigraphy in patients with unexplained bone pain, regardless of other risk factors....

  3. A multiscale analytical approach for bone remodeling simulations: linking scales from collagen to trabeculae.

    Colloca, Michele; Blanchard, Romane; Hellmich, Christian; Ito, Keita; van Rietbergen, Bert


    Bone is a dynamic and hierarchical porous material whose spatial and temporal mechanical properties can vary considerably due to differences in its microstructure and due to remodeling. Hence, a multiscale analytical approach, which combines bone structural information at multiple scales to the remodeling cellular activities, could form an efficient, accurate and beneficial framework for the prognosis of changes in bone properties due to, e.g., bone diseases. In this study, an analytical formulation of bone remodeling integrated with multiscale micromechanical models is proposed to investigate the effects of structural changes at the nanometer level (collagen scale) on those at higher levels (tissue scale). Specific goals of this study are to derive a mechanical stimulus sensed by the osteocytes using a multiscale framework, to test the accuracy of the multiscale model for the prediction of bone density, and to demonstrate its multiscale capabilities by predicting changes in bone density due to changes occurring at the molecular level. At each different level, the bone composition was modeled as a two-phase material which made it possible to: (1) find a closed-form solution for the energy-based mechanical stimulus sensed by the osteocytes and (2) describe the anisotropic elastic properties at higher levels as a function of the stiffness of the elementary components (collagen, hydroxyapatite and water) at lower levels. The accuracy of the proposed multiscale model of bone remodeling was tested first by comparing the analytical bone volume fraction predictions to those obtained from the corresponding μFE-based computational model. Differences between analytical and numerical predictions were less than 1% while the computational time was drastically reduced, namely by a factor of 1 million. In a further analysis, the effects of changes in collagen and hydroxyapatite volume fractions on the bone remodeling process were simulated, and it was found that such changes

  4. 3D histomorphometric quantification of trabecular bones by computed microtomography using synchrotron radiation.

    Nogueira, L P; Braz, D; Barroso, R C; Oliveira, L F; Pinheiro, C J G; Dreossi, D; Tromba, G


    Conventional bone histomorphometry is an important method for quantitative evaluation of bone microstructure. X-ray computed microtomography is a non-invasive technique, which can be used to evaluate histomorphometric indices in trabecular bones (BV/TV, BS/BV, Tb.N, Tb.Th, Tb.Sp). In this technique, 3D images are used to quantify the whole sample, differently from the conventional one, in which the quantification is performed in 2D slices and extrapolated for 3D case. In this work, histomorphometric quantification using synchrotron 3D X-ray computed microtomography was performed to quantify the bone structure at different skeletal sites as well as to investigate the effects of bone diseases on quantitative understanding of bone architecture. The images were obtained at Synchrotron Radiation for MEdical Physics (SYRMEP) beamline, at ELETTRA synchrotron radiation facility, Italy. Concerning the obtained results for normal and pathological bones from same skeletal sites and individuals, from our results, a certain declining bone volume fraction was achieved. The results obtained could be used in forming the basis for comparison of the bone microarchitecture and can be a valuable tool for predicting bone fragility.

  5. [Progress and prospect of synthetic biodegradable polymers for bone repair and reconstruction].

    Zhao, Zenghui; Jiang, Dianming


    To review the latest researches of synthetic biodegradable polymers for bone repair and reconstruction, to predict the progress of bone substitute materials and bone tissue engineering scaffolds in future. The literature concerning synthetic biodegradable polymers as bone substitute materials or bone tissue engineering scaffolds was collected and discussed. Aliphatic polyester, polyanhydride, polyurethane and poly (amino acids) were the most extensively studied synthetic biodegradable polymers as bone substitutes and the scaffolds. Each polymer was of good biological safety and biocompatibility, and the degradation products were nontoxic to human body. The mechanical properties and degradation rate of the polymers could be adjusted by the type or number of the monomers and different synthetic methods. Therefore, the polymers with suitable mechanical strength and degradation rate could be produced according to the different requirements for bone grafting. Preliminary studies in vivo showed their favorable capacity for bone repair. The synthetic biodegradable polymers, especially the copolymers, composite materials and those carrying bone growth factors are expected to be the most promising and ideal biomaterials for bone repair and reconstruction.

  6. Bones of the Earth

    Jose Miguel Correa


    Full Text Available The film Bones of the Earth (Riglin, Cunninham & Correa, 2014 is an experience in collective inquiry and visual creation based on arts-based research. Starting from the meeting of different subjectivities and through dialogue, planning, shooting and editing, an audiovisual text that reconstructs a reflexive process of collective creation is built. A sense of community, on-going inquiry, connections and social commitment inform the creative process. As a result, the video’s nearly five intense minutes are a metaphor for the search for personal meaning, connection with nature and intersubjective positioning in a world that undergoes constant change.

  7. Bones and joints

    Runge, M.


    This exercise book guides the student and the radiologist wishing to review his knowledge to rapid and correct analysis and interpretation of radiologic findings in bone and joint disorders. The first part of the volume demonstrates the radiologic findings without going into the clinical and pathological aspects. In the second part, the reader then learns to analyse and diagnose systematically the case examples by means of a complete description of the X-ray images. Contents: Introduction; iconography; commentary with corresponding schemata; references and subject index.

  8. Preclinical evaluation of injectable bone substitute materials.

    Bongio, Matilde; van den Beucken, Jeroen J J P; Leeuwenburgh, Sander C G; Jansen, John A


    Injectable bone substitutes (IBSs) represent an attractive class of ready-to-use biomaterials, both ceramic- and polymer-based, as they offer the potential benefit of minimally invasive surgery and optimal defect filling. Although in vitro assessments are the first step in the process of development, the safety and efficacy of an IBS strongly depend on validated preclinical research prior to clinical trials. However, the selection of a suitable preclinical model for performance evaluation of an IBS remains a challenge, as no gold standard exists to define the best animal model. In order to succeed in this attempt, we identified three stages of development, including (a) proof-of-principle, (b) predictive validity and (c) general scientific legitimacy, and the respective criteria that should be applied for such selection. The second part of this review provides an overview of commonly used animals for IBSs. Specifically, scientific papers published between January 1996 and March 2012 were retrieved that report the use of preclinical models for the evaluation of IBSs in situations requiring bone healing and bone augmentation. This review is meant not only to describe the currently available preclinical models for IBS application, but also to address critical considerations of such multi-factorial evaluation models (including animal species, strain, age, anatomical site, defect size and type of bone), which can be indicative but in most cases edge away from the human reality. Consequently, the ultimate goal is to guide researchers toward a more careful and meaningful interpretation of the results of experiments using animal models and their clinical applications. Copyright © 2012 John Wiley & Sons, Ltd.

  9. Determinants of quality of life in Paget's disease of bone.

    Castro, Gláucio Ricardo Werner de; Castro, Silvania Ana Fernandes de; Pereira, Ivanio Alves; Zimmermann, Adriana Fontes; Toscano, Maria Amazile; Neves, Fabricio Souza; Scottini, Maria Aparecida; Paupitz, Juliane; Rosa, Julia Salvan da; Buss, Ziliani; Fröde, Tânia Silvia


    To evaluate the parameters associated with quality of life in patients with Paget's disease of bone. Patients with Paget's disease of bone were evaluated with SF-36 and WHOQOL-bref questionnaires. Patients with other diseases that could cause significant impairment of their quality of life were excluded. We searched for correlations between the results and: age, time from diagnosis, type of involvement, pain related to Paget's disease of bone, limitation to daily activities, deformities, bone specific alkaline phosphatase, the extent of involvement and treatment. Fifty patients were included. Results of the SF-36 total score and its domains, physical and mental health, were significantly correlated with bone pain and deformities. Marital status was significantly correlated with the SF-36 total score and Mental Health Domain. BAP levels and disease extension were significantly correlated to SF-36 Physical Health Domain. After multivariate analysis, the only parameters that remained significantly associated with the SF-36 total score and to its Mental Health and Physical Health Domains were pain and marital status. The WHOQOL-bref total score was significantly associated with pain, physical impairment and deformities. WHOQOL-bref Domain 1 (physical) score was significantly associated with marital status, pain and deformities, while Domain 2 (psychological) score was associated with marital status, physical impairment and kind of involvement. After multivariate analysis, the presence of pain, deformities, and marital status were significantly associated with results of the WHOQOL-bref total score and its Domain 1. WHOQOL-bref domain 2 results were significantly predicted by pain and marital status. The main disease-related factor associated with SF-36 results in Paget's disease of bone patients was bone pain, while bone pain and deformities were associated with WHOQOL-bref. Copyright © 2017 Elsevier Editora Ltda. All rights reserved.

  10. Human fetal bone cells in delivery systems for bone engineering.

    Tenorio, Diene M H; Scaletta, Corinne; Jaccoud, Sandra; Hirt-Burri, Nathalie; Pioletti, Dominique P; Jaques, Bertrand; Applegate, Lee Ann


    The aim of this study was to culture human fetal bone cells (dedicated cell banks of fetal bone derived from 14 week gestation femurs) within both hyaluronic acid gel and collagen foam, to compare the biocompatibility of both matrices as potential delivery systems for bone engineering and particularly for oral application. Fetal bone cell banks were prepared from one organ donation and cells were cultured for up to 4 weeks within hyaluronic acid (Mesolis®) and collagen foams (TissueFleece®). Cell survival and differentiation were assessed by cell proliferation assays and histology of frozen sections stained with Giemsa, von Kossa and ALP at 1, 2 and 4 weeks of culture. Within both materials, fetal bone cells could proliferate in three-dimensional structure at ∼70% capacity compared to monolayer culture. In addition, these cells were positive for ALP and von Kossa staining, indicating cellular differentiation and matrix production. Collagen foam provides a better structure for fetal bone cell delivery if cavity filling is necessary and hydrogels would permit an injectable technique for difficult to treat areas. In all, there was high biocompatibility, cellular differentiation and matrix deposition seen in both matrices by fetal bone cells, allowing for easy cell delivery for bone stimulation in vivo. Copyright © 2011 John Wiley & Sons, Ltd.

  11. Bone formation following implantation of bone biomaterials into extraction sites.

    Molly, Liene; Vandromme, Heleen; Quirynen, Marc; Schepers, Evert; Adams, Jessica L; van Steenberghe, Daniel


    Adequate bone volume is imperative for the osseointegration of endosseous implants, but postextraction resorption and remodeling may challenge implant placement. The use of bone biomaterials has been advocated to fill extraction sites and to enhance primary implant stability during osseointegration. The objective of the case series was to evaluate bone formation histologically and biomechanically in extraction sites following implantation of three commercially available bone biomaterials to compare their ability to allow guided bone regeneration. Thirty-six periodontally involved teeth were extracted from eight healthy non-smoking subjects. At least two bone biomaterials, a synthetic sponge based on polylactic-polyglycolic acid technology (FIS), bovine porous bone mineral (BPBM), or a natural coral derivative physically and chemically transformed into a calcium carbonate ceramic (COR), and one non-grafted control were applied to the extraction sockets within each subject and were covered by an expanded polytetrafluoroethylene device. The devices were removed after 2 months, and trephine biopsies were obtained from each site 4 months later. At that time, endosseous implants were placed in 25 of the sites, and healing abutments were placed; measurements were taken 4 to 6 months later with an electronic mobility testing device. The percentage of residual biomaterial was 5.6% +/- 8.9% for FIS (P osteocytes as empty controls. All sites revealed good primary stability at implant insertion and proper implant rigidity at abutment placement, indicating that early implant osseointegration was not influenced by the application of bone biomaterials used in this study.

  12. Examination of Glucocorticoid Treatment on Bone Marrow Stroma: Implications for Bone Disease and Applied Bone Regeneration

    Porter, Ryan Michael


    Long-term exposure to pharmacological doses of glucocorticoids has been associated with the development of osteopenia and avascular necrosis. Bone loss may be partially attributed to a steroid-induced decrease in the osteoblastic differentiation of multipotent progenitor cells found in the bone marrow. In order to determine if there is a change in the osteogenic potential of the bone marrow stroma following glucocorticoid treatment, Sprague-Dawley rats were administered methylprednisolone f...

