WorldWideScience

Sample records for gfp gene green

  1. IR-FEL-induced green fluorescence protein (GFP) gene transfer into plant cell

    CERN Document Server

    Awazu, K; Tamiya, E

    2002-01-01

    A Free Electron Laser (FEL) holds potential for various biotechnological applications due to its characteristics such as flexible wavelength tunability, short pulse and high peak power. We could successfully introduce the Green Fluorescent Protein (GFP) gene into tobacco BY2 cells by IR-FEL laser irradiation. The irradiated area of the solution containing BY2 cells and plasmid was about 0.1 mm sup 2. FEL irradiation at a wavelength of 5.75 and 6.1 mu m, targeting absorption by the ester bond of the lipid and the amide I bond of the protein, respectively, was shown to cause the introduction of the fluorescent dye into the cell. On the other hand, transient expression of the GFP fluorescence was only observed after irradiation at 5.75 mu m. The maximum transfer efficiency was about 0.5%.

  2. Green Fluorescent Protein (GFP) as a reporter gene for the plant pathogenic oomycete Phytophthora ramorum

    Science.gov (United States)

    Marko Riedel; Gautier Calmin; Lassaad Belbahri; Francois Lefort; Monika Gotz; Stefan Wagner; Sabine. Werres

    2009-01-01

    Transgenic Phytophthora ramorum strains that produce green fluorescent protein (GFP) constitutively were obtained after stable DNA integration using a polyethylene glycol and CaCl2-based transformation protocol. Green fluorescent protein production was studied in developing colonies and in different propagules of the pathogen...

  3. A vector carrying the GFP gene (Green fluorescent protein as a yeast marker for fermentation processes Um vetor com o gene da GFP (Green fluorescent protein para a marcação de leveduras em processos fermentativos

    Directory of Open Access Journals (Sweden)

    Luiz Humberto Gomes

    2000-12-01

    Full Text Available Contaminant yeasts spoil pure culture fermentations and cause great losses in quality and product yields. They can be detected by a variety of methods although none being so efficient for early detection of contaminant yeast cells that appear at low frequency. Pure cultures bearing genetic markers can ease the direct identification of cells and colonies among contaminants. Fast and easy detection are desired and morphological markers would even help the direct visualization of marked pure cultures among contaminants. The GFP gene for green fluorescent protein of Aquorea victoria, proved to be a very efficient marker to visualize transformed cells in mixed populations and tissues. To test this marker in the study of contaminated yeast fermentations, the GFP gene was used to construct a vector under the control of the ADH2 promoter (pYGFP3. Since ADH2 is repressed by glucose the expression of the protein would not interfere in the course of fermentation. The transformed yeasts with the vector pYGFP3 showed high stability and high bioluminescence to permit identification of marked cells among a mixed population of cells. The vector opens the possibility to conduct further studies aiming to develop an efficient method for early detection of spoilage yeasts in industrial fermentative processes.Leveduras contaminantes podem causar grandes perdas em processos fermentativos quando infectam culturas puras e degradam a qualidade do produto final. Estas leveduras podem ser detectadas por diversos métodos mas nenhum deles oferece resultados com a exatidão e precisão necessárias, quando os contaminantes estão em baixa freqüência. Culturas puras contendo um gene marcador podem ser utilizadas para a direta identificação de células e colônias contaminantes. Detecção rápida e fácil é desejada e marcadores morfológicos podem auxiliar na visualização da cultura marcada. O gene da GFP (green fluorescent protein extraído da Aequorea victoria

  4. Green fluorescent protein (GFP color reporter gene visualizes parvovirus B19 non-structural segment 1 (NS1 transfected endothelial modification.

    Directory of Open Access Journals (Sweden)

    Thomas Wurster

    Full Text Available BACKGROUND: Human Parvovirus B19 (PVB19 has been associated with myocarditis putative due to endothelial infection. Whether PVB19 infects endothelial cells and causes a modification of endothelial function and inflammation and, thus, disturbance of microcirculation has not been elucidated and could not be visualized so far. METHODS AND FINDINGS: To examine the PVB19-induced endothelial modification, we used green fluorescent protein (GFP color reporter gene in the non-structural segment 1 (NS1 of PVB19. NS1-GFP-PVB19 or GFP plasmid as control were transfected in an endothelial-like cell line (ECV304. The endothelial surface expression of intercellular-adhesion molecule-1 (CD54/ICAM-1 and extracellular matrix metalloproteinase inducer (EMMPRIN/CD147 were evaluated by flow cytometry after NS-1-GFP or control-GFP transfection. To evaluate platelet adhesion on NS-1 transfected ECs, we performed a dynamic adhesion assay (flow chamber. NS-1 transfection causes endothelial activation and enhanced expression of ICAM-1 (CD54: mean ± standard deviation: NS1-GFP vs. control-GFP: 85.3 ± 11.2 vs. 61.6 ± 8.1; P<0.05 and induces endothelial expression of EMMPRIN/CD147 (CD147: mean ± SEM: NS1-GFP vs. control-GFP: 114 ± 15.3 vs. 80 ± 0.91; P<0.05 compared to control-GFP transfected cells. Dynamic adhesion assays showed that adhesion of platelets is significantly enhanced on NS1 transfected ECs when compared to control-GFP (P<0.05. The transfection of ECs was verified simultaneously through flow cytometry, immunofluorescence microscopy and polymerase chain reaction (PCR analysis. CONCLUSIONS: GFP color reporter gene shows transfection of ECs and may help to visualize NS1-PVB19 induced endothelial activation and platelet adhesion as well as an enhanced monocyte adhesion directly, providing in vitro evidence of possible microcirculatory dysfunction in PVB19-induced myocarditis and, thus, myocardial tissue damage.

  5. Cryopreservation of green fluorescent protein (GFP)-labeled primordial germ cells with GFP fused to the 3' untranslated region of the nanos gene by vitrification of Japanese eel (Anguilla japonica) somite stage embryos.

    Science.gov (United States)

    Kawakami, Y; Ishihara, M; Saito, T; Fujimoto, T; Adachi, S; Arai, K; Yamaha, E

    2012-12-01

    Primordial germ cells (PGC) are the only cell type in developing embryos with the potential to transmit genetic information to the next generation. In this study, PGC of Japanese eel (Anguilla japonica) were visualized by injection of mRNA synthesized from a construct carrying the green fluorescent protein (GFP) gene fused to the 3' untranslated region of the Japanese eel nanos gene. We investigated the feasibility of cryopreserving Japanese eel PGC by vitrification of dechorionated whole somite stage embryos. The GFP-labeled PGC were rapidly cooled using liquid nitrogen after exposure to a pretreatment solution containing 1.5 M cryoprotectant (methanol, dimethyl sulfoxide, and glycerol for 10 min and ethylene glycol for 10, 20, and 30 min) and a vitrification solution containing 3 M cryoprotectant and 0.5 M sucrose for 1, 5, and 10 min. Ethylene glycerol is an effective cryoprotectant for embryonic cells and shows no evidence of ice formation after thawing. Vitrified and thawed PGC were transplanted into blastula stage embryos from zebrafish (Danio rerio). The GFP-labeled PGC migrated toward the host gonadal ridge, suggesting maintenance of their normal migration motility. These techniques may assist in achieving inter- and intraspecies germ-line chimers using donor Japanese eel PGC.

  6. GFP expression by intracellular gene delivery of GFP-coding fragments using nanocrystal quantum dots

    International Nuclear Information System (INIS)

    Hoshino, Akiyoshi; Manabe, Noriyoshi; Fujioka, Kouki; Hanada, Sanshiro; Yamamoto, Kenji; Yasuhara, Masato; Kondo, Akihiko

    2008-01-01

    Gene therapy is an attractive approach to supplement a deficient gene function. Although there has been some success with specific gene delivery using various methods including viral vectors and liposomes, most of these methods have a limited efficiency or also carry a risk for oncogenesis. We herein report that quantum dots (QDs) conjugated with nuclear localizing signal peptides (NLSP) successfully introduced gene-fragments with promoter elements, which promoted the expression of the enhanced green fluorescent protein (eGFP) gene in mammalian cells. The expression of eGFP protein was observed when the QD/gene-construct was added to the culture media. The gene-expression efficiency varied depending on multiple factors around QDs, such as (1) the reading direction of the gene-fragments, (2) the quantity of gene-fragments attached on the surface of the QD-constructs, (3) the surface electronic charges varied according to the structure of the QD/gene-constructs, and (4) the particle size of QD/gene complex varied according to the structure and amounts of gene-fragments. Using this QD/gene-construct system, eGFP protein could be detected 28 days after the gene-introduction whereas the fluorescence of QDs had disappeared. This system therefore provides another method for the intracellular delivery of gene-fragments without using either viral vectors or specific liposomes.

  7. Efficient expression of green fluorescent protein (GFP) mediated by a chimeric promoter in Chlamydomonas reinhardtii

    Science.gov (United States)

    Wu, Jinxia; Hu, Zhangli; Wang, Chaogang; Li, Shuangfei; Lei, Anping

    2008-08-01

    To improve the expression efficiency of exogenous genes in Chlamydomonas reinhardtii, a high efficient expression vector was constructed. Green fluorescent protein (GFP) was expressed in C. reinhardtii under the control of promoters: RBCS2 and HSP70A-RBCS2. Efficiency of transformation and expression were compared between two transgenic algae: RBCS2 mediated strain Tran-I and HSP70A-RBCS2 mediated strain Tran-II. Results show that HSP70A-RBCS2 could improve greatly the transformation efficiency by approximately eightfold of RBCS2, and the expression efficiency of GFP in Tran-II was at least double of that in Tran-I. In addition, a threefold increase of GFP in Tran-II was induced by heat shock at 40°C. All of the results demonstrated that HSP70A-RBCS2 was more efficient than RBCS2 in expressing exogenous gene in C. reinhardtii.

  8. Non-Target Effects of Green Fluorescent Protein (GFP-Derived Double-Stranded RNA (dsRNA-GFP Used in Honey Bee RNA Interference (RNAi Assays

    Directory of Open Access Journals (Sweden)

    Francis M. F. Nunes

    2013-01-01

    Full Text Available RNA interference has been frequently applied to modulate gene function in organisms where the production and maintenance of mutants is challenging, as in our model of study, the honey bee, Apis mellifera. A green fluorescent protein (GFP-derived double-stranded RNA (dsRNA-GFP is currently commonly used as control in honey bee RNAi experiments, since its gene does not exist in the A. mellifera genome. Although dsRNA-GFP is not expected to trigger RNAi responses in treated bees, undesirable effects on gene expression, pigmentation or developmental timing are often observed. Here, we performed three independent experiments using microarrays to examine the effect of dsRNA-GFP treatment (introduced by feeding on global gene expression patterns in developing worker bees. Our data revealed that the expression of nearly 1,400 genes was altered in response to dsRNA-GFP, representing around 10% of known honey bee genes. Expression changes appear to be the result of both direct off-target effects and indirect downstream secondary effects; indeed, there were several instances of sequence similarity between putative siRNAs generated from the dsRNA-GFP construct and genes whose expression levels were altered. In general, the affected genes are involved in important developmental and metabolic processes associated with RNA processing and transport, hormone metabolism, immunity, response to external stimulus and to stress. These results suggest that multiple dsRNA controls should be employed in RNAi studies in honey bees. Furthermore, any RNAi studies involving these genes affected by dsRNA-GFP in our studies should use a different dsRNA control.

  9. Non-Target Effects of Green Fluorescent Protein (GFP)-Derived Double-Stranded RNA (dsRNA-GFP) Used in Honey Bee RNA Interference (RNAi) Assays.

    Science.gov (United States)

    Nunes, Francis M F; Aleixo, Aline C; Barchuk, Angel R; Bomtorin, Ana D; Grozinger, Christina M; Simões, Zilá L P

    2013-01-04

    RNA interference has been frequently applied to modulate gene function in organisms where the production and maintenance of mutants is challenging, as in our model of study, the honey bee, Apis mellifera. A green fluorescent protein (GFP)-derived double-stranded RNA (dsRNA-GFP) is currently commonly used as control in honey bee RNAi experiments, since its gene does not exist in the A. mellifera genome. Although dsRNA-GFP is not expected to trigger RNAi responses in treated bees, undesirable effects on gene expression, pigmentation or developmental timing are often observed. Here, we performed three independent experiments using microarrays to examine the effect of dsRNA-GFP treatment (introduced by feeding) on global gene expression patterns in developing worker bees. Our data revealed that the expression of nearly 1,400 genes was altered in response to dsRNA-GFP, representing around 10% of known honey bee genes. Expression changes appear to be the result of both direct off-target effects and indirect downstream secondary effects; indeed, there were several instances of sequence similarity between putative siRNAs generated from the dsRNA-GFP construct and genes whose expression levels were altered. In general, the affected genes are involved in important developmental and metabolic processes associated with RNA processing and transport, hormone metabolism, immunity, response to external stimulus and to stress. These results suggest that multiple dsRNA controls should be employed in RNAi studies in honey bees. Furthermore, any RNAi studies involving these genes affected by dsRNA-GFP in our studies should use a different dsRNA control.

  10. hNIS-IRES-eGFP Dual Reporter Gene Imaging

    Directory of Open Access Journals (Sweden)

    Jiantu Che

    2005-04-01

    Full Text Available The human and rodent sodium iodide symporters (NIS have recently been cloned and are being investigated as potential therapeutic and reporter genes. We have extended this effort by constructing an internal ribosomal entry site (IRES-linked human NIS (hNIS-enhanced green fluorescent protein (eGFP hybrid reporter gene for both nuclear and optical imaging. A self-inactivating retroviral vector, termed pQCNIG, containing hNIS-IRES-eGFP dual reporter gene, driven by a constitutive CMV promoter, was constructed and used to generate RG2-pQCNIG cells and RG2-pQCNIG tumors. 131I-iodide and 99mTcO4-pertechnetate accumulation studies plus fluorescence microscopy and intensity assays were performed in vitro, and gamma camera imaging studies in RG2-pQCNIG and RG2 tumor-bearing athymic rats were performed. RG2-pQCNIG cells expressed high levels of hNIS protein and showed high intensity of eGFP fluorescence compared with RG2 wild-type cells. RG2-pQCNIG cells accumulated Na131I and 99mTcO4– to a 50:1 and a 170:1 tissue/medium ratio at 10 min, compared with 0.8:1.2 tissue/medium ratio in wild-type RG2 cells. A significant correlation between radiotracer accumulation and eGFP fluorescence intensity was demonstrated. RG2-pQCNIG and RG2 tumors were readily differentiated by in vivo gamma camera imaging; radiotracer uptake increased in RG2-pQCNIG but declined in RG2 tumors over the 50-min imaging period. Stomach and thyroid were the major organs of radionuclide accumulation. The IRES-linked hNIS-eGFP dual reporter gene is functional and stable in transduced RG2-pQCNIG cells. Optical and nuclear imaging of tumors produced from these cell lines provides the opportunity to monitor tumor growth and response to therapy. These studies indicate the potential for a wider application of hNIS reporter imaging and translation into patient studies using radioisotopes that are currently available for human use for both SPECT and PET imaging.

  11. Spatiotemporal relationships between growth and microtubule orientation as revealed in living root cells of Arabidopsis thaliana transformed with green-fluorescent-protein gene construct GFP-MBD

    Science.gov (United States)

    Granger, C. L.; Cyr, R. J.

    2001-01-01

    Arabidopsis thaliana plants were transformed with GFP-MBD (J. Marc et al., Plant Cell 10: 1927-1939, 1998) under the control of a constitutive (35S) or copper-inducible promoter. GFP-specific fluorescence distributions, levels, and persistence were determined and found to vary with age, tissue type, transgenic line, and individual plant. With the exception of an increased frequency of abnormal roots of 35S GFP-MBD plants grown on kanamycin-containing media, expression of GFP-MBD does not appear to affect plant phenotype. The number of leaves, branches, bolts, and siliques as well as overall height, leaf size, and seed set are similar between wild-type and transgenic plants as is the rate of root growth. Thus, we conclude that the transgenic plants can serve as a living model system in which the dynamic behavior of microtubules can be visualized. Confocal microscopy was used to simultaneously monitor growth and microtubule behavior within individual cells as they passed through the elongation zone of the Arabidopsis root. Generally, microtubules reoriented from transverse to oblique or longitudinal orientations as growth declined. Microtubule reorientation initiated at the ends of the cell did not necessarily occur simultaneously in adjacent neighboring cells and did not involve complete disintegration and repolymerization of microtubule arrays. Although growth rates correlated with microtubule reorientation, the two processes were not tightly coupled in terms of their temporal relationships, suggesting that other factor(s) may be involved in regulating both events. Additionally, microtubule orientation was more defined in cells whose growth was accelerating and less stringent in cells whose growth was decelerating, indicating that microtubule-orienting factor(s) may be sensitive to growth acceleration, rather than growth per se.

  12. Detection of gfp expression from gfp-labelled bacteria spot ...

    African Journals Online (AJOL)

    SERVER

    Green fluorescent protein (GFP) as a marker gene has facilitated biological research ... behaviour of B501gfp1 in sugarcane plant tissues over .... Bacteria population changes over time on the stem tissue (parenchyma tissues and intercellular.

  13. Welfare assessment in transgenic pigs expressing green fluorescent protein (GFP)

    DEFF Research Database (Denmark)

    Huber, Reinhard C.; Remuge, Liliana; Carlisle, Ailsa

    2012-01-01

    Since large animal transgenesis has been successfully attempted for the first time about 25 years ago, the technology has been applied in various lines of transgenic pigs. Nevertheless one of the concerns with the technology—animal welfare—has not been approached through systematic assessment...... and statements regarding the welfare of transgenic pigs have been based on anecdotal observations during early stages of transgenic programs. The main aim of the present study was therefore to perform an extensive welfare assessment comparing heterozygous transgenic animals expressing GFP with wildtype animals...... months. The absence of significant differences between GFP and wildtype animals in the parameters observed suggests that the transgenic animals in question are unlikely to suffer from deleterious effects of transgene expression on their welfare and thus support existing anecdotal observations of pigs...

  14. Efficient transformation and expression of gfp gene in Valsa mali var. mali.

    Science.gov (United States)

    Chen, Liang; Sun, Gengwu; Wu, Shujing; Liu, Huixiang; Wang, Hongkai

    2015-01-01

    Valsa mali var. mali, the causal agent of valsa canker of apple, causes great loss of apple production in apple producing regions. The pathogenic mechanism of the pathogen has not been studied extensively, thus a suitable gene marker for pathogenic invasion analysis and a random insertion of T-DNA for mutants are desirable. In this paper, we reported the construction of a binary vector pKO1-HPH containing a positive selective gene hygromycin phosphotransferase (hph), a reporter gene gfp conferring green fluorescent protein, and an efficient protocol for V. mali var. mali transformation mediated by Agrobacterium tumefaciens. A transformation efficiency up to about 75 transformants per 10(5) conidia was achieved when co-cultivation of V. mali var. mali and A. tumefaciens for 48 h in A. tumefaciens inductive medium agar plates. The insertions of hph gene and gfp gene into V. mali var. mali genome verified by polymerase chain reaction and southern blot analysis showed that 10 randomly-selected transformants exhibited a single, unique hybridization pattern. This is the first report of A. tumefaciens-mediated transformation of V. mali var mali carrying a 'reporter' gfp gene that stably and efficiently expressed in the transformed V. mali var. mali species.

  15. GUS and GFP transformation of the biocontrol strain Clonostachys rosea IK726 and the use of these marker genes in ecological studies

    DEFF Research Database (Denmark)

    Lübeck, M.; Knudsen, I.M.B.; Jensen, B.

    2002-01-01

    Marker genes were introduced in the biocontrol strain Clonostachys rosea IK726 (IBT 9371) as a tool for monitoring the strain in ecological studies. The beta-glucuronidase (GUS) reporter gene and a gene encoding the green fluorescent protein (GFP) were, in separate experiments, integrated into th...

  16. Construction and use of a Cupriavidus necator H16 soluble hydrogenase promoter (PSH fusion to gfp (green fluorescent protein

    Directory of Open Access Journals (Sweden)

    Bat-Erdene Jugder

    2016-07-01

    Full Text Available Hydrogenases are metalloenzymes that reversibly catalyse the oxidation or production of molecular hydrogen (H2. Amongst a number of promising candidates for application in the oxidation of H2 is a soluble [Ni–Fe] uptake hydrogenase (SH produced by Cupriavidus necator H16. In the present study, molecular characterisation of the SH operon, responsible for functional SH synthesis, was investigated by developing a green fluorescent protein (GFP reporter system to characterise PSH promoter activity using several gene cloning approaches. A PSH promoter-gfp fusion was successfully constructed and inducible GFP expression driven by the PSH promoter under de-repressing conditions in heterotrophic growth media was demonstrated in the recombinant C. necator H16 cells. Here we report the first successful fluorescent reporter system to study PSH promoter activity in C. necator H16. The fusion construct allowed for the design of a simple screening assay to evaluate PSH activity. Furthermore, the constructed reporter system can serve as a model to develop a rapid fluorescent based reporter for subsequent small-scale process optimisation experiments for SH expression.

  17. Thermal stability of chemically denatured green fluorescent protein (GFP) A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Attila; Malnasi-Csizmadia, Andras; Somogyi, Bela; Lorinczy, Denes

    2004-02-09

    Green fluorescent protein (GFP) is a light emitter in the bioluminescence reaction of the jellyfish Aequorea victoria. The protein consist of 238 amino acids and produces green fluorescent light ({lambda}{sub max}=508 nm), when irradiated with near ultraviolet light. The fluorescence is due to the presence of chromophore consisting of an imidazolone ring, formed by a post-translational modification of the tripeptide -Ser{sup 65}-Tyr{sup 66}-Gly{sup 67}-, which buried into {beta}-barrel. GFP is extremely compact and heat stable molecule. In this work, we present data for the effect of chemical denaturing agent on the thermal stability of GFP. When denaturing agent is applied, global thermal stability and the melting point of the molecule is decreases, that can be monitored with differential scanning calorimetry. The results indicate, that in 1-6 M range of GuHCl the melting temperature is decreasing continuously from 83 to 38 deg. C. Interesting finding, that the calculated calorimetric enthalpy decreases with GuHCl concentration up to 3 M (5.6-0.2 kJ mol{sup -1}), but at 4 M it jumps to 8.4 and at greater concentration it is falling down to 1.1 kJ mol{sup -1}. First phenomena, i.e. the decrease of melting point with increasing GuHCl concentration can be easily explained by the effect of the extended chemical denaturation, when less and less amount of heat required to diminish the remaining hydrogen bonds in {beta}-barrel. The surprising increase of calorimetric enthalpy at 4 M concentration of GuHCl could be the consequence of a dimerization or a formation of stable complex between GFP and denaturing agent as well as a precipitation at an extreme GuHCl concentration. We are planning further experiments to elucidate fluorescent consequence of these processes.

  18. Synthesis and properties of the para-trimethylammonium analogues of green fluorescence protein (GFP) chromophore: The mimic of protonated GFP chromophore.

    Science.gov (United States)

    Fanjiang, Ming-Wei; Li, Ming-Ju; Sung, Robert; Sung, Kuangsen

    2018-04-01

    At low pH, protons from the external, bulk solution can protonate the phenoxide group of the p-HBDI chromophore in wild-type green fluorescent protein (wtGFP) and its mutants, and likely continue to tentatively protonate the phenol hydroxyl group of the same chromophores. Because the protonated GFP chromophore is a transient, we prepare the stable p-trimethylammonium analogues (2a and 2b) of the GFP chromophore to mimic it and explore their properties. What we found is that the p-trimethylammonium analogues of the GFP chromophore have the highly electrophilic amidine carbon, blue-shifted electronic absorption, smaller molar absorptivity, smaller fluorescent quantum yield, and faster E-Z thermoisomerization rate. The amidine carbon of the p-trimethylammonium analogue (2b) of the GFP chromophore is the only site that is attacked by very weak nucleophile of water, resulting in ring-opening of the imidazolinone moiety. The half-life of its decay rate in D 2 O is around 33 days. Actually, acid-catalyzed hydrolysis of p-HBDI also results in ring-opening of the imidazolinone moiety. The ratio of the acid-catalyzed hydrolysis rate constants [k obs (p-HBDI)/k obs (1b)] between p-HBDI and 1b (p-dimethylammonium analogue of the GFP chromophore) is dramatically increased from 0.30 at pH = 2 to 0.63 at pH = 0. This is the evidence that more and more phenol hydroxyl groups of p-HBDI are tentatively protonated in a low-pH aqueous solution and that accelerates hydrolysis of p-HBDI in the way similar to the quaternary ammonium derivatives 2a and 2b in water. With this view point, 2a and 2b still can partially mimic the cationic p-HBDI with the protonated phenol hydroxyl group. Implication of the experiment is that the amidine carbon of the chromophore in wtGFP and its mutants at very low pH should be highly electrophilic. Whether ring-opening of the imidazolinone moiety of the GFP chromophore would occur or not depends on if water molecules can reach the amidine carbon of

  19. Genetic transformation with the gfp gene of Colletotrichum gloeosporioides isolates from coffee with blister spot

    Directory of Open Access Journals (Sweden)

    Cecilia Armesto

    2012-09-01

    Full Text Available Blister spot (Colletotrichum gloeosporioides is now widespread in most coffee producing states of Brazil, becoming a limiting factor for production. The lack of data relating to the reproduction of typical symptoms (light green, oily patches leaves a gap within the pathosystem, forcing the search for new methodologies for monitoring the disease. Monitoring of genetically modified organisms has proven to be an effective tool in understanding the host x pathogen interactions. Thus, the present study was carried out to evaluate the effectiveness of two systems of genetic transformation in obtaining mutants using the gfp reporter gene. Using the two transformation systems (PEG and electroporation revealed the efficiency of both, confirmed by fluorescence microscopy and resistance to the antibiotic hygromycin-B, when incorporated into the culture medium. The fungus maintained its cultural and morphological characteristics when compared to wild strains. When inoculated on coffee seedlings, it was found that the pathogenicity of the processed isolates had not changed.

  20. Molecular quantification of genes encoding for green-fluorescent proteins

    DEFF Research Database (Denmark)

    Felske, A; Vandieken, V; Pauling, B V

    2003-01-01

    A quantitative PCR approach is presented to analyze the amount of recombinant green fluorescent protein (gfp) genes in environmental DNA samples. The quantification assay is a combination of specific PCR amplification and temperature gradient gel electrophoresis (TGGE). Gene quantification...... PCR strategy is a highly specific and sensitive way to monitor recombinant DNA in environments like the efflux of a biotechnological plant....

  1. The Impact of GFP Reporter Gene Transduction and Expression on Metabolomics of Placental Mesenchymal Stem Cells Determined by UHPLC-Q/TOF-MS

    Directory of Open Access Journals (Sweden)

    Jinfeng Yang

    2017-01-01

    Full Text Available Introduction. Green fluorescent protein (GFP is widely used as a reporter gene in regenerative medicine research to label and track stem cells. Here, we examined whether expressing GFP gene may impact the metabolism of human placental mesenchymal stem cells (hPMSCs. Methods. The GFP gene was transduced into hPMSCs using lentiviral-based infection to establish GFP+hPMSCs. A sensitive 13C/12C-dansyl labeling LC-MS method targeting the amine/phenol submetabolome was used for in-depth cell metabolome profiling. Results. A total of 1151 peak pairs or metabolites were detected from 12 LC-MS runs. Principal component analysis and partial least squares discriminant analysis showed poor separation, and the volcano plots demonstrated that most of the metabolites were not significantly changed when hPMSCs were tagged with GFP. Overall, 739 metabolites were positively or putatively identified. Only 11 metabolites showed significant changes. Metabolic pathway analyses indicated that three of the identified metabolites were involved in nine pathways. However, these metabolites are unlikely to have a large impact on the metabolic pathways due to their nonessential roles and limited hits in pathway analysis. Conclusion. This study indicated that the expression of ectopic GFP reporter gene did not significantly alter the metabolomics pathways covered by the amine/phenol submetabolome.

  2. Green fluorescent protein (GFP) leakage from microbial biosensors provides useful information for the evaluation of the scale-down effect

    DEFF Research Database (Denmark)

    Delvigne, Frank; Brognaux, Alison; Francis, Frédéric

    2011-01-01

    Mixing deficiencies can be potentially detected by the use of a dedicated whole cell microbial biosensor. In this work, a csiE promoter induced under carbon-limited conditions was involved in the elaboration of such biosensor. The cisE biosensor exhibited interesting response after up and down......-shift of the dilution rate in chemostat mode. Glucose limitation was accompanied by green fluorescent protein (GFP) leakage to the extracellular medium. In order to test the responsiveness of microbial biosensors to substrate fluctuations in large-scale, a scale-down reactor (SDR) experiment was performed. The glucose...... fluctuations were characterized at the single cell level and tend to decrease the induction of GFP. Simulations run on the basis of a stochastic hydrodynamic model have shown the variability and the frequencies at which biosensors are exposed to glucose gradient in the SDR. GFP leakage was observed to a great...

  3. A novel binary T-vector with the GFP reporter gene for promoter characterization.

    Directory of Open Access Journals (Sweden)

    Shu-Ye Jiang

    Full Text Available Several strategies have been developed to clone PCR fragments into desired vectors. However, most of commercially available T-vectors are not binary vectors and cannot be directly used for Agrobacterium-mediated plant genetic transformation. In this study, a novel binary T-vector was constructed by integrating two AhdI restriction sites into the backbone vector pCAMBIA 1300. The T-vector also contains a GFP reporter gene and thus, can be used to analyze promoter activity by monitoring the reporter gene. On the other hand, identification and characterization of various promoters not only benefit the functional annotation of their genes but also provide alternative candidates to be used to drive interesting genes for plant genetic improvement by transgenesis. More than 1,000 putative pollen-specific rice genes have been identified in a genome-wide level. Among them, 67 highly expressed genes were further characterized. One of the pollen-specific genes LOC_Os10g35930 was further surveyed in its expression patterns with more details by quantitative real-time reverse-transcription PCR (qRT-PCR analysis. Finally, its promoter activity was further investigated by analyzing transgenic rice plants carrying the promoter::GFP cassette, which was constructed from the newly developed T-vector. The reporter GFP gene expression in these transgenic plants showed that the promoter was active only in mature but not in germinated pollens.

  4. Looking at the Green Fluorescent Protein (GFP) chromophore from a different perspective: A computational insight

    Science.gov (United States)

    Paul, Bijan Kumar; Guchhait, Nikhil

    2013-02-01

    In the present contribution Density Functional Theory (DFT) has been applied to explore molecular dipole moment, frontier molecular orbital (FMO) features, chemical hardness, and the molecular electrostatic potential surface (MEPS) characteristics for optimized molecular geometry of the Green Fluorescent Protein (GFP) chromophore p-hydroxybenzylideneimidazolinone (HBDI) both in its protonated (neutral) and deprotonated (anion) forms. The distribution of atomic charges over the entire molecular framework as obtained from Natural Bond Orbital (NBO) analysis is found to faithfully replicate the predictions from the MEP map in respect of reactivity map of HBDI (neutral and anion) and possible sites for hydrogen bonding interactions etc. The three dimensional MEP map encompassing the entire molecule yields a reliable reactivity map of HBDI molecule also displaying the most probable regions for non-covalent interactions. The differential distribution of the electrostatic potential over the neutral and anionic species of HBDI is authentically reflected on MEP map and NBO charge distribution analysis. Thermodynamic properties such as heat capacity, thermal energy, enthalpy, entropy have been calculated and the correlation of the various thermodynamic functions with temperature has been established for neutral molecule. More importantly, however, the computational approach has been employed to unveil the nonlinear optical (NLO) properties of protonated (neutral) and deprotonated (anion) HBDI. Also in an endeavor to achieve a fuller understanding on this aspect the effect of basis set on the NLO properties of the title molecule has been investigated. Our computations delineate the discernible differences in NLO properties between the neutral and anionic species of HBDI whereby indicating the possibility of development of photoswitchable NLO device.

  5. Study on transferring improved green fluorescent protein gene into wheat via low energy Ar+ implantation

    International Nuclear Information System (INIS)

    Wu Lifang; Li Hong; Song Daojun

    2000-01-01

    An improved GFP gene (mGFP4) was introduced into mature embryo cells of wheat cultivars Wan 9210 and Wanmai 32 via low energy ion beam-mediated delivery technique. Resistant calli were selected on medium containing paromomycin (100-140 mg/L). Five green plants were regenerated from resistant calli of Wan 9210 derived from 387 implated mature embryos. 32 green plants were obtained from 776 irradiated mature embryos in Wanmai 32. No green plant was regenerated from calli of 200 non-transformed embryos. PCR assays of 37 green plants showed that they all obtained the expected size of amplified DNA fragment (600 bp). Southern blot of 4 well-developed green plants confirmed stable integration of GFP gene into wheat genome. The average transformation frequencies of Wan 9210 and Wanmai 32 were 1.3% and 4.1%, respectively, according to the results of PCR assays

  6. Synthesis and Properties of the p-Sulfonamide Analogue of the Green Fluorescent Protein (GFP) Chromophore: The Mimic of GFP Chromophore with Very Strong N-H Photoacid Strength.

    Science.gov (United States)

    Chen, Yi-Hui; Sung, Robert; Sung, Kuangsen

    2018-04-06

    The para-sulfonamide analogue ( p-TsABDI) of a green fluorescent protein (GFP) chromophore was synthesized to mimic the GFP chromophore. Its S 1 excited-state p K a * value in dimethylsulfoxide (DMSO) is -1.5, which is strong enough to partially protonate dipolar aprotic solvents and causes excited-state proton transfer (ESPT), so it can partially mimic the GFP chromophore to further study the ESPT-related photophysics and the blinking phenomenon of GFP. In comparison with 8-hydroxypyrene-1,3,6-trisulfonate (HPTS) (p K a = 7.4, p K a * = 1.3 in water), p-TsABDI (p K a = 6.7, p K a * = -1.5 in DMSO) is a better photoacid for pH-jump studies.

  7. Transient GFP expression in Nicotiana plumbaginifolia suspension cells: the role of gene silencing, cell death and T-DNA loss.

    Science.gov (United States)

    Weld, R; Heinemann, J; Eady, C

    2001-03-01

    The transient nature of T-DNA expression was studied with a gfp reporter gene transferred to Nicotiana plumbaginifolia suspension cells from Agrobacterium tumefaciens. Individual GFP-expressing protoplasts were isolated after 4 days' co-cultivation. The protoplasts were cultured without selection and 4 weeks later the surviving proto-calluses were again screened for GFP expression. Of the proto-calluses initially expressing GFP, 50% had lost detectable GFP activity during the first 4 weeks of culture. Multiple T-DNA copies of the gfp gene were detected in 10 of 17 proto-calluses lacking visible GFP activity. The remaining 7 cell lines contained no gfp sequences. Our results confirm that transiently expressed T-DNAs can be lost during growth of somatic cells and demonstrate that transiently expressing cells frequently integrate multiple T-DNAs that become silenced. In cells competent for DNA uptake, cell death and gene silencing were more important barriers to the recovery of stably expressing transformants than lack of T-DNA integration.

  8. A potyvirus-based gene vector allows producing active human S-COMT and animal GFP, but not human sorcin, in vector-infected plants.

    Science.gov (United States)

    Kelloniemi, Jani; Mäkinen, Kristiina; Valkonen, Jari P T

    2006-05-01

    Potato virus A (PVA), a potyvirus with a (+)ssRNA genome translated to a large polyprotein, was engineered and used as a gene vector for expression of heterologous proteins in plants. Foreign genes including jellyfish GFP (Aequorea victoria) encoding the green fluorescent protein (GFP, 27 kDa) and the genes of human origin (Homo sapiens) encoding a soluble resistance-related calcium-binding protein (sorcin, 22 kDa) and the catechol-O-methyltransferase (S-COMT; 25 kDa) were cloned between the cistrons for the viral replicase and coat protein (CP). The inserts caused no adverse effects on viral infectivity and virulence, and the inserted sequences remained intact in progeny viruses in the systemically infected leaves. The heterologous proteins were released from the viral polyprotein following cleavage by the main viral proteinase, NIa, at engineered proteolytic processing sites flanking the insert. Active GFP, as indicated by green fluorescence, and S-COMT with high levels of enzymatic activity were produced. In contrast, no sorcin was detected despite the expected equimolar amounts of the foreign and viral proteins being expressed as a polyprotein. These data reveal inherent differences between heterologous proteins in their suitability for production in plants.

  9. The effect of excess expression of GFP in a novel heart-specific green fluorescence zebrafish regulated by nppa enhancer at early embryonic development.

    Science.gov (United States)

    Huang, Wen; Deng, Yun; Dong, Wei; Yuan, Wuzhou; Wan, Yongqi; Mo, Xiaoyan; Li, Yongqing; Wang, Zequn; Wang, Yuequn; Ocorr, Karen; Zhang, Bo; Lin, Shuo; Wu, Xiushan

    2011-02-01

    In order to study the impalpable effect of GFP in homozygous heart-specific GFP-positive zebrafish during the early stage, the researchers analyzed the heart function of morphology and physiology at the first 3 days after fertilization. This zebrafish line was produced by a large-scale Tol2 transposon mediated enhancer trap screen that generated a transgenic zebrafish with a heart-specific expression of green fluorescent protein (GFP)-tagged under control of the nppa enhancer. In situ hybridization experiments showed that the nppa:GFP line faithfully recapitulated both the spatial and temporal expressions of the endogenous nppa. Green fluorescence was intensively and specifically expressed in the myocardial cells located both in the heart chambers and in the atrioventricular canal. The embryonic heart of nppa:GFP line developed normally compared with those in the wild type. There was no difference between the nappa:GFP and wild type lines with respect to heart rate, overall size, ejection volume, and fractional shortening. Thus the excess expression of GFP in this transgenic line seemed to exert no detrimental effects on zebrafish hearts during the early stages.

  10. Lentiviral Vector-Mediated GFP/fluc gene introduction into primary mouse NK cells

    International Nuclear Information System (INIS)

    L, Thi Thanh Hoa; Tae, Seong Ho; Min, Jung Joon

    2007-01-01

    NK cell is a type of lymphocyte that has ability in defense against virus infection and some kinds of cancer diseases. Recently, using genetic engineering, studies about the roles and functions of NK cells have been developing. In this study, we used lentivirus-based vector encoding GFP/Fluc gene to transfer into primary mouse NK cells. This model is a tool in studying characteristics of NK cells. The lentivirus used in this study was a commercial one, named LentiM1.3-Fluc, encoding GFP and Flue reporter genes under the control of the murine cytomegalovirus (MCMV) promoter. LentiM1.3-Fluc was infected into freshly isolated mouse NK cells at 2 20 MOl by incubating or using spin infection. In the spin infection, we gently suspended NK cells in viral fluid, then centrifuged at 2000 rpm, 20 minutes at room temperature and incubated for 1 day. After 1 day, virus was discarded and NK cells were cultured in IL-2 with or without IL-12 supplemented media. Infected NK cells were monitored by using fluorescent microscope for GFP and IVIS machine for Fire-fly luciferase expression. The results showed that using spin infection had much effect on introducing lentiviral vector-mediated reporter gene into NK cells than the way without spin. Also, NK cells which were cultured in IL-2 and IL-12 added media expressed higher fluorescent and luminescent signals than those cultured in only IL-2 supplemented media. When these NK cells were injected subcutaneously in Balb/C mice, the imaging signal was observed transiently. Our study demonstrates that by using a simple method, mouse NK cells can be transfected by lentivirus. And this will be useful in studying biology and therapeutic potential of NK cells. However, we require developing alternative lentiviral vectors with different promoter for in vivo application

  11. Monitoring the colonization of sugarcane and rice plants by the endophytic diazotrophic bacterium Gluconacetobacter diazotrophicus marked with gfp and gusA reporter genes.

    Science.gov (United States)

    Rouws, L F M; Meneses, C H S G; Guedes, H V; Vidal, M S; Baldani, J I; Schwab, S

    2010-09-01

    To evaluate the colonization process of sugarcane plantlets and hydroponically grown rice seedlings by Gluconacetobacter diazotrophicus strain PAL5 marked with the gusA and gfp reporter genes. Sugarcane plantlets inoculated in vitro with PAL5 carrying the gfp::gusA plasmid pHRGFPGUS did not present green fluorescence, but beta-glucuronidase (GUS)-stained bacteria could be observed inside sugarcane roots. To complement this existing inoculation methodology for micropropagated sugarcane with a more rapid colonization assay, we employed hydroponically grown gnotobiotic rice seedlings to study PAL5-plant interaction. PAL5 could be isolated from the root surface (10(8) CFU g(-1)) and from surface-disinfected root and stem tissues (10(4) CFU g(-1)) of inoculated plants, suggesting that PAL5 colonized the internal plant tissues. Light microscopy confirmed the presence of bacteria inside the root tissue. After inoculation of rice plantlets with PAL5 marked with the gfp plasmid pHRGFPTC, bright green fluorescent bacteria could be seen colonizing the rice root surface, mainly at the sites of lateral root emergence, at root caps and on root hairs. The plasmids pHRGFPGUS and pHRGFPTC are valid tools to mark PAL5 and monitor the colonization of micropropagated sugarcane and hydroponic rice seedlings. These tools are of use to: (i) study PAL5 mutants affected in bacteria-plant interactions, (ii) monitor plant colonization in real time and (iii) distinguish PAL5 from other bacteria during the study of mixed inoculants.

  12. Use of sperm plasmid DNA lipofection combined with REMI (restriction enzyme-mediated insertion) for production of transgenic chickens expressing eGFP (enhanced green fluorescent protein) or human follicle-stimulating hormone.

    Science.gov (United States)

    Harel-Markowitz, Eliane; Gurevich, Michael; Shore, Laurence S; Katz, Adi; Stram, Yehuda; Shemesh, Mordechai

    2009-05-01

    Linearized p-eGFP (plasmid-enhanced green fluorescent protein) or p-hFSH (plasmid human FSH) sequences with the corresponding restriction enzyme were lipofected into sperm genomic DNA. Sperm transfected with p-eGFP were used for artificial insemination in hens, and in 17 out of 19 of the resultant chicks, the exogenous DNA was detected in their lymphocytes as determined by PCR and expressed in tissues as determined by (a) PCR, (b) specific emission of green fluorescence by the eGFP, and (c) Southern blot analysis. A complete homology was found between the Aequorea Victoria eGFP DNA and a 313-bp PCR product of extracted DNA from chick blood cells. Following insemination with sperm lipofected with p-hFSH, transgenic offspring were obtained for two generations as determined by detection of the transgene for human FSH (PCR) and expression of the gene (RT-PCR and quantitative real-time PCR) and the presence of the protein in blood (radioimmunoassay). Data demonstrate that lipofection of plasmid DNA with restriction enzyme is a highly efficient method for the production of transfected sperm to produce transgenic offspring by direct artificial insemination.

  13. Screening by coral green fluorescent protein (GFP)-like chromoproteins supports a role in photoprotection of zooxanthellae

    Science.gov (United States)

    Smith, E. G.; D'Angelo, C.; Salih, A.; Wiedenmann, J.

    2013-06-01

    Green fluorescent protein (GFP)-like pigments are responsible for the vivid colouration of many reef-building corals and have been proposed to act as photoprotectants. Their role remains controversial because the functional mechanism has not been elucidated. We provide direct evidence to support a photoprotective role of the non-fluorescent chromoproteins (CPs) that form a biochemically and photophysically distinct group of GFP-like proteins. Based on observations of Acropora nobilis from the Great Barrier Reef, we explored the photoprotective role of CPs by analysing five coral species under controlled conditions. In vitro and in hospite analyses of chlorophyll excitation demonstrate that screening by CPs leads to a reduction in chlorophyll excitation corresponding to the spectral properties of the specific CPs present in the coral tissues. Between 562 and 586 nm, the CPs maximal absorption range, there was an up to 50 % reduction of chlorophyll excitation. The screening was consistent for established and regenerating tissue and amongst symbiont clades A, C and D. Moreover, among two differently pigmented morphs of Acropora valida grown under identical light conditions and hosting subclade type C3 symbionts, high CP expression correlated with reduced photodamage under acute light stress.

  14. Identification of the MUC2 Promoter as a Strong Promoter for Intestinal Gene Expression through Generation of Transgenic Quail Expressing GFP in Gut Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Rachel M. Woodfint

    2017-01-01

    Full Text Available Identification of tissue- and stage-specific gene promoters is valuable for delineating the functional roles of specific genes in genetically engineered animals. Here, through the comparison of gene expression in different tissues by analysis of a microarray database, the intestinal specificity of mucin 2 (MUC2 expression was identified in mice and humans, and further confirmed in chickens by RT-PCR (reverse transcription-PCR analysis. An analysis of cis-acting elements in avian MUC2 gene promoters revealed conservation of binding sites, within a 2.9 kb proximal promoter region, for transcription factors such as caudal type homeobox 2 (CDX2, GATA binding protein 4 (GATA4, hepatocyte nuclear factor 4 α (HNF4A, and transcription factor 4 (TCF4 that are important for maintaining intestinal homeostasis and functional integrity. By generating transgenic quail, we demonstrated that the 2.9 kb chicken MUC2 promoter could drive green fluorescent protein (GFP reporter expression exclusively in the small intestine, large intestine, and ceca. Fluorescence image analysis further revealed GFP expression in intestine epithelial cells. The GFP expression was barely detectable in the embryonic intestine, but increased during post-hatch development. The spatiotemporal expression pattern of the reporter gene confirmed that the 2.9 kb MUC2 promoter could retain the regulatory element to drive expression of target genes in intestinal tissues after hatching. This new transgene expression system, using the MUC2 promoter, will provide a new method of overexpressing target genes to study gene function in the avian intestine.

  15. A flow cytometry-optimized assay using an SOS-green fluorescent protein (SOS-GFP) whole-cell biosensor for the detection of genotoxins in complex environments

    DEFF Research Database (Denmark)

    Norman, Anders; Hansen, Lars H.; Sørensen, Søren Johannes

    2006-01-01

    /mL, and proved far more sensitive than a previously published assay using the same biosensor strain. By applying the SOS-green fluorescent protein (GFP) whole-cell biosensor directly to soil microcosms we were also able to evaluate both the applicability and sensitivity of a biosensor based on SOS...

  16. Superparamagnetic iron oxide nanoparticle-labeled cells as an effective vehicle for tracking the GFP gene marker using magnetic resonance imaging

    Science.gov (United States)

    Zhang, Z; Mascheri, N; Dharmakumar, R; Fan, Z; Paunesku, T; Woloschak, G; Li, D

    2010-01-01

    Background Detection of a gene using magnetic resonance imaging (MRI) is hindered by the magnetic resonance (MR) targeting gene technique. Therefore it may be advantageous to image gene-expressing cells labeled with superparamagnetic iron oxide (SPIO) nanoparticles by MRI. Methods The GFP-R3230Ac (GFP) cell line was incubated for 24 h using SPIO nanoparticles at a concentration of 20 μg Fe/mL. Cell samples were prepared for iron content analysis and cell function evaluation. The labeled cells were imaged using fluorescent microscopy and MRI. Results SPIO was used to label GFP cells effectively, with no effects on cell function and GFP expression. Iron-loaded GFP cells were successfully imaged with both fluorescent microscopy and T2*-weighted MRI. Prussian blue staining showed intracellular iron accumulation in the cells. All cells were labeled (100% labeling efficiency). The average iron content per cell was 4.75±0.11 pg Fe/cell (P<0.05 versus control). Discussion This study demonstrates that the GFP expression of cells is not altered by the SPIO labeling process. SPIO-labeled GFP cells can be visualized by MRI; therefore, GFP, a gene marker, was tracked indirectly with the SPIO-loaded cells using MRI. The technique holds promise for monitoring the temporal and spatial migration of cells with a gene marker and enhancing the understanding of cell- and gene-based therapeutic strategies. PMID:18956269

  17. Variable expression of GFP in different populations of peripheral cholinergic neurons of ChATBAC-eGFP transgenic mice.

    Science.gov (United States)

    Brown, T Christopher; Bond, Cherie E; Hoover, Donald B

    2018-03-01

    Immunohistochemistry is used widely to identify cholinergic neurons, but this approach has some limitations. To address these problems, investigators developed transgenic mice that express enhanced green fluorescent protein (GFP) directed by the promoter for choline acetyltransferase (ChAT), the acetylcholine synthetic enzyme. Although, it was reported that these mice express GFP in all cholinergic neurons and non-neuronal cholinergic cells, we could not detect GFP in cardiac cholinergic nerves in preliminary experiments. Our goals for this study were to confirm our initial observation and perform a qualitative screen of other representative autonomic structures for the presences of GFP in cholinergic innervation of effector tissues. We evaluated GFP fluorescence of intact, unfixed tissues and the cellular localization of GFP and vesicular acetylcholine transporter (VAChT), a specific cholinergic marker, in tissue sections and intestinal whole mounts. Our experiments identified two major tissues where cholinergic neurons and/or nerve fibers lacked GFP: 1) most cholinergic neurons of the intrinsic cardiac ganglia and all cholinergic nerve fibers in the heart and 2) most cholinergic nerve fibers innervating airway smooth muscle. Most cholinergic neurons in airway ganglia stained for GFP. Cholinergic systems in the bladder and intestines were fully delineated by GFP staining. GFP labeling of input to ganglia with long preganglionic projections (vagal) was sparse or weak, while that to ganglia with short preganglionic projections (spinal) was strong. Total absence of GFP might be due to splicing out of the GFP gene. Lack of GFP in nerve projections from GFP-positive cell bodies might reflect a transport deficiency. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. [Genetic transformation of flax (Linum usitatissimum L.) with chimeric GFP-TUA6 gene for visualisation of microtubules].

    Science.gov (United States)

    Shisha, E N; Korkhovoĭ, V I; Baer, G Ia; Guzenko, E V; Lemesh, V A; Kartel', N A; Emets, A I; Blium, Ia B

    2013-01-01

    The data of Agrobacterium-mediated transformation of some Linum usitatissimum cultivars zoned on the territories of Belarus and Ukraine with the plasmid carrying chimeric GFP-TUA6 gene and nptII gene as selectable marker conferring resistance to kanamycin are presented in this study. Transformation was affected by a number of factors including optical density (OD600), time of inoculation of explants with Agrobacterium and co-culture conditions. Transgenic nature of obtained lines was confirmed by PCR analysis. Expression of GFP-TUA6 gene was detected with confocal laser scanning microscopy. The obtained transgenic lines can be used for further functional studies the role of microtubules in the processes of building the flax fibres and resistance to wind.

  19. Combination therapy and evaluation of therapeutic effect in hepatocellular carcinoma cell using triple reporter genes; containing for NIS, HSV1-sr39tk and GFP

    Energy Technology Data Exchange (ETDEWEB)

    Lee, You La; Lee, Yong Jin; Ahn, Sohn Joo; Ahn, Byeong Cheol; Lee, Sang Woo; Yoo, Jeong Soo; Lee, Jae Tae [Kyungpook National University, Daegu (Korea, Republic of)

    2007-07-01

    To identify therapeutic effect after combine Sodium Iodine Symporter (NIS) and Mutant Herpes-simplex virus type 1 sr39tk (HSV1-sr39tk) expression in hepatocellular carcinoma cell, we transfected triple gene and investigated the properties of these gene ability in hepatocellular carcinoma cell line. After making vector with gene encoding a fusion protein comprised of HSV1-sr39tk and green florescence protein (GFP), to make triple reporter genes NIS gene was further fused to the vector using IRES vector. The vector expressing triple reporter gene was transfected to the Huh-7 cell line using liposome. Functions of hNIS and HSV1-sr39tk expression were confirmed by radio iodine uptake with and without perchlorate and [3H]-penciclovir (3-H PCV) uptake, respectively. To evaluate therapeutic effect in vitro, GCV and I-131 was treated in Huh-7/NTG cell and dual therapy performed. An animal imaging acquired using Optix and microPET in vivo. I-125 uptake was increased up to 100-fold compare to that of non-transfected cells. The transfected cell accumulated H-3 PCV up to 53 times higher at 2 hour than that of non-transfected cells. With fluorescence microscopy, green fluorescence was detected in the transfected cell. In cytotoxic studies, the cell viability of Huh-7/NTG cell was decreased to 41 % of control cell at 10ug/ml GCV concentrations. The survival rate of the Huh-7/NTG cell treated with I-131 decreased up to 16%. In I-131 and GCV dual therapy, Huh-7/NTG cell survival rate decreased up to 4%. In animal studies, Huh-7/NTG tumors showed higher uptake of 18F-FHBG and I-124 than Huh-7 tumors. GFP signal is also higher in Huh-7/NTG tumor than control. We successfully constructed a vector with delivery two therapeutic genes and one reporter gene and transfected the vector to a Huh-7 cell. The hepatocellular carcinoma cell transfected with the vector can be treated with GCV and I-131. The effect of dual gene therapy could be easily assessed by the optical reporter gene imaging.

  20. Proton transfer events in GFP

    NARCIS (Netherlands)

    Di Donato, M.; van Wilderen, L.J.G.W.; van Stokkum, I.H.M.; Cohen Stuart, T.A.; Kennis, J.T.M.; Hellingwerf, K.J.; van Grondelle, R.; Groot, M.L.

    2011-01-01

    Proton transfer is one of the most important elementary processes in biology. Green fluorescent protein (GFP) serves as an important model system to elucidate the mechanistic details of this reaction, because in GFP proton transfer can be induced by light absorption. Illumination initiates proton

  1. Transformation of Sclerotinia Sclerotiorum with the Green Fluorescent Protein Gene and Fluorescence of Hyphae in Four Inoculated Hosts

    Science.gov (United States)

    Sclerotinia sclerotiorum is an important pathogen of a wide variety of crops. To obtain a genetic marker to observe and study the interaction of the pathogen with its hosts, isolates ND30 and ND21 were transformed using pCT74 and gGFP constructs both containing genes for the green fluorescent protei...

  2. Evaluation of the pH- and Thermal Stability of the Recombinant Green Fluorescent Protein (GFP) in the Presence of Sodium Chloride

    Science.gov (United States)

    Ishii, Marina; Kunimura, Juliana Sayuri; Jeng, Hélio Tallon; Vessoni Penna, Thereza Christina; Cholewa, Olivia

    The thermal stability of recombinant green fluorescent protein (GFP) in sodium chloride (NaCl) solutions at different concentrations, pH, and temperatures was evaluated by assaying the loss of fluorescence intensity as a measure of denaturation. GFP, extracted from Escherichia coli cells by the three-phase partitioning method and purified through a butyl hydrophobic interaction chromatography (HIC) column, was diluted in water for injection (WFI) (pH 6.0-7.0) and in 10 mM buffer solutions (acetate, pH 5.0; phosphate, pH 7.0; and Tris-EDTA, pH 8.0) with 0.9-30% NaCl or without and incubated at 80-95°C. The extent of protein denaturation was expressed as a percentage of the calculated decimal reduction time (D-value). In acetate buffer (pH 4.84 ±0.12), the mean D-values for 90% reduction in GFP fluorescence ranged from 2.3 to 3.6 min, independent of NaCl concentration and temperature. GFP thermal stability diluted in WFI (pH 5.94±0.60) was half that observed in phosphate buffer (pH 6.08±0.60); but in both systems, D-values decreased linearly with increasing NaCl concentration, with D-values (at 80°C) ranging from 3.44, min (WFI) to 6.1 min (phosphate buffer), both with 30% NaCl. However, D-values in Tris-EDTA (pH 7.65±0.17) were directly dependent on the NaCl concentration and 5-10 times higher than D-values for GFP in WFI at 80°C. GFP pH-and thermal stability can be easily monitored by the convenient measure of fluorescence intensity and potentially be used as an indicator to monitor that processing times and temperatures were attained.

  3. YGFP: a spectral variant of GFP

    DEFF Research Database (Denmark)

    Hansen, Flemming G.; Atlung, Tove

    2011-01-01

    We describe YGFP, a slow bleaching green fluorescent protein (GFP) with unique spectral properties. YGFP is derived from an Escherichia coli codon-optimized synthetic gfp, mutant 2 derivative. In addition to the GFP-mut 2 changes, it also carries S202F and T203I substitutions. YGFP can be used...

  4. Green Fluorescent Protein (GFP-Based Overexpression Screening and Characterization of AgrC, a Receptor Protein of Quorum Sensing in Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Shengdi Fan

    2013-09-01

    Full Text Available Staphylococcus aureus AgrC is an important component of the agr quorum-sensing system. AgrC is a membrane-embedded histidine kinase that is thought to act as a sensor for the recognition of environmental signals and the transduction of signals into the cytoplasm. However, the difficulty of expressing and purifying functional membrane proteins has drastically hindered in-depth understanding of the molecular structures and physiological functions of these proteins. Here, we describe the high-yield expression and purification of AgrC, and analyze its kinase activity. A C-terminal green fluorescent protein (GFP fusion to AgrC served as a reporter for monitoring protein expression levels in real time. Protein expression levels were analyzed by the microscopic assessment of the whole-cell fluorescence. The expressed AgrC-GFP protein with a C-terminal His-tagged was purified using immobilized metal affinity chromatography (IMAC and size exclusion chromatography (SEC at yields of ≥10 mg/L, following optimization. We also assessed the effects of different detergents on membrane solubilization and AgrC kinase activity, and polyoxyethylene-(23-lauryl-ether (Brij-35 was identified as the most suitable detergent. Furthermore, the secondary structural stability of purified AgrC was analyzed using circular dichroism (CD spectroscopy. This study may serve as a general guide for improving the yields of other membrane protein preparations and selecting the appropriate detergent to stabilize membrane proteins for biophysical and biochemical analyses.

  5. New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria

    DEFF Research Database (Denmark)

    Andersen, Jens Bo; Sternberg, Claus; Poulsen, Lars K.

    1998-01-01

    Use of the green fluorescent protein (Gfp) from the jellyfish Aequorea victoria ia is a powerful method for nondestructive in situ monitoring, since expression of green fluorescence does not require any substrate addition. To expand the use of Gfp as a reporter protein, new variants have been...... constructed by the addition of short peptide sequences to the C-terminal end of intact Gfp. This rendered the Gfp susceptible to the action of indigenous housekeeping proteases, resulting in protein variants with half-lives ranging from 40 min to a few hours when synthesized in Escherichia coli...

  6. A Novel Prokaryotic Green Fluorescent Protein Expression System for Testing Gene Editing Tools Activity Like Zinc Finger Nuclease.

    Science.gov (United States)

    Sabzehei, Faezeh; Kouhpayeh, Shirin; Dastjerdeh, Mansoureh Shahbazi; Khanahmad, Hossein; Salehi, Rasoul; Naderi, Shamsi; Taghizadeh, Razieh; Rabiei, Parisa; Hejazi, Zahra; Shariati, Laleh

    2017-01-01

    Gene editing technology has created a revolution in the field of genome editing. The three of the most famous tools in gene editing technology are zinc finger nucleases (ZFNs), transcription activator-like effector nucleases, clustered regularly interspaced short palindromic repeats (CRISPR), and CRISPR-associated systems. As their predictable nature, it is necessary to assess their efficiency. There are some methods for this purpose, but most of them are time labor and complicated. Here, we introduce a new prokaryotic reporter system, which makes it possible to evaluate the efficiency of gene editing tools faster, cheaper, and simpler than previous methods. At first, the target sites of a custom ZFN, which is designed against a segment of ampicillin resistance gene, were cloned on both sides of green fluorescent protein (GFP) gene to construct pPRO-GFP. Then pPRO-GFP was transformed into Escherichia coli TOP10F' that contains pZFN (contains expression cassette of a ZFN against ampicillin resistant gene), or p15A-KanaR as a negative control. The transformed bacteria were cultured on three separate media that contained ampicillin, kanamycin, and ampicillin + kanamycin; then the resulted colonies were assessed by flow cytometry. The results of flow cytometry showed a significant difference between the case (bacteria contain pZFN) and control (bacteria contain p15A, KanaR) in MFI (Mean Fluorescence Intensity) ( P < 0.0001). According to ZFN efficiency, it can bind and cut the target sites, the bilateral cutting can affect the intensity of GFP fluorescence. Our flow cytometry results showed that this ZFN could reduce the intensity of GFP color and colony count of bacteria in media containing amp + kana versus control sample.

  7. Colonization of Vitis vinifera by a Green Fluorescence Protein-Labeled, gfp-Marked Strain of Xylophilus ampelinus, the Causal Agent of Bacterial Necrosis of Grapevine

    OpenAIRE

    Grall, Sophie; Manceau, Charles

    2003-01-01

    The dynamics of Xylophilus ampelinus were studied in Vitis vinifera cv. Ugni blanc using gfp-marked bacterial strains to evaluate the relative importance of epiphytic and endophytic phases of plant colonization in disease development. Currently, bacterial necrosis of grapevine is of economic importance in vineyards in three regions in France: the Cognac, Armagnac, and Die areas. This disease is responsible for progressive destruction of vine shoots, leading to their death. We constructed gfp-...

  8. Identification of a locus control region for quadruplicated green-sensitive opsin genes in zebrafish

    Science.gov (United States)

    Tsujimura, Taro; Chinen, Akito; Kawamura, Shoji

    2007-01-01

    Duplication of opsin genes has a crucial role in the evolution of visual system. Zebrafish have four green-sensitive (RH2) opsin genes (RH2–1, RH2–2, RH2–3, and RH2–4) arrayed in tandem. They are expressed in the short member of the double cones (SDC) but differ in expression areas in the retina and absorption spectra of their encoding photopigments. The shortest and the second shortest wavelength subtypes, RH2–1 and RH2–2, are expressed in the central-to-dorsal retina. The longer wavelength subtype, RH2–3, is expressed circumscribing the RH2–1/RH2–2 area, and the longest subtype, RH2–4, is expressed further circumscribing the RH2–3 area and mainly occupying the ventral retina. The present report shows that a 0.5-kb region located 15 kb upstream of the RH2 gene array is an essential regulator for their expression. When the 0.5-kb region was deleted from a P1-artificial chromosome (PAC) clone encompassing the four RH2 genes and when one of these genes was replaced with a reporter GFP gene, the GFP expression in SDCs was abolished in the zebrafish to which a series of the modified PAC clones were introduced. Transgenic studies also showed that the 0.5-kb region conferred the SDC-specific expression for promoters of a non-SDC (UV opsin) and a nonretinal (keratin 8) gene. Changing the location of the 0.5-kb region in the PAC clone conferred the highest expression for its proximal gene. The 0.5-kb region was thus designated as RH2-LCR analogous to the locus control region of the L-M opsin genes of primates. PMID:17646658

  9. Excited state proton transfer in strongly enhanced GFP (sGFP2)

    NARCIS (Netherlands)

    van Oort, B.F.; ter Veer, M.J.T.; Groot, M.L.; van Stokkum, I.H.M.

    2012-01-01

    Proton transfer is an elementary process in biology. Green fluorescent protein (GFP) has served as an important model system to elucidate the mechanistic details of this reaction, because in GFP proton transfer can be induced by light absorption. We have used pump-dump-probe spectroscopy to study

  10. Overexpression of the Synthetic Chimeric Native-T-phylloplanin-GFP Genes Optimized for Monocot and Dicot Plants Renders Enhanced Resistance to Blue Mold Disease in Tobacco (N. tabacum L.

    Directory of Open Access Journals (Sweden)

    Dipak K. Sahoo

    2014-01-01

    Full Text Available To enhance the natural plant resistance and to evaluate the antimicrobial properties of phylloplanin against blue mold, we have expressed a synthetic chimeric native-phylloplanin-GFP protein fusion in transgenic Nicotiana tabacum cv. KY14, a cultivar that is highly susceptible to infection by Peronospora tabacina. The coding sequence of the tobacco phylloplanin gene along with its native signal peptide was fused with GFP at the carboxy terminus. The synthetic chimeric gene (native-phylloplanin-GFP was placed between the modified Mirabilis mosaic virus full-length transcript promoter with duplicated enhancer domains and the terminator sequence from the rbcSE9 gene. The chimeric gene, expressed in transgenic tobacco, was stably inherited in successive plant generations as shown by molecular characterization, GFP quantification, and confocal fluorescent microscopy. Transgenic plants were morphologically similar to wild-type plants and showed no deleterious effects due to transgene expression. Blue mold-sensitivity assays of tobacco lines were performed by applying P. tabacina sporangia to the upper leaf surface. Transgenic lines expressing the fused synthetic native-phyllopanin-GFP gene in the leaf apoplast showed resistance to infection. Our results demonstrate that in vivo expression of a synthetic fused native-phylloplanin-GFP gene in plants can potentially achieve natural protection against microbial plant pathogens, including P. tabacina in tobacco.

  11. Evolving trends in biosciences: Multi-purpose proteins - GFP and GFP-like proteins

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, K.; Ingole, B.S.

    The sea is considered as holding a clue to many known and unknown biologically active compounds. A family of protein named Green Fluorescent Proteins (GFP)-like proteins, initially isolated from marine organisms, started a trend in biotechnological...

  12. [Identification of occult disseminated tumor cells by recombinant herpes simplex virus expressing GFP (HSV(GFP))].

    Science.gov (United States)

    Han, Xiang-ping; Shi, Gui-lan; Wang, Cheng-feng; Li, Jie; Zhang, Jian-wei; Zhang, Yu; Zhang, Shu-ren; Liu, Bin-lei

    2012-12-01

    To develop a novel rapid protocol for the detection of occult disseminated tumor cells by a recombinant herpes simplex virus expressing GFP (HSV(GFP)). Tumor cells of seven cell lines were exposed to HSV(GFP) and then examined for GFP expression by fluorescence microscopy. Various numbers of tumor cells (10, 100, 1000, 10 000) were mixed into 2 ml human whole blood, separated with lymphocytes separation medium, exposed to HSV(GFP), incubated at 37°C for 6 - 24 h and then counted for the number of green cells under the fluorescence microscope. Some clinical samples including peripheral blood, pleural effusion, ascites, spinal fluid from tumor-bearing patients were screened using this protocol in parallel with routine cytological examination. HSV(GFP) was able to infect all 7 tumor cell lines indicating that the HSV(GFP) can be used to detect different types of tumor cells. The detection sensitivity was 10 cancer cells in 2 ml whole blood. In the clinical samples, there were 4/15 positive by routine cytological examination but 11/15 positive by HSV(GFP), indicating a higher sensitivity of this new protocol. Recombinant herpes simplex virus-mediated green fluorescence is a simple and sensitive technique for the identification of occult disseminated cancer cells including circulating tumor cells (CTCs).

  13. Fluorescent proteins such as eGFP lead to catalytic oxidative stress in cells.

    Science.gov (United States)

    Ganini, Douglas; Leinisch, Fabian; Kumar, Ashutosh; Jiang, JinJie; Tokar, Erik J; Malone, Christine C; Petrovich, Robert M; Mason, Ronald P

    2017-08-01

    Fluorescent proteins are an important tool that has become omnipresent in life sciences research. They are frequently used for localization of proteins and monitoring of cells [1,2]. Green fluorescent protein (GFP) was the first and has been the most used fluorescent protein. Enhanced GFP (eGFP) was optimized from wild-type GFP for increased fluorescence yield and improved expression in mammalian systems [3]. Many GFP-like fluorescent proteins have been discovered, optimized or created, such as the red fluorescent protein TagRFP [4]. Fluorescent proteins are expressed colorless and immature and, for eGFP, the conversion to the fluorescent form, mature, is known to produce one equivalent of hydrogen peroxide (H 2 O 2 ) per molecule of chromophore [5,6]. Even though it has been proposed that this process is non-catalytic and generates nontoxic levels of H 2 O 2 [6], this study investigates the role of fluorescent proteins in generating free radicals and inducing oxidative stress in biological systems. Immature eGFP and TagRFP catalytically generate the free radical superoxide anion (O 2 •- ) and H 2 O 2 in the presence of NADH. Generation of the free radical O 2 •- and H 2 O 2 by eGFP in the presence of NADH affects the gene expression of cells. Many biological pathways are altered, such as a decrease in HIF1α stabilization and activity. The biological pathways altered by eGFP are known to be implicated in the pathophysiology of many diseases associated with oxidative stress; therefore, it is critical that such experiments using fluorescent proteins are validated with alternative methodologies and the results are carefully interpreted. Since cells inevitably experience oxidative stress when fluorescent proteins are expressed, the use of this tool for cell labeling and in vivo cell tracing also requires validation using alternative methodologies. Published by Elsevier B.V.

  14. Plasmodium yoelii yoelii 17XNL constitutively expressing GFP throughout the life cycle.

    Science.gov (United States)

    Ono, Takeshi; Tadakuma, Takushi; Rodriguez, Ana

    2007-03-01

    Plasmodium yoelii is a rodent parasite commonly used as a model to study malaria infection. It is the preferred model parasite for liver-stage immunological studies and is also widely used to study hepatocyte, erythrocyte and mosquito infection. We have generated a P. yoelii yoelii 17XNL line that is stably transfected with the green fluorescent protein (gfp) gene. This parasite line constitutively expresses high levels of GFP during the complete parasite life cycle including liver, blood and mosquito stages. These fluorescent parasites can be used in combination with fluorescence activated cell sorting or live microscopy for a wide range of experimental applications.

  15. Stable transformation of sunflower (Helianthus annuus L.) using a non-meristematic regeneration protocol and green fluorescent protein as a vital marker.

    Science.gov (United States)

    Müller, A; Iser, M; Hess, D

    2001-10-01

    Stable transformation of sunflower was achieved using a non-meristematic hypocotyl explant regeneration protocol of public inbred HA300B. Uniformly transformed shoots were obtained after co-cultivation with Agrobacterium tumefaciens carrying a gfp (green fluorescent protein) gene containing an intron that blocks expression of gfp in Agrobacterium. Easily detectable, bright green fluorescence of transformed tissues was used to establish an optimal regeneration and transformation procedure. By Southern blot analysis, integration of the gfp and nptll genes was confirmed. Stable transformation efficiency was 0.1%. From 68 T1 plants analyzed, 17 showed transmission of transgene DNA and 15 of them contained the intact gfp gene. Expression of gfp was detected in 10 T1 plants carrying the intact gfp gene using a fluorimetric assay or western blot analysis. Expression of the nptll gene was confirmed in 13 T1 plants. The transformation system enables the rapid transfer of agronomically important genes.

  16. Gene expression of a green fluorescent protein homolog as a host-specific biomarker of heat stress within a reef-building coral.

    Science.gov (United States)

    Smith-Keune, C; Dove, S

    2008-01-01

    Recent incidences of mass coral bleaching indicate that major reef building corals are increasingly suffering thermal stress associated with climate-related temperature increases. The development of pulse amplitude modulated (PAM) fluorometry has enabled rapid detection of the onset of thermal stress within coral algal symbionts, but sensitive biomarkers of thermal stress specific to the host coral have been slower to emerge. Differential display reverse transcription polymerase chain reaction (DDRT-PCR) was used to produce fingerprints of gene expression for the reef-building coral Acropora millepora exposed to 33 degrees C. Changes in the expression of 23 out of 399 putative genes occurred within 144 h. Down-regulation of one host-specific gene (AmA1a) occurred within just 6 h. Full-length sequencing revealed the product of this gene to be an all-protein chromatophore (green fluorescent protein [GFP]-homolog). RT-PCR revealed consistent down-regulation of this GFP-homolog for three replicate colonies within 6 h at both 32 degrees C and 33 degrees C but not at lower temperatures. Down-regulation of this host gene preceded significant decreases in the photosynthetic activity of photosystem II (dark-adapted F (v)/F (m)) of algal symbionts as measured by PAM fluorometry. Gene expression of host-specific genes such as GFP-homologs may therefore prove to be highly sensitive indicators for the onset of thermal stress within host coral cells.

  17. Proton transfer events in GFP.

    Science.gov (United States)

    Di Donato, Mariangela; van Wilderen, Luuk J G W; Van Stokkum, Ivo H M; Stuart, Thomas Cohen; Kennis, John T M; Hellingwerf, Klaas J; van Grondelle, Rienk; Groot, Marie Louise

    2011-09-28

    Proton transfer is one of the most important elementary processes in biology. Green fluorescent protein (GFP) serves as an important model system to elucidate the mechanistic details of this reaction, because in GFP proton transfer can be induced by light absorption. Illumination initiates proton transfer through a 'proton-wire', formed by the chromophore (the proton donor), water molecule W22, Ser205 and Glu222 (the acceptor), on a picosecond time scale. To obtain a more refined view of this process, we have used a combined approach of time resolved mid-infrared spectroscopy and visible pump-dump-probe spectroscopy to resolve with atomic resolution how and how fast protons move through this wire. Our results indicate that absorption of light by GFP induces in 3 ps (10 ps in D(2)O) a shift of the equilibrium positions of all protons in the H-bonded network, leading to a partial protonation of Glu222 and to a so-called low barrier hydrogen bond (LBHB) for the chromophore's proton, giving rise to dual emission at 475 and 508 nm. This state is followed by a repositioning of the protons on the wire in 10 ps (80 ps in D(2)O), ultimately forming the fully deprotonated chromophore and protonated Glu222.

  18. Colonization of Vitis vinifera by a green fluorescence protein-labeled, gfp-marked strain of Xylophilus ampelinus, the causal agent of bacterial necrosis of grapevine.

    Science.gov (United States)

    Grall, Sophie; Manceau, Charles

    2003-04-01

    The dynamics of Xylophilus ampelinus were studied in Vitis vinifera cv. Ugni blanc using gfp-marked bacterial strains to evaluate the relative importance of epiphytic and endophytic phases of plant colonization in disease development. Currently, bacterial necrosis of grapevine is of economic importance in vineyards in three regions in France: the Cognac, Armagnac, and Die areas. This disease is responsible for progressive destruction of vine shoots, leading to their death. We constructed gfp-marked strains of the CFBP2098 strain of X. ampelinus for histological studies. We studied the colonization of young plants of V. vinifera cv. Ugni blanc by X. ampelinus after three types of artificial contamination in a growth chamber and in a greenhouse. (i) After wounding of the stem and inoculation, the bacteria progressed down to the crown through the xylem vessels, where they organized into biofilms. (ii) When the bacteria were forced into woody cuttings, they rarely colonized the emerging plantlets. Xylem vessels could play a key role in the multiplication and conservation of the bacteria, rather than being a route for plant colonization. (iii) When bacterial suspensions were sprayed onto the plants, bacteria progressed in two directions: both in emerging organs and down to the crown, thus displaying the importance of epiphytic colonization in disease development.

  19. Gene expression in tumor cells and stroma in dsRed 4T1 tumors in eGFP-expressing mice with and without enhanced oxygenation

    International Nuclear Information System (INIS)

    Moen, Ingrid; Øyan, Anne M; Stuhr, Linda EB; Jevne, Charlotte; Wang, Jian; Kalland, Karl-Henning; Chekenya, Martha; Akslen, Lars A; Sleire, Linda; Enger, Per Ø; Reed, Rolf K

    2012-01-01

    The tumor microenvironment is pivotal in tumor progression. Thus, we aimed to develop a mammary tumor model to elucidate molecular characteristics in the stroma versus the tumor cell compartment by global gene expression. Secondly, since tumor hypoxia influences several aspects of tumor pathophysiology, we hypothesized that hyperoxia might have an inhibitory effect on tumor growth per se. Finally, we aimed to identify differences in gene expression and key molecular mechanisms, both in the native state and following treatment. 4T1 dsRed breast cancer cells were injected into eGFP expressing NOD/SCID mice. Group 1 was exposed to 3 intermittent HBO treatments (Day 1, 4 and 7), Group 2 to 7 daily HBO treatments (both 2.5bar, 100% O 2 , à 90 min), whereas the controls were exposed to a normal atmosphere. Tumor growth, histology, vascularisation, cell proliferation, cell death and metastasis were assessed. Fluorescence-activated cell sorting was used to separate tumor cells from stromal cells prior to gene expression analysis. The purity of sorted cells was verified by fluorescence microscopy. Gene expression profiling demonstrated that highly expressed genes in the untreated tumor stroma included constituents of the extracellular matrix and matrix metalloproteinases. Tumor growth was significantly inhibited by HBO, and the MAPK pathway was found to be significantly reduced. Immunohistochemistry indicated a significantly reduced microvessel density after intermittent HBO, whereas daily HBO did not show a similar effect. The anti-angiogenic response was reflected in the expression trends of angiogenic factors. The present in vivo mammary tumor model enabled us to separate tumor and stromal cells, and demonstrated that the two compartments are characterized by distinct gene expressions, both in the native state and following HBO treatments. Furthermore, hyperoxia induced a significant tumor growth-inhibitory effect, with significant down-regulation of the MAPK pathway

  20. Construction of recombinant ZNF230/GFP fused plasmids and their expression and cellular localization

    DEFF Research Database (Denmark)

    Xu, Wen-Ming; Zhang, Si-Zhong; Qiu, Wei-Min

    2004-01-01

    To use green fluorescent protein as a marker to study the localization of the fusion protein, the mutant full length cDNAs of human ZNF230 and mouse znf230 with their stop codon TGA changed to TGG were obtained by PCR amplification, and then cloned into pGEM-Teasy vector. After the double enzyme...... cutting, the mutated human and mouse ZNF230(znf230) were inserted into mammalian expression plasmid pEGFP-N1. Thus we constructed the plasmid with fusion gene of ZNF230 and green fluorescent protein(GFP). Then the Cos cell was transfected with the fused gene by liposome. Fluorescence microscopy showed...

