WorldWideScience

Sample records for germanium crystal dimensions

  1. Germanium crystal dimensions and their influences on the observed peak-to-background distributions

    Energy Technology Data Exchange (ETDEWEB)

    Wahl, W [GSF-Forschungszentrum fuer Umwelt und Gesundheit, Inst. fuer Strahlenschutz, AG-Personendosimetrie, Oberschleissheim (Germany); Koenig, K [Bundesamt fuer Strahlenschutz, Oberschleissheim (Germany). Inst. fuer Strahlenhygiene

    1997-03-01

    This description applies to the parameters of in vivo and in vitro detection systems as they relate to the type of the detector (or arrangements of detectors) and the performance of the choice. In detail, measurements of a set of pulse-height distributions were done to determine the influence from the detector-crystal dimensions on the peak-to-background variation for point and volume sources as well as ambient radiation. The current capability in suppression of Compton scattered {gamma}-rays using coincidence/anti-coincidence arrangements both for in vivo and in vitro system are presented. Criteria and relations as well as advantages and disadvantages of the applicability are discussed. (orig.)

  2. High-purity germanium crystal growing

    International Nuclear Information System (INIS)

    Hansen, W.L.; Haller, E.E.

    1982-10-01

    The germanium crystals used for the fabrication of nuclear radiation detectors are required to have a purity and crystalline perfection which is unsurpassed by any other solid material. These crystals should not have a net electrically active impurity concentration greater than 10 10 cm - 3 and be essentially free of charge trapping defects. Such perfect crystals of germanium can be grown only because of the highly favorable chemical and physical properties of this element. However, ten years of laboratory scale and commercial experience has still not made the production of such crystals routine. The origin and control of many impurities and electrically active defect complexes is now fairly well understood but regular production is often interrupted for long periods due to the difficulty of achieving the required high purity or to charge trapping in detectors made from crystals seemingly grown under the required conditions. The compromises involved in the selection of zone refining and crystal grower parts and ambients is discussed and the difficulty in controlling the purity of key elements in the process is emphasized. The consequences of growing in a hydrogen ambient are discussed in detail and it is shown how complexes of neutral defects produce electrically active centers

  3. Metal induced crystallization of silicon germanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gjukic, M.

    2007-05-15

    In the framework of this thesis the applicability of the aluminium-induced layer exchange on binary silicon germanium alloys was studied. It is here for the first time shown that polycrstalline silicon-germanium layers can be fabricated over the whole composition range by the aluminium-induced layer exchange. The experimental results prove thet the resulting material exhibits a polycrystalline character with typocal grain sizes of 10-100 {mu}m. Raman measurements confirm that the structural properties of the resulting layers are because of the large crystallites more comparable with monocrystalline than with nano- or microcrystalline silicon-germanium. The alloy ratio of the polycrystalline layer correspondes to the chemical composition of the amorphous starting layer. The polycrystalline silicon-germanium layers possess in the range of the interband transitions a reflection spectrum, as it is otherwise only known from monocrystalline reference layers. The improvement of the absorption in the photovoltaically relevant spectral range aimed by the application of silicon-germanium could be also proved by absorption measurments. Strongly correlated with the structural properties of the polycrystalline layers and the electronic band structure resulting from this are beside the optical properties also the electrical properties of the material, especially the charge-carrier mobility and the doping concentration. For binary silicon-germanium layers the hole concentration of about 2 x 10{sup 18} cm{sup -3} for pure silicon increrases to about 5 x 10{sup 20} cm{sub -3} for pure germanium. Temperature-resolved measurements were applied in order to detect doping levels respectively semiconductor-metal transitions. In the last part of the thesis the hydrogen passivation of polycrystalline thin silicon-germanium layers, which were fabricated by means of aluminium-induced layer exchange, is treated.

  4. Study of the possibility of growing germanium single crystals under low temperature gradients

    Science.gov (United States)

    Moskovskih, V. A.; Kasimkin, P. V.; Shlegel, V. N.; Vasiliev, Y. V.; Gridchin, V. A.; Podkopaev, O. I.; Zhdankov, V. N.

    2014-03-01

    The possibility of growing germanium single crystals under low temperature gradients in order to produce a dislocation-free material has been studied. Germanium crystals with a dislocation density of about 100-200 cm-2 have been grown in a system with a weight control of crystal growth at maximum axial gradients of about 1.5 K/cm.

  5. Growth of optical grade germanium crystals

    International Nuclear Information System (INIS)

    Waris, M.; Akhtar, M.J.; Mehmood, N.; Ashraf, M.; Siddique, M.

    2011-01-01

    A novel design of Czochralski( CZ ) growth station in a low frequency induction furnace is described and growth of optical grade Ge crystal as a test material is performed achieving a flat solid-liquid interface shape. Grown Ge crystals are annealed in air at 450 -500 deg. C for 4 hrs and then characterized by determination of crystallographic orientation by Laue (back-reflection of X-rays) method, dislocation density studies by etch-pits formation, measuring electrical resistivity by 4-probe technique, conductivity type determination by hot probe method, measurement of hardness on Moh's scale and optical transmission measurement in IR region. The results obtained are compared to those reported in the literature. The use of this growth station for other materials is suggested. (author)

  6. Hydrogen concentration and distribution in high-purity germanium crystals

    International Nuclear Information System (INIS)

    Hansen, W.L.; Haller, E.E.; Luke, P.N.

    1981-10-01

    High-purity germanium crystals used for making nuclear radiation detectors are usually grown in a hydrogen ambient from a melt contained in a high-purity silica crucible. The benefits and problems encountered in using a hydrogen ambient are reviewed. A hydrogen concentration of about 2 x 10 15 cm -3 has been determined by growing crystals in hydrogen spiked with tritium and counting the tritium β-decays in detectors made from these crystals. Annealing studies show that the hydrogen is strongly bound, either to defects or as H 2 with a dissociation energy > 3 eV. This is lowered to 1.8 eV when copper is present. Etching defects in dislocation-free crystals grown in hydrogen have been found by etch stripping to have a density of about 1 x 10 7 cm -3 and are estimated to contain 10 8 H atoms each

  7. On the crystallization of amorphous germanium films

    Science.gov (United States)

    Edelman, F.; Komem, Y.; Bendayan, M.; Beserman, R.

    1993-06-01

    The incubation time for crystallization of amorphous Ge (a-Ge) films, deposited by e-gun, was studied as a function of temperature between 150 and 500°C by means of both in situ transmission electron microscopy and Raman scattering spectroscopy. The temperature dependence of t0 follows an Arrhenius curve with an activation energy of 2.0 eV for free-sustained a-Ge films. In the case where the a-Ge films were on Si 3N 4 substrate, the activation energy of the incubation process was 1.3 eV.

  8. Crystallization of Electrodeposited Germanium Thin Film on Silicon (100).

    Science.gov (United States)

    Abidin, Mastura Shafinaz Zainal; Matsumura, Ryo; Anisuzzaman, Mohammad; Park, Jong-Hyeok; Muta, Shunpei; Mahmood, Mohamad Rusop; Sadoh, Taizoh; Hashim, Abdul Manaf

    2013-11-06

    We report the crystallization of electrodeposited germanium (Ge) thin films on n-silicon (Si) (100) by rapid melting process. The electrodeposition was carried out in germanium (IV) chloride: propylene glycol (GeCl₄:C₃H₈O₂) electrolyte with constant current of 50 mA for 30 min. The measured Raman spectra and electron backscattering diffraction (EBSD) images show that the as-deposited Ge thin film was amorphous. The crystallization of deposited Ge was achieved by rapid thermal annealing (RTA) at 980 °C for 1 s. The EBSD images confirm that the orientations of the annealed Ge are similar to that of the Si substrate. The highly intense peak of Raman spectra at 300 cm -1 corresponding to Ge-Ge vibration mode was observed, indicating good crystal quality of Ge. An additional sub peak near to 390 cm -1 corresponding to the Si-Ge vibration mode was also observed, indicating the Ge-Si mixing at Ge/Si interface. Auger electron spectroscopy (AES) reveals that the intermixing depth was around 60 nm. The calculated Si fraction from Raman spectra was found to be in good agreement with the value estimated from Ge-Si equilibrium phase diagram. The proposed technique is expected to be an effective way to crystallize Ge films for various device applications as well as to create strain at the Ge-Si interface for enhancement of mobility.

  9. Crystallization of Electrodeposited Germanium Thin Film on Silicon (100

    Directory of Open Access Journals (Sweden)

    Abdul Manaf Hashim

    2013-11-01

    Full Text Available We report the crystallization of electrodeposited germanium (Ge thin films on n-silicon (Si (100 by rapid melting process. The electrodeposition was carried out in germanium (IV chloride: propylene glycol (GeCl4:C3H8O2 electrolyte with constant current of 50 mA for 30 min. The measured Raman spectra and electron backscattering diffraction (EBSD images show that the as-deposited Ge thin film was amorphous. The crystallization of deposited Ge was achieved by rapid thermal annealing (RTA at 980 °C for 1 s. The EBSD images confirm that the orientations of the annealed Ge are similar to that of the Si substrate. The highly intense peak of Raman spectra at 300 cm−1 corresponding to Ge-Ge vibration mode was observed, indicating good crystal quality of Ge. An additional sub peak near to 390 cm−1 corresponding to the Si-Ge vibration mode was also observed, indicating the Ge-Si mixing at Ge/Si interface. Auger electron spectroscopy (AES reveals that the intermixing depth was around 60 nm. The calculated Si fraction from Raman spectra was found to be in good agreement with the value estimated from Ge-Si equilibrium phase diagram. The proposed technique is expected to be an effective way to crystallize Ge films for various device applications as well as to create strain at the Ge-Si interface for enhancement of mobility.

  10. Radiation defects produced by neutron irradiation in germanium single crystals

    International Nuclear Information System (INIS)

    Fukuoka, Noboru; Honda, Makoto; Atobe, Kozo; Yamaji, Hiromichi; Ide, Mutsutoshi; Okada, Moritami.

    1992-01-01

    The nature of defects produced in germanium single crystals by neutron irradiation at 25 K was studied by measuring the electrical resistivity. It was found that two levels located at E c -0.06 eV and E c -0.13 eV were introduced in an arsenic-doped sample. Electron traps at E c -0.10eV were observed in an indium-doped sample. The change in electrical resistivity during irradiation was also studied. (author)

  11. Detached Bridgman Growth of Germanium and Germanium-Silicon Alloy Crystals

    Science.gov (United States)

    Szofran, F. R.; Volz, M. P.; Schweizer, M.; Cobb, S. D.; Motakef, S.; Croell, A.; Dold, P.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Earth based experiments on the science of detached crystal growth are being conducted on germanium and germanium-silicon alloys (2 at% Si average composition) in preparation for a series of experiments aboard the International Space Station (ISS). The purpose of the microgravity experiments includes differentiating among proposed mechanisms contributing to detachment, and confirming or refining our understanding of the detachment mechanism. Because large contact angle are critical to detachment, sessile drop measurements were used to determine the contact angles as a function of temperature and composition for a large number of substrates made of potential ampoule materials. Growth experiments have used pyrolytic boron nitride (pBN) and fused silica ampoules with the majority of the detached results occurring predictably in the pBN. The contact angles were 173 deg (Ge) and 165 deg (GeSi) for pBN. For fused silica, the contact angle decreases from 150 deg to an equilibrium value of 117 deg (Ge) or from 129 deg to an equilibrium value of 100 deg (GeSi) over the duration of the experiment. The nature and extent of detachment is determined by using profilometry in conjunction with optical and electron microscopy. The stability of detachment has been analyzed, and an empirical model for the conditions necessary to achieve sufficient stability to maintain detached growth for extended periods has been developed. Results in this presentation will show that we have established the effects on detachment of ampoule material, pressure difference above and below the melt, and silicon concentration; samples that are nearly completely detached can be grown repeatedly in pBN.

  12. Radiation-electromagnetic effect in germanium single crystals

    International Nuclear Information System (INIS)

    Kikoin, I.K.; Kikoin, L.I.; Lazarev, S.D.

    1980-01-01

    An experimental study was made of the radiation-electromagnetic effect in germanium single crystals when excess carriers were generated by bombardment with α particles, protons, or x rays in magnetic fields up to 8 kOe. The source of α particles and protons was a cyclotron and x rays were provided by a tube with a copper anode. The radiation-electromagnetic emf increased linearly on increase in the magnetic field and was directly proportional to the flux of charged particles at low values of the flux, reaching saturation at high values of the flux (approx.5 x 10 11 particles .cm -2 .sec -1 ). In the energy range 4--40 MeV the emf was practically independent of the α-particle energy. The sign of the emf was reversed when samples with a ground front surface were irradiated. Measurements of the photoelectromagnetic and Hall effects in the α-particle-irradiated samples showed that a p-n junction was produced by these particles and its presence should be allowed for in investigations of the radiation-electromagnetic effect. The measured even radiation-electromagnetic emf increased quadratically on increase in the magnetic field. An investigation was made of the barrier radiation-voltaic effect (when the emf was measured between the irradiated and unirradiated surfaces). Special masks were used to produce a set of consecutive p-n junctions in germanium crystals irradiated with α particles. A study of the photovoltaic and photoelectromagnetic effects in such samples showed that the method could be used to increase the efficiency of devices utilizing the photoelectromagnetic effect

  13. Multiphysical simulation analysis of the dislocation structure in germanium single crystals

    Science.gov (United States)

    Podkopaev, O. I.; Artemyev, V. V.; Smirnov, A. D.; Mamedov, V. M.; Sid'ko, A. P.; Kalaev, V. V.; Kravtsova, E. D.; Shimanskii, A. F.

    2016-09-01

    To grow high-quality germanium crystals is one of the most important problems of growth industry. The dislocation density is an important parameter of the quality of single crystals. The dislocation densities in germanium crystals 100 mm in diameter, which have various shapes of the side surface and are grown by the Czochralski technique, are experimentally measured. The crystal growth is numerically simulated using heat-transfer and hydrodynamics models and the Alexander-Haasen dislocation model in terms of the CGSim software package. A comparison of the experimental and calculated dislocation densities shows that the dislocation model can be applied to study lattice defects in germanium crystals and to improve their quality.

  14. Normal processes of phonon-phonon scattering and thermal conductivity of germanium crystals with isotopic disorder

    CERN Document Server

    Kuleev, I G

    2001-01-01

    The effect of normal processes of the phonon-phonon scattering on the thermal conductivity of the germanium crystals with various isotopic disorder degrees is considered. The phonon pulse redistribution in the normal scattering processes both inside each oscillatory branch (the Simons mechanism) and between various phonon oscillatory branches (the Herring mechanism) is accounted for. The contributions of the longitudinal and cross-sectional phonons drift motion into the thermal conductivity are analyzed. It is shown that the pulse redistribution in the Herring relaxation mechanism leads to essential suppression of the longitudinal phonons drift motion in the isotopically pure germanium crystals. The calculations results of thermal conductivity for the Herring relaxation mechanism agree well with experimental data on the germanium crystals with various isotopic disorder degrees

  15. Study of the effect of doping on the temperature stability of the optical properties of germanium single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Podkopaev, O. I. [Joint-Stock Company “Germanium” (Russian Federation); Shimanskiy, A. F., E-mail: shimanaf@mail.ru [Siberian Federal University (Russian Federation); Kopytkova, S. A.; Filatov, R. A. [Joint-Stock Company “Germanium” (Russian Federation); Golubovskaya, N. O. [Siberian Federal University (Russian Federation)

    2016-10-15

    The effect of doping on the optical transmittance of germanium single crystals is studied by infrared Fourier spectroscopy. It is established that the introduction of silicon and tellurium additives into germanium doped with antimony provides a means for improving the temperature stability of the optical properties of the crystals.

  16. The low thermal gradient CZ technique as a way of growing of dislocation-free germanium crystals

    Science.gov (United States)

    Moskovskih, V. A.; Kasimkin, P. V.; Shlegel, V. N.; Vasiliev, Y. V.; Gridchin, V. A.; Podkopaev, O. I.

    2014-09-01

    This paper considers the possibility of growth of dislocation-free germanium single crystals. This is achieved by reducing the temperature gradients at the level of 1 K/cm and lower. Single germanium crystals 45-48 mm in diameter with a dislocation density of 102 cm-2 were grown by a Low Thermal Gradient Czochralski technique (LTG CZ).

  17. Study of the effect of doping on the temperature stability of the optical properties of germanium single crystals

    International Nuclear Information System (INIS)

    Podkopaev, O. I.; Shimanskiy, A. F.; Kopytkova, S. A.; Filatov, R. A.; Golubovskaya, N. O.

    2016-01-01

    The effect of doping on the optical transmittance of germanium single crystals is studied by infrared Fourier spectroscopy. It is established that the introduction of silicon and tellurium additives into germanium doped with antimony provides a means for improving the temperature stability of the optical properties of the crystals.

  18. Crystal Orientation Effect on the Subsurface Deformation of Monocrystalline Germanium in Nanometric Cutting.

    Science.gov (United States)

    Lai, Min; Zhang, Xiaodong; Fang, Fengzhou

    2017-12-01

    Molecular dynamics simulations of nanometric cutting on monocrystalline germanium are conducted to investigate the subsurface deformation during and after nanometric cutting. The continuous random network model of amorphous germanium is established by molecular dynamics simulation, and its characteristic parameters are extracted to compare with those of the machined deformed layer. The coordination number distribution and radial distribution function (RDF) show that the machined surface presents the similar amorphous state. The anisotropic subsurface deformation is studied by nanometric cutting on the (010), (101), and (111) crystal planes of germanium, respectively. The deformed structures are prone to extend along the 110 slip system, which leads to the difference in the shape and thickness of the deformed layer on various directions and crystal planes. On machined surface, the greater thickness of subsurface deformed layer induces the greater surface recovery height. In order to get the critical thickness limit of deformed layer on machined surface of germanium, the optimized cutting direction on each crystal plane is suggested according to the relevance of the nanometric cutting to the nanoindentation.

  19. Two-Dimensional Spatial Imaging of Charge Transport in Germanium Crystals at Cryogenic Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Moffatt, Robert [Stanford Univ., CA (United States)

    2016-03-01

    In this dissertation, I describe a novel apparatus for studying the transport of charge in semiconductors at cryogenic temperatures. The motivation to conduct this experiment originated from an asymmetry observed between the behavior of electrons and holes in the germanium detector crystals used by the Cryogenic Dark Matter Search (CDMS). This asymmetry is a consequence of the anisotropic propagation of electrons in germanium at cryogenic temperatures. To better model our detectors, we incorporated this effect into our Monte Carlo simulations of charge transport. The purpose of the experiment described in this dissertation is to test those models in detail. Our measurements have allowed us to discover a shortcoming in our most recent Monte Carlo simulations of electrons in germanium. This discovery would not have been possible without the measurement of the full, two-dimensional charge distribution, which our experimental apparatus has allowed for the first time at cryogenic temperatures.

  20. CCDC 1416891: Experimental Crystal Structure Determination : Methyl-triphenyl-germanium

    KAUST Repository

    Bernatowicz, Piotr; Shkurenko, Aleksander; Osior, Agnieszka; Kamieński, Bohdan; Szymański, Sławomir

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  1. CCDC 1416891: Experimental Crystal Structure Determination : Methyl-triphenyl-germanium

    KAUST Repository

    Bernatowicz, Piotr

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  2. Amorphous Silicon-Germanium Films with Embedded Nano crystals for Thermal Detectors with Very High Sensitivity

    International Nuclear Information System (INIS)

    Calleja, C.; Torres, A.; Rosales-Quintero, P.; Moreno, M.

    2016-01-01

    We have optimized the deposition conditions of amorphous silicon-germanium films with embedded nano crystals in a plasma enhanced chemical vapor deposition (PECVD) reactor, working at a standard frequency of 13.56 MHz. The objective was to produce films with very large Temperature Coefficient of Resistance (TCR), which is a signature of the sensitivity in thermal detectors (micro bolometers). Morphological, electrical, and optical characterization were performed in the films, and we found optimal conditions for obtaining films with very high values of thermal coefficient of resistance (TCR = 7.9%K -1 ). Our results show that amorphous silicon-germanium films with embedded nano crystals can be used as thermo sensitive films in high performance infrared focal plane arrays (IRFPAs) used in commercial thermal cameras.

  3. Study of the creep of germanium bi-crystals by X ray topography and electronic microscopy

    International Nuclear Information System (INIS)

    Gay, Marie-Odile

    1981-01-01

    This research thesis addresses the study of the microscopic as well as macroscopic aspect of the role of grain boundary during deformation, by studying the creep of Germanium bi-crystals. The objective was to observe interactions of network dislocations with the boundary as well as the evolution of dislocations in each grain. During the first stages of deformation, samples have been examined by X ray topography, a technique which suits well the observation of low deformed samples, provided their initial dislocation density is very low. At higher deformation, more conventional techniques of observation of sliding systems and electronic microscopy have been used. After some general recalls, the definition of twin boundaries and of their structure in terms of dislocation, a look at germanium deformation, and an overview of works performed on bi-crystals deformation, the author presents the experimental methods and apparatuses. He reports and discusses the obtained results at the beginning of deformation as well as during next phases

  4. Simulation of core-level binding energy shifts in germanium-doped lead telluride crystals

    International Nuclear Information System (INIS)

    Zyubin, A.S.; Dedyulin, S.N.; Yashina, L.V.; Shtanov, V.I.

    2007-01-01

    To simulate the changes in core-level binding energies in germanium-doped lead telluride, cluster calculations of the changes in the electrostatic potential at the corresponding centers have been performed. Different locations of the Ge atom in the crystal bulk have been considered: near vacancies, near another dopant site, and near the surface. For calculating the potential in the clusters that model the bulk and the surface of the lead telluride crystal (c-PbTe), the electron density obtained in the framework of the Hartree-Fock and hybrid density functional theory (DFT) methods has been used [ru

  5. Irradiation induced defects containing oxygen atoms in germanium crystal as studied by deep level transient spectroscopy

    International Nuclear Information System (INIS)

    Fukuoka, Noboru; Kambe, Yoshiyuki; Saito, Haruo; Matsuda, Koji.

    1984-05-01

    Deep level transient spectroscopy was applied to the electron trapping levels which are associated with the irradiation induced lattice defects in germanium crystals. The germanium crystals used in the study were doped with oxygen, antimony or arsenic and the defects were formed by electron irradiation of 1.5MeV or 10MeV. The nature of so called ''thermal defect'' formed by heat treatment at about 670K was also studied. The trapping levels at Esub(c)-0.13eV, Esub(c)-0.25eV and Esub(c)-0.29eV were found to be associated with defects containing oxygen atoms. From the experimental results the Esub(c)-0.25eV level was attributed to the germanium A-center (interstitial oxygen atom-vacancy pair). Another defect associated with the 715cm -1 infrared absorption band was found to have a trapping level at the same position at Esub(c)-0.25eV. The Esub(c)-0.23eV and Esub(c)-0.1eV levels were revealed to be associated with thermal donors formed by heat treatment at about 670K. Additional two peaks (levels) were observed in the DLTS spectrum. The annealing behavior of the levels suggests that the thermal donors originate from not a single type but several types of defects. (author)

  6. Volume reflection and channeling of ultrarelativistic protons in germanium bent single crystals

    Directory of Open Access Journals (Sweden)

    S. Bellucci

    2016-12-01

    Full Text Available The paper is devoted to the investigation of volume reflection and channeling processes of ultrarelativistic positive charged particles moving in germanium single crystals. We demonstrate that the choice of atomic potential on the basis of the Hartree-Fock method and the correct choice of the Debye temperature allow us to describe the above mentioned processes in a good agreement with the recent experiments. Moreover, the universal form of equations for volume reflection presented in the paper gives a true description of the process at a wide range of particle energies. Standing on this study we make predictions for the mean angle reflection (as a function of the bending radius of positive and negative particles for germanium (110 and (111 crystallographic planes.

  7. Amorphization, morphological instability and crystallization of krypton ion irradiated germanium

    International Nuclear Information System (INIS)

    Wang, L.M.; Birtcher, R.C.

    1991-01-01

    Krypton ion irradiation of crystalline Ge and subsequent thermal annealing were both carried out with in situ transmission electron microscopy observations. The temperature dependence of the amorphization dose, effect of foil thickness, morphological changes during continuous irradiation of the amorphous state as well as the effect of implanted gas have been determined. The dose of 1.5 MeV Kr required for amorphization increases with increasing temperature. At a fixed temperature, the amorphization dose is higher for thicker regions of the specimen. Continuous irradiation of amorphous Ge at room temperature results in a high density of small cavities which grow with increasing dose. Cavities do not coalesce during growth but develop into irregular-shaped holes that eventually transform the amorphous Ge into a sponge-like material. Formation of the spongy structure is independent of Kr implantation. The crystallization temperature and the morphology of recrystallized Ge depend on the Kr + dose. Voids are expelled from recrystallized Ge, while the sponge-like structure is retained after crystallization. (author)

  8. Determination of surface recombination velocity and bulk lifetime in detector grade silicon and germanium crystals

    International Nuclear Information System (INIS)

    Derhacobian, N.; Fine, P.; Walton, J.T.; Wong, Y.K.; Rossington, C.S.; Luke, P.N.