  13. Novel bioceramic-reinforced hydrogel for alveolar bone regeneration.

    Iviglia, Giorgio; Cassinelli, Clara; Torre, Elisa; Baino, Francesco; Morra, Marco; Vitale-Brovarone, Chiara


    The osseointegration of dental implants and their consequent long-term success is guaranteed by the presence, in the extraction site, of healthy and sufficient alveolar bone. Bone deficiencies may be the result of extraction traumas, periodontal disease and infection. In these cases, placement of titanium implants is contraindicated until a vertical bone augmentation is obtained. This goal is achieved using bone graft materials, which should simulate extracellular matrix (ECM), in order to promote osteoblast proliferation and fill the void, maintaining the space without collapsing until the new bone is formed. In this work, we design, develop and characterize a novel, moldable chitosan-pectin hydrogel reinforced by biphasic calcium phosphate particles with size in the range of 100-300μm. The polysaccharide nature of the hydrogel mimics the ECM of natural bone, and the ceramic particles promote high osteoblast proliferation, assessed by Scanning Electron Microscopy analysis. Swelling properties allow significant adsorption of water solution (up to 200% of solution content) so that the bone defect space can be filled by the material in an in vivo scenario. The incorporation of ceramic particles makes the material stable at different pH and increases the compressive elastic modulus, toughness and ultimate tensile strength. Furthermore, cell studies with SAOS-2 human osteoblastic cell line show high cell proliferation and adhesion already after 72h, and the presence of ceramic particles increases the expression of alkaline phosphatase activity after 1week. These results suggest a great potential of the developed moldable biomaterials for the regeneration of the alveolar bone. The positive fate of a surgical procedure involving the insertion of a titanium screw still depends on the quality and quantity of alveolar bone which is present in the extraction site. Available materials are basically hard scaffold materials with un-predictable behavior in different condition

  14. Multifocal bone and bone marrow lesions in children - MRI findings

    Raissaki, Maria; Demetriou, Stelios; Spanakis, Konstantinos; Skiadas, Christos; Karantanas, Apostolos H. [University of Crete, Faculty of Medicine, Department of Radiology, University Hospital of Heraklion, Heraklion, Crete (Greece); Katzilakis, Nikolaos; Stiakaki, Eftichia [University of Crete, Faculty of Medicine, Department of Pediatric Hematology-Oncology, University Hospital of Heraklion, Heraklion, Crete (Greece); Velivassakis, Emmanouil G. [University Hospital of Heraklion, Orthopedic Clinic, Heraklion, Crete (Greece)


    Polyostotic bone and bone marrow lesions in children may be due to various disorders. Radiographically, lytic lesions may become apparent after loss of more than 50% of the bone mineral content. Scintigraphy requires osteoblastic activity and is not specific. MRI may significantly contribute to the correct diagnosis and management. Accurate interpretation of MRI examinations requires understanding of the normal conversion pattern of bone marrow in childhood and of the appearances of red marrow rests and hyperplasia. Differential diagnosis is wide: Malignancies include metastases, multifocal primary sarcomas and hematological diseases. Benign entities include benign tumors and tumor-like lesions, histiocytosis, infectious and inflammatory diseases, multiple stress fractures/reactions and bone infarcts/ischemia. (orig.)

  15. Sensitivity Analysis of the Bone Fracture Risk Model

    Lewandowski, Beth; Myers, Jerry; Sibonga, Jean Diane


    Introduction: The probability of bone fracture during and after spaceflight is quantified to aid in mission planning, to determine required astronaut fitness standards and training requirements and to inform countermeasure research and design. Probability is quantified with a probabilistic modeling approach where distributions of model parameter values, instead of single deterministic values, capture the parameter variability within the astronaut population and fracture predictions are probability distributions with a mean value and an associated uncertainty. Because of this uncertainty, the model in its current state cannot discern an effect of countermeasures on fracture probability, for example between use and non-use of bisphosphonates or between spaceflight exercise performed with the Advanced Resistive Exercise Device (ARED) or on devices prior to installation of ARED on the International Space Station. This is thought to be due to the inability to measure key contributors to bone strength, for example, geometry and volumetric distributions of bone mass, with areal bone mineral density (BMD) measurement techniques. To further the applicability of model, we performed a parameter sensitivity study aimed at identifying those parameter uncertainties that most effect the model forecasts in order to determine what areas of the model needed enhancements for reducing uncertainty. Methods: The bone fracture risk model (BFxRM), originally published in (Nelson et al) is a probabilistic model that can assess the risk of astronaut bone fracture. This is accomplished by utilizing biomechanical models to assess the applied loads; utilizing models of spaceflight BMD loss in at-risk skeletal locations; quantifying bone strength through a relationship between areal BMD and bone failure load; and relating fracture risk index (FRI), the ratio of applied load to bone strength, to fracture probability. There are many factors associated with these calculations including

  16. Bone marrow edema syndrome

    Korompilias, Anastasios V.; Lykissas, Marios G.; Beris, Alexandros E. [University of Ioannina, Department of Orthopaedic Surgery, School of Medicine, Ioannina (Greece); Karantanas, Apostolos H. [University of Crete School of Medicine, Department of Radiology, Heraklion (Greece)


    Bone marrow edema syndrome (BMES) refers to transient clinical conditions with unknown pathogenic mechanism, such as transient osteoporosis of the hip (TOH), regional migratory osteoporosis (RMO), and reflex sympathetic dystrophy (RSD). BMES is primarily characterized by bone marrow edema (BME) pattern. The disease mainly affects the hip, the knee, and the ankle of middle-aged males. Many hypotheses have been proposed to explain the pathogenesis of the disease. Unfortunately, the etiology of BMES remains obscure. The hallmark that separates BMES from other conditions presented with BME pattern is its self-limited nature. Laboratory tests usually do not contribute to the diagnosis. Histological examination of the lesion is unnecessary. Plain radiographs may reveal regional osseous demineralization. Magnetic resonance imaging is mainly used for the early diagnosis and monitoring the progression of the disease. Early differentiation from other aggressive conditions with long-term sequelae is essential in order to avoid unnecessary treatment. Clinical entities, such as TOH, RMO, and RSD are spontaneously resolving, and surgical treatment is not needed. On the other hand, early differential diagnosis and surgical treatment in case of osteonecrosis is of crucial importance. (orig.)

  17. Osteoarthritis Imaging by Quantification of Tibial Trabecular Bone

    Marques, Joselene

    The pathogenesis of osteoarthritis (OA) includes complex events in the whole joint. In this project, we combined machine-learning techniques in a texture analysis framework and evaluated it in a longitudinal study, where magnetic resonance images of knees were used to quantify the tibial trabecular...... bone in both a marker for OA diagnosis and another marker for prediction of tibial cartilage loss. By multiple-instance learning, we also investigated which region of the tibia provided the best prognosis for cartilage loss. The inferior part of the tibial bone was classified as the most relevant...

  18. Dinosaur fossils predict body temperatures.

    James F Gillooly


    Full Text Available Perhaps the greatest mystery surrounding dinosaurs concerns whether they were endotherms, ectotherms, or some unique intermediate form. Here we present a model that yields estimates of dinosaur body temperature based on ontogenetic growth trajectories obtained from fossil bones. The model predicts that dinosaur body temperatures increased with body mass from approximately 25 degrees C at 12 kg to approximately 41 degrees C at 13,000 kg. The model also successfully predicts observed increases in body temperature with body mass for extant crocodiles. These results provide direct evidence that dinosaurs were reptiles that exhibited inertial homeothermy.

  19. Molecular mechanism of bone formation and regeneration

    Akira Yamaguchi


    @@ Bone formation and regeneration are mediated by the coordinate action of various factors. Among these, bone morphogenetic protein (BMP) and runt-related gene 2 (Runx2) play crucial roles in bone formation.

  20. Broken Bones, Sprains, and Strains (For Parents)

    ... Feeding Your 1- to 2-Year-Old Broken Bones, Sprains, and Strains KidsHealth > For Parents > Broken Bones, ... home. What to Do: For a Suspected Broken Bone: Do not move a child whose injury involves ...

  1. Influence of bone volume fraction and architecture on computed large-deformation failure mechanisms in human trabecular bone.

    Bevill, Grant; Eswaran, Senthil K; Gupta, Atul; Papadopoulos, Panayiotis; Keaveny, Tony M


    Large-deformation bending and buckling have long been proposed as failure mechanisms by which the strength of trabecular bone can be affected disproportionately to changes in bone density, and thus may represent an important aspect of bone quality. We sought here to quantify the contribution of large-deformation failure mechanisms on strength, to determine the dependence of these effects on bone volume fraction and architecture, and to confirm that the inclusion of large-deformation effects in high-resolution finite element models improves predictions of strength versus experiment. Micro-CT-based finite element models having uniform hard tissue material properties were created from 54 cores of human trabecular bone taken from four anatomic sites (age = 70+/-11; 24 male, 27 female donors), which were subsequently biomechanically tested to failure. Strength predictions were made from the models first including, then excluding, large-deformation failure mechanisms, both for compressive and tensile load cases. As expected, strength predictions versus experimental data for the large-deformation finite element models were significantly improved (p deformation models in both tension and compression. Below a volume fraction of about 0.20, large-deformation failure mechanisms decreased trabecular strength from 5-80% for compressive loading, while effects were negligible above this volume fraction. Step-wise nonlinear multiple regression revealed that structure model index (SMI) and volume fraction (BV/TV) were significant predictors of these reductions in strength (R2 = 0.83, p deformation failure mechanisms on trabecular bone strength is highly heterogeneous and is not well explained by standard architectural metrics.

  2. Integration of a Finite Element Model with the DAP Bone Remodeling Model to Characterize Bone Response to Skeletal Loading

    Werner, Christopher R.; Mulugeta, Lealem; Myers, J. G.; Pennline, J. A.


    NASA's Digital Astronaut Project (DAP) has developed a bone remodeling model that has been validated for predicting volumetric bone mineral density (vBMD) changes of trabecular and cortical bone in the absence of mechanical loading. The model was recently updated to include skeletal loading from exercise and free living activities to maintain healthy bone using a new daily load stimulus (DLS). This new formula was developed based on an extensive review of existing DLS formulas, as discussed in the abstract by Pennline et al. The DLS formula incorporated into the bone remodeling model utilizes strains and stress calculated from finite element model (FEM) of the bone region of interest. The proximal femur was selected for the initial application of the DLS formula, with a specific focus on the femoral neck. METHODS: The FEM was generated from CAD geometry of a femur using de-identified CT data. The femur was meshed using linear tetrahedral elements Figure (1) with higher mesh densities in the femoral neck region, which is the primary region of interest for the initial application of the DLS formula in concert with the DAP bone remodeling model. Nodal loads were applied to the femoral head and the greater trochanter and the base of the femur was held fixed. An L2 norm study was conducted to reduce the length of the femoral shaft without significantly impacting the stresses in the femoral neck. The material properties of the FEM of the proximal femur were separated between cortical and trabecular regions to work with the bone remodeling model. Determining the elements with cortical material properties in the FEM was based off of publicly available CT hip scans [4] that were segmented, cleaned, and overlaid onto the FEM.

  3. Evaluation of bone remodeling around single dental implants of different lengths: a mechanobiological numerical simulation and validation using clinical data.

    Sotto-Maior, Bruno Salles; Mercuri, Emílio Graciliano Ferreira; Senna, Plinio Mendes; Assis, Neuza Maria Souza Picorelli; Francischone, Carlos Eduardo; Del Bel Cury, Altair Antoninha


    Algorithmic models have been proposed to explain adaptive behavior of bone to loading; however, these models have not been applied to explain the biomechanics of short dental implants. Purpose of present study was to simulate bone remodeling around single implants of different lengths using mechanoregulatory tissue differentiation model derived from the Stanford theory, using finite elements analysis (FEA) and to validate the theoretical prediction with the clinical findings of crestal bone loss. Loading cycles were applied on 7-, 10-, or 13-mm-long dental implants to simulate daily mastication and bone remodeling was assessed by changes in the strain energy density of bone after a 3, 6, and 12 months of function. Moreover, clinical findings of marginal bone loss in 45 patients rehabilitated with same implant designs used in the simulation (n = 15) were computed to validate the theoretical results. FEA analysis showed that although the bone density values reduced over time in the cortical bone for all groups, bone remodeling was independent of implant length. Clinical data showed a similar pattern of bone resorption compared with the data generated from mathematical analyses, independent of implant length. The results of this study showed that the mechanoregulatory tissue model could be employed in monitoring the morphological changes in bone that is subjected to biomechanical loads. In addition, the implant length did not influence the bone remodeling around single dental implants during the first year of loading.

