WorldWideScience

Sample records for germanium epi layers

  1. Development of ultra pure germanium epi layers for blocked impurity band far infrared detectors

    Lutz, M.P.

    1991-05-01

    The main goals of this paper are: (1) To develop a low-pressure CVD (LPCVD) process that allows epitaxial growth at lower temperatures. Lower temperatures will allow the achievement of a sharp dopant profile at the substrate/epi-layer interface. Less out-diffusion from the substrate would allow the use of thinner epitaxial layers, which would lead to a larger depletion width in the photoactive region. LPCVD also avoids, to a great extent, gas-phase nucleation, which would cause Ge particulates to fall onto the wafer surface during growth. (2) To reduce high levels of oxygen and copper present at the wafer interface, as observed by secondary ion mass spectroscopy (SIMS). In order to achieve high-quality epitaxial layers, it is imperative that the substrate surface be of excellent quality. (3) To make and test detectors, after satisfactory epitaxial layers have been made

  2. Buried Porous Silicon-Germanium Layers in Monocrystalline Silicon Lattices

    Fathauer, Robert W. (Inventor); George, Thomas (Inventor); Jones, Eric W. (Inventor)

    1998-01-01

    Monocrystalline semiconductor lattices with a buried porous semiconductor layer having different chemical composition is discussed and monocrystalline semiconductor superlattices with a buried porous semiconductor layers having different chemical composition than that of its monocrystalline semiconductor superlattice are discussed. Lattices of alternating layers of monocrystalline silicon and porous silicon-germanium have been produced. These single crystal lattices have been fabricated by epitaxial growth of Si and Si-Ge layers followed by patterning into mesa structures. The mesa structures are strain etched resulting in porosification of the Si-Ge layers with a minor amount of porosification of the monocrystalline Si layers. Thicker Si-Ge layers produced in a similar manner emitted visible light at room temperature.

  3. Fabrication and research of high purity germanium detectors with abrupt and thin diffusion layer

    Rodriguez Cabal, A. E.; Diaz Garcia, A.

    1997-01-01

    A different high purity germanium detector's fabrication method is described. A very thin diffusion film with an abrupt change of the type of conductivity is obtained. The fine diffusion layer thickness makes possibly their utilization in experimental systems in which all the data are elaborated directly on the computer. (author) [es

  4. Controllable growth of stable germanium dioxide ultra-thin layer by means of capacitively driven radio frequency discharge

    Svarnas, P., E-mail: svarnas@ece.upatras.gr [High Voltage Laboratory, Department of Electrical and Computer Engineering, University of Patras, Rion 26 504, Patras (Greece); Botzakaki, M.A. [Department of Physics, University of Patras, Rion 26 504 (Greece); Skoulatakis, G.; Kennou, S.; Ladas, S. [Surface Science Laboratory, Department of Chemical Engineering, University of Patras, Rion 26 504 (Greece); Tsamis, C. [NCSR “Demokritos”, Institute of Advanced Materials, Physicochemical Processes, Nanotechnology & Microsystems, Aghia Paraskevi 15 310, Athens (Greece); Georga, S.N.; Krontiras, C.A. [Department of Physics, University of Patras, Rion 26 504 (Greece)

    2016-01-29

    It is well recognized that native oxide of germanium is hygroscopic and water soluble, while germanium dioxide is thermally unstable and it is converted to volatile germanium oxide at approximately 400 °C. Different techniques, implementing quite complicated plasma setups, gas mixtures and substrate heating, have been used in order to grow a stable germanium oxide. In the present work a traditional “RF diode” is used for germanium oxidation by cold plasma. Following growth, X-ray photoelectron spectroscopy demonstrates that traditional capacitively driven radio frequency discharges, using molecular oxygen as sole feedstock gas, provide the possibility of germanium dioxide layer growth in a fully reproducible and controllable manner. Post treatment ex-situ analyses on day-scale periods disclose the stability of germanium oxide at room ambient conditions, offering thus the ability to grow (ex-situ) ultra-thin high-k dielectrics on top of germanium oxide layers. Atomic force microscopy excludes any morphological modification in respect to the bare germanium surface. These results suggest a simple method for a controllable and stable germanium oxide growth, and contribute to the challenge to switch to high-k dielectrics as gate insulators for high-performance metal-oxide-semiconductor field-effect transistors and to exploit in large scale the superior properties of germanium as an alternative channel material in future technology nodes. - Highlights: • Simple one-frequency reactive ion etcher develops GeO{sub 2} thin layers controllably. • The layers remain chemically stable at ambient conditions over day-scale periods. • The layers are unaffected by the ex-situ deposition of high-k dielectrics onto them. • GeO{sub 2} oxidation and high-k deposition don't affect the Ge morphology significantly. • These conditions contribute to improved Ge-based MOS structure fabrication.

  5. Fabrication of Hydrogenated Amorphous Germanium Thin Layer Film and ItsCharacterization

    Agus-Santoso; Lely-Susita RM; Tjipto-Sujitno

    2000-01-01

    Fabrication of hydrogenated amorphous Germanium thin film by vacuumevaporation method and then deposition with hydrogen atom by glow dischargeplasma radio frequency has been done. This germanium amorphous (a-Ge) thinfilm involves a lot of dangling bonds in the network due to the irregularityof the atomic structures and it will decrease is conductivity. To improve theband properties of (a-Ge) thin film layer a hydrogenated plasma isintroduced. Process of introducing of the hydrogen into the a-Ge film is meanto reduce the dangling bonds so that the best electric conductivity of a Ge:Hthin film will obtained. To identify the hydrogen atom in the sample acharacterization using infrared spectrometer has been done, as well as themeasurement of conductivity of the samples. From the characterization usinginfrared spectroscopy the existence of hydrogen atom was found at absorptionpeak with wave number 1637.5 cm -1 , while the optimum conductivity of thesample 1634.86 Ω -1 cm -1 was achieved at 343 o K. (author)

  6. Growth and characterization of low composition Ge, x in epi-Si1‑x Gex (x  ⩽  10%) active layer for fabrication of hydrogenated bottom solar cell

    Ajmal Khan, M.; Sato, R.; Sawano, K.; Sichanugrist, P.; Lukianov, A.; Ishikawa, Y.

    2018-05-01

    Semiconducting epi-Si1‑x Ge x alloys have promising features as solar cell materials and may be equally important for some other semiconductor device applications. Variation of the germanium compositional, x in epi-Si1‑x Ge x , makes it possible to control the bandgap between 1.12 eV and 0.68 eV for application in bottom solar cells. A low proportion of Ge in SiGe alloy can be used for photovoltaic application in a bottom cell to complete the four-terminal tandem structure with wide bandgap materials. In this research, we aimed to use a low proportion of Ge—about 10%—in strained or relaxed c-Si1‑x Ge x /c-Si heterojunctions (HETs), with or without insertion of a Si buffer layer grown by molecular beam epitaxy, to investigate the influence of the relaxed or strained SiGe active layer on the performance of HET solar cells grown using the plasma enhanced chemical vapor deposition system. Thanks to the c-Si buffer layer at the hetero-interface, the efficiency of these SiGe based HET solar cells was improved from 2.3% to 3.5% (fully strained and with buffer layer). The Jsc was improved, from 8 mA cm‑2 to 15.46 mA cm‑2, which might be supported by strained c-Si buffer layer at the hetero-interface, by improving the crystalline quality.

  7. The Influence Of Dead Layer Effect On The Characteristics Of The High Purity Germanium P-Type Detector

    Ngo Quang Huy

    2011-01-01

    The present work aims at reviewing the studies of the influence of dead layer effect on the characteristics of a high purity germanium (HPGe) p-type detector, obtained by the author and his colleagues in the recent years. The object for study was the HPGe GC1518 detector-based gamma spectrometer of the Center for Nuclear Techniques, Ho Chi Minh City. The studying problems were: The modeling of an HPGe detector-based gamma spectrometer with using the MCNP code; the method of determining the thickness of dead layer by experimental measurements of gamma spectra and the calculations using MCNP code; the influence of material parameters and dead layer on detector efficiency; the increase of dead layer thickness over the operating time of the GC1518 detector; the influence of dead layer thickness increase on the decrease of detector efficiency; the dead layer effect for the gamma spectra measured in the GC1518 detector. (author)

  8. Alleviation of fermi-level pinning effect at metal/germanium interface by the insertion of graphene layers

    Baek, Seung-heon Chris; Seo, Yu-Jin; Oh, Joong Gun; Albert Park, Min Gyu; Bong, Jae Hoon; Yoon, Seong Jun; Lee, Seok-Hee; Seo, Minsu; Park, Seung-young; Park, Byong-Guk

    2014-01-01

    In this paper, we report the alleviation of the Fermi-level pinning on metal/n-germanium (Ge) contact by the insertion of multiple layers of single-layer graphene (SLG) at the metal/n-Ge interface. A decrease in the Schottky barrier height with an increase in the number of inserted SLG layers was observed, which supports the contention that Fermi-level pinning at metal/n-Ge contact originates from the metal-induced gap states at the metal/n-Ge interface. The modulation of Schottky barrier height by varying the number of inserted SLG layers (m) can bring about the use of Ge as the next-generation complementary metal-oxide-semiconductor material. Furthermore, the inserted SLG layers can be used as the tunnel barrier for spin injection into Ge substrate for spin-based transistors.

  9. Optical evidence for a self-propagating molten buried layer in germanium films upon nanosecond laser irradiation

    Vega, F.; Chaoui, N.; Solis, J.; Armengol, J.; Afonso, C.N.

    2005-01-01

    This work describes the phase transitions occurring at the film-substrate interface of amorphous germanium films upon nanosecond laser-pulse-induced melting of the surface. Films with thickness ranging from 50 to 130 nm deposited on glass substrates were studied. Real-time reflectivity measurements with subnanosecond time resolution performed both at the air-film and film-substrate interfaces were used to obtain both surface and in-depth information of the process. In the thicker films (≥80 nm), the enthalpy released upon solidification of a shallow molten surface layer induces a thin buried liquid layer that self-propagates in-depth towards the film-substrate interface. This buried liquid layer propagates with a threshold velocity of 16±1 m/s and causes, eventually, melting at the film-substrate interface. In the thinnest film (50 nm) there is no evidence of the formation of the buried layer. The presence of the self-propagating buried layer for films thicker than 80 nm at low and intermediate laser fluences is discussed in terms of the thermal gradient in the primary melt front and the heat released upon solidification

  10. Spontaneous breaking of time-reversal symmetry in strongly interacting two-dimensional electron layers in silicon and germanium.

    Shamim, S; Mahapatra, S; Scappucci, G; Klesse, W M; Simmons, M Y; Ghosh, A

    2014-06-13

    We report experimental evidence of a remarkable spontaneous time-reversal symmetry breaking in two-dimensional electron systems formed by atomically confined doping of phosphorus (P) atoms inside bulk crystalline silicon (Si) and germanium (Ge). Weak localization corrections to the conductivity and the universal conductance fluctuations were both found to decrease rapidly with decreasing doping in the Si:P and Ge:P delta layers, suggesting an effect driven by Coulomb interactions. In-plane magnetotransport measurements indicate the presence of intrinsic local spin fluctuations at low doping, providing a microscopic mechanism for spontaneous lifting of the time-reversal symmetry. Our experiments suggest the emergence of a new many-body quantum state when two-dimensional electrons are confined to narrow half-filled impurity bands.

  11. Structural properties of relaxed thin film germanium layers grown by low temperature RF-PECVD epitaxy on Si and Ge (100) substrates

    Cariou, R., E-mail: romain.cariou@polytechnique.edu [LPICM-CNRS, Ecole Polytechnique, 91128, Palaiseau (France); III-V lab a joint laboratory between Alcatel-Lucent Bell Labs France, Thales Research and Technology and CEA-LETI, route de Nozay, 91460, Marcoussis, France. (France); Ruggeri, R. [LPICM-CNRS, Ecole Polytechnique, 91128, Palaiseau (France); CNR-IMM, strada VIII n°5, zona industriale, 95121, Catania (Italy); Tan, X.; Nassar, J.; Roca i Cabarrocas, P. [LPICM-CNRS, Ecole Polytechnique, 91128, Palaiseau (France); Mannino, Giovanni [CNR-IMM, strada VIII n°5, zona industriale, 95121, Catania (Italy)

    2014-07-15

    We report on unusual low temperature (175 °C) heteroepitaxial growth of germanium thin films using a standard radio-frequency plasma process. Spectroscopic ellipsometry and transmission electron microscopy (TEM) reveal a perfect crystalline quality of epitaxial germanium layers on (100) c-Ge wafers. In addition direct germanium crystal growth is achieved on (100) c-Si, despite 4.2% lattice mismatch. Defects rising from Ge/Si interface are mostly located within the first tens of nanometers, and threading dislocation density (TDD) values as low as 10{sup 6} cm{sup −2} are obtained. Misfit stress is released fast: residual strain of −0.4% is calculated from Moiré pattern analysis. Moreover we demonstrate a striking feature of low temperature plasma epitaxy, namely the fact that crystalline quality improves with thickness without epitaxy breakdown, as shown by TEM and depth profiling of surface TDD.

  12. Effects of In-situ UV Irradiation on the Uniformity and Optical Properties of GaAsBi Epi-layers Grown by MBE

    Beaton, Daniel A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Steger, Mark [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Christian, Theresa [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mascarenhas, Angelo J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-14

    In-situ UV illumination influences the incorporation dynamics of bismuth adatom in GaAs. Here we use the inherent variation of the fluence across the sample to explore the role of the incident irradiation. With illumination it is found that steady state growth processes are achieved more quickly resulting in more abrupt interfaces, as well as uniform GaAs1-xGaAs1-xBixBix epi-layers. Comparisons of low temperature photoluminescence spectra show an increasing density of clusters of incorporated bismuth atoms with decreasing incident fluence.

  13. Emerging Pathogens Initiative (EPI)

    Department of Veterans Affairs — The Emerging Pathogens Initiative (EPI) database contains emerging pathogens information from the local Veterans Affairs Medical Centers (VAMCs). The EPI software...

  14. Elimination of carbon vacancies in 4H-SiC epi-layers by near-surface ion implantation: Influence of the ion species

    Ayedh, H. M.; Hallén, A.; Svensson, B. G.

    2015-11-01

    The carbon vacancy (VC) is a prevailing point defect in high-purity 4H-SiC epitaxial layers, and it plays a decisive role in controlling the charge carrier lifetime. One concept of reducing the VC-concentration is based on carbon self-ion implantation in a near surface layer followed by thermal annealing. This leads to injection of carbon interstitials (Ci's) and annihilation of VC's in the epi-layer "bulk". Here, we show that the excess of C atoms introduced by the self-ion implantation plays a negligible role in the VC annihilation. Actually, employing normalized implantation conditions with respect to displaced C atoms, other heavier ions like Al and Si are found to be more efficient in annihilating VC's. Concentrations of VC below ˜2 × 1011 cm-3 can be reached already after annealing at 1400 °C, as monitored by deep-level transient spectroscopy. This corresponds to a reduction in the VC-concentration by about a factor of 40 relative to the as-grown state of the epi-layers studied. The negligible role of the implanted species itself can be understood from simulation results showing that the concentration of displaced C atoms exceeds the concentration of implanted species by two to three orders of magnitude. The higher efficiency for Al and Si ions is attributed to the generation of collision cascades with a sufficiently high energy density to promote Ci-clustering and reduce dynamic defect annealing. These Ci-related clusters will subsequently dissolve during the post-implant annealing giving rise to enhanced Ci injection. However, at annealing temperatures above 1500 °C, thermodynamic equilibrium conditions start to apply for the VC-concentration, which limit the net effect of the Ci injection, and a competition between the two processes occurs.

  15. Investigation of silicon/silicon germanium multiple quantum well layers in silicon avalanche photodiodes

    Loudon, A.Y.

    2002-01-01

    Silicon single photon avalanche diodes (SPADs) are currently utilised in many single photon counting systems due to their high efficiency, fast response times, low voltage operation and potentially low cost. For fibre based applications however (at wavelengths 1.3 and 1.55μm) and eye-safe wavelength applications (>1.4μm), Si devices are not suitable due to their 1.1μm absorption edge and hence greatly reduced absorption above this wavelength. InGaAs/InP or Ge SPADs absorb at these longer wavelengths, but both require cryogenic cooling for low noise operation and III-V integration with conventional Si circuitry is difficult. Si/SiGe is currently attracting great interest for optoelectronic applications and attempts to combine Si avalanche photodiodes with Si/SiGe multiple quantum well absorbing layers have been successful. Here, an effort to utilise this material system has shown an improvement in photon counting efficiency above 1.1μm of more than 30 times compared to an all-Si control device. In addition to its longer wavelength response, this Si/SiGe device has room temperature operation, low cost fabrication and is compatible with conventional Si circuitry. (author)

  16. Layered germanium tin antimony tellurides: element distribution, nanostructures and thermoelectric properties.

    Welzmiller, Simon; Rosenthal, Tobias; Ganter, Pirmin; Neudert, Lukas; Fahrnbauer, Felix; Urban, Philipp; Stiewe, Christian; de Boor, Johannes; Oeckler, Oliver

    2014-07-21

    In the system Ge-Sn-Sb-Te, there is a complete solid solution series between GeSb2Te4 and SnSb2Te4. As Sn2Sb2Te5 does not exist, Sn can only partially replace Ge in Ge2Sb2Te5; samples with 75% or more Sn are not homogeneous. The joint refinement of high-resolution synchrotron data measured at the K-absorption edges of Sn, Sb and Te combined with data measured at off-edge wavelengths unambiguously yields the element distribution in 21R-Ge(0.6)Sn(0.4)Sb2Te4 and 9P-Ge(1.3)Sn(0.7)Sb2Te5. In both cases, Sb predominantly concentrates on the position near the van der Waals gaps between distorted rocksalt-type slabs whereas Ge prefers the position in the middle of the slabs. No significant antisite disorder is present. Comparable trends can be found in related compounds; they are due to the single-side coordination of the Te atoms at the van der Waals gap, which can be compensated more effectively by Sb(3+) due to its higher charge in comparison to Ge(2+). The structure model of 21R-Ge(0.6)Sn(0.4)Sb2Te4 was confirmed by high-resolution electron microscopy and electron diffraction. In contrast, electron diffraction patterns of 9P-Ge(1.3)Sn(0.7)Sb2Te5 reveal a significant extent of stacking disorder as evidenced by diffuse streaks along the stacking direction. The Seebeck coefficient is unaffected by the Sn substitution but the thermal conductivity drops by a factor of 2 which results in a thermoelectric figure of merit ZT = ~0.25 at 450 °C for both Ge(0.6)Sn(0.4)Sb2Te4 and Ge(1.3)Sn(0.7)Sb2Te5, which is higher than ~0.20 for unsubstituted stable layered Ge-Sb-Te compounds.

  17. Elimination of carbon vacancies in 4H-SiC epi-layers by near-surface ion implantation: Influence of the ion species

    Ayedh, H. M.; Svensson, B. G. [University of Oslo, Department of Physics/Center for Materials Science and Nanotechnology, P.O. Box 1048 Blindern, N-0316 Oslo (Norway); Hallén, A. [School of Information and Communication Technology (ICT), Royal Institute of Technology, SE-164 40 Kista-Stockholm (Sweden)

    2015-11-07

    The carbon vacancy (V{sub C}) is a prevailing point defect in high-purity 4H-SiC epitaxial layers, and it plays a decisive role in controlling the charge carrier lifetime. One concept of reducing the V{sub C}-concentration is based on carbon self-ion implantation in a near surface layer followed by thermal annealing. This leads to injection of carbon interstitials (C{sub i}'s) and annihilation of V{sub C}'s in the epi-layer “bulk”. Here, we show that the excess of C atoms introduced by the self-ion implantation plays a negligible role in the V{sub C} annihilation. Actually, employing normalized implantation conditions with respect to displaced C atoms, other heavier ions like Al and Si are found to be more efficient in annihilating V{sub C}'s. Concentrations of V{sub C} below ∼2 × 10{sup 11} cm{sup −3} can be reached already after annealing at 1400 °C, as monitored by deep-level transient spectroscopy. This corresponds to a reduction in the V{sub C}-concentration by about a factor of 40 relative to the as-grown state of the epi-layers studied. The negligible role of the implanted species itself can be understood from simulation results showing that the concentration of displaced C atoms exceeds the concentration of implanted species by two to three orders of magnitude. The higher efficiency for Al and Si ions is attributed to the generation of collision cascades with a sufficiently high energy density to promote C{sub i}-clustering and reduce dynamic defect annealing. These C{sub i}-related clusters will subsequently dissolve during the post-implant annealing giving rise to enhanced C{sub i} injection. However, at annealing temperatures above 1500 °C, thermodynamic equilibrium conditions start to apply for the V{sub C}-concentration, which limit the net effect of the C{sub i} injection, and a competition between the two processes occurs.

  18. Improving Breakdown Behavior by Substrate Bias in a Novel Double Epi-layer Lateral Double Diffused MOS Transistor

    Li Qi; Wang Wei-Dong; Liu Yun; Wei Xue-Ming

    2012-01-01

    A new lateral double diffused MOS (LDMOS) transistor with a double epitaxial layer formed by an n-type substrate and a p-type epitaxial layer is reported (DEL LDMOS). The mechanism of the improved breakdown characteristic is that the high electric field around the drain is reduced by substrate reverse bias, which causes the redistribution of the bulk electric field in the drift region, and the vertical blocking voltage is shared by the drain side and the source side. The numerical results indicate that the trade-off between breakdown voltage and on-resistance of the proposed device is improved greatly in comparison to that of the conventional LDMOS. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  19. Germanium soup

    Palmer, Troy A.; Alexay, Christopher C.

    2006-05-01

    This paper addresses the variety and impact of dispersive model variations for infrared materials and, in particular, the level to which certain optical designs are affected by this potential variation in germanium. This work offers a method for anticipating and/or minimizing the pitfalls such potential model variations may have on a candidate optical design.

  20. Module of External Particle Identifier (EPI)

    1977-01-01

    The EPI consisted of 4096 proportional counters 6x6 cm2, distributed in 128 layers of 32 each. It was used downstream of BEBC for the identification of fast forward secondaries by ionization measurements in the region of relativistic rise, see M. Aderholz et al., Nucl. Instr. & Methods 123 (1975) 237. The photo shows one double layer module of the EPI during the construction, see M. Aderholz et al., Nucl. Instr. & Methods 118 (1974) 419. On the left, Ivan Lehraus.

  1. Metal-oxide-semiconductor devices based on epitaxial germanium-carbon layers grown directly on silicon substrates by ultra-high-vacuum chemical vapor deposition

    Kelly, David Quest

    After the integrated circuit was invented in 1959, complementary metal-oxide-semiconductor (CMOS) technology soon became the mainstay of the semiconductor industry. Silicon-based CMOS has dominated logic technologies for decades. During this time, chip performance has grown at an exponential rate at the cost of higher power consumption and increased process complexity. The performance gains have been made possible through scaling down circuit dimensions by improvements in lithography capabilities. Since scaling cannot continue forever, researchers have vigorously pursued new ways of improving the performance of metal-oxide-semiconductor field-effect transistors (MOSFETs) without having to shrink gate lengths and reduce the gate insulator thickness. Strained silicon, with its ability to boost transistor current by improving the channel mobility, is one of the methods that has already found its way into production. Although not yet in production, high-kappa dielectrics have also drawn wide interest in industry since they allow for the reduction of the electrical oxide thickness of the gate stack without having to reduce the physical thickness of the dielectric. Further out on the horizon is the incorporation of high-mobility materials such as germanium (Ge), silicon-germanium (Si1-xGe x), and the III-V semiconductors. Among the high-mobility materials, Ge has drawn the most attention because it has been shown to be compatible with high-kappa dielectrics and to produce high drive currents compared to Si. Among the most difficult challenges for integrating Ge on Si is finding a suitable method for reducing the number of crystal defects. The use of strain-relaxed Si1- xGex buffers has proven successful for reducing the threading dislocation density in Ge epitaxial layers, but questions remain as to the viability of this method in terms of cost and process complexity. This dissertation presents research on thin germanium-carbon (Ge 1-yCy layers on Si for the fabrication

  2. Tunable conductivity in mesoporous germanium

    Beattie, Meghan N.; Bioud, Youcef A.; Hobson, David G.; Boucherif, Abderraouf; Valdivia, Christopher E.; Drouin, Dominique; Arès, Richard; Hinzer, Karin

    2018-05-01

    Germanium-based nanostructures have attracted increasing attention due to favourable electrical and optical properties, which are tunable on the nanoscale. High densities of germanium nanocrystals are synthesized via electrochemical etching, making porous germanium an appealing nanostructured material for a variety of applications. In this work, we have demonstrated highly tunable electrical conductivity in mesoporous germanium layers by conducting a systematic study varying crystallite size using thermal annealing, with experimental conductivities ranging from 0.6 to 33 (×10‑3) Ω‑1 cm‑1. The conductivity of as-prepared mesoporous germanium with 70% porosity and crystallite size between 4 and 10 nm is shown to be ∼0.9 × 10‑3 Ω‑1 cm‑1, 5 orders of magnitude smaller than that of bulk p-type germanium. Thermal annealing for 10 min at 400 °C further reduced the conductivity; however, annealing at 450 °C caused a morphological transformation from columnar crystallites to interconnecting granular crystallites and an increase in conductivity by two orders of magnitude relative to as-prepared mesoporous germanium caused by reduced influence of surface states. We developed an electrostatic model relating the carrier concentration and mobility of p-type mesoporous germanium to the nanoscale morphology. Correlation within an order of magnitude was found between modelled and experimental conductivities, limited by variation in sample uniformity and uncertainty in void size and fraction after annealing. Furthermore, theoretical results suggest that mesoporous germanium conductivity could be tuned over four orders of magnitude, leading to optimized hybrid devices.

  3. Composition modulation analysis of In{sub x}Ga{sub 1-x}P layers grown on (0 0 1) germanium substrates

    Pastore, C.E.; Araujo, D. [Departamento de Ciencia de los Materiales e IM y QI, Universidad de Cadiz, 11510 Puerto Real (Spain); Gutierrez, M., E-mail: marina.gutierrez@uca.es [Departamento de Ciencia de los Materiales e IM y QI, Universidad de Cadiz, 11510 Puerto Real (Spain); Miguel-Sanchez, J.; Rodriguez-Messmer, E. [Isofoton, C/ Severo Ochoa 50, 29590 Malaga (Spain)

    2010-07-01

    The development of new photovoltaic approach to improve costs and efficiencies is focused on the new materials and new technologies. InGaP is, in this sense, a key material for solar conversion. In particular, in the solar concentration approach, this material is part of multiple junction solar cells. Its low lattice mismatch with germanium and its adequate bandgap make it very promising. This paper shows how compositional modulation can affect the InGaP emitter and the AlGaAs tunnel junctions. The influence of the growth conditions, on the compositional modulation and misfit and threading dislocations, in In{sub 0.49}Ga{sub 0.51}P layers is demonstrated by TEM on purposely grown single InGaP layers. High resolution electron microscopy (HREM) intensity profiles showed no elastic lattice related modulation.

  4. Metal induced crystallization of silicon germanium alloys

    Gjukic, M.

    2007-05-15

    In the framework of this thesis the applicability of the aluminium-induced layer exchange on binary silicon germanium alloys was studied. It is here for the first time shown that polycrstalline silicon-germanium layers can be fabricated over the whole composition range by the aluminium-induced layer exchange. The experimental results prove thet the resulting material exhibits a polycrystalline character with typocal grain sizes of 10-100 {mu}m. Raman measurements confirm that the structural properties of the resulting layers are because of the large crystallites more comparable with monocrystalline than with nano- or microcrystalline silicon-germanium. The alloy ratio of the polycrystalline layer correspondes to the chemical composition of the amorphous starting layer. The polycrystalline silicon-germanium layers possess in the range of the interband transitions a reflection spectrum, as it is otherwise only known from monocrystalline reference layers. The improvement of the absorption in the photovoltaically relevant spectral range aimed by the application of silicon-germanium could be also proved by absorption measurments. Strongly correlated with the structural properties of the polycrystalline layers and the electronic band structure resulting from this are beside the optical properties also the electrical properties of the material, especially the charge-carrier mobility and the doping concentration. For binary silicon-germanium layers the hole concentration of about 2 x 10{sup 18} cm{sup -3} for pure silicon increrases to about 5 x 10{sup 20} cm{sub -3} for pure germanium. Temperature-resolved measurements were applied in order to detect doping levels respectively semiconductor-metal transitions. In the last part of the thesis the hydrogen passivation of polycrystalline thin silicon-germanium layers, which were fabricated by means of aluminium-induced layer exchange, is treated.

  5. Numerical studies of temperature profile and hydrodynamic phenomena during excimer laser assisted heteroepitaxial growth of patterned silicon and germanium bi-layers

    Conde, J.C., E-mail: jconde@uvigo.e [Dpto. Fisica Aplicada, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain); Chiussi, S. [Dpto. Fisica Aplicada, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain); Martin, E. [Dpto. de Mecanica, Maquinas Motores Termicos y Fluidos, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain); Gontad, F. [Dpto. Fisica Aplicada, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain); Fornarini, L. [Enea-Frascati, Via Enrico Fermi 45, I-00044 Frascati Roma (Italy); Leon, B. [Dpto. Fisica Aplicada, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain)

    2010-01-01

    In this manuscript, a 3-D axisymmetric model for the heteroepitaxial growth induced by irradiating thin patterned amorphous hydrogenated silicon (a-Si:H) and germanium (a-Ge:H) bi-layers on Si (100) with pulsed UV-laser radiation, is presented. For reducing optimization steps, an efficient simulation of the laser induced processes that include rapid heating and solidification phenomena in the range of several tenth of nanoseconds, must be performed, if alloy composition and quality has to be adjusted. In this study, the effects of various laser energy densities on different amorphous Si/Ge bi-layer structures has been predicted and adjusted to obtain the desired Ge concentration profiles for applications as sacrificial layers, i.e. a Ge containing film buried under a Si rich surface layer. The numerical model includes the temperature dependent variations of the thermophysical properties and takes the coupled effects of temperature and hydrodynamic phenomena for a Boussinesq fluid, to estimate the element interdiffusion during the process and predicting the concentration profiles.

  6. The M-band transmission flux of the plastic foil with a coated layer of silicon or germanium

    Li, Liling; Zhang, Lu; Jiang, Shaoen; Guo, Liang; Qing, Bo; Li, Zhichao; Zhang, Jiyan; Yang, Jiamin; Ding, Yongkun

    2014-01-01

    Silicon (Si) and Germanium (Ge) can be used as the dopant in the ablator material for the purpose of reducing preheating in indirect-drive inertial confinement fusion. Their performances in reducing preheating are quite different. A method to evaluate the difference of these two kinds of dopants has been presented in this letter. In the Shenguang-II high power laser facility, the M-band (1.6–4.4 keV) transmission flux of Si-coated plastic (CH) and Ge-coated plastic (CH) has been measured by using the M-band x-ray diode. In the experiment, we find that the Si-coated CH can absorb more M-band x-rays and thus reduce the preheating of the fuel in our experiment condition. By using the radiation hydrodynamic code MULTI-1D, we got the simulation result which was well suited for the experiment. The comparison of their opacities (T e = 60–100 eV and ρ = 0.1–0.5 g/cm 3 ) also shows that the opacity of Si is higher than that of Ge almost in the whole range of 1.6–4.4 keV

  7. Analysis of the dead layer of a detector of germanium with code ultrapure Monte Carlo SWORD-GEANT; Analisis del dead layer de un detector de germanio ultrapuro con el codigo de Monte Carlo SWORDS-GEANT

    Gallardo, S.; Querol, A.; Ortiz, J.; Rodenas, J.; Verdu, G.

    2014-07-01

    In this paper the use of Monte Carlo code SWORD-GEANT is proposed to simulate an ultra pure germanium detector High Purity Germanium detector (HPGe) detector ORTEC specifically GMX40P4, coaxial geometry. (Author)

  8. Numerical analysis of temperature profile and thermal-stress during excimer laser induced heteroepitaxial growth of patterned amorphous silicon and germanium bi-layers deposited on Si(100)

    Conde, J.C., E-mail: jconde@uvigo.e [Dpto. Fisica Aplicada, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain); Martin, E. [Dpto. de Mecanica, Maquinas y Motores Termicos y Fluidos, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain); Gontad, F.; Chiussi, S. [Dpto. Fisica Aplicada, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain); Fornarini, L. [Enea-Frascati, Via Enrico Fermi 45, I-00044 Frascati (Roma) (Italy); Leon, B. [Dpto. Fisica Aplicada, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain)

    2010-02-26

    A Finite Element Method (FEM) study of the coupled thermal-stress during the heteroepitaxial growth induced by excimer laser radiation of patterned amorphous hydrogenated silicon (a-Si:H) and germanium (a-Ge:H) bi-layers deposited on a Si(100) wafer is presented. The ArF (193 nm) excimer laser provides high energy densities during very short laser pulse (20 ns) provoking, at the same time, melting and solidification phenomena in the range of several tenths of nanoseconds. These phenomena play an important role during the growth of heteroepitaxial SiGe structures characterized by high Ge concentration buried under a Si rich surface. In addition, the thermal-stresses that appear before the melting and after the solidification processes can also affect to the epitaxial growth of high quality SiGe alloys in these patterned structures and, in consequence, it is necessary to predict their effects. The aim of this work is to estimate the energy threshold and the corresponding thermal-stresses in the interfaces and the borders of these patterned structures.

  9. Numerical analysis of temperature profile and thermal-stress during excimer laser induced heteroepitaxial growth of patterned amorphous silicon and germanium bi-layers deposited on Si(100)

    Conde, J.C.; Martin, E.; Gontad, F.; Chiussi, S.; Fornarini, L.; Leon, B.

    2010-01-01

    A Finite Element Method (FEM) study of the coupled thermal-stress during the heteroepitaxial growth induced by excimer laser radiation of patterned amorphous hydrogenated silicon (a-Si:H) and germanium (a-Ge:H) bi-layers deposited on a Si(100) wafer is presented. The ArF (193 nm) excimer laser provides high energy densities during very short laser pulse (20 ns) provoking, at the same time, melting and solidification phenomena in the range of several tenths of nanoseconds. These phenomena play an important role during the growth of heteroepitaxial SiGe structures characterized by high Ge concentration buried under a Si rich surface. In addition, the thermal-stresses that appear before the melting and after the solidification processes can also affect to the epitaxial growth of high quality SiGe alloys in these patterned structures and, in consequence, it is necessary to predict their effects. The aim of this work is to estimate the energy threshold and the corresponding thermal-stresses in the interfaces and the borders of these patterned structures.

  10. Porous germanium multilayers

    Garralaga Rojas, Enrique; Hensen, Jan; Brendel, Rolf [Institut fuer Solarenergieforschung Hameln (ISFH), Emmerthal (Germany); Carstensen, Juergen; Foell, Helmut [Chair for General Materials Science, Faculty of Engineering, Christian-Albrechts-University of Kiel (Germany)

    2011-06-15

    We present the reproducible fabrication of porous germanium (PGe) single- and multilayers. Mesoporous layers form on heavily doped 4'' p-type Ge wafers by electrochemical etching in highly concentrated HF-based electrolytes with concentrations in a range of 30-50 wt.%. Direct PGe formation is accompanied by a constant dissolution of the already-formed porous layer at the electrolyte/PGe interface, hence yielding a thinner substrate after etching. This effect inhibits multilayer formation as the starting layer is etched while forming the second layer. We avoid dissolution of the porous layer by alternating the etching bias from anodic to cathodic. PGe formation occurs during anodic etching whereas the cathodic step passivates pore walls with H-atoms and avoids electropolishing. The passivation lasts a limited time depending on the etching current density and electrolyte concentration, necessitating a repetition of the cathodic step at suitable intervals. With optimized alternating bias mesoporous multilayer production is possible. We control the porosity of each single layer by varying the etching current density and the electrolyte (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Mobility and Device Applications of Heavily Doped Silicon and Strained SILICON(1-X) Germanium(x) Layers

    Carns, Timothy Keith

    With the advent of Si molecular beam epitaxy (Si -MBE), a significant amount of research has occurred to seek alternative high conductivity Si-based materials such as rm Si_{1-x}Ge_ {x} and delta-doped Si. These materials have brought improvements in device speeds and current drives with the added advantage of monolithic integration into Si VLSI circuits. The bulk of research in Si-based materials has been devoted to the implementation of strained rm Si_{1-x}Ge_{x} as the base layer of a rm Si_ {1-x}Ge_{x}/Si heterojunction bipolar transistor (HBT). Because of the valence band offset, the rm Si_{1-x}Ge _{x} layer can be heavily doped, leading to lower base sheet resistances and hence, improved speed performances. The Ge content in the base can also be graded to increase the drift field in the base. However, very few hole mobility measurements have been done in these strained layers, leading to limitations in device modeling and in understanding the transport behavior in this important material. In addition to rm Si_{1 -x}Ge_{x}, much potential also exists in using delta-doping in Si for improved conductivities over those of bulk Si. However, as of yet, delta-doped Si has received little attention. Therefore, this dissertation is dedicated to the investigation of both of these Si-based materials (strained rm Si_{1-x}Ge_{x } and delta-doped Si and rm Si_{1-x}Ge_ {x}) for the purpose of obtaining higher conductivities than comparably doped bulk Si. This work is divided into three parts to accomplish this objective. The first part is contained in Chapter 3 and is comprised of a comprehensive characterization of the hole mobility in compressively strained rm Si_{1 -x}Ge_{x}. Few results have been obtained prior to this research which has led to many inaccuracies in device modeling. The second part of this dissertation in Chapters 4 and 5 is devoted to the study of the mobility behavior in both boron and antimony delta-doped Si and rm Si_ {1-x}Ge_{x}. The important

  12. Influence of germanium on thermal dewetting and agglomeration of the silicon template layer in thin silicon-on-insulator

    Zhang, P P; Yang, B; Rugheimer, P P; Roberts, M M; Savage, D E; Lagally, M G; Liu Feng

    2009-01-01

    We investigate the influence of heteroepitaxially grown Ge on the thermal dewetting and agglomeration of the Si(0 0 1) template layer in ultrathin silicon-on-insulator (SOI). We show that increasing Ge coverage gradually destroys the long-range ordering of 3D nanocrystals along the (1 3 0) directions and the 3D nanocrystal shape anisotropy that are observed in the dewetting and agglomeration of pure SOI(0 0 1). The results are qualitatively explained by Ge-induced bond weakening and decreased surface energy anisotropy. Ge lowers the dewetting and agglomeration temperature to as low as 700 0 C.

  13. Method of beryllium implantation in germanium substrate

    Kagawa, S.; Baba, Y.; Kaneda, T.; Shirai, T.

    1983-01-01

    A semiconductor device is disclosed, as well as a method for manufacturing it in which ions of beryllium are implanted into a germanium substrate to form a layer containing p-type impurity material. There after the substrate is heated at a temperature in the range of 400 0 C. to 700 0 C. to diffuse the beryllium ions into the substrate so that the concentration of beryllium at the surface of the impurity layer is in the order of 10 17 cm- 3 or more. In one embodiment, a p-type channel stopper is formed locally in a p-type germanium substrate and an n-type active layer is formed in a region surrounded by, and isolated from, the channel stopper region. In another embodiment, a relatively shallow p-type active layer is formed at one part of an n-type germanium substrate and p-type guard ring regions are formed surrounding, and partly overlapping said p-type active layer. In a further embodiment, a p-type island region is formed at one part of an n-type germanium substrate, and an n-type region is formed within said p-type region. In these embodiments, the p-type channel stopper region, p-type guard ring regions and the p-type island region are all formed by implanting ions of beryllium into the germanium substrate

  14. 2008 Environmental Performance Index (EPI)

    National Aeronautics and Space Administration — The 2008 Environmental Performance Index (EPI) centers on two broad environmental protection objectives: (1) reducing environmental stresses on human health, and (2)...

  15. The germination of germanium

    Burdette, Shawn C.; Thornton, Brett F.

    2018-02-01

    Shawn C. Burdette and Brett F. Thornton explore how germanium developed from a missing element in Mendeleev's periodic table to an enabler for the information age, while retaining a nomenclature oddity.

  16. Epi-Soho Pilotproject; Das Epi-Soho Pilotprojekt

    Hinz, E.; Enseling, A. [Inst. Wohnen und Umwelt GmbH, Darmstadt (Germany)

    2008-07-01

    EPI-SoHo is a project within the framework of the European 'Intelligent Energy - Europe' Programme (IEE). The EPI-SoHo mission is to improve efficient and rational use of energy across social housing stocks, contributing to better standards of living and global environ-mental benefits. The EPI-SoHo objectives are to develop the structure for generic implementation techniques for cost effective, large scale energy performance assessments, for the integration of energy efficiency within social housing portfolio management and collaborative structures between local authorities, social housing associations and private actors on sustainable issues. (orig.)

  17. 2014 Environmental Performance Index (EPI)

    National Aeronautics and Space Administration — The 2014 Environmental Performance Index (EPI) ranks 178 countries on 20 performance indicators in the following 9 policy categories: health impacts, air quality,...

  18. 2016 Environmental Performance Index (EPI)

    National Aeronautics and Space Administration — The 2016 Environmental Performance Index (EPI) ranks 180 countries on 20 performance indicators in the following 9 policy categories: health impacts, air quality,...

  19. 2010 Environmental Performance Index (EPI)

    National Aeronautics and Space Administration — The 2010 Environmental Performance Index (EPI) ranks 163 countries on environmental performance based on twenty-five indicators grouped within ten core policy...

  20. Precipitation of lithium in germanium

    Masaik, M.; Furgolle, B.

    1969-01-01

    The precipitation of Lithium in Germanium was studied. Taking account of the interactions Ga LI, LiO, we calculated the oxygen content in germanium samples from the resistivity measurements. (authors)

  1. Mesostructured metal germanium sulfides

    MacLachlan, M.J.; Coombs, N.; Bedard, R.L.; White, S.; Thompson, L.K.; Ozin, G.A.

    1999-12-29

    A new class of mesostructured metal germanium sulfide materials has been prepared and characterized. The synthesis, via supramolecular assembly of well-defined germanium sulfide anionic cluster precursors and transition-metal cations in formamide, represents a new strategy for the formation of this class of solids. A variety of techniques were employed to examine the structure and composition of the materials. Structurally, the material is best described as a periodic mesostructured metal sulfide-based coordination framework akin to periodic hexagonal mesoporous silica, MCM-41. At the molecular scale, the materials strongly resemble microstructured metal germanium sulfides, in which the structure of the [Ge{sub 4}S{sub 10}]{sup 4{minus}} cluster building-blocks are intact and linked via {mu}-S-M-S bonds. Evidence for a metal-metal bond in mesostructured Cu/Ge{sub 4}S{sub 10} is also provided.

  2. Amorphous germanium as an electron or hole blocking contact on high-purity germanium detectors

    Hansen, W.L.; Haller, E.E.

    1976-10-01

    Experiments were performed in an attempt to make thin n + contacts on high-purity germanium by the solid phase/sup 1)/ epitaxial regrowth of arsenic doped amorphous germanium. After cleaning the crystal surface with argon sputtering and trying many combinations of layers, it was not found possible to induce recrystallization below 400 0 C. However, it was found that simple thermally evaporated amorphous Ge made fairly good electron or hole blocking contacts. Excellent spectrometers have been made with amorphous Ge replacing the n + contact. As presently produced, the amorphous Ge contact diodes show a large variation in high-voltage leakage current

  3. Near-infrared emission from mesoporous crystalline germanium

    Boucherif, Abderraouf; Aimez, Vincent; Arès, Richard, E-mail: richard.ares@usherbrooke.ca [Institut Interdisciplinaire d’Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard Université, Sherbrooke, J1K OA5, Québec (Canada); Laboratoire Nanotechnologies Nanosystèmes (LN2)-CNRS UMI-3463, Université de Sherbrooke, 3000 Boulevard Université, Sherbrooke, J1K OA5, Québec (Canada); Korinek, Andreas [Canadian Centre for Electron Microscopy, Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, L8S 4M1 (Canada)

    2014-10-15

    Mesoporous crystalline germanium was fabricated by bipolar electrochemical etching of Ge wafer in HF-based electrolyte. It yields uniform mesoporous germanium layers composed of high density of crystallites with an average size 5-7 nm. Subsequent extended chemical etching allows tuning of crystallites size while preserving the same chemical composition. This highly controllable nanostructure exhibits photoluminescence emission above the bulk Ge bandgap, in the near-infrared range (1095-1360nm) with strong evidence of quantum confinement within the crystallites.

  4. Calibration of germanium detectors

    Debertin, K.

    1983-01-01

    The process of determining the energy-dependent detection probability with measurements using Ge (Li) and high-grade germanium detectors is described. The paper explains which standards are best for a given purpose and given requirements as to accuracy, and how to assess measuring geometry variations and summation corrections. (DG) [de

  5. Germanium and indium

    Shanks, W.C. Pat; Kimball, Bryn E.; Tolcin, Amy C.; Guberman, David E.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Germanium and indium are two important elements used in electronics devices, flat-panel display screens, light-emitting diodes, night vision devices, optical fiber, optical lens systems, and solar power arrays. Germanium and indium are treated together in this chapter because they have similar technological uses and because both are recovered as byproducts, mainly from copper and zinc sulfides.The world’s total production of germanium in 2011 was estimated to be 118 metric tons. This total comprised germanium recovered from zinc concentrates, from fly ash residues from coal burning, and from recycled material. Worldwide, primary germanium was recovered in Canada from zinc concentrates shipped from the United States; in China from zinc residues and coal from multiple sources in China and elsewhere; in Finland from zinc concentrates from the Democratic Republic of the Congo; and in Russia from coal.World production of indium metal was estimated to be about 723 metric tons in 2011; more than one-half of the total was produced in China. Other leading producers included Belgium, Canada, Japan, and the Republic of Korea. These five countries accounted for nearly 95 percent of primary indium production.Deposit types that contain significant amounts of germanium include volcanogenic massive sulfide (VMS) deposits, sedimentary exhalative (SEDEX) deposits, Mississippi Valley-type (MVT) lead-zinc deposits (including Irish-type zinc-lead deposits), Kipushi-type zinc-lead-copper replacement bodies in carbonate rocks, and coal deposits.More than one-half of the byproduct indium in the world is produced in southern China from VMS and SEDEX deposits, and much of the remainder is produced from zinc concentrates from MVT deposits. The Laochang deposit in Yunnan Province, China, and the VMS deposits of the Murchison greenstone belt in Limpopo Province, South Africa, provide excellent examples of indium-enriched deposits. The SEDEX deposits at Bainiuchang, China (located in

  6. Calibration of germanium detectors

    Bjurman, B.; Erlandsson, B.

    1985-01-01

    This paper describes problems concerning the calibration of germanium detectors for the measurement of gamma-radiation from environmental samples. It also contains a brief description of some ways of reducing the uncertainties concerning the activity determination. These uncertainties have many sources, such as counting statistics, full energy peak efficiency determination, density correction and radionuclide specific-coincidence effects, when environmental samples are investigated at close source-to-detector distances

  7. EpiData: ¿el heredero natural de EpiInfo 6? EpiData: the natural heir to EpiInfo 6?

    Pedro Arias Bohigas

    2007-06-01

    Full Text Available EpiData es un programa informático desarrollado por la Asociación EpiData (www.epidata.dk que, siguiendo la filosofía de EpiInfo 6, pretende ofrecer todas las ventajas de ese programa: sencillez, aplicabilidad, pocos requerimientos del sistema operativo y de los sistemas de comunicación, ampliándolas con un enfoque claro hacia lo documentación y la calidad de los datos, y las ventajas que para muchos usuarios tiene el entorno Windows®. El objetivo de esta Nota es presentar a los potenciales usuarios las ventajas y limitaciones de EpiData, que puede ser en breve tiempo el equivalente a lo que EpiInfo 6 fue hace unos pocos años.EpiData is an epidemiological software developed by the EpiData Association (www.epidata.dk. Following the EpiInfo 6 philosophy, Epidata, offers all the advantages of EpiInfo 6: simplicity, applicability, few operation and communication system requirements, widening them with a clear focus on data quality and documentation plus the advantages that, for many users, has the Windows® operating system. The aim of this Note is to introduce to potential users the strengths and limitations of EpiData, a software that can become in a short time the equivalent to what EpiInfo 6 was a few years ago.

  8. Temperature-dependent interface characteristic of silicon wafer bonding based on an amorphous germanium layer deposited by DC-magnetron sputtering

    Ke, Shaoying; Lin, Shaoming; Ye, Yujie; Mao, Danfeng; Huang, Wei; Xu, Jianfang; Li, Cheng; Chen, Songyan

    2018-03-01

    We report a near-bubble-free low-temperature silicon (Si) wafer bonding with a thin amorphous Ge (a-Ge) intermediate layer. The DC-magnetron-sputtered a-Ge film on Si is demonstrated to be extremely flat (RMS = 0.28 nm) and hydrophilic (contact angle = 3°). The effect of the post-annealing temperature on the surface morphology and crystallinity of a-Ge film at the bonded interface is systematically identified. The relationship among the bubble density, annealing temperature, and crystallinity of a-Ge film is also clearly clarified. The crystallization of a-Ge film firstly appears at the bubble region. More interesting feature is that the crystallization starts from the center of the bubbles and sprawls to the bubble edge gradually. The H2 by-product is finally absorbed by intermediate Ge layer with crystalline phase after post annealing. Moreover, the whole a-Ge film out of the bubble totally crystallizes when the annealing time increases. This Ge integration at the bubble region leads to the decrease of the bubble density, which in turn increases the bonding strength.

  9. Germanium geochemistry and mineralogy

    Bernstein, L.R.

    1985-01-01

    Germanium is enriched in the following geologic environments: 1. (1) iron meteorites and terrestrial iron-nickel; 2. (2) sulfide ore deposits, particularly those hosted by sedimentary rocks; 3. (3) iron oxide deposits; 4. (4) oxidized zones of Ge-bearing sulfide deposits; 5. (5) pegmatites, greisens, and skarns; and 6. (6) coal and lignitized wood. In silicate melts, Ge is highly siderophile in the presence of native iron-nickel; otherwise, it is highly lithophile. Among silicate minerals, Ge is concentrated in those having less polymerized silicate tetrahedra such as olivine and topaz. In deposits formed from hydrothermal solutions, Ge tends to be enriched mostly in either sulfides or in fluorine-bearing phases; it is thus concentrated both in some hydrothermal sulfide deposits and in pegmatites, greisens, and skarns. In sulfide deposits that formed from solutions having low to moderate sulfur activity, Ge is concentrated in sphalerite in amounts up to 3000 ppm. Sulfide deposits that formed from solutions having higher sulfur activity allowed Ge to either form its own sulfides, particularly with Cu, or to substitute for As, Sn, or other metals in sulfosalts. The Ge in hydrothermal fluids probably derives from enrichment during the fractional crystallization of igneous fluids, or is due to the incorporation of Ge from the country rocks, particularly from those containing organic material. Germanium bonds to lignin-derivative organic compounds that are found in peat and lignite, accounting for its common concentration in coals and related organic material. Germanium is precipitated from water together with iron hydroxide, accounting for its concentration in some sedimentary and supergene iron oxide deposits. It also is able to substitute for Fe in magnetite in a variety of geologic environments. In the oxidized zone of Ge-bearing sulfide deposits, Ge is concentrated in oxides, hydroxides, and hydroxy-sulfates, sometimes forming its own minerals. It is particularly

  10. New hydrogen donors in germanium

    Pokotilo, Yu.M.; Petukh, A.N.; Litvinov, V.V.

    2003-01-01

    The electrophysical properties of the n-type conductivity germanium, irradiated through protons, is studied by the volt-farad method. It is shown that the heat treatment of the implanted germanium at the temperature of 200-300 deg C leads to formation of the fast-diffusing second-rate donors. It is established that the diffusion coefficient of the identified donors coincides with the diffusion coefficient of the atomic hydrogen with an account of the capture on the traps. The conclusion is made, that the atomic hydrogen is the second-rate donor center in germanium [ru

  11. Silicon germanium mask for deep silicon etching

    Serry, Mohamed

    2014-07-29

    Polycrystalline silicon germanium (SiGe) can offer excellent etch selectivity to silicon during cryogenic deep reactive ion etching in an SF.sub.6/O.sub.2 plasma. Etch selectivity of over 800:1 (Si:SiGe) may be achieved at etch temperatures from -80 degrees Celsius to -140 degrees Celsius. High aspect ratio structures with high resolution may be patterned into Si substrates using SiGe as a hard mask layer for construction of microelectromechanical systems (MEMS) devices and semiconductor devices.

  12. Silicon germanium mask for deep silicon etching

    Serry, Mohamed; Rubin, Andrew; Refaat, Mohamed; Sedky, Sherif; Abdo, Mohammad

    2014-01-01

    Polycrystalline silicon germanium (SiGe) can offer excellent etch selectivity to silicon during cryogenic deep reactive ion etching in an SF.sub.6/O.sub.2 plasma. Etch selectivity of over 800:1 (Si:SiGe) may be achieved at etch temperatures from -80 degrees Celsius to -140 degrees Celsius. High aspect ratio structures with high resolution may be patterned into Si substrates using SiGe as a hard mask layer for construction of microelectromechanical systems (MEMS) devices and semiconductor devices.

  13. Pilot 2006 Environmental Performance Index (EPI)

    National Aeronautics and Space Administration — The Pilot 2006 Environmental Performance Index (EPI) centers on two broad environmental protection objectives: (1) reducing environmental stresses on human health,...

  14. An Implant-Passivated Blocked Impurity Band Germanium Detector for the Far Infrared, Phase II

    National Aeronautics and Space Administration — We propose to fabricate a germanium blocked-impurity-band (BIB) detector using a novel process which will enable us to: 1- fabricate a suitably-doped active layer...

  15. EPI moved in beam S3

    1977-01-01

    The housing of the External Particle Identifier (EPI) is being moved to S3 beam. Test measurements with EPI were performed in the S3 beam between 20 and 110 GeV/c, before installing it behind BEBC. 110 GeV/c before

  16. Epi Info™ 7

    2012-06-12

    In this podcast, Brad Myers, Director of the Division of Communication Services, talks with Asad Islam, who leads the Epi Info™ team at CDC, about Epi Info's new tools.  Created: 6/12/2012 by Office of Surveillance, Epidemiology, and Laboratory Services (OSELS).   Date Released: 1/17/2013.

  17. Status report on the International Germanium Experiment

    Brodzinski, R.L.; Avignone, F.T.; Collar, J.I.; Courant, H.; Garcia, E.; Guerard, C.K.; Hensley, W.K.; Kirpichnikov, I.V.; Miley, H.S.; Morales, A.; Morales, J.; Nunez-Lagos, R.; Osetrov, S.B.; Pogosov, V.S.; Pomansky, A.A.; Puimedon, J.; Reeves, J.H.; Ruddick, K.; Saenz, C.; Salinas, A.; Sarsa, M.L.; Smolnikov, A.A.; Starostin, A.S.; Tamanyan, A.G.; Vasiliev, S.I.; Villar, J.A.

    1993-01-01

    Phase II detector fabrication for the International Germanium Experiment is in progress. Sources of background observed during Phase I are discussed. Cosmogenic 7 Be is measured in germanium. Radium contamination, presumably in electroformed copper, is reported. (orig.)

  18. Status report on the International Germanium Experiment

    Brodzinski, R L; Avignone, F.T.; Collar, J I; Courant, H; Garcia, E; Guerard, C K; Hensley, W K; Kirpichnikov, I V; Miley, H S; Morales, A; Morales, J; Nunez-Lagos, R; Osetrov, S B; Pogosov, V S; Pomansky, A A; Puimedon, J; Reeves, J H; Ruddick, K; Saenz, C; Salinas, A; Sarsa, M L; Smolnikov, A A; Starostin, A S; Tamanyan, A G; Vasiliev, S I; Villar, J A [Pacific Northwest Lab., Richland, WA (United States) Univ. of South Carolina, Columbia, SC (United States) Univ. of Minnesota, Minneapolis, MN (United States) Univ. of Zaragoza (Spain) Inst. for Theoretical and Experimental Physics, Moscow (Russian Federation) Inst. for Nuclear Research, Baksan Neutrino Observatory (Russian Federation) Yerevan Physical Inst., Yerevan (Armenia)

    1993-04-01

    Phase II detector fabrication for the International Germanium Experiment is in progress. Sources of background observed during Phase I are discussed. Cosmogenic [sup 7]Be is measured in germanium. Radium contamination, presumably in electroformed copper, is reported. (orig.)

  19. Going national with EPI in Nigeria.

    Reid, R S; Smith, E A

    1984-01-01

    The basic purposes set out for the Owo Local Government Area (LGA) Expanded Program on Immunization (EPI) model project in Ondo State, Nigeria, were: to demonstrate in 1 LGA that 80% EPI coverage can be achieved within the resources that the government normally provides to EPI; to dispel the unquestioning acquiescence that 10-15% coverage is all that can be done; to demonstrate that the health establishment at large can be convinced of these approaches and processes and can be expected to adopt them for a much wider dissemination; to show that a substantial number of health officers and workers are willing to work toward a higher EPI achievement; and to prove that resources from various origins can be integrated given the proper operational environment and a tight organization. The problems associated with EPI are basically similar in all Nigeria, leading to the decision to undertake a model project in a selected area. The EPI project was designed to break ground in Owo for further elements of primary health care. The project's objective was to capitalize upon the success and experience in EPI to introduce other health-related and self-help activities to communities. The project was organized with an overall project director exercising broad control and supervision over a management group at the project level. The management group is made up of a project manager, an assistant project manager, and heads of functional areas such as field operation, vaccine management system, transport system, mobile operation, health education, and administration and finance. The simple organization was designed to grow gradually to meet heavier volumes of work, altering and modifying approaches as required. The 2 key technical elements in the Owo approach were greatly increased use of cold packs and a decreased reliance on refrigerators; and increased use of simple static centers to reach remote catchment areas, instead of relying heavily on the mobile units. In both elements, the

  20. Buried melting in germanium implanted silicon by millisecond flash lamp annealing

    Voelskow, Matthias; Yankov, Rossen; Skorupa, Wolfgang; Pezoldt, Joerg; Kups, Thomas

    2008-01-01

    Flash lamp annealing in the millisecond range has been used to induce buried melting in silicon. For this purpose high dose high-energy germanium implantation has been employed to lower the melting temperature of silicon in a predetermined depth region. Subsequent flash lamp treatment at high energy densities leads to local melting of the germanium rich layer. The thickness of the molten layer has been found to depend on the irradiation energy density. During the cool-down period, epitaxial crystallization takes place resulting in a largely defect-free layer

  1. epi-Cubebanes from Solidago canadensis.

    Kasali, Adeleke A; Ekundayo, Olusegun; Paul, Claudia; König, Wilfried A

    2002-04-01

    GC-MS of the essential oil prepared by hydrodistillation of the green parts of a specimen of Solidago canadensis collected near Katowice, Poland, revealed two new sesquiterpene hydrocarbons. Their EI mass spectra resembled the mass spectrum of beta-ylangene (1) but the retention indices of the new compounds differed markedly from this known compound. After isolation of the new compounds by preparative GC their investigation by one- and two-dimensional NMR techniques resulted in the identification of 6-epi-alpha-cubebene (2) (minor constituent, 1.5%) and 6-epi-beta-cubebene (3) (major constituent, 20.5%).

  2. High performance germanium MOSFETs

    Saraswat, Krishna [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States)]. E-mail: saraswat@stanford.edu; Chui, Chi On [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Krishnamohan, Tejas [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Kim, Donghyun [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Nayfeh, Ammar [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Pethe, Abhijit [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States)

    2006-12-15

    Ge is a very promising material as future channel materials for nanoscale MOSFETs due to its high mobility and thus a higher source injection velocity, which translates into higher drive current and smaller gate delay. However, for Ge to become main-stream, surface passivation and heterogeneous integration of crystalline Ge layers on Si must be achieved. We have demonstrated growth of fully relaxed smooth single crystal Ge layers on Si using a novel multi-step growth and hydrogen anneal process without any graded buffer SiGe layer. Surface passivation of Ge has been achieved with its native oxynitride (GeO {sub x}N {sub y} ) and high-permittivity (high-k) metal oxides of Al, Zr and Hf. High mobility MOSFETs have been demonstrated in bulk Ge with high-k gate dielectrics and metal gates. However, due to their smaller bandgap and higher dielectric constant, most high mobility materials suffer from large band-to-band tunneling (BTBT) leakage currents and worse short channel effects. We present novel, Si and Ge based heterostructure MOSFETs, which can significantly reduce the BTBT leakage currents while retaining high channel mobility, making them suitable for scaling into the sub-15 nm regime. Through full band Monte-Carlo, Poisson-Schrodinger and detailed BTBT simulations we show a dramatic reduction in BTBT and excellent electrostatic control of the channel, while maintaining very high drive currents in these highly scaled heterostructure DGFETs. Heterostructure MOSFETs with varying strained-Ge or SiGe thickness, Si cap thickness and Ge percentage were fabricated on bulk Si and SOI substrates. The ultra-thin ({approx}2 nm) strained-Ge channel heterostructure MOSFETs exhibited >4x mobility enhancements over bulk Si devices and >10x BTBT reduction over surface channel strained SiGe devices.

  3. High performance germanium MOSFETs

    Saraswat, Krishna; Chui, Chi On; Krishnamohan, Tejas; Kim, Donghyun; Nayfeh, Ammar; Pethe, Abhijit

    2006-01-01

    Ge is a very promising material as future channel materials for nanoscale MOSFETs due to its high mobility and thus a higher source injection velocity, which translates into higher drive current and smaller gate delay. However, for Ge to become main-stream, surface passivation and heterogeneous integration of crystalline Ge layers on Si must be achieved. We have demonstrated growth of fully relaxed smooth single crystal Ge layers on Si using a novel multi-step growth and hydrogen anneal process without any graded buffer SiGe layer. Surface passivation of Ge has been achieved with its native oxynitride (GeO x N y ) and high-permittivity (high-k) metal oxides of Al, Zr and Hf. High mobility MOSFETs have been demonstrated in bulk Ge with high-k gate dielectrics and metal gates. However, due to their smaller bandgap and higher dielectric constant, most high mobility materials suffer from large band-to-band tunneling (BTBT) leakage currents and worse short channel effects. We present novel, Si and Ge based heterostructure MOSFETs, which can significantly reduce the BTBT leakage currents while retaining high channel mobility, making them suitable for scaling into the sub-15 nm regime. Through full band Monte-Carlo, Poisson-Schrodinger and detailed BTBT simulations we show a dramatic reduction in BTBT and excellent electrostatic control of the channel, while maintaining very high drive currents in these highly scaled heterostructure DGFETs. Heterostructure MOSFETs with varying strained-Ge or SiGe thickness, Si cap thickness and Ge percentage were fabricated on bulk Si and SOI substrates. The ultra-thin (∼2 nm) strained-Ge channel heterostructure MOSFETs exhibited >4x mobility enhancements over bulk Si devices and >10x BTBT reduction over surface channel strained SiGe devices

  4. Harmonic Lattice Dynamics of Germanium

    Nelin, G

    1974-07-01

    The phonon dispersion relations of the DELTA-, LAMBDA-, and SIGMA-directions of germanium at 80 K are analysed in terms of current harmonic lattice dynamical models. On the basis of this experience, a new model is proposed which gives a unified account of the strong points of the previous models. The principal elements of the presented theory are quasiparticle bond charges combined with a valence force field.

  5. Harmonic Lattice Dynamics of Germanium

    Nelin, G.

    1974-01-01

    The phonon dispersion relations of the Δ-, Λ-, and Σ-directions of germanium at 80 K are analysed in terms of current harmonic lattice dynamical models. On the basis of this experience, a new model is proposed which gives a unified account of the strong points of the previous models. The principal elements of the presented theory are quasiparticle bond charges combined with a valence force field

  6. Superconductivity of tribolayers formed on germanium by friction between germanium and lead

    Dukhovskoi, A.; Karapetyan, S.S.; Morozov, Y.G.; Onishchenko, A.S.; Petinov, V.I.; Ponomarev, A.N.; Silin, A.A.; Stepanov, B.M.; Tal' roze, V.L.

    1978-04-05

    A superconducting state was observed for the first time in tribolayers of germanium produced by friction of germanium with lead at 42 K. The maximum value of T/sub c/ obtained in the experiment was 19 K, which is much higher than T/sub c/ of bulk lead itself or of lead films sputtered on germanium.

  7. Controlled localised melting in silicon by high dose germanium implantation and flash lamp annealing

    Voelskow, Matthias; Skorupa, Wolfgang; Pezoldt, Joerg; Kups, Thomas

    2009-01-01

    High intensity light pulse irradiation of monocrystalline silicon wafers is usually accompanied by inhomogeneous surface melting. The aim of the present work is to induce homogeneous buried melting in silicon by germanium implantation and subsequent flash lamp annealing. For this purpose high dose, high energy germanium implantation has been employed to lower the melting temperature of silicon in a predetermined depth region. Subsequent flash lamp irradiation at high energy densities leads to local melting of the germanium rich buried layer, whereby the thickness of the molten layer depends on the irradiation energy density. During the cooling down epitaxial crystallization takes place resulting in a largely defect-free layer. The combination of buried melting and dopant segregation has the potential to produce unusually buried doping profiles or to create strained silicon structures.