  1. A replicating plasmid-based vector for GFP expression in Mycoplasma hyopneumoniae.

    Science.gov (United States)

    Ishag, H Z A; Liu, M J; Yang, R S; Xiong, Q Y; Feng, Z X; Shao, G Q

    2016-04-28

    Mycoplasma hyopneumoniae (M. hyopneumoniae) causes porcine enzootic pneumonia (PEP) that significantly affects the pig industry worldwide. Despite the availability of the whole genome sequence, studies on the pathogenesis of this organism have been limited due to the lack of a genetic manipulation system. Therefore, the aim of the current study was to generate a general GFP reporter vector based on a replicating plasmid. Here, we describe the feasibility of GFP reporter expression in M. hyopneumoniae (strain 168L) controlled by the p97 gene promoter of this mycoplasma. An expression plasmid (pMD18-TOgfp) containing the p97 gene promoter, and origin of replication (oriC) of M. hyopneumoniae, tetracycline resistant marker (tetM), and GFP was constructed and used to transform competent M. hyopneumoniae cells. We observed green fluorescence in M. hyopneumoniae transformants under fluorescence microscopy, which indicates that there was expression of the GFP reporter that was driven by the p97 gene promoter. Additionally, an electroporation method for M. hyopneumoniae with an efficiency of approximately 1 x 10(-6) transformants/μg plasmid DNA was optimized and is described herein. In conclusion, our data demonstrate the susceptibility of M. hyopneumoniae to genetic manipulation whereby foreign genes are expressed. This work may encourage the development of genetic tools to manipulate the genome of M. hyopneumoniae for functional genomic analyses.

  2. Gene expression profiling of the green seed problem in Soybean.

    Science.gov (United States)

    Teixeira, Renake N; Ligterink, Wilco; França-Neto, José de B; Hilhorst, Henk W M; da Silva, Edvaldo A A

    2016-02-01

    Due to the climate change of the past few decades, some agricultural areas in the world are now experiencing new climatic extremes. For soybean, high temperatures and drought stress can potentially lead to the "green seed problem", which is characterized by chlorophyll retention in mature seeds and is associated with lower oil and seed quality, thus negatively impacting the production of soybean seeds. Here we show that heat and drought stress result in a "mild" stay-green phenotype and impaired expression of the STAY-GREEN 1 and STAY-GREEN 2 (D1, D2), PHEOPHORBIDASE 2 (PPH2) and NON-YELLOW COLORING 1 (NYC1_1) genes in soybean seeds of a susceptible soybean cultivar. We suggest that the higher expression of these genes in fully mature seeds of a tolerant cultivar allows these seeds to cope with stressful conditions and complete chlorophyll degradation. The gene expression results obtained in this study represent a significant advance in understanding chlorophyll retention in mature soybean seeds produced under stressful conditions. This will open new research possibilities towards finding molecular markers for breeding programs to produce cultivars which are less susceptible to chlorophyll retention under the hot and dry climate conditions which are increasingly common in the largest soybean production areas of the world.

  3. Excited state proton transfer in strongly enhanced GFP (sGFP2).

    Science.gov (United States)

    van Oort, Bart; ter Veer, Mirelle J T; Groot, Marie Louise; van Stokkum, Ivo H M

    2012-07-07

    Proton transfer is an elementary process in biology. Green fluorescent protein (GFP) has served as an important model system to elucidate the mechanistic details of this reaction, because in GFP proton transfer can be induced by light absorption. We have used pump-dump-probe spectroscopy to study how proton transfer through the 'proton-wire' around the chromophore is affected by a combination of mutations in a modern GFP variety (sGFP2). The results indicate that in H(2)O, after absorption of a photon, a proton is transferred (A* → I*) in 5 ps, and back-transferred from a ground state intermediate (I → A) in 0.3 ns, similar to time constants found with GFPuv, although sGFP2 shows less heterogeneous proton transfer. This suggests that the mutations left the proton-transfer largely unchanged, indicating the robustness of the proton-wire. We used pump-dump-probe spectroscopy in combination with target analysis to probe suitability of the sGFP2 fluorophore for super-resolution microscopy.

  4. Simultaneous silencing of multiple genes in the apple scab fungus, Venturia inaequalis, by expression of RNA with chimeric inverted repeats

    NARCIS (Netherlands)

    Fitzgerald, A.; Kan, van J.A.L.; Plummer, K.M.

    2004-01-01

    RNA-mediated gene silencing has been demonstrated in plants, animals, and more recently in filamentous fungi. Here, we report high frequency, RNA-mediated gene silencing in the apple scab fungus, Venturia inaequalis. The green fluorescent protein (GFP) transgene was silenced in a GFP-expressing

  5. Comparing Avocado, Swamp Bay, and Camphortree as Hosts of Raffaelea lauricola Using a Green Fluorescent Protein (GFP)-Labeled Strain of the Pathogen.

    Science.gov (United States)

    Campbell, A S; Ploetz, R C; Rollins, J A

    2017-01-01

    Raffaelea lauricola, a fungal symbiont of the ambrosia beetle Xyleborus glabratus, causes laurel wilt in members of the Lauraceae plant family. North American species in the family, such as avocado (Persea americana) and swamp bay (P. palustris), are particularly susceptible to laurel wilt, whereas the Asian camphortree (Cinnamomum camphora) is relatively tolerant. To determine whether susceptibility is related to pathogen colonization, a green fluorescent protein-labeled strain of R. lauricola was generated and used to inoculate avocado, swamp bay, and camphortree. Trees were harvested 3, 10, and 30 days after inoculation (DAI), and disease severity was rated on a 1-to-10 scale. By 30 DAI, avocado and swamp bay developed significantly more severe disease than camphortree (mean severities of 6.8 and 5.5 versus 1.6, P < 0.003). The extent of xylem colonization was recorded as the percentage of lumena that were colonized by the pathogen. More xylem was colonized in avocado than camphortree (0.9% versus 0.1%, P < 0.03) but colonization in swamp bay (0.4%) did not differ significantly from either host. Although there were significant correlations between xylem colonization and laurel wilt severity in avocado (r = 0.74), swamp bay (r = 0.82), and camphortree (r = 0.87), even severely affected trees of all species were scarcely colonized by the pathogen.

  6. LDL receptor-GFP fusion proteins: new tools for the characterization of disease-causing mutations in the LDL receptor gene

    DEFF Research Database (Denmark)

    Holst, Henrik Uffe; Dagnæs-Hansen, Frederik; Corydon, Thomas Juhl

    2001-01-01

    . In cultured liver cells this mutation was found to inhibit the transport of LDL receptor GFP fusion protein to the cell surface, thus leading to impaired internalisation of fluorescent labelled LDL. Co-locallisation studies confirmed the retention of the mutant protein in the endoplasmic reticulum....

  7. Asparaginase II-GFP fusion as a tool for studying the secretion of the enzyme under nitrogen starvation Fusão asparaginase II-GFP como ferramenta para estudo da via secretora de enzima sobre depleção por nitrogênio

    Directory of Open Access Journals (Sweden)

    Adriana Sotero-Martins

    2003-12-01

    Full Text Available Production of asparaginase II of Saccharomyces cerevisiae is regulated by nitrogen and can be used as a model system for studying other secreted proteins in yeast. Green fluorescent protein (GFP from Aequorea victoria was fused to the carboxy-terminus of the enzyme by genomic integration to the locus ASP3 of S. cerevisiae. We determined asparaginase II activity, mRNA ASP3, mRNA ASP3-GFP and GFP fluorescence. Nitrogen starvation in cells carrying the chimera ASP3-GFP caused an increase in fluorescence and in the expression of ASP3. We have shown that cells producing the chimera Asp3-GFPp displayed the same response to nitrogen starvation as control cells. We demonstrated that Asp3-GFPp can be used for studying asparaginase II secretion under nitrogen starvation in vivo.A produção de asparaginase II de Saccharomyces cerevisiae é regulada por nitrogênio e pode ser utilizada como um sistema modelo para estudar outras proteínas secretadas, em leveduras. A proteína "green fluorescent protein" (GFP de Aequorea victoria foi fusionada à porção carboxi-terminal de Asp3p por integração genômica da sequência de GFP ao locus ASP3. Determinaram-se os níveis de atividade de asparaginase II, mRNA ASP3, mRNA ASP3-GFP e de fluorescência para GFP. A depleção para nitrogênio, em células portadoras do gene quimérico ASP3-GFP, fez aumentar a fluorescência, assim como a expressão de ASP3. Demonstramos que Asp3-GFPp pode ser utilizada para estudar a secreção de asparaginase II em células submetidas à privação de nitrogênio in vivo.

  8. Stage-specific fluorescence intensity of GFP and mCherry during sporulation In Bacillus Subtilis

    Directory of Open Access Journals (Sweden)

    Bailey Kirra

    2010-11-01

    Full Text Available Abstract Background Fluorescent proteins are powerful molecular biology tools that have been used to study the subcellular dynamics of proteins within live cells for well over a decade. Two fluorescent proteins commonly used to enable dual protein labelling are GFP (green and mCherry (red. Sporulation in the Gram positive bacterium Bacillus subtilis has been studied for many years as a paradigm for understanding the molecular basis for differential gene expression. As sporulation initiates, cells undergo an asymmetric division leading to differential gene expression in the small prespore and large mother cell compartments. Use of two fluorescent protein reporters permits time resolved examination of differential gene expression either in the same compartments or between compartments. Due to the spectral properties of GFP and mCherry, they are considered an ideal combination for co-localisation and co-expression experiments. They can also be used in combination with fluorescent DNA stains such as DAPI to correlate protein localisation patterns with the developmental stage of sporulation which can be linked to well characterised changes in DNA staining patterns. Findings While observing the recruitment of the transcription machinery into the forespore of sporulating Bacillus subtilis, we noticed the occurrence of stage-specific fluorescence intensity differences between GFP and mCherry. During vegetative growth and the initial stages of sporulation, fluorescence from both GFP and mCherry fusions behaved similarly. During stage II-III of sporulation we found that mCherry fluorescence was considerably diminished, whilst GFP signals remained clearly visible. This fluorescence pattern reversed during the final stage of sporulation with strong mCherry and low GFP fluorescence. These trends were observed in reciprocal tagging experiments indicating a direct effect of sporulation on fluorescent protein fluorophores. Conclusions Great care should be taken

  9. Analyses of pancreas development by generation of gfp transgenic zebrafish using an exocrine pancreas-specific elastaseA gene promoter

    International Nuclear Information System (INIS)

    Wan Haiyan; Korzh, Svitlana; Li Zhen; Mudumana, Sudha Puttur; Korzh, Vladimir; Jiang Yunjin; Lin Shuo; Gong Zhiyuan

    2006-01-01

    In contrast to what we know on development of endocrine pancreas, the formation of exocrine pancreas remains poorly understood. To create an animal model that allows observation of exocrine cell differentiation, proliferation, and morphogenesis in living animals, we used the zebrafish elastaseA (elaA) regulatory sequence to develop transgenic zebrafish that display highly specific exocrine pancreas expression of GFP in both larvae and adult. By following GFP expression, we found that the pancreas in early development was a relatively compact organ and later extended posterior along the intestine. By transferring the elaA:gfp transgene into slow muscle omitted mutant that is deficient in receiving Hedgehog signals, we further showed that Hedgehog signaling is required for exocrine morphogenesis but not for cell differentiation. We also applied the morpholino knockdown and toxin-mediated cell ablation approaches to this transgenic line. We showed that the development of exocrine pancreas is Islet-1 dependent. Injection of the diphtheria toxin A (DTA) construct under the elastaseA promoter resulted in selective ablation of exocrine cells while the endocrine cells and other endodermal derivatives (liver and intestine) were not affected. Thus, our works demonstrated the new transgenic line provided a useful experimental tool in analyzing exocrine pancreas development

  10. Isolation of progenitor cells from GFP-transgenic pigs and transplantation to the retina of allorecipients

    DEFF Research Database (Denmark)

    Klassen, Henry; Warfvinge, Karin; Schwartz, Philip H

    2008-01-01

    to survival as allografts and integrate into the host retinal architecture, we isolated donor cells from fetal green fluorescent protein (GFP)-transgenic pigs. Cultures were propagated from the brain, retina, and corneo-scleral limbus. GFP expression rapidly increased with time in culture, although lower...... in conjunction with photoreceptor markers and glial fibrillary acid protein (GFAP), thus suggesting downregulation of GFP during differentiation. Following transplantation, GFP expression allowed histological visualization of integrated cells and extension of fine processes to adjacent plexiform layers. GFP...

  11. Deployment of a Prototype Plant GFP Imager at the Arthur Clarke Mars Greenhouse of the Haughton Mars Project

    Directory of Open Access Journals (Sweden)

    Robert J. Ferl

    2008-04-01

    Full Text Available The use of engineered plants as biosensors has made elegant strides in the past decades, providing keen insights into the health of plants in general and particularly in the nature and cellular location of stress responses. However, most of the analytical procedures involve laboratory examination of the biosensor plants. With the advent of the green fluorescence protein (GFP as a biosensor molecule, it became at least theoretically possible for analyses of gene expression to occur telemetrically, with the gene expression information of the plant delivered to the investigator over large distances simply as properly processed fluorescence images. Spaceflight and other extraterrestrial environments provide unique challenges to plant life, challenges that often require changes at the gene expression level to accommodate adaptation and survival. Having previously deployed transgenic plant biosensors to evaluate responses to orbital spaceflight, we wished to develop the plants and especially the imaging devices required to conduct such experiments robotically, without operator intervention, within extraterrestrial environments. This requires the development of an autonomous and remotely operated plant GFP imaging system and concomitant development of the communications infrastructure to manage dataflow from the imaging device. Here we report the results of deploying a prototype GFP imaging system within the Arthur Clarke Mars Greenhouse (ACMG an autonomously operated greenhouse located within the Haughton Mars Project in the Canadian High Arctic. Results both demonstrate the applicability of the fundamental GFP biosensor technology and highlight the difficulties in collecting and managing telemetric data from challenging deployment environments.

  12. A modern Green Revolution gene for reduced height in wheat.

    Science.gov (United States)

    Würschum, Tobias; Langer, Simon M; Longin, C Friedrich H; Tucker, Matthew R; Leiser, Willmar L

    2017-12-01

    Increases in the yield of wheat during the Green Revolution of the late 20 th century were achieved through the introduction of Reduced height (Rht) dwarfing genes. The Rht-B1 and Rht-D1 loci ensured short stature by limiting the response to the growth-promoting hormone gibberellin, and are now widespread through international breeding programs. Despite this advantage, interference with the plant's response to gibberellin also triggers adverse effects for a range of important agronomic traits, and consequently modern Green Revolution genes are urgently required. In this study, we revisited the genetic control of wheat height using an association mapping approach and a large panel of 1110 worldwide winter wheat cultivars. This led to the identification of a major Rht locus on chromosome 6A, Rht24, which substantially reduces plant height alone as well as in combination with Rht-1b alleles. Remarkably, behind Rht-D1, Rht24 was the second most important locus for reduced height, explaining 15.0% of the genotypic variance and exerting an allele substitution effect of -8.8 cm. Unlike the two Rht-1b alleles, plants carrying Rht24 remain sensitive to gibberellic acid treatment. Rht24 appears in breeding programs from all countries of origin investigated, with increased frequency over the last decades, indicating that wheat breeders have actively selected for this locus. Taken together, this study reveals Rht24 as an important Rht gene of commercial relevance in worldwide wheat breeding. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  13. Energy profile of nanobody–GFP complex under force

    International Nuclear Information System (INIS)

    Klamecka, Kamila; Severin, Philip M; Milles, Lukas F; Gaub, Hermann E; Leonhardt, Heinrich

    2015-01-01

    Nanobodies (Nbs)—the smallest known fully functional and naturally occuring antigen-binding fragments—have attracted a lot of attention throughout the last two decades. Exploring their potential beyond the current use requires more detailed characterization of their binding forces as those cannot be directly derived from the binding affinities. Here we used atomic force microscope to measure rupture force of the Nb–green fluorescent protein (GFP) complex in various pulling geometries and derived the energy profile characterizing the interaction along the direction of the pulling force. We found that—despite identical epitopes—the Nb binds stronger (41–56 pN) to enhanced GFP than to wild-type GFP (28–45 pN). Measured forces make the Nb–GFP pair a potent reference for investigating molecular forces in living systems both in and ex vivo. (paper)

  14. Energy profile of nanobody-GFP complex under force

    Science.gov (United States)

    Klamecka, Kamila; Severin, Philip M.; Milles, Lukas F.; Gaub, Hermann E.; Leonhardt, Heinrich

    2015-10-01

    Nanobodies (Nbs)—the smallest known fully functional and naturally occuring antigen-binding fragments—have attracted a lot of attention throughout the last two decades. Exploring their potential beyond the current use requires more detailed characterization of their binding forces as those cannot be directly derived from the binding affinities. Here we used atomic force microscope to measure rupture force of the Nb-green fluorescent protein (GFP) complex in various pulling geometries and derived the energy profile characterizing the interaction along the direction of the pulling force. We found that—despite identical epitopes—the Nb binds stronger (41-56 pN) to enhanced GFP than to wild-type GFP (28-45 pN). Measured forces make the Nb-GFP pair a potent reference for investigating molecular forces in living systems both in and ex vivo.

  15. Energy profile of nanobody-GFP complex under force.

    Science.gov (United States)

    Klamecka, Kamila; Severin, Philip M; Milles, Lukas F; Gaub, Hermann E; Leonhardt, Heinrich

    2015-09-10

    Nanobodies (Nbs)-the smallest known fully functional and naturally occuring antigen-binding fragments-have attracted a lot of attention throughout the last two decades. Exploring their potential beyond the current use requires more detailed characterization of their binding forces as those cannot be directly derived from the binding affinities. Here we used atomic force microscope to measure rupture force of the Nb-green fluorescent protein (GFP) complex in various pulling geometries and derived the energy profile characterizing the interaction along the direction of the pulling force. We found that-despite identical epitopes-the Nb binds stronger (41-56 pN) to enhanced GFP than to wild-type GFP (28-45 pN). Measured forces make the Nb-GFP pair a potent reference for investigating molecular forces in living systems both in and ex vivo.

  16. Screening estrogenic activities of chemicals or mixtures in vivo using transgenic (cyp19a1b-GFP zebrafish embryos.

    Directory of Open Access Journals (Sweden)

    François Brion

    Full Text Available The tg(cyp19a1b-GFP transgenic zebrafish expresses GFP (green fluorescent protein under the control of the cyp19a1b gene, encoding brain aromatase. This gene has two major characteristics: (i it is only expressed in radial glial progenitors in the brain of fish and (ii it is exquisitely sensitive to estrogens. Based on these properties, we demonstrate that natural or synthetic hormones (alone or in binary mixture, including androgens or progestagens, and industrial chemicals induce a concentration-dependent GFP expression in radial glial progenitors. As GFP expression can be quantified by in vivo imaging, this model presents a very powerful tool to screen and characterize compounds potentially acting as estrogen mimics either directly or after metabolization by the zebrafish embryo. This study also shows that radial glial cells that act as stem cells are direct targets for a large panel of endocrine disruptors, calling for more attention regarding the impact of environmental estrogens and/or certain pharmaceuticals on brain development. Altogether these data identify this in vivo bioassay as an interesting alternative to detect estrogen mimics in hazard and risk assessment perspective.

  17. Combined use of different Gfp reporters for monitoring single-cell activities of a genetically modified PCB degrader in the rhizosphere of alfalfa

    DEFF Research Database (Denmark)

    Boldt, T.S.; Sørensen, J.; Karlsson, U.

    2004-01-01

    Single-cell localization and activity of Pseudomonas,fluorescens F113, colonizing alfalfa roots, were monitored using fusions of the Escherichia coli rrnBP1 ribosomal promoter and gfp genes encoding green fluorescent protein (Gfp) of different stability. The monitoring systems permitted non...... of chlorinated biphenyl was constructed, using another gfp fusion with the meta-pathway Pin promoter from Pseudomonas putida (TOL plasmid). Expression of this promoter, which is strongly induced by the PCB-2 degradation product, 3-chlorobenzoate, was tested in vitro and subsequently monitored in vivo on alfalfa...... roots using the P. fluorescens F113rifpcb reporter. A small but distinct fraction of the introduced bacteria activated the Pm promoter and thus appeared to sense a PCB-2 degradation product in the alfalfa rhizosphere. The degrading cells, which by design were identical to the sensing cells, were located...

  18. Characterization of complete particles (VSV-G/SIN-GFP) and empty particles (VSV-G/EMPTY) in human immunodeficiency virus type 1-based lentiviral products for gene therapy: potential applications for improvement of product quality and safety.

    Science.gov (United States)

    Zhao, Yuan; Keating, Kenneth; Dolman, Carl; Thorpe, Robin

    2008-05-01

    Lentiviral vectors persist in the host and are therefore ideally suited for long-term gene therapy. To advance the use of lentiviral vectors in humans, improvement of their production, purification, and characterization has become increasingly important and challenging. In addition to cellular contaminants derived from packaging cells, empty particles without therapeutic function are the major impurities that compromise product safety and efficacy. Removal of empty particles is difficult because of their innate similarity in particle size and protein composition to the complete particles. We propose that comparison of the properties of lentiviral products with those of purposely expressed empty particles may reveal potential differences between empty and complete particles. For this, three forms of recombinant lentiviral samples, that is, recombinant vesicular stomatitis virus glycoprotein (VSV-G) proteins, empty particles (VSV-G/Empty), and complete particles (VSV-G/SIN-GFP) carrying viral RNA, were purified by size-exclusion chromatography (SEC). The SEC-purified samples were further analyzed by immunoblotting with six antibodies to examine viral and cellular proteins associated with the particles. This study has demonstrated, for the first time, important differences between VSV-G/Empty particles and complete VSV-G/SIN-GFP particles. Differences include the processing of Gag protein and the inclusion of cellular proteins in the particles. Our findings support the development of improved production, purification, and characterization methods for lentiviral products.

  19. Human CD68 promoter GFP transgenic mice allow analysis of monocyte to macrophage differentiation in vivo.

    Science.gov (United States)

    Iqbal, Asif J; McNeill, Eileen; Kapellos, Theodore S; Regan-Komito, Daniel; Norman, Sophie; Burd, Sarah; Smart, Nicola; Machemer, Daniel E W; Stylianou, Elena; McShane, Helen; Channon, Keith M; Chawla, Ajay; Greaves, David R

    2014-10-09

    The recruitment of monocytes and their differentiation into macrophages at sites of inflammation are key events in determining the outcome of the inflammatory response and initiating the return to tissue homeostasis. To study monocyte trafficking and macrophage differentiation in vivo, we have generated a novel transgenic reporter mouse expressing a green fluorescent protein (GFP) under the control of the human CD68 promoter. CD68-GFP mice express high levels of GFP in both monocyte and embryo-derived tissue resident macrophages in adult animals. The human CD68 promoter drives GFP expression in all CD115(+) monocytes of adult blood, spleen, and bone marrow; we took advantage of this to directly compare the trafficking of bone marrow-derived CD68-GFP monocytes to that of CX3CR1(GFP) monocytes in vivo using a sterile zymosan peritonitis model. Unlike CX3CR1(GFP) monocytes, which downregulate GFP expression on differentiation into macrophages in this model, CD68-GFP monocytes retain high-level GFP expression for 72 hours after differentiation into macrophages, allowing continued cell tracking during resolution of inflammation. In summary, this novel CD68-GFP transgenic reporter mouse line represents a powerful resource for analyzing monocyte mobilization and monocyte trafficking as well as studying the fate of recruited monocytes in models of acute and chronic inflammation. © 2014 by The American Society of Hematology.

  20. New cell line development for antibody-producing Chinese hamster ovary cells using split green fluorescent protein

    Directory of Open Access Journals (Sweden)

    Kim Yeon-Gu

    2012-05-01

    Full Text Available Abstract Background The establishment of high producer is an important issue in Chinese hamster ovary (CHO cell culture considering increased heterogeneity by the random integration of a transfected foreign gene and the altered position of the integrated gene. Fluorescence-activated cell sorting (FACS-based cell line development is an efficient strategy for the selection of CHO cells in high therapeutic protein production. Results An internal ribosome entry site (IRES was introduced for using two green fluorescence protein (GFP fragments as a reporter to both antibody chains, the heavy chain and the light chain. The cells co-transfected with two GFP fragments showed the emission of green fluorescence by the reconstitution of split GFP. The FACS-sorted pool with GFP expression had a higher specific antibody productivity (qAb than that of the unsorted pool. The qAb was highly correlated with the fluorescence intensity with a high correlation coefficient, evidenced from the analysis of median GFP and qAb in individual selected clones. Conclusions This study proved that the fragment complementation for split GFP could be an efficient indication for antibody production on the basis of high correlation of qAb with reconstitution of GFP. Taken together, we developed an efficient FACS-based screening method for high antibody-producing CHO cells with the benefits of the split GFP system.

  1. Identification of Secretory Odontoblasts Using DMP1-GFP Transgenic Mice

    Science.gov (United States)

    Balic, Anamaria; Mina, Mina

    2011-01-01

    Terminal differentiation of odontoblasts from dental papilla is a long process involving several intermediate steps and changes in the transcriptional profile and expression of proteins secreted by cells in the odontoblast lineage. Transgenic mouse lines in which GFP expression is under the control of tissue-and stage specific promoters have provided powerful experimental tools for identification and isolation of cells at specific stages of differentiation along a lineage. Our previous studies showed utilization of pOBCol3.6GFP and pOBCol2.3GFP animals for identification of odontoblasts at early and late stages of polarization respectively. In the present study we used the DMP1-GFP transgenic animal as an experimental model to examine its expression during the differentiation of odontoblasts from progenitor cells in vivo and in vitro. Our observations showed that DMP1-GFP transgene is first activated in secretory/functional odontoblasts engaged in secretion of predentin and then transiently expressed at high levels in newly differentiated odontoblasts. Expression of DMP1-GFP was down-regulated in highly differentiated odontoblasts. The temporal and spatial pattern of expression of DMP1-GFP transgene closely mimics the expression of endogenous DMP1. This transgenic animal will facilitate studies of gene expression and biological functions in secretory/functional odontoblasts. PMID:21172466

  2. Generation and characterization of neurogenin1-GFP transgenic medaka with potential for rapid developmental neurotoxicity screening

    International Nuclear Information System (INIS)

    Fan Chunyang; Simmons, Steven O.; Law, Sheran H.W.; Jensen, Karl; Cowden, John; Hinton, David; Padilla, Stephanie; Ramabhadran, Ram

    2011-01-01

    Fish models such as zebrafish and medaka are increasingly used as alternatives to rodents in developmental and toxicological studies. These developmental and toxicological studies can be facilitated by the use of transgenic reporters that permit the real-time, noninvasive observation of the fish. Here we report the construction and characterization of transgenic medaka lines expressing green fluorescent protein (GFP) under the control of the zebrafish neurogenin 1 (ngn1) gene promoter. Neurogenin (ngn1) is a helix-loop-helix transcription factor expressed in proliferating neuronal progenitor cells early in neuronal differentiation and plays a crucial role in directing neurogenesis. GFP expression was detected from 24 h post-fertilization until hatching, in a spatial pattern consistent with the previously reported zebrafish ngn1 expression. Temporal expression of the transgene parallels the expression profile of the endogenous medaka ngn1 transcript. Further, we demonstrate that embryos from the transgenic line permit the non-destructive, real-time screening of ngn1 promoter-directed GFP expression in a 96-well format, enabling higher throughput studies of developmental neurotoxicants. This strain has been deposited with and maintained by the National BioResource Project and is available on request ( (http://www.shigen.nig.ac.jp/medaka/strainDetailAction.do?quickSearch=true and strainId=5660)).

  3. Selection of antigenic markers on a GFP-Cκ fusion scaffold with high sensitivity by eukaryotic ribosome display

    International Nuclear Information System (INIS)

    Yang Yongmin; Barankiewicz, Teresa J.; He Mingyue; Taussig, Michael J.; Chen, Swey-Shen

    2007-01-01

    Ribosome display is a cell-free system permitting gene selection through the physical association of genetic material (mRNA) and its phenotypic (protein) product. While often used to select single-chain antibodies from large libraries by panning against immobilized antigens, we have adapted ribosome display for use in the 'reverse' format in order to select high affinity antigenic determinants against solid-phase antibody. To create an antigenic scaffold, DNA encoding green fluorescent protein (GFP) was fused to a light chain constant domain (Cκ) with stop codon deleted, and with 5' signals (T7 promoter, Kozak) enabling coupled transcription/translation in a eukaryotic cell-free system. Epitopes on either GFP (5') or Cκ (3') were selected by anti-GFP or anti-Cκ antibodies, respectively, coupled to magnetic beads. After selection, mRNA was amplified directly from protein-ribosome-mRNA (PRM) complexes by in situ PCR followed by internal amplification and reassembly PCR. As little as 10 fg of the 1 kb DNA construct, i.e. approximately 7500 molecules, could be recovered following a single round of interaction with solid-phase anti-GFP antibody. This platform is highly specific and sensitive for the antigen-antibody interaction and may permit selection and reshaping of high affinity antigenic variants of scaffold proteins

  4. Selection of antigenic markers on a GFP-C{kappa} fusion scaffold with high sensitivity by eukaryotic ribosome display

    Energy Technology Data Exchange (ETDEWEB)

    Yongmin, Yang [Institute of Genetics, San Diego, CA 92121-2233 (United States); IgE Therapeutics, Inc., San Diego, CA 92121-2233 (United States); Barankiewicz, Teresa J [Institute of Genetics, San Diego, CA 92121-2233 (United States); IgE Therapeutics, Inc., San Diego, CA 92121-2233 (United States); Mingyue, He [Babraham Institute, Cambridge CB2 4AT (United Kingdom); Taussig, Michael J [Babraham Institute, Cambridge CB2 4AT (United Kingdom); Chen, Swey-Shen [Institute of Genetics, San Diego, CA 92121-2233 (United States) and IgE Therapeutics, Inc., San Diego, CA 92121-2233 (United States)

    2007-07-27

    Ribosome display is a cell-free system permitting gene selection through the physical association of genetic material (mRNA) and its phenotypic (protein) product. While often used to select single-chain antibodies from large libraries by panning against immobilized antigens, we have adapted ribosome display for use in the 'reverse' format in order to select high affinity antigenic determinants against solid-phase antibody. To create an antigenic scaffold, DNA encoding green fluorescent protein (GFP) was fused to a light chain constant domain (C{kappa}) with stop codon deleted, and with 5' signals (T7 promoter, Kozak) enabling coupled transcription/translation in a eukaryotic cell-free system. Epitopes on either GFP (5') or C{kappa} (3') were selected by anti-GFP or anti-C{kappa} antibodies, respectively, coupled to magnetic beads. After selection, mRNA was amplified directly from protein-ribosome-mRNA (PRM) complexes by in situ PCR followed by internal amplification and reassembly PCR. As little as 10 fg of the 1 kb DNA construct, i.e. approximately 7500 molecules, could be recovered following a single round of interaction with solid-phase anti-GFP antibody. This platform is highly specific and sensitive for the antigen-antibody interaction and may permit selection and reshaping of high affinity antigenic variants of scaffold proteins.

  5. Remote sensing of gene expression in Planta: transgenic plants as monitors of exogenous stress perception in extraterrestrial environments

    Science.gov (United States)

    Manak, Michael S.; Paul, Anna-Lisa; Sehnke, Paul C.; Ferl, Robert J.

    2002-01-01

    Transgenic arabidopsis plants containing the alcohol dehydrogenase (Adh) gene promoter fused to the green fluorescent protein (GFP) reporter gene were developed as biological sensors for monitoring physiological responses to unique environments. Plants were monitored in vivo during exposure to hypoxia, high salt, cold, and abcissic acid in experiments designed to characterize the utility and responses of the Adh/GFP biosensors. Plants in the presence of environmental stimuli that induced the Adh promoter responded by expressing GFP, which in turn generated a detectable fluorescent signal. The GFP signal degraded when the inducing stimulus was removed. Digital imaging of the Adh/GFP plants exposed to each of the exogenous stresses demonstrated that the stress-induced gene expression could be followed in real time. The experimental results established the feasibility of using a digital monitoring system for collecting gene expression data in real time from Transgenic Arabidopsis Gene Expression System (TAGES) biosensor plants during space exploration experiments.

  6. Evaluation of the effects of ethinylestradiol on sexual differentiation in the olvas-GFP/STII-YI medaka (transgenic Oryzias latipes) strain as estimated by proliferative activity of germ cells

    International Nuclear Information System (INIS)

    Hano, Takeshi; Oshima, Yuji; Kinoshita, Masato; Tanaka, Minoru; Mishima, Noriko; Wakamatsu, Yuko; Ozato, Kenjiro; Shimasaki, Yohei; Honjo, Tsuneo

    2011-01-01

    We evaluated the effects of 17(-ethinylestradiol (EE 2 ) on sexual differentiation in transgenic olvas-GFP/STII-YI medaka (Oryzias latipes) in terms of the proliferative activity of germ cells. This strain contains the green fluorescent protein (GFP) gene fused to the regulatory region of the medaka vasa gene, and germ cell-specific expression of GFP can be visualized in living (transparent) individuals. From 0 days post-hatch (0 dph) onwards, juveniles were exposed to graded concentrations of EE 2 (25.2-1710 ng/L) for 35 days. The gonads of live specimens were monitored by measuring their size and calculating their GFP-fluorescence area. GFP-fluorescent area in control females was about 10 times that in control males at 10 days posthatch (dph) whereas the gonadal size of 10 dph males that had been exposed to 158 ng/L of EE 2 significantly increased up to twice the size of control males, indicating that abnormal sexual differentiation towards female might occur in these individuals. Histological examination and identification of the sex-linked marker SL1 indicated that male to female sex reversal occurred at EE 2 exposure ≥45.1 ng/L at 35 dph. These results suggest that observation of proliferative activity of germ cells in the olvas-GFP/STII-YI strain could be applied to facilitated screening fish model to detect adverse effects on sexual differentiation as early as 10 dph juveniles.

  7. Application of green fluorescent protein for monitoring phenol-degrading strains

    Directory of Open Access Journals (Sweden)

    Ana Milena Valderrama F.

    2001-07-01

    Full Text Available Several methods have been developed for detecting microorganisms in environmental samples. Some systems for incorporating reporter genes, such as lux or the green fluorescent protein (GFP gene, have been developed recently This study describes gfp gene marking of a phenol degrading strain, its evaluation and monitoring in a bioreactor containing refinery sour water. Tagged strains were obtained having the same physiological and metabolic characteristics as the parent strain. Fluorescent expression was kept stable with no selection for more than 50 consecutive generations and tagged strains were recovered from the bioreactor after forty-five days of phenol-degradation treatment.

  8. Function and structure of GFP-like proteins in the protein data bank.

    Science.gov (United States)

    Ong, Wayne J-H; Alvarez, Samuel; Leroux, Ivan E; Shahid, Ramza S; Samma, Alex A; Peshkepija, Paola; Morgan, Alicia L; Mulcahy, Shawn; Zimmer, Marc

    2011-04-01

    The RCSB protein databank contains 266 crystal structures of green fluorescent proteins (GFP) and GFP-like proteins. This is the first systematic analysis of all the GFP-like structures in the pdb. We have used the pdb to examine the function of fluorescent proteins (FP) in nature, aspects of excited state proton transfer (ESPT) in FPs, deformation from planarity of the chromophore and chromophore maturation. The conclusions reached in this review are that (1) The lid residues are highly conserved, particularly those on the "top" of the β-barrel. They are important to the function of GFP-like proteins, perhaps in protecting the chromophore or in β-barrel formation. (2) The primary/ancestral function of GFP-like proteins may well be to aid in light induced electron transfer. (3) The structural prerequisites for light activated proton pumps exist in many structures and it's possible that like bioluminescence, proton pumps are secondary functions of GFP-like proteins. (4) In most GFP-like proteins the protein matrix exerts a significant strain on planar chromophores forcing most GFP-like proteins to adopt non-planar chromophores. These chromophoric deviations from planarity play an important role in determining the fluorescence quantum yield. (5) The chemospatial characteristics of the chromophore cavity determine the isomerization state of the chromophore. The cavities of highlighter proteins that can undergo cis/trans isomerization have chemospatial properties that are common to both cis and trans GFP-like proteins.

  9. Insertional Mutagenesis for Genes involved in Otic/Vestibular Development and Function in Xenopus Tropicalis

    Science.gov (United States)

    Torrejon, Marcela; Li, Erica; Nguyen, Minh; Winfree, Seth; Wang, Esther; Reinsch, Sigrid; Dalton, Bonnie (Technical Monitor)

    2002-01-01

    Sensitivity to gravity is essential for spatial orientation. Consequently, the gravity receptor system is one of the phylogenetically oldest sensory systems, and the special adaptations that enhance sensitivity to gravity are highly conserved. The main goal of this project is to use Xenopus (frog) to identify genes expressed during vestibular and auditory development. These studies will lead a better understanding of the molecular mechanisms involved in vestibular and auditory development and function. We are using a gene-trap approach in Xenopus tropicalis with the green fluorescent protein (GFP) gene as the transgene reporter. GFP expression occurs only when the GFP gene is correctly integrated in actively transcribed genes. Using the GFP as a tag we can easily identify and clone the mutated gene. In addition, we can study the function of the mutated gene by analyzing the defects generated by insertion of the GFP transgene. To date we have tissue specific GFP expression in X. tropicalis including expression in ear, neural tube, kidney, muscle, eyes and nose. Our transgenic animals will soon reach maturity so that we can outcross them and analyze their progeny. Our next goal is to isolate RNA from our transgenics and clone the tagged genes using RACE-PCR. Currently we are optimizing the RACE-PCR method using transgenics with crystallin GFP expression.

  10. Gene expression profiling of the green seed problem in Soybean

    NARCIS (Netherlands)

    Nogueira Teixeira, Renake; Ligterink, Wilco; B. França-Neto, de José; Hilhorst, H.W.M.; Silva, da E.A.A.

    2016-01-01

    Background: Due to the climate change of the past few decades, some agricultural areas in the world are now experiencing new climatic extremes. For soybean, high temperatures and drought stress can potentially lead to the "green seed problem", which is characterized by chlorophyll retention in

  11. Polarized expression of the GFP-tagged rat V(1a) vasopressin receptor.

    Science.gov (United States)

    Campos, D M; Reyes, C E; Sarmiento, J; Navarro, J; González, C B

    2001-11-30

    We investigated the targeting of the V(1a) receptor fused with the green fluorescence protein (V(1a)R-GFP) in polarized MDCK cells. Cells expressing V(1a)R-GFP displayed binding to vasopressin (AVP) and AVP-induced calcium responses, similar to cells expressing the wild-type V1a receptor. Interestingly, as with the wild-type V(1a)R, V(1a)R-GFP is preferentially distributed in the basolateral side of MDCK cells as monitored by confocal microscopy. Furthermore, AVP induced internalization of GFP-tagged receptors. Therefore, the GFP-tagged V(1a) receptor retains all the sorting signals of the wild-type receptor and offers an excellent system to elucidate the mechanisms of cell trafficking of V(1a) receptors.

  12. Cell Type-Specific Manipulation with GFP-Dependent Cre Recombinase

    Science.gov (United States)

    Tang, Jonathan C Y; Rudolph, Stephanie; Dhande, Onkar S; Abraira, Victoria E; Choi, Seungwon; Lapan, Sylvain; Drew, Iain R; Drokhlyansky, Eugene; Huberman, Andrew D; Regehr, Wade G; Cepko, Constance L

    2016-01-01

    Summary There are many transgenic GFP reporter lines that allow visualization of specific populations of cells. Using such lines for functional studies requires a method that transforms GFP into a molecule that enables genetic manipulation. Here we report the creation of a method that exploits GFP for gene manipulation, Cre Recombinase Dependent on GFP (CRE-DOG), a split component system that uses GFP and its derivatives to directly induce Cre/loxP recombination. Using plasmid electroporation and AAV viral vectors, we delivered CRE-DOG to multiple GFP mouse lines, leading to effective recombination selectively in GFP-labeled cells. Further, CRE-DOG enabled optogenetic control of these neurons. Beyond providing a new set of tools for manipulation of gene expression selectively in GFP+ cells, we demonstrate that GFP can be used to reconstitute the activity of a protein not known to have a modular structure, suggesting that this strategy might be applicable to a wide range of proteins. PMID:26258682

  13. The expression of GFP under the control of fibroin promotor in ...

    Indian Academy of Sciences (India)

    ... mediated rapid amplification of cDNA ends (RLM-RACE). The expression vector (pGFP-N2/Fib) was constructed by use of replacing the CMV promoter with the fibroin promoter. The results of visual screening under a fluorescent inverted microscope and Western blot analysis indicated that the GFP gene was expressed in ...

  14. A Plasmodium falciparum Strain Expressing GFP throughout the Parasite's Life-Cycle

    OpenAIRE

    Talman, Arthur M.; Blagborough, Andrew M.; Sinden, Robert E.

    2010-01-01

    The human malaria parasite Plasmodium falciparum is responsible for the majority of malaria-related deaths. Tools allowing the study of the basic biology of P. falciparum throughout the life cycle are critical to the development of new strategies to target the parasite within both human and mosquito hosts. We here present 3D7HT-GFP, a strain of P. falciparum constitutively expressing the Green Fluorescent Protein (GFP) throughout the life cycle, which has retained its capacity to complete spo...

  15. Expression of the Acyl-Coenzyme A: Cholesterol Acyltransferase GFP Fusion Protein in Sf21 Insect Cells

    Science.gov (United States)

    Mahtani, H. K.; Richmond, R. C.; Chang, T. Y.; Chang, C. C. Y.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    The enzyme acyl-coenzyme A:cholesterol acyltransferase (ACAT) is an important contributor to the pathological expression of plaque leading to artherosclerosis n a major health problem. Adequate knowledge of the structure of this protein will enable pharmaceutical companies to design drugs specific to the enzyme. ACAT is a membrane protein located in the endoplasmic reticulum.t The protein has never been purified to homogeneity.T.Y. Chang's laboratory at Dartmouth College provided a 4-kb cDNA clone (K1) coding for a structural gene of the protein. We have modified the gene sequence and inserted the cDNA into the BioGreen His Baculovirus transfer vector. This was successfully expressed in Sf2l insect cells as a GFP-labeled ACAT protein. The advantage to this ACAT-GFP fusion protein (abbreviated GCAT) is that one can easily monitor its expression as a function of GFP excitation at 395 nm and emission at 509 nm. Moreover, the fusion protein GCAT can be detected on Western blots with the use of commercially available GFP antibodies. Antibodies against ACAT are not readily available. The presence of the 6xHis tag in the transfer vector facilitates purification of the recombinant protein since 6xHis fusion proteins bind with high affinity to Ni-NTA agarose. Obtaining highly pure protein in large quantities is essential for subsequent crystallization. The purified GCAT fusion protein can readily be cleaved into distinct GFP and ACAT proteins in the presence of thrombin. Thrombin digests the 6xHis tag linking the two protein sequences. Preliminary experiments have indicated that both GCAT and ACAT are expressed as functional proteins. The ultimate aim is to obtain large quantities of the ACAT protein in pure and functional form appropriate for protein crystal growth. Determining protein structure is the key to the design and development of effective drugs. X-ray analysis requires large homogeneous crystals that are difficult to obtain in the gravity environment of earth

  16. Transgenic Arabidopsis Gene Expression System

    Science.gov (United States)

    Ferl, Robert; Paul, Anna-Lisa

    2009-01-01

    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  17. Knock-In Mice with NOP-eGFP Receptors Identify Receptor Cellular and Regional Localization.

    Science.gov (United States)

    Ozawa, Akihiko; Brunori, Gloria; Mercatelli, Daniela; Wu, Jinhua; Cippitelli, Andrea; Zou, Bende; Xie, Xinmin Simon; Williams, Melissa; Zaveri, Nurulain T; Low, Sarah; Scherrer, Grégory; Kieffer, Brigitte L; Toll, Lawrence

    2015-08-19

    The nociceptin/orphanin FQ (NOP) receptor, the fourth member of the opioid receptor family, is involved in many processes common to the opioid receptors including pain and drug abuse. To better characterize receptor location and trafficking, knock-in mice were created by inserting the gene encoding enhanced green fluorescent protein (eGFP) into the NOP receptor gene (Oprl1) and producing mice expressing a functional NOP-eGFP C-terminal fusion in place of the native NOP receptor. The NOP-eGFP receptor was present in brain of homozygous knock-in animals in concentrations somewhat higher than in wild-type mice and was functional when tested for stimulation of [(35)S]GTPγS binding in vitro and in patch-clamp electrophysiology in dorsal root ganglia (DRG) neurons and hippocampal slices. Inhibition of morphine analgesia was equivalent when tested in knock-in and wild-type mice. Imaging revealed detailed neuroanatomy in brain, spinal cord, and DRG and was generally consistent with in vitro autoradiographic imaging of receptor location. Multicolor immunohistochemistry identified cells coexpressing various spinal cord and DRG cellular markers, as well as coexpression with μ-opioid receptors in DRG and brain regions. Both in tissue slices and primary cultures, the NOP-eGFP receptors appear throughout the cell body and in processes. These knock-in mice have NOP receptors that function both in vitro and in vivo and appear to be an exceptional tool to study receptor neuroanatomy and correlate with NOP receptor function. The NOP receptor, the fourth member of the opioid receptor family, is involved in pain, drug abuse, and a number of other CNS processes. The regional and cellular distribution has been difficult to determine due to lack of validated antibodies for immunohistochemical analysis. To provide a new tool for the investigation of receptor localization, we have produced knock-in mice with a fluorescent-tagged NOP receptor in place of the native NOP receptor. These

  18. Meiotic genes and sexual reproduction in the green algal class Trebouxiophyceae (Chlorophyta)

    Czech Academy of Sciences Publication Activity Database

    Fučíková, K.; Pažoutová, Marie; Rindi, F.

    2015-01-01

    Roč. 51, č. 3 (2015), s. 419-430 ISSN 0022-3646 Institutional support: RVO:60077344 Keywords : algal genomes * Chlorophyta * green algae * meiotic genes * sexual reproduction * Trebouxiophyceae Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.536, year: 2015

  19. Engineering and Characterization of a Superfolder Green Fluorescent Protein

    International Nuclear Information System (INIS)

    Pedelacq, J.; Cabantous, S.; Tran, T.; Terwilliger, T.; Waldo, G.

    2006-01-01

    Existing variants of green fluorescent protein (GFP) often misfold when expressed as fusions with other proteins. We have generated a robustly folded version of GFP, called 'superfolder' GFP, that folds well even when fused to poorly folded polypeptides. Compared to 'folding reporter' GFP, a folding-enhanced GFP containing the 'cycle-3' mutations and the 'enhanced GFP' mutations F64L and S65T, superfolder GFP shows improved tolerance of circular permutation, greater resistance to chemical denaturants and improved folding kinetics. The fluorescence of Escherichia coli cells expressing each of eighteen proteins from Pyrobaculum aerophilum as fusions with superfolder GFP was proportional to total protein expression. In contrast, fluorescence of folding reporter GFP fusion proteins was strongly correlated with the productive folding yield of the passenger protein. X-ray crystallographic structural analyses helped explain the enhanced folding of superfolder GFP relative to folding reporter GFP

  20. [Isolation and purification of BMScs of GFP transgenic mouse using the method of adhering to cuture plastic in different time].

    Science.gov (United States)

    Li, Fu-Qiang; Zhou, Hong-Ying; Yang, Hui-Lun; Xiang, Tao; Mei, Yan; Hu, Huo-Zhen; Wang, Ting-Hua

    2006-03-01

    To adopt the method of adhering to culture plastic in different time for cultivating and purifying BMSCs of green fluorescent protein (GFP) transgenic mice. Bone marrow cells isolated from GFP transgenic mice are directly planted in culture flask and an exchange of the total volume medium is made at different time. Then the cells adhering to culture plastic are differently counted according to the cell types and are examined by immunohistochemistry using the antibodies of CD44, CD45 and CD54 in three days. Moreover, the cells after the exchange of the total volume medium in 4 hours, 8 hours and 24 hours are selected and successively subcultured down to the fifth passage. Then the result of amplification is calculated and the cells are examined by immunohistochemistry using the antibodies of CD44, CD45 and CD54. With the extending of the time for the first exchange of medium, the density of cells adhering to culture plastic increased accordingly, but the BMSCs proportion decreased. The cells after first exchange of medium in 4 hours had high BMSCs proportion but low BMSCs density, and the cells in 24 hours had high BMSCs density and low BMSCs proportion. However, the cells in 8-10 hours had high BMSCs density and also high BMSCs proportion. The subcultured BMSCs could stably express GFP. The method of adhering to culture plastic in different time for cultivating and purifying BMSCs of GFP transgenic mice is effective. It is suitable to make the first exchange of total volume medium in 8-10 hours. The subcultured cell has the capacity for amplification and will probably be a seed cell for the research of tissue engineering and gene therapy.

  1. Use of green fluorescent protein to monitor Lactobacillus plantarum in the gastrointestinal tract of goats.

    Science.gov (United States)

    Han, Xufeng; Wang, Lei; Li, Wei; Li, Bibo; Yang, Yuxin; Yan, Hailong; Qu, Lei; Chen, Yulin

    2015-01-01

    The experiment aimed to specifically monitor the passage of lactobacilli in vivo after oral administration. The green fluorescent protein (GFP) gene was cloned downstream from the constitutive p32 promoter from L. lactis subsp. cremoris Wg2. The recombinant expression vector, pLEM415-gfp-p32, was electroporated into Lactobacillus plantarum (L. plantarum) isolated from goat. Green fluorescent protein (GFP) was successfully expressed in L. plantarum. After 2 h post-administration, transformed Lactobacillus could be detectable in all luminal contents. In the rumen, bacteria concentration initially decreased, reached the minimum at 42 h post-oral administration and then increased. However, this concentration decreased constantly in the duodenum. This result indicated that L. plantarum could colonize in the rumen but not in the duodenum.

  2. green

    Directory of Open Access Journals (Sweden)

    Elena Grigoryeva

    2011-02-01

    Full Text Available The “green” topic follows the “youngsters”, which is quite natural for the Russian language.Traditionally these words put together sound slightly derogatory. However, “green” also means fresh, new and healthy.For Russia, and for Siberia in particular, “green” architecture does sound new and fresh. Forced by the anxious reality, we are addressing this topic intentionally. The ecological crisis, growing energy prices, water, air and food deficits… Alexander Rappaport, our regular author, writes: “ It has been tolerable until a certain time, but under transition to the global civilization, as the nature is destroyed, and swellings of megapolises expand incredibly fast, the size and the significance of all these problems may grow a hundredfold”.However, for this very severe Siberian reality the newness of “green” architecture may turn out to be well-forgotten old. A traditional Siberian house used to be built on principles of saving and environmental friendliness– one could not survive in Siberia otherwise.Probably, in our turbulent times, it is high time to fasten “green belts”. But we should keep from enthusiastic sticking of popular green labels or repainting of signboards into green color. We should avoid being drowned in paper formalities under “green” slogans. And we should prevent the Earth from turning into the planet “Kin-dza-dza”.

  3. Study of formation of green eggshell color in ducks through global gene expression.

    Science.gov (United States)

    Xu, Fa Qiong; Li, Ang; Lan, Jing Jing; Wang, Yue Ming; Yan, Mei Jiao; Lian, Sen Yang; Wu, Xu

    2018-01-01

    The green eggshell color produced by ducks is a threshold trait that can be influenced by various factors, such as hereditary, environment and nutrition. The aim of this study was to investigate the genetic regulation of the formation of eggs with green shells in Youxian ducks. We performed integrative analysis of mRNAs and miRNAs expression profiling in the shell gland samples from ducks by RNA-Seq. We found 124 differentially expressed genes that were associated with various pathways, such as the ATP-binding cassette (ABC) transporter and solute carrier supper family pathways. A total of 31 differentially expressed miRNAs were found between ducks laying green eggs and white eggs. KEGG pathway analysis of the predicted miRNA target genes also indicated the functional characteristics of these miRNAs; they were involved in the ABC transporter pathway and the solute carrier (SLC) supper family. Analysis with qRT-PCR was applied to validate the results of global gene expression, which showed a correlation between results obtained by RNA-seq and RT-qPCR. Moreover, a miRNA-mRNA interaction network was established using correlation analysis of differentially expressed mRNA and miRNA. Compared to ducks that lay white eggs, ducks that lay green eggs include six up-regulated miRNAs that had regulatory effects on 35 down-regulated genes, and seven down-regulated miRNAs which influenced 46 up-regulated genes. For example, the ABC transporter pathway could be regulated by expressing gga-miR-144-3p (up-regulated) with ABCG2 (up-regulated) and other miRNAs and genes. This study provides valuable information about mRNA and miRNA regulation in duck shell gland tissues, and provides foundational information for further study on the eggshell color formation and marker-assisted selection for Youxian duck breeding.

  4. Study of formation of green eggshell color in ducks through global gene expression.

    Directory of Open Access Journals (Sweden)

    Fa Qiong Xu

    Full Text Available The green eggshell color produced by ducks is a threshold trait that can be influenced by various factors, such as hereditary, environment and nutrition. The aim of this study was to investigate the genetic regulation of the formation of eggs with green shells in Youxian ducks. We performed integrative analysis of mRNAs and miRNAs expression profiling in the shell gland samples from ducks by RNA-Seq. We found 124 differentially expressed genes that were associated with various pathways, such as the ATP-binding cassette (ABC transporter and solute carrier supper family pathways. A total of 31 differentially expressed miRNAs were found between ducks laying green eggs and white eggs. KEGG pathway analysis of the predicted miRNA target genes also indicated the functional characteristics of these miRNAs; they were involved in the ABC transporter pathway and the solute carrier (SLC supper family. Analysis with qRT-PCR was applied to validate the results of global gene expression, which showed a correlation between results obtained by RNA-seq and RT-qPCR. Moreover, a miRNA-mRNA interaction network was established using correlation analysis of differentially expressed mRNA and miRNA. Compared to ducks that lay white eggs, ducks that lay green eggs include six up-regulated miRNAs that had regulatory effects on 35 down-regulated genes, and seven down-regulated miRNAs which influenced 46 up-regulated genes. For example, the ABC transporter pathway could be regulated by expressing gga-miR-144-3p (up-regulated with ABCG2 (up-regulated and other miRNAs and genes. This study provides valuable information about mRNA and miRNA regulation in duck shell gland tissues, and provides foundational information for further study on the eggshell color formation and marker-assisted selection for Youxian duck breeding.

  5. A Plasmodium falciparum strain expressing GFP throughout the parasite's life-cycle.

    Science.gov (United States)

    Talman, Arthur M; Blagborough, Andrew M; Sinden, Robert E

    2010-02-10

    The human malaria parasite Plasmodium falciparum is responsible for the majority of malaria-related deaths. Tools allowing the study of the basic biology of P. falciparum throughout the life cycle are critical to the development of new strategies to target the parasite within both human and mosquito hosts. We here present 3D7HT-GFP, a strain of P. falciparum constitutively expressing the Green Fluorescent Protein (GFP) throughout the life cycle, which has retained its capacity to complete sporogonic development. The GFP expressing cassette was inserted in the Pf47 locus. Using this transgenic strain, parasite tracking and population dynamics studies in mosquito stages and exo-erythrocytic schizogony is greatly facilitated. The development of 3D7HT-GFP will permit a deeper understanding of the biology of parasite-host vector interactions, and facilitate the development of high-throughput malaria transmission assays and thus aid development of new intervention strategies against both parasite and mosquito.

  6. GFP-like proteins as ubiquitous metazoan superfamily: evolution of functional features and structural complexity.

    Science.gov (United States)

    Shagin, Dmitry A; Barsova, Ekaterina V; Yanushevich, Yurii G; Fradkov, Arkady F; Lukyanov, Konstantin A; Labas, Yulii A; Semenova, Tatiana N; Ugalde, Juan A; Meyers, Ann; Nunez, Jose M; Widder, Edith A; Lukyanov, Sergey A; Matz, Mikhail V

    2004-05-01

    Homologs of the green fluorescent protein (GFP), including the recently described GFP-like domains of certain extracellular matrix proteins in Bilaterian organisms, are remarkably similar at the protein structure level, yet they often perform totally unrelated functions, thereby warranting recognition as a superfamily. Here we describe diverse GFP-like proteins from previously undersampled and completely new sources, including hydromedusae and planktonic Copepoda. In hydromedusae, yellow and nonfluorescent purple proteins were found in addition to greens. Notably, the new yellow protein seems to follow exactly the same structural solution to achieving the yellow color of fluorescence as YFP, an engineered yellow-emitting mutant variant of GFP. The addition of these new sequences made it possible to resolve deep-level phylogenetic relationships within the superfamily. Fluorescence (most likely green) must have already existed in the common ancestor of Cnidaria and Bilateria, and therefore GFP-like proteins may be responsible for fluorescence and/or coloration in virtually any animal. At least 15 color diversification events can be inferred following the maximum parsimony principle in Cnidaria. Origination of red fluorescence and nonfluorescent purple-blue colors on several independent occasions provides a remarkable example of convergent evolution of complex features at the molecular level.

  7. Ghrelin receptor expression and colocalization with anterior pituitary hormones using a GHSR-GFP mouse line.

    Science.gov (United States)

    Reichenbach, Alex; Steyn, Frederik J; Sleeman, Mark W; Andrews, Zane B

    2012-11-01

    Ghrelin is the endogenous ligand for the GH secretagogue receptor (GHSR) and robustly stimulates GH release from the anterior pituitary gland. Ghrelin also regulates the secretion of anterior pituitary hormones including TSH, LH, prolactin (PRL), and ACTH. However, the relative contribution of a direct action at the GHSR in the anterior pituitary gland vs. an indirect action at the GHSR in the hypothalamus remains undefined. We used a novel GHSR-enhanced green fluorescent protein (eGFP) reporter mouse to quantify GHSR coexpression with GH, TSH, LH, PRL, and ACTH anterior pituitary cells in males vs. females and in chow-fed or calorie-restricted (CR) mice. GHSR-eGFP-expressing cells were only observed in anterior pituitary. The number of GHSR-eGFP-expressing cells was higher in male compared with females, and CR did not affect the GHSR-eGFP cell number. Double staining revealed 77% of somatotrophs expressed GHSR-eGFP in both males and females. Nineteen percent and 12.6% of corticotrophs, 21% and 9% of lactotrophs, 18% and 19% of gonadotrophs, and 3% and 9% of males and females, respectively, expressed GHSR-eGFP. CR increased the number of TSH cells, but suppressed the number of lactotrophs and gonadotrophs, expressing GHSR-eGFP compared with controls. These studies support a robust stimulatory action of ghrelin via the GHSR on GH secretion and identify a previously unknown sexual dimorphism in the GHSR expression in the anterior pituitary. CR affects GHSR-eGFP expression on lactotrophs, gonadotrophs, and thyrotrophs, which may mediate reproductive function and energy metabolism during periods of negative energy balance. The low to moderate expression of GHSR-eGFP suggests that ghrelin plays a minor direct role on remaining anterior pituitary cells.

  8. The membrane skeleton in Paramecium: Molecular characterization of a novel epiplasmin family and preliminary GFP expression results.

    Science.gov (United States)

    Pomel, Sébastien; Diogon, Marie; Bouchard, Philippe; Pradel, Lydie; Ravet, Viviane; Coffe, Gérard; Viguès, Bernard

    2006-02-01

    Previous attempts to identify the membrane skeleton of Paramecium cells have revealed a protein pattern that is both complex and specific. The most prominent structural elements, epiplasmic scales, are centered around ciliary units and are closely apposed to the cytoplasmic side of the inner alveolar membrane. We sought to characterize epiplasmic scale proteins (epiplasmins) at the molecular level. PCR approaches enabled the cloning and sequencing of two closely related genes by amplifications of sequences from a macronuclear genomic library. Using these two genes (EPI-1 and EPI-2), we have contributed to the annotation of the Paramecium tetraurelia macronuclear genome and identified 39 additional (paralogous) sequences. Two orthologous sequences were found in the Tetrahymena thermophila genome. Structural analysis of the 43 sequences indicates that the hallmark of this new multigenic family is a 79 aa domain flanked by two Q-, P- and V-rich stretches of sequence that are much more variable in amino-acid composition. Such features clearly distinguish members of the multigenic family from epiplasmic proteins previously sequenced in other ciliates. The expression of Green Fluorescent Protein (GFP)-tagged epiplasmin showed significant labeling of epiplasmic scales as well as oral structures. We expect that the GFP construct described herein will prove to be a useful tool for comparative subcellular localization of different putative epiplasmins in Paramecium.

  9. Adipogenic differentiation by adipose-derived stem cells harvested from GFP transgenic mice - including relationship of sex differences

    International Nuclear Information System (INIS)

    Ogawa, Rei; Mizuno, Hiroshi; Watanabe, Atsushi; Migita, Makoto; Hyakusoku, Hiko; Shimada, Takashi

    2004-01-01

    We have previously demonstrated that adipose-derived stromal cells (ASCs) as well as bone marrow-derived stromal cells (BSCs) differentiate into a variety of cell lineages both in vitro and in vivo. Both types are considered to include mesenchymal stem cells. Taking advantage of homogeneously marked cells from green fluorescent protein (GFP) transgenic mice, we have also previously reported the plasticity of BSCs and ASCs. In this study, we focused on adipogenic differentiation in vitro by ASCs harvested from GFP transgenic mice. Moreover, preadipocytes and mature adipocytes were harvested at the same time, and the cells were cultured to compare them with ASCs. Inguinal fat pads from GFP transgenic mice were used for the isolation of ASCs, preadipocytes, and mature adipocytes. After expansion to three passages of ASCs, the cells were incubated in an adipogenic medium for two weeks. Adipogenic differentiation of ASCs was assessed by Oil Red O staining and the expression of the adipocyte specific peroxisome proliferative activated receptor γ2 (PPAR-γ2) gene. These ASCs stained positively, and expression of PPAR-γ2 was detected. Moreover, we also tried to characterize the influence of sex differences on the adipogenic differentiation of ASCs harvested from both male and female mice. This was assessed by the expression levels of the PPAR-γ2 gene using real-time PCR. The results showed that the expression levels of ASCs harvested from female mice were a maximum of 2.89 times greater than those harvested from male mice. This suggests that the adipogenic differentiation of ASCs is closely related to sex differences

  10. Monitoring of phytopathogenic Ralstonia solanacearum cells using green fluorescent protein-expressing plasmid derived from bacteriophage phiRSS1.

    Science.gov (United States)

    Kawasaki, Takeru; Satsuma, Hideki; Fujie, Makoto; Usami, Shoji; Yamada, Takashi

    2007-12-01

    A green fluorescent protein (GFP)-expressing plasmid was constructed from a filamentous bacteriophage phiRSS1 that infects the phytopathogen Ralstonia solanacearum. This plasmid designated as pRSS12 (4.7 kbp in size) consists of an approximately 2248 bp region of the phiRSS1 RF DNA, including ORF1-ORF3 and the intergenic region (IG), and a Km cassette in addition to the GFP gene. It was easily introduced by electroporation and stably maintained even without selective pressure in strains of R. solanacearum of different races and biovars. Strong green fluorescence emitted from pRSS12-transformed bacterial cells was easily monitored in tomato tissues (stem, petiole, and root) after infection as well as from soil samples. These results suggest that pRSS12 can serve as an easy-to-use GFP-tagging tool for any given strain of R. solanacearum in cytological as well as field studies.

  11. Induction of Immune Tolerance to Foreign Protein via Adeno-Associated Viral Vector Gene Transfer in Mid-Gestation Fetal Sheep

    Science.gov (United States)

    Davey, Marcus G.; Riley, John S.; Andrews, Abigail; Tyminski, Alec; Limberis, Maria; Pogoriler, Jennifer E.; Partridge, Emily; Olive, Aliza; Hedrick, Holly L.; Flake, Alan W.; Peranteau, William H.

    2017-01-01

    A major limitation to adeno-associated virus (AAV) gene therapy is the generation of host immune responses to viral vector antigens and the transgene product. The ability to induce immune tolerance to foreign protein has the potential to overcome this host immunity. Acquisition and maintenance of tolerance to viral vector antigens and transgene products may also permit repeat administration thereby enhancing therapeutic efficacy. In utero gene transfer (IUGT) takes advantage of the immunologic immaturity of the fetus to induce immune tolerance to foreign antigens. In this large animal study, in utero administration of AAV6.2, AAV8 and AAV9 expressing green fluorescent protein (GFP) to ~60 day fetal sheep (term: ~150 days) was performed. Transgene expression and postnatal immune tolerance to GFP and viral antigens were assessed. We demonstrate 1) hepatic expression of GFP 1 month following in utero administration of AAV6.2.GFP and AAV8.GFP, 2) in utero recipients of either AAV6.2.GFP or AAV8.GFP fail to mount an anti-GFP antibody response following postnatal GFP challenge and lack inflammatory cellular infiltrates at the intramuscular site of immunization, 3) a serotype specific anti-AAV neutralizing antibody response is elicited following postnatal challenge of in utero recipients of AAV6.2 or AAV8 with the corresponding AAV serotype, and 4) durable hepatic GFP expression was observed up to 6 months after birth in recipients of AAV8.GFP but expression was lost between 1 and 6 months of age in recipients of AAV6.2.GFP. The current study demonstrates, in a preclinical large animal model, the potential of IUGT to achieve host immune tolerance to the viral vector transgene product but also suggests that a single exposure to the vector capsid proteins at the time of IUGT is inadequate to induce tolerance to viral vector antigens. PMID:28141818

  12. Assessing phagotrophy in the mixotrophic ciliate Paramecium bursaria using GFP-expressing yeast cells.

    Science.gov (United States)

    Miura, Takashi; Moriya, Hisao; Iwai, Sosuke

    2017-07-03

    We used cells of the yeast Saccharomyces cerevisiae expressing green fluorescent protein (GFP) as fluorescently labelled prey to assess the phagocytic activities of the mixotrophic ciliate Paramecium bursaria, which harbours symbiotic Chlorella-like algae. Because of different fluorescence spectra of GFP and algal chlorophyll, ingested GFP-expressing yeast cells can be distinguished from endosymbiotic algal cells and directly counted in individual P. bursaria cells using fluorescence microscopy. By using GFP-expressing yeast cells, we found that P. bursaria altered ingestion activities under different physiological conditions, such as different growth phases or the presence/absence of endosymbionts. Use of GFP-expressing yeast cells allowed us to estimate the digestion rates of live prey of the ciliate. In contrast to the ingestion activities, the digestion rate within food vacuoles was not affected by the presence of endosymbionts, consistent with previous findings that food and perialgal vacuoles are spatially and functionally separated in P. bursaria. Thus, GFP-expressing yeast may provide a valuable tool to assess both ingestion and digestion activities of ciliates that feed on eukaryotic organisms. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Functional study of the novel multidrug resistance gene HA117 and its comparison to multidrug resistance gene 1

    Directory of Open Access Journals (Sweden)

    Chen Tingfu

    2010-07-01

    Full Text Available Abstract Background The novel gene HA117 is a multidrug resistance (MDR gene expressed by all-trans retinoic acid-resistant HL-60 cells. In the present study, we compared the multidrug resistance of the HA117 with that of the classical multidrug resistance gene 1 (MDR1 in breast cancer cell line 4T1. Methods Transduction of the breast cancer cell line 4T1 with adenoviral vectors encoding the HA117 gene and the green fluorescence protein gene (GFP (Ad-GFP-HA117, the MDR1 and GFP (Ad-GFP-MDR1 or GFP (Ad-GFP was respectively carried out. The transduction efficiency and the multiplicity of infection (MOI were detected by fluorescence microscope and flow cytometry. The transcription of HA117 gene and MDR1 gene were detected by reverse transcription polymerase chain reaction (RT-PCR. Western blotting analysis was used to detect the expression of P-glycoprotein (P-gp but the expression of HA117 could not be analyzed as it is a novel gene and its antibody has not yet been synthesized. The drug-excretion activity of HA117 and MDR1 were determined by daunorubicin (DNR efflux assay. The drug sensitivities of 4T1/HA117 and 4T1/MDR1 to chemotherapeutic agents were detected by Methyl-Thiazolyl-Tetrazolium (MTT assay. Results The transducted efficiency of Ad-GFP-HA117 and Ad-GFP-MDR1 were 75%-80% when MOI was equal to 50. The transduction of Ad-GFP-HA117 and Ad-GFP-MDR1 could increase the expression of HA117 and MDR1. The drug resistance index to Adriamycin (ADM, vincristine (VCR, paclitaxel (Taxol and bleomycin (BLM increased to19.8050, 9.0663, 9.7245, 3.5650 respectively for 4T1/HA117 and 24.2236, 11.0480, 11.3741, 0.9630 respectively for 4T1/MDR1 as compared to the control cells. There were no significant differences in drug sensitivity between 4T1/HA117 and 4T1/MDR1 for the P-gp substrates (ADM, VCR and Taxol (P Conclusions These results confirm that HA117 is a strong MDR gene in both HL-60 and 4T1 cells. Furthermore, our results indicate that the MDR

  14. Green fluorescent protein labeling of Listeria, Salmonella, and Escherichia coli O157:H7 for safety-related studies.

    Directory of Open Access Journals (Sweden)

    Li Ma

    Full Text Available Many food safety-related studies require tracking of introduced foodborne pathogens to monitor their fate in complex environments. The green fluorescent protein (GFP gene (gfp provides an easily detectable phenotype so has been used to label many microorganisms for ecological studies. The objectives of this study were to label major foodborne pathogens and related bacteria, including Listeria monocytogenes, Listeria innocua, Salmonella, and Escherichia coli O157:H7 strains, with GFP and characterize the labeled strains for stability of the GFP plasmid and the plasmid's effect on bacterial growth. GFP plasmids were introduced into these strains by a CaCl(2 procedure, conjugation or electroporation. Stability of the label was determined through sequential propagation of labeled strains in the absence of selective pressure, and rates of plasmid-loss were calculated. Stability of the GFP plasmid varied among the labeled species and strains, with the most stable GFP label observed in E. coli O157:H7. When grown in nonselective media for two consecutive subcultures (ca. 20 generations, the rates of plasmid loss among labeled E. coli O157:H7, Salmonella and Listeria strains ranged from 0%-30%, 15.8%-99.9% and 8.1%-93.4%, respectively. Complete loss (>99.99% of the plasmid occurred in some labeled strains after five consecutive subcultures in the absence of selective pressure, whereas it remained stable in others. The GFP plasmid had an insignificant effect on growth of most labeled strains. E. coli O157:H7, Salmonella and Listeria strains can be effectively labeled with the GFP plasmid which can be stable in some isolates for many generations without adversely affecting growth rates.

  15. Recombination-stable multimeric green fluorescent protein for characterization of weak promoter outputs in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Rugbjerg, Peter; Knuf, Christoph; Förster, Jochen

    2015-01-01

    a less leaky Cu2+-inducible promoter based on CUP1. The basal expression level of the new promoter was approx. 61% below the wild-type CUP1 promoter, thus expanding the absolute range of Cu2+-based gene control. The stability of 3vGFP towards direct-repeat recombination was assayed in S. cerevisiae......Green fluorescent proteins (GFPs) are widely used for visualization of proteins to track localization and expression dynamics. However, phenotypically important processes can operate at too low expression levels for routine detection, i.e. be overshadowed by autofluorescence noise. While GFP...... functions well in translational fusions, the use of tandem GFPs to amplify fluorescence signals is currently avoided in Saccharomyces cerevisiae and many other microorganisms due to the risk of loop-out by direct-repeat recombination. We increased GFP fluorescence by translationally fusing three different...

  16. Identification of a functional nuclear export signal in the green fluorescent protein asFP499

    International Nuclear Information System (INIS)

    Mustafa, Huseyin; Strasser, Bernd; Rauth, Sabine; Irving, Robert A.; Wark, Kim L.

    2006-01-01

    The green fluorescent protein (GFP) asFP499 from Anemonia sulcata is a distant homologue of the GFP from Aequorea victoria. We cloned the asFP499 gene into a mammalian expression vector and showed that this protein was expressed in the human lymphoblast cell line Ramos RA1 and in the embryonic kidney 293T cell line (HEK 293T). In HEK 293T cells, asFP499 was localized mainly in the cytoplasm, suggesting that the protein was excluded from the nucleus. We identified 194 LRMEKLNI 201 as a candidate nuclear export signal in asFP499 and mutated the isoleucine at position 201 to an alanine. Unlike the wildtype form, the mutant protein was distributed throughout the cytoplasm and nucleus. This is First report of a GFP that contains a functional NES

  17. Profile of new green fluorescent protein transgenic Jinhua pigs as an imaging source

    Science.gov (United States)

    Kawarasaki, Tatsuo; Uchiyama, Kazuhiko; Hirao, Atsushi; Azuma, Sadahiro; Otake, Masayoshi; Shibata, Masatoshi; Tsuchiya, Seiko; Enosawa, Shin; Takeuchi, Koichi; Konno, Kenjiro; Hakamata, Yoji; Yoshino, Hiroyuki; Wakai, Takuya; Ookawara, Shigeo; Tanaka, Hozumi; Kobayashi, Eiji; Murakami, Takashi

    2009-09-01

    Animal imaging sources have become an indispensable material for biological sciences. Specifically, gene-encoded biological probes serve as stable and high-performance tools to visualize cellular fate in living animals. We use a somatic cell cloning technique to create new green fluorescent protein (GFP)-expressing Jinhua pigs with a miniature body size, and characterized the expression profile in various tissues/organs and ex vivo culture conditions. The born GFP-transgenic pig demonstrate an organ/tissue-dependent expression pattern. Strong GFP expression is observed in the skeletal muscle, pancreas, heart, and kidney. Regarding cellular levels, bone-marrow-derived mesenchymal stromal cells, hepatocytes, and islet cells of the pancreas also show sufficient expression with the unique pattern. Moreover, the cloned pigs demonstrate normal growth and fertility, and the introduced GFP gene is stably transmitted to pigs in subsequent generations. The new GFP-expressing Jinhua pigs may be used as new cellular/tissue light resources for biological imaging in preclinical research fields such as tissue engineering, experimental regenerative medicine, and transplantation.

  18. Neural differentiation of adipose-derived stem cells isolated from GFP transgenic mice

    International Nuclear Information System (INIS)

    Fujimura, Juri; Ogawa, Rei; Mizuno, Hiroshi; Fukunaga, Yoshitaka; Suzuki, Hidenori

    2005-01-01

    Taking advantage of homogeneously marked cells from green fluorescent protein (GFP) transgenic mice, we have recently reported that adipose-derived stromal cells (ASCs) could differentiate into mesenchymal lineages in vitro. In this study, we performed neural induction using ASCs from GFP transgenic mice and were able to induce these ASCs into neuronal and glial cell lineages. Most of the neurally induced cells showed bipolar or multipolar appearance morphologically and expressed neuronal markers. Electron microscopy revealed their neuronal morphology. Some cells also showed glial phenotypes, as shown immunocytochemically. The present study clearly shows that ASCs derived from GFP transgenic mice differentiate into neural lineages in vitro, suggesting that these cells might provide an ideal source for further neural stem cell research with possible therapeutic application for neurological disorders

  19. Activity of cardiorespiratory networks revealed by transsynaptic virus expressing GFP.

    Science.gov (United States)

    Irnaten, M; Neff, R A; Wang, J; Loewy, A D; Mettenleiter, T C; Mendelowitz, D

    2001-01-01

    A fluorescent transneuronal marker capable of labeling individual neurons in a central network while maintaining their normal physiology would permit functional studies of neurons within entire networks responsible for complex behaviors such as cardiorespiratory reflexes. The Bartha strain of pseudorabies virus (PRV), an attenuated swine alpha herpesvirus, can be used as a transsynaptic marker of neural circuits. Bartha PRV invades neuronal networks in the CNS through peripherally projecting axons, replicates in these parent neurons, and then travels transsynaptically to continue labeling the second- and higher-order neurons in a time-dependent manner. A Bartha PRV mutant that expresses green fluorescent protein (GFP) was used to visualize and record from neurons that determine the vagal motor outflow to the heart. Here we show that Bartha PRV-GFP-labeled neurons retain their normal electrophysiological properties and that the labeled baroreflex pathways that control heart rate are unaltered by the virus. This novel transynaptic virus permits in vitro studies of identified neurons within functionally defined neuronal systems including networks that mediate cardiovascular and respiratory function and interactions. We also demonstrate superior laryngeal motorneurons fire spontaneously and synapse on cardiac vagal neurons in the nucleus ambiguus. This cardiorespiratory pathway provides a neural basis of respiratory sinus arrhythmias.