    1993-10-01

    Utility of a noncontact photoconductive decay (PCD) technique is demonstrated in measuring bulk lifetime, τ B , and surface recombination velocity, S, in detector grade silicon and germanium crystals. We show that the simple analytical equations which relate the observed effective lifetimes in PCD transients to τ B and S have a limited range of applicability. The noncontact PCD technique is used to determine the effect of several surface treatments on the observed effective lifetimes in Si and Ge. A degradation of the effective lifetime in Si is reported as result of the growth of a thin layer of native oxide at room temperature under atmospheric conditions

  9. Monte Carlo modelling of germanium crystals that are tilted and have rounded front edges

    International Nuclear Information System (INIS)

    Gasparro, Joel; Hult, Mikael; Johnston, Peter N.; Tagziria, Hamid

    2008-01-01

    Gamma-ray detection efficiencies and cascade summing effects in germanium detectors are often calculated using Monte Carlo codes based on a computer model of the detection system. Such a model can never fully replicate reality and it is important to understand how various parameters affect the results. This work concentrates on quantifying two issues, namely (i) the effect of having a Ge-crystal that is tilted inside the cryostat and (ii) the effect of having a model of a Ge-crystal with rounded edges (bulletization). The effect of the tilting is very small (in the order of per mille) when the tilting angles are within a realistic range. The effect of the rounded edges is, however, relatively large (5-10% or higher) particularly for gamma-ray energies below 100 keV

  10. Monte Carlo modelling of germanium crystals that are tilted and have rounded front edges

    Energy Technology Data Exchange (ETDEWEB)

    Gasparro, Joel [EC-JRC-IRMM, Institute for Reference Materials and Measurements, Retieseweg 111, B-2440 Geel (Belgium); Hult, Mikael [EC-JRC-IRMM, Institute for Reference Materials and Measurements, Retieseweg 111, B-2440 Geel (Belgium)], E-mail: mikael.hult@ec.europa.eu; Johnston, Peter N. [Applied Physics, Royal Melbourne Institute of Technology, GPO Box 2476V, Melbourne 3001 (Australia); Tagziria, Hamid [EC-JRC-IPSC, Institute for the Protection and the Security of the Citizen, Via E. Fermi 1, I-21020 Ispra (Vatican City State, Holy See,) (Italy)

    2008-09-01

    Gamma-ray detection efficiencies and cascade summing effects in germanium detectors are often calculated using Monte Carlo codes based on a computer model of the detection system. Such a model can never fully replicate reality and it is important to understand how various parameters affect the results. This work concentrates on quantifying two issues, namely (i) the effect of having a Ge-crystal that is tilted inside the cryostat and (ii) the effect of having a model of a Ge-crystal with rounded edges (bulletization). The effect of the tilting is very small (in the order of per mille) when the tilting angles are within a realistic range. The effect of the rounded edges is, however, relatively large (5-10% or higher) particularly for gamma-ray energies below 100 keV.

  11. Comparative Study of Phase Transformation in Single-Crystal Germanium during Single and Cyclic Nanoindentation

    Directory of Open Access Journals (Sweden)

    Koji Kosai

    2017-11-01

    Full Text Available Single-crystal germanium is a semiconductor material which shows complicated phase transformation under high pressure. In this study, new insight into the phase transformation of diamond-cubic germanium (dc-Ge was attempted by controlled cyclic nanoindentation combined with Raman spectroscopic analysis. Phase transformation from dc-Ge to rhombohedral phase (r8-Ge was experimentally confirmed for both single and cyclic nanoindentation under high loading/unloading rates. However, compared to single indentation, double cyclic indentation with a low holding load between the cycles caused more frequent phase transformation events. Double cyclic indentation caused more stress in Ge than single indentation and increased the possibility of phase transformation. With increase in the holding load, the number of phase transformation events decreased and finally became less than that under single indentation. This phenomenon was possibly caused by defect nucleation and shear accumulation during the holding process, which were promoted by a high holding load. The defect nucleation suppressed the phase transformation from dc-Ge to r8-Ge, and shear accumulation led to another phase transformation pathway, respectively. A high holding load promoted these two phenomena, and thus decreased the possibility of phase transformation from dc-Ge to r8-Ge.

  12. Dimension changing phase transitions in instanton crystals

    International Nuclear Information System (INIS)

    Kaplunovsky, Vadim; Sonnenschein, Jacob

    2014-01-01

    We investigate lattices of instantons and the dimension-changing transitions between them. Our ultimate goal is the 3D→4D transition, which is holographically dual to the phase transition between the baryonic and the quarkyonic phases of cold nuclear matter. However, in this paper (just as in http://dx.doi.org/10.1007/JHEP11(2012)047) we focus on lower dimensions — the 1D lattice of instantons in a harmonic potential V∝M 2 2 x 2 2 +M 3 2 x 2 2 +M 4 2 x 4 2 , and the zigzag-shaped lattice as a first stage of the 1D→2D transition. We prove that in the low- and moderate-density regimes, interactions between the instantons are dominated by two-body forces. This drastically simplifies finding the ground state of the instantons’ orientations, so we made a numeric scan of the whole orientation space instead of assuming any particular ansatz. We find that depending on the M 2 /M 3 /M 4 ratios, the ground state of instanton orientations can follow a wide variety of patterns. For the straight 1D lattices, we found orientations periodically running over elements of a ℤ 2 , Klein, prismatic, or dihedral subgroup of the SU(2)/ℤ 2 , as well as irrational but link-periodic patterns. For the zigzag-shaped lattices, we detected 4 distinct orientation phases — the anti-ferromagnet, another abelian phase, and two non-abelian phases. Allowing the zigzag amplitude to vary as a function of increasing compression force, we obtained the phase diagrams for the straight and zigzag-shaped lattices in the (force,M 3 /M 4 ), (chemical potential,M 3 /M 4 ), and (density,M 3 /M 4 ) planes. Some of the transitions between these phases are second-order while others are first-order. Our techniques can be applied to other types of non-abelian crystals

  13. Electrical conductivity of high-purity germanium crystals at low temperature

    Science.gov (United States)

    Yang, Gang; Kooi, Kyler; Wang, Guojian; Mei, Hao; Li, Yangyang; Mei, Dongming

    2018-05-01

    The temperature dependence of electrical conductivity of single-crystal and polycrystalline high-purity germanium (HPGe) samples has been investigated in the temperature range from 7 to 100 K. The conductivity versus inverse of temperature curves for three single-crystal samples consist of two distinct temperature ranges: a high-temperature range where the conductivity increases to a maximum with decreasing temperature, and a low-temperature range where the conductivity continues decreasing slowly with decreasing temperature. In contrast, the conductivity versus inverse of temperature curves for three polycrystalline samples, in addition to a high- and a low-temperature range where a similar conductive behavior is shown, have a medium-temperature range where the conductivity decreases dramatically with decreasing temperature. The turning point temperature ({Tm}) which corresponds to the maximum values of the conductivity on the conductivity versus inverse of temperature curves are higher for the polycrystalline samples than for the single-crystal samples. Additionally, the net carrier concentrations of all samples have been calculated based on measured conductivity in the whole measurement temperature range. The calculated results show that the ionized carrier concentration increases with increasing temperature due to thermal excitation, but it reaches saturation around 40 K for the single-crystal samples and 70 K for the polycrystalline samples. All these differences between the single-crystal samples and the polycrystalline samples could be attributed to trapping and scattering effects of the grain boundaries on the charge carriers. The relevant physical models have been proposed to explain these differences in the conductive behaviors between two kinds of samples.

  14. Angular distributions of 250 GeV/c positive particles axially channeled in germanium crystal. Pt. 3

    International Nuclear Information System (INIS)

    Sun, C.R.; Gibson, W.M.; Kim, I.J.; Williams, G.O.; Carrigan, R.A. Jr.; Chrisman, B.L.; Toohig, T.E.; Guzik, Z.; Nigmanov, T.S.; Tsyganov, A.S.

    1982-01-01

    Channeling phenomena are observed for charged particles of momentum up to 250 GeV/c in a germanium crystal. The angular distributions of the channeled particles are compared with theoretical predictions based on a diffusion model. The results indicate additional mechanisms leading to dechanneling of the particles although channeling effects are observed for particles incident at up to several times the critical angle, in contrast with the results from low energy channeling. (orig.)

  15. Dimensions and aspect ratios of natural ice crystals

    Directory of Open Access Journals (Sweden)

    J. Um

    2015-04-01

    Full Text Available During the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE in the tropics, the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC in the Arctic, and the 2010 Small PARTicles In CirrUS (SPARTICUS campaign at mid-latitudes, high-resolution images of ice crystals were recorded by a Cloud Particle Imager at temperatures (T between −87 and 0 °C. The projected maximum dimension (D', length (L', and width (W' of pristine columns, plates, and component bullets of bullet rosettes were measured using newly developed software, the Ice Crystal Ruler. The number of bullets in each bullet rosette was also measured. Column crystals were further distinguished as either horizontally oriented columns or columns with other orientations to eliminate any orientation effect on the measured dimensions. The dimensions and aspect ratios (AR, the dimension of the major axis divided by the dimension of the minor axis of crystals were determined as functions of temperature, geophysical location, and type of cirrus. Dimensions of crystals generally increased with temperature. Columns and bullets had larger dimensions (i.e., W' of the minor axis (i.e., a axis for a given dimension (i.e., D' orL' of the major axis (i.e., c axis, and thus smaller AR, as T increased, whereas this trend did not occur for plate crystals. The average number of branches in bullet rosettes was 5.50 ± 1.35 during three campaigns and 6.32 ± 1.34 (5.46 ± 1.34; 4.95 ± 1.01 during TWP-ICE (SPARTICUS; ISDAC. The AR of bullets increased with the number of branches in bullet rosettes. Most dimensions of crystals and ARs of columnar crystals measured during SPARTICUS were larger than those measured during TWP-ICE and ISDAC at −67 L–W relationships of columns derived using current data exhibited a strong dependence on temperature; similar relationships determined in previous studies were within the range of the current data.

  16. Performance of A Compact Multi-crystal High-purity Germanium Detector Array for Measuring Coincident Gamma-ray Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Howard, Chris [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Daigle, Stephen [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Buckner, Matt [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Erikson, Luke E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Runkle, Robert C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stave, Sean C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Champagne, Art [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Cooper, Andrew [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Downen, Lori [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Glasgow, Brian D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kelly, Keegan [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Sallaska, Anne [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States)

    2015-02-18

    The Multi-sensor Airborne Radiation Survey (MARS) detector is a 14-crystal array of high-purity germanium (HPGe) detectors housed in a single cryostat. The array was used to measure the astrophysical S-factor for the 14N(p,γ)15O* reaction for several transition energies at an effective center of mass energy of 163 keV. Owing to the segmented nature of the MARS detector, the effect of gamma-ray summing was greatly reduced in comparison to past experiments which utilized large, single-crystal detectors. The new S-factor values agree within the uncertainties with the past measurements. Details of the analysis and detector performance will be presented.

  17. Performance of a compact multi-crystal high-purity germanium detector array for measuring coincident gamma-ray emissions

    Energy Technology Data Exchange (ETDEWEB)

    Howard, Chris; Daigle, Stephen; Buckner, Matt [University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Erikson, Luke E.; Runkle, Robert C. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Stave, Sean C., E-mail: Sean.Stave@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Champagne, Arthur E.; Cooper, Andrew; Downen, Lori [University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Glasgow, Brian D. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Kelly, Keegan; Sallaska, Anne [University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States)

    2015-05-21

    The Multi-sensor Airborne Radiation Survey (MARS) detector is a 14-crystal array of high-purity germanium (HPGe) detectors housed in a single cryostat. The array was used to measure the astrophysical S-factor for the {sup 14}N(p,γ){sup 15}O{sup ⁎} reaction for several transition energies at an effective center-of-mass energy of 163 keV. Owing to the granular nature of the MARS detector, the effect of gamma-ray summing was greatly reduced in comparison to past experiments which utilized large, single-crystal detectors. The new S-factor values agree within their uncertainties with the past measurements. Details of the analysis and detector performance are presented.

  18. Electrostatic energies of crystals in space of arbitrary dimension

    International Nuclear Information System (INIS)

    Takemoto, Hiroki; Tohsaki, Akihiro

    2005-01-01

    We present a new method to evaluate electrostatic energies under periodic boundary conditions. The lattice sum of Coulomb potentials is expressed through the elliptic Q function of the third kind. This enables us to evaluate electrostatic energies of ionic crystals very accurately and with very rapid convergence. In particular, we study the dimensionality of the electrostatic energies of NaCl-type and CsCl-type crystals, whose expressions are functions of the spatial dimension treated as a real number. Furthermore, the expressions we obtain are applicable to computational simulations using molecular dynamics and Monte Carlo methods. We generate random distributions of point charges under periodic boundary conditions, and we analyze the randomness and its anisotropy on the basis of potential distributions. (author)

  19. Low-temperature crystallization of amorphous silicon and amorphous germanium by soft X-ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Heya, Akira, E-mail: heya@eng.u-hyogo.ac.jp [Department of Materials Science and Chemistry, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671–2280 (Japan); Kanda, Kazuhiro [Laboratory of Advanced Science and Technology for Industry (LASTI), University of Hyogo, 3-2-1 Koto, Kamigori, Hyogo 678–1205 (Japan); Toko, Kaoru; Sadoh, Taizoh [Department of Electronics, Kyushu University, 744 Nishi-ku, Motooka, Fukuoka 819–0395 (Japan); Amano, Sho [Laboratory of Advanced Science and Technology for Industry (LASTI), University of Hyogo, 3-2-1 Koto, Kamigori, Hyogo 678–1205 (Japan); Matsuo, Naoto [Department of Materials Science and Chemistry, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671–2280 (Japan); Miyamoto, Shuji [Laboratory of Advanced Science and Technology for Industry (LASTI), University of Hyogo, 3-2-1 Koto, Kamigori, Hyogo 678–1205 (Japan); Miyao, Masanobu [Department of Electronics, Kyushu University, 744 Nishi-ku, Motooka, Fukuoka 819–0395 (Japan); Mochizuki, Takayasu [Laboratory of Advanced Science and Technology for Industry (LASTI), University of Hyogo, 3-2-1 Koto, Kamigori, Hyogo 678–1205 (Japan)

    2013-05-01

    The low-temperature-crystallization effects of soft X-ray irradiation on the structural properties of amorphous Si and amorphous Ge films were investigated. From the differences in crystallization between Si and Ge, it was found that the effects of soft X-ray irradiation on the crystallization strongly depended on the energy band gap and energy level. The crystallization temperatures of the amorphous Si and amorphous Ge films decreased from 953 K to 853 K and 773 K to 663 K, respectively. The decrease in crystallization temperature was also related to atoms transitioning into a quasi-nucleic phase in the films. The ratio of electron excitation and migration effects to thermal effects was controlled using the storage-ring current (photon flux density). Therefore, we believe that low-temperature crystallization can be realized by controlling atomic migration through electron excitation. - Highlights: • This work investigates the crystallization mechanism for soft X-ray irradiation. • The soft X-ray crystallization depended on the energy band gap and energy level. • The decrease in the crystallization temperature for Si and Ge films was 100 K. • This decrement was related to atoms transitioning into a quasi-nucleic phase.

  20. Effect of medium range order on pulsed laser crystallization of amorphous germanium thin films

    Energy Technology Data Exchange (ETDEWEB)

    Li, T. T., E-mail: li48@llnl.gov; Bayu Aji, L. B.; Heo, T. W.; Kucheyev, S. O.; Campbell, G. H. [Materials Science Division, Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94551 (United States); Santala, M. K. [Mechanical, Industrial, and Manufacturing Engineering, Oregon State University, 204 Rogers Hall, Corvallis, Oregon 97331 (United States)

    2016-05-30

    Sputter deposited amorphous Ge thin films had their nanostructure altered by irradiation with high-energy Ar{sup +} ions. The change in the structure resulted in a reduction in medium range order (MRO) characterized using fluctuation electron microscopy. The pulsed laser crystallization kinetics of the as-deposited versus irradiated materials were investigated using the dynamic transmission electron microscope operated in the multi-frame movie mode. The propagation rate of the crystallization front for the irradiated material was lower; the changes were correlated to the MRO difference and formation of a thin liquid layer during crystallization.

  1. Effect of medium range order on pulsed laser crystallization of amorphous germanium thin films

    International Nuclear Information System (INIS)

    Li, T. T.; Bayu Aji, L. B.; Heo, T. W.; Kucheyev, S. O.; Campbell, G. H.; Santala, M. K.

    2016-01-01

    Sputter deposited amorphous Ge thin films had their nanostructure altered by irradiation with high-energy Ar"+ ions. The change in the structure resulted in a reduction in medium range order (MRO) characterized using fluctuation electron microscopy. The pulsed laser crystallization kinetics of the as-deposited versus irradiated materials were investigated using the dynamic transmission electron microscope operated in the multi-frame movie mode. The propagation rate of the crystallization front for the irradiated material was lower; the changes were correlated to the MRO difference and formation of a thin liquid layer during crystallization.

  2. Tensometrical properties of volumetric crystals of germanium-silicon solid solutions irradiated by fast electrons

    International Nuclear Information System (INIS)

    Abbasov, Sh.M.

    2002-01-01

    Full Text: In the present work the tensometrical properties of Ge1-xSix solid solution monocrystal contended of up to 15 at. % Si were investigated. The radiation-proof strain gauges of researched crystals were made. For this purpose the site was cutted out from a sample, perpendicularly or in parallel of a crystal axes. After polishing the samples had thickness of 30-40 microns, and length of 2 mm

  3. Crystallization characteristic and scaling behavior of germanium antimony thin films for phase change memory.

    Science.gov (United States)

    Wu, Weihua; Zhao, Zihan; Shen, Bo; Zhai, Jiwei; Song, Sannian; Song, Zhitang

    2018-04-19

    Amorphous Ge8Sb92 thin films with various thicknesses were deposited by magnetron sputtering. The crystallization kinetics and optical properties of the Ge8Sb92 thin films and related scaling effects were investigated by an in situ thermally induced method and an optical technique. With a decrease in film thickness, the crystallization temperature, crystallization activation energy and data retention ability increased significantly. The changed crystallization behavior may be ascribed to the smaller grain size and larger surface-to-volume ratio as the film thickness decreased. Regardless of whether the state was amorphous or crystalline, the film resistance increased remarkably as the film thickness decreased to 3 nm. The optical band gap calculated from the reflection spectra increases distinctly with a reduction in film thickness. X-ray diffraction patterns confirm that the scaling of the Ge8Sb92 thin film can inhibit the crystallization process and reduce the grain size. The values of exponent indices that were obtained indicate that the crystallization mechanism experiences a series of changes with scaling of the film thickness. The crystallization time was estimated to determine the scaling effect on the phase change speed. The scaling effect on the electrical switching performance of a phase change memory cell was also determined. The current-voltage and resistance-voltage characteristics indicate that phase change memory cells based on a thinner Ge8Sb92 film will exhibit a higher threshold voltage, lower RESET operational voltage and greater pulse width, which implies higher thermal stability, lower power consumption and relatively lower switching velocity.

  4. Flexible nanomembrane photonic-crystal cavities for tensilely strained-germanium light emission

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Jian; Wang, Xiaowei; Paiella, Roberto [Department of Electrical and Computer Engineering and Photonics Center, Boston University, 8 Saint Mary' s Street, Boston, Massachusetts 02215 (United States); Cui, Xiaorui; Sookchoo, Pornsatit; Lagally, Max G. [Department of Materials Science and Engineering, University of Wisconsin – Madison, 1509 University Avenue, Madison, Wisconsin 53706 (United States)

    2016-06-13

    Flexible photonic-crystal cavities in the form of Si-column arrays embedded in polymeric films are developed on Ge nanomembranes using direct membrane assembly. The resulting devices can sustain large biaxial tensile strain under mechanical stress, as a way to enhance the Ge radiative efficiency. Pronounced emission peaks associated with photonic-crystal cavity resonances are observed in photoluminescence measurements. These results show that ultrathin nanomembrane active layers can be effectively coupled to an optical cavity, while still preserving their mechanical flexibility. Thus, they are promising for the development of strain-enabled Ge lasers, and more generally uniquely flexible optoelectronic devices.

  5. New quaternary thallium indium germanium selenide TlInGe2Se6: Crystal and electronic structure

    Science.gov (United States)

    Khyzhun, O. Y.; Parasyuk, O. V.; Tsisar, O. V.; Piskach, L. V.; Myronchuk, G. L.; Levytskyy, V. O.; Babizhetskyy, V. S.

    2017-10-01

    Crystal structure of a novel quaternary thallium indium germanium selenide TlInGe2Se6 was investigated by means of powder X-ray diffraction method. It was determined that the compound crystallizes in the trigonal space group R3 with the unit cell parameters a = 10.1798(2) Å, c = 9.2872(3) Å. The relationship with similar structures was discussed. The as-synthesized TlInGe2Se6 ingot was tested with X-ray photoelectron spectroscopy (XPS) and X-ray emission spectroscopy (XES). In particular, the XPS valence-band and core-level spectra were recorded for initial and Ar+ ion-bombarded surfaces of the sample under consideration. The XPS data allow for statement that the TlInGe2Se6 surface is rigid with respect to Ar+ ion-bombardment. Particularly, Ar+ ion-bombardment (3.0 keV, 5 min duration, ion current density fixed at 14 μA/cm2) did not cause substantial modifications of stoichiometry in topmost surface layers. Furthermore, comparison on a common energy scale of the XES Se Kβ2 and Ge Kβ2 bands and the XPS valence-band spectrum reveals that the principal contributions of the Se 4p and Ge 4p states occur in the upper and central portions of the valence band of TlInGe2Se6, respectively, with also their substantial contributions in other portions of the band. The bandgap energy of TlInGe2Se6 at the level of αg=103 cm-1 is equal to 2.38 eV at room temperature.

  6. A facility for plastic deformation of germanium single-crystal wafers

    DEFF Research Database (Denmark)

    Lebech, B.; Theodor, K.; Breiting, B.

    1998-01-01

    . All movements and temperature changes are done by a robot via a PLC-control system. Two nine-crystal focusing monochromators (54 x 116 and 70 x 116 mm(2)) made from 100 wafers with average mosaicity similar to 13' have been constructed. Summaries of the test results are presented. (C) 1998 Elsevier...

  7. Surface topography to reflectivity mapping in two-dimensional photonic crystals designed in germanium

    Energy Technology Data Exchange (ETDEWEB)

    Husanu, M.A.; Ganea, C.P. [National Institute of Materials Physics, Atomistilor 105b, 077125 Magurele, Ilfov (Romania); Anghel, I. [National Institute for Laser, Plasma & Radiation Physics, Atomistilor 409, 077125 Magurele (Romania); University of Bucharest, Faculty of Physics, Atomistilor 405, 077125 Magurele (Romania); Florica, C.; Rasoga, O. [National Institute of Materials Physics, Atomistilor 105b, 077125 Magurele, Ilfov (Romania); Popescu, D.G., E-mail: dana.popescu@infim.ro [National Institute of Materials Physics, Atomistilor 105b, 077125 Magurele, Ilfov (Romania)

    2015-11-15

    Highlights: • Laser ablation is used for drilling a periodic 2D photonic structure. • Confinement of radiation is revealed by infra-red spectromicroscopy correlated with numerical calculations. • Telecommunication range is accessible upon tuning conveniently the processing parameters. - Abstract: Light confinement in a two dimensional photonic crystal (2D PhC) with hexagonal symmetry is studied using infra-red reflectance spectromicroscopy and numerical calculations. The structure has been realized by laser ablation, using a pulsed laser (λ = 775 nm), perforating an In-doped Ge wafer and creating a lattice of holes with well-defined symmetry. Correlating the spectral signature of the photonic gaps recorded experimentally with the results obtained in the finite difference time domain and finite difference frequency domain calculations, we established the relationship between the geometric parameters of the structure (lattice constants, shape of the hole) and its efficiency in trapping and guiding the radiation in a well-defined frequency range. Besides the gap in the low energy range of transversal electric modes, a second one is identified in the telecommunication range, originating in the localization of the leaky modes within the radiation continuum. The emerging picture is of a device with promising characteristics as an alternative to Si-based technology in photonic device fabrication with special emphasize in energy storage and conversion.

  8. Measurements of the total neutron cross-sections of poly- and mono-germanium crystals at neutron energies below 1 eV

    International Nuclear Information System (INIS)

    Maayouf, R.M.A.; Abdel-Kawy, A.; Abbas, Y.; Habib, N.; Adib, M.; Hamouda, I.