  8. Zone refining high-purity germanium

    Hubbard, G.S.; Haller, E.E.; Hansen, W.L.

    1977-10-01

    The effects of various parameters on germanium purification by zone refining have been examined. These parameters include the germanium container and container coatings, ambient gas and other operating conditions. Four methods of refining are presented which reproducibly yield 3.5 kg germanium ingots from which high purity (vertical barN/sub A/ - N/sub D/vertical bar less than or equal to2 x 10 10 cm -3 ) single crystals can be grown. A qualitative model involving binary and ternary complexes of Si, O, B, and Al is shown to account for the behavior of impurities at these low concentrations

  9. Germanium nitride and oxynitride films for surface passivation of Ge radiation detectors

    Maggioni, G., E-mail: maggioni@lnl.infn.it [Dipartimento di Fisica e Astronomia G. Galilei, Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell’Universita’2, I-35020 Legnaro, Padova (Italy); Carturan, S. [Dipartimento di Fisica e Astronomia G. Galilei, Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell’Universita’2, I-35020 Legnaro, Padova (Italy); Fiorese, L. [Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell’Universita’2, I-35020 Legnaro, Padova (Italy); Dipartimento di Ingegneria dei Materiali e delle Tecnologie Industriali, Università di Trento, Via Mesiano 77, I-38050 Povo, Trento (Italy); Pinto, N.; Caproli, F. [Scuola di Scienze e Tecnologie, Sezione di Fisica, Università di Camerino, Via Madonna delle Carceri 9, Camerino (Italy); INFN, Sezione di Perugia, Perugia (Italy); Napoli, D.R. [Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell’Universita’2, I-35020 Legnaro, Padova (Italy); Giarola, M.; Mariotto, G. [Dipartimento di Informatica—Università di Verona, Strada le Grazie 15, I-37134 Verona (Italy)

    2017-01-30

    Highlights: • A surface passivation method for HPGe radiation detectors is proposed. • Highly insulating GeNx- and GeOxNy-based layers are deposited at room temperature. • Deposition parameters affect composition and electrical properties of the layers. • The improved performance of a GeNx-coated HPGe diode is assessed. - Abstract: This work reports a detailed investigation of the properties of germanium nitride and oxynitride films to be applied as passivation layers to Ge radiation detectors. All the samples were deposited at room temperature by reactive RF magnetron sputtering. A strong correlation was found between the deposition parameters, such as deposition rate, substrate bias and atmosphere composition, and the oxygen and nitrogen content in the film matrix. We found that all the films were very poorly crystallized, consisting of very small Ge nitride and oxynitride nanocrystallites, and electrically insulating, with the resistivity changing from three to six orders of magnitude as a function of temperature. A preliminary test of these films as passivation layers was successfully performed by depositing a germanium nitride film on the intrinsic surface of a high-purity germanium (HPGe) diode and measuring the improved performance, in terms of leakage current, with respect to a reference passivated diode. All these interesting results allow us to envisage the application of this coating technology to the surface passivation of germanium-based radiation detectors.

  10. Crystal Orientation Effect on the Subsurface Deformation of Monocrystalline Germanium in Nanometric Cutting.

    Lai, Min; Zhang, Xiaodong; Fang, Fengzhou

    2017-12-01

    Molecular dynamics simulations of nanometric cutting on monocrystalline germanium are conducted to investigate the subsurface deformation during and after nanometric cutting. The continuous random network model of amorphous germanium is established by molecular dynamics simulation, and its characteristic parameters are extracted to compare with those of the machined deformed layer. The coordination number distribution and radial distribution function (RDF) show that the machined surface presents the similar amorphous state. The anisotropic subsurface deformation is studied by nanometric cutting on the (010), (101), and (111) crystal planes of germanium, respectively. The deformed structures are prone to extend along the 110 slip system, which leads to the difference in the shape and thickness of the deformed layer on various directions and crystal planes. On machined surface, the greater thickness of subsurface deformed layer induces the greater surface recovery height. In order to get the critical thickness limit of deformed layer on machined surface of germanium, the optimized cutting direction on each crystal plane is suggested according to the relevance of the nanometric cutting to the nanoindentation.

  11. Multi-layer monochromator

    Schoenborn, B.P.; Caspar, D.L.D.

    1975-01-01

    This invention provides an artificial monochromator crystal for efficiently selecting a narrow band of neutron wavelengths from a neutron beam having a Maxwellian wavelength distribution, by providing on a substrate a plurality of germanium layers, and alternate periodic layers of a different metal having tailored thicknesses, shapes, and volumetric and neutron scattering densities. (U.S.)

  12. Solution synthesis of germanium nanocrystals

    Gerung, Henry [Albuquerque, NM; Boyle, Timothy J [Kensington, MD; Bunge, Scott D [Cuyahoga Falls, OH

    2009-09-22

    A method for providing a route for the synthesis of a Ge(0) nanometer-sized material from. A Ge(II) precursor is dissolved in a ligand heated to a temperature, generally between approximately 100.degree. C. and 400.degree. C., sufficient to thermally reduce the Ge(II) to Ge(0), where the ligand is a compound that can bond to the surface of the germanium nanomaterials to subsequently prevent agglomeration of the nanomaterials. The ligand encapsulates the surface of the Ge(0) material to prevent agglomeration. The resulting solution is cooled for handling, with the cooling characteristics useful in controlling the size and size distribution of the Ge(0) materials. The characteristics of the Ge(II) precursor determine whether the Ge(0) materials that result will be nanocrystals or nanowires.

  13. Thermal stability of Ni-Pt-Ta alloy silicides on epi-Si{sub 1-x}C{sub x}

    Yoo, Jung-Ho; Chang, Hyun-Jin [Department of Ceramic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Min, Byoung-Gi [Department of Ceramic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Jusung Engineering Co., Ltd., 49, Neungpyeong-ri, Opo-eup, Gwangju-Si, Kyunggi-do 464-892 (Korea, Republic of); Ko, Dae-Hong [Department of Ceramic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)], E-mail: dhko@yonsei.ac.kr; Cho, Mann-Ho [Institute of Physics and Applied Physics, Yonsei University, Seoul 120-749 (Korea, Republic of); Sohn, Hyunchul [Department of Ceramic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Tae-Wan [Jusung Engineering Co., Ltd., 49, Neungpyeong-ri, Opo-eup, Gwangju-Si, Kyunggi-do 464-892 (Korea, Republic of)

    2008-12-05

    We investigated the silicide formation in Ni/epi-Si{sub 1-x}C{sub x} systems. Ni-Pt and Ni-Pt-Ta films were deposited on epi-Si{sub 1-x}C{sub x}/Si substrates by DC magnetron sputtering and processed at various temperatures. The sheet resistance of the silicide from the Ni alloy/epi-Si{sub 1-x}C{sub x} systems was maintained at low values compared to that from Ni/Si systems. By TEM and EDS analyses, we confirmed the presence of a Pt alloy layer at the top of the Ni-silicide layer. The stability of the silicide layer in the Ni alloy/epi-Si{sub 1-x}C{sub x} system is explained by not only the Pt rich layer on the top of the Ni-silicide layer, but also by the presence of a small amount of Pt in the Ni-silicide layer or at the grain boundaries. And both the thermal stability and the morphology of silicide were greatly improved by the addition of Ta in Ni-Pt films.

  14. Thermal stability of Ni-Pt-Ta alloy silicides on epi-Si1-xCx

    Yoo, Jung-Ho; Chang, Hyun-Jin; Min, Byoung-Gi; Ko, Dae-Hong; Cho, Mann-Ho; Sohn, Hyunchul; Lee, Tae-Wan

    2008-01-01

    We investigated the silicide formation in Ni/epi-Si 1-x C x systems. Ni-Pt and Ni-Pt-Ta films were deposited on epi-Si 1-x C x /Si substrates by DC magnetron sputtering and processed at various temperatures. The sheet resistance of the silicide from the Ni alloy/epi-Si 1-x C x systems was maintained at low values compared to that from Ni/Si systems. By TEM and EDS analyses, we confirmed the presence of a Pt alloy layer at the top of the Ni-silicide layer. The stability of the silicide layer in the Ni alloy/epi-Si 1-x C x system is explained by not only the Pt rich layer on the top of the Ni-silicide layer, but also by the presence of a small amount of Pt in the Ni-silicide layer or at the grain boundaries. And both the thermal stability and the morphology of silicide were greatly improved by the addition of Ta in Ni-Pt films

  15. X-ray radiometric analysis of lead and zinc concentrates using germanium radiation detector

    Vajgachev, A.A.; Mamysh, V.A.; Mil'chakov, V.I.; Shchekin, K.I.; Berezkin, V.V.

    1975-01-01

    The results of determination of lead, zinc and iron in lead and zinc concentrates by the X-ray-radiometric method with the use of germanium semiconductor detector are presented. In the experiments the 57 Co source and tritium-zirconium target were used. The activity of 57 Co was 2 mc. The area of the germanium detector employed was 5g mm 2 , its thickness - 2.3 mm. In lead concentrates zinc and iron were determined from the direct intensity of K-series radiation. In the analysis of zinc concentrates the same conditions of recording and excitation were used as in the case of lead concentrates, but the measurements were conducted in saturated layers. It is demonstrated that the use of germanium semiconductor detectors in combination with the suggested methods of measurements makes it possible to perform determination of iron, zinc and lead in zinc and lead concentrates with permissible error

  16. epi-Aszonalenins A, B, and C from Aspergillus novofumigatus

    Rank, Christian; Phipps, Richard Kerry; Harris, Pernille

    2006-01-01

    Three new benzodiazepines have been isolated from an unusual chemotype of Aspergillus novofumigatus: epi-aszonalenins A, B, and C. The structures were elucidated by use of one- and two-dimensional NMR spectroscopic techniques and HR ESI MS. The relative configuration was established on the basis...... of a single crystal X-ray diffraction study of epi-aszonalenin A and the absolute configuration was determined by optical rotation comparison with the literature data. The absolute configurations of epi-aszonalenins B and C were determined by circular dichroism comparison to epi-aszonalenin A....

  17. Designing environmental performance indicators (EPIs) for eco-efficiency

    Campbell, B.

    1997-01-01

    Environmental performance indicators (EPI) were discussed and a method by which companies can design indicators to help measure their progress toward greater eco-efficiency was presented. EPIs are quantitative measures of environmental performance. EPIs can measure one attribute, such as effluent released to water, or they can be a complex index. EPIs track impacts on the environment and provide information for decision making. The need for more eco-efficient companies, i.e. companies that produce useful goods and services while reducing their consumption of resources and while making efforts to reduce pollution, was emphasized

  18. Germanium content in Polish hard coals

    Makowska Dorota

    2016-01-01

    Full Text Available Due to the policy of the European Union, it is necessary to search for new sources of scarce raw materials. One of these materials is germanium, listed as a critical element. This semi-metal is widely used in the electronics industry, for example in the production of semiconductors, fibre optics and solar cells. Coal and fly ash from its combustion and gasification for a long time have been considered as a potential source of many critical elements, particularly germanium. The paper presents the results of germanium content determination in the Polish hard coal. 23 coal samples of various coal ranks were analysed. The samples were collected from 15 mines of the Upper Silesian Coal Basin and from one mine of the Lublin Coal Basin. The determination of germanium content was performed with the use of Atomic Absorption Spectrometry with Electrothermal Atomization (GFAAS. The investigation showed that germanium content in the analysed samples was at least twice lower than the average content of this element in the hard coals analysed so far and was in the range of 0.08 ÷ 1.28 mg/kg. Moreover, the content of Ge in the ashes from the studied coals does not exceed 15 mg/kg, which is lower than the average value of Ge content in the coal ashes. The highest content of this element characterizes coals of the Lublin Coal Basin and young coals type 31 from the Vistula region. The results indicate a low utility of the analysed coal ashes as a source of the recovery of germanium. On the basis of the analyses, the lack of the relationship between the content of the element and the ash content in the tested coals was noted. For coals of the Upper Silesian Coal Basin, the relationship between the content of germanium in the ashes and the depth of the seam was observed.

  19. Effect of EPI-743 on the clinical course of the mitochondrial disease Leber hereditary optic neuropathy.

    Sadun, Alfredo A; Chicani, Carlos Filipe; Ross-Cisneros, Fred N; Barboni, Piero; Thoolen, Martin; Shrader, William D; Kubis, Kenneth; Carelli, Valerio; Miller, Guy

    2012-03-01

    To evaluate the safety and efficacy of a new therapeutic agent, EPI-743, in Leber hereditary optic neuropathy (LHON) using standard clinical, anatomic, and functional visual outcome measures. Open-label clinical trial. University medical center. Patients  Five patients with genetically confirmed LHON with acute loss of vision were consecutively enrolled and treated with the experimental therapeutic agent EPI-743 within 90 days of conversion. Intervention  During the course of the study, 5 consecutive patients received EPI-743, by mouth, 3 times daily (100-400 mg per dose). Treatment effect was assessed by serial measurements of anatomic and functional visual indices over 6 to 18 months, including Snellen visual acuity, retinal nerve fiber layer thickness measured by optical coherence tomography, Humphrey visual fields (mean decibels and area with 1-log unit depression), and color vision. Treatment effect in this clinical proof of principle study was assessed by comparison of the prospective open-label treatment group with historical controls. Of 5 subjects treated with EPI-743, 4 demonstrated arrest of disease progression and reversal of visual loss. Two patients exhibited a total recovery of visual acuity. No drug-related adverse events were recorded. In a small open-label trial, EPI-743 arrested disease progression and reversed vision loss in all but 1 of the 5 consecutively treated patients with LHON. Given the known natural history of acute and rapid progression of LHON resulting in chronic and persistent bilateral blindness, these data suggest that the previously described irreversible priming to retinal ganglion cell loss may be reversed.

  20. Long-wavelength germanium photodetectors by ion implantation

    Wu, I.C.; Beeman, J.W.; Luke, P.N.; Hansen, W.L.; Haller, E.E.

    1990-11-01

    Extrinsic far-infrared photoconductivity in thin high-purity germanium wafers implanted with multiple-energy boron ions has been investigated. Initial results from Fourier transform spectrometer(FTS) measurements have demonstrated that photodetectors fabricated from this material have an extended long-wavelength threshold near 192μm. Due to the high-purity substrate, the ability to block the hopping conduction in the implanted IR-active layer yields dark currents of less than 100 electrons/sec at temperatures below 1.3 K under an operating bias of up to 70 mV. Optimum peak responsivity and noise equivalent power (NEP) for these sensitive detectors are 0.9 A/W and 5 x 10 -16 W/Hz 1/2 at 99 μm, respectively. The dependence of the performance of devices on the residual donor concentration in the implanted layer will be discussed. 12 refs., 4 figs

  1. Physics of epi-thermal boron neutron capture therapy (epi-thermal BNCT).

    Seki, Ryoichi; Wakisaka, Yushi; Morimoto, Nami; Takashina, Masaaki; Koizumi, Masahiko; Toki, Hiroshi; Fukuda, Mitsuhiro

    2017-12-01

    The physics of epi-thermal neutrons in the human body is discussed in the effort to clarify the nature of the unique radiologic properties of boron neutron capture therapy (BNCT). This discussion leads to the computational method of Monte Carlo simulation in BNCT. The method is discussed through two examples based on model phantoms. The physics is kept at an introductory level in the discussion in this tutorial review.

  2. Neutron-transmutation-doped germanium bolometers

    Palaio, N.P.; Rodder, M.; Haller, E.E.; Kreysa, E.

    1983-02-01

    Six slices of ultra-pure germanium were irradiated with thermal neutron fluences between 7.5 x 10 16 and 1.88 x 10 18 cm - 2 . After thermal annealing the resistivity was measured down to low temperatures ( 0 exp(δ/T) in the hopping conduction regime. Also, several junction FETs were tested for noise performance at room temperature and in an insulating housing in a 4.2K cryostat. These FETs will be used as first stage amplifiers for neutron-transmutation-doped germanium bolometers

  3. Neutron-transmutation-doped germanium bolometers

    Palaio, N. P.; Rodder, M.; Haller, E. E.; Kreysa, E.

    1983-01-01

    Six slices of ultra-pure germanium were irradiated with thermal neutron fluences between 7.5 x 10 to the 16th and 1.88 x 10 to the 18th per sq cm. After thermal annealing the resistivity was measured down to low temperatures (less than 4.2 K) and found to follow the relationship rho = rho sub 0 exp(Delta/T) in the hopping conduction regime. Also, several junction FETs were tested for noise performance at room temperature and in an insulating housing in a 4.2 K cryostat. These FETs will be used as first stage amplifiers for neutron-transmutation-doped germanium bolometers.

  4. Status report on the International Germanium Experiment

    Brodzinski, R.L.; Hensley, W.K.; Miley, H.S.; Reeves, J.H.; Avignone, F.T.; Collar, J.I.; Guerard, C.K.; Courant, H.; Ruddick, K.; Kirpichnikov, I.V.; Starostin, A.S.; Osetrov, S.B.; Pomansky, A.A.; Smolnikov, A.A.; Vasiliev, S.I.

    1992-06-01

    Phase II detector fabrication for the International Germanium Experiment is awaiting resolution of technical details observed during Phase I. Measurements of fiducial volume, configuration of the tansistor-reset preamplifier stage, and sources of background are discussed. Cosmogenic 7 Be is measured in germanium. Radium contamination in electroformed copper reported. The 2ν double- beta decay half-life of 76 Ge measured with a Phase I detector is in reasonable agreement with previously reported values. No events are observed in the vicinity of the Oν double-beta decay energy

  5. Germanium-overcoated niobium Dayem bridges

    Holdeman, L.B.; Peters, P.N.

    1976-01-01

    Overcoating constriction microbridges with semiconducting germanium provides additional thermal conductivity at liquid-helium temperatures to reduce the effects of self-heating in these Josephson junctions. Microwave-induced steps were observed in the I-V characteristics of an overcoated Dayem bridge fabricated in a 15-nm-thick niobium film; at 4.2 K (T/sub c/-T=2.6 K), at least 20 steps could be counted. No steps were observed in the I-V characteristics of the bridge prior to overcoating. In addition, the germanium overcoat can protect against electrical disturbances at room temperature

  6. Psychometric properties of the Plutchik's EPI test (Emotions Profile Index

    Ana Trebovc

    2005-04-01

    Full Text Available Authors report a study on psychometric properties of Plutchik's test, called Emotions Profile Index (EPI. A new Slovene translation and adaptation of English version of the test, consisting of combinations (pairs of 12 words reflecting eight different emotional conditions, was prepared and compared to the old one. Both versions as well as the Big Five Questionnaire (BFQ were administered on the sample of 239 participants. Different statistical analyses were performed examining psychometric features of both versions of EPI. Discriminative power was tested by cluster analysis and analysis of frequency distributions, reliability was studied via internal consistency index and correlation between the two versions, and validity was examined by correlating PIE dimensions with BFQ dimensions and subdimensions, by comparing profiles of groups on both versions of EPI and BFQ and by fitting the theoretical model proposed by Plutchik to the data. Discriminative power of EPI seems to be affected by avoiding (not choosing the socially desirable expressions in the test, parallel reliability seems to be susceptible to the use of different words (expressions in the new version of EPI having the same meaning as words in the old version. Dimensions expected to reflect similar constructs in BFQ and EPI do not correlate satisfactory. Data gathered with EPI cannot be fully explained with the model proposed by Plutchik's theory.

  7. Ion-beam induced structure modifications in amorphous germanium; Ionenstrahlinduzierte Strukturmodifikationen in amorphem Germanium

    Steinbach, Tobias

    2012-05-03

    Object of the present thesis was the systematic study of ion-beam induced structure modifications in amorphous germanium (a-Ge) layers due to low- (LEI) and high-energetic (SHI) ion irradiation. The LEI irradiation of crystalline Ge (c-Ge) effects because the dominating nuclear scattering of the ions on the solid-state atoms the formation of a homogeneous a-Ge Layer. Directly on the surface for fluences of two orders of magnitude above the amorphization fluence the formation of stable cavities independently on the irradiation conditions was observed. For the first time for the ion-beam induced cavity formation respectively for the steady expansion of the porous layer forming with growing fluence a linear dependence on the energy {epsilon}{sub n} deposed in nuclear processes was detected. Furthermore the formation of buried cavities was observed, which shows a dependence on the type of ions. While in the c-Ge samples in the range of the high electronic energy deposition no radiation defects, cavities, or plastic deformations were observed, the high electronic energy transfer in the 3.1 {mu}m thick pre-amorphized a-Ge surface layers leads to the formation of randomly distributed cavities. Basing on the linear connection between cavity-induced vertical volume expansion and the fluence determined for different energy transfers for the first time a material-specific threshold value of {epsilon}{sub e}{sup HRF}=(10.5{+-}1.0) kev nm{sup -1} was determined, above which the ion-beam induced cavity formation in a-Ge sets on. The anisotropic plastic deformation of th a-Ge layer superposed at inclined SHI irradiation on the cavity formation was very well described by an equation derived from the viscoelastic Maxwell model, but modified under regardment of the experimental results. The positive deformation yields determined thereby exhibit above a threshold value for the ion-beam induced plastic deformation {epsilon}{sub e}{sup S{sub a}}=(12{+-}2) keV nm{sup -1} for the first

  8. GRAN SASSO: Enriched germanium in action

    Anon.

    1991-12-15

    Two large crystals of carefully enriched germanium, one weighing 1 kilogram and the other 2.9 kilograms, and worth many millions of dollars, are being carefully monitored in the Italian Gran Sasso Laboratory in the continuing search for neutrinoless double beta decay.

  9. GRAN SASSO: Enriched germanium in action

    Anon.

    1991-01-01

    Two large crystals of carefully enriched germanium, one weighing 1 kilogram and the other 2.9 kilograms, and worth many millions of dollars, are being carefully monitored in the Italian Gran Sasso Laboratory in the continuing search for neutrinoless double beta decay

  10. Filtering microphonics in dark matter germanium experiments

    Morales, J.; Garcia, E.; Ortiz de Solorzano, A.; Morales, A.; Nunz-Lagos, R.; Puimedon, J.; Saenz, C.; Villar, J.A.

    1992-01-01

    A technique for reducing the microphonic noise in a germanium spectrometer used in dark matter particles searches is described. Filtered energy spectra, corresponding to 48.5 kg day of data in a running experiment in the Canfranc tunnel are presented. Improvements of this filtering procedure with respect to the method of rejecting those events not distributed evenly in time are also discussed. (orig.)

  11. Neutron Transmission of Germanium Poly- and Monocrystals

    Habib, N.

    2009-01-01

    The measured total neutron cross-sections of germanium poly- and mono-crystals were analyzed using an additive formula. The formula takes into account the germanium crystalline structure and its physical parameters. Computer programs have developed in order to provide the required analyses. The calculated values of the total cross-section of polycrystalline germanium in the neutron wavelength range from 0.001 up to 0.7 nm were fitted to the measured ones at ETRR-1. From the fitting the main constants of the additive formula were determined. The experimental data measured at ETRR-1 of the total cross-section of high quality Ge single crystal at 4400 K, room, and liquid nitrogen temperatures, in the wavelength range between 0.028 nm and 0.64 nm, were also compared with the calculated values using the formula having the same constants. An overall agreement is noticed between the formula fits and experimental data. A feasibility study is done for the use of germanium in poly-crystalline form, as cold neutron filter, and in mono-crystalline one as an efficient filter for thermal neutrons. The filtering efficiency of Ge single crystal is detailed in terms of its isotopic abundance, crystal thickness, mosaic spread, and temperature. It can be concluded that the 7.5 cm thick 76 Ge single crystal (0.10 FWHM mosaic spread) cooled at liquid nitrogen temperature is an efficient thermal neutron filter.

  12. Mesostructured germanium with cubic pore symmetry

    Armatas, G S; Kanatzidis, M G [Michigan State Univ., Michigan (United States), Dept. of Chemistry

    2006-11-15

    Regular mesoporous oxide materials have been widely studied and have a range of potential applications, such as catalysis, absorption and separation. They are not generally considered for their optical and electronic properties. Elemental semiconductors with nanopores running through them represent a different form of framework material with physical characteristics contrasting with those of the more conventional bulk, thin film and nanocrystalline forms. Here we describe cubic meso structured germanium, MSU-Ge-l, with gyroidal channels containing surfactant molecules, separated by amorphous walls that lie on the gyroid (G) minimal surface as in the mesoporous silica MCM-48. Although Ge is a high-meltin covalent semiconductor that is difficult to prepare from solution polymerization, we succeeded in assembling a continuous Ge network using a suitable precursor for Ge{sup 4-} atoms. Our results indicate that elemental semiconductors from group 14 of the periodic table can be made to adopt meso structured forms such as MSU-Ge-1, which features two three-dimensional labyrinthine tunnels obeying la3d space group symmetry and separated by a continuous germanium minimal surface that is otherwise amorphous. A consequence of this new structure for germanium, which has walls only one nanometre thick, is a wider electronic energy bandgap (1.4 eV versus 0.66 eV) than has crystalline or amorphous Ge. Controlled oxidation of MSU-Ge-1 creates a range of germanium suboxides with continuously varying Ge:O ratio and a smoothly increasing energy gap. (author)

  13. Characterization of nanocrystalline silicon germanium film and ...

    The nanocrystalline silicon-germanium films (Si/Ge) and Si/Ge nanotubes have low band gaps and high carrier mobility, thus offering appealing potential for absorbing gas molecules. Interaction between hydrogen molecules and bare as well as functionalized Si/Ge nanofilm and nanotube was investigated using Monte ...

  14. Effects of Germanium Tetrabromide Addition to Zinc Tetraphenyl Porphyrin / Fullerene Bulk Heterojunction Solar Cells

    Atsushi Suzuki

    2014-03-01

    Full Text Available The effects of germanium tetrabromide addition to tetraphenyl porphyrin zinc (Zn-TPP/fullerene (C60 bulk heterojunction solar cells were characterized. The light-induced charge separation and charge transfer were investigated by current density and optical absorption. Addition of germanium tetrabromide inserted into active layer of Zn-TPP/C60 as bulk heterojunction had a positive effect on the photovoltaic and optical properties. The photovoltaic mechanism of the solar cells was discussed by experimental results. The photovoltaic performance was due to light-induced exciton promoted by insert of GeBr4 and charge transfer from HOMO of Zn-TPP to LUMO of C60 in the active layer.

  15. Optical properties of highly n-doped germanium obtained by in situ doping and laser annealing

    Frigerio, J; Ballabio, A; Isella, G; Gallacher, K; Millar, R; Paul, D; Gilberti, V; Baldassarre, L; Ortolani, M; Milazzo, R; Napolitani, E; Maiolo, L; Minotti, A; Pecora, A; Bottegoni, F; Biagioni, P

    2017-01-01

    High n-type doping in germanium is essential for many electronic and optoelectronic applications especially for high performance Ohmic contacts, lasing and mid-infrared plasmonics. We report on the combination of in situ doping and excimer laser annealing to improve the activation of phosphorous in germanium. An activated n-doping concentration of 8.8  ×  10 19 cm −3 has been achieved starting from an incorporated phosphorous concentration of 1.1  ×  10 20 cm −3 . Infrared reflectivity data fitted with a multi-layer Drude model indicate good uniformity over a 350 nm thick layer. Photoluminescence demonstrates clear bandgap narrowing and an increased ratio of direct to indirect bandgap emission confirming the high doping densities achieved. (paper)

  16. Optical properties of highly n-doped germanium obtained by in situ doping and laser annealing

    Frigerio, J.; Ballabio, A.; Gallacher, K.; Giliberti, V.; Baldassarre, L.; Millar, R.; Milazzo, R.; Maiolo, L.; Minotti, A.; Bottegoni, F.; Biagioni, P.; Paul, D.; Ortolani, M.; Pecora, A.; Napolitani, E.; Isella, G.

    2017-11-01

    High n-type doping in germanium is essential for many electronic and optoelectronic applications especially for high performance Ohmic contacts, lasing and mid-infrared plasmonics. We report on the combination of in situ doping and excimer laser annealing to improve the activation of phosphorous in germanium. An activated n-doping concentration of 8.8  ×  1019 cm-3 has been achieved starting from an incorporated phosphorous concentration of 1.1  ×  1020 cm-3. Infrared reflectivity data fitted with a multi-layer Drude model indicate good uniformity over a 350 nm thick layer. Photoluminescence demonstrates clear bandgap narrowing and an increased ratio of direct to indirect bandgap emission confirming the high doping densities achieved.

  17. Young’s modulus of [111] germanium nanowires

    Maksud, M.; Palapati, N. K. R.; Subramanian, A., E-mail: asubramanian@vcu.edu [Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); Yoo, J. [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Harris, C. T. [Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2015-11-01

    This paper reports a diameter-independent Young’s modulus of 91.9 ± 8.2 GPa for [111] Germanium nanowires (Ge NWs). When the surface oxide layer is accounted for using a core-shell NW approximation, the YM of the Ge core approaches a near theoretical value of 147.6 ± 23.4 GPa. The ultimate strength of a NW device was measured at 10.9 GPa, which represents a very high experimental-to-theoretical strength ratio of ∼75%. With increasing interest in this material system as a high-capacity lithium-ion battery anode, the presented data provide inputs that are essential in predicting its lithiation-induced stress fields and fracture behavior.

  18. Software EpiData - Applications for Needs of Biotechnological Processes

    Ljakova K.

    2007-12-01

    Full Text Available EpiData (free software for entering and documenting data is presented. Some aspect of this software is shown for needs of database system (DB and information systems (IS that can be used in bioprocess system.

  19. epiDMS: Data Management and Analytics for Decision-Making From Epidemic Spread Simulation Ensembles.

    Liu, Sicong; Poccia, Silvestro; Candan, K Selçuk; Chowell, Gerardo; Sapino, Maria Luisa

    2016-12-01

    Carefully calibrated large-scale computational models of epidemic spread represent a powerful tool to support the decision-making process during epidemic emergencies. Epidemic models are being increasingly used for generating forecasts of the spatial-temporal progression of epidemics at different spatial scales and for assessing the likely impact of different intervention strategies. However, the management and analysis of simulation ensembles stemming from large-scale computational models pose challenges, particularly when dealing with multiple interdependent parameters, spanning multiple layers and geospatial frames, affected by complex dynamic processes operating at different resolutions. We describe and illustrate with examples a novel epidemic simulation data management system, epiDMS, that was developed to address the challenges that arise from the need to generate, search, visualize, and analyze, in a scalable manner, large volumes of epidemic simulation ensembles and observations during the progression of an epidemic. epiDMS is a publicly available system that facilitates management and analysis of large epidemic simulation ensembles. epiDMS aims to fill an important hole in decision-making during healthcare emergencies by enabling critical services with significant economic and health impact. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  20. EpiNet : Revue électronique de l'EPI, Année 2006, n° 81-90

    Viaud, Jean-Bernard

    2006-01-01

    Fayon, D. (2006). Les nouveaux outils en entreprise. EpiNet : Revue électronique de l'EPI (Enseignement Public & Informatique), jan. 2006, (81).a0601aArchambault, J.-P. (2006). Un dispositif départemental pour les TIC : le CRI de la Haute-Savoie. EpiNet : Revue électronique de l'EPI (Enseignement Public & Informatique), jan. 2006, (81).a0601bCaraballo, S., Cicala, R. (2006). Vers une Didactique de l'Informatique. EpiNet : Revue électronique de l'EPI (Enseignement Public & Informatique), jan. ...

  1. Technology CAD for germanium CMOS circuit

    Saha, A.R. [Department of Electronics and ECE, IIT Kharagpur, Kharagpur-721302 (India)]. E-mail: ars.iitkgp@gmail.com; Maiti, C.K. [Department of Electronics and ECE, IIT Kharagpur, Kharagpur-721302 (India)

    2006-12-15

    Process simulation for germanium MOSFETs (Ge-MOSFETs) has been performed in 2D SILVACO virtual wafer fabrication (VWF) suite towards the technology CAD for Ge-CMOS process development. Material parameters and mobility models for Germanium were incorporated in simulation via C-interpreter function. We also report on the device design issues along with the DC and RF characterization of the bulk Ge-MOSFETs, AC parameter extraction and circuit simulation of Ge-CMOS. Simulation results are compared with bulk-Si devices. Simulations predict a cut-off frequency, f {sub T} of about 175 GHz for Ge-MOSFETs compared to 70 GHz for a similar gate-length Si MOSFET. For a single stage Ge-CMOS inverter circuit, a GATE delay of 0.6 ns is predicted.

  2. Technology CAD for germanium CMOS circuit

    Saha, A.R.; Maiti, C.K.

    2006-01-01

    Process simulation for germanium MOSFETs (Ge-MOSFETs) has been performed in 2D SILVACO virtual wafer fabrication (VWF) suite towards the technology CAD for Ge-CMOS process development. Material parameters and mobility models for Germanium were incorporated in simulation via C-interpreter function. We also report on the device design issues along with the DC and RF characterization of the bulk Ge-MOSFETs, AC parameter extraction and circuit simulation of Ge-CMOS. Simulation results are compared with bulk-Si devices. Simulations predict a cut-off frequency, f T of about 175 GHz for Ge-MOSFETs compared to 70 GHz for a similar gate-length Si MOSFET. For a single stage Ge-CMOS inverter circuit, a GATE delay of 0.6 ns is predicted

  3. Performance of EPI diodes as dosimeters for photon beam radiotherapy

    Santos, Thais C. dos; Bizetto, Cesar A., E-mail: ccbueno@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Neves-Junior, Wellington F.P.; Haddad, Cecilia M.K. [Hospital Sirio Libanes (HSL), Sao Paulo, SP (Brazil); Goncalves, Josemary A.C.; Bueno, Carmen C. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Pontificia Universidade Catolica de Sao Paulo (PUC-SP), SP (Brazil)

    2011-07-01

    In this work we present the preliminary results about the performance of an epitaxial (EPI) diode as on-line dosimeter for photon beam radiotherapy. The diode used was processed at University of Hamburg on n-type 75 {mu}m thick epitaxial silicon layer grown on a highly doped n-type 300 {mu}m thick Czochralski (Cz) silicon substrate. The measurements were performed with a diode which not received any type of pre-dose. In order to use this device as a dosimeter, it was enclosed in a black polymethylmethacrylate (PMMA) probe. The diode was connected to an electrometer Keithley 6517B in the photovoltaic mode. During all measurements, the diode was held between PMMA plates, placed at 10.0 cm depth and centered in a radiation field of 10 x 10 cm{sup 2}, with the source-to-surface distance (SSD) kept at 100 cm. The short-term repeatability was measured with photon beams of 6 and 18 MV energy by registering five consecutive current signals for the same radiation dose. The current signals induced showed good instantaneous repeatability of the diode, characterized by a smallest coefficient of variation (CV) of 0.21%. Furthermore, the dose-response curves of the diode were quite linear with the highest charge sensitivity achieved of 5.0 {mu}C/Gy. It worth noting that still remains to be investigated the pre-dose influence on epitaxial silicon diode response in radiotherapy photon beam dosimetry, the long term stability and the radiation hardness of these diodes for absorbed doses higher than that investigated in this work. All these studies are under way. (author)

  4. Germanium films by polymer-assisted deposition

    Jia, Quanxi; Burrell, Anthony K.; Bauer, Eve; Ronning, Filip; McCleskey, Thomas Mark; Zou, Guifu

    2013-01-15

    Highly ordered Ge films are prepared directly on single crystal Si substrates by applying an aqueous coating solution having Ge-bound polymer onto the substrate and then heating in a hydrogen-containing atmosphere. A coating solution was prepared by mixing water, a germanium compound, ethylenediaminetetraacetic acid, and polyethyleneimine to form a first aqueous solution and then subjecting the first aqueous solution to ultrafiltration.

  5. Vacancy-indium clusters in implanted germanium

    Chroneos, Alexander I.

    2010-04-01

    Secondary ion mass spectroscopy measurements of heavily indium doped germanium samples revealed that a significant proportion of the indium dose is immobile. Using electronic structure calculations we address the possibility of indium clustering with point defects by predicting the stability of indium-vacancy clusters, InnVm. We find that the formation of large clusters is energetically favorable, which can explain the immobility of the indium ions. © 2010 Elsevier B.V. All rights reserved.

  6. Vacancy-indium clusters in implanted germanium

    Chroneos, Alexander I.; Kube, R.; Bracht, Hartmut A.; Grimes, Robin W.; Schwingenschlö gl, Udo

    2010-01-01

    Secondary ion mass spectroscopy measurements of heavily indium doped germanium samples revealed that a significant proportion of the indium dose is immobile. Using electronic structure calculations we address the possibility of indium clustering with point defects by predicting the stability of indium-vacancy clusters, InnVm. We find that the formation of large clusters is energetically favorable, which can explain the immobility of the indium ions. © 2010 Elsevier B.V. All rights reserved.

  7. Next Generation Germanium Systems for Safeguards Applications

    Dreyer, J.; Burks, M.; Hull, E.

    2015-01-01

    We are developing the latest generation of highly portable, mechanically cooled germanium systems for safeguard applications. In collaboration with our industrial partner, Ph.D.s Co, we have developed the Germanium Gamma Ray Imager (GeGI), an imager with a 2π field of view. This instrument has been thoroughly field tested in a wide range of environments and have performed reliably even in the harshest conditions. The imaging capability of GeGI complements existing safeguards techniques by allowing for the spatial detection, identification, and characterization of nuclear material. Additionally, imaging can be used in design information verification activities to address potential material diversions. Measurements conducted at the Paducah Gaseous Diffusion Plant highlight the advantages this instrument offers in the identification and localization of LEU, HEU and Pu holdup. GeGI has also been deployed to the Savannah River Site for the measurement of radioactive waste canisters, providing information valuable for waste characterization and inventory accountancy. Measuring 30 x 15 x 23 cm and weighing approximately 15 kg, this instrument is the first portable germanium-based imager. GeGI offers high reliability with the convenience of mechanical cooling, making this instrument ideal for the next generation of safeguards instrumentation. (author)

  8. Smooth germanium nanowires prepared by a hydrothermal deposition process

    Pei, L.Z., E-mail: lzpei1977@163.com [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Laboratory of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China); Zhao, H.S. [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Laboratory of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China); Tan, W. [Henkel Huawei Electronics Co. Ltd., Lian' yungang, Jiangsu 222006 (China); Yu, H.Y. [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Laboratory of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China); Chen, Y.W. [Department of Materials Science, Fudan University, Shanghai 200433 (China); Fan, C.G. [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Laboratory of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China); Zhang, Qian-Feng, E-mail: zhangqf@ahut.edu.cn [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Laboratory of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China)

    2009-11-15

    Smooth germanium nanowires were prepared using Ge and GeO{sub 2} as the starting materials and Cu sheet as the substrate by a simple hydrothermal deposition process. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations show that the germanium nanowires are smooth and straight with uniform diameter of about 150 nm in average and tens of micrometers in length. X-ray diffraction (XRD) and Raman spectrum of the germanium nanowires display that the germanium nanowires are mainly composed of cubic diamond phase. PL spectrum shows a strong blue light emission at 441 nm. The growth mechanism is also discussed.

  9. Smooth germanium nanowires prepared by a hydrothermal deposition process

    Pei, L.Z.; Zhao, H.S.; Tan, W.; Yu, H.Y.; Chen, Y.W.; Fan, C.G.; Zhang, Qian-Feng

    2009-01-01

    Smooth germanium nanowires were prepared using Ge and GeO 2 as the starting materials and Cu sheet as the substrate by a simple hydrothermal deposition process. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations show that the germanium nanowires are smooth and straight with uniform diameter of about 150 nm in average and tens of micrometers in length. X-ray diffraction (XRD) and Raman spectrum of the germanium nanowires display that the germanium nanowires are mainly composed of cubic diamond phase. PL spectrum shows a strong blue light emission at 441 nm. The growth mechanism is also discussed.

  10. Low temperature synthesis and electrical characterization of germanium doped Ti-based nanocrystals for nonvolatile memory

    Feng, Li-Wei; Chang, Chun-Yen; Chang, Ting-Chang; Tu, Chun-Hao; Wang, Pai-Syuan; Lin, Chao-Cheng; Chen, Min-Chen; Huang, Hui-Chun; Gan, Der-Shin; Ho, New-Jin; Chen, Shih-Ching; Chen, Shih-Cheng

    2011-01-01

    Chemical and electrical characteristics of Ti-based nanocrystals containing germanium, fabricated by annealing the co-sputtered thin film with titanium silicide and germanium targets, were demonstrated for low temperature applications of nonvolatile memory. Formation and composition characteristics of nanocrystals (NCs) at various annealing temperatures were examined by transmission electron microscopy and X-ray photon-emission spectroscopy, respectively. It was observed that the addition of germanium (Ge) significantly reduces the proposed thermal budget necessary for Ti-based NC formation due to the rise of morphological instability and agglomeration properties during annealing. NC structures formed after annealing at 500 °C, and separated well at 600 °C annealing. However, it was also observed that significant thermal desorption of Ge atoms occurs at 600 °C due to the sublimation of formatted GeO phase and results in a serious decrease of memory window. Therefore, an approach to effectively restrain Ge thermal desorption is proposed by encapsulating the Ti-based trapping layer with a thick silicon oxide layer before 600 °C annealing. The electrical characteristics of data retention in the sample with the 600 °C annealing exhibited better performance than the 500 °C-annealed sample, a result associated with the better separation and better crystallization of the NC structures.

  11. MOVPE growth and characterization of heteroepitaxial germanium on silicon using iBuGe as precursor

    Attolini, G. [IMEM-CNR, Parco Area delle Scienze, 37 A, 43124 Parma (Italy); Ponraj, J.S. [University of Information Science and Technology, St Paul the Apostle, Ohrid 6000 (Macedonia, The Former Yugoslav Republic of); Frigeri, C.; Buffagni, E.; Ferrari, C. [IMEM-CNR, Parco Area delle Scienze, 37 A, 43124 Parma (Italy); Musayeva, N.; Jabbarov, R. [Research and Development Center for Hi-Technologies, MCIT, Inshaatchilar ave., 2, AZ1073, Baku (Azerbaijan); Institute of Physics, ANAS, H. Javid ave., 33, AZ1143, Baku (Azerbaijan); Bosi, M., E-mail: bosi@imem.cnr.it [IMEM-CNR, Parco Area delle Scienze, 37 A, 43124 Parma (Italy)

    2016-01-01

    Graphical abstract: - Highlights: • Germanium layer were deposited on silicon substrates. • A novel metal organic precursor (isobutyl germane) was used. • MOVPE growth process was optimized. • Layers were characterized by TEM, XRD; SEM and AFM. - Abstract: Being an attractive and demanding candidate in the field of energy conversion, germanium has attained widespread applications. The present work is aimed at the study of metal organic vapour phase epitaxy of germanium thin films on (0 0 1) silicon at different growth temperatures using isobutyl germane as a precursor. The epilayers were characterized by X-ray diffraction, high resolution transmission electron microscopy, atomic force microscopy and scanning electron microscopy in order to understand the structural and morphological properties. The films were found to be epitaxially grown and single crystalline with slight misorientation (below 0.1 degrees). The interface between the film and substrate was analyzed in depth and different temperature dependent growth behaviours were evidenced. The major relevant lattice imperfections observed were attributed to planar defects and threading dislocations.

  12. Divergent Synthesis of Solanidine and 22-epi-Solanidine.

    Hou, Ling-Li; Shi, Yong; Zhang, Zhi-Dan; Wu, Jing-Jing; Yang, Qing-Xiong; Tian, Wei-Sheng

    2017-07-21

    A divergent synthesis of solanidine and 22-epi-solanidine, two 25S natural steroidal alkaloids, from 25R-configured diosgenin acetate, is described. Initially, solanidine was synthesized through a series of transformations including a cascade ring-switching process of furostan-26-acid, an epimerization of C25 controlled by the conformation of six-membered lactone ring, an intramolecular Schmidt reaction, and an imine reduction/intramolecular aminolysis process. To address the epimerization issue during Schmidt reaction, an improved synthesis was developed, which also led to a synthesis of 22-epi-solanidine. In this synthesis, selective transformation of azido lactone to azido diol and amino diol was realized through a reduction relay tactic. The azido diol was transformed to solanidine via an intramolecular Schmidt reaction/N-alkylation/reduction process and to 22-epi-solanidine via an intramolecular double N-alkylation process.

  13. Silicon Germanium Quantum Well Thermoelectrics

    Davidson, Anthony Lee, III

    Today's growing energy demands require new technologies to provide high efficiency clean energy. Thermoelectrics that convert heat to electrical energy directly can provide a method for the automobile industry to recover waste heat to power vehicle electronics, hence improving fuel economy. If large enough efficiencies can be obtained then the internal combustion engine could even be replaced. Exhaust temperature for automotive application range from 400 to 800 K. In this temperature range the current state of the art materials are bulk Si1-xGex alloys. By alternating layers of Si and Si1-xGex alloy device performance may be enhanced through quantum well effects and variations in material thermal properties. In this study, superlattices designed for in-plane operation with varying period and crystallinity are examined to determine the effect on electrical and thermal properties. In-plane electrical resistivity of these materials was found to be below the bulk material at a similar doping at room temperature, confirming the role of quantum wells in electron transport. As period is reduced in the structures boundary scattering limits electron propagation leading to increased resistivity. The Seebeck coefficient measured at room temperature is higher than the bulk material, additionally lending proof to the effects of quantum wells. When examining cross-plane operation the low doping in the Si layers of the device produce high resistivity resulting from boundary scattering. Thermal conductivity was measured from 77 K up to 674 K and shows little variation due to periodicity and temperature, however an order of magnitude reduction over bulk Si1-xGex is shown in all samples. A model is developed that suggests a combination of phonon dispersion effects and strong boundary scattering. Further study of the phonon dispersion effects was achieved through the examination of the heat capacity by combining thermal diffusivity with thermal conductivity. All superlattices show a

  14. Experimental investigation on oxidation kinetics of germanium by ozone

    Wang, Xiaolei, E-mail: wangxiaolei@ime.ac.cn [Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China); Zhao, Zhiqian; Xiang, Jinjuan [Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China); Wang, Wenwu, E-mail: wangwenwu@ime.ac.cn [Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China); Zhang, Jing, E-mail: zhangj@ncut.edu.cn [Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China); Microelectronics Department, North China University of Technology, Beijing 100041 (China); Zhao, Chao; Ye, Tianchun [Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China)

    2016-12-30

    Highlights: • Kinetics mechanism of Ge surface oxidation by ozone at low temperature is experimentally investigated. • The growth process contains initially linear growth region and following parabolic growth region. • The GeO{sub x} thickness vs. oxidation time plot obeys the well-known Deal-Grove or linear parabolic model. • The linear growth region includes the oxidation of two topmost Ge layers, and the oxidation of third layer and following layers of Ge is diffusion limited. • The activation energies for linear and parabolic regions are 0.04 and 0.55 eV, respectively. - Abstract: Oxidation kinetics of germanium surface by ozone at low temperature (≤400 °C) is experimentally investigated. The growth process contains two regions: initial linear growth region and following parabolic growth region. The GeO{sub x} thickness vs. oxidation time plot obeys the well-known Deal-Grove or linear parabolic model. The linear growth region contains reaction of oxygen atoms with surface bond and back bonds of outmost Ge layer. And the activation energy is experimentally estimated to be 0.06 eV. Such small activation energy indicates that the linear growth region is nearly barrier-less. The parabolic growth region starts when the oxygen atoms diffuse into back bonds of second outmost Ge layers. And the activation energy for this process is found to be 0.54 eV. Furthermore, in the ozone oxidation it is not O{sub 3} molecules but O radicals that go through the GeO{sub x} film.

  15. EpiNet : Revue électronique de l'EPI, Année 2012, n° 141-150

    Archambault, Jean-Pierre

    2012-01-01

    Accès aux articles et documents dans le fichier attaché index.html. EPI, Archambault, J.-P. (2012). Éditorial : Une commission de l'Académie des Sciences sur l'enseignement de l'informatique. EpiNet : Revue électronique de l'EPI (Enseignement Public & Informatique), jan. 2012, (141). a1201a Archambault, J.-P. (2012). Au bout de dix ans de pratique du B2i, nous constatons un échec. EpiNet : Revue électronique de l'EPI (Enseignement Public & Informatique), jan. 2012, (141). a1201b Karsenti, ...

  16. Ultrafast MR imaging with EPI of organs undergoing nonperiodic motion

    Stehling, M.K.; Ordidge, R.J.; Howseman, A.M.; Coxon, R.; Chapman, B.; Mansfield, P.

    1988-01-01

    Conventional MR imaging employing repetitive data acquisition is susceptible to motion artifacts. Gating overcomes periodic motion effects. Nonperiodic motion, as encountered in the gastronintestinal tract, cardiac arrhythmias, unsedated children, and fetal imaging, thwarts conventional MR imaging. The EPI derivatives BEST and MBEST create a complex 128 x 128-pixel image in 64 msec and 128 msec, respectively, freezing motion almost completely. Sequentially recorded gastrointestinal-tract images allow quantitative evaluation of gastric and gut motility. Cardiac morphology, movement, and blood flow patterns in valvular heart disease have been depicted during atrial fibrillation. Selected clinical results with accompanying technical details illustrate the scope of EPI as a distinctive imaging modality

  17. Ion beam induced stress formation and relaxation in germanium

    Steinbach, T., E-mail: Tobias.Steinbach@uni-jena.de [Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena (Germany); Reupert, A.; Schmidt, E.; Wesch, W. [Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena (Germany)

    2013-07-15

    Ion irradiation of crystalline solids leads not only to defect formation and amorphization but also to mechanical stress. In the past, many investigations in various materials were performed focusing on the ion beam induced damage formation but only several experiments were done to investigate the ion beam induced stress evolution. Especially in microelectronic devices, mechanical stress leads to several unwanted effects like cracking and peeling of surface layers as well as changing physical properties and anomalous diffusion of dopants. To study the stress formation and relaxation process in semiconductors, crystalline and amorphous germanium samples were irradiated with 3 MeV iodine ions at different ion fluence rates. The irradiation induced stress evolution was measured in situ with a laser reflection technique as a function of ion fluence, whereas the damage formation was investigated by means of Rutherford backscattering spectrometry. The investigations show that mechanical stress builds up at low ion fluences as a direct consequence of ion beam induced point defect formation. However, further ion irradiation causes a stress relaxation which is attributed to the accumulation of point defects and therefore the creation of amorphous regions. A constant stress state is reached at high ion fluences if a homogeneous amorphous surface layer was formed and no further ion beam induced phase transition took place. Based on the results, we can conclude that the ion beam induced stress evolution seems to be mainly dominated by the creation and accumulation of irradiation induced structural modification.

  18. Manufacturing P-N junctions in germanium bodies

    Hall, R.N.

    1980-01-01

    A method of producing p-n junctions in Ge so as to facilitate their use as radiation detectors involves forming a body of high purity p-type germanium, diffusing lithium deep into the body, in the absence of electrolytic processes, to form a junction between n-type and p-type germanium greater than 1 mm depth. (UK)

  19. Effects of electronically neutral impurities on muonium in germanium

    Clawson, C.W.; Crowe, K.M.; Haller, E.E.; Rosenblum, S.S.; Brewer, J.H.

    1983-04-01

    Low-temperature measurements of muonium parameters in various germanium crystals have been performed. We have measured crystals with different levels of neutral impurities, with and without dislocations, and with different annealing histories. The most striking result is the apparent trapping of Mu by silicon impurities in germanium

  20. Imaging capabilities of germanium gamma cameras

    Steidley, J.W.

    1977-01-01

    Quantitative methods of analysis based on the use of a computer simulation were developed and used to investigate the imaging capabilities of germanium gamma cameras. The main advantage of the computer simulation is that the inherent unknowns of clinical imaging procedures are removed from the investigation. The effects of patient scattered radiation were incorporated using a mathematical LSF model which was empirically developed and experimentally verified. Image modifying effects of patient motion, spatial distortions, and count rate capabilities were also included in the model. Spatial domain and frequency domain modeling techniques were developed and used in the simulation as required. The imaging capabilities of gamma cameras were assessed using low contrast lesion source distributions. The results showed that an improvement in energy resolution from 10% to 2% offers significant clinical advantages in terms of improved contrast, increased detectability, and reduced patient dose. The improvements are of greatest significance for small lesions at low contrast. The results of the computer simulation were also used to compare a design of a hypothetical germanium gamma camera with a state-of-the-art scintillation camera. The computer model performed a parametric analysis of the interrelated effects of inherent and technological limitations of gamma camera imaging. In particular, the trade-off between collimator resolution and collimator efficiency for detection of a given low contrast lesion was directly addressed. This trade-off is an inherent limitation of both gamma cameras. The image degrading effects of patient motion, camera spatial distortions, and low count rate were shown to modify the improvements due to better energy resolution. Thus, based on this research, the continued development of germanium cameras to the point of clinical demonstration is recommended

  1. Tensile strain mapping in flat germanium membranes

    Rhead, S. D.; Halpin, J. E.; Myronov, M.; Patchett, D. H.; Allred, P. S.; Wilson, N. R.; Leadley, D. R.; Shah, V. A.; Kachkanov, V.; Dolbnya, I. P.; Reparaz, J. S.; Sotomayor Torres, C. M.

    2014-01-01

    Scanning X-ray micro-diffraction has been used as a non-destructive probe of the local crystalline quality of a thin suspended germanium (Ge) membrane. A series of reciprocal space maps were obtained with ∼4 μm spatial resolution, from which detailed information on the strain distribution, thickness, and crystalline tilt of the membrane was obtained. We are able to detect a systematic strain variation across the membranes, but show that this is negligible in the context of using the membranes as platforms for further growth. In addition, we show evidence that the interface and surface quality is improved by suspending the Ge

  2. Tensile strain mapping in flat germanium membranes

    Rhead, S. D., E-mail: S.Rhead@warwick.ac.uk; Halpin, J. E.; Myronov, M.; Patchett, D. H.; Allred, P. S.; Wilson, N. R.; Leadley, D. R. [Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Shah, V. A. [Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Department of Engineering, University of Warwick, Coventry, CV4 7AL (United Kingdom); Kachkanov, V.; Dolbnya, I. P. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE (United Kingdom); Reparaz, J. S. [ICN2 - Institut Catala de Nanociencia i Nanotecnologia, Campus UAB, 08193 Bellaterra (Barcelona) (Spain); Sotomayor Torres, C. M. [ICN2 - Institut Catala de Nanociencia i Nanotecnologia, Campus UAB, 08193 Bellaterra (Barcelona) (Spain)

    2014-04-28

    Scanning X-ray micro-diffraction has been used as a non-destructive probe of the local crystalline quality of a thin suspended germanium (Ge) membrane. A series of reciprocal space maps were obtained with ∼4 μm spatial resolution, from which detailed information on the strain distribution, thickness, and crystalline tilt of the membrane was obtained. We are able to detect a systematic strain variation across the membranes, but show that this is negligible in the context of using the membranes as platforms for further growth. In addition, we show evidence that the interface and surface quality is improved by suspending the Ge.

  3. Array of germanium detectors for nuclear safeguards

    Moss, C.E.; Bernard, W.; Dowdy, E.J.; Garcia, C.; Lucas, M.C.; Pratt, J.C.

    1983-01-01

    Our gamma-ray spectrometer system, designed for field use, offers high efficiency and high resolution for safeguards applications. The system consists of three 40% high-purity germanium detectors and a LeCroy 3500 data-acquisition system that calculates a composite spectrum for the three detectors. The LeCroy 3500 mainframe can be operated remotely from the detector array with control exercised through moderns and the telephone system. System performance with a mixed source of 125 Sb, 154 Eu, and 155 Eu confirms the expected efficiency of 120% with an overall resolution that is between the resolution of the best detector and that of the worst

  4. Synthesis of ()-albrassitriol and ()-6-epi-albrassitriol from (+)-larixol

    Vlad, P.F.; Ciocarlan, A.; Coltsa, M.; Edu, C.; Biriiac, A.; Barba, A.; Deleanu, C.; Nicolescu, A.; Ambrosio, D' M.; Groot, de Æ.

    2013-01-01

    A novel synthesis of natural drimanic compounds, ()-albrassitriol (2) and ()-6-epi-albrassitriol (3), has been carried out starting from an easily available labdane diterpenoid, (+)-larixol (1). In a two-step procedure, (+)-larixol (1) was converted into 14,15-bisnorlab-7-ene-6,13-dione (9), which

  5. A Novel Synthesis of (-)-10-epi-α-Cyperone

    Li Jing FANG; Jin Chun CHEN; Guo Jun ZHENG; Yu Kun GUAN; Yu Lin LI

    2004-01-01

    An alternative route for the synthesis of (-)-10-epi-α-cyperone 1 starting from (+)- dihydrocarvone 2 is described by using an asymmetric Michael addition as a key step. The route features more efficiently and can be performed in large scale.

  6. High temperature dielectric function of silicon, germanium and GaN

    Leyer, Martin; Pristovsek, Markus; Kneissl, Michael [Technische Universitaet Berlin (Germany). Institut fuer Festkoerperphysik

    2010-07-01

    In the last few years accurate values for the optical properties of silicon, germanium and GaN at high temperatures have become important as a reference for in-situ analysis, e.g. reflectometry. Precise temperature dependent dielectric measurements are necessary for the growth of GaInP/GaInAs/Ge triple-junction solar cells and the hetero epitaxy of GaN on silicon and sapphire. We performed spectroscopic ellipsometry (SE) measurements of the dielectric function of silicon, germanium and GaN between 1.5 eV and 6.5 eV in the temperature range from 300 K to 1300 K. The Samples were deoxidized chemically or by heating. High resolution SE spectra were taken every 50 K while cooling down to room temperature. The temperature dependence of the critical energies is compared to literature. Measurements for germanium showed a shift of the E{sub 2} critical point of {proportional_to}0.1 eV toward lower energies. The reason for this behavior is a non-negligible oxide layer on the samples in the literature.

  7. Ion-beam mixing in silicon and germanium at low temperatures

    Clark, G.J.; Marwick, A.D.; Poker, D.B.

    1982-01-01

    Ion-beam mixing of thin marker layers in amorphous silicon and germanium was studied using irradiations with Xe ions at temperatures of 34k and 77k. The marker species, ion energies and doses were: in silicon, markers of Ge and Pt irradiated with 200-keV Xe up to 2.7x10 16 ions cm -2 ; and in germanium, markers of Al and Si bombarded with 295-keV Xe up to 1.63x10 16 ions cm -2 . In silicon, Pt markers were found to broaden at about the same rate at 34k and 77k; and the rate of broadening was similar to that found by other workers when expressed as an efficiency of mixing, i.e., when dependence on ion dose and deposited energy was factored out. However, a Ge marker irradiated at 34k did not broaden from its original thickness. In germanium, markers of both Al and Si were mixed by irradiation at 34k, but at 77k only the Al marker broadened; the Si marker did not. The broadening of the markers is ascribed to ballistic mixing, while the cases where no broadening occurred are explicable if diffusion by a defect mechanism transported displaced marker atoms back to traps near their original sites

  8. High-purity germanium crystal growing

    Hansen, W.L.; Haller, E.E.

    1982-10-01

    The germanium crystals used for the fabrication of nuclear radiation detectors are required to have a purity and crystalline perfection which is unsurpassed by any other solid material. These crystals should not have a net electrically active impurity concentration greater than 10 10 cm - 3 and be essentially free of charge trapping defects. Such perfect crystals of germanium can be grown only because of the highly favorable chemical and physical properties of this element. However, ten years of laboratory scale and commercial experience has still not made the production of such crystals routine. The origin and control of many impurities and electrically active defect complexes is now fairly well understood but regular production is often interrupted for long periods due to the difficulty of achieving the required high purity or to charge trapping in detectors made from crystals seemingly grown under the required conditions. The compromises involved in the selection of zone refining and crystal grower parts and ambients is discussed and the difficulty in controlling the purity of key elements in the process is emphasized. The consequences of growing in a hydrogen ambient are discussed in detail and it is shown how complexes of neutral defects produce electrically active centers

  9. Cryogenic readout techniques for germanium detectors

    Benato, G. [University of Zurich, (Switzerland); Cattadori, C. [INFN - Milano Bicocca, (Italy); Di Vacri, A. [INFN LNGS, (Italy); Ferri, E. [Universita Milano Bicocca/INFN Milano Bicocca, (Italy); D' Andrea, V.; Macolino, C. [GSSI/INFN LNGS, (Italy); Riboldi, S. [Universita degli Studi di Milano/INFN Milano, (Italy); Salamida, F. [Universita Milano Bicocca/INFN Milano Bicocca, (Italy)

    2015-07-01

    High Purity Germanium detectors are used in many applications, from nuclear and astro-particle physics, to homeland security or environment protection. Although quite standard configurations are often used, with cryostats, charge sensitive amplifiers and analog or digital acquisition systems all commercially available, it might be the case that a few specific applications, e.g. satellites, portable devices, cryogenic physics experiments, etc. also require the development of a few additional or complementary techniques. An interesting case is for sure GERDA, the Germanium Detector Array experiment, searching for neutrino-less double beta decay of {sup 76}Ge at the Gran Sasso National Laboratory of INFN - Italy. In GERDA the entire detector array, composed of semi-coaxial and BEGe naked crystals, is operated suspended inside a cryostat filled with liquid argon, that acts not only as cooling medium and but also as an active shield, thanks to its scintillation properties. These peculiar circumstances, together with the additional requirement of a very low radioactive background from all the materials adjacent to the detectors, clearly introduce significant constraints on the design of the Ge front-end readout electronics. All the Ge readout solutions developed within the framework of the GERDA collaboration, for both Phase I and Phase II, will be briefly reviewed, with their relative strength and weakness compared together and with respect to ideal Ge readout. Finally, the digital processing techniques developed by the GERDA collaboration for energy estimation of Ge detector signals will be recalled. (authors)

  10. Experience from operating germanium detectors in GERDA

    Palioselitis, Dimitrios; GERDA Collaboration

    2015-05-01

    Phase I of the Germanium Detector Array (GERDA) experiment, searching for the neutrinoless double beta (0νββ) decay of 76Ge, was completed in September 2013. The most competitive half-life lower limit for the 0νββ decay of 76Ge was set (T-0ν1/2 > 2.1 · 1025 yr at 90% C.L.). GERDA operates bare Ge diodes immersed in liquid argon. During Phase I, mainly refurbished semi-coaxial high purity Ge detectors from previous experiments were used. The experience gained with handling and operating bare Ge diodes in liquid argon, as well as the stability and performance of the detectors during GERDA Phase I are presented. Thirty additional new enriched BEGe-type detectors were produced and will be used in Phase II. A subgroup of these detectors has already been used successfully in GERDA Phase I. The present paper gives an overview of the production chain of the new germanium detectors, the steps taken to minimise the exposure to cosmic radiation during manufacturing, and the first results of characterisation measurements in vacuum cryostats.

  11. Experience from operating germanium detectors in GERDA

    Palioselitis, Dimitrios

    2015-01-01

    Phase I of the Germanium Detector Array (GERDA) experiment, searching for the neutrinoless double beta (0νββ) decay of 76 Ge, was completed in September 2013. The most competitive half-life lower limit for the 0νββ decay of 76 Ge was set (T- 0ν 1/2 > 2.1 · 10 25 yr at 90% C.L.). GERDA operates bare Ge diodes immersed in liquid argon. During Phase I, mainly refurbished semi-coaxial high purity Ge detectors from previous experiments were used. The experience gained with handling and operating bare Ge diodes in liquid argon, as well as the stability and performance of the detectors during GERDA Phase I are presented. Thirty additional new enriched BEGe-type detectors were produced and will be used in Phase II. A subgroup of these detectors has already been used successfully in GERDA Phase I. The present paper gives an overview of the production chain of the new germanium detectors, the steps taken to minimise the exposure to cosmic radiation during manufacturing, and the first results of characterisation measurements in vacuum cryostats. (paper)

  12. Doping of germanium telluride with bismuth tellurides

    Abrikosov, N.Kh.; Karpinskij, O.G.; Makalatiya, T.Sh.; Shelimova, L.E.

    1981-01-01

    Effect of germanium telluride doping with bismuth fellurides (Bi 2 Te 3 ; BiTe; Bi 2 Te) on phase transition temperature, lattice parameters and electrophysical properties of alloys is studied. It is shown that in alloys of GeTe-Bi 2 Te 3 (BiTe)(Bi 2 Te) cross sections solid solution of GeTe with Bi 2 Te 3 , characterized by deviation from stoichiometry, and germanium in the second phase the quantity of which increases during the transition from GeTe-Bi 2 Te 3 cross section to GeTe-Bi 2 Te are in equilibrium. Lower values of holes concentration and of electric conductivity and higher values of thermo e.m.f. coefficient in comparison with alloys of GeTe-Bi 2 Te 3 cross section with the same bismuth content are characterized for GeTe-Bi 2 Te cross section alloys. It is shown that in the range of GeTe-base solid solution the α→γ phase transformation which runs trough the two-phase region (α→γ) is observed with tellurium content increase. Extension of α-phase existence region widens with the bismuth content increase. Peculiarities of interatomic interaction in GeTe-base solid solutions with isovalent and heterovalent cation substitution are considered [ru

  13. Electromechanically cooled germanium radiation detector system

    Lavietes, Anthony D.; Joseph Mauger, G.; Anderson, Eric H.