  20. Green tea catechins potentiate the effect of antibiotics and modulate adherence and gene expression in Porphyromonas gingivalis.

    Science.gov (United States)

    Fournier-Larente, Jade; Morin, Marie-Pierre; Grenier, Daniel

    2016-05-01

    A number of studies have brought evidence that green tea catechins may contribute to periodontal health. The objective of this study was to investigate the ability of a green tea extract and its principal constituent epigallocatechin-3-gallate (EGCG) to potentiate the antibacterial effects of antibiotics (metronidazole, tetracycline) against Porphyromonas gingivalis, and to modulate the adherence to oral epithelial cells and expression of genes coding for virulence factors and the high temperature requirement A (HtrA) stress protein in P. gingivalis. A broth microdilution assay was used to determine the antibacterial activity of the green tea extract and EGCG. The synergistic effects of either compounds in association with metronidazole or tetracycline were evaluated using the checkerboard technique. A fluorescent assay was used to determine bacterial adherence to oral epithelial cells. The modulation of gene expression in P. gingivalis was evaluated by quantitative RT-PCR. The Vibrio harveyi bioassay was used for monitoring quorum sensing inhibitory activity. The MIC values of the green tea extract on P. gingivalis ranged from 250 to 1000 μg/ml, while those of EGCG ranged from 125 to 500 μg/ml. A marked synergistic effect on P. gingivalis growth was observed for the green tea extract or EGCG in combination with metronidazole. Both the green tea extract and EGCG caused a dose-dependent inhibition of P. gingivalis adherence to oral epithelial cells. On the one hand, green tea extract and EGCG dose-dependently inhibited the expression of several P. gingivalis genes involved in host colonization (fimA, hagA, hagB), tissue destruction (rgpA, kgp), and heme acquisition (hem). On the other hand, both compounds increased the expression of the stress protein htrA gene. The ability of the green tea extract and EGCG to inhibit quorum sensing may contribute to the modulation of gene expression. This study explored the preventive and therapeutic potential of green tea

  1. Model system for plant cell biology: GFP imaging in living onion epidermal cells

    Science.gov (United States)

    Scott, A.; Wyatt, S.; Tsou, P. L.; Robertson, D.; Allen, N. S.

    1999-01-01

    The ability to visualize organelle localization and dynamics is very useful in studying cellular physiological events. Until recently, this has been accomplished using a variety of staining methods. However, staining can give inaccurate information due to nonspecific staining, diffusion of the stain or through toxic effects. The ability to target green fluorescent protein (GFP) to various organelles allows for specific labeling of organelles in vivo. The disadvantages of GFP thus far have been the time and money involved in developing stable transformants or maintaining cell cultures for transient expression. In this paper, we present a rapid transient expression system using onion epidermal peels. We have localized GFP to various cellular compartments (including the cell wall) to illustrate the utility of this method and to visualize dynamics of these compartments. The onion epidermis has large, living, transparent cells in a monolayer, making them ideal for visualizing GFP. This method is easy and inexpensive, and it allows for testing of new GFP fusion proteins in a living tissue to determine deleterious effects and the ability to express before stable transformants are attempted.

  2. Meiotic genes and sexual reproduction in the green algal class Trebouxiophyceae (Chlorophyta)

    KAUST Repository

    Fučíková, Karolina

    2015-04-06

    © 2015 Phycological Society of America. Sexual reproduction is widespread in eukaryotes and is well documented in chlorophytan green algae. In this lineage, however, the Trebouxiophyceae represent a striking exception: in contrast to its relatives Chlorophyceae and Ulvophyceae this group appears to be mostly asexual, as fertilization has been rarely observed. Assessments of sexual reproduction in the Trebouxiophyceae have been based on microscopic observation of gametes fusing. New genomic data offer now the opportunity to check for the presence of meiotic genes, which represent an indirect evidence of a sexual life cycle. Using genomic and transcriptomic data for 12 taxa spanning the phylogenetic breadth of the class, we tried to clarify whether genuine asexuality or cryptic sexuality is the most likely case for the numerous putatively asexual trebouxiophytes. On the basis of these data and a bibliographic review, we conclude that the view of trebouxiophytes as primarily asexual is incorrect. In contrast to the limited number of reports of fertilization, meiotic genes were found in all genomes and transcriptomes examined, even in species presumed asexual. In the taxa examined the totality or majority of the genes were present, Helicosporidium and Auxenochlorella being the only partial exceptions (only four genes present). The evidence of sex provided by the meiotic genes is phylogenetically widespread in the class and indicates that sexual reproduction is not associated with any particular morphological or ecological trait. On the basis of the results, we expect that the existence of the meiotic genes will be documented in all trebouxiophycean genomes that will become available in the future.

  3. Greening flood protection through knowledge processes

    NARCIS (Netherlands)

    Janssen, Stephanie; Tatenhove, van J.P.M.; Mol, A.P.J.; Otter, H.S.

    2017-01-01

    Greening flood protection (GFP) is increasingly recognized as an adaptive and flexible approach to water management that is well suited to addressing uncertain futures associated with climate change. In the last decade, GFP knowledge and policies have developed rapidly, but implementation has been

  4. Feasibility of baculovirus-mediated reporter gene delivery for efficient monitoring of islet transplantation in vivo

    International Nuclear Information System (INIS)

    Liu, Shuai; Pan, Yu; Lv, Jing; Wu, Haifei; Tian, Jingyan; Zhang, Yifan

    2014-01-01

    Objective: The objective of this study was to explore the feasibility of baculovirus vector-mediated sodium iodide symporter (NIS) gene delivery to monitor islet transplantation. Methods: Baculovirus vectors expressing green fluorescent protein (GFP) or NIS (Bac-GFP and Bac-NIS) were established using the Bac-to-Bac baculovirus expression system. The GFP expression of Bac-GFP-infected rat islets was observed in vitro by fluorescence microscopy. Iodine uptake and inhibition of iodine uptake by NaClO 4 in Bac-NIS-infected islets were dynamically monitored in vitro. Bac-GFP- or Bac-NIS-infected islets were implanted into the left axillary cavity of NOD-SCID mice, and fluorescence imaging and 125 I NanoSPECT/CT imaging were subsequently performed in vivo. Results: Bac-GFP efficiently infected rat islets (over 95% infected at MOI = 40), and the expression of GFP lasted approximately two weeks. NaClO 4 could inhibit iodine uptake by Bac-NIS-infected islets. In vivo imaging revealed that the fluorescence intensity of the transplant sites in Bac-GFP-infected groups was significantly higher than in the non-infected group. Grafts could be clearly observed by 125 I NanoSPECT/CT imaging for up to 8 h. Conclusion: Baculovirus vectors are powerful vehicles for studying rat islets in gene delivery. It is feasible to use a baculovirus vector to delivery an NIS gene for non-invasive monitoring transplanted islets in vivo by the expression of the target gene

  5. Investigation on the infection mechanism of the fungus Clonostachys rosea against nematodes using the green fluorescent protein.

    Science.gov (United States)

    Zhang, Lin; Yang, Jinkui; Niu, Qiuhong; Zhao, Xuna; Ye, Fengping; Liang, Lianming; Zhang, Ke-Qin

    2008-04-01

    The fungus Clonostachys rosea (syn. Gliocladium roseum) is a potential biocontrol agent. It can suppress the sporulation of the plant pathogenic fungus Botrytis cinerea and kill pathogenic nematodes, but the process of nematode pathogenesis is poorly understood. To help understand the underlying mechanism, we constructed recombinant strains containing a plasmid with both the enhanced green fluorescent protein gene egfp and the hygromycin resistance gene hph. Expression of the green fluorescent protein (GFP) was monitored using fluorescence microscopy. Our observations reveal that the pathogenesis started from the adherence of conidia to nematode cuticle for germination, followed by the penetration of germ tubes into the nematode body and subsequent death and degradation of the nematodes. These are the first findings on the infection process of the fungal pathogen marked with GFP, and the developed method can become an important tool for studying the molecular mechanisms of nematode infection by C. rosea.

  6. Distribution and Spectroscopy of Green Fluorescent Protein and Acyl-CoA: Cholesterol Acytransferase in Sf21 Insect Cells

    Science.gov (United States)

    Richmond, R. C.; Mahtani, H.; Lu, X.; Chang, T. Y.; Malak, H.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Acyl-CoA: cholesterol acyltransferase (ACAT) is thought to significantly participate in the pathway of cholesterol esterification that underlies the pathology of artherosclerosis. This enzyme is a membrane protein known to be preferentially bound within the endoplasmic reticulum of mammalian cells, from which location it esterifies cholesterol derived from low density lipoprotein. Cultures of insect cells were separately infected with baculovirus containing the gene for green fluroescent protein (GFP) and with baculovirus containing tandem genes for GFP and ACAT. These infected cultures expressed GFP and the fusion protein GCAT, respectively, with maximum expression occurring on the fourth day after infection. Extraction of GFP- and of GCAT-expressing cells with urea and detergent resulted in recovery of fluorescent protein in aqueous solution. Fluorescence spectra at neutral pH were identical for both GFP and GCAT extracts in aqueous solution, indicating unperturbed tertiary structure for the GFP moiety within GCAT. In a cholesterol esterification assay, GCAT demonstrated ACAT activity, but with less efficiency compared to native ACAT. It was hypothesized that the membrane protein ACAT would lead to differences in localization of GCAT compared to GFP within the respective expressing insect cells. The GFP marker directly and also within the fusion protein GCAT was accordingly used as the intracellular probe that was fluorescently analyzed by the new biophotonics technique of hyperspectral imaging. In that technique, fluorescence imaging was obtained from two dimensional arrays of cells, and regions of interest from within those images were then retrospectively analyzed for the emission spectra that comprises the image. Results of hyperspectral imaging of insect cells on day 4 postinfection showed that GCAT was preferentially localized to the cytoplasm of these cells compared to GFP. Furthermore, the emission spectra obtained for the localized GCAT displayed a peak

  7. Green Fluorescent Protein as a Model for Protein Crystal Growth Studies

    Science.gov (United States)

    Agena, Sabine; Smith, Lori; Karr, Laurel; Pusey, Marc

    1998-01-01

    Green fluorescent protein (GFP) from jellyfish Aequorea Victoria has become a popular marker for e.g. mutagenesis work. Its fluorescent property, which originates from a chromophore located in the center of the molecule, makes it widely applicable as a research too]. GFP clones have been produced with a variety of spectral properties, such as blue and yellow emitting species. The protein is a single chain of molecular weight 27 kDa and its structure has been determined at 1.9 Angstrom resolution. The combination of GFP's fluorescent property, the knowledge of its several crystallization conditions, and its increasing use in biophysical and biochemical studies, all led us to consider it as a model material for macromolecular crystal growth studies. Initial preparations of GFP were from E.coli with yields of approximately 5 mg/L of culture media. Current yields are now in the 50 - 120 mg/L range, and we hope to further increase this by expression of the GFP gene in the Pichia system. The results of these efforts and of preliminary crystal growth studies will be presented.

  8. The feasibility of using a baculovirus vector to deliver the sodium-iodide symporter gene as a reporter

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Xiang; Li Biao; Wang Jun; Yin Hongyan [Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025 (China); Zhang Yifan [Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025 (China)], E-mail: zhangyifan1992@yahoo.com.cn

    2010-04-15

    Purpose: To evaluate the efficiency of baculovirus vectors in transducing FTC-133 cells and to examine the feasibility of using baculovirus vectors for the delivery of the sodium-iodide symporter (NIS) gene as a reporter through co-transduction to monitor the expression of the target gene. Method: Two recombinant baculoviruses were constructed to express NIS and green fluorescent protein (GFP) respectively. FTC-133, 8050C, SW1116, A549 cells, were infected with Bac-GFP. The infection efficiency of Bac-GFP and the intensity of fluorescence, in either the presence or absence of sodium butyrate, were monitored by flow cytometry. The iodine uptake by FTC-133 cells infected with Bac-NIS was measured using a {gamma} counter. FTC-133 cells were infected with a mixture of equal amounts of Bac-NIS and Bac-GFP at different setting of multiplicity of infection (MOI). The changes of GFP fluorescence intensity and iodine uptake were monitored 24 h after infection in the coinfected cells. Results: We have successfully constructed recombinant baculoviruses carrying NIS and GFP under the control of the cytomegalovirus IE-1 promoter. We found that transduced efficiency of baculovirus in 8505C, SW1116, A549 cells are low in absence of sodium butyrate. Yet Bac-GFP infects FTC-133 cells at a high efficiency, 77.67%, 85.57% and 93.23% with MOI of 100, 200 and 400, respectively. The fluorescence intensity of the Bac-GFP infected tumor cells correlated positively with the MOI of the virus. Sodium butyrate induction increased both the infection efficiency and the fluorescence intensity, but increase of infection efficiency was insignificant in FTC-133 cells. Reporter gene (GFP) expression in FTC-133 is stable within 7 days after infection. The radioactivity incorporated by the tumor cells infected with Bac-NIS correlated positively with the MOI of Bac-NIS as well. In tumor cells co-infected with Bac-NIS and Bac-GFP, the amount of radioactivity incorporated significantly correlated with

  9. Probing plasma membrane microdomains in cowpea protoplasts using lipidated GFP-fusion proteins and multimode FRET microscopy

    NARCIS (Netherlands)

    Vermeer, J.E.M.; van Munster, E.B.; Vischer, N.O.; Gadella, T.

    2004-01-01

    Multimode fluorescence resonance energy transfer (FRET) microscopy was applied to study the plasma membrane organization using different lipidated green fluorescent protein (GFP)-fusion proteins co-expressed in cowpea protoplasts. Cyan fluorescent protein (CFP) was fused to the hyper variable region

  10. Systemic colonization of potato plants by a soil-borne, GFP-tagged strain of Dickeya sp. Biovar 3

    NARCIS (Netherlands)

    Czajkowski, R.L.; Boer, de W.; Velvis, H.; Wolf, van der J.M.

    2010-01-01

    Colonization of potato plants by soilborne, green fluorescent protein (GFP)-tagged Dickeya sp. IPO2254 was investigated by selective plating, epifluorescence stereo microscopy (ESM), and confocal laser scanning microscopy (CLSM). Replicated experiments were carried out in a greenhouse using plants

  11. Refractive index sensing of green fluorescent proteins in living cells using fluorescence lifetime imaging microscopy

    NARCIS (Netherlands)

    van Manen, Henk-Jan; Verkuijlen, Paul; Wittendorp, Paul; Subramaniam, Vinod; van den Berg, Timo K; Roos, Dirk; Otto, Cees

    2008-01-01

    We show that fluorescence lifetime imaging microscopy (FLIM) of green fluorescent protein (GFP) molecules in cells can be used to report on the local refractive index of intracellular GFP. We expressed GFP fusion constructs of Rac2 and gp91(phox), which are both subunits of the phagocyte NADPH

  12. Establishment of Lactobacillus plantarum strain in honey bee digestive tract monitored using gfp fluorescence.

    Science.gov (United States)

    Javorský, P; Fecskeová, L Kolesár; Hrehová, L; Sabo, R; Legáth, J; Pristas, P

    2017-04-26

    Lactic acid bacteria are symbiotic bacteria that naturally reside in the gastrointestinal tract of honey bees. They serve a multitude of functions and are considered beneficial and completely harmless. In our experiments Lactobacillus plantarum strain B35, isolated from honey bee digestive tract, was modified using pAD43-25 plasmid carrying a functional GFP gene sequence (gfpmut3a) and used as a model for monitoring and optimisation of the mode of application. The establishment of this strain in honey bee digestive tract was monitored using GFP fluorescence. Three different modes of oral application of this strain were tested: water suspension of lyophilised bacteria, aerosol application of these bacteria and consumption of sugar honey paste containing the lyophilised lactobacilli. Two days after administration the L. plantarum B35-gfp was present throughout the honey bee digestive tract with 10 4 -10 5 cfu/bee with highest count observed for aerosol application.

  13. A Plasmodium falciparum strain expressing GFP throughout the parasite's life-cycle.

    Directory of Open Access Journals (Sweden)

    Arthur M Talman

    2010-02-01

    Full Text Available The human malaria parasite Plasmodium falciparum is responsible for the majority of malaria-related deaths. Tools allowing the study of the basic biology of P. falciparum throughout the life cycle are critical to the development of new strategies to target the parasite within both human and mosquito hosts. We here present 3D7HT-GFP, a strain of P. falciparum constitutively expressing the Green Fluorescent Protein (GFP throughout the life cycle, which has retained its capacity to complete sporogonic development. The GFP expressing cassette was inserted in the Pf47 locus. Using this transgenic strain, parasite tracking and population dynamics studies in mosquito stages and exo-erythrocytic schizogony is greatly facilitated. The development of 3D7HT-GFP will permit a deeper understanding of the biology of parasite-host vector interactions, and facilitate the development of high-throughput malaria transmission assays and thus aid development of new intervention strategies against both parasite and mosquito.

  14. Effective scheme of photolysis of GFP in live cell as revealed with confocal fluorescence microscopy

    Science.gov (United States)

    Glazachev, Yu I.; Orlova, D. Y.; Řezníčková, P.; Bártová, E.

    2018-05-01

    We proposed an effective kinetics scheme of photolysis of green fluorescent protein (GFP) observed in live cells with a commercial confocal fluorescence microscope. We investigated the photolysis of GFP-tagged heterochromatin protein, HP1β-GFP, in live nucleus with the pulse position modulation approach, which has several advantages over the classical pump-and-probe method. At the basis of the proposed scheme lies a process of photoswitching from the native fluorescence state to the intermediate fluorescence state, which has a lower fluorescence yield and recovers back to native state in the dark. This kinetics scheme includes four effective parameters (photoswitching, reverse switching, photodegradation rate constants, and relative brightness of the intermediate state) and covers the time scale from dozens of milliseconds to minutes of the experimental fluorescence kinetics. Additionally, the applicability of the scheme was demonstrated in the cases of continuous irradiation and the classical pump-and-probe approach using numerical calculations and analytical solutions. An interesting finding of experimental data analysis was that the overall photodegradation of GFP proceeds dominantly from the intermediate state, and demonstrated approximately the second-order reaction versus irradiation power. As a practical example, the proposed scheme elucidates the artifacts of fluorescence recovery after the photobleaching method, and allows us to propose some suggestions on how to diminish them.

  15. In vivo PET imaging with 18F-FHBG of hepatoma cancer gene therapy using herpes simplex virus thymidine kinase and ganciclovir

    International Nuclear Information System (INIS)

    Lee, TaeSup; Kim, JunYoup; Moon, ByungSeok; Kang, JooHyun; Song, Inho; Kwon, HeeChung; Kim, KyungMin; Cheon, GiJeong; Choi, ChangWoon; Lim, SangMoo

    2007-01-01

    Monitoring gene expression in vivo to evaluate the gene therapy efficacy is a critical issue for scientists and physicians. Non-invasive nuclear imaging can offer information regarding the level of gene expression and its location when an appropriate reporter gene is constructed in the therapeutic gene therapy. Herpes simplex virus type 1 thymidine kinase gene (HSV1-tk) is the most common reporter gene and is used in cancer gene therapy by activating relatively nontoxic compounds, such as acyclovir or ganciclovir (GCV), to induce cell death. In this study, we investigate the feasibility of monitoring cancer gene therapy using retroviral vector transduced HSV1-tk and GCV, in vitro cellular uptake and in vivo animal studies, including biodistribution and small animal positron emission tomography (PET) imaging, were performed in HSV1-tk and luciferase (Luc)-transduced MCA-TK/Luc and enhanced green fluorescent protein (eGFP)-transduced MCA-eGFP hepatoma cell lines

  16. A Bacterial Biosensor for Oxidative Stress Using the Constitutively Expressed Redox-Sensitive Protein roGFP2

    Directory of Open Access Journals (Sweden)

    Carlos R. Arias-Barreiro

    2010-06-01

    Full Text Available A highly specific, high throughput-amenable bacterial biosensor for chemically induced cellular oxidation was developed using constitutively expressed redox-sensitive green fluorescent protein roGFP2 in E. coli (E. coli-roGFP2. Disulfide formation between two key cysteine residues of roGFP2 was assessed using a double-wavelength ratiometric approach. This study demonstrates that only a few minutes were required to detect oxidation using E. coli-roGFP2, in contrast to conventional bacterial oxidative stress sensors. Cellular oxidation induced by hydrogen peroxide, menadione, sodium selenite, zinc pyrithione, triphenyltin and naphthalene became detectable after 10 seconds and reached the maxima between 80 to 210 seconds, contrary to Cd2+, Cu2+, Pb2+, Zn2+ and sodium arsenite, which induced the oxidation maximum immediately. The lowest observable effect concentrations (in ppm were determined as 1.0 x 10−7 (arsenite, 1.0 x 10−4 (naphthalene, 1.0 x 10−4 (Cu2+, 3.8 x 10−4 (H2O2, 1.0 x 10−3 (Cd2+, 1.0 x 10−3 (Zn2+, 1.0 x 10−2 (menadione, 1.0 (triphenyltin, 1.56 (zinc pyrithione, 3.1 (selenite and 6.3 (Pb2+, respectively. Heavy metal-induced oxidation showed unclear response patterns, whereas concentration-dependent sigmoid curves were observed for other compounds. In vivo GSH content and in vitro roGFP2 oxidation assays together with E. coli-roGFP2 results suggest that roGFP2 is sensitive to redox potential change and thiol modification induced by environmental stressors. Based on redox-sensitive technology, E. coli-roGFP2 provides a fast comprehensive detection system for toxicants that induce cellular oxidation.

  17. Baculovirus-mediated gene transfer in butterfly wings in vivo: an efficient expression system with an anti-gp64 antibody.

    Science.gov (United States)

    Dhungel, Bidur; Ohno, Yoshikazu; Matayoshi, Rie; Otaki, Joji M

    2013-03-25

    Candidate genes for color pattern formation in butterfly wings have been known based on gene expression patterns since the 1990s, but their functions remain elusive due to a lack of a functional assay. Several methods of transferring and expressing a foreign gene in butterfly wings have been reported, but they have suffered from low success rates or low expression levels. Here, we developed a simple, practical method to efficiently deliver and express a foreign gene using baculovirus-mediated gene transfer in butterfly wings in vivo. A recombinant baculovirus containing a gene for green fluorescent protein (GFP) was injected into pupae of the blue pansy butterfly Junonia orithya (Nymphalidae). GFP fluorescence was detected in the pupal wings and other body parts of the injected individuals three to five days post-injection at various degrees of fluorescence. We obtained a high GFP expression rate at relatively high virus titers, but it was associated with pupal death before color pattern formation in wings. To reduce the high mortality rate caused by the baculovirus treatment, we administered an anti-gp64 antibody, which was raised against baculovirus coat protein gp64, to infected pupae after the baculovirus injection. This treatment greatly reduced the mortality rate of the infected pupae. GFP fluorescence was observed in pupal and adult wings and other body parts of the antibody-treated individuals at various degrees of fluorescence. Importantly, we obtained completely developed wings with a normal color pattern, in which fluorescent signals originated directly from scales or the basal membrane after the removal of scales. GFP fluorescence in wing tissues spatially coincided with anti-GFP antibody staining, confirming that the fluorescent signals originated from the expressed GFP molecules. Our baculovirus-mediated gene transfer system with an anti-gp64 antibody is reasonably efficient, and it can be an invaluable tool to transfer, express, and functionally

  18. La proteína verde fluorescente ilumina la biociencia The Green Fluorescent Protein that glows in Bioscience

    Directory of Open Access Journals (Sweden)

    María Inés Pérez Millán

    2009-06-01

    Full Text Available La proteína verde fluorescente (o GFP, por sus siglas en inglés, Green Fluorescent Protein es una proteína producida por la medusa Aequorea victoria que emite bioluminiscencia en la zona verde del espectro visible. El gen que codifica esta proteína ha sido clonado y se utiliza habitualmente en biología molecular como marcador. Los descubrimientos relacionados a la GFP merecieron el Premio Nobel de Química 2008, en conjunto a los tres investigadores, Dres Shimomura, Chalfie y Tsien que participaron escalonadamente en dilucidar la estructura y función de la proteína. El Dr. Shimomura descubrió y estudió las propiedades de GFP, el Dr. Chalfie usando técnicas de biología molecular logró introducir el gen que codificaba para la GFP en el ADN del gusano transparente C. elegans, e inició la era de GFP como marcador de procesos en células y organismos. Finalmente el Dr. Tsien modificó la estructura de la proteína para producir moléculas que emiten luz a distintas longitudes de onda, extendiendo la paleta de colores de las proteínas. Las proteínas fluorescentes, entre las cuales se encuentra la GFP, son muy versátiles y se utilizan en diversos campos como la microbiología, ingeniería genética, fisiología, e ingeniería ambiental. Permiten ver procesos previamente invisibles, como el desarrollo de neuronas, cómo se diseminan las células cancerosas, o la contaminación de agua con arsénico, por mencionar algunos usos. Con la obtención de proteínas de muchos colores complejas redes biológicas pueden ser marcadas diferencialmente, lo que permite visualizar la biología celular en acción.Green fluorescent protein (GFP is a protein produced by the jellyfish Aequorea victoria, that emits bioluminescence in the green zone of the visible spectrum. The GFP gene has been cloned and is used in molecular biology as a marker. The three researchers that participated independently in elucidating the structure and function of this and its

  19. Effect-directed analysis for estrogenic compounds in a fluvial sediment sample using transgenic cyp19a1b-GFP zebrafish embryos.

    Science.gov (United States)

    Fetter, Eva; Krauss, Martin; Brion, François; Kah, Olivier; Scholz, Stefan; Brack, Werner

    2014-09-01

    Xenoestrogens may persist in the environment by binding to sediments or suspended particulate matter serving as long-term reservoir and source of exposure, particularly for organisms living in or in contact with sediments. In this study, we present for the first time an effect-directed analysis (EDA) for identifying estrogenic compounds in a sediment sample using embryos of a transgenic reporter fish strain. In the tg(cyp19a1b-GFP) transgenic zebrafish strain, the expression of GFP (green fluorescent protein) in the brain is driven by an oestrogen responsive element in the promoter of the cyp19a1b (aromatase) gene. The selected sediment sample of the Czech river Bilina had already been analysed in a previous EDA using the yeast oestrogen screening assay and had revealed fractions containing estrogenic compounds. When normal phase HPLC (high performance liquid chromatography) fractionation was used for the separation of the sediment sample, the biotest with transgenic fish embryos revealed two estrogenic fractions. Chemical analysis of candidate compounds in these sediment fractions suggested alkylphenols and estrone as candidate compounds responsible for the observed estrogenic effect. Alkylphenol concentrations could partially explain the estrogenicity of the fractions. However, xenoestrogens below the analytical detection limit or non-targeted estrogenic compounds have probably also contributed to the sample's estrogenic potency. The results indicated the suitability of the tg(cyp19a1b-GFP) fish embryo for an integrated chemical-biological analysis of estrogenic effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Production of a full-length infectious GFP-tagged cDNA clone of Beet mild yellowing virus for the study of plant-polerovirus interactions.

    Science.gov (United States)

    Stevens, Mark; Viganó, Felicita

    2007-04-01

    The full-length cDNA of Beet mild yellowing virus (Broom's Barn isolate) was sequenced and cloned into the vector pLitmus 29 (pBMYV-BBfl). The sequence of BMYV-BBfl (5721 bases) shared 96% and 98% nucleotide identity with the other complete sequences of BMYV (BMYV-2ITB, France and BMYV-IPP, Germany respectively). Full-length capped RNA transcripts of pBMYV-BBfl were synthesised and found to be biologically active in Arabidopsis thaliana protoplasts following electroporation or PEG inoculation when the protoplasts were subsequently analysed using serological and molecular methods. The BMYV sequence was modified by inserting DNA that encoded the jellyfish green fluorescent protein (GFP) into the P5 gene close to its 3' end. A. thaliana protoplasts electroporated with these RNA transcripts were biologically active and up to 2% of transfected protoplasts showed GFP-specific fluorescence. The exploitation of these cDNA clones for the study of the biology of beet poleroviruses is discussed.

  1. Effects of 24-epibrassinolide and green light on plastid gene transcription and cytokinin content of barley leaves

    Czech Academy of Sciences Publication Activity Database

    Efimova, N.V.; Vaňková, Radomíra; Kusnetsov, V.; Litvinovskaya, R. P.; Zlobin, Y.L.; Dobrev, Petre; Vedenicheva, N.P.; Savchuk, A. L.; Karnachuk, R. A.; Kudryakova, N.V.; Kuznetsov, V. D.

    2017-01-01

    Roč. 120, APR (2017), s. 32-40 ISSN 0039-128X Institutional support: RVO:61389030 Keywords : lupinus-luteus cotyledons * arabidopsis-thaliana * de-etiolation * abscisic-acid * brassinosteroid biosynthesis * plant development * hormonal balance * mutant * expression * growth * Brassinosteroids * Cytokinin * Gene expression * Green light * Hordeum vulgare * Transcription Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 2.282, year: 2016

  2. The complete chloroplast genome sequence of the chlorophycean green alga Scenedesmus obliquus reveals a compact gene organization and a biased distribution of genes on the two DNA strands

    Science.gov (United States)

    de Cambiaire, Jean-Charles; Otis, Christian; Lemieux, Claude; Turmel, Monique

    2006-01-01

    Background The phylum Chlorophyta contains the majority of the green algae and is divided into four classes. While the basal position of the Prasinophyceae is well established, the divergence order of the Ulvophyceae, Trebouxiophyceae and Chlorophyceae (UTC) remains uncertain. The five complete chloroplast DNA (cpDNA) sequences currently available for representatives of these classes display considerable variability in overall structure, gene content, gene density, intron content and gene order. Among these genomes, that of the chlorophycean green alga Chlamydomonas reinhardtii has retained the least ancestral features. The two single-copy regions, which are separated from one another by the large inverted repeat (IR), have similar sizes, rather than unequal sizes, and differ radically in both gene contents and gene organizations relative to the single-copy regions of prasinophyte and ulvophyte cpDNAs. To gain insights into the various changes that underwent the chloroplast genome during the evolution of chlorophycean green algae, we have sequenced the cpDNA of Scenedesmus obliquus, a member of a distinct chlorophycean lineage. Results The 161,452 bp IR-containing genome of Scenedesmus features single-copy regions of similar sizes, encodes 96 genes, i.e. only two additional genes (infA and rpl12) relative to its Chlamydomonas homologue and contains seven group I and two group II introns. It is clearly more compact than the four UTC algal cpDNAs that have been examined so far, displays the lowest proportion of short repeats among these algae and shows a stronger bias in clustering of genes on the same DNA strand compared to Chlamydomonas cpDNA. Like the latter genome, Scenedesmus cpDNA displays only a few ancestral gene clusters. The two chlorophycean genomes share 11 gene clusters that are not found in previously sequenced trebouxiophyte and ulvophyte cpDNAs as well as a few genes that have an unusual structure; however, their single-copy regions differ

  3. Flt3 ligand-eGFP-reporter expression characterizes functionally distinct subpopulations of CD150+ long-term repopulating murine hematopoietic stem cells.

    Science.gov (United States)

    Tornack, Julia; Kawano, Yohei; Garbi, Natalio; Hämmerling, Günter J; Melchers, Fritz; Tsuneto, Motokazu

    2017-09-01

    The pool of hematopoietic stem cells (HSCs) in the bone marrow is a mixture of resting, proliferating, and differentiating cells. Long-term repopulating HSCs (LT-HSC) are routinely enriched as Lin - Sca1 + c-Kit + CD34 - Flt3 - CD150 + CD48 - cells. The Flt3 ligand (Flt3L) and its receptor Flt3 are important regulators of HSC maintenance, expansion and differentiation. Using Flt3L-eGFP reporter mice, we show that endogenous Flt3L-eGFP-reporter RNA expression correlates with eGFP-protein expression. This Flt3L-eGFP-reporter expression distinguishes two LT-HSC populations with differences in gene expressions and reconstituting potential. Thus, Flt3L-eGFP-reporter low cells are identified as predominantly resting HSCs with long-term repopulating capacities. In contrast, Flt3L-eGFP-reporter high cells are in majority proliferating HSCs with only short-term repopulating capacities. Flt3L-eGFP-reporter low cells express hypoxia, autophagy-inducing, and the LT-HSC-associated genes HoxB5 and Fgd5, while Flt3L-eGFP-reporter high HSCs upregulate genes involved in HSC differentiation. Flt3L-eGFP-reporter low cells develop to Flt3L-eGFP-reporter high cells in vitro, although Flt3L-eGFP-reporter high cells remain Flt3L-eGFP-reporter high . CD150 + Flt3L-eGFP-reporter low cells express either endothelial protein C receptor (EPCR) or CD41, while Flt3L-eGFP-reporter high cells do express EPCR but not CD41. Thus, FACS-enrichment of Flt3/ Flt3L-eGFP-reporter negative, Lin - CD150 + CD48 - EPCR + CD41 + HSCs allows a further 5-fold enrichment of functional LT-HSCs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Overexpression of LOV KELCH protein 2 confers dehydration tolerance and is associated with enhanced expression of dehydration-inducible genes in Arabidopsis thaliana.

    Science.gov (United States)

    Miyazaki, Yuji; Abe, Hiroshi; Takase, Tomoyuki; Kobayashi, Masatomo; Kiyosue, Tomohiro

    2015-05-01

    The overexpression of LKP2 confers dehydration tolerance in Arabidopsis thaliana ; this is likely due to enhanced expression of dehydration-inducible genes and reduced stomatal opening. LOV KELCH protein 2 (LKP2) modulates the circadian rhythm and flowering time in plants. In this study, we observed that LKP2 overexpression enhanced dehydration tolerance in Arabidopsis. Microarray analysis demonstrated that expression of water deprivation-responsive genes was higher in the absence of dehydration stress in transgenic Arabidopsis plants expressing green fluorescent protein-tagged LKP2 (GFP-LKP2) than in control transgenic plants expressing GFP. After dehydration followed by rehydration, GFP-LKP2 plants developed more leaves and roots and exhibited higher survival rates than control plants. In the absence of dehydration stress, four dehydration-inducible genes, namely DREB1A, DREB1B, DREB1C, and RD29A, were expressed in GFP-LKP2 plants, whereas they were not expressed or were expressed at low levels in control plants. Under dehydration stress, the expression of DREB2B and RD29A peaked faster in the GFP-LKP2 plants than in control plants. The stomatal aperture of GFP-LKP2 plants was smaller than that of control plants. These results suggest that the dehydration tolerance of GFP-LKP2 plants is caused by upregulation of DREB1A-C/CBF1-3 and their downstream targets; restricted stomatal opening in the absence of dehydration stress also appears to contribute to the phenotype. The rapid and high expression of DREB2B and its downstream target genes also likely accounts for some features of the GFP-LKP2 phenotype. Our results suggest that LKP2 can be used for biotechnological applications not only to adjust the flowering time control but also to enhance dehydration tolerance.

  5. A G-quadruplex-containing RNA activates fluorescence in a GFP-like fluorophore

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hao; Suslov, Nikolai B.; Li, Nan-Sheng; Shelke, Sandip A.; Evans, Molly E.; Koldobskaya, Yelena; Rice, Phoebe A.; Piccirilli, Joseph A. [UC

    2014-08-21

    Spinach is an in vitro–selected RNA aptamer that binds a GFP-like ligand and activates its green fluorescence. Spinach is thus an RNA analog of GFP and has potentially widespread applications for in vivo labeling and imaging. We used antibody-assisted crystallography to determine the structures of Spinach both with and without bound fluorophore at 2.2-Å and 2.4-Å resolution, respectively. Spinach RNA has an elongated structure containing two helical domains separated by an internal bulge that folds into a G-quadruplex motif of unusual topology. The G-quadruplex motif and adjacent nucleotides comprise a partially preformed binding site for the fluorophore. The fluorophore binds in a planar conformation and makes extensive aromatic stacking and hydrogen bond interactions with the RNA. Our findings provide a foundation for structure-based engineering of new fluorophore-binding RNA aptamers.

  6. A quasi-lentiviral green fluorescent protein reporter exhibits nuclear export features of late human immunodeficiency virus type 1 transcripts

    International Nuclear Information System (INIS)

    Graf, Marcus; Ludwig, Christine; Kehlenbeck, Sylvia; Jungert, Kerstin; Wagner, Ralf

    2006-01-01

    We have previously shown that Rev-dependent expression of HIV-1 Gag from CMV immediate early promoter critically depends on the AU-rich codon bias of the gag gene. Here, we demonstrate that adaptation of the green fluorescent protein (GFP) reporter gene to HIV codon bias is sufficient to turn this hivGFP RNA into a quasi-lentiviral message following the rules of late lentiviral gene expression. Accordingly, GFP expression was significantly decreased in transfected cells strictly correlating with reduced RNA levels. In the presence of the HIV 5' major splice donor, the hivGFP RNAs were stabilized in the nucleus and efficiently exported to the cytoplasm following fusion of the 3' Rev-responsive element (RRE) and coexpression of HIV-1 Rev. This Rev-dependent translocation was specifically inhibited by leptomycin B suggesting export via the CRM1-dependent pathway used by late lentiviral transcripts. In conclusion, this quasi-lentiviral reporter system may provide a new platform for developing sensitive Rev screening assays

  7. The hTH-GFP reporter rat model for the study of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Lorraine Iacovitti

    Full Text Available Parkinson disease (PD is the second leading neurodegenerative disease in the US. As there is no known cause or cure for PD, researchers continue to investigate disease mechanisms and potential new therapies in cell culture and in animal models of PD. In PD, one of the most profoundly affected neuronal populations is the tyrosine hydroxylase (TH-expressing dopaminergic (DA neurons of the substantia nigra pars compacta (SNpc. These DA-producing neurons undergo degeneration while neighboring DA-producing cells of the ventral tegmental area (VTA are largely spared. To aid in these studies, The Michael J. Fox Foundation (MJFF partnered with Thomas Jefferson University and Taconic Inc. to generate new transgenic rat lines carrying the human TH gene promoter driving EGFP using a 11 kb construct used previously to create a hTH-GFP mouse reporter line. Of the five rat founder lines that were generated, three exhibited high level specific GFP fluorescence in DA brain structures (ie. SN, VTA, striatum, olfactory bulb, hypothalamus. As with the hTH-GFP mouse, none of the rat lines exhibit reporter expression in adrenergic structures like the adrenal gland. Line 12141, with its high levels of GFP in adult DA brain structures and minimal ectopic GFP expression in non-DA structures, was characterized in detail. We show here that this line allows for anatomical visualization and microdissection of the rat midbrain into SNpc and/or VTA, enabling detailed analysis of midbrain DA neurons and axonal projections after toxin treatment in vivo. Moreover, we further show that embryonic SNpc and/or VTA neurons, enriched by microdissection or FACS, can be used in culture or transplant studies of PD. Thus, the hTH-GFP reporter rat should be a valuable tool for Parkinson's disease research.

  8. Systemic gene delivery transduces the enteric nervous system of guinea pigs and cynomolgus macaques.

    Science.gov (United States)

    Gombash, S E; Cowley, C J; Fitzgerald, J A; Lepak, C A; Neides, M G; Hook, K; Todd, L J; Wang, G-D; Mueller, C; Kaspar, B K; Bielefeld, E C; Fischer, A J; Wood, J D; Foust, K D

    2017-10-01

    Characterization of adeno-associated viral vector (AAV) mediated gene delivery to the enteric nervous system (ENS) was recently described in mice and rats. In these proof-of-concept experiments, we show that intravenous injections of clinically relevant AAVs can transduce the ENS in guinea pigs and non-human primates. Neonatal guinea pigs were given intravenous injections of either AAV8 or AAV9 vectors that contained a green fluorescent protein (GFP) expression cassette or phosphate-buffered saline. Piglets were euthanized three weeks post injection and tissues were harvested for immunofluorescent analysis. GFP expression was detected in myenteric and submucosal neurons along the length of the gastrointestinal tract in AAV8 injected guinea pigs. GFP-positive neurons were found in dorsal motor nucleus of the vagus and dorsal root ganglia. Less transduction occurred in AAV9-treated tissues. Gastrointestinal tissues were analyzed from young cynomolgus macaques that received systemic injection of AAV9 GFP. GFP expression was detected in myenteric neurons of the stomach, small and large intestine. These data demonstrate that ENS gene delivery translates to larger species. This work develops tools for the field of neurogastroenterology to explore gut physiology and anatomy using emerging technologies such as optogenetics and gene editing. It also provides a basis to develop novel therapies for chronic gut disorders.

  9. Oral Administration of Recombinant Lactococcus lactis Expressing the Cellulase Gene Increases Digestibility of Fiber in Geese.

    Science.gov (United States)

    Zhou, Haizhu; Gao, Yunhang; Gao, Guang; Lou, Yujie

    2015-12-01

    Enhancing cellulose digestibility in animals is important for improving the utilization of forage, which can decrease the amount of food used in animal production. The aim of the present study was to achieve recombinant expression of the cellulase gene in Lactococcus lactis and evaluate the effects of oral administration of the recombinant L. lactis on fiber digestibility in geese. Cellulase (Cell) and green fluorescent protein (GFP) genes were cloned into a L. lactis expression vector (pNZ8149) to construct the recombinant expression plasmid (pNZ8149-GFP-Cell). Then, the recombinant expression plasmid was transformed into L. lactis (NZ3900) competent cells by electroporation to obtain recombinant L. lactis (pNZ8149-GFP-Cell/NZ3900) in which protein expression was induced by Nisin. Expression of GFP and Cell by the recombinant L. lactis was confirmed using SDS-PAGE, fluorescence detection, and Congo red assays. A feeding experiment showed that oral administration of pNZ8149-GFP-Cell/NZ3900 significantly increased the digestibility of dietary fiber in geese fed either a maize stalk diet or a rice chaff diet. Therefore, oral administration of recombinant L. lactis cells expressing the cellulase gene increases fiber digestibility in geese, offering a way to increase the utilization of dietary fiber in geese.

  10. Two-photon microscopy imaging of thy1GFP-M transgenic mice: a novel animal model to investigate brain dendritic cell subsets in vivo.

    Directory of Open Access Journals (Sweden)

    Claudia Laperchia

    Full Text Available Transgenic mice expressing fluorescent proteins in specific cell populations are widely used for in vivo brain studies with two-photon fluorescence (TPF microscopy. Mice of the thy1GFP-M line have been engineered for selective expression of green fluorescent protein (GFP in neuronal populations. Here, we report that TPF microscopy reveals, at the brain surface of these mice, also motile non-neuronal GFP+ cells. We have analyzed the behavior of these cells in vivo and characterized in brain sections their immunophenotype.With TPF imaging, motile GFP+ cells were found in the meninges, subarachnoid space and upper cortical layers. The striking feature of these cells was their ability to move across the brain parenchyma, exhibiting evident shape changes during their scanning-like motion. In brain sections, GFP+ cells were immunonegative to antigens recognizing motile cells such as migratory neuroblasts, neuronal and glial precursors, mast cells, and fibroblasts. GFP+ non-neuronal cells exhibited instead the characteristic features and immunophenotype (CD11c and major histocompatibility complex molecule class II immunopositivity of dendritic cells (DCs, and were immunonegative to the microglial marker Iba-1. GFP+ cells were also identified in lymph nodes and blood of thy1GFP-M mice, supporting their identity as DCs. Thus, TPF microscopy has here allowed the visualization for the first time of the motile behavior of brain DCs in situ. The results indicate that the thy1GFP-M mouse line provides a novel animal model for the study of subsets of these professional antigen-presenting cells in the brain. Information on brain DCs is still very limited and imaging in thy1GFP-M mice has a great potential for analyses of DC-neuron interaction in normal and pathological conditions.

  11. Feasibility of dual reporter gene in rat myoblast cell line using human sodium iodide symporter (hNIS) and enhanced green fluorescent protein (EGFP) gene

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Jin; Lee, You La; Ahn, Sohn Joo; Choi, Chang Ik; Lee, Sang Woo; Ahn, Byeong Cheol; Lee, Jae Tae [School of Medicine, Kyungpook National University, Daegu (Korea, Republic of)

    2007-07-01

    To develop a non-invasive combined imaging method of gamma camera and optical imaging to assess rat myoblast cell line, H9c2, we constructed retrovirus containing hNIS and EGFP gene, and transfected to rat myoblast cell and monitored hNIS and EGFP expression. Rat myoblast cell line, H9C2, was transfected with hNIS and EGFP gene using retrovirus (H9C2-NG). The expression of hNIS and EGFP gene was determined by RT-PCR and fluorescence microscopy, respectively. The uptake and efflux of I-125 were measured in the transfected and wild type cell lines. Each cell line was injected to 4 flank sites (H9c2: 1X107 or 2X107, H9C2-NG: 1X107 or 2X107) in nude mouse. Scintigraphic image was performed at 3h, 1 day after H9C2 and H9C2-NG cell inoculation. We performed gamma camera and animal PET imaging to evaluate NIS expression. Also, GFP image obtained using optical imaging system. The expression of hNIS and EGFP gene was confirmed by RT-PCR. In iodide uptake, H9C2-NG cells accumulated 274.52.2 pmol/ mg protein at 30 min. But wild type cell line did not uptake iodide. In fluorescent microscopy, H9C2-NG cells were highly fluorescent than that of H9C2 cells. In iodide efflux study, 50% of radioactivity flowed out during the first 10min. Scintigraphy showed increased uptake of Tc-99m in H9c2-NG than in H9C2 for 1 day. Also, H9C2-NG cells showed high signal-to-background fluorescent spots in animal body. In this study, NIS and EGFP reporter gene were successfully transfected by a retrovirus in myoblast cell line, and the transfected cell can be easily visualized in vivo. These results suggest that NIS and EGFP gene has an excellent feasibility as a reporter gene, and it can be used to monitor cell trafficking for monitoring.

  12. Prolongation of GFP-expressed skin graft after intrathymic injection of GFP positive splenocytes in adult rat

    Science.gov (United States)

    Hakamata, Yoji; Igarashi, Yuka; Murakami, Takashi; Kobayashi, Eiji

    2006-02-01

    GFP is a fluorescent product of the jellyfish Aequorea victoria and has been used for a variety of biological experiments as a reporter molecule. While GFP possesses advantages for the non-invasive imaging of viable cells, GFP-positive cells are still considered potential xeno-antigens. It is difficult to observe the precise fate of transplanted cells/organs in recipients without immunological control. The aim of this study was to determine whether intrathymic injection of GFP to recipients and the depletion of peripheral lymphocytes could lead to donor-specific unresponsiveness to GFP-expressed cell. LEW rats were administered intraperitoneally with 0.2 ml of anti-rat lymphocyte serum (ALS) 1 day prior to intrathymic injection of donor splenocytes or adeno-GFP vector. Donor cells and vector were non-invasively inoculated into the thymus under high frequency ultrasound imaging using an echo-guide. All animals subsequently received a 7 days GFP-expressed skin graft from the same genetic background GFP LEW transgenic rat. Skin graft survival was greater in rats injected with donor splenocytes (23.6+/-9.1) compared with adeno-GFP (13.0+/-3.7) or untreated control rats (9.5+/-1.0). Intrathymic injection of donor antigen into adult rats can induce donor-specific unresponsiveness. Donor cells can be observed for a long-term in recipients with normal immunity using this strategy.

  13. Regional Differences in Striatal Neuronal Ensemble Excitability Following Cocaine and Extinction Memory Retrieval in Fos-GFP Mice.

    Science.gov (United States)

    Ziminski, Joseph J; Sieburg, Meike C; Margetts-Smith, Gabriella; Crombag, Hans S; Koya, Eisuke

    2018-03-01

    Learned associations between drugs of abuse and the drug administration environment have an important role in addiction. In rodents, exposure to a drug-associated environment elicits conditioned psychomotor activation, which may be weakened following extinction (EXT) learning. Although widespread drug-induced changes in neuronal excitability have been observed, little is known about specific changes within neuronal ensembles activated during the recall of drug-environment associations. Using a cocaine-conditioned locomotion (CL) procedure, the present study assessed the excitability of neuronal ensembles in the nucleus accumbens core and shell (NAc core and NAc shell ), and dorsal striatum (DS) following cocaine conditioning and EXT in Fos-GFP mice that express green fluorescent protein (GFP) in activated neurons (GFP+). During conditioning, mice received repeated cocaine injections (20 mg/kg) paired with a locomotor activity chamber (Paired) or home cage (Unpaired). Seven to 13 days later, both groups were re-exposed to the activity chamber under drug-free conditions and Paired, but not Unpaired, mice exhibited CL. In a separate group of mice, CL was extinguished by repeatedly exposing mice to the activity chamber under drug-free conditions. Following the expression and EXT of CL, GFP+ neurons in the NAc core (but not NAc shell and DS) displayed greater firing capacity compared to surrounding GFP- neurons. This difference in excitability was due to a generalized decrease in GFP- excitability following CL and a selective increase in GFP+ excitability following its EXT. These results suggest a role for both widespread and ensemble-specific changes in neuronal excitability following recall of drug-environment associations.

  14. Dynamical behavior of psb gene transcripts in greening wheat seedlings. I. Time course of accumulation of the pshA through psbN gene transcripts during light-induced greening.

    Science.gov (United States)

    Kawaguchi, H; Fukuda, I; Shiina, T; Toyoshima, Y

    1992-11-01

    The time course of the accumulation of the transcripts from 13 psb genes encoding a major part of the proteins composing photosystem II during light-induced greening of dark-grown wheat seedlings was examined focusing on early stages of plastid development (0.5 h through 72 h). The 13 genes can be divided into three groups. (1) The psbA gene is transcribed as a single transcript of 1.3 kb in the dark-grown seedlings, but its level increases 5- to 7-fold in response to light due to selective increase in RNA stability as well as in transcription activity. (2) The psbE-F-L-J operon, psbM and psbN genes are transcribed as a single transcript of 1.1 kb, two transcripts of 0.5 and 0.7 kb and a single transcript of 0.3 kb, respectively, in the dark-grown seedlings. The levels of accumulation of every transcript remain unchanged or rather decrease during plastid development under illumination. (3) The psbK-I-D-C gene cluster and psbB-H operon exhibit fairly complicated northern hybridization patterns during the greening process. When a psbC or psbD gene probe was used for northern hybridization, five transcripts differing in length were detected in the etioplasts from 5-day old dark-grown seedlings. After 2 h illumination, two new transcripts of different length appeared. Light induction of new transcripts was also observed in the psbB-H operon.

  15. Redox-sensitive GFP fusions for monitoring the catalytic mechanism and inactivation of peroxiredoxins in living cells

    Directory of Open Access Journals (Sweden)

    Verena Staudacher

    2018-04-01

    Full Text Available Redox-sensitive green fluorescent protein 2 (roGFP2 is a valuable tool for redox measurements in living cells. Here, we demonstrate that roGFP2 can also be used to gain mechanistic insights into redox catalysis in vivo. In vitro enzyme properties such as the rate-limiting reduction of wild type and mutant forms of the model peroxiredoxin PfAOP are shown to correlate with the ratiometrically measured degree of oxidation of corresponding roGFP2 fusion proteins. Furthermore, stopped-flow kinetic measurements of the oxidative half-reaction of PfAOP support the interpretation that changes in the roGFP2 signal can be used to map hyperoxidation-based inactivation of the attached peroxidase. Potential future applications of our system include the improvement of redox sensors, the estimation of absolute intracellular peroxide concentrations and the in vivo assessment of protein structure-function relationships that cannot easily be addressed with recombinant enzymes, for example, the effect of post-translational protein modifications on enzyme catalysis. Keywords: Peroxiredoxin, Redox sensor, roGFP2, H2O2, Plasmodium falciparum

  16. Pancreatic differentiation of Pdx1-GFP reporter mouse induced pluripotent stem cells.

    Science.gov (United States)

    Porciuncula, Angelo; Kumar, Anujith; Rodriguez, Saray; Atari, Maher; Araña, Miriam; Martin, Franz; Soria, Bernat; Prosper, Felipe; Verfaillie, Catherine; Barajas, Miguel

    2016-12-01

    Efficient induction of defined lineages in pluripotent stem cells constitutes the determinant step for the generation of therapeutically relevant replacement cells to potentially treat a wide range of diseases, including diabetes. Pancreatic differentiation has remained an important challenge in large part because of the need to differentiate uncommitted pluripotent stem cells into highly specialized hormone-secreting cells, which has been shown to require a developmentally informed step-by-step induction procedure. Here, in the framework of using induced pluripotent stem cells (iPSCs) to generate pancreatic cells for pancreatic diseases, we have generated and characterized iPSCs from Pdx1-GFP transgenic mice. The use of a GFP reporter knocked into the endogenous Pdx1 promoter allowed us to monitor pancreatic induction based on the expression of Pdx1, a pancreatic master transcription factor, and to isolate a pure Pdx1-GFP + population for downstream applications. Differentiated cultures timely expressed markers specific to each stage and end-stage progenies acquired a rather immature beta-cell phenotype, characterized by polyhormonal expression even among cells highly expressing the Pdx1-GFP reporter. Our findings highlight the utility of employing a fluorescent protein reporter under the control of a master developmental gene in order to devise novel differentiation protocols for relevant cell types for degenerative diseases such as pancreatic beta cells for diabetes. Copyright © 2016 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  17. Relation between phylogeny of African green monkey CD4 genes and their respective simian immunodeficiency virus genes

    DEFF Research Database (Denmark)

    Fomsgaard, Anders; Müller-Trutwin, Michaela C.; Diop, Ousmane

    1997-01-01

    An apparent species-specific relatedness of SIVagm suggests a coevolution with their natural hosts. However, the exact species or subspecies classification of African green monkeys, AGM, is uncertain because current classification schemes rely on phenotype markers, while more definitive genetic d...

  18. Gene expression in the muscle and central nervous system following intramuscular inoculation of encapsidated or naked poliovirus replicons

    International Nuclear Information System (INIS)

    Jackson, Cheryl A.; Messinger, Jeff; Palmer, Matthew T.; Peduzzi, Jean D.; Morrow, Casey D.

    2003-01-01

    The spread of intramuscularly inoculated poliovirus to the central nervous system (CNS) has been documented in humans, monkeys, and mice transgenic for the human poliovirus receptor. Poliovirus spread is thought to be due to infection of the peripheral nerve and retrograde transport of poliovirus through the axon to the neuron cell body, where final virus uncoating occurs and translation/replication ensues. In previous studies, we have shown that polio-based vectors (replicons) can be used for gene delivery to motor neurons of the CNS. Using a replicon that encodes green fluorescent protein (GFP), we found that following intrathecal inoculation, GFP expression was confined to motorneurons of the spinal cord. To further characterize the gene expression of poliovirus in the periphery and CNS, we have intramuscularly inoculated transgenic mice with poliovirus replicons encoding GFP. Expression of GFP was demonstrated in the muscle, sciatic nerve, dorsal root ganglion, and the ventral horn motorneurons following intramuscular inoculation. There was no evidence of paralysis or behavioral abnormalities in the mice following intramuscular inoculation of the replicon encoding GFP. Injection of replicon RNA alone (naked RNA) into the muscle of transgenic mice or rats, which do not express the poliovirus receptor, also resulted in expression of GFP in the muscle, sciatic nerve, dorsal root ganglion, and ventral horn motorneurons, indicating that transport of the replicon RNA from the periphery to CNS had occurred. GFP expression was found in the muscles and sciatic nerve as early as 6 h after injection of replicons or replicon RNA, even after sciatic nerve section. Analysis at longer times postinjection revealed GFP expression similar to 6 h levels in the cut sciatic nerves and robust expression in the nerves of uncut animals. The infection and expression of GFP in the CNS following intramuscular inoculation of encapsidated replicons encoding GFP occurred in juvenile or

  19. Low-Cost Synthesis of Smart Biocompatible Graphene Oxide Reduced Species by Means of GFP.

    Science.gov (United States)

    Masullo, Tiziana; Armata, Nerina; Pendolino, Flavio; Colombo, Paolo; Lo Celso, Fabrizio; Mazzola, Salvatore; Cuttitta, Angela

    2016-02-01

    The aim of this work is focused on the engineering of biocompatible complex systems composed of an inorganic and bio part. Graphene oxide (GO) and/or graphite oxide (GtO) were taken into account as potential substrates to the linkage of the protein such as Anemonia sulcata recombinant green fluorescent protein (rAsGFP). The complex system is obtained through a reduction process between GO/GtO and rAsGFP archiving an environmentally friendly biosynthesis. Spectroscopic measurements support the formation of reduced species. In particular, photoluminescence shows a change in the activity of the protein when a bond is formed, highlighted by a loss of the maximum emission signal of rAsGFP and a redshift of the maximum absorption peak of the GO/GtO species. Moreover, the hemolysis assay reveals a lower value in the presence of less oxidized graphene species providing evidence for a biocompatible material. This singular aspect can be approached as a promising method for circulating pharmaceutical preparations via intravenous administration in the field of drug delivery.

  20. Interaction of PLP with GFP-MAL2 in the human oligodendroglial cell line HOG.

    Directory of Open Access Journals (Sweden)

    Raquel Bello-Morales

    Full Text Available The velocity of the nerve impulse conduction of vertebrates relies on the myelin sheath, an electrically insulating layer that surrounds axons in both the central and peripheral nervous systems, enabling saltatory conduction of the action potential. Oligodendrocytes are the myelin-producing glial cells in the central nervous system. A deeper understanding of the molecular basis of myelination and, specifically, of the transport of myelin proteins, will contribute to the search of the aetiology of many dysmyelinating and demyelinating diseases, including multiple sclerosis. Recent investigations suggest that proteolipid protein (PLP, the major myelin protein, could reach myelin sheath by an indirect transport pathway, that is, a transcytotic route via the plasma membrane of the cell body. If PLP transport relies on a transcytotic process, it is reasonable to consider that this myelin protein could be associated with MAL2, a raft protein essential for transcytosis. In this study, carried out with the human oligodendrocytic cell line HOG, we show that PLP colocalized with green fluorescent protein (GFP-MAL2 after internalization from the plasma membrane. In addition, both immunoprecipitation and immunofluorescence assays, indicated the existence of an interaction between GFP-MAL2 and PLP. Finally, ultrastructural studies demonstrated colocalization of GFP-MAL2 and PLP in vesicles and tubulovesicular structures. Taken together, these results prove for the first time the interaction of PLP and MAL2 in oligodendrocytic cells, supporting the transcytotic model of PLP transport previously suggested.

  1. Probing GFP-actin diffusion in living cells using fluorescence correlation spectroscopy

    International Nuclear Information System (INIS)

    Engelke, Hanna; Heinrich, Doris; Rädler, Joachim O.

    2010-01-01

    The cytoskeleton of eukaryotic cells is continuously remodeled by polymerization and depolymerization of actin. Consequently, the relative content of polymerized filamentous actin (F-actin) and monomeric globular actin (G-actin) is subject to temporal and spatial fluctuations. Since fluorescence correlation spectroscopy (FCS) can measure the diffusion of fluorescently labeled actin it seems likely that FCS allows us to determine the dynamics and hence indirectly the structural properties of the cytoskeleton components with high spatial resolution. To this end we investigate the FCS signal of GFP-actin in living Dictyostelium discoideum cells and explore the inherent spatial and temporal signatures of the actin cytoskeleton. Using the free green fluorescent protein (GFP) as a reference, we find that actin diffusion inside cells is dominated by G-actin and slower than diffusion in diluted cell extract. The FCS signal in the dense cortical F-actin network near the cell membrane is probed using the cytoskeleton protein LIM and is found to be slower than cytosolic G-actin diffusion. Furthermore, we show that polymerization of the cytoskeleton induced by Jasplakinolide leads to a substantial decrease of G-actin diffusion. Pronounced fluctuations in the distribution of the FCS correlation curves can be induced by latrunculin, which is known to induce actin waves. Our work suggests that the FCS signal of GFP-actin in combination with scanning or spatial correlation techniques yield valuable information about the local dynamics and concomitant cytoskeletal properties

  2. Pipette tip with integrated electrodes for gene electrotransfer of cells in suspension: a feasibility study in CHO cells

    International Nuclear Information System (INIS)

    Rebersek, Matej; Kanduser, Masa; Miklavcic, Damijan

    2011-01-01

    Gene electrotransfer is a non-viral gene delivery method that requires successful electroporation for DNA delivery into the cells. Changing the direction of the electric field during the pulse application improves the efficacy of gene delivery. In our study, we tested a pipette tip with integrated electrodes that enables changing the direction of the electric field for electroporation of cell suspension for gene electrotransfer. A new pipette tip consists of four cylindrical rod electrodes that allow the application of electric pulses in different electric field directions. The experiments were performed on cell suspension of CHO cells in phosphate buffer. Plasmid DNA encoding for green fluorescent protein (GFP) was used and the efficiency of gene electrotransfer was determined by counting cells expressing GFP 24 h after the experiment. Experimental results showed that the percentage of cells expressing GFP increased when the electric field orientation was changed during the application. The GFP expression was almost two times higher when the pulses were applied in orthogonal directions in comparison with single direction, while cell viability was not significantly affected. We can conclude that results obtained with the described pipette tip are comparable to previously published results on gene electrotransfer using similar electrode geometry and electric pulse parameters. The tested pipette tip, however, allows work with small volumes/samples and requires less cell manipulation

  3. Transcriptional Profiling of Cholinergic Neurons From Basal Forebrain Identifies Changes in Expression of Genes Between Sleep and Wake.

    Science.gov (United States)

    Nikonova, Elena V; Gilliland, Jason DA; Tanis, Keith Q; Podtelezhnikov, Alexei A; Rigby, Alison M; Galante, Raymond J; Finney, Eva M; Stone, David J; Renger, John J; Pack, Allan I; Winrow, Christopher J

    2017-06-01

    To assess differences in gene expression in cholinergic basal forebrain cells between sleeping and sleep-deprived mice sacrificed at the same time of day. Tg(ChAT-eGFP)86Gsat mice expressing enhanced green fluorescent protein (eGFP) under control of the choline acetyltransferase (Chat) promoter were utilized to guide laser capture of cholinergic cells in basal forebrain. Messenger RNA expression levels in these cells were profiled using microarrays. Gene expression in eGFP(+) neurons was compared (1) to that in eGFP(-) neurons and to adjacent white matter, (2) between 7:00 am (lights on) and 7:00 pm (lights off), (3) between sleep-deprived and sleeping animals at 0, 3, 6, and 9 hours from lights on. There was a marked enrichment of ChAT and other markers of cholinergic neurons in eGFP(+) cells. Comparison of gene expression in these eGFP(+) neurons between 7:00 am and 7:00 pm revealed expected differences in the expression of clock genes (Arntl2, Per1, Per2, Dbp, Nr1d1) as well as mGluR3. Comparison of expression between spontaneous sleep and sleep-deprived groups sacrificed at the same time of day revealed a number of transcripts (n = 55) that had higher expression in sleep deprivation compared to sleep. Genes upregulated in sleep deprivation predominantly were from the protein folding pathway (25 transcripts, including chaperones). Among 42 transcripts upregulated in sleep was the cold-inducible RNA-binding protein. Cholinergic cell signatures were characterized. Whether the identified genes are changing as a consequence of differences in behavioral state or as part of the molecular regulatory mechanism remains to be determined. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  4. Preparation and Observation of Fresh-frozen Sections of the Green Fluorescent Protein Transgenic Mouse Head

    International Nuclear Information System (INIS)

    Tada, Masahito; Shinohara, Yoshinori; Kato, Ichiro; Hiraga, Koichi; Aizawa, Tomoyasu; Demura, Makoto; Mori, Yoshihiro; Shinoda, Hiroyuki; Mizuguchi, Mineyuki; Kawano, Keiichi

    2006-01-01

    Hard tissue decalcification can cause variation in the constituent protein characteristics. This paper describes a method of preparating of frozen mouse head sections so as to clearly observe the nature of the constituent proteins. Frozen sections of various green fluorescent protein (GFP) transgenic mouse heads were prepared using the film method developed by Kawamoto and Shimizu. This method made specimen dissection without decalcification possible, wherein GFP was clearly observed in an undamaged state. Conversely, using the same method with decalcification made GFP observation in the transgenic mouse head difficult. This new method is suitable for observing GFP marked cells, enabling us to follow the transplanted GFP marked cells within frozen head sections

  5. Expression of pH-sensitive green fluorescent protein in Arabidopsis thaliana

    Science.gov (United States)

    Moseyko, N.; Feldman, L. J.

    2001-01-01

    This is the first report on using green fluorescent protein (GFP) as a pH reporter in plants. Proton fluxes and pH regulation play important roles in plant cellular activity and therefore, it would be extremely helpful to have a plant gene reporter system for rapid, non-invasive visualization of intracellular pH changes. In order to develop such a system, we constructed three vectors for transient and stable transformation of plant cells with a pH-sensitive derivative of green fluorescent protein. Using these vectors, transgenic Arabidopsis thaliana and tobacco plants were produced. Here the application of pH-sensitive GFP technology in plants is described and, for the first time, the visualization of pH gradients between different developmental compartments in intact whole-root tissues of A. thaliana is reported. The utility of pH-sensitive GFP in revealing rapid, environmentally induced changes in cytoplasmic pH in roots is also demonstrated.

  6. Meiotic genes and sexual reproduction in the green algal class Trebouxiophyceae (Chlorophyta)

    KAUST Repository

    Fučí ková , Karolina; Pažoutová , Marie; Rindi, Fabio

    2015-01-01

    being the only partial exceptions (only four genes present). The evidence of sex provided by the meiotic genes is phylogenetically widespread in the class and indicates that sexual reproduction is not associated with any particular morphological

  7. Green fluorescent protein-mtalin causes defects in actin organization and cell expansion in Arabidopsis and inhibits actin depolymerizing factor's actin depolymerizing activity in vitro

    NARCIS (Netherlands)

    Ketelaar, T.; Anthony, R.G.; Hussey, P.J.

    2004-01-01

    Expression of green fluorescent protein (GFP) linked to an actin binding domain is a commonly used method for live cell imaging of the actin cytoskeleton. One of these chimeric proteins is GFP-mTalin (GFP fused to the actin binding domain of mouse talin). Although it has been demonstrated that

  8. Large Diversity of Nonstandard Genes and Dynamic Evolution of Chloroplast Genomes in Siphonous Green Algae (Bryopsidales, Chlorophyta).

    Science.gov (United States)

    Cremen, Ma Chiela M; Leliaert, Frederik; Marcelino, Vanessa R; Verbruggen, Heroen

    2018-04-01

    Chloroplast genomes have undergone tremendous alterations through the evolutionary history of the green algae (Chloroplastida). This study focuses on the evolution of chloroplast genomes in the siphonous green algae (order Bryopsidales). We present five new chloroplast genomes, which along with existing sequences, yield a data set representing all but one families of the order. Using comparative phylogenetic methods, we investigated the evolutionary dynamics of genomic features in the order. Our results show extensive variation in chloroplast genome architecture and intron content. Variation in genome size is accounted for by the amount of intergenic space and freestanding open reading frames that do not show significant homology to standard plastid genes. We show the diversity of these nonstandard genes based on their conserved protein domains, which are often associated with mobile functions (reverse transcriptase/intron maturase, integrases, phage- or plasmid-DNA primases, transposases, integrases, ligases). Investigation of the introns showed proliferation of group II introns in the early evolution of the order and their subsequent loss in the core Halimedineae, possibly through RT-mediated intron loss.

  9. Genetic transformation of Phytophthora ramorum with the jellyfish GFP gene

    Science.gov (United States)

    G. Calmin; M. Riedel; L. Belbahri; S. Wagner; S. Werres; F. Lefort

    2009-01-01

    The important quarantine organism Phytophthora ramorum has been dramatically increasing its host range in the past years and most of the studies concerning P. ramorum focus on these issues. Very little is known about the latency period. For sampling and analyzing potentially infected plant material,...

  10. Split green fluorescent protein as a modular binding partner for protein crystallization

    International Nuclear Information System (INIS)

    Nguyen, Hau B.; Hung, Li-Wei; Yeates, Todd O.; Terwilliger, Thomas C.; Waldo, Geoffrey S.

    2013-01-01

    A strategy using a new split green fluorescent protein (GFP) as a modular binding partner to form stable protein complexes with a target protein is presented. The modular split GFP may open the way to rapidly creating crystallization variants. A modular strategy for protein crystallization using split green fluorescent protein (GFP) as a crystallization partner is demonstrated. Insertion of a hairpin containing GFP β-strands 10 and 11 into a surface loop of a target protein provides two chain crossings between the target and the reconstituted GFP compared with the single connection afforded by terminal GFP fusions. This strategy was tested by inserting this hairpin into a loop of another fluorescent protein, sfCherry. The crystal structure of the sfCherry-GFP(10–11) hairpin in complex with GFP(1–9) was determined at a resolution of 2.6 Å. Analysis of the complex shows that the reconstituted GFP is attached to the target protein (sfCherry) in a structurally ordered way. This work opens the way to rapidly creating crystallization variants by reconstituting a target protein bearing the GFP(10–11) hairpin with a variety of GFP(1–9) mutants engineered for favorable crystallization

  11. Functional analysis of three type-2 DGAT homologue genes for triacylglycerol production in the green microalga Chlamydomonas reinhardtii.

    Science.gov (United States)

    La Russa, M; Bogen, C; Uhmeyer, A; Doebbe, A; Filippone, E; Kruse, O; Mussgnug, J H

    2012-11-30

    Photosynthetic organisms like plants and algae can use sunlight to produce lipids as important metabolic compounds. Plant-derived triacylglycerols (TAGs) are valuable for human and animal nutrition because of their high energy content and are becoming increasingly important for the production of renewable biofuels. Acyl-CoA:diacylglycerol acyltransferases (DGATs) have been demonstrated to play an important role in the accumulation of TAG compounds in higher plants. DGAT homologue genes have been identified in the genome of the green alga Chlamydomonas reinhardtii, however their function in vivo is still unknown. In this work, the three most promising type-2 DGAT candidate genes potentially involved in TAG lipid accumulation (CrDGAT2a, b and c) were investigated by constructing overexpression strains. For each of the genes, three strains were identified which showed enhanced mRNA levels of between 1.7 and 29.1 times that of the wild type (wt). Total lipid contents, neutral lipids and fatty acid profiles were determined and showed that an enhanced mRNA expression level of the investigated DGAT genes did not boost the intracellular TAG accumulation or resulted in alterations of the fatty acid profiles compared to wild type during standard growth condition or during nitrogen or sulfur stress conditions. We conclude that biotechnological efforts to enhance cellular TAG amount in microalgae need further insights into the complex network of lipid biosynthesis to identify potential bottlenecks of neutral lipid production. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Classification and evolutionary analysis of the basic helix-loop-helix gene family in the green anole lizard, Anolis carolinensis.

    Science.gov (United States)

    Liu, Ake; Wang, Yong; Zhang, Debao; Wang, Xuhua; Song, Huifang; Dang, Chunwang; Yao, Qin; Chen, Keping

    2013-08-01

    Helix-loop-helix (bHLH) proteins play essential regulatory roles in a variety of biological processes. These highly conserved proteins form a large transcription factor superfamily, and are commonly identified in large numbers within animal, plant, and fungal genomes. The bHLH domain has been well studied in many animal species, but has not yet been characterized in non-avian reptiles. In this study, we identified 102 putative bHLH genes in the genome of the green anole lizard, Anolis carolinensis. Based on phylogenetic analysis, these genes were classified into 43 families, with 43, 24, 16, 3, 10, and 3 members assigned into groups A, B, C, D, E, and F, respectively, and 3 members categorized as "orphans". Within-group evolutionary relationships inferred from the phylogenetic analysis were consistent with highly conserved patterns observed for introns and additional domains. Results from phylogenetic analysis of the H/E(spl) family suggest that genome and tandem gene duplications have contributed to this family's expansion. Our classification and evolutionary analysis has provided insights into the evolutionary diversification of animal bHLH genes, and should aid future studies on bHLH protein regulation of key growth and developmental processes.

  13. Isolation, Culture, and Motility Measurements of Epidermal Melanocytes from GFP-Expressing Reporter Mice.

    Science.gov (United States)

    Dagnino, Lina; Crawford, Melissa

    2018-03-27

    In this article, we provide a method to isolate primary epidermal melanocytes from reporter mice, which also allow targeted gene inactivation. The mice from which these cells are isolated are bred into a Rosa26 mT/mG reporter background, which results in GFP expression in the targeted melanocytic cell population. These cells are isolated and cultured to >95% purity. The cells can be used for gene expression studies, clonogenic experiments, and biological assays, such as capacity for migration. Melanocytes are slow moving cells, and we also provide a method to measure motility using individual cell tracking and data analysis.

  14. Green fluorescent protein as indicator of nonviral transient transfection efficiency in endometrial and testicular biopsies.

    Science.gov (United States)

    Zizzi, Antonio; Minardi, Daniele; Ciavattini, Andrea; Giantomassi, Federica; Montironi, Rodolfo; Muzzonigro, Giovanni; Di Primio, Roberto; Lucarini, Guendalina

    2010-03-01

    In the last years, physical and chemical methods of plasmid delivery have revolutionized the efficiency of nonviral gene transfer, and the success of gene therapy is largely dependent upon the development of gene-delivery methods. The nonviral techniques that lead to a direct transfer of DNA into tissue fragments, like electroporation (EP) and lipofection delivery systems are still insufficiently investigated. Our aim was to test the efficiency of EP and lipofection protocols in endometrial and testicular tissue fragments, using a naked plasmid DNA encoding green fluorescent protein (GFP). Because the transfection efficiency depends upon several factors, we tried to optimize the transfection conditions by testing different lipofectamine 2000 and plasmid ratios, electrical parameters, and culture after transfection. Our results show that these two nonviral methods of gene delivery are feasible and efficient in gene transfection of endometrial and testicular tissue biopsies. We found that the most performing ratio of plasmid:lipofectamine was 10:50 for transient lipofection, whereas two pulses for 10 s at 960 microF of capacitance, 200 V of voltage were the most favorable electrical parameters for EP efficiency in the presence of 5 microL of phMGFP plasmid. After lipofection and EP, the highest GFP intensity was observed respectively after 48 and 72 h of tissue fragment culturing. In conclusion, nonviral methods are attractive for an improvement of the gene therapy and our protocol could provide useful indications for in vivo gene therapy applications.

  15. Still acting green: continued expression of photosynthetic genes in the heterotrophic Dinoflagellate Pfiesteria piscicida (Peridiniales, Alveolata.

    Directory of Open Access Journals (Sweden)

    Gwang Hoon Kim

    Full Text Available The loss of photosynthetic function should lead to the cessation of expression and finally loss of photosynthetic genes in the new heterotroph. Dinoflagellates are known to have lost their photosynthetic ability several times. Dinoflagellates have also acquired photosynthesis from other organisms, either on a long-term basis or as "kleptoplastids" multiple times. The fate of photosynthetic gene expression in heterotrophs can be informative into evolution of gene expression patterns after functional loss, and the dinoflagellates ability to acquire new photosynthetic function through additional endosymbiosis. To explore this we analyzed a large-scale EST database consisting of 151,091 unique sequences (29,170 contigs, 120,921 singletons obtained from 454 pyrosequencing of the heterotrophic dinoflagellate Pfiesteria piscicida. About 597 contigs from P. piscicida showed significant homology (E-value genes involved in the Calvin-Benson cycle were found, genes of the light-dependent reaction were also identified. Also genes of associated pathways including the chorismate pathway and genes involved in starch metabolism were discovered. BLAST searches and phylogenetic analysis suggest that these plastid-associated genes originated from several different photosynthetic ancestors. The Calvin-Benson cycle genes are mostly associated with genes derived from the secondary plastids of peridinin-containing dinoflagellates, while the light-harvesting genes are derived from diatoms, or diatoms that are tertiary plastids in other dinoflagellates. The continued expression of many genes involved in photosynthetic pathways indicates that the loss of transcriptional regulation may occur well after plastid loss and could explain the organism's ability to "capture" new plastids (i.e. different secondary endosymbiosis or tertiary symbioses to renew photosynthetic function.