    1983-12-01

    Total neutron cross-section measurements have been performed for poly and mono-germanium crystals in the energy range from 2 meV-1eV. The measurements were performed using two TOF and a double axis crystal spectrometer installed at the ET-RR-1 reactor. The obtained neutron cross-sections were analyzed using the single level Breit-Wigner formula. The coherent scattering amplitude was determined from the Bragg reflections observed in the total neutron cross-section of Ge and the analysis of its neutron diffraction pattern. The incoherent and thermal diffuse scattering cross-sections of Ge were estimated from the analysis of the total cross-section data obtained for Ge mono-crystal

  9. Temperature-dependent ordering phenomena in single crystals of germanium antimony tellurides

    Energy Technology Data Exchange (ETDEWEB)

    Urban, Philipp [Faculty of Chemistry and Mineralogy, Leipzig University, Scharnhorststr. 20, 04275 Leipzig (Germany); Schneider, Matthias N. [Department of Chemistry, LMU Munich, Butenandtstr. 5-13 (D), 81377 Munich (Germany); Oeckler, Oliver, E-mail: oliver.oeckler@gmx.de [Faculty of Chemistry and Mineralogy, Leipzig University, Scharnhorststr. 20, 04275 Leipzig (Germany)

    2015-07-15

    The temperature-dependent behavior of quenched single-crystalline (GeTe){sub n}Sb{sub 2}Te{sub 3} (n~2.8, n~5 and n~11) was investigated by semiquantitative modeling of diffuse X-ray scattering. The structure at room temperature exhibits trigonal twin domains, each comprising a stacking-disordered sequence of distorted rocksalt-type slabs with variable thicknesses. Ge and Sb share the cation position and vacancies are partially ordered in defect layers (van der Waals gaps) between the slabs. The average structure determined with resonant diffraction data corresponds to a rocksalt-type structure whose cation position is split along the stacking direction. Upon heating, cation ordering leads to a metastable superstructure of the rocksalt type at ~400 °C, which transforms to a rocksalt-type high-temperature phase with randomly distributed cations and vacancies at ~500 °C; this structure was also refined using resonant diffraction. Cooling at high or intermediate rates does not yield the long-range ordered phase, but directly leads to the twinned disordered phase. - Graphical abstract: Development of the diffraction patterns of (GeTe){sub ~11}Sb{sub 2}Te{sub 3} upon heating; the insets symbolically sketch the real structure at the corresponding temperatures. - Highlights: • The structure of disordered (GeTe){sub n}Sb{sub 2}Te{sub 3} is described as a function of temperature. • Structural changes are tracked by modeling diffuse X-ray scattering. • Quenched crystals exhibit distorted NaCl-type slabs with different thicknesses. • Vacancy ordering upon heating leads to a metastable superstructure of the NaCl type. • Further heating leads to an undistorted disordered NaCl-type high-temperature phase.

  10. Crystallization: the hidden dimension of Hedge funds' fee structure

    OpenAIRE

    Elaut, Gert; Frömmel, Michael; Sjödin, John

    2014-01-01

    We investigate the implications of variations in the frequency with which hedge fund managers update their high-water mark on fees paid by investors. We first document the crystallization frequencies used by Commodity Trading Advisors (CTAs) and then perform simulations and a bootstrap analysis. We find a statistically and economically significant effect of the crystallization frequency on the total fee load. Hedge funds' total fee load increases significantly as the crystallization frequency...

  11. Germanium soup

    Science.gov (United States)

    Palmer, Troy A.; Alexay, Christopher C.

    2006-05-01

    This paper addresses the variety and impact of dispersive model variations for infrared materials and, in particular, the level to which certain optical designs are affected by this potential variation in germanium. This work offers a method for anticipating and/or minimizing the pitfalls such potential model variations may have on a candidate optical design.

  12. Melting of anisotropic colloidal crystals in two dimensions

    International Nuclear Information System (INIS)

    Eisenmann, C; Keim, P; Gasser, U; Maret, G

    2004-01-01

    The crystal structure and melting transition of two-dimensional colloids interacting via an anisotropic magnetic dipole-dipole potential are studied. Anisotropy is achieved by tilting the external magnetic field inducing the dipole moments of the colloidal particles away from the direction perpendicular to the particle plane. We find a centred rectangular lattice and a two-step melting similar to the phase transitions of the corresponding isotropic crystals via a quasi-hexatic phase. The latter is broadened compared to the hexatic phase for isotropic interaction potential due to strengthening of orientational order

  13. Melting of anisotropic colloidal crystals in two dimensions

    Science.gov (United States)

    Eisenmann, C.; Keim, P.; Gasser, U.; Maret, G.

    2004-09-01

    The crystal structure and melting transition of two-dimensional colloids interacting via an anisotropic magnetic dipole-dipole potential are studied. Anisotropy is achieved by tilting the external magnetic field inducing the dipole moments of the colloidal particles away from the direction perpendicular to the particle plane. We find a centred rectangular lattice and a two-step melting similar to the phase transitions of the corresponding isotropic crystals via a quasi-hexatic phase. The latter is broadened compared to the hexatic phase for isotropic interaction potential due to strengthening of orientational order.

  14. Effects of electronically neutral impurities on muonium in germanium

    International Nuclear Information System (INIS)

    Clawson, C.W.; Crowe, K.M.; Haller, E.E.; Rosenblum, S.S.; Brewer, J.H.

    1983-04-01

    Low-temperature measurements of muonium parameters in various germanium crystals have been performed. We have measured crystals with different levels of neutral impurities, with and without dislocations, and with different annealing histories. The most striking result is the apparent trapping of Mu by silicon impurities in germanium

  15. Crystal dimension of ZSM-5 influences on para selective disproportionation of ethylbenzene.

    Science.gov (United States)

    Hariharan, Srinivasan; Palanichamy, Muthaiahpillai

    2014-03-01

    Crystal size and crystal dimensions are vital role in shape selective feature. Para selective disproportionation of EthylBenzene (Dip-EB) was investigated over ZSM-5 synthesized in acidic medium. The catalysts were prepared by hydrothermal process with various Si/Al ratios (50, 75 and 100) using fluoride ion precursor. This fluoride ion precursor dissolves the ZSM-5 nutrients below it neutral pH between 4 and 6. The synthesized material was subjected into various physico chemical characterizations such as XRD, SEM, TGA and BET analyses. The XRD patterns showed high crystalline nature and their resulting SEM images were also indicate thin prismatic crystals of large dimension compared with alkaline medium synthesized one. The BET results earned good textural property. Catalytic activity of vapor phase Dip-EB was carried out between 523 and 673 K. As their result, diethylbenzene (DEB) isomers were obtained, but para selective Diethylbenzene (p-DEB) was observed higher than others. The high selectivity towards p-DEB was due to large crystal dimension of ZSM-5 catalysts synthesized in fluoride medium. Hence it is good commercial application for petrochemical feed stock production.

  16. Zone refining high-purity germanium

    International Nuclear Information System (INIS)

    Hubbard, G.S.; Haller, E.E.; Hansen, W.L.

    1977-10-01

    The effects of various parameters on germanium purification by zone refining have been examined. These parameters include the germanium container and container coatings, ambient gas and other operating conditions. Four methods of refining are presented which reproducibly yield 3.5 kg germanium ingots from which high purity (vertical barN/sub A/ - N/sub D/vertical bar less than or equal to2 x 10 10 cm -3 ) single crystals can be grown. A qualitative model involving binary and ternary complexes of Si, O, B, and Al is shown to account for the behavior of impurities at these low concentrations

  17. Computational analysis of heat transfer, thermal stress and dislocation density during resistively Czochralski growth of germanium single crystal

    Science.gov (United States)

    Tavakoli, Mohammad Hossein; Renani, Elahe Kabiri; Honarmandnia, Mohtaram; Ezheiyan, Mahdi

    2018-02-01

    In this paper, a set of numerical simulations of fluid flow, temperature gradient, thermal stress and dislocation density for a Czochralski setup used to grow IR optical-grade Ge single crystal have been done for different stages of the growth process. A two-dimensional steady state finite element method has been applied for all calculations. The obtained numerical results reveal that the thermal field, thermal stress and dislocation structure are mainly dependent on the crystal height, heat radiation and gas flow in the growth system.

  18. New channeling effects in the radiative emission of 150 GeV electrons in a thin germanium crystal

    International Nuclear Information System (INIS)

    Belkacem, A.; Chevallier, M.; Gaillard, M.J.; Genre, R.; Kirsch, R.; Poizat, J.C.; Remillieux, J.; Bologna, G.; Peigneux, J.P.; Sillou, D.; Spighel, M.; Cue, N.; Kimball, J.C.; Marsh, B.; Sun, C.R.

    1986-01-01

    The orientation dependence of the radiative emission of 150 GeV electrons and positrons incident at small angles with respect to the axial direction of a thin (0.185 mm) Ge crystal has been observed. The processes are well understood, except for channeled electrons, which radiate unexpected high energy photons. (orig.)

  19. Solution of kinetic equation by means of the moments method for phonon thermoconductivity and effect of isotopic disorder on it in the case of germanium and silicon crystals at T = 300 K

    CERN Document Server

    Zhernov, A P

    2001-01-01

    The problem on solving the kinetic equation through the moments method for the dielectric and semiconductor thermal conductivity is discussed. The evaluations of the isotopic disorder effect on the germanium crystals heat resistance in the multimoment approximation are obtained on the basis of the microscopic models. The contributions of the acoustic and optical phonons to the thermal conductivity are accounted for. The DELTA W surplus heat resistance in comparison with highly-enriched samples was determined for the natural composition samples. Good agreement between the theory and experiment for DELTA W is observed in the case of germanium. The theoretical value in the case of silicon is essentially lower as compared to the DELTA W experimental value

  20. Photon multiplicity in the hard radiation of 150 GeV electrons in an aligned germanium crystal

    International Nuclear Information System (INIS)

    Belkacem, A.; Chevallier, M.; Gaillard, M.J.; Genre, R.; Kirsch, R.; Poizat, J.C.; Remillieux, J.; Bologna, G.; Peigneux, J.P.; Sillou, D.; Spighel, M.; Cue, N.; Kimball, J.C.; Marsh, B.B.; Sun, C.R.

    1988-01-01

    Mean values m of photon multiplicity in the radiation of 150 GeV electrons directed at and near the axis of a 0.185 mm thick Ge crystal cooled to 100 K have been deduced from the measurements of pair conversion probabilities. Depending on the distribution of multiplicity assumed, values of m ranging from 3.8 to 4.3 are obtained for the previously reported anomalous radiation peak. (orig.)

  1. Dual gauge field theory of quantum liquid crystals in three dimensions

    International Nuclear Information System (INIS)

    Beekman, Aron J.; Nissinen, Jaakko; Wu, Kai; Zaanen, Jan

    2017-01-01

    The dislocation-mediated quantum melting of solids into quantum liquid crystals is extended from two to three spatial dimensions, using a generalization of boson-vortex or Abelian-Higgs duality. Dislocations are now Burgers-vector-valued strings that trace out worldsheets in space-time while the phonons of the solid dualize into two-form (Kalb-Ramond) gauge fields. We propose an effective dual Higgs potential that allows for restoring translational symmetry in either one, two, or three directions, leading to the quantum analogues of columnar, smectic, or nematic liquid crystals. In these phases, transverse phonons turn into gapped, propagating modes, while compressional stress remains massless. Rotational Goldstone modes emerge whenever translational symmetry is restored. Lastly, we also consider the effective electromagnetic response of electrically charged quantum liquid crystals, and find among other things that as a hard principle only two out of the possible three rotational Goldstone modes are observable using propagating electromagnetic fields.

  2. Dual gauge field theory of quantum liquid crystals in three dimensions

    Science.gov (United States)

    Beekman, Aron J.; Nissinen, Jaakko; Wu, Kai; Zaanen, Jan

    2017-10-01

    The dislocation-mediated quantum melting of solids into quantum liquid crystals is extended from two to three spatial dimensions, using a generalization of boson-vortex or Abelian-Higgs duality. Dislocations are now Burgers-vector-valued strings that trace out worldsheets in space-time while the phonons of the solid dualize into two-form (Kalb-Ramond) gauge fields. We propose an effective dual Higgs potential that allows for restoring translational symmetry in either one, two, or three directions, leading to the quantum analogues of columnar, smectic, or nematic liquid crystals. In these phases, transverse phonons turn into gapped, propagating modes, while compressional stress remains massless. Rotational Goldstone modes emerge whenever translational symmetry is restored. We also consider the effective electromagnetic response of electrically charged quantum liquid crystals, and find among other things that as a hard principle only two out of the possible three rotational Goldstone modes are observable using propagating electromagnetic fields.

  3. Nuclear interactions for 15 GeV/c protons and pions under random and channeling conditions in germanium single crystals

    CERN Document Server

    Andersen, S K; Fich, O.; Golovchenko, J.A.; Nielsen, Henry; Schiott, H.E.; Uggerhoj, E.; Vraast-Thomsen, C.; Charpak, Georges; Petersen, G.; Sauli, F.; Ponpon, J.P.; Siffert, P.

    1978-01-01

    Strong directional effects for nuclear-reaction probabilities have been observed when 15 GeV/ c protons and pions are incident on a 4.2 mm Ge single crystal. In the random situation, our measurements are in agreement with Glauber's theory of diffraction scattering and with published particle-production data. When protons are incident in an aligned direction, the nuclear-reaction probabilities fall off very drastically but in a way which is in agreement with standard channeling theory; for aligned negative pions where a simple channeling theory is lacking, there is some experimental indication that nuclear-reaction probabilities are enhanced compared to the corresponding random rates, an indication which is supported by detailed computer-simulation studies.

  4. Germanium geochemistry and mineralogy

    Science.gov (United States)

    Bernstein, L.R.

    1985-01-01

    Germanium is enriched in the following geologic environments: 1. (1) iron meteorites and terrestrial iron-nickel; 2. (2) sulfide ore deposits, particularly those hosted by sedimentary rocks; 3. (3) iron oxide deposits; 4. (4) oxidized zones of Ge-bearing sulfide deposits; 5. (5) pegmatites, greisens, and skarns; and 6. (6) coal and lignitized wood. In silicate melts, Ge is highly siderophile in the presence of native iron-nickel; otherwise, it is highly lithophile. Among silicate minerals, Ge is concentrated in those having less polymerized silicate tetrahedra such as olivine and topaz. In deposits formed from hydrothermal solutions, Ge tends to be enriched mostly in either sulfides or in fluorine-bearing phases; it is thus concentrated both in some hydrothermal sulfide deposits and in pegmatites, greisens, and skarns. In sulfide deposits that formed from solutions having low to moderate sulfur activity, Ge is concentrated in sphalerite in amounts up to 3000 ppm. Sulfide deposits that formed from solutions having higher sulfur activity allowed Ge to either form its own sulfides, particularly with Cu, or to substitute for As, Sn, or other metals in sulfosalts. The Ge in hydrothermal fluids probably derives from enrichment during the fractional crystallization of igneous fluids, or is due to the incorporation of Ge from the country rocks, particularly from those containing organic material. Germanium bonds to lignin-derivative organic compounds that are found in peat and lignite, accounting for its common concentration in coals and related organic material. Germanium is precipitated from water together with iron hydroxide, accounting for its concentration in some sedimentary and supergene iron oxide deposits. It also is able to substitute for Fe in magnetite in a variety of geologic environments. In the oxidized zone of Ge-bearing sulfide deposits, Ge is concentrated in oxides, hydroxides, and hydroxy-sulfates, sometimes forming its own minerals. It is particularly

  5. Modeling of dislocation dynamics in germanium Czochralski growth

    Science.gov (United States)

    Artemyev, V. V.; Smirnov, A. D.; Kalaev, V. V.; Mamedov, V. M.; Sidko, A. P.; Podkopaev, O. I.; Kravtsova, E. D.; Shimansky, A. F.

    2017-06-01

    Obtaining very high-purity germanium crystals with low dislocation density is a practically difficult problem, which requires knowledge and experience in growth processes. Dislocation density is one of the most important parameters defining the quality of germanium crystal. In this paper, we have performed experimental study of dislocation density during 4-in. germanium crystal growth using the Czochralski method and comprehensive unsteady modeling of the same crystal growth processes, taking into account global heat transfer, melt flow and melt/crystal interface shape evolution. Thermal stresses in the crystal and their relaxation with generation of dislocations within the Alexander-Haasen model have been calculated simultaneously with crystallization dynamics. Comparison to experimental data showed reasonable agreement for the temperature, interface shape and dislocation density in the crystal between calculation and experiment.

  6. Neutron Transmission of Germanium Poly- and Monocrystals

    International Nuclear Information System (INIS)

    Habib, N.

    2009-01-01

    The measured total neutron cross-sections of germanium poly- and mono-crystals were analyzed using an additive formula. The formula takes into account the germanium crystalline structure and its physical parameters. Computer programs have developed in order to provide the required analyses. The calculated values of the total cross-section of polycrystalline germanium in the neutron wavelength range from 0.001 up to 0.7 nm were fitted to the measured ones at ETRR-1. From the fitting the main constants of the additive formula were determined. The experimental data measured at ETRR-1 of the total cross-section of high quality Ge single crystal at 4400 K, room, and liquid nitrogen temperatures, in the wavelength range between 0.028 nm and 0.64 nm, were also compared with the calculated values using the formula having the same constants. An overall agreement is noticed between the formula fits and experimental data. A feasibility study is done for the use of germanium in poly-crystalline form, as cold neutron filter, and in mono-crystalline one as an efficient filter for thermal neutrons. The filtering efficiency of Ge single crystal is detailed in terms of its isotopic abundance, crystal thickness, mosaic spread, and temperature. It can be concluded that the 7.5 cm thick 76 Ge single crystal (0.10 FWHM mosaic spread) cooled at liquid nitrogen temperature is an efficient thermal neutron filter.

  7. Crystallization in melts of short, semiflexible hard polymer chains: An interplay of entropies and dimensions

    Science.gov (United States)

    Shakirov, T.; Paul, W.

    2018-04-01

    What is the thermodynamic driving force for the crystallization of melts of semiflexible polymers? We try to answer this question by employing stochastic approximation Monte Carlo simulations to obtain the complete thermodynamic equilibrium information for a melt of short, semiflexible polymer chains with purely repulsive nonbonded interactions. The thermodynamics is obtained based on the density of states of our coarse-grained model, which varies by up to 5600 orders of magnitude. We show that our polymer melt undergoes a first-order crystallization transition upon increasing the chain stiffness at fixed density. This crystallization can be understood by the interplay of the maximization of different entropy contributions in different spatial dimensions. At sufficient stiffness and density, the three-dimensional orientational interactions drive the orientational ordering transition, which is accompanied by a two-dimensional translational ordering transition in the plane perpendicular to the chains resulting in a hexagonal crystal structure. While the three-dimensional ordering can be understood in terms of Onsager theory, the two-dimensional transition can be understood in terms of the liquid-hexatic transition of hard disks. Due to the domination of lateral two-dimensional translational entropy over the one-dimensional translational entropy connected with columnar displacements, the chains form a lamellar phase. Based on this physical understanding, orientational ordering and translational ordering should be separable for polymer melts. A phenomenological theory based on this understanding predicts a qualitative phase diagram as a function of volume fraction and stiffness in good agreement with results from the literature.

  8. GRAN SASSO: Enriched germanium in action

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1991-12-15

    Two large crystals of carefully enriched germanium, one weighing 1 kilogram and the other 2.9 kilograms, and worth many millions of dollars, are being carefully monitored in the Italian Gran Sasso Laboratory in the continuing search for neutrinoless double beta decay.

  9. GRAN SASSO: Enriched germanium in action

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Two large crystals of carefully enriched germanium, one weighing 1 kilogram and the other 2.9 kilograms, and worth many millions of dollars, are being carefully monitored in the Italian Gran Sasso Laboratory in the continuing search for neutrinoless double beta decay

  10. Magnonic band gaps in two-dimension magnonic crystals with diffuse interfaces

    International Nuclear Information System (INIS)

    Wang, Qi; Zhang, Huaiwu; Ma, Guokun; Tang, Xiaoli; Liao, Yulong; Zhong, Zhiyong

    2014-01-01

    In this paper, the plane wave method is extended to include the diffuse interface in the calculation of the dispersion of spin waves in two-dimension magnonic crystals. The diffuse interfaces with linear and sinusoidal profiles of variation in the spontaneous magnetization and exchange constant are considered and the effects of the thicknesses and profiles of diffuse interfaces on the magnonic band gaps are investigated. The results show that the thicknesses and profiles of diffuse interfaces are clearly seen to play a significant role in determining the size and position of the magnonic band gaps in the both square and triangular lattices in the exchange interaction regime. The smooth (linear or sinusoidal) interface does not lead to disappearance of the band gaps, instead it may lead to larger band gaps than those in the model with sharp (infinitely thin) diffuse interface under certain conditions

  11. Crystallization in Two Dimensions and a Discrete Gauss-Bonnet Theorem

    Science.gov (United States)

    De Luca, L.; Friesecke, G.

    2018-02-01

    We show that the emerging field of discrete differential geometry can be usefully brought to bear on crystallization problems. In particular, we give a simplified proof of the Heitmann-Radin crystallization theorem (Heitmann and Radin in J Stat Phys 22(3):281-287, 1980), which concerns a system of N identical atoms in two dimensions interacting via the idealized pair potential V(r)=+∞ if r1. This is done by endowing the bond graph of a general particle configuration with a suitable notion of discrete curvature, and appealing to a discrete Gauss-Bonnet theorem (Knill in Elem Math 67:1-7, 2012) which, as its continuous cousins, relates the sum/integral of the curvature to topological invariants. This leads to an exact geometric decomposition of the Heitmann-Radin energy into (i) a combinatorial bulk term, (ii) a combinatorial perimeter, (iii) a multiple of the Euler characteristic, and (iv) a natural topological energy contribution due to defects. An analogous exact geometric decomposition is also established for soft potentials such as the Lennard-Jones potential V(r)=r^{-6}-2r^{-12}, where two additional contributions arise, (v) elastic energy and (vi) energy due to non-bonded interactions.

  12. High-precision efficiency calibration of a high-purity co-axial germanium detector

    Energy Technology Data Exchange (ETDEWEB)

    Blank, B., E-mail: blank@cenbg.in2p3.fr [Centre d' Etudes Nucléaires de Bordeaux Gradignan, UMR 5797, CNRS/IN2P3, Université de Bordeaux, Chemin du Solarium, BP 120, 33175 Gradignan Cedex (France); Souin, J.; Ascher, P.; Audirac, L.; Canchel, G.; Gerbaux, M.; Grévy, S.; Giovinazzo, J.; Guérin, H.; Nieto, T. Kurtukian; Matea, I. [Centre d' Etudes Nucléaires de Bordeaux Gradignan, UMR 5797, CNRS/IN2P3, Université de Bordeaux, Chemin du Solarium, BP 120, 33175 Gradignan Cedex (France); Bouzomita, H.; Delahaye, P.; Grinyer, G.F.; Thomas, J.C. [Grand Accélérateur National d' Ions Lourds, CEA/DSM, CNRS/IN2P3, Bvd Henri Becquerel, BP 55027, F-14076 CAEN Cedex 5 (France)

    2015-03-11

    A high-purity co-axial germanium detector has been calibrated in efficiency to a precision of about 0.15% over a wide energy range. High-precision scans of the detector crystal and γ-ray source measurements have been compared to Monte-Carlo simulations to adjust the dimensions of a detector model. For this purpose, standard calibration sources and short-lived online sources have been used. The resulting efficiency calibration reaches the precision needed e.g. for branching ratio measurements of super-allowed β decays for tests of the weak-interaction standard model.

  13. In-beam measurement of the position resolution of a highly segmented coaxial germanium detector

    International Nuclear Information System (INIS)

    Descovich, M.; Lee, I.Y.; Fallon, P.; Cromaz, M.; Macchiavelli, A.O.; Radford, D.C.; Vetter, K.; Clark, R.M.; Deleplanque, M.A.; Stephens, F.S.; Ward, D.

    2005-01-01

    The position resolution of a highly segmented coaxial germanium detector was determined by analyzing the 2055keV γ-ray transition of Zr90 excited in a fusion-evaporation reaction. The high velocity of the Zr90 nuclei imparted large Doppler shifts. Digital analysis of the detector signals recovered the energy and position of individual γ-ray interactions. The location of the first interaction in the crystal was used to correct the Doppler energy shift. Comparison of the measured energy resolution with simulations implied a position resolution (root mean square) of 2mm in three-dimensions

  14. The germination of germanium

    Science.gov (United States)

    Burdette, Shawn C.; Thornton, Brett F.

    2018-02-01

    Shawn C. Burdette and Brett F. Thornton explore how germanium developed from a missing element in Mendeleev's periodic table to an enabler for the information age, while retaining a nomenclature oddity.

  15. CCDC 939502: Experimental Crystal Structure Determination : catena-[hexadecakis(N,N-Dicyclohexyl-N-ethyl-N-methylammonium) icosahectakis(mu2-oxo)-hexapentaconta(germanium-silicon)

    KAUST Repository

    Yu, Zheng-Bao; Han, Yu; Zhao, Lan; Huang, Shiliang; Zheng, Qi-Yu; Lin, Shuangzheng; Có rdova, Armando; Zou, Xiaodong; Sun, Junliang

    2013-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  16. Amorphous germanium as an electron or hole blocking contact on high-purity germanium detectors

    International Nuclear Information System (INIS)

    Hansen, W.L.; Haller, E.E.

    1976-10-01

    Experiments were performed in an attempt to make thin n + contacts on high-purity germanium by the solid phase/sup 1)/ epitaxial regrowth of arsenic doped amorphous germanium. After cleaning the crystal surface with argon sputtering and trying many combinations of layers, it was not found possible to induce recrystallization below 400 0 C. However, it was found that simple thermally evaporated amorphous Ge made fairly good electron or hole blocking contacts. Excellent spectrometers have been made with amorphous Ge replacing the n + contact. As presently produced, the amorphous Ge contact diodes show a large variation in high-voltage leakage current

  17. Synthesis and characterization of germanium monosulphide (GeS)

    Indian Academy of Sciences (India)

    This paper reports the growth of germanium monosulphide (GeS) single crystals by vapour phase technique using different transporting agents. The single crystallinity and composition of the grown crystals have been verified by transmission electron microscopy (TEM) and energy dispersive analysis of X-rays (EDAX) ...

  18. Germanium films by polymer-assisted deposition

    Science.gov (United States)

    Jia, Quanxi; Burrell, Anthony K.; Bauer, Eve; Ronning, Filip; McCleskey, Thomas Mark; Zou, Guifu

    2013-01-15

    Highly ordered Ge films are prepared directly on single crystal Si substrates by applying an aqueous coating solution having Ge-bound polymer onto the substrate and then heating in a hydrogen-containing atmosphere. A coating solution was prepared by mixing water, a germanium compound, ethylenediaminetetraacetic acid, and polyethyleneimine to form a first aqueous solution and then subjecting the first aqueous solution to ultrafiltration.