    1999-01-01

    We have successfully developed and fielded an electromechanically cooled germanium radiation detector (EMC-HPGe) at Lawrence Livermore National Laboratory (LLNL). This detector system was designed to provide optimum energy resolution, long lifetime, and extremely reliable operation for unattended and portable applications. For most analytical applications, high purity germanium (HPGe) detectors are the standard detectors of choice, providing an unsurpassed combination of high energy resolution performance and exceptional detection efficiency. Logistical difficulties associated with providing the required liquid nitrogen (LN) for cooling is the primary reason that these systems are found mainly in laboratories. The EMC-HPGe detector system described in this paper successfully provides HPGe detector performance in a portable instrument that allows for isotopic analysis in the field. It incorporates a unique active vibration control system that allows the use of a Sunpower Stirling cycle cryocooler unit without significant spectral degradation from microphonics. All standard isotopic analysis codes, including MGA and MGA++, GAMANL, GRPANL and MGAU, typically used with HPGe detectors can be used with this system with excellent results. Several national and international Safeguards organisations including the International Atomic Energy Agency (IAEA) and U.S. Department of Energy (DOE) have expressed interest in this system. The detector was combined with custom software and demonstrated as a rapid Field Radiometric Identification System (FRIS) for the U.S. Customs Service . The European Communities' Safeguards Directorate (EURATOM) is field-testing the first Safeguards prototype in their applications. The EMC-HPGe detector system design, recent applications, and results will be highlighted

  14. Thickness, Doping Accuracy, and Roughness Control in Graded Germanium Doped Ch{sub x} Micro-shells for Lmj

    Legay, G.; Theobald, M.; Barnouin, J.; Peche, E.; Bednarczyk, S.; Hermerel, C. [CEA Valduc, Dept Rech Mat Nucl, Serv Microcibles, 21 - Is-sur-Tille (France)

    2009-05-15

    In the Commissariat a l'Energie Atomique Laser Megajoule (LMJ) facility, amorphous hydrogenated carbon (a-C: H or CH{sub x}) is the nominal ablator used to achieve inertial confinement fusion experiments. These targets are filled with of fusible mixture of deuterium-tritium in order to perform ignition. The a-C: H shell is deposited on a poly-alpha-methylstyrene (PAMS) mandrel by glow discharge polymerization with trans-2-butene, hydrogen, and helium. Graded germanium doped CH{sub x} micro-shells are supposed to be more stable regarding hydrodynamic instabilities. The shells are composed of four layers for a total thickness of 180 {mu}m. The germanium gradient is obtained by doping the different a-C: H layers with the addition of tetra-methylgermanium in the gas mixture. As the achievement of ignition greatly depends on the physical properties of the shell, the thicknesses, doping concentration, and roughness must be precisely controlled. Quartz microbalances were used to perform an in situ and real-time measurement of the thickness in order to reduce the variations and so our fabrication tolerances on each layer thickness. Ex situ control of the thickness of each layer was carried out, with both optical coherent tomography and interferometry, (wall-mapper). High-quality, PAMS and a rolling system have been used to lower the low-mode roughness [root-mean-square (rms) (mode 2) {<=} 70 nm]. High modes were clearly, reduced by, coating the pan containing the shells with polyvinyl alcohol + CH{sub x} instead of polystyrene + CH{sub x} resulting in an rms ({>=}mode 10) {<=} 20 nm, which can be {<=}15 nm for the best micro-shells. The germanium concentration (0. 4 and 0. 75 at. %) in the a-CH layer is obtained by regulating the tetramethyl-germanium flow. Low range mass flow controllers have been used to improve the doping accuracy. (authors)

  15. Practical Synthesis of Pachastrissamine (Jaspine B), 2-epi-Pachastrissamine, and the 2-epi-Pyrrolidine Analogue.

    Fujiwara, Tomoya; Liu, Bo; Niu, Wenqi; Hashimoto, Kazuki; Nambu, Hisanori; Yakura, Takayuki

    2016-01-01

    The practical syntheses of pachastrissamine (jaspine B), 2-epi-pachastrissamine, and the 2-epimer of the pyrrolidine analogue were accomplished via the stereoselective reduction of an allylketone derived from commercially available diethyl D-tartrate and the cross-metathesis of an allyltetrahydrofuran or allypyrrolidine with 1-tridecene as key steps.

  16. An Experimental Study of the Accuracy of Compensation in Lithium Drifted Germanium Detectors

    Lauber, A; Malmsten, B

    1969-10-15

    The nature and magnitude of the space charge existing in the compensated layer of lithium drifted germanium detectors has been studied as a function of drifted depth and of the electric field applied during drift. Experimental values were obtained from the dependence of detector capacitance on applied bias. In most cases there was a linear space charge gradient in the compensated layer. When small electric fields were applied to deep compensated layers, the space charge became constant throughout a large part of the compensated layer. There is some evidence for a strong decrease of mobile carrier recombination lifetime with increasing drifted depth, possibly down to a few microseconds for drifted depths of the order of 7 mm. The experimental results of the investigation are to a large extent in good agreement with theory.

  17. File list: Unc.PSC.20.AllAg.EpiLC [Chip-atlas[Archive

    Full Text Available Unc.PSC.20.AllAg.EpiLC mm9 Unclassified Pluripotent stem cell EpiLC SRX1074910,SRX1...074907 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.PSC.20.AllAg.EpiLC.bed ...

  18. File list: Unc.PSC.50.AllAg.EpiSC [Chip-atlas[Archive

    Full Text Available Unc.PSC.50.AllAg.EpiSC mm9 Unclassified Pluripotent stem cell EpiSC SRX1074917,SRX1...074905,SRX1074908 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.PSC.50.AllAg.EpiSC.bed ...

  19. File list: Unc.PSC.50.AllAg.EpiLC [Chip-atlas[Archive

    Full Text Available Unc.PSC.50.AllAg.EpiLC mm9 Unclassified Pluripotent stem cell EpiLC SRX1074910,SRX1...074907 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.PSC.50.AllAg.EpiLC.bed ...

  20. File list: Unc.PSC.05.AllAg.EpiSC [Chip-atlas[Archive

    Full Text Available Unc.PSC.05.AllAg.EpiSC mm9 Unclassified Pluripotent stem cell EpiSC SRX1074917,SRX1...074908,SRX1074905 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.PSC.05.AllAg.EpiSC.bed ...

  1. File list: Unc.PSC.20.AllAg.EpiSC [Chip-atlas[Archive

    Full Text Available Unc.PSC.20.AllAg.EpiSC mm9 Unclassified Pluripotent stem cell EpiSC SRX1074917,SRX1...074908,SRX1074905 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.PSC.20.AllAg.EpiSC.bed ...

  2. File list: Unc.PSC.10.AllAg.EpiLC [Chip-atlas[Archive

    Full Text Available Unc.PSC.10.AllAg.EpiLC mm9 Unclassified Pluripotent stem cell EpiLC SRX1074910,SRX1...074907 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.PSC.10.AllAg.EpiLC.bed ...

  3. File list: Unc.PSC.05.AllAg.EpiLC [Chip-atlas[Archive

    Full Text Available Unc.PSC.05.AllAg.EpiLC mm9 Unclassified Pluripotent stem cell EpiLC SRX1074910,SRX1...074907 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.PSC.05.AllAg.EpiLC.bed ...

  4. File list: InP.PSC.50.AllAg.EpiLC [Chip-atlas[Archive

    Full Text Available InP.PSC.50.AllAg.EpiLC mm9 Input control Pluripotent stem cell EpiLC SRX823839,SRX5...5,SRX823838,SRX823831,SRX823826,SRX590324 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.PSC.50.AllAg.EpiLC.bed ...

  5. Oxygen defect processes in silicon and silicon germanium

    Chroneos, A.; Sgourou, E. N.; Londos, C. A.; Schwingenschlö gl, Udo

    2015-01-01

    Silicon and silicon germanium are the archetypical elemental and alloy semiconductor materials for nanoelectronic, sensor, and photovoltaic applications. The investigation of radiation induced defects involving oxygen, carbon, and intrinsic defects is important for the improvement of devices as these defects can have a deleterious impact on the properties of silicon and silicon germanium. In the present review, we mainly focus on oxygen-related defects and the impact of isovalent doping on their properties in silicon and silicon germanium. The efficacy of the isovalent doping strategies to constrain the oxygen-related defects is discussed in view of recent infrared spectroscopy and density functional theory studies.

  6. Oxygen defect processes in silicon and silicon germanium

    Chroneos, A.

    2015-06-18

    Silicon and silicon germanium are the archetypical elemental and alloy semiconductor materials for nanoelectronic, sensor, and photovoltaic applications. The investigation of radiation induced defects involving oxygen, carbon, and intrinsic defects is important for the improvement of devices as these defects can have a deleterious impact on the properties of silicon and silicon germanium. In the present review, we mainly focus on oxygen-related defects and the impact of isovalent doping on their properties in silicon and silicon germanium. The efficacy of the isovalent doping strategies to constrain the oxygen-related defects is discussed in view of recent infrared spectroscopy and density functional theory studies.

  7. Ultra Shallow Arsenic Junctions in Germanium Formed by Millisecond Laser Annealing

    Hellings, G.; Rosseel, E.; Simoen, E.

    2011-01-01

    Millisecond laser annealing is used to fabricate ultra shallow arsenic junctions in preamorphized and crystalline germanium, with peak temperatures up to 900 degrees C. At this temperature, As indiffusion is observed while yielding an electrically active concentration up to 5.0 x 10(19) cm(-3......) for a junction depth of 31 nm. Ge preamorphization and the consecutive solid phase epitaxial regrowth are shown to result in less diffusion and increased electrical activation. The recrystallization of the amorphized Ge layer during laser annealing is studied using transmission electron microscopy...

  8. Bulk and surface event identification in p-type germanium detectors

    Yang, L. T.; Li, H. B.; Wong, H. T.; Agartioglu, M.; Chen, J. H.; Jia, L. P.; Jiang, H.; Li, J.; Lin, F. K.; Lin, S. T.; Liu, S. K.; Ma, J. L.; Sevda, B.; Sharma, V.; Singh, L.; Singh, M. K.; Singh, M. K.; Soma, A. K.; Sonay, A.; Yang, S. W.; Wang, L.; Wang, Q.; Yue, Q.; Zhao, W.

    2018-04-01

    The p-type point-contact germanium detectors have been adopted for light dark matter WIMP searches and the studies of low energy neutrino physics. These detectors exhibit anomalous behavior to events located at the surface layer. The previous spectral shape method to identify these surface events from the bulk signals relies on spectral shape assumptions and the use of external calibration sources. We report an improved method in separating them by taking the ratios among different categories of in situ event samples as calibration sources. Data from CDEX-1 and TEXONO experiments are re-examined using the ratio method. Results are shown to be consistent with the spectral shape method.

  9. Determination of surface recombination velocity and bulk lifetime in detector grade silicon and germanium crystals

    Derhacobian, N.; Fine, P.; Walton, J.T.; Wong, Y.K.; Rossington, C.S.; Luke, P.N.

    1993-10-01

    Utility of a noncontact photoconductive decay (PCD) technique is demonstrated in measuring bulk lifetime, τ B , and surface recombination velocity, S, in detector grade silicon and germanium crystals. We show that the simple analytical equations which relate the observed effective lifetimes in PCD transients to τ B and S have a limited range of applicability. The noncontact PCD technique is used to determine the effect of several surface treatments on the observed effective lifetimes in Si and Ge. A degradation of the effective lifetime in Si is reported as result of the growth of a thin layer of native oxide at room temperature under atmospheric conditions

  10. Ordering of germanium islands in the Si1-xGex/Si system pre-structured by misfit dislocations

    Pedersen, Erik Vesterlund; Shiryaev, Sergey Y.; Jensen, Flemming

    1998-01-01

    to the ordering obtained with compositionally graded buffer layers is discussed. Finally, the relaxed uniform Si0.84Ge0.16 buffer layer structures are used ro investigate the kinetics of the ordering of the islands, either by changing the amount of deposited material or by changing the deposition temperature......We have investigated the ordering of germanium islands on a relaxed uniform Si0.84Ge0.16 buffer layer by atomic force microscopy and transmission electron microscopy. A pronounced ordering with the islands situated along dislocation slip band lines was observed. The resemblance of this ordering...

  11. Search for an anomalous near-surface yield deficit in Rutherford backscattering spectra from implanted germanium and silicon

    Lawson, E.M.; Appleton, B.R.

    1983-09-01

    Rutherford backscattering and channelling analysis of high-dose, room-temperature, ion-implanted germanium has revealed an anomalous near-surface yield deficit. Implant dose and species dependencies and the effect of annealing have been examined. A marked loss of implanted impurity was also noted. The yield deficit is attributed to the absorption of oxygen and other light mass contaminants into a highly porous implanted layer upon exposure to air. Loss of implant species is attributed to enhanced sputtering effects

  12. Bimodal height distribution of self-assembled germanium islands grown on Si0.84Ge0.16 pseudo-substrates

    Pedersen, Erik Vesterlund; Jensen, Flemming; Shiryaev, Sergey Y.

    1998-01-01

    We have investigated the size distribution of germanium islands deposited onto a Si0.84Ge0.16 buffer layer, by atomic force microscopy. The size distribution was found to be bimodal at 630-740 degrees C and consisted of one group of smaller 'pyramidal' islands with a broad distribution of diameters...

  13. Germanium detectors and natural radioactivity in food

    Garbini, Lucia [Max-Planck-Institut fuer Physik, Muenchen (Germany); Collaboration: GeDet-Collaboration

    2013-07-01

    Potassium is a very important mineral for many physiological processes, like fluid balance, protein synthesis and signal transmission in nerves. Many aliments like raisins, bananas or chocolate contain potassium. Natural potassium contains 0.012% of the radioactive isotope Potassium 40. This isotope decays via β{sup +} decay into a metastable state of Argon 40, which reaches its ground state emitting a gamma of 1460 keV. A commercially produced Germanium detector has been used to measure the energy spectra of different selected food samples. It was calibrated with KCl and potassium contents were extracted. Results verify the high potassium content of commonly recommended food samples. However, the measurement quantitatively differ from the expectations in several cases. One of the most interesting results concerns chocolate bars with different percentages of cacao.

  14. Interactions of germanium atoms with silica surfaces

    Stanley, Scott K.; Coffee, Shawn S.; Ekerdt, John G.

    2005-01-01

    GeH 4 is thermally cracked over a hot filament depositing 0.7-15 ML Ge onto 2-7 nm SiO 2 /Si(1 0 0) at substrate temperatures of 300-970 K. Ge bonding changes are analyzed during annealing with X-ray photoelectron spectroscopy. Ge, GeH x , GeO, and GeO 2 desorption is monitored through temperature programmed desorption in the temperature range 300-1000 K. Low temperature desorption features are attributed to GeO and GeH 4 . No GeO 2 desorption is observed, but GeO 2 decomposition to Ge through high temperature pathways is seen above 750 K. Germanium oxidization results from Ge etching of the oxide substrate. With these results, explanations for the failure of conventional chemical vapor deposition to produce Ge nanocrystals on SiO 2 surfaces are proposed

  15. Carbon in high-purity germanium

    Haller, E.E.; Hansen, W.L.; Luke, P.; McMurray, R.; Jarrett, B.

    1981-10-01

    Using 14 C-spiked pyrolytic graphite-coated quartz crucibles for the growth of nine ultra-pure germanium single crystals, we have determined the carbon content and distribution in these crystals. Using autoradiography, we observe a rapidly decreasing carbon cluster concentration in successively grown crystals. Nuclear radiation detectors made from the crystals measure the betas from the internally decaying 14 C nuclei with close to 100% efficiency. An average value for the total carbon concentration [ 14 C + 12 C] is approx. 2 x 10 14 cm -3 , a value substantially larger than expected from earlier metallurgical studies. Contrary to the most recent measurement, we find the shape of the beta spectrum to agree very well with the statistical shape predicted for allowed transitions

  16. Stem Cell Technology for (Epi)genetic Brain Disorders.

    Riemens, Renzo J M; Soares, Edilene S; Esteller, Manel; Delgado-Morales, Raul

    2017-01-01

    Despite the enormous efforts of the scientific community over the years, effective therapeutics for many (epi)genetic brain disorders remain unidentified. The common and persistent failures to translate preclinical findings into clinical success are partially attributed to the limited efficiency of current disease models. Although animal and cellular models have substantially improved our knowledge of the pathological processes involved in these disorders, human brain research has generally been hampered by a lack of satisfactory humanized model systems. This, together with our incomplete knowledge of the multifactorial causes in the majority of these disorders, as well as a thorough understanding of associated (epi)genetic alterations, has been impeding progress in gaining more mechanistic insights from translational studies. Over the last years, however, stem cell technology has been offering an alternative approach to study and treat human brain disorders. Owing to this technology, we are now able to obtain a theoretically inexhaustible source of human neural cells and precursors in vitro that offer a platform for disease modeling and the establishment of therapeutic interventions. In addition to the potential to increase our general understanding of how (epi)genetic alterations contribute to the pathology of brain disorders, stem cells and derivatives allow for high-throughput drugs and toxicity testing, and provide a cell source for transplant therapies in regenerative medicine. In the current chapter, we will demonstrate the validity of human stem cell-based models and address the utility of other stem cell-based applications for several human brain disorders with multifactorial and (epi)genetic bases, including Parkinson's disease (PD), Alzheimer's disease (AD), fragile X syndrome (FXS), Angelman syndrome (AS), Prader-Willi syndrome (PWS), and Rett syndrome (RTT).

  17. 3D Hyperpolarized C-13 EPI with Calibrationless Parallel Imaging

    Gordon, Jeremy W.; Hansen, Rie Beck; Shin, Peter J.

    2018-01-01

    With the translation of metabolic MRI with hyperpolarized 13C agents into the clinic, imaging approaches will require large volumetric FOVs to support clinical applications. Parallel imaging techniques will be crucial to increasing volumetric scan coverage while minimizing RF requirements and tem...... strategies to accelerate and undersample hyperpolarized 13C data using 3D blipped EPI acquisitions and multichannel receive coils, and demonstrated its application in a human study of [1-13C]pyruvate metabolism....

  18. fMRI of the motor speech center using EPI

    Yu, In Kyu; Chang, Kee Hyun; Song, In Chan; Kim, Hong Dae; Seong, Su Ok; Jang, Hyun Jung; Han, Moon Hee; Lee, Sang Kun

    1998-01-01

    The purpose of this study is to evaluate the feasibility of functional MR imaging (fMRI) using the echo planar imaging (EPI) technique to map the motor speech center and to provide the basic data for motor speech fMRI during internal word generations. This study involved ten young, healthy, right-handed volunteers (M:F=8:2; age: 21-27); a 1.5T whole body scanner with multislice EPI was used. Brain activation was mapped using gradient echo single shot EPI (TR/TE of 3000/40, slice numbers 6, slice thicknesses mm, no interslice gap, matrix numbers 128 x 128, and FOV 30 x 30). The paradigm consisted of a series of alternating rest and activation tasks, repeated eight times. During the rest task, each of ten Korean nouns composed of two to four syllables was shown continuously every 3 seconds. The subjects were required to see the words but not to generate speech, whereas during the activation task, they were asked to internally generate as many words as possible from each of ten non-concrete one-syllabled Korean letters shown on the screen every 3 seconds. During an eight-minute period, a total of 960 axial images were acquired in each subject. Data were analyzed using the Z-score (p<0.05), and following color processing, the activated signals were overlapped on T1-weighted images. The location of the activated area, mean activated signal intensity were evaluated. The results of this study indicate that in most subjects, fMRI using EPI can effectively map the motor speech center. The data obtained may be useful for the clinical application of fMRI. (author). 34 refs., 3 tabs., 5 figs

  19. Radiation-electromagnetic effect in germanium monocrystals

    Kikoin, I.K.; Kikoin, L.I.; Lazarev, S.D.

    1980-01-01

    Experimentally investigated is the radiation-electromagnetic effect (REM) in germanium monocrystals on excitation of excess current carriers by α particles, protons and X-rays in magnetic fields up to 8 kOe. A cyclotron was used as an α particle source, and a standard X-ray tube with a copper anode - as an X-ray source. The e.m.f. of the REM effect linearly increases with the increase of the magnetic field and is proportional to the charged particle flux at small flux values, saturation occurs at great flux values (approximately 5x10 11 part./cm 2 xs). In the 4-40 MeV energy range the e.m.f. of the REM effect practically does not depend on the α particle energy. On irradiation of the samples with a grinding front surface the REM e.m.f. changes its sign. The REM and Hall effect measurement on α particle irradiated samples has shown that during irradiation a p-n transition is formed in the samples, which must be taken into account while studying the REM effect. The e.m.f. measured for the even REM effect quadratically increases with the magnetic field increase. The barrier radiation-voltaic effect (the effect e.m.f. is measured between the irradiated and nonirradiated sample faces) is studied. Using special masks the samples with a set of consecutive p-n transitions are produced by irradiation of germanium crystals by α particles. Investigation of the photovoltaic and photoelectromagnetic effects on such samples has shown that using this method the efficiency of the REM devices can be increased

  20. Reduction of Defects in Germanium-Silicon

    2003-01-01

    Crystals grown without contact with a container have far superior quality to otherwise similar crystals grown in direct contact with a container. In addition to float-zone processing, detached- Bridgman growth is a promising tool to improve crystal quality, without the limitations of float zoning or the defects introduced by normal Bridgman growth. Goals of this project include the development of the detached Bridgman process to be reproducible and well understood and to quantitatively compare the defect and impurity levels in crystals grown by these three methods. Germanium (Ge) and germanium-silicon (Ge-Si) alloys are being used. At MSFC, we are responsible for the detached Bridgman experiments intended to differentiate among proposed mechanisms of detachment, and to confirm or refine our understanding of detachment. Because the contact angle is critical to determining the conditions for detachment, the sessile drop method was used to measure the contact angles as a function of temperature and composition for a large number of substrates made of potential ampoule materials. Growth experiments have used pyrolytic boron nitride (pBN) and fused silica ampoules with the majority of the detached results occurring predictably in the pBN. Etch pit density (EPD) measurements of normal and detached Bridgman-grown Ge samples show a two order of magnitude improvement in the detached-grown samples. The nature and extent of detachment is determined by using profilometry in conjunction with optical and electron microscopy. The stability of detachment has been analyzed, and an empirical model for the conditions necessary to achieve sufficient stability to maintain detached growth for extended periods has been developed. We have investigated the effects on detachment of ampoule material, pressure difference above and below the melt, and Si concentration; samples that are nearly completely detached can be grown repeatedly in pBN. Current work is concentrated on developing a

  1. Silicon and Germanium (111) Surface Reconstruction

    Hao, You Gong

    Silicon (111) surface (7 x 7) reconstruction has been a long standing puzzle. For the last twenty years, various models were put forward to explain this reconstruction, but so far the problem still remains unsolved. Recent ion scattering and channeling (ISC), scanning tunneling microscopy (STM) and transmission electron diffraction (TED) experiments reveal some new results about the surface which greatly help investigators to establish better models. This work proposes a silicon (111) surface reconstruction mechanism, the raising and lowering mechanism which leads to benzene -like ring and flower (raised atom) building units. Based on these building units a (7 x 7) model is proposed, which is capable of explaining the STM and ISC experiment and several others. Furthermore the building units of the model can be used naturally to account for the germanium (111) surface c(2 x 8) reconstruction and other observed structures including (2 x 2), (5 x 5) and (7 x 7) for germanium as well as the (/3 x /3)R30 and (/19 x /19)R23.5 impurity induced structures for silicon, and the higher temperature disordered (1 x 1) structure for silicon. The model is closely related to the silicon (111) surface (2 x 1) reconstruction pi-bonded chain model, which is the most successful model for the reconstruction now. This provides an explanation for the rather low conversion temperature (560K) of the (2 x 1) to the (7 x 7). The model seems to meet some problems in the explanation of the TED result, which is explained very well by the dimer, adatom and stacking fault (DAS) model proposed by Takayanagi. In order to explain the TED result, a variation of the atomic scattering factor is proposed. Comparing the benzene-like ring model with the DAS model, the former needs more work to explain the TED result and the later has to find a way to explain the silicon (111) surface (1 x 1) disorder experiment.

  2. Double epi-illumination microscopy with separate visualization of two antigens: a combination of epi-polarization for immunogold-silver staining and epi-fluorescence for alkaline phosphatase staining

    van der Loos, C. M.; Becker, A. E.

    1994-01-01

    We present a method for an epi-illumination immunohistochemical double staining approach. The method combines the use of an immuno-alkaline phosphatase technique and the immunogold-silver technique, visualized with epifluorescence and epi-polarization illumination, respectively. Out of six tested

  3. Lattice site and thermal stability of transition metals in germanium

    Augustyns, Valérie; Pereira, Lino

    Although the first transistor was based on germanium, current chip technology mainly uses silicon due to its larger abundance, a lower price and higher quality silicon-oxide. However, a very important goal in microelectronics is to obtain faster integrated circuits. The advantages of germanium compared to silicon (e.g. a higher mobility of the charge carriers) motivates further research on germanium based materials. Semiconductor doping (e.g. introducing impurities into silicon and germanium in order to alter - and control - their properties) can be done by ion implantation or by in situ doping, whereby the host material is doped during growth. This thesis focuses on introducing dopants by ion implantation. The implantation as well as the subsequent measurements were performed in ISOLDE (CERN) using the emission channeling technique. Although ion implantation generates undesired defects in the host material (e.g. vacancies), such damage can be reduced by performing the implantation at an elevated temperature....

  4. Vacancy-acceptor complexes in germanium produced by ion implantation

    Feuser, U.; Vianden, R. (Inst. fuer Strahlen- und Kernphysik, Univ. Bonn (Germany)); Alves, E.; Silva, M.F. da (Dept. de Fisica, ICEN/LNETI, Sacavem (Portugal)); Szilagyi, E.; Paszti, F. (Central Research Inst. for Physics, Hungarian Academy of Sciences, Budapest (Hungary)); Soares, J.C. (Centro de Fisica Nuclear, Univ. Lisbon (Portugal))

    1991-07-01

    Combining results obtained by the {gamma}-{gamma} perturbed angular correlation method, Rutherford backscattering and elastic recoil detection of hydrogen, a defect complex formed in germanium by indium implantation is identified as a vacancy trapped by the indium probe. (orig.).

  5. Ion-beam induced structure modifications in amorphous germanium

    Steinbach, Tobias

    2012-01-01

    Object of the present thesis was the systematic study of ion-beam induced structure modifications in amorphous germanium (a-Ge) layers due to low- (LEI) and high-energetic (SHI) ion irradiation. The LEI irradiation of crystalline Ge (c-Ge) effects because the dominating nuclear scattering of the ions on the solid-state atoms the formation of a homogeneous a-Ge Layer. Directly on the surface for fluences of two orders of magnitude above the amorphization fluence the formation of stable cavities independently on the irradiation conditions was observed. For the first time for the ion-beam induced cavity formation respectively for the steady expansion of the porous layer forming with growing fluence a linear dependence on the energy ε n deposed in nuclear processes was detected. Furthermore the formation of buried cavities was observed, which shows a dependence on the type of ions. While in the c-Ge samples in the range of the high electronic energy deposition no radiation defects, cavities, or plastic deformations were observed, the high electronic energy transfer in the 3.1 μm thick pre-amorphized a-Ge surface layers leads to the formation of randomly distributed cavities. Basing on the linear connection between cavity-induced vertical volume expansion and the fluence determined for different energy transfers for the first time a material-specific threshold value of ε e HRF =(10.5±1.0) kev nm -1 was determined, above which the ion-beam induced cavity formation in a-Ge sets on. The anisotropic plastic deformation of th a-Ge layer superposed at inclined SHI irradiation on the cavity formation was very well described by an equation derived from the viscoelastic Maxwell model, but modified under regardment of the experimental results. The positive deformation yields determined thereby exhibit above a threshold value for the ion-beam induced plastic deformation ε e S a =(12±2) keV nm -1 for the first time extracted for a Ge the characteristic linear behaviour of the

  6. Sub-Millimeter T2 Weighted fMRI at 7 T: Comparison of 3D-GRASE and 2D SE-EPI

    Valentin G. Kemper

    2015-05-01

    Full Text Available Functional magnetic resonance imaging (fMRI allows studying human brain function non-invasively up to the spatial resolution of cortical columns and layers. Most fMRI acquisitions rely on the blood oxygenation level dependent (BOLD contrast employing T2* weighted 2D multi-slice echo-planar imaging (EPI. At ultra-high magnetic field (i.e. 7 T and above, it has been shown experimentally and by simulation, that T2 weighted acquisitions yield a signal that is spatially more specific to the site of neuronal activity at the cost of functional sensitivity. This study compared two T2 weighted imaging sequences, inner-volume 3D Gradient-and-Spin-Echo (3D-GRASE and 2D Spin-Echo EPI (SE-EPI, with evaluation of their imaging point-spread function, functional specificity, and functional sensitivity at sub-millimeter resolution. Simulations and measurements of the imaging point-spread function revealed that the strongest anisotropic blurring in 3D-GRASE (along the second phase-encoding direction was about 60 % higher than the strongest anisotropic blurring in 2D SE-EPI (along the phase-encoding direction In a visual paradigm, the BOLD sensitivity of 3D-GRASE was found to be superior due to its higher temporal signal-to-noise ratio. High resolution cortical depth profiles suggested that the contrast mechanisms are similar between the two sequences, however, 2D SE-EPI had a higher surface bias owing to the higher T2* contribution of the longer in-plane EPI echo-train for full field of view compared to the reduced field of view of zoomed 3D-GRASE.

  7. Self-assembly of tin wires via phase transformation of heteroepitaxial germanium-tin on germanium substrate

    Wang, Wei; Li, Lingzi; Yeo, Yee-Chia, E-mail: yeo@ieee.org [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Tok, Eng Soon [Department of Physics, National University of Singapore, Singapore 117551 (Singapore)

    2015-06-14

    This work demonstrates and describes for the first time an unusual strain-relaxation mechanism by the formation and self-assembly of well-ordered tin wires during the thermal annealing of epitaxial Ge{sub 0.83}Sn{sub 0.17}-on-Ge(001) substrate. Fully strained germanium-tin alloys (Ge{sub 0.83}Sn{sub 0.17}) were epitaxially grown on Ge(001) substrate by molecular beam epitaxy. The morphological and compositional evolution of Ge{sub 0.83}Sn{sub 0.17} during thermal annealing is studied by atomic force microscopy, X-ray diffraction, transmission electron microscopy. Under certain annealing conditions, the Ge{sub 0.83}Sn{sub 0.17} layer decomposes into two stable phases, and well-defined Sn wires that are preferentially oriented along two orthogonal 〈100〉 azimuths are formed. The formation of the Sn wires is related to the annealing temperature and the Ge{sub 0.83}Sn{sub 0.17} thickness, and can be explained by the nucleation of a grain with Sn islands on the outer front, followed by grain boundary migration. The Sn wire formation process is found to be thermally activated, and an activation enthalpy (E{sub c}) of 0.41 eV is extracted. This thermally activated phase transformation, i.e., 2D epitaxial layer to 3D wires, occurs via a mechanism akin to “cellular precipitation.” This synthesis route of Sn wires opens new possibilities for creation of nanoscale patterns at high-throughput without the need for lithography.

  8. Total synthesis of putative 11-epi-lyngbouilloside aglycon

    Amandine Kolleth

    2016-08-01

    Full Text Available We report here the total synthesis of 11-epi-lyngbouilloside aglycon. Our strategy features a Boeckman-type esterification followed by a RCM to form the 14-membered ring macrolactone and a late-stage side chain introduction via a Wittig olefination. Overall, the final product was obtained in 20 steps and 2% overall yield starting from commercially available 3-methyl-but-3-enol. Most importantly, the strategy employed is versatile enough to eventually allow us to complete the synthesis of the natural product and irrevocably confirm its structure.

  9. Modeling an array of encapsulated germanium detectors

    Kshetri, R

    2012-01-01

    A probability model has been presented for understanding the operation of an array of encapsulated germanium detectors generally known as composite detector. The addback mode of operation of a composite detector has been described considering the absorption and scattering of γ-rays. Considering up to triple detector hit events, we have obtained expressions for peak-to-total and peak-to-background ratios of the cluster detector, which consists of seven hexagonal closely packed encapsulated HPGe detectors. Results have been obtained for the miniball detectors comprising of three and four seven hexagonal closely packed encapsulated HPGe detectors. The formalism has been extended to the SPI spectrometer which is a telescope of the INTEGRAL satellite and consists of nineteen hexagonal closely packed encapsulated HPGe detectors. This spectrometer comprises of twelve detector modules surrounding the cluster detector. For comparison, we have considered a spectrometer comprising of nine detector modules surrounding the three detector configuration of miniball detector. In the present formalism, the operation of these sophisticated detectors could be described in terms of six probability amplitudes only. Using experimental data on relative efficiency and fold distribution of cluster detector as input, the fold distribution and the peak-to-total, peak-to-background ratios have been calculated for the SPI spectrometer and other composite detectors at 1332 keV. Remarkable agreement between experimental data and results from the present formalism has been observed for the SPI spectrometer.

  10. Theoretical Investigations of the Hexagonal Germanium Carbonitride

    Xinhai Yu

    2018-04-01

    Full Text Available The structural, mechanical, elastic anisotropic, and electronic properties of hexagonal germanium carbonitride (h-GeCN are systematically investigated using the first-principle calculations method with the ultrasoft pseudopotential scheme in the frame of generalized gradient approximation in the present work. The h-GeCN are mechanically and dynamically stable, as proved by the elastic constants and phonon spectra, respectively. The h-GeCN is brittle because the ratio B/G and Poisson’s ratio v of the h-GeCN are less than 1.75 and 0.26, respectively. For h-GeCN, from brittleness to ductility, the transformation pressures are 5.56 GPa and 5.63 GPa for B/G and Poisson’s ratio v, respectively. The h-GeCN exhibits the greater elastic anisotropy in Young’s modulus and the sound velocities. In addition, the calculated band structure of h-GeCN reveals that there is no band gap for h-GeCN with the HSE06 hybrid functional, so the h-GeCN is metallic.

  11. Electrodeposition of germanium from supercritical fluids.

    Ke, Jie; Bartlett, Philip N; Cook, David; Easun, Timothy L; George, Michael W; Levason, William; Reid, Gillian; Smith, David; Su, Wenta; Zhang, Wenjian

    2012-01-28

    Several Ge(II) and Ge(IV) compounds were investigated as possible reagents for the electrodeposition of Ge from liquid CH(3)CN and CH(2)F(2) and supercritical CO(2) containing as a co-solvent CH(3)CN (scCO(2)) and supercritical CH(2)F(2) (scCH(2)F(2)). For Ge(II) reagents the most promising results were obtained using [NBu(n)(4)][GeCl(3)]. However the reproducibility was poor and the reduction currents were significantly less than the estimated mass transport limited values. Deposition of Ge containing films was possible at high cathodic potential from [NBu(n)(4)][GeCl(3)] in liquid CH(3)CN and supercritical CO(2) containing CH(3)CN but in all cases they were heavily contaminated by C, O, F and Cl. Much more promising results were obtained using GeCl(4) in liquid CH(2)F(2) and supercritical CH(2)F(2). In this case the reduction currents were consistent with mass transport limited reduction and bulk electrodeposition produced amorphous films of Ge. Characterisation by XPS showed the presence of low levels of O, F and C, XPS confirmed the presence of Ge together with germanium oxides, and Raman spectroscopy showed that the as deposited amorphous Ge could be crystallised by the laser used in obtaining the Raman measurements.

  12. Tunnel current across linear homocatenated germanium chains

    Matsuura, Yukihito

    2014-01-01

    The electronic transport properties of germanium oligomers catenating into linear chains (linear Ge chains) have been theoretically studied using first principle methods. The conduction mechanism of a Ge chain sandwiched between gold electrodes was analyzed based on the density of states and the eigenstates of the molecule in a two-probe environment. Like that of silicon chains (Si chains), the highest occupied molecular orbital of Ge chains contains the extended σ-conjugation of Ge 4p orbitals at energy levels close to the Fermi level; this is in contrast to the electronic properties of linear carbon chains. Furthermore, the conductance of a Ge chain is expected to decrease exponentially with molecular length L. The decay constant β, which is defined as e −βL , of a Ge chain is similar to that of a Si chain, whereas the conductance of the Ge chains is higher than that of Si chains even though the Ge–Ge bond length is longer than the Si–Si bond length

  13. Renal zoomed EPI-DWI with spatially-selective radiofrequency excitation pulses in two dimensions

    He, Yong-Lan, E-mail: ylhe_526@163.com [Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing (China); Hausmann, Daniel, E-mail: daniel.hausmann@medma.uni-heidelberg.de [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim – Heidelberg University, Mannheim (Germany); Morelli, John N., E-mail: dr.john.morelli@gmail.com [St. John' s Medical Center, Tulsa, OK (United States); Attenberger, Ulrike I., E-mail: ulrike.attenberger@medma.uni-heidelberg.de [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim – Heidelberg University, Mannheim (Germany); Schoenberg, Stefan O., E-mail: stefan.schoenberg@umm.de [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim – Heidelberg University, Mannheim (Germany); Riffel, Philipp, E-mail: philipp.riffel@umm.de [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim – Heidelberg University, Mannheim (Germany)

    2016-10-15

    Highlights: • Renal zoomed diffusion-weighted imaging with spatially-selective radiofrequency excitation pulses is feasible. • z-EPI offers considerable potential for mitigating the limitations of conventional EPI techniques. • z-EPI of kidney may lead to substantial image quality improvements with reduced artifacts. - Abstract: Purpose: To evaluate the feasibility and clinical robustness of zoomed diffusion-weighted echo planar imaging (z-EPI) relative to conventional single-shot EPI (c-EPI) for DWI of the kidneys. Materials and methods: This retrospective study was approved by the institutional research ethics board. 66 patients (median age 58.5 years ± 13.4, range 23–83 years, 45 men, 21 women) undergoing 3T (Magnetom Skyra{sup ®}, Siemens Healthcare, Erlangen, Germany) using a dynamic parallel transmit array (TimTX TrueShape, Siemens Healthcare, Erlangen, Germany) for renal MRI were included in this study. Both c-EPI and z-EPI images were obtained. For z-EPI, a two-dimensional spatially-selective radiofrequency (RF) pulse was applied for echo planar imaging with the FOV reduced by a factor of 3. Two radiologists, blinded to clinical data and scan parameters evaluated the images with respect to their diagnostic confidence, overall preference, overall image quality, delineation of the kidney, spatial distortion, and image blur. Sequences were compared using a paired Wilcoxon test. ADC values for the upper pole, mid-zone, lower pole of the normal kidneys were compared between sequences as well as ADC values for renal lesions, using a paired t-test. Results: With z-EPI, the kidney was significantly better delineated with sharper boundaries, less image blur and distortion, and overall better image quality relative to c-EPI (all p < 0.001). The z-EPI technique led to greater diagnostic confidence than c-EPI (p = 0.020). z-EPI was preferred to c-EPI in 60 cases (90.9%, 60/66). No statistically significant differences in the ADC values of renal parenchyma or

  14. Renal zoomed EPI-DWI with spatially-selective radiofrequency excitation pulses in two dimensions

    He, Yong-Lan; Hausmann, Daniel; Morelli, John N.; Attenberger, Ulrike I.; Schoenberg, Stefan O.; Riffel, Philipp

    2016-01-01

    Highlights: • Renal zoomed diffusion-weighted imaging with spatially-selective radiofrequency excitation pulses is feasible. • z-EPI offers considerable potential for mitigating the limitations of conventional EPI techniques. • z-EPI of kidney may lead to substantial image quality improvements with reduced artifacts. - Abstract: Purpose: To evaluate the feasibility and clinical robustness of zoomed diffusion-weighted echo planar imaging (z-EPI) relative to conventional single-shot EPI (c-EPI) for DWI of the kidneys. Materials and methods: This retrospective study was approved by the institutional research ethics board. 66 patients (median age 58.5 years ± 13.4, range 23–83 years, 45 men, 21 women) undergoing 3T (Magnetom Skyra ® , Siemens Healthcare, Erlangen, Germany) using a dynamic parallel transmit array (TimTX TrueShape, Siemens Healthcare, Erlangen, Germany) for renal MRI were included in this study. Both c-EPI and z-EPI images were obtained. For z-EPI, a two-dimensional spatially-selective radiofrequency (RF) pulse was applied for echo planar imaging with the FOV reduced by a factor of 3. Two radiologists, blinded to clinical data and scan parameters evaluated the images with respect to their diagnostic confidence, overall preference, overall image quality, delineation of the kidney, spatial distortion, and image blur. Sequences were compared using a paired Wilcoxon test. ADC values for the upper pole, mid-zone, lower pole of the normal kidneys were compared between sequences as well as ADC values for renal lesions, using a paired t-test. Results: With z-EPI, the kidney was significantly better delineated with sharper boundaries, less image blur and distortion, and overall better image quality relative to c-EPI (all p < 0.001). The z-EPI technique led to greater diagnostic confidence than c-EPI (p = 0.020). z-EPI was preferred to c-EPI in 60 cases (90.9%, 60/66). No statistically significant differences in the ADC values of renal parenchyma or of

  15. Investigation of nanocrystalline Epi-Si/γ-Al2O3 heterostructure deposited on Si substrate by spectroscopic ellipsometry

    Khatun, Mosammat Halima; Shahjahan, Mohammad; Ito, Ryoki; Sawada, Kazuaki; Ishida, Makoto

    2006-01-01

    In this work, micro-structural and interfacial studies of the epi-Si/γ-Al 2 O 3 heterostructure were undertaken by spectroscopic ellipsometry, and compared with the results of atomic force microscopy and X-ray photoelectron spectroscopy. The experimental ellipsometric data were fitted with the theoretical calculations using effective medium approximation for each layer of the structure. It was observed that the epitaxial silicon layer consists of a fraction of amorphous Si and crystalline Si. The percentage of amorphous silicon increases with the decrease of deposition temperature and with the increase of the deposition rate. The γ-Al 2 O 3 layer produces a hydrostatic pressure on the Si substrate and the amount of hydrostatic pressure was measured to be 8 x 10 9 dyn/cm 2

  16. Germanium CMOS potential from material and process perspectives: Be more positive about germanium

    Toriumi, Akira; Nishimura, Tomonori

    2018-01-01

    CMOS miniaturization is now approaching the sub-10 nm level, and further downscaling is expected. This size scaling will end sooner or later, however, because the typical size is approaching the atomic distance level in crystalline Si. In addition, it is said that electron transport in FETs is ballistic or nearly ballistic, which means that the injection velocity at the virtual source is a physical parameter relevant for estimating the driving current. Channel-materials with higher carrier mobility than Si are nonetheless needed, and the carrier mobility in the channels is a parameter important with regard to increasing the injection velocity. Although the density of states in the channel has not been discussed often, it too is relevant for estimating the channel current. Both the mobility and the density of states are in principle related to the effective mass of the carrier. From this device physics viewpoint, we expect germanium (Ge) CMOS to be promising for scaling beyond the Si CMOS limit because the bulk mobility values of electrons and holes in Ge are much higher than those of electrons and holes in Si, and the electron effective mass in Ge is not much less than that in III-V compounds. There is a debate that Ge should be used for p-MOSFETs and III-V compounds for n-MOSFETs, but considering that the variability or nonuniformity of the FET performance in today’s CMOS LSIs is a big challenge, it seems that much more attention should be paid to the simplicity of the material design and of the processing steps. Nevertheless, Ge faces a number of challenges even in case that only the FET level is concerned. One of the big problems with Ge CMOS technology has been its poor performance in n-MOSFETs. While the hole mobility in p-FETs has been improved, the electron mobility in the inversion layer of Ge FETs remains a serious concern. If this is due to the inherent properties of Ge, only p-MOSFETs might be used for device applications. To make Ge CMOS devices

  17. Determination of the Wetting Angle of Germanium and Germanium-Silicon Melts on Different Substrate Materials

    Kaiser, Natalie; Croell, Arne; Szofran, F. R.; Cobb. S. D.; Dold, P.; Benz, K. W.

    1999-01-01

    During Bridgman growth of semiconductors detachment of the crystal and the melt meniscus has occasionally been observed, mainly under microgravity (microg) conditions. An important factor for detached growth is the wetting angle of the melt with the crucible material. High contact angles are more likely to result in detachment of the growing crystal from the ampoule wall. In order to achieve detached growth of germanium (Ge) and germanium-silicon (GeSi) crystals under 1g and microg conditions, sessile drop measurements were performed to determine the most suitable ampoule material as well as temperature dependence of the surface tension for GeSi. Sapphire, fused quartz, glassy carbon, graphite, SiC, pyrolytic Boron Nitride (pBN), AIN, and diamond were used as substrates. Furthermore, different cleaning procedures and surface treatments (etching, sandblasting, etc.) of the same substrate material and their effect on the wetting behavior were studied during these experiments. pBN and AIN substrates exhibited the highest contact angles with values around 170 deg.

  18. The impact of susceptibility gradients on cartesian and spiral EPI for BOLD fMRI

    Sangill, Ryan; Wallentin, Mikkel; Østergaard, Leif

    2006-01-01

    , with special emphasis on spiral EPI (spiral) and cartesian EPI (EPI) and their performance under influence of induced field gradients (SFGs) and stochastic noise. A numerical method for calculating synthetic MR images is developed and used to simulate BOLD fMRI experiments using EPI and spirals. The data...... is then examined for activation using a pixel-wise t test. Nine subjects are scanned with both techniques while performing a motor task. SPM99 is used for analysing the experimental data. The simulated spirals provide generally higher t scores at low SFGs but lose more strength than EPI at higher SFGs, where EPI...... activation is offset from the true position. In the primary motor area spirals provide significantly higher t scores (P SFG areas spirals provide stronger activation than...

  19. Episódios de cuidados: um conceito em saúde pública

    Gentil,Lia; Vanasse,Alain; Xhignesse,Marianne

    2013-01-01

    INTRODUÇÃO: Esse artigo apresenta uma revisão da literatura sobre a definição de episódio de cuidados. O conceito de episódio de cuidados na pesquisa em serviços de saúde emergiu nos anos 60. Os episódios têm sido descritos em três perspectivas diferentes: a do paciente (episódio de mal estar), a do prestador do serviço (episódio de doença) e do seu financiador (episódio de cuidados). OBJETIVO: O principal objetivo desse estudo é apresentar uma revisão da literatura da definição operacional d...

  20. Optimization of hetero-epitaxial growth for the threading dislocation density reduction of germanium epilayers

    Chong, Haining; Wang, Zhewei; Chen, Chaonan; Xu, Zemin; Wu, Ke; Wu, Lan; Xu, Bo; Ye, Hui

    2018-04-01

    In order to suppress dislocation generation, we develop a "three-step growth" method to heteroepitaxy low dislocation density germanium (Ge) layers on silicon with the MBE process. The method is composed of 3 growth steps: low temperature (LT) seed layer, LT-HT intermediate layer as well as high temperature (HT) epilayer, successively. Threading dislocation density (TDD) of epitaxial Ge layers is measured as low as 1.4 × 106 cm-2 by optimizing the growth parameters. The results of Raman spectrum showed that the internal strain of heteroepitaxial Ge layers is tensile and homogeneous. During the growth of LT-HT intermediate layer, TDD reduction can be obtained by lowering the temperature ramping rate, and high rate deposition maintains smooth surface morphology in Ge epilayer. A mechanism based on thermodynamics is used to explain the TDD and surface morphological dependence on temperature ramping rate and deposition rate. Furthermore, we demonstrate that the Ge layer obtained can provide an excellent platform for III-V materials integrated on Si.

  1. Reaction studies of hot silicon, germanium and carbon atoms

    Gaspar, P.P.

    1990-01-01

    The goal of this project was to increase the authors understanding of the interplay between the kinetic and electronic energy of free atoms and their chemical reactivity by answering the following questions: (1) what is the chemistry of high-energy carbon silicon and germanium atoms recoiling from nuclear transformations; (2) how do the reactions of recoiling carbon, silicon and germanium atoms take place - what are the operative reaction mechanisms; (3) how does the reactivity of free carbon, silicon and germanium atoms vary with energy and electronic state, and what are the differences in the chemistry of these three isoelectronic atoms? This research program consisted of a coordinated set of experiments capable of achieving these goals by defining the structures, the kinetic and internal energy, and the charge states of the intermediates formed in the gas-phase reactions of recoiling silicon and germanium atoms with silane, germane, and unsaturated organic molecules, and of recoiling carbon atoms with aromatic molecules. The reactions of high energy silicon, germanium, and carbon atoms created by nuclear recoil were studied with substrates chosen so that their products illuminated the mechanism of the recoil reactions. Information about the energy and electronic state of the recoiling atoms at reaction was obtained from the variation in end product yields and the extent of decomposition and rearrangement of primary products (usually reactive intermediates) as a function of total pressure and the concentration of inert moderator molecules that remove kinetic energy from the recoiling atoms and can induce transitions between electronic spin states. 29 refs

  2. Transport in silicon-germanium heterostructures

    Chrastina, Daniel

    2001-01-01

    The work presented here describes the electrical characterization of n- and p-type strained silicon-germanium systems. Theories of quantum transport m low magnetic fields at low temperature are discussed m terms of weak-localization: the traditional theory is shown not to account for the dephasing in a 2-dimensional hole gas behaving in a metallic manner and emergent alternative theories, while promising, require refinement. The mobility as a function of sheet density is measured in a p-type pseudomorphic Si 0.5 Ge 0.5 across the temperature range 350mK-282K; it is shown that calculations of the mobility based on semi-classical scattering mechanisms fail below 10K where quantum transport effects become relevant. A room temperature Hall scattering factor has been extracted. A new functional form has been presented to fit the resistivity as a function of temperature, below 20K: traditional theories of screening and weak localization appear not to be applicable. It is also demonstrated that simple protection circuitry is essential if commercial-scale devices are to be meaningfully investigated. Mobility spectrum analysis is performed on an n-type strained-silicon device. Established analysis methods are discussed and a new method is presented based on the Bryan's Algorithm approach to maximum entropy. The breakdown of the QHE is also investigated: the critical current density compares well to that predicted by an existing theory. Finally, devices in which both electron and hole gases can be induced are investigated. However, it is shown that the two cannier species never co-exist. Design rules are presented which may allow more successful structures to be created. Results are presented which demonstrate the success and the utility of implanted contacts which selectively reach different regions of the structure. (author)

  3. Silver-compensated germanium center in α-quartz

    Laman, F.C.; Weil, J.A.

    1977-01-01

    A synthetic germanium-doped crystal of α-quartz was subjected to an electro-diffusion process (ca. 600 V/cm, 625 0 K), in which Ag + ions were introduced along the crystal's optic axis (c). A 9800 MHz electron paramagnetic resonance spectrum at room temperature, taken after room temperature X-irradiation, revealed the presence of a silver-compensated germanium center Asub(Ge-Ag) with large, almost isotropic 107 Ag and 109 Ag hyperfine splittings. Measurement of the spin-Hamiltonian discloses that a suitable model for the observed center utilizes germanium, substituted for silicon, with the accompanying silver interstitial in a nearby c-axis channel, and with electronic structure in which an appreciable admixture Ge 4+ - Ag 0 to Ge 3+ - Ag + exists. Estimates of the unpaired electron orbital are presented. (author)

  4. Modeling of dislocation dynamics in germanium Czochralski growth

    Artemyev, V. V.; Smirnov, A. D.; Kalaev, V. V.; Mamedov, V. M.; Sidko, A. P.; Podkopaev, O. I.; Kravtsova, E. D.; Shimansky, A. F.

    2017-06-01

    Obtaining very high-purity germanium crystals with low dislocation density is a practically difficult problem, which requires knowledge and experience in growth processes. Dislocation density is one of the most important parameters defining the quality of germanium crystal. In this paper, we have performed experimental study of dislocation density during 4-in. germanium crystal growth using the Czochralski method and comprehensive unsteady modeling of the same crystal growth processes, taking into account global heat transfer, melt flow and melt/crystal interface shape evolution. Thermal stresses in the crystal and their relaxation with generation of dislocations within the Alexander-Haasen model have been calculated simultaneously with crystallization dynamics. Comparison to experimental data showed reasonable agreement for the temperature, interface shape and dislocation density in the crystal between calculation and experiment.

  5. Analytical product study of germanium-containing medicine by different ICP-MS applications

    Krystek, Petra; Ritsema, Rob

    2004-01-01

    For several years organo-germanium containing medicine has been used for special treatments of e.g. cancer and AIDS. The active substances contain germanium as beta-carboxyethylgermanium sesquioxide ((GeCH2CH 2COO-H)2O3/"Ge-132"), spirogermanium, germanium-lactate-citrate or unspecified forms. For

  6. Humidity-dependent stability of amorphous germanium nitrides fabricated by plasma nitridation

    Kutsuki, Katsuhiro; Okamoto, Gaku; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji

    2007-01-01

    We have investigated the stability of amorphous germanium nitride (Ge 3 N 4 ) layers formed by plasma nitridation of Ge(100) surfaces using x-ray photoelectron spectroscopy and atomic force microscopy. We have found that humidity in the air accelerates the degradation of Ge 3 N 4 layers and that under 80% humidity condition, most of the Ge-N bonds convert to Ge-O bonds, producing a uniform GeO 2 layer, within 12 h even at room temperature. After this conversion of nitrides to oxides, the surface roughness drastically increased by forming GeO 2 islands on the surfaces. These findings indicate that although Ge 3 N 4 layers have superior thermal stability compared to the GeO 2 layers, Ge 3 N 4 reacts readily with hydroxyl groups and it is therefore essential to take the best care of the moisture in the fabrication of Ge-based devices with Ge 3 N 4 insulator or passivation layers

  7. Niobium nitride Josephson junctions with silicon and germanium barriers

    Cukauskas, E.J.; Carter, W.L.

    1988-01-01

    Niobium nitride based junctions with silicon, germanium, and composite silicon/germanium barriers were fabricated and characterized for several barrier compositions. The current-voltage characteristics were analyzed at several temperatures using the Simmons model and numerical integration of the WKB approximation for the average barrier height and effective thickness. The zero voltage conductance was measured from 1.5 K to 300 K and compared to the Mott hopping conductivity model and the Stratton tunneling temperature dependence. Conductivity followed Mott conductivity at temperatures above 60 K for junctions with less than 100 angstrom thick barriers

  8. In vitro binding of germanium to proteins of rice shoots

    Matsumoto, Hideaki; Takahashi, Eiichi

    1976-01-01

    The possibility of in vitro binding between proteins of rice shoots and germanium (Ge) was investigated. The proteins in mixtures of aqueous extracts of rice shoots and radioactive germanium ( 68 GeO 2 ) were fractionated. The binding of radioactivity to the proteins was observed even after 5 successive fractionation steps from the original mixtures. At the final fractionation step using polyacrylamide gel electrophoresis, a constant proportionality between protein concentration and associated radioactivity was found in most samples although not all. These results indicate that the binding of 68 Ge to proteins is not due to the simple adsorption by proteins. (auth.)

  9. Characterisation of two AGATA asymmetric high purity germanium capsules

    Colosimo, S.J.; Moon, S.; Boston, A.J.; Boston, H.C.; Cresswell, J.R.; Harkness-Brennan, L.; Judson, D.S.; Lazarus, I.H.; Nolan, P.J.; Simpson, J.; Unsworth, C.

    2015-01-01

    The AGATA spectrometer is an array of highly segmented high purity germanium detectors. The spectrometer uses pulse shape analysis in order to track Compton scattered γ-rays to increase the efficiency of nuclear spectroscopy studies. The characterisation of two high purity germanium detector capsules for AGATA of the same A-type has been performed at the University of Liverpool. This work will examine the uniformity of performance of the two capsules, including a comparison of the resolution and efficiency as well as a study of charge collection. The performance of the capsules shows good agreement, which is essential for the efficient operation of the γ-ray tracking array

  10. Characterisation of two AGATA asymmetric high purity germanium capsules

    Colosimo, S.J., E-mail: sjc@ns.ph.liv.ac.uk [Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Moon, S.; Boston, A.J.; Boston, H.C.; Cresswell, J.R.; Harkness-Brennan, L.; Judson, D.S. [Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Lazarus, I.H. [STFC Daresbury, Daresbury, Warrington WA4 4AD (United Kingdom); Nolan, P.J. [Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Simpson, J. [STFC Daresbury, Daresbury, Warrington WA4 4AD (United Kingdom); Unsworth, C. [Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE (United Kingdom)

    2015-02-11

    The AGATA spectrometer is an array of highly segmented high purity germanium detectors. The spectrometer uses pulse shape analysis in order to track Compton scattered γ-rays to increase the efficiency of nuclear spectroscopy studies. The characterisation of two high purity germanium detector capsules for AGATA of the same A-type has been performed at the University of Liverpool. This work will examine the uniformity of performance of the two capsules, including a comparison of the resolution and efficiency as well as a study of charge collection. The performance of the capsules shows good agreement, which is essential for the efficient operation of the γ-ray tracking array.

  11. Quantitative spectrographic determination of traces of germanium in lignite

    Martin, M.; Roca, M.

    1972-01-01

    A burning technique in a d.c. arc at 10 amp has been employed. The standards have been prepared from a natural lignite with a low germanium content. In order to enhance sensitivity, AgCl, K 2 SO 4 , CuF 2 , Sb 2 S 3 and Bi 2 S 3 have been tested as sweeping materials. Using 2% CuF 2 a detection limit of 1 ppm germanium is attainable. Bi, Cu, Sb and Sn have been studied as internal standards: the former leads to the, highest precision (1 6%. Results show good agreement with those obtained by the addition method. (Author) 6 refs

  12. Program LEPS to addition of gamma spectra from germanium detectors

    Romero, L.

    1986-01-01

    The LEP program, written in FORTRAN IV, performs the addition of two spectra, collected with different detectors, from the same sample. This application, adds the two gamma spectra obtained from two opposite LEPS Germanium Detectors (Low Energy Photon Spectrometer), correcting the differences (channel/energy) between both two spectra, and fitting them before adding. The total-spectrum is recorded at the computer memory as a single spectrum. The necessary equipment, to run this program is: - Two opposite germanium detectors, with their associate electronics. - Multichannel analyzer (2048 memory channel minimum) - Computer on-line interfacing to multichannel analyzer. (Author) 4 refs

  13. Focusing of a new germanium counter type : the composite detector. Uses of the TREFLE detector in the EUROGAM multidetector

    Han, L.

    1995-05-01

    The aim of this thesis is the development of new types of germanium detectors: the composite detectors. Two types of prototypes are then conceived: the stacked planar detector (EDP) and the assembly of coaxial diodes (TREFLE). They are designed for the multidetector EUROGAM destined to the research of nuclear structure at high angular momentum. The four planar diodes of EDP detector were of 7 cm diameter and of 15 to 20 mm thick. The difference between the calculated and measured photopic efficiency is observed. The importance of surface channel induces a weak resistance of neutron damages. The sputtering method for the surface treatment reducing the germanium dead layer as well as a rule of selection concerning the impurity concentration and the thickness of crystal is helpful for the later production of germanium detector. The CLOVER detector consist of for mean size crystals in the same cryostat. The photopic efficiency is much larger than that of the greatest monocrystal detector. And the granulation of composite detector allowed the Doppler broadening correction of gamma ray observed in the nuclear reaction where the recoil velocity is very high. This new type of detector enable the linear polarization measurement of gamma ray. Twenty-four CLOVER detector are actually mounted in the EUROGAM array. The characteristics measured in source as well as in beam, reported in this thesis, meet exactly the charge account. (author). 47 refs., 61 figs., 18 tabs

  14. Detached Bridgman Growth of Germanium and Germanium-Silicon Alloy Crystals

    Szofran, F. R.; Volz, M. P.; Schweizer, M.; Cobb, S. D.; Motakef, S.; Croell, A.; Dold, P.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Earth based experiments on the science of detached crystal growth are being conducted on germanium and germanium-silicon alloys (2 at% Si average composition) in preparation for a series of experiments aboard the International Space Station (ISS). The purpose of the microgravity experiments includes differentiating among proposed mechanisms contributing to detachment, and confirming or refining our understanding of the detachment mechanism. Because large contact angle are critical to detachment, sessile drop measurements were used to determine the contact angles as a function of temperature and composition for a large number of substrates made of potential ampoule materials. Growth experiments have used pyrolytic boron nitride (pBN) and fused silica ampoules with the majority of the detached results occurring predictably in the pBN. The contact angles were 173 deg (Ge) and 165 deg (GeSi) for pBN. For fused silica, the contact angle decreases from 150 deg to an equilibrium value of 117 deg (Ge) or from 129 deg to an equilibrium value of 100 deg (GeSi) over the duration of the experiment. The nature and extent of detachment is determined by using profilometry in conjunction with optical and electron microscopy. The stability of detachment has been analyzed, and an empirical model for the conditions necessary to achieve sufficient stability to maintain detached growth for extended periods has been developed. Results in this presentation will show that we have established the effects on detachment of ampoule material, pressure difference above and below the melt, and silicon concentration; samples that are nearly completely detached can be grown repeatedly in pBN.

  15. Teletandem e episódios relacionados a cultura

    João Antonio TELLES

    2015-12-01

    Full Text Available Teletandem é um contexto telecolaborativo de aprendizagem que envolve dois falantes nativos (ou competentes de diferentes línguas. Utilizando o Skype, cada participante faz papel de aluno por meia hora, falando e praticando a língua do seu parceiro. Este artigo enfoca a interação em teletandem entre dois estudantes universitários - uma brasileira e um estadunidense. Na primeira parte, sustentamos nossa pressuposição de que os participantes do teletandem compartilham informações acerca das respectivas culturas. Na segunda, apresentamos cinco dimensões do conceito de cultura, definimos aprendizagem cultural e propomos uma unidade de análise para interpretação dos dados - o episódio relacionado a cultura. Por fim, sugerimos diretrizes para futuras pesquisas relacionadas à aprendizagem de línguas e culturas em contextos colaborativos on-line.

  16. Zoomed EPI-DWI of the head and neck with two-dimensional, spatially-selective radiofrequency excitation pulses

    Riffel, Philipp; Michaely, Henrik J.; Attenberger, Ulrike I.; Schoenberg, Stefan O.; Haneder, Stefan [University Medical Center Mannheim, Medical Faculty Mannheim - Heidelberg University, Institute of Clinical Radiology and Nuclear Medicine, Mannheim (Germany); Morelli, John N. [Johns Hopkins University School of Medicine, Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Pfeuffer, Josef [Siemens Healthcare Sector, Application Development, Erlangen (Germany)

    2014-10-15

    To evaluate the feasibility of zoomed diffusion-weighted EPI (z-EPI) in the head and neck in a healthy volunteer population and to compare to conventional single-shot EPI (c-EPI). Nine volunteers were included in this prospective, IRB-approved study. Examinations were performed on a 3 T-MR system equipped with a two-channel, fully-dynamic parallel transmit array. The acquired sequences consisted of a T2w-TSE, a c-EPI, and two z-EPI acquisitions. For quantitative assessment of distortion artefacts, DW images were fused with T2-TSE images. Misregistration of DW images with T2-TSE images was assessed in the cervical spine. For qualitative assessment, two readers ranked c-EPI and z-EPI sequences in terms of susceptibility artefacts, image blur, and overall imaging preference. ADC values of several anatomical regions were calculated and compared between sequences. Mean maximum distortion with the c-EPI was 5.9 mm ± 1.6 mm versus 2.4 mm ± 1 mm (p < 0.05) with z-EPI. Both readers found more blur and susceptibility artefacts in every case with c-EPI. No statistically significant differences in calculated ADC values were observed. z-EPI of the head and neck leads to substantial image quality improvements relative to c-EPI due to a reduction in susceptibility artefacts and image blur. (orig.)

  17. Clinical application of EPI diffusion weighted image (DWI) for ischemic brain disease

    Zenke, Kiichiro; Kusunoki, Katsusuke; Saito, Masahiro; Sadamoto, Kazuhiko; Sakaki, Saburo; Kumon, Yoshiaki; Nagasawa, Kiyoshi

    1999-01-01

    Diffusion-weighted magnetic resonance image (DWI) with Echo Planar imaging (EPI) techniques were utilized in 74 consecutive patients who were suspected or diagnosed as having occlusive cerebrovascular diseases. Of three EPI-DWI techniques-single shot DWI, multi-shot DWI and isotropic DWI-, isotropic DWI was the most useful study for diagnosing occlusive cerebro-vascular disease. EPI-DWI could identify fresh infarction, even small cortical infarctions, in the setting of multiple high intensity lesions shown by T2 weighted image (T2WI), and could detect infarcted lesions early after the onset. In the patients whose lesions were not revealed on the initial EPI-DWIs, new infarcted lesion were not found on later MRIs, and their symptoms disappeared completely. High intensity lesions observed on EPI-DWIs mostly decreased signal intensities about 2 weeks after the onset, and the intensities of lesions in the gray matter were reduced earlier than those in the white matter. (author)

  18. Implementation and Application of PSF-Based EPI Distortion Correction to High Field Animal Imaging

    Dominik Paul

    2009-01-01

    Full Text Available The purpose of this work is to demonstrate the functionality and performance of a PSF-based geometric distortion correction for high-field functional animal EPI. The EPI method was extended to measure the PSF and a postprocessing chain was implemented in Matlab for offline distortion correction. The correction procedure was applied to phantom and in vivo imaging of mice and rats at 9.4T using different SE-EPI and DWI-EPI protocols. Results show the significant improvement in image quality for single- and multishot EPI. Using a reduced FOV in the PSF encoding direction clearly reduced the acquisition time for PSF data by an acceleration factor of 2 or 4, without affecting the correction quality.