  16. Still acting green: continued expression of photosynthetic genes in the heterotrophic Dinoflagellate Pfiesteria piscicida (Peridiniales, Alveolata).

    Science.gov (United States)

    Kim, Gwang Hoon; Jeong, Hae Jin; Yoo, Yeong Du; Kim, Sunju; Han, Ji Hee; Han, Jong Won; Zuccarello, Giuseppe C

    2013-01-01

    The loss of photosynthetic function should lead to the cessation of expression and finally loss of photosynthetic genes in the new heterotroph. Dinoflagellates are known to have lost their photosynthetic ability several times. Dinoflagellates have also acquired photosynthesis from other organisms, either on a long-term basis or as "kleptoplastids" multiple times. The fate of photosynthetic gene expression in heterotrophs can be informative into evolution of gene expression patterns after functional loss, and the dinoflagellates ability to acquire new photosynthetic function through additional endosymbiosis. To explore this we analyzed a large-scale EST database consisting of 151,091 unique sequences (29,170 contigs, 120,921 singletons) obtained from 454 pyrosequencing of the heterotrophic dinoflagellate Pfiesteria piscicida. About 597 contigs from P. piscicida showed significant homology (E-value genes involved in the Calvin-Benson cycle were found, genes of the light-dependent reaction were also identified. Also genes of associated pathways including the chorismate pathway and genes involved in starch metabolism were discovered. BLAST searches and phylogenetic analysis suggest that these plastid-associated genes originated from several different photosynthetic ancestors. The Calvin-Benson cycle genes are mostly associated with genes derived from the secondary plastids of peridinin-containing dinoflagellates, while the light-harvesting genes are derived from diatoms, or diatoms that are tertiary plastids in other dinoflagellates. The continued expression of many genes involved in photosynthetic pathways indicates that the loss of transcriptional regulation may occur well after plastid loss and could explain the organism's ability to "capture" new plastids (i.e. different secondary endosymbiosis or tertiary symbioses) to renew photosynthetic function.

  17. Chemical clearing and dehydration of GFP expressing mouse brains.

    Directory of Open Access Journals (Sweden)

    Klaus Becker

    Full Text Available Generally, chemical tissue clearing is performed by a solution consisting of two parts benzyl benzoate and one part benzyl alcohol. However, prolonged exposure to this mixture markedly reduces the fluorescence of GFP expressing specimens, so that one has to compromise between clearing quality and fluorescence preservation. This can be a severe drawback when working with specimens exhibiting low GFP expression rates. Thus, we screened for a substitute and found that dibenzyl ether (phenylmethoxymethylbenzene, CAS 103-50-4 can be applied as a more GFP-friendly clearing medium. Clearing with dibenzyl ether provides improved tissue transparency and strikingly improved fluorescence intensity in GFP expressing mouse brains and other samples as mouse spinal cords, or embryos. Chemical clearing, staining, and embedding of biological samples mostly requires careful foregoing tissue dehydration. The commonly applied tissue dehydration medium is ethanol, which also can markedly impair GFP fluorescence. Screening for a substitute also for ethanol we found that tetrahydrofuran (CAS 109-99-9 is a more GFP-friendly dehydration medium than ethanol, providing better tissue transparency obtained by successive clearing. Combined, tetrahydrofuran and dibenzyl ether allow dehydration and chemical clearing of even delicate samples for UM, confocal microscopy, and other microscopy techniques.

  18. Chemical clearing and dehydration of GFP expressing mouse brains.

    Science.gov (United States)

    Becker, Klaus; Jährling, Nina; Saghafi, Saiedeh; Weiler, Reto; Dodt, Hans-Ulrich

    2012-01-01

    Generally, chemical tissue clearing is performed by a solution consisting of two parts benzyl benzoate and one part benzyl alcohol. However, prolonged exposure to this mixture markedly reduces the fluorescence of GFP expressing specimens, so that one has to compromise between clearing quality and fluorescence preservation. This can be a severe drawback when working with specimens exhibiting low GFP expression rates. Thus, we screened for a substitute and found that dibenzyl ether (phenylmethoxymethylbenzene, CAS 103-50-4) can be applied as a more GFP-friendly clearing medium. Clearing with dibenzyl ether provides improved tissue transparency and strikingly improved fluorescence intensity in GFP expressing mouse brains and other samples as mouse spinal cords, or embryos. Chemical clearing, staining, and embedding of biological samples mostly requires careful foregoing tissue dehydration. The commonly applied tissue dehydration medium is ethanol, which also can markedly impair GFP fluorescence. Screening for a substitute also for ethanol we found that tetrahydrofuran (CAS 109-99-9) is a more GFP-friendly dehydration medium than ethanol, providing better tissue transparency obtained by successive clearing. Combined, tetrahydrofuran and dibenzyl ether allow dehydration and chemical clearing of even delicate samples for UM, confocal microscopy, and other microscopy techniques.

  19. Assessment of heavy metal bioavailability in contaminated sediments and soils using green fluorescent protein-based bacterial biosensors

    International Nuclear Information System (INIS)

    Liao, V.H.-C.; Chien, M.-T.; Tseng, Y.-Y.; Ou, K.-L.

    2006-01-01

    A green fluorescent protein (GFP)-based bacterial biosensor Escherichia coli DH5α (pVLCD1) was developed based on the expression of gfp under the control of the cad promoter and the cadC gene of Staphylococcus aureus plasmid pI258. DH5α (pVLCD1) mainly responded to Cd(II), Pb(II), and Sb(III), the lowest detectable concentrations being 0.1 nmol L -1 , 10 nmol L -1 , and 0.1 nmol L -1 , respectively, with 2 h exposure. The biosensor was field-tested to measure the relative bioavailability of the heavy metals in contaminated sediments and soil samples. The results showed that the majority of heavy metals remained adsorbed to soil particles: Cd(II)/Pb(II) was only partially available to the biosensor in soil-water extracts. Our results demonstrate that the GFP-based bacterial biosensor is useful and applicable in determining the bioavailability of heavy metals with high sensitivity in contaminated sediment and soil samples and suggests a potential for its inexpensive application in environmentally relevant sample tests. - Nonpathogenic GFP-based bacterial biosensor is applicable in determining the bioavailability of heavy metals in environmental samples

  20. Selection of reference genes for gene expression studies in pig tissues using SYBR green qPCR

    DEFF Research Database (Denmark)

    Hillig, Ann-Britt Nygaard; Jørgensen, Claus Bøttcher; Cirera, Susanna

    2007-01-01

    -microglobulin (B2M), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), hydroxymethylbilane synthase (HMBS), hypoxanthine phosphoribosyltransferase I (HPRT I), ribosomal protein L4 (RPL4), succinate dehydrogenase complex subunit A (SDHA), TATA box binding protein (TPB) and tyrosine 3-monooxygenase/tryptophan 5......-monooxygenase activation protein zeta polypeptide (YWHAZ). The stability of these reference genes in different pig tissues was investigated using the geNorm application. The range of expression stability in the genes analysed was (from the most stable to the least stable): ACTB/RPL4, TBP, HPRT, HMBS, YWHAZ...

  1. Gene expression profiles in skeletal muscle after gene electrotransfer

    DEFF Research Database (Denmark)

    Hojman, Pernille; Zibert, John R; Gissel, Hanne

    2007-01-01

    BACKGROUND: Gene transfer by electroporation (DNA electrotransfer) to muscle results in high level long term transgenic expression, showing great promise for treatment of e.g. protein deficiency syndromes. However little is known about the effects of DNA electrotransfer on muscle fibres. We have...... caused down-regulation of structural proteins e.g. sarcospan and catalytic enzymes. Injection of DNA induced down-regulation of intracellular transport proteins e.g. sentrin. The effects on muscle fibres were transient as the expression profiles 3 weeks after treatment were closely related......) followed by a long low voltage pulse (LV, 100 V/cm, 400 ms); a pulse combination optimised for efficient and safe gene transfer. Muscles were transfected with green fluorescent protein (GFP) and excised at 4 hours, 48 hours or 3 weeks after treatment. RESULTS: Differentially expressed genes were...

  2. A multi-stage color model revisited: implications for a gene therapy cure for red-green colorblindness.

    Science.gov (United States)

    Mancuso, Katherine; Mauck, Matthew C; Kuchenbecker, James A; Neitz, Maureen; Neitz, Jay

    2010-01-01

    In 1993, DeValois and DeValois proposed a 'multi-stage color model' to explain how the cortex is ultimately able to deconfound the responses of neurons receiving input from three cone types in order to produce separate red-green and blue-yellow systems, as well as segregate luminance percepts (black-white) from color. This model extended the biological implementation of Hurvich and Jameson's Opponent-Process Theory of color vision, a two-stage model encompassing the three cone types combined in a later opponent organization, which has been the accepted dogma in color vision. DeValois' model attempts to satisfy the long-remaining question of how the visual system separates luminance information from color, but what are the cellular mechanisms that establish the complicated neural wiring and higher-order operations required by the Multi-stage Model? During the last decade and a half, results from molecular biology have shed new light on the evolution of primate color vision, thus constraining the possibilities for the visual circuits. The evolutionary constraints allow for an extension of DeValois' model that is more explicit about the biology of color vision circuitry, and it predicts that human red-green colorblindness can be cured using a retinal gene therapy approach to add the missing photopigment, without any additional changes to the post-synaptic circuitry.

  3. Response of arginine vasopressin-enhanced green fluorescent protein fusion gene in the hypothalamus of adjuvant-induced arthritic rats

    Czech Academy of Sciences Publication Activity Database

    Suzuki, H.; Onaka, T.; Kasai, M.; Kawasaki, M.; Ohnishi, H.; Otsubo, H.; Saito, T.; Hashimoto, H.; Yokoyama, T.; Fujihara, H.; Dayanithi, Govindan; Murphy, D.; Nakamura, T.; Ueta, Y.

    2009-01-01

    Roč. 21, č. 3 (2009), s. 183-190 ISSN 0953-8194 Institutional research plan: CEZ:AV0Z50390512 Keywords : arginine vasopressin * Corticotrophin-releasing hormone * GFP Subject RIV: FH - Neurology Impact factor: 3.700, year: 2009

  4. Expression Analysis of CB2-GFP BAC Transgenic Mice.

    Science.gov (United States)

    Schmöle, Anne-Caroline; Lundt, Ramona; Gennequin, Benjamin; Schrage, Hanna; Beins, Eva; Krämer, Alexandra; Zimmer, Till; Limmer, Andreas; Zimmer, Andreas; Otte, David-Marian

    2015-01-01

    The endocannabinoid system (ECS) is a retrograde messenger system, consisting of lipid signaling molecules that bind to at least two G-protein-coupled receptors, Cannabinoid receptor 1 and 2 (CB1 and 2). As CB2 is primarily expressed on immune cells such as B cells, T cells, macrophages, dendritic cells, and microglia, it is of great interest how CB2 contributes to immune cell development and function in health and disease. Here, understanding the mechanisms of CB2 involvement in immune-cell function as well as the trafficking and regulation of CB2 expressing cells are crucial issues. Up to now, CB2 antibodies produce unclear results, especially those targeting the murine protein. Therefore, we have generated BAC transgenic GFP reporter mice (CB2-GFPTg) to trace CB2 expression in vitro and in situ. Those mice express GFP under the CB2 promoter and display GFP expression paralleling CB2 expression on the transcript level in spleen, thymus and brain tissue. Furthermore, by using fluorescence techniques we show that the major sources for GFP-CB2 expression are B cells in spleen and blood and microglia in the brain. This novel CB2-GFP transgenic reporter mouse line represents a powerful resource to study CB2 expression in different cell types. Furthermore, it could be used for analyzing CB2-mediated mobilization and trafficking of immune cells as well as studying the fate of recruited immune cells in models of acute and chronic inflammation.

  5. Expression Analysis of CB2-GFP BAC Transgenic Mice.

    Directory of Open Access Journals (Sweden)

    Anne-Caroline Schmöle

    Full Text Available The endocannabinoid system (ECS is a retrograde messenger system, consisting of lipid signaling molecules that bind to at least two G-protein-coupled receptors, Cannabinoid receptor 1 and 2 (CB1 and 2. As CB2 is primarily expressed on immune cells such as B cells, T cells, macrophages, dendritic cells, and microglia, it is of great interest how CB2 contributes to immune cell development and function in health and disease. Here, understanding the mechanisms of CB2 involvement in immune-cell function as well as the trafficking and regulation of CB2 expressing cells are crucial issues. Up to now, CB2 antibodies produce unclear results, especially those targeting the murine protein. Therefore, we have generated BAC transgenic GFP reporter mice (CB2-GFPTg to trace CB2 expression in vitro and in situ. Those mice express GFP under the CB2 promoter and display GFP expression paralleling CB2 expression on the transcript level in spleen, thymus and brain tissue. Furthermore, by using fluorescence techniques we show that the major sources for GFP-CB2 expression are B cells in spleen and blood and microglia in the brain. This novel CB2-GFP transgenic reporter mouse line represents a powerful resource to study CB2 expression in different cell types. Furthermore, it could be used for analyzing CB2-mediated mobilization and trafficking of immune cells as well as studying the fate of recruited immune cells in models of acute and chronic inflammation.

  6. A Light-Induced Reaction with Oxygen Leads to Chromophore Decomposition and Irreversible Photobleaching in GFP-Type Proteins.

    Science.gov (United States)

    Grigorenko, Bella L; Nemukhin, Alexander V; Polyakov, Igor V; Khrenova, Maria G; Krylov, Anna I

    2015-04-30

    Photobleaching and photostability of proteins of the green fluorescent protein (GFP) family are crucially important for practical applications of these widely used biomarkers. On the basis of simulations, we propose a mechanism for irreversible bleaching in GFP-type proteins under intense light illumination. The key feature of the mechanism is a photoinduced reaction of the chromophore with molecular oxygen (O2) inside the protein barrel leading to the chromophore's decomposition. Using quantum mechanics/molecular mechanics (QM/MM) modeling we show that a model system comprising the protein-bound Chro(-) and O2 can be excited to an electronic state of the intermolecular charge-transfer (CT) character (Chro(•)···O2(-•)). Once in the CT state, the system undergoes a series of chemical reactions with low activation barriers resulting in the cleavage of the bridging bond between the phenolic and imidazolinone rings and disintegration of the chromophore.

  7. Stylophora pistillata in the Red Sea demonstrate higher GFP fluorescence under ocean acidification conditions

    Science.gov (United States)

    Grinblat, Mila; Fine, Maoz; Tikochinski, Yaron; Loya, Yossi

    2018-03-01

    Ocean acidification is thought to exert a major impact on calcifying organisms, including corals. While previous studies have reported changes in the physiological response of corals to environmental change, none have described changes in expression of the ubiquitous host pigments—fluorescent proteins (FPs)—to ocean acidification. The function of FPs in corals is controversial, with the most common consideration being that these primarily regulate the light environment in the coral tissue and protect the host from harmful UV radiation. Here, we provide for the first time experimental evidence that increased fluorescence of colonies of the coral Stylophora pistillata is independent of stress and can be regulated by a non-stressful decrease in pH. Stylophora pistillata is the most abundant and among the most resilient coral species in the northern Gulf of Eilat/Aqaba (GoE/A). Fragmented "sub-colonies" ( n = 72) incubated for 33 days under three pH treatments (ambient, 7.9, and 7.6), under ambient light, and running seawater showed no stress or adverse physiological performance, but did display significantly higher fluorescence, with lower pH. Neither the average number of planulae shed from the experimental sub-colonies nor planulae green fluorescent protein (GFP) expression changed significantly among pH treatments. Sub-colonies incubated under the lower-than-ambient pH conditions showed an increase in both total protein and GFP expression. Since extensive protein synthesis requires a high level of transcription, we suggest that GFP constitutes a UV protection mechanism against potential RNA as well as against DNA damage caused by UV exposure. Manipulating the regulation of FPs in adult corals and planulae, under controlled and combined effects of pH, light, and temperature, is crucial if we are to obtain a better understanding of the role played by this group of proteins in cnidarians.

  8. Transgenic Citrus Expressing an Arabidopsis NPR1 Gene Exhibit Enhanced Resistance against Huanglongbing (HLB; Citrus Greening).

    Science.gov (United States)

    Dutt, Manjul; Barthe, Gary; Irey, Michael; Grosser, Jude

    2015-01-01

    Commercial sweet orange cultivars lack resistance to Huanglongbing (HLB), a serious phloem limited bacterial disease that is usually fatal. In order to develop sustained disease resistance to HLB, transgenic sweet orange cultivars 'Hamlin' and 'Valencia' expressing an Arabidopsis thaliana NPR1 gene under the control of a constitutive CaMV 35S promoter or a phloem specific Arabidopsis SUC2 (AtSUC2) promoter were produced. Overexpression of AtNPR1 resulted in trees with normal phenotypes that exhibited enhanced resistance to HLB. Phloem specific expression of NPR1 was equally effective for enhancing disease resistance. Transgenic trees exhibited reduced diseased severity and a few lines remained disease-free even after 36 months of planting in a high-disease pressure field site. Expression of the NPR1 gene induced expression of several native genes involved in the plant defense signaling pathways. The AtNPR1 gene being plant derived can serve as a component for the development of an all plant T-DNA derived consumer friendly GM tree.

  9. Transgenic Citrus Expressing an Arabidopsis NPR1 Gene Exhibit Enhanced Resistance against Huanglongbing (HLB; Citrus Greening.

    Directory of Open Access Journals (Sweden)

    Manjul Dutt

    Full Text Available Commercial sweet orange cultivars lack resistance to Huanglongbing (HLB, a serious phloem limited bacterial disease that is usually fatal. In order to develop sustained disease resistance to HLB, transgenic sweet orange cultivars 'Hamlin' and 'Valencia' expressing an Arabidopsis thaliana NPR1 gene under the control of a constitutive CaMV 35S promoter or a phloem specific Arabidopsis SUC2 (AtSUC2 promoter were produced. Overexpression of AtNPR1 resulted in trees with normal phenotypes that exhibited enhanced resistance to HLB. Phloem specific expression of NPR1 was equally effective for enhancing disease resistance. Transgenic trees exhibited reduced diseased severity and a few lines remained disease-free even after 36 months of planting in a high-disease pressure field site. Expression of the NPR1 gene induced expression of several native genes involved in the plant defense signaling pathways. The AtNPR1 gene being plant derived can serve as a component for the development of an all plant T-DNA derived consumer friendly GM tree.

  10. Identification and characterization of proteins involved in nuclear organization using Drosophila GFP protein trap lines.

    Directory of Open Access Journals (Sweden)

    Margaret Rohrbaugh

    Full Text Available Strains from a collection of Drosophila GFP protein trap lines express GFP in the normal tissues where the endogenous protein is present. This collection can be used to screen for proteins distributed in the nucleus in a non-uniform pattern.We analyzed four lines that show peripheral or punctate nuclear staining. One of these lines affects an uncharacterized gene named CG11138. The CG11138 protein shows a punctate distribution in the nuclear periphery similar to that of Drosophila insulator proteins but does not co-localize with known insulators. Interestingly, mutations in Lamin proteins result in alterations in CG11138 localization, suggesting that this protein may be a novel component of the nuclear lamina. A second line affects the Decondensation factor 31 (Df31 gene, which encodes a protein with a unique nuclear distribution that appears to segment the nucleus into four different compartments. The X-chromosome of males is confined to one of these compartments. We also find that Drosophila Nucleoplasmin (dNlp is present in regions of active transcription. Heat shock leads to loss of dNlp from previously transcribed regions of polytene chromosome without redistribution to the heat shock genes. Analysis of Stonewall (Stwl, a protein previously found to be necessary for the maintenance of germline stem cells, shows that Stwl is present in a punctate pattern in the nucleus that partially overlaps with that of known insulator proteins. Finally we show that Stwl, dNlp, and Df31 form part of a highly interactive network. The properties of other components of this network may help understand the role of these proteins in nuclear biology.These results establish screening of GFP protein trap alleles as a strategy to identify factors with novel cellular functions. Information gained from the analysis of CG11138 Stwl, dNlp, and Df31 sets the stage for future studies of these proteins.

  11. FLO1 is a variable green beard gene that drives biofilm-like cooperation in budding yeast

    Science.gov (United States)

    Smukalla, Scott; Caldara, Marina; Pochet, Nathalie; Beauvais, Anne; Guadagnini, Stephanie; Yan, Chen; Vinces, Marcelo D.; Jansen, An; Prevost, Marie Christine; Latgé, Jean-Paul; Fink, Gerald R.; Foster, Kevin R.; Verstrepen, Kevin J.

    2008-01-01

    Summary The budding yeast, Saccharomyces cerevisiae, has emerged as an archetype of eukaryotic cell biology. Here we show that S. cerevisiae is also a model for the evolution of cooperative behavior by revisiting flocculation, a self-adherence phenotype lacking in most laboratory strains. Expression of the gene FLO1 in the laboratory strain S288C restores flocculation, an altered physiological state, reminiscent of bacterial biofilms. Flocculation protects the FLO1-expressing cells from multiple stresses, including antimicrobials and ethanol. Furthermore, FLO1+ cells avoid exploitation by non-expressing flo1 cells by self/non-self recognition: FLO1+ cells preferentially stick to one another, regardless of genetic relatedness across the rest of the genome. Flocculation, therefore, is driven by one of a few known “green beard genes”, which direct cooperation towards other carriers of the same gene. Moreover, FLO1 is highly variable among strains both in expression and in sequence, suggesting that flocculation in S. cerevisiae is a dynamic, rapidly-evolving social trait. PMID:19013280

  12. Imaging Herpes Simplex Virus Type 1 Amplicon Vector–Mediated Gene Expression in Human Glioma Spheroids

    Directory of Open Access Journals (Sweden)

    Christine Kaestle

    2011-05-01

    Full Text Available Vectors derived from herpes simplex virus type 1 (HSV-1 have great potential for transducing therapeutic genes into the central nervous system; however, inefficient distribution of vector particles in vivo may limit their therapeutic potential in patients with gliomas. This study was performed to investigate the extent of HSV-1 amplicon vector–mediated gene expression in a three-dimensional glioma model of multicellular spheroids by imaging highly infectious HSV-1 virions expressing green fluorescent protein (HSV-GFP. After infection or microscopy-guided vector injection of glioma spheroids at various spheroid sizes, injection pressures and injection times, the extent of HSV-1 vector–mediated gene expression was investigated via laser scanning microscopy. Infection of spheroids with HSV-GFP demonstrated a maximal depth of vector-mediated GFP expression at 70 to 80 μm. A > 80% transduction efficiency was reached only in small spheroids with a diameter of 90%. The results demonstrated that vector-mediated gene expression in glioma spheroids was strongly dependent on the mode of vector application—injection pressure and injection time being the most important parameters. The assessment of these vector application parameters in tissue models will contribute to the development of safe and efficient gene therapy protocols for clinical application.

  13. Efficient photoreceptor-targeted gene expression in vivo by recombinant adeno-associated virus.

    Science.gov (United States)

    Flannery, J G; Zolotukhin, S; Vaquero, M I; LaVail, M M; Muzyczka, N; Hauswirth, W W

    1997-06-24

    We describe a general approach for achieving efficient and cell type-specific expression of exogenous genes in photoreceptor cells of the mammalian retina. Recombinant adeno-associated virus (rAAV) vectors were used to transfer the bacterial lacZ gene or a synthetic green fluorescent protein gene (gfp) to mouse or rat retinas after injection into the subretinal space. Using a proximal murine rod opsin promoter (+86 to -385) to drive expression, reporter gene product was found exclusively in photoreceptors, not in any other retinal cell type or in the adjacent retinal pigment epithelium. GFP-expressing photoreceptors typically encompassed 10-20% of the total retinal area after a single 2-microl injection. Photoreceptors were transduced with nearly 100% efficiency in the region directly surrounding the injection site. We estimate approximately 2.5 million photoreceptors were transduced as a result of the single subretinal inoculation. This level of gene transfer and expression suggests the feasibility of genetic therapy for retinal disease. The gfp-containing rAAV stock was substantially free of both adenovirus and wild-type AAV, as judged by plaque assay and infectious center assay, respectively. Thus, highly purified, helper virus-free rAAV vectors can achieve high-frequency tissue-specific transduction of terminally differentiated, postmitotic photoreceptor cells.

  14. Green tea extract suppresses adiposity and affects the expression of lipid metabolism genes in diet-induced obese zebrafish

    Directory of Open Access Journals (Sweden)

    Hasumura Takahiro

    2012-08-01

    Full Text Available Abstract Background Visceral fat accumulation is one of the most important predictors of mortality in obese populations. Administration of green tea extract (GTE can reduce body fat and reduce the risk of obesity-related diseases in mammals. In this study, we investigated the effects and mechanisms of GTE on adiposity in diet-induced obese (DIO zebrafish. Methods Zebrafish at 3.5 to 4.5 months post-fertilization were allocated to four groups: non-DIO, DIO, DIO + 0.0025%GTE, and DIO + 0.0050%GTE. The non-DIO group was fed freshly hatched Artemia once daily (5 mg cysts/fish daily for 40 days. Zebrafish in the three DIO groups were fed freshly hatched Artemia three times daily (60 mg cysts/fish daily. Zebrafish in the DIO + 0.0025%GTE and DIO + 0.0050%GTE groups were exposed to GTE after the start of feeding three times daily for 40 days. Results Three-dimensional microcomputed tomography analysis showed that GTE exposure significantly decreased the volume of visceral but not subcutaneous fat tissue in DIO zebrafish. GTE exposure increased hepatic expression of the lipid catabolism genes ACOX1 (acyl-coenzyme A oxidase 1, palmitoyl, ACADM (acyl-coenzyme A dehydrogenase, c-4 to c-12 straight chain, and PPARA (peroxisome proliferator-activated receptor alpha. GTE exposure also significantly decreased the visceral fat expression of SOCS3 (suppressor of cytokine signaling 3b which inhibits leptin signaling. Conclusions The present results are consistent with those seen in mammals treated with GTE, supporting the validity of studying the effects of GTE in DIO zebrafish. Our results suggest that GTE exerts beneficial effects on adiposity, possibly by altering the expression of lipid catabolism genes and SOCS3.

  15. The 'Green Revolution' dwarfing genes play a role in disease resistance in Triticum aestivum and Hordeum vulgare.

    Science.gov (United States)

    Saville, R J; Gosman, N; Burt, C J; Makepeace, J; Steed, A; Corbitt, M; Chandler, E; Brown, J K M; Boulton, M I; Nicholson, P

    2012-02-01

    The Green Revolution dwarfing genes, Rht-B1b and Rht-D1b, encode mutant forms of DELLA proteins and are present in most modern wheat varieties. DELLA proteins have been implicated in the response to biotic stress in the model plant, Arabidopsis thaliana. Using defined wheat Rht near-isogenic lines and barley Sln1 gain of function (GoF) and loss of function (LoF) lines, the role of DELLA in response to biotic stress was investigated in pathosystems representing contrasting trophic styles (biotrophic, hemibiotrophic, and necrotrophic). GoF mutant alleles in wheat and barley confer a resistance trade-off with increased susceptibility to biotrophic pathogens and increased resistance to necrotrophic pathogens whilst the converse was conferred by a LoF mutant allele. The polyploid nature of the wheat genome buffered the effect of single Rht GoF mutations relative to barley (diploid), particularly in respect of increased susceptibility to biotrophic pathogens. A role for DELLA in controlling cell death responses is proposed. Similar to Arabidopsis, a resistance trade-off to pathogens with contrasting pathogenic lifestyles has been identified in monocotyledonous cereal species. Appreciation of the pleiotropic role of DELLA in biotic stress responses in cereals has implications for plant breeding.

  16. Green tissue-specific co-expression of chitinase and oxalate oxidase 4 genes in rice for enhanced resistance against sheath blight.

    Science.gov (United States)

    Karmakar, Subhasis; Molla, Kutubuddin Ali; Chanda, Palas K; Sarkar, Sailendra Nath; Datta, Swapan K; Datta, Karabi

    2016-01-01

    Green tissue-specific simultaneous overexpression of two defense-related genes ( OsCHI11 & OsOXO4 ) in rice leads to significant resistance against sheath blight pathogen ( R. solani ) without distressing any agronomically important traits. Overexpressing two defense-related genes (OsOXO4 and OsCHI11) cloned from rice is effective at enhancing resistance against sheath blight caused by Rhizoctonia solani. These genes were expressed under the control of two different green tissue-specific promoters, viz. maize phosphoenolpyruvate carboxylase gene promoter, PEPC, and rice cis-acting 544-bp DNA element, immediately upstream of the D54O translational start site, P D54O-544 . Putative T0 transgenic rice plants were screened by PCR and integration of genes was confirmed by Southern hybridization of progeny (T1) rice plants. Successful expression of OsOXO4 and OsCHI11 in all tested plants was confirmed. Expression of PR genes increased significantly following pathogen infection in overexpressing transgenic plants. Following infection, transgenic plants exhibited elevated hydrogen peroxide levels, significant changes in activity of ROS scavenging enzymes and reduced membrane damage when compared to their wild-type counterpart. In a Rhizoctonia solani toxin assay, a detached leaf inoculation test and an in vivo plant bioassay, transgenic plants showed a significant reduction in disease symptoms in comparison to non-transgenic control plants. This is the first report of overexpression of two different PR genes driven by two green tissue-specific promoters providing enhanced sheath blight resistance in transgenic rice.

  17. Optimization of mNeonGreen for Homo sapiens increases its fluorescent intensity in mammalian cells.

    Science.gov (United States)

    Tanida-Miyake, Emiko; Koike, Masato; Uchiyama, Yasuo; Tanida, Isei

    2018-01-01

    Green fluorescent protein (GFP) is tremendously useful for investigating many cellular and intracellular events. The monomeric GFP mNeonGreen is about 3- to 5-times brighter than GFP and monomeric enhanced GFP and shows high photostability. The maturation half-time of mNeonGreen is about 3-fold faster than that of monomeric enhanced GFP. However, the cDNA sequence encoding mNeonGreen contains some codons that are rarely used in Homo sapiens. For better expression of mNeonGreen in human cells, we synthesized a human-optimized cDNA encoding mNeonGreen and generated an expression plasmid for humanized mNeonGreen under the control of the cytomegalovirus promoter. The resultant plasmid was introduced into HEK293 cells. The fluorescent intensity of humanized mNeonGreen was about 1.4-fold higher than that of the original mNeonGreen. The humanized mNeonGreen with a mitochondria-targeting signal showed mitochondrial distribution of mNeonGreen. We further generated an expression vector of humanized mNeonGreen with 3xFLAG tags at its carboxyl terminus as these tags are useful for immunological analyses. The 3xFLAG-tagged mNeonGreen was recognized well with an anti-FLAG-M2 antibody. These plasmids for the expression of humanized mNeonGreen and mNeonGreen-3xFLAG are useful tools for biological studies in mammalian cells using mNeonGreen.

  18. Manipulation of gene expression by infrared laser heat shock and its application to the study of tracheal development in Drosophila.

    Science.gov (United States)

    Miao, Guangxia; Hayashi, Shigeo

    2015-03-01

    Induction of gene expression in a specific cell and a defined time window is desirable to investigate gene function at the cellular level during morphogenesis. To achieve this, we attempted to introduce the infrared laser-evoked gene operator system (IR-LEGO, Kamei et al., 2009) in the Drosophila embryo. In this technique, infrared laser light illumination induces genes to be expressed under the control of heat shock promoters at the single cell level. We applied IR-LEGO to a transgenic fly stock, HS-eGFP, in which the enhanced green fluorescent protein (eGFP) gene is placed under the control of heat shock protein 70 promoter, and showed that eGFP expression can be induced in single cells within 1-2 hr after IR illumination. Furthermore, induction of HS-Branchless transgene encoding the Drosophila fibroblast growth factor (FGF) effectively altered the migration and branching patterns of the tracheal system. Our results indicated that IR-LEGO is a promising choice for the timely control of gene expression in a small group of cells in the Drosophila embryo. By using IR-LEGO, we further demonstrated that the tracheal terminal branching program is sensitive to localized expression of exogenous FGF. © 2014 Wiley Periodicals, Inc.

  19. Quantitative monitoring of the Chlamydia trachomatis developmental cycle using GFP-expressing bacteria, microscopy and flow cytometry.

    Directory of Open Access Journals (Sweden)

    François Vromman

    Full Text Available Chlamydiae are obligate intracellular bacteria. These pathogens develop inside host cells through a biphasic cycle alternating between two morphologically distinct forms, the infectious elementary body and the replicative reticulate body. Recently, C. trachomatis strains stably expressing fluorescent proteins were obtained. The fluorochromes are expressed during the intracellular growth of the microbe, allowing bacterial visualization by fluorescence microscopy. Whether they are also present in the infectious form, the elementary body, to a detectable level has not been studied. Here, we show that a C. trachomatis strain transformed with a plasmid expressing the green fluorescent protein (GFP accumulates sufficient quantities of the probe in elementary bodies for detection by microscopy and flow cytometry. Adhesion of single bacteria was detected. The precise kinetics of bacterial entry were determined by microscopy using automated procedures. We show that during the intracellular replication phase, GFP is a convenient read-out for bacterial growth with several advantages over current methods. In particular, infection rates within a non-homogenous cell population are easily quantified. Finally, in spite of their small size, individual elementary bodies are detected by flow cytometers, allowing for direct enumeration of a bacterial preparation. In conclusion, GFP-expressing chlamydiae are suitable to monitor, in a quantitative manner, progression throughout the developmental cycle. This will facilitate the identification of the developmental steps targeted by anti-chlamydial drugs or host factors.

  20. Cloning and characterisation of the SpToll gene from green mud crab, Scylla paramamosain.

    Science.gov (United States)

    Lin, Zhongyang; Qiao, Jie; Zhang, Yueling; Guo, Lingling; Huang, He; Yan, Fang; Li, Yuanyou; Wang, Xiuying

    2012-05-01

    Toll/Toll-like receptors (TLRs), one of the most important pattern recognition receptors (PRRs), play a crucial role in innate immune responses in both invertebrates and vertebrates. In this study, we cloned and characterised a Toll gene from Scylla paramamosain (SpToll). Bioinformatic analysis predicted that SpToll contained one open reading frame of 3018bp and encoded a single-pass transmembrane domain protein of 1005 amino acids. Further, SpToll could be clustered into one branch along with other arthropod Tolls in a phylogenetic tree. SpToll transcripts could be detected by RT-PCR from all tissues examined including the heart, gill, hepatopancreas, stomach, intestine, muscle, eyestalk and hemocytes. Infection by Vibrio parahemolyticus up-regulated SpToll mRNA expression in hemocytes after 48h. The profile of single nucleotide polymorphisms (SNPs) in the leucine-rich repeats (LRRs) domain of SpToll in three healthy crabs was then evaluated. Two hundred and twenty SNPs with a frequency of about 1.0-4.0% were identified in hemocyte DNA/cDNA. Surprisingly, the adenine to guanine transition at position 1372 (c.1372A>G) had a frequency of about 50%. Finally, the results showed that challenge with V. parahemolyticus stimulated the appearance of two sets of SNPs in crabs. More importantly, the c.1372A>G mutation could contribute to a low mortality after V. parahemolyticus infection and introduce variation of charge and secondary structure into the SpToll polypeptide. In summary, these studies suggested a novel Toll homologue in crab and identified a SNP with potential pathogen-resistant activities. The result will be important for the investigation of crab immune defense mechanisms. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Metaphysical green

    DEFF Research Database (Denmark)

    Earon, Ofri

    2011-01-01

    to adapt to urban environment. It explores the potential of Sensation of Green in the city. The paper questions whether the Sensation of Green could introduce a new spectrum of greens, beside the real green. It develops the term of metaphysical green – does green have to be green or can it be only...

  2. Differential diagnosis of feline leukemia virus subgroups using pseudotype viruses expressing green fluorescent protein.

    Science.gov (United States)

    Nakamura, Megumi; Sato, Eiji; Miura, Tomoyuki; Baba, Kenji; Shimoda, Tetsuya; Miyazawa, Takayuki

    2010-06-01

    Feline leukemia virus (FeLV) is classified into three receptor interference subgroups, A, B and C. In this study, to differentiate FeLV subgroups, we developed a simple assay system using pseudotype viruses expressing green fluorescent protein (GFP). We prepared gfp pseudotype viruses, named gfp(FeLV-A), gfp(FeLV-B) and gfp(FeLV-C) harboring envelopes of FeLV-A, B and C, respectively. The gfp pseudotype viruses completely interfered with the same subgroups of FeLV reference strains on FEA cells (a feline embryonic fibroblast cell line). We also confirmed that the pseudotype viruses could differentiate FeLV subgroups in field isolates. The assay will be useful for differential diagnosis of FeLV subgroups in veterinary diagnostic laboratories in the future.

  3. Comparison of different tissue clearing methods and 3D imaging techniques for visualization of GFP-expressing mouse embryos and embryonic hearts

    Czech Academy of Sciences Publication Activity Database

    Kolesová, H.; Čapek, Martin; Radochová, Barbora; Janáček, Jiří; Sedmera, David

    2016-01-01

    Roč. 146, č. 2 (2016), s. 142-152 ISSN 0948-6143 R&D Projects: GA ČR(CZ) GA13-12412S; GA MŠk(CZ) LH13028 Institutional support: RVO:67985823 Keywords : green fluorescent protein (GFP) * confocal microscopy * optical projection tomography * tissue transparency * heart * embryo Subject RIV: EA - Cell Biology Impact factor: 2.553, year: 2016

  4. Refractive Index Sensing of Green Fluorescent Proteins in Living Cells Using Fluorescence Lifetime Imaging Microscopy

    Science.gov (United States)

    van Manen, Henk-Jan; Verkuijlen, Paul; Wittendorp, Paul; Subramaniam, Vinod; van den Berg, Timo K.; Roos, Dirk; Otto, Cees

    2008-01-01

    We show that fluorescence lifetime imaging microscopy (FLIM) of green fluorescent protein (GFP) molecules in cells can be used to report on the local refractive index of intracellular GFP. We expressed GFP fusion constructs of Rac2 and gp91phox, which are both subunits of the phagocyte NADPH oxidase enzyme, in human myeloid PLB-985 cells and showed by high-resolution confocal fluorescence microscopy that GFP-Rac2 and GFP-gp91phox are targeted to the cytosol and to membranes, respectively. Frequency-domain FLIM experiments on these PLB-985 cells resulted in average fluorescence lifetimes of 2.70 ns for cytosolic GFP-Rac2 and 2.31 ns for membrane-bound GFP-gp91phox. By comparing these lifetimes with a calibration curve obtained by measuring GFP lifetimes in PBS/glycerol mixtures of known refractive index, we found that the local refractive indices of cytosolic GFP-Rac2 and membrane-targeted GFP-gp91phox are ∼1.38 and ∼1.46, respectively, which is in good correspondence with reported values for the cytosol and plasma membrane measured by other techniques. The ability to measure the local refractive index of proteins in living cells by FLIM may be important in revealing intracellular spatial heterogeneities within organelles such as the plasma and phagosomal membrane. PMID:18223002

  5. A Multiplex SYBR Green Real-Time PCR Assay for the Detection of Three Colistin Resistance Genes from Cultured Bacteria, Feces, and Environment Samples

    Directory of Open Access Journals (Sweden)

    Jiyun Li

    2017-10-01

    Full Text Available The aim of the study was to develop a multiplex assay for rapid detection of mcr-1, mcr-2, and mcr-3, a group of genes of conferring resistance to colistin mediated by plasmid in Enterobacteriaceae. A SYBR Green based real-time PCR assay has been designed to detect the mcr genes, and applied to cultured bacteria, feces and soil samples. All three mcr genes could be detected with a lower limit of 102 cultured bacteria. This test was highly specific and sensitive, and generated no false-positive results. The assay was also conclusive when applied to feces and soil samples containing mcr-1-positive Escherichia coli, which could facilitate the screening of mcr genes not only in the bacteria, but also directly from the environment. This simple, rapid, sensitive, and specific multiplex assay will be useful for rapid screening of the colistin resistance in both clinical medicine and animal husbandry.

  6. Green(ing) infrastructure

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2014-03-01

    Full Text Available the generation of electricity from renewable sources such as wind, water and solar. Grey infrastructure – In the context of storm water management, grey infrastructure can be thought of as the hard, engineered systems to capture and convey runoff..., pumps, and treatment plants.  Green infrastructure reduces energy demand by reducing the need to collect and transport storm water to a suitable discharge location. In addition, green infrastructure such as green roofs, street trees and increased...

  7. Knock-in of Enhanced Green Fluorescent Protein or/and Human Fibroblast Growth Factor 2 Gene into β-Casein Gene Locus in the Porcine Fibroblasts to Produce Therapeutic Protein.

    Science.gov (United States)

    Lee, Sang Mi; Kim, Ji Woo; Jeong, Young-Hee; Kim, Se Eun; Kim, Yeong Ji; Moon, Seung Ju; Lee, Ji-Hye; Kim, Keun-Jung; Kim, Min-Kyu; Kang, Man-Jong

    2014-11-01

    Transgenic animals have become important tools for the production of therapeutic proteins in the domestic animal. Production efficiencies of transgenic animals by conventional methods as microinjection and retrovirus vector methods are low, and the foreign gene expression levels are also low because of their random integration in the host genome. In this study, we investigated the homologous recombination on the porcine β-casein gene locus using a knock-in vector for the β-casein gene locus. We developed the knock-in vector on the porcine β-casein gene locus and isolated knock-in fibroblast for nuclear transfer. The knock-in vector consisted of the neomycin resistance gene (neo) as a positive selectable marker gene, diphtheria toxin-A gene as negative selection marker, and 5' arm and 3' arm from the porcine β-casein gene. The secretion of enhanced green fluorescent protein (EGFP) was more easily detected in the cell culture media than it was by western blot analysis of cell extract of the HC11 mouse mammary epithelial cells transfected with EGFP knock-in vector. These results indicated that a knock-in system using β-casein gene induced high expression of transgene by the gene regulatory sequence of endogenous β-casein gene. These fibroblasts may be used to produce transgenic pigs for the production of therapeutic proteins via the mammary glands.

  8. Site-targeted non-viral gene delivery by direct DNA injection into the pancreatic parenchyma and subsequent in vivo electroporation in mice.

    Science.gov (United States)

    Sato, Masahiro; Inada, Emi; Saitoh, Issei; Ohtsuka, Masato; Nakamura, Shingo; Sakurai, Takayuki; Watanabe, Satoshi

    2013-11-01

    The pancreas is considered an important gene therapy target because the organ is the site of several high burden diseases, including diabetes mellitus, cystic fibrosis, and pancreatic cancer. We aimed to develop an efficient in vivo gene delivery system using non-viral DNA. Direct intra-parenchymal injection of a solution containing circular plasmid pmaxGFP DNA was performed on adult anesthetized ICR female mice. The injection site was sandwiched with a pair of tweezer-type electrode disks, and electroporated using a square-pulse generator. Green fluorescent protein (GFP) expression within the injected pancreatic portion was observed one day after gene delivery. GFP expression reduced to baseline within a week of transfection. Application of voltages over 40 V resulted in tissue damage during electroporation. We demonstrate that electroporation is effective for safe and efficient transfection of pancreatic cells. This novel gene delivery method to the pancreatic parenchyma may find application in gene therapy strategies for pancreatic diseases and in investigation of specific gene function in situ. © 2013 The Authors. Biotechnology Journal published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptions are made.

  9. Insulin-like growth factor-I gene therapy reverses morphologic changes and reduces hyperprolactinemia in experimental rat prolactinomas

    Directory of Open Access Journals (Sweden)

    Bracamonte Maria I

    2008-01-01

    Full Text Available Abstract Background The implementation of gene therapy for the treatment of pituitary tumors emerges as a promising complement to surgery and may have distinct advantages over radiotherapy for this type of tumors. Up to now, suicide gene therapy has been the main experimental approach explored to treat experimental pituitary tumors. In the present study we assessed the effectiveness of insulin-like growth factor I (IGF-I gene therapy for the treatment of estrogen-induced prolactinomas in rats. Results Female Sprague Dawley rats were subcutaneously implanted with silastic capsules filled with 17-β estradiol (E2 in order to induce pituitary prolactinomas. Blood samples were taken at regular intervals in order to measure serum prolactin (PRL. As expected, serum PRL increased progressively and 23 days after implanting the E2 capsules (Experimental day 0, circulating PRL had undergone a 3–4 fold increase. On Experimental day 0 part of the E2-implanted animals received a bilateral intrapituitary injection of either an adenoviral vector expressing the gene for rat IGF-I (RAd-IGFI, or a vector (RAd-GFP expressing the gene for green fluorescent protein (GFP. Seven days post vector injection all animals were sacrificed and their pituitaries morphometrically analyzed to evaluate changes in the lactotroph population. RAd-IGFI but not RAd-GFP, induced a significant fall in serum PRL. Furthermore, RAd-IGFI but not RAd-GFP significantly reversed the increase in lactotroph size (CS and volume density (VD induced by E2 treatment. Conclusion We conclude that IGF-I gene therapy constitutes a potentially useful intervention for the treatment of prolactinomas and that bioactive peptide gene delivery may open novel therapeutic avenues for the treatment of pituitary tumors.

  10. Genes involved in the astrocyte-neuron lactate shuttle (ANLS) are specifcally regulated in cortical astrocytes following sleep deprivation in mice

    KAUST Repository

    Petit, Jean Marie

    2013-10-01

    Study Objectives: There is growing evidence indicating that in order to meet the neuronal energy demands, astrocytes provide lactate as an energy substrate for neurons through a mechanism called "astrocyte-neuron lactate shuttle" (ANLS). Since neuronal activity changes dramatically during vigilance states, we hypothesized that the ANLS may be regulated during the sleep-wake cycle. To test this hypothesis we investigated the expression of genes associated with the ANLS specifcally in astrocytes following sleep deprivation. Astrocytes were purifed by fuorescence-activated cell sorting from transgenic mice expressing the green fuorescent protein (GFP) under the control of the human astrocytic GFAP-promoter. Design: 6-hour instrumental sleep deprivation (TSD). Setting: Animal sleep research laboratory. Participants: Young (P23-P27) FVB/N-Tg (GFAP-GFP) 14Mes/J (Tg) mice of both sexes and 7-8 week male Tg and FVB/Nj mice. Interventions: Basal sleep recordings and sleep deprivation achieved using a modifed cage where animals were gently forced to move. Measurements and Results: Since Tg and FVB/Nj mice displayed a similar sleep-wake pattern, we performed a TSD in young Tg mice. Total RNA was extracted from the GFP-positive and GFP-negative cells sorted from cerebral cortex. Quantitative RT-PCR analysis showed that levels of Glut1, a-2-Na/K pump, Glt1, and Ldha mRNAs were signifcantly increased following TSD in GFP-positive cells. In GFP-negative cells, a tendency to increase, although not signifcant, was observed for Ldha, Mct2, and α-3-Na/K pump mRNAs. Conclusions: This study shows that TSD induces the expression of genes associated with ANLS specifcally in astrocytes, underlying the important role of astrocytes in the maintenance of the neuro-metabolic coupling across the sleep-wake cycle.

  11. Genes involved in the astrocyte-neuron lactate shuttle (ANLS) are specifically regulated in cortical astrocytes following sleep deprivation in mice.

    Science.gov (United States)

    Petit, Jean-Marie; Gyger, Joël; Burlet-Godinot, Sophie; Fiumelli, Hubert; Martin, Jean-Luc; Magistretti, Pierre J

    2013-10-01

    There is growing evidence indicating that in order to meet the neuronal energy demands, astrocytes provide lactate as an energy substrate for neurons through a mechanism called "astrocyte-neuron lactate shuttle" (ANLS). Since neuronal activity changes dramatically during vigilance states, we hypothesized that the ANLS may be regulated during the sleep-wake cycle. To test this hypothesis we investigated the expression of genes associated with the ANLS specifically in astrocytes following sleep deprivation. Astrocytes were purified by fluorescence-activated cell sorting from transgenic mice expressing the green fluorescent protein (GFP) under the control of the human astrocytic GFAP-promoter. 6-hour instrumental sleep deprivation (TSD). Animal sleep research laboratory. Young (P23-P27) FVB/N-Tg (GFAP-GFP) 14Mes/J (Tg) mice of both sexes and 7-8 week male Tg and FVB/Nj mice. Basal sleep recordings and sleep deprivation achieved using a modified cage where animals were gently forced to move. Since Tg and FVB/Nj mice displayed a similar sleep-wake pattern, we performed a TSD in young Tg mice. Total RNA was extracted from the GFP-positive and GFP-negative cells sorted from cerebral cortex. Quantitative RT-PCR analysis showed that levels of Glut1, α-2-Na/K pump, Glt1, and Ldha mRNAs were significantly increased following TSD in GFP-positive cells. In GFP-negative cells, a tendency to increase, although not significant, was observed for Ldha, Mct2, and α-3-Na/K pump mRNAs. This study shows that TSD induces the expression of genes associated with ANLS specifically in astrocytes, underlying the important role of astrocytes in the maintenance of the neuro-metabolic coupling across the sleep-wake cycle.

  12. Efficient and dynamic nuclear localization of green fluorescent protein via RNA binding

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, Akira; Nakayama, Yusaku; Kinjo, Masataka, E-mail: kinjo@sci.hokudai.ac.jp

    2015-07-31

    Classical nuclear localization signal (NLS) sequences have been used for artificial localization of green fluorescent protein (GFP) in the nucleus as a positioning marker or for measurement of the nuclear-cytoplasmic shuttling rate in living cells. However, the detailed mechanism of nuclear retention of GFP-NLS remains unclear. Here, we show that a candidate mechanism for the strong nuclear retention of GFP-NLS is via the RNA-binding ability of the NLS sequence. GFP tagged with a classical NLS derived from Simian virus 40 (GFP-NLS{sup SV40}) localized not only in the nucleoplasm, but also to the nucleolus, the nuclear subdomain in which ribosome biogenesis takes place. GFP-NLS{sup SV40} in the nucleolus was mobile, and intriguingly, the diffusion coefficient, which indicates the speed of diffusing molecules, was 1.5-fold slower than in the nucleoplasm. Fluorescence correlation spectroscopy (FCS) analysis showed that GFP-NLS{sup SV40} formed oligomers via RNA binding, the estimated molecular weight of which was larger than the limit for passive nuclear export into the cytoplasm. These findings suggest that the nuclear localization of GFP-NLS{sup SV40} likely results from oligomerization mediated via RNA binding. The analytical technique used here can be applied for elucidating the details of other nuclear localization mechanisms, including those of several types of nuclear proteins. In addition, GFP-NLS{sup SV40} can be used as an excellent marker for studying both the nucleoplasm and nucleolus in living cells. - Highlights: • Nuclear localization signal-tagged GFP (GFP-NLS) showed clear nuclear localization. • The GFP-NLS dynamically localized not only in the nucleoplasm, but also to the nucleolus. • The nuclear localization of GFP-NLS results from transient oligomerization mediated via RNA binding. • Our NLS-tagging procedure is ideal for use in artificial sequestration of proteins in the nucleus.

  13. Efficient and dynamic nuclear localization of green fluorescent protein via RNA binding

    International Nuclear Information System (INIS)

    Kitamura, Akira; Nakayama, Yusaku; Kinjo, Masataka

    2015-01-01

    Classical nuclear localization signal (NLS) sequences have been used for artificial localization of green fluorescent protein (GFP) in the nucleus as a positioning marker or for measurement of the nuclear-cytoplasmic shuttling rate in living cells. However, the detailed mechanism of nuclear retention of GFP-NLS remains unclear. Here, we show that a candidate mechanism for the strong nuclear retention of GFP-NLS is via the RNA-binding ability of the NLS sequence. GFP tagged with a classical NLS derived from Simian virus 40 (GFP-NLS SV40 ) localized not only in the nucleoplasm, but also to the nucleolus, the nuclear subdomain in which ribosome biogenesis takes place. GFP-NLS SV40 in the nucleolus was mobile, and intriguingly, the diffusion coefficient, which indicates the speed of diffusing molecules, was 1.5-fold slower than in the nucleoplasm. Fluorescence correlation spectroscopy (FCS) analysis showed that GFP-NLS SV40 formed oligomers via RNA binding, the estimated molecular weight of which was larger than the limit for passive nuclear export into the cytoplasm. These findings suggest that the nuclear localization of GFP-NLS SV40 likely results from oligomerization mediated via RNA binding. The analytical technique used here can be applied for elucidating the details of other nuclear localization mechanisms, including those of several types of nuclear proteins. In addition, GFP-NLS SV40 can be used as an excellent marker for studying both the nucleoplasm and nucleolus in living cells. - Highlights: • Nuclear localization signal-tagged GFP (GFP-NLS) showed clear nuclear localization. • The GFP-NLS dynamically localized not only in the nucleoplasm, but also to the nucleolus. • The nuclear localization of GFP-NLS results from transient oligomerization mediated via RNA binding. • Our NLS-tagging procedure is ideal for use in artificial sequestration of proteins in the nucleus

  14. Real-time PCR based on SYBR-Green I fluorescence: An alternative to the TaqMan assay for a relative quantification of gene rearrangements, gene amplifications and micro gene deletions

    Directory of Open Access Journals (Sweden)

    Puisieux Alain

    2003-10-01

    Full Text Available Abstract Background Real-time PCR is increasingly being adopted for RNA quantification and genetic analysis. At present the most popular real-time PCR assay is based on the hybridisation of a dual-labelled probe to the PCR product, and the development of a signal by loss of fluorescence quenching as PCR degrades the probe. Though this so-called 'TaqMan' approach has proved easy to optimise in practice, the dual-labelled probes are relatively expensive. Results We have designed a new assay based on SYBR-Green I binding that is quick, reliable, easily optimised and compares well with the published assay. Here we demonstrate its general applicability by measuring copy number in three different genetic contexts; the quantification of a gene rearrangement (T-cell receptor excision circles (TREC in peripheral blood mononuclear cells; the detection and quantification of GLI, MYC-C and MYC-N gene amplification in cell lines and cancer biopsies; and detection of deletions in the OPA1 gene in dominant optic atrophy. Conclusion Our assay has important clinical applications, providing accurate diagnostic results in less time, from less biopsy material and at less cost than assays currently employed such as FISH or Southern blotting.

  15. Establishment of a hepatocellular carcinoma cell line expressing dual reporter genes: sodium iodide symporter (NIS) and enhanced green fluorescence protein (EGFP)

    International Nuclear Information System (INIS)

    Kwak, Won Jung; Koo, Bon Chul; Kwon, Mo Sun

    2007-01-01

    Dual reporter gene imaging has several advantages for more sophisticated molecular imaging studies such as gene therapy monitoring. Herein, we have constructed hepatoma cell line expressing dual reporter genes of sodium iodide symporter (NIS) and enhanced green fluorescence protein (EGFP), and the functionalities of the genes were evaluated in vivo by nuclear and optical imaging. A pRetro-PN vector was constructed after separating NIS gene from pcDNA-NIS. RSV-EGFP-WPRE fragment separated from pLNRGW was cloned into pRetro-PN vector. The final vector expressing dual reporter genes was named pRetro-PNRGW. A human hepatoma (HepG2) cells were transfected by the retrovirus containing NIS and EGFP gene (HepG2-NE). Expression of NIS gene was confirmed by RT-PCR, radioiodine uptake and efflux studies. Expression of EGFP was confirmed by RT-PCR and fluorescence microscope. The HepG2 and HepG2-NE cells were implanted in shoulder and hindlimb of nude mice, then fluorescence image, gamma camera image and I-124 microPET image were undertaken. The HepG2-NE cell was successfully constructed. RT-PCR showed NIS and EGFP mRNA expression. About 50% of cells showed fluorescence. The iodine uptake of NIS-expressed cells was about 9 times higher than control. In efflux study, T 1/2 of HepG2-NE cells was 9 min. HepG2-NE xenograft showed high signal-to-background fluorescent spots and higher iodine-uptake compared to those of HepG2 xenograft. A hepatoma cell line expressing NIS and EGFP dual reporter genes was successfully constructed and could be used as a potential either by therapeutic gene or imaging reporter gene

  16. Biased hypermutation occurred frequently in a gene inserted into the IC323 recombinant measles virus during its persistence in the brains of nude mice

    Energy Technology Data Exchange (ETDEWEB)

    Otani, Sanae [Department of Virology and Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585 (Japan); Department of Pediatrics, Graduate School of Medicine, Osaka City University, Osaka (Japan); Ayata, Minoru, E-mail: maverick@med.osaka-cu.ac.jp [Department of Virology and Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585 (Japan); Takeuchi, Kaoru [Laboratory of Environmental Microbiology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Ibaraki (Japan); Takeda, Makoto [Department of Virology 3, National Institute of Infectious Diseases, Tokyo (Japan); Shintaku, Haruo [Department of Pediatrics, Graduate School of Medicine, Osaka City University, Osaka (Japan); Ogura, Hisashi [Department of Virology and Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585 (Japan)

    2014-08-15

    Measles virus (MV) is the causative agent of measles and its neurological complications, subacute sclerosing panencephalitis (SSPE) and measles inclusion body encephalitis (MIBE). Biased hypermutation in the M gene is a characteristic feature of SSPE and MIBE. To determine whether the M gene is the preferred target of hypermutation, an additional transcriptional unit containing a humanized Renilla reniformis green fluorescent protein (hrGFP) gene was introduced into the IC323 MV genome, and nude mice were inoculated intracerebrally with the virus. Biased hypermutation occurred in the M gene and also in the hrGFP gene when it was inserted between the leader and the N gene, but not between the H and L gene. These results indicate that biased hypermutation is usually found in a gene whose function is not essential for viral proliferation in the brain and that the location of a gene in the MV genome can affect its mutational frequency. - Highlights: • Wild-type MV can cause persistent infections in nude mice. • Biased hypermutation occurred in the M gene. • Biased hypermutation occurred in an inessential gene inserted between the leader and the N gene.

  17. Biased hypermutation occurred frequently in a gene inserted into the IC323 recombinant measles virus during its persistence in the brains of nude mice

    International Nuclear Information System (INIS)

    Otani, Sanae; Ayata, Minoru; Takeuchi, Kaoru; Takeda, Makoto; Shintaku, Haruo; Ogura, Hisashi

    2014-01-01

    Measles virus (MV) is the causative agent of measles and its neurological complications, subacute sclerosing panencephalitis (SSPE) and measles inclusion body encephalitis (MIBE). Biased hypermutation in the M gene is a characteristic feature of SSPE and MIBE. To determine whether the M gene is the preferred target of hypermutation, an additional transcriptional unit containing a humanized Renilla reniformis green fluorescent protein (hrGFP) gene was introduced into the IC323 MV genome, and nude mice were inoculated intracerebrally with the virus. Biased hypermutation occurred in the M gene and also in the hrGFP gene when it was inserted between the leader and the N gene, but not between the H and L gene. These results indicate that biased hypermutation is usually found in a gene whose function is not essential for viral proliferation in the brain and that the location of a gene in the MV genome can affect its mutational frequency. - Highlights: • Wild-type MV can cause persistent infections in nude mice. • Biased hypermutation occurred in the M gene. • Biased hypermutation occurred in an inessential gene inserted between the leader and the N gene

  18. Neutralization of Bacterial YoeBSpn Toxicity and Enhanced Plant Growth in Arabidopsis thaliana via Co-Expression of the Toxin-Antitoxin Genes

    Science.gov (United States)

    Abu Bakar, Fauziah; Yeo, Chew Chieng; Harikrishna, Jennifer Ann

    2016-01-01

    Bacterial toxin-antitoxin (TA) systems have various cellular functions, including as part of the general stress response. The genome of the Gram-positive human pathogen Streptococcus pneumoniae harbors several putative TA systems, including yefM-yoeBSpn, which is one of four systems that had been demonstrated to be biologically functional. Overexpression of the yoeBSpn toxin gene resulted in cell stasis and eventually cell death in its native host, as well as in Escherichia coli. Our previous work showed that induced expression of a yoeBSpn toxin-Green Fluorescent Protein (GFP) fusion gene apparently triggered apoptosis and was lethal in the model plant, Arabidopsis thaliana. In this study, we investigated the effects of co-expression of the yefMSpn antitoxin and yoeBSpn toxin-GFP fusion in transgenic A. thaliana. When co-expressed in Arabidopsis, the YefMSpn antitoxin was found to neutralize the toxicity of YoeBSpn-GFP. Interestingly, the inducible expression of both yefMSpn antitoxin and yoeBSpn toxin-GFP fusion in transgenic hybrid Arabidopsis resulted in larger rosette leaves and taller plants with a higher number of inflorescence stems and increased silique production. To our knowledge, this is the first demonstration of a prokaryotic antitoxin neutralizing its cognate toxin in plant cells. PMID:27104531

  19. Neutralization of Bacterial YoeBSpn Toxicity and Enhanced Plant Growth in Arabidopsis thaliana via Co-Expression of the Toxin-Antitoxin Genes

    Directory of Open Access Journals (Sweden)

    Fauziah Abu Bakar

    2016-04-01

    Full Text Available Bacterial toxin-antitoxin (TA systems have various cellular functions, including as part of the general stress response. The genome of the Gram-positive human pathogen Streptococcus pneumoniae harbors several putative TA systems, including yefM-yoeBSpn, which is one of four systems that had been demonstrated to be biologically functional. Overexpression of the yoeBSpn toxin gene resulted in cell stasis and eventually cell death in its native host, as well as in Escherichia coli. Our previous work showed that induced expression of a yoeBSpn toxin-Green Fluorescent Protein (GFP fusion gene apparently triggered apoptosis and was lethal in the model plant, Arabidopsis thaliana. In this study, we investigated the effects of co-expression of the yefMSpn antitoxin and yoeBSpn toxin-GFP fusion in transgenic A. thaliana. When co-expressed in Arabidopsis, the YefMSpn antitoxin was found to neutralize the toxicity of YoeBSpn-GFP. Interestingly, the inducible expression of both yefMSpn antitoxin and yoeBSpn toxin-GFP fusion in transgenic hybrid Arabidopsis resulted in larger rosette leaves and taller plants with a higher number of inflorescence stems and increased silique production. To our knowledge, this is the first demonstration of a prokaryotic antitoxin neutralizing its cognate toxin in plant cells.

  20. Early postnatal virus inoculation into the scala media achieved extensive expression of exogenous green fluorescent protein in the inner ear and preserved auditory brainstem response thresholds.

    Science.gov (United States)

    Wang, Yunfeng; Sun, Yu; Chang, Qing; Ahmad, Shoeb; Zhou, Binfei; Kim, Yeunjung; Li, Huawei; Lin, Xi

    2013-01-01

    Gene transfer into the inner ear is a promising approach for treating sensorineural hearing loss. The special electrochemical environment of the scala media raises a formidable challenge for effective gene delivery at the same time as keeping normal cochlear function intact. The present study aimed to define a suitable strategy for preserving hearing after viral inoculation directly into the scala media performed at various postnatal developmental stages. We assessed transgene expression of green fluorescent protein (GFP) mediated by various types of adeno-associated virus (AAV) and lentivirus (LV) in the mouse cochlea. Auditory brainstem responses were measured 30 days after inoculation to assess effects on hearing. Patterns of GFP expression confirmed extensive exogenous gene expression in various types of cells lining the endolymphatic space. The use of different viral vectors and promoters resulted in specific cellular GFP expression patterns. AAV2/1 with cytomegalovirus promoter apparently gave the best results for GFP expression in the supporting cells. Histological examination showed normal cochlear morphology and no hair cell loss after either AAV or LV injections. We found that hearing thresholds were not significantly changed when the injections were performed in mice younger than postnatal day 5, regardless of the type of virus tested. Viral inoculation and expression in the inner ear for the restoration of hearing must not damage cochlear function. Using normal hearing mice as a model, we have achieved this necessary step, which is required for the treatment of many types of congenital deafness that require early intervention. Copyright © 2013 John Wiley & Sons, Ltd.

  1. The impact of intragenic CpG content on gene expression.

    Science.gov (United States)

    Bauer, Asli Petra; Leikam, Doris; Krinner, Simone; Notka, Frank; Ludwig, Christine; Längst, Gernot; Wagner, Ralf

    2010-07-01

    The development of vaccine components or recombinant therapeutics critically depends on sustained expression of the corresponding transgene. This study aimed to determine the contribution of intragenic CpG content to expression efficiency in transiently and stably transfected mammalian cells. Based upon a humanized version of green fluorescent protein (GFP) containing 60 CpGs within its coding sequence, a CpG-depleted variant of the GFP reporter was established by carefully modulating the codon usage. Interestingly, GFP reporter activity and detectable protein amounts in stably transfected CHO and 293 cells were significantly decreased upon CpG depletion and independent from promoter usage (CMV, EF1 alpha). The reduction in protein expression associated with CpG depletion was likewise observed for other unrelated reporter genes and was clearly reflected by a decline in mRNA copy numbers rather than translational efficiency. Moreover, decreased mRNA levels were neither due to nuclear export restrictions nor alternative splicing or mRNA instability. Rather, the intragenic CpG content influenced de novo transcriptional activity thus implying a common transcription-based mechanism of gene regulation via CpGs. Increased high CpG transcription correlated with changed nucleosomal positions in vitro albeit histone density at the two genes did not change in vivo as monitored by ChIP.

  2. Preparation and Characterization of Gelatin-Based Mucoadhesive Nanocomposites as Intravesical Gene Delivery Scaffolds

    Directory of Open Access Journals (Sweden)

    Ching-Wen Liu

    2014-01-01

    Full Text Available This study aimed to develop optimal gelatin-based mucoadhesive nanocomposites as scaffolds for intravesical gene delivery to the urothelium. Hydrogels were prepared by chemically crosslinking gelatin A or B with glutaraldehyde. Physicochemical and delivery properties including hydration ratio, viscosity, size, yield, thermosensitivity, and enzymatic degradation were studied, and scanning electron microscopy (SEM was carried out. The optimal hydrogels (H, composed of 15% gelatin A175, displayed an 81.5% yield rate, 87.1% hydration ratio, 42.9 Pa·s viscosity, and 125.8 nm particle size. The crosslinking density of the hydrogels was determined by performing pronase degradation and ninhydrin assays. In vitro lentivirus (LV release studies involving p24 capsid protein analysis in 293T cells revealed that hydrogels containing lentivirus (H-LV had a higher cumulative release than that observed for LV alone (3.7-, 2.3-, and 2.3-fold at days 1, 3, and 5, resp.. Lentivirus from lentivector constructed green fluorescent protein (GFP was then entrapped in hydrogels (H-LV-GFP. H-LV-GFP showed enhanced gene delivery in AY-27 cells in vitro and to rat urothelium by intravesical instillation in vivo. Cystometrogram showed mucoadhesive H-LV reduced peak micturition and threshold pressure and increased bladder compliance. In this study, we successfully developed first optimal gelatin-based mucoadhesive nanocomposites as intravesical gene delivery scaffolds.

  3. The apoptotic response in HCT116BAX-/- cancer cells becomes rapidly saturated with increasing expression of a GFP-BAX fusion protein

    International Nuclear Information System (INIS)

    Semaan, Sheila J; Nickells, Robert W

    2010-01-01

    Many chemotherapeutic agents promote tumor cell death by activating the intrinsic pathway of apoptosis. Intrinsic apoptosis involves permeabilization of the mitochondrial outer membrane and the release of cytochrome c, a process that is controlled by proteins of the BCL2 gene family. Chemoresistance is often associated with abnormalities in concentrations of BCL2 family proteins. Although stoichiometirc interactions between anti-apoptotic and BH3-only BCL2 family proteins have been well documented as affecting cell death, the association between changes in BAX concentration and intrinsic apoptosis are poorly understood. Exogenous GFP-murine Bax fusion constructs were transfected into BAX-deficient HCT116 cells. To titrate the expression of the fusion protein, GFP-BAX was cloned into a tetracycline sensitive expression cassette and cotransfected with a plasmid expressing the rtTA transcription factor into HCT116 BAX-/- cells. Linear expression of the fusion gene was induced with doxycycline and monitored by quantitative PCR and immunoblotting. Cell death was assayed by DAPI staining cells after exposure to indomethacin, and scoring nuclei for condensed chromatin and fragmented nuclei. HCT116 BAX-/- cells were resistant to indomethacin, but susceptibility could be recovered in cells expressing a GFP-BAX fusion protein. Titration of GFP-BAX expression revealed that the concentration of BAX required to induce a saturating apoptosis response from baseline, was rapidly achieved. Increased levels of GFP-BAX were unable to stimulate higher levels of cell death. Examination of GFP-BAX distribution before and after indomethacin treatment indicated that BAX protein did not form aggregates when present at sub-lethal concentrations. Within the limitations of this experimental system, BAX-dependent apoptosis in HCT116 cells exhibits an all-or-none response depending on the level of BAX protein present. The lack of BAX aggregation at sub-saturation levels suggests that the

  4. The apoptotic response in HCT116BAX-/- cancer cells becomes rapidly saturated with increasing expression of a GFP-BAX fusion protein

    Directory of Open Access Journals (Sweden)

    Semaan Sheila J

    2010-10-01

    Full Text Available Abstract Background Many chemotherapeutic agents promote tumor cell death by activating the intrinsic pathway of apoptosis. Intrinsic apoptosis involves permeabilization of the mitochondrial outer membrane and the release of cytochrome c, a process that is controlled by proteins of the BCL2 gene family. Chemoresistance is often associated with abnormalities in concentrations of BCL2 family proteins. Although stoichiometirc interactions between anti-apoptotic and BH3-only BCL2 family proteins have been well documented as affecting cell death, the association between changes in BAX concentration and intrinsic apoptosis are poorly understood. Methods Exogenous GFP-murine Bax fusion constructs were transfected into BAX-deficient HCT116 cells. To titrate the expression of the fusion protein, GFP-BAX was cloned into a tetracycline sensitive expression cassette and cotransfected with a plasmid expressing the rtTA transcription factor into HCT116BAX-/- cells. Linear expression of the fusion gene was induced with doxycycline and monitored by quantitative PCR and immunoblotting. Cell death was assayed by DAPI staining cells after exposure to indomethacin, and scoring nuclei for condensed chromatin and fragmented nuclei. Results HCT116BAX-/- cells were resistant to indomethacin, but susceptibility could be recovered in cells expressing a GFP-BAX fusion protein. Titration of GFP-BAX expression revealed that the concentration of BAX required to induce a saturating apoptosis response from baseline, was rapidly achieved. Increased levels of GFP-BAX were unable to stimulate higher levels of cell death. Examination of GFP-BAX distribution before and after indomethacin treatment indicated that BAX protein did not form aggregates when present at sub-lethal concentrations. Conclusion Within the limitations of this experimental system, BAX-dependent apoptosis in HCT116 cells exhibits an all-or-none response depending on the level of BAX protein present. The lack of

  5. Agrobacterium rhizogenes-dependent production of transformed roots from foliar explants of pepper (Capsicum annuum): a new and efficient tool for functional analysis of genes.

    Science.gov (United States)

    Aarrouf, J; Castro-Quezada, P; Mallard, S; Caromel, B; Lizzi, Y; Lefebvre, V

    2012-02-01

    Pepper is known to be a recalcitrant species to genetic transformation via Agrobacterium tumefaciens. A. rhizogenes-mediated transformation offers an alternative and rapid possibility to study gene functions in roots. In our study, we developed a new and efficient system for A. rhizogenes transformation of the cultivated species Capsicum annuum. Hypocotyls and foliar organs (true leaves and cotyledons) of Yolo Wonder (YW) and Criollo de Morelos 334 (CM334) pepper cultivars were inoculated with the two constructs pBIN-gus and pHKN29-gfp of A. rhizogenes strain A4RS. Foliar explants of both pepper genotypes infected by A4RS-pBIN-gus or A4RS-pHKN29-gfp produced transformed roots. Optimal results were obtained using the combination of the foliar explants with A4RS-pHKN29-gfp. 20.5% of YW foliar explants and 14.6% of CM334 foliar explants inoculated with A4RS-pHKN29-gfp produced at least one root expressing uniform green fluorescent protein. We confirmed by polymerase chain reaction the presence of the rolB and gfp genes in the co-transformed roots ensuring that they integrated both the T-DNA from the Ri plasmid and the reporter gene. We also demonstrated that co-transformed roots of YW and CM334 displayed the same resistance response to Phytophthora capsici than the corresponding untransformed roots. Our novel procedure to produce C. annuum hairy roots will thus support the functional analysis of potential resistance genes involved in pepper P. capsici interaction.

  6. Polyethyleneimine grafted short halloysite nanotubes for gene delivery.

    Science.gov (United States)

    Long, Zheru; Zhang, Jun; Shen, Yan; Zhou, Changren; Liu, Mingxian

    2017-12-01

    Inorganic nanoparticles have attracted much attentions in gene delivery because of their desirable characteristics including low toxicity, well-controlled characteristics, high gene delivery efficiency, and multi-functionalities. Here, natural occurred halloysite nanotubes (HNTs) were developed as a novel non-viral gene vector. To increase the efficiency of endocytosis, HNTs were firstly shortened into an appropriate size (~200nm). Then polyethyleneimine (PEI) was grafted onto HNTs to bind green fluorescence protein (GFP) labeled pDNA. The structure and physical-chemical properties of PEI grafted HNTs (PEI-g-HNTs) were characterized by various methods. PEI-g-HNTs show lower cytotoxicity than PEI. PEI-g-HNTs are positively charged and can bind DNA tightly at designed N/P ratio from 5:1 to 40:1. PEI-g-HNTs/pDNA complexes show much higher transfection efficiency towards both 293T and HeLa cells compared with PEI/pDNA complexes at the equivalent N/P ratio. The transfection efficiencies of PEI-g-HNTs/pDNA complex towards HeLa cell can reach to 44.4% at N/P ratio of 20. PEI-g-HNTs/pDNA complexes possess a higher GFP protein expression than PEI/pDNA from simple western immunoblots. So, PEI-g-HNTs are potential gene vectors with good biocompatibility and high transfection efficiency, which have promising applications in cancer gene therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Expression of tomato prosystemin gene in Arabidopsis reveals systemic translocation of its mRNA and confers necrotrophic fungal resistance.

    Science.gov (United States)

    Zhang, Haiyan; Yu, Pengli; Zhao, Jiuhai; Jiang, Hongling; Wang, Haiyang; Zhu, Yingfang; Botella, Miguel A; Šamaj, Jozef; Li, Chuanyou; Lin, Jinxing

    2018-01-01

    Systemin (SYS), an octadecapeptide hormone processed from a 200-amino-acid precursor (prosystemin, PS), plays a central role in the systemic activation of defense genes in tomato in response to herbivore and pathogen attacks. However, whether PS mRNA is transferable and its role in systemic defense responses remain unknown. We created the transgenic tomato PS gene tagged with the green fluorescent protein (PS-GFP) using a shoot- or root-specific promoter, and the constitutive 35S promoter in Arabidopsis. Subcellular localization of PS-/SYS-GFP was observed using confocal laser scanning microscopy and gene transcripts were determined using quantitative real-time PCR. In Arabidopsis, PS protein can be processed and SYS is secreted. Shoot-/root-specific expression of PS-GFP in Arabidopsis, and grafting experiments, revealed that the PS mRNA moves in a bi-directional manner. We also found that ectopic expression of PS improves Arabidopsis resistance to the necrotrophic fungus Botrytis cinerea, consistent with substantial upregulation of the transcript levels of specific pathogen-responsive genes. Our results provide novel insights into the multifaceted mechanism of SYS signaling transport and its potential application in genetic engineering for increasing pathogen resistance across diverse plant families. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  8. [Chromosomal localization of foreign genes in transgenic mice using dual-color fluorescence in situ hybridization].