  4. [Bone disease in Gaucher's disease].

    Roca Espiau, Mercedes


    The exposition aims, is to review the pathophysiological mechanisms of bone marrow involvement and the patterns of marrow infiltration by Gaucher cells. We have reviewed the different methods of assessment of bone marrow infiltration and its temporal development. Qualitative methods include simple radiography, magnetic resonance imaging (MRI), computed tomography (CT) and radioisotope. The simple radiography is the basic element, but its sensitivity is limited and only allows for assessing changes and trabecular bone remodeling MRI allows us to appreciate the bone marrow infiltration, detection of complications and response to therapy. Radioisotopes can contribute to the differential diagnosis of osteomyelitis and bone crises. Among the quantitative methods are the QCSI (quantitative chemical shift imaging) and the dual-energy X-ray absorptiometry (DEXA), as well as new quantitative techniques of CT, MRI and ultrasound densitometry. The QCSI performed an assessment of fat content of bone marrow in the spine. DEXA quantifies bone density by measuring the attenuation coefficient. The semiquantitative methods have various "scores" to establish criteria for generalized bone disease endpoints of disease progression and response to therapy.

  5. Bone X-Ray (Radiography)

    Full Text Available ... fracture reductions. look for injury, infection, arthritis , abnormal bone growths and bony changes seen in metabolic conditions. assist ... of the unaffected limb, or of a child's growth plate (where new bone is forming), for comparison purposes. When the examination ...

  6. Green Tea and Bone Metabolism

    Osteoporosis is a major health problem in elderly men and women. Epidemiological evidence has shown association between tea consumption and age-related bone loss in elderly men and women. The aim of this review is to provide a systemic review of green tea and bone health to cover the following topi...

  7. Physiological Challenges of Bone Repair


    necrosis factor a. In this early phase, periosteal pre-osteoblasts and local osteoblasts begin to form new bone. Mesenchymal cells and fibroblasts...of cartilage lead to a prolongation of endochondral ossification, delayed onset of periosteal reaction, decreased overall bone formation, and impaired

  8. Unusual sutural bones at pterion

    Nayak SB


    Full Text Available The existence of Wormian (sutural bones in the skull is well known. We found three unusual Wormian bones at the right pterion in an adult Indian skull. The variation noted was unilateral. This type of variation has not been reported yet.

  9. Bone scintigraphy and metabolic disorders

    Mari' , C.; Catafau, A.; Carrio' , I. [Hospital de Sant Pau, Barcelone (Spain). Serv. of Nuclear Medicine


    The paper discusses the main clinical value of bone scan in metabolic bone disease: its detection of focal conditions or focal complications of such generalized disease, its most common use of being the detection of fractures in osteoporosis, pseudo fractures in osteomalacia and the evaluation of Paget's disease.

  10. Bone X-Ray (Radiography)

    Full Text Available ... views of bone, they provide little information about muscles, tendons or joints. An MRI may be more useful in identifying bone and joint injuries (e.g., meniscal and ligament tears in the knee, rotator cuff and labrum tears ...

  11. Bone X-Ray (Radiography)

    Full Text Available ... views of bone, they provide little information about muscles, tendons or joints. An MRI may be more useful in identifying bone and joint injuries (e.g., meniscal and ligament tears in the knee, rotator cuff and labrum tears in the shoulder) and in imaging of the spine (because both ...

  12. Bone X-Ray (Radiography)

    Full Text Available ... bone absorbs much of the radiation while soft tissue, such as muscle, fat and organs, allow more of the x-rays to pass through them. As a result, bones appear white on the x-ray, soft tissue shows up in shades of gray and air ...

  13. Ivory Osteoma Of Temporal Bone

    Ravi Meher


    Full Text Available Osteomas are slow growing bony tumors common in fronto-ethmoid regions and rare in temporal bone. These are usually asymptomatic and require treatment mainly for cosmetic reasons. We describe a case of temporal bone osteoma in a female.

  14. Bone metabolism biomarkers, body weight, and bone age in healthy Brazilian male adolescents.

    da Silva, Carla Cristiane; Kurokawa, Cilmery Suemi; Nga, Hong Si; Moretto, Maria Regina; Dalmas, José Carlos; Goldberg, Tamara Beres Lederer


    Eighty-seven male volunteers were grouped according to bone age (BA): 10-12 years (n=25), 13-15 years (n=36), and 16-18 years (n=26), and the following were recorded for each: weight (kg), height (m), BMI (kg/m(2)), calcium intake from three 24-h food recalls (mg/day), puberty evaluation by Tanner stages, bone biomarker (BB) evaluation, serum osteocalcin (OC), bone alkaline phosphatase (BAP), carboxyterminal telopeptide (S-CTx), and bone mineral density (BMD) evaluations by dual-energy X-ray absorptiometry (g x cm(2)) in the lumbar spine, proximal femur, and the whole body. BBs showed similar behaviors, and very high median values were observed for individuals aged 13-15 years (BAP = 155.50 IU/L, OC = 41.63 ng/mL, S-CT x =2.09 ng/mL). Lower median BB values were observed with advancing BA between 16 and 18 years (BA P =79.80 IU/L, O C =27.80 ng/mL, S-CT x =1.65 ng/mL). Stepwise multiple regression analysis showed body weight associated with BA as independent variables with greater determination power for S-CTx (r(2) = 0.40) and OC (r(2)=0.21). For BAP, stepwise analysis showed body weight and whole-body BMD (r(2) = 0.34). All predictive models showed significance ( p Weight and BA were significant in determining predictive equations of OC and of S-CTx, whereas for BAP, weight and BMD of full body were selected.

  15. The healing of fractured bones

    Bacon, G.E. [Central Electricity Generating Board, Cheltenham (United Kingdom)


    A method utilising neutron beams of width 1 mm, used on D1B (2.4 A) and D20 (1.3 A) to study the healing of fractured bones is presented. It is found that the callus bone uniting the fractured tibia of a sheep, whose healing had been encouraged by daily mechanical vibration over a period of three months, showed no trace of the large preferential vertical orientation of the apatite crystals which is characteristic of the normal bone. Nevertheless the bone had regained about 60% of its mechanical strength and the callus bone, although not oriented, was well crystallized. It is considered that the new monochromator for D20, expected to give increased intensity at 2.5 A, will be of considerable advantage. (author). 2 refs.

  16. Investigations of Diabetic Bone Disease

    Linde, Jakob Starup

    Diabetes mellitus is associated with an increased risk of fracture with and current fracture predictors underestimate fracture risk in both type 1 and type 2 diabetes. Thus, further understanding of the underlying causes of diabetic bone disease may lead to better fracture predictors and preventive...... measures in patients with diabetes. This PhD thesis reports the results of two systematic reviews and a meta-analysis, a state-of-the-art intervention study, a clinical cross-sectional study and a registry-based study all examining the relationship between diabetes, glucose, and bone. Patients with type 2...... diabetes had lower bone turnover markers compared to patients with type 1 diabetes and bone mineral density and tissue stiffness were increased in patients with type 2 diabetes. The bone turnover markers were inversely associated with blood glucose in patients with diabetes and both an oral glucose...

  17. Ethnic Differences in Bone Health

    Ayse eZengin


    Full Text Available There are differences in bone health between ethnic groups in both men and in women. Variations in body size and composition are likely to contribute to reported differences. Most studies report ethnic differences in areal bone mineral density (aBMD which do not consistently parallel ethnic patterns in fracture rates. This suggests that other parameters beside aBMD should be considered when determining fracture risk between and within populations, including other aspects of bone strength: bone structure and microarchitecture as well muscle strength (mass, force generation, anatomy and fat mass. We review what is known about differences in bone-densitometry derived outcomes between ethnic groups and the extent to which they account for the differences in fracture risk. Studies are included that were published primarily between 1994 – 2014. A ‘one size fits all approach’ should not be used to understand better ethnic differences in fracture risk.

  18. Antiepileptic drugs and bone metabolism.

    Valsamis, Helen A; Arora, Surender K; Labban, Barbara; McFarlane, Samy I


    Anti-epileptic medications encompass a wide range of drugs including anticonvulsants, benzodiazepines, enzyme inducers or inhibitors, with a variety effects, including induction of cytochrome P450 and other enzyme, which may lead to catabolism of vitamin D and hypocalcemia and other effects that may significantly effect the risk for low bone mass and fractures. With the current estimates of 50 million people worldwide with epilepsy together with the rapid increase in utilization of these medications for other indications, bone disease associated with the use of anti-epileptic medications is emerging as a serious health threat for millions of people. Nevertheless, it usually goes unrecognized and untreated. In this review we discuss the pathophysiologic mechanisms of bone disease associated with anti-epileptic use, including effect of anti-epileptic agents on bone turnover and fracture risk, highlighting various strategies for prevention of bone loss and associated fractures a rapidly increasing vulnerable population.

  19. Predicting future of predictive analysis

    Piyush, Duggal


    With enormous growth in analytical data and insight about advantage of managing future brings Predictive Analysis in picture. It really has potential to be called one of efficient and competitive technologies that give an edge to business operations. The possibility to predict future market conditions and to know customers’ needs and behavior in advance is the area of interest of every organization. Other areas of interest may be maintenance prediction where we tend to predict when and where ...

  20. Progesterone and Bone: Actions Promoting Bone Health in Women

    Vanadin Seifert-Klauss


    Full Text Available Estradiol (E2 and progesterone (P4 collaborate within bone remodelling on resorption (E2 and formation (P4. We integrate evidence that P4 may prevent and, with antiresorptives, treat women's osteoporosis. P4 stimulates osteoblast differentiation in vitro. Menarche (E2 and onset of ovulation (P4 both contribute to peak BMD. Meta-analysis of 5 studies confirms that regularly cycling premenopausal women lose bone mineral density (BMD related to subclinical ovulatory disturbances (SODs. Cyclic progestin prevents bone loss in healthy premenopausal women with amenorrhea or SOD. BMD loss is more rapid in perimenopause than postmenopause—decreased bone formation due to P4 deficiency contributes. In 4 placebo-controlled RCTs, BMD loss is not prevented by P4 in postmenopausal women with increased bone turnover. However, 5 studies of E2-MPA co-therapy show greater BMD increases versus E2 alone. P4 fracture data are lacking. P4 prevents bone loss in pre- and possibly perimenopausal women; progesterone co-therapy with antiresorptives may increase bone formation and BMD.

  1. Histologic diagnosis of metabolic bone diseases: bone histomorphometry

    L. Dalle Carbonare


    Full Text Available Histomorphometry or quantitative histology is the analysis on histologic sections of bone resorption parameters, formation and structure. It is the only technique that allows a dynamic evaluation of the activity of bone modelling after labelling with tetracycline. Moreover, the new measurement procedures through the use of the computer allow an assessment of bone microarchitecture too. Histomorphometric bone biopsy is a reliable and well-tolerated procedure. Complications are reported only in 1% of the subjects (hematoma, pain, transient neuralgia. Histomorphometry is used to exclude or confirm the diagnosis of osteomalacia. It is employed in the evaluation of bone damage associated with particular treatments (for example, anticonvulsants or in case of rare bone diseases (osteogenesis imperfecta, systemic mastocytosis. It is also an essential approach when clinical, biochemical and other diagnostic data are not consistent. Finally, it is a useful method to understand the pathophysiologic mechanisms of drugs. The bone sample is taken at the level of iliac crest under local anesthesia. It is then put into methyl-metacrilate resin where the sections are prepared for the microscopic analysis of the various histomorphometric parameters.