  19. Precipitation of lithium in germanium

    International Nuclear Information System (INIS)

    Masaik, M.; Furgolle, B.

    1969-01-01

    The precipitation of Lithium in Germanium was studied. Taking account of the interactions Ga LI, LiO, we calculated the oxygen content in germanium samples from the resistivity measurements. (authors)

  20. Mesostructured metal germanium sulfides

    Energy Technology Data Exchange (ETDEWEB)

    MacLachlan, M.J.; Coombs, N.; Bedard, R.L.; White, S.; Thompson, L.K.; Ozin, G.A.

    1999-12-29

    A new class of mesostructured metal germanium sulfide materials has been prepared and characterized. The synthesis, via supramolecular assembly of well-defined germanium sulfide anionic cluster precursors and transition-metal cations in formamide, represents a new strategy for the formation of this class of solids. A variety of techniques were employed to examine the structure and composition of the materials. Structurally, the material is best described as a periodic mesostructured metal sulfide-based coordination framework akin to periodic hexagonal mesoporous silica, MCM-41. At the molecular scale, the materials strongly resemble microstructured metal germanium sulfides, in which the structure of the [Ge{sub 4}S{sub 10}]{sup 4{minus}} cluster building-blocks are intact and linked via {mu}-S-M-S bonds. Evidence for a metal-metal bond in mesostructured Cu/Ge{sub 4}S{sub 10} is also provided.

  1. CCDC 1047858: Experimental Crystal Structure Determination : catena-[propane-1,3-diaminium tetrakis(mu-selenido)-germanium-manganese tetrahydropyrimidin-2(1H)-one solvate

    KAUST Repository

    Zhang, Guodong; Li, Peizhou; Ding, Junfeng; Liu, Yi; Xiong, Wei-Wei; Nie, Lina; Wu, Tao; Zhao, Yanli; Tok, Alfred Iing Yoong; Zhang, Qichun

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  2. CCDC 939502: Experimental Crystal Structure Determination : catena-[hexadecakis(N,N-Dicyclohexyl-N-ethyl-N-methylammonium) icosahectakis(mu2-oxo)-hexapentaconta(germanium-silicon)

    KAUST Repository

    Yu, Zheng-Bao

    2013-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  3. The method of impedance transformation for electromagnetic waves propagating in one-dimension plasma photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jingfeng; Yuan, Chengxun, E-mail: yuancx@hit.edu.cn, E-mail: zhouzx@hit.edu.cn; Gao, Ruilin; Jia, Jieshu; Wang, Ying; Zhou, Zhongxiang, E-mail: yuancx@hit.edu.cn, E-mail: zhouzx@hit.edu.cn; Wang, Xiaoou [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Wu, Jian [National Key Laboratory of Electromagnetic Environment (LEME), China Research Institute of Radio Wave Propagation, Beijing 102206 (China); Li, Hui [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); National Key Laboratory of Electromagnetic Environment (LEME), China Research Institute of Radio Wave Propagation, Beijing 102206 (China)

    2016-08-15

    This study focuses on the transmission of normal-incidence electromagnetic waves in one-dimensional plasma photonic crystals. Using the Maxwell's equations in a medium, a method that is based on the concept of impendence is employed to perform the simulation. The accuracy of the method was evaluated by simulating a one-layer plasma and conventional photonic crystal. In frequency-domain, the transmission and reflection coefficients in the unmagnetized plasma photonic crystal were calculated, and the influence factors on plasma photonic crystals including dielectric constants of dielectric, spatial period, filling factor, plasma frequency, and collision frequency were studied.

  4. Calibration of germanium detectors

    International Nuclear Information System (INIS)

    Debertin, K.

    1983-01-01

    The process of determining the energy-dependent detection probability with measurements using Ge (Li) and high-grade germanium detectors is described. The paper explains which standards are best for a given purpose and given requirements as to accuracy, and how to assess measuring geometry variations and summation corrections. (DG) [de

  5. Oriented bottom-up growth of armchair graphene nanoribbons on germanium

    Science.gov (United States)

    Arnold, Michael Scott; Jacobberger, Robert Michael

    2016-03-15

    Graphene nanoribbon arrays, methods of growing graphene nanoribbon arrays and electronic and photonic devices incorporating the graphene nanoribbon arrays are provided. The graphene nanoribbons in the arrays are formed using a scalable, bottom-up, chemical vapor deposition (CVD) technique in which the (001) facet of the germanium is used to orient the graphene nanoribbon crystals along the [110] directions of the germanium.

  6. Germanium and indium

    Science.gov (United States)

    Shanks, W.C. Pat; Kimball, Bryn E.; Tolcin, Amy C.; Guberman, David E.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Germanium and indium are two important elements used in electronics devices, flat-panel display screens, light-emitting diodes, night vision devices, optical fiber, optical lens systems, and solar power arrays. Germanium and indium are treated together in this chapter because they have similar technological uses and because both are recovered as byproducts, mainly from copper and zinc sulfides.The world’s total production of germanium in 2011 was estimated to be 118 metric tons. This total comprised germanium recovered from zinc concentrates, from fly ash residues from coal burning, and from recycled material. Worldwide, primary germanium was recovered in Canada from zinc concentrates shipped from the United States; in China from zinc residues and coal from multiple sources in China and elsewhere; in Finland from zinc concentrates from the Democratic Republic of the Congo; and in Russia from coal.World production of indium metal was estimated to be about 723 metric tons in 2011; more than one-half of the total was produced in China. Other leading producers included Belgium, Canada, Japan, and the Republic of Korea. These five countries accounted for nearly 95 percent of primary indium production.Deposit types that contain significant amounts of germanium include volcanogenic massive sulfide (VMS) deposits, sedimentary exhalative (SEDEX) deposits, Mississippi Valley-type (MVT) lead-zinc deposits (including Irish-type zinc-lead deposits), Kipushi-type zinc-lead-copper replacement bodies in carbonate rocks, and coal deposits.More than one-half of the byproduct indium in the world is produced in southern China from VMS and SEDEX deposits, and much of the remainder is produced from zinc concentrates from MVT deposits. The Laochang deposit in Yunnan Province, China, and the VMS deposits of the Murchison greenstone belt in Limpopo Province, South Africa, provide excellent examples of indium-enriched deposits. The SEDEX deposits at Bainiuchang, China (located in

  7. crystal

    Science.gov (United States)

    Yu, Yi; Huang, Yisheng; Zhang, Lizhen; Lin, Zhoubin; Sun, Shijia; Wang, Guofu

    2014-07-01

    A Nd3+:Na2La4(WO4)7 crystal with dimensions of ϕ 17 × 30 mm3 was grown by the Czochralski method. The thermal expansion coefficients of Nd3+:Na2La4(WO4)7 crystal are 1.32 × 10-5 K-1 along c-axis and 1.23 × 10-5 K-1 along a-axis, respectively. The spectroscopic characteristics of Nd3+:Na2La4(WO4)7 crystal were investigated. The Judd-Ofelt theory was applied to calculate the spectral parameters. The absorption cross sections at 805 nm are 2.17 × 10-20 cm2 with a full width at half maximum (FWHM) of 15 nm for π-polarization, and 2.29 × 10-20 cm2 with a FWHM of 14 nm for σ-polarization. The emission cross sections are 3.19 × 10-20 cm2 for σ-polarization and 2.67 × 10-20 cm2 for π-polarization at 1,064 nm. The fluorescence quantum efficiency is 67 %. The quasi-cw laser of Nd3+:Na2La4(WO4)7 crystal was performed. The maximum output power is 80 mW. The slope efficiency is 7.12 %. The results suggest Nd3+:Na2La4(WO4)7 crystal as a promising laser crystal fit for laser diode pumping.

  8. Carbon in high-purity germanium

    International Nuclear Information System (INIS)

    Haller, E.E.; Hansen, W.L.; Luke, P.; McMurray, R.; Jarrett, B.

    1981-10-01

    Using 14 C-spiked pyrolytic graphite-coated quartz crucibles for the growth of nine ultra-pure germanium single crystals, we have determined the carbon content and distribution in these crystals. Using autoradiography, we observe a rapidly decreasing carbon cluster concentration in successively grown crystals. Nuclear radiation detectors made from the crystals measure the betas from the internally decaying 14 C nuclei with close to 100% efficiency. An average value for the total carbon concentration [ 14 C + 12 C] is approx. 2 x 10 14 cm -3 , a value substantially larger than expected from earlier metallurgical studies. Contrary to the most recent measurement, we find the shape of the beta spectrum to agree very well with the statistical shape predicted for allowed transitions

  9. Silver-compensated germanium center in α-quartz

    International Nuclear Information System (INIS)

    Laman, F.C.; Weil, J.A.

    1977-01-01

    A synthetic germanium-doped crystal of α-quartz was subjected to an electro-diffusion process (ca. 600 V/cm, 625 0 K), in which Ag + ions were introduced along the crystal's optic axis (c). A 9800 MHz electron paramagnetic resonance spectrum at room temperature, taken after room temperature X-irradiation, revealed the presence of a silver-compensated germanium center Asub(Ge-Ag) with large, almost isotropic 107 Ag and 109 Ag hyperfine splittings. Measurement of the spin-Hamiltonian discloses that a suitable model for the observed center utilizes germanium, substituted for silicon, with the accompanying silver interstitial in a nearby c-axis channel, and with electronic structure in which an appreciable admixture Ge 4+ - Ag 0 to Ge 3+ - Ag + exists. Estimates of the unpaired electron orbital are presented. (author)

  10. Calibration of germanium detectors

    International Nuclear Information System (INIS)

    Bjurman, B.; Erlandsson, B.

    1985-01-01

    This paper describes problems concerning the calibration of germanium detectors for the measurement of gamma-radiation from environmental samples. It also contains a brief description of some ways of reducing the uncertainties concerning the activity determination. These uncertainties have many sources, such as counting statistics, full energy peak efficiency determination, density correction and radionuclide specific-coincidence effects, when environmental samples are investigated at close source-to-detector distances

  11. Composite germanium monochromators - results for the TriCS

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, J.; Fischer, S.; Boehm, M.; Keller, L.; Horisberger, M.; Medarde, M.; Fischer, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    Composite germanium monochromators are in the beginning of their application in neutron diffraction. We show here the importance of the permanent quality control with neutrons on the example of the 311 wafers which will be used on the single crystal diffractometer TriCS at SINQ. (author) 2 figs., 3 refs.

  12. Detector materials: germanium and silicon

    International Nuclear Information System (INIS)

    Haller, E.E.

    1981-11-01

    This article is a summary of a short course lecture given in conjunction with the 1981 Nuclear Science Symposium. The basic physical properties of elemental semiconductors are reviewed. The interaction of energetic radiation with matter is discussed in order to develop a feeling for the appropriate semiconductor detector dimensions. The extremely low net dopant concentrations which are required are derived directly from the detector dimensions. A survey of the more recent techniques which have been developed for the analysis of detector grade semiconductor single crystals is presented

  13. Nonthermal plasma synthesis of size-controlled, monodisperse, freestanding germanium nanocrystals

    International Nuclear Information System (INIS)

    Gresback, Ryan; Holman, Zachary; Kortshagen, Uwe

    2007-01-01

    Germanium nanocrystals may be of interest for a variety of electronic and optoelectronic applications including photovoltaics, primarily due to the tunability of their band gap from the infrared into the visible range of the spectrum. This letter discusses the synthesis of monodisperse germanium nanocrystals via a nonthermal plasma approach which allows for precise control of the nanocrystal size. Germanium crystals are synthesized from germanium tetrachloride and hydrogen entrained in an argon background gas. The crystal size can be varied between 4 and 50 nm by changing the residence times of crystals in the plasma between ∼30 and 440 ms. Adjusting the plasma power enables one to synthesize fully amorphous or fully crystalline particles with otherwise similar properties

  14. Tunable conductivity in mesoporous germanium

    Science.gov (United States)

    Beattie, Meghan N.; Bioud, Youcef A.; Hobson, David G.; Boucherif, Abderraouf; Valdivia, Christopher E.; Drouin, Dominique; Arès, Richard; Hinzer, Karin

    2018-05-01

    Germanium-based nanostructures have attracted increasing attention due to favourable electrical and optical properties, which are tunable on the nanoscale. High densities of germanium nanocrystals are synthesized via electrochemical etching, making porous germanium an appealing nanostructured material for a variety of applications. In this work, we have demonstrated highly tunable electrical conductivity in mesoporous germanium layers by conducting a systematic study varying crystallite size using thermal annealing, with experimental conductivities ranging from 0.6 to 33 (×10‑3) Ω‑1 cm‑1. The conductivity of as-prepared mesoporous germanium with 70% porosity and crystallite size between 4 and 10 nm is shown to be ∼0.9 × 10‑3 Ω‑1 cm‑1, 5 orders of magnitude smaller than that of bulk p-type germanium. Thermal annealing for 10 min at 400 °C further reduced the conductivity; however, annealing at 450 °C caused a morphological transformation from columnar crystallites to interconnecting granular crystallites and an increase in conductivity by two orders of magnitude relative to as-prepared mesoporous germanium caused by reduced influence of surface states. We developed an electrostatic model relating the carrier concentration and mobility of p-type mesoporous germanium to the nanoscale morphology. Correlation within an order of magnitude was found between modelled and experimental conductivities, limited by variation in sample uniformity and uncertainty in void size and fraction after annealing. Furthermore, theoretical results suggest that mesoporous germanium conductivity could be tuned over four orders of magnitude, leading to optimized hybrid devices.

  15. Studies of melting, crystallization, and commensurate-incommensurate transitions in two dimensions: Third year progress report

    International Nuclear Information System (INIS)

    Mockler, R.C.; O'Sullivan, W.J.

    1988-09-01

    The free expansion melting of a 2D suspension of micron-size spheres contained between parallel silica plates has been analyzed in some detail. The translational and orientational correlation functions conform with KTHNY theory prediction of a two-step melting process. The visual observations and study of the defect structures and evolution strongly suggest the process is first order with two-phase coexistence taking the place of the intermediate (hexatic) phase. On the other hand, melting of a 2.88 μm monolayer on water is in accord with KTHNY including the observation of dislocation-pair unbinding at the first transition. However, there is no evidence of the dissociation of dislocation into free disclinations at the second transition (the defect structure is much too complex here). Dynamic light scattering experiments on a 2D crystal on the surface of water yield viscous damping factors, force constants and the Lame coefficients. 2D computer simulation, in collaboration with Noel Clark's group, reveal cooperative motion along chains of particles (''snakes''). They appear to be the principal cause of diffusion near the melting point and important in the melting process. 16 refs

  16. Crystal size and shape analysis of Pt nanoparticles in two and three dimensions

    International Nuclear Information System (INIS)

    Gontard, L Cervera; Dunin-Borkowski, R E; Ozkaya, D; Hyde, T; Midgley, P A; Ash, P

    2006-01-01

    The majority of industrial catalysts are high-surface-area solids, onto which an active component is dispersed in the form of nanoparticles that have sizes of between 1 and 20 nm. In an industrial environment, the crystal size distributions of such particles are conventionally measured by using either bright-field transmission electron microscope (TEM) images or X-ray diffraction. However, the analysis of particle sizes and shapes from two-dimensional bright-field TEM images is affected by variations in image contrast between adjacent particles, by the difficulty of distinguishing the particles from their matrix, and by overlap between particles when they are imaged in projection. High-angle annular dark-field (HAADF) electron tomography provides a convenient technique for overcoming many of these problems, by allowing the three-dimensional shapes and sizes of high atomic number nanoparticles that are supported on a low atomic number support to be recorded. Here, we discuss the three-dimensional analysis of particle sizes and shapes from such tomographic data, and we assess whether such measurements provide different information from that obtained using two-dimensional TEM images and X-ray diffraction measurements

  17. New hydrogen donors in germanium

    International Nuclear Information System (INIS)

    Pokotilo, Yu.M.; Petukh, A.N.; Litvinov, V.V.

    2003-01-01

    The electrophysical properties of the n-type conductivity germanium, irradiated through protons, is studied by the volt-farad method. It is shown that the heat treatment of the implanted germanium at the temperature of 200-300 deg C leads to formation of the fast-diffusing second-rate donors. It is established that the diffusion coefficient of the identified donors coincides with the diffusion coefficient of the atomic hydrogen with an account of the capture on the traps. The conclusion is made, that the atomic hydrogen is the second-rate donor center in germanium [ru

  18. Reduction of Defects in Germanium-Silicon

    Science.gov (United States)

    2003-01-01

    Crystals grown without contact with a container have far superior quality to otherwise similar crystals grown in direct contact with a container. In addition to float-zone processing, detached- Bridgman growth is a promising tool to improve crystal quality, without the limitations of float zoning or the defects introduced by normal Bridgman growth. Goals of this project include the development of the detached Bridgman process to be reproducible and well understood and to quantitatively compare the defect and impurity levels in crystals grown by these three methods. Germanium (Ge) and germanium-silicon (Ge-Si) alloys are being used. At MSFC, we are responsible for the detached Bridgman experiments intended to differentiate among proposed mechanisms of detachment, and to confirm or refine our understanding of detachment. Because the contact angle is critical to determining the conditions for detachment, the sessile drop method was used to measure the contact angles as a function of temperature and composition for a large number of substrates made of potential ampoule materials. Growth experiments have used pyrolytic boron nitride (pBN) and fused silica ampoules with the majority of the detached results occurring predictably in the pBN. Etch pit density (EPD) measurements of normal and detached Bridgman-grown Ge samples show a two order of magnitude improvement in the detached-grown samples. The nature and extent of detachment is determined by using profilometry in conjunction with optical and electron microscopy. The stability of detachment has been analyzed, and an empirical model for the conditions necessary to achieve sufficient stability to maintain detached growth for extended periods has been developed. We have investigated the effects on detachment of ampoule material, pressure difference above and below the melt, and Si concentration; samples that are nearly completely detached can be grown repeatedly in pBN. Current work is concentrated on developing a

  19. Determination of the Wetting Angle of Germanium and Germanium-Silicon Melts on Different Substrate Materials

    Science.gov (United States)

    Kaiser, Natalie; Croell, Arne; Szofran, F. R.; Cobb. S. D.; Dold, P.; Benz, K. W.

    1999-01-01

    During Bridgman growth of semiconductors detachment of the crystal and the melt meniscus has occasionally been observed, mainly under microgravity (microg) conditions. An important factor for detached growth is the wetting angle of the melt with the crucible material. High contact angles are more likely to result in detachment of the growing crystal from the ampoule wall. In order to achieve detached growth of germanium (Ge) and germanium-silicon (GeSi) crystals under 1g and microg conditions, sessile drop measurements were performed to determine the most suitable ampoule material as well as temperature dependence of the surface tension for GeSi. Sapphire, fused quartz, glassy carbon, graphite, SiC, pyrolytic Boron Nitride (pBN), AIN, and diamond were used as substrates. Furthermore, different cleaning procedures and surface treatments (etching, sandblasting, etc.) of the same substrate material and their effect on the wetting behavior were studied during these experiments. pBN and AIN substrates exhibited the highest contact angles with values around 170 deg.

  20. Formation probabilities and relaxation rates of muon states in germanium

    International Nuclear Information System (INIS)

    Clawson, C.W.; Haller, E.E.; Crowe, K.M.; Rosenblum, S.S.; Brewer, J.H.; British Columbia Univ., Vancouver

    1981-01-01

    We report the first results of a study of the muonium states in ultra-pure germanium crystals grown under a variety of conditions at Lawrence Berkeley Laboratory. Among the variations studied are: 1) Hydrogen, deuterium, or nitrogen atmosphere during growth; 2) Dislocation-free vs. dislocated crystals; 3) Grown from quartz, graphite, and pyrolytic graphite coated quartz crucibles; 4) n-type vs. p-type. We report a significant difference in the muonium relaxation rate between the dislocated and non-dislocated crystals. (orig.)

  1. HEROICA: A fast screening facility for the characterization of germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Andreotti, Erica [Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen (Germany); Collaboration: GERDA Collaboration

    2013-08-08

    In the course of 2012, a facility for the fast screening of germanium detectors called HEROICA (Hades Experimental Research Of Intrinsic Crystal Appliances) has been installed at the HADES underground laboratory in the premises of the Belgian Nuclear Research Centre SCK•CEN, in Mol (Belgium). The facility allows performing a complete characterization of the critical germanium detectors' operational parameters with a rate of about two detectors per week.

  2. Porous germanium multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Garralaga Rojas, Enrique; Hensen, Jan; Brendel, Rolf [Institut fuer Solarenergieforschung Hameln (ISFH), Emmerthal (Germany); Carstensen, Juergen; Foell, Helmut [Chair for General Materials Science, Faculty of Engineering, Christian-Albrechts-University of Kiel (Germany)

    2011-06-15

    We present the reproducible fabrication of porous germanium (PGe) single- and multilayers. Mesoporous layers form on heavily doped 4'' p-type Ge wafers by electrochemical etching in highly concentrated HF-based electrolytes with concentrations in a range of 30-50 wt.%. Direct PGe formation is accompanied by a constant dissolution of the already-formed porous layer at the electrolyte/PGe interface, hence yielding a thinner substrate after etching. This effect inhibits multilayer formation as the starting layer is etched while forming the second layer. We avoid dissolution of the porous layer by alternating the etching bias from anodic to cathodic. PGe formation occurs during anodic etching whereas the cathodic step passivates pore walls with H-atoms and avoids electropolishing. The passivation lasts a limited time depending on the etching current density and electrolyte concentration, necessitating a repetition of the cathodic step at suitable intervals. With optimized alternating bias mesoporous multilayer production is possible. We control the porosity of each single layer by varying the etching current density and the electrolyte (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Cryogenic readout techniques for germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Benato, G. [University of Zurich, (Switzerland); Cattadori, C. [INFN - Milano Bicocca, (Italy); Di Vacri, A. [INFN LNGS, (Italy); Ferri, E. [Universita Milano Bicocca/INFN Milano Bicocca, (Italy); D' Andrea, V.; Macolino, C. [GSSI/INFN LNGS, (Italy); Riboldi, S. [Universita degli Studi di Milano/INFN Milano, (Italy); Salamida, F. [Universita Milano Bicocca/INFN Milano Bicocca, (Italy)

    2015-07-01

    High Purity Germanium detectors are used in many applications, from nuclear and astro-particle physics, to homeland security or environment protection. Although quite standard configurations are often used, with cryostats, charge sensitive amplifiers and analog or digital acquisition systems all commercially available, it might be the case that a few specific applications, e.g. satellites, portable devices, cryogenic physics experiments, etc. also require the development of a few additional or complementary techniques. An interesting case is for sure GERDA, the Germanium Detector Array experiment, searching for neutrino-less double beta decay of {sup 76}Ge at the Gran Sasso National Laboratory of INFN - Italy. In GERDA the entire detector array, composed of semi-coaxial and BEGe naked crystals, is operated suspended inside a cryostat filled with liquid argon, that acts not only as cooling medium and but also as an active shield, thanks to its scintillation properties. These peculiar circumstances, together with the additional requirement of a very low radioactive background from all the materials adjacent to the detectors, clearly introduce significant constraints on the design of the Ge front-end readout electronics. All the Ge readout solutions developed within the framework of the GERDA collaboration, for both Phase I and Phase II, will be briefly reviewed, with their relative strength and weakness compared together and with respect to ideal Ge readout. Finally, the digital processing techniques developed by the GERDA collaboration for energy estimation of Ge detector signals will be recalled. (authors)

  4. Status report on the International Germanium Experiment

    International Nuclear Information System (INIS)

    Brodzinski, R.L.; Avignone, F.T.; Collar, J.I.; Courant, H.; Garcia, E.; Guerard, C.K.; Hensley, W.K.; Kirpichnikov, I.V.; Miley, H.S.; Morales, A.; Morales, J.; Nunez-Lagos, R.; Osetrov, S.B.; Pogosov, V.S.; Pomansky, A.A.; Puimedon, J.; Reeves, J.H.; Ruddick, K.; Saenz, C.; Salinas, A.; Sarsa, M.L.; Smolnikov, A.A.; Starostin, A.S.; Tamanyan, A.G.; Vasiliev, S.I.; Villar, J.A.

    1993-01-01

    Phase II detector fabrication for the International Germanium Experiment is in progress. Sources of background observed during Phase I are discussed. Cosmogenic 7 Be is measured in germanium. Radium contamination, presumably in electroformed copper, is reported. (orig.)

  5. Status report on the International Germanium Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Brodzinski, R L; Avignone, F.T.; Collar, J I; Courant, H; Garcia, E; Guerard, C K; Hensley, W K; Kirpichnikov, I V; Miley, H S; Morales, A; Morales, J; Nunez-Lagos, R; Osetrov, S B; Pogosov, V S; Pomansky, A A; Puimedon, J; Reeves, J H; Ruddick, K; Saenz, C; Salinas, A; Sarsa, M L; Smolnikov, A A; Starostin, A S; Tamanyan, A G; Vasiliev, S I; Villar, J A [Pacific Northwest Lab., Richland, WA (United States) Univ. of South Carolina, Columbia, SC (United States) Univ. of Minnesota, Minneapolis, MN (United States) Univ. of Zaragoza (Spain) Inst. for Theoretical and Experimental Physics, Moscow (Russian Federation) Inst. for Nuclear Research, Baksan Neutrino Observatory (Russian Federation) Yerevan Physical Inst., Yerevan (Armenia)

    1993-04-01

    Phase II detector fabrication for the International Germanium Experiment is in progress. Sources of background observed during Phase I are discussed. Cosmogenic [sup 7]Be is measured in germanium. Radium contamination, presumably in electroformed copper, is reported. (orig.)