    Science.gov (United States)

    Lin, Dan; Gong, Xiu-li; Li, Wei; Guo, Xin-bing; Zhu, Yi-wen; Huang, Ying

    2008-02-01

    To establish a highly sensitive and specific dual-color fluorescence in situ hybridization (D-FISH) method used for chromosomal localization of foreign genes in double transgenic mice. Two strains of double transgenic mice were used in this experiment, one was integrated with the herpes simplex virus thymidine kinase (HSV-tk) and the enhanced green fluorescence protein (eGFP), the other was with the short hairpin RNA interference(RNAi) and beta(654). Splenic cells cultured in vitro were arrested in metaphase by colchicine and hybridized with digoxigenin-labeled and biotinylated DNA probes, then detected by rhodamine-conjugated avidin and FITC-conjugated anti-digoxigenin. Dual-color fluorescence signals were detected on the same metaphase in both transgenic mice strains. In HSV-tk/eGFP double transgenic mice, strong green fluorescence for HSV-tk and red for eGFP were observed and localized at 2E5-G3 and 8A2-A4 respectively. In beta(654)/RNAi mice, beta(654) was detected as red fluorescence on chromosome 7D3-E2, and RNAi showed random integration on chromosomes. It was detected as green fluorescence on chromosome 12B1 in one mouse, while on 1E2.3-1F and 3A3 in the other. Highly sensitive and specific D-FISH method was established using the self-prepared DNA probes, and chromosomal localization of the foreign genes was also performed in combination with G-banding in double transgenic mice. This technology will facilitate the researches in transgenic animals and gene therapy models.

  9. Functional incorporation of green fluorescent protein into hepatitis B virus envelope particles

    International Nuclear Information System (INIS)

    Lambert, Carsten; Thome, Nicole; Kluck, Christoph J.; Prange, Reinhild

    2004-01-01

    The envelope of hepatitis B virus (HBV), containing the L, M, and S proteins, is essential for virus entry and maturation. For direct visualization of HBV, we determined whether envelope assembly could accommodate the green fluorescent protein (GFP). While the C-terminal addition of GFP to S trans-dominant negatively inhibited empty envelope particle secretion, the N-terminal GFP fusion to S (GFP.S) was co-integrated into the envelope, giving rise to fluorescent particles. Microscopy and topogenesis analyses demonstrated that the proper intracellular distribution and folding of GFP.S, required for particle export were rescued by interprotein interactions with wild-type S. Thereby, a dual location of GFP, inside and outside the envelope, was observed. GFP.S was also efficiently packaged into the viral envelope, and these GFP-tagged virions retained the capacity for attachment to HBV receptor-positive cells in vitro. Together, GFP-tagged virions should be suitable to monitor HBV uptake and egress in live hepatocytes

  10. A Single Transcriptome of a Green Toad (Bufo viridis Yields Candidate Genes for Sex Determination and -Differentiation and Non-Anonymous Population Genetic Markers.

    Directory of Open Access Journals (Sweden)

    Jörn F Gerchen

    Full Text Available Large genome size, including immense repetitive and non-coding fractions, still present challenges for capacity, bioinformatics and thus affordability of whole genome sequencing in most amphibians. Here, we test the performance of a single transcriptome to understand whether it can provide a cost-efficient resource for species with large unknown genomes. Using RNA from six different tissues from a single Palearctic green toad (Bufo viridis specimen and Hiseq2000, we obtained 22,5 Mio reads and publish >100,000 unigene sequences. To evaluate efficacy and quality, we first use this data to identify green toad specific candidate genes, known from other vertebrates for their role in sex determination and differentiation. Of a list of 37 genes, the transcriptome yielded 32 (87%, many of which providing the first such data for this non-model anuran species. However, for many of these genes, only fragments could be retrieved. In order to allow also applications to population genetics, we further used the transcriptome for the targeted development of 21 non-anonymous microsatellites and tested them in genetic families and backcrosses. Eleven markers were specifically developed to be located on the B. viridis sex chromosomes; for eight markers we can indeed demonstrate sex-specific transmission in genetic families. Depending on phylogenetic distance, several markers, which are sex-linked in green toads, show high cross-amplification success across the anuran phylogeny, involving nine systematic anuran families. Our data support the view that single transcriptome sequencing (based on multiple tissues provides a reliable genomic resource and cost-efficient method for non-model amphibian species with large genome size and, despite limitations, should be considered as long as genome sequencing remains unaffordable for most species.

  11. Cross-platform comparison of SYBR® Green real-time PCR with TaqMan PCR, microarrays and other gene expression measurement technologies evaluated in the MicroArray Quality Control (MAQC study

    Directory of Open Access Journals (Sweden)

    Dial Stacey L

    2008-07-01

    Full Text Available Abstract Background The MicroArray Quality Control (MAQC project evaluated the inter- and intra-platform reproducibility of seven microarray platforms and three quantitative gene expression assays in profiling the expression of two commercially available Reference RNA samples (Nat Biotechnol 24:1115-22, 2006. The tested microarrays were the platforms from Affymetrix, Agilent Technologies, Applied Biosystems, GE Healthcare, Illumina, Eppendorf and the National Cancer Institute, and quantitative gene expression assays included TaqMan® Gene Expression PCR Assay, Standardized (Sta RT-PCR™ and QuantiGene®. The data showed great consistency in gene expression measurements across different microarray platforms, different technologies and test sites. However, SYBR® Green real-time PCR, another common technique utilized by half of all real-time PCR users for gene expression measurement, was not addressed in the MAQC study. In the present study, we compared the performance of SYBR Green PCR with TaqMan PCR, microarrays and other quantitative technologies using the same two Reference RNA samples as the MAQC project. We assessed SYBR Green real-time PCR using commercially available RT2 Profiler™ PCR Arrays from SuperArray, containing primer pairs that have been experimentally validated to ensure gene-specificity and high amplification efficiency. Results The SYBR Green PCR Arrays exhibit good reproducibility among different users, PCR instruments and test sites. In addition, the SYBR Green PCR Arrays have the highest concordance with TaqMan PCR, and a high level of concordance with other quantitative methods and microarrays that were evaluated in this study in terms of fold-change correlation and overlap of lists of differentially expressed genes. Conclusion These data demonstrate that SYBR Green real-time PCR delivers highly comparable results in gene expression measurement with TaqMan PCR and other high-density microarrays.

  12. Ubiquilin overexpression reduces GFP-polyalanine-induced protein aggregates and toxicity

    International Nuclear Information System (INIS)

    Wang Hongmin; Monteiro, Mervyn J.

    2007-01-01

    Several human disorders are associated with an increase in a continuous stretch of alanine amino acids in proteins. These so-called polyalanine expansion diseases share many similarities with polyglutamine-related disorders, including a length-dependent reiteration of amino acid induction of protein aggregation and cytotoxicity. We previously reported that overexpression of ubiquilin reduces protein aggregates and toxicity of expanded polyglutamine proteins. Here, we demonstrate a similar role for ubiquilin toward expanded polyalanine proteins. Overexpression of ubiquilin-1 in HeLa cells reduced protein aggregates and the cytotoxicity associated with expression of a transfected nuclear-targeted GFP-fusion protein containing 37-alanine repeats (GFP-A37), in a dose dependent manner. Ubiquilin coimmunoprecipitated more with GFP proteins containing a 37-polyalanine tract compared to either 7 (GFP-A7), or no alanine tract (GFP). Moreover, overexpression of ubiquilin suppressed the increased vulnerability of HeLa cell lines stably expressing the GFP-A37 fusion protein to oxidative stress-induced cell death compared to cell lines expressing GFP or GFP-A7 proteins. By contrast, siRNA knockdown of ubiquilin expression in the GFP-A37 cell line was associated with decreased cellular proliferation, and increases in GFP protein aggregates, nuclear fragmentation, and cell death. Our results suggest that boosting ubiquilin levels in cells might provide a universal and attractive strategy to prevent toxicity of proteins containing reiterative expansions of amino acids involved in many human diseases

  13. Towards green loyalty: the influences of green perceived risk, green image, green trust and green satisfaction

    Science.gov (United States)

    Chrisjatmiko, K.

    2018-01-01

    The paper aims to present a comprehensive framework for the influences of green perceived risk, green image, green trust and green satisfaction to green loyalty. The paper also seeks to account explicitly for the differences in green perceived risk, green image, green trust, green satisfaction and green loyalty found among green products customers. Data were obtained from 155 green products customers. Structural equation modeling was used in order to test the proposed hypotheses. The findings show that green image, green trust and green satisfaction has positive effects to green loyalty. But green perceived risk has negative effects to green image, green trust and green satisfaction. However, green perceived risk, green image, green trust and green satisfaction also seems to be a good device to gain green products customers from competitors. The contributions of the paper are, firstly, a more complete framework of the influences of green perceived risk, green image, green trust and green satisfaction to green loyalty analyses simultaneously. Secondly, the study allows a direct comparison of the difference in green perceived risk, green image, green trust, green satisfaction and green loyalty between green products customers.

  14. Transformation of a Dwarf "Arabidopsis" Mutant Illustrates Gibberellin Hormone Physiology and the Function of a Green Revolution Gene

    Science.gov (United States)

    Molina, Isabel; Weber, Katrin; Alves Cursino dos Santos, Deborah Y.; Ohlrogge, John

    2009-01-01

    The introduction of dwarfing traits into crops was a major factor in increased grain yields during the "Green Revolution." In most cases those traits were the consequence of altered synthesis or response to the gibberellin (GA) plant hormones. Our current understanding of GA synthesis and physiology has been facilitated by the characterization of…

  15. Preparation and characterization of magnetic gene vectors for targeting gene delivery

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, S.W.; Liu, G. [College of Chemistry, Chemical Engineering and Materials Science and Key Laboratory of Organic Synthesis of Jiangsu Province, Soochow University, SIP, Suzhou 215123 (China); Hong, R.Y., E-mail: rhong@suda.edu.cn [College of Chemistry, Chemical Engineering and Materials Science and Key Laboratory of Organic Synthesis of Jiangsu Province, Soochow University, SIP, Suzhou 215123 (China); State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080 (China); Li, H.Z. [State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080 (China); Li, Y.G., E-mail: ilguoliang@sohu.com [Department of radiology, the First Affiliated Hospital of Soochow University, Suzhou 215007 (China); Wei, D.G., E-mail: dougwei@deas.harvard.edu [Center for Nanoscale Systems, School of Engineering and Applied Science, Harvard University, 11 Oxford Street, Cambridge, MA 02139 (United States)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer PEI is ideal candidate polymer for the design of gene delivery systems. Black-Right-Pointing-Pointer PEI-CMD-MNPs exhibited a typical superparamagnetic behavior. Black-Right-Pointing-Pointer PEI-CMD-MNPs were well stable over the entire range of pH and NaCl concentration. Black-Right-Pointing-Pointer DNA-PEI-CMD-MNPs transfected cells by a magnet have higher transfection efficiency and gene expression efficiency. - Abstract: The PEI-CMD-MNPs were successfully prepared by the surface modification of magnetic Fe{sub 3}O{sub 4} nanoparticles with carboxymethyl dextran (CMD) and polyethyleneimine (PEI). The PEI-CMD-MNPs polyplexes exhibited a typical superparamagnetic behavior and were well stable over the entire range of pH and NaCl concentration. These PEI-CMD-MNPs were used as magnetic gene vectors for targeting gene delivery. The prepared MNPs at different surface modification stages were characterized using Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA), field emissions canning electron microscopy (FE-SEM), powder X-ray diffraction (XRD) and dynamic laser light scattering (DLS) analysis. The magnetic properties were studied by vibrating sample magnetometer (VSM). To evaluate the performance of the magnetic nanoparticles as gene transfer vector, the PEI-CMD-MNPs were used to delivery green fluorescent protein (GFP) gene into BHK21 cells. The expression of GFP gene was detected by fluorescence microscope. DNA-PEI-CMD-MNPs polyplexes absorbed by the cells were also monitored by Magnetic resonance imaging (MRI). The transfection efficiency and gene expression efficiency of that transfected with a magnet were much higher than that of standard transfection.

  16. Bacterially produced Pt-GFP as ratiometric dual-excitation sensor for in planta mapping of leaf apoplastic pH in intact Avena sativa and Vicia faba.

    Science.gov (United States)

    Geilfus, Christoph-Martin; Mühling, Karl H; Kaiser, Hartmut; Plieth, Christoph

    2014-01-01

    Ratiometric analysis with H(+)-sensitive fluorescent sensors is a suitable approach for monitoring apoplastic pH dynamics. For the acidic range, the acidotropic dual-excitation dye Oregon Green 488 is an excellent pH sensor. Long lasting (hours) recordings of apoplastic pH in the near neutral range, however, are more problematic because suitable pH indicators that combine a good pH responsiveness at a near neutral pH with a high photostability are lacking. The fluorescent pH reporter protein from Ptilosarcus gurneyi (Pt-GFP) comprises both properties. But, as a genetically encoded indicator and expressed by the plant itself, it can be used almost exclusively in readily transformed plants. In this study we present a novel approach and use purified recombinant indicators for measuring ion concentrations in the apoplast of crop plants such as Vicia faba L. and Avena sativa L. Pt-GFP was purified using a bacterial expression system and subsequently loaded through stomata into the leaf apoplast of intact plants. Imaging verified the apoplastic localization of Pt-GFP and excluded its presence in the symplast. The pH-dependent emission signal stood out clearly from the background. PtGFP is highly photostable, allowing ratiometric measurements over hours. By using this approach, a chloride-induced alkalinizations of the apoplast was demonstrated for the first in oat. Pt-GFP appears to be an excellent sensor for the quantification of leaf apoplastic pH in the neutral range. The presented approach encourages to also use other genetically encoded biosensors for spatiotemporal mapping of apoplastic ion dynamics.

  17. Immunogenicity and Efficacy of Live L. tarentolae Expressing KMP11-NTGP96-GFP Fusion as a Vaccine Candidate against Experimental Visceral Leishmaniasis Caused by L. infantum

    Directory of Open Access Journals (Sweden)

    Vahid NASIRI

    2016-10-01

    Full Text Available Background: The aim of present study was to evaluate the protective efficacy of live recombinant L. tarentolae expressing KMP11-NTGP96-GFP fusion as candidates for live engineered recombinant vaccine against visceral leishmaniasis in BALB/c mice.Methods: KMP-11 and NT-GP96 genes cloned into the pJET1.2/blunt cloning vector and then into pEGFP-N1 expression vector. The KMP-11, NT-GP96 and GFP fused in pEGFP-N1 and subcloned into Leishmanian pLEXSY-neo vector. Finally this construct was transferred to L. tarentolae by electroporation. Tranfection was confirmed by SDS-PAGE, WESTERN blot, flowcytometry and RT-PCR. Protective efficacy of this construct was evaluated as a vaccine candidate against visceral leishmaniasis. Parasite burden, humoral and cellular immune responses were assessed before and at 4 weeks after challenge.Results: KMP- NT-Gp96-GFP Fusion was cloned successfully into pLEXSY -neo vector and this construct successfully transferred to L. tarentolae. Finding indicated that immunization with L. tarentolae tarentolae-KMP11-NTGP96-GFP provides significant protection against visceral leishmaniasis and was able to induce an increased expression of IFN-γ and IgG2a. Following challenge, a reduced parasite load in the spleen of the KMP11-NTGP96-GFP immunized group was detected.Conclusion: The present study is the first to use a combination of a Leishmania antigen with an immunologic antigen in live recombinant L. tarentolae and results suggest that L. tarentolae-KMP11-NTGP96-GFP could be considered as a potential tool in vaccination against visceral leishmaniasis and this vaccination strategy could provide a potent rout for future vaccine development. 

  18. gfp-based N-acyl homoserine-lactone sensor systems for detection of bacterial communication

    DEFF Research Database (Denmark)

    Andersen, Jens Bo; Heydorn, Arne; Hentzer, Morten

    2001-01-01

    In order to perform single-cell analysis and online studies of N-acyl homoserine lactone (AHL)-mediated communication among bacteria, components of the Vibrio fischeri quorum sensor encoded by luxR-P-luxI have been fused to modified versions of gfpmut3* genes encoding unstable green fluorescent...... proteins. Bacterial strains harboring this green fluorescent sensor detected a broad spectrum of AHL molecules and were capable of sensing the presence of 5 nM N-3-oxohexanoyl-L-homoserine lactone in the surroundings. In combination with epifluorescent microscopy, the sensitivity of the sensor enabled AHL...

  19. Highly fluorescent benzofuran derivatives of the GFP chromophore

    DEFF Research Database (Denmark)

    Christensen, Mikkel Andreas; Jennum, Karsten Stein; Abrahamsen, Peter Bæch

    2012-01-01

    Intramolecular cyclization reactions of Green Fluorescent Protein chromophores (GFPc) containing an arylethynyl ortho-substituent at the phenol ring provide new aryl-substituted benzofuran derivatives of the GFPc. Some of these heteroaromatic compounds exhibit significantly enhanced fluorescence...

  20. A new protein-protein interaction sensor based on tripartite split-GFP association.

    Science.gov (United States)

    Cabantous, Stéphanie; Nguyen, Hau B; Pedelacq, Jean-Denis; Koraïchi, Faten; Chaudhary, Anu; Ganguly, Kumkum; Lockard, Meghan A; Favre, Gilles; Terwilliger, Thomas C; Waldo, Geoffrey S

    2013-10-04

    Monitoring protein-protein interactions in living cells is key to unraveling their roles in numerous cellular processes and various diseases. Previously described split-GFP based sensors suffer from poor folding and/or self-assembly background fluorescence. Here, we have engineered a micro-tagging system to monitor protein-protein interactions in vivo and in vitro. The assay is based on tripartite association between two twenty amino-acids long GFP tags, GFP10 and GFP11, fused to interacting protein partners, and the complementary GFP1-9 detector. When proteins interact, GFP10 and GFP11 self-associate with GFP1-9 to reconstitute a functional GFP. Using coiled-coils and FRB/FKBP12 model systems we characterize the sensor in vitro and in Escherichia coli. We extend the studies to mammalian cells and examine the FK-506 inhibition of the rapamycin-induced association of FRB/FKBP12. The small size of these tags and their minimal effect on fusion protein behavior and solubility should enable new experiments for monitoring protein-protein association by fluorescence.

  1. Patterning protein complexes on DNA nanostructures using a GFP nanobody.

    Science.gov (United States)

    Sommese, R F; Hariadi, R F; Kim, K; Liu, M; Tyska, M J; Sivaramakrishnan, S

    2016-11-01

    DNA nanostructures have become an important and powerful tool for studying protein function over the last 5 years. One of the challenges, though, has been the development of universal methods for patterning protein complexes on DNA nanostructures. Herein, we present a new approach for labeling DNA nanostructures by functionalizing them with a GFP nanobody. We demonstrate the ability to precisely control protein attachment via our nanobody linker using two enzymatic model systems, namely adenylyl cyclase activity and myosin motility. Finally, we test the power of this attachment method by patterning unpurified, endogenously expressed Arp2/3 protein complex from cell lysate. By bridging DNA nanostructures with a fluorescent protein ubiquitous throughout cell and developmental biology and protein biochemistry, this approach significantly streamlines the application of DNA nanostructures as a programmable scaffold in biological studies. © 2016 The Protein Society.

  2. GFP-Mutant Human Tau Transgenic Mice Develop Tauopathy Following CNS Injections of Alzheimer's Brain-Derived Pathological Tau or Synthetic Mutant Human Tau Fibrils.

    Science.gov (United States)

    Gibbons, Garrett S; Banks, Rachel A; Kim, Bumjin; Xu, Hong; Changolkar, Lakshmi; Leight, Susan N; Riddle, Dawn M; Li, Chi; Gathagan, Ronald J; Brown, Hannah J; Zhang, Bin; Trojanowski, John Q; Lee, Virginia M-Y

    2017-11-22

    Neurodegenerative proteinopathies characterized by intracellular aggregates of tau proteins, termed tauopathies, include Alzheimer's disease (AD), frontotemporal lobar degeneration (FTLD) with tau pathology (FTLD-tau), and related disorders. Pathological tau proteins derived from human AD brains (AD-tau) act as proteopathic seeds that initiate the templated aggregation of soluble tau upon intracerebral injection into tau transgenic (Tg) and wild-type mice, thereby modeling human tau pathology. In this study, we found that aged Tg mice of both sexes expressing human tau proteins harboring a pathogenic P301L MAPT mutation labeled with green fluorescent protein (T40PL-GFP Tg mouse line) exhibited hyperphosphorylated tau mislocalized to the somatodentritic domain of neurons, but these mice did not develop de novo insoluble tau aggregates, which are characteristic of human AD and related tauopathies. However, intracerebral injections of either T40PL preformed fibrils (PFFs) or AD-tau seeds into T40PL-GFP mice induced abundant intraneuronal pathological inclusions of hyperphosphorylated T40PL-GFP. These injections of pathological tau resulted in the propagation of tau pathology from the injection site to neuroanatomically connected brain regions, and these tau inclusions consisted of both T40PL-GFP and WT endogenous mouse tau. Primary neurons cultured from the brains of neonatal T40PL-GFP mice provided an informative in vitro model for examining the uptake and localization of tau PFFs. These findings demonstrate the seeded aggregation of T40PL-GFP in vivo by synthetic PFFs and human AD-tau and the utility of this system to study the neuropathological spread of tau aggregates. SIGNIFICANCE STATEMENT The stereotypical spread of pathological tau protein aggregates have recently been attributed to the transmission of proteopathic seeds. Despite the extensive use of transgenic mouse models to investigate the propagation of tau pathology in vivo , details of the aggregation

  3. Improved Resection and Outcome of Colon-Cancer Liver Metastasis with Fluorescence-Guided Surgery Using In Situ GFP Labeling with a Telomerase-Dependent Adenovirus in an Orthotopic Mouse Model.

    Directory of Open Access Journals (Sweden)

    Shuya Yano

    Full Text Available Fluorescence-guided surgery (FGS of cancer is an area of intense development. In the present report, we demonstrate that the telomerase-dependent green fluorescent protein (GFP-containing adenovirus OBP-401 could label colon-cancer liver metastasis in situ in an orthotopic mouse model enabling successful FGS. OBP-401-GFP-labeled liver metastasis resulted in complete resection with FGS, in contrast, conventional bright-light surgery (BLS did not result in complete resection of the metastasis. OBP-401-FGS reduced the recurrence rate and prolonged over-all survival compared with BLS. In conclusion, adenovirus OBP-401 is a powerful tool to label liver metastasis in situ with GFP which enables its complete resection, not possible with conventional BLS.

  4. Polyethylenimine-coated iron oxide magnetic nanoparticles for high efficient gene delivery

    Science.gov (United States)

    Nguyen, Anh H.; Abdelrasoul, Gaser N.; Lin, Donghai; Maadi, Hamid; Tong, Junfeng; Chen, Grace; Wang, Richard; Anwar, Afreen; Shoute, Lian; Fang, Qiang; Wang, Zhixiang; Chen, Jie

    2018-04-01

    Properties of magnetic nanoparticles (MNPs) are of notable interest in many fields of biomedical engineering, especially for gene therapy. In this paper, we report a method for synthesis and delivery of MNPs loaded with DNAs, which overcomes the drawbacks of high cost and cytotoxicity associated with current delivery techniques (chemical- and liposome-based designs). 24-nm MNPs (Fe3O4) were synthesized, functionalized and characterized by analytical techniques to understand the surface properties for DNA binding and cellular uptake. The simple surface functionalization with polyethylenimine (PEI) through glutaraldehyde linker activation gave the complex of PEI-coated MNPs, resulting in high stability with a positive surface charge of about + 31 mV. Under the guidance of an external magnetic field, the functionalized MNPs with a loaded isothiocyanate (FITC) or green fluorescent protein (GFP) will enter the cells, which can be visualized by the fluorescence of FITC or GFP. We also examined the cytotoxicity of our synthesized MNPs by MTT assay. We showed that the IC50s of these MNPs for COS-7 and CHO cells were low and at 0.2 and 0.26 mg/mL, respectively. Moreover, our synthesized MNPs that were loaded with plasmids encoding GFP showed high transfection rate, 38.3% for COS-7cells and 27.6% for CHO cells. In conclusion, we established a promising method with low cost, low toxicity, and high transfection efficiency for siRNA and gene delivery.

  5. Greening Flood Protection - An Interactive Knowledge Arrangement Perspective

    NARCIS (Netherlands)

    Janssen, S.K.H.; Tatenhove, van J.P.M.; Otter, H.S.; Mol, A.P.J.

    2015-01-01

    In flood protection, the dominant paradigm of ‘building hard structures’ is being challenged by approaches that integrate ecosystem dynamics and are ‘nature-based’. Knowledge development and policy ambitions on greening flood protection (GFP) are rapidly growing, but a deficit remains in actual

  6. A nanobody:GFP bacterial platform that enables functional enzyme display and easy quantification of display capacity.

    Science.gov (United States)

    Wendel, Sofie; Fischer, Emil C; Martínez, Virginia; Seppälä, Susanna; Nørholm, Morten H H

    2016-05-03

    Bacterial surface display is an attractive technique for the production of cell-anchored, functional proteins and engineering of whole-cell catalysts. Although various outer membrane proteins have been used for surface display, an easy and versatile high-throughput-compatible assay for evaluating and developing surface display systems is missing. Using a single domain antibody (also called nanobody) with high affinity for green fluorescent protein (GFP), we constructed a system that allows for fast, fluorescence-based detection of displayed proteins. The outer membrane hybrid protein LppOmpA and the autotransporter C-IgAP exposed the nanobody on the surface of Escherichia coli with very different efficiency. Both anchors were capable of functionally displaying the enzyme Chitinase A as a fusion with the nanobody, and this considerably increased expression levels compared to displaying the nanobody alone. We used flow cytometry to analyse display capability on single-cell versus population level and found that the signal peptide of the anchor has great effect on display efficiency. We have developed an inexpensive and easy read-out assay for surface display using nanobody:GFP interactions. The assay is compatible with the most common fluorescence detection methods, including multi-well plate whole-cell fluorescence detection, SDS-PAGE in-gel fluorescence, microscopy and flow cytometry. We anticipate that the platform will facilitate future in-depth studies on the mechanism of protein transport to the surface of living cells, as well as the optimisation of applications in industrial biotech.

  7. Probing microhydration effect on the electronic structure of the GFP chromophore anion: Photoelectron spectroscopy and theoretical investigations

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskaran-Nair, Kiran; Shelton, William A. [Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Valiev, Marat; Kowalski, Karol, E-mail: karol.kowalski@pnnl.gov [William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, K8-91, P.O. Box 999, Richland, Washington 99352 (United States); Deng, S. H. M.; Wang, Xue-Bin, E-mail: xuebin.wang@pnnl.gov [Physical Sciences Division, Pacific Northwest National Laboratory, K8-88, P.O. Box 999, Richland, Washington 99352 (United States)

    2015-12-14

    The photophysics of the Green Fluorescent Protein (GFP) chromophore is critically dependent on its local structure and on its environment. Despite extensive experimental and computational studies, there remain many open questions regarding the key fundamental variables that govern this process. One outstanding problem is the role of autoionization as a possible relaxation pathway of the excited state under different environmental conditions. This issue is considered in our work through combined experimental and theoretical studies of microsolvated clusters of the deprotonated p-hydroxybenzylidene-2,3-dimethylimidazolinone anion (HBDI{sup −}), an analog of the GFP chromophore. Through selective generation of microsolvated structures of predetermined size and subsequent analysis of experimental photoelectron spectra by high level ab initio methods, we are able to precisely identify the structure of the system, establish the accuracy of theoretical data, and provide reliable description of auto-ionization process as a function of hydrogen-bonding environment. Our study clearly illustrates the first few water molecules progressively stabilize the excited state of the chromophore anion against the autodetached neutral state, which should be an important trait for crystallographic water molecules in GFPs that has not been fully explored to date.

  8. Design of chimeric expression elements that confer high-level gene activity in chromoplasts.

    Science.gov (United States)

    Caroca, Rodrigo; Howell, Katharine A; Hasse, Claudia; Ruf, Stephanie; Bock, Ralph

    2013-02-01

    Non-green plastids, such as chromoplasts, generally have much lower activity of gene expression than chloroplasts in photosynthetically active tissues. Suppression of plastid genes in non-green tissues occurs through a complex interplay of transcriptional and translational control, with the contribution of regulation of transcript abundance versus translational activity being highly variable between genes. Here, we have investigated whether the low expression of the plastid genome in chromoplasts results from inherent limitations in gene expression capacity, or can be overcome by designing appropriate combinations of promoters and translation initiation signals in the 5' untranslated region (5'-UTR). We constructed chimeric expression elements that combine promoters and 5'-UTRs from plastid genes, which are suppressed during chloroplast-to-chromoplast conversion in Solanum lycopersicum (tomato) fruit ripening, either just at the translational level or just at the level of mRNA accumulation. These chimeric expression elements were introduced into the tomato plastid genome by stable chloroplast transformation. We report the identification of promoter-UTR combinations that confer high-level gene expression in chromoplasts of ripe tomato fruits, resulting in the accumulation of reporter protein GFP to up to 1% of total cellular protein. Our work demonstrates that non-green plastids are capable of expressing genes to high levels. Moreover, the chimeric cis-elements for chromoplasts developed here are widely applicable in basic and applied research using transplastomic methods. © 2012 The Authors The Plant Journal © 2012 Blackwell Publishing Ltd.

  9. [Construction and identification of eukaryotic plasmid pGC-silencer-U6/Neo/GFP/ABCG2].

    Science.gov (United States)

    Yu, Yanping; Zhang, Song; Kong, Weijia

    2010-09-01

    To construct three short hairpin RNA (shRNA) interference expression plasmid vectors of human ABCG2 gene, to assay the expression of ABCG2 in a human nasopharyngeal carcinoma (NPC) cell line, CEN-2 cell line, and to detect the RNAi effect of shRNA. Targeting ABCG2 gene sequence, three plasmid expression vectors coding for shRNA and a control vector containing random DNA fragment were constructed. The recombinant plasmids were amplified in Ecoli. DH5 and then identified by restriction digestion, PCR and sequencing. The recombinant plasmids were transfected into CEN-2 cells. ABCG2 expression was assayed by real-time quantitative PCR and Western blot. The construction of pGC-silencer-U6/Neo/GFP/ABCG2 was succeed. The shRNA plasmids significantly down-regulated the ABCG2 expression in CEN-2 cells, at both mRNA level and protein level. Recombinant plasmid 1 had the strongest effect compared with plasmids 2 and 3 (P < 0.05), with an inhibition ratio of 75% at the mRNA level and 68% at the protein level. pGC-silencer-U6/Neo/GFP/ABCG2 has been successfully constructed and it can down-regulate ABCG2 expression after transfected into CEN-2 cells, which could help further studies of ABCG2 functions CEN-2 cell line and contribute to the NPC gene therapy.

  10. The structure of mAG, a monomeric mutant of the green fluorescent protein Azami-Green, reveals the structural basis of its stable green emission

    International Nuclear Information System (INIS)

    Ebisawa, Tatsuki; Yamamura, Akihiro; Kameda, Yasuhiro; Hayakawa, Kou; Nagata, Koji; Tanokura, Masaru

    2010-01-01

    The crystal structure of a monomeric mutant of Azami-Green (mAG) from G. fascicularis was determined at 2.2 Å resolution. Monomeric Azami-Green (mAG) from the stony coral Galaxea fascicularis is the first known monomeric green-emitting fluorescent protein that is not a variant of Aequorea victoria green fluorescent protein (avGFP). These two green fluorescent proteins are only 27% identical in their amino-acid sequences. mAG is more similar in its amino-acid sequence to four fluorescent proteins: Dendra2 (a green-to-red irreversibly photoconverting fluorescent protein), Dronpa (a bright-and-dark reversibly photoswitchable fluorescent protein), KikG (a tetrameric green-emitting fluorescent protein) and Kaede (another green-to-red irreversibly photoconverting fluorescent protein). To reveal the structural basis of stable green emission by mAG, the 2.2 Å crystal structure of mAG has been determined and compared with the crystal structures of avGFP, Dronpa, Dendra2, Kaede and KikG. The structural comparison revealed that the chromophore formed by Gln62-Tyr63-Gly64 (QYG) and the fixing of the conformation of the imidazole ring of His193 by hydrogen bonds and van der Waals contacts involving His193, Arg66 and Thr69 are likely to be required for the stable green emission of mAG. The crystal structure of mAG will contribute to the design and development of new monomeric fluorescent proteins with faster maturation, brighter fluorescence, improved photostability, new colours and other preferable properties as alternatives to avGFP and its variants

  11. Gene transfer to primary corneal epithelial cells with an integrating lentiviral vector

    Directory of Open Access Journals (Sweden)

    Lauro Augusto de Oliveira

    2010-10-01

    Full Text Available PURPOSE: To evaluate the transfer of heterologous genes carrying a Green Fluorescent Protein (GFP reporter cassette to primary corneal epithelial cells ex vivo. METHODS: Freshly enucleated rabbit corneoscleral tissue was used to obtain corneal epithelial cell suspension via enzymatic digestion. Cells were plated at a density of 5×10³ cells/cm² and allowed to grow for 5 days (to 70-80% confluency prior to transduction. Gene transfer was monitored using fluorescence microscopy and fluorescence activated cell sorter (FACS. We evaluated the transduction efficiency (TE over time and the dose-response effect of different lentiviral particles. One set of cells were dual sorted by fluorescence activated cell sorter for green fluorescent protein expression as well as Hoechst dye exclusion to evaluate the transduction of potentially corneal epithelial stem cells (side-population phenotypic cells. RESULTS: Green fluorescent protein expressing lentiviral vectors were able to effectively transduce rabbit primary epithelial cells cultured ex vivo. Live cell imaging post-transduction demonstrated GFP-positive cells with normal epithelial cell morphology and growth. The transduction efficiency over time was higher at the 5th post-transduction day (14.1% and tended to stabilize after the 8th day. The number of transduced cells was dose-dependent, and at the highest lentivirus concentrations approached 7%. When double sorted by fluorescence activated cell sorter to isolate both green fluorescent protein positive and side population cells, transduced side population cells were identified. CONCLUSIONS: Lentiviral vectors can effectively transfer heterologous genes to primary corneal epithelial cells expanded ex vivo. Genes were stably expressed over time, transferred in a dose-dependence fashion, and could be transferred to mature corneal cells as well as presumable putative stem cells.

  12. Multiple ace genes encoding acetylcholinesterases of Caenorhabditis elegans have distinct tissue expression.

    Science.gov (United States)

    Combes, Didier; Fedon, Yann; Toutant, Jean-Pierre; Arpagaus, Martine

    2003-08-01

    ace-1 and ace-2 genes encoding acetylcholinesterase in the nematode Caenorhabditis elegans present 35% identity in coding sequences but no homology in noncoding regions (introns, 5'- and 3'-untranslated regions). A 5'-region of ace-2 was defined by rescue of ace-1;ace-2 mutants. When green fluorescent protein (GFP) expression was driven by this regulatory region, the resulting pattern was distinct from that of ace-1. This latter gene is expressed in all body-wall and vulval muscle cells (Culetto et al., 1999), whereas ace-2 is expressed almost exclusively in neurons. ace-3 and ace-4 genes are located in close proximity on chromosome II (Combes et al., 2000). These two genes were first transcribed in vivo as a bicistronic messenger and thus constitute an ace-3;ace-4 operon. However, there was a very low level of monocistronic mRNA of ace-4 (the upstream gene) in vivo, and no ACE-4 enzymatic activity was ever detected. GFP expression driven by a 5' upstream region of the ace-3;ace-4 operon was detected in several muscle cells of the pharynx (pm3, pm4, pm5 and pm7) and in the two canal associated neurons (CAN cells). A dorsal row of body-wall muscle cells was intensively labelled in larval stages but no longer detected in adults. The distinct tissue-specific expression of ace-1, ace-2 and ace-3 (coexpressed only in pm5 cells) indicates that ace genes are not redundant.

  13. Multi-state lasing in self-assembled ring-shaped green fluorescent protein microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, Christof P., E-mail: cpd3@st-andrews.ac.uk; Höfling, Sven; Gather, Malte C., E-mail: mcg6@st-andrews.ac.uk [SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS (United Kingdom)

    2014-12-08

    We demonstrate highly efficient lasing from multiple photonic states in microcavities filled with self-assembled rings of recombinant enhanced green fluorescent protein (eGFP) in its solid state form. The lasing regime is achieved at very low excitation energies of 13 nJ and occurs from cavity modes dispersed in both energy and momentum. We attribute the momentum distribution to very efficient scattering of incident light at the surface of the eGFP rings. The distribution of lasing states in energy is induced by the large spectral width of the gain spectrum of recombinant eGFP (FWHM ≅ 25 nm)

  14. Candidacy of a chitin-inducible gibberellin-responsive gene for a major locus affecting plant height in rice that is closely linked to Green Revolution gene sd1.

    Science.gov (United States)

    Kovi, Mallikarjuna Rao; Zhang, Yushan; Yu, Sibin; Yang, Gaiyu; Yan, Wenhao; Xing, Yongzhong

    2011-09-01

    Appropriate plant height is crucial for lodging resistance to improve the rice crop yield. The application of semi-dwarf 1 led to the green revolution in the 1960s, by predominantly increasing the rice yield. However, the frequent use of single sd1 gene sources may cause genetic vulnerability to pests and diseases. Identifying useful novel semi-dwarf genes is important for the genetic manipulation of plant architecture in practical rice breeding. In this study, introgression lines derived from two parents contrasting in plant height, Zhenshan 97 and Pokkali were employed to locate a gene with a large effect on plant height by the bulk segregant analysis method. A major gene, ph1, was mapped to a region closely linked to sd1 on chromosome 1; the additive effects of ph1 were more than 50 cm on the plant height and 2 days on the heading date in a BC(4)F(2) population and its progeny. ph1 was then fine mapped to BAC AP003227. Gene annotation indicated that LOC_OS01g65990 encoding a chitin-inducible gibberellin-responsive protein (CIGR), which belongs to the GRAS family, might be the right candidate gene of ph1. Co-segregation analysis of the candidate gene-derived marker finally confirmed its identity as the candidate gene. A higher expression level of the CIGR was detected in all the tested tissues in tall plants compared to those of short plants, especially in the young leaf sheath containing elongating tissues, which indicated its importance role in regulating plant height. ph1 showed a tremendous genetic effect on plant height, which is distinct from sd1 and could be a new resource for breeding semi-dwarf varieties.

  15. A modified GFP facilitates counting membrane protein subunits by step-wise photobleaching in Arabidopsis.

    Science.gov (United States)

    Song, Kai; Xue, Yiqun; Wang, Xiaohua; Wan, Yinglang; Deng, Xin; Lin, Jinxing

    2017-06-01

    Membrane proteins exert functions by forming oligomers or molecular complexes. Currently, step-wise photobleaching has been applied to count the fluorescently labelled subunits in plant cells, for which an accurate and reliable control is required to distinguish individual subunits and define the basal fluorescence. However, the common procedure using immobilized GFP molecules is obviously not applicable for analysis in living plant cells. Using the spatial intensity distribution analysis (SpIDA), we found that the A206K mutation reduced the dimerization of GFP molecules. Further ectopic expression of Myristoyl-GFP A206K driven by the endogenous AtCLC2 promoter allowed imaging of individual molecules at a low expression level. As a result, the percentage of dimers in the transgenic pCLC2::Myristoyl-mGFP A206K line was significantly reduced in comparison to that of the pCLC2::Myristoyl-GFP line, confirming its application in defining the basal fluorescence intensity of GFP. Taken together, our results demonstrated that pCLC2::Myristoyl-mGFP A206K can be used as a standard control for monomer GFP, facilitating the analysis of the step-wise photobleaching of membrane proteins in Arabidopsis thaliana. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. Visualizing multiple inter-organelle contact sites using the organelle-targeted split-GFP system.

    Science.gov (United States)

    Kakimoto, Yuriko; Tashiro, Shinya; Kojima, Rieko; Morozumi, Yuki; Endo, Toshiya; Tamura, Yasushi

    2018-04-18

    Functional integrity of eukaryotic organelles relies on direct physical contacts between distinct organelles. However, the entity of organelle-tethering factors is not well understood due to lack of means to analyze inter-organelle interactions in living cells. Here we evaluate the split-GFP system for visualizing organelle contact sites in vivo and show its advantages and disadvantages. We observed punctate GFP signals from the split-GFP fragments targeted to any pairs of organelles among the ER, mitochondria, peroxisomes, vacuole and lipid droplets in yeast cells, which suggests that these organelles form contact sites with multiple organelles simultaneously although it is difficult to rule out the possibilities that these organelle contacts sites are artificially formed by the irreversible associations of the split-GFP probes. Importantly, split-GFP signals in the overlapped regions of the ER and mitochondria were mainly co-localized with ERMES, an authentic ER-mitochondria tethering structure, suggesting that split-GFP assembly depends on the preexisting inter-organelle contact sites. We also confirmed that the split-GFP system can be applied to detection of the ER-mitochondria contact sites in HeLa cells. We thus propose that the split-GFP system is a potential tool to observe and analyze inter-organelle contact sites in living yeast and mammalian cells.

  17. Genome-wide identification of regulatory elements and reconstruction of gene regulatory networks of the green alga Chlamydomonas reinhardtii under carbon deprivation.

    Directory of Open Access Journals (Sweden)

    Flavia Vischi Winck

    Full Text Available The unicellular green alga Chlamydomonas reinhardtii is a long-established model organism for studies on photosynthesis and carbon metabolism-related physiology. Under conditions of air-level carbon dioxide concentration [CO2], a carbon concentrating mechanism (CCM is induced to facilitate cellular carbon uptake. CCM increases the availability of carbon dioxide at the site of cellular carbon fixation. To improve our understanding of the transcriptional control of the CCM, we employed FAIRE-seq (formaldehyde-assisted Isolation of Regulatory Elements, followed by deep sequencing to determine nucleosome-depleted chromatin regions of algal cells subjected to carbon deprivation. Our FAIRE data recapitulated the positions of known regulatory elements in the promoter of the periplasmic carbonic anhydrase (Cah1 gene, which is upregulated during CCM induction, and revealed new candidate regulatory elements at a genome-wide scale. In addition, time series expression patterns of 130 transcription factor (TF and transcription regulator (TR genes were obtained for cells cultured under photoautotrophic condition and subjected to a shift from high to low [CO2]. Groups of co-expressed genes were identified and a putative directed gene-regulatory network underlying the CCM was reconstructed from the gene expression data using the recently developed IOTA (inner composition alignment method. Among the candidate regulatory genes, two members of the MYB-related TF family, Lcr1 (Low-CO 2 response regulator 1 and Lcr2 (Low-CO2 response regulator 2, may play an important role in down-regulating the expression of a particular set of TF and TR genes in response to low [CO2]. The results obtained provide new insights into the transcriptional control of the CCM and revealed more than 60 new candidate regulatory genes. Deep sequencing of nucleosome-depleted genomic regions indicated the presence of new, previously unknown regulatory elements in the C. reinhardtii genome

  18. A MULTI-STAGE COLOR MODEL REVISITED: IMPLICATIONS FOR A GENE THERAPY CURE FOR RED-GREEN COLORBLINDNESS

    OpenAIRE

    Mancuso, Katherine; Mauck, Matthew C.; Kuchenbecker, James A.; Neitz, Maureen; Neitz, Jay

    2010-01-01

    In 1993, DeValois and DeValois proposed a “multi-stage color model” to explain how the cortex is ultimately able to deconfound the responses of neurons receiving input from three cone types in order to produce separate red-green and blue-yellow systems, as well as segregate luminance percepts (black-white) from color. This model extended the biological implementation of Hurvich and Jameson’s Opponent-Process Theory of color vision, a two-stage model encompassing the three cone types combined ...

  19. Recovery of human metapneumovirus from cDNA: optimization of growth in vitro and expression of additional genes

    International Nuclear Information System (INIS)

    Biacchesi, Stephane; Skiadopoulos, Mario H.; Tran, Kim C.; Murphy, Brian R.; Collins, Peter L.; Buchholz, Ursula J.

    2004-01-01

    Human metapneumovirus (HMPV) is a recently recognized causative agent of respiratory tract disease in individuals of all ages and especially young infants. HMPV remains poorly characterized and has been reported to replicate inefficiently in vitro. Complete consensus sequences were recently determined for two isolates representing the two proposed HMPV genetic subgroups (Biacchesi et al., Virology 315 (1) (2003) 1). We have developed a reverse genetic system to produce one of these isolates, CAN97-83, entirely from cDNA. We also recovered a version, rHMPV-GFP, in which the enhanced green fluorescent protein (GFP) was expressed from a transcription cassette inserted as the first gene, leaving the 41-nt leader region and first 16 nt of the N gene undisturbed. The ability to monitor GFP expression in living cells greatly facilitated the initial recovery of this slow-growing virus. In addition, the ability to express a foreign gene from an engineered transcription cassette confirmed the identification of the HMPV transcription signals and identified the F gene-end signal as being highly efficient for transcription termination. The ability to recover virus containing a foreign insert in this position indicated that the viral promoter is contained within the 3'-terminal 57 nt of the genome. Recombinant HMPV replicated in vitro as efficiently as biologically derived HMPV, whereas the kinetics and final yield of rHMPV-GFP were reduced several-fold. Conditions for trypsin treatment were investigated, providing for improved virus yields. Another version of HMPV, rHMPV+G1F23, was recovered that contained a second copy of the G gene and two extra copies of F in promoter-proximal positions in the order G1-F2-F3. Thus, this recombinant genome would encode 11 mRNAs rather than eight and would be 17.3 kb long, 30% longer than that of the natural virus. Nonetheless, the rHMPV+G1F23 virus replicated in vitro with an efficiency that was only modestly reduced compared to rHMPV and was

  20. Development and validation of a SYBR Green I-based real-time polymerase chain reaction method for detection of haptoglobin gene deletion in clinical materials.

    Science.gov (United States)

    Soejima, Mikiko; Tsuchiya, Yuji; Egashira, Kouichi; Kawano, Hiroyuki; Sagawa, Kimitaka; Koda, Yoshiro

    2010-06-01

    Anhaptoglobinemic patients run the risk of severe anaphylactic transfusion reaction because they produce serum haptoglobin (Hp) antibodies. Being homozygous for the Hp gene deletion (HP(del)) is the only known cause of congenital anhaptoglobinemia, and clinical diagnosis of HP(del) before transfusion is important to prevent anaphylactic shock. We recently developed a 5'-nuclease (TaqMan) real-time polymerase chain reaction (PCR) method. A SYBR Green I-based duplex real-time PCR assay using two forward primers and a common reverse primer followed by melting curve analysis was developed to determine HP(del) zygosity in a single tube. In addition, to obviate initial DNA extraction, we examined serially diluted blood samples as PCR templates. Allelic discrimination of HP(del) yielded optimal results at blood sample dilutions of 1:64 to 1:1024. The results from 2231 blood samples were fully concordant with those obtained by the TaqMan-based real-time PCR method. The detection rate of the HP(del) allele by the SYBR Green I-based method is comparable with that using the TaqMan-based method. This method is readily applicable due to its low initial cost and analyzability using economical real-time PCR machines and is suitable for high-throughput analysis as an alternative method for allelic discrimination of HP(del).

  1. Chromosomal gene inactivation in the green sulfur bacterium Chlorobium tepidum by natural transformation

    DEFF Research Database (Denmark)

    Frigaard, N-U; Bryant, D A

    2001-01-01

    Conditions for inactivating chromosomal genes of Chlorobium tepidum by natural transformation and homologous recombination were established. As a model, mutants unable to perform nitrogen fixation were constructed by interrupting nifD with various antibiotic resistance markers. Growth of wild...

  2. Gene therapy with brain-derived neurotrophic factor as a protection: retinal ganglion cells in a rat glaucoma model.

    Science.gov (United States)

    Martin, Keith R G; Quigley, Harry A; Zack, Donald J; Levkovitch-Verbin, Hana; Kielczewski, Jennifer; Valenta, Danielle; Baumrind, Lisa; Pease, Mary Ellen; Klein, Ronald L; Hauswirth, William W

    2003-10-01

    To develop a modified adenoassociated viral (AAV) vector capable of efficient transfection of retinal ganglion cells (RGCs) and to test the hypothesis that use of this vector to express brain-derived neurotrophic factor (BDNF) could be protective in experimental glaucoma. Ninety-three rats received one unilateral, intravitreal injection of either normal saline (n = 30), AAV-BDNF-woodchuck hepatitis posttranscriptional regulatory element (WPRE; n = 30), or AAV-green fluorescent protein (GFP)-WPRE (n = 33). Two weeks later, experimental glaucoma was induced in the injected eye by laser application to the trabecular meshwork. Survival of RGCs was estimated by counting axons in optic nerve cross sections after 4 weeks of glaucoma. Transgene expression was assessed by immunohistochemistry, Western blot analysis, and direct visualization of GFP. The density of GFP-positive cells in retinal wholemounts was 1,828 +/- 299 cells/mm(2) (72,273 +/- 11,814 cells/retina). Exposure to elevated intraocular pressure was similar in all groups. Four weeks after initial laser treatment, axon loss was 52.3% +/- 27.1% in the saline-treated group (n = 25) and 52.3% +/- 24.2% in the AAV-GFP-WPRE group (n = 30), but only 32.3% +/- 23.0% in the AAV-BDNF-WPRE group (n = 27). Survival in AAV-BDNF-WPRE animals increased markedly and the difference was significant compared with those receiving either AAV-GFP-WPRE (P = 0.002, t-test) or saline (P = 0.006, t-test). Overexpression of the BDNF gene protects RGC as estimated by axon counts in a rat glaucoma model, further supporting the potential feasibility of neurotrophic therapy as a complement to the lowering of IOP in the treatment of glaucoma.

  3. Identification of the Regulator Gene Responsible for the Acetone-Responsive Expression of the Binuclear Iron Monooxygenase Gene Cluster in Mycobacteria ▿

    Science.gov (United States)

    Furuya, Toshiki; Hirose, Satomi; Semba, Hisashi; Kino, Kuniki

    2011-01-01

    The mimABCD gene cluster encodes the binuclear iron monooxygenase that oxidizes propane and phenol in Mycobacterium smegmatis strain MC2 155 and Mycobacterium goodii strain 12523. Interestingly, expression of the mimABCD gene cluster is induced by acetone. In this study, we investigated the regulator gene responsible for this acetone-responsive expression. In the genome sequence of M. smegmatis strain MC2 155, the mimABCD gene cluster is preceded by a gene designated mimR, which is divergently transcribed. Sequence analysis revealed that MimR exhibits amino acid similarity with the NtrC family of transcriptional activators, including AcxR and AcoR, which are involved in acetone and acetoin metabolism, respectively. Unexpectedly, many homologs of the mimR gene were also found in the sequenced genomes of actinomycetes. A plasmid carrying a transcriptional fusion of the intergenic region between the mimR and mimA genes with a promoterless green fluorescent protein (GFP) gene was constructed and introduced into M. smegmatis strain MC2 155. Using a GFP reporter system, we confirmed by deletion and complementation analyses that the mimR gene product is the positive regulator of the mimABCD gene cluster expression that is responsive to acetone. M. goodii strain 12523 also utilized the same regulatory system as M. smegmatis strain MC2 155. Although transcriptional activators of the NtrC family generally control transcription using the σ54 factor, a gene encoding the σ54 factor was absent from the genome sequence of M. smegmatis strain MC2 155. These results suggest the presence of a novel regulatory system in actinomycetes, including mycobacteria. PMID:21856847

  4. Properties of GluR3 receptors tagged with GFP at the amino or carboxyl terminus.

    Science.gov (United States)

    Limon, Agenor; Reyes-Ruiz, Jorge Mauricio; Eusebi, Fabrizio; Miledi, Ricardo

    2007-09-25

    Anatomical visualization of neurotransmitter receptor localization is facilitated by tagging receptors, but this process can alter their functional properties. We have evaluated the distribution and properties of WT glutamate receptor 3 (GluR3) alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (WT GluR3) and two receptors in which GFP was tagged to the amino terminus (GFP-GluR3) or to the carboxyl terminus (GluR3-GFP). Although the fluorescence in Xenopus oocytes was stronger in the vegetal hemisphere because of localization of internal structures (probable sites of production, storage or recycling of receptors), the insertion of receptors into the plasma membrane was polarized to the animal hemisphere. The fluorescence intensity of oocytes injected with GluR3-GFP RNA was approximately double that of oocytes injected with GFP-GluR3 RNA. Accordingly, GluR3-GFP oocytes generated larger kainate-induced currents than GFP-GluR3 oocytes, with similar EC(50) values. Currents elicited by glutamate, or AMPA coapplied with cyclothiazide, were also larger in GluR3-GFP oocytes. The glutamate- to kainate-current amplitude ratios differed, with GluR3-GFP being activated more efficiently by glutamate than the WT or GFP-GluR3 receptors. This pattern correlates with the slower decay of glutamate-induced currents generated by GluR3-GFP receptors. These changes were not observed when GFP was tagged to the amino terminus, and these receptors behaved like the WT. The antagonistic effects of 6-nitro-7-sulfamoylbenzo[f]quinoxaline-2,3-dione (NBQX) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) were not altered in any of the tagged receptors. We conclude that GFP is a useful and convenient tag for visualizing these proteins. However, the effects of different sites of tag insertion on receptor characteristics must be taken into account in assessing the roles played by these receptor proteins.

  5. Generation of a non-transmissive Borna disease virus vector lacking both matrix and glycoprotein genes.

    Science.gov (United States)

    Fujino, Kan; Yamamoto, Yusuke; Daito, Takuji; Makino, Akiko; Honda, Tomoyuki; Tomonaga, Keizo

    2017-09-01

    Borna disease virus (BoDV), a prototype of mammalian bornavirus, is a non-segmented, negative strand RNA virus that often causes severe neurological disorders in infected animals, including horses and sheep. Unique among animal RNA viruses, BoDV transcribes and replicates non-cytopathically in the cell nucleus, leading to establishment of long-lasting persistent infection. This striking feature of BoDV indicates its potential as an RNA virus vector system. It has previously been demonstrated by our team that recombinant BoDV (rBoDV) lacking an envelope glycoprotein (G) gene develops persistent infections in transduced cells without loss of the viral genome. In this study, a novel non-transmissive rBoDV, rBoDV ΔMG, which lacks both matrix (M) and G genes in the genome, is reported. rBoDV-ΔMG expressing green fluorescence protein (GFP), rBoDV ΔMG-GFP, was efficiently generated in Vero/MG cells stably expressing both BoDV M and G proteins. Infection with rBoDV ΔMG-GFP was persistently maintained in the parent Vero cells without propagation within cell culture. The optimal ratio of M and G for efficient viral particle production by transient transfection of M and G expression plasmids into cells persistently infected with rBoDV ΔMG-GFP was also demonstrated. These findings indicate that the rBoDV ΔMG-based BoDV vector may provide an extremely safe virus vector system and could be a novel strategy for investigating the function of M and G proteins and the host range of bornaviruses. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  6. Chloroplast DNA sequence of the green alga Oedogonium cardiacum (Chlorophyceae: Unique genome architecture, derived characters shared with the Chaetophorales and novel genes acquired through horizontal transfer

    Directory of Open Access Journals (Sweden)

    Lemieux Claude

    2008-06-01

    Full Text Available Abstract Background To gain insight into the branching order of the five main lineages currently recognized in the green algal class Chlorophyceae and to expand our understanding of chloroplast genome evolution, we have undertaken the sequencing of chloroplast DNA (cpDNA from representative taxa. The complete cpDNA sequences previously reported for Chlamydomonas (Chlamydomonadales, Scenedesmus (Sphaeropleales, and Stigeoclonium (Chaetophorales revealed tremendous variability in their architecture, the retention of only few ancestral gene clusters, and derived clusters shared by Chlamydomonas and Scenedesmus. Unexpectedly, our recent phylogenies inferred from these cpDNAs and the partial sequences of three other chlorophycean cpDNAs disclosed two major clades, one uniting the Chlamydomonadales and Sphaeropleales (CS clade and the other uniting the Oedogoniales, Chaetophorales and Chaetopeltidales (OCC clade. Although molecular signatures provided strong support for this dichotomy and for the branching of the Oedogoniales as the earliest-diverging lineage of the OCC clade, more data are required to validate these phylogenies. We describe here the complete cpDNA sequence of Oedogonium cardiacum (Oedogoniales. Results Like its three chlorophycean homologues, the 196,547-bp Oedogonium chloroplast genome displays a distinctive architecture. This genome is one of the most compact among photosynthetic chlorophytes. It has an atypical quadripartite structure, is intron-rich (17 group I and 4 group II introns, and displays 99 different conserved genes and four long open reading frames (ORFs, three of which are clustered in the spacious inverted repeat of 35,493 bp. Intriguingly, two of these ORFs (int and dpoB revealed high similarities to genes not usually found in cpDNA. At the gene content and gene order levels, the Oedogonium genome most closely resembles its Stigeoclonium counterpart. Characters shared by these chlorophyceans but missing in members

  7. Green Tourism

    OpenAIRE

    Hasan, Ali

    2014-01-01

    Green tourism is defined as environmentally friendly tourism activities with various focuses and meanings. In a broad term, green tourism is about being an environmentally friendly tourist or providing environmentally friendly tourist services. The green tourism concept would be highly appealing to tourism enterprises and operators owing to increasing governmental pressure to improve environmental performance by adopting effective and tangible environmental management techniques. Green to...

  8. Metaphysical green

    OpenAIRE

    Earon, Ofri

    2011-01-01

    “Sensation of Green is about the mental process like touching, seeing, hearing, or smelling, resulting from the immediate stimulation of landscape forms, plants, trees, wind and water. Sensation of Green triggers a feeling of scale, cheerfulness, calmness and peace. The spatial performance of Sensation of Green is created by a physical interaction between the language of space and the language of nature” The notion of Sensation of Green was developed through a previous study ‘Learning from th...

  9. Chromophore photophysics and dynamics in fluorescent proteins of the GFP family

    International Nuclear Information System (INIS)

    Nienhaus, Karin; Nienhaus, G Ulrich

    2016-01-01

    Proteins of the green fluorescent protein (GFP) family are indispensable for fluorescence imaging experiments in the life sciences, particularly of living specimens. Their essential role as genetically encoded fluorescence markers has motivated many researchers over the last 20 years to further advance and optimize these proteins by using protein engineering. Amino acids can be exchanged by site-specific mutagenesis, starting with naturally occurring proteins as templates. Optical properties of the fluorescent chromophore are strongly tuned by the surrounding protein environment, and a targeted modification of chromophore-protein interactions requires a profound knowledge of the underlying photophysics and photochemistry, which has by now been well established from a large number of structural and spectroscopic experiments and molecular-mechanical and quantum-mechanical computations on many variants of fluorescent proteins. Nevertheless, such rational engineering often does not meet with success and thus is complemented by random mutagenesis and selection based on the optical properties. In this topical review, we present an overview of the key structural and spectroscopic properties of fluorescent proteins. We address protein-chromophore interactions that govern ground state optical properties as well as processes occurring in the electronically excited state. Special emphasis is placed on photoactivation of fluorescent proteins. These light-induced reactions result in large structural changes that drastically alter the fluorescence properties of the protein, which enables some of the most exciting applications, including single particle tracking, pulse chase imaging and super-resolution imaging. We also present a few examples of fluorescent protein application in live-cell imaging experiments. (topical review)

  10. Chromophore photophysics and dynamics in fluorescent proteins of the GFP family

    Science.gov (United States)

    Nienhaus, Karin; Nienhaus, G. Ulrich

    2016-11-01

    Proteins of the green fluorescent protein (GFP) family are indispensable for fluorescence imaging experiments in the life sciences, particularly of living specimens. Their essential role as genetically encoded fluorescence markers has motivated many researchers over the last 20 years to further advance and optimize these proteins by using protein engineering. Amino acids can be exchanged by site-specific mutagenesis, starting with naturally occurring proteins as templates. Optical properties of the fluorescent chromophore are strongly tuned by the surrounding protein environment, and a targeted modification of chromophore-protein interactions requires a profound knowledge of the underlying photophysics and photochemistry, which has by now been well established from a large number of structural and spectroscopic experiments and molecular-mechanical and quantum-mechanical computations on many variants of fluorescent proteins. Nevertheless, such rational engineering often does not meet with success and thus is complemented by random mutagenesis and selection based on the optical properties. In this topical review, we present an overview of the key structural and spectroscopic properties of fluorescent proteins. We address protein-chromophore interactions that govern ground state optical properties as well as processes occurring in the electronically excited state. Special emphasis is placed on photoactivation of fluorescent proteins. These light-induced reactions result in large structural changes that drastically alter the fluorescence properties of the protein, which enables some of the most exciting applications, including single particle tracking, pulse chase imaging and super-resolution imaging. We also present a few examples of fluorescent protein application in live-cell imaging experiments.

  11. Efficacious and safe tissue-selective controlled gene therapy approaches for the cornea.

    Directory of Open Access Journals (Sweden)

    Rajiv R Mohan

    2011-04-01

    Full Text Available Untargeted and uncontrolled gene delivery is a major cause of gene therapy failure. This study aimed to define efficient and safe tissue-selective targeted gene therapy approaches for delivering genes into keratocytes of the cornea in vivo using a normal or diseased rabbit model. New Zealand White rabbits, adeno-associated virus serotype 5 (AAV5, and a minimally invasive hair-dryer based vector-delivery technique were used. Fifty microliters of AAV5 titer (6.5×10(12 vg/ml expressing green fluorescent protein gene (GFP was topically applied onto normal or diseased (fibrotic or neovascularized rabbit corneas for 2-minutes with a custom vector-delivery technique. Corneal fibrosis and neovascularization in rabbit eyes were induced with photorefractive keratectomy using excimer laser and VEGF (630 ng using micropocket assay, respectively. Slit-lamp biomicroscopy and immunocytochemistry were used to confirm fibrosis and neovascularization in rabbit corneas. The levels, location and duration of delivered-GFP gene expression in the rabbit stroma were measured with immunocytochemistry and/or western blotting. Slot-blot measured delivered-GFP gene copy number. Confocal microscopy performed in whole-mounts of cornea and thick corneal sections determined geometric and spatial localization of delivered-GFP in three-dimensional arrangement. AAV5 toxicity and safety were evaluated with clinical eye exam, stereomicroscopy, slit-lamp biomicroscopy, and H&E staining. A single 2-minute AAV5 topical application via custom delivery-technique efficiently and selectively transduced keratocytes in the anterior stroma of normal and diseased rabbit corneas as evident from immunocytochemistry and confocal microscopy. Transgene expression was first detected at day 3, peaked at day 7, and was maintained up to 16 weeks (longest tested time point. Clinical and slit-lamp eye examination in live rabbits and H&E staining did not reveal any significant changes between AAV5

  12. Refactoring the six-gene photosystem II core in the chloroplast of the green algae Chlamydomonas reinhardtii

    DEFF Research Database (Denmark)

    Gimpel, Javier A.; Nour-Eldin, Hussam Hassan; Scranton, Melissa A.

    2016-01-01

    production, particularly under specific environmental conditions. PSII is a complex multisubunit enzyme with strong interdependence among its components. In this work, we have deleted the six core genes of PSII in the eukaryotic alga Chlamydomonas reinhardtii and refactored them in a single DNA construct...

  13. Novel X-Linked Genes Revealed by Quantitative Polymerase Chain Reaction in the Green Anole, Anolis carolinensis

    Czech Academy of Sciences Publication Activity Database

    Rovatsos, M.; Altmanová, M.; Johnson Pokorná, Martina; Kratochvíl, L.

    2014-01-01

    Roč. 4, č. 11 (2014), s. 2107-2113 ISSN 2160-1836 R&D Projects: GA ČR GAP506/10/0718 Institutional support: RVO:67985904 Keywords : gene dosage * lizard * qPCR Subject RIV: EG - Zoology Impact factor: 3.198, year: 2014

  14. Migration and differentiation potential of stem cells in the cnidarian Hydractinia analysed in eGFP-transgenic animals and chimeras.

    Science.gov (United States)

    Künzel, Timo; Heiermann, Reinhard; Frank, Uri; Müller, Werner; Tilmann, Wido; Bause, Markus; Nonn, Anja; Helling, Matthias; Schwarz, Ryan S; Plickert, Günter

    2010-12-01

    To analyse cell migration and the differentiation potential of migratory stem cells in Hydractinia, we generated animals with an eGFP reporter gene stably expressed and transmitted via the germline. The transgene was placed under the control of two different actin promoters and the promoter of elongation factor-1α. One actin promoter (Act-II) and the EF-1α promoter enabled expression of the transgene in all cells, the other actin promoter (Act-I) in epithelial and gametogenic cells, but not in the pluripotent migratory stem cells. We produced chimeric animals consisting of histocompatible wild type and transgenic parts. When the transgene was under the control of the epithelial cell specific actin-I promoter, non-fluorescent transgenic stem cells immigrated into wild type tissue, stopped migration and differentiated into epithelial cells which then commenced eGFP-expression. Migratory stem cells are therefore pluripotent and can give rise not only to germ cells, nematocytes and nerve cells, but also to epithelial cells. While in somatic cells expression of the act-I promoter was restricted to epithelial cells it became also active in gametogenesis. The act-I gene is expressed in spermatogonia, oogonia and oocytes. In males the expression pattern showed that migratory stem cells are the precursors of both the spermatogonia and their somatic envelopes. Comparative expression studies using the promoters of the actin-II gene and the elongation factor-1α gene revealed the potential of transgenic techniques to trace the development of the nervous system. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. The FOUR LIPS and MYB88 transcription factor genes are widely expressed in Arabidopsis thaliana during development.

    Science.gov (United States)

    Lei, Qin; Lee, EunKyoung; Keerthisinghe, Sandra; Lai, Lien; Li, Meng; Lucas, Jessica R; Wen, Xiaohong; Ren, Xiaolin; Sack, Fred D

    2015-09-01

    The FOUR LIPS (FLP) and MYB88 transcription factors, which are closely related in structure and function, control the development of stomata, as well as entry into megasporogenesis in Arabidopsis thaliana. However, other locations where these transcription factors are expressed are poorly described. Documenting additional locations where these genes are expressed might define new functions for these genes. Expression patterns were examined throughout vegetative and reproductive development. The expression from two transcriptional-reporter fusions were visualized with either β-glucuronidase (GUS) or green fluorescence protein (GFP). Both flp and myb88 genes were expressed in many, previously unreported locations, consistent with the possibility of additional functions for FLP and MYB88. Moreover, expression domains especially of FLP display sharp cutoffs or boundaries. In addition to stomatal and reproductive development, FLP and MYB88, which are R2R3 MYB transcription factor genes, are expressed in many locations in cells, tissues, and organs. © 2015 Botanical Society of America.

  16. Tobacco as a production platform for biofuel: overexpression of Arabidopsis DGAT and LEC2 genes increases accumulation and shifts the composition of lipids in green biomass.

    Science.gov (United States)

    Andrianov, Vyacheslav; Borisjuk, Nikolai; Pogrebnyak, Natalia; Brinker, Anita; Dixon, Joseph; Spitsin, Sergei; Flynn, John; Matyszczuk, Paulina; Andryszak, Karolina; Laurelli, Marilyn; Golovkin, Maxim; Koprowski, Hilary

    2010-04-01

    When grown for energy production instead for smoking, tobacco can generate a large amount of inexpensive biomass more efficiently than almost any other agricultural crop. Tobacco possesses potent oil biosynthesis machinery and can accumulate up to 40% of seed weight in oil. In this work, we explored two metabolic engineering approaches to enhance the oil content in tobacco green tissues for potential biofuel production. First, an Arabidopsis thaliana gene diacylglycerol acyltransferase (DGAT) coding for a key enzyme in triacylglycerol (TAG) biosynthesis, was expressed in tobacco under the control of a strong ribulose-biphosphate carboxylase small subunit promoter. This modification led to up to a 20-fold increase in TAG accumulation in tobacco leaves and translated into an overall of about a twofold increase in extracted fatty acids (FA) up to 5.8% of dry biomass in Nicotiana tabacum cv Wisconsin, and up to 6% in high-sugar tobacco variety NC-55. Modified tobacco plants also contained elevated amounts of phospholipids. This increase in lipids was accompanied by a shift in the FA composition favourable for their utilization as biodiesel. Second, we expressed in tobacco Arabidopsis gene LEAFY COTYLEDON 2 (LEC2), a master regulator of seed maturation and seed oil storage under the control of an inducible Alc promoter. Stimulation of LEC2 expression in mature tobacco plants by acetaldehyde led to the accumulation of up to 6.8% per dry weight of total extracted FA. The obtained data reveal the potential of metabolically modified plant biomass for the production of biofuel.

  17. Environmental Application of Reporter-Genes Based Biosensors for Chemical Contamination Screening

    Directory of Open Access Journals (Sweden)

    Matejczyk Marzena

    2014-12-01

    Full Text Available The paper presents results of research concerning possibilities of applications of reporter-genes based microorganisms, including the selective presentation of defects and advantages of different new scientific achievements of methodical solutions in genetic system constructions of biosensing elements for environmental research. The most robust and popular genetic fusion and new trends in reporter genes technology – such as LacZ (β-galactosidase, xylE (catechol 2,3-dioxygenase, gfp (green fluorescent proteins and its mutated forms, lux (prokaryotic luciferase, luc (eukaryotic luciferase, phoA (alkaline phosphatase, gusA and gurA (β-glucuronidase, antibiotics and heavy metals resistance are described. Reporter-genes based biosensors with use of genetically modified bacteria and yeast successfully work for genotoxicity, bioavailability and oxidative stress assessment for detection and monitoring of toxic compounds in drinking water and different environmental samples, surface water, soil, sediments.

  18. Long-term gene therapy causes transgene-specific changes in the morphology of regenerating retinal ganglion cells.

    Directory of Open Access Journals (Sweden)

    Jennifer Rodger

    Full Text Available Recombinant adeno-associated viral (rAAV vectors can be used to introduce neurotrophic genes into injured CNS neurons, promoting survival and axonal regeneration. Gene therapy holds much promise for the treatment of neurotrauma and neurodegenerative diseases; however, neurotrophic factors are known to alter dendritic architecture, and thus we set out to determine whether such transgenes also change the morphology of transduced neurons. We compared changes in dendritic morphology of regenerating adult rat retinal ganglion cells (RGCs after long-term transduction with rAAV2 encoding: (i green fluorescent protein (GFP, or (ii bi-cistronic vectors encoding GFP and ciliary neurotrophic factor (CNTF, brain-derived neurotrophic factor (BDNF or growth-associated protein-43 (GAP43. To enhance regeneration, rats received an autologous peripheral nerve graft onto the cut optic nerve of each rAAV2 injected eye. After 5-8 months, RGCs with regenerated axons were retrogradely labeled with fluorogold (FG. Live retinal wholemounts were prepared and GFP positive (transduced or GFP negative (non-transduced RGCs injected iontophoretically with 2% lucifer yellow. Dendritic morphology was analyzed using Neurolucida software. Significant changes in dendritic architecture were found, in both transduced and non-transduced populations. Multivariate analysis revealed that transgenic BDNF increased dendritic field area whereas GAP43 increased dendritic complexity. CNTF decreased complexity but only in a subset of RGCs. Sholl analysis showed changes in dendritic branching in rAAV2-BDNF-GFP and rAAV2-CNTF-GFP groups and the proportion of FG positive RGCs with aberrant morphology tripled in these groups compared to controls. RGCs in all transgene groups displayed abnormal stratification. Thus in addition to promoting cell survival and axonal regeneration, vector-mediated expression of neurotrophic factors has measurable, gene-specific effects on the morphology of injured

  19. Metaphysical green

    DEFF Research Database (Denmark)

    Earon, Ofri

    2011-01-01

    example is a tiny Danish summer house from 1918 . The second example is ‘House before House’ , in Tokyo. The third example is a prefabricated house ‘CHU’ . The analysis evaluates the characteristics of diverse tones of green – from green image to green sensation. The analysis is based on the original...... of Sensation of Green is created by a physical interaction between the language of space and the language of nature” The notion of Sensation of Green was developed through a previous study ‘Learning from the Summer House’ investigating the unique architectural characteristics of the Danish summer houses...... the Sensation of Green? Three existing examples are agents to this discussion. The first example is a Danish summer house. The other two are international urban examples. While the summer house articulates the original meaning of Sensation of Green, the urban examples illustrate its urban context. The first...

  20. Effects of glufosinate on antioxidant enzymes, subcellular structure, and gene expression in the unicellular green alga Chlorella vulgaris.

    Science.gov (United States)

    Qian, Haifeng; Chen, Wei; Sheng, G Daniel; Xu, Xiaoyan; Liu, Weiping; Fu, Zhengwei

    2008-07-30

    Greater exposure to herbicide increases the likelihood of harmful effects in humans and the environment. Glufosinate, a non-selective herbicide, inhibits glutamine synthetase (GS) and thus blocks ammonium assimilation in plants. In the present study, the aquatic unicellular alga Chlorella vulgaris was chosen to assess the effects of acute glufosinate toxicity. We observed physiological changes during 12-96 h of exposure, and gene transcription during 6-48 h of exposure. Exposure to glufosinate increased malondialdehyde content by up to 2.73 times compared with the control, suggesting that there was some oxidative damage. Electron microscopy also showed that there were some chloroplast abnormalities in response to glufosinate. The activities of the antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) also increased markedly in the presence of glufosinate. Maximum activities of SOD, POD, and CAT were 2.90, 2.91, and 2.48 times that of the control, respectively. These elevated activities may help alleviate oxidative damage. A real-time polymerase chain reaction (PCR) assay showed changes in transcript abundances of three photosynthetic genes, psaB, psbC, and rbcL. The results showed that glufosinate reduced the transcript abundances of the three genes after 12h exposure. The lowest abundances of psaB, psbC and rbcL transcripts in response to glufosinate exposure were 38%, 16% and 43% of those of the control, respectively. Our results demonstrate that glufosinate affects the activities of antioxidant enzymes, disrupts chloroplast ultrastructure, and reduces transcription of photosynthesis-related genes in C. vulgaris.

  1. Effects of glufosinate on antioxidant enzymes, subcellular structure, and gene expression in the unicellular green alga Chlorella vulgaris

    International Nuclear Information System (INIS)

    Qian Haifeng; Chen Wei; Sheng, G. Daniel; Xu Xiaoyan; Liu Weiping; Fu Zhengwei

    2008-01-01

    Greater exposure to herbicide increases the likelihood of harmful effects in humans and the environment. Glufosinate, a non-selective herbicide, inhibits glutamine synthetase (GS) and thus blocks ammonium assimilation in plants. In the present study, the aquatic unicellular alga Chlorella vulgaris was chosen to assess the effects of acute glufosinate toxicity. We observed physiological changes during 12-96 h of exposure, and gene transcription during 6-48 h of exposure. Exposure to glufosinate increased malondialdehyde content by up to 2.73 times compared with the control, suggesting that there was some oxidative damage. Electron microscopy also showed that there were some chloroplast abnormalities in response to glufosinate. The activities of the antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) also increased markedly in the presence of glufosinate. Maximum activities of SOD, POD, and CAT were 2.90, 2.91, and 2.48 times that of the control, respectively. These elevated activities may help alleviate oxidative damage. A real-time polymerase chain reaction (PCR) assay showed changes in transcript abundances of three photosynthetic genes, psaB, psbC, and rbcL. The results showed that glufosinate reduced the transcript abundances of the three genes after 12 h exposure. The lowest abundances of psaB, psbC and rbcL transcripts in response to glufosinate exposure were 38%, 16% and 43% of those of the control, respectively. Our results demonstrate that glufosinate affects the activities of antioxidant enzymes, disrupts chloroplast ultrastructure, and reduces transcription of photosynthesis-related genes in C. vulgaris

  2. Effects of glufosinate on antioxidant enzymes, subcellular structure, and gene expression in the unicellular green alga Chlorella vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Qian Haifeng; Chen Wei; Sheng, G. Daniel; Xu Xiaoyan; Liu Weiping [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Fu Zhengwei [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China)], E-mail: azwfu2003@yahoo.com.cn

    2008-07-30

    Greater exposure to herbicide increases the likelihood of harmful effects in humans and the environment. Glufosinate, a non-selective herbicide, inhibits glutamine synthetase (GS) and thus blocks ammonium assimilation in plants. In the present study, the aquatic unicellular alga Chlorella vulgaris was chosen to assess the effects of acute glufosinate toxicity. We observed physiological changes during 12-96 h of exposure, and gene transcription during 6-48 h of exposure. Exposure to glufosinate increased malondialdehyde content by up to 2.73 times compared with the control, suggesting that there was some oxidative damage. Electron microscopy also showed that there were some chloroplast abnormalities in response to glufosinate. The activities of the antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) also increased markedly in the presence of glufosinate. Maximum activities of SOD, POD, and CAT were 2.90, 2.91, and 2.48 times that of the control, respectively. These elevated activities may help alleviate oxidative damage. A real-time polymerase chain reaction (PCR) assay showed changes in transcript abundances of three photosynthetic genes, psaB, psbC, and rbcL. The results showed that glufosinate reduced the transcript abundances of the three genes after 12 h exposure. The lowest abundances of psaB, psbC and rbcL transcripts in response to glufosinate exposure were 38%, 16% and 43% of those of the control, respectively. Our results demonstrate that glufosinate affects the activities of antioxidant enzymes, disrupts chloroplast ultrastructure, and reduces transcription of photosynthesis-related genes in C. vulgaris.