  2. Bone composition: relationship to bone fragility and antiosteoporotic drug effects.

    Boskey, Adele L


    The composition of a bone can be described in terms of the mineral phase, hydroxyapatite, the organic phase, which consists of collagen type I, noncollagenous proteins, other components and water. The relative proportions of these various components vary with age, site, gender, disease and treatment. Any drug therapy could change the composition of a bone. This review, however, will only address those pharmaceuticals used to treat or prevent diseases of bone: fragility fractures in particular, and the way they can alter the composition. As bone is a heterogeneous tissue, its composition must be discussed in terms of the chemical makeup, properties of its chemical constituents and their distributions in the ever-changing bone matrix. Emphasis, in this review, is placed on changes in composition as a function of age and various diseases of bone, particularly osteoporosis. It is suggested that while some of the antiosteoporotic drugs can and do modify composition, their positive effects on bone strength may be balanced by negative ones.

  3. The Influence of Anthropometry and Body Composition on Children’s Bone Health

    Heidemann, M.; Holst, R.; Schou, A. J.;


    anthropometry and BC predict the development of the bone accruement. The longitudinal study is a part of The CHAMPS study-DK. Children were DXA scanned at baseline and at 2-year follow-up. BC (LM, BF %) and BMC, BMD and BA were measured. The relationship between bone traits, anthropometry and BC was analysed...... by multilevel regression analyses. Of the invited children, 742/800 (93 %) accepted to participate. Of these, 682/742 (92 %) participated at follow-up. Mean (range) of age at baseline was 9.5 years (7.7-12.1). Height, BMI, LM and BF % predicted bone mineral accrual and bone size positively and independently....... Height and BMI are both positive predictors of bone accruement. LM is a more precise predictor of bone traits than BF % in both genders. The effects of height and BMI and LM on bone accruement are nearly identical in the two genders, while changes in BF % have different but positive effects on bone...

  4. Lower Bone Mass and Higher Bone Resorption in Pheochromocytoma: Importance of Sympathetic Activity on Human Bone.

    Kim, Beom-Jun; Kwak, Mi Kyung; Ahn, Seong Hee; Kim, Hyeonmok; Lee, Seung Hun; Song, Kee-Ho; Suh, Sunghwan; Kim, Jae Hyeon; Koh, Jung-Min


    Despite the apparent biological importance of sympathetic activity on bone metabolism in rodents, its role in humans remains questionable. To clarify the link between the sympathetic nervous system and the skeleton in humans. Among 620 consecutive subjects with newly diagnosed adrenal incidentaloma, 31 patients with histologically confirmed pheochromocytoma (a catecholamine-secreting neuroendocrine tumor) and 280 patients with nonfunctional adrenal incidentaloma were defined as cases and controls, respectively. After adjustment for confounders, subjects with pheochromocytoma had 7.2% lower bone mass at the lumbar spine and 33.5% higher serum C-terminal telopeptide of type 1 collagen (CTX) than those without pheochromocytoma (P = 0.016 and 0.001, respectively), whereas there were no statistical differences between groups in bone mineral density (BMD) at the femur neck and total hip and in serum bone-specific alkaline phosphatase (BSALP) level. The odds ratio (OR) for lower BMD at the lumbar spine in the presence of pheochromocytoma was 3.31 (95% confidence interval, 1.23 to 8.56). However, the ORs for lower BMD at the femur neck and total hip did not differ according to the presence of pheochromocytoma. Serum CTX level decreased by 35.2% after adrenalectomy in patients with pheochromocytoma, whereas serum BSALP level did not change significantly. This study provides clinical evidence showing that sympathetic overstimulation in pheochromocytoma can contribute to adverse effects on human bone through the increase of bone loss (especially in trabecular bone), as well as bone resorption.

  5. A mathematical framework for predicting thermal damage during bone electrostimulation

    Vanegas-Acosta, J.C.; Lancellotti, V.; Zwamborn, A.P.M.


    Purpose – Electric fields (EFs) are known to influence cell and tissue activity. This influence can be due to thermal or non-thermal effects. While the non-thermal effects are still matter of discussion, thermal effects might be detrimental for cell and tissue viability due to thermal damage, this f

  6. Inflammatory Bowel Disease in a Rodent Model Alters Osteocyte Protein Levels Controlling Bone Turnover.

    Metzger, Corinne E; Narayanan, Anand; Zawieja, David C; Bloomfield, Susan A


    Bone loss is a common comorbidity of inflammatory bowel disease (IBD), leading to elevated fracture risk in these patients. Inflammatory factors associated with IBD cause increased bone resorption and decreased bone formation with multiple factors implicated as instigators of these alterations. In this project, we examined the influence of IBD on osteocyte proteins in male rats (2 months old) divided into two groups: induced gut inflammation via 2,4,6-trinitrobenzenesulfonic acid (TNBS) enema, and vehicle control. We examined the prevalence of two pro-inflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), an anti-inflammatory cytokine, interleukin-10 (IL-10), the anabolic factor insulin-like growth factor-I (IGF-I), osteoclastogenesis regulators RANKL and OPG, and the bone formation inhibitor sclerostin in osteocytes in three bone compartments 4 weeks after initiation of gut inflammation. Histomorphometry of the proximal tibia and fourth lumbar vertebra revealed lower bone volume, lower bone formation rate (BFR), lower osteoid surface (OS), and higher osteoclast surface (Oc.S) with TNBS. Tibial mid-shaft periosteal BFR was also lower with TNBS. Immunohistochemical staining of the distal femur demonstrated that %TNF-α(+) , %IL-6(+) , %RANKL(+) , and %OPG(+) osteocytes were elevated in cancellous bone in TNBS animals compared to vehicle. These changes were coincident with increased bone resorption. With regression analysis, %RANKL(+) osteocytes statistically predicted the increase in cancellous Oc.S (R(2)  = 0.565). Increased %sclerostin(+) osteocytes observed in the TNBS treatment predicted declines in cancellous OS (R(2)  = 0.581) as well as BFR in cancellous and cortical bone (R(2)  = 0.674, R(2)  = 0.908, respectively). Contrary to our hypothesis, %IGF-I(+) osteocytes increased in TNBS animals. In conclusion, the IBD model produced a systemic inflammation that altered the regulatory protein profile in osteocytes that

  7. Comparing ancient DNA preservation in petrous bone and tooth cementum

    Hansen, Henrik B.; Damgaard, Peter de Barros; Margaryan, Ashot


    preservation in these two substrates obtained from the same human skulls, across a range of different ages and preservation environments. Both substrates display significantly higher endogenous DNA content (average of 16.4% and 40.0% for teeth and petrous bones, respectively) than parietal skull bone (average...... of 2.2%). Despite sample-to-sample variation, petrous bone overall performs better than tooth cementum (p = 0.001). This difference, however, is driven largely by a cluster of viking skeletons from one particular locality, showing relatively poor molecular tooth preservation (...). In the remaining skeletons there is no systematic difference between the two substrates. A crude preservation (good/bad) applied to each sample prior to DNA-extraction predicted the above/below 10% endogenous DNA threshold in 80% of the cases. Interestingly, we observe signficantly higher levels of cytosine...

  8. Independent scattering model and velocity dispersion in trabecular bone: comparison with a multiple scattering model.

    Haïat, G; Naili, S


    Speed of sound measurements are used clinically to assess bone strength. Trabecular bone is an attenuating composite material in which negative values of velocity dispersion have been measured; this behavior remaining poorly explained physically. The aim of this work is to describe the ultrasonic propagation in trabecular bone modeled by infinite cylinders immersed in a saturating matrix and to derive the physical determinants of velocity dispersion. An original homogenization model accounting for the coupling of independent scattering and absorption phenomena allows the computation of phase velocity and of dispersion while varying bone properties. The first step of the model consists in the computation of the attenuation coefficient at all frequencies. The second step of the model corresponds to the application of the general Kramers-Krönig relationship to derive the frequency dependence of phase velocity. The model predicts negative values of velocity dispersion in agreement with experimental results obtained in phantoms mimicking trabecular bone. In trabecular bone, only negative values of velocity dispersion are predicted by the model, which span within the range of values measured experimentally. However, the comparison of the present results with results obtained in Haiat et al. (J Acoust Soc Am 124:4047-4058, 2008) assuming multiple scattering indicates that accounting for multiple scattering phenomena leads to a better prediction of velocity dispersion in trabecular bone.

  9. Bone Biochemistry on the International Space Station

    Smith, Scott M.; Heer, Martina; Zwart, Sara R.


    Bone biochemical measures provide valuable insight into the nature and time course of microgravity effects on bone during space flight, where imaging technology cannot be employed. Increased bone resorption is a hallmark of space flight, while markers of bone formation are typically unchanged or decreased. Recent studies (after the deployment to ISS of the advanced resistive exercise device, ARED), have documented that astronauts with good nutritional intake (e.g., maintenance of body mass), good vitamin D status, and exercise maintained bone mineral density. These data are encouraging, but crewmembers exercising on the ARED do have alterations in bone biochemistry, specifically, bone resorption is still increased above preflight levels, but bone formation is also significantly increased. While this bone remodeling raises questions about the strength of the resulting bone, however documents beneficial effects of nutrition and exercise in counteracting bone loss of space flight.

  10. A theory for bone resorption based on the local rupture of osteocytes cells connections: A finite element study.

    Ridha, Hambli; Almitani, Khalid H; Chamekh, Abdessalem; Toumi, Hechmi; Tavares, Joao Manuel R S


    In this work, a bone damage resorption finite element model based on the disruption of the inhibitory signal transmitted between osteocytes cells in bone due to damage accumulation is developed and discussed. A strain-based stimulus function coupled to a damage-dependent spatial function is proposed to represent the connection between two osteocytes embedded in the bone tissue. The signal is transmitted to the bone surface to activate bone resorption. The proposed model is based on the idea that the osteocyte signal reduction is not related to the reduction of the stimulus sensed locally by osteocytes due to damage, but to the difficulties for the signal in travelling along a disrupted area due to microcracks that can destroy connections of the intercellular network between osteocytes and bone-lining cells. To check the potential of the proposed model to predict the damage resorption process, two bone resorption mechano-regulation rules corresponding to two mechanotransduction approaches have been implemented and tested: (1) Bone resorption based on a coupled strain-damage stimulus function without ruptured osteocyte connections (NROC); and (2) Bone resorption based on a strain stimulus function with ruptured osteocyte connections (ROC). The comparison between the results obtained by both models, shows that the proposed model based on ruptured osteocytes connections predicts realistic results in conformity with previously published findings concerning the fatigue damage repair in bone.

  11. Voxel-based approach to generate entire human metacarpal bone with microscopic architecture for finite element analysis.

    Tang, C Y; Tsui, C P; Tang, Y M; Wei, L; Wong, C T; Lam, K W; Ip, W Y; Lu, W W J; Pang, M Y C


    With the development of micro-computed tomography (micro-CT) technology, it is possible to construct three-dimensional (3D) models of human bone without destruction of samples and predict mechanical behavior of bone using finite element analysis (FEA). However, due to large number of elements required for constructing the FE models of entire bone, this demands a substantial computational effort and the analysis usually needs a high level of computer. In this article, a voxel-based approach for generation of FE models of entire bone with microscopic architecture from micro-CT image data is proposed. To enable the FE analyses of entire bone to be run even on a general personal computer, grayscale intensity thresholds were adopted to reduce the amount of elements. Human metacarpal bone (MCP) bone was used as an example for demonstrating the applicability of the proposed method. The micro-CT images of the MCP bone were combined and converted into 3D array of pixels. Dual grayscale intensity threshold parameters were used to distinguish the pixels of bone tissues from those of surrounding soft tissues and improve predictive accuracy for the FE analyses with different sizes of elements. The method of selecting an appropriate value of the second grayscale intensity threshold was also suggested to minimize the area error for the reconstructed cross-sections of a FE structure. Experimental results showed that the entire FE MCP bone with microscopic architecture could be modeled and analyzed on a personal computer with reasonable accuracy.