  6. Lithium germanium detectors reactivation

    International Nuclear Information System (INIS)

    Nicolai, J.A.; Marti, G.V.; Riso, J.M.; Gimenez, C.R.

    1981-01-01

    A convenient method to regenerate the characteristics of damaged Ge(li) detectors, that has been applied in the authors' laboratory, is described. The procedure consists in warming-up the crystal in its cryostat to temperatures between 10 deg C and 30 deg C above room temperature, in order to clean its surface. Subsequent cooling down to liquid nitrogen temperature, followed by one or more clean-up drifting processes, are applied to the crystals. This paper summarizes the results obtained with several detectors; this method was applied successfully to 15 detectors more. (author) [es

  7. Thermal recrystallization of physical vapor deposition based germanium thin films on bulk silicon (100)

    KAUST Repository

    Hussain, Aftab M.

    2013-08-16

    We demonstrate a simple, low-cost, and scalable process for obtaining uniform, smooth surfaced, high quality mono-crystalline germanium (100) thin films on silicon (100). The germanium thin films were deposited on a silicon substrate using plasma-assisted sputtering based physical vapor deposition. They were crystallized by annealing at various temperatures ranging from 700 °C to 1100 °C. We report that the best quality germanium thin films are obtained above the melting point of germanium (937 °C), thus offering a method for in-situ Czochralski process. We show well-behaved high-κ /metal gate metal-oxide-semiconductor capacitors (MOSCAPs) using this film. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Long-term radiation damage to a spaceborne germanium spectrometer

    CERN Document Server

    Kurczynski, P; Hull, E L; Palmer, D; Harris, M J; Seifert, H; Teegarden, B J; Gehrels, N; Cline, T L; Ramaty, R; Sheppard, D; Madden, N W; Luke, P N; Cork, C P; Landis, D A; Malone, D F; Hurley, K

    1999-01-01

    The Transient Gamma-Ray Spectrometer aboard the Wind spacecraft in deep space has observed gamma-ray bursts and solar events for four years. The germanium detector in the instrument has gradually deteriorated from exposure to the approx 10 sup 8 p/cm sup 2 /yr(>100 MeV) cosmic-ray flux. Low-energy tailing and loss of efficiency, attributed to hole trapping and conversion of the germanium from n- to p-type as a result of crystal damage, were observed. Raising the detector bias voltage ameliorated both difficulties and restored the spectrometer to working operation. Together, these observations extend our understanding of the effects of radiation damage to include the previously unsuccessfully studied regime of long-term operation in space. (author)

  9. Radiation-electromagnetic effect in germanium monocrystals

    International Nuclear Information System (INIS)

    Kikoin, I.K.; Kikoin, L.I.; Lazarev, S.D.

    1980-01-01

    Experimentally investigated is the radiation-electromagnetic effect (REM) in germanium monocrystals on excitation of excess current carriers by α particles, protons and X-rays in magnetic fields up to 8 kOe. A cyclotron was used as an α particle source, and a standard X-ray tube with a copper anode - as an X-ray source. The e.m.f. of the REM effect linearly increases with the increase of the magnetic field and is proportional to the charged particle flux at small flux values, saturation occurs at great flux values (approximately 5x10 11 part./cm 2 xs). In the 4-40 MeV energy range the e.m.f. of the REM effect practically does not depend on the α particle energy. On irradiation of the samples with a grinding front surface the REM e.m.f. changes its sign. The REM and Hall effect measurement on α particle irradiated samples has shown that during irradiation a p-n transition is formed in the samples, which must be taken into account while studying the REM effect. The e.m.f. measured for the even REM effect quadratically increases with the magnetic field increase. The barrier radiation-voltaic effect (the effect e.m.f. is measured between the irradiated and nonirradiated sample faces) is studied. Using special masks the samples with a set of consecutive p-n transitions are produced by irradiation of germanium crystals by α particles. Investigation of the photovoltaic and photoelectromagnetic effects on such samples has shown that using this method the efficiency of the REM devices can be increased

  10. TIGRESS highly-segmented high-purity germanium clover detector

    Science.gov (United States)

    Scraggs, H. C.; Pearson, C. J.; Hackman, G.; Smith, M. B.; Austin, R. A. E.; Ball, G. C.; Boston, A. J.; Bricault, P.; Chakrawarthy, R. S.; Churchman, R.; Cowan, N.; Cronkhite, G.; Cunningham, E. S.; Drake, T. E.; Finlay, P.; Garrett, P. E.; Grinyer, G. F.; Hyland, B.; Jones, B.; Leslie, J. R.; Martin, J.-P.; Morris, D.; Morton, A. C.; Phillips, A. A.; Sarazin, F.; Schumaker, M. A.; Svensson, C. E.; Valiente-Dobón, J. J.; Waddington, J. C.; Watters, L. M.; Zimmerman, L.

    2005-05-01

    The TRIUMF-ISAC Gamma-Ray Escape-Suppressed Spectrometer (TIGRESS) will consist of twelve units of four high-purity germanium (HPGe) crystals in a common cryostat. The outer contacts of each crystal will be divided into four quadrants and two lateral segments for a total of eight outer contacts. The performance of a prototype HPGe four-crystal unit has been investigated. Integrated noise spectra for all contacts were measured. Energy resolutions, relative efficiencies for both individual crystals and for the entire unit, and peak-to-total ratios were measured with point-like sources. Position-dependent performance was measured by moving a collimated source across the face of the detector.

  11. Silicon-germanium (Sige) nanostructures production, properties and applications in electronics

    CERN Document Server

    Usami, N

    2011-01-01

    Nanostructured silicon-germanium (SiGe) provides the prospect of novel and enhanced electronic device performance. This book reviews the materials science and technology of SiGe nanostructures, including crystal growth, fabrication of nanostructures, material properties and applications in electronics.$bNanostructured silicon-germanium (SiGe) opens up the prospects of novel and enhanced electronic device performance, especially for semiconductor devices. Silicon-germanium (SiGe) nanostructures reviews the materials science of nanostructures and their properties and applications in different electronic devices. The introductory part one covers the structural properties of SiGe nanostructures, with a further chapter discussing electronic band structures of SiGe alloys. Part two concentrates on the formation of SiGe nanostructures, with chapters on different methods of crystal growth such as molecular beam epitaxy and chemical vapour deposition. This part also includes chapters covering strain engineering and mo...

  12. Harmonic Lattice Dynamics of Germanium

    Energy Technology Data Exchange (ETDEWEB)

    Nelin, G

    1974-07-01

    The phonon dispersion relations of the DELTA-, LAMBDA-, and SIGMA-directions of germanium at 80 K are analysed in terms of current harmonic lattice dynamical models. On the basis of this experience, a new model is proposed which gives a unified account of the strong points of the previous models. The principal elements of the presented theory are quasiparticle bond charges combined with a valence force field.

  13. Harmonic Lattice Dynamics of Germanium

    International Nuclear Information System (INIS)

    Nelin, G.

    1974-01-01

    The phonon dispersion relations of the Δ-, Λ-, and Σ-directions of germanium at 80 K are analysed in terms of current harmonic lattice dynamical models. On the basis of this experience, a new model is proposed which gives a unified account of the strong points of the previous models. The principal elements of the presented theory are quasiparticle bond charges combined with a valence force field

  14. Superconductivity of tribolayers formed on germanium by friction between germanium and lead

    Energy Technology Data Exchange (ETDEWEB)

    Dukhovskoi, A.; Karapetyan, S.S.; Morozov, Y.G.; Onishchenko, A.S.; Petinov, V.I.; Ponomarev, A.N.; Silin, A.A.; Stepanov, B.M.; Tal' roze, V.L.

    1978-04-05

    A superconducting state was observed for the first time in tribolayers of germanium produced by friction of germanium with lead at 42 K. The maximum value of T/sub c/ obtained in the experiment was 19 K, which is much higher than T/sub c/ of bulk lead itself or of lead films sputtered on germanium.

  15. High performance germanium MOSFETs

    Energy Technology Data Exchange (ETDEWEB)

    Saraswat, Krishna [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States)]. E-mail: saraswat@stanford.edu; Chui, Chi On [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Krishnamohan, Tejas [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Kim, Donghyun [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Nayfeh, Ammar [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Pethe, Abhijit [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States)

    2006-12-15

    Ge is a very promising material as future channel materials for nanoscale MOSFETs due to its high mobility and thus a higher source injection velocity, which translates into higher drive current and smaller gate delay. However, for Ge to become main-stream, surface passivation and heterogeneous integration of crystalline Ge layers on Si must be achieved. We have demonstrated growth of fully relaxed smooth single crystal Ge layers on Si using a novel multi-step growth and hydrogen anneal process without any graded buffer SiGe layer. Surface passivation of Ge has been achieved with its native oxynitride (GeO {sub x}N {sub y} ) and high-permittivity (high-k) metal oxides of Al, Zr and Hf. High mobility MOSFETs have been demonstrated in bulk Ge with high-k gate dielectrics and metal gates. However, due to their smaller bandgap and higher dielectric constant, most high mobility materials suffer from large band-to-band tunneling (BTBT) leakage currents and worse short channel effects. We present novel, Si and Ge based heterostructure MOSFETs, which can significantly reduce the BTBT leakage currents while retaining high channel mobility, making them suitable for scaling into the sub-15 nm regime. Through full band Monte-Carlo, Poisson-Schrodinger and detailed BTBT simulations we show a dramatic reduction in BTBT and excellent electrostatic control of the channel, while maintaining very high drive currents in these highly scaled heterostructure DGFETs. Heterostructure MOSFETs with varying strained-Ge or SiGe thickness, Si cap thickness and Ge percentage were fabricated on bulk Si and SOI substrates. The ultra-thin ({approx}2 nm) strained-Ge channel heterostructure MOSFETs exhibited >4x mobility enhancements over bulk Si devices and >10x BTBT reduction over surface channel strained SiGe devices.

  16. High performance germanium MOSFETs

    International Nuclear Information System (INIS)

    Saraswat, Krishna; Chui, Chi On; Krishnamohan, Tejas; Kim, Donghyun; Nayfeh, Ammar; Pethe, Abhijit

    2006-01-01

    Ge is a very promising material as future channel materials for nanoscale MOSFETs due to its high mobility and thus a higher source injection velocity, which translates into higher drive current and smaller gate delay. However, for Ge to become main-stream, surface passivation and heterogeneous integration of crystalline Ge layers on Si must be achieved. We have demonstrated growth of fully relaxed smooth single crystal Ge layers on Si using a novel multi-step growth and hydrogen anneal process without any graded buffer SiGe layer. Surface passivation of Ge has been achieved with its native oxynitride (GeO x N y ) and high-permittivity (high-k) metal oxides of Al, Zr and Hf. High mobility MOSFETs have been demonstrated in bulk Ge with high-k gate dielectrics and metal gates. However, due to their smaller bandgap and higher dielectric constant, most high mobility materials suffer from large band-to-band tunneling (BTBT) leakage currents and worse short channel effects. We present novel, Si and Ge based heterostructure MOSFETs, which can significantly reduce the BTBT leakage currents while retaining high channel mobility, making them suitable for scaling into the sub-15 nm regime. Through full band Monte-Carlo, Poisson-Schrodinger and detailed BTBT simulations we show a dramatic reduction in BTBT and excellent electrostatic control of the channel, while maintaining very high drive currents in these highly scaled heterostructure DGFETs. Heterostructure MOSFETs with varying strained-Ge or SiGe thickness, Si cap thickness and Ge percentage were fabricated on bulk Si and SOI substrates. The ultra-thin (∼2 nm) strained-Ge channel heterostructure MOSFETs exhibited >4x mobility enhancements over bulk Si devices and >10x BTBT reduction over surface channel strained SiGe devices

  17. Effect of the microstructure on electrical properties of high-purity germanium

    Science.gov (United States)

    Podkopaev, O. I.; Shimanskii, A. F.; Molotkovskaya, N. O.; Kulakovskaya, T. V.

    2013-05-01

    The interrelation between the electrical properties and the microstructure of high-purity germanium crystals has been revealed. The electrical conductivity of polycrystalline samples increases and the life-time of nonequilibrium charge carriers in them decreases with a decrease in the crystallite sizes.

  18. CCDC 761158: Experimental Crystal Structure Determination : catena-[tetrakis(2-Methylpiperazinium) octakis(mu~3~-oxo)-tetratetracontakis(mu~2~-oxo)-tetrahydroxo-pentacosa-germanium(iv) 2-methylpiperazine solvate pentahydrate

    KAUST Repository

    Yue, Huijuan

    2013-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  19. CCDC 1047860: Experimental Crystal Structure Determination : catena-[heptakis(mu-selenido)-bis(ethane-1,2-diamine)-diselenido-tri-germanium-di-manganese bis(ethane-1,2-diamine)-hydroxy-manganese

    KAUST Repository

    Zhang, Guodong

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  20. Buried melting in germanium implanted silicon by millisecond flash lamp annealing

    International Nuclear Information System (INIS)

    Voelskow, Matthias; Yankov, Rossen; Skorupa, Wolfgang; Pezoldt, Joerg; Kups, Thomas

    2008-01-01

    Flash lamp annealing in the millisecond range has been used to induce buried melting in silicon. For this purpose high dose high-energy germanium implantation has been employed to lower the melting temperature of silicon in a predetermined depth region. Subsequent flash lamp treatment at high energy densities leads to local melting of the germanium rich layer. The thickness of the molten layer has been found to depend on the irradiation energy density. During the cool-down period, epitaxial crystallization takes place resulting in a largely defect-free layer

  1. Synthesis and evaluation of germanium organometallic compounds as precursors for chemical vapor deposition (CVD) and for obtaining nanoparticles of elemental germanium

    International Nuclear Information System (INIS)

    Ballestero Martinez, Ernesto

    2014-01-01

    The interest in the development of materials having applications such as electronics areas or biomarkers has affected the synthesis of new compounds based on germanium. This element has had two common oxidation states, +4 and +2, of them, +2 oxidation state has been the least studied and more reactive. Additionally, compounds of germanium (II) have had similarities with carbenes regarding the chemical acid-base Lewis. The preparation of compounds of germanium (II) with ligands β-decimations has enabled stabilization of new chemical functionalities and, simultaneously, provided interesting thermal properties to develop new preparation methodologies of materials with novel properties. The preparation of amides germanium(II) L'Ge(NHPh) [1, L' = {HC (CMeN-2,4,6-Me 3 C 6 H 2 ) 2 }], L'Ge(4-NHPy) [2] L'Ge(2-NHPy) [3] and LGe(2-NHPy) [4, L = {HC(CMeN-2,6- i Pr 2 C 6 H 3 ) 2 }]; the structural chemical composition were determined using techniques such as nuclear magnetic resonance ( 1 H, 13 C), other techniques are treated: elemental analysis, melting point, infrared spectroscopy, X-ray diffraction of single crystal and thermal gravimetric analysis (TGA). The TGA has showed that 4-1 have experimented a thermal decomposition; therefore, these compounds could be considered as potential starting materials for obtaining germanium nitride (GeN x ). Certainly, the availability of nitrogen coordinating atoms in the chemical composition in 2-4 have been interesting because it could act as ligands in reactions with transition metal complexes. That way, information could be obtained at the molecular level for some reactions and interactions that in surface chemistry have used similar link sites, for example, chemical functionalization of silicon and germanium substrates. The synthesis and structural characterization of germanium chloride compound(II) L''GeCl [5, L'' = HC{(CMe) (N-2,6-Me 2 C 6 H 3 )} 2 ], which could be used later for the

  2. Controlled localised melting in silicon by high dose germanium implantation and flash lamp annealing

    International Nuclear Information System (INIS)

    Voelskow, Matthias; Skorupa, Wolfgang; Pezoldt, Joerg; Kups, Thomas

    2009-01-01

    High intensity light pulse irradiation of monocrystalline silicon wafers is usually accompanied by inhomogeneous surface melting. The aim of the present work is to induce homogeneous buried melting in silicon by germanium implantation and subsequent flash lamp annealing. For this purpose high dose, high energy germanium implantation has been employed to lower the melting temperature of silicon in a predetermined depth region. Subsequent flash lamp irradiation at high energy densities leads to local melting of the germanium rich buried layer, whereby the thickness of the molten layer depends on the irradiation energy density. During the cooling down epitaxial crystallization takes place resulting in a largely defect-free layer. The combination of buried melting and dopant segregation has the potential to produce unusually buried doping profiles or to create strained silicon structures.

  3. Solution synthesis of germanium nanocrystals

    Science.gov (United States)

    Gerung, Henry [Albuquerque, NM; Boyle, Timothy J [Kensington, MD; Bunge, Scott D [Cuyahoga Falls, OH

    2009-09-22

    A method for providing a route for the synthesis of a Ge(0) nanometer-sized material from. A Ge(II) precursor is dissolved in a ligand heated to a temperature, generally between approximately 100.degree. C. and 400.degree. C., sufficient to thermally reduce the Ge(II) to Ge(0), where the ligand is a compound that can bond to the surface of the germanium nanomaterials to subsequently prevent agglomeration of the nanomaterials. The ligand encapsulates the surface of the Ge(0) material to prevent agglomeration. The resulting solution is cooled for handling, with the cooling characteristics useful in controlling the size and size distribution of the Ge(0) materials. The characteristics of the Ge(II) precursor determine whether the Ge(0) materials that result will be nanocrystals or nanowires.

  4. Metal-oxide-semiconductor devices based on epitaxial germanium-carbon layers grown directly on silicon substrates by ultra-high-vacuum chemical vapor deposition

    Science.gov (United States)

    Kelly, David Quest

    After the integrated circuit was invented in 1959, complementary metal-oxide-semiconductor (CMOS) technology soon became the mainstay of the semiconductor industry. Silicon-based CMOS has dominated logic technologies for decades. During this time, chip performance has grown at an exponential rate at the cost of higher power consumption and increased process complexity. The performance gains have been made possible through scaling down circuit dimensions by improvements in lithography capabilities. Since scaling cannot continue forever, researchers have vigorously pursued new ways of improving the performance of metal-oxide-semiconductor field-effect transistors (MOSFETs) without having to shrink gate lengths and reduce the gate insulator thickness. Strained silicon, with its ability to boost transistor current by improving the channel mobility, is one of the methods that has already found its way into production. Although not yet in production, high-kappa dielectrics have also drawn wide interest in industry since they allow for the reduction of the electrical oxide thickness of the gate stack without having to reduce the physical thickness of the dielectric. Further out on the horizon is the incorporation of high-mobility materials such as germanium (Ge), silicon-germanium (Si1-xGe x), and the III-V semiconductors. Among the high-mobility materials, Ge has drawn the most attention because it has been shown to be compatible with high-kappa dielectrics and to produce high drive currents compared to Si. Among the most difficult challenges for integrating Ge on Si is finding a suitable method for reducing the number of crystal defects. The use of strain-relaxed Si1- xGex buffers has proven successful for reducing the threading dislocation density in Ge epitaxial layers, but questions remain as to the viability of this method in terms of cost and process complexity. This dissertation presents research on thin germanium-carbon (Ge 1-yCy layers on Si for the fabrication

  5. Germanium content in Polish hard coals

    Directory of Open Access Journals (Sweden)

    Makowska Dorota

    2016-01-01

    Full Text Available Due to the policy of the European Union, it is necessary to search for new sources of scarce raw materials. One of these materials is germanium, listed as a critical element. This semi-metal is widely used in the electronics industry, for example in the production of semiconductors, fibre optics and solar cells. Coal and fly ash from its combustion and gasification for a long time have been considered as a potential source of many critical elements, particularly germanium. The paper presents the results of germanium content determination in the Polish hard coal. 23 coal samples of various coal ranks were analysed. The samples were collected from 15 mines of the Upper Silesian Coal Basin and from one mine of the Lublin Coal Basin. The determination of germanium content was performed with the use of Atomic Absorption Spectrometry with Electrothermal Atomization (GFAAS. The investigation showed that germanium content in the analysed samples was at least twice lower than the average content of this element in the hard coals analysed so far and was in the range of 0.08 ÷ 1.28 mg/kg. Moreover, the content of Ge in the ashes from the studied coals does not exceed 15 mg/kg, which is lower than the average value of Ge content in the coal ashes. The highest content of this element characterizes coals of the Lublin Coal Basin and young coals type 31 from the Vistula region. The results indicate a low utility of the analysed coal ashes as a source of the recovery of germanium. On the basis of the analyses, the lack of the relationship between the content of the element and the ash content in the tested coals was noted. For coals of the Upper Silesian Coal Basin, the relationship between the content of germanium in the ashes and the depth of the seam was observed.

  6. NTD germanium: a novel material for low-temperature bolometers

    International Nuclear Information System (INIS)

    Haller, E.E.; Palaio, N.P.; Rodder, M.; Hansen, W.L.; Kreysa, E.

    1982-06-01

    Six samples of ultra-pure (absolute value N/sub A/ - N/sub D/ absolute value less than or equal to 10 11 cm -3 ), single-crystal germanium have been neutron transmutation doped with neutron doses between 7.5 x 10 16 and 1.88 x 10 18 cm -2 . After thermal annealing at 400 0 C for six hours in a pure argon atmosphere, the samples have been characterized with Hall effect and resistivity measurements between 300 and 0.3 K. Our results show that the resistivity in the low temperature, hopping conduction regime can be approximated with rho = rho 0 exp(Δ/T). The three more heavily doped samples show values for rho 0 and Δ ranging from 430 to 3.3 Ω cm and from 4.9 to 2.8 K, respectively. The excellent reproducibility of neutron transmutation doping and the values of rho 0 and Δ make NTD Ge a prime candidate for the fabrication of low temperature, low noise bolometers. The large variation in the tabulated values of the thermal neutron cross sections for the different germanium isotopes makes it clear that accurate measurements of these cross-sections for well defined neutron energy spectra would be highly desirable

  7. Study and characterization of porous germanium for radiometric measurements

    Energy Technology Data Exchange (ETDEWEB)

    Akkari, E.; Benachour, Z.; Touayar, O.; Benbrahim, J. [Activites de Recherche, Metrologie des Rayonnements, Institut National des Sciences Appliquees et de Technologie, INSAT, Tunis (Tunisia); Aouida, S.; Bessais, B. [Laboratoire de Nanomateriaux et des Systemes de l' Energie, LaNSE, Centre de Recherche et des Technologies de l' Energie, CRTEn, Hammam-Lif (Tunisia)

    2009-07-15

    The aim of this article is to study and realize a new detector based on a porous germanium (pGe) photodiode to be used as a standard for radiometric measurement in the wavelength region between 800 nm and 1700 nm. We present the development and characterization of a porous structure realized on a single-crystal substrate of p-type germanium (Ga doped) and of crystallographic orientation (100). The obtained structure allows, on the one hand, to trap the incident radiation, and on the other hand, to minimize the fluctuations of the front-face reflection coefficient of the photodiode. The first studies thus made show that it is possible to optimize, respectively, the electrical current density and the electrochemical operation time necessary for obtaining exploitable porous structures. The obtained results show that for 50 mA/cm{sup 2} and 5 min as operational parameters, we obtain a textured aspect of the porous samples that present a pyramidal form. The reflectivity study of the front surface shows a constant value of around 38% in a spectral range between 800 nm and 1700 nm approximately. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Ultrafast palladium diffusion in germanium

    KAUST Repository

    Tahini, Hassan Ali; Chroneos, Alexander I.; Middleburgh, Simon C.; Schwingenschlö gl, Udo; Grimes, Robin W.

    2015-01-01

    The slow transport of dopants through crystal lattices has hindered the development of novel devices. Typically atoms are contained within deep potential energy wells which necessitates multiple attempts to hop between minimum energy positions

  9. Characteristic features of the behaviour of deep centers in especially pure germanium

    International Nuclear Information System (INIS)

    Gloriozova, R.I.; Kolesnik, L.I.

    1993-01-01

    Method of capacitive relaxation spectroscopy was used to study spectrum of deep centers in germanium crystals of p-type conductivity with 10 11 -10 13 cm -3 charge carrier concentration, depending on dislocation density and thermal treatment. Existence of two types of centers with 0.24 and 0.32 eV ionization energies, dictating the maximum near 140 K, was established. Change of deep center concentration with time was revealed

  10. Method of beryllium implantation in germanium substrate

    International Nuclear Information System (INIS)

    Kagawa, S.; Baba, Y.; Kaneda, T.; Shirai, T.

    1983-01-01

    A semiconductor device is disclosed, as well as a method for manufacturing it in which ions of beryllium are implanted into a germanium substrate to form a layer containing p-type impurity material. There after the substrate is heated at a temperature in the range of 400 0 C. to 700 0 C. to diffuse the beryllium ions into the substrate so that the concentration of beryllium at the surface of the impurity layer is in the order of 10 17 cm- 3 or more. In one embodiment, a p-type channel stopper is formed locally in a p-type germanium substrate and an n-type active layer is formed in a region surrounded by, and isolated from, the channel stopper region. In another embodiment, a relatively shallow p-type active layer is formed at one part of an n-type germanium substrate and p-type guard ring regions are formed surrounding, and partly overlapping said p-type active layer. In a further embodiment, a p-type island region is formed at one part of an n-type germanium substrate, and an n-type region is formed within said p-type region. In these embodiments, the p-type channel stopper region, p-type guard ring regions and the p-type island region are all formed by implanting ions of beryllium into the germanium substrate

  11. Electrochemical characterization of irreversibly adsorbed germanium on platinum stepped surfaces vicinal to Pt(1 0 0)

    International Nuclear Information System (INIS)

    Rodriguez, P.; Herrero, E.; Solla-Gullon, J.; Vidal-Iglesias, F.J.; Aldaz, A.; Feliu, J.M.