  19. Active noise canceling system for mechanically cooled germanium radiation detectors

    Nelson, Karl Einar; Burks, Morgan T

    2014-04-22

    A microphonics noise cancellation system and method for improving the energy resolution for mechanically cooled high-purity Germanium (HPGe) detector systems. A classical adaptive noise canceling digital processing system using an adaptive predictor is used in an MCA to attenuate the microphonics noise source making the system more deployable.

  20. Direct observations of the vacancy and its annealing in germanium

    Slotte, J.; Kilpeläinen, S.; Tuomisto, F.

    2011-01-01

    Weakly n-type doped germanium has been irradiated with protons up to a fluence of 3×1014 cm-2 at 35 K and 100 K in a unique experimental setup. Positron annihilation measurements show a defect lifetime component of 272±4 ps at 35 K in in situ positron lifetime measurements after irradiation at 100...

  1. Radiation-enhanced self- and boron diffusion in germanium

    Schneider, S.; Bracht, H.; Klug, J.N.

    2013-01-01

    We report experiments on proton radiation-enhanced self- and boron (B) diffusion in germanium (Ge) for temperatures between 515 ∘ C and 720 ∘ C. Modeling of the experimental diffusion profiles measured by means of secondary ion mass spectrometry is achieved on the basis of the Frenkel pair reaction...

  2. Synthesis and characterization of germanium monosulphide (GeS)

    This paper reports the growth of germanium monosulphide (GeS) single crystals by vapour phase technique using different transporting agents. The single crystallinity and composition of the grown crystals have been verified by transmission electron microscopy (TEM) and energy dispersive analysis of X-rays (EDAX) ...

  3. Dislocation multiplication rate in the early stage of germanium plasticity

    Fikar, J.; Dupas, Corinne; Kruml, Tomáš; Jacques, A.; Martin, J. L.

    400-401, - (2005), s. 431-434 ISSN 0921-5093. [Dislocations 2004. La Colle-sur-Loup, 13.09.2004-17.09.2004] Institutional research plan: CEZ:AV0Z2041904 Keywords : dislocation multiplication * germanium * constitutive modelling Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.347, year: 2005

  4. Effect of normal processes on thermal conductivity of germanium ...

    Abstract. The effect of normal scattering processes is considered to redistribute the phonon momentum in (a) the same phonon branch – KK-S model and (b) between differ- ent phonon branches – KK-H model. Simplified thermal conductivity relations are used to estimate the thermal conductivity of germanium, silicon and ...

  5. Composite germanium monochromators - results for the TriCS

    Schefer, J.; Fischer, S.; Boehm, M.; Keller, L.; Horisberger, M.; Medarde, M.; Fischer, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    Composite germanium monochromators are in the beginning of their application in neutron diffraction. We show here the importance of the permanent quality control with neutrons on the example of the 311 wafers which will be used on the single crystal diffractometer TriCS at SINQ. (author) 2 figs., 3 refs.

  6. Development of revitalisation technique for impaired lithium doped germanium detector

    Singh, N.S.B.; Rafi Ahmed, A.G.; Balasubramanian, G.R.

    1994-01-01

    Semiconductor detectors play very significant role in photon detection and are important tools in the field of gamma spectroscopy. Lithium doped germanium detectors belong to this category. The development of revitalisation technique for these impaired detectors are discussed in this report

  7. Molecular precursors for the phase-change material germanium-antimony-telluride, Ge{sub 2}Sb{sub 2}Te{sub 5} (GST)

    Harmgarth, Nicole; Zoerner, Florian; Engelhardt, Felix; Edelmann, Frank T. [Chemisches Institut, Otto-von-Guericke-Universitaet Magdeburg (Germany); Liebing, Phil [Laboratorium fuer Anorganische Chemie, ETH Zuerich (Switzerland); Burte, Edmund P.; Silinskas, Mindaugas [Institut fuer Mikro- und Sensorsysteme, Otto-von-Guericke-Universitaet Magdeburg (Germany)

    2017-10-04

    This review provides an overview of the precursor chemistry that has been developed around the phase-change material germanium-antimony-telluride, Ge{sub 2}Sb{sub 2}Te{sub 5} (GST). Thin films of GST can be deposited by employing either chemical vapor deposition (CVD) or atomic layer deposition (ALD) techniques. In both cases, the success of the layer deposition crucially depends on the proper choice of suitable molecular precursors. Previously reported processes mainly relied on simple alkoxides, alkyls, amides and halides of germanium, antimony, and tellurium. More sophisticated precursor design provided a number of promising new aziridinides and guanidinates. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Performance and stability tests of bare high purity germanium detectors in liquid argon for the GERDA experiment

    Barnabe Heider, Marik

    2009-05-27

    GERDA will search for neutrinoless double beta decay of {sup 76}Ge by using a novel approach of bare germanium detectors in liquid argon (LAr). Enriched germanium detectors from the previous Heidelberg-Moscow and IGEX experiments have been reprocessed and will be deployed in GERDA Phase-I. At the center of this thesis project is the study of the performance of bare germanium detectors in cryogenic liquids. Identical detector performance as in vacuum cryostats (2.2 keV FWHM at 1.3 MeV) was achieved in cryogenic liquids with a new low-mass detector assembly and contacts. One major result is the discovery of a radiation induced leakage current (LC) increase when operating bare detectors with standard passivation layers in LAr. Charge collection and build-up on the passivation layer were identified as the origin of the LC increase. It was found that diodes without passivation do not exhibit this feature. Three month-long stable operation in LAr at {proportional_to} 5 pA LC under periodic gamma irradiation demonstrated the suitability of the modi ed detector design. Based on these results, all Phase-I detectors were reprocessed without passivation layer and subsequently successfully characterized in LAr in the GERDA underground Detector Laboratory. The mass loss during the reprocessing was {proportional_to}300 g out of 17.9 kg and the exposure above ground {proportional_to} 5 days. This results in a negligible cosmogenic background increase of {proportional_to} 5.10{sup -4} cts/(keV.kg.y) at {sup 76}Ge Q{sub {beta}}{sub {beta}} for {sup 60}Co and {sup 68}Ge. (orig.)

  9. Pulse shapes and surface effects in segmented germanium detectors

    Lenz, Daniel

    2010-01-01

    It is well established that at least two neutrinos are massive. The absolute neutrino mass scale and the neutrino hierarchy are still unknown. In addition, it is not known whether the neutrino is a Dirac or a Majorana particle. The GERmanium Detector Array (GERDA) will be used to search for neutrinoless double beta decay of 76 Ge. The discovery of this decay could help to answer the open questions. In the GERDA experiment, germanium detectors enriched in the isotope 76 Ge are used as source and detector at the same time. The experiment is planned in two phases. In the first, phase existing detectors are deployed. In the second phase, additional detectors will be added. These detectors can be segmented. A low background index around the Q value of the decay is important to maximize the sensitivity of the experiment. This can be achieved through anti-coincidences between segments and through pulse shape analysis. The background index due to radioactive decays in the detector strings and the detectors themselves was estimated, using Monte Carlo simulations for a nominal GERDA Phase II array with 18-fold segmented germanium detectors. A pulse shape simulation package was developed for segmented high-purity germanium detectors. The pulse shape simulation was validated with data taken with an 19-fold segmented high-purity germanium detector. The main part of the detector is 18-fold segmented, 6-fold in the azimuthal angle and 3-fold in the height. A 19th segment of 5mm thickness was created on the top surface of the detector. The detector was characterized and events with energy deposited in the top segment were studied in detail. It was found that the metalization close to the end of the detector is very important with respect to the length of the of the pulses observed. In addition indications for n-type and p-type surface channels were found. (orig.)

  10. Pulse shapes and surface effects in segmented germanium detectors

    Lenz, Daniel

    2010-03-24

    It is well established that at least two neutrinos are massive. The absolute neutrino mass scale and the neutrino hierarchy are still unknown. In addition, it is not known whether the neutrino is a Dirac or a Majorana particle. The GERmanium Detector Array (GERDA) will be used to search for neutrinoless double beta decay of {sup 76}Ge. The discovery of this decay could help to answer the open questions. In the GERDA experiment, germanium detectors enriched in the isotope {sup 76}Ge are used as source and detector at the same time. The experiment is planned in two phases. In the first, phase existing detectors are deployed. In the second phase, additional detectors will be added. These detectors can be segmented. A low background index around the Q value of the decay is important to maximize the sensitivity of the experiment. This can be achieved through anti-coincidences between segments and through pulse shape analysis. The background index due to radioactive decays in the detector strings and the detectors themselves was estimated, using Monte Carlo simulations for a nominal GERDA Phase II array with 18-fold segmented germanium detectors. A pulse shape simulation package was developed for segmented high-purity germanium detectors. The pulse shape simulation was validated with data taken with an 19-fold segmented high-purity germanium detector. The main part of the detector is 18-fold segmented, 6-fold in the azimuthal angle and 3-fold in the height. A 19th segment of 5mm thickness was created on the top surface of the detector. The detector was characterized and events with energy deposited in the top segment were studied in detail. It was found that the metalization close to the end of the detector is very important with respect to the length of the of the pulses observed. In addition indications for n-type and p-type surface channels were found. (orig.)

  11. Germanium detector studies in the framework of the GERDA experiment

    Budjas, Dusan

    2009-05-06

    The GERmanium Detector Array (GERDA) is an ultra-low background experiment under construction at Laboratori Nazionali del Gran Sasso. GERDA will search for {sup 76}Ge neutrinoless double beta decay with an aim for 100-fold reduction in background compared to predecessor experiments. This ambition necessitates innovative design approaches, strict selection of low-radioactivity materials, and novel techniques for active background suppression. The core feature of GERDA is its array of germanium detectors for ionizing radiation, which are enriched in {sup 76}Ge. Germanium detectors are the central theme of this dissertation. The first part describes the implementation, testing, and optimisation of Monte Carlo simulations of germanium spectrometers, intensively involved in the selection of low-radioactivity materials. The simulations are essential for evaluations of the gamma ray measurements. The second part concerns the development and validation of an active background suppression technique based on germanium detector signal shape analysis. This was performed for the first time using a BEGe-type detector, which features a small read-out electrode. As a result of this work, BEGe is now one of the two detector technologies included in research and development for the second phase of the GERDA experiment. A suppression of major GERDA backgrounds is demonstrated, with (0.93{+-}0.08)% survival probability for events from {sup 60}Co, (21{+-}3)% for {sup 226}Ra, and (40{+-}2)% for {sup 228}Th. The acceptance of {sup 228}Th double escape events, which are analogous to double beta decay, was kept at (89{+-}1)%. (orig.)

  12. Si-Based Germanium Tin Semiconductor Lasers for Optoelectronic Applications

    Al-Kabi, Sattar H. Sweilim

    Silicon-based materials and optoelectronic devices are of great interest as they could be monolithically integrated in the current Si complementary metal-oxide-semiconductor (CMOS) processes. The integration of optoelectronic components on the CMOS platform has long been limited due to the unavailability of Si-based laser sources. A Si-based monolithic laser is highly desirable for full integration of Si photonics chip. In this work, Si-based germanium-tin (GeSn) lasers have been demonstrated as direct bandgap group-IV laser sources. This opens a completely new avenue from the traditional III-V integration approach. In this work, the material and optical properties of GeSn alloys were comprehensively studied. The GeSn films were grown on Ge-buffered Si substrates in a reduced pressure chemical vapor deposition system with low-cost SnCl4 and GeH4 precursors. A systematic study was done for thin GeSn films (thickness 400 nm) with Sn composition 5 to 17.5%. The room temperature photoluminescence (PL) spectra were measured that showed a gradual shift of emission peaks towards longer wavelength as Sn composition increases. Strong PL intensity and low defect density indicated high material quality. Moreover, the PL study of n-doped samples showed bandgap narrowing compared to the unintentionally p-doped (boron) thin films with similar Sn compositions. Finally, optically pumped GeSn lasers on Si with broad wavelength coverage from 2 to 3 mum were demonstrated using high-quality GeSn films with Sn compositions up to 17.5%. The achieved maximum Sn composition of 17.5% broke the acknowledged Sn incorporation limit using similar deposition chemistry. The highest lasing temperature was measured at 180 K with an active layer thickness as thin as 270 nm. The unprecedented lasing performance is due to the achievement of high material quality and a robust fabrication process. The results reported in this work show a major advancement towards Si-based electrically pumped mid

  13. Formation of microcrystalline germanium (μc-Ge:H) films from inductively coupled plasma CVD

    Okamoto, Y.; Makihara, K.; Higashi, S.; Miyazaki, S.

    2005-01-01

    Inductively coupled RF plasma of H 2 -diluted GeH 4 gas was applied to the growth of hydrogenated microcrystalline germanium (μc-Ge:H) films on quartz in a reactor with an external single-turn antenna placed on quartz plate window parallel to the substrate. The deposition rate, the crystallinity and the thickness of an amorphous incubation layer formed in the early stages of the film growth were evaluated as functions of GeH 4 concentration, gas flow rate, substrate temperature and the distance between the antenna and the grounded substrate susceptor. We demonstrated the growth of highly crystalized Ge films at a rate as high as 0.9 nm/s at 250 deg. C using a 8.3% GeH 4 diluted with H 2

  14. Determination of the Peltier Coefficient of Germanium in a Vertical Bridgeman-Stockbarger Furnace

    Weigel, Michaela E. K.; Matthiesen, David H.

    1997-01-01

    The Peltier effect is the fundamental mechanism that makes interface demarcation through current pulsing possible. If a method for calculating the necessary current density for effective demarcation is to be developed, it will be necessary to know the value of the Peltier coefficient. This study determined experimentally the value of the Peltier coefficient for gallium-doped germanium by comparing the change in average growth rates between current-on and current-off periods. Current-on and current-off layer thickness measurements were made using differential interference contrast microscopy and atomic force microscopy. It was found that the Joule and Thomson effects could not be neglected. Peltier coefficients calculated from the experimental data with an analysis that accounts for Joule, Thomson, and Peltier effects yielded an average value for the Peltier coefficient of 0.076 +/- 0.015 V.

  15. Preparation of germanium doped plasma polymerized coatings as ICF target ablators

    Brusasco, R.M.; Saculla, M.D.; Cook, R.C.

    1994-01-01

    Targets for Inertial Confinement Fusion (ICF) experiments at the Lawrence Livermore National Laboratory (LLNL) utilize an organic (CH) ablator coating prepared by plasma polymerization. Some of these experiments require a mid-Z dopant in the ablator coating to modify the opacity of the shell. Bromine had been used in the past, but the surface finish of brominated CH degrades rapidly with time upon exposure to air. This paper describes the preparation and characterization of plasma polymer layers containing germanium as a dopant at concentrations of between 1.25 and 2.25 atom percent. The coatings are stable in air and have an rms surface roughness of 7--9 nm (modes 10--1,000) which is similar to that obtained with undoped coatings. High levels of dopant result in cracking of the inner mandrel during target assembly. Possible explanations for the observed cracking behavior will be discussed

  16. Ion-beam doping of amorphous silicon with germanium isovalent impurity

    Khokhlov, A.F.; Mashin, A.I.; Ershov, A.V.; Mashin, N.I.; Ignat'eva, E.A.

    1988-01-01

    Experimental data on ion-beam doping of amorphous silicon containing minor germanium additions by donor and acceptor impurity are presented. Doping of a-Si:Ge films as well as of a-Si layers was performed by implantation of 40 keV energy B + ions or 120 keV energy phosphorus by doses from 3.2x10 13 up to 1.3x10 17 cm -2 . Ion current density did not exceed 1 μA/cm 2 . Radiation defect annealing was performed at 400 deg C temperature during 30 min. Temperature dependences of conductivity in the region of 160-500 K were studied. It is shown that a-Si:Ge is like hydrogenized amorphous silicon in relation to doping

  17. Advanced Epi Tools for Gallium Nitride Light Emitting Diode Devices

    Patibandla, Nag; Agrawal, Vivek

    2012-12-01

    Over the course of this program, Applied Materials, Inc., with generous support from the United States Department of Energy, developed a world-class three chamber III-Nitride epi cluster tool for low-cost, high volume GaN growth for the solid state lighting industry. One of the major achievements of the program was to design, build, and demonstrate the world’s largest wafer capacity HVPE chamber suitable for repeatable high volume III-Nitride template and device manufacturing. Applied Materials’ experience in developing deposition chambers for the silicon chip industry over many decades resulted in many orders of magnitude reductions in the price of transistors. That experience and understanding was used in developing this GaN epi deposition tool. The multi-chamber approach, which continues to be unique in the ability of the each chamber to deposit a section of the full device structure, unlike other cluster tools, allows for extreme flexibility in the manufacturing process. This robust architecture is suitable for not just the LED industry, but GaN power devices as well, both horizontal and vertical designs. The new HVPE technology developed allows GaN to be grown at a rate unheard of with MOCVD, up to 20x the typical MOCVD rates of 3{micro}m per hour, with bulk crystal quality better than the highest-quality commercial GaN films grown by MOCVD at a much cheaper overall cost. This is a unique development as the HVPE process has been known for decades, but never successfully commercially developed for high volume manufacturing. This research shows the potential of the first commercial-grade HVPE chamber, an elusive goal for III-V researchers and those wanting to capitalize on the promise of HVPE. Additionally, in the course of this program, Applied Materials built two MOCVD chambers, in addition to the HVPE chamber, and a robot that moves wafers between them. The MOCVD chambers demonstrated industry-leading wavelength yield for GaN based LED wafers and industry

  18. Comparative analysis of germanium-silicon quantum dots formation on Si(100), Si(111) and Sn/Si(100) surfaces

    Lozovoy, Kirill; Kokhanenko, Andrey; Voitsekhovskii, Alexander

    2018-02-01

    In this paper theoretical modeling of formation and growth of germanium-silicon quantum dots in the method of molecular beam epitaxy (MBE) on different surfaces is carried out. Silicon substrates with crystallographic orientations (100) and (111) are considered. Special attention is paid to the question of growth of quantum dots on the silicon surface covered by tin, since germanium-silicon-tin system is extremely important for contemporary nano- and optoelectronics: for creation of photodetectors, solar cells, light-emitting diodes, and fast-speed transistors. A theoretical approach for modeling growth processes of such semiconductor compounds during the MBE is presented. Both layer-by-layer and island nucleation stages in the Stranski-Krastanow growth mode are described. A change in free energy during transition of atoms from the wetting layer to an island, activation barrier of the nucleation, critical thickness of 2D to 3D transition, as well as surface density and size distribution function of quantum dots in these systems are calculated with the help of the established model. All the theoretical speculations are carried out keeping in mind possible device applications of these materials. In particular, it is theoretically shown that using of the Si(100) surface covered by tin as a substrate for Ge deposition may be very promising for increasing size homogeneity of quantum dot array for possible applications in low-noise selective quantum dot infrared photodetectors.

  19. Self-interference fluorescence microscopy with three-phase detection for depth-resolved confocal epi-fluorescence imaging.

    Braaf, Boy; de Boer, Johannes F

    2017-03-20

    Three-dimensional confocal fluorescence imaging of in vivo tissues is challenging due to sample motion and limited imaging speeds. In this paper a novel method is therefore presented for scanning confocal epi-fluorescence microscopy with instantaneous depth-sensing based on self-interference fluorescence microscopy (SIFM). A tabletop epi-fluorescence SIFM setup was constructed with an annular phase plate in the emission path to create a spectral self-interference signal that is phase-dependent on the axial position of a fluorescent sample. A Mach-Zehnder interferometer based on a 3 × 3 fiber-coupler was developed for a sensitive phase analysis of the SIFM signal with three photon-counter detectors instead of a spectrometer. The Mach-Zehnder interferometer created three intensity signals that alternately oscillated as a function of the SIFM spectral phase and therefore encoded directly for the axial sample position. Controlled axial translation of fluorescent microsphere layers showed a linear dependence of the SIFM spectral phase with sample depth over axial image ranges of 500 µm and 80 µm (3.9 × Rayleigh range) for 4 × and 10 × microscope objectives respectively. In addition, SIFM was in good agreement with optical coherence tomography depth measurements on a sample with indocyanine green dye filled capillaries placed at multiple depths. High-resolution SIFM imaging applications are demonstrated for fluorescence angiography on a dye-filled capillary blood vessel phantom and for autofluorescence imaging on an ex vivo fly eye.

  20. Poling effect of a charge-trapping layer in glass waveguides

    Ren, Yitao; Marckmann, Carl Johan; Jacobsen, Rune Shim

    2004-01-01

    Germanium-doped multi-layer waveguides containing a silicon oxy-nitride layer as a charge trapper are thermally poled in an air environment. Compared to the waveguides without the trapping layer, the induced linear electro-optic coefficient increases more than 20%. A comparable rise in the intern...

  1. Distortion Correction in Fetal EPI Using Non-Rigid Registration With a Laplacian Constraint.

    Kuklisova-Murgasova, Maria; Lockwood Estrin, Georgia; Nunes, Rita G; Malik, Shaihan J; Rutherford, Mary A; Rueckert, Daniel; Hajnal, Joseph V

    2018-01-01

    Geometric distortion induced by the main B0 field disrupts the consistency of fetal echo planar imaging (EPI) data, on which diffusion and functional magnetic resonance imaging is based. In this paper, we present a novel data-driven method for simultaneous motion and distortion correction of fetal EPI. A motion-corrected and reconstructed T2 weighted single shot fast spin echo (ssFSE) volume is used as a model of undistorted fetal brain anatomy. Our algorithm interleaves two registration steps: estimation of fetal motion parameters by aligning EPI slices to the model; and deformable registration of EPI slices to slices simulated from the undistorted model to estimate the distortion field. The deformable registration is regularized by a physically inspired Laplacian constraint, to model distortion induced by a source-free background B0 field. Our experiments show that distortion correction significantly improves consistency of reconstructed EPI volumes with ssFSE volumes. In addition, the estimated distortion fields are consistent with fields calculated from acquired field maps, and the Laplacian constraint is essential for estimation of plausible distortion fields. The EPI volumes reconstructed from different scans of the same subject were more consistent when the proposed method was used in comparison with EPI volumes reconstructed from data distortion corrected using a separately acquired B0 field map.

  2. A Germanium Back Contact Type Thermophotovoltaic Cell

    Nagashima, Tomonori; Okumura, Kenichi; Yamaguchi, Masafumi

    2007-01-01

    A Ge back contact type photovoltaic cell has been proposed to reduce resistance loss for high current densities in thermophotovoltaic systems. The back contact structure requires less surface recombination velocities than conventional structures with front grid contacts. A SiO2/SiNx double anti-reflection coating including a high refractive index SiNx layer was studied. The SiNx layer has an enough passivation effect to obtain high efficiency. The quantum efficiency of the Ge cell was around 0.8 in the 800-1600 nm wavelength range. The conversion efficiency for infrared lights was estimated at 18% for a blackbody surface and 25% for a selective emitter by using the quantum efficiency and a simulation analysis

  3. Bioavailable concentrations of germanium and rare earth elements in soil as affected by low molecular weight organic acids and root exudates

    Wiche, Oliver; Székely, Balázs; Kummer, Nicolai-Alexeji; Heinemann, Ute; Tesch, Silke; Heilmeier, Hermann

    2014-05-01

    Availability of elements in soil to plant is generally dependent on the solubility and mobility of elements in soil solution which is controlled by soil, elemental properties and plant-soil interactions. Low molecular organic acids or other root exudates may increase mobility and availability of certain elements for plants as an effect of lowering pH in the rhizosphere and complexation. However, these processes take place in a larger volume in soil, therefore to understand their nature, it is also important to know in which layers of the soil what factors modify these processes. In this work the influence of citric acid and root exudates of white lupin (Lupinus albus L.) on bioavailable concentrations of germanium, lanthan, neodymium, gadolinium and erbium in soil solution and uptake in root and shoot of rape (Brassica napus L.), comfrey (Symphytum officinale L.), common millet (Panicum milliaceum L.) and oat (Avena sativa L.) was investigated. Two different pot experiments were conducted: (1) the mentioned plant species were treated with nutrient solutions containing various amount of citric acid; (2) white lupin was cultivated in mixed culture (0 % lupin, 33 % lupin) with oat (Avena sativa L.) and soil solution was obtained by plastic suction cups placed at various depths. As a result, addition of citric acid significantly increased germanium concentrations in plant tissue of comfrey and rape and increased translocation of germanium, lanthan, neodymium, gadolinium and erbium from root to shoot. The cultivation of white lupin in mixed culture with oat led to significantly higher concentrations of germanium and increasing concentrations of lanthan, neodymium, gadolinium and erbium in soil solution and aboveground plant tissue. In these pots concentrations of citric acid in soil solution were significantly higher than in the control. The results show, that low molecular organic acids exuded by plant roots are of great importance for the mobilization of germanium

  4. Event timing in high purity germanium coaxial detectors

    El-Ibiary, M.Y.

    1979-08-01

    The timing of gamma ray radiation in systems using high purity coaxial germanium detectors is analyzed and compared to that of systems using Ge(Li) detectors. The analysis takes into account the effect of the residual impurities on the electric field distribution, and hence on the rate of rise of the electrical pulses delivered to the timing module. Conditions under which the electric field distribution could lead to an improvement in timing performance, are identified. The results of the analysis confirm the experimental results published elsewhere and when compared with those for Ge(Li) detectors, which usually operate under conditions of charge carrier velocity saturation, confirm that high purity germanium detectors need not have inferior timing characteristics. A chart is given to provide a quantitative basis on which the trade off between the radius of the detector and its time resolution may be made

  5. Development of neutron-transmutation-doped germanium bolometer material

    Palaio, N.P.

    1983-08-01

    The behavior of lattice defects generated as a result of the neutron-transmutation-doping of germanium was studied as a function of annealing conditions using deep level transient spectroscopy (DLTS) and mobility measurements. DLTS and variable temperature Hall effect were also used to measure the activation of dopant impurities formed during the transmutation process. In additioon, a semi-automated method of attaching wires on to small chips of germanium ( 3 ) for the fabrication of infrared detecting bolometers was developed. Finally, several different types of junction field effect transistors were tested for noise at room and low temperature (approx. 80 K) in order to find the optimum device available for first stage electronics in the bolometer signal amplification circuit

  6. Synthesis and Gas Phase Thermochemistry of Germanium-Containing Compounds

    Classen, Nathan Robert [Iowa State Univ., Ames, IA (United States)

    2002-01-01

    The driving force behind much of the work in this dissertation was to gain further understanding of the unique olefin to carbene isomerization observed in the thermolysis of 1,1-dimethyl-2-methylenesilacyclobutane by finding new examples of it in other silicon and germanium compounds. This lead to the examination of a novel phenylmethylenesilacyclobut-2-ene, which did not undergo olefin to carbene rearrangement. A synthetic route to methylenegermacyclobutanes was developed, but the methylenegermacyclobutane system exhibited kinetic instability, making the study of the system difficult. In any case the germanium system decomposed through a complex mechanism which may not include olefin to carbene isomerization. However, this work lead to the study of the gas phase thermochemistry of a series of dialkylgermylene precursors in order to better understand the mechanism of the thermal decomposition of dialkylgermylenes. The resulting dialkylgermylenes were found to undergo a reversible intramolecular β C-H insertion mechanism.

  7. Vanadocene reactions with mixed acylates of silicon, germanium and tin

    Latyaeva, V.N.; Lineva, A.N.; Zimina, S.V.; Gordetsov, A.S.; Dergunov, Yu.I.

    1981-01-01

    Vanadocene interaction with di-and tri-alkyl (aryl)-derivatives of silicon, tin and germanium is studied. Dibutyltin dibenzoate under mild conditions (20 deg C, toluene) oxidates vanadocene to [CpV(OCOC 6 H 5 ) 2 ] 2 , at that, the splitting off of one Cp group in the form of cyclopentadiene and formation of the products of tin-organic fragment disproportionation (tributyltin benzoate, dibutyltin, metallic tin) take place. Tributyltin benzoate oxidates vanadocene at the mole ratio 2:1 and during prolong heating (120 deg C) in the absence of the solvent, [CpV(OCOC 6 H 5 ) 2 ] 2 and hexabutyldistannate are the products of the reaction. Acetates R 3 SnOCOCH 3 react in the similar way. The reactivity of mono- and diacylates of germanium and silicon decreases in the series of derivatives Sn>Ge>Si [ru

  8. Mechanically-cooled germanium detector using two stirling refrigerators

    Katagiri, Masaki; Kobayashi, Yoshii; Takahashi, Koji

    1996-01-01

    In this paper, we present a developed mechanically-cooled germanium gamma-ray detector using Stirling refrigerators. Two Stirling refrigerators having cooling faculty of 1.5W at 80K were used to cool down a germanium detector element to 77K instead of a dewar containing liquid nitrogen. An 145cm 3 (56.0mmf x 59.1 mml) closed-end Ge(I) detector having relative detection efficiency of 29.4% was attached at the refrigerators. The size of the detector was 60cml x 15cmh x 15cmw. The lowest cooling temperature, 70K was obtained after 8 hours operation. The energy resolutions for 1.33MeV gamma-rays and for pulser signals were 2.43keV and 1.84keV at an amplifier shaping time of 2μsec, respectively

  9. The Future of Low Temperature Germanium as Dark Matter Detectors

    CERN. Geneva

    2009-01-01

    The Weakly Interactive Massive Particles (WIMPs) represent one of the most attractive candidates for the dark matter in the universe. With the combination of experiments attempting to detect WIMP scattering in the laboratory, of searches for their annihilation in the cosmos and of their potential production at the LHC, the next five years promise to be transformative. I will review the role played so far by low temperature germanium detectors in the direct detection of WIMPs. Because of its high signal to noise ratio, the simultaneous measurement of athermal phonons and ionization is so far the only demonstrated approach with zero-background. I will argue that this technology can be extrapolated to a target mass of the order of a tonne at reasonable cost and can keep playing a leading role, complementary to noble liquid technologies. I will describe in particular GEODM, the proposed Germanium Observatory for Dark Matter at the US Deep Underground Science and Engineering Laboratory (DUSEL).

  10. Ultraviolet-light-induced processes in germanium-doped silica

    Kristensen, Martin

    2001-01-01

    A model is presented for the interaction of ultraviolet (UV) light with germanium-doped silica glass. It is assumed that germanium sites work as gates for transferring the excitation energy into the silica. In the material the excitation induces forbidden transitions to two different defect states...... which are responsible for the observed refractive index changes. Activation energies [1.85 +/-0.15 eV and 1.91 +/-0.15 eV] and rates [(2.7 +/-1.9) x 10(13) Hz and(7.2 +/-4.5) x 10(13) Hz] are determined for thermal elimination of these states. Good agreement is found with experimental results and new UV...

  11. Long-term radiation damage to a spaceborne germanium spectrometer

    Kurczynski, P; Hull, E L; Palmer, D; Harris, M J; Seifert, H; Teegarden, B J; Gehrels, N; Cline, T L; Ramaty, R; Sheppard, D; Madden, N W; Luke, P N; Cork, C P; Landis, D A; Malone, D F; Hurley, K

    1999-01-01

    The Transient Gamma-Ray Spectrometer aboard the Wind spacecraft in deep space has observed gamma-ray bursts and solar events for four years. The germanium detector in the instrument has gradually deteriorated from exposure to the approx 10 sup 8 p/cm sup 2 /yr(>100 MeV) cosmic-ray flux. Low-energy tailing and loss of efficiency, attributed to hole trapping and conversion of the germanium from n- to p-type as a result of crystal damage, were observed. Raising the detector bias voltage ameliorated both difficulties and restored the spectrometer to working operation. Together, these observations extend our understanding of the effects of radiation damage to include the previously unsuccessfully studied regime of long-term operation in space. (author)

  12. Germanium-doped gallium phosphide obtained by neutron irradiation

    Goldys, E. M.; Barczynska, J.; Godlewski, M.; Sienkiewicz, A.; Heijmink Liesert, B. J.

    1993-08-01

    Results of electrical, optical, electron spin resonance and optically detected magnetic resonance studies of thermal neutron irradiated and annealed at 800 °C n-type GaP are presented. Evidence is found to support the view that the main dopant introduced via transmutation of GaP, germanium, occupies cation sites and forms neutral donors. This confirms the possibility of neutron transmutation doping of GaP. Simultaneously, it is shown that germanium is absent at cation sites. Presence of other forms of Ge-related defects is deduced from luminescence and absorption data. Some of them are tentatively identified as VGa-GeGa acceptors leading to the self-compensation process. This observation means that the neutron transmutation as a doping method in application to GaP is not as efficient as for Si.

  13. The germanium wall of the GEM detector system GEM Collaboration

    Betigeri, M.; Biakowski, E.; Bojowald, H.; Budzanowski, A.; Chatterjee, A.; Drochner, M.; Ernst, J.; Foertsch, S.; Freindl, L.; Frekers, D.; Garske, W.; Grewer, K.; Hamacher, A.; Igel, S.; Ilieva, J.; Jarczyk, L.; Jochmann, M.; Kemmerling, G.; Kilian, K.; Kliczewski, S.; Klimala, W.; Kolev, D.; Kutsarova, T.; Lieb, J.; Lippert, G.; Machner, H.; Magiera, A.; Nann, H.; Pentchev, L.; Plendl, H.S.; Protic, D.; Razen, B.; Rossen, P. von; Roy, B.J.; Siudak, R.; Smyrski, J.; Srikantiah, R.V.; Strzakowski, A.; Tsenov, R.; Zolnierczuk, P.A.; Zwoll, K.

    1999-01-01

    A stack of annular detectors made of high-purity germanium was developed. The detectors are position sensitive with radial structures. The first one ('Quirl') is double-sided position sensitive defining 40,000 pixels, the following three (E1, E2 and E3) have 32 wedges each. The Quirl acts as tracker while the other three act as calorimeter. The stack was successfully operated in meson production reactions close to threshold

  14. Environmental applications for an intrinsic germanium well detector

    Stegnar, P.; Eldridge, J.S.; Teasley, N.A.; Oakes, T.W.

    1984-01-01

    The overall performance of an intrinsic germanium well detector for 125 I measurements was investigated in a program of environmental surveillance. Concentrations of 125 I and 131 I were determined in thyroids of road-killed deer showing the highest activities of 125 I in the animals from the near vicinity of Oak Ridge National Laboratory. This demonstrates the utility of road-killed deer as a bioindicator for radioiodine around nuclear facilities

  15. Environmental applications for an intrinsic germanium well detector

    Stegnar, P.; Eldridge, J.S.; Teasley, N.A.; Oakes, T.W.

    1984-01-01

    The overall performance of an intrinsic germanium well detector for 125 I measurements was investigated in a program of environmental surveillance. Concentrations of 125 I and 131 I were determined in thyroids of road-killed deer showing the highest activities of 125 I in the animals from the near vicinity of Oak Ridge National Laboratory. This demonstrates the utility of road-killed deer as a bionindicator for radioiodine around nuclear facilities. 6 refs., 2 figs., 3 tabs

  16. Environmental applications for an intrinsic germanium well detector

    Stegnar, P.; Eldridge, J.S.; Teasley, N.A.; Oakes, T.W.

    1983-01-01

    The overall performance of an intrinsic germanium well detector for 125 I measurements was investigated in a program of environmental surveillance. Concentrations of 125 I and 131 I were determined in thyroids of road-killed deer showing the highest activities of 125 I in the animals from the near vicinity of Oak Ridge National Laboratory. This demonstrates the utility of road-killed deer as a bioindicator for radioiodine around nuclear facilities. 6 refs., 2 figs., 3 tabs

  17. Diffusion of tin in germanium: A GGA+U approach

    Tahini, H. A.; Chroneos, Alexander; Grimes, R. W.; Schwingenschlö gl, Udo

    2011-01-01

    Density functional theory calculations are used to investigate the formation and diffusion of tin-vacancy pairs (SnV) in germanium(Ge). Depending upon the Fermi energy, SnV pairs can form in neutral, singly negative, or doubly negative charged states. The activation energies of diffusion, also as function of the Fermi energy, are calculated to lie between 2.48-3.65 eV, in agreement with and providing an interpretation of available experimental work.

  18. Melting point of high-purity germanium stable isotopes

    Gavva, V. A.; Bulanov, A. D.; Kut'in, A. M.; Plekhovich, A. D.; Churbanov, M. F.

    2018-05-01

    The melting point (Tm) of germanium stable isotopes 72Ge, 73Ge, 74Ge, 76Ge was determined by differential scanning calorimetry. With the increase in atomic mass of isotope the decrease in Tm is observed. The decrease was equal to 0.15 °C per the unit of atomic mass which qualitatively agrees with the value calculated by Lindemann formula accounting for the effect of "isotopic compression" of elementary cell.

  19. Determination of carbon and nitrogen in silicon and germanium

    Gebauhr, W.; Martin, J.

    1975-01-01

    The essential aim of this study is to examine the various technical and economic problems encountered in the determination of carbon and nitrogen in silicon and germanium, for this is in a way an extension of the discussion concerning the presence of oxygen in these two elements. The greater part of the study is aimed at drawing up a catalogue of the methods of analysis used and of the results obtained so far

  20. Photoluminescent polysaccharide-coated germanium(IV) oxide nanoparticles

    Lobaz, Volodymyr; Rabyk, Mariia; Pánek, Jiří; Doris, E.; Nallet, F.; Štěpánek, Petr; Hrubý, Martin

    2016-01-01

    Roč. 294, č. 7 (2016), s. 1225-1235 ISSN 0303-402X R&D Projects: GA MŠk(CZ) 7AMB14FR027; GA ČR(CZ) GA13-08336S; GA MZd(CZ) NV15-25781A Institutional support: RVO:61389013 Keywords : germanium oxide nanoparticles * polysaccharide coating * photoluminescent label Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.723, year: 2016

  1. Photoconductivity of Germanium Nanowire Arrays Incorporated in Anodic Aluminum Oxide

    Polyakov, B; Prikulis, J; Grigorjeva, L; Millers, D; Daly, B; Holmes, J D; Erts, D

    2007-01-01

    Photoconductivity of germanium nanowire arrays of 50 and 100 nm diameter incorporated into Anodic Aluminum Oxide (AAO) membranes illuminated with visible light is investigated. Photocurrent response to excitation radiation with time constants faster than 10 -4 s were governed by absorption of incident light by nanowires, while photokinetics with time constants of the order of 10 -3 s originates from the photoluminescence of the AAO matrix. Possible applications of nanowire arrays inside AAO as photoresistors are discussed

  2. Strain-induced changes to the electronic structure of germanium

    Tahini, H. A.

    2012-04-17

    Density functional theory calculations (DFT) are used to investigate the strain-induced changes to the electronic structure of biaxially strained (parallel to the (001), (110) and (111) planes) and uniaxially strained (along the [001], [110] and [111] directions) germanium (Ge). It is calculated that a moderate uniaxial strain parallel to the [111] direction can efficiently transform Ge to a direct bandgap material with a bandgap energy useful for technological applications. © 2012 IOP Publishing Ltd.

  3. Diffusion of tin in germanium: A GGA+U approach

    Tahini, H. A.

    2011-10-18

    Density functional theory calculations are used to investigate the formation and diffusion of tin-vacancy pairs (SnV) in germanium(Ge). Depending upon the Fermi energy, SnV pairs can form in neutral, singly negative, or doubly negative charged states. The activation energies of diffusion, also as function of the Fermi energy, are calculated to lie between 2.48-3.65 eV, in agreement with and providing an interpretation of available experimental work.

  4. Energy levels of germanium, Ge I through Ge XXXII

    Sugar, J.; Musgrove, A.

    1993-01-01

    Atomic energy levels of germanium have been compiled for all stages of ionization for which experimental data are available. No data have yet been published for Ge VIII through Ge XIII and Ge XXXII. Very accurate calculated values are compiled for Ge XXXI and XXXII. Experimental g-factors and leading percentages from calculated eigenvectors of levels are given. A value for the ionization energy, either experimental when available or theoretical, is included for the neutral atom and each ion. section

  5. Strain-induced changes to the electronic structure of germanium

    Tahini, H. A.; Chroneos, Alexander I.; Grimes, Robin W.; Schwingenschlö gl, Udo; Dimoulas, Athanasios Dimoulas

    2012-01-01

    Density functional theory calculations (DFT) are used to investigate the strain-induced changes to the electronic structure of biaxially strained (parallel to the (001), (110) and (111) planes) and uniaxially strained (along the [001], [110] and [111] directions) germanium (Ge). It is calculated that a moderate uniaxial strain parallel to the [111] direction can efficiently transform Ge to a direct bandgap material with a bandgap energy useful for technological applications. © 2012 IOP Publishing Ltd.

  6. EpiModel: An R Package for Mathematical Modeling of Infectious Disease over Networks.

    Jenness, Samuel M; Goodreau, Steven M; Morris, Martina

    2018-04-01

    Package EpiModel provides tools for building, simulating, and analyzing mathematical models for the population dynamics of infectious disease transmission in R. Several classes of models are included, but the unique contribution of this software package is a general stochastic framework for modeling the spread of epidemics on networks. EpiModel integrates recent advances in statistical methods for network analysis (temporal exponential random graph models) that allow the epidemic modeling to be grounded in empirical data on contacts that can spread infection. This article provides an overview of both the modeling tools built into EpiModel , designed to facilitate learning for students new to modeling, and the application programming interface for extending package EpiModel , designed to facilitate the exploration of novel research questions for advanced modelers.

  7. Clinical application of multi-shot diffusion EPI in neurological disease

    Ishihara, Tetsuya; Hirata, Koichi; Kubo, Jin; Yamazaki, Kaoru; Sato, Toshihiko

    1998-01-01

    Using the multi-shot EPI method we investigated the clinical application of diffusion weighted imaging (DWI) in the diagnosis of neurological disease. The multi-shot method provided better susceptibility artifact-free DWI than the single-shot method particularly in the region of the posterior cranial fossa. DWI using the multi-shot EPI method readily shows the pyramidal tract extending from the internal capsule to the brainstems which is inaccessible by the conventional single-shot EPI method, and providing three-dimensional and distinct images of pyramidal tract changes in amyotrophic lateral sclerosis or cerebral infarction with pyramidal tract disturbance. Our findings suggest that the use of DWI with the multi-shot EPI method would provide a technique for the easy diagnosis and evaluation of various neurological diseases. (author)

  8. Clinical application of multi-shot diffusion EPI in neurological disease

    Ishihara, Tetsuya; Hirata, Koichi; Kubo, Jin; Yamazaki, Kaoru [Dokkyo Univ., Mibu, Tochigi (Japan). School of Medicine; Sato, Toshihiko

    1998-05-01

    Using the multi-shot EPI method we investigated the clinical application of diffusion weighted imaging (DWI) in the diagnosis of neurological disease. The multi-shot method provided better susceptibility artifact-free DWI than the single-shot method particularly in the region of the posterior cranial fossa. DWI using the multi-shot EPI method readily shows the pyramidal tract extending from the internal capsule to the brainstems which is inaccessible by the conventional single-shot EPI method, and providing three-dimensional and distinct images of pyramidal tract changes in amyotrophic lateral sclerosis or cerebral infarction with pyramidal tract disturbance. Our findings suggest that the use of DWI with the multi-shot EPI method would provide a technique for the easy diagnosis and evaluation of various neurological diseases. (author)

  9. γ-ray tracking in germanium: the backtracking method

    Marel, J. van der; Cederwall, B.

    2002-01-01

    In the framework of a European TMR network project the concept for a γ-ray tracking array is being developed for nuclear physics spectroscopy in the energy range of ∼10 keV up to several MeV. The tracking array will consist of a large number of position-sensitive germanium detectors in a spherical geometry around a target. Due to the high segmentation, a Compton scattered γ-ray will deposit energy in several different segments. A method has been developed to reconstruct the tracks of multiple coincident γ-rays and to find their initial energies. By starting from the final point the track can be reconstructed backwards to the origin with the help of the photoelectric and Compton cross-sections and the Compton scatter formula. Every reconstructed track is given a figure of merit, thus allowing suppression of wrongly reconstructed tracks and γ-rays that have scattered out of the detector system. This so-called backtracking method has been tested on simulated events in a shell-like geometry for germanium and in planar geometries for silicon, germanium and CdTe

  10. An environmentally-friendly vacuum reduction metallurgical process to recover germanium from coal fly ash

    Zhang, Lingen; Xu, Zhenming, E-mail: zmxu@sjtu.edu.cn

    2016-07-15

    Highlights: • An environmental friendly vacuum reduction metallurgical process is proposed. • Rare and valuable metal germanium from coal fly ash is recycled. • Residues are not a hazardous material and can be further recycled. • A germanium recovery ratio of 94.64% is obtained in pilot scale experiments. - Abstract: The demand for germanium in the field of semiconductor, electronics, and optical devices is growing rapidly; however, the resources of germanium are scarce worldwide. As a secondary material, coal fly ash could be further recycled to retrieve germanium. Up to now, the conventional processes to recover germanium have two problems as follows: on the one hand, it is difficult to be satisfactory for its economic and environmental effect; on the other hand, the recovery ratio of germanium is not all that could be desired. In this paper, an environmentally-friendly vacuum reduction metallurgical process (VRMP) was proposed to recover germanium from coal fly ash. The results of the laboratory scale experiments indicated that the appropriate parameters were 1173 K and 10 Pa with 10 wt% coke addition for 40 min, and recovery ratio germanium was 93.96%. On the basis of above condition, the pilot scale experiments were utilized to assess the actual effect of VRMP for recovery of germanium with parameter of 1473 K, 1–10 Pa and heating time 40 min, the recovery ratio of germanium reached 94.64%. This process considerably enhances germanium recovery, meanwhile, eliminates much of the water usage and residue secondary pollution compared with other conventional processes.

  11. EpiCollect+: linking smartphones to web applications for complex data collection projects.

    Aanensen, David M; Huntley, Derek M; Menegazzo, Mirko; Powell, Chris I; Spratt, Brian G

    2014-01-01

    Previously, we have described the development of the generic mobile phone data gathering tool, EpiCollect, and an associated web application, providing two-way communication between multiple data gatherers and a project database. This software only allows data collection on the phone using a single questionnaire form that is tailored to the needs of the user (including a single GPS point and photo per entry), whereas many applications require a more complex structure, allowing users to link a series of forms in a linear or branching hierarchy, along with the addition of any number of media types accessible from smartphones and/or tablet devices (e.g., GPS, photos, videos, sound clips and barcode scanning). A much enhanced version of EpiCollect has been developed (EpiCollect+). The individual data collection forms in EpiCollect+ provide more design complexity than the single form used in EpiCollect, and the software allows the generation of complex data collection projects through the ability to link many forms together in a linear (or branching) hierarchy. Furthermore, EpiCollect+ allows the collection of multiple media types as well as standard text fields, increased data validation and form logic. The entire process of setting up a complex mobile phone data collection project to the specification of a user (project and form definitions) can be undertaken at the EpiCollect+ website using a simple 'drag and drop' procedure, with visualisation of the data gathered using Google Maps and charts at the project website. EpiCollect+ is suitable for situations where multiple users transmit complex data by mobile phone (or other Android devices) to a single project web database and is already being used for a range of field projects, particularly public health projects in sub-Saharan Africa. However, many uses can be envisaged from education, ecology and epidemiology to citizen science.

  12. Visual outcomes after Epi-LASIK and PRK for low and moderate myopia.

    Sia, Rose K; Coe, Charles D; Edwards, Jayson D; Ryan, Denise S; Bower, Kraig S

    2012-01-01

    To evaluate visual outcomes following epi-LASIK compared to photorefractive keratectomy (PRK). Of a total 294 patients aged ≥21 years, 145 (290 eyes) underwent epi-LASIK and 149 (298 eyes) underwent PRK for low to moderate myopia or myopic astigmatism. Epi-LASIK was performed with the Amadeus II epikeratome (Abbott Medical Optics) and PRK with the Amoils rotary epithelial brush (Innovative Excimer Solutions). All ablations were performed using the same excimer laser system. Outcome measures included intraoperative complications, corneal reepithelialization, postoperative pain, uncorrected distance visual acuity (UDVA), manifest refraction spherical equivalent (MRSE), corrected distance visual acuity (CDVA), corneal haze, and quality of vision. Mean preoperative MRSE was -2.97±1.19 diopters (D) for epi-LASIK versus -2.95±1.06 D for PRK. Complete reepithelialization was achieved by postoperative day 4 in 46.9% of epi-LASIK eyes versus 92.4% of PRK eyes, with superior UDVA at postoperative day 1 in the PRK group (P=.002). Using Fisher exact test, a significantly higher percentage of epi-LASIK eyes compared to PRK eyes achieved 20/15 or better at 1 month (25.8% vs 17.8%, P=.031), 3 months (62.3% vs 49.3%, P=.004), 6 months (77.1% vs 57.9%, Pvs 61.9%, P=.002). A change in MRSE >0.50 D occurred in 8.4% of epi-LASIK eyes within the 3- and 12-month interval versus 17.7% of PRK eyes (P=.04). No differences were noted between the two procedures in CDVA or clinically significant haze. Epi-LASIK showed superior refractive efficacy and stability but required more time for wound healing, resulting in inferior early visual outcomes and a tendency to overcorrect higher refractive errors compared to PRK. Both treatments were safe and comparable in terms of pain and haze formation. Copyright 2012, SLACK Incorporated.

  13. Generation of iPSC line epiHUVEC from human umbilical vein endothelial cells

    Peggy Matz

    2015-11-01

    Full Text Available Human umbilical vein endothelial cells (HUVECs were used to generate the iPSC line epiHUVEC employing a combination of three episomal-based plasmids expressing OCT4, SOX2, NANOG, LIN28, c-MYC and KLF4. Pluripotency was confirmed both in vivo and in vitro. The transcriptome profile of epiHUVEC and the human embryonic stem cell line — H1 have a Pearson correlation of 0.899.

  14. Long term results of Epi-LASIK and LASEK for myopia.

    Yuksel, Nilay; Bilgihan, Kamil; Hondur, Ahmet M; Yildiz, Burcin; Yuksel, Erdem

    2014-06-01

    To evaluate the long term clinical and confocal results of mechanical (Epi-LASIK) versus alcohol-assisted laser epithelial keratomileusis (LASEK) for correction of myopia. Gazi University Medical School, Department of Ophthalmology, Ankara, Turkey. Retrospective study. Twenty-two eyes treated with LASEK and twenty eyes treated with Epi-LASIK were evaluated with a mean follow-up duration of 45 months. Mechanical separation of the epithelium was performed with Lasitome epithelial separator, and alcohol-assisted separation with 25s application of 18% alcohol. Laser ablation was performed with the ESIRIS laser. All patients were examined daily until epithelial closure; at 1, 3, 6, and 12 months; and every year subsequently. Main outcome measures were uncorrected visual acuity (UCVA), manifest refraction, haze, and gray scale value in confocal microscopy, efficacy and safety indexes. Preoperative myopic spherical equivalent refraction was -4.65 ± 1.74 D in the LASEK and -3.87 ± 1.30 D in the Epi-LASIK-treated eyes (p=0.36). Of both LASEK and Epi-LASIK-treated eyes, 95% achieved 20/25 or better final UCVA. The grade of haze and mean gray scale value in confocal microscopy were similar in LASEK and Epi-LASIK-treated eyes at all postoperative periods. The efficacy index was 0.94 in LASEK group and 0.96 in Epi-LASIK group (p=0.44). The safety index was 1.01 in LASEK group and 1.02 in Epi-LASIK group (p=0.42). Both LASEK and Epi-LASIK offer safe and effective correction of myopia in the long term. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  15. A prospective bilateral comparison of epi-LASIK and LASEK for myopia.

    Hondur, Ahmet; Bilgihan, Kamil; Hasanreisoglu, Berati

    2008-11-01

    To compare the clinical and confocal microscopic results of mechanical (epi-LASIK) versus alcohol-assisted laser epithelial keratomileusis (LASEK) for the correction of myopia. Twenty-five patients with myopia received epi-LASIK in one eye and LASEK in the other. The difference of spherical equivalent refraction of myopia and astigmatism was less than 1.00 diopter (D) in two eyes of each case. Mechanical separation of the epithelium was performed with the Lasitome epithelial separator and alcohol-assisted separation with 25 second application of 18% alcohol. Ablation was performed with the ESIRIS laser. Patients were seen daily until epithelial closure, and at 1, 3, 6, and 12 months. Time to epithelial healing, uncorrected visual acuity (UCVA), manifest refraction, haze, and grey scale value in confocal microscopy were recorded. Preoperative myopic spherical equivalent refraction was -3.95+/-1.49 D in the epi-LASIK and -3.91+/-1.39 D in the LASEK-treated eyes. The mean time to epithelial healing was slightly longer after epi-LASIK (4.86+/-0.64 vs 4.18+/-0.58 days). Of both epi-LASIK and LASEK-treated eyes, 92% achieved 20/20 or better UCVA and were within +/-0.50 D of emmetropia at 12 months. The grade of haze and mean grey scale value in confocal microscopy were similar in epi-LASIK and LASEK-treated eyes at all postoperative periods. One eye treated with epi-LASIK suffered a minor stromal cut. Epi-LASIK and LASEK offer effective correction of myopia with comparable results at 1 year.

  16. EpiReumaPt: how to perform a national population based study - a practical guide

    Gouveia, Nélia; Rodrigues, Ana M.; Ramiro, Sofia; Machado, Pedro; Da Costa, Leonor Pereira; Mourão, Ana Filipa; Silva, Inês; Rego, Tânia; Laires, Pedro; André, Rui; Mauricio, Luís; Romeu, José Carlos; Tavares, Viviana; Cerol, Jorge; Canhão, Helena

    2015-01-01

    BACKGROUND: The aim of this article was to describe and discuss several strategies and standard operating procedures undertaken in the EpiReumaPt study - which was the first Portuguese, national, cross-sectional population-based study of Rheumatic and Musculoskeletal Diseases (RMD). METHODS: The technical procedures, legal issues, management and practical questions were studied, analyzed and discussed with relevant stakeholders. During the 1st phase of EpiReumaPt the coordination team and Cen...

  17. DisEpi: Compact Visualization as a Tool for Applied Epidemiological Research.

    Benis, Arriel; Hoshen, Moshe

    2017-01-01

    Outcomes research and evidence-based medical practice is being positively impacted by proliferation of healthcare databases. Modern epidemiologic studies require complex data comprehension. A new tool, DisEpi, facilitates visual exploration of epidemiological data supporting Public Health Knowledge Discovery. It provides domain-experts a compact visualization of information at the population level. In this study, DisEpi is applied to Attention-Deficit/Hyperactivity Disorder (ADHD) patients within Clalit Health Services, analyzing the socio-demographic and ADHD filled prescription data between 2006 and 2016 of 1,605,800 children aged 6 to 17 years. DisEpi's goals facilitate the identification of (1) Links between attributes and/or events, (2) Changes in these relationships over time, and (3) Clusters of population attributes for similar trends. DisEpi combines hierarchical clustering graphics and a heatmap where color shades reflect disease time-trends. In the ADHD context, DisEpi allowed the domain-expert to visually analyze a snapshot summary of data mining results. Accordingly, the domain-expert was able to efficiently identify that: (1) Relatively younger children and particularly youngest children in class are treated more often, (2) Medication incidence increased between 2006 and 2011 but then stabilized, and (3) Progression rates of medication incidence is different for each of the 3 main discovered clusters (aka: profiles) of treated children. DisEpi delivered results similar to those previously published which used classical statistical approaches. DisEpi requires minimal preparation and fewer iterations, generating results in a user-friendly format for the domain-expert. DisEpi will be wrapped as a package containing the end-to-end discovery process. Optionally, it may provide automated annotation using calendar events (such as policy changes or media interests), which can improve discovery efficiency, interpretation, and policy implementation.

  18. Modeling the Efficiency of a Germanium Detector

    Hayton, Keith; Prewitt, Michelle; Quarles, C. A.

    2006-10-01

    We are using the Monte Carlo Program PENELOPE and the cylindrical geometry program PENCYL to develop a model of the detector efficiency of a planar Ge detector. The detector is used for x-ray measurements in an ongoing experiment to measure electron bremsstrahlung. While we are mainly interested in the efficiency up to 60 keV, the model ranges from 10.1 keV (below the Ge absorption edge at 11.1 keV) to 800 keV. Measurements of the detector efficiency have been made in a well-defined geometry with calibrated radioactive sources: Co-57, Se-75, Ba-133, Am-241 and Bi-207. The model is compared with the experimental measurements and is expected to provide a better interpolation formula for the detector efficiency than simply using x-ray absorption coefficients for the major constituents of the detector. Using PENELOPE, we will discuss several factors, such as Ge dead layer, surface ice layer and angular divergence of the source, that influence the efficiency of the detector.

  19. Organotrichlorogermane synthesis by the reaction of elemental germanium, tetrachlorogermane and organic chloride via dichlorogermylene intermediate.

    Okamoto, Masaki; Asano, Takuya; Suzuki, Eiichi

    2004-08-07

    Organotrichlorogermanes were synthesized by the reaction of elemental germanium, tetrachlorogermane and organic chlorides, methyl, propyl, isopropyl and allyl chlorides. Dichlorogermylene formed by the reaction of elemental germanium with tetrachlorogermane was the reaction intermediate, which was inserted into the carbon-chlorine bond of the organic chloride to give organotrichlorogermane. When isopropyl or allyl chloride was used as an organic chloride, organotrichlorogermane was formed also in the absence of tetrachlorogermane. These chlorides were converted to hydrogen chloride, which subsequently reacted with elemental germanium to give the dichlorogermylene intermediate. The reaction of elemental germanium, tetrachlorogermane and organic chlorides provides a simple and easy method for synthesizing organotrichlorogermanes, and all the raw materials are easily available.

  20. Electrical Manipulation of Donor Spin Qubits in Silicon and Germanium

    Sigillito, Anthony James

    Many proposals for quantum information devices rely on electronic or nuclear spins in semiconductors because of their long coherence times and compatibility with industrial fabrication processes. One of the most notable qubits is the electron spin bound to phosphorus donors in silicon, which offers coherence times exceeding seconds at low temperatures. These donors are naturally isolated from their environments to the extent that silicon has been coined a "semiconductor vacuum". While this makes for ultra-coherent qubits, it is difficult to couple two remote donors so quantum information proposals rely on high density arrays of qubits. Here, single qubit addressability becomes an issue. Ideally one would address individual qubits using electric fields which can be easily confined. Typically these schemes rely on tuning a donor spin qubit onto and off of resonance with a magnetic driving field. In this thesis, we measure the electrical tunability of phosphorus donors in silicon and use the extracted parameters to estimate the effects of electric-field noise on qubit coherence times. Our measurements show that donor ionization may set in before electron spins can be sufficiently tuned. We therefore explore two alternative options for qubit addressability. First, we demonstrate that nuclear spin qubits can be directly driven using electric fields instead of magnetic fields and show that this approach offers several advantages over magnetically driven spin resonance. In particular, spin transitions can occur at half the spin resonance frequency and double quantum transitions (magnetic-dipole forbidden) can occur. In a second approach to realizing tunable qubits in semiconductors, we explore the option of replacing silicon with germanium. We first measure the coherence and relaxation times for shallow donor spin qubits in natural and isotopically enriched germanium. We find that in isotopically enriched material, coherence times can exceed 1 ms and are limited by a

  1. Method of producing buried porous silicon-geramanium layers in monocrystalline silicon lattices

    Fathauer, Robert W. (Inventor); George, Thomas (Inventor); Jones, Eric W. (Inventor)

    1997-01-01

    Lattices of alternating layers of monocrystalline silicon and porous silicon-germanium have been produced. These single crystal lattices have been fabricated by epitaxial growth of Si and Si--Ge layers followed by patterning into mesa structures. The mesa structures are stain etched resulting in porosification of the Si--Ge layers with a minor amount of porosification of the monocrystalline Si layers. Thicker Si--Ge layers produced in a similar manner emitted visible light at room temperature.

  2. The modified CKD-EPI equation may be not more accurate than CKD-EPI equation in determining glomerular filtration rate in Chinese patients with chronic kidney disease.

    Xie, Peng; Huang, Jian-Min; Li, Ying; Liu, Huai-Jun; Qu, Yan

    2017-06-01

    To investigate the application of the new modified Chronic Kidney Disease Epidemiology Collaboration (mCKD-EPI) equation developed by Liu for the measurement of glomerular filtration rate (GFR) in Chinese patients with chronic kidney disease (CKD) and to evaluate whether this modified form is more accurate than the original one in clinical practice. GFR was determined simultaneously by 3 methods: (a) 99m Tc-diethylene triamine pentaacetic acid ( 99m Tc-DTPA) dual plasma sample clearance method (mGFR), which was used as the reference standard; (b) CKD-EPI equation (eGFRckdepi); (c) modified CKD-EPI equation (eGFRmodified). Concordance correlation and Passing-Bablok regression were used to compare the validity of eGFRckdepi and eGFRmodified. Bias, precision and accuracy were compared to identify which equation showed the better performance in determining GFR. A total of 170 patients were enrolled. Both eGFRckdepi and eGFRmodified correlated well with mGFR (concordance correlation coefficient 0.90 and 0.74, respectively) and the Passing-Bablok regression equation of eGFRckdepi and eGFRmodified against mGFR was mGFR = 0.37 + 1.04 eGFRckdepi and -49.25 + 1.74 eGFRmodified, respectively. In terms of bias, precision and 30 % accuracy, eGFRmodified showed a worse performance compared to eGFRckdepi, in the whole cohort. The new modified CKD-EPI equation cannot replace the original CKD-EPI equation in determining GFR in Chinese patients with CKD.

  3. Ion implantation of boron in germanium

    Jones, K.S.

    1985-05-01

    Ion implantation of 11 B + into room temperature Ge samples leads to a p-type layer prior to any post implant annealing steps. Variable temperature Hall measurements and deep level transient spectroscopy experiments indicate that room temperature implantation of 11 B + into Ge results in 100% of the boron ions being electrically active as shallow acceptor, over the entire dose range (5 x 10 11 /cm 2 to 1 x 10 14 /cm 2 ) and energy range (25 keV to 100 keV) investigated, without any post implant annealing. The concentration of damage related acceptor centers is only 10% of the boron related, shallow acceptor center concentration for low energy implants (25 keV), but becomes dominant at high energies (100 keV) and low doses ( 12 /cm 2 ). Three damage related hole traps are produced by ion implantation of 11 B + . Two of these hole traps have also been observed in γ-irradiated Ge and may be oxygen-vacancy related defects, while the third trap may be divacancy related. All three traps anneal out at low temperatures ( 0 C). Boron, from room temperature implantation of BF 2 + into Ge, is not substitutionally active prior to a post implant annealing step of 250 0 C for 30 minutes. After annealing additional shallow acceptors are observed in BF 2 + implanted samples which may be due to fluorine or flourine related complexes which are electrically active

  4. Polarization-sensitive and broadband germanium sulfide photodetectors with excellent high-temperature performance.

    Tan, Dezhi; Zhang, Wenjin; Wang, Xiaofan; Koirala, Sandhaya; Miyauchi, Yuhei; Matsuda, Kazunari

    2017-08-31

    Layered materials, such as graphene, transition metal dichalcogenides and black phosphorene, have been established rapidly as intriguing building blocks for optoelectronic devices. Here, we introduce highly polarization sensitive, broadband, and high-temperature-operation photodetectors based on multilayer germanium sulfide (GeS). The GeS photodetector shows a high photoresponsivity of about 6.8 × 10 3 A W -1 , an extremely high specific detectivity of 5.6 × 10 14 Jones, and broad spectral response in the wavelength range of 300-800 nm. More importantly, the GeS photodetector has high polarization sensitivity to incident linearly polarized light, which provides another degree of freedom for photodetectors. Tremendously enhanced photoresponsivity is observed with a temperature increase, and high responsivity is achievable at least up to 423 K. The establishment of larger photoinduced reduction of the Schottky barrier height will be significant for the investigation of the photoresponse mechanism of 2D layered material-based photodetectors. These attributes of high photocurrent generation in a wide temperature range, broad spectral response, and polarization sensitivity coupled with environmental stability indicate that the proposed GeS photodetector is very suitable for optoelectronic applications.

  5. Optimal process parameters for phosphorus spin-on-doping of germanium

    Boldrini, Virginia [Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, Via Marzolo 8, I-35131 Padova (Italy); INFN-LNL, Viale dell’Università 2, I-35020 Legnaro, Padova (Italy); Carturan, Sara Maria, E-mail: sara.carturan@lnl.infn.it [Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, Via Marzolo 8, I-35131 Padova (Italy); INFN-LNL, Viale dell’Università 2, I-35020 Legnaro, Padova (Italy); Maggioni, Gianluigi; Napolitani, Enrico [Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, Via Marzolo 8, I-35131 Padova (Italy); INFN-LNL, Viale dell’Università 2, I-35020 Legnaro, Padova (Italy); Napoli, Daniel Ricardo [INFN-LNL, Viale dell’Università 2, I-35020 Legnaro, Padova (Italy); Camattari, Riccardo [INFN Sezione di Ferrara, Dipartimento di Fisica, Università di Ferrara, Via Saragat 1, 44122, Ferrara (Italy); De Salvador, Davide [Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, Via Marzolo 8, I-35131 Padova (Italy); INFN-LNL, Viale dell’Università 2, I-35020 Legnaro, Padova (Italy)

    2017-01-15

    Highlights: • Optimized protocol for the application of phosphorus spin-on-doping to Ge surface. • Homogeneous n-type Ge layers, fully electrically active, are obtained. • Crucial parameters for SOD curing are relative humidity, time and temperature. • Characterization of Ge loss from the surface into the SOD film by diffusion. • Spike annealing in standard tube chamber furnace are performed. - Abstract: The fabrication of homogeneously doped germanium layers characterized by total electrical activation is currently a hot topic in many fields, such as microelectronics, photovoltaics, optics and radiation detectors. Phosphorus spin-on-doping technique has been implemented on Ge wafers, by developing a protocol for the curing process and subsequent diffusion annealing for optimal doping. Parameters such as relative humidity and curing time turned out to affect the surface morphology, the degree of reticulation reached by the dopant source and the amount of dopant available for diffusion. After spike annealing in a conventional furnace, diffusion profiles and electrical properties have been measured. Ge loss from the surface during high-temperature annealing, due to diffusion into the source film, has been observed and quantified.