  12. Improved repair of bone defects with prevascularized tissue-engineered bones constructed in a perfusion bioreactor.

    Li, De-Qiang; Li, Ming; Liu, Pei-Lai; Zhang, Yuan-Kai; Lu, Jian-Xi; Li, Jian-Min


    Vascularization of tissue-engineered bones is critical to achieving satisfactory repair of bone defects. The authors investigated the use of prevascularized tissue-engineered bone for repairing bone defects. The new bone was greater in the prevascularized group than in the non-vascularized group, indicating that prevascularized tissue-engineered bone improves the repair of bone defects. [Orthopedics. 2014; 37(10):685-690.].

  13. Allogenic bone grafts in post-traumatic juxta-articular defects: Need for allogenic bone banking.

    Mishra, Anil Kumar; Vikas, Rohit; Agrawal, H S


    Allogenic bone banking provide both structural and granular bone grafts for various orthopaedic, spinal, oncological and dental surgeries. However allogenic bones, presently, are not readily available. This article discusses the clinical applications of the allogenic grafts, the screening criteria and procedure for maintenance of such a bone banking facility. This article demonstrates the effective role of allogenic bone in a case of post-traumatic bone loss situation and discusses the growing need and present situation of bone banking in our country.

  14. Re-evaluation of bone pain in patients with type 1 Gaucher disease suggests that bone crises occur in small bones as well as long bones.

    Baris, Hagit N; Weisz Hubshman, Monika; Bar-Sever, Zvi; Kornreich, Liora; Shkalim Zemer, Vered; Cohen, Ian J


    Bone crises in type 1 Gaucher disease are reported in long bones and occasionally in weight bearing bones and other bones, but rarely in small bones of the hands and feet. We retrospectively examined the incidence of bone pain in patients followed at the Rabin Medical Center, Israel, before and following the initiation of enzyme replacement therapy (ERT) and evaluated them for bone crises. Of 100 type I Gaucher disease patients, 30 (30%) experienced one or more bone crises. Small bone crises represented 31.5% of all bone crises and were always preceded by crises in other bones. While the incidence of long bone crises reduced after the initiation of ERT, small bone crises increased. Almost 60% of patients with bone crises were of the N370S/84GG genotype suggesting a greater susceptibility of N370S/84GG patients to severe bone complications. These patients also underwent the greatest number of splenectomies (70.6% of splenectomised patients). Splenectomised patients showed a trend towards increased long and small bone crises after surgery. Active investigation of acute pain in the hands and feet in patients in our cohort has revealed a high incidence of small bone crises. Physicians should consider imaging studies to investigate unexplained pain in these areas.

  15. [Orthognathic surgery: corrective bone operations].

    Reuther, J


    The article reviews the history of orthognathic surgery from the middle of the last century up to the present. Initially, mandibular osteotomies were only performed in cases of severe malformations. But during the last century a precise and standardized procedure for correction of the mandible was established. Multiple modifications allowed control of small fragments, functionally stable osteosynthesis, and finally a precise positioning of the condyle. In 1955 Obwegeser and Trauner introduced the sagittal split osteotomy by an intraoral approach. It was the final breakthrough for orthognathic surgery as a standard treatment for corrections of the mandible. Surgery of the maxilla dates back to the nineteenth century. B. von Langenbeck from Berlin is said to have performed the first Le Fort I osteotomy in 1859. After minor changes, Wassmund corrected a posttraumatic malocclusion by a Le Fort I osteotomy in 1927. But it was Axhausen who risked the total mobilization of the maxilla in 1934. By additional modifications and further refinements, Obwegeser paved the way for this approach to become a standard procedure in maxillofacial surgery. Tessier mobilized the whole midface by a Le Fort III osteotomy and showed new perspectives in the correction of severe malformations of the facial bones, creating the basis of modern craniofacial surgery. While the last 150 years were distinguished by the creation and standardization of surgical methods, the present focus lies on precise treatment planning and the consideration of functional aspects of the whole stomatognathic system. To date, 3D visualization by CT scans, stereolithographic models, and computer-aided treatment planning and simulation allow surgery of complex cases and accurate predictions of soft tissue changes.

  16. Ultrasonic non destructive characterization of trabecular bone: estimation of the propagation velocity and attenuation

    Bennamane A.


    Full Text Available The non destructive characterization of porous structures with ultrasonic waves allows determining the propagation velocities and the attenuation for diagnosis of diseased bone (e.g., osteoporosis by establishing correlations between ultrasonic parameters and their mineral density. Two compressional modes have been identified independently in bovine trabecular bone, a fast wave and a slow wave. The principal objective of this paper is to characterize the propagation velocity and ultrasonic attenuation as functions of frequency and porosity of bovine cancellous bone. The porosity of the used samples varies between 40 % and 75 %. A transmission technique is used. This method only requires the measurement of the specimen’s thickness and recording of two pulses: one without and one with the specimen inserted between the transmitting and receiving transducers. From the two pulses, the attenuation can be determined using spectral analysis. The attenuation coefficient increases nonlinearly over the frequency from 200 to 700 kHz. The experimental results show a strong correlation between the bone density, the measured propagation velocity and the attenuation. The measurement of these velocities allows determining the bone elastic parameters. This study confirms the sensitivity of the ultrasonic propagation velocity to the change of bone porosity. The potential of ultrasound in bone tissue characterization seems to provide interesting results and would lead to predict bone pathology and particularly permit better diagnosis of bone fragility.

  17. PTH(1-84) Administration in Hypoparathyroidism Transiently Reduces Bone Matrix Mineralization.

    Misof, Barbara M; Roschger, Paul; Dempster, David W; Zhou, Hua; Bilezikian, John P; Klaushofer, Klaus; Rubin, Mishaela R


    Patients with hypoparathyroidism have low circulating parathyroid (PTH) levels and higher cancellous bone volume and trabecular thickness. Treatment with PTH(1-84) was shown to increase abnormally low bone remodeling dynamics. In this work, we studied the effect of 1-year or 2-year PTH(1-84) treatment on cancellous and cortical bone mineralization density distribution (Cn.BMDD and Ct.BMDD) based on quantitative backscattered electron imaging (qBEI) in paired transiliac bone biopsy samples. The study cohort comprised 30 adult hypoparathyroid patients (14 treated for 1 year; 16 treated for 2 years). At baseline, Cn.BMDD was shifted to higher mineralization densities in both treatment groups (average degree of mineralization Cn.CaMean +3.9% and +2.7%, p mineralizing surface) was predictive for Cn.BMDD outcomes in the 1-year PTH(1-84) group, but not in the 2-year PTH(1-84) group. Our findings suggest higher baseline bone matrix mineralization consistent with the decreased bone turnover in hypoparathyroidism. PTH(1-84) treatment caused differential effects dependent on treatment duration that were consistent with the histomorphometric bone formation outcomes. The greater increase in bone formation during the first year of treatment was associated with a decrease in bone matrix mineralization, suggesting that PTH(1-84) exposure to the hypoparathyroid skeleton has the greatest effects on BMDD early in treatment.

  18. Correlation between longitudinal, circumferential, and radial moduli in cortical bone: effect of mineral content.

    Macione, J; Depaula, C A; Guzelsu, N; Kotha, S P


    Previous studies indicate that changes in the longitudinal elastic properties of bone due to changes in mineral content are related to the longitudinal strength of bone tissue. Changes in mineral content are expected to affect bone tissue mechanical properties along all directions, albeit to different extents. However, changes in tissue mechanical properties along the different directions are expected to be correlated to one another. In this study, we investigate if radial, circumferential, and longitudinal moduli are related in bone tissue with varying mineral content. Plexiform bovine femoral bone samples were treated in fluoride ion solutions for a period of 3 and 12 days to obtain bones with 20% and 32% lower effective mineral contents. Transmission ultrasound velocities were obtained in the radial, circumferential, and longitudinal axes of bone and combined with measured densities to obtain corresponding tensorial moduli. Results indicate that moduli decreased with fluoride ion treatments and were significantly correlated to one another (r(2) radial vs. longitudinal = 0.80, r(2) circumferential vs. longitudinal = 0.90, r(2) radial vs. circumferential = 0.85). Densities calculated from using ultrasound parameters, acoustic impedance and transmission velocities, were moderately correlated to those measured by the Archimedes principle (r(2)=0.54, p<0.01). These results suggest that radial and circumferential ultrasound measurements could be used to determine the longitudinal properties of bone and that ultrasound may not be able to predict in vitro densities of bones containing unbonded mineral. Published by Elsevier Ltd.

  19. Factors that influence Greeks' decision to register as potential bone marrow donors.

    Galanis, P A; Sparos, L D; Katostaras, T; Velonakis, E; Kalokerinou, A


    Hemopoietic stem cells can be used from bone marrow or blood or umbilical cord blood of matched siblings or appropriately matched unrelated volunteers. Today, large bone marrow registries have been established to help identify volunteer unrelated bone marrow donors for patients lacking a family donor. Despite there being almost 10 million registered potential bone marrow donors (PBMD) worldwide, only 50% of white patients have a suitable bone marrow match. Growth in the number of PBMD increases the likelihood of finding a compatible donor for a patient. The attitudes and knowledge of 250 registered PBMD and 315 not registered PBMD toward bone marrow donation, tissues and organs donation, and blood donation were surveyed, using a questionnaire with 27 items. Multivariate logistic regression identified gender (females more often than males), regular blood donation, having a relative or a friend who has already been registered as PBMD, having a relative or a friend who needs bone marrow transplantation, family discussion about tissue and organ donation, knowledge about bone marrow transplantation, information about bone marrow transplantation, and trust in health professionals were independent predictive factors influencing people's decision to register as PBMD. Knowledge of these factors is important to target recruitment efforts.

  20. Computational modelling of the mechanics of trabecular bone and marrow using fluid structure interaction techniques.

    Birmingham, E; Grogan, J A; Niebur, G L; McNamara, L M; McHugh, P E


    Bone marrow found within the porous structure of trabecular bone provides a specialized environment for numerous cell types, including mesenchymal stem cells (MSCs). Studies have sought to characterize the mechanical environment imposed on MSCs, however, a particular challenge is that marrow displays the characteristics of a fluid, while surrounded by bone that is subject to deformation, and previous experimental and computational studies have been unable to fully capture the resulting complex mechanical environment. The objective of this study was to develop a fluid structure interaction (FSI) model of trabecular bone and marrow to predict the mechanical environment of MSCs in vivo and to examine how this environment changes during osteoporosis. An idealized repeating unit was used to compare FSI techniques to a computational fluid dynamics only approach. These techniques were used to determine the effect of lower bone mass and different marrow viscosities, representative of osteoporosis, on the shear stress generated within bone marrow. Results report that shear stresses generated within bone marrow under physiological loading conditions are within the range known to stimulate a mechanobiological response in MSCs in vitro. Additionally, lower bone mass leads to an increase in the shear stress generated within the marrow, while a decrease in bone marrow viscosity reduces this generated shear stress.

  1. Dependences of Ultrasonic Parameters for Osteoporosis Diagnosis on Bone Mineral Density

    Hwang, Kyo Seung; Kim, Yoon Mi; Park, Jong Chan; Choi, Min Joo; Lee, Kang Il [Department of Physics, Kangwon National University, Chuncheon (Korea, Republic of)


    Quantitative ultrasound technologies for osteoporosis diagnosis measure ultrasonic parameters such as speed of sound(SOS) and normalized broadband ultrasound attenuation(nBUA) in the calcaneus (heel bone). In the present study, the dependences of SOS and nBUA on bone mineral density in the proximal femur with high risk of fracture were investigated by using 20 trabecular bone samples extracted from bovine femurs. SOS and nBUA in the femoral trabecular bone samples were measured by using a transverse transmission method with one matched pair of ultrasonic transducers with a center frequency of 1.0 MHz. SOS and nBUA measured in the 20 trabecular bone samples exhibited high Pearson's correlation coefficients (r) of r = 0.83 and 0.72 with apparent bone density, respectively. The multiple regression analysis with SOS and nBUA as independent variables and apparent bone density as a dependent variable showed that the correlation coefficient r = 0.85 of the multiple linear regression model was higher than those of the simple linear regression model with either parameter SOS or nBUA as an independent variable. These high linear correlations between the ultrasonic parameters and the bone density suggest that the ultrasonic parameters measured in the femur can be useful for predicting the femoral bone mineral density.