    2005-01-01

    The electrochemical behavior of germanium irreversibly adsorbed at stepped surfaces vicinal to the Pt(1 0 0) pole is reported. The process taking part on the (1 0 0) terraces is evaluated from charge density measurements and calibration lines versus the terrace dimension are plotted. On the series Pt(2n - 1,1,1) having (1 1 1) monoatomic steps, the charge involved in the redox process undergone by the irreversibly adsorbed germanium is able to account for (n - 0.5) terrace atoms, thus suggesting some steric difficulties in the growth of the adlayer on the (1 0 0) terraces. Conversely, no steric problems are apparent in the series Pt(n,1,0) in which more open (1 0 0) steps are present on the (1 0 0) terraces. In this latter case the charge density under the germanium redox peaks is proportional to the number of terrace atoms. Some comparison is made with other stepped surfaces to understand the behavior and stability of germanium irreversibly adsorbed on the different platinum surface sites

  12. Germanium nitride and oxynitride films for surface passivation of Ge radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Maggioni, G., E-mail: maggioni@lnl.infn.it [Dipartimento di Fisica e Astronomia G. Galilei, Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell’Universita’2, I-35020 Legnaro, Padova (Italy); Carturan, S. [Dipartimento di Fisica e Astronomia G. Galilei, Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell’Universita’2, I-35020 Legnaro, Padova (Italy); Fiorese, L. [Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell’Universita’2, I-35020 Legnaro, Padova (Italy); Dipartimento di Ingegneria dei Materiali e delle Tecnologie Industriali, Università di Trento, Via Mesiano 77, I-38050 Povo, Trento (Italy); Pinto, N.; Caproli, F. [Scuola di Scienze e Tecnologie, Sezione di Fisica, Università di Camerino, Via Madonna delle Carceri 9, Camerino (Italy); INFN, Sezione di Perugia, Perugia (Italy); Napoli, D.R. [Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell’Universita’2, I-35020 Legnaro, Padova (Italy); Giarola, M.; Mariotto, G. [Dipartimento di Informatica—Università di Verona, Strada le Grazie 15, I-37134 Verona (Italy)

    2017-01-30

    Highlights: • A surface passivation method for HPGe radiation detectors is proposed. • Highly insulating GeNx- and GeOxNy-based layers are deposited at room temperature. • Deposition parameters affect composition and electrical properties of the layers. • The improved performance of a GeNx-coated HPGe diode is assessed. - Abstract: This work reports a detailed investigation of the properties of germanium nitride and oxynitride films to be applied as passivation layers to Ge radiation detectors. All the samples were deposited at room temperature by reactive RF magnetron sputtering. A strong correlation was found between the deposition parameters, such as deposition rate, substrate bias and atmosphere composition, and the oxygen and nitrogen content in the film matrix. We found that all the films were very poorly crystallized, consisting of very small Ge nitride and oxynitride nanocrystallites, and electrically insulating, with the resistivity changing from three to six orders of magnitude as a function of temperature. A preliminary test of these films as passivation layers was successfully performed by depositing a germanium nitride film on the intrinsic surface of a high-purity germanium (HPGe) diode and measuring the improved performance, in terms of leakage current, with respect to a reference passivated diode. All these interesting results allow us to envisage the application of this coating technology to the surface passivation of germanium-based radiation detectors.

  13. Specific features of phase transformations in germanium monotelluride

    International Nuclear Information System (INIS)

    Bigvava, A.D.; Gabedava, A.A.; Kunchuliya, Eh.D.; Shvangiradze, R.R.

    1981-01-01

    Phase transformations in germanium monotelluride are studied . using DRON-0.5 and DRON-1 plants with high-temperature chamber GPVT-1500 at Cu, Ksub(α) radiation. It is shown that in the whole homogeneity range α GeTe is a metastable phase which is formed under the conditions of fast cooling of alloy from temperatures >=Tsub(cub) (temperature of transition in cubic crystal system). An equilibrium γ-phase is obtained by annealing of dispersed powders and metal-ceramic specimens of alloys with 50.3; 50.6; 50.9 at % Te. Lattice parameters of rhombic γ-phase do not depend on tellurium content in initial α- phase. α→γ transformation is observed at any temperature less than Tsub(cub) with the change of alloy composition, namely tellurium precipitation. γ-phase transforms into β at higher temperatures than α-phase [ru

  14. Buried Porous Silicon-Germanium Layers in Monocrystalline Silicon Lattices

    Science.gov (United States)

    Fathauer, Robert W. (Inventor); George, Thomas (Inventor); Jones, Eric W. (Inventor)

    1998-01-01

    Monocrystalline semiconductor lattices with a buried porous semiconductor layer having different chemical composition is discussed and monocrystalline semiconductor superlattices with a buried porous semiconductor layers having different chemical composition than that of its monocrystalline semiconductor superlattice are discussed. Lattices of alternating layers of monocrystalline silicon and porous silicon-germanium have been produced. These single crystal lattices have been fabricated by epitaxial growth of Si and Si-Ge layers followed by patterning into mesa structures. The mesa structures are strain etched resulting in porosification of the Si-Ge layers with a minor amount of porosification of the monocrystalline Si layers. Thicker Si-Ge layers produced in a similar manner emitted visible light at room temperature.

  15. Neutron-transmutation-doped germanium bolometers

    International Nuclear Information System (INIS)

    Palaio, N.P.; Rodder, M.; Haller, E.E.; Kreysa, E.

    1983-02-01

    Six slices of ultra-pure germanium were irradiated with thermal neutron fluences between 7.5 x 10 16 and 1.88 x 10 18 cm - 2 . After thermal annealing the resistivity was measured down to low temperatures ( 0 exp(δ/T) in the hopping conduction regime. Also, several junction FETs were tested for noise performance at room temperature and in an insulating housing in a 4.2K cryostat. These FETs will be used as first stage amplifiers for neutron-transmutation-doped germanium bolometers

  16. Neutron-transmutation-doped germanium bolometers

    Science.gov (United States)

    Palaio, N. P.; Rodder, M.; Haller, E. E.; Kreysa, E.

    1983-01-01

    Six slices of ultra-pure germanium were irradiated with thermal neutron fluences between 7.5 x 10 to the 16th and 1.88 x 10 to the 18th per sq cm. After thermal annealing the resistivity was measured down to low temperatures (less than 4.2 K) and found to follow the relationship rho = rho sub 0 exp(Delta/T) in the hopping conduction regime. Also, several junction FETs were tested for noise performance at room temperature and in an insulating housing in a 4.2 K cryostat. These FETs will be used as first stage amplifiers for neutron-transmutation-doped germanium bolometers.

  17. Status report on the International Germanium Experiment

    International Nuclear Information System (INIS)

    Brodzinski, R.L.; Hensley, W.K.; Miley, H.S.; Reeves, J.H.; Avignone, F.T.; Collar, J.I.; Guerard, C.K.; Courant, H.; Ruddick, K.; Kirpichnikov, I.V.; Starostin, A.S.; Osetrov, S.B.; Pomansky, A.A.; Smolnikov, A.A.; Vasiliev, S.I.

    1992-06-01

    Phase II detector fabrication for the International Germanium Experiment is awaiting resolution of technical details observed during Phase I. Measurements of fiducial volume, configuration of the tansistor-reset preamplifier stage, and sources of background are discussed. Cosmogenic 7 Be is measured in germanium. Radium contamination in electroformed copper reported. The 2ν double- beta decay half-life of 76 Ge measured with a Phase I detector is in reasonable agreement with previously reported values. No events are observed in the vicinity of the Oν double-beta decay energy

  18. Germanium-overcoated niobium Dayem bridges

    International Nuclear Information System (INIS)

    Holdeman, L.B.; Peters, P.N.

    1976-01-01

    Overcoating constriction microbridges with semiconducting germanium provides additional thermal conductivity at liquid-helium temperatures to reduce the effects of self-heating in these Josephson junctions. Microwave-induced steps were observed in the I-V characteristics of an overcoated Dayem bridge fabricated in a 15-nm-thick niobium film; at 4.2 K (T/sub c/-T=2.6 K), at least 20 steps could be counted. No steps were observed in the I-V characteristics of the bridge prior to overcoating. In addition, the germanium overcoat can protect against electrical disturbances at room temperature

  19. Electron crystallization in two dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Glattli, D.C.; Deville, G.; Probst, O.; Williams, F.I.B. (Lab. de Physique du Solide et de Resonance Magnetique, C.E.N. Saclay, 91 - Gif-sur-Yvette (France)); Andrei, E.Y. (Dept. of Physics, Rutgers Univ., Piscataway, NJ (USA)); Clark, R.G.; Wright, P.A. (Clarendon Lab., Oxford (UK)); Dorin, C.; Etienne, B.; Paris, E. (Lab. de Microstructures et Microelectronique, 92 - Bagneux (France)); Foxon, C.T.; Harris, J.J. (Phillips Research Lab., Redhill (UK))

    1991-02-01

    Electrons confined at the interface of a GaAs/GaAlAs heterojunction form a 2D quantum electron liquid. Under a strong magnetic field a phase transition to an electron (Wigner) solid takes place in the low filling factor regime of the Fractional Quantum Hall Effect (FQHE). We describe experimental evidence for such electron solid formation obtained both by radiofrequency (RF) study of the low-frequency collective excitations and by conductivity measurements. A finite-threshold electric field for DC conduction reflecting the electron crystallite pinning in the sample random potential is found associated to a small gap in the solid phase low-lying collective excitation branch. The {nu}=1/5 FQHE liquid reenters the solid domain at low temperature. (orig.).

  20. The GALATEA test facility and a first study of α-induced surface events in a germanium detector

    Energy Technology Data Exchange (ETDEWEB)

    Irlbeck, Sabine

    2014-01-30

    Germanium detectors are a choice technology in fundamental research. They are suitable for the search for rare events due to their high sensitivity and excellent energy resolution. As an example, the GERDA (GERmanium Detector Array) experiment searching for neutrinoless double beta decay is described. The observation of this decay would resolve the fundamental question whether the neutrino is its own antiparticle. Especially adapted detector technologies and low background rates needed to detect very rare events such as neutrinoless double beta decays are discussed. The identification of backgrounds originating from the interaction of radiation, especially α-particles, is a focus of this thesis. Low background experiments face problems from α-particles due to unavoidable surface contaminations of the germanium detectors. The segmentation of detectors is used to obtain information about the special characteristics of selected events. The high precision test stand GALATEA was especially designed for surface scans of germanium detectors. As part of this work, GALATEA was completed and commissioned. The final commissioning required major upgrades of the original design which are described in detail. Collimator studies with two commercial germanium detectors are presented. Different collimation levels for a β-source were investigated and crystal axis effects were examined. The first scan with an α-source of the passivated end-plate of a special 19-fold segmented prototype detector mounted in GALATEA is described. The α-induced surface events were studied and characterized. Crosstalk and mirror pulses seen in the segments of the germanium detector were analyzed. The detector studies presented in this thesis will help to further improve the design of germanium detectors for low background experiments.

  1. The GALATEA test facility and a first study of α-induced surface events in a germanium detector

    International Nuclear Information System (INIS)

    Irlbeck, Sabine

    2014-01-01

    Germanium detectors are a choice technology in fundamental research. They are suitable for the search for rare events due to their high sensitivity and excellent energy resolution. As an example, the GERDA (GERmanium Detector Array) experiment searching for neutrinoless double beta decay is described. The observation of this decay would resolve the fundamental question whether the neutrino is its own antiparticle. Especially adapted detector technologies and low background rates needed to detect very rare events such as neutrinoless double beta decays are discussed. The identification of backgrounds originating from the interaction of radiation, especially α-particles, is a focus of this thesis. Low background experiments face problems from α-particles due to unavoidable surface contaminations of the germanium detectors. The segmentation of detectors is used to obtain information about the special characteristics of selected events. The high precision test stand GALATEA was especially designed for surface scans of germanium detectors. As part of this work, GALATEA was completed and commissioned. The final commissioning required major upgrades of the original design which are described in detail. Collimator studies with two commercial germanium detectors are presented. Different collimation levels for a β-source were investigated and crystal axis effects were examined. The first scan with an α-source of the passivated end-plate of a special 19-fold segmented prototype detector mounted in GALATEA is described. The α-induced surface events were studied and characterized. Crosstalk and mirror pulses seen in the segments of the germanium detector were analyzed. The detector studies presented in this thesis will help to further improve the design of germanium detectors for low background experiments.

  2. Filtering microphonics in dark matter germanium experiments

    International Nuclear Information System (INIS)

    Morales, J.; Garcia, E.; Ortiz de Solorzano, A.; Morales, A.; Nunz-Lagos, R.; Puimedon, J.; Saenz, C.; Villar, J.A.

    1992-01-01

    A technique for reducing the microphonic noise in a germanium spectrometer used in dark matter particles searches is described. Filtered energy spectra, corresponding to 48.5 kg day of data in a running experiment in the Canfranc tunnel are presented. Improvements of this filtering procedure with respect to the method of rejecting those events not distributed evenly in time are also discussed. (orig.)

  3. Mesostructured germanium with cubic pore symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Armatas, G S; Kanatzidis, M G [Michigan State Univ., Michigan (United States), Dept. of Chemistry

    2006-11-15

    Regular mesoporous oxide materials have been widely studied and have a range of potential applications, such as catalysis, absorption and separation. They are not generally considered for their optical and electronic properties. Elemental semiconductors with nanopores running through them represent a different form of framework material with physical characteristics contrasting with those of the more conventional bulk, thin film and nanocrystalline forms. Here we describe cubic meso structured germanium, MSU-Ge-l, with gyroidal channels containing surfactant molecules, separated by amorphous walls that lie on the gyroid (G) minimal surface as in the mesoporous silica MCM-48. Although Ge is a high-meltin covalent semiconductor that is difficult to prepare from solution polymerization, we succeeded in assembling a continuous Ge network using a suitable precursor for Ge{sup 4-} atoms. Our results indicate that elemental semiconductors from group 14 of the periodic table can be made to adopt meso structured forms such as MSU-Ge-1, which features two three-dimensional labyrinthine tunnels obeying la3d space group symmetry and separated by a continuous germanium minimal surface that is otherwise amorphous. A consequence of this new structure for germanium, which has walls only one nanometre thick, is a wider electronic energy bandgap (1.4 eV versus 0.66 eV) than has crystalline or amorphous Ge. Controlled oxidation of MSU-Ge-1 creates a range of germanium suboxides with continuously varying Ge:O ratio and a smoothly increasing energy gap. (author)

  4. Characterization of nanocrystalline silicon germanium film and ...

    African Journals Online (AJOL)

    The nanocrystalline silicon-germanium films (Si/Ge) and Si/Ge nanotubes have low band gaps and high carrier mobility, thus offering appealing potential for absorbing gas molecules. Interaction between hydrogen molecules and bare as well as functionalized Si/Ge nanofilm and nanotube was investigated using Monte ...

  5. Automation of the Characterization of High Purity Germanium Detectors

    Science.gov (United States)

    Dugger, Charles ``Chip''

    2014-09-01

    Neutrinoless double beta decay is a rare hypothesized process that may yield valuable insight into the fundamental properties of the neutrino. Currently there are several experiments trying to observe this process, including the Majorana DEMONSTRAOR experiment, which uses high purity germanium (HPGe) detectors to generate and search for these events. Because the event happens internally, it is essential to have the lowest background possible. This is done through passive detector shielding, as well as event discrimination techniques that distinguish between multi-site events characteristic of gamma-radiation, and single-site events characteristic of neutrinoless double beta decay. Before fielding such an experiment, the radiation response of the detectors must be characterized. A robotic arm is being tested for future calibration of HPGe detectors. The arm will hold a source at locations relative to the crystal while data is acquired. Several radioactive sources of varying energy levels will be used to determine the characteristics of the crystal. In this poster, I will present our work with the robot, as well as the characterization of data we took with an underground HPGe detector at the WIPP facility in Carlsbad, NM (2013). Neutrinoless double beta decay is a rare hypothesized process that may yield valuable insight into the fundamental properties of the neutrino. Currently there are several experiments trying to observe this process, including the Majorana DEMONSTRAOR experiment, which uses high purity germanium (HPGe) detectors to generate and search for these events. Because the event happens internally, it is essential to have the lowest background possible. This is done through passive detector shielding, as well as event discrimination techniques that distinguish between multi-site events characteristic of gamma-radiation, and single-site events characteristic of neutrinoless double beta decay. Before fielding such an experiment, the radiation response of

  6. Empirical correction of crosstalk in a low-background germanium γ-γ analysis system

    International Nuclear Information System (INIS)

    Keillor, M.E.; Erikson, L.E.; Aalseth, C.E.; Day, A.R.; Fuller, E.S.; Glasgow, B.D.; Hoppe, E.W.; Hossbach, T.W.; Mizouni, L.K.; Myers, A.W.

    2013-01-01

    The Pacific Northwest National Laboratory (PNNL) is currently developing a custom software suite capable of automating many of the tasks required to accurately analyze coincident signals within gamma spectrometer arrays. During the course of this work, significant crosstalk was identified in the energy determination for spectra collected with a new low-background intrinsic germanium (HPGe) array at PNNL. The HPGe array is designed for high detection efficiency, ultra-low-background performance, and sensitive γ-γ coincidence detection. The first half of the array, a single cryostat containing seven HPGe crystals, was recently installed into a new shallow underground laboratory facility. This update will present a brief review of the germanium array, describe the observed crosstalk, and present a straight-forward empirical correction that significantly reduces the impact of this crosstalk on the spectroscopic performance of the system. (author)

  7. Liquid filling of photonic crystal fibres for grating writing

    DEFF Research Database (Denmark)

    Sørensen, Henrik Rokkjær; Canning, John; Lægsgaard, Jesper

    2007-01-01

    liquid filling of photonic crystal fibres reduces the scattering from air–glass interfaces during Bragg grating writing in many layered photonic crystal fibres. Within experimental uncertainty, the grating index modulation of a grating written in germanium-doped photonic crystal fibre with 10 rings...

  8. Technology CAD for germanium CMOS circuit

    Energy Technology Data Exchange (ETDEWEB)

    Saha, A.R. [Department of Electronics and ECE, IIT Kharagpur, Kharagpur-721302 (India)]. E-mail: ars.iitkgp@gmail.com; Maiti, C.K. [Department of Electronics and ECE, IIT Kharagpur, Kharagpur-721302 (India)

    2006-12-15

    Process simulation for germanium MOSFETs (Ge-MOSFETs) has been performed in 2D SILVACO virtual wafer fabrication (VWF) suite towards the technology CAD for Ge-CMOS process development. Material parameters and mobility models for Germanium were incorporated in simulation via C-interpreter function. We also report on the device design issues along with the DC and RF characterization of the bulk Ge-MOSFETs, AC parameter extraction and circuit simulation of Ge-CMOS. Simulation results are compared with bulk-Si devices. Simulations predict a cut-off frequency, f {sub T} of about 175 GHz for Ge-MOSFETs compared to 70 GHz for a similar gate-length Si MOSFET. For a single stage Ge-CMOS inverter circuit, a GATE delay of 0.6 ns is predicted.

  9. Technology CAD for germanium CMOS circuit

    International Nuclear Information System (INIS)

    Saha, A.R.; Maiti, C.K.

    2006-01-01

    Process simulation for germanium MOSFETs (Ge-MOSFETs) has been performed in 2D SILVACO virtual wafer fabrication (VWF) suite towards the technology CAD for Ge-CMOS process development. Material parameters and mobility models for Germanium were incorporated in simulation via C-interpreter function. We also report on the device design issues along with the DC and RF characterization of the bulk Ge-MOSFETs, AC parameter extraction and circuit simulation of Ge-CMOS. Simulation results are compared with bulk-Si devices. Simulations predict a cut-off frequency, f T of about 175 GHz for Ge-MOSFETs compared to 70 GHz for a similar gate-length Si MOSFET. For a single stage Ge-CMOS inverter circuit, a GATE delay of 0.6 ns is predicted

  10. Vacancy-indium clusters in implanted germanium

    KAUST Repository

    Chroneos, Alexander I.

    2010-04-01

    Secondary ion mass spectroscopy measurements of heavily indium doped germanium samples revealed that a significant proportion of the indium dose is immobile. Using electronic structure calculations we address the possibility of indium clustering with point defects by predicting the stability of indium-vacancy clusters, InnVm. We find that the formation of large clusters is energetically favorable, which can explain the immobility of the indium ions. © 2010 Elsevier B.V. All rights reserved.

  11. Vacancy-indium clusters in implanted germanium

    KAUST Repository

    Chroneos, Alexander I.; Kube, R.; Bracht, Hartmut A.; Grimes, Robin W.; Schwingenschlö gl, Udo

    2010-01-01

    Secondary ion mass spectroscopy measurements of heavily indium doped germanium samples revealed that a significant proportion of the indium dose is immobile. Using electronic structure calculations we address the possibility of indium clustering with point defects by predicting the stability of indium-vacancy clusters, InnVm. We find that the formation of large clusters is energetically favorable, which can explain the immobility of the indium ions. © 2010 Elsevier B.V. All rights reserved.

  12. Next Generation Germanium Systems for Safeguards Applications

    International Nuclear Information System (INIS)

    Dreyer, J.; Burks, M.; Hull, E.

    2015-01-01

    We are developing the latest generation of highly portable, mechanically cooled germanium systems for safeguard applications. In collaboration with our industrial partner, Ph.D.s Co, we have developed the Germanium Gamma Ray Imager (GeGI), an imager with a 2π field of view. This instrument has been thoroughly field tested in a wide range of environments and have performed reliably even in the harshest conditions. The imaging capability of GeGI complements existing safeguards techniques by allowing for the spatial detection, identification, and characterization of nuclear material. Additionally, imaging can be used in design information verification activities to address potential material diversions. Measurements conducted at the Paducah Gaseous Diffusion Plant highlight the advantages this instrument offers in the identification and localization of LEU, HEU and Pu holdup. GeGI has also been deployed to the Savannah River Site for the measurement of radioactive waste canisters, providing information valuable for waste characterization and inventory accountancy. Measuring 30 x 15 x 23 cm and weighing approximately 15 kg, this instrument is the first portable germanium-based imager. GeGI offers high reliability with the convenience of mechanical cooling, making this instrument ideal for the next generation of safeguards instrumentation. (author)

  13. Crystallization phenomena in germanium antimony phase-change films

    NARCIS (Netherlands)

    Eising, Gert

    2013-01-01

    Phase-changematerialen worden momenteel op grote schaal toegepast in herschrijfbare DVD's en Blu-rays. Hierbij wordt het verschil in optisch contrast tussen de meta-stabiele amorfe fase en stabiele kristallijne fase gebruikt om binair data op te slaan. Naast het optische contrast is er ook een sterk

  14. Influence of Containment on the Growth of Silicon-Germanium (ICESAGE): A Materials Science Investigation

    Science.gov (United States)

    Volz, M. P.; Mazuruk, K.; Croll, A.

    2014-01-01

    A series of Ge Si crystal growth experiments are planned to be conducted in the Low 1-x x Gradient Furnace (LGF) onboard the International Space Station. The primary objective of the research is to determine the influence of containment on the processing-induced defects and impurity incorporation in germanium-silicon alloy crystals. A comparison will be made between crystals grown by the normal and "detached" Bridgman methods and the ground-based float zone technique. Crystals grown without being in contact with a container have superior quality to otherwise similar crystals grown in direct contact with a container, especially with respect to impurity incorporation, formation of dislocations, and residual stress in crystals. "Detached" or "dewetted" Bridgman growth is similar to regular Bridgman growth in that most of the melt is in contact with the crucible wall, but the crystal is separated from the wall by a small gap, typically of the order of 10-100 microns. Long duration reduced gravity is essential to test the proposed theory of detached growth. Detached growth requires the establishment of a meniscus between the crystal and the ampoule wall. The existence of this meniscus depends on the ratio of the strength of gravity to capillary forces. On Earth, this ratio is large and stable detached growth can only be obtained over limited conditions. Crystals grown detached on the ground exhibited superior structural quality as evidenced by measurements of etch pit density, synchrotron white beam X-ray topography and double axis X-ray diffraction.

  15. Smooth germanium nanowires prepared by a hydrothermal deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Pei, L.Z., E-mail: lzpei1977@163.com [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Laboratory of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China); Zhao, H.S. [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Laboratory of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China); Tan, W. [Henkel Huawei Electronics Co. Ltd., Lian' yungang, Jiangsu 222006 (China); Yu, H.Y. [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Laboratory of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China); Chen, Y.W. [Department of Materials Science, Fudan University, Shanghai 200433 (China); Fan, C.G. [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Laboratory of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China); Zhang, Qian-Feng, E-mail: zhangqf@ahut.edu.cn [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Laboratory of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China)

    2009-11-15

    Smooth germanium nanowires were prepared using Ge and GeO{sub 2} as the starting materials and Cu sheet as the substrate by a simple hydrothermal deposition process. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations show that the germanium nanowires are smooth and straight with uniform diameter of about 150 nm in average and tens of micrometers in length. X-ray diffraction (XRD) and Raman spectrum of the germanium nanowires display that the germanium nanowires are mainly composed of cubic diamond phase. PL spectrum shows a strong blue light emission at 441 nm. The growth mechanism is also discussed.