  6. Strain distribution in single, suspended germanium nanowires studied using nanofocused x-rays

    Keplinger, Mario; Grifone, Raphael; Greil, Johannes

    2016-01-01

    Within the quest for direct band-gap group IV materials, strain engineering in germanium is one promising route. We present a study of the strain distribution in single, suspended germanium nanowires using nanofocused synchrotron radiation. Evaluating the probed Bragg reflection for different ill...

  7. Performance of a 6x6 segmented germanium detector for {gamma}-ray tracking

    Valiente-Dobon, J.J. E-mail: j.valiente-dobon@surrey.ac.uk; Pearson, C.J.; Regan, P.H.; Sellin, P.J.; Gelletly, W.; Morton, E.; Boston, A.; Descovich, M.; Nolan, P.J.; Simpson, J.; Lazarus, I.; Warner, D

    2003-06-01

    A 36 fold segmented germanium coaxial detector has been supplied by EURISYS MESURES. The outer contact is segmented both radially and longitudinally. The signals from the fast preamplifiers have been digitised by 12 bit, 40 MHz ADCs. In this article we report preliminary results obtained using this detector and their relevance for future germanium {gamma}-ray tracking arrays.

  8. Oriented bottom-up growth of armchair graphene nanoribbons on germanium

    Arnold, Michael Scott; Jacobberger, Robert Michael

    2016-03-15

    Graphene nanoribbon arrays, methods of growing graphene nanoribbon arrays and electronic and photonic devices incorporating the graphene nanoribbon arrays are provided. The graphene nanoribbons in the arrays are formed using a scalable, bottom-up, chemical vapor deposition (CVD) technique in which the (001) facet of the germanium is used to orient the graphene nanoribbon crystals along the [110] directions of the germanium.

  9. Study of the possibility of growing germanium single crystals under low temperature gradients

    Moskovskih, V. A.; Kasimkin, P. V.; Shlegel, V. N.; Vasiliev, Y. V.; Gridchin, V. A.; Podkopaev, O. I.; Zhdankov, V. N.

    2014-03-01

    The possibility of growing germanium single crystals under low temperature gradients in order to produce a dislocation-free material has been studied. Germanium crystals with a dislocation density of about 100-200 cm-2 have been grown in a system with a weight control of crystal growth at maximum axial gradients of about 1.5 K/cm.

  10. EpiJen: a server for multistep T cell epitope prediction

    Guan Pingping

    2006-03-01

    Full Text Available Abstract Background The main processing pathway for MHC class I ligands involves degradation of proteins by the proteasome, followed by transport of products by the transporter associated with antigen processing (TAP to the endoplasmic reticulum (ER, where peptides are bound by MHC class I molecules, and then presented on the cell surface by MHCs. The whole process is modeled here using an integrated approach, which we call EpiJen. EpiJen is based on quantitative matrices, derived by the additive method, and applied successively to select epitopes. EpiJen is available free online. Results To identify epitopes, a source protein is passed through four steps: proteasome cleavage, TAP transport, MHC binding and epitope selection. At each stage, different proportions of non-epitopes are eliminated. The final set of peptides represents no more than 5% of the whole protein sequence and will contain 85% of the true epitopes, as indicated by external validation. Compared to other integrated methods (NetCTL, WAPP and SMM, EpiJen performs best, predicting 61 of the 99 HIV epitopes used in this study. Conclusion EpiJen is a reliable multi-step algorithm for T cell epitope prediction, which belongs to the next generation of in silico T cell epitope identification methods. These methods aim to reduce subsequent experimental work by improving the success rate of epitope prediction.

  11. Using a Computer Module to Teach Use of the EpiPen®

    Amandeep Singh Rai

    2011-11-01

    Full Text Available Background: The medical literature suggests that patients and physicians are deficient in their ability to use a self-injectable epinephrine device (EpiPen® for management of anaphylaxis. This study aims to determine whether a computer module is an effective tool for the instruction of a technical skill to medical trainees. Methods: We conducted a two group comparison study of 35 Post-Graduate Year 1 and 2 Family Medicine residents. Participants were instructed on use of the EpiPen® using either a written module or a computer module. Participants were evaluated on use of the EpiPen® using standardized objective outcome measures by a blinded assessor. Assessments took place prior to and following instruction, using the assigned learning modality. Results: There were 34 participants who completed the study. Both groups demonstrated significant improvement in demonstrating use of the EpiPen® following training (p <0.001 for both. A significant post-training difference favouring the computer module learners over the written module learners was observed (p = 0.035. However, only 53% and 18% of candidates (computer module and written module, respectively were able to correctly perform all of the checklist steps. Conclusion: While our findings suggest computer modules represent an effective modality for teaching use of the EpiPen® to medical trainees, the low number of candidates who were able to perform all the checklist items regardless of modality needs to be addressed.

  12. Point defect engineering strategies to retard phosphorous diffusion in germanium

    Tahini, H. A.; Chroneos, Alexander I.; Grimes, Robin W.; Schwingenschlö gl, Udo; Bracht, Hartmut A.

    2013-01-01

    The diffusion of phosphorous in germanium is very fast, requiring point defect engineering strategies to retard it in support of technological application. Density functional theory corroborated with hybrid density functional calculations are used to investigate the influence of the isovalent codopants tin and hafnium in the migration of phosphorous via the vacancy-mediated diffusion process. The migration energy barriers for phosphorous are increased significantly in the presence of oversized isovalent codopants. Therefore, it is proposed that tin and in particular hafnium codoping are efficient point defect engineering strategies to retard phosphorous migration. © the Owner Societies 2013.

  13. Multiple pulse traveling wave excitation of neon-like germanium

    Moreno, J. C.; Nilsen, J.; Silva, L. B. da

    1995-01-01

    Traveling wave excitation has been shown to significantly increase the output intensity of the neon-like germanium x-ray laser. The driving laser pulse consisted of three 100 ps Gaussian laser pulses separated by 400 ps. Traveling wave excitation was employed by tilting the wave front of the driving laser by 45 degrees to match the propagation speed of the x-ray laser photons along the length of the target. We show results of experiments with the traveling wave, with no traveling wave, and against the traveling wave and comparisons to a numerical model. Gain was inferred from line intensity measurements at two lengths

  14. Formation probabilities and relaxation rates of muon states in germanium

    Clawson, C.W.; Haller, E.E.; Crowe, K.M.; Rosenblum, S.S.; Brewer, J.H.; British Columbia Univ., Vancouver

    1981-01-01

    We report the first results of a study of the muonium states in ultra-pure germanium crystals grown under a variety of conditions at Lawrence Berkeley Laboratory. Among the variations studied are: 1) Hydrogen, deuterium, or nitrogen atmosphere during growth; 2) Dislocation-free vs. dislocated crystals; 3) Grown from quartz, graphite, and pyrolytic graphite coated quartz crucibles; 4) n-type vs. p-type. We report a significant difference in the muonium relaxation rate between the dislocated and non-dislocated crystals. (orig.)

  15. Liquid-helium scintillation detection with germanium photodiodes

    Luke, P.N.; Haller, E.E.; Steiner, H.M.

    1982-05-01

    Special high-purity germanium photodiodes have been developed for the direct detection of vacuum ultraviolet scintillations in liquid helium. The photodiodes are immersed in the liquid helium, and scintillations are detected through one of the bare sides of the photodiodes. Test results with scintillation photons produced by 5.3-MeV α particles are presented. The use of these photodiodes as liquid-helium scintillation detectors may offer substantial improvements over the alternate detection method requiring the use of wavelength shifters and photomultiplier tubes

  16. Self-absorption corrections for well-type germanium detectors

    Appleby, P.G.; Richardson, N.; Nolan, P.J.

    1992-01-01

    Corrections for self-absorption are of vital importance to accurate determination by gamma spectrometry of radionuclides such as 210 Pb, 241 Am and 234 Th which emit low energy gamma radiation. A simple theoretical model for determining the necessary corrections for well-type germanium detectors is presented. In this model, self-absorption factors are expressed in terms of the mass attenuation coefficient of the sample and a parameter characterising the well geometry. Experimental measurements of self-absorption are used to evaluate the model and to determine a semi-empirical algorithm for improved estimates of the geometrical parameter. (orig.)

  17. Radiation defects produced by neutron irradiation in germanium single crystals

    Fukuoka, Noboru; Honda, Makoto; Atobe, Kozo; Yamaji, Hiromichi; Ide, Mutsutoshi; Okada, Moritami.

    1992-01-01

    The nature of defects produced in germanium single crystals by neutron irradiation at 25 K was studied by measuring the electrical resistivity. It was found that two levels located at E c -0.06 eV and E c -0.13 eV were introduced in an arsenic-doped sample. Electron traps at E c -0.10eV were observed in an indium-doped sample. The change in electrical resistivity during irradiation was also studied. (author)

  18. Effect of pressure on arsenic diffusion in germanium

    Mitha, S.; Theiss, S.D.; Aziz, M.J.; Schiferl, D.; Poker, D.B.

    1994-01-01

    We report preliminary results of a study of the activation volume for diffusion of arsenic in germanium. High-temperature high-pressure anneals were performed in a liquid argon pressure medium in a diamond anvil cell capable of reaching 5 GPa and 750 C,l which is externally heated for uniform and repeatable temperature profiles. Broadening of an ion-implanted arsenic profile was measured by Secondary Ion Mass Spectrometry. Hydrostatic pressure retards the diffusivity at 575 C, characterized by an activation volume that is +15% of the atomic volume of Ge. Implications for diffusion mechanisms are discussed

  19. Bandgap-customizable germanium using lithographically determined biaxial tensile strain for silicon-compatible optoelectronics.

    Sukhdeo, David S; Nam, Donguk; Kang, Ju-Hyung; Brongersma, Mark L; Saraswat, Krishna C

    2015-06-29

    Strain engineering has proven to be vital for germanium-based photonics, in particular light emission. However, applying a large permanent biaxial tensile strain to germanium has been a challenge. We present a simple, CMOS-compatible technique to conveniently induce a large, spatially homogenous strain in circular structures patterned within germanium nanomembranes. Our technique works by concentrating and amplifying a pre-existing small strain into a circular region. Biaxial tensile strains as large as 1.11% are observed by Raman spectroscopy and are further confirmed by photoluminescence measurements, which show enhanced and redshifted light emission from the strained germanium. Our technique allows the amount of biaxial strain to be customized lithographically, allowing the bandgaps of different germanium structures to be independently customized in a single mask process.

  20. Structure of compensating centers in neutron irradiated n-type germanium

    Erchak, D.P.; Kosobutskij, V.S.; Stel'makh, V.F.

    1989-01-01

    Structural model of one of the main compensating defects of Ge-M1, Ge-M5, Ge-M6 in neutron irradiated (10 18 -10 20 cm -2 ) germanium, strongly alloyed (2x10 18 -3x10 19 cm -3 ) with antimony, phosphorus and arsenic respectively, is suggested. The above mentioned compensating centers are paramagnetic in a positive charge state and represent a vacancy, two nearby germanium atoms of which are replaced with two atoms of corresponding fine donor impurity. It is mainly contributed (63%- for Ge-M5 centers, 56% - for Ge-M6 centers) by orbitals of two germanium atoms neighbouring the vacancy. The angle of the bonds of each of two mentioned germanium atoms with its three neighbours and orientation of maximum electron density of hybride orbital, binding both germanium atoms, is approximately by 5 deg greater the tetrahedral one

  1. High level active n+ doping of strained germanium through co-implantation and nanosecond pulsed laser melting

    Pastor, David; Gandhi, Hemi H.; Monmeyran, Corentin P.; Akey, Austin J.; Milazzo, Ruggero; Cai, Yan; Napolitani, Enrico; Gwilliam, Russell M.; Crowe, Iain F.; Michel, Jurgen; Kimerling, L. C.; Agarwal, Anuradha; Mazur, Eric; Aziz, Michael J.

    2018-04-01

    Obtaining high level active n+ carrier concentrations in germanium (Ge) has been a significant challenge for further development of Ge devices. By ion implanting phosphorus (P) and fluorine (F) into Ge and restoring crystallinity using Nd:YAG nanosecond pulsed laser melting (PLM), we demonstrate 1020 cm-3 n+ carrier concentration in tensile-strained epitaxial germanium-on-silicon. Scanning electron microscopy shows that after laser treatment, samples implanted with P have an ablated surface, whereas P + F co-implanted samples have good crystallinity and a smooth surface topography. We characterize P and F concentration depth profiles using secondary ion mass spectrometry and spreading resistance profiling. The peak carrier concentration, 1020 cm-3 at 80 nm below the surface, coincides with the peak F concentration, illustrating the key role of F in increasing donor activation. Cross-sectional transmission electron microscopy of the co-implanted sample shows that the Ge epilayer region damaged during implantation is a single crystal after PLM. High-resolution X-ray diffraction and Raman spectroscopy measurements both indicate that the as-grown epitaxial layer strain is preserved after PLM. These results demonstrate that co-implantation and PLM can achieve the combination of n+ carrier concentration and strain in Ge epilayers necessary for next-generation, high-performance Ge-on-Si devices.

  2. Solution synthesis of lead seeded germanium nanowires and branched nanowire networks and their application as Li-ion battery anodes

    Flynn, Grace; Palaniappan, Kumaranand; Sheehan, Martin; Kennedy, Tadhg; Ryan, Kevin M.

    2017-06-01

    Herein, we report the high density growth of lead seeded germanium nanowires (NWs) and their development into branched nanowire networks suitable for application as lithium ion battery anodes. The synthesis of the NWs from lead seeds occurs simultaneously in both the liquid zone (solution-liquid-solid (SLS) growth) and solvent rich vapor zone (vapor-liquid-solid (VLS) growth) of a high boiling point solvent growth system. The reaction is sufficiently versatile to allow for the growth of NWs directly from either an evaporated catalyst layer or from pre-defined nanoparticle seeds and can be extended to allowing extensive branched nanowire formation in a secondary reaction where these seeds are coated onto existing wires. The NWs are characterized using TEM, SEM, XRD and DF-STEM. Electrochemical analysis was carried out on both the single crystal Pb-Ge NWs and the branched Pb-Ge NWs to assess their suitability for use as anodes in a Li-ion battery. Differential capacity plots show both the germanium wires and the lead seeds cycle lithium and contribute to the specific capacity that is approximately 900 mAh g-1 for the single crystal wires, rising to approximately 1100 mAh g-1 for the branched nanowire networks.

  3. Integrated analysis of the molecular action of Vorinostat identifies epi-sensitised targets for combination therapy.

    Hay, Jodie F; Lappin, Katrina; Liberante, Fabio; Kettyle, Laura M; Matchett, Kyle B; Thompson, Alexander; Mills, Ken I

    2017-09-15

    Several histone deacetylase inhibitors including Vorinostat have received FDA approval for the treatment of haematological malignancies. However, data from these trials indicate that Vorinostat has limited efficacy as a monotherapy, prompting the need for rational design of combination therapies. A number of epi-sensitised pathways, including sonic hedgehog (SHH), were identified in AML cells by integration of global patterns of histone H3 lysine 9 (H3K9) acetylation with transcriptomic analysis following Vorinostat-treatment. Direct targeting of the SHH pathway with SANT-1, following Vorinostat induced epi-sensitisation, resulted in synergistic cell death of AML cells. In addition, xenograft studies demonstrated that combination therapy induced a marked reduction in leukemic burden compared to control or single agents. Together, the data supports epi-sensitisation as a potential component of the strategy for the rational development of combination therapies in AML.

  4. NTD germanium: a novel material for low-temperature bolometers

    Haller, E.E.; Palaio, N.P.; Rodder, M.; Hansen, W.L.; Kreysa, E.

    1982-06-01

    Six samples of ultra-pure (absolute value N/sub A/ - N/sub D/ absolute value less than or equal to 10 11 cm -3 ), single-crystal germanium have been neutron transmutation doped with neutron doses between 7.5 x 10 16 and 1.88 x 10 18 cm -2 . After thermal annealing at 400 0 C for six hours in a pure argon atmosphere, the samples have been characterized with Hall effect and resistivity measurements between 300 and 0.3 K. Our results show that the resistivity in the low temperature, hopping conduction regime can be approximated with rho = rho 0 exp(Δ/T). The three more heavily doped samples show values for rho 0 and Δ ranging from 430 to 3.3 Ω cm and from 4.9 to 2.8 K, respectively. The excellent reproducibility of neutron transmutation doping and the values of rho 0 and Δ make NTD Ge a prime candidate for the fabrication of low temperature, low noise bolometers. The large variation in the tabulated values of the thermal neutron cross sections for the different germanium isotopes makes it clear that accurate measurements of these cross-sections for well defined neutron energy spectra would be highly desirable

  5. Performance of a Small Anode Germanium Well detector

    Adekola, A.S.; Colaresi, J.; Douwen, J.; Mueller, W.F.; Yocum, K.M.

    2015-01-01

    The performance of Small Anode Germanium (SAGe) Well detector [1] has been evaluated for a range of sample sizes and geometries counted inside the well, on the end cap or in Marinelli beakers. The SAGe Well is a new type of low capacitance germanium well detector manufactured using small anode technology. The detector has similar energy resolution performance to semi-planar detectors, and offers significant improvement over the Coaxial and existing Well detectors. Resolution performance of 0.75 keV Full Width at Half Maxiumum (FWHM) at 122 keV γ-ray energy and resolution of 2.0–2.3 keV FWHM at 1332 keV γ-ray energy are guaranteed. Such outstanding resolution performance will benefit environmental applications in revealing the detailed radionuclide content of samples, particularly at low energy, and will enhance the detection sensitivity resulting in reduced counting time. This paper reports the counting performance of SAGe Well detector for range of sample sizes and geometries and how it compares to other detector types

  6. Performance of a Small Anode Germanium Well detector

    Adekola, A.S., E-mail: aderemi.adekola@canberra.com; Colaresi, J.; Douwen, J.; Mueller, W.F.; Yocum, K.M.

    2015-06-01

    The performance of Small Anode Germanium (SAGe) Well detector [1] has been evaluated for a range of sample sizes and geometries counted inside the well, on the end cap or in Marinelli beakers. The SAGe Well is a new type of low capacitance germanium well detector manufactured using small anode technology. The detector has similar energy resolution performance to semi-planar detectors, and offers significant improvement over the Coaxial and existing Well detectors. Resolution performance of 0.75 keV Full Width at Half Maxiumum (FWHM) at 122 keV γ-ray energy and resolution of 2.0–2.3 keV FWHM at 1332 keV γ-ray energy are guaranteed. Such outstanding resolution performance will benefit environmental applications in revealing the detailed radionuclide content of samples, particularly at low energy, and will enhance the detection sensitivity resulting in reduced counting time. This paper reports the counting performance of SAGe Well detector for range of sample sizes and geometries and how it compares to other detector types.

  7. Crystallization of Electrodeposited Germanium Thin Film on Silicon (100).

    Abidin, Mastura Shafinaz Zainal; Matsumura, Ryo; Anisuzzaman, Mohammad; Park, Jong-Hyeok; Muta, Shunpei; Mahmood, Mohamad Rusop; Sadoh, Taizoh; Hashim, Abdul Manaf

    2013-11-06

    We report the crystallization of electrodeposited germanium (Ge) thin films on n-silicon (Si) (100) by rapid melting process. The electrodeposition was carried out in germanium (IV) chloride: propylene glycol (GeCl₄:C₃H₈O₂) electrolyte with constant current of 50 mA for 30 min. The measured Raman spectra and electron backscattering diffraction (EBSD) images show that the as-deposited Ge thin film was amorphous. The crystallization of deposited Ge was achieved by rapid thermal annealing (RTA) at 980 °C for 1 s. The EBSD images confirm that the orientations of the annealed Ge are similar to that of the Si substrate. The highly intense peak of Raman spectra at 300 cm -1 corresponding to Ge-Ge vibration mode was observed, indicating good crystal quality of Ge. An additional sub peak near to 390 cm -1 corresponding to the Si-Ge vibration mode was also observed, indicating the Ge-Si mixing at Ge/Si interface. Auger electron spectroscopy (AES) reveals that the intermixing depth was around 60 nm. The calculated Si fraction from Raman spectra was found to be in good agreement with the value estimated from Ge-Si equilibrium phase diagram. The proposed technique is expected to be an effective way to crystallize Ge films for various device applications as well as to create strain at the Ge-Si interface for enhancement of mobility.

  8. Crystallization of Electrodeposited Germanium Thin Film on Silicon (100

    Abdul Manaf Hashim

    2013-11-01

    Full Text Available We report the crystallization of electrodeposited germanium (Ge thin films on n-silicon (Si (100 by rapid melting process. The electrodeposition was carried out in germanium (IV chloride: propylene glycol (GeCl4:C3H8O2 electrolyte with constant current of 50 mA for 30 min. The measured Raman spectra and electron backscattering diffraction (EBSD images show that the as-deposited Ge thin film was amorphous. The crystallization of deposited Ge was achieved by rapid thermal annealing (RTA at 980 °C for 1 s. The EBSD images confirm that the orientations of the annealed Ge are similar to that of the Si substrate. The highly intense peak of Raman spectra at 300 cm−1 corresponding to Ge-Ge vibration mode was observed, indicating good crystal quality of Ge. An additional sub peak near to 390 cm−1 corresponding to the Si-Ge vibration mode was also observed, indicating the Ge-Si mixing at Ge/Si interface. Auger electron spectroscopy (AES reveals that the intermixing depth was around 60 nm. The calculated Si fraction from Raman spectra was found to be in good agreement with the value estimated from Ge-Si equilibrium phase diagram. The proposed technique is expected to be an effective way to crystallize Ge films for various device applications as well as to create strain at the Ge-Si interface for enhancement of mobility.

  9. Characterisation of the SmartPET planar Germanium detectors

    Boston, H.C. [Department of Physics, University of Liverpool, Oliver Lodge Laboratory, Liverpool L69 7ZE (United Kingdom)], E-mail: H.C.Boston@liverpool.ac.uk; Boston, A.J.; Cooper, R.J.; Cresswell, J.; Grint, A.N.; Mather, A.R.; Nolan, P.J.; Scraggs, D.P.; Turk, G. [Department of Physics, University of Liverpool, Oliver Lodge Laboratory, Liverpool L69 7ZE (United Kingdom); Hall, C.J.; Lazarus, I. [CCLRC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Berry, A.; Beveridge, T.; Gillam, J.; Lewis, R. [School of Physics and Materials Engineering, Monash University, Melbourne (Australia)

    2007-08-21

    Small Animal Reconstruction PET (SmartPET) is a project funded by the UK medical research council (MRC) to demonstrate proof of principle that Germanium can be utilised in Positron Emission Tomography (PET). The SmartPET demonstrator consists of two orthogonal strip High Purity Germanium (HPGe) planar detectors manufactured by ORTEC. The aim of the project is to produce images of an internal source with sub mm{sup 3} spatial resolution. Before this image can be achieved the detectors have to be fully characterised to understand the response at any given location to a {gamma}-ray interaction. This has been achieved by probing the two detectors at a number of specified points with collimated sources of various energies and strengths. A 1 mm diameter collimated beam of photons was raster scanned in 1 mm steps across the detector. Digital pulse shape data were recorded from all the detector channels and the performance of the detector for energy and position determination has been assessed. Data will be presented for the first SmartPET detector.

  10. An ultralow background germanium gamma-ray spectrometer

    Reeves, R.H.; Brodzinski, R.L.; Hensley, W.K.; Ryge, P.

    1984-01-01

    The monitoring of minimum detectable activity is becoming increasingly important as environmental concerns and regulations require more sensitive measurement of the radioactivity levels in the workplace and the home. In measuring this activity, however, the background becomes one of the limiting factors. Anticoincidence systems utilizing both NaI(T1) and plastic scintillators have proven effective in reducing some components of the background, but radiocontaminants in the various regions of these systems have limited their effectiveness, and their cost is often prohibitive. In order to obtain a genuinely low background detector system, all components must be free of detectable radioactivity, and the cosmic ray produced contribution must be significantly reduced. Current efforts by the authors to measure the double beta decay of Germanium 76 as predicted by Grand Unified Theories have resulted in the development of a high resolution germanium diode gamma spectrometer with an exceptionally low background. This paper describes the development of this system, outlines the configuration and operation of its preamplifier, linear amplifier, analog-to-digital converter, 4096-channel analyzer, shielding consisting of lead-sandwiched plastic scintillators wrapped in cadmium foil, photomultiplier, and its pulse generator and discriminator, and then discusses how the system can be utilized to significantly reduce the background in high resolution photon spectrometers at only moderate cost

  11. Study and characterization of porous germanium for radiometric measurements

    Akkari, E.; Benachour, Z.; Touayar, O.; Benbrahim, J. [Activites de Recherche, Metrologie des Rayonnements, Institut National des Sciences Appliquees et de Technologie, INSAT, Tunis (Tunisia); Aouida, S.; Bessais, B. [Laboratoire de Nanomateriaux et des Systemes de l' Energie, LaNSE, Centre de Recherche et des Technologies de l' Energie, CRTEn, Hammam-Lif (Tunisia)

    2009-07-15

    The aim of this article is to study and realize a new detector based on a porous germanium (pGe) photodiode to be used as a standard for radiometric measurement in the wavelength region between 800 nm and 1700 nm. We present the development and characterization of a porous structure realized on a single-crystal substrate of p-type germanium (Ga doped) and of crystallographic orientation (100). The obtained structure allows, on the one hand, to trap the incident radiation, and on the other hand, to minimize the fluctuations of the front-face reflection coefficient of the photodiode. The first studies thus made show that it is possible to optimize, respectively, the electrical current density and the electrochemical operation time necessary for obtaining exploitable porous structures. The obtained results show that for 50 mA/cm{sup 2} and 5 min as operational parameters, we obtain a textured aspect of the porous samples that present a pyramidal form. The reflectivity study of the front surface shows a constant value of around 38% in a spectral range between 800 nm and 1700 nm approximately. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Germanium-76 Isotope Separation by Cryogenic Distillation. Final Report

    Stohler, Eric

    2007-01-01

    The current separation method for Germanium isotopes is electromagnetic separation using Calutrons. The Calutrons have the disadvantage of having a low separation capacity and a high energy cost to achieve the separation. Our proposed new distillation method has the advantage that larger quantities of Germanium isotopes can be separated at a significantly lower cost and in a much shorter time. After nine months of operating the column that is 1.5 meter in length, no significant separation of the isotopes has been measured. We conclude that the length of the column we have been using is too short. In addition, other packing material than the 0.16 inch Propak, 316 ss Protruded metal packing that we used in the column, should be evaluated which may have a better separation factor than the 0.16 inch Propak, 316 ss Protruded metal packing that has been used. We conclude that a much longer column - a minimum of 50 feet length - should be built and additional column packing should be tested to verify that isotopic separation can be achieved by cryogenic distillation. Even a longer column than 50 feet would be desirable.

  13. Zeeman spectroscopy of Zn-H complex in germanium

    Prabakar, J.P.C.; Vickers, R.E.M.; Fisher, P.

    1998-01-01

    Full text: A divalent substitutional zinc atom in germanium complexed with an interstitial hydrogen atom gives rise to a monovalent acceptor of trigonal symmetry. The axial nature of this complex splits the four-fold degenerate states associated with substitutional point defects into two two-fold degenerate states. Zeeman spectra of the Zn-H complex have been observed for B along and crystallographic directions in the Voigt configuration using linearly polarised radiation. Spectra of the C and D lines for B ≤ 2 Tesla are essentially identical to those of these lines of group III impurities; here B is the field strength. At all fields, splitting of the excited state of the D lines is identical to that for group III acceptors in germanium. The magnetic field dependence of the D components for both E parallel B and E perpendicular B and the selection rules demand that only one of the two two-fold 1s-like energy levels is occupied at the temperatures used instead of both. The results confirm piezospectroscopic studies which demonstrated that the axes of the complexes are along the four covalent bond directions of the host

  14. Virtual Hematoxylin and Eosin Transillumination Microscopy Using Epi-Fluorescence Imaging.

    Giacomelli, Michael G; Husvogt, Lennart; Vardeh, Hilde; Faulkner-Jones, Beverly E; Hornegger, Joachim; Connolly, James L; Fujimoto, James G

    2016-01-01

    We derive a physically realistic model for the generation of virtual transillumination, white light microscopy images using epi-fluorescence measurements from thick, unsectioned tissue. We demonstrate this technique by generating virtual transillumination H&E images of unsectioned human breast tissue from epi-fluorescence multiphoton microscopy data. The virtual transillumination algorithm is shown to enable improved contrast and color accuracy compared with previous color mapping methods. Finally, we present an open source implementation of the algorithm in OpenGL, enabling real-time GPU-based generation of virtual transillumination microscopy images using conventional fluorescence microscopy systems.

  15. Virtual Hematoxylin and Eosin Transillumination Microscopy Using Epi-Fluorescence Imaging.

    Michael G Giacomelli

    Full Text Available We derive a physically realistic model for the generation of virtual transillumination, white light microscopy images using epi-fluorescence measurements from thick, unsectioned tissue. We demonstrate this technique by generating virtual transillumination H&E images of unsectioned human breast tissue from epi-fluorescence multiphoton microscopy data. The virtual transillumination algorithm is shown to enable improved contrast and color accuracy compared with previous color mapping methods. Finally, we present an open source implementation of the algorithm in OpenGL, enabling real-time GPU-based generation of virtual transillumination microscopy images using conventional fluorescence microscopy systems.

  16. Investigation of the C-3-epi-25(OH)D3 of 25-hydroxyvitamin D3 in urban schoolchildren.

    Berger, Samantha E; Van Rompay, Maria I; Gordon, Catherine M; Goodman, Elizabeth; Eliasziw, Misha; Holick, Michael F; Sacheck, Jennifer M

    2018-03-01

    The physiological relevance C-3 epimer of 25-hydroxyvitamin D (3-epi-25(OH)D) is not well understood among youth. The objective of this study was to assess whether demographic/physiologic characteristics were associated with 3-epi-25(OH)D 3 concentrations in youth. Associations between 3-epi-25(OH)D 3 and demographics and between 3-epi-25(OH)D 3 , total 25-hydroxyvitamin (25(OH)D) (25(OH)D 2 + 25(OH)D 3 ), total cholesterol, high-density lipoprotein, low-density lipoprotein, and triglycerides were examined in racially/ethnically diverse schoolchildren (n = 682; age, 8-15 years) at Boston-area urban schools. Approximately 50% of participants had detectable 3-epi-25(OH)D 3 (range 0.95-3.95 ng/mL). The percentage of 3-epi-25(OH)D 3 of total 25(OH)D ranged from 2.5% to 17.0% (median 5.5%). Males were 38% more likely than females to have detectable 3-epi-25(OH)D 3 concentrations. Both Asian and black race/ethnicity were associated with lower odds of having detectable 3-epi-25(OH)D 3 compared with non-Hispanic white children (Asian vs. white, odds ratio (OR) 0.28, 95% confidence interval (CI) 0.14-0.53; black vs. white, OR 0.38, 95%CI 0.23-0.63, p 30 ng/mL) 25(OH)D concentration was associated with higher odds of having detectable 3-epi-25(OH)D 3 than having an inadequate (<20 ng/mL) concentration (OR 4.78, 95%CI 3.23-6.94 or OR 14.10, 95%CI 7.10-28.0, respectively). There was no association between 3-epi-25(OH)D 3 and blood lipids. However, when considering 3-epi-25(OH)D 3 as a percentage of total 25(OH)D, total cholesterol was lower in children with percent 3-epi-25(OH)D 3 above the median (mean difference -7.1 mg/dL, p = 0.01). In conclusion, among schoolchildren, sex, race/ethnicity, and total serum 25(OH)D concentration is differentially associated with 3-epi-25(OH)D. The physiological relevance of 3-epi-25(OH)D 3 may be related to the 3-epi-25(OH)D 3 as a percentage of total 25(OH)D and should be considered in future investigations.

  17. Spectroscopic characterization of germanium quantum dots in silicon; Spektroskopische Charakterisierung von Germanium-Quantenpunkten in Silizium

    Bougeard, D.

    2006-01-15

    This thesis presents the first detailed investigation of the phonon Raman spectrum of Ge hut clusters. Interpretations of Ge/Si superlattice and SiGe alloy spectra are successfully adapted to the quantum dot spectrum. The period, the sublayers of a period, as well as biaxial strain are determined through the analysis of the acoustic phonons which propagate through the whole multilayer structure. At the same time, the non dispersing optical phonons are localised in the single layers of the structure. Thus they act as local sensors probing the average composition, the strain field and the mode localisation energy in one particular type of layer in the period. The frequency positions and relative intensities of the characteristical vibration mode are discussed in detail. Ex-situ annealing above 600 C is also studied with Raman phonon scattering. The annealing leads to an increase of the island volume and substantial intermixing, which is characterised through the determination of the interdiffusion constants. The investigation of optical transitions in Ge/Si multilayer structures shows quantum dot-like behaviour for the Ge hut clusters. Photoluminescence spectra show only phononless recombinations of electron-hole pairs for the hut clusters. Photocurrent spectroscopy reveals a localisation energy of 380 meV for the dot ground level compared to the Si valence band edge. Optical transitions between bound states in the quantum dots and potential minima in the Ge wetting layer or the neighbouring (2 nm) modulation doping layer, are observed through the spectral analysis of the photoconductivity in the quantum dot plane. The energy difference between these minima and the Si valence band edge is 40 meV. Finally resonant electronic Raman scattering reveals an optical intraband transition with an energy difference of 105 meV between initial and final transition state. (orig.)

  18. The investigation of ZnO:Al2O3/metal composite back reflectors in amorphous silicon germanium thin film solar cells

    Wang Guang-Hong; Zhao Lei; Yan Bao-Jun; Chen Jing-Wei; Wang Ge; Diao Hong-Wei; Wang Wen-Jing

    2013-01-01

    Different aluminum-doped ZnO (AZO)/metal composite thin films,including AZO/Ag/Al,AZO/Ag/nickelchromium alloy (NiCr),and AZO/Ag/NiCr/Al,are utilized as the back reflectors of p-i-n amorphous silicon germanium thin film solar cells.NiCr is used as diffusion barrier layer between Ag and Al to prevent mutual diffusion,which increases the short circuit current density of solar cell.NiCr and NiCr/Al layers are used as protective layers of Ag layer against oxidation and sulfurization,the higher efficiency of solar cell is achieved.The experimental results show that the performance of a-SiGe solar cell with AZO/Ag/NiCr/Al back reflector is best.The initial conversion efficiency is achieved to be 8.05%.

  19. Insights into thermal diffusion of germanium and oxygen atoms in HfO2/GeO2/Ge gate stacks and their suppressed reaction with atomically thin AlOx interlayers

    Ogawa, Shingo; Asahara, Ryohei; Minoura, Yuya; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji; Sako, Hideki; Kawasaki, Naohiko; Yamada, Ichiko; Miyamoto, Takashi

    2015-01-01

    The thermal diffusion of germanium and oxygen atoms in HfO 2 /GeO 2 /Ge gate stacks was comprehensively evaluated by x-ray photoelectron spectroscopy and secondary ion mass spectrometry combined with an isotopic labeling technique. It was found that 18 O-tracers composing the GeO 2 underlayers diffuse within the HfO 2 overlayers based on Fick's law with the low activation energy of about 0.5 eV. Although out-diffusion of the germanium atoms through HfO 2 also proceeded at the low temperatures of around 200 °C, the diffusing germanium atoms preferentially segregated on the HfO 2 surfaces, and the reaction was further enhanced at high temperatures with the assistance of GeO desorption. A technique to insert atomically thin AlO x interlayers between the HfO 2 and GeO 2 layers was proven to effectively suppress both of these independent germanium and oxygen intermixing reactions in the gate stacks

  20. Insights into thermal diffusion of germanium and oxygen atoms in HfO{sub 2}/GeO{sub 2}/Ge gate stacks and their suppressed reaction with atomically thin AlO{sub x} interlayers

    Ogawa, Shingo, E-mail: Shingo-Ogawa@trc.toray.co.jp [Toray Research Center, Inc., 3-3-7 Sonoyama, Otsu, Shiga 520-8567 (Japan); Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Asahara, Ryohei; Minoura, Yuya; Hosoi, Takuji, E-mail: hosoi@mls.eng.osaka-u.ac.jp; Shimura, Takayoshi; Watanabe, Heiji [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Sako, Hideki; Kawasaki, Naohiko; Yamada, Ichiko; Miyamoto, Takashi [Toray Research Center, Inc., 3-3-7 Sonoyama, Otsu, Shiga 520-8567 (Japan)

    2015-12-21

    The thermal diffusion of germanium and oxygen atoms in HfO{sub 2}/GeO{sub 2}/Ge gate stacks was comprehensively evaluated by x-ray photoelectron spectroscopy and secondary ion mass spectrometry combined with an isotopic labeling technique. It was found that {sup 18}O-tracers composing the GeO{sub 2} underlayers diffuse within the HfO{sub 2} overlayers based on Fick's law with the low activation energy of about 0.5 eV. Although out-diffusion of the germanium atoms through HfO{sub 2} also proceeded at the low temperatures of around 200 °C, the diffusing germanium atoms preferentially segregated on the HfO{sub 2} surfaces, and the reaction was further enhanced at high temperatures with the assistance of GeO desorption. A technique to insert atomically thin AlO{sub x} interlayers between the HfO{sub 2} and GeO{sub 2} layers was proven to effectively suppress both of these independent germanium and oxygen intermixing reactions in the gate stacks.

  1. Schools as potential vaccination venue for vaccines outside regular EPI schedule: results from a school census in Pakistan

    Soofi, S.B.; Haq, I.U.; Khan, M.I.; Siddiqui, M.B.; Mirani, M.; Tahir, R.; Hussain, I.; Puri, M.K.; Suhag, Z.H.; Khowaja, A.R.; Lasi, A.R.; Clemens, J.D.; Favorov, M.; Ochiai, R.L.; Bhutta, Z.A.

    2012-01-01

    BACKGROUND: Vaccines are the most effective public health intervention. Expanded Program on Immunization (EPI) provides routine vaccination in developing countries. However, vaccines that cannot be given in EPI schedule such as typhoid fever vaccine need alternative venues. In areas where school

  2. Protein patterning on polycrystalline silicon-germanium via standard UV lithography for bioMEMS applications

    Lenci, S., E-mail: silvia.lenci@gmail.com [Dipartimento di Ingegneria dell' Informazione, University of Pisa, Via G. Caruso 16, I-56122 Pisa (Italy); imec, Kapeldreef 75, Leuven B-3001 (Belgium); Tedeschi, L.; Domenici, C.; Lande, C. [Istituto di Fisiologia Clinica, CNR, via G. Moruzzi 1, Pisa I-56124 (Italy); Nannini, A.; Pennelli, G.; Pieri, F. [Dipartimento di Ingegneria dell' Informazione, University of Pisa, Via G. Caruso 16, I-56122 Pisa (Italy); Severi, S. [imec, Kapeldreef 75, Leuven B-3001 (Belgium)

    2010-10-12

    Polycrystalline silicon-germanium (poly-SiGe) is a promising structural material for the post-processing of micro electro-mechanical systems (MEMS) on top of complementary metal-oxide-semiconductor (CMOS) substrates. Combining MEMS and CMOS allows for the development of high-performance devices. We present for the first time selective protein immobilization on top of poly-SiGe surfaces, an enabling technique for the development of novel poly-SiGe based MEMS biosensors. Active regions made of 3-aminopropyl-triethoxysilane (APTES) were defined using silane deposition onto photoresist patterns followed by lift-off in organic solvents. Subsequently, proteins were covalently bound on the created APTES patterns. Fluorescein-labeled human serum albumin (HSA) was used to verify the immobilization procedure while the binding capability of the protein layer was tested by an antigen-labeled antibody pair. Inspection by fluorescence microscopy showed protein immobilization inside the desired bioactive areas and low non-specific adsorption outside the APTES pattern. Furthermore, the quality of the silane patches was investigated by treatment with 30 nm-diameter gold nanoparticles and scanning electron microscope observation. The developed technique is therefore a promising first step towards the realization of poly-SiGe based biosensors.

  3. A dual-PIXE tomography setup for reconstruction of Germanium in ICF target

    Guo, N.; Lu, H. Y.; Wang, Q.; Meng, J.; Gao, D. Z.; Zhang, Y. J.; Liang, X. X.; Zhang, W.; Li, J.; Ma, X. J.; Shen, H.

    2017-08-01

    Inertial Confinement Fusion (ICF) is one type of fusion energy research which could initiate nuclear fusion reactions through heating and compressing thermonuclear fuel. Compared to a pure plastic target, Germanium doping into the CH ablator layer by Glow Discharge Polymer (GDP) technique can increase the ablation velocity and the standoff distance between the ablation front and laser-deposition region. During target fabrication process, quantitative doping of Ge should be accurately controlled. Particle Induced X-ray Emission Tomography (PIXE-T) can make not only quantification of the concentration, but also reconstruction of the spatial distribution of doped element. The Si (Li) detector for PIXE tomography technique had a disadvantage of low counting rate. To make up this deficiency, another detector of Si (Li) with the same configuration positioned at the opposite side with the same detective angle 135° have been implemented. Simultaneously acquired elemental maps of Ge obtained using two detectors may be different because of the X-ray absorption along the X-ray exit route in the target. In this paper, the X-ray detection efficiency is drastically improved by this dual-PIXE tomography system.

  4. Indium-hydrogen complexes in silicon and germanium under compression and tension

    Marx, G.; Vianden, R.

    1996-01-01

    The response of hydrogen-acceptor complexes in silicon and germanium to the application of uniaxial mechanical stress was studied by means of the perturbed angular correlation technique. This hyperfine interaction technique is sensitive to the microscopic structure of the immediate lattice environment of the probe atom. For the measurements, the probe 111 In was introduced into Si and Ge crystals by ion implantation at room temperature. After annealing, the radioactive probe atom 111 In acts as an acceptor in the elemental semiconductors Si and Ge and as such can easily be passivated by hydrogen indiffusion. The resulting In-H complex was subsequently exposed to uniaxial compressive and tensile stress, which was produced by bending the crystals along the three major lattice directions left angle 100 right angle, left angle 110 right angle and left angle 111 right angle. It was found that the application of uniaxial mechanical stress causes no change in the population of the four equivalent bond centred H sites surrounding the In acceptor. Evidence was found for a large mismatch of the lattice parameters between the passivated In implanted layer and the surrounding pure Si. (orig.)

  5. Effect of interface roughness on the carrier transport in germanium MOSFETs investigated by Monte Carlo method

    Gang, Du; Xiao-Yan, Liu; Zhi-Liang, Xia; Jing-Feng, Yang; Ru-Qi, Han

    2010-01-01

    Interface roughness strongly influences the performance of germanium metal–organic–semiconductor field effect transistors (MOSFETs). In this paper, a 2D full-band Monte Carlo simulator is used to study the impact of interface roughness scattering on electron and hole transport properties in long- and short- channel Ge MOSFETs inversion layers. The carrier effective mobility in the channel of Ge MOSFETs and the in non-equilibrium transport properties are investigated. Results show that both electron and hole mobility are strongly influenced by interface roughness scattering. The output curves for 50 nm channel-length double gate n and p Ge MOSFET show that the drive currents of n- and p-Ge MOSFETs have significant improvement compared with that of Si n- and p-MOSFETs with smooth interface between channel and gate dielectric. The 82% and 96% drive current enhancement are obtained for the n- and p-MOSFETs with the completely smooth interface. However, the enhancement decreases sharply with the increase of interface roughness. With the very rough interface, the drive currents of Ge MOSFETs are even less than that of Si MOSFETs. Moreover, the significant velocity overshoot also has been found in Ge MOSFETs. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  6. Analysis of switching characteristics for negative capacitance ultra-thin-body germanium-on-insulator MOSFETs

    Pi-Ho Hu, Vita; Chiu, Pin-Chieh

    2018-04-01

    The impact of device parameters on the switching characteristics of negative capacitance ultra-thin-body (UTB) germanium-on-insulator (NC-GeOI) MOSFETs is analyzed. NC-GeOI MOSFETs with smaller gate length (L g), EOT, and buried oxide thickness (T box) and thicker ferroelectric layer thickness (T FE) exhibit larger subthreshold swing improvements over GeOI MOSFETs due to better capacitance matching. Compared with GeOI MOSFETs, NC-GeOI MOSFETs exhibit better switching time due to improvements in effective drive current (I eff) and subthreshold swing. NC-GeOI MOSFET exhibits larger ST improvements at V dd = 0.3 V (-82.9%) than at V dd = 0.86 V (-9.7%), because NC-GeOI MOSFET shows 18.2 times higher I eff than the GeOI MOSFET at V dd = 0.3 V, while 2.5 times higher I eff at V dd = 0.86 V. This work provides the device design guideline of NC-GeOI MOSFETs for ultra-low power applications.

  7. Assessment of field-induced quantum confinement in heterogate germanium electron–hole bilayer tunnel field-effect transistor

    Padilla, J. L.; Alper, C.; Ionescu, A. M.; Gámiz, F.

    2014-01-01

    The analysis of quantum mechanical confinement in recent germanium electron–hole bilayer tunnel field-effect transistors has been shown to substantially affect the band-to-band tunneling (BTBT) mechanism between electron and hole inversion layers that constitutes the operating principle of these devices. The vertical electric field that appears across the intrinsic semiconductor to give rise to the bilayer configuration makes the formerly continuous conduction and valence bands become a discrete set of energy subbands, therefore increasing the effective bandgap close to the gates and reducing the BTBT probabilities. In this letter, we present a simulation approach that shows how the inclusion of quantum confinement and the subsequent modification of the band profile results in the appearance of lateral tunneling to the underlap regions that greatly degrades the subthreshold swing of these devices. To overcome this drawback imposed by confinement, we propose an heterogate configuration that proves to suppress this parasitic tunneling and enhances the device performance.

  8. Epitaxial growth of silicon and germanium on (100-oriented crystalline substrates by RF PECVD at 175 °C

    Mauguin O.

    2012-11-01

    Full Text Available We report on the epitaxial growth of crystalline Si and Ge thin films by standard radio frequency plasma enhanced chemical vapor deposition at 175 °C on (100-oriented silicon substrates. We also demonstrate the epitaxial growth of silicon films on epitaxially grown germanium layers so that multilayer samples sustaining epitaxy could be produced. We used spectroscopic ellipsometry, Raman spectroscopy, transmission electron microscopy and X-ray diffraction to characterize the structure of the films (amorphous, crystalline. These techniques were found to provide consistent results and provided information on the crystallinity and constraints in such lattice-mismatched structures. These results open the way to multiple quantum-well structures, which have been so far limited to few techniques such as Molecular Beam Epitaxy or MetalOrganic Chemical Vapor Deposition.

  9. Assessment of field-induced quantum confinement in heterogate germanium electron–hole bilayer tunnel field-effect transistor

    Padilla, J. L., E-mail: jose.padilladelatorre@epfl.ch; Alper, C.; Ionescu, A. M. [Nanoelectronic Devices Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015 (Switzerland); Gámiz, F. [Departamento de Electrónica y Tecnología de los Computadores, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada (Spain)

    2014-08-25

    The analysis of quantum mechanical confinement in recent germanium electron–hole bilayer tunnel field-effect transistors has been shown to substantially affect the band-to-band tunneling (BTBT) mechanism between electron and hole inversion layers that constitutes the operating principle of these devices. The vertical electric field that appears across the intrinsic semiconductor to give rise to the bilayer configuration makes the formerly continuous conduction and valence bands become a discrete set of energy subbands, therefore increasing the effective bandgap close to the gates and reducing the BTBT probabilities. In this letter, we present a simulation approach that shows how the inclusion of quantum confinement and the subsequent modification of the band profile results in the appearance of lateral tunneling to the underlap regions that greatly degrades the subthreshold swing of these devices. To overcome this drawback imposed by confinement, we propose an heterogate configuration that proves to suppress this parasitic tunneling and enhances the device performance.

  10. Beyond Ribosomal Binding: The Increased Polarity and Aberrant Molecular Interactions of 3-epi-deoxynivalenol

    Yousef I. Hassan

    2016-09-01

    Full Text Available Deoxynivalenol (DON is a secondary fungal metabolite and contaminant mycotoxin that is widely detected in wheat and corn products cultivated around the world. Bio-remediation methods have been extensively studied in the past two decades and promising ways to reduce DON-associated toxicities have been reported. Bacterial epimerization of DON at the C3 carbon was recently reported to induce a significant loss in the bio-toxicity of the resulting stereoisomer (3-epi-DON in comparison to the parental compound, DON. In an earlier study, we confirmed the diminished bio-potency of 3-epi-DON using different mammalian cell lines and mouse models and mechanistically attributed it to the reduced binding of 3-epi-DON within the ribosomal peptidyl transferase center (PTC. In the current study and by inspecting the chromatographic behavior of 3-epi-DON and its molecular interactions with a well-characterized enzyme, Fusarium graminearum Tri101 acetyltransferase, we provide the evidence that the C3 carbon epimerization of DON influences its molecular interactions beyond the abrogated PTC binding.

  11. Fast, accurate and automatic ancient nucleosome and methylation maps with epiPALEOMIX

    Hanghøj, Kristian; Seguin, Andaine; Schubert, Mikkel

    2016-01-01

    of CTCF binding regions can be used to help data authentication. Our work, including epiPALEOMIX, opens for further investigations of ancient epigenomes through time especially aimed at tracking possible epigenetic changes during major evolutionary, environmental, socioeconomic, and cultural shifts....

  12. The effect of the diterpene 5-epi-icetexone on the cell cycle of Trypanosoma cruzi.

    Lozano, E.; Barrera, P.; Tonn, C.; Nieto, M.; Sartor, T.; Sosa, M.A.

    2012-01-01

    Numerous natural compounds have been used against Trypanosoma cruzi, the causative agent of Chagas' disease. Here, we studied the effect of the diterpene 5-epi-icetexone on growth and morphology of parasites synchronized with hydroxyurea, at different periods of time after removal of the nucleotide.

  13. The EpiCom Survey-Registries Across Europe, Epidemiological Research and Beyond

    Gordon, Hannah; Langholz, Ebbe

    2017-01-01

    The 2015 EpiCom survey evaluated population, patient, and research registries across Europe. Information was collected from 38 countries. The registries included those falling within the remit of national statistics, hospital databases, twin and multiplex registries, inflammatory bowel disease [IBD...

  14. Curative effect observation of n-flap and off-flap EPi-LASIK in ametropia

    Chao Liu

    2015-11-01

    Full Text Available AIM:To observe the clinical effect of on-flap and off-flap epipolis laser in situ keratomileusis(EPi-LASIKin ametropia.METHODS: Sixty-eight myopia patients(136 eyesreceiving surgical treatment were selected and divided into research group and control group according to different therapies. The patients in research group adopted off-flap EPi-LASIK and those in control group adopted on-flap EPi-LASIK. The index like uncorrected visual acuity, diopter and Haze of two groups before surgery, 1wk, 1 and 4mo after surgery was observed. RESULTS: One month after surgery, the uncorrected visual acuity of research group was 1.33±0.22 while that of control group was 1.22±0.19(PPPCONCLUSION:On-flap and off-flap EPi-LASIK are safe and effective surgery approaches in the clinical treatment of ametropia. The presence of corneal epithelial flap has a certain effect in the postoperative clinical outcome at early stage. The impact will be gradually reduced over time.

  15. Comparative study of Epi-LASIK and LASIK for myopic astigmatism

    Jiao Chen

    2013-11-01

    Full Text Available AIM: To analyze the effects of epipolis laser in situ keratomileusis(Epi-LASIKand laser in situ keratomileusis(LASIKfor treatment of myopic astigmatism. METHODS: For treatment of myopic astigmatism, 32 patients(64 eyestreated by Epi-LASIK and 63 patients(126 eyesreceived LASIK. By their degree of astigmatism, the eyes were divided into Group Ⅰ(-0.25~-2.75DC and Group Ⅱ(-3.0~-5.0DC. During the 6-month follow-up, the early effects of the two operations were observed and compared in terms of uncorrected visual acuity(UCVA, best corrected visual acuity(BCVA, residual astigmatism, corneal healing, intraocular pressure(IOP, corneal topography. RESULTS: In Group Ⅱ, UCVA better than 20/20 was achieved in 87.5% of the eyes subjected to Epi-LASIK and in 63.3% of the eyes subjected to LASIK, with significant difference between them(χ2=4.055, Pt=2.672, Pt=2.234, PCONCLUSION: For treatment of high astigmatism(≥-3.00D, Epi-LASIK is more effective and predictive than LASIK.

  16. EpiScanGIS: an online geographic surveillance system for meningococcal disease

    Albert Jürgen

    2008-07-01

    Full Text Available Abstract Background Surveillance of infectious diseases increasingly relies on Geographic Information Systems (GIS. The integration of pathogen fine typing data in dynamic systems and visualization of spatio-temporal clusters are a technical challenge for system development. Results An online geographic information system (EpiScanGIS based on open source components has been launched in Germany in May 2006 for real time provision of meningococcal typing data in conjunction with demographic information (age, incidence, population density. Spatio-temporal clusters of disease detected by computer assisted cluster analysis (SaTScan™ are visualized on maps. EpiScanGIS enables dynamic generation of animated maps. The system is based on open source components; its architecture is open for other infectious agents and geographic regions. EpiScanGIS is available at http://www.episcangis.org, and currently has 80 registered users, mostly from the public health service in Germany. At present more than 2,900 cases of invasive meningococcal disease are stored in the database (data as of June 3, 2008. Conclusion EpiScanGIS exemplifies GIS applications and early-warning systems in laboratory surveillance of infectious diseases.

  17. Comparison of CKD-EPI versus MDRD and Cockcroft-Gault ...

    2016-12-15

    Dec 15, 2016 ... being during the management of HbSS patients. Sickle cell anaemia is a ... Uche and Osegbe: CKD-EPI estimated GFR in stable HbSS patients. 817. Nigerian ..... Older age has been identified as a socio‑demographic factor .... S. Effects of posture on creatinine clearance and urinary protein excretion in ...

  18. EpiReumaPt: how to perform a national population based study – a practical guide

    Nélia Gouveia

    2015-04-01

    Full Text Available Background: The aim of this article was to describe and discuss several strategies and standard operating procedures undertaken in the EpiReumaPt study – which was the first Portuguese, national, cross-sectional population-based study of Rheumatic and Musculoskeletal Diseases (RMD. Methods: The technical procedures, legal issues, management and practical questions were studied, analyzed and discussed with relevant stakeholders. During the 1st phase of EpiReumaPt the coordination team and Centro de Estudos de Sondagens e Opinião (CESOP worked to recruit and interview 10,661 subjects. The 2nd phase involved the participation of a multidisciplinary team, several local authorities, a specialized vehicle (“mobile unit” and a specific software program for the clinical appointments. The development of specific recruitment strategies improved the participation rate. Blood samples were collected and sent to Biobanco-IMM and to a central lab for immediate measurements. In the 3rd phase the RMD diagnosis were validated by a team of three experienced rheumatologists - clinical data, imaging and lab test results were revised according to previously published classification criteria. Conclusion: EpiReumaPt was a nationwide project successfully conducted, which followed critical logistic/coordination and research strategies. EpiReumaPt methodology and coordination could be used as an example for other epidemiologic endeavors and public health policies.

  19. Comparison of Epidrum, Epi-Jet, and Loss of Resistance syringe ...

    Background: Identifying the epidural space is essential during epidural anesthesia (EA). Pressure of the epidural space in pregnancy is higher than that in nonpregnant woman. Loss of resistance (LOR) method is the most commonly preferred method for identifying the epidural space. Epidrum and Epi-Jet are recently ...

  20. Roles of epi-anecic taxa of earthworms in the organic matter recycling

    Hoeffner, Kevin; Monard, Cécile; Santonja, Mathieu; Pérès, Guénola; Cluzeau, Daniel

    2017-04-01

    Given their impact on soil functioning and their interactions with soil organisms, earthworms contribute to the recycling of organic matter and participate significantly in the numerous ecosystem services provided by soils. Most studies on the role of earthworms in organic matter recycling were conducted at the level of the four functional groups (epigeic, epi-anecic, anecic strict and endogeic), but their effects at taxa level remain largely unknown. Still, within a functional group, anatomic and physiologic earthworm taxa traits are different, which should impact organic matter recycling. This study aims at determining, under controlled conditions, epi-anecic taxa differences in (i) leaf litter mass loss, (ii) assimilation and (iii) impact on microorganisms communities implied in organic matter degradation. In seperate microcosms, we chose 4 epi anecic taxa (Lumbricus rubellus, Lumbricus festivus, Lumbricus centralis and Lumbricus terrestris). Each taxon was exposed separately to leaves of three different plants (Holcus lanatus, Lolium perenne and Corylus avellana). In the same microcosm, leaves of each plant was both placed on the surface and buried 10cm deep. The experiment lasted 10 days for half of the samples and 20 days for the second half. Microorganisms communities were analysed using TRFLP in each earthworm taxon burrow walls at 20 days. We observed differences between epi-anecic taxa depending on species of plant and the duration of the experiment. Results are discussed taking into account physical and chemical properties of these 3 trophic resources (e.g. C/N ratio, phenolic compounds, percentage of lignin and cellulose...).

  1. Synthesis and evaluation of germanium organometallic compounds as precursors for chemical vapor deposition (CVD) and for obtaining nanoparticles of elemental germanium

    Ballestero Martinez, Ernesto

    2014-01-01

    The interest in the development of materials having applications such as electronics areas or biomarkers has affected the synthesis of new compounds based on germanium. This element has had two common oxidation states, +4 and +2, of them, +2 oxidation state has been the least studied and more reactive. Additionally, compounds of germanium (II) have had similarities with carbenes regarding the chemical acid-base Lewis. The preparation of compounds of germanium (II) with ligands β-decimations has enabled stabilization of new chemical functionalities and, simultaneously, provided interesting thermal properties to develop new preparation methodologies of materials with novel properties. The preparation of amides germanium(II) L'Ge(NHPh) [1, L' = {HC (CMeN-2,4,6-Me 3 C 6 H 2 ) 2 }], L'Ge(4-NHPy) [2] L'Ge(2-NHPy) [3] and LGe(2-NHPy) [4, L = {HC(CMeN-2,6- i Pr 2 C 6 H 3 ) 2 }]; the structural chemical composition were determined using techniques such as nuclear magnetic resonance ( 1 H, 13 C), other techniques are treated: elemental analysis, melting point, infrared spectroscopy, X-ray diffraction of single crystal and thermal gravimetric analysis (TGA). The TGA has showed that 4-1 have experimented a thermal decomposition; therefore, these compounds could be considered as potential starting materials for obtaining germanium nitride (GeN x ). Certainly, the availability of nitrogen coordinating atoms in the chemical composition in 2-4 have been interesting because it could act as ligands in reactions with transition metal complexes. That way, information could be obtained at the molecular level for some reactions and interactions that in surface chemistry have used similar link sites, for example, chemical functionalization of silicon and germanium substrates. The synthesis and structural characterization of germanium chloride compound(II) L''GeCl [5, L'' = HC{(CMe) (N-2,6-Me 2 C 6 H 3 )} 2 ], which could be used later for the

  2. Gamma ray polarimetry using a position sensitive germanium detector

    Kroeger, R A; Kurfess, J D; Phlips, B F

    1999-01-01

    Imaging gamma-ray detectors make sensitive polarimeters in the Compton energy regime by measuring the scatter direction of gamma rays. The principle is to capitalize on the angular dependence of the Compton scattering cross section to polarized gamma rays and measure the distribution of scatter directions within the detector. This technique is effective in a double-sided germanium detector between roughly 50 keV and 1 MeV. This paper reviews device characteristics important to the optimization of a Compton polarimeter, and summarizes measurements we have made using a device with a 5x5 cm active area, 1 cm thickness, and strip-electrodes on a 2 mm pitch.

  3. Hydrogen concentration and distribution in high-purity germanium crystals

    Hansen, W.L.; Haller, E.E.; Luke, P.N.

    1981-10-01

    High-purity germanium crystals used for making nuclear radiation detectors are usually grown in a hydrogen ambient from a melt contained in a high-purity silica crucible. The benefits and problems encountered in using a hydrogen ambient are reviewed. A hydrogen concentration of about 2 x 10 15 cm -3 has been determined by growing crystals in hydrogen spiked with tritium and counting the tritium β-decays in detectors made from these crystals. Annealing studies show that the hydrogen is strongly bound, either to defects or as H 2 with a dissociation energy > 3 eV. This is lowered to 1.8 eV when copper is present. Etching defects in dislocation-free crystals grown in hydrogen have been found by etch stripping to have a density of about 1 x 10 7 cm -3 and are estimated to contain 10 8 H atoms each

  4. TIGRESS highly-segmented high-purity germanium clover detector

    Scraggs, H. C.; Pearson, C. J.; Hackman, G.; Smith, M. B.; Austin, R. A. E.; Ball, G. C.; Boston, A. J.; Bricault, P.; Chakrawarthy, R. S.; Churchman, R.; Cowan, N.; Cronkhite, G.; Cunningham, E. S.; Drake, T. E.; Finlay, P.; Garrett, P. E.; Grinyer, G. F.; Hyland, B.; Jones, B.; Leslie, J. R.; Martin, J.-P.; Morris, D.; Morton, A. C.; Phillips, A. A.; Sarazin, F.; Schumaker, M. A.; Svensson, C. E.; Valiente-Dobón, J. J.; Waddington, J. C.; Watters, L. M.; Zimmerman, L.

    2005-05-01

    The TRIUMF-ISAC Gamma-Ray Escape-Suppressed Spectrometer (TIGRESS) will consist of twelve units of four high-purity germanium (HPGe) crystals in a common cryostat. The outer contacts of each crystal will be divided into four quadrants and two lateral segments for a total of eight outer contacts. The performance of a prototype HPGe four-crystal unit has been investigated. Integrated noise spectra for all contacts were measured. Energy resolutions, relative efficiencies for both individual crystals and for the entire unit, and peak-to-total ratios were measured with point-like sources. Position-dependent performance was measured by moving a collimated source across the face of the detector.

  5. Structure and electron-ion correlation of liquid germanium

    Kawakita, Y. [Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan)]. E-mail: kawakita@rc.kyushu-u.ac.jp; Fujita, S. [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan); Kohara, S. [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto Mikazuki-cho, Hyogo 679-5198 (Japan); Ohshima, K. [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan); Fujii, H. [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan); Yokota, Y. [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan); Takeda, S. [Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan)

    2005-08-15

    Structure factor of liquid germanium (Ge) has a shoulder at {theta} = 3.2 A{sup -1} in the high-momentum-transfer region of the first peak. To investigate the origin of such a non-simplicity in the structure, high energy X-ray diffraction measurements have been performed using 113.26 keV incident X-ray, at BL04B2 beamline of SPring-8. By a combination of the obtained structure factor with the reported neutron diffraction data, charge density function and electron-ion partial structure factor have been deduced. The peak position of the charge distribution is located at about 1 A, rather smaller r value than the half value of nearest neighbor distance ({approx}2.7 A), which suggests that valence electrons of liquid Ge play a role of screening electrons around a metallic ion rather than covalently bonding electrons.

  6. Specific features of phase transformations in germanium monotelluride

    Bigvava, A.D.; Gabedava, A.A.; Kunchuliya, Eh.D.; Shvangiradze, R.R.