  2. Serum osteocalcin and bone mineral density in postmenopausal women

    Lie T. Merijanti Susanto


    Full Text Available Since high bone turnover is associated with decreased bone mass, biochemical markers of bone remodeling, such as serum osteocalcin, may be used to assess osteoporosis and to predict fractures in elderly women, particulary those involving trabecular bone, and use of a combination of bone mineral density (BMD and biochemical markers may improve fracture prediction. The serum levels of osteocalcin constitute a specific biochemical parameter of bone formation. Compared to imaging techniques, assays for osteocalcin are safe, noninvasive and easily performed. The aim of this study was to determine the relationship of serum osteocalcin and BMD in postmenopausal women. A cross sectional study was performed on 53 postmenopausal women in South Jakarta from February to April 2010. The subjects were assessed for anthropometric characteristics, serum osteocalcin levels and BMD. BMD was measured at the lumbar spine, right femoral neck and at the left distal radius by dual energy X-ray absorptiometry (DXA. Mean serum osteocalcin was 28.99 ± 10.02 ng/ml. The Pearson correlation test on all subjects indicated a significant inverse correlation between serum osteocalcin and femoral neck BMD (r = - 0.29; p=0.034. By arranging the data into tertiles, a significant association was found in non-obese subjects between mean femoral neck BMD and serum osteocalcin (p=0.036. The Tukey posthoc multiple comparison test showed a significant mean difference in femoral neck BMD between the lowest and the highest tertiles of osteocalcin serum concentrations (p=0.028. Maintenance of body weight is important for maintaining BMD in postmenopausal women.

  3. Bone health in anorexia nervosa

    Misra, Madhusmita; Klibanski, Anne


    Purpose of review Anorexia nervosa is associated with low bone mineral density (BMD), concerning for an increased risk of fractures, and decreased bone accrual in adolescents, concerning for suboptimal peak bone mass. This review discusses causes of impaired bone health in anorexia nervosa and potential therapeutic strategies. Recent findings Low BMD in anorexia nervosa is consequent to decreased lean mass, hypogonadism, low insulin-like growth factor-1 (IGF-1), relative hypercortisolemia and alterations in hormones impacted by energy availability. Weight gain causes some improvement in bone accrual, but not to the extent observed in controls, and vitamin D supplementation does not increase BMD. Oral estrogen is not effective in increasing BMD, likely from IGF-1 suppressive effects. In contrast, transdermal estrogen replacement is effective in increasing bone accrual in adolescents with anorexia nervosa, although not to the extent seen in controls. Recombinant human IGF-1 increases bone formation in adolescents, and with oral estrogen increases BMD in adults with anorexia nervosa. Bisphosphonates increase BMD in adults, but not in adolescents, and should be used cautiously given their long half-life. Summary Further investigation is necessary to explore therapies for low BMD in anorexia nervosa. Weight gain is to be encouraged. Transdermal estrogen in adolescents, and bisphosphonates in adults, have a potential therapeutic role. PMID:21897220

  4. Prediction of osteoporotic fractures : the Rotterdam study

    P.L.A. van Daele (Paul)


    textabstractThis thesis focuses on the application of new methods to predict fractures. Chapter 2 deals with ultrasound measurement as an emerging technique, with the potential advantage to detect qualitative deterioration of bone. In chapter 2.1, a review of ultrasound measurement is presented. Cha

  5. Pretreatment levels of urinary deoxypyridinoline as a potential marker in patients with prostate cancer with or without bone metastasis

    Wymenga, LFA; Groenier, K; Boomsma, JHB; Elferink, RO; Mensink, HJA


    Objective To assess the predictive role of the bone markers alkaline phosphatase (ALP) and urinary deoxypyridinoline (DPD), as indicators of bone turnover, at baseline in patients with prostate cancer. Patients, subjects and methods Urinary DPD, serum ALP and prostate-specific antigen (PSA) were eva

  6. Correlation of plasma FL expression with bone marrow irradiation dose.

    Mary Sproull

    Full Text Available PURPOSE: Ablative bone marrow irradiation is an integral part of hematopoietic stem cell transplantation. These treatment regimens are based on classically held models of radiation dose and the bone marrow response. Flt-3 ligand (FL has been suggested as a marker of hematopoiesis and bone marrow status but the kinetics of its response to bone marrow irradiation has yet to be fully characterized. In the current study, we examine plasma FL response to total body and partial body irradiation in mice and its relationship with irradiation dose, time of collection and pattern of bone marrow exposure. MATERIALS/METHODS: C57BL6 mice received a single whole body or partial body irradiation dose of 1-8 Gy. Plasma was collected by mandibular or cardiac puncture at 24, 48 and 72 hr post-irradiation as well as 1-3 weeks post-irradiation. FL levels were determined via ELISA assay and used to generate two models: a linear regression model and a gated values model correlating plasma FL levels with radiation dose. RESULTS: At all doses between 1-8 Gy, plasma FL levels were greater than control and the level of FL increased proportionally to the total body irradiation dose. Differences in FL levels were statistically significant at each dose and at all time points. Partial body irradiation of the trunk areas, encompassing the bulk of the hematopoietically active bone marrow, resulted in significantly increased FL levels over control but irradiation of only the head or extremities did not. FL levels were used to generate a dose prediction model for total body irradiation. In a blinded study, the model differentiated mice into dose received cohorts of 1, 4 or 8 Gy based on plasma FL levels at 24 or 72 hrs post-irradiation. CONCLUSION: Our findings indicate that plasma FL levels might be used as a marker of hematopoietically active bone marrow and radiation exposure in mice.

  7. Bone sialoprotein and osteopontin in bone metastasis of osteotropic cancers.

    Kruger, Thomas E; Miller, Andrew H; Godwin, Andrew K; Wang, Jinxi


    The mechanisms underlying malignant cell metastasis to secondary sites such as bone are complex and no doubt multifactorial. Members of the small integrin-binding ligand N-linked glycoproteins (SIBLINGs) family, particularly bone sialoprotein (BSP) and osteopontin (OPN), exhibit multiple activities known to promote malignant cell proliferation, detachment, invasion, and metastasis of several osteotropic cancers. The expression level of BSP and OPN is elevated in a variety of human cancers, particularly those that metastasize preferentially to the skeleton. Recent studies suggest that the "osteomimicry" of malignant cells is not only conferred by transmembrane receptors bound by BSP and OPN, but includes the "switch" in gene expression repertoire typically expressed in cells of skeletal lineage. Understanding the role of BSP and OPN in tumor progression, altered pathophysiology of bone microenvironment, and tumor metastasis to bone will likely result in development of better diagnostic approaches and therapeutic regimens for osteotropic malignant diseases.

  8. Bone imaging in sports medicine.

    Shikare S


    Full Text Available Increased participation in sports by the general public leads to increase in sports induced injuries including stress fractures, shin splints, arthritis and host of musculotendenous maladies. We have studied twenty patients referred from sports clinic for bone scanning to evaluate clinically difficult problems. It showed stress fracture in twelve patients, bilateral shin splint in five patients and normal bone scan in three patients. Present study highlights the utility of bone imaging for the diagnosis of various sports injuries in sports medicine.

  9. Gaucher disease and bone manifestations.

    Marcucci, Gemma; Zimran, Ari; Bembi, Bruno; Kanis, John; Reginster, Jean-Yves; Rizzoli, Renè; Cooper, Cyrus; Brandi, Maria Luisa


    Gaucher disease is a relatively rare metabolic disease caused by the inherited deficiency of the lysosomal enzyme glucocerebrosidase. Gaucher disease affects multiple organs, among which is the skeleton. Bone involvement occurs frequently in Gaucher disease, and is one of its most debilitating features, reducing the quality of life of patients. Bone status is an important consideration for treatment to ameliorate symptoms and reduce the risk of irreversible complications. We have conducted a systematic review of all the various aspects of Gaucher disease, focusing on different skeletal manifestations, pathophysiology of bone alterations, clinical symptoms, and current diagnostic and therapeutic approaches.

  10. Strength through structure: visualization and local assessment of the trabecular bone structure

    Raeth, C; Monetti, R; Bauer, J; Sidorenko, I [Max-Planck Institut fuer Extraterrestrische Physik, Giessenbachstrasse 1, 85748 Garching (Germany); Mueller, D [Department of Radiology, Technische Universitaet Muenchen, Klinikum rechts der Isar, Ismaninger Strasse 22, 81675 Munich (Germany); Matsuura, M [Institute of Anatomy, Ludwig Maximilians Universitaet Muenchen, Pettenkoferstrasse 11, 80336 Muenchen (Germany); Lochmueller, E-M [Department of Gynaecology I, Ludwig Maximilians Universitaet Muenchen, Maistrasse 11, 80337 Muenchen (Germany); Zysset, P [Institute for Lightweight Design and Structural Biomechanics, Vienna University of Technology (TU-Wien), Gusshausstrasse 27-29, 1040 Wien (Austria); Eckstein, F [Paracelsus Medical University Salzburg, Strubergasse 21, 5020 Salzburg (Austria)], E-mail:


    The visualization and subsequent assessment of the inner human bone structures play an important role for better understanding the disease- or drug-induced changes of bone in the context of osteoporosis giving prospect for better predictions of bone strength and thus of the fracture risk of osteoporotic patients. In this work, we show how the complex trabecular bone structure can be visualized using {mu}CT imaging techniques at an isotropic resolution of 26 {mu}m. We quantify these structures by calculating global and local topological and morphological measures, namely Minkowski functionals (MFs) and utilizing the (an-)isotropic scaling index method (SIM) and by deriving suitable texture measures based on MF and SIM. Using a sample of 151 specimens taken from human vertebrae in vitro, we correlate the texture measures with the mechanically measured maximum compressive strength (MCS), which quantifies the strength of the bone probe, by using Pearson's correlation coefficient. The structure parameters derived from the local measures yield good correlations with the bone strength as measured in mechanical tests. We investigate whether the performance of the texture measures depends on the MCS value by selecting different subsamples according to MCS. Considering the whole sample the results for the newly defined parameters are better than those obtained for the standard global histomorphometric parameters except for bone volume/total volume (BV/TV). If a subsample consisting only of weak bones is analysed, the local structural analysis leads to similar and even better correlations with MCS as compared to BV/TV. Thus, the MF and SIM yield additional information about the stability of the bone especially in the case of weak bones, which corroborates the hypothesis that the bone structure (and not only its mineral mass) constitutes an important component of bone stability.

  11. Malignancy rate of biopsied suspicious bone lesions identified on FDG PET/CT

    Adams, Hugo J.A.; Kwee, Thomas C. [University Medical Center Utrecht, Department of Radiology and Nuclear Medicine, Utrecht (Netherlands); Klerk, John M.H. de [Meander Medical Center, Department of Nuclear Medicine, Amersfoort (Netherlands); Heggelman, Ben G.F. [Meander Medical Center, Department of Radiology, Amersfoort (Netherlands); Dubois, Stefan V. [Meander Medical Center, Department of Pathology, Amersfoort (Netherlands)


    To determine the malignancy rate of bone lesions identified on FDG PET/CT in patients who have undergone CT-guided biopsy because of the suspicion of malignancy. This single-centre retrospective study spanned eight consecutive years and included all patients who underwent both FDG PET/CT and CT-guided bone biopsy because of the suspicion of malignancy. The positive predictive value (PPV) for malignancy was calculated, and different patient and imaging characteristics were compared between malignant and benign bone lesions. Of 102 included patients with bone lesions that all showed FDG uptake exceeding mediastinal uptake, bone biopsy showed a malignant lesion in 91 patients, yielding a PPV for malignancy of 89.2 % (95 % CI 81.7 - 93.9 %). In the 94 patients with bone lesions that showed FDG uptake exceeding liver uptake, bone biopsy showed a malignant lesion in 83 patients, yielding a PPV for malignancy of 88.3 % (95 % CI 80.1 - 93.5 %). Higher age, bone marrow replacement of the lesion seen on CT, expansion of the lesion seen on CT, and presence of multifocal lesions on FDG PET/CT were significantly more frequent in patients with malignant lesions than in those with benign bone lesions (P = 0.044, P = 0.009, P = 0.015, and P = 0.019, respectively). Furthermore, there was a trend towards a higher incidence of cortical destruction (P = 0.056) and surrounding soft tissue mass (P = 0.063) in patients with malignant bone lesions. The PPV for malignancy of suspicious bone lesions identified on FDG PET/CT is not sufficiently high to justify changes in patient management without histopathological confirmation. Nevertheless, ancillary patient and imaging characteristics may increase the likelihood of a malignant bone lesion. (orig.)