  16. Smooth germanium nanowires prepared by a hydrothermal deposition process

    International Nuclear Information System (INIS)

    Pei, L.Z.; Zhao, H.S.; Tan, W.; Yu, H.Y.; Chen, Y.W.; Fan, C.G.; Zhang, Qian-Feng

    2009-01-01

    Smooth germanium nanowires were prepared using Ge and GeO 2 as the starting materials and Cu sheet as the substrate by a simple hydrothermal deposition process. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations show that the germanium nanowires are smooth and straight with uniform diameter of about 150 nm in average and tens of micrometers in length. X-ray diffraction (XRD) and Raman spectrum of the germanium nanowires display that the germanium nanowires are mainly composed of cubic diamond phase. PL spectrum shows a strong blue light emission at 441 nm. The growth mechanism is also discussed.

  17. Ultrafast palladium diffusion in germanium

    KAUST Repository

    Tahini, Hassan Ali

    2015-01-01

    The slow transport of dopants through crystal lattices has hindered the development of novel devices. Typically atoms are contained within deep potential energy wells which necessitates multiple attempts to hop between minimum energy positions. This is because the bonds that constrain atoms are strongest at the minimum positions. As they hop between sites the bonds must be broken, only to re-form as the atoms slide into adjacent minima. Here we demonstrate that the Pd atoms introduced into the Ge lattice behave differently. They retain bonds as the atoms shift across so that at the energy maximum between sites Pd still exhibits strong bonding characteristics. This reduces the energy maximum to almost nothing (a migration energy of only 0.03 eV) and means that the transport of Pd through the Ge lattice is ultrafast. We scrutinize the bonding characteristics at the atomic level using quantum mechanical simulation tools and demonstrate why Pd behaves so differently to other metals we investigated (i.e. Li, Cu, Ag, Pt and Au). Consequently, this fundamental understanding can be extended to systems where extremely rapid diffusion is desired, such as radiation sensors, batteries and solid oxide fuel cells.

  18. Low temperature synthesis and electrical characterization of germanium doped Ti-based nanocrystals for nonvolatile memory

    International Nuclear Information System (INIS)

    Feng, Li-Wei; Chang, Chun-Yen; Chang, Ting-Chang; Tu, Chun-Hao; Wang, Pai-Syuan; Lin, Chao-Cheng; Chen, Min-Chen; Huang, Hui-Chun; Gan, Der-Shin; Ho, New-Jin; Chen, Shih-Ching; Chen, Shih-Cheng

    2011-01-01

    Chemical and electrical characteristics of Ti-based nanocrystals containing germanium, fabricated by annealing the co-sputtered thin film with titanium silicide and germanium targets, were demonstrated for low temperature applications of nonvolatile memory. Formation and composition characteristics of nanocrystals (NCs) at various annealing temperatures were examined by transmission electron microscopy and X-ray photon-emission spectroscopy, respectively. It was observed that the addition of germanium (Ge) significantly reduces the proposed thermal budget necessary for Ti-based NC formation due to the rise of morphological instability and agglomeration properties during annealing. NC structures formed after annealing at 500 °C, and separated well at 600 °C annealing. However, it was also observed that significant thermal desorption of Ge atoms occurs at 600 °C due to the sublimation of formatted GeO phase and results in a serious decrease of memory window. Therefore, an approach to effectively restrain Ge thermal desorption is proposed by encapsulating the Ti-based trapping layer with a thick silicon oxide layer before 600 °C annealing. The electrical characteristics of data retention in the sample with the 600 °C annealing exhibited better performance than the 500 °C-annealed sample, a result associated with the better separation and better crystallization of the NC structures.

  19. Special Cryostats for Lithium Compensated Germanium Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lauber, A; Malmsten, B; Rosencrantz, B

    1968-05-15

    In many applications of Ge(Li) detectors an extreme design of the cryostat is desirable. One example is a coincidence or anticoincidence setup where the Ge(Li) detector is surrounded by one or several other detectors, usually Nal(Tl) crystals or plastic scintillators. To be usable in this arrangement the part of the cryostat containing the Ge(Li) detector should have the form of a long hood, with the detector placed at its very end. The diameter of the hood should be as small as detector dimensions permit. Excellent energy resolution and reasonably low liquid nitrogen consumption must be retained. Two cryostats fulfilling these conditions will be described. For the first cryostat emphasis lay on the reduction of the hood diameter to an absolute minimum; for the other incorporation of a device regulating the temperature of the cryostat surface was required. The difficulties encountered will be discussed; they were primarily connected with the necessity of combining minimum temperature loss at the detector position with extreme cryostat compactness and cold finger length. The incorporation of a cooled FET transistor in the cryostat will also be described. The gamma spectrometers using the cryostats gave resolutions down to 2.8 keV FWHM for the 1173 keV gamma line from Co 60 and 1.2 keV FWHM for the 122 keV line from Co 57.

  20. A high resolution germanium detector array for hypernuclear studies at PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Bleser, Sebastian; Sanchez Lorente, Alicia; Steinen, Marcell [Helmholtz-Institut Mainz (Germany); Gerl, Juergen; Kojouharov, Ivan [GSI, Darmstadt (Germany); Iazzi, Felice [Politecnico, Torino, Turin (Italy); INFN, Torino, Turin (Italy); Pochodzalla, Josef; Rittgen, Kai; Sahin, Cihan [Institute for Nuclear Physics, JGU Mainz (Germany); Collaboration: PANDA-Collaboration

    2013-07-01

    The PANDA experiment, planned at the FAIR facility in Darmstadt, aims at the high resolution γ-spectroscopy of double Λ hypernuclei. For this purpose a devoted detector setup is required, consisting of a primary nuclear target, an active secondary target and a germanium detector array for the γ-spectroscopy. Due to the limited space within the PANDA detector a compact design is required. In particular the conventional LN{sub 2} cooling system must be replaced by an electro-mechanical device and a new arrangement of the crystals is needed. This poster shows the ongoing development of the germanium detectors. Test measurements of a single crystal prototype with an improved cooling concept are shown. Thermal simulations for a triple crystal detector are presented. Aditionally studies of the optimization of the detector arrangement inside the PANDA barrel spectrometer are shown. Finally the status on digital pulse shape analysis is presented which will be necessary to deal with high counting rates and to recover the high original energy resolution in case of neutron damage.

  1. A high resolution germanium detector array for hypernuclear studies at PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Bleser, Sebastian; Sanchez Lorente, Alicia; Steinen, Marcell [Helmholtz-Institut Mainz (Germany); Gerl, Juergen; Kojouharova, Jasmina; Kojouharov, Ivan [GSI Darmstadt (Germany); Iazzi, Felice [Politecnico, Torino (Italy); INFN, Torino (Italy); Pochodzalla, Josef; Rittgen, Kai; Sahin, Cihan [Institute for Nuclear Physics, JGU Mainz (Germany)

    2014-07-01

    The PANDA experiment, planned at the FAIR facility in Darmstadt, aims at the high resolution γ-spectroscopy of double Λ hypernuclei. For this purpose a devoted detector setup is required, consisting of a primary nuclear target, an active secondary target and a germanium detector array for the γ-spectroscopy. Due to the limited space within the PANDA detector a compact design is required. In particular the conventional LN{sub 2} cooling system must be replaced by an electro mechanical device and a new arrangement of the crystals is needed. This presentation shows the progress in the development of the germanium detectors. First results of in-beam measurements at COSY with a new electro mechanically cooled single crystal prototype are presented. Digital pulse shape analysis is used to disentangle pile up events due to the high event rate. This analysis technique also allows to recover the high original energy resolution in case of neutron damage. Finally the status of the new triple crystal detector prototype is given.

  2. Transmission of germanium poly- and monocrystals for thermal neutrons at different temperatures

    International Nuclear Information System (INIS)

    Adib, M.; Abdel-Kawy, A.; Eid, Y.; Maayouf, R.M.; Abbas, Y.; Habib, N.; Kilany, M.; Ashry, A.

    1987-01-01

    Neutron cross-sections of germanium poly- and monocrystals were measured with two time-of-flight and two double-axis crystal spectrometers. The results were analyzed using the single-level Breit-Wigner formula. The coherent scattering amplitude was determined from the Bragg reflections observed in the cross-section of a polycrystal and the analysis of the neutron diffraction pattern. The incoherent and the thermal diffuse scattering cross-section were estimated from the analysis of the total cross-section data obtained for a monocrystal at different temperatures in the energy range 2 meV to 1 eV. (orig./HP) [de

  3. Transmission of germanium poly- and monocrystals for thermal neutrons at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Adib, M.; Abdel-Kawy, A.; Eid, Y.; Maayouf, R.M.; Abbas, Y.; Habib, N.; Kilany, M.; Ashry, A.

    Neutron cross-sections of germanium poly- and monocrystals were measured with two time-of-flight and two double-axis crystal spectrometers. The results were analyzed using the single-level Breit-Wigner formula. The coherent scattering amplitude was determined from the Bragg reflections observed in the cross-section of a polycrystal and the analysis of the neutron diffraction pattern. The incoherent and the thermal diffuse scattering cross-section were estimated from the analysis of the total cross-section data obtained for a monocrystal at different temperatures in the energy range 2 meV to 1 eV.

  4. Experimental Search for Solar Axions via Coherent Primakoff Conversion in a Germanium Spectrometer

    CERN Document Server

    Avignone, F T; Brodzinski, R; Collar, J I; Creswick, R J; Di Gregorio, D E; Farach, H A; Gattone, A O; Guérard, C K; Hasenbalg, F; Huck, H; Miley, H S; Morales, A; Morales, J; Nussinov, S; De Solorzano, A O; Reeves, J H; Villar, J; Zioutas, Konstantin

    1998-01-01

    Results are reported of an experimental search for the unique, rapidly varying temporal pattern of solar axions coherently converting into photons via the Primakoff effect in a single crystal germanium detector. This conversion is predicted when axions are incident at a Bragg angle with a crystalline plane. The analysis of approximately 1.94 kg.yr of data from the 1 kg DEMOS detector in Sierra Grande, Argentina, yields a new laboratory bound on axion-photon coupling of $g_{a\\gamma \\gamma} < 2.7\\cdot 10^{-9}$ GeV$^{-1}$, independent of axion mass up to ~ 1 keV.

  5. Dual germanium detector system for the routine assay of low level transuranics in soil

    International Nuclear Information System (INIS)

    Crowell, J.M.

    1980-01-01

    As an outgrowth of previous on soil radioassay, we have developed an automated assay system for determining the transuranic radionuclide content of soils, with particular interest in Pu. The system utilizes two commercial planar intrinsic germanium detectors in opposition. The large area of the detectors (2100 mm 2 ) and the thinness of the detector crystals (7 mm) permit sensitive analysis of the L x ray emission region of the transuranics (13 to 21 keV). With counting times of 5 hours, we obtain detection limits of 241 Am

  6. Measuring Pu in a glove box using portable NaI and germanium detectors

    International Nuclear Information System (INIS)

    Hankins, D.E.

    1984-01-01

    A NaI crystal or germanium detector inside a portable lead shield can determine the amount of plutonium in a glove box. The number of counts required are defined and the locations outside the box where the detector needs to be positioned are given. The calculated accuracy for measuring the Pu when these locations are used is within +/-30% for most glove boxes. Other factors that may affect this accuracy, such as γ-ray absorption by glove-box materials, self-absorption by Pu, absorption by equipment in the glove box, and the limits of the counting equipment are also discussed

  7. Manufacturing P-N junctions in germanium bodies

    International Nuclear Information System (INIS)

    Hall, R.N.

    1980-01-01

    A method of producing p-n junctions in Ge so as to facilitate their use as radiation detectors involves forming a body of high purity p-type germanium, diffusing lithium deep into the body, in the absence of electrolytic processes, to form a junction between n-type and p-type germanium greater than 1 mm depth. (UK)

  8. Imaging capabilities of germanium gamma cameras

    International Nuclear Information System (INIS)

    Steidley, J.W.

    1977-01-01

    Quantitative methods of analysis based on the use of a computer simulation were developed and used to investigate the imaging capabilities of germanium gamma cameras. The main advantage of the computer simulation is that the inherent unknowns of clinical imaging procedures are removed from the investigation. The effects of patient scattered radiation were incorporated using a mathematical LSF model which was empirically developed and experimentally verified. Image modifying effects of patient motion, spatial distortions, and count rate capabilities were also included in the model. Spatial domain and frequency domain modeling techniques were developed and used in the simulation as required. The imaging capabilities of gamma cameras were assessed using low contrast lesion source distributions. The results showed that an improvement in energy resolution from 10% to 2% offers significant clinical advantages in terms of improved contrast, increased detectability, and reduced patient dose. The improvements are of greatest significance for small lesions at low contrast. The results of the computer simulation were also used to compare a design of a hypothetical germanium gamma camera with a state-of-the-art scintillation camera. The computer model performed a parametric analysis of the interrelated effects of inherent and technological limitations of gamma camera imaging. In particular, the trade-off between collimator resolution and collimator efficiency for detection of a given low contrast lesion was directly addressed. This trade-off is an inherent limitation of both gamma cameras. The image degrading effects of patient motion, camera spatial distortions, and low count rate were shown to modify the improvements due to better energy resolution. Thus, based on this research, the continued development of germanium cameras to the point of clinical demonstration is recommended

  9. Tensile strain mapping in flat germanium membranes

    International Nuclear Information System (INIS)

    Rhead, S. D.; Halpin, J. E.; Myronov, M.; Patchett, D. H.; Allred, P. S.; Wilson, N. R.; Leadley, D. R.; Shah, V. A.; Kachkanov, V.; Dolbnya, I. P.; Reparaz, J. S.; Sotomayor Torres, C. M.

    2014-01-01

    Scanning X-ray micro-diffraction has been used as a non-destructive probe of the local crystalline quality of a thin suspended germanium (Ge) membrane. A series of reciprocal space maps were obtained with ∼4 μm spatial resolution, from which detailed information on the strain distribution, thickness, and crystalline tilt of the membrane was obtained. We are able to detect a systematic strain variation across the membranes, but show that this is negligible in the context of using the membranes as platforms for further growth. In addition, we show evidence that the interface and surface quality is improved by suspending the Ge

  10. Tensile strain mapping in flat germanium membranes

    Energy Technology Data Exchange (ETDEWEB)

    Rhead, S. D., E-mail: S.Rhead@warwick.ac.uk; Halpin, J. E.; Myronov, M.; Patchett, D. H.; Allred, P. S.; Wilson, N. R.; Leadley, D. R. [Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Shah, V. A. [Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Department of Engineering, University of Warwick, Coventry, CV4 7AL (United Kingdom); Kachkanov, V.; Dolbnya, I. P. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE (United Kingdom); Reparaz, J. S. [ICN2 - Institut Catala de Nanociencia i Nanotecnologia, Campus UAB, 08193 Bellaterra (Barcelona) (Spain); Sotomayor Torres, C. M. [ICN2 - Institut Catala de Nanociencia i Nanotecnologia, Campus UAB, 08193 Bellaterra (Barcelona) (Spain)

    2014-04-28

    Scanning X-ray micro-diffraction has been used as a non-destructive probe of the local crystalline quality of a thin suspended germanium (Ge) membrane. A series of reciprocal space maps were obtained with ∼4 μm spatial resolution, from which detailed information on the strain distribution, thickness, and crystalline tilt of the membrane was obtained. We are able to detect a systematic strain variation across the membranes, but show that this is negligible in the context of using the membranes as platforms for further growth. In addition, we show evidence that the interface and surface quality is improved by suspending the Ge.

  11. Array of germanium detectors for nuclear safeguards

    International Nuclear Information System (INIS)

    Moss, C.E.; Bernard, W.; Dowdy, E.J.; Garcia, C.; Lucas, M.C.; Pratt, J.C.

    1983-01-01

    Our gamma-ray spectrometer system, designed for field use, offers high efficiency and high resolution for safeguards applications. The system consists of three 40% high-purity germanium detectors and a LeCroy 3500 data-acquisition system that calculates a composite spectrum for the three detectors. The LeCroy 3500 mainframe can be operated remotely from the detector array with control exercised through moderns and the telephone system. System performance with a mixed source of 125 Sb, 154 Eu, and 155 Eu confirms the expected efficiency of 120% with an overall resolution that is between the resolution of the best detector and that of the worst

  12. Silicon germanium mask for deep silicon etching

    KAUST Repository

    Serry, Mohamed

    2014-07-29

    Polycrystalline silicon germanium (SiGe) can offer excellent etch selectivity to silicon during cryogenic deep reactive ion etching in an SF.sub.6/O.sub.2 plasma. Etch selectivity of over 800:1 (Si:SiGe) may be achieved at etch temperatures from -80 degrees Celsius to -140 degrees Celsius. High aspect ratio structures with high resolution may be patterned into Si substrates using SiGe as a hard mask layer for construction of microelectromechanical systems (MEMS) devices and semiconductor devices.

  13. Silicon germanium mask for deep silicon etching

    KAUST Repository

    Serry, Mohamed; Rubin, Andrew; Refaat, Mohamed; Sedky, Sherif; Abdo, Mohammad

    2014-01-01

    Polycrystalline silicon germanium (SiGe) can offer excellent etch selectivity to silicon during cryogenic deep reactive ion etching in an SF.sub.6/O.sub.2 plasma. Etch selectivity of over 800:1 (Si:SiGe) may be achieved at etch temperatures from -80 degrees Celsius to -140 degrees Celsius. High aspect ratio structures with high resolution may be patterned into Si substrates using SiGe as a hard mask layer for construction of microelectromechanical systems (MEMS) devices and semiconductor devices.

  14. Strip interpolation in silicon and germanium strip detectors

    International Nuclear Information System (INIS)

    Wulf, E. A.; Phlips, B. F.; Johnson, W. N.; Kurfess, J. D.; Lister, C. J.; Kondev, F.; Physics; Naval Research Lab.

    2004-01-01

    The position resolution of double-sided strip detectors is limited by the strip pitch and a reduction in strip pitch necessitates more electronics. Improved position resolution would improve the imaging capabilities of Compton telescopes and PET detectors. Digitizing the preamplifier waveform yields more information than can be extracted with regular shaping electronics. In addition to the energy, depth of interaction, and which strip was hit, the digitized preamplifier signals can locate the interaction position to less than the strip pitch of the detector by looking at induced signals in neighboring strips. This allows the position of the interaction to be interpolated in three dimensions and improve the imaging capabilities of the system. In a 2 mm thick silicon strip detector with a strip pitch of 0.891 mm, strip interpolation located the interaction of 356 keV gamma rays to 0.3 mm FWHM. In a 2 cm thick germanium detector with a strip pitch of 5 mm, strip interpolation of 356 keV gamma rays yielded a position resolution of 1.5 mm FWHM

  15. Synthesis, Structure and Investigation of Germanium(IV and Copper(II Complexes with Malic Acid and 1,10ʹ-phenanthroline

    Directory of Open Access Journals (Sweden)

    Inna Seifullina

    2017-12-01

    Full Text Available Two crystalline compounds of germanium(IV with malic acid (HMal and 1,10ʹ-phenanthroline (phen - [Ge(HMal2(phen]•pheh•2H2O (I and [CuCl(phen2][Ge(OH(HMal2] (II were synthesized for the first time and characterized by elemental analysis, IR-spectroscopy and thermogravimetric analysis. There was elucidated from single-crystal X-ray diffraction that two different forms of Germanium are implemented: Ge4+ (I and hydrolyzed GeOH3+ (II to form distorted octahedron and pyramid respectively.

  16. Plateau-Rayleigh Crystal Growth of Nanowire Heterostructures: Strain-Modified Surface Chemistry and Morphological Control in One, Two, and Three Dimensions.

    Science.gov (United States)

    Day, Robert W; Mankin, Max N; Lieber, Charles M

    2016-04-13

    One-dimensional (1D) structures offer unique opportunities for materials synthesis since crystal phases and morphologies that are difficult or impossible to achieve in macroscopic crystals can be synthesized as 1D nanowires (NWs). Recently, we demonstrated one such phenomenon unique to growth on a 1D substrate, termed Plateau-Rayleigh (P-R) crystal growth, where periodic shells develop along a NW core to form diameter-modulated NW homostructures with tunable morphologies. Here we report a novel extension of the P-R crystal growth concept with the synthesis of heterostructures in which Ge (Si) is deposited on Si (Ge) 1D cores to generate complex NW morphologies in 1, 2, or 3D. Depositing Ge on 50 nm Si cores with a constant GeH4 pressure yields a single set of periodic shells, while sequential variation of GeH4 pressure can yield multimodulated 1D NWs with two distinct sets of shell periodicities. P-R crystal growth on 30 nm cores also produces 2D loop structures, where Ge (Si) shells lie primarily on the outside (inside) of a highly curved Si (Ge) core. Systematic investigation of shell morphology as a function of growth time indicates that Ge shells grow in length along positive curvature Si cores faster than along straight Si cores by an order of magnitude. Short Ge deposition times reveal that shells develop on opposite sides of 50 and 100 nm Si cores to form straight 1D morphologies but that shells develop on the same side of 20 nm cores to produce 2D loop and 3D spring structures. These results suggest that strain mediates the formation of 2 and 3D morphologies by altering the NW's surface chemistry and that surface diffusion of heteroatoms on flexible freestanding 1D substrates can facilitate this strain-mediated mechanism.

  17. Experience from operating germanium detectors in GERDA

    Science.gov (United States)

    Palioselitis, Dimitrios; GERDA Collaboration

    2015-05-01

    Phase I of the Germanium Detector Array (GERDA) experiment, searching for the neutrinoless double beta (0νββ) decay of 76Ge, was completed in September 2013. The most competitive half-life lower limit for the 0νββ decay of 76Ge was set (T-0ν1/2 > 2.1 · 1025 yr at 90% C.L.). GERDA operates bare Ge diodes immersed in liquid argon. During Phase I, mainly refurbished semi-coaxial high purity Ge detectors from previous experiments were used. The experience gained with handling and operating bare Ge diodes in liquid argon, as well as the stability and performance of the detectors during GERDA Phase I are presented. Thirty additional new enriched BEGe-type detectors were produced and will be used in Phase II. A subgroup of these detectors has already been used successfully in GERDA Phase I. The present paper gives an overview of the production chain of the new germanium detectors, the steps taken to minimise the exposure to cosmic radiation during manufacturing, and the first results of characterisation measurements in vacuum cryostats.

  18. Experience from operating germanium detectors in GERDA

    International Nuclear Information System (INIS)

    Palioselitis, Dimitrios

    2015-01-01

    Phase I of the Germanium Detector Array (GERDA) experiment, searching for the neutrinoless double beta (0νββ) decay of 76 Ge, was completed in September 2013. The most competitive half-life lower limit for the 0νββ decay of 76 Ge was set (T- 0ν 1/2 > 2.1 · 10 25 yr at 90% C.L.). GERDA operates bare Ge diodes immersed in liquid argon. During Phase I, mainly refurbished semi-coaxial high purity Ge detectors from previous experiments were used. The experience gained with handling and operating bare Ge diodes in liquid argon, as well as the stability and performance of the detectors during GERDA Phase I are presented. Thirty additional new enriched BEGe-type detectors were produced and will be used in Phase II. A subgroup of these detectors has already been used successfully in GERDA Phase I. The present paper gives an overview of the production chain of the new germanium detectors, the steps taken to minimise the exposure to cosmic radiation during manufacturing, and the first results of characterisation measurements in vacuum cryostats. (paper)

  19. Doping of germanium telluride with bismuth tellurides

    International Nuclear Information System (INIS)

    Abrikosov, N.Kh.; Karpinskij, O.G.; Makalatiya, T.Sh.; Shelimova, L.E.

    1981-01-01

    Effect of germanium telluride doping with bismuth fellurides (Bi 2 Te 3 ; BiTe; Bi 2 Te) on phase transition temperature, lattice parameters and electrophysical properties of alloys is studied. It is shown that in alloys of GeTe-Bi 2 Te 3 (BiTe)(Bi 2 Te) cross sections solid solution of GeTe with Bi 2 Te 3 , characterized by deviation from stoichiometry, and germanium in the second phase the quantity of which increases during the transition from GeTe-Bi 2 Te 3 cross section to GeTe-Bi 2 Te are in equilibrium. Lower values of holes concentration and of electric conductivity and higher values of thermo e.m.f. coefficient in comparison with alloys of GeTe-Bi 2 Te 3 cross section with the same bismuth content are characterized for GeTe-Bi 2 Te cross section alloys. It is shown that in the range of GeTe-base solid solution the α→γ phase transformation which runs trough the two-phase region (α→γ) is observed with tellurium content increase. Extension of α-phase existence region widens with the bismuth content increase. Peculiarities of interatomic interaction in GeTe-base solid solutions with isovalent and heterovalent cation substitution are considered [ru

  20. Electromechanically cooled germanium radiation detector system

    International Nuclear Information System (INIS)

    Lavietes, Anthony D.; Joseph Mauger, G.; Anderson, Eric H.