  3. Direct visualization of electroporation-assisted in vivo gene delivery to tumors using intravital microscopy – spatial and time dependent distribution

    Directory of Open Access Journals (Sweden)

    Dachs Gabi U

    2004-11-01

    Full Text Available Abstract Background Electroporation is currently receiving much attention as a way to increase drug and DNA delivery. Recent studies demonstrated the feasibility of electrogene therapy using a range of therapeutic genes for the treatment of experimental tumors. However, the transfection efficiency of electroporation-assisted DNA delivery is still low compared to viral methods and there is a clear need to optimize this approach. In order to optimize treatment, knowledge about spatial and time dependency of gene expression following delivery is of utmost importance in order to improve gene delivery. Intravital microscopy of tumors growing in dorsal skin fold window chambers is a useful method for monitoring gene transfection, since it allows non-invasive dynamic monitoring of gene expression in tumors in a live animal. Methods Intravital microscopy was used to monitor real time spatial distribution of the green fluorescent protein (GFP and time dependence of transfection efficiency in syngeneic P22 rat tumor model. DNA alone, liposome-DNA complexes and electroporation-assisted DNA delivery using two different sets of electric pulse parameters were compared. Results Electroporation-assisted DNA delivery using 8 pulses, 600 V/cm, 5 ms, 1 Hz was superior to other methods and resulted in 22% increase in fluorescence intensity in the tumors up to 6 days post-transfection, compared to the non-transfected area in granulation tissue. Functional GFP was detected within 5 h after transfection. Cells expressing GFP were detected throughout the tumor, but not in the surrounding tissue that was not exposed to electric pulses. Conclusions Intravital microscopy was demonstrated to be a suitable method for monitoring time and spatial distribution of gene expression in experimental tumors and provided evidence that electroporation-assisted gene delivery using 8 pulses, 600 V/cm, 5 ms, 1 Hz is an effective method, resulting in early onset and homogenous

  4. Direct visualization of electroporation-assisted in vivo gene delivery to tumors using intravital microscopy – spatial and time dependent distribution

    International Nuclear Information System (INIS)

    Cemazar, Maja; Wilson, Ian; Dachs, Gabi U; Tozer, Gillian M; Sersa, Gregor

    2004-01-01

    Electroporation is currently receiving much attention as a way to increase drug and DNA delivery. Recent studies demonstrated the feasibility of electrogene therapy using a range of therapeutic genes for the treatment of experimental tumors. However, the transfection efficiency of electroporation-assisted DNA delivery is still low compared to viral methods and there is a clear need to optimize this approach. In order to optimize treatment, knowledge about spatial and time dependency of gene expression following delivery is of utmost importance in order to improve gene delivery. Intravital microscopy of tumors growing in dorsal skin fold window chambers is a useful method for monitoring gene transfection, since it allows non-invasive dynamic monitoring of gene expression in tumors in a live animal. Intravital microscopy was used to monitor real time spatial distribution of the green fluorescent protein (GFP) and time dependence of transfection efficiency in syngeneic P22 rat tumor model. DNA alone, liposome-DNA complexes and electroporation-assisted DNA delivery using two different sets of electric pulse parameters were compared. Electroporation-assisted DNA delivery using 8 pulses, 600 V/cm, 5 ms, 1 Hz was superior to other methods and resulted in 22% increase in fluorescence intensity in the tumors up to 6 days post-transfection, compared to the non-transfected area in granulation tissue. Functional GFP was detected within 5 h after transfection. Cells expressing GFP were detected throughout the tumor, but not in the surrounding tissue that was not exposed to electric pulses. Intravital microscopy was demonstrated to be a suitable method for monitoring time and spatial distribution of gene expression in experimental tumors and provided evidence that electroporation-assisted gene delivery using 8 pulses, 600 V/cm, 5 ms, 1 Hz is an effective method, resulting in early onset and homogenous distribution of gene expression in the syngeneic P22 rat tumor model

  5. Non-Viral Transfection Methods Optimized for Gene Delivery to a Lung Cancer Cell Line

    Science.gov (United States)

    Salimzadeh, Loghman; Jaberipour, Mansooreh; Hosseini, Ahmad; Ghaderi, Abbas

    2013-01-01

    Background Mehr-80 is a newly established adherent human large cell lung cancer cell line that has not been transfected until now. This study aims to define the optimal transfection conditions and effects of some critical elements for enhancing gene delivery to this cell line by utilizing different non-viral transfection Procedures. Methods In the current study, calcium phosphate (CaP), DEAE-dextran, superfect, electroporation and lipofection transfection methods were used to optimize delivery of a plasmid construct that expressed Green Fluorescent Protein (GFP). Transgene expression was detected by fluorescent microscopy and flowcytometry. Toxicities of the methods were estimated by trypan blue staining. In order to evaluate the density of the transfected gene, we used a plasmid construct that expressed the Stromal cell-Derived Factor-1 (SDF-1) gene and measured its expression by real-time PCR. Results Mean levels of GFP-expressing cells 48 hr after transfection were 8.4% (CaP), 8.2% (DEAE-dextran), 4.9% (superfect), 34.1% (electroporation), and 40.1% (lipofection). Lipofection had the highest intense SDF-1 expression of the analyzed methods. Conclusion This study has shown that the lipofection and electroporation methods were more efficient at gene delivery to Mehr-80 cells. The quantity of DNA per transfection, reagent concentration, and incubation time were identified as essential factors for successful transfection in all of the studied methods. PMID:23799175

  6. Non-viral transfection methods optimized for gene delivery to a lung cancer cell line.

    Science.gov (United States)

    Salimzadeh, Loghman; Jaberipour, Mansooreh; Hosseini, Ahmad; Ghaderi, Abbas

    2013-04-01

    Mehr-80 is a newly established adherent human large cell lung cancer cell line that has not been transfected until now. This study aims to define the optimal transfection conditions and effects of some critical elements for enhancing gene delivery to this cell line by utilizing different non-viral transfection Procedures. In the current study, calcium phosphate (CaP), DEAE-dextran, superfect, electroporation and lipofection transfection methods were used to optimize delivery of a plasmid construct that expressed Green Fluorescent Protein (GFP). Transgene expression was detected by fluorescent microscopy and flowcytometry. Toxicities of the methods were estimated by trypan blue staining. In order to evaluate the density of the transfected gene, we used a plasmid construct that expressed the Stromal cell-Derived Factor-1 (SDF-1) gene and measured its expression by real-time PCR. Mean levels of GFP-expressing cells 48 hr after transfection were 8.4% (CaP), 8.2% (DEAE-dextran), 4.9% (superfect), 34.1% (electroporation), and 40.1% (lipofection). Lipofection had the highest intense SDF-1 expression of the analyzed methods. This study has shown that the lipofection and electroporation methods were more efficient at gene delivery to Mehr-80 cells. The quantity of DNA per transfection, reagent concentration, and incubation time were identified as essential factors for successful transfection in all of the studied methods.

  7. Rhesus monkey rhadinovirus (RRV): construction of a RRV-GFP recombinant virus and development of assays to assess viral replication

    International Nuclear Information System (INIS)

    DeWire, Scott M.; Money, Eric S.; Krall, Stuart P.; Damania, Blossom

    2003-01-01

    Rhesus monkey rhadinovirus (RRV) is a γ-2-herpesvirus that is closely related to Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8). Lack of an efficient culture system to grow high titers of virus, and the lack of an in vivo animal model system, has hampered the study of KSHV replication and pathogenesis. RRV is capable of replicating to high titers on fibroblasts, thus facilitating the construction of recombinant rhadinoviruses. In addition, the ability to experimentally infect naieve rhesus macaques with RRV makes it an excellent model system to study γ-herpesvirus replication. Our study describes, for the first time, the construction of a GFP-expressing RRV recombinant virus using a traditional homologous recombination strategy. We have also developed two new methods for determining viral titers of RRV including a traditional viral plaque assay and a quantitative real-time PCR assay. We have compared the replication of wild-type RRV with that of the RRV-GFP recombinant virus in one-step growth curves. We have also measured the sensitivity of RRV to a small panel of antiviral drugs. The development of both the recombination strategy and the viral quantitation assays for RRV will lay the foundation for future studies to evaluate the contribution of individual genes to viral replication both in vitro and in vivo

  8. Quercetin and Green Tea Extract Supplementation Downregulates Genes Related to Tissue Inflammatory Responses to a 12-Week High Fat-Diet in Mice

    Directory of Open Access Journals (Sweden)

    Lynn Cialdella-Kam

    2017-07-01

    Full Text Available Quercetin (Q and green tea extract (E are reported to counter insulin resistance and inflammation and favorably alter fat metabolism. We investigated whether a mixture of E + Q (EQ could synergistically influence metabolic and inflammation endpoints in a high-fat diet (HFD fed to mice. Male C57BL/6 mice (n = 40 were put on HFD (fat = 60%kcal for 12 weeks and randomly assigned to Q (25 mg/kg of body weight (BW/day, E (3 mg of epigallocatechin gallate/kg BW/day, EQ, or control groups for four weeks. At 16 weeks, insulin sensitivity was measured via the glucose tolerance test (GTT, followed by area-under-the-curve (AUC estimations. Plasma cytokines and quercetin were also measured, along with whole genome transcriptome analysis and real-time polymerase chain reaction (qPCR on adipose, liver, and skeletal muscle tissues. Univariate analyses were conducted via analysis of variance (ANOVA, and whole-genome expression profiles were examined via gene set enrichment. At 16 weeks, plasma quercetin levels were higher in Q and EQ groups vs. the control and E groups (p < 0.05. Plasma cytokines were similar among groups (p > 0.05. AUC estimations for GTT was 14% lower for Q vs. E (p = 0.0311, but non-significant from control (p = 0.0809. Genes for cholesterol metabolism and immune and inflammatory response were downregulated in Q and EQ groups vs. control in adipose tissue and soleus muscle tissue. These data support an anti-inflammatory role for Q and EQ, a result best captured when measured with tissue gene downregulation in comparison to changes in plasma cytokine levels.

  9. Rapid and Specific Detection of Acidovorax avenae subsp. citrulli Using SYBR Green-Based Real-Time PCR Amplification of the YD-Repeat Protein Gene.

    Science.gov (United States)

    Cho, Min Seok; Park, Duck Hwan; Ahn, Tae-Young; Park, Dong Suk

    2015-09-01

    The aim of this study was to develop a SYBR Green-based real-time PCR assay for the rapid, specific, and sensitive detection of Acidovorax avenae subsp. citrulli, which causes bacterial fruit blotch (BFB), a serious disease of cucurbit plants. The molecular and serological methods currently available for the detection of this pathogen are insufficiently sensitive and specific. Thus, a novel SYBR Green-based real-time PCR assay targeting the YD-repeat protein gene of A. avenae subsp. citrulli was developed. The specificity of the primer set was evaluated using DNA purified from 6 isolates of A. avenae subsp. citrulli, 7 other Acidovorax species, and 22 of non-targeted strains, including pathogens and non-pathogens. The AC158F/R primer set amplified a single band of the expected size from genomic DNA obtained from the A. avenae subsp. citrulli strains but not from the genomic DNA of other Acidovorax species, including that of other bacterial genera. Using this assay, it was possible to detect at least one genomeequivalents of the cloned amplified target DNA using 5 × 10(0) fg/μl of purified genomic DNA per reaction or using a calibrated cell suspension, with 6.5 colony-forming units per reaction being employed. In addition, this assay is a highly sensitive and reliable method for identifying and quantifying the target pathogen in infected samples that does not require DNA extraction. Therefore, we suggest that this approach is suitable for the rapid and efficient diagnosis of A. avenae subsp. citrulli contaminations of seed lots and plants.

  10. A multicolor panel of novel lentiviral "gene ontology" (LeGO) vectors for functional gene analysis.

    Science.gov (United States)

    Weber, Kristoffer; Bartsch, Udo; Stocking, Carol; Fehse, Boris

    2008-04-01

    Functional gene analysis requires the possibility of overexpression, as well as downregulation of one, or ideally several, potentially interacting genes. Lentiviral vectors are well suited for this purpose as they ensure stable expression of complementary DNAs (cDNAs), as well as short-hairpin RNAs (shRNAs), and can efficiently transduce a wide spectrum of cell targets when packaged within the coat proteins of other viruses. Here we introduce a multicolor panel of novel lentiviral "gene ontology" (LeGO) vectors designed according to the "building blocks" principle. Using a wide spectrum of different fluorescent markers, including drug-selectable enhanced green fluorescent protein (eGFP)- and dTomato-blasticidin-S resistance fusion proteins, LeGO vectors allow simultaneous analysis of multiple genes and shRNAs of interest within single, easily identifiable cells. Furthermore, each functional module is flanked by unique cloning sites, ensuring flexibility and individual optimization. The efficacy of these vectors for analyzing multiple genes in a single cell was demonstrated in several different cell types, including hematopoietic, endothelial, and neural stem and progenitor cells, as well as hepatocytes. LeGO vectors thus represent a valuable tool for investigating gene networks using conditional ectopic expression and knock-down approaches simultaneously.

  11. Transcriptional analysis of cell growth and morphogenesis in the unicellular green alga Micrasterias (Streptophyta, with emphasis on the role of expansin

    Directory of Open Access Journals (Sweden)

    Leliaert Frederik

    2011-09-01

    Full Text Available Abstract Background Streptophyte green algae share several characteristics of cell growth and cell wall formation with their relatives, the embryophytic land plants. The multilobed cell wall of Micrasterias denticulata that rebuilds symmetrically after cell division and consists of pectin and cellulose, makes this unicellular streptophyte alga an interesting model system to study the molecular controls on cell shape and cell wall formation in green plants. Results Genome-wide transcript expression profiling of synchronously growing cells identified 107 genes of which the expression correlated with the growth phase. Four transcripts showed high similarity to expansins that had not been examined previously in green algae. Phylogenetic analysis suggests that these genes are most closely related to the plant EXPANSIN A family, although their domain organization is very divergent. A GFP-tagged version of the expansin-resembling protein MdEXP2 localized to the cell wall and in Golgi-derived vesicles. Overexpression phenotypes ranged from lobe elongation to loss of growth polarity and planarity. These results indicate that MdEXP2 can alter the cell wall structure and, thus, might have a function related to that of land plant expansins during cell morphogenesis. Conclusions Our study demonstrates the potential of M. denticulata as a unicellular model system, in which cell growth mechanisms have been discovered similar to those in land plants. Additionally, evidence is provided that the evolutionary origins of many cell wall components and regulatory genes in embryophytes precede the colonization of land.

  12. Illuminating the origins of spectral properties of green fluorescent proteins via proteochemometric and molecular modeling.

    Science.gov (United States)

    Nantasenamat, Chanin; Simeon, Saw; Owasirikul, Wiwat; Songtawee, Napat; Lapins, Maris; Prachayasittikul, Virapong; Wikberg, Jarl E S

    2014-10-15

    Green fluorescent protein (GFP) has immense utility in biomedical imaging owing to its autofluorescent nature. In efforts to broaden the spectral diversity of GFP, there have been several reports of engineered mutants via rational design and random mutagenesis. Understanding the origins of spectral properties of GFP could be achieved by means of investigating its structure-activity relationship. The first quantitative structure-property relationship study for modeling the spectral properties, particularly the excitation and emission maximas, of GFP was previously proposed by us some years ago in which quantum chemical descriptors were used for model development. However, such simplified model does not consider possible effects that neighboring amino acids have on the conjugated π-system of GFP chromophore. This study describes the development of a unified proteochemometric model in which the GFP chromophore and amino acids in its vicinity are both considered in the same model. The predictive performance of the model was verified by internal and external validation as well as Y-scrambling. Our strategy provides a general solution for elucidating the contribution that specific ligand and protein descriptors have on the investigated spectral property, which may be useful in engineering novel GFP variants with desired characteristics. Copyright © 2014 Wiley Periodicals, Inc.

  13. The effect of ultraviolet-B radiation on gene expression and pigment composition in etiolated and green pea leaf tissue: UV-B-induced changes are gene-specific and dependent upon the developmental stage

    International Nuclear Information System (INIS)

    Jordan, B.R.; James, P.E.; Strid, A.; Anthony, R.G.

    1994-01-01

    The effect of ultraviolet-B radiation (UV-B: 280–320nm) on gene expression and pigment composition has been investigated in pea tissue at different stages of development. Pea (Pisum sativum L., cv. Feltham First) seedlings were grown for 17d and then exposed to supplementary UV-B radiation. Chlorophyll a per unit fresh weight decreased by more than 20% compared with control levels after exposure to UV-B radiation for 7d. In contrast, chlorophyll b content remained the same or increased slightly. Leaf protein biosynthesis, as determined by 35 S-methionine incorporation, was rapidly inhibited by UV-B radiation, although the steady-state levels of proteins were either unchanged or only slightly altered. RNA transcripts for the chlorophyll a/b binding protein (cab) were also rapidly reduced to low or even undetectable levels in the expanded third leaf or younger leaf bud tissue after exposure to UV-B radiation. In contrast, cab RNA transcripts were either low or undetectable in etiolated pea tissue, but increased substantially in light and during exposure to UV-B radiation. The cab RNA transcripts were still present at control levels in pea plants after 7d of greening under supplementary UV-B radiation or UV-B alone. The protein composition changed significantly over the 7d of greening, but no differences could be detected between the light treatments. The increase in chlorophyll content was slightly greater during de-etiolation under supplementary UV-B radiation than under control irradiance. Under UV-B radiation alone, chlorophyll was synthesized at a greatly reduced rate. Changes in protective pigments were also determined. Anthocyanins did not change in either etiolated or green tissue exposed to UV-B radiation. However, other flavonoids increased substantially in either tissue during exposure to light and UV-B radiation. The RNA levels for chalcone synthase were measured in green and etiolated tissue exposed to UV-B radiation. The chs RNA transcripts were

  14. Bifidobacterium breve as a delivery vector of IL-24 gene therapy for head and neck squamous cell carcinoma in vivo.

    Science.gov (United States)

    Wang, L; Vuletic, I; Deng, D; Crielaard, W; Xie, Z; Zhou, K; Zhang, J; Sun, H; Ren, Q; Guo, C

    2017-11-01

    Beneficial bacteria are becoming ever more popular gene delivery method for hypoxia-tumor targeting in vivo. In this study we investigated the therapeutic effect of new recombinant Bifidobacterium breve strain expressing interleukin (IL)-24 gene (B. breve-IL24) on head and neck tumor xenograft in mice. Briefly, B. breve transformants were obtained through electro-transformation. Bacteria-tumor-targeting ability were analyzed in vivo over different time points (1, 3 and 7 days post-bacteria injection). Furthermore, the therapeutic effect of bacteria on tumor cells in vivo were analyzed as follows: 30 Balb/c nude mice bearing subcutaneous tumor were randomly divided in three groups (Drug group, green fluorescent protein (GFP) group and Saline group). The therapy lasted for 2 weeks and included B. breve-IL24 administration via tail vein for Drug group, B. breve-GFP for GFP group and phosphate buffered saline for Saline group. The tumor growth was monitored using standard caliper technique, while the apoptosis induction in vivo was analyzed by Real-time Positron Emission Tomography/Computed Tomography (PET/CT) imaging ([18F]-ML-10 tracer). At the end of the experiment, tumor tissues were collected and analyzed by western blotting. Briefly, our results suggested that our new recombinant bacterium has the capability of targeting tumor tissue in vivo. As for the therapeutic effect, our new strain has revealed to be a promising therapeutic approach against tumor growth in vivo. Briefly, higher tumor growth inhibition and higher tumor cell apoptosis induction were observed in Drug group compared with the GFP and Saline groups. To conclude, a new recombinant strain B. breve-IL24 offers a novel, safe and clinically acceptable therapeutic approach for tumor therapy in vivo.

  15. Evidence of green fluorescent protein and growth hormone expression in red abalone (Haliotis rufescens larvae

    Directory of Open Access Journals (Sweden)

    Mancilla-Sánchez Edgar

    2017-02-01

    Full Text Available The red abalone Haliotis rufescens is a highly appreciated mollusk in the national and international markets. Due to its natural over-exploitation and low growth rate, several genetic improvements were made, however special efforts are needed to increase its production. This study presents transgenic abalone’s larvae expressing green fluorescent protein (GFP fused to Cobia (Rachycentron canadum Growth Hormone (GH using sperm media transgenesis technique (SMT, pAcGFP1-N vector under the control of cytomegalovirus (CMV promoter. Sperms were exposed to three voltages (0.5, 0.75 and 1.0 Kv using a micropulser electroporator (Bio-Rad®. The highest GFP-GH expression average (40% was obtained in abalone larvae at 0.75 v. GFP and GH transgenes were positively detected by PCR, western blot and confocal microscope, respectively.

  16. Non-viral gene therapy that targets motor neurons in vivo

    Directory of Open Access Journals (Sweden)

    Mary-Louise eRogers

    2014-10-01

    Full Text Available A major challenge in neurological gene therapy is safe delivery of transgenes to sufficient cell numbers from the circulation or periphery. This is particularly difficult for diseases involving spinal cord motor neurons such as amyotrophic lateral sclerosis (ALS. We have examined the feasibility of non-viral gene delivery to spinal motor neurons from intraperitoneal injections of plasmids carried by ‘immunogene’ nanoparticles targeted for axonal retrograde transport using antibodies. PEGylated polyethylenimine (PEI-PEG12 as DNA carrier was conjugated to an antibody (MLR2 to the neurotrophin receptor p75 (p75NTR. We used a plasmid (pVIVO2 designed for in vivo gene delivery that produces minimal immune responses, has improved nuclear entry into post mitotic cells and also expresses green fluorescent protein (GFP. MLR2-PEI-PEG12 carried pVIVO2 and was specific for mouse motor neurons in mixed cultures containing astrocytes. While only 8% of motor neurons expressed GFP 72 h post transfection in vitro, when the immunogene was given intraperitonealy to neonatal C57BL/6J mice GFP specific motor neuron expression was observed in 25.4% of lumbar, 18.3% of thoracic and 17.0 % of cervical motor neurons, 72 h post transfection. PEI-PEG12 carrying pVIVO2 by itself did not transfect motor neurons in vivo, demonstrating the need for specificity via the p75NTR antibody MLR2. This is the first time that specific transfection of spinal motor neurons has been achieved from peripheral delivery of plasmid DNA as part of a non-viral gene delivery agent. These results stress the specificity and feasibility of immunogene delivery targeted for p75NTR expressing motor neurons, but suggests that further improvements are required to increase the transfection efficiency of motor neurons in vivo.

  17. CRISPR/Cas9 as tool for functional study of genes involved in preimplantation embryo development.

    Directory of Open Access Journals (Sweden)

    Jeongwoo Kwon

    Full Text Available The CRISPR/Cas9 system has proven to be an efficient gene-editing tool for genome modification of cells and organisms. However, the applicability and efficiency of this system in pig embryos have not been studied in depth. Here, we aimed to remove porcine OCT4 function as a model case using the CRISPR/Cas9 system. Injection of Cas9 and single-guide RNA (sgRNA against OCT4 decreased the percentages of OCT4-positive embryos to 37-50% of total embryos, while ~100% of control embryos exhibited clear OCT4 immunostaining. We assessed the mutation status near the guide sequence using polymerase chain reaction (PCR and DNA sequencing, and a portion of blastocysts (20% in exon 2 and 50% in exon 5 had insertions/deletions near protospacer-adjacent motifs (PAMs. Different target sites had frequent deletions, but different concentrations of sgRNA made no impact. OCT4 mRNA levels dramatically decreased at the 8-cell stage, and they were barely detectable in blastocysts, while mRNA levels of other genes, including NANOG, and CDX2 were not affected. In addition, the combination of two sgRNAs led to large-scale deletion (about 1.8 kb in the same chromosome. Next, we injected an enhanced green fluorescent protein (eGFP vector targeting the OCT4 exon with Cas9 and sgRNA to create a knockin. We confirmed eGFP fluorescence in blastocysts in the inner cell mass, and also checked the mutation status using PCR and DNA sequencing. A significant portion of blastocysts had eGFP sequence insertions near PAM sites. The CRISPR/CAS9 system provides a good tool for gene functional studies by deleting target genes in the pig.

  18. Viral vectors for gene modification of plants as chem/bio sensors.

    Energy Technology Data Exchange (ETDEWEB)

    Manginell, Monica; Harper, Jason C.; Arango, Dulce C.; Brozik, Susan Marie; Dolan, Patricia L.

    2006-11-01

    Chemical or biological sensors that are specific, sensitive, and robust allowing intelligence gathering for verification of nuclear non-proliferation treaty compliance and detouring production of weapons of mass destruction are sorely needed. Although much progress has been made in the area of biosensors, improvements in sensor lifetime, robustness, and device packaging are required before these devices become widely used. Current chemical and biological detection and identification techniques require less-than-covert sample collection followed by transport to a laboratory for analysis. In addition to being expensive and time consuming, results can often be inconclusive due to compromised sample integrity during collection and transport. We report here a demonstration of a plant based sensor technology which utilizes mature and seedling plants as chemical sensors. One can envision genetically modifying native plants at a site of interest that can report the presence of specific toxins or chemicals. In this one year project we used a developed inducible expression system to show the feasibility of plant sensors. The vector was designed as a safe, non-infectious vector which could be used to invade, replicate, and introduce foreign genes into mature host plants that then allow the plant to sense chem/bio agents. The genes introduced through the vector included a reporter gene that encodes for green fluorescent protein (GFP) and a gene that encodes for a mammalian receptor that recognizes a chemical agent. Specifically, GFP was induced by the presence of 17-{beta}-Estradiol (estrogen). Detection of fluorescence indicated the presence of the target chemical agent. Since the sensor is a plant, costly device packaging development or manufacturing of the sensor were not required. Additionally, the biological recognition and reporting elements are maintained in a living, natural environment and therefore do not suffer from lifetime disadvantages typical of most biosensing

  19. Green Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Collison, Melanie

    2011-05-15

    Green chemistry is the science of chemistry used in a way that will not use or create hazardous substances. Dr. Rui Resendes is working in this field at GreenCentre Canada, an offshoot of PARTEQ Innovations in Kingston, Ontario. GreenCentre's preliminary findings suggest their licensed product {sup S}witchable Solutions{sup ,} featuring 3 classes of solvents and a surfactant, may be useful in bitumen oil sands extraction.

  20. Green roofs

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2010-04-01

    Full Text Available , beetles and spiders); and the number of birds that nest in vegetated roofs (including kestrels, swallows, and wagtails). Objective The primary objective of a green roof is to create a living habitat in an otherwise barren environment, hence the use... the negative environmental impacts including plant and insect specie loss. Thus at a philosophical level green roofs support the notion “replace what you displace”. Key ecological issues that can be addressed through green roofs include: Negative effects...

  1. Fusions between green fluorescent protein and beta-glucuronidase as sensitive and vital bifunctional reporters in plants.

    Science.gov (United States)

    Quaedvlieg, N E; Schlaman, H R; Admiraal, P C; Wijting, S E; Stougaard, J; Spaink, H P

    1998-11-01

    By fusing the genes encoding green fluorescent protein (GFP) and beta-glucuronidase (GUS) we have created a set of bifunctional reporter constructs which are optimized for use in transient and stable expression studies in plants. This approach makes it possible to combine the advantage of GUS, its high sensitivity in histochemical staining, with the advantages of GFP as a vital marker. The fusion proteins were functional in transient expression studies in tobacco using either DNA bombardment or potato virus X as a vector, and in stably transformed Arabidopsis thaliana and Lotus japonicus plants. The results show that high level of expression does not interfere with efficient stable transformation in A. thaliana and L. japonicus. Using confocal laser scanning microscopy we show that the fusion constructs are very suitable for promoter expression studies in all organs of living plants, including root nodules. The use of these reporter constructs in the model legume L. japonicus offers exciting new possibilities for the study of the root nodulation process.

  2. Measuring intracellular redox conditions using GFP-based sensors

    DEFF Research Database (Denmark)

    Björnberg, Olof; Ostergaard, Henrik; Winther, Jakob R

    2006-01-01

    Recent years have seen the development of methods for analyzing the redox conditions in specific compartments in living cells. These methods are based on genetically encoded sensors comprising variants of Green Fluorescent Protein in which vicinal cysteine residues have been introduced at solvent......-exposed positions. Several mutant forms have been identified in which formation of a disulfide bond between these cysteine residues results in changes of their fluorescence properties. The redox sensors have been characterized biochemically and found to behave differently, both spectroscopically and in terms...... of redox properties. As genetically encoded sensors they can be expressed in living cells and used for analysis of intracellular redox conditions; however, which parameters are measured depends on how the sensors interact with various cellular redox components. Results of both biochemical and cell...

  3. Effective gene expression in the rat dorsal root ganglia with a non-viral vector delivered via spinal nerve injection

    Science.gov (United States)

    Chang, Ming-Fong; Hsieh, Jung-Hsien; Chiang, Hao; Kan, Hung-Wei; Huang, Cho-Min; Chellis, Luke; Lin, Bo-Shiou; Miaw, Shi-Chuen; Pan, Chun-Liang; Chao, Chi-Chao; Hsieh, Sung-Tsang

    2016-01-01

    Delivering gene constructs into the dorsal root ganglia (DRG) is a powerful but challenging therapeutic strategy for sensory disorders affecting the DRG and their peripheral processes. The current delivery methods of direct intra-DRG injection and intrathecal injection have several disadvantages, including potential injury to DRG neurons and low transfection efficiency, respectively. This study aimed to develop a spinal nerve injection strategy to deliver polyethylenimine mixed with plasmid (PEI/DNA polyplexes) containing green fluorescent protein (GFP). Using this spinal nerve injection approach, PEI/DNA polyplexes were delivered to DRG neurons without nerve injury. Within one week of the delivery, GFP expression was detected in 82.8% ± 1.70% of DRG neurons, comparable to the levels obtained by intra-DRG injection (81.3% ± 5.1%, p = 0.82) but much higher than those obtained by intrathecal injection. The degree of GFP expression by neurofilament(+) and peripherin(+) DRG neurons was similar. The safety of this approach was documented by the absence of injury marker expression, including activation transcription factor 3 and ionized calcium binding adaptor molecule 1 for neurons and glia, respectively, as well as the absence of behavioral changes. These results demonstrated the efficacy and safety of delivering PEI/DNA polyplexes to DRG neurons via spinal nerve injection. PMID:27748450

  4. Voluntary exercise and green tea enhance the expression of genes related to energy utilization and attenuate metabolic syndrome in high fat fed mice.

    Science.gov (United States)

    Sae-Tan, Sudathip; Rogers, Connie J; Lambert, Joshua D

    2014-05-01

    Obesity and metabolic syndrome are growing public health problems. We investigated the effects of decaffeinated green tea extract (GTE) and voluntary running exercise (Ex) alone or in combination against obesity and metabolic syndrome in high fat (HF) fed C57BL/6J mice. After 16 wk, GTE + Ex treatment reduced final body mass (27.1% decrease) and total visceral fat mass (36.6% decrease) compared to HF-fed mice. GTE + Ex reduced fasting blood glucose (17% decrease), plasma insulin (65% decrease), and insulin resistance (65% decrease) compared to HF-fed mice. GTE or Ex alone had less significant effects. In the skeletal muscle, the combination of Ex and GTE increased the expression of peroxisome proliferator-activated receptor-γ coactivator-1α (Ppargc1a), mitochondrial NADH dehydrogenase 5 (mt-Nd5), mitochondrial cytochrome b (mt-Cytb), and mitochondrial cytochrome c oxidase III (mt-Co3). An increase in hepatic expression of peroxisome proliferator-activated receptor-α (Ppara) and liver carnitine palmitoyl transferase-1α (Cpt1a) and a decrease in hepatic expression of stearoyl-CoA desaturase 1 (Scd1) mRNA was observed in GTE + Ex mice. GTE + Ex was more effective than either treatment alone in reducing diet-induced obesity. These effects are due in part to modulation of genes related to energy metabolism and de novo lipogenesis. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Green thunderstorms

    Science.gov (United States)

    Gallagher, Frank Woolsey, III

    Many people around the world have observed green light apparently emanating from severe thunderstorms, but until recently there has been no scientific study of the phenomenon. Green thunderstorms have been observed from time to time in association with deep convection or severe weather events. Some skeptics who have not personally observed a green thunderstorm suggest that they are some kind of illusion. The existence of green thunderstorms has been objectively demonstrated by recording spectra of light from thunderstorms using a handheld spectrophotometer. During the spring and summer of 1995 and the spring of 1996 numerous storms were observed and spectra of the light emanating from these storms were recorded. Observations were made both at the ground and aboard research aircraft. Furthermore, time series of spectra were recorded as the observed color of some storms changed from dark blue to a bluish-green. Several hypotheses have been advanced to explain the occurrence of green light in connection with severe storms. Fankhauser gave some observational support to the belief that green light from thunderstorms is possible and believed that the source of the light is from the blue sky penetrating thin regions in the clouds. Fraser believes that light from the setting sun, in combination with the process of scattering by atmospheric molecules, creates the green light associated with severe weather and the thunderstorm acts only as a black backdrop. Unfortunately, no cloud illuminated by the sun is black and the green airlight produced by the Fraser theory is in reality overwhelmed by light reflected by the cloud. Often the unusual coloration has been attributed to hail or to reflection of light from foliage on the ground. The quantitative measurements made during the observation period fail to support these assumptions. We have observed thunderstorms to be green over ground that was not green and we have observed blue thunderstorms over ground that was green

  6. Ex-Vivo Gene Therapy Using Lentiviral Mediated Gene Transfer Into Umbilical Cord Blood Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Hanieh Jalali

    2016-02-01

    Full Text Available Background Introduction of therapeutic genes into the injured site of nervous system can be achieved using transplantation of cellular vehicles containing desired gene. To transfer exogenous genes into the cellular vehicles, lentiviral vectors are one of interested vectors because of advantages such high transduction efficiency of dividing and non-dividing cells. Unrestricted somatic stem cells are subclasses of umbilical cord blood derived stem cells which are appreciate candidates to use as cellular vehicles for ex vivo gene therapy of nervous system. Objectives In current study we investigated the effect of lentiviral vector transduction on the neuronal related features of unrestricted somatic stem cells to indicate the probable and unwanted changes related to transduction procedure. Materials and Methods In this experimental study, lentiviral vector containing green fluorescent protein (GFP were transduced into unrestricted somatic stem cells and its effect was investigated with using MTT assay, qPCR and immunohistochemistry techniques. For statistical comparison of real time PCR results, REST software (2009, Qiagen was used. Results Obtained results showed lentiviral vector transduction did not have cytotoxic effects on unrestricted somatic stem cells and did not change neuronal differentiation capacity of them as well the expression of some neuronal related genes and preserved them in multilineage situation. Conclusions In conclusion, we suggested that lentiviral vectors could be proper vectors to transfer therapeutic gene into unrestricted somatic stem cells to provide a cellular vehicle for ex vivo gene therapy of nervous system disorders.

  7. The Arabidopsis thiamin-deficient mutant pale green1 lacks thiamin monophosphate phosphatase of the vitamin B1 biosynthesis pathway.

    Science.gov (United States)

    Hsieh, Wei-Yu; Liao, Jo-Chien; Wang, Hsin-Tzu; Hung, Tzu-Huan; Tseng, Ching-Chih; Chung, Tsui-Yun; Hsieh, Ming-Hsiun

    2017-07-01

    Thiamin diphosphate (TPP, vitamin B 1 ) is an essential coenzyme present in all organisms. Animals obtain TPP from their diets, but plants synthesize TPPde novo. We isolated and characterized an Arabidopsis pale green1 (pale1) mutant that contained higher concentrations of thiamin monophosphate (TMP) and less thiamin and TPP than the wild type. Supplementation with thiamin, but not the thiazole and pyrimidine precursors, rescued the mutant phenotype, indicating that the pale1 mutant is a thiamin-deficient mutant. Map-based cloning and whole-genome sequencing revealed that the pale1 mutant has a mutation in At5g32470 encoding a TMP phosphatase of the TPP biosynthesis pathway. We further confirmed that the mutation of At5g32470 is responsible for the mutant phenotypes by complementing the pale1 mutant with constructs overexpressing full-length At5g32470. Most plant TPP biosynthetic enzymes are located in the chloroplasts and cytosol, but At5g32470-GFP localized to the mitochondrion of the root, hypocotyl, mesophyll and guard cells of the 35S:At5g32470-GFP complemented plants. The subcellular localization of a functional TMP phosphatase suggests that the complete vitamin B1 biosynthesis pathway may involve the chloroplasts, mitochondria and cytosol in plants. Analysis of PALE1 promoter-uidA activity revealed that PALE1 is mainly expressed in vascular tissues of Arabidopsis seedlings. Quantitative RT-PCR analysis of TPP biosynthesis genes and genes encoding the TPP-dependent enzymes pyruvate dehydrogenase, α-ketoglutarate dehydrogenase and transketolase revealed that the transcript levels of these genes were upregulated in the pale1 mutant. These results suggest that endogenous levels of TPP may affect the expression of genes involved in TPP biosynthesis and TPP-dependent enzymes. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  8. Transmission of Mannheimia haemolytica from domestic sheep (Ovis aries) to bighorn sheep (Ovis canadensis): unequivocal demonstration with green fluorescent protein-tagged organisms.

    Science.gov (United States)

    Lawrence, Paulraj K; Shanthalingam, Sudarvili; Dassanayake, Rohana P; Subramaniam, Renuka; Herndon, Caroline N; Knowles, Donald P; Rurangirwa, Fred R; Foreyt, William J; Wayman, Gary; Marciel, Ann Marie; Highlander, Sarah K; Srikumaran, Subramaniam

    2010-07-01

    Previous studies demonstrated that bighorn sheep (Ovis canadensis) died of pneumonia when commingled with domestic sheep (Ovis aries) but did not conclusively prove that the responsible pathogens were transmitted from domestic to bighorn sheep. The objective of this study was to determine, unambiguously, whether Mannheimia haemolytica can be transmitted from domestic to bighorn sheep when they commingle. Four isolates of M. haemolytica were obtained from the pharynx of two of four domestic sheep and tagged with a plasmid carrying the genes for green fluorescent protein (GFP) and ampicillin resistance (AP(R)). Four domestic sheep, colonized with the tagged bacteria, were kept about 10 m apart from four bighorn sheep for 1 mo with no clinical signs of pneumonia observed in the bighorn sheep during that period. The domestic and bighorn sheep were then allowed to have fence-line contact for 2 mo. During that period, three bighorn sheep acquired the tagged bacteria from the domestic sheep. At the end of the 2 mo of fence-line contact, the animals were allowed to commingle. All four bighorn sheep died 2 days to 9 days following commingling. The lungs from all four bighorn sheep showed gross and histopathologic lesions characteristic of M. haemolytica pneumonia. Tagged M. haemolytica were isolated from all four bighorn sheep, as confirmed by growth in ampicillin-containing culture medium, PCR-amplification of genes encoding GFP and Ap(R), and immunofluorescent staining of GFP. These results unequivocally demonstrate transmission of M. haemolytica from domestic to bighorn sheep, resulting in pneumonia and death of bighorn sheep.

  9. Validation of the Antiproliferative Effects of Organic Extracts from the Green Husk of Juglans regia L. on PC-3 Human Prostate Cancer Cells by Assessment of Apoptosis-Related Genes

    Directory of Open Access Journals (Sweden)

    Ali A. Alshatwi

    2012-01-01

    Full Text Available With the increased use of plant-based cancer chemotherapy, exploring the antiproliferative effects of phytochemicals for anticancer drug design has gained considerable attention worldwide. This study was undertaken to investigate the effect of walnut green husk extracts on cell proliferation and to determine the possible molecular mechanism of extract-induced cell death by quantifying the expression of Bcl-2, Bax, caspases-3, and Tp53. PC-3 human prostate cancer cells. In this study, we found that green husk extracts suppressed proliferation and induced apoptosis in a dose- and time-dependent manner by modulating expression of apoptosis-related genes. This involved DNA fragmentation (determined by TUNEL assay and significant changes in levels of mRNA and the expression of corresponding proteins. An increase in expressions of Bax, caspase-3, and tp53 genes and their corresponding proteins was detected using real-time PCR and western blot analysis in PC-3 cells treated with the green husk organic extracts. In contrast, Bcl2 expression was downregulated after exposure to the extracts. Our data suggest the presence of bioactive compound(s in walnut green husks that are capable of killing prostate carcinoma cells by inducing apoptosis and that the husks are a candidate source of anticancer drugs.

  10. Optimizing viral and non-viral gene transfer methods for genetic modification of porcine mesenchymal stem cells

    DEFF Research Database (Denmark)

    Stiehler, Maik; Duch, Mogens; Mygind, Tina

    2006-01-01

    INTRODUCTION: Mesenchymal stem cells (MSCs) provide an excellent source of pluripotent progenitor cells for tissue-engineering applications due to their proliferation capacity and differentiation potential. Genetic modification of MSCs with genes encoding tissue-specific growth factors...... viral and non-viral ex vivo gene delivery systems with respect to gene transfer efficiency, maintenance of transgene expression, and safety issues using primary porcine MSCs as target cells. MATERIALS AND METHODS: MSCs were purified from bone marrow aspirates from the proximal tibiae of four 3-month......-old Danish landrace pigs by Ficoll step gradient separation and polystyrene adherence technique. Vectors expressing enhanced green fluorescent protein (eGFP) and human bone morphogenetic protein-2 (BMP-2) were transferred to the cells by different non-viral methods and by use of recombinant adeno...

  11. GFP facilitates native purification of recombinant perlucin derivatives and delays the precipitation of calcium carbonate.

    Directory of Open Access Journals (Sweden)

    Eva Weber

    Full Text Available Insolubility is one of the possible functions of proteins involved in biomineralization, which often limits their native purification. This becomes a major problem especially when recombinant expression systems are required to obtain larger amounts. For example, the mollusc shell provides a rich source of unconventional proteins, which can interfere in manifold ways with different mineral phases and interfaces. Therefore, the relevance of such proteins for biotechnological processes is still in its infancy. Here we report a simple and reproducible purification procedure for a GFP-tagged lectin involved in biomineralization, originally isolated from mother-of-pearl in abalone shells. An optimization of E. coli host cell culture conditions was the key to obtain reasonable yields and high degrees of purity by using simple one-step affinity chromatography. We identified a dual functional role for the GFP domain when it became part of a mineralizing system in vitro. First, the GFP domain improved the solubility of an otherwise insoluble protein, in this case recombinant perlucin derivatives. Second, GFP inhibited calcium carbonate precipitation in a concentration dependent manner. This was demonstrated here using a simple bulk assay over a time period of 400 seconds. At concentrations of 2 µg/ml and higher, the inhibitory effect was observed predominantly for HCO(3 (- as the first ionic interaction partner, but not necessarily for Ca(2+. The interference of GFP-tagged perlucin derivatives with the precipitation of calcium carbonate generated different types of GFP-fluorescent composite calcite crystals. GFP-tagging offers therefore a genetically tunable tool to gently modify mechanical and optical properties of synthetic biocomposite minerals.

  12. GFP facilitates native purification of recombinant perlucin derivatives and delays the precipitation of calcium carbonate.

    Science.gov (United States)

    Weber, Eva; Guth, Christina; Weiss, Ingrid M

    2012-01-01

    Insolubility is one of the possible functions of proteins involved in biomineralization, which often limits their native purification. This becomes a major problem especially when recombinant expression systems are required to obtain larger amounts. For example, the mollusc shell provides a rich source of unconventional proteins, which can interfere in manifold ways with different mineral phases and interfaces. Therefore, the relevance of such proteins for biotechnological processes is still in its infancy. Here we report a simple and reproducible purification procedure for a GFP-tagged lectin involved in biomineralization, originally isolated from mother-of-pearl in abalone shells. An optimization of E. coli host cell culture conditions was the key to obtain reasonable yields and high degrees of purity by using simple one-step affinity chromatography. We identified a dual functional role for the GFP domain when it became part of a mineralizing system in vitro. First, the GFP domain improved the solubility of an otherwise insoluble protein, in this case recombinant perlucin derivatives. Second, GFP inhibited calcium carbonate precipitation in a concentration dependent manner. This was demonstrated here using a simple bulk assay over a time period of 400 seconds. At concentrations of 2 µg/ml and higher, the inhibitory effect was observed predominantly for HCO(3) (-) as the first ionic interaction partner, but not necessarily for Ca(2+). The interference of GFP-tagged perlucin derivatives with the precipitation of calcium carbonate generated different types of GFP-fluorescent composite calcite crystals. GFP-tagging offers therefore a genetically tunable tool to gently modify mechanical and optical properties of synthetic biocomposite minerals.

  13. Behaviorally Green

    DEFF Research Database (Denmark)

    Sunstein, Cass; Reisch, Lucia A.

    2016-01-01

    of suggestion, inertia, and loss aversion. If well-chosen, green defaults are likely to have large effects in reducing the economic and environmental harms associated with various products and activities. Such defaults may or may not be more expensive to consumers. In deciding whether to establish green...

  14. Green Tea

    Science.gov (United States)

    ... and cancer. Green tea is consumed as a beverage. It is also sold in liquid extracts, capsules, and tablets and is sometimes used in topical products (intended to be applied to the skin). How Much Do We Know? Although many studies have been done on green tea and its ...

  15. Adventitial gene transfer of catalase attenuates angiotensin II-induced vascular remodeling.

    Science.gov (United States)

    Liu, Cun-Fei; Zhang, Jia; Shen, Kai; Gao, Ping-Jin; Wang, Hai-Ya; Jin, Xin; Meng, Chao; Fang, Ning-Yuan

    2015-04-01

    Vascular adventitia and adventitia‑derived reactive oxygen species (ROS) contribute to vascular remodeling following vascular injury. A previous ex vivo study in adventitial fibroblasts showed that catalase, one of most important anti‑oxide enzymes, was downregulated by angiotensin II (AngII). The aim of the present study was to investigate whether adventitial gene transfer of catalase affects AngII‑induced vascular remodeling in vivo. Adenoviruses co‑expressing catalase and enhanced green fluorescent protein (eGFP) or expressing eGFP only were applied to the adventitial surface of common carotid arteries of Sprague‑Dawley rats. Alzet minipumps administering AngII (0.75 mg/kg/day) were then implanted subcutaneously for 14 days. Systolic blood pressure and biological parameters of vascular remodeling were measured in each group. Adventitial fibroblasts were cultured and p38 mitogen‑activated protein kinase (MAPK) phosphorylation was measured using western blot analysis. The results showed that adventitial gene transfer of catalase had no effect on AngII‑induced systolic blood pressure elevation. However, catalase adenovirus transfection significantly inhibited AngII‑induced media hypertrophy compared with that of the control virus (Padventitial α‑smooth muscle actin expression. Furthermore, catalase transfection significantly inhibited the AngII‑induced increase in p38MAPK phosphorylation. In conclusion, the results of the present study demonstrated that adventitial gene transfer of catalase significantly attenuated AngII‑induced vascular remodeling in rats via inhibition of adventitial p38MAPK phosphorylation.

  16. Staying green postharvest: how three mutations in the Arabidopsis chlorophyll b reductase gene NYC1 delay degreening by distinct mechanisms.

    Science.gov (United States)

    Jibran, Rubina; Sullivan, Kerry L; Crowhurst, Ross; Erridge, Zoe A; Chagné, David; McLachlan, Andrew R G; Brummell, David A; Dijkwel, Paul P; Hunter, Donald A

    2015-11-01

    Stresses such as energy deprivation, wounding and water-supply disruption often contribute to rapid deterioration of harvested tissues. To uncover the genetic regulation behind such stresses, a simple assessment system was used to detect senescence mutants in conjunction with two rapid mapping techniques to identify the causal mutations. To demonstrate the power of this approach, immature inflorescences of Arabidopsis plants that contained ethyl methanesulfonate-induced lesions were detached and screened for altered timing of dark-induced senescence. Numerous mutant lines displaying accelerated or delayed timing of senescence relative to wild type were discovered. The underlying mutations in three of these were identified using High Resolution Melting analysis to map to a chromosomal arm followed by a whole-genome sequencing-based mapping method, termed 'Needle in the K-Stack', to identify the causal lesions. All three mutations were single base pair changes and occurred in the same gene, NON-YELLOW COLORING1 (NYC1), a chlorophyll b reductase of the short-chain dehydrogenase/reductase (SDR) superfamily. This was consistent with the mutants preferentially retaining chlorophyll b, although substantial amounts of chlorophyll b were still lost. The single base pair mutations disrupted NYC1 function by three distinct mechanisms, one by producing a termination codon, the second by interfering with correct intron splicing and the third by replacing a highly conserved proline with a non-equivalent serine residue. This non-synonymous amino acid change, which occurred in the NADPH binding domain of NYC1, is the first example of such a mutation in an SDR protein inhibiting a physiological response in plants. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Green Fluorescent Protein Purification as a Didactic Tool During Practical Classes For Undergraduates Students of UFAM

    Directory of Open Access Journals (Sweden)

    J.A.Q.A Faria

    2017-07-01

    Full Text Available INTRODUCTION: The Green Fluorescent Protein (GFP, originated from the jellyfish Aequorea victoria has broadly applicability for cellular and molecular biology research. Its spectral characteristics make it practical  to be detect by UV-A (black light lamp during the purification procedure. Moreover, this approach implementation during a practical class allows the exploring of fluorescence features. OBJETIVES: the purpose of this investigation was to teach the concepts and principles of protein purification during a practical class using recombinant GFP protein. MATERIAL E METHODS: Transformed E. coli JM110 expressing GFP were resuspended in buffer solution (Tris-HCl 20 mM pH 8.0, 150 mM NaCl, 5 mM EDTA, 20% (NH42SO4 following the sonication step. The lysate was submitted to the purification through hydrophobic interaction chromatography column (HIC. After analysis of chromatogram, some collected fractions were quantified by Bradford assay and evaluated by SDS-PAGE. Besides that, the GFP presences were measured at an excitation wavelength of 488 nm on a spectrofluorimeter. RESULTS AND DISCUSSION: Before the experiments, the students were encouraged to explore the biochemistry characteristics of GFP, assessing protein data banks and published articles. These guided questions conducted to discussion of the purification strategy choosen. The GFP purification enabled the visual observation of chromatography principles necessary for the theory assimilation. During the chromatography running, we used a UV-A lamp which allowed a greatly exploration of concepts beyond this technique such as the sample injection, the GFP column retention, and the elution step. The chromatogram obtaneid were analysed and correlated to the collected fractions. Our next step was the efficiency analysis generated by the GFP measurement, total protein quantification and the analytical method SDS-PAGE. CONCLUSION: Collectively, we observed in this class the clear development

  18. Green consumerism

    DEFF Research Database (Denmark)

    de Groot, Judith I.M.; Schuitema, Geertje; Garson, Carrie Lee

    and biospheric values influence the importance of such ‘green’ product characteristics on purchasing intentions. In two within-subjects full-factorial experimental studies (N = 100 and N = 107), we found that purchase intentions of products were only steered by green characteristics if prices were low...... and the brand was familiar. Green product characteristics did not influence purchase intentions at all when these proself product characteristics were not fulfilled (i.e., high prices and unfamiliar brands). The importance of proself and green product characteristics on purchasing intentions was also......Our presentation will focus on the influence of product characteristics and values on green consumerism. Although generally a majority of consumers support the idea of purchasing green products, we argue, based on social dilemma theory, that proself product characteristics and egoistic...

  19. Green lights

    DEFF Research Database (Denmark)

    Fisker, Peter Kielberg

    This study investigates the effect of drought on economic activity globally using remote sensing data. In particular, predicted variation in greenness is correlated with changes in the density of artificial light observed at night on a grid of 0.25 degree latitude-longitude pixels. I define drought...... as greenness estimated by lagged variation in monthly rainfall and temperature. This definition of drought performs well in identifying self-reported drought events since 2000 compared with measures of drought that do not take greenness into account, and the subsequent analysis indicates that predicted...... variation in greenness is positively associated with year-on-year changes in luminosity: If a unit of observation experiences a predicted variation in greenness that lies 1 standard deviation below the global mean, on average 1.5 - 2.5 light pixels out of 900 are extinguished that year. Finally, an attempt...

  20. Green autofluorescence, a double edged monitoring tool for bacterial growth and activity in micro-plates

    Science.gov (United States)

    Mihalcescu, Irina; Van-Melle Gateau, Mathilde; Chelli, Bernard; Pinel, Corinne; Ravanat, Jean-Luc

    2015-12-01

    The intrinsic green autofluorescence of an Escherichia coli culture has long been overlooked and empirically corrected in green fluorescent protein (GFP) reporter experiments. We show here, by using complementary methods of fluorescence analysis and HPLC, that this autofluorescence, principally arise from the secreted flavins in the external media. The cells secrete roughly 10 times more than what they keep inside. We show next that the secreted flavin fluorescence can be used as a complementary method in measuring the cell concentration particularly when the classical method, based on optical density measure, starts to fail. We also demonstrate that the same external flavins limit the dynamical range of GFP quantification and can lead to a false interpretation of lower global dynamic range of expression than what really happens. In the end we evaluate different autofluorescence correction methods to extract the real GFP signal.

  1. Isogenic FUS-eGFP iPSC Reporter Lines Enable Quantification of FUS Stress Granule Pathology that Is Rescued by Drugs Inducing Autophagy

    Directory of Open Access Journals (Sweden)

    Lara Marrone

    2018-02-01

    Full Text Available Summary: Perturbations in stress granule (SG dynamics may be at the core of amyotrophic lateral sclerosis (ALS. Since SGs are membraneless compartments, modeling their dynamics in human motor neurons has been challenging, thus hindering the identification of effective therapeutics. Here, we report the generation of isogenic induced pluripotent stem cells carrying wild-type and P525L FUS-eGFP. We demonstrate that FUS-eGFP is recruited into SGs and that P525L profoundly alters their dynamics. With a screening campaign, we demonstrate that PI3K/AKT/mTOR pathway inhibition increases autophagy and ameliorates SG phenotypes linked to P525L FUS by reducing FUS-eGFP recruitment into SGs. Using a Drosophila model of FUS-ALS, we corroborate that induction of autophagy significantly increases survival. Finally, by screening clinically approved drugs for their ability to ameliorate FUS SG phenotypes, we identify a number of brain-penetrant anti-depressants and anti-psychotics that also induce autophagy. These drugs could be repurposed as potential ALS treatments. : Sterneckert and colleagues generate isogenic FUS-eGFP reporter iPSCs that enable the identification of stress granule (SG phenotypes specifically induced by the ALS mutation FUS P525L. Compound screening shows that modulation of the PI3K/AKT/mTOR pathway regulating autophagy ameliorates SG phenotypes. A second screen identifies similarly acting brain-penetrant US FDA-approved drugs that could be repurposed to treat ALS. Keywords: amyotrophic lateral sclerosis, induced pluripotent stem cells, FUS, stress granules, autophagy, gene editing, CRISPR/Cas9n

  2. Non-viral genetic transfection of rat Schwann cells with FuGENE HD© lipofection and AMAXA© nucleofection is feasible but impairs cell viability.

    Science.gov (United States)

    Kraus, Armin; Täger, Joachim; Kohler, Konrad; Haerle, Max; Werdin, Frank; Schaller, Hans-Eberhard; Sinis, Nektarios

    2010-11-01

    To determine transfection efficiency of FuGENE HD© lipofection and AMAXA© nucleofection on rat Schwann cells (SC). The ischiadic and median nerves of 6-8 week old Lewis rats were cultured in modified melanocyte-growth medium. SCs were genetically transfected with green fluorescent protein (GFP) as reporter gene using FuGENE HD© lipofection and AMAXA© nucleofection. Transfection rates were determined by visualization of GFP fluorescence under fluorescence microscopy and cell counting. Transfected cell to non-transfected cell relation was determined. Purity of Schwann cell culture was 88% as determined by immunohistologic staining. Transfection rate of FuGENE HD© lipofection was 2%, transfection rate of AMAXA© nucleofection was 10%. With both methods, Schwann cells showed pronounced aggregation behavior which made them unfeasible for further cultivation. Settling of Schwann cells on laminin and poly-L-ornithine coated plates was compromised by either method. Non-viral transfection of rat SC with FuGENE HD© lipofection and AMAXA© nucleofection is basically possible with a higher transfection rate for nucleofection than for lipofection. As cell viability is compromised by either method however, viral transfection is to be considered if higher efficiency is required.

  3. Chromophore-protein coupling beyond nonpolarizable models: understanding absorption in green fluorescent protein

    NARCIS (Netherlands)

    Daday, C.; Curutchet, C.; Sinicropi, A.; Mennucci, B.; Filippi, Claudia

    2015-01-01

    The nature of the coupling of the photoexcited chromophore with the environment in a prototypical system like green fluorescent protein (GFP) is to date not understood, and its description still defies state-of-the-art multiscale approaches. To identify which theoretical framework of the

  4. Absorption tuning of the green fluorescent protein chromophore: synthesis and studies of model compounds

    DEFF Research Database (Denmark)

    Brøndsted Nielsen, Mogens; Andersen, Lars Henrik; Rinza, Tomás Rocha

    2011-01-01

    The green fluorescent protein (GFP) chromophore is a heterocyclic compound containing a p-hydroxybenzylidine attached to an imidazol-5(4H)-one ring. This review covers the synthesis of a variety of model systems for elucidating the intrinsic optical properties of the chromophore in the gas phase ...

  5. The role of knowledge in greening flood protection. Lessons from the Dutch case study future Afsluitdijk

    NARCIS (Netherlands)

    Janssen, S.K.H.; Mol, A.P.J.; Tatenhove, van J.; Otter, H.S.

    2014-01-01

    Greening flood protection (GFP) is an upcoming approach in coastal protection knowledge and policy. The central notion of this multifunctional concept is that natural processes, nature development and the dynamics of ecosystems are taken into account in realising flood protection. In practice,

  6. Ultrafast excited and ground-state dynamics of the green fluorescent protein chromophore in solution

    NARCIS (Netherlands)

    Vengris, M.; van Stokkum, I.H.M.; He, X.; Bell, A.F.; Tonge, P.J.; van Grondelle, R.; Larsen, D.S.

    2004-01-01

    Ultrafast dispersed pump-dump-probe spectroscopy was applied to HBDI (4′-hydroxybenzylidene-2,3-dimethylimidazolinone), a model green fluorescent protein (GFP) chromophore in solution with different protonation states. The measured three-dimensional data was analyzed using a global analysis method

  7. A Practical Teaching Course in Directed Protein Evolution Using the Green Fluorescent Protein as a Model

    Science.gov (United States)

    Ruller, Roberto; Silva-Rocha, Rafael; Silva, Artur; Schneider, Maria Paula Cruz; Ward, Richard John

    2011-01-01

    Protein engineering is a powerful tool, which correlates protein structure with specific functions, both in applied biotechnology and in basic research. Here, we present a practical teaching course for engineering the green fluorescent protein (GFP) from "Aequorea victoria" by a random mutagenesis strategy using error-prone polymerase…

  8. Prolonged peritoneal gene expression using a helper-dependent adenovirus.

    Science.gov (United States)

    Liu, Limin; Shi, Chang-Xin; Ghayur, Ayesha; Zhang, Claire; Su, Je Yen; Hoff, Catherine M; Margetts, Peter J

    2009-01-01

    Encapsulating peritoneal sclerosis (EPS) is a rare complication of peritoneal dialysis. The causes of EPS are not well defined and are likely multifactorial. A suitable animal model would facilitate research into the pathophysiology and treatment of EPS. We developed a helper-dependent adenovirus that expresses both green fluorescent protein (GFP) and active transforming growth factor-beta (TGF-beta1; HDAdTGF-beta1). Mice were administered HDAdTGF-beta1 via intraperitoneal injection and the response was compared with mice administered either first-generation adenovirus expressing TGF-beta1 (AdTGF-beta1) or control adenovirus (AdGFP). HDAdTGF-beta1-treated mice continued to express the GFP reporter transgene to day 74, the end of the observation period. Transgene expression lasted less than 28 days in the animals treated with first-generation adenoviruses. Animals treated with first-generation AdTGF-beta1 demonstrated submesothelial thickening and angiogenesis at day 7, with almost complete resolution by day 28. The HDAdTGF-beta1-treated mice demonstrated progressive peritoneal fibrosis with adhesion formation and encapsulation of bowels. Weight gain was significantly reduced in animals treated with HDAdTGF-beta1 compared to both the control-treated animals and the AdTGF-beta1-treated animals. Inflammation was not a major component of the fibroproliferative response. Peritoneal administration of a first-generation AdTGF-beta1 leads to transient gene expression, resulting in a resolving fibrotic response and histology similar to that seen in simple peritoneal sclerosis. Prolonged TGF-beta1 expression induced by the helper-dependent HDAdTGF-beta1 led to changes in peritoneal morphology resembling EPS. This suggests that TGF-beta1 may be a contributing factor in both simple peritoneal sclerosis and EPS. This model will be useful for elucidation of the mechanism of EPS and evaluation of potential treatment.

  9. Green Engineering

    Science.gov (United States)

    Green Engineering is the design, commercialization and use of processes and products that are feasible and economical while reducing the generation of pollution at the source and minimizing the risk to human health and the environment.

  10. Green Roofs

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-08-01

    A New Technology Demonstration Publication Green roofs can improve the energy performance of federal buildings, help manage stormwater, reduce airborne emissions, and mitigate the effects of urban heat islands.

  11. Going Green

    Centers for Disease Control (CDC) Podcasts

    This podcast is for a general audience and provides information on how to recycle, re-use, and restore. It also covers the benefits of “Going Green" on the environment, health, and social interaction.

  12. Potential utility of eGFP-expressing NOG mice (NOG-EGFP as a high purity cancer sampling system

    Directory of Open Access Journals (Sweden)

    Shima Kentaro

    2012-06-01

    Full Text Available Abstract Purpose It is still technically difficult to collect high purity cancer cells from tumor tissues, which contain noncancerous cells. We hypothesized that xenograft models of NOG mice expressing enhanced green fluorescent protein (eGFP, referred to as NOG-EGFP mice, may be useful for obtaining such high purity cancer cells for detailed molecular and cellular analyses. Methods Pancreato-biliary cancer cell lines were implanted subcutaneously to compare the tumorigenicity between NOG-EGFP mice and nonobese diabetic/severe combined immunodeficiency (NOD/SCID mice. To obtain high purity cancer cells, the subcutaneous tumors were harvested from the mice and enzymatically dissociated into single-cell suspensions. Then, the cells were sorted by fluorescence-activated cell sorting (FACS for separation of the host cells and the cancer cells. Thereafter, the contamination rate of host cells in collected cancer cells was quantified by using FACS analysis. The viability of cancer cells after FACS sorting was evaluated by cell culture and subsequent subcutaneous reimplantation in NOG-EGFP mice. Results The tumorigenicity of NOG-EGFP mice was significantly better than that of NOD/SCID mice in all of the analyzed cell lines (p  Conclusions This method provides a novel cancer sampling system for molecular and cellular analysis with high accuracy and should contribute to the development of personalized medicine.

  13. Green lasers

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin

    2010-01-01

    Well over a dozen papers at this year's Photonics West meeting in San Francisco boasted improvements in harmonic generation to produce visible laser beams, most of them in the green spectral range......Well over a dozen papers at this year's Photonics West meeting in San Francisco boasted improvements in harmonic generation to produce visible laser beams, most of them in the green spectral range...

  14. Green Nudging

    OpenAIRE

    Evans, Nicholas; Eickers, Stephanie; Geene, Leonie; Todorovic, Marijana; Villmow, Annika; Forschungsstelle für Umweltpolitik (FFU), Freie Universität Berlin

    2018-01-01

    Traditional environmental policy instruments have not always proven successful in fostering environmentally friendly behaviour. The question remains: how can policymakers tackle the attitude-behaviour gap when it comes to pro-environmental choices and sustainable lifestyles? One solution that has emerged is green nudging, a new and potentially promising policy tool born of behavioural economics and experimental psychology. This paper contributes to the current discussion surrounding green nud...

  15. [Experimental study on human periodontal ligament cells transfected with human amelogenin gene].

    Science.gov (United States)

    Yu, Guang; Shu, Rong; Sun, Ying; Cheng, Lan; Song, Zhong-Chen; Zhang, Xiu-Li

    2008-02-01

    To construct the recombinant lentiviral vector of human amelogenin gene, infect human periodontal ligament cells with the recombinant lentivirus, and evaluate the feasibility of applying modified PDLCs as seeds for a further periodontal reconstruction. The mature peptide of hAm cDNA was cloned and linked into the vector plasmid, the recombinant plasmid FUAmW was confirmed by double enzyme digestion and sequence analysis. Recombinant lentivirus was prepared from 293T cells by polytheylenimine (PEI)-mediated transient cotransfection. The hPDLCs and 293T cells were infected with the generated lentivirus. The infection efficiency was analysed by detection of green fluorescence protein (GFP) with fluorescent microscope and flow cytometer 72 hours later. The expression of hAm gene was detected by reverse transcription polymerase chain reaction (RT-PCR). The sequence of inserted fragment in recombinant plasmid was identical to the hAm sequence reported in Genebank. Green fluorescence was visible under fluorescent microscope, FCM assay showed that positive percentage was 69.46% and 33.99% in 293T and hPDLCs, respectively. The targeted gene was obtained in the experimental groups by RT-PCR. The recombinan lentiviral vector of hAm gene is constructed successfully and it could be transfected into cultured hPDLCs. hAm gene and seed cells may be used for further study in the fields periodontal tissue engineering. Supported by National Natural Science Foundation of China (Grant No. 30672315).

  16. RNA-ID, a highly sensitive and robust method to identify cis-regulatory sequences using superfolder GFP and a fluorescence-based assay.

    Science.gov (United States)

    Dean, Kimberly M; Grayhack, Elizabeth J

    2012-12-01

    We have developed a robust and sensitive method, called RNA-ID, to screen for cis-regulatory sequences in RNA using fluorescence-activated cell sorting (FACS) of yeast cells bearing a reporter in which expression of both superfolder green fluorescent protein (GFP) and yeast codon-optimized mCherry red fluorescent protein (RFP) is driven by the bidirectional GAL1,10 promoter. This method recapitulates previously reported progressive inhibition of translation mediated by increasing numbers of CGA codon pairs, and restoration of expression by introduction of a tRNA with an anticodon that base pairs exactly with the CGA codon. This method also reproduces effects of paromomycin and context on stop codon read-through. Five key features of this method contribute to its effectiveness as a selection for regulatory sequences: The system exhibits greater than a 250-fold dynamic range, a quantitative and dose-dependent response to known inhibitory sequences, exquisite resolution that allows nearly complete physical separation of distinct populations, and a reproducible signal between different cells transformed with the identical reporter, all of which are coupled with simple methods involving ligation-independent cloning, to create large libraries. Moreover, we provide evidence that there are sequences within a 9-nt library that cause reduced GFP fluorescence, suggesting that there are novel cis-regulatory sequences to be found even in this short sequence space. This method is widely applicable to the study of both RNA-mediated and codon-mediated effects on expression.

  17. Extending roGFP Emission via Förster-Type Resonance Energy Transfer Relay Enables Simultaneous Dual Compartment Ratiometric Redox Imaging in Live Cells.

    Science.gov (United States)

    Norcross, Stevie; Trull, Keelan J; Snaider, Jordan; Doan, Sara; Tat, Kiet; Huang, Libai; Tantama, Mathew

    2017-11-22

    Reactive oxygen species (ROS) mediate both intercellular and intraorganellar signaling, and ROS propagate oxidative stress between cellular compartments such as mitochondria and the cytosol. Each cellular compartment contains its own sources of ROS as well as antioxidant mechanisms, which contribute to dynamic fluctuations in ROS levels that occur during signaling, metabolism, and stress. However, the coupling of redox dynamics between cellular compartments has not been well studied because of the lack of available sensors to simultaneously measure more than one subcellular compartment in the same cell. Currently, the redox-sensitive green fluorescent protein, roGFP, has been used extensively to study compartment-specific redox dynamics because it provides a quantitative ratiometric readout and it is amenable to subcellular targeting as a genetically encoded sensor. Here, we report a new family of genetically encoded fluorescent protein sensors that extend the fluorescence emission of roGFP via Förster-type resonance energy transfer to an acceptor red fluorescent protein for dual-color live-cell microscopy. We characterize the redox and optical properties of the sensor proteins, and we demonstrate that they can be used to simultaneously measure cytosolic and mitochondrial ROS in living cells. Furthermore, we use these sensors to reveal cell-to-cell heterogeneity in redox coupling between the cytosol and mitochondria when neuroblastoma cells are exposed to reductive and metabolic stresses.

  18. Fusion of GFP to the M.EcoKI DNA methyltransferase produces a new probe of Type I DNA restriction and modification enzymes

    International Nuclear Information System (INIS)

    Chen, Kai; Roberts, Gareth A.; Stephanou, Augoustinos S.; Cooper, Laurie P.; White, John H.; Dryden, David T.F.

    2010-01-01

    Research highlights: → Successful fusion of GFP to M.EcoKI DNA methyltransferase. → GFP located at C-terminal of sequence specificity subunit does not later enzyme activity. → FRET confirms structural model of M.EcoKI bound to DNA. -- Abstract: We describe the fusion of enhanced green fluorescent protein to the C-terminus of the HsdS DNA sequence-specificity subunit of the Type I DNA modification methyltransferase M.EcoKI. The fusion expresses well in vivo and assembles with the two HsdM modification subunits. The fusion protein functions as a sequence-specific DNA methyltransferase protecting DNA against digestion by the EcoKI restriction endonuclease. The purified enzyme shows Foerster resonance energy transfer to fluorescently-labelled DNA duplexes containing the target sequence and to fluorescently-labelled ocr protein, a DNA mimic that binds to the M.EcoKI enzyme. Distances determined from the energy transfer experiments corroborate the structural model of M.EcoKI.

  19. Mapping of a Cellulose-Deficient Mutant Named dwarf1-1 in Sorghum bicolor to the Green Revolution Gene gibberellin20-oxidase Reveals a Positive Regulatory Association between Gibberellin and Cellulose Biosynthesis.

    Science.gov (United States)

    Petti, Carloalberto; Hirano, Ko; Stork, Jozsef; DeBolt, Seth

    2015-09-01

    Here, we show a mechanism for expansion regulation through mutations in the green revolution gene gibberellin20 (GA20)-oxidase and show that GAs control biosynthesis of the plants main structural polymer cellulose. Within a 12,000 mutagenized Sorghum bicolor plant population, we identified a single cellulose-deficient and male gametophyte-dysfunctional mutant named dwarf1-1 (dwf1-1). Through the Sorghum propinquum male/dwf1-1 female F2 population, we mapped dwf1-1 to a frameshift in GA20-oxidase. Assessment of GAs in dwf1-1 revealed ablation of GA. GA ablation was antagonistic to the expression of three specific cellulose synthase genes resulting in cellulose deficiency and growth dwarfism, which were complemented by exogenous bioactive gibberellic acid application. Using quantitative polymerase chain reaction, we found that GA was positively regulating the expression of a subset of specific cellulose synthase genes. To cross reference data from our mapped Sorghum sp. allele with another monocotyledonous plant, a series of rice (Oryza sativa) mutants involved in GA biosynthesis and signaling were isolated, and these too displayed cellulose deficit. Taken together, data support a model whereby suppressed expansion in green revolution GA genes involves regulation of cellulose biosynthesis. © 2015 American Society of Plant Biologists. All Rights Reserved.

  20. SYBR green-based real-time reverse transcription-PCR for typing and subtyping of all hemagglutinin and neuraminidase genes of avian influenza viruses and comparison to standard serological subtyping tests

    Science.gov (United States)

    Tsukamoto, K.; Javier, P.C.; Shishido, M.; Noguchi, D.; Pearce, J.; Kang, H.-M.; Jeong, O.M.; Lee, Y.-J.; Nakanishi, K.; Ashizawa, T.

    2012-01-01

    Continuing outbreaks of H5N1 highly pathogenic (HP) avian influenza virus (AIV) infections of wild birds and poultry worldwide emphasize the need for global surveillance of wild birds. To support the future surveillance activities, we developed a SYBR green-based, real-time reverse transcriptase PCR (rRT-PCR) for detecting nucleoprotein (NP) genes and subtyping 16 hemagglutinin (HA) and 9 neuraminidase (NA) genes simultaneously. Primers were improved by focusing on Eurasian or North American lineage genes; the number of mixed-base positions per primer was set to five or fewer, and the concentration of each primer set was optimized empirically. Also, 30 cycles of amplification of 1:10 dilutions of cDNAs from cultured viruses effectively reduced minor cross- or nonspecific reactions. Under these conditions, 346 HA and 345 NA genes of 349 AIVs were detected, with average sensitivities of NP, HA, and NA genes of 10 1.5, 10 2.3, and 10 3.1 50% egg infective doses, respectively. Utility of rRT-PCR for subtyping AIVs was compared with that of current standard serological tests by using 104 recent migratory duck virus isolates. As a result, all HA genes and 99% of the NA genes were genetically subtyped, while only 45% of HA genes and 74% of NA genes were serologically subtyped. Additionally, direct subtyping of AIVs in fecal samples was possible by 40 cycles of amplification: approximately 70% of HA and NA genes of NP gene-positive samples were successfully subtyped. This validation study indicates that rRT-PCR with optimized primers and reaction conditions is a powerful tool for subtyping varied AIVs in clinical and cultured samples. Copyright ?? 2012, American Society for Microbiology. All Rights Reserved.

  1. [Construction and identification of Nogo extra cellular peptide residues 1-40 gene lentiviral vector].

    Science.gov (United States)

    Yuan, Haifeng; Song, Yueming; Liu, Hao; Zhou, Chunguang; Kong, Qingquan; Liu, Liming; Gong, Quan

    2012-02-01

    To construct a lentiviral expression vector carrying Nogo extra cellular peptide residues 1-40 (NEP1-40) and to obtain NEP1-40 efficient and stable expression in mammalian cells. The DNA fragment of NEP1-40 coding sequence was amplified by PCR with designed primer from the cDNA library including NEP1-40 gene, and then subcloned into pGC-FU vector with in-fusion technique to generate the lentiviral expression vector, pGC-FU-NEP1-40. The positive clones were screened by PCR and the correct NEP1-40 was confirmed by sequencing. Recombinant lentiviruses were produced in 293T cells after the cotransfection of pGC-FU-NEP1-40, and packaging plasmids of pHelper 1.0 and pHelper 2.0. Green fluorescent protein (GFP) expression of infected 293T cells was observed to evaluate gene delivery efficiency. NEP1-40 protein expression in 293T cells was detected by Western blot. The lentiviral expression vector carrying NEP1-40 was successfully constructed by GFP observation, and NEP1-40 protein expression was detected in 293T cells by Western blot. The recombinant lentivirus pGC-FU-NEP1-40 is successfully constructed and it lays a foundation for further molecular function study of NEP 1-40.