  12. Associations of genetic lactase non-persistence and sex with bone loss in young adulthood.

    Laaksonen, Marika M L; Impivaara, Olli; Sievänen, Harri; Viikari, Jorma S A; Lehtimäki, Terho J; Lamberg-Allardt, Christel J E; Kärkkäinen, Merja U M; Välimäki, Matti; Heikkinen, Jorma; Kröger, Liisa M; Kröger, Heikki P J; Jurvelin, Jukka S; Kähönen, Mika A P; Raitakari, Olli T


    Some studies have reported that after attainment of peak bone mass (PBM), slow bone loss may occur in both men and women; however, findings are inconsistent. Genetic factors play a significant role in bone loss, but the available evidence is conflicting. Genetic lactase non-persistence (lactase C/C(-13910) genotype) is suggested to increase risk for inadequate calcium intake predisposing to poorer bone health. We investigated whether this genotype is associated with PBM and bone loss in young Finnish adults. Subjects belong to the Cardiovascular Risk in Young Finns Study that is an ongoing multi-centre follow-up of atherosclerosis risk factors. From the original cohort, randomly selected subjects aged 20-29 participated in baseline bone mineral density (BMD) measurements (n=358), and in follow-up measurements 12 years later (n=157). Bone mineral content (BMC) and BMD at lumbar spine (LS) and femoral neck (FN) were measured at baseline and follow-up with dual energy X-ray absorptiometry (DXA). Lactase C/T(-13910) polymorphism was determined by PCR and allele-specific fluorogenic probes. Information on lifestyle was elicited with questionnaires. During the follow-up, bone loss at both bone sites was greater in males (LS BMD: -1.1%, FN BMD: -5.2%) than in females (LS BMD: +2.1%, FN BMD: -0.7%) (both bone sites p=0.001). Younger age predicted greater loss of FN BMC and BMD in females (p=0.013 and p=0.001, respectively). Increased calcium intake predicted FN BMD gain in both sexes (in females B=0.007 g/cm(2)/mg, p=0.002; in males B=0.006, p=0.045), and increased physical activity LS BMD gain in females (B=0.091 g/cm(2)/physical activity point, p=0.023). PBM did not differ between the lactase genotypes, but males with the CC(-13910) genotype seemed to be prone to greater bone loss during the follow-up (LS BMD: C/C vs. T/T p=0.081). In conclusion, bone loss in young adulthood was more common in males than in females and seemed to occur mainly at the femoral neck. Young

  13. Bone markers in craniofacial bone deformations and dysplasias

    Monika Seifert


    Full Text Available Various forms of bony deformations and dysplasias are often present in the facial skeleton. Bone defects can be either localized or general. Quite often they are not only present in the skull but also can be found in other parts of the skeleton. In many cases the presence and levels of specific bone markers should be measured in order to fully describe their activity and presence in the skeleton. Fibrous dysplasia (FD is the most common one in the facial skeleton; however, other bone deformations regarding bone growth and activity can also be present. Every clinician should be aware of all common, rare and uncommon bony diseases and conditions such as cherubism, Paget’s disease, osteogenesis imperfecta and others related to genetic conditions. We present standard (calcium, parathyroid hormone, calcitonin, alkaline phosphatase, vitamin D and specialized bone markers (pyridinium, deoxypyridinium, hydroxyproline, RANKL/RANK/OPG pathway, growth hormone, insulin-like growth hormone-1 that can be used to evaluate, measure or describe the processes occurring in craniofacial bones.

  14. The finite cell method for bone simulations: verification and validation.

    Ruess, Martin; Tal, David; Trabelsi, Nir; Yosibash, Zohar; Rank, Ernst


    Standard methods for predicting bone's mechanical response from quantitative computer tomography (qCT) scans are mainly based on classical h-version finite element methods (FEMs). Due to the low-order polynomial approximation, the need for segmentation and the simplified approach to assign a constant material property to each element in h-FE models, these often compromise the accuracy and efficiency of h-FE solutions. Herein, a non-standard method, the finite cell method (FCM), is proposed for predicting the mechanical response of the human femur. The FCM is free of the above limitations associated with h-FEMs and is orders of magnitude more efficient, allowing its use in the setting of computational steering. This non-standard method applies a fictitious domain approach to simplify the modeling of a complex bone geometry obtained directly from a qCT scan and takes into consideration easily the heterogeneous material distribution of the various bone regions of the femur. The fundamental principles and properties of the FCM are briefly described in relation to bone analysis, providing a theoretical basis for the comparison with the p-FEM as a reference analysis and simulation method of high quality. Both p-FEM and FCM results are validated by comparison with an in vitro experiment on a fresh-frozen femur.

  15. Transient modulation of calcium and parathyroid hormone stimulates bone formation.

    Chen, Andy B; Minami, Kazumasa; Raposo, João F; Matsuura, Nariaki; Koizumi, Masahiko; Yokota, Hiroki; Ferreira, Hugo G


    Intermittent administration of parathyroid hormone can stimulate bone formation. Parathyroid hormone is a natural hormone that responds to serum calcium levels. In this study, we examined whether a transient increase and/or decrease in the serum calcium can stimulate bone formation. Using a mathematical model previously developed, we first predicted the effects of administration of parathyroid hormone, neutralizing parathyroid hormone antibody, calcium, and EGTA (calcium chelator) on the serum concentration of parathyroid hormone and calcium. The model predicted that intermittent injection of parathyroid hormone and ethylene glycol tetraacetic acid transiently elevated the serum parathyroid hormone, while that of parathyroid hormone antibody and calcium transiently reduced parathyroid hormone in the serum. In vitro analysis revealed that parathyroid hormone's transient changes (both up and down) elevated activating transcription factor 4-mediated osteocalcin expression. In the mouse model of osteoporosis, both intermittent administration of calcium and ethylene glycol tetraacetic acid showed tendency to increase bone mineral density of the upper limb (ulna and humerus) and spine, but the effects varied in a region-specific manner. Collectively, the study herein supports a common bone response to administration of calcium and its chelator through their effects on parathyroid hormone.

  16. TGF-β in cancer and bone: implications for treatment of bone metastases.

    Juárez, Patricia; Guise, Theresa A


    Bone metastases are common in patients with advanced breast, prostate and lung cancer. Tumor cells co-opt bone cells to drive a feed-forward cycle which disrupts normal bone remodeling to result in abnormal bone destruction or formation and tumor growth in bone. Transforming growth factor-beta (TGF-β) is a major bone-derived factor, which contributes to this vicious cycle of bone metastasis. TGF-β released from bone matrix during osteoclastic resorption stimulates tumor cells to produce osteolytic factors further increasing bone resorption adjacent to the tumor cells. TGF-β also regulates 1) key components of the metastatic cascade such as epithelial-mesenchymal transition, tumor cell invasion, angiogenesis and immunosuppression as well as 2) normal bone remodeling and coupling of bone resorption and formation. Preclinical models demonstrate that blockade of TGF-β signaling is effective to treat and prevent bone metastases as well as to increase bone mass.

  17. Bone volume fraction and fabric anisotropy are better determinants of trabecular bone stiffness than other morphological variables.

    Maquer, Ghislain; Musy, Sarah N; Wandel, Jasmin; Gross, Thomas; Zysset, Philippe K


    As our population ages, more individuals suffer from osteoporosis. This disease leads to impaired trabecular architecture and increased fracture risk. It is essential to understand how morphological and mechanical properties of the cancellous bone are related. Morphology-elasticity relationships based on bone volume fraction (BV/TV) and fabric anisotropy explain up to 98% of the variation in elastic properties. Yet, other morphological variables such as individual trabeculae segmentation (ITS) and trabecular bone score (TBS) could improve the stiffness predictions. A total of 743 micro-computed tomography (μCT) reconstructions of cubic trabecular bone samples extracted from femur, radius, vertebrae, and iliac crest were analyzed. Their morphology was assessed via 25 variables and their stiffness tensor (CFE) was computed from six independent load cases using micro finite element (μFE) analyses. Variance inflation factors were calculated to evaluate collinearity between morphological variables and decide upon their inclusion in morphology-elasticity relationships. The statistically admissible morphological variables were included in a multiple linear regression model of the dependent variable CFE. The contribution of each independent variable was evaluated (ANOVA). Our results show that BV/TV is the best determinant of CFE(r(2) adj  = 0.889), especially in combination with fabric anisotropy (r(2) adj  = 0.968). Including the other independent predictors hardly affected the amount of variance explained by the model (r(2) adj  = 0.975). Across all anatomical sites, BV/TV explained 87% of the variance of the bone elastic properties. Fabric anisotropy further described 10% of the bone stiffness, but the improvement in variance explanation by adding other independent factors was marginal (variables do not bring any further contribution. These overall conclusions remain to be confirmed for specific bone diseases and postelastic properties.

  18. CT assisted biomimetic artificial bone des

    WANG Xian-gang; ZHANG Chao-zong; GUO Zhi-ping; TIAN Jie-mo


    @@ In the recent years, bioceramic materials have been widely used in the clinics. They are mainly fabricated as the substitution of human hard tissue, such as artificial bone and false tooth. As a medical implant, those that have similar structure to human bone have better biocompatibility and osteoinductional property. So it is necessary to design bone model close to human bone.

  19. Decellularized bone matrix grafts for calvaria regeneration

    Lee, Dong Joon; Diachina, Shannon; Lee, Yan Ting; Zhao, Lixing; Zou, Rui; Tang, Na; Han, Han; Chen, Xin; Ko, Ching-Chang


    Decellularization is a promising new method to prepare natural matrices for tissue regeneration. Successful decellularization has been reported using various tissues including skin, tendon, and cartilage, though studies using hard tissue such as bone are lacking. In this study, we aimed to define the optimal experimental parameters to decellularize natural bone matrix using 0.5% sodium dodecyl sulfate and 0.1% NH4OH. Then, the effects of decellularized bone matrix on rat mesenchymal stem cell proliferation, osteogenic gene expression, and osteogenic differentiations in a two-dimensional culture system were investigated. Decellularized bone was also evaluated with regard to cytotoxicity, biochemical, and mechanical characteristics in vitro. Evidence of complete decellularization was shown through hematoxylin and eosin staining and DNA measurements. Decellularized bone matrix displayed a cytocompatible property, conserved structure, mechanical strength, and mineral content comparable to natural bone. To study new bone formation, implantation of decellularized bone matrix particles seeded with rat mesenchymal stem cells was conducted using an orthotopic in vivo model. After 3 months post-implantation into a critical-sized defect in rat calvaria, new bone was formed around decellularized bone matrix particles and also merged with new bone between decellularized bone matrix particles. New bone formation was analyzed with micro computed tomography, mineral apposition rate, and histomorphometry. Decellularized bone matrix stimulated mesenchymal stem cell proliferation and osteogenic differentiation in vitro and in vivo, achieving effective bone regeneration and thereby serving as a promising biological bone graft. PMID:28228929

  20. What Is Paget's Disease of Bone?

    ... Size | S S M M L L Bone Basics Osteoporosis Osteogenesis Imperfecta Paget’s Disease of Bone Related Topics News Glossary ... focus(); */ } //--> Print-Friendly Page Home Bone Basics Osteoporosis Osteogenesis Imperfecta Paget’s Disease of Bone Related Topics About Us ...