    1981-01-01

    Phase transformations in germanium monotelluride are studied . using DRON-0.5 and DRON-1 plants with high-temperature chamber GPVT-1500 at Cu, Ksub(α) radiation. It is shown that in the whole homogeneity range α GeTe is a metastable phase which is formed under the conditions of fast cooling of alloy from temperatures >=Tsub(cub) (temperature of transition in cubic crystal system). An equilibrium γ-phase is obtained by annealing of dispersed powders and metal-ceramic specimens of alloys with 50.3; 50.6; 50.9 at % Te. Lattice parameters of rhombic γ-phase do not depend on tellurium content in initial α- phase. α→γ transformation is observed at any temperature less than Tsub(cub) with the change of alloy composition, namely tellurium precipitation. γ-phase transforms into β at higher temperatures than α-phase [ru

  7. Role of EPI in diagnosing cavernous hemangioma and small HCC : comparison with fast T2-weighted MR Imaging

    Kim, Suk; Lee, Jun Woo; Kim, Chang Won; Jung, Hyun Woo; Choi, Sang Yoel; Lee, Suck Hong; Kim, Byung Soo

    1998-01-01

    The purpose of this study is to compare single-shot echo-planar MR imaging (EPI) with breath-hold fast T2-weighted imaging (HASTE or Turbo spin-echo T2WI) for evaluation of the role of EPI in distinguishing small hepatocellular carcinoma from cavernous hemangioma. We retrospectively evaluated MR images of 35 patients (21 cases of small HCC and 14 cases of cavernous hemangioma). EPI and breath-hold fast T2WI images were obtained and compared on the basis of lesion detection sensitivity, lesion-to-liver signal intensity ratio (SIR), contrast ratio (CR), and lesion-to-liver contrast to noise ratio (CNR). For the detection of small HCC, the sensitivity of EPI and breath-hold fast T2WI were equal in 14 of 21 cases (71.4%). The detection sensitivity of cavernous hemangioma with EPI and breath-hold fast T2WI was 100 % (14/14). Mean SIR on breath-hold fast T2WI was 2.02 ± 0.45 for small HCC and 3.65 ± 0.97 for cavernous hemangioma; on EPI, the corresponding figures were 2.91 ± 0.57 for cavernous hemangioma; On EPI, the figures obtained were 2.27 ± 0.52 and 6.26 ± 2.19, respectively. Mean CNR on breath-hold fast T2WI was 14.24 ± 4.098 for small HCC and 50.28 ± 10.96 for cavernous hemangioma, while on EPI, the corresponding figures were 13.84 ± 3.02 and 45.44 ± 11.21. In detecting focal hepatic mass, the sensitivity of EPI and breath-hold fast T2WI are comparable for the diagnosis of small HCC and cavernous hemangioma, EPI can provided additional information. (author). 20 refs., 2 tabs., 4 figs

  8. Epi-LASIK e PRK: um ano de estudo comparativo em olhos contralaterais

    Francisco Penteado Crestana

    2013-08-01

    Full Text Available OBJETIVO: Comparar as técnicas de PRK e Epi-LASIK com relação à recuperação visual e sintomatologia pós-operatória. MÉTODOS: Série de casos intervencionista que incluiu 38 olhos de 19 pacientes com miopia até 5DE e astigmatismo até 1DC. Foram selecionados pacientes com erros refracionais semelhantes nos dois olhos, realizando-se, no mesmo tempo cirúrgico, PRK em um olho e Epi-LASIK no olho contralateral. Os pacientes foram acompanhados por um ano, avaliando-se a eficácia refracional e grau de desconforto pós-operatório. RESULTADOS: Durante as primeiras 12 horas, 79,9% dos pacientes (p=0,0003 referiram dor mais intensa no olho operado com a técnica Epi-LASIK. Após 24 horas, 63,2% dos pacientes (p=0,012 ainda referiam mais dor neste olho e apenas 10,5% no olho contralateral. A acuidade visual não corrigida foi melhor nos olhos do grupo PRK no primeiro dia (p=0,034. Nos demais dias não houve diferença significativa entre os grupos. Houveopacidade corneana grau 0,5 (Fantes em três olhos do grupo PRK e em dois no grupo Epi-LASIK. CONCLUSÃO: Ambos os grupos apresentaram resultado visual refracional satisfatório, porém o grupo Epi-LASIK apresentou maior desconforto no pós-operatório imediato.

  9. Radiation-electromagnetic effect in germanium single crystals

    Kikoin, I.K.; Kikoin, L.I.; Lazarev, S.D.

    1980-01-01

    An experimental study was made of the radiation-electromagnetic effect in germanium single crystals when excess carriers were generated by bombardment with α particles, protons, or x rays in magnetic fields up to 8 kOe. The source of α particles and protons was a cyclotron and x rays were provided by a tube with a copper anode. The radiation-electromagnetic emf increased linearly on increase in the magnetic field and was directly proportional to the flux of charged particles at low values of the flux, reaching saturation at high values of the flux (approx.5 x 10 11 particles .cm -2 .sec -1 ). In the energy range 4--40 MeV the emf was practically independent of the α-particle energy. The sign of the emf was reversed when samples with a ground front surface were irradiated. Measurements of the photoelectromagnetic and Hall effects in the α-particle-irradiated samples showed that a p-n junction was produced by these particles and its presence should be allowed for in investigations of the radiation-electromagnetic effect. The measured even radiation-electromagnetic emf increased quadratically on increase in the magnetic field. An investigation was made of the barrier radiation-voltaic effect (when the emf was measured between the irradiated and unirradiated surfaces). Special masks were used to produce a set of consecutive p-n junctions in germanium crystals irradiated with α particles. A study of the photovoltaic and photoelectromagnetic effects in such samples showed that the method could be used to increase the efficiency of devices utilizing the photoelectromagnetic effect

  10. Secondary ion formation during electronic and nuclear sputtering of germanium

    Breuer, L.; Ernst, P.; Herder, M.; Meinerzhagen, F.; Bender, M.; Severin, D.; Wucher, A.

    2018-06-01

    Using a time-of-flight mass spectrometer attached to the UNILAC beamline located at the GSI Helmholtz Centre for Heavy Ion Research, we investigate the formation of secondary ions sputtered from a germanium surface under irradiation by swift heavy ions (SHI) such as 5 MeV/u Au by simultaneously recording the mass spectra of the ejected secondary ions and their neutral counterparts. In these experiments, the sputtered neutral material is post-ionized via single photon absorption from a pulsed, intensive VUV laser. After post-ionization, the instrument cannot distinguish between secondary ions and post-ionized neutrals, so that both signals can be directly compared in order to investigate the ionization probability of different sputtered species. In order to facilitate an in-situ comparison with typical nuclear sputtering conditions, the system is also equipped with a conventional rare gas ion source delivering a 5 keV argon ion beam. For a dynamically sputter cleaned surface, it is found that the ionization probability of Ge atoms and Gen clusters ejected under electronic sputtering conditions is by more than an order of magnitude higher than that measured for keV sputtered particles. In addition, the mass spectra obtained under SHI irradiation show prominent signals of GenOm clusters, which are predominantly detected as positive or negative secondary ions. From the m-distribution for a given Ge nuclearity n, one can deduce that the sputtered material must originate from a germanium oxide matrix with approximate GeO stoichiometry, probably due to residual native oxide patches even at the dynamically cleaned surface. The results clearly demonstrate a fundamental difference between the ejection and ionization mechanisms in both cases, which is interpreted in terms of corresponding model calculations.

  11. Focusing of a new germanium counter type : the composite detector. Uses of the TREFLE detector in the EUROGAM multidetector; Mise au point d`un nouveau type de compteur germanium: le detecteur composite. Utilisation du detecteur TREFLE dans le multidetecteur EUROGAM

    Han, L

    1995-05-01

    The aim of this thesis is the development of new types of germanium detectors: the composite detectors. Two types of prototypes are then conceived: the stacked planar detector (EDP) and the assembly of coaxial diodes (TREFLE). They are designed for the multidetector EUROGAM destined to the research of nuclear structure at high angular momentum. The four planar diodes of EDP detector were of 7 cm diameter and of 15 to 20 mm thick. The difference between the calculated and measured photopic efficiency is observed. The importance of surface channel induces a weak resistance of neutron damages. The sputtering method for the surface treatment reducing the germanium dead layer as well as a rule of selection concerning the impurity concentration and the thickness of crystal is helpful for the later production of germanium detector. The CLOVER detector consist of for mean size crystals in the same cryostat. The photopic efficiency is much larger than that of the greatest monocrystal detector. And the granulation of composite detector allowed the Doppler broadening correction of gamma ray observed in the nuclear reaction where the recoil velocity is very high. This new type of detector enable the linear polarization measurement of gamma ray. Twenty-four CLOVER detector are actually mounted in the EUROGAM array. The characteristics measured in source as well as in beam, reported in this thesis, meet exactly the charge account. (author). 47 refs., 61 figs., 18 tabs.

  12. Uso da sequência FLAIR-EPI na análise da esclerose mesial temporal EPI-FLAIR sequence in the evaluation of mesial temporal sclerosis

    Marcos Alberto da Costa Machado Júnior

    2001-06-01

    Full Text Available O objetivo deste estudo é analisar as alterações morfológicas e de intensidade de sinal das regiões hipocampais em pacientes, com epilepsia temporal fármaco-resistente. Para tal, estudamos 8 pacientes com esclerose mesial temporal, utilizando aparelhagem de RM de 1,5T, com sequências Spin Eco - SE, Fast Spin Eco - FSE, Fluid Atenuation Inversion Recovery, com Eco Planar Imaging - FLAIR-EPI. Observamos a superioridade da sequência FLAIR na detecção do aumento da intensidade de sinal da região hipocampal, particularmente com cortes coronais, em relação às sequências SE e FSE, com a vantagem de ser uma técnica de rápida execução. A sequência STIR evidenciou adelgaçamento da cortical do hipocampo, na metade dos casos que apresentavam alteração de sinal.The purpose of this study is to evaluate morpholologycal and signal intensity changes in the hippocampus in patients with medically intractable temporal lobe epilepsy. We studied 8 patients with mesial temporal sclerosis using a 1.5 -T MR and the following sequences Spin Eco- SE, Fast Spin Echo- FSE, Fluid Atenuation Inversion Recovery Echo Planar Imaging - FLAIR-EPI. We noticed a sensitive increase signal intensity on FLAIR- EPI sequences, particularly, in coronal images, than on SE and FSE sequences. The STIR sequence showed a cortical hippocampus atrophy in half of the cases, in whom signal abnormalities were present.

  13. An Implant-Passivated Blocked Impurity Band Germanium Detector for the Far Infrared, Phase I

    National Aeronautics and Space Administration — We propose to investigate the feasibility of fabricating a germanium blocked-impurity-band (BIB) detector using a novel process which will enable us to: 1- fabricate...

  14. Nonthermal plasma synthesis of size-controlled, monodisperse, freestanding germanium nanocrystals

    Gresback, Ryan; Holman, Zachary; Kortshagen, Uwe

    2007-01-01

    Germanium nanocrystals may be of interest for a variety of electronic and optoelectronic applications including photovoltaics, primarily due to the tunability of their band gap from the infrared into the visible range of the spectrum. This letter discusses the synthesis of monodisperse germanium nanocrystals via a nonthermal plasma approach which allows for precise control of the nanocrystal size. Germanium crystals are synthesized from germanium tetrachloride and hydrogen entrained in an argon background gas. The crystal size can be varied between 4 and 50 nm by changing the residence times of crystals in the plasma between ∼30 and 440 ms. Adjusting the plasma power enables one to synthesize fully amorphous or fully crystalline particles with otherwise similar properties

  15. Charge Spreading and Position Sensitivity in a Segmented Planar Germanium Detector (Preprint)

    Kroeger, R. A; Gehrels, N; Johnson, W. N; Kurfess, J. D; Phlips, B. P; Tueller, J

    1998-01-01

    The size of the charge cloud collected in a segmented germanium detector is limited by the size of the initial cloud, uniformity of the electric field, and the diffusion of electrons and holes through the detector...

  16. Quantum interference magnetoconductance of polycrystalline germanium films in the variable-range hopping regime

    Li, Zhaoguo; Peng, Liping; Zhang, Jicheng; Li, Jia; Zeng, Yong; Zhan, Zhiqiang; Wu, Weidong

    2018-06-01

    Direct evidence of quantum interference magnetotransport in polycrystalline germanium films in the variable-range hopping (VRH) regime is reported. The temperature dependence of the conductivity of germanium films fulfilled the Mott VRH mechanism with the form of ? in the low-temperature regime (?). For the magnetotransport behaviour of our germanium films in the VRH regime, a crossover, from negative magnetoconductance at the low-field to positive magnetoconductance at the high-field, is observed while the zero-field conductivity is higher than the critical value (?). In the regime of ?, the magnetoconductance is positive and quadratic in the field for some germanium films. These features are in agreement with the VRH magnetotransport theory based on the quantum interference effect among random paths in the hopping process.

  17. Germanium microstrip detectors with 50 and 100 μm pitch

    Amendolia, S.R.; Bedeschi, F.; Bertolucci, E.; Bettoni, D.; Bosisio, L.; Bottigli, U.; Bradaschia, C.; Dell'Orso, M.; Fidecaro, F.; Foa, L.; Focardi, E.; Giannetti, P.; Giorgi, M.A.; Marrocchesi, P.S.; Menzione, A.; Raso, G.; Ristori, L.; Scribano, A.; Stefanini, A.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Haller, E.E.; Hansen, W.L.; Luke, P.N.

    1984-01-01

    Multi-electrode germanium detectors are being used as an active target for decay path measurements of charmed mesons. The procedure used to fabricate such detectors is described and a brief analysis of their performance is given. (orig.)

  18. Induced Radioactivity Measured in a Germanium Detector After a Long Duration Balloon Flight

    Starr, R.; Evans, L. G.; Floyed, S. R.; Drake, D. M.; Feldman, W. C.; Squyres, S. W.; Rester, A. C.

    1997-01-01

    A 13-day long duration balloon flight carrying a germanium detector was flown from Williams Field, Antartica in December 1992. After recovery of the payload the activity induced in the detector was measured.

  19. Silicon-Germanium Front-End Electronics for Space-Based Radar Applications

    National Aeronautics and Space Administration — Over the past two decades, Silicon-Germanium (SiGe) heterojunction bipolar transistor (HBT) technology has emerged as a strong platform for high-frequency...

  20. Fundamental aspects of nucleation and growth in the solution-phase synthesis of germanium nanocrystals

    Codoluto, Stephen C.; Baumgardner, William J.; Hanrath, Tobias

    2010-01-01

    Colloidal Ge nanocrystals (NCs) were synthesized via the solution phase reduction of germanium(ii) iodide. We report a systematic investigation of the nanocrystal nucleation and growth as a function of synthesis conditions including the nature

  1. Thermal recrystallization of physical vapor deposition based germanium thin films on bulk silicon (100)

    Hussain, Aftab M.

    2013-08-16

    We demonstrate a simple, low-cost, and scalable process for obtaining uniform, smooth surfaced, high quality mono-crystalline germanium (100) thin films on silicon (100). The germanium thin films were deposited on a silicon substrate using plasma-assisted sputtering based physical vapor deposition. They were crystallized by annealing at various temperatures ranging from 700 °C to 1100 °C. We report that the best quality germanium thin films are obtained above the melting point of germanium (937 °C), thus offering a method for in-situ Czochralski process. We show well-behaved high-κ /metal gate metal-oxide-semiconductor capacitors (MOSCAPs) using this film. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Comparison of Diffusion-Weighted Imaging in the Human Brain Using Readout-Segmented EPI and PROPELLER Turbo Spin Echo With Single-Shot EPI at 7 T MRI.

    Kida, Ikuhiro; Ueguchi, Takashi; Matsuoka, Yuichiro; Zhou, Kun; Stemmer, Alto; Porter, David

    2016-07-01

    The purpose of the present study was to compare periodically rotated overlapping parallel lines with enhanced reconstruction-type turbo spin echo diffusion-weighted imaging (pTSE-DWI) and readout-segmented echo planar imaging (rsEPI-DWI) with single-shot echo planar imaging (ssEPI-DWI) in a 7 T human MR system. We evaluated the signal-to-noise ratio (SNR), image distortion, and apparent diffusion coefficient values in the human brain. Six healthy volunteers were included in this study. The study protocol was approved by our institutional review board. All measurements were performed at 7 T using pTSE-DWI, rsEPI-DWI, and ssEPI-DWI sequences. The spatial resolution was 1.2 × 1.2 mm in-plane with a 3-mm slice thickness. Signal-to-noise ratio was measured using 2 scans. The ssEPI-DWI sequence showed significant image blurring, whereas pTSE-DWI and rsEPI-DWI sequences demonstrated high image quality with low geometrical distortion compared with reference T2-weighted, turbo spin echo images. Signal loss in ventral regions near the air-filled paranasal sinus/nasal cavity was found in ssEPI-DWI and rsEPI-DWI but not pTSE-DWI. The apparent diffusion coefficient values for ssEPI-DWI were 824 ± 17 × 10 and 749 ± 25 × 10 mm/s in the gray matter and white matter, respectively; the values obtained for pTSE-DWI were 798 ± 21 × 10 and 865 ± 40 × 10 mm/s; and the values obtained for rsEPI-DWI were 730 ± 12 × 10 and 722 ± 25 × 10 mm/s. The pTSE-DWI images showed no additional distortion comparison to the T2-weighted images, but had a lower SNR than ssEPI-DWI and rsEPI-DWI. The rsEPI-DWI sequence provided high-quality images with minor distortion and a similar SNR to ssEPI-DWI. Our results suggest that the benefits of the rsEPI-DWI and pTSE-DWI sequences, in terms of SNR, image quality, and image distortion, appear to outweigh those of ssEPI-DWI. Thus, pTSE-DWI and rsEPI-DWI at 7 T have great potential use for clinical diagnoses. However, it is noteworthy that both

  3. Successful Fabrication of GaN Epitaxial Layer on Non-Catalytically grown Graphene

    Hwang, Sung Won [Konkuk University, Chungju (Korea, Republic of); Choi, Suk-Ho [Kyung Hee University, Yongin (Korea, Republic of)

    2016-07-15

    Sapphire is widely used as a substrate for the growth of GaN epitaxial layer (EPI), but has several drawbacks such as high cost, large lattice mismatch, non-flexibility, and so on. Here, we first employ graphene directly grown on Si or sapphire substrate as a platform for the growth and lift-off of GaN-light-emitting diode (LED) EPI, useful for not only recycling the substrate but also transferring the GaN-LED EPI to other flexible substrates. Sequential standard processes of nucleation/recrystallization of GaN seeds and deposition of undoped (u-) GaN/AlN buffer layer were done on graphene/substrate before the growth of GaN-LED EPI, accompanied by taping and lift-off of u-GaN/AlN or GaN-LED EPI. This approach can overcome the limitations by the catalytic growth and transfer of graphene, and make the oxygen-plasma treatment of graphene for the growth of GaN EPI unnecessary.

  4. Direct band gap electroluminescence from bulk germanium at room temperature using an asymmetric fin type metal/germanium/metal structure

    Wang, Dong, E-mail: wang.dong.539@m.kyushu-u.ac.jp; Maekura, Takayuki; Kamezawa, Sho [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Yamamoto, Keisuke; Nakashima, Hiroshi [Art, Science and Technology Center for Cooperative Research, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan)

    2015-02-16

    We demonstrated direct band gap (DBG) electroluminescence (EL) at room temperature from n-type bulk germanium (Ge) using a fin type asymmetric lateral metal/Ge/metal structure with TiN/Ge and HfGe/Ge contacts, which was fabricated using a low temperature (<400 °C) process. Small electron and hole barrier heights were obtained for TiN/Ge and HfGe/Ge contacts, respectively. DBG EL spectrum peaked at 1.55 μm was clearly observed even at a small current density of 2.2 μA/μm. Superlinear increase in EL intensity was also observed with increasing current density, due to superlinear increase in population of elections in direct conduction band. The efficiency of hole injection was also clarified.

  5. Influence of reductant and germanium concentration on the growth and stress development of germanium nanocrystals in silicon oxide matrix

    Chew, H G; Zheng, F; Choi, W K; Chim, W K; Foo, Y L; Fitzgerald, E A

    2007-01-01

    Germanium (Ge) nanocrystals have been synthesized by annealing co-sputtered SiO 2 -Ge samples in N 2 or forming gas (90% N 2 +10% H 2 ) at temperatures ranging from 700 to 1000 deg. C. We concluded that the annealing ambient, temperature and Ge concentration have a significant influence on the formation and evolution of the nanocrystals. We showed that a careful selective etching of the annealed samples in hydrofluoric acid solution enabled the embedded Ge nanocrystals to be liberated from the SiO 2 matrix. From the Raman results of the as-grown and the liberated nanocrystals, we established that the nanocrystals generally experienced compressive stress in the oxide matrix and the evolution of these stress states was intimately linked to the distribution, density, size and quality of the Ge nanocrystals

  6. Red-luminescence band: A tool for the quality assessment of germanium and silicon nanocrystals

    Fraj, I.; Favre, L.; David, T.; Abbarchi, M.; Liu, K.; Claude, J. B.; Ronda, A.; Naffouti, M.; Saidi, F.; Hassen, F.; Maaref, H.; Aqua, J. N.; Berbezier, I.

    2017-10-01

    We present the photoluminescence (PL) emission of Silicon and Germanium nanocrystals (NCs) of different sizes embedded in two different matrices. Formation of the NCs is achieved via solid-state dewetting during annealing in a molecular beam epitaxy ultra-high vacuum system of ultrathin amorphous Si and Ge layers deposited at room temperature on SiO2. During the dewetting process, the bi-dimensional amorphous layers transform into small pseudo-spherical islands whose mean size can be tuned directly with the deposited thickness. The nanocrystals are capped either ex situ by silicon dioxide or in situ by amorphous Silicon. The surface-state dependent emission (typically in the range 1.74 eV-1.79 eV) exhibited higher relative PL quantum yields compared to the emission originating from the band gap transition. This red-PL emission comes from the radiative transitions between a Si band and an interface level. It is mainly ascribed to the NCs and environment features deduced from morphological and structural analyses. Power dependent analysis of the photoluminescence intensity under continuous excitation reveals a conventional power law with an exponent close to 1, in agreement with the type II nature of the emission. We show that Ge-NCs exhibit much lower quantum efficiency than Si-NCs due to non-radiative interface states. Low quantum efficiency is also obtained when NCs have been exposed to air before capping, even if the exposure time is very short. Our results indicate that a reduction of the non-radiative surface states is a key strategy step in producing small NCs with increased PL emission for a variety of applications. The red-PL band is then an effective tool for the quality assessment of NCs based structures.

  7. On the origin of anisotropic lithiation in crystalline silicon over germanium: A first principles study

    Chou, Chia-Yun [Materials Science and Engineering Program, University of Texas at Austin, Austin, TX 78712 (United States); Hwang, Gyeong S., E-mail: gshwang@che.utexas.edu [Materials Science and Engineering Program, University of Texas at Austin, Austin, TX 78712 (United States); Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712 (United States)

    2014-12-30

    Graphical abstract: - Highlights: • We examine the underlying reasons for the anisotropic lithiation of Si over Ge in the crystalline phase. • Crystalline Si is lithiated in a layer-by-layer fashion, yielding a sharp amorphous–crystalline interface. • Lithiated c-Ge exhibits a graded lithiation front, which proceeds much faster than that in c-Si. • Lithiation behavior tends to be subject to the stiffness and dynamics of the host matrix. • We reveal the origin and extended impacts of the anisotropic Si vs. isotropic Ge lithiation. - Abstract: Silicon (Si) and germanium (Ge) are both recognized as a promising anode material for high-energy lithium-ion batteries. Si is abundant and best known for its superior gravimetric energy storage capacity, while Ge exhibits faster charge/discharge rates and better capacity retention. Recently, it was discovered that Si lithiation exhibits strong orientation dependence while Ge lithiation proceeds isotropically, although they have the same crystalline structure. To better understand the underlying reasons behind these distinctive differences, we examine and compare the lithiation behaviors at the Li{sub 4}Si/c-Si(1 1 0) and Li{sub 4}Ge/c-Ge(1 1 0) model systems using ab initio molecular dynamics simulations. In comparison to lithiated c-Si, where a sharp amorphous–crystalline interface remains and advances rather slowly, lithiated c-Ge tends to loose its crystallinity rapidly, resulting in a graded lithiation front of fast propagation speed. Analysis of the elastic responses and dynamics of the host Si and Ge lattices clearly demonstrate that from the beginning of the lithiation process, Ge lattice responds with more significant weakening as compared to the rigid Si lattice. Moreover, the more flexible Ge lattice is found to undergo facile atomic rearrangements during lithiation, overshadowing the original crystallographic characteristic. These unique properties of Ge thereby contribute synergistically to the rapid

  8. HEROICA: A fast screening facility for the characterization of germanium detectors

    Andreotti, Erica [Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen (Germany); Collaboration: GERDA Collaboration

    2013-08-08

    In the course of 2012, a facility for the fast screening of germanium detectors called HEROICA (Hades Experimental Research Of Intrinsic Crystal Appliances) has been installed at the HADES underground laboratory in the premises of the Belgian Nuclear Research Centre SCK•CEN, in Mol (Belgium). The facility allows performing a complete characterization of the critical germanium detectors' operational parameters with a rate of about two detectors per week.

  9. MDRD or CKD-EPI for glomerular filtration rate estimation in living kidney donors

    Carla Burballa

    2018-03-01

    Full Text Available Introduction: The evaluation of the measured Glomerular Filtration Rate (mGFR or estimated Glomerular Filtration Rate (eGFR is key in the proper assessment of the renal function of potential kidney donors. We aim to study the correlation between glomerular filtration rate estimation equations and the measured methods for determining renal function. Material and methods: We analyzed the relationship between baseline GFR values measured by Tc-99m-DTPA (diethylene-triamine-pentaacetate and those estimated by the four-variable Modification of Diet in Renal Disease (MDRD4 and Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI equations in a series of living donors at our institution. Results: We included 64 donors (70.6% females; mean age 48.3 ± 11 years. Baseline creatinine was 0.8 ± 0.1 mg/dl and it was 1.1 ± 0.2 mg/dl one year after donation. The equations underestimated GFR when measured by Tc99m-DTPA (MDRD4 – 9.4 ± 25 ml/min, P < .05, and CKD-EPI – 4.4 ± 21 ml/min. The correlation between estimation equations and the measured method was superior for CKD-EPI (r = .41; P < .004 than for MDRD4 (r = .27; P < .05. eGFR decreased to 59.6 ± 11 (MDRD4 and 66.2 ± 14 ml/min (CKD-EPI one year after donation. This means a mean eGFR reduction of 28.2 ± 16.7 ml/min (MDRD4 and 27.31 ± 14.4 ml/min (CKD-EPI at one year. Conclusions: In our experience, CKD-EPI is the equation that better correlates with mGFR-Tc99m-DTPA when assessing renal function for donor screening purposes. Resumen: Introducción: El estudio del filtrado glomerular medido (FGm o del estimado (FGe es el eje de la evaluación adecuada de la función renal en la valoración de un potencial donante vivo renal. Nos planteamos estudiar la correlación entre las fórmulas de estimación del FG y los métodos de medición para

  10. Optical properties of Germanium nanoparticles synthesized by pulsed laser ablation in acetone

    Saikiran eVadavalli

    2014-10-01

    Full Text Available Germanium (Ge nanoparticles (NPs are synthesized by means of pulsed laser ablation of bulk germanium target immersed in acetone with ns laser pulses at different pulse energies. The fabricated NPs are characterized by employing different techniques such as UV-visible absorption spectroscopy, photoluminescence, micro-Raman spectroscopy, transmission electron microscopy (TEM and field emission scanning electron microscopy (FESEM. The mean size of the Ge NPs is found to vary from few nm to 40 nm with the increase in laser pulse energy. Shift in the position of the absorption spectra is observed and also the photoluminescence peak shift is observed due to quantum confinement effects. High resolution TEM combined with micro-Raman spectroscopy confirms the crystalline nature of the generated germanium nanoparticles. The formation of various sizes of germanium NPs at different laser pulse energies is evident from the asymmetry in the Raman spectra and the shift in its peak position towards the lower wavenumber side. The FESEM micrographs confirm the formation of germanium micro/nanostructures at the laser ablated position of the bulk germanium. In particular, the measured NP sizes from the micro-Raman phonon quantum confinement model are found in good agreement with TEM measurements of Ge NPs.

  11. Rapid whole-brain resting-state fMRI at 3 T: Efficiency-optimized three-dimensional EPI versus repetition time-matched simultaneous-multi-slice EPI.

    Stirnberg, Rüdiger; Huijbers, Willem; Brenner, Daniel; Poser, Benedikt A; Breteler, Monique; Stöcker, Tony

    2017-12-01

    State-of-the-art simultaneous-multi-slice (SMS-)EPI and 3D-EPI share several properties that benefit functional MRI acquisition. Both sequences employ equivalent parallel imaging undersampling with controlled aliasing to achieve high temporal sampling rates. As a volumetric imaging sequence, 3D-EPI offers additional means of acceleration complementary to 2D-CAIPIRINHA sampling, such as fast water excitation and elliptical sampling. We performed an application-oriented comparison between a tailored, six-fold CAIPIRINHA-accelerated 3D-EPI protocol at 530 ms temporal and 2.4 mm isotropic spatial resolution and an SMS-EPI protocol with identical spatial and temporal resolution for whole-brain resting-state fMRI at 3 T. The latter required eight-fold slice acceleration to compensate for the lack of elliptical sampling and fast water excitation. Both sequences used vendor-supplied on-line image reconstruction. We acquired test/retest resting-state fMRI scans in ten volunteers, with simultaneous acquisition of cardiac and respiration data, subsequently used for optional physiological noise removal (nuisance regression). We found that the 3D-EPI protocol has significantly increased temporal signal-to-noise ratio throughout the brain as compared to the SMS-EPI protocol, especially when employing motion and nuisance regression. Both sequence types reliably identified known functional networks with stronger functional connectivity values for the 3D-EPI protocol. We conclude that the more time-efficient 3D-EPI primarily benefits from reduced parallel imaging noise due to a higher, actual k-space sampling density compared to SMS-EPI. The resultant BOLD sensitivity increase makes 3D-EPI a valuable alternative to SMS-EPI for whole-brain fMRI at 3 T, with voxel sizes well below 3 mm isotropic and sampling rates high enough to separate dominant cardiac signals from BOLD signals in the frequency domain. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Antitumor agent 25-epi Ritterostatin GN1N induces endoplasmic reticulum stress and autophagy mediated cell death in melanoma cells.

    Riaz Ahmed, Kausar Begam; Kanduluru, Ananda Kumar; Feng, Li; Fuchs, Philip L; Huang, Peng

    2017-05-01

    Metastatic melanoma is the most aggressive of all skin cancers and is associated with poor prognosis owing to lack of effective treatments. 25-epi Ritterostatin GN1N is a novel antitumor agent with yet undefined mechanisms of action. We sought to delineate the antitumor mechanisms of 25-epi Ritterostatin GN1N in melanoma cells to determine the potential of this compound as a treatment for melanoma. Activation of the endoplasmic reticulum (ER) stress protein glucose-regulated protein 78 (GRP78) has been associated with increased melanoma progression, oncogenic signaling, drug resistance, and suppression of cell death. We found that 25-epi Ritterostatin GN1N induced cell death in melanoma cells at nanomolar concentrations, and this cell death was characterized by inhibition of GRP78 expression, increased expression of the ER stress marker CHOP, loss of mitochondrial membrane potential, and lipidation of the autophagy marker protein LC3B. Importantly, normal melanocytes exhibited limited sensitivity to 25-epi Ritterostatin GN1N. Subsequent in vivo results demonstrated that 25-epi Ritterostatin GN1N reduced melanoma growth in mouse tumor xenografts and did not affect body weight, suggesting minimal toxicity. In summary, our findings indicate that 25-epi Ritterostatin GN1N causes ER stress and massive autophagy, leading to collapse of mitochondrial membrane potential and cell death in melanoma cells, with minimal effects in normal melanocytes. Thus, 25-epi Ritterostatin GN1N is a promising anticancer agent that warrants further investigation.

  13. On the nature of the disordered layer produced by ion implantation

    Zellama, K.; Germain, P.; Squelard, S.; Bourgoin, J.C.; Piaguet, J.; Robic, J.Y.

    1978-01-01

    The aim of this communication is to compare some thermodynamic parameters measured in amorphous layers produced by evaporation and in disordered layers produced by ion implantation (which will be called implanted layers). The thermodynamics parameters studied are: the temperature of the annealing stages (reflecting the activation energies for atomic rearrangement) and the activation energy of the growth rate for crystallization. This investigation has been performed in germanium because the crystallization in this material has been extensively studied. (author)

  14. Microbial Detoxification of Deoxynivalenol (DON), Assessed via a Lemna minor L. Bioassay, through Biotransformation to 3-epi-DON and 3-epi-DOM-1.

    Vanhoutte, Ilse; De Mets, Laura; De Boevre, Marthe; Uka, Valdet; Di Mavungu, José Diana; De Saeger, Sarah; De Gelder, Leen; Audenaert, Kris

    2017-02-13

    Mycotoxins are toxic metabolites produced by fungi. To mitigate mycotoxins in food or feed, biotransformation is an emerging technology in which microorganisms degrade toxins into non-toxic metabolites. To monitor deoxynivalenol (DON) biotransformation, analytical tools such as ELISA and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) are typically used. However, these techniques do not give a decisive answer about the remaining toxicity of possible biotransformation products. Hence, a bioassay using Lemna minor L. was developed. A dose-response analysis revealed significant inhibition in the growth of L. minor exposed to DON concentrations of 0.25 mg/L and higher. Concentrations above 1 mg/L were lethal for the plant. This bioassay is far more sensitive than previously described systems. The bioassay was implemented to screen microbial enrichment cultures, originating from rumen fluid, soil, digestate and activated sludge, on their biotransformation and detoxification capability of DON. The enrichment cultures originating from soil and activated sludge were capable of detoxifying and degrading 5 and 50 mg/L DON. In addition, the metabolites 3-epi-DON and the epimer of de-epoxy-DON (3-epi-DOM-1) were found as biotransformation products of both consortia. Our work provides a new valuable tool to screen microbial cultures for their detoxification capacity.

  15. Microbial Detoxification of Deoxynivalenol (DON, Assessed via a Lemna minor L. Bioassay, through Biotransformation to 3-epi-DON and 3-epi-DOM-1

    Ilse Vanhoutte

    2017-02-01

    Full Text Available Mycotoxins are toxic metabolites produced by fungi. To mitigate mycotoxins in food or feed, biotransformation is an emerging technology in which microorganisms degrade toxins into non-toxic metabolites. To monitor deoxynivalenol (DON biotransformation, analytical tools such as ELISA and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS are typically used. However, these techniques do not give a decisive answer about the remaining toxicity of possible biotransformation products. Hence, a bioassay using Lemna minor L. was developed. A dose–response analysis revealed significant inhibition in the growth of L. minor exposed to DON concentrations of 0.25 mg/L and higher. Concentrations above 1 mg/L were lethal for the plant. This bioassay is far more sensitive than previously described systems. The bioassay was implemented to screen microbial enrichment cultures, originating from rumen fluid, soil, digestate and activated sludge, on their biotransformation and detoxification capability of DON. The enrichment cultures originating from soil and activated sludge were capable of detoxifying and degrading 5 and 50 mg/L DON. In addition, the metabolites 3-epi-DON and the epimer of de-epoxy-DON (3-epi-DOM-1 were found as biotransformation products of both consortia. Our work provides a new valuable tool to screen microbial cultures for their detoxification capacity.

  16. CON4EI: EpiOcular™ Eye Irritation Test (EpiOcular™ EIT) for hazard identification and labelling of eye irritating chemicals.

    Kandarova, H; Letasiova, S; Adriaens, E; Guest, R; Willoughby, J A; Drzewiecka, A; Gruszka, K; Alépée, Nathalie; Verstraelen, Sandra; Van Rompay, An R

    2018-06-01

    Assessment of the acute eye irritation potential is part of the international regulatory requirements for testing of chemicals. The objective of the CON4EI project was to develop tiered testing strategies for eye irritation assessment. A set of 80 reference chemicals (38 liquids and 42 solids) was tested with eight different methods. Here, the results obtained with the EpiOcular™ Eye Irritation Test (EIT), adopted as OECD TG 492, are shown. The primary aim of this study was to evaluate of the performance of the test method to discriminate between chemicals not requiring classification for serious eye damage/eye irritancy (No Category) and chemicals requiring classification and labelling. In addition, the predictive capacity in terms of in vivo drivers of classification (i.e. corneal opacity, conjunctival redness and persistence at day 21) was investigated. EpiOcular™ EIT achieved a sensitivity of 97%, a specificity of 87% and accuracy of 95% and also confirmed its excellent reproducibility (100%) from the original validation. The assay was applicable to all chemical categories tested in this project and its performance was not limited to the particular driver of the classification. In addition to the existing prediction model for dichotomous categorization, a new prediction model for Cat 1 is suggested. Copyright © 2017. Published by Elsevier Ltd.

  17. Modification of diet in renal disease (MDRD study and CKD epidemiology collaboration (CKD-EPI equations for Taiwanese adults.

    Ling-I Chen

    Full Text Available Estimated glomerular filtration rate (eGFR using the Modification of Diet in Renal Disease (MDRD study or the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI equations may not be accurate for Asians; thus, we developed modified eGFR equations for Taiwanese adults.This cross-sectional study compared the Taiwanese eGFR equations, the MDRD study, and the CKD-EPI equations with inulin clearance (Cin. A total of 695 adults including 259 healthy volunteers and 436 CKD patients were recruited. Participants from the Kaohsiung Medical University Hospital were used as the development set (N = 556 to develop the Taiwanese eGFR equations, whereas participants from the National Taiwan University Hospital were used as the validation set (N = 139 for external validation.The Taiwanese eGFR equations were developed by using the extended Bland-Altman plot in the development set. The Taiwanese MDRD equation was 1.309 × MDRD0.912, Taiwanese CKD-EPI was 1.262×CKD-EPI0.914 and Taiwanese four-level CKD-EPI was 1.205 × four-level CKD-EPI0.914. In the validation set, the Taiwanese equations had the lowest bias, the Taiwanese equations and the Japanese CKD-EPI equation had the lowest RMSE, whereas the Taiwanese and the Japanese equations had the best precision and the highest P30 among all equations. However, the Taiwanese MDRD equation had higher concordance correlation than did the Taiwanese CKD-EPI, the Taiwanese four-level CKD-EPI and the Japanese equations. Moreover, only the Taiwanese equations had no proportional bias among all of the equations. Finally, the Taiwanese MDRD equation had the best diagnostic performance in terms of ordinal logistic regression among all of the equations.The Taiwanese MDRD equation is better than the MDRD, CKD-EPI, Japanese, Asian, Thai, Taiwanese CKD-EPI, and Taiwanese four-level CKD-EPI equations for Taiwanese adults.

  18. The relative roles of ANC and EPI in the continuous distribution of LLINs: a qualitative study in four countries.

    Theiss-Nyland, Katherine; Koné, Diakalia; Karema, Corine; Ejersa, Waqo; Webster, Jayne; Lines, Jo

    2017-05-01

    The continuous distribution of long-lasting insecticidal nets (LLINs) for malaria prevention, through the antenatal care (ANC) and the Expanded Programme on Immunizations (EPI), is recommended by the WHO to improve and maintain LLIN coverage. Despite these recommendations, little is known about the relative strengths and weaknesses of the ANC and EPI-based LLIN distribution. This study aimed to explore and compare the roles of the ANC and EPI for LLIN distribution in four African countries. In a qualitative evaluation of continuous distribution through the ANC and EPI, semi-structured, individual and group interviews were conducted in Kenya, Malawi, Mali, and Rwanda. Respondents included national, sub-national, and facility-level health staff, and were selected to capture a range of roles related to malaria, ANC and EPI programmes. Policies, guidelines, and data collection tools were reviewed as a means of triangulation to assess the structure of LLIN distribution, and the methods of data collection and reporting for malaria, ANC and EPI programmes. In the four countries visited, distribution of LLINs was more effectively integrated through ANC than through EPI because of a) stronger linkages and involvement between malaria and reproductive health programmes, as compared to malaria and EPI, and b) more complete programme monitoring for ANC-based distribution, compared to EPI-based distribution. Opportunities for improving the distribution of LLINs through these channels exist, especially in the case of EPI. For both ANC and EPI, integrated distribution of LLINs has the potential to act as an incentive, improving the already strong coverage of both these essential services. The collection and reporting of data on LLINs distributed through the ANC and EPI can provide insight into the performance of LLIN distribution within these programmes. Greater attention to data collection and use, by both the global malaria community, and the integrated programmes, can improve

  19. Dual regression physiological modeling of resting-state EPI power spectra: Effects of healthy aging.

    Viessmann, Olivia; Möller, Harald E; Jezzard, Peter

    2018-02-02

    Aging and disease-related changes in the arteriovasculature have been linked to elevated levels of cardiac cycle-induced pulsatility in the cerebral microcirculation. Functional magnetic resonance imaging (fMRI), acquired fast enough to unalias the cardiac frequency contributions, can be used to study these physiological signals in the brain. Here, we propose an iterative dual regression analysis in the frequency domain to model single voxel power spectra of echo planar imaging (EPI) data using external recordings of the cardiac and respiratory cycles as input. We further show that a data-driven variant, without external physiological traces, produces comparable results. We use this framework to map and quantify cardiac and respiratory contributions in healthy aging. We found a significant increase in the spatial extent of cardiac modulated white matter voxels with age, whereas the overall strength of cardiac-related EPI power did not show an age effect. Copyright © 2018. Published by Elsevier Inc.

  20. Assessment of pseudo-bilayer structures in the heterogate germanium electron-hole bilayer tunnel field-effect transistor

    Padilla, J. L.; Alper, C.; Ionescu, A. M.; Medina-Bailón, C.; Gámiz, F.

    2015-01-01

    We investigate the effect of pseudo-bilayer configurations at low operating voltages (≤0.5 V) in the heterogate germanium electron-hole bilayer tunnel field-effect transistor (HG-EHBTFET) compared to the traditional bilayer structures of EHBTFETs arising from semiclassical simulations where the inversion layers for electrons and holes featured very symmetric profiles with similar concentration levels at the ON-state. Pseudo-bilayer layouts are attained by inducing a certain asymmetry between the top and the bottom gates so that even though the hole inversion layer is formed at the bottom of the channel, the top gate voltage remains below the required value to trigger the formation of the inversion layer for electrons. Resulting benefits from this setup are improved electrostatic control on the channel, enhanced gate-to-gate efficiency, and higher I ON levels. Furthermore, pseudo-bilayer configurations alleviate the difficulties derived from confining very high opposite carrier concentrations in very thin structures

  1. Assessment of pseudo-bilayer structures in the heterogate germanium electron-hole bilayer tunnel field-effect transistor

    Padilla, J. L., E-mail: jose.padilladelatorre@epfl.ch; Alper, C.; Ionescu, A. M. [Nanoelectronic Devices Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015 (Switzerland); Medina-Bailón, C.; Gámiz, F. [Departamento de Electrónica y Tecnología de los Computadores, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada (Spain)

    2015-06-29

    We investigate the effect of pseudo-bilayer configurations at low operating voltages (≤0.5 V) in the heterogate germanium electron-hole bilayer tunnel field-effect transistor (HG-EHBTFET) compared to the traditional bilayer structures of EHBTFETs arising from semiclassical simulations where the inversion layers for electrons and holes featured very symmetric profiles with similar concentration levels at the ON-state. Pseudo-bilayer layouts are attained by inducing a certain asymmetry between the top and the bottom gates so that even though the hole inversion layer is formed at the bottom of the channel, the top gate voltage remains below the required value to trigger the formation of the inversion layer for electrons. Resulting benefits from this setup are improved electrostatic control on the channel, enhanced gate-to-gate efficiency, and higher I{sub ON} levels. Furthermore, pseudo-bilayer configurations alleviate the difficulties derived from confining very high opposite carrier concentrations in very thin structures.

  2. Automation of the Characterization of High Purity Germanium Detectors

    Dugger, Charles ``Chip''

    2014-09-01

    Neutrinoless double beta decay is a rare hypothesized process that may yield valuable insight into the fundamental properties of the neutrino. Currently there are several experiments trying to observe this process, including the Majorana DEMONSTRAOR experiment, which uses high purity germanium (HPGe) detectors to generate and search for these events. Because the event happens internally, it is essential to have the lowest background possible. This is done through passive detector shielding, as well as event discrimination techniques that distinguish between multi-site events characteristic of gamma-radiation, and single-site events characteristic of neutrinoless double beta decay. Before fielding such an experiment, the radiation response of the detectors must be characterized. A robotic arm is being tested for future calibration of HPGe detectors. The arm will hold a source at locations relative to the crystal while data is acquired. Several radioactive sources of varying energy levels will be used to determine the characteristics of the crystal. In this poster, I will present our work with the robot, as well as the characterization of data we took with an underground HPGe detector at the WIPP facility in Carlsbad, NM (2013). Neutrinoless double beta decay is a rare hypothesized process that may yield valuable insight into the fundamental properties of the neutrino. Currently there are several experiments trying to observe this process, including the Majorana DEMONSTRAOR experiment, which uses high purity germanium (HPGe) detectors to generate and search for these events. Because the event happens internally, it is essential to have the lowest background possible. This is done through passive detector shielding, as well as event discrimination techniques that distinguish between multi-site events characteristic of gamma-radiation, and single-site events characteristic of neutrinoless double beta decay. Before fielding such an experiment, the radiation response of

  3. Maximizing Tensile Strain in Germanium Nanomembranes for Enhanced Optoelectronic Properties

    Sanchez Perez, Jose Roberto

    Silicon, germanium, and their alloys, which provide the leading materials platform of microelectronics, are extremely inefficient light emitters because of their indirect fundamental energy band gap. This basic materials property has so far hindered the development of group-IV photonic-active devices, including light emitters and diode lasers, thereby significantly limiting our ability to integrate electronic and photonic functionalities at the chip level. Theoretical studies have predicted that tensile strain in Ge lowers the direct energy band gap relative to the indirect one, and that, with sufficient strain, Ge becomes direct-band gap, thus enabling facile interband light emission and the fabrication of Group IV lasers. It has, however, not been possible to impart sufficient strain to Ge to reach the direct-band gap goal, because bulk Ge fractures at much lower strains. Here it is shown that very thin sheets of Ge(001), called nanomembranes (NMs), can be used to overcome this materials limitation. Germanium nanomembranes (NMs) in the range of thicknesses from 20nm to 100nm were fabricated and then transferred and mounted to a flexible substrate [a polyimide (PI) sheet]. An apparatus was developed to stress the PI/NM combination and provide for in-situ Raman measurements of the strain as a function of applied stress. This arrangement allowed for the introduction of sufficient biaxial tensile strain (>1.7%) to transform Ge to a direct-band gap material, as determined by photoluminescence (PL) measurements and theory. Appropriate shifts in the emission spectrum and increases in PL intensities were observed. The advance in this work was nanomembrane fabrication technology; i.e., making thin enough Ge sheets to accept sufficiently high levels of strain without fracture. It was of interest to determine if the strain at which fracture ultimately does occur can be raised, by evaluating factors that initiate fracture. Attempts to assess the effect of free edges (enchant

  4. Clinically feasible NODDI characterization of glioma using multiband EPI at 7 T

    Qiuting Wen

    2015-01-01

    Full Text Available Recent technological progress in the multiband echo planer imaging (MB EPI technique enables accelerated MR diffusion weighted imaging (DWI and allows whole brain, multi-b-value diffusion imaging to be acquired within a clinically feasible time. However, its applications at 7 T have been limited due to B1 field inhomogeneity and increased susceptibility artifact. It is an ongoing debate whether DWI at 7 T can be performed properly in patients, and a systematic SNR comparison for multiband spin-echo EPI between 3 T and 7 T has not been methodically studied. The goal of this study was to use MB EPI at 7 T in order to obtain 90-directional multi-shell DWI within a clinically feasible acquisition time for patients with glioma. This study included an SNR comparison between 3 T and 7 T, and the application of B1 mapping and distortion correction procedures for reducing the impact of variations in B0 and B1. The optimized multiband sequence was applied in 20 patients with glioma to generate both DTI and NODDI maps for comparison of values in tumor and normal appearing white matter (NAWM. Our SNR analysis showed that MB EPI at 7 T was comparable to that at 3 T, and the data quality acquired in patients was clinically acceptable. NODDI maps provided unique contrast within the T2 lesion that was not seen in anatomical images or DTI maps. Such contrast may reflect the complexity of tissue compositions associated with disease progression and treatment effects. The ability to consistently obtain high quality diffusion data at 7 T will contribute towards the implementation of a comprehensive brain MRI examination at ultra-high field.

  5. DESIGN OF LOW EPI AND HIGH THROUGHPUT CORDIC CELL TO IMPROVE THE PERFORMANCE OF MOBILE ROBOT

    P. VELRAJKUMAR

    2014-04-01

    Full Text Available This paper mainly focuses on pass logic based design, which gives an low Energy Per Instruction (EPI and high throughput COrdinate Rotation Digital Computer (CORDIC cell for application of robotic exploration. The basic components of CORDIC cell namely register, multiplexer and proposed adder is designed using pass transistor logic (PTL design. The proposed adder is implemented in bit-parallel iterative CORDIC circuit whereas designed using DSCH2 VLSI CAD tool and their layouts are generated by Microwind 3 VLSI CAD tool. The propagation delay, area and power dissipation are calculated from the simulated results for proposed adder based CORDIC cell. The EPI, throughput and effect of temperature are calculated from generated layout. The output parameter of generated layout is analysed using BSIM4 advanced analyzer. The simulated result of the proposed adder based CORDIC circuit is compared with other adder based CORDIC circuits. From the analysis of these simulated results, it was found that the proposed adder based CORDIC circuit dissipates low power, gives faster response, low EPI and high throughput.

  6. Strip interpolation in silicon and germanium strip detectors

    Wulf, E. A.; Phlips, B. F.; Johnson, W. N.; Kurfess, J. D.; Lister, C. J.; Kondev, F.; Physics; Naval Research Lab.

    2004-01-01

    The position resolution of double-sided strip detectors is limited by the strip pitch and a reduction in strip pitch necessitates more electronics. Improved position resolution would improve the imaging capabilities of Compton telescopes and PET detectors. Digitizing the preamplifier waveform yields more information than can be extracted with regular shaping electronics. In addition to the energy, depth of interaction, and which strip was hit, the digitized preamplifier signals can locate the interaction position to less than the strip pitch of the detector by looking at induced signals in neighboring strips. This allows the position of the interaction to be interpolated in three dimensions and improve the imaging capabilities of the system. In a 2 mm thick silicon strip detector with a strip pitch of 0.891 mm, strip interpolation located the interaction of 356 keV gamma rays to 0.3 mm FWHM. In a 2 cm thick germanium detector with a strip pitch of 5 mm, strip interpolation of 356 keV gamma rays yielded a position resolution of 1.5 mm FWHM

  7. Thermal stability of simple tetragonal and hexagonal diamond germanium

    Huston, L. Q.; Johnson, B. C.; Haberl, B.; Wong, S.; Williams, J. S.; Bradby, J. E.

    2017-11-01

    Exotic phases of germanium, that form under high pressure but persist under ambient conditions, are of technological interest due to their unique optical and electrical properties. The thermal evolution and stability of two of these exotic Ge phases, the simple tetragonal (st12) and hexagonal diamond (hd) phases, are investigated in detail. These metastable phases, formed by high pressure decompression in either a diamond anvil cell or by nanoindentation, are annealed at temperatures ranging from 280 to 320 °C for st12-Ge and 200 to 550 °C for hd-Ge. In both cases, the exotic phases originated from entirely pure Ge precursor materials. Raman microspectroscopy is used to monitor the phase changes ex situ following annealing. Our results show that hd-Ge synthesized via a pure form of a-Ge first undergoes a subtle change in structure and then an irreversible phase transformation to dc-Ge with an activation energy of (4.3 ± 0.2) eV at higher temperatures. St12-Ge was found to transform to dc-Ge with an activation energy of (1.44 ± 0.08) eV. Taken together with results from previous studies, this study allows for intriguing comparisons with silicon and suggests promising technological applications.

  8. Point defect states in Sb-doped germanium

    Patel, Neil S., E-mail: neilp@mit.edu; Monmeyran, Corentin, E-mail: comonmey@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139 (United States); Agarwal, Anuradha [Microphotonics Center, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139 (United States); Kimerling, Lionel C. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139 (United States); Microphotonics Center, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139 (United States)

    2015-10-21

    Defect states in n-type Sb-doped germanium were investigated by deep-level transient spectroscopy. Cobalt-60 gamma rays were used to generate isolated vacancies and interstitials which diffuse and react with impurities in the material to form four defect states (E{sub 37}, E{sub 30}, E{sub 22}, and E{sub 21}) in the upper half of the bandgap. Irradiations at 77 K and 300 K as well as isothermal anneals were performed to characterize the relationships between the four observable defects. E{sub 37} is assigned to the Sb donor-vacancy associate (E-center) and is the only vacancy containing defect giving an estimate of 2 × 10{sup 11 }cm{sup −3} Mrad{sup −1} for the uncorrelated vacancy-interstitial pair introduction rate. The remaining three defect states are interstitial associates and transform among one another. Conversion ratios between E{sub 22}, E{sub 21}, and E{sub 30} indicate that E{sub 22} likely contains two interstitials.

  9. gamma-ray tracking in germanium the backtracking method

    Marel, J V D

    2002-01-01

    In the framework of a European TMR network project the concept for a gamma-ray tracking array is being developed for nuclear physics spectroscopy in the energy range of approx 10 keV up to several MeV. The tracking array will consist of a large number of position-sensitive germanium detectors in a spherical geometry around a target. Due to the high segmentation, a Compton scattered gamma-ray will deposit energy in several different segments. A method has been developed to reconstruct the tracks of multiple coincident gamma-rays and to find their initial energies. By starting from the final point the track can be reconstructed backwards to the origin with the help of the photoelectric and Compton cross-sections and the Compton scatter formula. Every reconstructed track is given a figure of merit, thus allowing suppression of wrongly reconstructed tracks and gamma-rays that have scattered out of the detector system. This so-called backtracking method has been tested on simulated events in a shell-like geometry ...

  10. Etching of germanium-tin using ammonia peroxide mixture

    Dong, Yuan; Ong, Bin Leong; Wang, Wei; Gong, Xiao; Liang, Gengchiau; Yeo, Yee-Chia, E-mail: yeo@ieee.org [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Zhang, Zheng; Pan, Jisheng [Institute of Material Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634 (Singapore); Tok, Eng-Soon [Department of Physics, National University of Singapore, Singapore 117551 (Singapore)

    2015-12-28

    The wet etching of germanium-tin (Ge{sub 1-x}Sn{sub x}) alloys (4.2% < x < 16.0%) in ammonia peroxide mixture (APM) is investigated. Empirical fitting of the data points indicates that the etch depth of Ge{sub 1-x}Sn{sub x} is proportional to the square root of the etch time t and decreases exponentially with increasing x for a given t. In addition, X-ray photoelectron spectroscopy results show that increasing t increases the intensity of the Sn oxide peak, whereas no obvious change is observed for the Ge oxide peak. This indicates that an accumulation of Sn oxide on the Ge{sub 1-x}Sn{sub x} surface decreases the amount of Ge atoms exposed to the etchant, which accounts for the decrease in etch rate with increasing etch time. Atomic force microscopy was used to examine the surface morphologies of the Ge{sub 0.918}Sn{sub 0.082} samples. Both root-mean-square roughness and undulation periods of the Ge{sub 1-x}Sn{sub x} surface were observed to increase with increasing t. This work provides further understanding of the wet etching of Ge{sub 1-x}Sn{sub x} using APM and may be used for the fabrication of Ge{sub 1-x}Sn{sub x}-based electronic and photonic devices.

  11. The ACCUSCAN-II vertical scanning germanium whole body counter

    Bronson, F.L.

    1987-01-01

    The ACCUSCAN-II is manufactured by Canberra Industries, and represents a new generation of WBC systems. One or two Germanium detectors are used for precise nuclide identification. The detectors scan the total body and can accurately quantify radioactive material anywhere in the body. The shield is a full 4'' thick steel or 2'' lead and weighs about 9000 lbs. The subject can be counted standing for full body scans, or seated for longer counting times of limited portions of the body. Optional electronics also generate a count rate vs. body position profile, as an aid to interpretation of the dose implications of the count. Typical LLD's are 5 - 10 nCi for a 5 minute total body count and 0.5 - 0.7 nCi for a 5 minute long screening count. The system is available in several flavors. The manual version is an inexpensive system intended for universities, hospitals and small industrial facilities. The automatic system includes a MicroVAX-II computer and runs ABACOS0-II Body Burden Software, and is ideal for facilities with large numbers of people to count and where automated analysis of the data is desirable

  12. Ductile-regime turning of germanium and silicon

    Blake, Peter N.; Scattergood, Ronald O.

    1989-01-01

    Single-point diamond turning of silicon and germanium was investigated in order to clarify the role of cutting depth in coaxing a ductile chip formation in normally brittle substances. Experiments based on the rapid withdrawal of the tool from the workpiece have shown that microfracture damage is a function of the effective depth of cut (as opposed to the nominal cutting depth). In essence, damage created by the leading edge of the tool is removed several revolutions later by lower sections of the tool edge, where the effective cutting depth is less. It appears that a truly ductile cutting response can be achieved only when the effective cutting depth, or critical chip thickness, is less than about 20 nm. Factors such as tool rake angle are significant in that they will affect the actual value of the critical chip thickness for transition from brittle to ductile response. It is concluded that the critical chip thickness is an excellent parameter for measuring the effects of machining conditions on the ductility of the cut and for designing tool-workpiece geometry in both turning and grinding.

  13. Isotopic germanium targets for high beam current applications at GAMMASPHERE

    Greene, J. P.; Lauritsen, T.

    2000-01-01

    The creation of a specific heavy ion residue via heavy ion fusion can usually be achieved through a number of beam and target combinations. Sometimes it is necessary to choose combinations with rare beams and/or difficult targets in order to achieve the physics goals of an experiment. A case in point was a recent experiment to produce 152 Dy at very high spins and low excitation energy with detection of the residue in a recoil mass analyzer. Both to create the nucleus cold and with a small recoil-cone so that the efficiency of the mass analyzer would be high, it was necessary to use the 80 Se on 76 Ge reaction rather than the standard 48 Ca on 108 Pd reaction. Because the recoil velocity of the 152 Dy residues was very high using this symmetric reaction (5% v/c), it was furthermore necessary to use a stack of two thin targets to reduce the Doppler broadening. Germanium targets are fragile and do not withstand high beam currents, therefore the 76 Ge target stacks were mounted on a rotating target wheel. A description of the 76 Ge target stack preparation will be presented and the target performance described

  14. Inhibitory effects of methyl-3,5-di-O-caffeoyl-epi-quinate on RANKL-induced osteoclast differentiation.

    Kim, Tae Hoon; Ihn, Hye Jung; Kim, Kiryeong; Cho, Hye-Sung; Shin, Hong-In; Bae, Yong Chul; Park, Eui Kyun

    2018-04-09

    In this study, we have shown that methyl-3,5-di-O-caffeoyl-epi-quinate, a naturally occurring compound isolated from Ainsliaea acerifolia, inhibits receptor activator of nuclear factor-κB ligand (RANKL)-induced formation of multinucleated tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts and the expression of osteoclast marker genes. Methyl-3,5-di-O-caffeoyl-epi-quinate also inhibited RANKL-induced activation of p38, Akt and extracellular signal-regulated kinase (ERK) as well as the expression of nuclear factor of activated T-cell (NFATc1), the key regulator of osteoclast differentiation. Negative regulators for osteoclast differentiation was upregulated by methyl-3,5-di-O-caffeoyl-epi-quinate. Collectively, our results suggested that methyl-3,5-di-O-caffeoyl-epi-quinate suppresses osteoclast differentiation via downregulation of RANK signaling pathways and NFATc1. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Silicon-germanium and platinum silicide nanostructures for silicon based photonics

    Storozhevykh, M. S.; Dubkov, V. P.; Arapkina, L. V.; Chizh, K. V.; Mironov, S. A.; Chapnin, V. A.; Yuryev, V. A.

    2017-05-01

    This paper reports a study of two types of silicon based nanostructures prospective for applications in photonics. The first ones are Ge/Si(001) structures forming at room temperature and reconstructing after annealing at 600°C. Germanium, being deposited from a molecular beam at room temperature on the Si(001) surface, forms a thin granular film composed of Ge particles with sizes of a few nanometers. A characteristic feature of these films is that they demonstrate signs of the 2 x 1 structure in their RHEED patterns. After short-term annealing at 600°C under the closed system conditions, the granular films reconstruct to heterostructures consisting of a Ge wetting layer and oval clusters of Ge. A mixed type c(4x2) + p(2x2) reconstruction typical to the low-temperature MBE (Tgr Ge. The other type of the studied nanostructures is based on Pt silicides. This class of materials is one of the friendliest to silicon technology. But as silicide film thickness reaches a few nanometers, low resistivity becomes of primary importance. Pt3Si has the lowest sheet resistance among the Pt silicides. However, the development of a process of thin Pt3Si films formation is a challenging task. This paper describes formation of a thin Pt3Si/Pt2Si structures at room temperature on poly-Si films. Special attention is paid upon formation of poly-Si and amorphous Si films on Si3N4 substrates at low temperatures.

  16. In-situ gallium-doping for forming p{sup +} germanium-tin and application in germanium-tin p-i-n photodetector

    Wang, Wei; Dong, Yuan; D' Costa, Vijay Richard; Yeo, Yee-Chia, E-mail: yeo@ieee.org [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Vajandar, Saumitra; Lim, Sin Leng; Osipowicz, Thomas; Tok, Eng Soon [Department of Physics and Yale-NUS College, National University of Singapore, Singapore 117551 (Singapore)

    2016-04-21

    The in-situ Ga doping technique was used to form heavily p-type doped germanium-tin (Ge{sub 1−x}Sn{sub x}) layers by molecular beam epitaxy, avoiding issues such as Sn precipitation and surface segregation at high annealing temperatures that are associated with the alternative implant and anneal approach. In this way, an electrically active Ga concentration of up to ∼3.2 × 10{sup 20 }cm{sup −3} can be realized for Ge{sub 1−x}Sn{sub x}. The impacts of varying the Ga concentration on the crystalline quality and the mobility of p-type Ge{sub 1−x}Sn{sub x} were investigated. High crystalline quality Ge{sub 0.915}Sn{sub 0.085} can be realized with an active Ga concentration of up to ∼1.2 × 10{sup 20 }cm{sup −3}. More than 98% of the Sn atoms are located on substitutional lattice sites, although the substitutionality of Sn in p-type Ge{sub 1−x}Sn{sub x} decreases with an increasing Ga concentration. When the Ga concentration introduced is higher than 3.2 × 10{sup 20 }cm{sup −3}, excess Ga atoms cannot be substitutionally incorporated, and segregation of Ga and Sn towards the surface during growth is observed. The in-situ Ga-doped Ge{sub 0.915}Sn{sub 0.085} epitaxy was integrated in a Ge{sub 0.915}Sn{sub 0.085}-on-Si p-i-n (PIN) photodiode fabrication process, and well-behaved Ge{sub 0.915}Sn{sub 0.085}/Si PIN junction characteristics were obtained. A large forward-bias current to reverse bias current ratio of 6 × 10{sup 4} and a low reverse current (dark current) of 0.24 μA were achieved at V{sub bias} = −1 V.

  17. Echo-planar magnetic resonance imaging (EPI) with high-resolution matrix in intra-axial brain tumors

    Bruening, R.; Scheidler, J.; Porn, U.; Reiser, M. [Institute of Diagnostic Radiology, Klinikum Grosshadern, University of Munich (Germany); Seelos, K.; Yousry, T. [Department of Neuroradiology, Institute of Diagnostic Radiology, Klinikum Grosshadern, University of Munich (Germany); Exner, H. [Institute for Medical Epidemiology, Klinikum Grosshadern, University of Munich, Munich (Germany); Rosen, B.R. [Department of Radiology, Massachusetts General Hospital, NMR Center, Charlestown, MA (United States)

    1999-09-01

    The aim of this study was to assess the potential of high-speed interleaved echo-planar imaging (EPI) to achieve diagnostic image quality comparable to T2-weighted imaging in patients with brain tumors. Seventeen patients with intra-axial, supratentorial tumors (10 untreated gliomas, 7 radiated gliomas) were investigated on a 1.5-T scanner. The conventional scan (SE, TR/TE = 2200/80 ms, 18 slices) was acquired in 8 min, 4 s, and EPI (TR/TE = 3000/80 ms, 18 slices) was completed in 25 s. The films were compared in a blinded trail by three radiologists. On the general impression and anatomic display, both sequences were rated to be of similar quality. Artifacts were slightly more pronounced at the skull base and around surgical clips using EPI. Tumor delineation was nearly equivalent using EPI, compared with the T2-weighted sequence. Echo-planar imaging reached diagnostic quality in all patients. Interleaved high-resolution EPI yielded sufficient quality to depict intra-axial, supratentorial brain tumors. Since EPI can be obtained in a small fraction of the time needed for conventional spin echo, in addition to other indications it could be considered to study patients unable to cooperate. (orig.) With 3 figs., 3 tabs., 27 refs.

  18. Echo-planar magnetic resonance imaging (EPI) with high-resolution matrix in intra-axial brain tumors

    Bruening, R.; Scheidler, J.; Porn, U.; Reiser, M.; Seelos, K.; Yousry, T.; Exner, H.; Rosen, B.R.

    1999-01-01

    The aim of this study was to assess the potential of high-speed interleaved echo-planar imaging (EPI) to achieve diagnostic image quality comparable to T2-weighted imaging in patients with brain tumors. Seventeen patients with intra-axial, supratentorial tumors (10 untreated gliomas, 7 radiated gliomas) were investigated on a 1.5-T scanner. The conventional scan (SE, TR/TE = 2200/80 ms, 18 slices) was acquired in 8 min, 4 s, and EPI (TR/TE = 3000/80 ms, 18 slices) was completed in 25 s. The films were compared in a blinded trail by three radiologists. On the general impression and anatomic display, both sequences were rated to be of similar quality. Artifacts were slightly more pronounced at the skull base and around surgical clips using EPI. Tumor delineation was nearly equivalent using EPI, compared with the T2-weighted sequence. Echo-planar imaging reached diagnostic quality in all patients. Interleaved high-resolution EPI yielded sufficient quality to depict intra-axial, supratentorial brain tumors. Since EPI can be obtained in a small fraction of the time needed for conventional spin echo, in addition to other indications it could be considered to study patients unable to cooperate. (orig.)