  2. Protection from radiation injury through oral administration of PF4 gene carried by attenuated salmonella

    International Nuclear Information System (INIS)

    Zhao Lihua; Liu Bin; Yu Xiaofei; Zhang Lei; Han Zhongchao

    2005-01-01

    Objective: To investigate the in vivo radiation protection effect of PF4 by oral administration of attenuated salmonella as the carrier in mice. Methods: The eukaryotic vector pIRES2-EGFP-carried PF4 gene was transferred into an aroA-autotrophic mutant of salmonella typhimurium (SL3261), which was administered orally to BALBPc mice at 1x10 8 PFu once every interval three days. At 12 hours after the third oral administration the mice were subjected to a total body irradiation (TBI) of 700 cGy by a 60 Co source. The protective effect of SL3261/PF4 was determined by detection GFP ( green fluorescence protein) expression in tissues, peripheral blood count, culture of bone marrow colony-forming cells and survival time of mice. Results: Expression of GFP could be detected in the liver, spleen, intestine, kidney, peripheral blood and bone marrow. On days 7 and 14 after irradiation, Compared to controls, there were obvious differences in number of bone marrow mononuclear cells, CFU-GM (granulocyte-macrophage colony-forming unit ) and HPP-CFC (high proliferating potential-colony-forming cells) of mice treated with SL3261/PF4 (P<0.05) as well as prolongation of the survival time. Conclusion: These data demonstrate for the first time that PF4 protects mice from TBI injury and accelerates recovery of hematopoiesis by oral administration of attenuated salmonella carrying PF4 gene. (authors)

  3. Processus ultra-rapides associés à la dynamique d'émission de la protéine GFP

    Science.gov (United States)

    Didier, P.; Guidoni, L.; Schwalbach, G.; Bigot, J.-Y.

    2002-06-01

    La protéine GFP (Green Fluorescent Protein) est un marqueur très efficace, utilisable en milieu vivant. La spectroscopie femtoseconde est particulièrement bien adaptée pour comprendre les mécanismes d'émission de cette protéine, étant donné la rapidité des processus de transfert mis en jeu. Nous-présentons des résultats sur la dynamique spectro-temporelle d'émission du mutant GFPuv résolue à l'échelle de la centaine de femtosecondes. Une transition Raman à 3300 cm^{-1} ainsi que la dynamique d'etablissement du gain avec un temps caractéristique d'environ 1.5 ps ont été mis en évidence.

  4. A novel thermal decomposition approach to synthesize hydroxyapatite-silver nanocomposites and their antibacterial action against GFP-expressing antibiotic resistant E. coli.

    Science.gov (United States)

    Sahni, Geetika; Gopinath, P; Jeevanandam, P

    2013-03-01

    A novel thermal decomposition approach to synthesize hydroxyapatite-silver (Hap-Ag) nanocomposites has been reported. The nanocomposites were characterized by X-ray diffraction, field emission scanning electron microscopy coupled with energy dispersive X-ray analysis, transmission electron microscopy and diffuse reflectance spectroscopy techniques. Antibacterial activity studies for the nanocomposites were explored using a new rapid access method employing recombinant green fluorescent protein (GFP) expressing antibiotic resistant Escherichia coli (E. coli). The antibacterial activity was studied by visual turbidity analysis, optical density analysis, fluorescence spectroscopy and microscopy. The mechanism of bactericidal action of the nanocomposites on E. coli was investigated using atomic force microscopy, and TEM analysis. Excellent bactericidal activity at low concentration of the nanocomposites was observed which may allow their use in the production of microbial contamination free prosthetics. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Co-transfer of gfp, CHS and hptII genes into Oncidium Sharry Baby ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-04

    Aug 4, 2008 ... 3Malaysian Institute for Nuclear Technology Research (MINT), Bangi, 43000, ... Key words: Biolistic gun, co-transformation, orchidaceae, protocorm-like-body. ... *Corresponding author: E-mail: janna@biotech.upm.edu.my.

  6. The vacuolar transport of aleurain-GFP and 2S albumin-GFP fusions is mediated by the same pre-vacuolar compartments in tobacco BY-2 and Arabidopsis suspension cultured cells.

    Science.gov (United States)

    Miao, Yansong; Li, Kwun Yee; Li, Hong-Ye; Yao, Xiaoqiang; Jiang, Liwen

    2008-12-01

    Soluble proteins reach vacuoles because they contain vacuolar sorting determinants (VSDs) that are recognized by vacuolar sorting receptor (VSR) proteins. Pre-vacuolar compartments (PVCs), defined by VSRs and GFP-VSR reporters in tobacco BY-2 cells, are membrane-bound intermediate organelles that mediate protein traffic from the Golgi apparatus to the vacuole in plant cells. Multiple pathways have been demonstrated to be responsible for vacuolar transport of lytic enzymes and storage proteins to the lytic vacuole (LV) and the protein storage vacuole (PSV), respectively. However, the nature of PVCs for LV and PSV pathways remains unclear. Here, we used two fluorescent reporters, aleurain-GFP and 2S albumin-GFP, that represent traffic of lytic enzymes and storage proteins to LV and PSV, respectively, to study the PVC-mediated transport pathways via transient expression in suspension cultured cells. We demonstrated that the vacuolar transport of aleurain-GFP and 2S albumin-GFP was mediated by the same PVC populations in both tobacco BY-2 and Arabidopsis suspension cultured cells. These PVCs were defined by the seven GFP-AtVSR reporters. In wortmannin-treated cells, the vacuolated PVCs contained the mRFP-AtVSR reporter in their limiting membranes, whereas the soluble aleurain-GFP or 2S albumin-GFP remained in the lumen of the PVCs, indicating a possible in vivo relationship between receptor and cargo within PVCs.

  7. Identification of Cells at Early and Late Stages of Polarization During Odontoblast Differentiation Using pOBCol3.6GFP and pOBCol2.3GFP Transgenic Mice

    Science.gov (United States)

    Balic, Anamaria; Aguila, H. Leonardo; Mina, Mina

    2010-01-01

    Transgenic mouse lines in which GFP expression is under the control of tissue-and stage specific promoters have provided powerful experimental tools for identification and isolation of cells at specific stage of differentiation along a lineage. In the present study we used primary cell cultures derived from the dental pulp from pOBCol3.6GFP and pOBCol2.3GFP transgenic mice as a model to develop markers for early stages of odontoblast differentiation from progenitor cells. We analyzed the temporal and spatial expression of 2.3-GFP and 3.6-GFP during in vitro mineralization. Using FACS to separate cells based on GFP expression, we obtained relatively homogenous sub-populations of cells and analyzed their dentinogenic potentials and their progression into odontoblasts. Our observations showed that these transgenes were activated before the onset of matrix deposition and in cells at different stages of polarization. The 3.6-GFP transgene was activated in cells in early stages of polarization whereas the 2.3-GFP transgene was activated at a later stage of polarization just before or at the time of formation of secretory odontoblast. PMID:20728593

  8. Differential Structural Development of Adult-Born Septal Hippocampal Granule Cells in the Thy1-GFP Mouse, Nuclear Size as a New Index of Maturation.

    Directory of Open Access Journals (Sweden)

    Tijana Radic

    Full Text Available Adult neurogenesis is frequently studied in the mouse hippocampus. We examined the morphological development of adult-born, immature granule cells in the suprapyramidal blade of the septal dentate gyrus over the period of 7-77 days after mitosis with BrdU-labeling in 6-weeks-old male Thy1-GFP mice. As Thy1-GFP expression was restricted to maturated granule cells, it was combined with doublecortin-immunolabeling of immature granule cells. We developed a novel classification system that is easily applicable and enables objective and direct categorization of newborn granule cells based on the degree of dendritic development in relation to the layer specificity of the dentate gyrus. The structural development of adult-generated granule cells was correlated with age, albeit with notable differences in the time course of development between individual cells. In addition, the size of the nucleus, immunolabeled with the granule cell specific marker Prospero-related homeobox 1 gene, was a stable indicator of the degree of a cell's structural maturation and could be used as a straightforward parameter of granule cell development. Therefore, further studies could employ our doublecortin-staging system and nuclear size measurement to perform investigations of morphological development in combination with functional studies of adult-born granule cells. Furthermore, the Thy1-GFP transgenic mouse model can be used as an additional investigation tool because the reporter gene labels granule cells that are 4 weeks or older, while very young cells could be visualized through the immature marker doublecortin. This will enable comparison studies regarding the structure and function between young immature and older matured granule cells.

  9. Green banking

    Directory of Open Access Journals (Sweden)

    Maja Drobnjaković

    2013-06-01

    Full Text Available There is an urgent need to march towards “low - carbon economy”. Global challenges of diminishing fossil fuel reserves, climate change, environmental management and finite natural resources serving an expanding world population - these reasons mean that urgent action is required to transition to solutions which minimize environmental impact and are sustainable. We are at the start of the low - carbon revolution and those that have started on their low - carbon journey already are seeing benefits such as new markets and customers, improved economic, social and environmental performance, and reduced bills and risks. Green investment banks offer alternative financial services: green car loans, energy efficiency mortgages, alternative energy venture capital, eco - savings deposits and green credit cards. These items represent innovative financial products.

  10. Interferences of Silica Nanoparticles in Green Fluorescent Protein Folding Processes.

    Science.gov (United States)

    Klein, Géraldine; Devineau, Stéphanie; Aude, Jean Christophe; Boulard, Yves; Pasquier, Hélène; Labarre, Jean; Pin, Serge; Renault, Jean Philippe

    2016-01-12

    We investigated the relationship between unfolded proteins, silica nanoparticles and chaperonin to determine whether unfolded proteins could stick to silica surfaces and how this process could impair heat shock protein activity. The HSP60 catalyzed green fluorescent protein (GFP) folding was used as a model system. The adsorption isotherms and adsorption kinetics of denatured GFP were measured, showing that denaturation increases GFP affinity for silica surfaces. This affinity is maintained even if the surfaces are covered by a protein corona and allows silica NPs to interfere directly with GFP folding by trapping it in its unstructured state. We determined also the adsorption isotherms of HSP60 and its chaperonin activity once adsorbed, showing that SiO2 NP can interfere also indirectly with protein folding through chaperonin trapping and inhibition. This inhibition is specifically efficient when NPs are covered first with a layer of unfolded proteins. These results highlight for the first time the antichaperonin activity of silica NPs and ask new questions about the toxicity of such misfolded proteins/nanoparticles assembly toward cells.

  11. Green times

    International Nuclear Information System (INIS)

    Hasenclever, W.D.; Hasenclever, C.

    1982-01-01

    The authors, founding members of the ''Green Party'' have in mind to make a very personal contribution to a better understanding of the present political situation which, although it seems to have reached a deadlock, still offers positive chances and prospects. New approaches in policy are mentioned which may help to overcome the present state of resignation of many adolescents and adults. Among other things, they describe themselves setting out for new pathways, the ''Greens'' in Parliament, prospect for the future, opportunities of the ecologically oriented economic policy. Finally, they call upon the reader to think and develop further under the motto ''What we all can do''. (HSCH) [de

  12. No Overt Deficits in Aged Tau-Deficient C57Bl/6.Mapttm1(EGFPKit GFP Knockin Mice.

    Directory of Open Access Journals (Sweden)

    Annika van Hummel

    Full Text Available Several mouse lines with knockout of the tau-encoding MAPT gene have been reported in the past; they received recent attention due to reports that tau reduction prevented Aβ-induced deficits in mouse models of Alzheimer's disease. However, the effects of long-term depletion of tau in vivo remained controversial. Here, we used the tau-deficient GFP knockin line Mapttm1(EGFPkit on a pure C57Bl/6 background and subjected a large cohort of males and females to a range of motor, memory and behavior tests and imaging analysis, at the advanced age of over 16 months. Neither heterozygous nor homozygous Mapttm1(EGFPkit mice presented with deficits or abnormalities compared to wild-type littermates. Differences to reports using other tau knockout models may be due to different genetic backgrounds, respective gene targeting strategies or other confounding factors, such as nutrition. To this end, we report no functional or morphological deficits upon tau reduction or depletion in aged mice.

  13. Rosa26-GFP direct repeat (RaDR-GFP mice reveal tissue- and age-dependence of homologous recombination in mammals in vivo.

    Directory of Open Access Journals (Sweden)

    Michelle R Sukup-Jackson

    2014-06-01

    Full Text Available Homologous recombination (HR is critical for the repair of double strand breaks and broken replication forks. Although HR is mostly error free, inherent or environmental conditions that either suppress or induce HR cause genomic instability. Despite its importance in carcinogenesis, due to limitations in our ability to detect HR in vivo, little is known about HR in mammalian tissues. Here, we describe a mouse model in which a direct repeat HR substrate is targeted to the ubiquitously expressed Rosa26 locus. In the Rosa26 Direct Repeat-GFP (RaDR-GFP mice, HR between two truncated EGFP expression cassettes can yield a fluorescent signal. In-house image analysis software provides a rapid method for quantifying recombination events within intact tissues, and the frequency of recombinant cells can be evaluated by flow cytometry. A comparison among 11 tissues shows that the frequency of recombinant cells varies by more than two orders of magnitude among tissues, wherein HR in the brain is the lowest. Additionally, de novo recombination events accumulate with age in the colon, showing that this mouse model can be used to study the impact of chronic exposures on genomic stability. Exposure to N-methyl-N-nitrosourea, an alkylating agent similar to the cancer chemotherapeutic temozolomide, shows that the colon, liver and pancreas are susceptible to DNA damage-induced HR. Finally, histological analysis of the underlying cell types reveals that pancreatic acinar cells and liver hepatocytes undergo HR and also that HR can be specifically detected in colonic somatic stem cells. Taken together, the RaDR-GFP mouse model provides new understanding of how tissue and age impact susceptibility to HR, and enables future studies of genetic, environmental and physiological factors that modulate HR in mammals.

  14. Direct Head-To-Head Comparison of Cationic Liposome-Mediated Gene Delivery to Mesenchymal Stem/Stromal Cells of Different Human Sources: A Comprehensive Study

    Science.gov (United States)

    Boura, Joana S.; dos Santos, Francisco; Gimble, Jeffrey M.; Cardoso, Carla M.P.; Madeira, Catarina; Cabral, Joaquim M.S.

    2013-01-01

    Abstract Nonviral gene delivery to human mesenchymal stem/stromal cells (MSC) can be considered a very promising strategy to improve their intrinsic features, amplifying the therapeutic potential of these cells for clinical applications. In this work, we performed a comprehensive comparison of liposome-mediated gene transfer efficiencies to MSC derived from different human sources—bone marrow (BM MSC), adipose tissue-derived cells (ASC), and umbilical cord matrix (UCM MSC). The results obtained using a green fluorescent protein (GFP)-encoding plasmid indicated that MSC isolated from BM and UCM are more amenable to genetic modification when compared to ASC as they exhibited superior levels of viable, GFP+ cells 48 hr post-transfection, 58±7.1% and 54±3.8%, respectively, versus 33±4.7%. For all cell sources, high cell recoveries (≈50%) and viabilities (>85%) were achieved, and the transgene expression was maintained for 10 days. Levels of plasmid DNA uptake, as well as kinetics of transgene expression and cellular division, were also determined. Importantly, modified cells were found to retain their characteristic immunophenotypic profile and multilineage differentiation capacity. By using the lipofection protocol optimized herein, we were able to maximize transfection efficiencies to human MSC (maximum of 74% total GFP+ cells) and show that lipofection is a promising transfection strategy for MSC genetic modification, especially when a transient expression of a therapeutic gene is required. Importantly, we also clearly demonstrated that intrinsic features of MSC from different sources should be taken into consideration when developing and optimizing strategies for MSC engineering with a therapeutic gene. PMID:23360350

  15. Nano-sized calcium phosphate particles for periodontal gene therapy.

    Science.gov (United States)

    Elangovan, Satheesh; Jain, Shardool; Tsai, Pei-Chin; Margolis, Henry C; Amiji, Mansoor

    2013-01-01

    Growth factors such as platelet-derived growth factor (PDGF) have significantly enhanced periodontal therapy outcomes with a high degree of variability, mostly due to the lack of continual supply for a required period of time. One method to overcome this barrier is gene therapy. The aim of this in vitro study is to evaluate PDGF-B gene delivery in fibroblasts using nano-sized calcium phosphate particles (NCaPP) as vectors. NCaPP incorporating green fluorescent protein (NCaPP-GFP) and PDGF-B (NCaPP-PDGF-B) plasmids were synthesized using an established precipitation system and characterized using transmission electron microscopy and 1.2% agarose gel electrophoresis. Biocompatibility and transfection of the nanoplexes in fibroblasts were evaluated using cytotoxicity assay and florescence microscopy, respectively. Polymerase chain reaction and enzyme-linked immunosorbent assay were performed to evaluate PDGF-B transfection after different time points of treatments, and the functionality of PDGF-B transfection was evaluated using the cell proliferation assay. Synthesized NCaPP nanoplexes incorporating the genes of GFP and PDGF-B were spherical in shape and measured about 30 to 50 nm in diameter. Gel electrophoresis confirmed DNA incorporation and stability within the nanoplexes, and 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium reagent assay demonstrated their biocompatibility in fibroblasts. In vitro transfection studies revealed a higher and longer lasting transfection after NCaPP-PDGF-B treatment, which lasted up to 96 hours. Significantly enhanced fibroblast proliferation observed in NCaPP-PDGF-B-treated cells confirmed the functionality of these nanoplexes. NCaPP demonstrated higher levels of biocompatibility and efficiently transfected PDGF plasmids into fibroblasts under described in vitro conditions.

  16. Going Green

    Science.gov (United States)

    Witkowsky, Kathy

    2009-01-01

    Going green saves money and can even make money. Sustainable practices promote better health, less absenteeism, and more productivity. They also attract students, who are paying increasing attention to schools' environmental policies. Beyond being the smart thing to do, administrators at the University of Washington say repeatedly, it's the right…

  17. Buying Green

    Science.gov (United States)

    Layng, T. V. Joe

    2010-01-01

    In "Buying Green," Joe Layng recognizes that, like all choices we make, our decisions as consumers are more likely to be influenced by their short-term consequences for us as individuals (price, quality) than they are by their long-term consequences for society (environmental impact). He believes that the equation can be tilted in favor of greener…

  18. Green pioneers.

    Science.gov (United States)

    Trueland, Jennifer

    The government has set tough targets for the NHS in England to reduce its carbon footprint. In this article, nurses and managers at Nottinghamshire Healthcare NHS Trust explain how a programme of 'greening' initiatives - including a trial of electric cars for community staff - have slashed the trust's CO2 output.

  19. Automatically Green

    DEFF Research Database (Denmark)

    Sunstein, Cass R.; Reisch, Lucia

    2014-01-01

    reasons include the power of suggestion; inertia and procrastination; and loss aversion. If well-chosen, green defaults are likely to have large effects in reducing the economic and environmental harms associated with various products and activities. Such defaults may or may not be more expensive...

  20. Automatically Green

    DEFF Research Database (Denmark)

    Sunstein, Cass R.; Reisch, Lucia

    reasons include the power of suggestion; inertia and procrastination; and loss aversion. If well-chosen, green defaults are likely to have large effects in reducing the economic and environmental harms associated with various products and activities. Such defaults may or may not be more expensive...

  1. Going Green

    Centers for Disease Control (CDC) Podcasts

    2008-04-18

    This podcast is for a general audience and provides information on how to recycle, re-use, and restore. It also covers the benefits of “Going Green" on the environment, health, and social interaction.  Created: 4/18/2008 by National Center for Environmental Health (NCEH), ATSDR.   Date Released: 5/8/2008.

  2. Use of transgenic GFP reporter strains of the nematode Caenorhabditis elegans to investigate the patterns of stress responses induced by pesticides and by organic extracts from agricultural soils.

    Science.gov (United States)

    Anbalagan, Charumathi; Lafayette, Ivan; Antoniou-Kourounioti, Melissa; Gutierrez, Carmen; Martin, Jose Rodriguez; Chowdhuri, Debapratim K; De Pomerai, David I

    2013-01-01

    As a free-living nematode, C. elegans is exposed to various pesticides used in agriculture, as well as to persistent organic residues which may contaminate the soil for long periods. Following on from our previous study of metal effects on 24 GFP-reporter strains representing four different stress-response pathways in C. elegans (Anbalagan et al. Ecotoxicology 21:439-455, 2012), we now present parallel data on the responses of these same strains to several commonly used pesticides. Some of these, like dichlorvos, induced multiple stress genes in a concentration-dependent manner. Unusually, endosulfan induced only one gene (cyp-34A9) to very high levels (8-10-fold) even at the lowest test concentration, with a clear plateau at higher doses. Other pesticides, like diuron, did not alter reporter gene expression detectably even at the highest test concentration attainable, while others (such as glyphosate) did so only at very high concentrations. We have also used five responsive GFP reporters to investigate the toxicity of soil pore water from two agricultural sites in south-east Spain, designated P74 (used for cauliflower production, but significantly metal contaminated) and P73 (used for growing lettuce, but with only background levels of metals). Both soil pore water samples induced all five test genes to varying extents, yet artificial mixtures containing all major metals present had essentially no effect on these same transgenes. Soluble organic contaminants present in the pore water were extracted with acetone and dichloromethane, then after evaporation of the solvents, the organic residues were redissolved in ultrapure water to reconstitute the soluble organic components of the original soil pore water. These organic extracts induced transgene expression at similar or higher levels than the original pore water. Addition of the corresponding metal mixtures had either no effect, or reduced transgene expression towards the levels seen with soil pore water only. We

  3. Gene

    Data.gov (United States)

    U.S. Department of Health & Human Services — Gene integrates information from a wide range of species. A record may include nomenclature, Reference Sequences (RefSeqs), maps, pathways, variations, phenotypes,...

  4. Benchmarking Various Green Fluorescent Protein Variants in Bacillus subtilis, Streptococcus pneumoniae, and Lactococcus lactis for Live Cell Imaging

    NARCIS (Netherlands)

    Overkamp, Wout; Beilharz, Katrin; Weme, Ruud Detert Oude; Solopova, Ana; Karsens, Harma; Kovacs, Akos T.; Kok, Jan; Kuipers, Oscar P.; Veening, Jan-Willem

    2013-01-01

    Green fluorescent protein (GFP) offers efficient ways of visualizing promoter activity and protein localization in vivo, and many different variants are currently available to study bacterial cell biology. Which of these variants is best suited for a certain bacterial strain, goal, or experimental

  5. Myostatin gene knockout mediated by Cas9-D10A nickase in chicken DF1 cells without off-target effect

    Directory of Open Access Journals (Sweden)

    Jeong Hyo Lee

    2017-05-01

    Full Text Available Objective Based on rapid advancement of genetic modification techniques, genomic editing is expected to become the most efficient tool for improvement of economic traits in livestock as well as poultry. In this study, we examined and verified the nickase of mutated CRISPR-associated protein 9 (Cas9 to modulate the specific target gene in chicken DF1 cells. Methods Chicken myostatin which inhibits muscle cell growth and differentiation during myogenesis was targeted to be deleted and mutated by the Cas9-D10A nickase. After co-transfection of the nickase expression vector with green fluorescent gene (GFP gene and targeted multiplex guide RNAs (gRNAs, the GFP-positive cells were sorted out by fluorescence-activated cell sorting procedure. Results Through the genotyping analysis of the knockout cells, the mutant induction efficiency was 100% in the targeted site. Number of the deleted nucleotides ranged from 2 to 39 nucleotide deletion. There was no phenotypic difference between regular cells and knockout cells. However, myostatin protein was not apparently detected in the knockout cells by Western blotting. Additionally, six off-target sites were predicted and analyzed but any non-specific mutation in the off-target sites was not observed. Conclusion The knockout technical platform with the nickase and multiplex gRNAs can be efficiently and stablely applied to functional genomics study in poultry and finally adapted to generate the knockout poultry for agribio industry.

  6. Pengaruh Green Marketing Hotel Terhadap Green Consumer Behavior

    OpenAIRE

    Yo Fernandez, Eunike Christe; Tjoanda, Evelyn

    2017-01-01

    Penelitian ini dilakukan untuk mengetahui pengaruh dari green marketing hotel terhadap green consumer behavior. Green marketing memiliki 3 dimensi, yaitu green product, green price, dan green promotion. Penelitian ini melibatkan 272 responden masyarakat Surabaya dan menggunakan metode regresi linear berganda. Hasil penelitian menunjukkan bahwa green product dan green price berpengaruh secara positif dan signifikan sedangkan green promotion berpengaruh namun tidak signifikan terhadap green con...

  7. Green Computing

    Directory of Open Access Journals (Sweden)

    K. Shalini

    2013-01-01

    Full Text Available Green computing is all about using computers in a smarter and eco-friendly way. It is the environmentally responsible use of computers and related resources which includes the implementation of energy-efficient central processing units, servers and peripherals as well as reduced resource consumption and proper disposal of electronic waste .Computers certainly make up a large part of many people lives and traditionally are extremely damaging to the environment. Manufacturers of computer and its parts have been espousing the green cause to help protect environment from computers and electronic waste in any way.Research continues into key areas such as making the use of computers as energy-efficient as Possible, and designing algorithms and systems for efficiency-related computer technologies.

  8. Experimental Model of Gene Transfection in Healthy Canine Myocardium: Perspectives of Gene Therapy for Ischemic Heart Disease

    Directory of Open Access Journals (Sweden)

    Renato A. K. Kalil

    2002-09-01

    Full Text Available OBJECTIVE: To assess the transfection of the gene that encodes green fluorescent protein (GFP through direct intramyocardial injection. METHODS: The pREGFP plasmid vector was used. The EGFP gene was inserted downstream from the constitutive promoter of the Rous sarcoma virus. Five male dogs were used (mean weight 13.5 kg, in which 0.5 mL of saline solution (n=1 or 0.5 mL of plasmid solution containing 0.5 µg of pREGFP/dog (n=4 were injected into the myocardium of the left ventricular lateral wall. The dogs were euthanized 1 week later, and cardiac biopsies were obtained. RESULTS: Fluorescence microscopy showed differences between the cells transfected and not transfected with pREGFP plasmid. Mild fluorescence was observed in the cardiac fibers that received saline solution; however, the myocardial cells transfected with pREGFP had overt EGFP expression. CONCLUSION: Transfection with the EGFP gene in healthy canine myocardium was effective. The reproduction of this efficacy using vascular endothelial growth factor (VEGF instead of EGFP aims at developing gene therapy for ischemic heart disease.

  9. Antigen Uptake during Different Life Stages of Zebrafish (Danio rerio Using a GFP-Tagged Yersinia ruckeri.

    Directory of Open Access Journals (Sweden)

    Rozalia Korbut

    Full Text Available Immersion-vaccines (bacterins are routinely used for aquacultured rainbow trout to protect against Yersinia ruckeri (Yr. During immersion vaccination, rainbow trout take up and process the antigens, which induce protection. The zebrafish was used as a model organism to study uptake mechanisms and subsequent antigen transport in fish. A genetically modified Yr was developed to constitutively express green fluorescent protein (GFP and was used for bacterin production. Larval, juvenile and adult transparent zebrafish (tra:nac mutant received a bath in the bacterin for up to 30 minutes. Samples were taken after 1 min, 15 min, 30 min, 2 h, 12 h and 24 h. At each sampling point fish were used for live imaging of the uptake using a fluorescence stereomicroscope and for immunohistochemistry (IHC. In adult fish, the bacterin could be traced within 30 min in scale pockets, skin, oesophagus, intestine and fins. Within two hours post bath (pb Yr-antigens were visible in the spleen and at 24 h in liver and kidney. Bacteria were associated with the gills, but uptake at this location was limited. Antigens were rarely detected in the blood and never in the nares. In juvenile fish uptake of the bacterin was seen in the intestine 30 min pb and in the nares 2 hpb but never in scale pockets. Antigens were detected in the spleen 12 hpb. Zebrafish larvae exhibited major Yr uptake only in the mid-intestine enterocytes 24 hpb. The different life stages of zebrafish varied with regard to uptake locations, however the gut was consistently a major uptake site. Zebrafish and rainbow trout tend to have similar uptake mechanisms following immersion or bath vaccination, which points towards zebrafish as a suitable model organism for this aquacultured species.

  10. Live imaging of symbiosis: spatiotemporal infection dynamics of a GFP-labelled Burkholderia symbiont in the bean bug Riptortus pedestris

    Science.gov (United States)

    Kikuchi, Yoshitomo; Fukatsu, Takema

    2014-01-01

    Many insects possess endosymbiotic bacteria inside their body, wherein intimate interactions occur between the partners. While recent technological advancements have deepened our understanding of metabolic and evolutionary features of the symbiont genomes, molecular mechanisms underpinning the intimate interactions remain difficult to approach because the insect symbionts are generally uncultivable. The bean bug Riptortus pedestris is associated with the betaproteobacterial Burkholderia symbiont in a posterior region of the midgut, which develops numerous crypts harbouring the symbiont extracellularly. Distinct from other insect symbiotic systems, R. pedestris acquires the Burkholderia symbiont not by vertical transmission but from the environment every generation. By making use of the cultivability and the genetic tractability of the symbiont, we constructed a transgenic Burkholderia strain labelled with green fluorescent protein (GFP), which enabled detailed observation of spatiotemporal dynamics and the colonization process of the symbiont in freshly prepared specimens. The symbiont live imaging revealed that, at the second instar, colonization of the symbiotic midgut M4 region started around 6 h after inoculation (hai). By 24 hai, the symbiont cells appeared in the main tract and also in several crypts of the M4. By 48 hai, most of the crypts were colonized by the symbiont cells. By 72 hai, all the crypts were filled up with the symbiont cells and the symbiont localization pattern continued during the subsequent nymphal development. Quantitative PCR of the symbiont confirmed the infection dynamics quantitatively. These results highlight the stinkbug-Burkholderia gut symbiosis as an unprecedented model for comprehensive understanding of molecular mechanisms underpinning insect symbiosis. PMID:24103110

  11. Behavioral Evaluation of hMSC-GFP+ Transplantation in an Hemiparkinson Experimental Model in Wistar Rat

    Directory of Open Access Journals (Sweden)

    Jéssica Paola Alcázar Arzuza

    2017-05-01

    Full Text Available The effect of hMSCs-GFP+ transplantation was evaluated in an experimental model of Parkinson's disease (PD in 27 Wistar rats, or in three experimental groups: control (CON  n=7, injured (LES n=10 and transplanted (LES+T n=10. In order to evaluate the influence of the transplantation on the motor behavior, one month after the injury, rotation behavior induced by apomorphine, neurological test, transversal bar and SNpc cells positive to TH were developed. Using the Anova test, there was a decrease in the number of turns in transplanted animals (p=0.005 as well as in the neurological test (p=0.0004 and in the transverse bar that lead to this group in an intermediate position regarding LES and CON groups. There is a possible recovery of the transplantation-mediated nigroestriatal pathway of hMSC-GFP +.

  12. Green toxicology.

    Science.gov (United States)

    Maertens, Alexandra; Anastas, Nicholas; Spencer, Pamela J; Stephens, Martin; Goldberg, Alan; Hartung, Thomas

    2014-01-01

    Historically, early identification and characterization of adverse effects of industrial chemicals was difficult because conventional toxicological test methods did not meet R&D needs for rapid, relatively inexpensive methods amenable to small amounts of test material. The pharmaceutical industry now front-loads toxicity testing, using in silico, in vitro, and less demanding animal tests at earlier stages of product development to identify and anticipate undesirable toxicological effects and optimize product development. The Green Chemistry movement embraces similar ideas for development of less toxic products, safer processes, and less waste and exposure. Further, the concept of benign design suggests ways to consider possible toxicities before the actual synthesis and to apply some structure/activity rules (SAR) and in silico methods. This requires not only scientific development but also a change in corporate culture in which synthetic chemists work with toxicologists. An emerging discipline called Green Toxicology (Anastas, 2012) provides a framework for integrating the principles of toxicology into the enterprise of designing safer chemicals, thereby minimizing potential toxicity as early in production as possible. Green Toxicology`s novel utility lies in driving innovation by moving safety considerations to the earliest stage in a chemical`s lifecycle, i.e., to molecular design. In principle, this field is no different than other subdisciplines of toxicology that endeavor to focus on a specific area - for example, clinical, environmental or forensic toxicology. We use the same principles and tools to evaluate an existing substance or to design a new one. The unique emphasis is in using 21st century toxicology tools as a preventative strategy to "design out" undesired human health and environmental effects, thereby increasing the likelihood of launching a successful, sustainable product. Starting with the formation of a steering group and a series of workshops

  13. Green Gold

    International Nuclear Information System (INIS)

    Salamandra Martinez, Carlos

    2004-01-01

    The main purpose of this work is to offer a general panoramic of the processes or experiences pilot that are carried out in the Project Green Gold, as strategy of environmental sustainability and organizational invigoration in Choco, especially in the 12 communities of the municipalities of Tado and Condoto. It is also sought to offer a minimum of information on the techniques of handmade production and to show the possibilities to carry out in a rational way the use and use of the natural resources. The Project Green Gold is carried out by the Corporation Green Gold (COV) and co-financed with resources of international and national character, the intervention of the financial resources it achievement mainly for the use of clean processes in the extraction stages and metals benefit. The project is centered primarily in the absence of use of products or toxic substances as the mercury, fair trade, organizational invigoration, execution of 11 approaches and certification of the metals Gold and Platinum. The COV, it has come executing the proposal from the year 2001 with the premise of contributing to the balance between the rational exploitation of the natural resources and the conservation of the environment in the Choco. In the project they are used technical handmade characteristic of the region framed inside the mining activity and production activities are diversified in the productive family units. Those producing with the support of entities of juridical character, specify the necessary game rules for the extraction and products commercialization

  14. Transcriptome of Atoh7 retinal progenitor cells identifies new Atoh7-dependent regulatory genes for retinal ganglion cell formation.

    Science.gov (United States)

    Gao, Zhiguang; Mao, Chai-An; Pan, Ping; Mu, Xiuqian; Klein, William H

    2014-11-01

    The bHLH transcription factor ATOH7 (Math5) is essential for establishing retinal ganglion cell (RGC) fate. However, Atoh7-expressing retinal progenitor cells (RPCs) can give rise to all retinal cell types, suggesting that other factors are involved in specifying RGCs. The basis by which a subpopulation of Atoh7-expressing RPCs commits to an RGC fate remains uncertain but is of critical importance to retinal development since RGCs are the earliest cell type to differentiate. To better understand the regulatory mechanisms leading to cell-fate specification, a binary genetic system was generated to specifically label Atoh7-expressing cells with green fluorescent protein (GFP). Fluorescence-activated cell sorting (FACS)-purified GFP(+) and GFP(-) cells were profiled by RNA-seq. Here, we identify 1497 transcripts that were differentially expressed between the two RPC populations. Pathway analysis revealed diminished growth factor signaling in Atoh7-expressing RPCs, indicating that these cells had exited the cell cycle. In contrast, axon guidance signals were enriched, suggesting that axons of Atoh7-expressing RPCs were already making synaptic connections. Notably, many genes enriched in Atoh7-expressing RPCs encoded transcriptional regulators, and several were direct targets of ATOH7, including, and unexpectedly, Ebf3 and Eya2. We present evidence for a Pax6-Atoh7-Eya2 pathway that acts downstream of Atoh7 but upstream of differentiation factor Pou4f2. EYA2 is a protein phosphatase involved in protein-protein interactions and posttranslational regulation. These properties, along with Eya2 as an early target gene of ATOH7, suggest that EYA2 functions in RGC specification. Our results expand current knowledge of the regulatory networks operating in Atoh7-expressing RPCs and offer new directions for exploring the earliest aspects of retinogenesis. © 2014 Wiley Periodicals, Inc.

  15. Characterization and assembly of a GFP-tagged cylindriform silk into hexameric complexes.

    Science.gov (United States)

    Öster, Carl; Svensson Bonde, Johan; Bülow, Leif; Dicko, Cedric

    2014-04-01

    Spider silk has been studied extensively for its attractive mechanical properties and potential applications in medicine and industry. The production of spider silk, however, has been lagging behind for lack of suitable systems. Our approach focuses on solving the production of spider silk by designing, expressing, purifying and characterizing the silk from cylindriform glands. We show that the cylindriform silk protein, in contrast to the commonly used dragline silk protein, is fully folded and stable in solution. With the help of GFP as a fusion tag we enhanced the expression of the silk protein in Escherichia coli and could optimize the downstream processing. Secondary structures analysis by circular dichroism and FTIR shows that the GFP-silk fusion protein is predominantly α-helical, and that pH can trigger a α- to β-transition resulting in aggregation. Structural analysis by small angle X-ray scattering suggests that the GFP-Silk exists in the form of a hexamer in solution. Copyright © 2013 Wiley Periodicals, Inc.

  16. Functional and RNA-sequencing analysis revealed expression of a novel stay-green gene from Zoysia japonica (ZjSGR caused chlorophyll degradation and accelerated senescence in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Ke Teng

    2016-12-01

    Full Text Available Senescence is not only an important developmental process, but also a responsive regulation to abiotic and biotic stress for plants. Stay-green protein plays crucial roles in plant senescence and chlorophyll degradation. However, the underlying mechanisms were not well studied, particularly in non-model plants. In this study, a novel stay-green gene, ZjSGR, was isolated from Zoysia japonica. Subcellular localization result demonstrated that ZjSGR was localized in the chloroplasts. Quantitative real-time PCR results together with promoter activity determination using transgenic Arabidopsis confirmed that ZjSGR could be induced by darkness, ABA and MeJA. Its expression levels could also be up-regulated by natural senescence, but suppressed by SA treatments. Overexpression of ZjSGR in Arabidopsis resulted in a rapid yellowing phenotype; complementary experiments proved that ZjSGR was a functional homologue of AtNYE1 from Arabidopsis thaliana. Overexpression of ZjSGR accelerated chlorophyll degradation and impaired photosynthesis in Arabidopsis. Transmission electron microscopy observation revealed that overexpression of ZjSGR decomposed the chloroplasts structure. RNA sequencing analysis showed that ZjSGR could play multiple roles in senescence and chlorophyll degradation by regulating hormone signal transduction and the expression of a large number of senescence and environmental stress related genes. Our study provides a better understanding of the roles of SGRs, and new insight into the senescence and chlorophyll degradation mechanisms in plants.

  17. Identification of GIG1, a GlcNAc-induced gene in Candida albicans needed for normal sensitivity to the chitin synthase inhibitor nikkomycin Z.

    Science.gov (United States)

    Gunasekera, Angelo; Alvarez, Francisco J; Douglas, Lois M; Wang, Hong X; Rosebrock, Adam P; Konopka, James B

    2010-10-01

    The amino sugar N-acetylglucosamine (GlcNAc) is known to be an important structural component of cells from bacteria to humans, but its roles in cell signaling are less well understood. GlcNAc induces two pathways in the human fungal pathogen Candida albicans. One activates cyclic AMP (cAMP) signaling, which stimulates the formation of hyphal cells and the expression of virulence genes, and the other pathway induces genes needed to catabolize GlcNAc. Microarray analysis of gene expression was carried out under four different conditions in order to characterize the transcriptional changes induced by GlcNAc. The most highly induced genes include those that encode a GlcNAc transporter (NGT1) and the GlcNAc catabolic enzymes (HXK1, DAC1, and NAG1). GlcNAc also activated most of the genes whose expression is increased when cells are triggered with other stimuli to form hyphae. Surprisingly, GlcNAc also induced a subset of genes that are regulated by galactose (GAL1, GAL7, and GAL10), which may be due to cross talk between signaling pathways. A novel GlcNAc-induced gene, GIG1, which is not essential for GlcNAc catabolism or the induction of hyphae, was identified. However, a Gig1-green fluorescent protein (GFP) fusion protein was specifically induced by GlcNAc, and not by other sugars. Gig1-GFP localized to the cytoplasm, where GlcNAc metabolism occurs. Significantly, a gig1Δ mutant displayed increased resistance to nikkomycin Z, which inhibits chitin synthase from converting UDP-GlcNAc into cell wall chitin. Gig1 is highly conserved in fungi, especially those that contain GlcNAc catabolic genes. These results implicate Gig1 in GlcNAc metabolism.

  18. Identification of GIG1, a GlcNAc-Induced Gene in Candida albicans Needed for Normal Sensitivity to the Chitin Synthase Inhibitor Nikkomycin Z▿§

    Science.gov (United States)

    Gunasekera, Angelo; Alvarez, Francisco J.; Douglas, Lois M.; Wang, Hong X.; Rosebrock, Adam P.; Konopka, James B.

    2010-01-01

    The amino sugar N-acetylglucosamine (GlcNAc) is known to be an important structural component of cells from bacteria to humans, but its roles in cell signaling are less well understood. GlcNAc induces two pathways in the human fungal pathogen Candida albicans. One activates cyclic AMP (cAMP) signaling, which stimulates the formation of hyphal cells and the expression of virulence genes, and the other pathway induces genes needed to catabolize GlcNAc. Microarray analysis of gene expression was carried out under four different conditions in order to characterize the transcriptional changes induced by GlcNAc. The most highly induced genes include those that encode a GlcNAc transporter (NGT1) and the GlcNAc catabolic enzymes (HXK1, DAC1, and NAG1). GlcNAc also activated most of the genes whose expression is increased when cells are triggered with other stimuli to form hyphae. Surprisingly, GlcNAc also induced a subset of genes that are regulated by galactose (GAL1, GAL7, and GAL10), which may be due to cross talk between signaling pathways. A novel GlcNAc-induced gene, GIG1, which is not essential for GlcNAc catabolism or the induction of hyphae, was identified. However, a Gig1-green fluorescent protein (GFP) fusion protein was specifically induced by GlcNAc, and not by other sugars. Gig1-GFP localized to the cytoplasm, where GlcNAc metabolism occurs. Significantly, a gig1Δ mutant displayed increased resistance to nikkomycin Z, which inhibits chitin synthase from converting UDP-GlcNAc into cell wall chitin. Gig1 is highly conserved in fungi, especially those that contain GlcNAc catabolic genes. These results implicate Gig1 in GlcNAc metabolism. PMID:20675577

  19. Greens of the European Green Capitals

    Science.gov (United States)

    Cömertler, Seval

    2017-10-01

    Well established and maintained green areas have a key role on reaching the high quality of life and sustainability in urban environments. Therefore, green areas must be carefully accounted and evaluated in the urban planning affairs. In this context, the European Green Capitals, which attach a great importance to the green areas, have a great potential to act as a role model for both small and big cities in all around the world. These leading cities (chronologically, Stockholm, Hamburg, Vitoria-Gasteiz, Nantes, Copenhagen, Bristol, Ljubljana, Essen and Nijmegen) are inspiring for the other cities which seek to achieve more sustainable and environmentally friendly places through green areas. From this point of view, the aim of this paper was to investigate the green areas of the European Green Capitals. The paper covered whole European Green Capitals, and the application form of each Green Capital was used as a primary data source. Consequently, the paper put forwarded that the European Green Capitals have considerably large amount and high proportion of green areas. Further, these cities provide an excellent access to the public green areas. As a result of abundant provision and proper distribution, the almost all citizens in most of the Green Capitals live within a distance of 300 meters to a green area. For further researches, the paper suggested that these green capitals should be investigated in terms of their efforts, measures, goals and plans, policies and implications to administer, to protect, to enhance and to expand the green areas.

  20. Use of reporter-gene based bacteria to quantify phenanthrene biodegradation and toxicity in soil

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Doyun [Department of Civil and Environmental Engineering, Seoul National University, Gwanakno 599, Seoul 151-742 (Korea, Republic of); Moon, Hee Sun [School of Earth and Environmental Science, Seoul National University, Gwanakno 599, Seoul 151-742 (Korea, Republic of); Lin, Chu-Ching; Barkay, Tamar [Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Drive, New Brunswick, NJ 08901 (United States); Nam, Kyoungphile, E-mail: kpnam@snu.ac.k [Department of Civil and Environmental Engineering, Seoul National University, Gwanakno 599, Seoul 151-742 (Korea, Republic of)

    2011-02-15

    A phenanthrene-degrading bacterium, Sphingomonas paucimobilis EPA505 was used to construct two fluorescence-based reporter strains. Strain D harboring gfp gene was constructed to generate green fluorescence when the strain started to biodegrade phenanthrene. Strain S possessing gef gene was designed to die once phenanthrene biodegradation was initiated and thus to lose green fluorescence when visualized by a live/dead cell staining. Confocal laser scanning microscopic observation followed by image analysis demonstrates that the fluorescence intensity generated by strain D increased and the intensity by strain S decreased linearly at the phenanthrene concentration of up to 200 mg/L. Such quantitative increase and decrease of fluorescence intensity in strain D (i.e., from 1 to 11.90 {+-} 0.72) and strain S (from 1 to 0.40 {+-} 0.07) were also evident in the presence of Ottawa sand spiked with the phenanthrene up to 1000 mg/kg. The potential use of the reporter strains in quantitatively determining biodegradable or toxic phenanthrene was discussed. - Research highlights: A novel reporter bacterial strain has been developed. The bacterium can quantitatively determine the change in fluorescence intensity. The intensity can represent the bioavailable phenanthrene in solid matrix. - A cell-killing gene harboring reporter bacterium shows phenanthrene toxicity.

  1. Genetic transformation and gene silencing mediated by multiple copies of a transgene in eastern white pine.

    Science.gov (United States)

    Tang, Wei; Newton, Ronald J; Weidner, Douglas A

    2007-01-01

    An efficient transgenic eastern white pine (Pinus strobus L.) plant regeneration system has been established using Agrobacterium tumefaciens strain GV3850-mediated transformation and the green fluorescent protein (gfp) gene as a reporter in this investigation. Stable integration of transgenes in the plant genome of pine was confirmed by polymerase chain reaction (PCR), Southern blot, and northern blot analyses. Transgene expression was analysed in pine T-DNA transformants carrying different numbers of copies of T-DNA insertions. Post-transcriptional gene silencing (PTGS) was mostly obtained in transgenic lines with more than three copies of T-DNA, but not in transgenic lines with one copy of T-DNA. In situ hybridization chromosome analysis of transgenic lines demonstrated that silenced transgenic lines had two or more T-DNA insertions in the same chromosome. These results suggest that two or more T-DNA insertions in the same chromosome facilitate efficient gene silencing in transgenic pine cells expressing green fluorescent protein. There were no differences in shoot differentiation and development between transgenic lines with multiple T-DNA copies and transgenic lines with one or two T-DNA copies.

  2. Elaboration and quality control of the inoculum of the experimental vaccine Brucella S19-tn7-GFP for use in white animals and associated serological test for the detection of anti-GFP antibodies

    International Nuclear Information System (INIS)

    Salas Alfaro, Dariana

    2014-01-01

    The preparation of the inoculum of the experimental vaccine Brucella S19-Tn7-GFP is optimized for application in white animals. An associated serological test has allowed differentiating infected animals from those vaccinated with the experimental strain. The same bacteriological and biological properties of the B. abortus S19-Tn7-GFP strain have maintained in the parental vaccine strain S19 and is stable over time. A protocol for the inoculums of strain S19-Tn7-GFP is established for its preparation and use in white animals and quality control. The inoculum stability is evaluated through the simulation of conditions that can be presented in the transportation and application process in the field. An enzyme immunoassay ELISA is optimized for the detection of anti-GFP antibodies in cattle [es

  3. Mesenchymal stem cell-based NK4 gene therapy in nude mice bearing gastric cancer xenografts

    Directory of Open Access Journals (Sweden)

    Zhu Y

    2014-12-01

    Full Text Available Yin Zhu,1,* Ming Cheng,2,* Zhen Yang,3 Chun-Yan Zeng,3 Jiang Chen,3 Yong Xie,3 Shi-Wen Luo,3 Kun-He Zhang,3 Shu-Feng Zhou,4 Nong-Hua Lu1,31Department of Gastroenterology, 2Department of Orthopedics, 3Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Jiangxi, People’s Republic of China; 4Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA*These authors contributed equally to this workAbstract: Mesenchymal stem cells (MSCs have been recognized as promising delivery vehicles for gene therapy of tumors. Gastric cancer is the third leading cause of worldwide cancer mortality, and novel treatment modalities are urgently needed. NK4 is an antagonist of hepatocyte growth factor receptors (Met which are often aberrantly activated in gastric cancer and thus represent a useful candidate for targeted therapies. This study investigated MSC-delivered NK4 gene therapy in nude mice bearing gastric cancer xenografts. MSCs were transduced with lentiviral vectors carrying NK4 complementary DNA or enhanced green fluorescent protein (GFP. Such transduction did not change the phenotype of MSCs. Gastric cancer xenografts were established in BALB/C nude mice, and the mice were treated with phosphate-buffered saline (PBS, MSCs-GFP, Lenti-NK4, or MSCs-NK4. The tropism of MSCs toward gastric cancer cells was determined by an in vitro migration assay using MKN45 cells, GES-1 cells and human fibroblasts and their presence in tumor xenografts. Tumor growth, tumor cell apoptosis and intratumoral microvessel density of tumor tissue were measured in nude mice bearing gastric cancer xenografts treated with PBS, MSCs-GFP, Lenti-NK4, or MSCs-NK4 via tail vein injection. The results showed that MSCs migrated preferably to gastric cancer cells in vitro. Systemic MSCs-NK4 injection significantly suppressed the growth of gastric cancer xenografts. MSCs-NK4 migrated and accumulated in tumor

  4. The effects of different concentrations of ccBA-GFP promoter with electroporation methods on the quality of koi sperm (Cyprinus carpio var. koi)

    Science.gov (United States)

    Soeprijanto, A.; Aisyah, D.

    2018-04-01

    The effectiveness of the use of promoter concentration which will be inserted into the Koi sperm as the medium of gene transfer is important. The objective of this research is to find out the influence of the adding of different concentrations of the ccBA-GFP promoter with electroporation methods to the motility, viability and the fertilization rate of the Koi sperm. This study was conducted at Central Lab of Life Sciences Brawijaya University in April 2017. Electroporation methods were conducted by using 30-volt voltage, 4 times shocks with 0.5 seconds per shock. The treatment of different concentration was done through 3 types of ccBA-GFP promoter concentration, namely: 10 ng/µl, 30 ng/µl, and 50 ng/µl. The best motility percentage with the score of 4 is at the treatment A (10ng/µl concentration), the best viability percentage is 77.83 % at the treatment A (10 ng/µl concentration) and the best fertilization rate is 73.09 % at the treatment A (10 ng/µl concentration). The result shows that there is a relationship between the treatment given to the motility and viability of the Koi sperm, at which, the higher the shocks, the lower the percentage of the motility and viability of the Koi sperm.

  5. New Wistar Kyoto and spontaneously hypertensive rat transgenic models with ubiquitous expression of green fluorescent protein

    Directory of Open Access Journals (Sweden)

    Ana Isabel Garcia Diaz

    2016-04-01

    Full Text Available The Wistar Kyoto (WKY rat and the spontaneously hypertensive (SHR rat inbred strains are well-established models for human crescentic glomerulonephritis (CRGN and metabolic syndrome, respectively. Novel transgenic (Tg strains add research opportunities and increase scientific value to well-established rat models. We have created two novel Tg strains using Sleeping Beauty transposon germline transgenesis, ubiquitously expressing green fluorescent protein (GFP under the rat elongation factor 1 alpha (EF1a promoter on the WKY and SHR genetic backgrounds. The Sleeping Beauty system functioned with high transgenesis efficiency; 75% of new rats born after embryo microinjections were transgene positive. By ligation-mediated PCR, we located the genome integration sites, confirming no exonic disruption and defining a single or low copy number of the transgenes in the new WKY-GFP and SHR-GFP Tg lines. We report GFP-bright expression in embryos, tissues and organs in both lines and show preliminary in vitro and in vivo imaging data that demonstrate the utility of the new GFP-expressing lines for adoptive transfer, transplantation and fate mapping studies of CRGN, metabolic syndrome and other traits for which these strains have been extensively studied over the past four decades.

  6. Development of a green fluorescent protein metastatic-cancer chick-embryo drug-screen model.

    Science.gov (United States)

    Bobek, Vladimir; Plachy, Jiri; Pinterova, Daniela; Kolostova, Katarina; Boubelik, Michael; Jiang, Ping; Yang, Meng; Hoffman, Robert M

    2004-01-01

    The chick-embryo model has been an important tool to study tumor growth, metastasis, and angiogenesis. However, an imageable model with a genetic fluorescent tag in the growing and spreading cancer cells that is stable over time has not been developed. We report here the development of such an imageable fluorescent chick-embryo metastatic cancer model with the use of green fluorescent protein (GFP). Lewis lung carcinoma cells, stably expressing GFP, were injected on the 12th day of incubation in the chick embryo. GFP-Lewis lung carcinoma metastases were visualized by fluorescence, after seven days additional incubation, in the brain, heart, and sternum of the developing chick embryo, with the most frequent site being the brain. The combination of streptokinase and gemcitabine was evaluated in this GFP metastatic model. Twelve-day-old chick embryos were injected intravenously with GFP-Lewis lung cancer cells, along with these two agents either alone or in combination. The streptokinase-gemcitabine combination inhibited metastases at all sites. The effective dose of gemcitabine was found to be 10 mg/kg and streptokinase 2000 IU per embryo. The data in this report suggest that this new stably fluorescent imageable metastatic-cancer chick-embryo model will enable rapid screening of new antimetastatic agents.

  7. The Zebrafish Anillin-eGFP Reporter Marks Late Dividing Retinal Precursors and Stem Cells Entering Neuronal Lineages.

    Directory of Open Access Journals (Sweden)

    Meret Cepero Malo

    Full Text Available Monitoring cycling behaviours of stem and somatic cells in the living animal is a powerful tool to better understand tissue development and homeostasis. The tg(anillin:anillin-eGFP transgenic line carries the full-length zebrafish F-actin binding protein Anillin fused to eGFP from a bacterial artificial chromosome (BAC containing Anillin cis-regulatory sequences. Here we report the suitability of the Anillin-eGFP reporter as a direct indicator of cycling cells in the late embryonic and post-embryonic retina. We show that combining the anillin:anillin-eGFP with other transgenes such as ptf1a:dsRed and atoh7:gap-RFP allows obtaining spatial and temporal resolution of the mitotic potentials of specific retinal cell populations. This is exemplified by the analysis of the origin of the previously reported apically and non-apically dividing late committed precursors of the photoreceptor and horizontal cell layers.

  8. Semi-Automated Hydrophobic Interaction Chromatography Column Scouting Used in the Two-Step Purification of Recombinant Green Fluorescent Protein

    Science.gov (United States)

    Murphy, Patrick J. M.

    2014-01-01

    Background Hydrophobic interaction chromatography (HIC) most commonly requires experimental determination (i.e., scouting) in order to select an optimal chromatographic medium for purifying a given target protein. Neither a two-step purification of untagged green fluorescent protein (GFP) from crude bacterial lysate using sequential HIC and size exclusion chromatography (SEC), nor HIC column scouting elution profiles of GFP, have been previously reported. Methods and Results Bacterial lysate expressing recombinant GFP was sequentially adsorbed to commercially available HIC columns containing butyl, octyl, and phenyl-based HIC ligands coupled to matrices of varying bead size. The lysate was fractionated using a linear ammonium phosphate salt gradient at constant pH. Collected HIC eluate fractions containing retained GFP were then pooled and further purified using high-resolution preparative SEC. Significant differences in presumptive GFP elution profiles were observed using in-line absorption spectrophotometry (A395) and post-run fluorimetry. SDS-PAGE and western blot demonstrated that fluorometric detection was the more accurate indicator of GFP elution in both HIC and SEC purification steps. Comparison of composite HIC column scouting data indicated that a phenyl ligand coupled to a 34 µm matrix produced the highest degree of target protein capture and separation. Conclusions Conducting two-step protein purification using the preferred HIC medium followed by SEC resulted in a final, concentrated product with >98% protein purity. In-line absorbance spectrophotometry was not as precise of an indicator of GFP elution as post-run fluorimetry. These findings demonstrate the importance of utilizing a combination of detection methods when evaluating purification strategies. GFP is a well-characterized model protein, used heavily in educational settings and by researchers with limited protein purification experience, and the data and strategies presented here may aid in

  9. Characterization and functional analysis of the Paralichthys olivaceus prdm1 gene promoter.

    Science.gov (United States)

    Li, Peizhen; Wang, Bo; Cao, Dandan; Liu, Yuezhong; Zhang, Quanqi; Wang, Xubo

    2017-10-01

    PR domain containing protein 1 (Prdm1) is a transcriptional repressor identified in various species and plays multiple important roles in immune response and embryonic development. However, little is known about the transcriptional regulation of the prdm1 gene. This study aims to characterize the promoter of Paralichthys olivaceus prdm1 (Po-prdm1) gene and determine the regulatory mechanism of Po-prdm1 expression. A 2000bp-long 5'-flanking region (translation initiation site designated as +1) of the Po-prdm1 gene was isolated and characterized. The regulatory elements in this fragment were then investigated and many putative transcription factor (TF) binding sites involved in immunity and multiple tissue development were identified. A 5'-deletion analysis was then conducted, and the ability of the deletion mutants to promote luciferase and green fluorescent protein (GFP) expression in a flounder gill cell line was examined. The results revealed that the minimal promoter is located in the region between -446 and -13bp, and the region between -1415 and -13bp enhanced the promoter activity. Site-directed mutation analysis was subsequently performed on the putative regulatory elements sites, and the results indicated that FOXP1, MSX and BCL6 binding sites play negative functional roles in the regulation of the Po-prdm1 expression in FG cells. In vivo analysis demonstrated that a GFP reporter gene containing 1.4kb-long promoter fragment (-1415/-13) was expressed in the head and trunk muscle fibres of transient transgenic zebrafish embryos. Our study provided the basic information for the exploration of Po-prdm1 regulation and expression. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Green Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Patten, John

    2013-12-31

    Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

  11. Green chemistry

    International Nuclear Information System (INIS)

    Warner, John C.; Cannon, Amy S.; Dye, Kevin M.

    2004-01-01

    A grand challenge facing government, industry, and academia in the relationship of our technological society to the environment is reinventing the use of materials. To address this challenge, collaboration from an interdisciplinary group of stakeholders will be necessary. Traditionally, the approach to risk management of materials and chemicals has been through inerventions intended to reduce exposure to materials that are hazardous to health and the environment. In 1990, the Pollution Prevention Act encouraged a new tact-elimination of hazards at the source. An emerging approach to this grand challenge seeks to embed the diverse set of environmental perspectives and interests in the everyday practice of the people most responsible for using and creating new materials--chemists. The approach, which has come to be known as Green Chemistry, intends to eliminate intrinsic hazard itself, rather than focusing on reducing risk by minimizing exposure. This chapter addresses the representation of downstream environmental stakeholder interests in the upstream everyday practice that is reinventing chemistry and its material inputs, products, and waste as described in the '12 Principles of Green Chemistry'

  12. Green urbanity

    Directory of Open Access Journals (Sweden)

    Alenka Fikfak

    2012-01-01

    Full Text Available Tourism and other culture-based types of small business, which are the leitmotif in the planning of the Europark Ruardi, are becoming the guiding motif in the spatial development of urban centres that are influenced by dynamic transformation processes. The system should build upon the exploitation of both local and regional environmental features. This would encourage the quest for special environmental features, with an emphasis on their conservation, i.e. sustainable development, and connections in a wider context.The Europark is seen as a new strategic point of the Zasavje Region (the region of the central Sava Valley, which is linked to other important points in a region relevant for tourism. Due to the "smallness" of the region and/or the proximity of such points, development can be fast and effective. The interaction of different activities in space yields endless opportunities for users, who choose their own goals and priorities in the use of space. Four theme areas of the Europark area planning are envisaged. The organisation of activities is based on the composition of the mosaic field patterns, where green fields intertwine with areas of different, existing and new, urban functions. The fields of urban and recreation programmes are connected with a network of green areas and walking trails, along which theme park settings are arranged.

  13. Green shipping management

    CERN Document Server

    Lun, Y H Venus; Wong, Christina W Y; Cheng, T C E

    2016-01-01

    This book presents theory-driven discussion on the link between implementing green shipping practices (GSP) and shipping firm performance. It examines the shipping industry’s challenge of supporting economic growth while enhancing environmental performance. Consisting of nine chapters, the book covers topics such as the conceptualization of green shipping practices (GSPs), measurement scales for evaluating GSP implementation, greening capability, greening and performance relativity (GPR), green management practice, green shipping network, greening capacity, and greening propensity. In view of the increasing quest for environment protection in the shipping sector, this book provides a good reference for firms to understand and evaluate their capability in carrying out green operations on their shipping activities.

  14. From green architecture to architectural green

    DEFF Research Database (Denmark)

    Earon, Ofri

    2011-01-01

    that describes the architectural exclusivity of this particular architecture genre. The adjective green expresses architectural qualities differentiating green architecture from none-green architecture. Currently, adding trees and vegetation to the building’s facade is the main architectural characteristics...... they have overshadowed the architectural potential of green architecture. The paper questions how a green space should perform, look like and function. Two examples are chosen to demonstrate thorough integrations between green and space. The examples are public buildings categorized as pavilions. One......The paper investigates the topic of green architecture from an architectural point of view and not an energy point of view. The purpose of the paper is to establish a debate about the architectural language and spatial characteristics of green architecture. In this light, green becomes an adjective...

  15. Malonyl-CoA decarboxylase (MCD) is differentially regulated in subcellular compartments by 5'AMP-activated protein kinase (AMPK). Studies using H9c2 cells overexpressing MCD and AMPK by adenoviral gene transfer technique.

    Science.gov (United States)

    Sambandam, Nandakumar; Steinmetz, Michael; Chu, Angel; Altarejos, Judith Y; Dyck, Jason R B; Lopaschuk, Gary D

    2004-07-01

    Malonyl-CoA, a potent inhibitor of carnitine pamitoyl transferase-I (CPT-I), plays a pivotal role in fuel selection in cardiac muscle. Malonyl-CoA decarboxylase (MCD) catalyzes the degradation of malonyl-CoA, removes a potent allosteric inhibition on CPT-I and thereby increases fatty acid oxidation in the heart. Although MCD has several Ser/Thr phosphorylation sites, whether it is regulated by AMP-activated protein kinase (AMPK) has been controversial. We therefore overexpressed MCD (Ad.MCD) and constitutively active AMPK (Ad.CA-AMPK) in H9c2 cells, using an adenoviral gene delivery approach in order to examine if MCD is regulated by AMPK. Cells infected with Ad.CA-AMPK demonstrated a fourfold increase in AMPK activity as compared with control cells expressing green fluorescent protein (Ad.GFP). MCD activity increased 40- to 50-fold in Ad.MCD + Ad.GFP cells when compared with Ad.GFP control. Co-expressing AMPK with MCD further augmented MCD expression and activity in Ad.MCD + Ad.CA-AMPK cells compared with the Ad.MCD + Ad.GFP control. Subcellular fractionation further revealed that 54.7 kDa isoform of MCD expression was significantly higher in cytosolic fractions of Ad.MCD + Ad.CA-AMPK cells than of the Ad.MCD +Ad.GFP control. However, the MCD activities in cytosolic fractions were not different between the two groups. Interestingly, in the mitochondrial fractions, MCD activity significantly increased in Ad.MCD + Ad.CA-AMPK cells when compared with Ad.MCD + Ad.GFP cells. Using phosphoserine and phosphothreonine antibodies, no phosphorylation of MCD by AMPK was observed. The increase in MCD activity in mitochondria-rich fractions of Ad.MCD + Ad.CA-AMPK cells was accompanied by an increase in the level of the 50.7 kDa isoform of MCD protein in the mitochondria. This differential regulation of MCD expression and activity in the mitochondria by AMPK may potentially regulate malonyl-CoA levels at sites nearby CPT-I on the mitochondria.

  16. Cellular organization and spectral diversity of GFP-like proteins in live coral cells studied by single and multiphoton imaging and microspectroscopy

    Science.gov (United States)

    Salih, Anya; Cox, Guy C.; Larkum, Anthony W.

    2003-07-01

    Tissues of many marine invertebrates of class Anthozoa contain intensely fluorescent or brightly coloured pigments. These pigments belong to a family of photoactive proteins closely related to Green Fluorescent Protein (GFP), and their emissions range from blue to red wavelengths. The great diversity of these pigments has only recently been realised. To investigate the role of these proteins in corals, we have performed an in vivo fluorescent pigment (FP) spectral and cellular distribution analyses in live coral cells using single and multi-photon laser scanning imaging and microspectroscopy. These analyses revealed that even single colour corals contain spectroscopically heterogeneous pigment mixtures, with 2-5 major colour types in the same area of tissue. They were typically arranged in step-wise light emission energy gradients (e.g. blue, green, yellow, red). The successive overlapping emission-excitation spectral profiles of differently coloured FPs suggested that they were suited for sequential energy coupling. Traces of red FPs (emission = 570-660 nm) were present, even in non-red corals. We confirmed that radiative energy transfer could occur between separate granules of blue and green FPs and that energy transfer was inversely proportional to the square of the distance between them. Multi-photon micro-spectrofluorometric analysis gave significantly improved spectral resolution by restricting FP excitation to a single point in the focal plane of the sample. Pigment heterogeneity at small scales within granules suggested that fluorescence resonance energy transfer (FRET) might be occurring, and we confirmed that this was the case. Thus, energy transfer can take place both radiatively and by FRET, probably functioning in photoprotection by dissipation of excessive solar radiation.

  17. [The Influence of New Medium with RGD on Cell Growth,Cell Fusion and Expression of Exogenous Gene].

    Science.gov (United States)

    Wang, Pei-Pei; Wei, Da-Peng; Zhu, Tong-Bo

    2018-03-01

    To investigate the influence of a new culture medium added with RGD on cell growth,cell fusion and expression of exogenous gene. A new medium was prepared by adding different concentrations of RGD to ordinary culture medium. The optimum concentration of RGD was determined by observation of the growth of human pancreatic epithelial cell line HPDE6-C7. After determining the optimum concentration of RGD,different concentrations of cells HPDE6-C7 (5×10 4 ,10 5 ,5×10 5 mL -1 ) were inoculated in the two mediums. The morphology,adherence,growth and density of the cells were observed by inverted microscope; The ratio of clone formation and the positive rate of cloning were compared between the two cultures after fusion; The fluorescence intensity after the transfection of plasmid with green fluorescent protein ( GFP ) and the protein expression after transfection of plasmid with KRAS were observed to campare the expression of exogenous genes between the new medium with ordinary medium. Firstly,the optimal concentration of RGD was 10 ng/mL. Compared with the normal medium,the cultured cells with RGD had better morphology,adhesion and faster proliferation. In addition,both of the number and positive rate of clones formed in the new medium were significantly higher than that in the ordinary medium ( P exogenous gene GFP in the new medium was significantly higher than that in normal medium ( P exogenous gene KRAS of the new medium was also significantly higher than that in normal medium. The new culture medium has highlighted advantages in cell growth,cell fusion and expression of exogenous genes. RGD peptide has widely prospect and potential value in the cell culture. Copyright© by Editorial Board of Journal of Sichuan University (Medical Science Edition).

  18. Molecular cloning, characterization and expression of heat shock protein 70 gene from the oyster Crassostrea hongkongensis responding to thermal stress and exposure of Cu(2+) and malachite green.

    Science.gov (United States)

    Zhang, Zhanhui; Zhang, Qizhong

    2012-04-15

    Heat shock protein 70 (HSP70) acts mostly as a molecular chaperone and plays a key role in the process of protecting cells by facilitating the folding of nascent peptides and the cellular stress response. The cDNA of the oyster Crassostrea hongkongensis hsp70 (designated chhsp70) was cloned with the techniques of homological cloning and rapid amplification of cDNA ends (RACE). The full-length chhsp70 cDNA was 2251bp, consisting of a 130bp 5'-UTR, 216bp 3'-UTR with a canonical polyadenylation signal sequence AATAAA and a poly (A) tail, and an open reading frame of 1905bp, which encoded a polypeptide of 634 amino acids. Three classical HSP signature motifs were detected in ChHSP70, i.e., DLGTT-S-V, IFDLGGGTFDVSIL and VVLVGGSTRIPKIQK. BLAST analysis revealed that the ChHSP70 shared high identity with other bivalve HSP70. The phylogenetic analysis indicated that the ChHSP70 was a member of the HSP70 family. The chhsp70 mRNA transcripts were quantified by fluorescent real time RT-PCR under both unstressed and stressed conditions, i. e., heat shock and exposure to Cu(2+) and malachite green. Basal expression level was similar in mantle, gill, digestive gland, and heart, but higher in muscle than that in the others. A similar trend showed that the chhsp70 mRNA expression significantly increased at 3-6h, then dropped and returned to control level at 24h in the five tissues and organs mentioned above after heat shock. A clearly time-dependent expression pattern of chhsp70 mRNA in digestive gland and gill of the oyster was observed after exposure of Cu(2+) and malachite green. In the two tissues, the chhsp70 mRNA level reached the maximum at 6h after malachite green exposure and on day 4 after Cu(2+) exposure, and then decreased progressively to the control level. The results indicated that ChHSP70 of the oyster is an inducible protein, and plays an important role in response to the Cu(2+) and malachite green polluted stress, so chhsp70 might be used as a potential molecular

  19. Green business will remain green

    International Nuclear Information System (INIS)

    Marcan, P.

    2008-01-01

    It all started with two words. Climate change. The carbon dioxide trading scheme, which was the politicians' idea on solving the number one global problem, followed. Four years ago, when the project was begun, there was no data for project initiation. Quotas for polluters mainly from energy production and other energy demanding industries were distributed based on spreadsheets, maximum output and expected future development of economies. Slovak companies have had a chance to profit from these arrangements since 2005. Many of them took advantage of the situation and turned the excessive quotas into an extraordinary profit which often reached hundreds of million Sk. The fact that the price of free quotas offered for sale dropped basically to 0 in 2006 only proved that the initial distribution was too generous. And the market reacted to the first official measurements of emissions. Slovak companies also contributed to this development. However, when planning the maximum emission volumes for 2008-2012 period, in spite of the fact that actual data were available, their expectations were not realistic. A glance at the figures in the proposal of the Ministry of Environment is sufficient to realize that there will be no major change in the future. And so for many Slovak companies business with a green future will remain green for the next five years. The state decided to give to selected companies even more free space as far as emissions are concerned. The most privileged companies can expect quotas increased by tens of percent. (author)

  20. Green Power Partner Resources

    Science.gov (United States)

    EPA Green Power Partners can access tools and resources to help promote their green power commitments. Partners use these tools to communicate the benefits of their green power use to their customers, stakeholders, and the general public.

  1. Green Vehicle Guide

    Science.gov (United States)

    ... label Buy green. Save green. Learn about MPG math Discover fuel-saving tips Promote green ... U.S. consumers who have already purchased new vehicles under the fuel economy & greenhouse gas standard! More about the standards » Check ...

  2. Telemetric Technologies for the Assay of Gene Expression

    Science.gov (United States)

    Paul, Anna-Lisa; Bamsey, Matthew; Berinstain, Alain; Neron, Philip; Graham, Thomas; Ferl, Robert

    Telemetric data collection has been widely used in spaceflight applications where human participation is limited (orbital mission payloads) or unfeasible (planetary landers, satellites, and probes). The transmission of digital data from electronic sensors of typical environmental parameters, growth patterns and physical properties of materials is routine telemetry, and even the collection and transmission of deep space images is a standard tool of astrophysics. But telemetric imaging for current biological payloads has thus far been limited to the collection of standard white-light photography that is largely confined to reporting the surface characteristics of the specimens involved. Advances in imaging technologies that facilitate the collection of a variety of light wavelengths will expand the science return on biological payloads to include evaluations of the molecular genetic response of organisms to the spaceflight or extraterrestrial environment, with minimal or no human intervention. Advanced imaging technology in combination with biologically engineered sensor organisms can create a system that can report via telemetry on the patterns of gene expression required to adapt to a novel environment. The utilization of genetically engineered plants as biosensors has made elegant strides in the recent years, providing keen insights into the health of plants in general and particularly in the nature and cellular location of stress responses. Moreover, molecular responses to gravitational vectors have been elegantly analyzed with fluorescent tools. Green Fluorescence Protein (GFP) and other fluorophores have made it possible for analyses of gene expression and biological responses to occur telemetrically, with the information potentially delivered to the investigator over large distances as simple, preprocessed fluorescence images. Having previously deployed transgenic plant biosensors to evaluate responses to orbital spaceflight, we wish to develop both the plants

  3. Green Transformational Leadership and Green Performance: The Mediation Effects of Green Mindfulness and Green Self-Efficacy

    Directory of Open Access Journals (Sweden)

    Yu-Shan Chen

    2014-09-01

    Full Text Available No prior literature explores the influence of green transformational leadership on green performance, thus, this study develops a novel research framework to fill the research gap. This study investigates the influence of green transformational leadership on green performance and discusses the mediation effects of green mindfulness and green self-efficacy by means of structural equation modeling (SEM. The results indicate that green transformational leadership positively influences green mindfulness, green self-efficacy, and green performance. Moreover, this study demonstrates that the positive relationship between green transformational leadership and green performance is partially mediated by the two mediators: green mindfulness and green self-efficacy. It means that green transformational leadership can not only directly affect green performance positively but also indirectly affect it positively through green mindfulness and green self-efficacy. Therefore, firms need to raise their green transformational leadership, green mindfulness, and green self-efficacy to increase their green performance.

  4. Improving ultrasound gene transfection efficiency by controlling ultrasound excitation of microbubbles

    Science.gov (United States)

    Fan, Z.; Chen, D.; Deng, C.X.

    2013-01-01

    Ultrasound application in the presence of microbubbles has shown great potential for non-viral gene transfection via transient disruption of cell membrane (sonoporation). However, improvement of its efficiency has largely relied on empirical approaches without consistent and translatable results. The goal of this study is to develop a rational strategy based on new results obtained using novel experimental techniques and analysis to improve sonoporation gene transfection. We conducted experiments using targeted microbubbles that were attached to cell membrane to facilitate sonoporation. We quantified the dynamic activities of microbubbles exposed to pulsed ultrasound and the resulting sonoporation outcome and identified distinct regimes of characteristic microbubble behaviors: stable cavitation, coalescence and translation, and inertial cavitation. We found that inertial cavitation generated the highest rate of membrane poration. By establishing direct correlation of ultrasound-induced bubble activities with intracellular uptake and pore size, we designed a ramped pulse exposure scheme for optimizing microbubble excitation to improve sonoporation gene transfection. We implemented a novel sonoporation gene transfection system using an aqueous two phase system (ATPS) for efficient use of reagents and high throughput operation. Using plasmid coding for the green fluorescence protein (GFP), we achieved a sonoporation transfection efficiency in rate aortic smooth muscle cells (RASMCs) of 6.9% ± 2.2% (n = 9), comparable with lipofection (7.5% ± 0.8%, n = 9). Our results reveal characteristic microbubble behaviors responsible for sonoporation and demonstrated a rational strategy to improve sonoporation gene transfection. PMID:23770009

  5. Isolation and Characterization of Pepper Genes Interacting with the CMV-P1 Helicase Domain.

    Directory of Open Access Journals (Sweden)

    Yoomi Choi

    Full Text Available Cucumber mosaic virus (CMV is a destructive pathogen affecting Capsicum annuum (pepper production. The pepper Cmr1 gene confers resistance to most CMV strains, but is overcome by CMV-P1 in a process dependent on the CMV-P1 RNA1 helicase domain (P1 helicase. Here, to identify host factors involved in CMV-P1 infection in pepper, a yeast two-hybrid library derived from a C. annuum 'Bukang' cDNA library was screened, producing a total of 76 potential clones interacting with the P1 helicase. Beta-galactosidase filter lift assay, PCR screening, and sequencing analysis narrowed the candidates to 10 genes putatively involved in virus infection. The candidate host genes were silenced in Nicotiana benthamiana plants that were then inoculated with CMV-P1 tagged with the green fluorescent protein (GFP. Plants silenced for seven of the genes showed development comparable to N. benthamiana wild type, whereas plants silenced for the other three genes showed developmental defects including stunting and severe distortion. Silencing formate dehydrogenase and calreticulin-3 precursor led to reduced virus accumulation. Formate dehydrogenase-silenced plants showed local infection in inoculated leaves, but not in upper (systemic leaves. In the calreticulin-3 precursor-silenced plants, infection was not observed in either the inoculated or the upper leaves. Our results demonstrate that formate dehydrogenase and calreticulin-3 precursor are required for CMV-P1 infection.

  6. Tol2 transposon-mediated transgenesis in the Midas cichlid (Amphilophus citrinellus) - towards understanding gene function and regulatory evolution in an ecological model system for rapid phenotypic diversification.