  1. How Is Paget's Disease of Bone Diagnosed?

    ... Size | S S M M L L Bone Basics Osteoporosis Osteogenesis Imperfecta Paget’s Disease of Bone Related Topics News Glossary ... focus(); */ } //--> Print-Friendly Page Home Bone Basics Osteoporosis Osteogenesis Imperfecta Paget’s Disease of Bone Related Topics About Us ...

  2. Estimation of In vivo Cancellous Bone Elasticity

    Otani, Takahiko; Mano, Isao; Tsujimoto, Toshiyuki; Yamamoto, Tadahito; Teshima, Ryota; Naka, Hiroshi


    The effect of decreasing bone density (a symptom of osteoporosis) is greater for cancellous bone than for dense cortical bone, because cancellous bone is metabolically more active. Therefore, the bone density or bone mineral density of cancellous bone is generally used to estimate the onset of osteoporosis. Elasticity or elastic constant is a fundamental mechanical parameter and is directly related to the mechanical strength of bone. Accordingly, elasticity is a preferable parameter for assessing fracture risk. A novel ultrasonic bone densitometer LD-100 has been developed to determine the mass density and elasticity of cancellous bone with a spatial resolution comparable to that of peripheral quantitative computed tomography. Bone density and bone elasticity are evaluated using ultrasonic parameters based on fast and slow waves in cancellous bone by modeling the ultrasonic wave propagation path. Elasticity is deduced from the measured bone density and the propagation speed of the fast wave. Thus, the elasticity of cancellous bone is approximately expressed by a cubic equation of bone density.

  3. Decellularized bone matrix grafts for calvaria regeneration

    Dong Joon Lee


    Full Text Available Decellularization is a promising new method to prepare natural matrices for tissue regeneration. Successful decellularization has been reported using various tissues including skin, tendon, and cartilage, though studies using hard tissue such as bone are lacking. In this study, we aimed to define the optimal experimental parameters to decellularize natural bone matrix using 0.5% sodium dodecyl sulfate and 0.1% NH4OH. Then, the effects of decellularized bone matrix on rat mesenchymal stem cell proliferation, osteogenic gene expression, and osteogenic differentiations in a two-dimensional culture system were investigated. Decellularized bone was also evaluated with regard to cytotoxicity, biochemical, and mechanical characteristics in vitro. Evidence of complete decellularization was shown through hematoxylin and eosin staining and DNA measurements. Decellularized bone matrix displayed a cytocompatible property, conserved structure, mechanical strength, and mineral content comparable to natural bone. To study new bone formation, implantation of decellularized bone matrix particles seeded with rat mesenchymal stem cells was conducted using an orthotopic in vivo model. After 3 months post-implantation into a critical-sized defect in rat calvaria, new bone was formed around decellularized bone matrix particles and also merged with new bone between decellularized bone matrix particles. New bone formation was analyzed with micro computed tomography, mineral apposition rate, and histomorphometry. Decellularized bone matrix stimulated mesenchymal stem cell proliferation and osteogenic differentiation in vitro and in vivo, achieving effective bone regeneration and thereby serving as a promising biological bone graft.

  4. Bone scanning after muscle-pedicle bone graft for femoral neck fracture, (1). Preliminary report

    Itoh, Yutaka; Nabeshima, Kazuo; Okazaki, Takeyuki; Dogo, Akihiko; Kurihara, Makoto; Tsai, Yeong-Nan (Kawasaki Steel Corp., Kobe (Japan))


    sup(99m)Tc-MDP bone scintigraphy was performed on patients who received muscle-pedicle bone graft. In each of the bone head and the bone graft, a time-activity curve was obtained. In this muscle-pedicle bone graft, active revascularization and marked osteogenesis, which suggested rapid bone repairing, were observed. The bone scintigraphy was considered to be useful in observing the result of bone grafts, blood circulation, and time of bone fusion, and of value for early detection of secondary changes.

  5. Composição química, digestibilidade e predição dos valores energéticos da farinha de carne e ossos para suínos - DOI: 10.4025/actascianimsci.v30i1.3597 Chemical Composition, Digestibility and Prediction of the Energy Values of Meat and Bone Meal for Swine - DOI: 10.4025/actascianimsci.v30i1.3597

    Horácio Santiago Rostagno


    Full Text Available O objetivo do trabalho foi determinar a composição química e energética de seis diferentes farinhas de carne e ossos, bem como desenvolver equações de predição da energia digestível e metabolizável, com base na composição química dos alimentos. Foram utilizados 28 suínos, mestiços, machos castrados, com peso médio inicial de 25,90 ± 1,95 kg, distribuídos em delineamento experimental de blocos ao acaso, com sete tratamentos, quatro repetições e um animal por unidade experimental. Os tratamentos consistiram de uma ração-referência e seis diferentes farinhas de carne e ossos, que substituíram em 20% a ração-referência. Os valores de energia digestível e metabolizável variaram de 1.717 a 2.908 kcal kg-1 e de 1.519 a 2.608 kcal kg-1, respectivamente. As equações de predição da energia digestível e metabolizável que apresentaram maiores R2 para a farinha de carne e ossos foram: ED = 1.196,11 + 44,18 PB – 121,55 P e EM = 2.103,35 + 22,56 PB – 164,02 P.The objective of this study was to determine the chemical and energetic composition of six different meat and bone meals, and to develop prediction equations of digestible and metabolizable energy based on the chemical composition of the feeds. In order to determine the digestible and metabolizable energy values, 28 crossbreed swine were used – castrated males, averaging 25.90 ± 1.95 kg initial weight, allotted in a randomized block design with seven treatments, four replicates and one animal per experimental unit. The treatments consisted of a basal diet and six meat and bone meals, which replaced by 20% the basal diet. The digestible and metabolizable energy values varied from 1717 to 2908 kcal kg-1 and from 1519 to 2608 kcal kg-1, respectively. The prediction equation of digestible and metabolizable energy that presented the highest R2 for meat and bone meal were: DE = 1196.11 + 44.18 CP – 121.55 P and ME = 2103.35 + 22.56 CP – 164.02 P.

  6. Predictive medicine

    Boenink, Marianne; Have, ten Henk


    In the last part of the twentieth century, predictive medicine has gained currency as an important ideal in biomedical research and health care. Research in the genetic and molecular basis of disease suggested that the insights gained might be used to develop tests that predict the future health sta

  7. Biochemical parameters of bone metabolism in bone metastases of solid tumors (Review)

    Meijer, Wilhelmus; van der Veer, E; Willemse, P H


    The role of biochemical markers of bone metabolism in the diagnosis and monitoring of bone metastases in solid tumors is reviewed. Emphasis is on the recently developed markers, which may provide a more accurate quantitation of bone metabolism. In metastatic bone disease, bone formation and resorpti

  8. Growth hormone stimulates bone healing in a critical-sized bone defect model

    Theyse, L. F. H.; Oosterlaken-Dijksterhuis, M. A.; van Doorn, J.; Dhert, W. J. A.; Hazewinkel, H. A. W.


    Growth hormone plays an important role in bone metabolism. Treating bone deficits is a major topic in orthopaedic surgery. Our hypothesis was that local continuous growth hormone administration stimulates bone healing in a canine critical-sized bone defect model. Bone formation in the defects was qu

  9. Multiscale approach for bone remodeling simulation based on finite element and neural network computation

    Hambli, Ridha


    The aim of this paper is to develop a multiscale hierarchical hybrid model based on finite element analysis and neural network computation to link mesoscopic scale (trabecular network level) and macroscopic (whole bone level) to simulate bone remodelling process. Because whole bone simulation considering the 3D trabecular level is time consuming, the finite element calculation is performed at macroscopic level and a trained neural network are employed as numerical devices for substituting the finite element code needed for the mesoscale prediction. The bone mechanical properties are updated at macroscopic scale depending on the morphological organization at the mesoscopic computed by the trained neural network. The digital image-based modeling technique using m-CT and voxel finite element mesh is used to capture 2 mm3 Representative Volume Elements at mesoscale level in a femur head. The input data for the artificial neural network are a set of bone material parameters, boundary conditions and the applied str...

  10. High-fidelity organic preservation of bone marrow in ca. 10 Ma amphibians

    McNamara, Maria E.; Orr, Patrick J.; Kearns, Stuart L.; Alcalá, Luis; Anadón, Pere; Peñalver-Mollá, Enrique


    Bone marrow in ca. 10 Ma frogs and salamanders from the Miocene of Libros, Spain, represents the first fossilized example of this extremely decay-prone tissue. The bone marrow, preserved in three dimensions as an organic residue, retains the original texture and red and yellow color of hematopoietic and fatty marrow, respectively; moldic osteoclasts and vascular structures are also present. We attribute exceptional preservation of the fossilized bone marrow to cryptic preservation: the bones of the amphibians formed protective microenvironments, and inhibited microbial infiltration. Specimens in which bone marrow is preserved vary in their completeness and articulation and in the extent to which the body outline is preserved as a thin film of organically preserved bacteria. Cryptic preservation of these labile tissues is thus to a large extent independent of, and cannot be predicted by, the taphonomic history of the remainder of the specimen.

  11. The Palatal Bone Block Graft for Onlay Grafting Combined with Maxillary Implant Placement: A Case Series.

    Gluckman, Howard; Du Toit, Jonathan; Salama, Maurice


    The aim of this study was to introduce an intraoral bone block harvesting technique--the palatal bone block graft (PBBG)--as an alternative harvest site for autogenous bone blocks. The PBBG technique was used to onlay graft esthetic zone defects simultaneous to implant placement in five patients. Measurable objectives were used to evaluate outcomes, and treatment was reassessed at up to 6 years. Defects of the maxilla were successfully grafted with PBBG in all five cases, and tissues remained stable at 1- and 6-year follow-ups. Harvesting an autogenous bone block from the palate is an advantageous, predictable, and reproducible method for augmenting buccofacial defects at implant placement, and may be considered as an alternative to conventional intraoral bone block donor sites when treating the maxilla.

  12. Bone X-Ray (Radiography)

    Full Text Available ... the oldest and most frequently used form of medical imaging. A bone x-ray makes images of any ... a radiologist or other physician. To locate a medical imaging or radiation oncology provider in your community, you ...

  13. Bone X-Ray (Radiography)

    Full Text Available ... replacement and fracture reductions. look for injury, infection, arthritis , abnormal bone growths and bony changes seen in ... injuries, including fractures, and joint abnormalities, such as arthritis. X-ray equipment is relatively inexpensive and widely ...

  14. Bone X-Ray (Radiography)

    Full Text Available ... assist in the detection and diagnosis of bone cancer . locate foreign objects in soft tissues around or ... Risks There is always a slight chance of cancer from excessive exposure to radiation. However, the benefit ...

  15. Bone X-Ray (Radiography)

    Full Text Available ... assist in the detection and diagnosis of bone cancer . locate foreign objects in soft tissues around or ... Risks There is always a slight chance of cancer from excessive exposure to radiation. However, the benefit ...

  16. Bone X-Ray (Radiography)

    Full Text Available ... top of page What are the benefits vs. risks? Benefits Bone x-rays are the fastest and ... in the typical diagnostic range for this exam. Risks There is always a slight chance of cancer ...

  17. Bone X-Ray (Radiography)

    Full Text Available ... of page What are some common uses of the procedure? A bone x-ray is used to: ... and x-rays. top of page What does the equipment look like? The equipment typically used for ...

  18. Pregnancy, Breastfeeding, and Bone Health

    ... or is not supported by your browser. Home Osteoporosis Women Pregnancy, Breastfeeding, and Bone Health Publication available in: PDF ( ... risk of fracture. In some cases, women develop osteoporosis during pregnancy or breastfeeding, although this is rare. Osteoporosis is ...

  19. Bone X-Ray (Radiography)

    Full Text Available ... asked to wait until the radiologist determines that all the necessary images have been obtained. A bone ... while it may be barely seen, if at all, on a hip x-ray. For suspected spine ...

  20. Bone X-Ray (Radiography)

    Full Text Available ... taken of the unaffected limb, or of a child's growth plate (where new bone is forming), for ... around joints, and in evaluating the hips of children with congenital problems. top of page This page ...