  19. Mothers' knowledge about EPI and its relation with age-appropriate vaccination of infants in peri-urban Karachi.

    Siddiqi, Nazish; Siddiqi, Azfar-e-alam; Nisar, Nighat; Khan, Altaf

    2010-11-01

    To evaluate the relation between the knowledge of mothers about EPI vaccinations and their infant's coverage. Effect of other socio-demographic variables on mothers' knowledge and child's coverage was also assessed. A cross-sectional survey was conducted, utilizing World Health Organization's thirty-cluster sampling strategy. All households with at least one infant were considered eligible. After obtaining verbal consent, the mother was interviewed to assess her knowledge and attitudes towards EPI vaccination. Infant's coverage status was verified by checking EPI card or verbal inquiry. A knowledge score was developed by summing all correct answers. A total of 210 mothers (7 per cluster) were identified and interviewed. The number and proportion of mothers correctly identifying the seven EPI diseases were as follows; Tuberculosis 57 (27.1%), Diphtheria 53 (25.2%), Pertussis 71 (33.8%), Tetanus 70 (33.3%), Measles 85 (40.5%), Polio 91 (43.3%) and Hepatitis B 65 (31.0%). Only ninety four (44.8%) children were appropriately vaccinated for their age. In the multivariate model, mothers' knowledge was not significantly associated with appropriate vaccination of their children (p = 0.22), however, mothers' education was found to be significant (p Mothers' knowledge about EPI vaccination in peri-urban Karachi was quite low and not associated with their children's EPI coverage. Mothers' educational status, however, was significantly associated with Child's coverage. This finding depicts a better health seeking behaviour of a more educated mother.

  20. Techniques to distinguish between electron and photon induced events using segmented germanium detectors

    Kroeninger, K.

    2007-01-01

    Two techniques to distinguish between electron and photon induced events in germanium detectors were studied: (1) anti-coincidence requirements between the segments of segmented germanium detectors and (2) the analysis of the time structure of the detector response. An 18-fold segmented germanium prototype detector for the GERDA neutrinoless double beta-decay experiment was characterized. The rejection of photon induced events was measured for the strongest lines in 60 Co, 152 Eu and 228 Th. An accompanying Monte Carlo simulation was performed and the results were compared to data. An overall agreement with deviations of the order of 5-10% was obtained. The expected background index of the GERDA experiment was estimated. The sensitivity of the GERDA experiment was determined. Special statistical tools were developed to correctly treat the small number of events expected. The GERDA experiment uses a cryogenic liquid as the operational medium for the germanium detectors. It was shown that germanium detectors can be reliably operated through several cooling cycles. (orig.)

  1. Techniques to distinguish between electron and photon induced events using segmented germanium detectors

    Kroeninger, K.

    2007-06-05

    Two techniques to distinguish between electron and photon induced events in germanium detectors were studied: (1) anti-coincidence requirements between the segments of segmented germanium detectors and (2) the analysis of the time structure of the detector response. An 18-fold segmented germanium prototype detector for the GERDA neutrinoless double beta-decay experiment was characterized. The rejection of photon induced events was measured for the strongest lines in {sup 60}Co, {sup 152}Eu and {sup 228}Th. An accompanying Monte Carlo simulation was performed and the results were compared to data. An overall agreement with deviations of the order of 5-10% was obtained. The expected background index of the GERDA experiment was estimated. The sensitivity of the GERDA experiment was determined. Special statistical tools were developed to correctly treat the small number of events expected. The GERDA experiment uses a cryogenic liquid as the operational medium for the germanium detectors. It was shown that germanium detectors can be reliably operated through several cooling cycles. (orig.)

  2. Biallelic and Genome Wide Association Mapping of Germanium Tolerant Loci in Rice (Oryza sativa L..

    Partha Talukdar

    Full Text Available Rice plants accumulate high concentrations of silicon. Silicon has been shown to be involved in plant growth, high yield, and mitigating biotic and abiotic stresses. However, it has been demonstrated that inorganic arsenic is taken up by rice through silicon transporters under anaerobic conditions, thus the ability to efficiently take up silicon may be considered either a positive or a negative trait in rice. Germanium is an analogue of silicon that produces brown lesions in shoots and leaves, and germanium toxicity has been used to identify mutants in silicon and arsenic transport. In this study, two different genetic mapping methods were performed to determine the loci involved in germanium sensitivity in rice. Genetic mapping in the biparental cross of Bala × Azucena (an F6 population and a genome wide association (GWA study with 350 accessions from the Rice Diversity Panel 1 were conducted using 15 μM of germanic acid. This identified a number of germanium sensitive loci: some co-localised with previously identified quantitative trait loci (QTL for tissue silicon or arsenic concentration, none co-localised with Lsi1 or Lsi6, while one single nucleotide polymorphism (SNP was detected within 200 kb of Lsi2 (these are genes known to transport silicon, whose identity was discovered using germanium toxicity. However, examining candidate genes that are within the genomic region of the loci detected above reveals genes homologous to both Lsi1 and Lsi2, as well as a number of other candidate genes, which are discussed.

  3. eGFRs from Asian-modified CKD-EPI and Chinese-modified CKD-EPI equations were associated better with hypertensive target organ damage in the community-dwelling elderly Chinese: the Northern Shanghai Study

    Ji H

    2017-08-01

    Full Text Available Hongwei Ji,1,* Han Zhang,1,* Jing Xiong,1 Shikai Yu,1 Chen Chi,1 Bin Bai,1 Jue Li,2 Jacques Blacher,3 Yi Zhang,1,* Yawei Xu1,* 1Department of Cardiology, Shanghai Tenth People’s Hospital, 2Department of Prevention, Tongji University School of Medicine, Shanghai, People’s Republic of China; 3Paris Descartes University, AP-HP, Diagnosis and Therapeutic Center, Hôtel-Dieu, Paris, France *These authors contributed equally to this work Background: With increasing age, estimated glomerular filtration rate (eGFR decline is a frequent manifestation and is strongly associated with other preclinical target organ damage (TOD. In literature, many equations exist in assessing patients’ eGFR. However, these equations were mainly derived and validated in the population from Western countries, which equation should be used for risk stratification in the Chinese population remains unclear, as well as their comparison. Considering that TOD is a good marker for risk stratification in the elderly, in this analysis, we aimed to investigate whether the recent eGFR equations derived from Asian and Chinese are better associated with preclinical TOD than the other equations in elderly Chinese.Methods: A total of 1,599 community-dwelling elderly participants (age >65 years in northern Shanghai were prospectively recruited from June 2014 to August 2015. Conventional cardiovascular risk factors were assessed, and hypertensive TOD including left ventricular mass index (LVMI, carotid–femoral pulse wave velocity (cf-PWV, carotid intima-media thickness (IMT, ankle–brachial index (ABI and urine albumin to creatinine ratio (UACR was evaluated for each participant. Participant’s eGFR was calculated from the Modification of Diet in Renal Disease (MDRD, Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI, Chinese-abbreviated MDRD (c-aMDRD, Asian-modified CKD-EPI (aCKD-EPI equation and Chinese-modified CKD-EPI (cCKD-EPI equation.Results: In multivariate

  4. PREFACE: 2nd Workshop on Germanium Detectors and Technologies

    Abt, I.; Majorovits, B.; Keller, C.; Mei, D.; Wang, G.; Wei, W.

    2015-05-01

    The 2nd workshop on Germanium (Ge) detectors and technology was held at the University of South Dakota on September 14-17th 2014, with more than 113 participants from 8 countries, 22 institutions, 15 national laboratories, and 8 companies. The participants represented the following big projects: (1) GERDA and Majorana for the search of neutrinoless double-beta decay (0νββ) (2) SuperCDMS, EDELWEISS, CDEX, and CoGeNT for search of dark matter; (3) TEXONO for sub-keV neutrino physics; (4) AGATA and GRETINA for gamma tracking; (5) AARM and others for low background radiation counting; (5) as well as PNNL and LBNL for applications of Ge detectors in homeland security. All participants have expressed a strong desire on having better understanding of Ge detector performance and advancing Ge technology for large-scale applications. The purpose of this workshop was to leverage the unique aspects of the underground laboratories in the world and the germanium (Ge) crystal growing infrastructure at the University of South Dakota (USD) by brining researchers from several institutions taking part in the Experimental Program to Stimulate Competitive Research (EPSCoR) together with key leaders from international laboratories and prestigious universities, working on the forefront of the intensity to advance underground physics focusing on the searches for dark matter, neutrinoless double-beta decay (0νββ), and neutrino properties. The goal of the workshop was to develop opportunities for EPSCoR institutions to play key roles in the planned world-class research experiments. The workshop was to integrate individual talents and existing research capabilities, from multiple disciplines and multiple institutions, to develop research collaborations, which includes EPSCor institutions from South Dakota, North Dakota, Alabama, Iowa, and South Carolina to support multi-ton scale experiments for future. The topic areas covered in the workshop were: 1) science related to Ge

  5. Using of germanium detectors in nuclear experiments with photon beams

    Kapitonov, I.M.; Tutin, I.A.

    1995-01-01

    Full text: The study of atomic nuclei with real photons is very important source of the information about nuclear structure. In such experiments the basic electromagnetic interaction between the photon and the target nuclei is well known. Experiments with photon beams become especially valuable when outcoming particles are also photons. In these cases completely model-independent information on nuclear structure can be extracted. The use of semiconductor Ge-spectrometers with excellent resolution and large sensitive volumes for recording outcoming photons gives us such an additional important advantage as possibility to observe individual closely spaced levels of the final nuclei. In the report an experience of using Ge-detectors in two types of nuclear experiments is described. Both of them - nuclear resonance fluorescence (NRF) and nuclear photodisintegration - are carried out in beams of bremsstrahlung gamma radiation. The central element of the setup recording gamma quanta in these experiments is germanium detector. NRF is unique method for studying low-lying excited nuclear states. The spins of the states can be determined easily from the measured angular distributions of scattered photons. Model independent parity assignments in NRF can be achieved by measuring polarization observables. There are two experimental possibilities: the use of linearly polarized photons (off-axis bremsstrahlung) in the entrance channel and the measurement of the linear polarization of the scattered photons using Compton polarimeters. For both methods several germanium detectors (3-5) must be used simultaneously. Nowadays Compton polarimeter can also be done from single large Ge-crystal by segmenting the outer electrode. Advantages and drawbacks of the methods and background conditions are discussed and requirements to Ge-crystals are formulated. The importance of using a new generation of electron accelerators with continuous wave (cw) beams for NRF-measurements is stressed. The

  6. Heteroepitaxial Growth of Germanium-on-Silicon Using Ultrahigh-Vacuum Chemical Vapor Deposition with RF Plasma Enhancement

    Alharthi, Bader; Grant, Joshua M.; Dou, Wei; Grant, Perry C.; Mosleh, Aboozar; Du, Wei; Mortazavi, Mansour; Li, Baohua; Naseem, Hameed; Yu, Shui-Qing

    2018-05-01

    Germanium (Ge) films have been grown on silicon (Si) substrate by ultrahigh-vacuum chemical vapor deposition with plasma enhancement (PE). Argon plasma was generated using high-power radiofrequency (50 W) to assist in germane decomposition at low temperature. The growth temperature was varied in the low range of 250°C to 450°C to make this growth process compatible with complementary metal-oxide-semiconductor technology. The material and optical properties of the grown Ge films were investigated. The material quality was determined by Raman and x-ray diffraction techniques, revealing growth of crystalline films in the temperature range of 350°C to 450°C. Photoluminescence spectra revealed improved optical quality at growth temperatures of 400°C and 450°C. Furthermore, material quality study using transmission electron microscopy revealed existence of defects in the Ge layer grown at 400°C. Based on the etch pit density, the average threading dislocation density in the Ge layer obtained at this growth temperature was measured to be 4.5 × 108 cm-2. This result was achieved without any material improvement steps such as use of graded buffer or thermal annealing. Comparison between PE and non-plasma-enhanced growth, in the same machine at otherwise the same growth conditions, indicated increased growth rate and improved material and optical qualities for PE growth.

  7. Tunable conduction type of solution-processed germanium nanoparticle based field effect transistors and their inverter integration.

    Meric, Zeynep; Mehringer, Christian; Karpstein, Nicolas; Jank, Michael P M; Peukert, Wolfgang; Frey, Lothar

    2015-09-14

    In this work we demonstrate the fabrication of germanium nanoparticle (NP) based electronics. The whole process chain from the nanoparticle production up to the point of inverter integration is covered. Ge NPs with a mean diameter of 33 nm and a geometric standard deviation of 1.19 are synthesized in the gas phase by thermal decomposition of GeH4 precursor in a seeded growth process. Dispersions of these particles in ethanol are employed to fabricate thin particulate films (60 to 120 nm in thickness) on substrates with a pre-patterned interdigitated aluminum electrode structure. The effect of temperature treatment, polymethyl methacrylate encapsulation and alumina coating by plasma-assisted atomic layer deposition (employing various temperatures) on the performance of these layers as thin film transistors (TFTs) is investigated. This coating combined with thermal annealing delivers ambipolar TFTs which show an Ion/Ioff ratio in the range of 10(2). We report fabrication of n-type, p-type or ambipolar Ge NP TFTs at maximum temperatures of 450 °C. For the first time, a circuit using two ambipolar TFTs is demonstrated to function as a NOT gate with an inverter gain of up to 4 which can be operated at room temperature in ambient air.

  8. Timing of gamma rays in coaxial germanium detector systems

    El-Ibiary, M.Y.

    1979-01-01

    A study is reported on the timing uncertainty in gamma ray coaxial germanium detector systems. The work deals with the zero cross over method which is widely used to reduce the dependence of the instant of timing on the radiation energy absorbed and on the position within the detector at which absorption takes place. It is found that the amplitude risetime compensated (ARC) method gives, under normal conditions, the best resolution at a specific energy. For higher energies, the resolution improves and there is no shift of the mean instant of timing. The method is therefore well suited for wide energy coverage. The parameters involved in implementing an ARC system for optimum performance at a specific energy are identified in terms of the preamplifier noise level and risetime. A trade off can be made between the resolutions at high and at low energies. The time resolution attained is given by means of a series of charts which use normalized dimensionless variables for ready application to any given case. Lithium compensated Ge detectors which normally operate under conditions of velocity saturation of the charge carriers by applying sufficient bias voltage create an electric field in excess of 1 kV/cm throughout the depleted region. High purity Ge detectors where velocity saturation may not be reached within certain parts of the depleted region are studied. Special attention is given to the probability of pulses being incorrectly timed because of their slow rise or small magnitude. Such incorrect timing is energy-dependent and results in a noticeable distortion of the timing spectrum that relates to a wide energy range. Limitations on system parameters to keep the probability of incorrect timing below a specified fraction are given

  9. Trace radioactive measurement in foodstuffs using high purity germanium detector

    Morco, Ryan P.; Racho, Joseph Michael D.; Castaneda, Soledad S.; Almoneda, Rosalina V.; Pabroa, Preciosa Corazon B.; Sucgang, Raymond J.

    2010-01-01

    Trace radioactivity in food has been seriously considered sources of potential harm after the accidental radioactive releases in the last decades which led to contamination of the food chain. Countermeasures are being used to reduce the radiological health risk to the population and to ensure that public safety and international commitments are met. Investigation of radioactive traces in foods was carried out by gamma-ray spectrometry. The radionuclides being measured were fission products 1 37Cs and 1 34Cs and naturally occurring 4 0Κ. Gamma-ray measurements were performed using a hybrid gamma-ray counting system with coaxial p-type Tennelec High Purity Germanium (HPGe) detector with relative efficiency of 18.4%. Channels were calibrated to energies using a standard check source with 1 37Cs and 6 0Co present. Self-shielding within samples was taken into account by comparing directly with reference standards of similar matrix and geometry. Efficiencies of radionuclides of interests were accounted in calculating the activity concentrations in the samples. Efficiency calibration curve was generated using an in-house validated program called FINDPEAK, a least-square method that fits a polynomial up to sixth-order of equation. Lower Limits of Detection (LLD) obtained for both 1 37Cs and 1 34Cs ranges from 1-6 Bq/Kg depending on the sample matrix. In the last five years, there have been no foodstuffs analyzed exceeded the local and international regulatory limit of 1000Bq/Kg for the summed activities of 1 37Cs and 1 34Cs. (author)

  10. Mapping the electromagnetic field confinement in the gap of germanium nanoantennas with plasma wavelength of 4.5 micrometers

    Calandrini, Eugenio; Venanzi, Tommaso; Appugliese, Felice; Badioli, Michela; Giliberti, Valeria; Baldassarre, Leonetta; Biagioni, Paolo; De Angelis, Francesco; Klesse, Wolfgang M.; Scappucci, G.; Ortolani, Michele

    2016-01-01

    We study plasmonic nanoantennas for molecular sensing in the mid-infrared made of heavily doped germanium, epitaxially grown with a bottom-up doping process and featuring free carrier density in excess of 1020 cm-3. The dielectric function of the 250 nm thick germanium film

  11. Study of the effect of doping on the temperature stability of the optical properties of germanium single crystals

    Podkopaev, O. I. [Joint-Stock Company “Germanium” (Russian Federation); Shimanskiy, A. F., E-mail: shimanaf@mail.ru [Siberian Federal University (Russian Federation); Kopytkova, S. A.; Filatov, R. A. [Joint-Stock Company “Germanium” (Russian Federation); Golubovskaya, N. O. [Siberian Federal University (Russian Federation)

    2016-10-15

    The effect of doping on the optical transmittance of germanium single crystals is studied by infrared Fourier spectroscopy. It is established that the introduction of silicon and tellurium additives into germanium doped with antimony provides a means for improving the temperature stability of the optical properties of the crystals.

  12. Lithium-Ion (de)insertion reaction of Germanium thin-film electrodes : an electrochemical and in situ XRD study

    Baggetto, L.; Notten, P.H.L.

    2009-01-01

    Germanium is a promising negative electrode candidate for lithium-ion thin-film batteries because of its very high theoretical storage capacity. When assuming full conversion of the material into the room-temperature equilibrium lithium saturated germanium phase, a theoretical capacity of or of

  13. The low thermal gradient CZ technique as a way of growing of dislocation-free germanium crystals

    Moskovskih, V. A.; Kasimkin, P. V.; Shlegel, V. N.; Vasiliev, Y. V.; Gridchin, V. A.; Podkopaev, O. I.

    2014-09-01

    This paper considers the possibility of growth of dislocation-free germanium single crystals. This is achieved by reducing the temperature gradients at the level of 1 K/cm and lower. Single germanium crystals 45-48 mm in diameter with a dislocation density of 102 cm-2 were grown by a Low Thermal Gradient Czochralski technique (LTG CZ).

  14. Study of the effect of doping on the temperature stability of the optical properties of germanium single crystals

    Podkopaev, O. I.; Shimanskiy, A. F.; Kopytkova, S. A.; Filatov, R. A.; Golubovskaya, N. O.

    2016-01-01

    The effect of doping on the optical transmittance of germanium single crystals is studied by infrared Fourier spectroscopy. It is established that the introduction of silicon and tellurium additives into germanium doped with antimony provides a means for improving the temperature stability of the optical properties of the crystals.

  15. Silicon-germanium (Sige) nanostructures production, properties and applications in electronics

    Usami, N

    2011-01-01

    Nanostructured silicon-germanium (SiGe) provides the prospect of novel and enhanced electronic device performance. This book reviews the materials science and technology of SiGe nanostructures, including crystal growth, fabrication of nanostructures, material properties and applications in electronics.$bNanostructured silicon-germanium (SiGe) opens up the prospects of novel and enhanced electronic device performance, especially for semiconductor devices. Silicon-germanium (SiGe) nanostructures reviews the materials science of nanostructures and their properties and applications in different electronic devices. The introductory part one covers the structural properties of SiGe nanostructures, with a further chapter discussing electronic band structures of SiGe alloys. Part two concentrates on the formation of SiGe nanostructures, with chapters on different methods of crystal growth such as molecular beam epitaxy and chemical vapour deposition. This part also includes chapters covering strain engineering and mo...

  16. Use of Germanium as comparator and integral monitor of neutron flux in activation analysis

    Furnari, Juan C.; Cohen, Isaac M.; Arribere, Maria A.; Kestelman, Abraham J.

    1997-01-01

    The possibility of using germanium as monitor of the thermal and epithermal components of the neutron flux, and comparator in parametric activation analysis, is discussed. The advantages and drawbacks associated to the use of this element are commented on, and the comparison with zirconium, in terms of the determination relative error, is performed. The utilisation of germanium as integral flux monitor, including the fast component of the neutron spectrum, is also discussed. Data corresponding to measurements of k 0 factor for the most relevant gamma transitions from Ge-75 and Be-77 are presented, as well as the results of the reference material analysis, employing germanium as flux monitor and comparator in a simultaneous way. (author). 8 refs., 3 figs., 2 tabs

  17. The MAJORANA DEMONSTRATOR: A Search for Neutrinoless Double-beta Decay of Germanium-76

    Schubert, Alexis G.; Aguayo, Estanislao; Avignone, F. T.; Zhang, C.; Back, Henning O.; Barabash, Alexander S.; Bergevin, M.; Bertrand, F.; Boswell, M.; Brudanin, V.; Busch, Matthew; Chan, Yuen-Dat; Christofferson, Cabot-Ann; Collar, J. I.; Combs, Dustin C.; Cooper, R. J.; Detwiler, Jason A.; Leon, Jonathan D.; Doe, Peter J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, S. R.; Esterline, James H.; Fast, James E.; Fields, N.; Finnerty, P.; Fraenkle, Florian; Gehman, Victor M.; Giovanetti, G. K.; Green, M.; Guiseppe, Vincente; Gusey, K.; Hallin, A. L.; Hazama, R.; Henning, Reyco; Hime, Andrew; Hoppe, Eric W.; Horton, Mark; Howard, Stanley; Howe, Mark; Johnson, R. A.; Keeter, K.; Keillor, Martin E.; Keller, C.; Kephart, Jeremy D.; Kidd, M. F.; Knecht, A.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; LaFerriere, Brian D.; LaRoque, B. H.; Leviner, L.; Loach, J. C.; MacMullin, S.; Marino, Michael G.; Martin, R. D.; Mei, Dong-Ming; Merriman, Jason H.; Miller, M. L.; Mizouni, Leila; Nomachi, Masaharu; Orrell, John L.; Overman, Nicole R.; Phillips, D.; Poon, Alan; Perumpilly, Gopakumar; Prior, Gersende; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Ronquest, M. C.; Shima, T.; Shirchenko, M.; Snavely, Kyle J.; Sobolev, V.; Steele, David; Strain, J.; Thomas, K.; Timkin, V.; Tornow, Werner; Vanyushin, I.; Varner, R. L.; Vetter, Kai; Vorren, Kris R.; Wilkerson, J. F.; Wolfe, B. A.; Yakushev, E.; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir

    2012-09-28

    The observation of neutrinoless double-beta decay would determine whether the neutrino is a Majorana particle and provide information on the absolute scale of neutrino mass. The MAJORANA Collaboration is constructing the DEMONSTRATOR, an array of germanium detectors, to search for neutrinoless double-beta decay of 76Ge. The DEMONSTRATOR will contain 40 kg of germanium; up to 30 kg will be enriched to 86% in 76Ge. The DEMONSTRATOR will be deployed deep underground in an ultra-low-background shielded environment. Operation of the DEMONSTRATOR aims to determine whether a future tonne-scale germanium experiment can achieve a background goal of one count per tonne-year in a 4-keV region of interest around the 76Ge neutrinoless double-beta decay Q-value of 2039 keV.

  18. Gold catalytic Growth of Germanium Nanowires by chemical vapour deposition method

    M. Zahedifar

    2013-03-01

    Full Text Available Germanium nanowires (GeNWs were synthesized using chemical vapor deposition (CVD based on vapor–liquid–solid (VLS mechanism with Au nanoparticles as catalyst and germanium tetrachloride (GeCl4 as a precursor of germanium. Au catalysts were deposited on silicon wafer as a thin film, firstly by sputtering technique and secondly by submerging the silicon substrates in Au colloidal solution, which resulted in Au nanoparticles with different sizes. GeNWs were synthesized at 400 °C, which is a low temperature for electrical device fabrication. Effect of different parameters such as Au nanoparticles size, carrier gas (Ar flow and mixture of H2 with the carrier gas on GeNWs diameter and shape was studied by SEM images. The chemical composition of the nanostructure was also examined by energy dispersive X-ray spectroscopy (EDS.

  19. Germanium field-effect transistor made from a high-purity substrate

    Hansen, W.L.; Goulding, F.S.; Haller, E.E.

    1978-11-01

    Field effect transistors have been fabricated on high-purity germanium substrates using low-temperature technology. The aim of this work is to preserve the low density of trapping centers in high-quality starting material by low-temperature ( 0 C) processing. The use of germanium promises to eliminate some of the traps which cause generation-recombination noise in silicon field-effect transistors (FET's) at low temperatures. Typically, the transconductance (g/sub m/) in the germanium FET's is 10 mA/V and the gate leakage can be less than 10 -12 A. Present devices exhibit a large 1/f noise component and most of this noise must be eliminated if they are to be competitive with silicon FET's commonly used in high-resolution nuclear spectrometers

  20. Cosmogenic activation of germanium used for tonne-scale rare event search experiments

    Wei, W.-Z.; Mei, D.-M.; Zhang, C.

    2017-11-01

    We report a comprehensive study of cosmogenic activation of germanium used for tonne-scale rare event search experiments. The germanium exposure to cosmic rays on the Earth's surface are simulated with and without a shielding container using Geant4 for a given cosmic muon, neutron, and proton energy spectrum. The production rates of various radioactive isotopes are obtained for different sources separately. We find that fast neutron induced interactions dominate the production rate of cosmogenic activation. Geant4-based simulation results are compared with the calculation of ACTIVIA and the available experimental data. A reasonable agreement between Geant4 simulations and several experimental data sets is presented. We predict that cosmogenic activation of germanium can set limits to the sensitivity of the next generation of tonne-scale experiments.

  1. Normal processes of phonon-phonon scattering and thermal conductivity of germanium crystals with isotopic disorder

    Kuleev, I G

    2001-01-01

    The effect of normal processes of the phonon-phonon scattering on the thermal conductivity of the germanium crystals with various isotopic disorder degrees is considered. The phonon pulse redistribution in the normal scattering processes both inside each oscillatory branch (the Simons mechanism) and between various phonon oscillatory branches (the Herring mechanism) is accounted for. The contributions of the longitudinal and cross-sectional phonons drift motion into the thermal conductivity are analyzed. It is shown that the pulse redistribution in the Herring relaxation mechanism leads to essential suppression of the longitudinal phonons drift motion in the isotopically pure germanium crystals. The calculations results of thermal conductivity for the Herring relaxation mechanism agree well with experimental data on the germanium crystals with various isotopic disorder degrees

  2. Impurity engineering for germanium-doped Czochralski silicon wafer used for ultra large scale integrated circuit

    Chen, Jiahe; Yang, Deren [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou (China)

    2009-07-01

    Internal gettering (IG) technology has been challenged by both the reduction of thermal budget during device fabrication and the enlargement of wafer diameter. Improving the properties of Czochralski (Cz) silicon wafers by intentional impurity doping, the so-called 'impurity engineering (IE)', is defined. Germanium has been found to be one of the important impurities for improving the internal gettering effect in Cz silicon wafer. In this paper, the investigations on IE involved with the conventional furnace anneal based denudation processing for germanium-doped Cz silicon wafer are reviewed. Meanwhile, the potential mechanisms of germanium effects for the IE of Cz silicon wafer are also interpreted based on the experimental facts. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Impurity diffusion, point defect engineering, and surface/interface passivation in germanium

    Chroneos, Alexander I.

    2012-01-26

    In recent years germanium has been emerging as a mainstream material that could have important applications in the microelectronics industry. The principle aim of this study is to review investigations of the diffusion of technologically important p- and n-type dopants as well as surface and interface passivation issues in germanium. The diffusion of impurities in germanium is interrelated to the formation of clusters whenever possible, and possibilities for point defect engineering are discussed in view of recent results. The importance of electrically active defects on the Ge surface and interfaces is addressed considering strategies to suppress them and to passivate the surfaces/interfaces, bearing in mind their importance for advanced devices. © 2012 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Electrodeposition at room temperature of amorphous silicon and germanium nanowires in ionic liquid

    Martineau, F; Namur, K; Mallet, J; Delavoie, F; Troyon, M; Molinari, M [Laboratoire de Microscopies et d' Etude de Nanostructures (LMEN EA3799), Universite de Reims Champagne Ardennes (URCA), Reims Cedex 2 (France); Endres, F, E-mail: michael.molinari@univ-reims.fr [Institute of Particle Technology, Chair of Interface Processes, Clausthal University of Technology, D-36678 Clausthal-Zellerfeld (Germany)

    2009-11-15

    The electrodeposition at room temperature of silicon and germanium nanowires from the air- and water-stable ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (P{sub 1,4}) containing SiCl{sub 4} as Si source or GeCl{sub 4} as Ge source is investigated by cyclic voltammetry. By using nanoporous polycarbonate membranes as templates, it is possible to reproducibly grow pure silicon and germanium nanowires of different diameters. The nanowires are composed of pure amorphous silicon or germanium. The nanowires have homogeneous cylindrical shape with a roughness of a few nanometres on the wire surfaces. The nanowires' diameters and lengths well match with the initial membrane characteristics. Preliminary photoluminescence experiments exhibit strong emission in the near infrared for the amorphous silicon nanowires.

  5. Two-Dimensional Spatial Imaging of Charge Transport in Germanium Crystals at Cryogenic Temperatures

    Moffatt, Robert [Stanford Univ., CA (United States)

    2016-03-01

    In this dissertation, I describe a novel apparatus for studying the transport of charge in semiconductors at cryogenic temperatures. The motivation to conduct this experiment originated from an asymmetry observed between the behavior of electrons and holes in the germanium detector crystals used by the Cryogenic Dark Matter Search (CDMS). This asymmetry is a consequence of the anisotropic propagation of electrons in germanium at cryogenic temperatures. To better model our detectors, we incorporated this effect into our Monte Carlo simulations of charge transport. The purpose of the experiment described in this dissertation is to test those models in detail. Our measurements have allowed us to discover a shortcoming in our most recent Monte Carlo simulations of electrons in germanium. This discovery would not have been possible without the measurement of the full, two-dimensional charge distribution, which our experimental apparatus has allowed for the first time at cryogenic temperatures.

  6. Diffusion of interstitial oxygen in silicon and germanium: a hybrid functional study

    Colleoni, Davide; Pasquarello, Alfredo

    2016-01-01

    The minimum-energy paths for the diffusion of an interstitial O atom in silicon and germanium are studied through the nudged-elastic-band method and hybrid functional calculations. The reconsideration of the diffusion of O in silicon primarily serves the purpose of validating the procedure for studying the O diffusion in germanium. Our calculations show that the minimum energy path goes through an asymmetric transition state in both silicon and germanium. The stability of these transition states is found to be enhanced by the generation of unpaired electrons in the highest occupied single-particle states. Calculated energy barriers are 2.54 and 2.14 eV for Si and Ge, in very good agreement with corresponding experimental values of 2.53 and 2.08 eV, respectively. (paper)

  7. Multiphysical simulation analysis of the dislocation structure in germanium single crystals

    Podkopaev, O. I.; Artemyev, V. V.; Smirnov, A. D.; Mamedov, V. M.; Sid'ko, A. P.; Kalaev, V. V.; Kravtsova, E. D.; Shimanskii, A. F.

    2016-09-01

    To grow high-quality germanium crystals is one of the most important problems of growth industry. The dislocation density is an important parameter of the quality of single crystals. The dislocation densities in germanium crystals 100 mm in diameter, which have various shapes of the side surface and are grown by the Czochralski technique, are experimentally measured. The crystal growth is numerically simulated using heat-transfer and hydrodynamics models and the Alexander-Haasen dislocation model in terms of the CGSim software package. A comparison of the experimental and calculated dislocation densities shows that the dislocation model can be applied to study lattice defects in germanium crystals and to improve their quality.

  8. Characterization of epitaxial GaAs MOS capacitors using atomic layer-deposited TiO2/Al2O3 gate stack: study of Ge auto-doping and p-type Zn doping.

    Dalapati, Goutam Kumar; Shun Wong, Terence Kin; Li, Yang; Chia, Ching Kean; Das, Anindita; Mahata, Chandreswar; Gao, Han; Chattopadhyay, Sanatan; Kumar, Manippady Krishna; Seng, Hwee Leng; Maiti, Chinmay Kumar; Chi, Dong Zhi

    2012-02-02

    Electrical and physical properties of a metal-oxide-semiconductor [MOS] structure using atomic layer-deposited high-k dielectrics (TiO2/Al2O3) and epitaxial GaAs [epi-GaAs] grown on Ge(100) substrates have been investigated. The epi-GaAs, either undoped or Zn-doped, was grown using metal-organic chemical vapor deposition method at 620°C to 650°C. The diffusion of Ge atoms into epi-GaAs resulted in auto-doping, and therefore, an n-MOS behavior was observed for undoped and Zn-doped epi-GaAs with the doping concentration up to approximately 1017 cm-3. This is attributed to the diffusion of a significant amount of Ge atoms from the Ge substrate as confirmed by the simulation using SILVACO software and also from the secondary ion mass spectrometry analyses. The Zn-doped epi-GaAs with a doping concentration of approximately 1018 cm-3 converts the epi-GaAs layer into p-type since the Zn doping is relatively higher than the out-diffused Ge concentration. The capacitance-voltage characteristics show similar frequency dispersion and leakage current for n-type and p-type epi-GaAs layers with very low hysteresis voltage (approximately 10 mV).PACS: 81.15.Gh.

  9. Paternal postpartum mood: bipolar episodes? Depressão paterna: episódio bipolar?

    Karen Amaral Tavares Pinheiro

    2011-09-01

    Full Text Available OBJECTIVE: We describe the prevalence of depressive and bipolar spectrum episodes in fathers in antenatal and postnatal periods, as well as at 12 months after childbirth. METHOD: A longitudinal follow-up study was conducted with a representative sample of 739 fathers whose children were born between April 2007 and May 2008 in maternity wards in the city of Pelotas, southern Brazil. Paternal psychopathology was measured with the Mini Neuropsychiatric Interview (MINI across three time points: between 28 and 34 weeks of pregnancy (T1, 30 to 60 days postpartum (T2, and 12 months after childbirth (T3. RESULTS: The prevalence of depressive episodes was 5.0% at T1, 4.5% at T2, and 4.3% at T3. Mixed episodes were present in 3%, 1.7%, and 0.9% of subjects, respectively, and accounted for 61.1% of the cases of depression in the antenatal period, 37.5% in postpartum, and 21.4% at 12 months. Depressive and manic/hypomanic episodes were significantly associated during pregnancy and in postpartum, but not at 12 months after childbirth. CONCLUSION: Bipolar episodes were common in men with depressive symptoms during their partner's pregnancy in the postpartum period and, to a lesser extent, 12 months after childbirth. Therefore, this population should be carefully investigated for manic and hypomanic symptoms.OBJETIVO: Verificar a prevalência dos episódios depressivos e bipolares em homens no período pré e pós-natal, assim como 12 meses após o parto. MÉTODO: Estudo longitudinal com amostra de pais cujas crianças nasceram entre abril de 2007 e maio de 2008 em maternidades da cidade de Pelotas-RS, no sul do Brasil. Episódios depressivos e maníacos/hipomaníacos foram mensurados com o Mini Neuropsychiatric Interview em três tempos diferentes: entre a 28ª e 34ª semanas de gestação (T1, 30 a 60 dias após o parto (T2 e 12 meses após o nascimento da criança. RESULTADOS: A prevalência de episódios depressivos foi 5,0% em T1, 4,5% em T2 e 4,3% em T3

  10. Coexistence in even-even nuclei with emphasis on the germanium isotopes

    Carchidi, M.A.V.

    1985-01-01

    No simple model to date can explain in a self-consistent way the results of direct transfer data and BE2 electromagnetic rates in the germanium isotopes. The simplest models use a two-state interaction for describing the ground state and first excited O + state. In all cases, these models can account for some of the data, but they are in drastic conflict with other experimental measurements. In this thesis, it is shown that a two-state model can consistently account for two-neutron and alpha transfer O + 2 /g.s. cross-section ratio data in the germanium region (ie. zinc, germanium, and selenium), proton occupation number data in the ground states of the even stable zinc, germanium, and selenium isotopes, and BE2 transition rates in isotopes of germanium and zinc. In addition the author can account for most of the one-neutron and two-neutron transfer O + 2 /g.s. and (9/2 + 2 )/(9/2 + 1 ) cross-section ratio data in the odd-mass germanium isotopes. In this generalized two-state model (called Rerg1), the author makes as few assumptions as possible about the nature of the basis states; rather the author allows the experimental data to dictate the properties of the basis-state overlaps. In this sense, the author has learned much about the basis states and has a useful tool for constructing them. The author also shows that the Rerg1 model can quantitatively account for all two-neutron O + 2 /g.s. cross-section ratio data in all even-even nuclei from calcium to uranium

  11. Interleaved EPI diffusion imaging using SPIRiT-based reconstruction with virtual coil compression.

    Dong, Zijing; Wang, Fuyixue; Ma, Xiaodong; Zhang, Zhe; Dai, Erpeng; Yuan, Chun; Guo, Hua

    2018-03-01

    To develop a novel diffusion imaging reconstruction framework based on iterative self-consistent parallel imaging reconstruction (SPIRiT) for multishot interleaved echo planar imaging (iEPI), with computation acceleration by virtual coil compression. As a general approach for autocalibrating parallel imaging, SPIRiT improves the performance of traditional generalized autocalibrating partially parallel acquisitions (GRAPPA) methods in that the formulation with self-consistency is better conditioned, suggesting SPIRiT to be a better candidate in k-space-based reconstruction. In this study, a general SPIRiT framework is adopted to incorporate both coil sensitivity and phase variation information as virtual coils and then is applied to 2D navigated iEPI diffusion imaging. To reduce the reconstruction time when using a large number of coils and shots, a novel shot-coil compression method is proposed for computation acceleration in Cartesian sampling. Simulations and in vivo experiments were conducted to evaluate the performance of the proposed method. Compared with the conventional coil compression, the shot-coil compression achieved higher compression rates with reduced errors. The simulation and in vivo experiments demonstrate that the SPIRiT-based reconstruction outperformed the existing method, realigned GRAPPA, and provided superior images with reduced artifacts. The SPIRiT-based reconstruction with virtual coil compression is a reliable method for high-resolution iEPI diffusion imaging. Magn Reson Med 79:1525-1531, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  12. Transmission of epi-alleles with MET1-dependent dense methylation in Arabidopsis thaliana.

    Michael Watson

    Full Text Available DNA methylation in plants targets cytosines in three sequence contexts, CG, CHG and CHH (H representing A, C or T. Each of these patterns has traditionally been associated with distinct DNA methylation pathways with CHH methylation being controlled by the RNA dependent DNA methylation (RdDM pathway employing small RNAs as a guide for the de novo DOMAINS REARRANGED METHYLTRANSFERASE (DRM2, and maintenance DNA METHYLTRANSFERASE1 (MET1 being responsible for faithful propagation of CG methylation. Here we report an unusual 'dense methylation' pattern under the control of MET1, with methylation in all three sequence contexts. We identified epi-alleles of dense methylation at a non coding RNA locus (At4g15242 in Arabidopsis ecotypes, with distinct dense methylation and expression characteristics, which are stably maintained and transmitted in genetic crosses and which can be heritably altered by depletion of MET1. This suggests that, in addition to its classical CG maintenance function, at certain loci MET1 plays a role in creating transcriptional diversity based on the generation of independent epi-alleles. Database inspection identified several other loci with MET1-dependent dense methylation patterns. Arabidopsis ecotypes contain distinct epi-alleles of these loci with expression patterns that inversely correlate with methylation density, predominantly within the transcribed region. In Arabidopsis, dense methylation appears to be an exception as it is only found at a small number of loci. Its presence does, however, highlight the potential for MET1 as a contributor to epigenetic diversity, and it will be interesting to investigate the representation of dense methylation in other plant species.

  13. (Epi)genotype-Phenotype Analysis in 69 Japanese Patients With Pseudohypoparathyroidism Type I

    Sano, Shinichiro; Nakamura, Akie; Matsubara, Keiko; Nagasaki, Keisuke; Fukami, Maki; Kagami, Masayo

    2018-01-01

    Context: Pseudohypoparathyroidism type I (PHP-I) is divided into PHP-Ia with Albright hereditary osteodystrophy and PHP-Ib, which usually shows no Albright hereditary osteodystrophy features. Although PHP-Ia and PHP-Ib are typically caused by genetic defects involving α subunit of the stimulatory G protein (Gsα)–coding GNAS exons and methylation defects of the GNAS differentially methylated regions (DMRs) on the maternal allele, respectively, detailed phenotypic characteristics still remains to be examined. Objective: To clarify phenotypic characteristics according to underlying (epi)genetic causes. Patients and Methods: We performed (epi)genotype-phenotype analysis in 69 Japanese patients with PHP-I; that is, 28 patients with genetic defects involving Gsα-coding GNAS exons (group 1) consisting of 12 patients with missense variants (subgroup A) and 16 patients with null variants (subgroup B), as well as 41 patients with methylation defects (group 2) consisting of 21 patients with broad methylation defects of the GNAS-DMRs (subgroup C) and 20 patients with an isolated A/B-DMR methylation defect accompanied by the common STX16 microdeletion (subgroup D). Results: Although (epi)genotype-phenotype findings were grossly similar to those reported previously, several important findings were identified, including younger age at hypocalcemic symptoms and higher frequencies of hyperphosphatemia in subgroup C than in subgroup D, development of brachydactyly in four patients of subgroup C, predominant manifestation of subcutaneous ossification in subgroup B, higher frequency of thyrotropin resistance in group 1 than in group 2, and relatively low thyrotropin values in four patients with low T4 values and relatively low luteinizing hormone/follicle-stimulating hormone values in five adult females with ovarian dysfunction. Conclusion: The results imply the presence of clinical findings characteristic of each underlying cause and provide useful information on the imprinting

  14. Selective Etching of Silicon in Preference to Germanium and Si0.5Ge0.5.

    Ahles, Christopher F; Choi, Jong Youn; Wolf, Steven; Kummel, Andrew C

    2017-06-21

    The selective etching characteristics of silicon, germanium, and Si 0.5 Ge 0.5 subjected to a downstream H 2 /CF 4 /Ar plasma have been studied using a pair of in situ quartz crystal microbalances (QCMs) and X-ray photoelectron spectroscopy (XPS). At 50 °C and 760 mTorr, Si can be etched in preference to Ge and Si 0.5 Ge 0.5 , with an essentially infinite Si/Ge etch-rate ratio (ERR), whereas for Si/Si 0.5 Ge 0.5 , the ERR is infinite at 22 °C and 760 mTorr. XPS data showed that the selectivity is due to the differential suppression of etching by a ∼2 ML thick C x H y F z layer formed by the H 2 /CF 4 /Ar plasma on Si, Ge, and Si 0.5 Ge 0.5 . The data are consistent with the less exothermic reaction of fluorine radicals with Ge or Si 0.5 Ge 0.5 being strongly suppressed by the C x H y F z layer, whereas, on Si, the C x H y F z layer is not sufficient to completely suppress etching. Replacing H 2 with D 2 in the feed gas resulted in an inverse kinetic isotope effect (IKIE) where the Si and Si 0.5 Ge 0.5 etch rates were increased by ∼30 times with retention of significant etch selectivity. The use of D 2 /CF 4 /Ar instead of H 2 /CF 4 /Ar resulted in less total carbon deposition on Si and Si 0.5 Ge 0.5 and gave less Ge enrichment of Si 0.5 Ge 0.5 . These results are consistent with the selectivity being due to the differential suppression of etching by an angstrom-scale carbon layer.

  15. TU-H-206-07: Assessment of Geometric Distortion in EPI with a SPAMM Tagged Acquisition

    Hwang, K; Meier, J; Yung, J; Stafford, R [The University of Texas MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: Echo planar imaging (EPI) is known to exhibit gross geometric distortion caused by multiple factors, including B0 inhomgeneity and transient eddy currents. However, diffusion weighted (DW) EPI has become indispensable for diagnosis and therapy assessment. We propose a methodology for quantifying distortion in EPI sequences that does not require the use of dedicated spatial accuracy phantoms, enabling flexibility in phantom design for QA of distortion effects in EPI protocols. Methods: The proposed methodology utilizes a saturation technique known as Spatial Modulation of Magnetization (SPAMM) that tags the imaging subject with saturated grid lines. Originally intended for tracking cardiac motion, these grids are applied to assess differences between diffusion weighting directions and b-values, or against a more geometrically robust sequence such as fast spin echo (FSE). The saturation preparation sequence consists of binomially weighted (e.g. 1-3-3-1) pulses interleaved with gradient blips along the frequency encode direction, followed by the same sequence with gradient blips in the phase encode direction. Three phantoms were assessed with these sequences: a spherical head-sized phantom, a large shimming phantom, and a modified PET ACR phantom that included compartments of water, air, oil, and Teflon. Each phantom was acquired with three sequences using parameters from a clinically appropriate protocol (22 cm head or 46 cm abdomen): a conventional DW-EPI sequence (3 DW directions), and both the DW-EPI and FSE sequences with tagging. Differences in grid locations were visualized with minimum intensity projection between images, and measured using intersecting locations on the grids. Results: Grid lines were clearly visualized on tagged images and enabled quantification of distortions. Maximum eddy current induced errors of 10.8 to 14.8 mm were observed in areas away from isocenter with DW gradients applied in various directions. Conclusion: SPAMM tagging

  16. Bilateral contributions of the cerebellum to the complex motor tasks on EPI fMRI

    Chung, Eun Chul; Youn, Eun Kyung; Lee, Young Rae; Kim, Yoo Kyung; Park, Kee Duk

    1999-01-01

    To demonstrate activation signals within the cerebellar cortex and to determine the side of the cerebellar cortex eliciting activation signals in response to complex motor tasks, as seen on EPI fMRI. Seven right-handed subjects (M : F=3 : 4; mean age, 30.3 years) underwent repetitive finger apposition with the dominant right hand. Using a 1.5 T MRI scanner, EPI fMR images were obtained. MR parameters used for EPI fMRI were TR/TE/Flip angle : 0.96 msec/64msec/90 deg FOV 22cm, 128 X 128 matrix, 10 slices, 10mm thickness while those for SE T1 weighted localized images were TR/TE : 450/16, FOV 23cm, 256 X 256 matrix. The paradigm was three sets of alternate resting and moving fingers for six cycles, resulting in times of 360 seconds (10 slices X 15 EPI X 6 cycles = 900 images). Image processing involved the use of a 200mHz Dual Pentium PC with homemade software. T-testing (p < 0.005 approx.= p < 0.0005) and time series analysis were performed, and to verify the locations of activated regions, resulting images were analyzed in a color-coded overlay to reference T1-weighted spin echo coronal images. Percentage change in signal intensity (PCSI) was calculated from the processed data. All normal subjects showed significant activation signals in both the contralateral (left) primary motor cortex (PCSI = 3.12% 0.96) and ipsilateral (right) cerebellar cortex (PCSI = 3.09% ±1.14). Signal activation was detected in the contralateral supplemental motor area (2.91% ±0.82), and motor activation in the anterior upper half of the contralateral cerebellum (PCSI 2.50% ±0.69). The difference in activation signals between both sides of the cerebellar cortex was not statistically significant. All data were matched with time-series analysis. Bilateral cerebellar activation is associated with unilateral complex finger movements, as seen on fMRI. This result may support the recent neurological observation that the cerebellum may exert bilateral effects on motor performance

  17. [2H26]-1-epi-Cubenol, a completely deuterated natural product from Streptomyces griseus

    Christian A. Citron

    2013-12-01

    Full Text Available During growth on fully deuterated medium the volatile terpene [2H26]-1-epi-cubenol was released by the actinomycete Streptomyces griseus. This compound represents the first completely deuterated terpene obtained by fermentation. Despite a few previous reports in the literature the operability of this approach to fully deuterated compounds is still surprising, because the strong kinetic isotope effect of deuterium is known to slow down all metabolic processes in living organisms. Potential applications of completely labelled compounds from natural sources in structure elucidation, biosynthetic or pharmacokinetic investigations are discussed.

  18. Spondylo-epi-metaphyseal dysplasia with joint laxity and severe, progressive kyphoscoliosis

    Beighton, P.

    1980-01-01

    Spondylo-epi-metaphyseal dysplasia with progressive, severe kyphoscoliosis and gross joint laxity is a distinctive entity. The clinical and radiographic manifestations of seven affected children are presented and it is concluded that this order is probably more common than previously suspected. Skeletal survey is indicated in all patients with infantile idiopathic scoliosis, kyphosis, or kyphoscoliosis. In this context, radiographic studies of the pelvis may be of great diagnostic value. Referal for expert orhtopaedic management is essential for all patients with this disorder, as profound disability with pulmonary and spinal complications may be expected. (orig./MG) [de

  19. Epi-Side-Down Mounting of Interband Cascade Lasers for Army Applications

    2006-11-01

    retain the principal advantage of electron recycling . However, unlike the QCL, the ICL relies on the cascading of interband optical transitions as...9.0 Cu 393 17 SiC 120 4 AlN 230 (high grade –Tsekoun 2006) 4.5, 4.3 Indium 83.7 24.8@ 20C 2 device ridge and an effective heat spreader ...65.3 K/W M271 epi-side down 8-μm x 1-mm mesa TmaxCW= 212K 4 were vital and survived multiple cryogenic to room temperature recyclings . Fig. 4

  20. Spondylo-epi-metaphyseal dysplasia with joint laxity and severe, progressive kyphoscoliosis

    Beighton, P.; Kozlowski, K.

    1980-01-01

    Spondylo-epi-metaphyseal dysplasia with progressive, severe kyphoscoliosis and gross joint laxity is a distinctive entity. The clinical and radiographic manifestations of seven affected children are presented and it is concluded that this disorder is probably more common than previously suspected. Skeletal survey is indicated in all patients with infantile idiopathic scoliosis, kyphosis, or kyphoscoliosis. In this context, radiographic studies of the pelvis may be of great diagnostic value. Referal for expert orthopaedic management is essential for all patients with this disorder, as profound disability with pulmonary and spinal complications may be expected.

  1. Designing the Expanded Programme on Immunisation (EPI) as a service: Prioritising patients over administrative logic

    McKnight, J.; Holt, D. B.

    2014-01-01

    -the-ground problems that mothers face in trying to vaccinate their children, while instead prioritising administrative processes. Our ethnographic analysis of 83 mothers who had not vaccinated their children reveals key barriers to vaccination from a 'customer' perspective. While mothers value vaccination......Expanded Programme on Immunisation (EPI) vaccination rates remain well below herd immunity in regions of many countries despite huge international resources devoted to both financing and access. We draw upon service marketing theory, organisational sociology, development anthropology and cultural...... specific service problems from the mother's perspective and points towards simple service innovations that could improve vaccination rates in regions that have poor uptake....

  2. Epitaxially grown polycrystalline silicon thin-film solar cells on solid-phase crystallised seed layers

    Li, Wei, E-mail: weili.unsw@gmail.com; Varlamov, Sergey; Xue, Chaowei

    2014-09-30

    Highlights: • Crystallisation kinetic is used to analyse seed layer surface cleanliness. • Simplified RCA cleaning for the seed layer can shorten the epitaxy annealing duration. • RTA for the seed layer can improve the quality for both seed layer and epi-layer. • Epitaxial poly-Si solar cell performance is improved by RTA treated seed layer. - Abstract: This paper presents the fabrication of poly-Si thin film solar cells on glass substrates using seed layer approach. The solid-phase crystallised P-doped seed layer is not only used as the crystalline template for the epitaxial growth but also as the emitter for the solar cell structure. This paper investigates two important factors, surface cleaning and intragrain defects elimination for the seed layer, which can greatly influence the epitaxial grown solar cell performance. Shorter incubation and crystallisation time is observed using a simplified RCA cleaning than the other two wet chemical cleaning methods, indicating a cleaner seed layer surface is achieved. Cross sectional transmission microscope images confirm a crystallographic transferal of information from the simplified RCA cleaned seed layer into the epi-layer. RTA for the SPC seed layer can effectively eliminate the intragrain defects in the seed layer and improve structural quality of both of the seed layer and the epi-layer. Consequently, epitaxial grown poly-Si solar cell on the RTA treated seed layer shows better solar cell efficiency, V{sub oc} and J{sub sc} than the one on the seed layer without RTA treatment.

  3. GIOVE: a new detector setup for high sensitivity germanium spectroscopy at shallow depth

    Heusser, G.; Weber, M.; Hakenmüller, J.; Laubenstein, M.; Lindner, M.; Maneschg, W.; Simgen, H.; Stolzenburg, D.; Strecker, H.

    2015-01-01

    We report on the development and construction of the high-purity germanium spectrometer setup GIOVE (Germanium Inner Outer VEto), recently built and now operated at the shallow underground laboratory of the Max-Planck-Institut für Kernphysik, Heidelberg. Particular attention was paid to the design of a novel passive and active shield, aiming at efficient rejection of environmental and muon induced radiation backgrounds. The achieved sensitivity level of ≤100 μBq kg -1 for primordial radionuclides from U and Th in typical γ ray sample screening measurements is unique among instruments located at comparably shallow depths and can compete with instruments at far deeper underground sites

  4. Atomic ionization of germanium by neutrinos from an ab initio approach

    Chen, Jiunn-Wei; Chi, Hsin-Chang; Huang, Keh-Ning; Liu, C.-P.; Shiao, Hao-Tse; Singh, Lakhwinder; Wong, Henry T.; Wu, Chih-Liang; Wu, Chih-Pan

    2014-01-01

    An ab initio calculation of atomic ionization of germanium by neutrinos was carried out in the framework of multiconfiguration relativistic random phase approximation and benchmarked by related atomic structure and photoabsorption data. This improves over the conventional approach based on scattering off free electrons whose validity at sub-keV energy transfer is questionable. Limits on neutrino magnetic moments are derived using reactor neutrino data taken with low threshold germanium detectors. Future applications of these atomic techniques will greatly reduce the atomic uncertainties in low-energy neutrino and dark matter detections.

  5. Segmentation of the Outer Contact on P-Type Coaxial Germanium Detectors

    Hull, Ethan L.; Pehl, Richard H.; Lathrop, James R.; Martin, Gregory N.; Mashburn, R. B.; Miley, Harry S.; Aalseth, Craig E.; Hossbach, Todd W.

    2006-09-21

    Germanium detector arrays are needed for low-level counting facilities. The practical applications of such user facilities include characterization of low-level radioactive samples. In addition, the same detector arrays can also perform important fundamental physics measurements including the search for rare events like neutrino-less double-beta decay. Coaxial germanium detectors having segmented outer contacts will provide the next level of sensitivity improvement in low background measurements. The segmented outer detector contact allows performance of advanced pulse shape analysis measurements that provide additional background reduction. Currently, n-type (reverse electrode) germanium coaxial detectors are used whenever a segmented coaxial detector is needed because the outer boron (electron barrier) contact is thin and can be segmented. Coaxial detectors fabricated from p-type germanium cost less, have better resolution, and are larger than n-type coaxial detectors. However, it is difficult to reliably segment p-type coaxial detectors because thick (~1 mm) lithium-diffused (hole barrier) contacts are the standard outside contact for p-type coaxial detectors. During this Phase 1 Small Business Innovation Research (SBIR) we have researched the possibility of using amorphous germanium contacts as a thin outer contact of p-type coaxial detectors that can be segmented. We have developed amorphous germanium contacts that provide a very high hole barrier on small planar detectors. These easily segmented amorphous germanium contacts have been demonstrated to withstand several thousand volts/cm electric fields with no measurable leakage current (<1 pA) from charge injection over the hole barrier. We have also demonstrated that the contact can be sputter deposited around and over the curved outside surface of a small p-type coaxial detector. The amorphous contact has shown good rectification properties on the outside of a small p-type coaxial detector. These encouraging

  6. Time-resolved spectroscopy of plasma resonances in highly excited silicon and germanium

    Huang, C.Y.; Malvezzi, A.M.; Bloembergen, N.; Kurz, H.

    1985-01-01

    The dynamics of the electron-hole plasma in silicon and germanium samples irradiated by 20 ps. 532 nm laser pulses has been investigated in the near infrared by the time-resolved picosecond optical spectroscopy. The experimental reflectivities and transmission are compared with the predictions of the thermal model for degenerate carrier distributions through the Drude formalism. Above a certain fluence, a significant deviation between measured and calculated values indicates a strong increase of the recombination rate as soon as the plasma resonances become comparable with the band gaps. These new plasmon-aided recombination channels are particularly pronounced in germanium. 15 refs., 8 figs

  7. Nature of oxygen donors and radiation defects in oxygen-doped germanium

    Fukuoka, Noboru; Atobe, Kozo; Honda, Makoto; Matsuda, Koji.

    1991-01-01

    The nature of oxygen donors and radiation defects in oxygen-doped germanium were studied through measurements of the infrared absorption spectrum, deep level transient spectroscopy spectrum and carrier concentration. It is revealed that a new donor is not formed in oxygen-doped germanium. An A-center (interstitial oxygen-vacancy pair) forms a complex with a thermal donor in its annealing stage at 60degC-140degC. The introduction rate of defects by 1.5 MeV electron irradiation was enhanced in thermal-donor-doped samples. (author)

  8. GIOVE: a new detector setup for high sensitivity germanium spectroscopy at shallow depth

    Heusser, G.; Weber, M.; Hakenmueller, J.; Lindner, M.; Maneschg, W.; Simgen, H.; Stolzenburg, D.; Strecker, H. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Laubenstein, M. [Laboratori Nazionali del Gran Sasso, Assergi (Italy)

    2015-11-15

    We report on the development and construction of the high-purity germanium spectrometer setup GIOVE (Germanium Inner Outer VEto), recently built and now operated at the shallow underground laboratory of the Max-Planck-Institut fuer Kernphysik, Heidelberg. Particular attention was paid to the design of a novel passive and active shield, aiming at efficient rejection of environmental and muon induced radiation backgrounds. The achieved sensitivity level of ≤ 100μBq kg{sup -1} for primordial radionuclides from U and Th in typical γ ray sample screening measurements is unique among instruments located at comparably shallow depths and can compete with instruments at far deeper underground sites. (orig.)

  9. First-principles study of the diffusion mechanisms of the self-interstitial in germanium

    Carvalho, A; Jones, R; Janke, C; Goss, J P; Briddon, P R; Oeberg, S

    2008-01-01

    The self-interstitial in germanium can assume multiple configurations depending on the temperature and charge state. Here, we employ a first-principles density functional method to investigate the diffusion mechanisms of this defect. The energy barriers associated with the transformation between different structures are determined by the climbing nudged elastic band method, as a function of the charge state. The relation between the thermodynamic properties of the self-interstitial and the temperature evolution of electron radiation damage in germanium are discussed

  10. Performance of the THS4302 and the Class V Radiation-Tolerant THS4304-SP Silicon Germanium Wideband Amplifiers at Extreme Temperatures

    Patterson, Richard L.; Elbuluk, Malik; Hammoud, Ahmad; VanKeuls, Frederick W.

    2009-01-01

    This report discusses the performance of silicon germanium, wideband gain amplifiers under extreme temperatures. The investigated devices include Texas Instruments THS4304-SP and THS4302 amplifiers. Both chips are manufactured using the BiCom3 process based on silicon germanium technology along with silicon-on-insulator (SOI) buried oxide layers. The THS4304-SP device was chosen because it is a Class V radiation-tolerant (150 kRad, TID silicon), voltage-feedback operational amplifier designed for use in high-speed analog signal applications and is very desirable for NASA missions. It operates with a single 5 V power supply [1]. It comes in a 10-pin ceramic flatpack package, and it provides balanced inputs, low offset voltage and offset current, and high common mode rejection ratio. The fixed-gain THS4302 chip, which comes in a 16-pin leadless package, offers high bandwidth, high slew rate, low noise, and low distortion [2]. Such features have made the amplifier useful in a number of applications such as wideband signal processing, wireless transceivers, intermediate frequency (IF) amplifier, analog-to-digital converter (ADC) preamplifier, digital-to-analog converter (DAC) output buffer, measurement instrumentation, and medical and industrial imaging.

  11. A study on the forms of existence of germanium in uranium-bearing coals of Bangmai basin of Yunnan

    Zhang Shuling; Wang Shuying; Yin Jinshuang

    1988-07-01

    The Bangmai basin is an asymmetrical intermontane synclinal basin with a Hercynian-Yenshan granitic body (γ 3 3 -γ 5 2 ) as its basement. Its overlying strata are made up of the N 1 of coal-bearing clastic rocks of Neogene period. Germanium ore mostly occur within the N 1 2 coal-seam. Uranium, germanium-bearing coals are mainly lignites of low grade in coalation and belong to semidurain, semiclarain, duroclarain and clarodurain. In order to probe into the forms of existence of germanium in coal, six kinds of analytical methods (electronic probe analysis, separation of heavy liquid, grain-size analysis, electric osmosis, chemical extraction and grade-extraction) have been adopted. A simulated test of humic complex germanium in the laboratory was carried out. According to infrared spectral analysis, it is found that 1700 cm -1 wavecrest almost disappears, 1250 cm -1 peak weakens and 1600 cm -1 peak strengthens, 1400 cm -1 peak slightly strengthens. No doubt, these illustrate the formatiion of humic germanium complex. Afterward, through differential thermal analysis and measurement of pH variation of media, it futher proves the presence of humic germanium complex. It is considered that the forms of existence of germanium in uranium-bearing coals mainly are: (1) In close chemical combination with organic matter, usually in the form of humic germanium complex and germanium organic compound; (2) In the state of adsorption, germanium is adsorbed by some organic matter, clay minerals and limonite etc.; (3) A very rare part occurring as isomorphous form

  12. Epitaxial Growth of Germanium on Silicon for Light Emitters

    Chengzhao Chen

    2012-01-01

    Full Text Available This paper describes the role of Ge as an enabler for light emitters on a Si platform. In spite of the large lattice mismatch of ~4.2% between Ge and Si, high-quality Ge layers can be epitaxially grown on Si by ultrahigh-vacuum chemical vapor deposition. Applications of the Ge layers to near-infrared light emitters with various structures are reviewed, including the tensile-strained Ge epilayer, the Ge epilayer with a delta-doping SiGe layer, and the Ge/SiGe multiple quantum wells on Si. The fundamentals of photoluminescence physics in the different Ge structures are discussed briefly.

  13. High resolution T{sub 2}{sup *}-weighted magnetic resonance imaging at 3 Tesla using PROPELLER-EPI

    Kraemer, Martin; Reichenbach, Juergen R. [Jena University Hospital (Germany). Medical Physics Group

    2014-09-01

    We report the application of PROPELLER-EPI for high resolution T{sub 2}{sup *}-weighted imaging with sub-millimeter in-plane resolution on a clinical 3 Tesla scanner. Periodically rotated blades of a long-axis PROPELLER-EPI sequence were acquired with fast gradient echo readout and acquisition matrix of 320 x 50 per blade. Images were reconstructed by using 2D-gridding, phase and geometric distortion correction and compensation of resonance frequency drifts that occurred during extended measurements. To characterize these resonance frequency offsets, short FID calibration measurements were added to the PROPELLER-EPI sequence. Functional PROPELLER-EPI was performed with volunteers using a simple block design of right handed finger tapping. Results indicate that PROPELLER-EPI can be employed for fast, high resolution T{sub 2}{sup *}-weighted imaging provided geometric distortions and possible resonance frequency drifts are properly corrected. Even small resonance frequency drifts below 10 Hz as well as non-corrected geometric distortions degraded image quality substantially. In the initial fMRI experiment image quality and signal-to-noise ratio was sufficient for obtaining high resolution functional activation maps. (orig.)

  14. High bit rate germanium single photon detectors for 1310nm

    Seamons, J. A.; Carroll, M. S.

    2008-04-01

    There is increasing interest in development of high speed, low noise and readily fieldable near infrared (NIR) single photon detectors. InGaAs/InP Avalanche photodiodes (APD) operated in Geiger mode (GM) are a leading choice for NIR due to their preeminence in optical networking. After-pulsing is, however, a primary challenge to operating InGaAs/InP single photon detectors at high frequencies1. After-pulsing is the effect of charge being released from traps that trigger false ("dark") counts. To overcome this problem, hold-off times between detection windows are used to allow the traps to discharge to suppress after-pulsing. The hold-off time represents, however, an upper limit on detection frequency that shows degradation beginning at frequencies of ~100 kHz in InGaAs/InP. Alternatively, germanium (Ge) single photon avalanche photodiodes (SPAD) have been reported to have more than an order of magnitude smaller charge trap densities than InGaAs/InP SPADs2, which allowed them to be successfully operated with passive quenching2 (i.e., no gated hold off times necessary), which is not possible with InGaAs/InP SPADs, indicating a much weaker dark count dependence on hold-off time consistent with fewer charge traps. Despite these encouraging results suggesting a possible higher operating frequency limit for Ge SPADs, little has been reported on Ge SPAD performance at high frequencies presumably because previous work with Ge SPADs has been discouraged by a strong demand to work at 1550 nm. NIR SPADs require cooling, which in the case of Ge SPADs dramatically reduces the quantum efficiency of the Ge at 1550 nm. Recently, however, advantages to working at 1310 nm have been suggested which combined with a need to increase quantum bit rates for quantum key distribution (QKD) motivates examination of Ge detectors performance at very high detection rates where InGaAs/InP does not perform as well. Presented in this paper are measurements of a commercially available Ge APD

  15. Estimating glomerular filtration rate using the new CKD-EPI equation and other equations in patients with autosomal dominant polycystic kidney disease

    Orskov, Bjarne; Borresen, Malene L; Feldt-Rasmussen, Bo

    2010-01-01

    (CKD-EPI) equation, the Cockcroft-Gault equation adjusted for body surface area and the MDRD equation with cystatin C. Performance was evaluated by mean bias, precision and accuracy. RESULTS: The MDRD equation with cystatin C had 97% of GFR estimates within 30% of measured GFR (accuracy). Both the CKD-EPI....... The CKD-EPI or the Cockcroft-Gault equations showed better performance compared to the 4-variable MDRD equation....