    Science.gov (United States)

    Kratochwil, Claudius F; Sefton, Maggie M; Liang, Yipeng; Meyer, Axel

    2017-11-23

    The Midas cichlid species complex (Amphilophus spp.) is widely known among evolutionary biologists as a model system for sympatric speciation and adaptive phenotypic divergence within extremely short periods of time (a few hundred generations). The repeated parallel evolution of adaptive phenotypes in this radiation, combined with their near genetic identity, makes them an excellent model for studying phenotypic diversification. While many ecological and evolutionary studies have been performed on Midas cichlids, the molecular basis of specific phenotypes, particularly adaptations, and their underlying coding and cis-regulatory changes have not yet been studied thoroughly. For the first time in any New World cichlid, we use Tol2 transposon-mediated transgenesis in the Midas cichlid (Amphilophus citrinellus). By adapting existing microinjection protocols, we established an effective protocol for transgenesis in Midas cichlids. Embryos were injected with a Tol2 plasmid construct that drives enhanced green fluorescent protein (eGFP) expression under the control of the ubiquitin promoter. The transgene was successfully integrated into the germline, driving strong ubiquitous expression of eGFP in the first transgenic Midas cichlid line. Additionally, we show transient expression of two further transgenic constructs, ubiquitin::tdTomato and mitfa::eGFP. Transgenesis in Midas cichlids will facilitate further investigation of the genetic basis of species-specific traits, many of which are adaptations. Transgenesis is a versatile tool not only for studying regulatory elements such as promoters and enhancers, but also for testing gene function through overexpression of allelic gene variants. As such, it is an important first step in establishing the Midas cichlid as a powerful model for studying adaptive coding and non-coding changes in an ecological and evolutionary context.

  7. Central Region Green Infrastructure

    Data.gov (United States)

    Minnesota Department of Natural Resources — This Green Infrastructure data is comprised of 3 similar ecological corridor data layers ? Metro Conservation Corridors, green infrastructure analysis in counties...

  8. The green building envelope : Vertical greening

    NARCIS (Netherlands)

    Ottelé, M.

    2011-01-01

    Planting on roofs and façades is one of the most innovative and fastest developing fields of green technologies with respect to the built environment and horticulture. This thesis is focused on vertical greening of structures and to the multi-scale benefits of vegetation. Vertical green can improve

  9. Quantitative assessment of cellular uptake and cytosolic access of antibody in living cells by an enhanced split GFP complementation assay

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji-sun; Choi, Dong-Ki; Park, Seong-wook; Shin, Seung-Min; Bae, Jeomil [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of); Kim, Dong-Myung [Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Yoo, Tae Hyeon [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of); Kim, Yong-Sung, E-mail: kimys@ajou.ac.kr [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of)

    2015-11-27

    Considering the number of cytosolic proteins associated with many diseases, development of cytosol-penetrating molecules from outside of living cells is highly in demand. To gain access to the cytosol after cellular uptake, cell-penetrating molecules should be released from intermediate endosomes prior to the lysosomal degradation. However, it is very challenging to distinguish the pool of cytosolic-released molecules from those trapped in the endocytic vesicles. Here we describe a method to directly demonstrate the cytosolic localization and quantification of cytosolic amount of a cytosol-penetrating IgG antibody, TMab4, based on enhanced split GFP complementation system. We generated TMab4 genetically fused with one GFP fragment and separately established HeLa cells expressing the other GFP fragment in the cytosol such that the complemented GFP fluorescence is observed only when extracellular-treated TMab4 reaches the cytosol after cellular internalization. The high affinity interactions between streptavidin-binding peptide 2 and streptavidin was employed as respective fusion partners of GFP fragments to enhance the sensitivity of GFP complementation. With this method, cytosolic concentration of TMab4 was estimated to be about 170 nM after extracellular treatment of HeLa cells with 1 μM TMab4 for 6 h. We also found that after cellular internalization into living cells, nearly 1.3–4.3% of the internalized TMab4 molecules escaped into the cytosol from the endocytic vesicles. Our enhanced split GFP complementation assay provides a useful tool to directly quantify cytosolic amount of cytosol-penetrating agents and allows cell-based high-throughput screening for cytosol-penetrating agents with increased endosomal-escaping activity.

  10. The fluorescence lifetime of BRI1-GFP as probe for the noninvasive determination of the membrane potential in living cells

    Science.gov (United States)

    Elgass, K.; Caesar, K.; Schleifenbaum, F.; Meixner, A. J.; Harter, K.

    2010-02-01

    As the excited state lifetime of a fluorescent molecule depends on its environment, it is possible to use it as a probe for physico-chemical parameters of the surrounding medium. Whereas this is well known for many solid guest/host systems, only few reports of quantitative, temporal resolved in vivo studies to monitor the nano-environment for a protein-coupled chromophore such as GFP are known from literature. Here we present a novel approach to determine the membrane potential of living (plant) cells based on the fluorescence lifetime (FLT) analysis of membrane-located GFP. By using confocal sample scanning microscopy (CSSM) combined with fluorescence lifetime imaging microscopy, we recently showed that the phytohormone brassinolide (BL) induces cell wall expansion and a decrease in the FLT of the BRI1-GFP in living cells of Arabidopsis thaliana seedlings. BRI1 is the dominant functional receptor for BL in Arabidopsis and locates to the plasma membrane. Although the dependence of the FLT of GFP on its physico-chemical environment such as pH-value, refractive index and pressure has been reported, the observed FLT decrease of BRI1-GFP in response to BL application could not be explained by these parameters. However, our in vivo FLT and CSSM analyses indicate that the BLinduced change in the FLT of BRI1-GFP is caused by hyperpolarisation of the plasma membrane (Em). Thus, our results indicate that BRI1-GFP serves as sensitive and non-invasive probe for recording the Em of the plasma membrane in living plant cells with high spatio-temporal resolution.

  11. How Green is 'Green' Energy?

    Science.gov (United States)

    Gibson, Luke; Wilman, Elspeth N; Laurance, William F

    2017-12-01

    Renewable energy is an important piece of the puzzle in meeting growing energy demands and mitigating climate change, but the potentially adverse effects of such technologies are often overlooked. Given that climate and ecology are inextricably linked, assessing the effects of energy technologies requires one to consider their full suite of global environmental concerns. We review here the ecological impacts of three major types of renewable energy - hydro, solar, and wind energy - and highlight some strategies for mitigating their negative effects. All three types can have significant environmental consequences in certain contexts. Wind power has the fewest and most easily mitigated impacts; solar energy is comparably benign if designed and managed carefully. Hydropower clearly has the greatest risks, particularly in certain ecological and geographical settings. More research is needed to assess the environmental impacts of these 'green' energy technologies, given that all are rapidly expanding globally. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Horizontal gene transfer from macrophages to ischemic muscles upon delivery of naked DNA with Pluronic block copolymers.

    Science.gov (United States)

    Mahajan, Vivek; Gaymalov, Zagit; Alakhova, Daria; Gupta, Richa; Zucker, Irving H; Kabanov, Alexander V

    2016-01-01

    Intramuscular administration of plasmid DNA (pDNA) with non-ionic Pluronic block copolymers increases gene expression in injected muscles and lymphoid organs. We studied the role of immune cells in muscle transfection upon inflammation. Local inflammation in murine hind limb ischemia model (MHLIM) drastically increased DNA, RNA and expressed protein levels in ischemic muscles injected with pDNA/Pluronic. The systemic inflammation (MHLIM or peritonitis) also increased expression of pDNA/Pluronic in the muscles. When pDNA/Pluronic was injected in ischemic muscles the reporter gene, Green Fluorescent Protein (GFP) co-localized with desmin(+) muscle fibers and CD11b(+) macrophages (MØs), suggesting transfection of MØs along with the muscle cells. P85 enhanced (∼ 4 orders) transfection of MØs with pDNA in vitro. Moreover, adoptively transferred MØs were shown to pass the transgene to inflamed muscle cells in MHLIM. Using a co-culture of myotubes (MTs) and transfected MØs expressing a reporter gene under constitutive (cmv-luciferase) or muscle specific (desmin-luciferase) promoter we demonstrated that P85 enhances horizontal gene transfer from MØ to MTs. Therefore, MØs can play an important role in muscle transfection with pDNA/Pluronic during inflammation, with both inflammation and Pluronic contributing to the increased gene expression. pDNA/Pluronic has potential for therapeutic gene delivery in muscle pathologies that involve inflammation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. FOXN1GFP/w Reporter hESCs Enable Identification of Integrin-β4, HLA-DR, and EpCAM as Markers of Human PSC-Derived FOXN1+ Thymic Epithelial Progenitors

    Directory of Open Access Journals (Sweden)

    Chew-Li Soh

    2014-06-01

    Full Text Available Thymic epithelial cells (TECs play a critical role in T cell maturation and tolerance induction. The generation of TECs from in vitro differentiation of human pluripotent stem cells (PSCs provides a platform on which to study the mechanisms of this interaction and has implications for immune reconstitution. To facilitate analysis of PSC-derived TECs, we generated hESC reporter lines in which sequences encoding GFP were targeted to FOXN1, a gene required for TEC development. Using this FOXN1GFP/w line as a readout, we developed a reproducible protocol for generating FOXN1-GFP+ thymic endoderm cells. Transcriptional profiling and flow cytometry identified integrin-β4 (ITGB4, CD104 and HLA-DR as markers that could be used in combination with EpCAM to selectively purify FOXN1+ TEC progenitors from differentiating cultures of unmanipulated PSCs. Human FOXN1+ TEC progenitors generated from PSCs facilitate the study of thymus biology and are a valuable resource for future applications in regenerative medicine.

  14. Microtubule reorganization in tobacco BY-2 cells stably expressing GFP-MBD

    Science.gov (United States)

    Granger, C. L.; Cyr, R. J.

    2000-01-01

    Microtubule organization plays an important role in plant morphogenesis; however, little is known about how microtubule arrays transit from one organized state to another. The use of a genetically incorporated fluorescent marker would allow long-term observation of microtubule behavior in living cells. Here, we have characterized a Nicotiana tabacum L. cv. Bright Yellow 2 (BY-2) cell line that had been stably transformed with a gfp-mbd construct previously demonstrated to label microtubules (J. Marc et al., 1998, Plant Cell 10: 1927-1939). Fluorescence levels were low, but interphase and mitotic microtubule arrays, as well as the transitions between these arrays, could be observed in individual gfp-mbd-transformed cells. By comparing several attributes of transformed and untransformed cells it was concluded that the transgenic cells are not adversely affected by low-level expression of the transgene and that these cells will serve as a useful and accurate model system for observing microtubule reorganization in vivo. Indeed, some initial observations were made that are consistent with the involvement of motor proteins in the transition between the spindle and phragmoplast arrays. Our observations also support the role of the perinuclear region in nucleating microtubules at the end of cell division with a progressive shift of these microtubules and/or nucleating activity to the cortex to form the interphase cortical array.

  15. Localization and Differential Expression of the Krüppel-Associated Box Zinc Finger Proteins 1 and 54 in Early Mouse Development

    DEFF Research Database (Denmark)

    Albertsen, Maria; Teperek, Marta; Elholm, Grethe

    2010-01-01

    -fused reporter gene into zygotes demonstrated the intracellular distribution of ZFP1-green fluorescent protein (GFP) and ZFP54-GFP colocalized with a DNA marker in the two-cell embryo. The KRAB domain was essential to colocalize with DNA, and deletion of the KRAB domain in ZFP1-GFP and ZFP54-GFP localized...

  16. Safe and stable noninvasive focal gene delivery to the mammalian brain following focused ultrasound.

    Science.gov (United States)

    Stavarache, Mihaela A; Petersen, Nicholas; Jurgens, Eric M; Milstein, Elizabeth R; Rosenfeld, Zachary B; Ballon, Douglas J; Kaplitt, Michael G

    2018-04-27

    OBJECTIVE Surgical infusion of gene therapy vectors has provided opportunities for biological manipulation of specific brain circuits in both animal models and human patients. Transient focal opening of the blood-brain barrier (BBB) by MR-guided focused ultrasound (MRgFUS) raises the possibility of noninvasive CNS gene therapy to target precise brain regions. However, variable efficiency and short follow-up of studies to date, along with recent suggestions of the potential for immune reactions following MRgFUS BBB disruption, all raise questions regarding the viability of this approach for clinical translation. The objective of the current study was to evaluate the efficiency, safety, and long-term stability of MRgFUS-mediated noninvasive gene therapy in the mammalian brain. METHODS Focused ultrasound under the control of MRI, in combination with microbubbles consisting of albumin-coated gas microspheres, was applied to rat striatum, followed by intravenous infusion of an adeno-associated virus serotype 1/2 (AAV1/2) vector expressing green fluorescent protein (GFP) as a marker. Following recovery, animals were followed from several hours up to 15 months. Immunostaining for GFP quantified transduction efficiency and stability of expression. Quantification of neuronal markers was used to determine histological safety over time, while inflammatory markers were examined for evidence of immune responses. RESULTS Transitory disruption of the BBB by MRgFUS resulted in efficient delivery of the AAV1/2 vector to the targeted rodent striatum, with 50%-75% of striatal neurons transduced on average. GFP transgene expression appeared to be stable over extended periods of time, from 2 weeks to 6 months, with evidence of ongoing stable expression as long as 16 months in a smaller cohort of animals. No evidence of substantial toxicity, tissue injury, or neuronal loss was observed. While transient inflammation from BBB disruption alone was noted for the first few days, consistent

  17. Peptide aptamer-assisted immobilization of green fluorescent protein for creating biomolecule-complexed carbon nanotube device

    Science.gov (United States)

    Nii, Daisuke; Nozawa, Yosuke; Miyachi, Mariko; Yamanoi, Yoshinori; Nishihara, Hiroshi; Tomo, Tatsuya; Shimada, Yuichiro

    2017-10-01

    Carbon nanotubes are a novel material for next-generation applications. In this study, we generated carbon nanotube and green fluorescent protein (GFP) conjugates using affinity binding peptides. The carbon nanotube-binding motif was introduced into the N-terminus of the GFP through molecular biology methods. Multiple GFPs were successfully aligned on a single-walled carbon nanotube via the molecular recognition function of the peptide aptamer, which was confirmed through transmission electron microscopy and optical analysis. Fluorescence spectral analysis results also suggested that the carbon nanotube-GFP complex was autonomously formed with orientation and without causing protein denaturation during immobilization. This simple process has a widespread potential for fabricating carbon nanotube-biomolecule hybrid devices.

  18. Rapid-response flood mapping during Hurricanes Harvey, Irma and Maria by the Global Flood Partnership (GFP)

    Science.gov (United States)

    Cohen, S.; Alfieri, L.; Brakenridge, G. R.; Coughlan, E.; Galantowicz, J. F.; Hong, Y.; Kettner, A.; Nghiem, S. V.; Prados, A. I.; Rudari, R.; Salamon, P.; Trigg, M.; Weerts, A.

    2017-12-01

    The Global Flood Partnership (GFP; https://gfp.jrc.ec.europa.eu) is a multi-disciplinary group of scientists, operational agencies and flood risk managers focused on developing efficient and effective global flood management tools. Launched in 2014, its aim is to establish a partnership for global flood forecasting, monitoring and impact assessment to strengthen preparedness and response and to reduce global disaster losses. International organizations, the private sector, national authorities, universities and research agencies contribute to the GFP on a voluntary basis and benefit from a global network focused on flood risk reduction. At the onset of Hurricane Harvey, GFP was `activated' using email requests via its mailing service. Soon after, flood inundation maps, based on remote sensing analysis and modeling, were shared by different agencies, institutions, and individuals. These products were disseminated, to varying degrees of effectiveness, to federal, state and local agencies via emails and data-sharing services. This generated a broad data-sharing network which was utilized at the early stages of Hurricane Irma's impact, just two weeks after Harvey. In this presentation, we will describe the extent and chronology of the GFP response to both Hurricanes Harvey, Irma and Maria. We will assess the potential usefulness of this effort for event managers in various types of organizations and discuss future improvements to be implemented.

  19. Correlative and integrated light and electron microscopy of in-resin GFP fluorescence, used to localise diacylglycerol in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Peddie, Christopher J.; Blight, Ken; Wilson, Emma [Electron Microscopy Unit, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom); Melia, Charlotte [Electron Microscopy Unit, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom); Cell Biophysics Laboratory, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom); Department of Molecular Cell Biology, Leiden University Medical Centre, 2300 RC Leiden (Netherlands); Marrison, Jo [Department of Biology, The University of York, Heslington, York (United Kingdom); Carzaniga, Raffaella [Electron Microscopy Unit, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom); Domart, Marie-Charlotte [Electron Microscopy Unit, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom); Cell Biophysics Laboratory, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom); O' Toole, Peter [Department of Biology, The University of York, Heslington, York (United Kingdom); Larijani, Banafshe [Cell Biophysics Laboratory, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom); Cell Biophysics Laboratory, Unidad de Biofísica (CSIC-UPV/EHU),Sarriena s/n, 48940 Leioa (Spain); IKERBASQUE, Basque Foundation for Science, Bilbao (Spain); Collinson, Lucy M. [Electron Microscopy Unit, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom)

    2014-08-01

    Fluorescence microscopy of GFP-tagged proteins is a fundamental tool in cell biology, but without seeing the structure of the surrounding cellular space, functional information can be lost. Here we present a protocol that preserves GFP and mCherry fluorescence in mammalian cells embedded in resin with electron contrast to reveal cellular ultrastructure. Ultrathin in-resin fluorescence (IRF) sections were imaged simultaneously for fluorescence and electron signals in an integrated light and scanning electron microscope. We show, for the first time, that GFP is stable and active in resin sections in vacuo. We applied our protocol to study the subcellular localisation of diacylglycerol (DAG), a modulator of membrane morphology and membrane dynamics in nuclear envelope assembly. We show that DAG is localised to the nuclear envelope, nucleoplasmic reticulum and curved tips of the Golgi apparatus. With these developments, we demonstrate that integrated imaging is maturing into a powerful tool for accurate molecular localisation to structure. - Highlights: • GFP and mCherry fluorescence are preserved in heavy-metal stained mammalian cells embedded in resin • Fluorophores are stable and intensity is sufficient for detection in ultrathin sections • Overlay of separate LM and EM images from the same ultrathin section improves CLEM protein localisation precision • GFP is stable and active in the vacuum of an integrated light and scanning EM • Integrated light and electron microscopy shows new subcellular locations of the lipid diacylglycerol.

  20. Feline immunodeficiency virus OrfA alters gene expression of splicing factors and proteasome-ubiquitination proteins

    International Nuclear Information System (INIS)

    Sundstrom, Magnus; Chatterji, Udayan; Schaffer, Lana; Rozieres, Sohela de; Elder, John H.

    2008-01-01

    Expression of the feline immunodeficiency virus (FIV) accessory protein OrfA (or Orf2) is critical for efficient viral replication in lymphocytes, both in vitro and in vivo. OrfA has been reported to exhibit functions in common with the human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) accessory proteins Vpr and Tat, although the function of OrfA has not been fully explained. Here, we use microarray analysis to characterize how OrfA modulates the gene expression profile of T-lymphocytes. The primary IL-2-dependent T-cell line 104-C1 was transduced to express OrfA. Functional expression of OrfA was demonstrated by trans complementation of the OrfA-defective clone, FIV-34TF10. OrfA-expressing cells had a slightly reduced cell proliferation rate but did not exhibit any significant alteration in cell cycle distribution. Reverse-transcribed RNA from cells expressing green fluorescent protein (GFP) or GFP + OrfA were hybridized to Affymetrix HU133 Plus 2.0 microarray chips representing more than 47,000 genome-wide transcripts. By using two statistical approaches, 461 (Rank Products) and 277 (ANOVA) genes were identified as modulated by OrfA expression. The functional relevance of the differentially expressed genes was explored by Ingenuity Pathway Analysis. The analyses revealed alterations in genes critical for RNA post-transcriptional modifications and protein ubiquitination as the two most significant functional outcomes of OrfA expression. In these two groups, several subunits of the spliceosome, cellular splicing factors and family members of the proteasome-ubiquitination system were identified. These findings provide novel information on the versatile function of OrfA during FIV infection and indicate a fine-tuning mechanism of the cellular environment by OrfA to facilitate efficient FIV replication

  1. Engineering a novel multifunctional green fluorescent protein tag for a wide variety of protein research.

    Directory of Open Access Journals (Sweden)

    Takuya Kobayashi

    Full Text Available BACKGROUND: Genetically encoded tag is a powerful tool for protein research. Various kinds of tags have been developed: fluorescent proteins for live-cell imaging, affinity tags for protein isolation, and epitope tags for immunological detections. One of the major problems concerning the protein tagging is that many constructs with different tags have to be made for different applications, which is time- and resource-consuming. METHODOLOGY/PRINCIPAL FINDINGS: Here we report a novel multifunctional green fluorescent protein (mfGFP tag which was engineered by inserting multiple peptide tags, i.e., octa-histidine (8xHis, streptavidin-binding peptide (SBP, and c-Myc tag, in tandem into a loop of GFP. When fused to various proteins, mfGFP monitored their localization in living cells. Streptavidin agarose column chromatography with the SBP tag successfully isolated the protein complexes in a native form with a high purity. Tandem affinity purification (TAP with 8xHis and SBP tags in mfGFP further purified the protein complexes. mfGFP was clearly detected by c-Myc-specific antibody both in immunofluorescence and immuno-electron microscopy (EM. These findings indicate that mfGFP works well as a multifunctional tag in mammalian cells. The tag insertion was also successful in other fluorescent protein, mCherry. CONCLUSIONS AND SIGNIFICANCE: The multifunctional fluorescent protein tag is a useful tool for a wide variety of protein research, and may have the advantage over other multiple tag systems in its higher expandability and compatibility with existing and future tag technologies.

  2. In Vitro Osteogenic Potential of Green Fluorescent Protein Labelled Human Embryonic Stem Cell-Derived Osteoprogenitors

    Directory of Open Access Journals (Sweden)

    Intekhab Islam

    2016-01-01

    Full Text Available Cellular therapy using stem cells in bone regeneration has gained increasing interest. Various studies suggest the clinical utility of osteoprogenitors-like mesenchymal stem cells in bone regeneration. However, limited availability of mesenchymal stem cells and conflicting evidence on their therapeutic efficacy limit their clinical application. Human embryonic stem cells (hESCs are potentially an unlimited source of healthy and functional osteoprogenitors (OPs that could be utilized for bone regenerative applications. However, limited ability to track hESC-derived progenies in vivo greatly hinders translational studies. Hence, in this study, we aimed to establish hESC-derived OPs (hESC-OPs expressing green fluorescent protein (GFP and to investigate their osteogenic differentiation potential in vitro. We fluorescently labelled H9-hESCs using a plasmid vector encoding GFP. The GFP-expressing hESCs were differentiated into hESC-OPs. The hESC-OPsGFP+ stably expressed high levels of GFP, CD73, CD90, and CD105. They possessed osteogenic differentiation potential in vitro as demonstrated by increased expression of COL1A1, RUNX2, OSTERIX, and OPG transcripts and mineralized nodules positive for Alizarin Red and immunocytochemical expression of osteocalcin, alkaline phosphatase, and collagen-I. In conclusion, we have demonstrated that fluorescently labelled hESC-OPs can maintain their GFP expression for the long term and their potential for osteogenic differentiation in vitro. In future, these fluorescently labelled hESC-OPs could be used for noninvasive assessment of bone regeneration, safety, and therapeutic efficacy.

  3. Improvement of the green fluorescent protein reporter system in Leishmania spp. for the in vitro and in vivo screening of antileishmanial drugs.

    Science.gov (United States)

    Pulido, Sergio A; Muñoz, Diana L; Restrepo, Adriana M; Mesa, Carol V; Alzate, Juan F; Vélez, Iván D; Robledo, Sara M

    2012-04-01

    Development of new therapeutic approaches for leishmaniasis treatment requires new high throughput screening methodologies for the antileishmanial activity of the new compounds both in vitro and in vivo. Reporter genes as the GFP have become one of the most promissory and widely used tools for drug screening in several models, since it offers live imaging, high sensibility, specificity and flexibility; additionally, the use of GFP as a reporter gene in screening assays eliminates all the drawbacks presented in conventional assays and also those technical problems found using other reporter genes. The utility of the GFP as a reporter gene in drug screening assays with Leishmania parasites depends on the homogeneity and stability of the GFP transfected strains. Stable expression of the GFP in the Old World Leishmania species has been demonstrated using integration vectors; however, no reports exist yet about the success of this methodology in the New World species. Here we report the generation of New World Leishmania strains expressing the GFP protein from an integration vector, which replaces one copy of the 18S RNA in the chromosome with the GFP coding sequence by homologous recombination. We also prove that the expression of the integrated GFP is stable and homogeneous in the transfected parasites after months in culture without selective pressure or during its use in hamster infection assays. The fluorescent strains are useful for in vitro, ex vivo and in vivo drug screening assays since no considerable variations in virulence or infectivity where seen attributable to the genetic manipulation during both in vitro and in vivo infection experiments. The platform described here for drug testing assays based on the use of stable fluorescent Leishmania strains coupled to flow cytometry and fluorescent microscopy is more sensitive, more specific and faster than conventional assays used normally for the evaluation of compounds with potential antileishmanial activity

  4. Unfolding Green Defense

    DEFF Research Database (Denmark)

    Larsen, Kristian Knus

    2015-01-01

    In recent years, many states have developed and implemented green solutions for defense. Building on these initiatives NATO formulated the NATO Green Defence Framework in 2014. The framework provides a broad basis for cooperation within the Alliance on green solutions for defense. This report aims...... to inform and support the further development of green solutions by unfolding how green technologies and green strategies have been developed and used to handle current security challenges. The report, initially, focuses on the security challenges that are being linked to green defense, namely fuel...... consumption in military operations, defense expenditure, energy security, and global climate change. The report then proceeds to introduce the NATO Green Defence Framework before exploring specific current uses of green technologies and green strategies for defense. The report concludes that a number...

  5. Green industrial policy

    OpenAIRE

    Dani Rodrik

    2014-01-01

    Green growth requires green technologies: production techniques that economize on exhaustible resources and emit fewer greenhouse gases. The availability of green technologies both lowers social costs in the transition to a green growth path and helps achieve a satisfactory rate of material progress under that path. The theoretical case in favour of using industrial policy to facilitate green growth is quite strong. Economists’ traditional scepticism on industrial policy is grounded instead o...

  6. Crystallization and preliminary X-ray analysis of a monomeric mutant of Azami-Green (mAG), an Aequorea victoria green fluorescent protein-like green-emitting fluorescent protein from the stony coral Galaxea fascicularis

    International Nuclear Information System (INIS)

    Ebisawa, Tatsuki; Yamamura, Akihiro; Kameda, Yasuhiro; Hayakawa, Kou; Nagata, Koji; Tanokura, Masaru

    2009-01-01

    A monomeric mutant of Azami-Green from G. fascicularis was expressed, purified and crystallized using the sitting-drop vapour-diffusion method. The crystal belonged to space group P1 and diffracted X-rays to 2.20 Å resolution. Monomeric Azami-Green (mAG) from the stony coral Galaxea fascicularis is the first monomeric green-emitting fluorescent protein that is not a derivative of Aequorea victoria green fluorescent protein (avGFP). mAG and avGFP are 27% identical in amino-acid sequence. Diffraction-quality crystals of recombinant mAG were obtained by the sitting-drop vapour-diffusion method using PEG 3350 as the precipitant. The mAG crystal diffracted X-rays to 2.20 Å resolution on beamline AR-NW12A at the Photon Factory (Tsukuba, Japan). The crystal belonged to space group P1, with unit-cell parameters a = 41.78, b = 51.72, c = 52.89 Å, α = 90.96, β = 103.41, γ = 101.79°. The Matthews coefficient (V M = 2.10 Å 3 Da −1 ) indicated that the crystal contained two mAG molecules per asymmetric unit

  7. A fungal biofilm reactor based on metal structured packing improves the quality of a Gla::GFP fusion protein produced by Aspergillus oryzae.

    Science.gov (United States)

    Zune, Q; Delepierre, A; Gofflot, S; Bauwens, J; Twizere, J C; Punt, P J; Francis, F; Toye, D; Bawin, T; Delvigne, F

    2015-08-01

    Fungal biofilm is known to promote the excretion of secondary metabolites in accordance with solid-state-related physiological mechanisms. This work is based on the comparative analysis of classical submerged fermentation with a fungal biofilm reactor for the production of a Gla::green fluorescent protein (GFP) fusion protein by Aspergillus oryzae. The biofilm reactor comprises a metal structured packing allowing the attachment of the fungal biomass. Since the production of the target protein is under the control of the promoter glaB, specifically induced in solid-state fermentation, the biofilm mode of culture is expected to enhance the global productivity. Although production of the target protein was enhanced by using the biofilm mode of culture, we also found that fusion protein production is also significant when the submerged mode of culture is used. This result is related to high shear stress leading to biomass autolysis and leakage of intracellular fusion protein into the extracellular medium. Moreover, 2-D gel electrophoresis highlights the preservation of fusion protein integrity produced in biofilm conditions. Two fungal biofilm reactor designs were then investigated further, i.e. with full immersion of the packing or with medium recirculation on the packing, and the scale-up potentialities were evaluated. In this context, it has been shown that full immersion of the metal packing in the liquid medium during cultivation allows for a uniform colonization of the packing by the fungal biomass and leads to a better quality of the fusion protein.

  8. Green fluorescent protein changes the conductance of connexin 43 (Cx43) hemichannels reconstituted in planar lipid bilayers.

    Science.gov (United States)

    Carnarius, Christian; Kreir, Mohamed; Krick, Marcel; Methfessel, Christoph; Moehrle, Volker; Valerius, Oliver; Brüggemann, Andrea; Steinem, Claudia; Fertig, Niels

    2012-01-20

    In mammalian tissues, connexin 43 (Cx43) is the most prominent member of the connexin family. In a single lipid bilayer, six connexin subunits assemble into a hemichannel (connexon). Direct communication of apposing cells is realized by two adjacent hemichannels, which can form gap junction channels. Here, we established an expression system in Pichia pastoris to recombinantly produce and purify Cx43 as well as Cx43 fused to green fluorescent protein (GFP). Proteins were isolated from crude cell membrane fractions via affinity chromatography. Cx43 and Cx43-GFP hemichannels were reconstituted in giant unilamellar vesicles as proven by fluorescence microscopy, and their electrophysiological behavior was analyzed on the single channel level by planar patch clamping. Cx43 and Cx43-GFP both showed an ohmic behavior and a voltage-dependent open probability. Cx43 hemichannels exhibited one major mean conductance of 224 ± 26 picosiemens (pS). In addition, a subconductance state at 124 ± 5 pS was identified. In contrast, the analysis of Cx43-GFP single channels revealed 10 distinct conductance states in the range of 15 to 250 pS, with a larger open probability at 0 mV as compared with Cx43, which suggests that intermolecular interactions between the GFP molecules alter the electrophysiology of the protein.

  9. Green Fluorescent Protein Changes the Conductance of Connexin 43 (Cx43) Hemichannels Reconstituted in Planar Lipid Bilayers*

    Science.gov (United States)

    Carnarius, Christian; Kreir, Mohamed; Krick, Marcel; Methfessel, Christoph; Moehrle, Volker; Valerius, Oliver; Brüggemann, Andrea; Steinem, Claudia; Fertig, Niels

    2012-01-01

    In mammalian tissues, connexin 43 (Cx43) is the most prominent member of the connexin family. In a single lipid bilayer, six connexin subunits assemble into a hemichannel (connexon). Direct communication of apposing cells is realized by two adjacent hemichannels, which can form gap junction channels. Here, we established an expression system in Pichia pastoris to recombinantly produce and purify Cx43 as well as Cx43 fused to green fluorescent protein (GFP). Proteins were isolated from crude cell membrane fractions via affinity chromatography. Cx43 and Cx43-GFP hemichannels were reconstituted in giant unilamellar vesicles as proven by fluorescence microscopy, and their electrophysiological behavior was analyzed on the single channel level by planar patch clamping. Cx43 and Cx43-GFP both showed an ohmic behavior and a voltage-dependent open probability. Cx43 hemichannels exhibited one major mean conductance of 224 ± 26 picosiemens (pS). In addition, a subconductance state at 124 ± 5 pS was identified. In contrast, the analysis of Cx43-GFP single channels revealed 10 distinct conductance states in the range of 15 to 250 pS, with a larger open probability at 0 mV as compared with Cx43, which suggests that intermolecular interactions between the GFP molecules alter the electrophysiology of the protein. PMID:22139870

  10. Receptor-mediated oral delivery of a bioencapsulated green fluorescent protein expressed in transgenic chloroplasts into the mouse circulatory system.

    Science.gov (United States)

    Limaye, Arati; Koya, Vijay; Samsam, Mohtashem; Daniell, Henry

    2006-05-01

    Oral delivery of biopharmaceutical proteins expressed in plant cells should reduce their cost of production, purification, processing, cold storage, transportation, and delivery. However, poor intestinal absorption of intact proteins is a major challenge. To overcome this limitation, we investigate here the concept of receptor-mediated oral delivery of chloroplast-expressed foreign proteins. Therefore, the transmucosal carrier cholera toxin B-subunit and green fluorescent protein (CTB-GFP), separated by a furin cleavage site, was expressed via the tobacco chloroplast genome. Polymerase chain reaction (PCR) and Southern blot analyses confirmed site-specific transgene integration and homoplasmy. Immunoblot analysis and ELISA confirmed expression of monomeric and pentameric forms of CTB-GFP, up to 21.3% of total soluble proteins. An in vitro furin cleavage assay confirmed integrity of the engineered furin cleavage site, and a GM1 binding assay confirmed the functionality of CTB-GFP pentamers. Following oral administration of CTB-GFP expressing leaf material to mice, GFP was observed in the mice intestinal mucosa, liver, and spleen in fluorescence and immunohistochemical studies, while CTB remained in the intestinal cell. This report of receptor-mediated oral delivery of a foreign protein into the circulatory system opens the door for low-cost production and delivery of human therapeutic proteins.

  11. The role of bone marrow-derived cells during the bone healing process in the GFP mouse bone marrow transplantation model.

    Science.gov (United States)

    Tsujigiwa, Hidetsugu; Hirata, Yasuhisa; Katase, Naoki; Buery, Rosario Rivera; Tamamura, Ryo; Ito, Satoshi; Takagi, Shin; Iida, Seiji; Nagatsuka, Hitoshi

    2013-03-01

    Bone healing is a complex and multistep process in which the origin of the cells participating in bone repair is still unknown. The involvement of bone marrow-derived cells in tissue repair has been the subject of recent studies. In the present study, bone marrow-derived cells in bone healing were traced using the GFP bone marrow transplantation model. Bone marrow cells from C57BL/6-Tg (CAG-EGFP) were transplanted into C57BL/6 J wild mice. After transplantation, bone injury was created using a 1.0-mm drill. Bone healing was histologically assessed at 3, 7, 14, and 28 postoperative days. Immunohistochemistry for GFP; double-fluorescent immunohistochemistry for GFP-F4/80, GFP-CD34, and GFP-osteocalcin; and double-staining for GFP and tartrate-resistant acid phosphatase were performed. Bone marrow transplantation successfully replaced the hematopoietic cells into GFP-positive donor cells. Immunohistochemical analyses revealed that osteoblasts or osteocytes in the repair stage were GFP-negative, whereas osteoclasts in the repair and remodeling stages and hematopoietic cells were GFP-positive. The results indicated that bone marrow-derived cells might not differentiate into osteoblasts. The role of bone marrow-derived cells might be limited to adjustment of the microenvironment by differentiating into inflammatory cells, osteoclasts, or endothelial cells in immature blood vessels.

  12. Versatile microsphere attachment of GFP-labeled motors and other tagged proteins with preserved functionality

    Directory of Open Access Journals (Sweden)

    Michael Bugiel

    2015-11-01

    Full Text Available Microspheres are often used as handles for protein purification or force spectroscopy. For example, optical tweezers apply forces on trapped particles to which motor proteins are attached. However, even though many attachment strategies exist, procedures are often limited to a particular biomolecule and prone to non-specific protein or surface attachment. Such interactions may lead to loss of protein functionality or microsphere clustering. Here, we describe a versatile coupling procedure for GFP-tagged proteins via a polyethylene glycol linker preserving the functionality of the coupled proteins. The procedure combines well-established protocols, is highly reproducible, reliable, and can be used for a large variety of proteins. The coupling is efficient and can be tuned to the desired microsphere-to-protein ratio. Moreover, microspheres hardly cluster or adhere to surfaces. Furthermore, the procedure can be adapted to different tags providing flexibility and a promising attachment strategy for any tagged protein.

  13. Abrupt onset of mutations in a developmentally regulated gene during terminal differentiation of post-mitotic photoreceptor neurons in mice.

    Directory of Open Access Journals (Sweden)

    Ivette M Sandoval

    Full Text Available For sensitive detection of rare gene repair events in terminally differentiated photoreceptors, we generated a knockin mouse model by replacing one mouse rhodopsin allele with a form of the human rhodopsin gene that causes a severe, early-onset form of retinitis pigmentosa. The human gene contains a premature stop codon at position 344 (Q344X, cDNA encoding the enhanced green fluorescent protein (EGFP at its 3' end, and a modified 5' untranslated region to reduce translation rate so that the mutant protein does not induce retinal degeneration. Mutations that eliminate the stop codon express a human rhodopsin-EGFP fusion protein (hRho-GFP, which can be readily detected by fluorescence microscopy. Spontaneous mutations were observed at a frequency of about one per retina; in every case, they gave rise to single fluorescent rod cells, indicating that each mutation occurred during or after the last mitotic division. Additionally, the number of fluorescent rods did not increase with age, suggesting that the rhodopsin gene in mature rod cells is less sensitive to mutation than it is in developing rods. Thus, there is a brief developmental window, coinciding with the transcriptional activation of the rhodopsin locus, in which somatic mutations of the rhodopsin gene abruptly begin to appear.

  14. In Vitro and In Vivo Characterization of a Dual-Function Green Fluorescent Protein–HSV1-Thymidine Kinase Reporter Gene Driven by the Human Elongation Factor 1α Promoter

    Directory of Open Access Journals (Sweden)

    Gary D. Luker

    2002-04-01

    Full Text Available Toward the goal of monitoring activity of native mammalian promoters with molecular imaging techniques, we stably transfected DU145 prostate carcinoma cells with a fusion construct of enhanced green fluorescent protein (EGFP and wild-type herpes simplex virus-1 thymidine kinase (HSV1-TK as a reporter gene driven by the promoter for human elongation factor 1α (EF-1α-EGFP-TK. Using this model system, expression of EGFP was quantified by flow cytometry and fluorescence microscopy, while the HSV1-TK component of the reporter was quantified with 8-[3H]ganciclovir (8-[3H]GCV. As analyzed by flow cytometry, passage of EGFP-TK-DU145 transfected cells (ETK in vitro resulted in populations of cells with high and low expression of EGFP over time. High and low ETK cells retained 23-fold and 5-fold more GCV, respectively, than control. While differences in uptake and retention of GCV corresponded to relative expression of the reporter gene in each subpopulation of cells as determined by both flow cytometry (EGFP and quantitative RT-PCR, the correlation was not linear. Furthermore, in high ETK cells, net retention of various radiolabeled nucleoside analogues varied; the rank order was 8-[3H]GCV < 9-(4-fluoro-3-hydroxymethylbutylguanine ([18F]FHBG ≈ 8-[3H]penciclovir (8-[3H]PCV < 2′-fluoro-2′-deoxy-5-iodouracil-beta-d-arabinofuranoside (2-[14C]FIAU. Xenograft tumors of ETK cells in vivo accumulated 2.5-fold more 8-[3H]GCV per gram of tissue and showed greater fluorescence from EGFP than control DU145 cells, demonstrating that the reporter gene functioned in vivo. These data extend previous reports by showing that a human promoter can be detected in vitro and in vivo with a dual-function reporter exploiting optical and radiotracer techniques.

  15. Cell-penetrating anti-GFAP VHH and corresponding fluorescent fusion protein VHH-GFP spontaneously cross the blood-brain barrier and specifically recognize astrocytes: application to brain imaging.

    Science.gov (United States)

    Li, Tengfei; Bourgeois, Jean-Pierre; Celli, Susanna; Glacial, Fabienne; Le Sourd, Anne-Marie; Mecheri, Salah; Weksler, Babette; Romero, Ignacio; Couraud, Pierre-Olivier; Rougeon, François; Lafaye, Pierre

    2012-10-01

    Antibodies normally do not cross the blood-brain barrier (BBB) and cannot bind an intracellular cerebral antigen. We demonstrate here for the first time that a new class of antibodies can cross the BBB without treatment. Camelids produce native homodimeric heavy-chain antibodies, the paratope being composed of a single-variable domain called VHH. Here, we used recombinant VHH directed against human glial fibrillary acidic protein (GFAP), a specific marker of astrocytes. Only basic VHHs (e.g., pI=9.4) were able to cross the BBB in vitro (7.8 vs. 0% for VHH with pI=7.7). By intracarotid and intravenous injections into live mice, we showed that these basic VHHs are able to cross the BBB in vivo, diffuse into the brain tissue, penetrate into astrocytes, and specifically label GFAP. To analyze their ability to be used as a specific transporter, we then expressed a recombinant fusion protein VHH-green fluorescent protein (GFP). These "fluobodies" specifically labeled GFAP on murine brain sections, and a basic variant (pI=9.3) of the fusion protein VHH-GFP was able to cross the BBB and to label astrocytes in vivo. The potential of VHHs as diagnostic or therapeutic agents in the central nervous system now deserves attention.

  16. Effects of green tea epigallocatechin-3-gallate on the proteolipid protein and oligodendrocyte transcription factor 1 messenger RNA gene expression in a mouse model of multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Mohammadreza Semnani

    2017-09-01

    Full Text Available The cuprizone multiple sclerosis (MS animal model is characteristic for toxic demyelination and represents a reversible demyelination and remyelination system. It has been shown that green tea epigallocatechin-3-gallate (EGCG might be effective in improving the symptoms and pathological conditions associated with autoimmune inflammatory diseases in several animal models. In this study the effects of EGCG on proteolipid protein (PLP and oligodendrocyte transcription factor 1 (Olig1 expression in the cerebral cortex of a murine model of cuprizone-induced demyelination was investigated. C57BL/6 mice were treated with cuprizone for six weeks in order to induce demyelination. Immediately after the cessation of cuprizone the animals were divided into 6 groups (n = 10 for each group. The first two groups were injected intraperitoneally (IP with EGCG in the amount of 50 mg/kg/daily body weight for 2 and 4 weeks. The second two groups (SHAM were injected IP with phosphate-buffered saline (PBS for 2 and 4 weeks, and the third two groups were left without injection as controls. After two and four weeks the mice were killed and the cerebral cortex was collected and the expression of Plp and Olig1 was studied by real-time PCR. The results showed significant increases in PLP and Olig1 expression in the EGCG-treated groups as compared to the SHAM and control groups (p < 0.0001. It is concluded that EGCG increases PLP and Olig1 expression in the cerebral cortex of a mouse model of MS induced by cuprizone.

  17. Experimental Evolution of a Green Fluorescent Protein Composed of 19 Unique Amino Acids without Tryptophan

    Science.gov (United States)

    Kawahara-Kobayashi, Akio; Hitotsuyanagi, Mitsuhiro; Amikura, Kazuaki; Kiga, Daisuke

    2014-04-01

    At some stage of evolution, genes of organisms may have encoded proteins that were synthesized using fewer than 20 unique amino acids. Similar to evolution of the natural 19-amino-acid proteins GroEL/ES, proteins composed of 19 unique amino acids would have been able to evolve by accumulating beneficial mutations within the 19-amino-acid repertoire encoded in an ancestral genetic code. Because Trp is thought to be the last amino acid included in the canonical 20-amino-acid repertoire, this late stage of protein evolution could be mimicked by experimental evolution of 19-amino-acid proteins without tryptophan (Trp). To further understand the evolution of proteins, we tried to mimic the evolution of a 19-amino-acid protein involving the accumulation of beneficial mutations using directed evolution by random mutagenesis on the whole targeted gene sequence. We created active 19-amino-acid green fluorescent proteins (GFPs) without Trp from a poorly fluorescent 19-amino-acid mutant, S1-W57F, by using directed evolution with two rounds of mutagenesis and selection. The N105I and S205T mutations showed beneficial effects on the S1-W57F mutant. When these two mutations were combined on S1-W57F, we observed an additive effect on the fluorescence intensity. In contrast, these mutations showed no clear improvement individually or in combination on GFPS1, which is the parental GFP mutant composed of 20 amino acids. Our results provide an additional example for the experimental evolution of 19-amino-acid proteins without Trp, and would help understand the mechanisms underlying the evolution of 19-amino-acid proteins. (236 words)

  18. Development of a Novel Green Fluorescent Protein-Based Binding Assay to Study the Association of Plakins with Intermediate Filament Proteins.

    Science.gov (United States)

    Favre, Bertrand; Begré, Nadja; Bouameur, Jamal-Eddine; Borradori, Luca

    2016-01-01

    Protein-protein interactions are fundamental for most biological processes, such as the formation of cellular structures and enzymatic complexes or in signaling pathways. The identification and characterization of protein-protein interactions are therefore essential for understanding the mechanisms and regulation of biological systems. The organization and dynamics of the cytoskeleton, as well as its anchorage to specific sites in the plasma membrane and organelles, are regulated by the plakins. These structurally related proteins anchor different cytoskeletal networks to each other and/or to other cellular structures. The association of several plakins with intermediate filaments (IFs) is critical for maintenance of the cytoarchitecture. Pathogenic mutations in the genes encoding different plakins can lead to dramatic manifestations, occurring principally in the skin, striated muscle, and/or nervous system, due to cytoskeletal disorganization resulting in abnormal cell fragility. Nevertheless, it is still unclear how plakins bind to IFs, although some general rules are slowly emerging. We here describe in detail a recently developed protein-protein fluorescence binding assay, based on the production of recombinant proteins tagged with green fluorescent protein (GFP) and their use as fluid-phase fluorescent ligands on immobilized IF proteins. Using this method, we have been able to assess the ability of C-terminal regions of GFP-tagged plakin proteins to bind to distinct IF proteins and IF domains. This simple and sensitive technique, which is expected to facilitate further studies in this area, can also be potentially employed for any kind of protein-protein interaction studies. © 2016 Elsevier Inc. All rights reserved.

  19. TRANSFEKSI MERUPAKAN METODE TEKNOLOGI TRANSGENIK PENYISIPAN GREEN FLOURESCENT PROTEIN TERHADAP IKAN WILD BETTA

    Directory of Open Access Journals (Sweden)

    Eni Kusrini

    2015-06-01

    Full Text Available Teknik transfer gen banyak dikembangkan untuk mengintroduksi molekul DNA ke dalam embrio. Keberhasilan transfer gen menggunakan metode transfeksi ditentukan oleh berbagai faktor, antara lain pemilihan larutan transfeksi yang sesuai dengan mempertimbangkan kesediaan secara komersial, mudah diaplikasikan, keberhasilan tinggi, dan tidak bersifat toksik terhadap embrio. Studi awal untuk mengetahui keberhasilan transfer gen terhadap embrio ikan wild betta digunakan Green Fluorescent Protein (GFP dan juga dapat digunakan sebagai model terhadap ikan betta. GFP merupakan gen yang mengkodekan protein dan memiliki sifat berpendar hijau. Induk jantan dan betina dipijahkan dengan perbandingan 1:1 pada wadah baskom dengan ketinggian air ± 14 cm serta diberikan substrat. Transfeksi dilakukan pada embrio fase pembelahan 2 sel. Larutan transfeksi dibuat dari campuran DNA plasmid pada media NaCl 0.9% hingga mencapai konsentrasi akhir 100 μL media (campuran transfast + DNA + NaCl. Aktivitas gen ini dapat divisualisasikan dengan menggunakan sinar ultra violet. Keberhasilan dari teknik transfer gen tersebut dibuktikan dengan adanya ekspresi gen atau deteksi DNA gen GFP yang dimasukkan. Ekspresi hasil korporasi DNA ke dalam telur melalui transfeksi pada wild betta dan keberhasilan transfer gen GFP dapat dibuktikan dengan analisis PCR. Tujuan dari penulisan makalah ini adalah menguraikan tentang metode transfeksi yang efektif untuk teknologi transfer gen terhadap ikan wild betta.

  20. Green corridors basics

    DEFF Research Database (Denmark)

    Panagakos, George

    2016-01-01

    SuperGreen project, which aimed at advancing the green corridor concept through a benchmarking exercise involving Key Performance Indicators (KPIs). The chapter discusses the available definitions of green corridors and identifies the characteristics that distinguish a green corridor from any other...... efficient surface transportation corridor. After providing examples of green corridor projects in Europe, it focuses on the KPIs that have been proposed by various projects for monitoring the performance of a freight corridor. Emphasis is given to the SuperGreen KPIs, covering the economic, technical...

  1. Citrus tristeza virus-based RNAi in citrus plants induces gene silencing in Diaphorina citri, a phloem-sap sucking insect vector of citrus greening disease (Huanglongbing).

    Science.gov (United States)

    Hajeri, Subhas; Killiny, Nabil; El-Mohtar, Choaa; Dawson, William O; Gowda, Siddarame

    2014-04-20

    A transient expression vector based on Citrus tristeza virus (CTV) is unusually stable. Because of its stability it is being considered for use in the field to control Huanglongbing (HLB), which is caused by Candidatus Liberibacter asiaticus (CLas) and vectored by Asian citrus psyllid, Diaphorina citri. In the absence of effective control strategies for CLas, emphasis has been on control of D. citri. Coincident cohabitation in phloem tissue by CLas, D. citri and CTV was exploited to develop a novel method to mitigate HLB through RNA interference (RNAi). Since CTV has three RNA silencing suppressors, it was not known if CTV-based vector could induce RNAi in citrus. Yet, expression of sequences targeting citrus phytoene desaturase gene by CTV-RNAi resulted in photo-bleaching phenotype. CTV-RNAi vector, engineered with truncated abnormal wing disc (Awd) gene of D. citri, induced altered Awd expression when silencing triggers ingested by feeding D. citri nymphs. Decreased Awd in nymphs resulted in malformed-wing phenotype in adults and increased adult mortality. This impaired ability of D. citri to fly would potentially limit the successful vectoring of CLas bacteria between citrus trees in the grove. CTV-RNAi vector would be relevant for fast-track screening of candidate sequences for RNAi-mediated pest control. Copyright © 2014. Published by Elsevier B.V.

  2. Parent-of-origin dependent gene-specific knock down in mouse embryos

    International Nuclear Information System (INIS)

    Iqbal, Khursheed; Kues, Wilfried A.; Niemann, Heiner

    2007-01-01

    In mice hemizygous for the Oct4-GFP transgene, the F1 embryos show parent-of-origin dependent expression of the marker gene. F1 embryos with a maternally derived OG2 allele (OG2 mat /-) express GFP in the oocyte and during preimplantation development until the blastocyst stage indicating a maternal and embryonic expression pattern. F1-embryos with a paternally inherited OG2 allele (OG2 pat /-) express GFP from the 4- to 8-cell stage onwards showing only embryonic expression. This allows to study allele specific knock down of GFP expression. RNA interference (RNAi) was highly efficient in embryos with the paternally inherited GFP allele, whereas embryos with the maternally inherited GFP allele showed a delayed and less stringent suppression, indicating that the initial levels of the target transcript and the half life of the protein affect RNAi efficacy. RT-PCR analysis revealed only minimum of GFP mRNA. These results have implications for studies of gene silencing in mammalian embryos

  3. Confocal quantification of cis-regulatory reporter gene expression in living sea urchin.

    Science.gov (United States)

    Damle, Sagar; Hanser, Bridget; Davidson, Eric H; Fraser, Scott E

    2006-11-15

    Quantification of GFP reporter gene expression at single cell level in living sea urchin embryos can now be accomplished by a new method of confocal laser scanning microscopy (CLSM). Eggs injected with a tissue-specific GFP reporter DNA construct were grown to gastrula stage and their fluorescence recorded as a series of contiguous Z-section slices that spanned the entire embryo. To measure the depth-dependent signal decay seen in the successive slices of an image stack, the eggs were coinjected with a freely diffusible internal fluorescent standard, rhodamine dextran. The measured rhodamine fluorescence was used to generate a computational correction for the depth-dependent loss of GFP fluorescence per slice. The intensity of GFP fluorescence was converted to the number of GFP molecules using a conversion constant derived from CLSM imaging of eggs injected with a measured quantity of GFP protein. The outcome is a validated method for accurately counting GFP molecules in given cells in reporter gene transfer experiments, as we demonstrate by use of an expression construct expressed exclusively in skeletogenic cells.

  4. Multicistronic lentiviral vectors containing the FMDV 2A cleavage factor demonstrate robust expression of encoded genes at limiting MOI

    Directory of Open Access Journals (Sweden)

    Margison Geoffrey P

    2006-03-01

    Full Text Available Abstract Background A number of gene therapy applications would benefit from vectors capable of expressing multiple genes. In this study we explored the feasibility and efficiency of expressing two or three transgenes in HIV-1 based lentiviral vector. Bicistronic and tricistronic self-inactivating lentiviral vectors were constructed employing the internal ribosomal entry site (IRES sequence of encephalomyocarditis virus (EMCV and/or foot-and-mouth disease virus (FMDV cleavage factor 2A. We employed enhanced green fluorescent protein (eGFP, O6-methylguanine-DNA-methyltransferase (MGMT, and homeobox transcription factor HOXB4 as model genes and their expression was detected by appropriate methods including fluorescence microscopy, flow cytometry, immunocytochemistry, biochemical assay, and western blotting. Results All the multigene vectors produced high titer virus and were able to simultaneously express two or three transgenes in transduced cells. However, the level of expression of individual transgenes varied depending on: the transgene itself; its position within the construct; the total number of transgenes expressed; the strategy used for multigene expression and the average copy number of pro-viral insertions. Notably, at limiting MOI, the expression of eGFP in a bicistronic vector based on 2A was ~4 times greater than that of an IRES based vector. Conclusion The small and efficient 2A sequence can be used alone or in combination with an IRES for the construction of multicistronic lentiviral vectors which can express encoded transgenes at functionally relevant levels in cells containing an average of one pro-viral insert.

  5. Identification of Genes Enriched in GnRH Neurons by Translating Ribosome Affinity Purification and RNAseq in Mice.

    Science.gov (United States)

    Burger, Laura L; Vanacker, Charlotte; Phumsatitpong, Chayarndorn; Wagenmaker, Elizabeth R; Wang, Luhong; Olson, David P; Moenter, Suzanne M

    2018-04-01

    Gonadotropin-releasing hormone (GnRH) neurons are a nexus of fertility regulation. We used translating ribosome affinity purification coupled with RNA sequencing to examine messenger RNAs of GnRH neurons in adult intact and gonadectomized (GDX) male and female mice. GnRH neuron ribosomes were tagged with green fluorescent protein (GFP) and GFP-labeled polysomes isolated by immunoprecipitation, producing one RNA fraction enhanced for GnRH neuron transcripts and one RNA fraction depleted. Complementary DNA libraries were created from each fraction and 50-base, paired-end sequencing done and differential expression (enhanced fraction/depleted fraction) determined with a threshold of >1.5- or <0.66-fold (false discovery rate P ≤ 0.05). A core of ∼840 genes was differentially expressed in GnRH neurons in all treatments, including enrichment for Gnrh1 (∼40-fold), and genes critical for GnRH neuron and/or gonadotrope development. In contrast, non-neuronal transcripts were not enriched or were de-enriched. Several epithelial markers were also enriched, consistent with the olfactory epithelial origins of GnRH neurons. Interestingly, many synaptic transmission pathways were de-enriched, in accordance with relatively low innervation of GnRH neurons. The most striking difference between intact and GDX mice of both sexes was a marked downregulation of genes associated with oxidative phosphorylation and upregulation of glucose transporters in GnRH neurons from GDX mice. This may suggest that GnRH neurons switch to an alternate fuel to increase adenosine triphosphate production in the absence of negative feedback when GnRH release is elevated. Knowledge of the GnRH neuron translatome and its regulation can guide functional studies and can be extended to disease states, such as polycystic ovary syndrome.

  6. Construction of a Shuttle Vector for Heterologous Expression of a Novel Fungal α-Amylase Gene in Aspergillus oryzae.

    Science.gov (United States)

    Yin, Yanchen; Mao, Youzhi; Yin, Xiaolie; Gao, Bei; Wei, Dongzhi

    2015-07-01

    The filamentous fungus Aspergillus oryzae is a well-known expression host used to express homologous and heterologous proteins in a number of industrial applications. To facilitate higher yields of proteins of interest, we constructed the pAsOP vector to express heterologous proteins in A. oryzae. pAsOP carries a selectable marker, pyrG, derived from Aspergillus nidulans, and a strong promoter and a terminator of the amyB gene derived from A. oryzae. pAsOP transformed A. oryzae efficiently via the PEG-CaCl2-mediated transformation method. As proof of concept, green fluorescent protein (GFP) was successfully expressed in A. oryzae transformed by pAsOP-GFP. Additionally, we identified a novel fungal α-amylase (PcAmy) gene from Penicillium sp. and cloned the gene into the vector. After transformation by pAsOPPcAmy, the α-amylase PcAmy from Penicillium sp. was successfully expressed in a heterologous host system for the first time. The α-amylase activity in the A. oryzae transformant was increased by 62.3% compared with the untransformed A. oryzae control. The PcAmy protein produced in the system had an optimum pH of 5.0 and optimum temperature of 30°C. As a cold-adapted enzyme, PcAmy shows potential value in industrial applications because of its high catalytic activity at low temperature. Furthermore, the expression vector reported in this study provides promising utility for further scientific research and biotechnological applications.

  7. Quantification of contamination of lettuce by GFP-expressing Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium

    NARCIS (Netherlands)

    Franz, Eelco; Visser, Anna A; Van Diepeningen, Anne D; Klerks, Michel M; Termorshuizen, Aad J; van Bruggen, Ariena H C

    The primary objective of this study was to determine the possibility of internalization of GFP-expressing Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium (S. Typhimurium) strains MAE 110 (multi-cellular morphology) and 119 (wild type morphology) into lettuce seedlings (Lactuca

  8. Performance of Popular XC-Functionals for the Description of Excitation Energies in GFP-Like Chromophore Models

    DEFF Research Database (Denmark)

    List, Nanna Holmgaard; Olsen, Jógvan Magnus Haugaard; Rocha-Rinza, Tomás

    2012-01-01

    this task. We present an evaluation of the performance of commonly used XC-functionals for the prediction of excitation energies of GFP-like chromophores. In particular, we have considered the TD-DFT vertical excitation energies of chromophores displaying different charge states. We compare the quality...

  9. Green Power Partnership 100 Green Power Users

    Science.gov (United States)

    EPA's Green Power Partnership is a voluntary program designed to reduce the environmental impact of electricity generation by promoting renewable energy. Partners on this list use green power to meet 100 of their U.S. organization-wide electricity use.

  10. Urban Greening Bay Area

    Science.gov (United States)

    Information about the San Francisco Bay Water Quality Project (SFBWQP) Urban Greening Bay Area, a large-scale effort to re-envision urban landscapes to include green infrastructure (GI) making communities more livable and reducing stormwater runoff.

  11. Tribal Green Building Toolkit

    Science.gov (United States)

    This Tribal Green Building Toolkit (Toolkit) is designed to help tribal officials, community members, planners, developers, and architects develop and adopt building codes to support green building practices. Anyone can use this toolkit!

  12. Green Power Partner List

    Science.gov (United States)

    The U.S. EPA's Green Power Partnership is a voluntary program designed to reduce the environmental impact of electricity generation by promoting renewable energy. There are thousands of Green Power Partners, all listed on this page.

  13. Green Power Communities

    Science.gov (United States)

    GPCs are towns, villages, cities, counties, or tribal governments in which the local government, businesses, and residents collectively use green power in amounts that meet or exceed EPA's Green Power Community purchase requirements.

  14. Blue-Green Algae

    Science.gov (United States)

    ... that taking a specific blue-green algae product (Super Blue-Green Algae, Cell Tech, Klamath Falls, OR) ... system. Premenstrual syndrome (PMS). Depression. Digestion. Heart disease. Memory. Wound healing. Other conditions. More evidence is needed ...

  15. Green Bank Observatory (GBO)

    Data.gov (United States)

    Federal Laboratory Consortium — The largest fully steerable telescope in the world - the Robert C. Byrd Green Bank Telescope (GBT), began observations in Green Bank, West Virginia in 2000and is a...

  16. Green Infrastructure Modeling Toolkit

    Science.gov (United States)

    Green infrastructure, such as rain gardens, green roofs, porous pavement, cisterns, and constructed wetlands, is becoming an increasingly attractive way to recharge aquifers and reduce the amount of stormwater runoff that flows into wastewater treatment plants or into waterbodies...

  17. Harpin-induced expression and transgenic overexpression of the phloem protein gene AtPP2-A1 in Arabidopsis repress phloem feeding of the green peach aphid Myzus persicae.

    Science.gov (United States)

    Zhang, Chunling; Shi, Haojie; Chen, Lei; Wang, Xiaomeng; Lü, Beibei; Zhang, Shuping; Liang, Yuan; Liu, Ruoxue; Qian, Jun; Sun, Weiwei; You, Zhenzhen; Dong, Hansong

    2011-01-13

    Treatment of plants with HrpNEa, a protein of harpin group produced by Gram-negative plant pathogenic bacteria, induces plant resistance to insect herbivores, including the green peach aphid Myzus persicae, a generalist phloem-feeding insect. Under attacks by phloem-feeding insects, plants defend themselves using the phloem-based defense mechanism, which is supposed to involve the phloem protein 2 (PP2), one of the most abundant proteins in the phloem sap. The purpose of this study was to obtain genetic evidence for the function of the Arabidopsis thaliana (Arabidopsis) PP2-encoding gene AtPP2-A1 in resistance to M. persicae when the plant was treated with HrpNEa and after the plant was transformed with AtPP2-A1. The electrical penetration graph technique was used to visualize the phloem-feeding activities of apterous agamic M. persicae females on leaves of Arabidopsis plants treated with HrpNEa and an inactive protein control, respectively. A repression of phloem feeding was induced by HrpNEa in wild-type (WT) Arabidopsis but not in atpp2-a1/E/142, the plant mutant that had a defect in the AtPP2-A1 gene, the most HrpNEa-responsive of 30 AtPP2 genes. In WT rather than atpp2-a1/E/142, the deterrent effect of HrpNEa treatment on the phloem-feeding activity accompanied an enhancement of AtPP2-A1 expression. In PP2OETAt (AtPP2-A1-overexpression transgenic Arabidopsis thaliana) plants, abundant amounts of the AtPP2-A1 gene transcript were detected in different organs, including leaves, stems, calyces, and petals. All these organs had a deterrent effect on the phloem-feeding activity compared with the same organs of the transgenic control plant. When a large-scale aphid population was monitored for 24 hours, there was a significant decrease in the number of aphids that colonized leaves of HrpNEa-treated WT and PP2OETAt plants, respectively, compared with control plants. The repression in phloem-feeding activities of M. persicae as a result of AtPP2-A1 overexpression, and

  18. Show Me the Green

    Science.gov (United States)

    Norbury, Keith

    2013-01-01

    Gone are the days when green campus initiatives were a balm to the soul and a drain on the wallet. Today's environmental initiatives are all about saving lots of green--in every sense of the word. The environmental benefits of green campus projects--whether wind turbines or better insulation--are pretty clear. Unfortunately, in today's…

  19. Green roof Malta

    OpenAIRE

    Gatt, Antoine

    2015-01-01

    In Malta, buildings cover one third of the Island, leaving greenery in the dirt track. Green roofs are one way to bring plants back to urban areas with loads of benefits. Antoine Gatt, who manages the LifeMedGreenRoof project at the University of Malta, tells us more. http://www.um.edu.mt/think/green-roof-malta/

  20. EPA's Green Roof Research

    Science.gov (United States)

    This is a presentation on the basics of green roof technology. The presentation highlights some of the recent ORD research projects on green roofs and provices insight for the end user as to the benefits for green roof technology. It provides links to currently available EPA re...

  1. In the Green

    Science.gov (United States)

    Kennedy, Mike

    2011-01-01

    Education officials used to debate whether they could afford to pursue green design and construction. Now the green movement has gained a foothold not just in education, but in society at large, and the prevailing attitude seems to have shifted. Can schools afford "not" to go green? As budgets are slashed repeatedly, education administrators must…

  2. The green agenda

    CERN Document Server

    Calder, Alan

    2009-01-01

    This business guide to Green IT was written to introduce, to a business audience, the opposing groups and the key climate change concepts, to provide an overview of a Green IT strategy and to set out a straightforward, bottom line-orientated Green IT action plan.

  3. The Green Man

    Science.gov (United States)

    Watson-Newlin, Karen

    2010-01-01

    The Jolly Green Giant. Robin Hood. The Bamberg Cathedral. Tales of King Arthur. Ecology. What do they have in common? What legends and ancient myths are shrouded in the tales of the Green Man? Most often perceived as an ancient Celtic symbol as the god of spring and summer, the Green Man disappears and returns year after year, century after…

  4. A green fluorescent protein with photoswitchable emission from the deep sea.

    Directory of Open Access Journals (Sweden)

    Alexander Vogt

    Full Text Available A colorful variety of fluorescent proteins (FPs from marine invertebrates are utilized as genetically encoded markers for live cell imaging. The increased demand for advanced imaging techniques drives a continuous search for FPs with new and improved properties. Many useful FPs have been isolated from species adapted to sun-flooded habitats such as tropical coral reefs. It has yet remained unknown if species expressing green fluorescent protein (GFP-like proteins also exist in the darkness of the deep sea. Using a submarine-based and -operated fluorescence detection system in the Gulf of Mexico, we discovered ceriantharians emitting bright green fluorescence in depths between 500 and 600 m and identified a GFP, named cerFP505, with bright fluorescence emission peaking at 505 nm. Spectroscopic studies showed that approximately 15% of the protein bulk feature reversible ON/OFF photoswitching that can be induced by alternating irradiation with blue und near-UV light. Despite being derived from an animal adapted to essentially complete darkness and low temperatures, cerFP505 maturation in living mammalian cells at 37 degrees C, its brightness and photostability are comparable to those of EGFP and cmFP512 from shallow water species. Therefore, our findings disclose the deep sea as a potential source of GFP-like molecular marker proteins.

  5. Spectroscopic detection of fluorescent protein marker gene activity in genetically modified plants

    Science.gov (United States)

    Liew, O. W.; Chong, Jenny P. C.; Asundi, Anand K.

    2005-04-01

    This work focuses on developing a portable fibre optic fluorescence analyser for rapid identification of genetically modified plants tagged with a fluorescent marker gene. Independent transgenic tobacco plant lines expressing the enhanced green fluorescence protein (EGFP) gene were regenerated following Agrobacterium-mediated gene transfer. Molecular characterisation of these plant lines was carried out at the DNA level by PCR screening to confirm their transgenic status. Conventional transgene expression analysis was then carried out at the RNA level by RT-PCR and at the protein level by Western blotting using anti-GFP rabbit antiserum. The amount of plant-expressed EGFP on a Western blot was quantified against known amounts of purified EGFP by scanning densitometry. The expression level of EGFP in transformed plants was found to range from 0.1 - 0.6% of total extractable protein. A comparison between conventional western analysis of transformants and direct spectroscopic quantification using the fibre optic fluorescence analyser was made. The results showed that spectroscopic measurements of fluorescence emission from strong EGFP expressors correlated positively with Western blot data. However, the fluorescence analyser was also able to identify weakly expressing plant transformants below the detection limit of colorimetric Western blotting.

  6. The fate of mesenchymal stem cells transplanted into immunocompetent neonatal mice: implications for skeletal gene therapy via stem cells.

    Science.gov (United States)

    Niyibizi, Christopher; Wang, Sujing; Mi, Zhibao; Robbins, Paul D

    2004-06-01

    To explore the feasibility of skeletal gene and cell therapies, we transduced murine bone marrow-derived mesenchymal stem cells (MSCs) with a retrovirus carrying the enhanced green fluorescent protein and zeocin-resistance genes prior to transplantation into 2-day-old immunocompetent neonatal mice. Whole-body imaging of the recipient mice at 7 days post-systemic cell injection demonstrated a wide distribution of the cells in vivo. Twenty-five days posttransplantation, most of the infused cells were present in the lung as assessed by examination of the cells cultured from the lungs of the recipient mice. The cells persisted in lung and maintained a high level of gene expression and could be recovered from the recipient mice at 150 days after cell transplantation. A significant number of GFP-positive cells were also present in the bones of the recipient mice at 35 days post-cell transplantation. Recycling of the cells recovered from femurs of the recipient mice at 25 days posttransplantation by repeated injections into different neonatal mice resulted in the isolation of a clone of cells that was detected in bone and cartilage, but not in lung and liver after systemic injection. These data demonstrate that MSCs persist in immunocompetent neonatal mice, maintain a high level of gene expression, and may participate in skeletal growth and development of the recipient animals.

  7. Dehydration-induced WRKY genes from tobacco and soybean respond to jasmonic acid treatments in BY-2 cell culture.

    Science.gov (United States)

    Rabara, Roel C; Tripathi, Prateek; Lin, Jun; Rushton, Paul J

    2013-02-15

    Drought is one of the important environmental factors affecting crop production worldwide and therefore understanding the molecular response of plant to stress is an important step in crop improvement. WRKY transcription factors are one of the 10 largest transcription factor families across the green lineage. In this study, highly upregulated dehydration-induced WRKY and enzyme-coding genes from tobacco and soybean were selected from microarray data for promoter analyses. Putative stress-related cis-regulatory elements such as TGACG motif, ABRE-like elements; W and G-like sequences were identified by an in silico analyses of promoter region of the selected genes. GFP quantification of transgenic BY-2 cell culture showed these promoters direct higher expression in-response to 100 μM JA treatment compared to 100 μM ABA, 10% PEG and 85 mM NaCl treatments. Thus promoter activity upon JA treatment and enrichment of MeJA-responsive elements in the promoter of the selected genes provides insights for these genes to be jasmonic acid responsive with potential of mediating cross-talk during dehydration responses. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Green Transformational Leadership and Green Performance: The Mediation Effects of Green Mindfulness and Green Self-Efficacy

    OpenAIRE

    Yu-Shan Chen; Ching-Hsun Chang; Yu-Hsien Lin

    2014-01-01

    No prior literature explores the influence of green transformational leadership on green performance, thus, this study develops a novel research framework to fill the research gap. This study investigates the influence of green transformational leadership on green performance and discusses the mediation effects of green mindfulness and green self-efficacy by means of structural equation modeling (SEM). The results indicate that green transformational leadership positively influences green min...

  9. Gas-phase infrared spectrum of the anionic GFP-chromophore

    NARCIS (Netherlands)

    Almasian, M.; Grzetic, J.; G. Berden,; Bakker, B.; Buma, W. J.; Oomens, J.

    2012-01-01

    The gas-phase IR spectrum of the anionic chromophore of the green fluorescent protein (p-hydroxy-benzylidene-2,3-dimethylimidazolidinone, HBDI) is recorded in the 800–1800 cm−1 frequency range using the free electron laser FELIX in combination with an electrospray ionization (ESI) Fourier

  10. How far can a single hydrogen bond tune the spectral properties of the GFP chromophore?

    DEFF Research Database (Denmark)

    Kiefer, Hjalte; Lattouf, Elie; Persen, Natascha Wardinghus

    2015-01-01

    Photoabsorption of the hydrogen-bonded complex of a neutral and an anionic Green Fluorescent Protein chromophore has been studied using a new dual-detection approach to action-absorption spectroscopy. Following absorption of one photon, dissociation through a single channel ensures that the full ...

  11. Green Thunderstorms Observed.

    Science.gov (United States)

    Gallagher, Frank W., III; Beasley, William H.; Bohren, Craig F.

    1996-12-01

    Green thunderstorms have been observed from time to time in association with deep convection or severe weather events. Often the green coloration has been attributed to hail or to reflections of light from green foliage on the ground. Some skeptics who have not personally observed a green thunderstorm do not believe that green thunderstorms exist. They suggest that the green storms may be fabrications by excited observers. The authors have demonstrated the existence of green thunderstorms objectively using a spectrophotometer. During the spring and summer of 1995 the authors observed numerous storms and recorded hundreds of spectra of the light emanating corn these storms. It was found that the subjective judgment of colors can vary somewhat between observers, but the variation is usually in the shade of green. The authors recorded spectra of green and nongreen thunderstorms and recorded spectral measurements as a storm changed its appearance from dark blue to a bluish green. The change in color is gradual when observed from a stationary position. Also, as the light from a storm becomes greener, the luminance decreases. The authors also observed and recorded the spectrum of a thunderstorm during a period of several hours as they flew in an aircraft close to a supercell that appeared somewhat green. The authors' observations refute the ground reflection hypothesis and raise questions about explanations that require the presence of hail.

  12. Isolation and Characterization of Blue Green Algae from Egyptian ...

    African Journals Online (AJOL)

    meldemellawy

    2014-02-20

    Feb 20, 2014 ... aminotransferase (AMT) domains of the mycE and ndaF genes (Jungblut et al., 2006) allowing detection of microcystin and nodularin-producing cyanobacteria. MATERIALS AND METHODS. Isolation and cultivation of blue green algae. Blue green algae had been isolated from soil of Rice field in river.

  13. Trichoderma (Hypocrea) species with green ascospores from China

    NARCIS (Netherlands)

    Zhu, Z.X.; Zhuang, W.Y.

    2015-01-01

    Stromata of Trichoderma species having green ascospores were collected in various regions of China. Based on morphology of the sexual and asexual morph, culture characteristics, and sequence analyses of rpb2 and tef1 genes, 17 species with green ascospores were identified. Among them, Trichoderma

  14. Transient expression of green fluorescent protein in parasitic dodder as a tool for studying of cytoskeleton

    Directory of Open Access Journals (Sweden)

    Kaštier Peter

    2017-06-01

    Full Text Available Dodder (Cuscuta species cause severe agricultural damage in many countries throughout the world. To establish strategies for control of its growth and spreading it is important to study its life cycle and survival strategies. For these efforts genetic modification would represent a powerful tool. Here we report on Agrobacteriummediated transformation of dodder using green fluorescent protein (GFP fused to actin-binding protein as a vital marker. Since the shoot of germinating C. europaea contains a functional apical meristem and grows quickly comparing to the root-like structure, the shoot apex was used here as explant. The transgene expression was only transient, nevertheless it enabled to detect allocation of actin filaments and studying the cytoskeleton organization in dodder shoot apex. Transient expression of GFP appears to be a suitable method for studying Cuscuta development through cytoskeleton organisation that is presently largely unexplored.

  15. Hypothalamic Leptin Gene Therapy Reduces Bone Marrow Adiposity in ob/ob Mice Fed Regular and High Fat Diets

    Directory of Open Access Journals (Sweden)

    Laurence B Lindenmaier

    2016-08-01

    Full Text Available Low bone mass is often associated with increased bone marrow adiposity. Since osteoblasts and adipocytes are derived from the same mesenchymal stem cell progenitor, adipocyte formation may increase at the expense of osteoblast formation. Leptin is an adipocyte-derived hormone known to regulate energy and bone metabolism. Genetic (e.g., leptin deficiency and high fat diet-induced (e.g., leptin resistance obesity are associated with increased marrow adipose tissue (MAT and reduced bone formation. Short-duration studies suggest that leptin treatment reduces MAT and increases bone formation in leptin-deficient ob/ob mice fed a regular diet. Here, we determined the long-duration impact of increased hypothalamic leptin on marrow adipocytes and osteoblasts in ob/ob mice using recombinant adeno-associated virus (rAAV gene therapy. In a first study, eight- to ten-week-old male ob/ob mice were randomized into 4 groups: (1 untreated, (2 rAAV-Lep, (3 rAAV-green fluorescent protein (rAAV-GFP, or (4 pair-fed to rAAV-Lep. For vector administration, mice were placed in a Kopf stereotaxic apparatus, and injected intracerebroventricularly with either rAAV-Lep or rAAV-GFP (9 × 107 particles in 1.5 µl. The mice were maintained for 30 weeks following vector administration. In a second study, the impact of increased hypothalamic leptin levels on MAT was determined in mice fed high fat diets. Eight- to ten-week-old male ob/ob mice were randomized into 2 groups and treated with either rAAV-Lep or rAAV-GFP. At 7 weeks post-vector administration, half the mice in each group were switched to a high fat diet for 8 weeks. Wild type (WT controls included age-matched mice fed regular or high fat diet. Hypothalamic leptin gene therapy increased osteoblast perimeter and osteoclast perimeter with minor change in cancellous bone architecture. The gene therapy decreased MAT levels in ob/ob mice fed regular or high fat diet to values similar to WT mice fed regular diet. These

  16. Green fluorescent prot