  16. Nikkaji Dictionary: 4-epi-オキシテトラサイクリン [MeCab user dictionary for science technology term[Archive

    Full Text Available MeCab user dictionary for science technology term 4-epi-オキシテトラサイクリン 名詞 一般 * * * * 4-epi-オキシテトラサイクリン... ... Nikkaji J735.319G 200906072936780617 C CA06 UNKNOWN_2 4 - epi - オキシテトラサイクリン

  17. EpiTools: An Open-Source Image Analysis Toolkit for Quantifying Epithelial Growth Dynamics.

    Heller, Davide; Hoppe, Andreas; Restrepo, Simon; Gatti, Lorenzo; Tournier, Alexander L; Tapon, Nicolas; Basler, Konrad; Mao, Yanlan

    2016-01-11

    Epithelia grow and undergo extensive rearrangements to achieve their final size and shape. Imaging the dynamics of tissue growth and morphogenesis is now possible with advances in time-lapse microscopy, but a true understanding of their complexities is limited by automated image analysis tools to extract quantitative data. To overcome such limitations, we have designed a new open-source image analysis toolkit called EpiTools. It provides user-friendly graphical user interfaces for accurately segmenting and tracking the contours of cell membrane signals obtained from 4D confocal imaging. It is designed for a broad audience, especially biologists with no computer-science background. Quantitative data extraction is integrated into a larger bioimaging platform, Icy, to increase the visibility and usability of our tools. We demonstrate the usefulness of EpiTools by analyzing Drosophila wing imaginal disc growth, revealing previously overlooked properties of this dynamic tissue, such as the patterns of cellular rearrangements. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Phylogenetically diverse macrophyte community promotes species diversity of mobile epi-benthic invertebrates

    Nakamoto, Kenta; Hayakawa, Jun; Kawamura, Tomohiko; Kodama, Masafumi; Yamada, Hideaki; Kitagawa, Takashi; Watanabe, Yoshiro

    2018-07-01

    Various aspects of plant diversity such as species diversity and phylogenetic diversity enhance the species diversity of associated animals in terrestrial systems. In marine systems, however, the effects of macrophyte diversity on the species diversity of associated animals have received little attention. Here, we sampled in a subtropical seagrass-seaweed mixed bed to elucidate the effect of the macrophyte phylogenetic diversity based on the taxonomic relatedness as well as the macrophyte species diversity on species diversity of mobile epi-benthic invertebrates. Using regression analyses for each macrophyte parameter as well as multiple regression analyses, we found that the macrophyte phylogenetic diversity (taxonomic diversity index: Delta) positively influenced the invertebrate species richness and diversity index (H‧). Although the macrophyte species richness and H‧ also positively influenced the invertebrate species richness, the best fit model for invertebrate species richness did not include them, suggesting that the macrophyte species diversity indirectly influenced invertebrate species diversity. Possible explanations of the effects of macrophyte Delta on the invertebrate species diversity were the niche complementarity effect and the selection effect. This is the first study which demonstrates that macrophyte phylogenetic diversity has a strong effect on the species diversity of mobile epi-benthic invertebrates.

  19. EFFECT OF MOLECULAR WEIGHT ON THE YIELD BEHAVIOUR OF EPY EPOXY COMPOUND

    Magdalena Urbaniak

    2016-12-01

    Full Text Available A series of epoxy networks with molecular weight between crosslinks (Mc ranging from 117 to 508 g/mol were investigated by employing as DSC and DMA methods and compression testing over a broad range of test temperatures (from 20 to 120 °C and strain rates (from 0.0208 to 20.8 min–1. Mechanical characteristics vs. testing temperature and strain rate developed in relation to working conditions of EPY compound applied for machine foundation chocks as well as effect of crosslinking on glass transition temperature (Tg presented in this paper let to find out the effect of molecular architecture composed chiefly by Mc on the thermal and mechanical properties that govern yield behaviour of the material. The investigations carried out in a.m. ranges of testing temperatures and strain rates showed that whichever change of Mc is related to the change in crosslink density causing relative shift in the Tg of the compound. However, a sensitivity of the polymer material on changes in strain rate falls down with growth of testing temperature. Obtained results prove that yielding in EPY compound can be examined in categories of the Eyring’s plastic flow model in which yielding is described.

  20. Sampling strategies for subsampled segmented EPI PRF thermometry in MR guided high intensity focused ultrasound

    Odéen, Henrik; Todd, Nick; Diakite, Mahamadou; Minalga, Emilee; Payne, Allison; Parker, Dennis L.

    2014-01-01

    Purpose: To investigate k-space subsampling strategies to achieve fast, large field-of-view (FOV) temperature monitoring using segmented echo planar imaging (EPI) proton resonance frequency shift thermometry for MR guided high intensity focused ultrasound (MRgHIFU) applications. Methods: Five different k-space sampling approaches were investigated, varying sample spacing (equally vs nonequally spaced within the echo train), sampling density (variable sampling density in zero, one, and two dimensions), and utilizing sequential or centric sampling. Three of the schemes utilized sequential sampling with the sampling density varied in zero, one, and two dimensions, to investigate sampling the k-space center more frequently. Two of the schemes utilized centric sampling to acquire the k-space center with a longer echo time for improved phase measurements, and vary the sampling density in zero and two dimensions, respectively. Phantom experiments and a theoretical point spread function analysis were performed to investigate their performance. Variable density sampling in zero and two dimensions was also implemented in a non-EPI GRE pulse sequence for comparison. All subsampled data were reconstructed with a previously described temporally constrained reconstruction (TCR) algorithm. Results: The accuracy of each sampling strategy in measuring the temperature rise in the HIFU focal spot was measured in terms of the root-mean-square-error (RMSE) compared to fully sampled “truth.” For the schemes utilizing sequential sampling, the accuracy was found to improve with the dimensionality of the variable density sampling, giving values of 0.65 °C, 0.49 °C, and 0.35 °C for density variation in zero, one, and two dimensions, respectively. The schemes utilizing centric sampling were found to underestimate the temperature rise, with RMSE values of 1.05 °C and 1.31 °C, for variable density sampling in zero and two dimensions, respectively. Similar subsampling schemes

  1. Density Functional Theory Calculations Revealing Metal-like Band Structures for Ultrathin Ge {111} and {211} Surface Layers.

    Tan, Chih-Shan; Huang, Michael Hsuan-Yi

    2018-05-21

    To find out if germanium should also possess facet-dependent electrical conductivity properties, surface state density functional theory (DFT) calculations were performed on 1-6 layers of Ge (100), (110), (111), and (211) planes. Tunable Ge (100) and (110) planes always present the same semiconducting band structure with a band gap of 0.67 eV expected of bulk germanium. In contrast, 1, 2, 4, and 5 layers of Ge (111) and (211) plane models show metal-like band structures with continuous density of states (DOS) throughout the entire band. For 3 and 6 layers of Ge (111) and (211) plane models, the normal semiconducting band structure was obtained. The plane layers with metal-like band structures also show Ge-Ge bond length deviations and bond distortions, as well as significantly different 4s and 4p frontier orbital electron count and their relative percentages integrated over the valence and conduction bands from those of the semiconducting state. These differences should contribute to strikingly dissimilar band structures. The calculation results suggest observation of facet-dependent electrical conductivity properties of germanium materials, and transistors made of germanium may also need to consider the facet effects with shrinking dimensions approaching 3 nm. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Dependence of magnetic properties on ferromagnetic layer thickness in trilayer Co/Ge/Co films with granular semiconducting spacer

    Patrin, G.S.; Lee, C.-G.; Turpanov, I.A.; Zharkov, S.M.; Velikanov, D.A.; Maltsev, V.K.; Li, L.A.; Lantsev, V.V.

    2006-01-01

    We have investigated the magnetic properties of trilayer films of Co-Ge-Co. At a fixed thickness of germanium of 3.5 nm, the formation and distribution of metastable amorphous and cubic phases depends on the thickness of the ferromagnetic layer. The portion of the stable hexagonal phase is affected, too. Possible mechanisms for forming the observed magnetic structure are discussed

  3. Fabrication of diamond-coated germanium ATR prisms for IR-spectroscopy

    Babchenko, Oleg; Kozak, Halyna; Ižák, Tibor; Stuchlík, Jiří; Remeš, Zdeněk; Rezek, Bohuslav; Kromka, Alexander

    2016-01-01

    Roč. 87, May (2016), 67-73 ISSN 0924-2031 R&D Projects: GA ČR GA15-01687S Institutional support: RVO:68378271 Keywords : diamond * low temperature growth * linear antenna microwave plasma * germanium * SEM * FTIR Subject RIV: JI - Composite Materials Impact factor: 1.740, year: 2016

  4. Reduced graphene oxide-germanium quantum dot nanocomposite: electronic, optical and magnetic properties

    Amollo, Tabitha A.; Mola, Genene T.; Nyamori, Vincent O.

    2017-12-01

    Graphene provides numerous possibilities for structural modification and functionalization of its carbon backbone. Localized magnetic moments can, as well, be induced in graphene by the formation of structural defects which include vacancies, edges, and adatoms. In this work, graphene was functionalized using germanium atoms, we report the effect of the Ge ad atoms on the structural, electrical, optical and magnetic properties of graphene. Reduced graphene oxide (rGO)-germanium quantum dot nanocomposites of high crystalline quality were synthesized by the microwave-assisted solvothermal reaction. Highly crystalline spherical shaped germanium quantum dots, of diameter ranging between 1.6-9.0 nm, are anchored on the basal planes of rGO. The nanocomposites exhibit high electrical conductivity with a sheet resistance of up to 16 Ω sq-1. The electrical conductivity is observed to increase with the increase in Ge content in the nanocomposites. High defect-induced magnetization is attained in the composites via germanium adatoms. The evolution of the magnetic moments in the nanocomposites and the coercivity showed marked dependence on the Ge quantum dots size and concentration. Quantum confinement effects is evidenced in the UV-vis absorbance spectra and photoluminescence emission spectra of the nanocomposites which show marked size-dependence. The composites manifest strong absorption in the UV region, strong luminescence in the near UV region, and a moderate luminescence in the visible region.

  5. Overview of multi-element monolithic germanium detectors for XAFS experiments at diamond light source

    Chatterji, S.; Dennis, G. J.; Dent, A.; Diaz-Moreno, S.; Cibin, G.; Tartoni, N.; Helsby, W. I.

    2016-01-01

    An overview of multi-element monolithic germanium detectors being used at the X-ray absorption spectroscopy (XAS) beam lines at Diamond Light Source (DLS) is being reported. The hardware details and a summary of the performance of these detectors have also been provided. Recent updates about various ongoing projects being worked on to improve the performance of these detectors are summarized.

  6. Tunable band gap emission and surface passivation of germanium nanocrystals synthesized in the gas phase

    Wheeler, LM; Levij, L.M.; Kortshagen, U.R.

    2013-01-01

    The narrow bulk band gap and large exciton Bohr radius of germanium (Ge) make it an attractive material for optoelectronics utilizing band-gap-tunable photoluminescence (PL). However, realization of PL due to quantum confinement remains scarcely reported. Instead, PL is often observed from surface

  7. Dark Matter Search with sub-keV Germanium Detectors at the China Jinping Underground Laboratory

    Yue Qian; Wong, Henry T

    2012-01-01

    Germanium detectors with sub-keV sensitivities open a window to search for low-mass WIMP dark matter. The CDEX-TEXONO Collaboration is conducting the first research program at the new China Jinping Underground Laboratory with this approach. The status and plans of the laboratory and the experiment are discussed.

  8. Overview of multi-element monolithic germanium detectors for XAFS experiments at diamond light source

    Chatterji, S.; Dennis, G. J.; Dent, A.; Diaz-Moreno, S.; Cibin, G.; Tartoni, N. [Diamond Light Source Ltd, Oxfordshire (United Kingdom); Helsby, W. I. [STFC Daresbury Laboratory, Warrington (United Kingdom)

    2016-07-27

    An overview of multi-element monolithic germanium detectors being used at the X-ray absorption spectroscopy (XAS) beam lines at Diamond Light Source (DLS) is being reported. The hardware details and a summary of the performance of these detectors have also been provided. Recent updates about various ongoing projects being worked on to improve the performance of these detectors are summarized.

  9. Quadrupole boson densities in the germanium region by inelastic electron scattering

    Goutte, D.

    1984-08-01

    The collective properties of four germanium isotopes have been explored through the measurement of the transition charge densities of the first two 2 + states. Their spatial features and their apparent anomalous behavior is readily explained in the frame of the Interacting Boson Model

  10. Germanium detectors for nuclear spectroscopy: Current research and development activity at LNL

    Napoli, D. R., E-mail: daniel.r.napoli@lnl.infn.it [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Legnaro, Padova (Italy); Maggioni, G., E-mail: maggioni@lnl.infn.it; Carturan, S.; Gelain, M. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Legnaro, Padova (Italy); Department of Physics and Astronomy “G. Galilei”, University of Padova, Via Marzolo 8, 35121 Padova (Italy); Eberth, J. [Institut für Kernphysik, Universität zu Köln, Zülpicher Straße 77, D-50937 Köln (Germany); Grimaldi, M. G.; Tatí, S. [Department of Physics and Astronomy, University of Catania (Italy); Riccetto, S. [University of Camerino and INFN of Perugia (Italy); Mea, G. Della [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Legnaro, Padova (Italy); University of Trento (Italy)

    2016-07-07

    High-purity Germanium (HPGe) detectors have reached an unprecedented level of sophistication and are still the best solution for high-resolution gamma spectroscopy. In the present work, we will show the results of the characterization of new surface treatments for the production of these detectors, studied in the framework of our multidisciplinary research program in HPGe detector technologies.

  11. Recrystallization behaviour and electrical properties of germanium ion implanted polycrystalline silicon films

    Kang, Myeon-Koo; Matsui, Takayuki; Kuwano, Hiroshi

    1996-01-01

    The recrystallization behaviour of undoped and phosphorus-doped polycrystalline silicon films amorphized by germanium ion implantation at doses ranging from 1 x 10 15 to 1 x 10 16 cm -2 are investigated, and the electrical properties of phosphorus-doped films after recrystallization are studied. The phosphorus doping concentration ranges from 3 x 10 18 to 1 x 10 20 cm -3 . It is found that the nucleation rate decreases for undoped films and increases for phosphorus-doped films with increasing germanium dose; the growth rates decrease for both doped and undoped films. The decrease in nucleation rate is caused by the increase in implantation damage. The decrease in growth rate is considered to be due to the increase in lattice strain. The grain size increases with germanium dose for undoped films, but decreases for phosphorus-doped films. The dependence of the electrical properties of the recrystallized films as a function of phosphorus doping concentration with different germanium doses can be explained in terms of the grain size, crystallinity and grain boundary barrier height. (Author)

  12. Electrochemical characterization of irreversibly adsorbed germanium on platinum stepped surfaces vicinal to Pt(1 0 0)

    Rodriguez, P.; Herrero, E.; Solla-Gullon, J.; Vidal-Iglesias, F.J.; Aldaz, A.; Feliu, J.M.

    2005-01-01

    The electrochemical behavior of germanium irreversibly adsorbed at stepped surfaces vicinal to the Pt(1 0 0) pole is reported. The process taking part on the (1 0 0) terraces is evaluated from charge density measurements and calibration lines versus the terrace dimension are plotted. On the series Pt(2n - 1,1,1) having (1 1 1) monoatomic steps, the charge involved in the redox process undergone by the irreversibly adsorbed germanium is able to account for (n - 0.5) terrace atoms, thus suggesting some steric difficulties in the growth of the adlayer on the (1 0 0) terraces. Conversely, no steric problems are apparent in the series Pt(n,1,0) in which more open (1 0 0) steps are present on the (1 0 0) terraces. In this latter case the charge density under the germanium redox peaks is proportional to the number of terrace atoms. Some comparison is made with other stepped surfaces to understand the behavior and stability of germanium irreversibly adsorbed on the different platinum surface sites

  13. Neutrino and dark matter physics with sub-keV germanium detectors

    2014-11-04

    Nov 4, 2014 ... Germanium detectors with sub-keV sensitivities open a window to study neutrino physics to search for light weakly interacting massive particle (WIMP) dark matter. We summarize the recent results on spin-independent couplings of light WIMPs from the TEXONO experiment at the Kuo-Sheng Reactor ...

  14. Strong quantum-confined stark effect in germanium quantum-well structures on silicon

    Kuo, Y.; Lee, Y. K.; Gei, Y.; Ren, S; Roth, J. E.; Miller, D. A.; Harris, J. S.

    2006-01-01

    Silicon is the dominant semiconductor for electronics, but there is now a growing need to integrate such component with optoelectronics for telecommunications and computer interconnections. Silicon-based optical modulators have recently been successfully demonstrated but because the light modulation mechanisms in silicon are relatively weak, long (for example, several millimeters) devices or sophisticated high-quality-factor resonators have been necessary. Thin quantum-well structures made from III-V semiconductors such as GaAs, InP and their alloys exhibit the much stronger Quantum-Confined Stark Effect (QCSE) mechanism, which allows modulator structures with only micrometers of optical path length. Such III-V materials are unfortunately difficult to integrate with silicon electronic devices. Germanium is routinely integrated with silicon in electronics, but previous silicon-germanium structures have also not shown strong modulation effects. Here we report the discovery of the QCSE, at room temperature, in thin germanium quantum-well structures grown on silicon. The QCSE here has strengths comparable to that in III-V materials. Its clarity and strength are particularly surprising because germanium is an indirect gap semiconductor, such semiconductors often display much weak optical effects than direct gap materials (such as the III-V materials typically used for optoelectronics). This discovery is very promising for small, high-speed, low-power optical output devices fully compatible with silicon electronics manufacture. (author)

  15. High-resolution imaging gamma-ray spectroscopy with externally segmented germanium detectors

    Callas, J. L.; Mahoney, W. A.; Varnell, L. S.; Wheaton, W. A.

    1993-01-01

    Externally segmented germanium detectors promise a breakthrough in gamma-ray imaging capabilities while retaining the superb energy resolution of germanium spectrometers. An angular resolution of 0.2 deg becomes practical by combining position-sensitive germanium detectors having a segment thickness of a few millimeters with a one-dimensional coded aperture located about a meter from the detectors. Correspondingly higher angular resolutions are possible with larger separations between the detectors and the coded aperture. Two-dimensional images can be obtained by rotating the instrument. Although the basic concept is similar to optical or X-ray coded-aperture imaging techniques, several complicating effects arise because of the penetrating nature of gamma rays. The complications include partial transmission through the coded aperture elements, Compton scattering in the germanium detectors, and high background count rates. Extensive electron-photon Monte Carlo modeling of a realistic detector/coded-aperture/collimator system has been performed. Results show that these complicating effects can be characterized and accounted for with no significant loss in instrument sensitivity.

  16. Germanium recovery from gasification fly ash: evaluation of end-products obtained by precipitation methods.

    Arroyo, Fátima; Font, Oriol; Fernández-Pereira, Constantino; Querol, Xavier; Juan, Roberto; Ruiz, Carmen; Coca, Pilar

    2009-08-15

    In this study the purity of the germanium end-products obtained by two different precipitation methods carried out on germanium-bearing solutions was evaluated as a last step of a hydrometallurgy process for the recovery of this valuable element from the Puertollano Integrated Gasification Combined Cycle (IGCC) fly ash. Since H(2)S is produced as a by-product in the gas cleaning system of the Puertollano IGCC plant, precipitation of germanium as GeS(2) was tested by sulfiding the Ge-bearing solutions. The technological and hazardous issues that surround H(2)S handling conducted to investigate a novel precipitation procedure: precipitation as an organic complex by adding 1,2-dihydroxy benzene pyrocatechol (CAT) and cetyltrimethylammonium bromide (CTAB) to the Ge-bearing solutions. Relatively high purity Ge end-products (90 and 93% hexagonal-GeO(2) purity, respectively) were obtained by precipitating Ge from enriched solutions, as GeS(2) sulfiding the solutions with H(2)S, or as organic complex with CAT/CTAB mixtures and subsequent roasting of the precipitates. Both methods showed high efficiency (>99%) to precipitate selectively Ge using a single precipitation stage from germanium-bearing solutions.

  17. Effect of the microstructure on electrical properties of high-purity germanium

    Podkopaev, O. I.; Shimanskii, A. F.; Molotkovskaya, N. O.; Kulakovskaya, T. V.

    2013-05-01

    The interrelation between the electrical properties and the microstructure of high-purity germanium crystals has been revealed. The electrical conductivity of polycrystalline samples increases and the life-time of nonequilibrium charge carriers in them decreases with a decrease in the crystallite sizes.

  18. Thermophysical Properties of Molten Germanium Measured by the High Temperature Electrostatic Levitator

    Rhim, W. K.; Ishikawa, T.

    1998-01-01

    Thermophysical properties of molten germanium such as the density, the thermal expansion coefficient, the hemisphereical total emissivity, the constant pressure specific heat capacity, the surface tension, and the electrical resistivity have been measured using the High Temperature Electrostatic Levitator at JPL.

  19. Advanced characterization of carrier profiles in germanium using micro-machined contact probes

    Clarysse, T.; Konttinen, M.; Parmentier, B.

    2012-01-01

    of new concepts based on micro machined, closely spaced contact probes (10 μm pitch). When using four probes to perform sheet resistance measurements, a quantitative carrier profile extraction based on the evolution of the sheet resistance versus depth along a beveled surface is obtained. Considering...... the properties of both approaches on Al+ implants in germanium with different anneal treatments....

  20. Hall mobility of free charge carriers in highly compensated p-Germanium

    Gavrilyuk, V.Yi.; Kirnas, Yi.G.; Balakyin, V.D.

    2000-01-01

    Hall mobility of free charge carriers in initial detectors Ge (Ga) is studied. It is established that an increase in the compensation factor results in the enlargement of Hall mobility in germanium highly compensated by introduction of Li ions during their drift in an electrical field

  1. Reaction studies of hot silicon and germanium radicals. Progress report, February 1, 1982-July 31, 1984

    Gaspar, P.P.

    1984-01-01

    The experimental approach toward attaining the goals of this research program is briefly outlined, and the progress made in the 1982 to 1984 period is reviewed in sections entitled: (1) Recoil atom experiments, (2) Studies of thermally and photochemically generated silicon and germanium radicals, and (3) Ion-molecule reaction studies

  2. Use of the EpiNet database for observational study of status epilepticus in Auckland, New Zealand.

    Bergin, Peter; Jayabal, Jayaganth; Walker, Elizabeth; Davis, Suzanne; Jones, Peter; Dalziel, Stuart; Yates, Kim; Thornton, Vanessa; Bennett, Patricia; Wilson, Kaisa; Roberts, Lynair; Litchfield, Rhonda; Te Ao, Braden; Parmer, Priya; Feigin, Valery; Jost, Jeremy; Beghi, Ettore; Rossetti, Andrea O

    2015-08-01

    The EpiNet project has been established to facilitate investigator-initiated clinical research in epilepsy, to undertake epidemiological studies, and to simultaneously improve the care of patients who have records created within the EpiNet database. The EpiNet database has recently been adapted to collect detailed information regarding status epilepticus. An incidence study is now underway in Auckland, New Zealand in which the incidence of status epilepticus in the greater Auckland area (population: 1.5 million) will be calculated. The form that has been developed for this study can be used in the future to collect information for randomized controlled trials in status epilepticus. This article is part of a Special Issue entitled "Status Epilepticus". Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Tungsten silicide contacts to polycrystalline silicon and silicon-germanium alloys

    Srinivasan, G.; Bain, M.F.; Bhattacharyya, S.; Baine, P.; Armstrong, B.M.; Gamble, H.S.; McNeill, D.W.

    2004-01-01

    Silicon-germanium alloy layers will be employed in the source-drain engineering of future MOS transistors. The use of this technology offers advantages in reducing series resistance and decreasing junction depth resulting in reduction in punch-through and SCE problems. The contact resistance of metal or metal silicides to the raised source-drain material is a serious issue at sub-micron dimensions and must be minimised. In this work, tungsten silicide produced by chemical vapour deposition has been investigated as a contact metallization scheme to both boron and phosphorus doped polycrystalline Si 1- x Ge x , with 0 ≤x ≤ 0.3. Cross bridge Kelvin resistor (CKBR) structures were fabricated incorporating CVD WSi 2 and polycrystalline SiGe. Tungsten silicide contacts to control polysilicon CKBR structures have been shown to be of high quality with specific contact resistance ρ c values 3 x 10 -7 ohm cm 2 and 6 x 10 -7 ohm cm 2 obtained to boron and phosphorus implanted samples respectively. The SiGe CKBR structures show that the inclusion of Ge yields a reduction in ρ c for both dopant types. The boron doped SiGe exhibits a reduction in ρ c from 3 x 10 -7 to 5 x 10 -8 ohm cm 2 as Ge fraction is increased from 0 to 0.3. The reduction in ρ c has been shown to be due to (i) the lowering of the tungsten silicide Schottky barrier height to p-type SiGe resulting from the energy band gap reduction, and (ii) increased activation of the implanted boron with increased Ge fraction. The phosphorus implanted samples show less sensitivity of ρ c to Ge fraction with a lowest value in this work of 3 x 10 -7 ohm cm 2 for a Ge fraction of 0.3. The reduction in specific contact resistance to the phosphorus implanted samples has been shown to be due to increased dopant activation alone

  4. Overview of the ID, EPI and REL tasks of BioNLP Shared Task 2011

    Pyysalo Sampo

    2012-06-01

    Full Text Available Abstract We present the preparation, resources, results and analysis of three tasks of the BioNLP Shared Task 2011: the main tasks on Infectious Diseases (ID and Epigenetics and Post-translational Modifications (EPI, and the supporting task on Entity Relations (REL. The two main tasks represent extensions of the event extraction model introduced in the BioNLP Shared Task 2009 (ST'09 to two new areas of biomedical scientific literature, each motivated by the needs of specific biocuration tasks. The ID task concerns the molecular mechanisms of infection, virulence and resistance, focusing in particular on the functions of a class of signaling systems that are ubiquitous in bacteria. The EPI task is dedicated to the extraction of statements regarding chemical modifications of DNA and proteins, with particular emphasis on changes relating to the epigenetic control of gene expression. By contrast to these two application-oriented main tasks, the REL task seeks to support extraction in general by separating challenges relating to part-of relations into a subproblem that can be addressed by independent systems. Seven groups participated in each of the two main tasks and four groups in the supporting task. The participating systems indicated advances in the capability of event extraction methods and demonstrated generalization in many aspects: from abstracts to full texts, from previously considered subdomains to new ones, and from the ST'09 extraction targets to other entities and events. The highest performance achieved in the supporting task REL, 58% F-score, is broadly comparable with levels reported for other relation extraction tasks. For the ID task, the highest-performing system achieved 56% F-score, comparable to the state-of-the-art performance at the established ST'09 task. In the EPI task, the best result was 53% F-score for the full set of extraction targets and 69% F-score for a reduced set of core extraction targets, approaching a level

  5. Growth of InAs Quantum Dots on Germanium Substrate Using Metal Organic Chemical Vapor Deposition Technique

    Tyagi Renu

    2009-01-01

    Full Text Available Abstract Self-assembled InAs quantum dots (QDs were grown on germanium substrates by metal organic chemical vapor deposition technique. Effects of growth temperature and InAs coverage on the size, density, and height of quantum dots were investigated. Growth temperature was varied from 400 to 450 °C and InAs coverage was varied between 1.40 and 2.35 monolayers (MLs. The surface morphology and structural characteristics of the quantum dots analyzed by atomic force microscope revealed that the density of the InAs quantum dots first increased and then decreased with the amount of InAs coverage; whereas density decreased with increase in growth temperature. It was observed that the size and height of InAs quantum dots increased with increase in both temperature and InAs coverage. The density of QDs was effectively controlled by growth temperature and InAs coverage on GaAs buffer layer.

  6. Characteristics of an intrinsic germanium detector for measurement of soft x-rays from high-temperature plasmas

    Kumagai, Katsuaki; Matoba, Tohru; Funahashi, Akimasa; Kawakami, Tomohide

    1976-09-01

    An intrinsic germanium (Ge(I)) detector has been prepared for measurement of soft X-ray spectra from high-temperature tokamak plasmas. Its characteristics of photo-peak efficiency, escape-peak and Compton scattering were calibrated with standard radioisotopes and soft X-rays from the JFT-2a plasma, and compared with those of a lithium-drifted silicon (Si(Li)) detector. Features of the Ge(I) detector are as follows: (i) high detection efficiency in the high energy range, (ii) wide energy range for measurement of soft X-ray spectra, and (iii) low Compton scattering effect in measurement of continuous spectra. Its dead-layer depth is about 0.06μm, and the minimum detectable energies in the Ge(I) detector are similar to those in the Si(Li) detector. The Ge(I) detector is effective for measuring soft X-ray spectra from high-temperature tokamak plasmas. (auth.)

  7. Diffusion-weighted MRI of the Prostate: Advantages of Zoomed EPI with Parallel-transmit-accelerated 2D-selective Excitation Imaging

    Thierfelder, Kolja M.; Scherr, Michael K.; Weiss, Jakob; Mueller-Lisse, Ullrich G.; Theisen, Daniel [Ludwig-Maximilians-University Hospital Munich, Institute for Clinical Radiology, Munich (Germany); Notohamiprodjo, Mike; Nikolaou, Konstantin [Ludwig-Maximilians-University Hospital Munich, Institute for Clinical Radiology, Munich (Germany); University Hospital Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany); Dietrich, Olaf [Ludwig-Maximilians-University Hospital Munich, Josef Lissner Laboratory for Biomedical Imaging, Institute for Clinical Radiology, Munich (Germany); Pfeuffer, Josef [Siemens Healthcare, Application Development, Erlangen (Germany)

    2014-12-15

    The purpose of our study was to evaluate the use of 2D-selective, parallel-transmit excitation magnetic resonance imaging (MRI) for diffusion-weighted echo-planar imaging (pTX-EPI) of the prostate, and to compare it to conventional, single-shot EPI (c-EPI). The MRI examinations of 35 patients were evaluated in this prospective study. PTX-EPI was performed with a TX-acceleration factor of 1.7 and a field of view (FOV) of 150 x 90 mm{sup 2}, whereas c-EPI used a full FOV of 380 x 297 mm{sup 2}. Two readers evaluated three different aspects of image quality on 5-point Likert scales. To quantify distortion artefacts, maximum diameters and prostate volume were determined for both techniques and compared to T2-weighted imaging. The zoomed pTX-EPI was superior to c-EPI with respect to overall image quality (3.39 ± 0.62 vs 2.45 ± 0.67) and anatomic differentiability (3.29 ± 0.65 vs 2.41 ± 0.65), each with p < 0.0001. Artefacts were significantly less severe in pTX-EPI (0.93 ± 0.73 vs 1.49 ± 1.08), p < 0.001. The quantitative analysis yielded a higher agreement of pTX-EPI with T2-weighted imaging than c-EPI with respect to coronal (ICCs: 0.95 vs 0.93) and sagittal (0.86 vs 0.73) diameters as well as prostate volume (0.94 vs 0.92). Apparent diffusion coefficient (ADC) values did not differ significantly between the two techniques (p > 0.05). Zoomed pTX-EPI leads to substantial improvements in diffusion-weighted imaging (DWI) of the prostate with respect to different aspects of image quality and severity of artefacts. (orig.)

  8. Monte Carlo simulation of gamma-ray interactions in an over-square high-purity germanium detector for in-vivo measurements

    Saizu, Mirela Angela

    2016-09-01

    The developments of high-purity germanium detectors match very well the requirements of the in-vivo human body measurements regarding the gamma energy ranges of the radionuclides intended to be measured, the shape of the extended radioactive sources, and the measurement geometries. The Whole Body Counter (WBC) from IFIN-HH is based on an “over-square” high-purity germanium detector (HPGe) to perform accurate measurements of the incorporated radionuclides emitting X and gamma rays in the energy range of 10 keV-1500 keV, under conditions of good shielding, suitable collimation, and calibration. As an alternative to the experimental efficiency calibration method consisting of using reference calibration sources with gamma energy lines that cover all the considered energy range, it is proposed to use the Monte Carlo method for the efficiency calibration of the WBC using the radiation transport code MCNP5. The HPGe detector was modelled and the gamma energy lines of 241Am, 57Co, 133Ba, 137Cs, 60Co, and 152Eu were simulated in order to obtain the virtual efficiency calibration curve of the WBC. The Monte Carlo method was validated by comparing the simulated results with the experimental measurements using point-like sources. For their optimum matching, the impact of the variation of the front dead layer thickness and of the detector photon absorbing layers materials on the HPGe detector efficiency was studied, and the detector’s model was refined. In order to perform the WBC efficiency calibration for realistic people monitoring, more numerical calculations were generated simulating extended sources of specific shape according to the standard man characteristics.

  9. The total syntheses of guttiferone A and 6-epi-guttiferone A.

    Horeischi, Fiene; Biber, Nicole; Plietker, Bernd

    2014-03-12

    Polyprenylated polycyclic acylphloroglucinols (PPAP) are a constantly growing class of natural products that exhibit a common bicyclo[3.3.1]nonatrione core and consist of currently more than 200 members. A subclassification among the various natural products of this class includes the position of the exocyclic acyl group, the prenylation grade of the core, and the relative configuration at C-7 within the core. About 10% of the reported structures, however, possess an additional chiral center at C-6. Herein we describe a straightforward access to guttiferone A and epi-guttiferone A, in which full control of stereoselectivity is achieved via conformational control, and a strict separation of framework decorating from framework constructing operations sets the stage for a short 13-step synthesis.

  10. [Estimating glomerular filtration rate in 2012: which adding value for the CKD-EPI equation?].

    Delanaye, Pierre; Mariat, Christophe; Moranne, Olivier; Cavalier, Etienne; Flamant, Martin

    2012-07-01

    Measuring or estimating glomerular filtration rate (GFR) is still considered as the best way to apprehend global renal function. In 2009, the new Chronic Kidney Disease Epidemiology (CKD-EPI) equation has been proposed as a better estimator of GFR than the Modification of Diet in Renal Disease (MDRD) study equation. This new equation is supposed to underestimate GFR to a lesser degree in higher GFR levels. In this review, we will present and deeply discuss the performances of this equation. Based on articles published between 2009 and 2012, this review will underline advantages, notably the better knowledge of chronic kidney disease prevalence, but also limitations of this new equation, especially in some specific populations. We eventually insist on the fact that all these equations are estimations and nephrologists should remain cautious in their interpretation. Copyright © 2012 Association Société de néphrologie. Published by Elsevier SAS. All rights reserved.

  11. New insights in oncology: Epi-genetics and cancer stem cells

    Krutovskikh, V.; Partensky, C.

    2011-01-01

    Cancer is a multi-etiologic, multistage disease with a prevalent genetic component, which happens when a large number of genes, critical for cell growth, death, differentiation, migration, and metabolic plasticity are altered irreversibly, so as to either 'gain' (oncogenes) or 'lose' (tumour suppressors) their function. Recent discoveries have revealed the previously underestimated etiologic importance of multiple epigenetic, that is to say, reversible factors (histone modifications, DNA methylation, non-coding RNA) involved in the transcriptional and post-transcriptional regulation of proteins, indispensable for the control of cancerous phenotype. Stable alterations of epigenetic machinery ('epi-mutations') turn out to play a critical role at different steps of carcinogenesis. In addition, due to substantial recent progress in stem cell biology, the new concept of cancer stem cells has emerged. This, along with newly discovered epigenetic cancer mechanisms, gives rise to a hope to overcome radio- and chemo-resistance and to eradicate otherwise incurable neoplasms. (authors)

  12. EpiPOD : community vaccination and dispensing model user's guide.

    Berry, M.; Samsa, M.; Walsh, D.; Decision and Information Sciences

    2009-01-09

    EpiPOD is a modeling system that enables local, regional, and county health departments to evaluate and refine their plans for mass distribution of antiviral and antibiotic medications and vaccines. An intuitive interface requires users to input as few or as many plan specifics as are available in order to simulate a mass treatment campaign. Behind the input interface, a system dynamics model simulates pharmaceutical supply logistics, hospital and first-responder personnel treatment, population arrival dynamics and treatment, and disease spread. When the simulation is complete, users have estimates of the number of illnesses in the population at large, the number of ill persons seeking treatment, and queuing and delays within the mass treatment system--all metrics by which the plan can be judged.

  13. A new syndrome of 'spondylo-epi-metaphyseal dysplasia: mixed type''

    Sharma, B.G.

    2003-01-01

    A new type of rare bone dysplasia is described, which shares some common features with spondylo-meta-epiphyseal dysplasia: short limb-abnormal calcification type and lethal metatropic dysplasia. Besides these features, the present case has some additional unusual features. Facial malformation was very obvious and of a different type. The nose and nares were completely flattened. Hypertrophied acetabular bones, round densities on the ilia, premature ossification of many epiphyses and carpal bones, curvilinear calcifications in some joints, fusion of the ischiopubic rami, calcification of many costal cartilages and thick sclerotic base of the skull were a few of the significant findings. On the basis of the clinical and radiological features, the condition has been named ''spondylo-epi-metaphyseal dysplasia: mixed type''. (orig.)

  14. [Evaluation of Image Quality of Readout Segmented EPI with Readout Partial Fourier Technique].

    Yoshimura, Yuuki; Suzuki, Daisuke; Miyahara, Kanae

    Readout segmented EPI (readout segmentation of long variable echo-trains: RESOLVE) segmented k-space in the readout direction. By using the partial Fourier method in the readout direction, the imaging time was shortened. However, the influence on image quality due to insufficient data sampling is concerned. The setting of the partial Fourier method in the readout direction in each segment was changed. Then, we examined signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and distortion ratio for changes in image quality due to differences in data sampling. As the number of sampling segments decreased, SNR and CNR showed a low value. In addition, the distortion ratio did not change. The image quality of minimum sampling segments is greatly different from full data sampling, and caution is required when using it.

  15. Whole brain, high resolution multiband spin-echo EPI fMRI at 7 T: A comparison with gradient-echo EPI using a color-word Stroop task

    Boyacioglu, R.; Schulz, J.; Müller, N.C.J.; Koopmans, P.J.; Barth, M.; Norris, David Gordon

    2014-01-01

    A whole brain, multiband spin-echo (SE) echo planar imaging (EPI) sequence employing a high spatial (1.5 mm isotropic) and temporal (TR of 2 s) resolution was implemented at 7 T. Its overall performance (tSNR, sensitivity and CNR) was assessed and compared to a geometrically matched gradient-echo

  16. EpiTools, A software suite for presurgical brain mapping in epilepsy: Intracerebral EEG.

    Medina Villalon, S; Paz, R; Roehri, N; Lagarde, S; Pizzo, F; Colombet, B; Bartolomei, F; Carron, R; Bénar, C-G

    2018-03-29

    In pharmacoresistant epilepsy, exploration with depth electrodes can be needed to precisely define the epileptogenic zone. Accurate location of these electrodes is thus essential for the interpretation of Stereotaxic EEG (SEEG) signals. As SEEG analysis increasingly relies on signal processing, it is crucial to make a link between these results and patient's anatomy. Our aims were thus to develop a suite of software tools, called "EpiTools", able to i) precisely and automatically localize the position of each SEEG contact and ii) display the results of signal analysis in each patient's anatomy. The first tool, GARDEL (GUI for Automatic Registration and Depth Electrode Localization), is able to automatically localize SEEG contacts and to label each contact according to a pre-specified nomenclature (for instance that of FreeSurfer or MarsAtlas). The second tool, 3Dviewer, enables to visualize in the 3D anatomy of the patient the origin of signal processing results such as rate of biomarkers, connectivity graphs or Epileptogenicity Index. GARDEL was validated in 30 patients by clinicians and proved to be highly reliable to determine within the patient's individual anatomy the actual location of contacts. GARDEL is a fully automatic electrode localization tool needing limited user interaction (only for electrode naming or contact correction). The 3Dviewer is able to read signal processing results and to display them in link with patient's anatomy. EpiTools can help speeding up the interpretation of SEEG data and improving its precision. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Efflux pump inhibitors (EPIs as new antimicrobial agents against Pseudomonas aeruginosa

    Momen Askoura

    2011-05-01

    Full Text Available Pseudomonas aeruginosa is an opportunistic human pathogen and one of the leading causes of nosocomial infections worldwide. The difficulty in treatment of pseudomonas infections arises from being multidrug resistant (MDR and exhibits resistance to most antimicrobial agents due to the expression of different mechanisms overcoming their effects. Of these resistance mechanisms, the active efflux pumps in Pseudomonas aeruginosa that belong to the resistance nodulation division (RND plays a very important role in extruding the antibiotics outside the bacterial cells providing a protective means against their antibacterial activity. Beside its role against the antimicrobial agents, these pumps can extrude biocides, detergents, and other metabolic inhibitors. It is clear that efflux pumps can be targets for new antimicrobial agents. Peptidomimetic compounds such as phenylalanine arginyl β-naphthylamide (PAβN have been introduced as efflux pump inhibitors (EPIs; their mechanism of action is through competitive inhibition with antibiotics on the efflux pump resulting in increased intracellular concentration of antibiotic, hence, restoring its antibacterial activity. The advantage of EPIs is the difficulty to develop bacterial resistance against them, but the disadvantage is their toxic property hindering their clinical application. The structure activity relationship of these compounds showed other derivatives from PAβN that are higher in their activity with higher solubility in biological fluids and decreased toxicity level. This raises further questions on how can we compact Pseudomonas infections. Of particular importance, the recent resurgence in the use of older antibiotics such as polymyxins and probably applying stricter control measures in order to prevent their spread in clinical sittings.

  18. Nonlinear optics in germanium mid-infrared fiber material: Detuning oscillations in femtosecond mid-infrared spectroscopy

    M. Ordu

    2017-09-01

    Full Text Available Germanium optical fibers hold great promise in extending semiconductor photonics into the fundamentally important mid-infrared region of the electromagnetic spectrum. The demonstration of nonlinear response in fabricated Ge fiber samples is a key step in the development of mid-infrared fiber materials. Here we report the observation of detuning oscillations in a germanium fiber in the mid-infrared region using femtosecond dispersed pump-probe spectroscopy. Detuning oscillations are observed in the frequency-resolved response when mid-infrared pump and probe pulses are overlapped in a fiber segment. The oscillations arise from the nonlinear frequency resolved nonlinear (χ(3 response in the germanium semiconductor. Our work represents the first observation of coherent oscillations in the emerging field of germanium mid-infrared fiber optics.

  19. Study of the effect of neutron and electron irradiations on the low temperature thermal conductivity of germanium and silicon

    Vandevyver, M.

    1967-06-01

    The main results obtained from this work are the following: 1 Neutron irradiation (at 300 deg. K) produces lattice defects in germanium and silicon, and a corresponding very large lowering of the thermal conductivity is observed in the low temperature region (4-300 ). The results obtained have been explained with the help of the following hypotheses: for silicon a scattering of phonons by the stress fields produced by the defects; for germanium, a supplementary scattering of the electron phonon type. 2 Annealing treatments carried out on these materials above 373 deg. K restored the thermal conductivity over the whole temperature range of the measurements (4-300 deg. K); in the case of both germanium and silicon there were two steps in the annealing process. 3 A study of the thermal conductivity of germanium (initially P or N) after an electronic irradiation showed that the scattering of phonons could depend on the state of charge of the defects thus produced. (author) [fr

  20. Enhanced light trapping by focused ion beam (FIB) induced self-organized nanoripples on germanium (100) surface

    Kamaliya, Bhaveshkumar; Mote, Rakesh G.; Aslam, Mohammed; Fu, Jing

    2018-03-01

    In this paper, we demonstrate enhanced light trapping by self-organized nanoripples on the germanium surface. The enhanced light trapping leading to high absorption of light is confirmed by the experimental studies as well as the numerical simulations using the finite-difference time-domain method. We used gallium ion (Ga+) focused ion beam to enable the formation of the self-organized nanoripples on the germanium (100) surface. During the fabrication, the overlap of the scanning beam is varied from zero to negative value and found to influence the orientation of the nanoripples. Evolution of nanostructures with the variation of beam overlap is investigated. Parallel, perpendicular, and randomly aligned nanoripples with respect to the scanning direction are obtained via manipulation of the scanning beam overlap. 95% broadband absorptance is measured in the visible electromagnetic region for the nanorippled germanium surface. The reported light absorption enhancement can significantly improve the efficiency of germanium-silicon based photovoltaic systems.

  1. Epi-detecting label-free multimodal imaging platform using a compact diode-pumped femtosecond solid-state laser

    Andreana, Marco; Le, Tuan; Hansen, Anders Kragh

    2017-01-01

    We have developed an epi-detected multimodal nonlinear optical microscopy platform based on a compact and cost-effective laser source featuring simultaneous acquisition of signals arising from hyperspectral coherent anti-Stokes Raman scattering (CARS), two-photon fluorescence, and second harmonic...

  2. El Grupo ThinkEPI: un think tank en información y documentación

    Orduña-Malea, Enrique; Guallar, Javier; Baiget, Tomàs

    2009-01-01

    We present the main features, goals, publishing system and debating procedure of the Spanish think tank on Library and Information Science ThinkEPI Group (Information Strategy and Prospective). We analyse its scientific output, author's productivity, comments received, subject coverage and its web site audience.

  3. Development of segmented germanium detectors for neutrinoless double beta decay experiments

    Liu, Jing

    2009-01-01

    The results from neutrino oscillation experiments indicate that at least two neutrinos have mass. However, the value of the masses and whether neutrinos and anti-neutrinos are identical, i.e., Majorana particles, remain unknown. Neutrinoless double beta decay experiments can help to improve our understanding in both cases and are the only method currently possible to tackle the second question. The GERmanium Detector Array (GERDA) experiment, which will search for the neutrinoless double beta decay of 76 Ge, is currently under construction in Hall A of the INFN Gran Sasso National Laboratory (LNGS), Italy. In order to achieve an extremely low background level, segmented germanium detectors are considered to be operated directly in liquid argon which serves simultaneously as cooling and shielding medium. Several test cryostats were built at the Max-Planck-Institut fuer Physik in Muenchen to operate segmented germanium detectors both in vacuum and submerged in cryogenic liquid. The performance and the background discrimination power of segmented germanium detectors were studied in detail. It was proven for the first time that segmented germanium detectors can be operated stably over long periods submerged in a cryogenic liquid. It was confirmed that the segmentation scheme employed does well in the identification of photon induced background and demonstrated for the first time that also neutron interactions can be identified. The C++ Monte Carlo framework, MaGe (Majorana-GERDA), is a joint development of the Majorana and GERDA collaborations. It is based on GEANT4, but tailored especially to simulate the response of ultra-low background detectors to ionizing radiation. The predictions of the simulation were veri ed to be accurate for a wide range of conditions. Some shortcomings were found and corrected. Pulse shape analysis is complementary to segmentation in identifying background events. Its efficiency can only be correctly determined using reliable pulse shape

  4. Development of segmented germanium detectors for neutrinoless double beta decay experiments

    Liu, Jing

    2009-06-09

    The results from neutrino oscillation experiments indicate that at least two neutrinos have mass. However, the value of the masses and whether neutrinos and anti-neutrinos are identical, i.e., Majorana particles, remain unknown. Neutrinoless double beta decay experiments can help to improve our understanding in both cases and are the only method currently possible to tackle the second question. The GERmanium Detector Array (GERDA) experiment, which will search for the neutrinoless double beta decay of {sup 76}Ge, is currently under construction in Hall A of the INFN Gran Sasso National Laboratory (LNGS), Italy. In order to achieve an extremely low background level, segmented germanium detectors are considered to be operated directly in liquid argon which serves simultaneously as cooling and shielding medium. Several test cryostats were built at the Max-Planck-Institut fuer Physik in Muenchen to operate segmented germanium detectors both in vacuum and submerged in cryogenic liquid. The performance and the background discrimination power of segmented germanium detectors were studied in detail. It was proven for the first time that segmented germanium detectors can be operated stably over long periods submerged in a cryogenic liquid. It was confirmed that the segmentation scheme employed does well in the identification of photon induced background and demonstrated for the first time that also neutron interactions can be identified. The C++ Monte Carlo framework, MaGe (Majorana-GERDA), is a joint development of the Majorana and GERDA collaborations. It is based on GEANT4, but tailored especially to simulate the response of ultra-low background detectors to ionizing radiation. The predictions of the simulation were veri ed to be accurate for a wide range of conditions. Some shortcomings were found and corrected. Pulse shape analysis is complementary to segmentation in identifying background events. Its efficiency can only be correctly determined using reliable pulse

  5. MDRD vs. CKD-EPI in comparison to 51Chromium EDTA: a cross sectional study of Malaysian CKD cohort.

    Jalalonmuhali, Maisarah; Lim, Soo Kun; Md Shah, Mohammad Nazri; Ng, Kok Peng

    2017-12-13

    Accurate measurement of renal function is important: however, radiolabelled gold standard measurement of GFR is highly expensive and can only be used on a very limited scale. We aim to compare the performance of Modification of Diet in Renal Disease (MDRD) and Chronic Kidney Disease-Epidemiology Collaboration (CKD-EPI) equations in the multi-ethnic population attending University Malaya Medical Centre (UMMC). This is a cross-sectional study recruiting patients, who attend UMMC Nephrology clinics on voluntary basis. 51-Chromium EDTA ( 51 Cr-EDTA) plasma level was used to measure the reference GFR. The serum creatinine was determined by IDMS reference modified Jaffe kinetic assay (Cr Jaffe ). The predictive capabilities of MDRD and CKD-EPI based equations were calculated. Data was analysed using SPSS version 20 and correlation, bias, precision and accuracy were determined. A total of 113 subjects with mean age of 58.12 ± 14.76 years and BMI of 25.99 ± 4.29 kg/m 2 were recruited. The mean reference GFR was 66.98 ± 40.65 ml/min/1.73m 2 , while the estimated GFR based on MDRD and CKD-EPI formula were 62.17 ± 40.40, and 60.44 ± 34.59, respectively. Both MDRD and CKD-EPI were well-correlated with reference GFR (0.806 and 0.867 respectively) and statistically significant with p < 0.001. In the overall cohort, although MDRD had smaller bias than CKD-EPI (4.81 vs. 6.54), CKD-EPI was more precise (25.22 vs. 20.29) with higher accuracy within 30% of measured GFR (79.65 vs. 86.73%). The CKD-EPI equation appeared to be more precise and accurate than the MDRD equation in estimating GFR in our cohort of multi-ethnic populations in Malaysia.

  6. Lead-germanium ohmic contact on to gallium arsenide formed by the solid phase epitaxy of germanium: A microstructure study

    Radulescu, Fabian

    2000-12-01

    associated with each phase from the videotape recordings. With the exception of the Pd-GaAs interactions, it was found that four phase transformations occur during annealing of the Pd:Ge thin films on top of GaAs. The microstructural information was correlated with specific ohmic contact resistivity measurements performed in accordance with the transmission line method (TLM) and these results demonstrated that the Ge SPE growth on top of GaAs renders the optimal electrical properties for the contact. By using the focused ion beam (FIB) method to produce microcantilever beams, the residual stress present in the thin film system was studied in connection with the microstructure. Although, the PdGe/epi-Ge/GaAs seemed to be the optimal microstructural configuration, the presence of PdGe at the interface with GaAs did not damage the contact resistivity significantly. These results made it difficult to establish a charge transport mechanism across the interface but they explained the wide processing window associated with this contact.

  7. Growth of misfit dislocation-free p/p+ thick epitaxial silicon wafers on Ge-B-codoped substrates

    Jiang Huihua; Yang Deren; Ma Xiangyang; Tian Daxi; Li Liben; Que Duanlin

    2006-01-01

    The growth of p/p + silicon epitaxial silicon wafers (epi-wafers) without misfit dislocations has been successfully achieved by using heavily boron-doped Czochralski (CZ) silicon wafers codoped with desirable level of germanium as the substrates. The lattice compensation by codoping of germanium and boron into the silicon matrix to reduce the lattice mismatch between the substrate (heavily boron-doped) and epi-layer (lightly boron-doped) is the basic idea underlying in the present achievement. In principle, the codoping of germanium and boron in the CZ silicon can be tailored to achieve misfit dislocation-free epi-layer with required thickness. It is reasonably expected that the presented solution to elimination of misfit dislocations in the p/p + silicon wafers can be applied in the volume production

  8. Dazai super-large uranium-bearing germanium deposit in western Yunnan region metallogenic geological conditions and prospect

    Han Yanrong; Yuan Qingbang; Li Yonghua; Zhang Ling; Dai Jiemin

    1995-05-01

    The Dazai super-large uranium-bearing germanium deposit is located in Bangmai Fault Basin, Western Yunnan, China. The basin basement is migmatitic granite and the cover is miocene coal-bearing clastics, Bangmai Formation. The basin development had undergone faulted rhombus basin forming, synsedimentary structure-developing and up-lifted-denuded stages. Synsedimentary faults had controlled distribution of sedimentary formation and lithofacies, and uranium and germanium mineralization. Germanium ore-bodies occur mainly in master lignite-bed of lower rhythmite. Hosted germanium-lignite is taken as main ore-type. Germanium occurs in vitrinite of lignite in the form of metal-organic complex. The metallogenetic geological conditions of the deposit are that ground preparation is uplift zone-migmatitic granite-fault basin-geothermal anomaly area, rich and thick ore-body is controlled by synsedimentary fault, peat-bog phase is favorable to accumulation for ore-forming elements, and unconformity between overlying cover and underlying basement is a channel-way of mineralizing fluid. A multiperiodic composite, being regarded sedimentation and diagenesis as a major process, uranium and germanium ore deposit has been formed through two mineralization. Four prospecting areas have been forecasted and two deposits have been accordingly discovered again. Technical-economic provableness shows that the deposit is characterized by shallow-buried, rich grade, large scale, easy mining and smelting. (9 figs.)

  9. Amorphous Silicon-Germanium Films with Embedded Nanocrystals for Thermal Detectors with Very High Sensitivity

    Cesar Calleja

    2016-01-01

    Full Text Available We have optimized the deposition conditions of amorphous silicon-germanium films with embedded nanocrystals in a plasma enhanced chemical vapor deposition (PECVD reactor, working at a standard frequency of 13.56 MHz. The objective was to produce films with very large Temperature Coefficient of Resistance (TCR, which is a signature of the sensitivity in thermal detectors (microbolometers. Morphological, electrical, and optical characterization were performed in the films, and we found optimal conditions for obtaining films with very high values of thermal coefficient of resistance (TCR = 7.9% K−1. Our results show that amorphous silicon-germanium films with embedded nanocrystals can be used as thermosensitive films in high performance infrared focal plane arrays (IRFPAs used in commercial thermal cameras.

  10. Characterization of a high-purity germanium detector for small-animal SPECT.

    Johnson, Lindsay C; Campbell, Desmond L; Hull, Ethan L; Peterson, Todd E

    2011-09-21

    We present an initial evaluation of a mechanically cooled, high-purity germanium double-sided strip detector as a potential gamma camera for small-animal SPECT. It is 90 mm in diameter and 10 mm thick with two sets of 16 orthogonal strips that have a 4.5 mm width with a 5 mm pitch. We found an energy resolution of 0.96% at 140 keV, an intrinsic efficiency of 43.3% at 122 keV and a FWHM spatial resolution of approximately 1.5 mm. We demonstrated depth-of-interaction estimation capability through comparison of pinhole acquisitions with a point source on and off axes. Finally, a flood-corrected flood image exhibited a strip-level uniformity of less than 1%. This high-purity germanium offers many desirable properties for small-animal SPECT.

  11. Current experiments in germanium 0 ν β β search -- GERDA and MAJORANA

    von Sturm, K.

    2015-01-01

    There are unanswered questions regarding neutrino physics that are of great interest for the scientific community. For example the absolute masses, the mass hierarchy and the nature of neutrinos are unknown up to now. The discovery of neutrinoless double beta decay (0νββ) would prove the existence of a Majorana mass, which would be linked to the half-life of the decay, and would in addition provide an elegant solution for the small mass of the neutrinos via the seesaw mechanism. Because of an existing discovery claim of 0νββ of 76Ge and the excellent energy resolution achievable, germanium is of special interest in the search for 0νββ . In this article the state of the art of germanium 0νββ search, namely the GERDA experiment and MAJORANA demonstrator, is presented. In particular, recent results of the GERDA collaboration, which strongly disfavour the above mentioned claim, are discussed.

  12. Research and Development Supporting a Next Generation Germanium Double Beta Decay Experiment

    Rielage, Keith; Elliott, Steve; Chu, Pinghan; Goett, Johnny; Massarczyk, Ralph; Xu, Wenqin

    2015-10-01

    To improve the search for neutrinoless double beta decay, the next-generation experiments will increase in source mass and continue to reduce backgrounds in the region of interest. A promising technology for the next generation experiment is large arrays of Germanium p-type point contact detectors enriched in 76-Ge. The experience, expertise and lessons learned from the MAJORANA DEMONSTRATOR and GERDA experiments naturally lead to a number of research and development activities that will be useful in guiding a future experiment utilizing Germanium. We will discuss some R&D activities including a hybrid cryostat design, background reduction in cabling, connectors and electronics, and modifications to reduce assembly time. We acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program.

  13. Deformation potentials for band-to-band tunneling in silicon and germanium from first principles

    Vandenberghe, William G.; Fischetti, Massimo V.

    2015-01-01

    The deformation potentials for phonon-assisted band-to-band tunneling (BTBT) in silicon and germanium are calculated using a plane-wave density functional theory code. Using hybrid functionals, we obtain: DTA = 4.1 × 108 eV/cm, DTO = 1.2 × 109 eV/cm, and DLO = 2.2 × 109 eV/cm for BTBT in silicon and DTA = 7.8 × 108 eV/cm and DLO = 1.3 × 109 eV/cm for BTBT in germanium. These values agree with experimentally measured values and we explain why in diodes, the TA/TO phonon-assisted BTBT dominates over LO phonon-assisted BTBT despite the larger deformation potential for the latter. We also explain why LO phonon-assisted BTBT can nevertheless dominate in many practical applications.

  14. Split Bull's eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector.

    Ren, Fang-Fang; Ang, Kah-Wee; Ye, Jiandong; Yu, Mingbin; Lo, Guo-Qiang; Kwong, Dim-Lee

    2011-03-09

    Bull's eye antennas are capable of efficiently collecting and concentrating optical signals into an ultrasmall area, offering an excellent solution to break the bottleneck between speed and photoresponse in subwavelength photodetectors. Here, we exploit the idea of split bull's eye antenna for a nanometer germanium photodetector operating at a standard communication wavelength of 1310 nm. The nontraditional plasmonic metal aluminum has been implemented in the resonant antenna structure fabricated by standard complementary metal-oxide-semiconductor (CMOS) processing. A significant enhancement in photoresponse could be achieved over the conventional bull's eye scheme due to an increased optical near-field in the active region. Moreover, with this novel antenna design the effective grating area could be significantly reduced without sacrificing device performance. This work paves the way for the future development of low-cost, high-density, and high-speed CMOS-compatible germanium-based optoelectronic devices.

  15. Empirical correction of crosstalk in a low-background germanium γ-γ analysis system

    Keillor, M.E.; Erikson, L.E.; Aalseth, C.E.; Day, A.R.; Fuller, E.S.; Glasgow, B.D.; Hoppe, E.W.; Hossbach, T.W.; Mizouni, L.K.; Myers, A.W.

    2013-01-01

    The Pacific Northwest National Laboratory (PNNL) is currently developing a custom software suite capable of automating many of the tasks required to accurately analyze coincident signals within gamma spectrometer arrays. During the course of this work, significant crosstalk was identified in the energy determination for spectra collected with a new low-background intrinsic germanium (HPGe) array at PNNL. The HPGe array is designed for high detection efficiency, ultra-low-background performance, and sensitive γ-γ coincidence detection. The first half of the array, a single cryostat containing seven HPGe crystals, was recently installed into a new shallow underground laboratory facility. This update will present a brief review of the germanium array, describe the observed crosstalk, and present a straight-forward empirical correction that significantly reduces the impact of this crosstalk on the spectroscopic performance of the system. (author)

  16. Dissolution chemistry and biocompatibility of silicon- and germanium-based semiconductors for transient electronics.

    Kang, Seung-Kyun; Park, Gayoung; Kim, Kyungmin; Hwang, Suk-Won; Cheng, Huanyu; Shin, Jiho; Chung, Sangjin; Kim, Minjin; Yin, Lan; Lee, Jeong Chul; Lee, Kyung-Mi; Rogers, John A

    2015-05-06

    Semiconducting materials are central to the development of high-performance electronics that are capable of dissolving completely when immersed in aqueous solutions, groundwater, or biofluids, for applications in temporary biomedical implants, environmentally degradable sensors, and other systems. The results reported here include comprehensive studies of the dissolution by hydrolysis of polycrystalline silicon, amorphous silicon, silicon-germanium, and germanium in aqueous solutions of various pH values and temperatures. In vitro cellular toxicity evaluations demonstrate the biocompatibility of the materials and end products of dissolution, thereby supporting their potential for use in biodegradable electronics. A fully dissolvable thin-film solar cell illustrates the ability to integrate these semiconductors into functional systems.

  17. Interaction between radiation-induced defects and lithium impurity atoms in germanium

    Vasil'eva, E.D.; Daluda, Yu.N.; Emtsev, V.V.; Kervalishvili, P.D.; Mashovets, T.V.

    1981-01-01

    The effect of gamma radiation on germanium doped with lithium in the course of extraction from a melt was studied. 60 Co γ-ray irradiation with the 6.2x10 12 cm -2 x1 -1 intensity was performed at 300 K. The temperature dependences of conductivity and Hall effect was studied in the 4.2-300 K range. It was shown that using this alloying technique lithium atoms in germanium were in a ''free'' state. It was found that on irradiation the lithium atom concentration decreases as a result of production of electrically inactive complexes with participation of lithium atoms. Besides this principal process secondary ones are observed: production of radiation donor-defects with the ionization energy Esub(c) of 80 MeV and compensating acceptors

  18. Modelling the structure factors and pair distribution functions of amorphous germanium, silicon and carbon

    Dalgic, Seyfettin; Gonzalez, Luis Enrique; Baer, Shalom; Silbert, Moises

    2002-01-01

    We present the results of calculations of the static structure factor S(k) and the pair distribution function g(r) of the tetrahedral amorphous semiconductors germanium, silicon and carbon using the structural diffusion model (SDM). The results obtained with the SDM for S(k) and g(r) are of comparable quality with those obtained by the unconstrained Reverse Monte Carlo simulations and existing ab initio molecular dynamics simulations for these systems. We have found that g(r) exhibits a small peak, or shoulder, a weak remnant of the prominent third neighbour peak present in the crystalline phase of these systems. This feature has been experimentally found to be present in recently reported high energy X-ray experiments of amorphous silicon (Phys. Rev. B 60 (1999) 13520), as well as in the previous X-ray diffraction of as-evaporated amorphous germanium (Phys. Rev. B 50 (1994) 539)

  19. Modelling the structure factors and pair distribution functions of amorphous germanium, silicon and carbon

    Dalgic, Seyfettin; Gonzalez, Luis Enrique; Baer, Shalom; Silbert, Moises

    2002-12-01

    We present the results of calculations of the static structure factor S(k) and the pair distribution function g(r) of the tetrahedral amorphous semiconductors germanium, silicon and carbon using the structural diffusion model (SDM). The results obtained with the SDM for S(k) and g(r) are of comparable quality with those obtained by the unconstrained Reverse Monte Carlo simulations and existing ab initio molecular dynamics simulations for these systems. We have found that g(r) exhibits a small peak, or shoulder, a weak remnant of the prominent third neighbour peak present in the crystalline phase of these systems. This feature has been experimentally found to be present in recently reported high energy X-ray experiments of amorphous silicon (Phys. Rev. B 60 (1999) 13520), as well as in the previous X-ray diffraction of as-evaporated amorphous germanium (Phys. Rev. B 50 (1994) 539)

  20. Amorphous Silicon-Germanium Films with Embedded Nano crystals for Thermal Detectors with Very High Sensitivity

    Calleja, C.; Torres, A.; Rosales-Quintero, P.; Moreno, M.

    2016-01-01

    We have optimized the deposition conditions of amorphous silicon-germanium films with embedded nano crystals in a plasma enhanced chemical vapor deposition (PECVD) reactor, working at a standard frequency of 13.56 MHz. The objective was to produce films with very large Temperature Coefficient of Resistance (TCR), which is a signature of the sensitivity in thermal detectors (micro bolometers). Morphological, electrical, and optical characterization were performed in the films, and we found optimal conditions for obtaining films with very high values of thermal coefficient of resistance (TCR = 7.9%K -1 ). Our results show that amorphous silicon-germanium films with embedded nano crystals can be used as thermo sensitive films in high performance infrared focal plane arrays (IRFPAs) used in commercial thermal cameras.