    1999-01-01

    We have successfully developed and fielded an electromechanically cooled germanium radiation detector (EMC-HPGe) at Lawrence Livermore National Laboratory (LLNL). This detector system was designed to provide optimum energy resolution, long lifetime, and extremely reliable operation for unattended and portable applications. For most analytical applications, high purity germanium (HPGe) detectors are the standard detectors of choice, providing an unsurpassed combination of high energy resolution performance and exceptional detection efficiency. Logistical difficulties associated with providing the required liquid nitrogen (LN) for cooling is the primary reason that these systems are found mainly in laboratories. The EMC-HPGe detector system described in this paper successfully provides HPGe detector performance in a portable instrument that allows for isotopic analysis in the field. It incorporates a unique active vibration control system that allows the use of a Sunpower Stirling cycle cryocooler unit without significant spectral degradation from microphonics. All standard isotopic analysis codes, including MGA and MGA++, GAMANL, GRPANL and MGAU, typically used with HPGe detectors can be used with this system with excellent results. Several national and international Safeguards organisations including the International Atomic Energy Agency (IAEA) and U.S. Department of Energy (DOE) have expressed interest in this system. The detector was combined with custom software and demonstrated as a rapid Field Radiometric Identification System (FRIS) for the U.S. Customs Service . The European Communities' Safeguards Directorate (EURATOM) is field-testing the first Safeguards prototype in their applications. The EMC-HPGe detector system design, recent applications, and results will be highlighted

  1. Phenomenon of ''self-cleaning'' of crystals

    International Nuclear Information System (INIS)

    Matveev, O.A.; Arkad'eva, E.N.; Goncharov, L.A.

    1975-01-01

    Crystals of germanium and cadmium telluride have been produced having the characteristics corresponding to the low content of electrically active impurities and crystal defects. The crystals have been grown under conditions of an equilibrium diffusion-concentration interaction of the impurities and crystal defects, with the donor alloying and controlling the acceptors concentration. These crystals have been studied with the help of the mass-spectral analysis, the Hall effect, photoelectroscopy, spectral photoconductivity and losses of collection of a charge from an ionizing particle on gamma-detectors fabricated of the crystals. Herein the doped composition of the crystals has been determined, the concentrations of the shallow and deep acceptors and donors have been measured separately, the life-times of the electrons and holes have been measured, the energetic position and the concentration of the carrier capture levels have been determined. The crystals grown possess all the characteristic features of rather pure crystals. The results of the mass-spectral analysis have shown that in the cadmium telluride crystals the impurities are present within 10 14 to 10 17 cm -3 . Therefore, a deep ''self-refining'' of the crystal takes place, which proceeds by means of deactivation of the electrically active centers with their associating into electrically inactive complexes. Thus a fact of the deep ''self-refining'' of germanium- and cadmium telluride crystals is stated. It is presumed that such a ''self-refining'' can actually proceed practically in all the crystals

  2. Structural properties of relaxed thin film germanium layers grown by low temperature RF-PECVD epitaxy on Si and Ge (100) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Cariou, R., E-mail: romain.cariou@polytechnique.edu [LPICM-CNRS, Ecole Polytechnique, 91128, Palaiseau (France); III-V lab a joint laboratory between Alcatel-Lucent Bell Labs France, Thales Research and Technology and CEA-LETI, route de Nozay, 91460, Marcoussis, France. (France); Ruggeri, R. [LPICM-CNRS, Ecole Polytechnique, 91128, Palaiseau (France); CNR-IMM, strada VIII n°5, zona industriale, 95121, Catania (Italy); Tan, X.; Nassar, J.; Roca i Cabarrocas, P. [LPICM-CNRS, Ecole Polytechnique, 91128, Palaiseau (France); Mannino, Giovanni [CNR-IMM, strada VIII n°5, zona industriale, 95121, Catania (Italy)

    2014-07-15

    We report on unusual low temperature (175 °C) heteroepitaxial growth of germanium thin films using a standard radio-frequency plasma process. Spectroscopic ellipsometry and transmission electron microscopy (TEM) reveal a perfect crystalline quality of epitaxial germanium layers on (100) c-Ge wafers. In addition direct germanium crystal growth is achieved on (100) c-Si, despite 4.2% lattice mismatch. Defects rising from Ge/Si interface are mostly located within the first tens of nanometers, and threading dislocation density (TDD) values as low as 10{sup 6} cm{sup −2} are obtained. Misfit stress is released fast: residual strain of −0.4% is calculated from Moiré pattern analysis. Moreover we demonstrate a striking feature of low temperature plasma epitaxy, namely the fact that crystalline quality improves with thickness without epitaxy breakdown, as shown by TEM and depth profiling of surface TDD.

  3. Deconstructing dimensions

    International Nuclear Information System (INIS)

    Cohen, A.G.

    2003-01-01

    Extra-dimensional physics is realized as the low-energy limit of lower-dimensional gauge theories. This 'deconstruction' of dimensions provides a UV completion of higher-dimensional theories, and has been used to investigate the physics of extra-dimensions. This technique has also led to a variety of interesting phenomenological applications, especially a new class of models of electroweak superconductivity, called the 'little Higgs'. (author)

  4. Experimental test of the background rejection, through imaging capability, of a highly segmented AGATA germanium detector

    International Nuclear Information System (INIS)

    Doncel, M.; Recchia, F.; Quintana, B.; Gadea, A.; Farnea, E.

    2010-01-01

    The development of highly segmented germanium detectors as well as the algorithms to identify the position of the interaction within the crystal opens the possibility to locate the γ-ray source using Compton imaging algorithms. While the Compton-suppression shield, coupled to the germanium detector in conventional arrays, works also as an active filter against the γ rays originated outside the target, the new generation of position sensitive γ-ray detector arrays has to fully rely on tracking capabilities for this purpose. In specific experimental conditions, as the ones foreseen at radioactive beam facilities, the ability to discriminate background radiation improves the sensitivity of the gamma spectrometer. In this work we present the results of a measurement performed at the Laboratori Nazionali di Legnaro (LNL) aiming the evaluation of the AGATA detector capabilities to discriminate the origin of the γ rays on an event-by-event basis. It will be shown that, exploiting the Compton scattering formula, it is possible to track back γ rays coming from different positions, assigning them to specific emitting locations. These imaging capabilities are quantified for a single crystal AGATA detector.

  5. Oxygen defect processes in silicon and silicon germanium

    KAUST Repository

    Chroneos, A.; Sgourou, E. N.; Londos, C. A.; Schwingenschlö gl, Udo

    2015-01-01

    Silicon and silicon germanium are the archetypical elemental and alloy semiconductor materials for nanoelectronic, sensor, and photovoltaic applications. The investigation of radiation induced defects involving oxygen, carbon, and intrinsic defects is important for the improvement of devices as these defects can have a deleterious impact on the properties of silicon and silicon germanium. In the present review, we mainly focus on oxygen-related defects and the impact of isovalent doping on their properties in silicon and silicon germanium. The efficacy of the isovalent doping strategies to constrain the oxygen-related defects is discussed in view of recent infrared spectroscopy and density functional theory studies.

  6. Oxygen defect processes in silicon and silicon germanium

    KAUST Repository

    Chroneos, A.

    2015-06-18

    Silicon and silicon germanium are the archetypical elemental and alloy semiconductor materials for nanoelectronic, sensor, and photovoltaic applications. The investigation of radiation induced defects involving oxygen, carbon, and intrinsic defects is important for the improvement of devices as these defects can have a deleterious impact on the properties of silicon and silicon germanium. In the present review, we mainly focus on oxygen-related defects and the impact of isovalent doping on their properties in silicon and silicon germanium. The efficacy of the isovalent doping strategies to constrain the oxygen-related defects is discussed in view of recent infrared spectroscopy and density functional theory studies.

  7. Focusing of a new germanium counter type : the composite detector. Uses of the TREFLE detector in the EUROGAM multidetector

    International Nuclear Information System (INIS)

    Han, L.

    1995-05-01

    The aim of this thesis is the development of new types of germanium detectors: the composite detectors. Two types of prototypes are then conceived: the stacked planar detector (EDP) and the assembly of coaxial diodes (TREFLE). They are designed for the multidetector EUROGAM destined to the research of nuclear structure at high angular momentum. The four planar diodes of EDP detector were of 7 cm diameter and of 15 to 20 mm thick. The difference between the calculated and measured photopic efficiency is observed. The importance of surface channel induces a weak resistance of neutron damages. The sputtering method for the surface treatment reducing the germanium dead layer as well as a rule of selection concerning the impurity concentration and the thickness of crystal is helpful for the later production of germanium detector. The CLOVER detector consist of for mean size crystals in the same cryostat. The photopic efficiency is much larger than that of the greatest monocrystal detector. And the granulation of composite detector allowed the Doppler broadening correction of gamma ray observed in the nuclear reaction where the recoil velocity is very high. This new type of detector enable the linear polarization measurement of gamma ray. Twenty-four CLOVER detector are actually mounted in the EUROGAM array. The characteristics measured in source as well as in beam, reported in this thesis, meet exactly the charge account. (author). 47 refs., 61 figs., 18 tabs

  8. Improving axion detection sensitivity in high purity germanium detector based experiments

    Science.gov (United States)

    Xu, Wenqin; Elliott, Steven

    2015-04-01

    Thanks to their excellent energy resolution and low energy threshold, high purity germanium (HPGe) crystals are widely used in low background experiments searching for neutrinoless double beta decay, e.g. the MAJORANA DEMONSTRATOR and the GERDA experiments, and low mass dark matter, e.g. the CDMS and the EDELWEISS experiments. A particularly interesting candidate for low mass dark matter is the axion, which arises from the Peccei-Quinn solution to the strong CP problem and has been searched for in many experiments. Due to axion-photon coupling, the postulated solar axions could coherently convert to photons via the Primakeoff effect in periodic crystal lattices, such as those found in HPGe crystals. The conversion rate depends on the angle between axions and crystal lattices, so the knowledge of HPGe crystal axis is important. In this talk, we will present our efforts to improve the HPGe experimental sensitivity to axions by considering the axis orientations in multiple HPGe crystals simultaneously. We acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program.

  9. Germanium detectors and natural radioactivity in food

    Energy Technology Data Exchange (ETDEWEB)

    Garbini, Lucia [Max-Planck-Institut fuer Physik, Muenchen (Germany); Collaboration: GeDet-Collaboration

    2013-07-01

    Potassium is a very important mineral for many physiological processes, like fluid balance, protein synthesis and signal transmission in nerves. Many aliments like raisins, bananas or chocolate contain potassium. Natural potassium contains 0.012% of the radioactive isotope Potassium 40. This isotope decays via β{sup +} decay into a metastable state of Argon 40, which reaches its ground state emitting a gamma of 1460 keV. A commercially produced Germanium detector has been used to measure the energy spectra of different selected food samples. It was calibrated with KCl and potassium contents were extracted. Results verify the high potassium content of commonly recommended food samples. However, the measurement quantitatively differ from the expectations in several cases. One of the most interesting results concerns chocolate bars with different percentages of cacao.

  10. Interactions of germanium atoms with silica surfaces

    International Nuclear Information System (INIS)

    Stanley, Scott K.; Coffee, Shawn S.; Ekerdt, John G.

    2005-01-01

    GeH 4 is thermally cracked over a hot filament depositing 0.7-15 ML Ge onto 2-7 nm SiO 2 /Si(1 0 0) at substrate temperatures of 300-970 K. Ge bonding changes are analyzed during annealing with X-ray photoelectron spectroscopy. Ge, GeH x , GeO, and GeO 2 desorption is monitored through temperature programmed desorption in the temperature range 300-1000 K. Low temperature desorption features are attributed to GeO and GeH 4 . No GeO 2 desorption is observed, but GeO 2 decomposition to Ge through high temperature pathways is seen above 750 K. Germanium oxidization results from Ge etching of the oxide substrate. With these results, explanations for the failure of conventional chemical vapor deposition to produce Ge nanocrystals on SiO 2 surfaces are proposed

  11. Silicon and Germanium (111) Surface Reconstruction

    Science.gov (United States)

    Hao, You Gong

    Silicon (111) surface (7 x 7) reconstruction has been a long standing puzzle. For the last twenty years, various models were put forward to explain this reconstruction, but so far the problem still remains unsolved. Recent ion scattering and channeling (ISC), scanning tunneling microscopy (STM) and transmission electron diffraction (TED) experiments reveal some new results about the surface which greatly help investigators to establish better models. This work proposes a silicon (111) surface reconstruction mechanism, the raising and lowering mechanism which leads to benzene -like ring and flower (raised atom) building units. Based on these building units a (7 x 7) model is proposed, which is capable of explaining the STM and ISC experiment and several others. Furthermore the building units of the model can be used naturally to account for the germanium (111) surface c(2 x 8) reconstruction and other observed structures including (2 x 2), (5 x 5) and (7 x 7) for germanium as well as the (/3 x /3)R30 and (/19 x /19)R23.5 impurity induced structures for silicon, and the higher temperature disordered (1 x 1) structure for silicon. The model is closely related to the silicon (111) surface (2 x 1) reconstruction pi-bonded chain model, which is the most successful model for the reconstruction now. This provides an explanation for the rather low conversion temperature (560K) of the (2 x 1) to the (7 x 7). The model seems to meet some problems in the explanation of the TED result, which is explained very well by the dimer, adatom and stacking fault (DAS) model proposed by Takayanagi. In order to explain the TED result, a variation of the atomic scattering factor is proposed. Comparing the benzene-like ring model with the DAS model, the former needs more work to explain the TED result and the later has to find a way to explain the silicon (111) surface (1 x 1) disorder experiment.

  12. Lattice site and thermal stability of transition metals in germanium

    CERN Document Server

    Augustyns, Valérie; Pereira, Lino

    Although the first transistor was based on germanium, current chip technology mainly uses silicon due to its larger abundance, a lower price and higher quality silicon-oxide. However, a very important goal in microelectronics is to obtain faster integrated circuits. The advantages of germanium compared to silicon (e.g. a higher mobility of the charge carriers) motivates further research on germanium based materials. Semiconductor doping (e.g. introducing impurities into silicon and germanium in order to alter - and control - their properties) can be done by ion implantation or by in situ doping, whereby the host material is doped during growth. This thesis focuses on introducing dopants by ion implantation. The implantation as well as the subsequent measurements were performed in ISOLDE (CERN) using the emission channeling technique. Although ion implantation generates undesired defects in the host material (e.g. vacancies), such damage can be reduced by performing the implantation at an elevated temperature....

  13. Vacancy-acceptor complexes in germanium produced by ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Feuser, U.; Vianden, R. (Inst. fuer Strahlen- und Kernphysik, Univ. Bonn (Germany)); Alves, E.; Silva, M.F. da (Dept. de Fisica, ICEN/LNETI, Sacavem (Portugal)); Szilagyi, E.; Paszti, F. (Central Research Inst. for Physics, Hungarian Academy of Sciences, Budapest (Hungary)); Soares, J.C. (Centro de Fisica Nuclear, Univ. Lisbon (Portugal))

    1991-07-01

    Combining results obtained by the {gamma}-{gamma} perturbed angular correlation method, Rutherford backscattering and elastic recoil detection of hydrogen, a defect complex formed in germanium by indium implantation is identified as a vacancy trapped by the indium probe. (orig.).

  14. Near-infrared emission from mesoporous crystalline germanium

    Energy Technology Data Exchange (ETDEWEB)

    Boucherif, Abderraouf; Aimez, Vincent; Arès, Richard, E-mail: richard.ares@usherbrooke.ca [Institut Interdisciplinaire d’Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard Université, Sherbrooke, J1K OA5, Québec (Canada); Laboratoire Nanotechnologies Nanosystèmes (LN2)-CNRS UMI-3463, Université de Sherbrooke, 3000 Boulevard Université, Sherbrooke, J1K OA5, Québec (Canada); Korinek, Andreas [Canadian Centre for Electron Microscopy, Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, L8S 4M1 (Canada)

    2014-10-15

    Mesoporous crystalline germanium was fabricated by bipolar electrochemical etching of Ge wafer in HF-based electrolyte. It yields uniform mesoporous germanium layers composed of high density of crystallites with an average size 5-7 nm. Subsequent extended chemical etching allows tuning of crystallites size while preserving the same chemical composition. This highly controllable nanostructure exhibits photoluminescence emission above the bulk Ge bandgap, in the near-infrared range (1095-1360nm) with strong evidence of quantum confinement within the crystallites.

  15. Synthesis and evaluation of germanic organometallic compounds as precursors for chemical vapor deposition (CVD) and for obtaining nanoparticles of elemental germanium

    International Nuclear Information System (INIS)

    Ballestero Martinez, Ernesto

    2014-01-01

    The interest in the development of materials that have applications in areas such as electronics or biomarkers has affected the synthesis of new compounds based on germanium. This element has two states of common oxidation, +4 and +2, of them, the +2 oxidation state is the least studied and more reactive. Additionally, compounds of germanium (II) have similarities to carbenes in terms Lewis'acid base chemistry. The preparation of compounds of germanium (II) with ligands β-diketiminates has made possible the stabilization of new chemical functionalities and, simultaneously, it has provided interesting thermal properties to develop new methods of preparation of materials with novel properties. The preparation of amides germanium (II) L'Ge (NHPh) [1, L'= {HC (CMeN-2,4,6-Me 3 C 6 H 2 ) 2 } - ], L'Ge (4-NHPy) [2], L'Ge (2-NHPy) [3] and LGe(2-NHPy) [4, L = {HC (CMeN-2,6- i Pr 2 C 6 H 3 ) 2 ] - ] are presented, the chemical and structural composition was determined by using techniques such as nuclear magnetic resonance ( 1 H, 13 C), elemental analysis, melting point, infrared spectroscopy, X-ray diffraction of single crystal and thermogravimetric analysis (TGA). The TGA has demonstrated that 1-4 experience a thermal decomposition, therefore, these compounds could be considered as potential starting materials for the obtaining of germanium nitride (GeN x ). Certainly, the availability of coordinating nitrogen atoms in the chemical composition in 2-4 have been interesting given that it could act as ligands in reactions with transition metal complexes. Thus, relevant information to molecular level could be obtained for some reactions and interactions that have used similar link sites in surface chemistry, for example, the chemical functionalization of silicon and germanium substrate. Additionally, the synthesis and structural characterization of germanium chloride compound (II) L G eCl [5, L' = HC{(CMe) (N-2,6-Me 2 C 6 H 3 )} 2 - ] is reported

  16. Influence of Containment on the Growth of Silicon-Germanium: A Materials Science Flight Project

    Science.gov (United States)

    Volz, M. P.; Mazuruk, K.; Croell, A.

    2012-01-01

    A series of Ge(1-x)Si(x) crystal growth experiments are planned to be conducted in the Low Gradient Furnace (LGF) onboard the International Space Station. The primary objective of the research is to determine the influence of containment on the processing-induced defects and impurity incorporation in germanium-silicon alloy crystals. A comparison will be made between crystals grown by the normal and "detached" Bridgman methods and the ground-based float zone technique. Crystals grown without being in contact with a container have superior quality to otherwise similar crystals grown in direct contact with a container, especially with respect to impurity incorporation, formation of dislocations, and residual stress in crystals. "Detached" or "dewetted" Bridgman growth is similar to regular Bridgman growth in that most of the melt is in contact with the crucible wall, but the crystal is separated from the wall by a small gap, typically of the order of 10-100 microns. Long duration reduced gravity is essential to test the proposed theory of detached growth. Detached growth requires the establishment of a meniscus between the crystal and the ampoule wall. The existence of this meniscus depends on the ratio of the strength of gravity to capillary forces. On Earth, this ratio is large and stable detached growth can only be obtained over limited conditions. Crystals grown detached on the ground exhibited superior structural quality as evidenced by measurements of etch pit density, synchrotron white beam X-ray topography and double axis X-ray diffraction. The plans for the flight experiments will be described.

  17. Influence of Containment on the Growth of Silicon-Germanium (ICESAGE): A Materials Science ISS Investigation

    Science.gov (United States)

    Volz, M. P.; Mazuruk, K.; Croll, A.

    2014-01-01

    A series of Ge(1-x)Si(x) crystal growth experiments are planned to be conducted in the Low Gradient Furnace (LGF) onboard the International Space Station. The primary objective of the research is to determine the influence of containment on the processinginduced defects and impurity incorporation in germanium-silicon alloy crystals. A comparison will be made between crystals grown by the normal and "detached" Bridgman methods and the ground-based float zone technique. Crystals grown without being in contact with a container have superior quality to otherwise similar crystals grown in direct contact with a container, especially with respect to impurity incorporation, formation of dislocations, and residual stress in crystals. "Detached" or "dewetted" Bridgman growth is similar to regular Bridgman growth in that most of the melt is in contact with the crucible wall, but the crystal is separated from the wall by a small gap, typically of the order of 10-100 microns. Long duration reduced gravity is essential to test the proposed theory of detached growth. Detached growth requires the establishment of a meniscus between the crystal and the ampoule wall. The existence of this meniscus depends on the ratio of the strength of gravity to capillary forces. On Earth, this ratio is large and stable detached growth can only be obtained over limited conditions. Crystals grown detached on the ground exhibited superior structural quality as evidenced by measurements of etch pit density, synchrotron white beam X-ray topography and double axis X-ray diffraction. The plans for the flight experiments will be described.

  18. PREFACE: 2nd Workshop on Germanium Detectors and Technologies

    Science.gov (United States)

    Abt, I.; Majorovits, B.; Keller, C.; Mei, D.; Wang, G.; Wei, W.

    2015-05-01

    The 2nd workshop on Germanium (Ge) detectors and technology was held at the University of South Dakota on September 14-17th 2014, with more than 113 participants from 8 countries, 22 institutions, 15 national laboratories, and 8 companies. The participants represented the following big projects: (1) GERDA and Majorana for the search of neutrinoless double-beta decay (0νββ) (2) SuperCDMS, EDELWEISS, CDEX, and CoGeNT for search of dark matter; (3) TEXONO for sub-keV neutrino physics; (4) AGATA and GRETINA for gamma tracking; (5) AARM and others for low background radiation counting; (5) as well as PNNL and LBNL for applications of Ge detectors in homeland security. All participants have expressed a strong desire on having better understanding of Ge detector performance and advancing Ge technology for large-scale applications. The purpose of this workshop was to leverage the unique aspects of the underground laboratories in the world and the germanium (Ge) crystal growing infrastructure at the University of South Dakota (USD) by brining researchers from several institutions taking part in the Experimental Program to Stimulate Competitive Research (EPSCoR) together with key leaders from international laboratories and prestigious universities, working on the forefront of the intensity to advance underground physics focusing on the searches for dark matter, neutrinoless double-beta decay (0νββ), and neutrino properties. The goal of the workshop was to develop opportunities for EPSCoR institutions to play key roles in the planned world-class research experiments. The workshop was to integrate individual talents and existing research capabilities, from multiple disciplines and multiple institutions, to develop research collaborations, which includes EPSCor institutions from South Dakota, North Dakota, Alabama, Iowa, and South Carolina to support multi-ton scale experiments for future. The topic areas covered in the workshop were: 1) science related to Ge

  19. Using of germanium detectors in nuclear experiments with photon beams

    International Nuclear Information System (INIS)

    Kapitonov, I.M.; Tutin, I.A.

    1995-01-01

    Full text: The study of atomic nuclei with real photons is very important source of the information about nuclear structure. In such experiments the basic electromagnetic interaction between the photon and the target nuclei is well known. Experiments with photon beams become especially valuable when outcoming particles are also photons. In these cases completely model-independent information on nuclear structure can be extracted. The use of semiconductor Ge-spectrometers with excellent resolution and large sensitive volumes for recording outcoming photons gives us such an additional important advantage as possibility to observe individual closely spaced levels of the final nuclei. In the report an experience of using Ge-detectors in two types of nuclear experiments is described. Both of them - nuclear resonance fluorescence (NRF) and nuclear photodisintegration - are carried out in beams of bremsstrahlung gamma radiation. The central element of the setup recording gamma quanta in these experiments is germanium detector. NRF is unique method for studying low-lying excited nuclear states. The spins of the states can be determined easily from the measured angular distributions of scattered photons. Model independent parity assignments in NRF can be achieved by measuring polarization observables. There are two experimental possibilities: the use of linearly polarized photons (off-axis bremsstrahlung) in the entrance channel and the measurement of the linear polarization of the scattered photons using Compton polarimeters. For both methods several germanium detectors (3-5) must be used simultaneously. Nowadays Compton polarimeter can also be done from single large Ge-crystal by segmenting the outer electrode. Advantages and drawbacks of the methods and background conditions are discussed and requirements to Ge-crystals are formulated. The importance of using a new generation of electron accelerators with continuous wave (cw) beams for NRF-measurements is stressed. The

  20. Modeling an array of encapsulated germanium detectors

    International Nuclear Information System (INIS)

    Kshetri, R

    2012-01-01

    A probability model has been presented for understanding the operation of an array of encapsulated germanium detectors generally known as composite detector. The addback mode of operation of a composite detector has been described considering the absorption and scattering of γ-rays. Considering up to triple detector hit events, we have obtained expressions for peak-to-total and peak-to-background ratios of the cluster detector, which consists of seven hexagonal closely packed encapsulated HPGe detectors. Results have been obtained for the miniball detectors comprising of three and four seven hexagonal closely packed encapsulated HPGe detectors. The formalism has been extended to the SPI spectrometer which is a telescope of the INTEGRAL satellite and consists of nineteen hexagonal closely packed encapsulated HPGe detectors. This spectrometer comprises of twelve detector modules surrounding the cluster detector. For comparison, we have considered a spectrometer comprising of nine detector modules surrounding the three detector configuration of miniball detector. In the present formalism, the operation of these sophisticated detectors could be described in terms of six probability amplitudes only. Using experimental data on relative efficiency and fold distribution of cluster detector as input, the fold distribution and the peak-to-total, peak-to-background ratios have been calculated for the SPI spectrometer and other composite detectors at 1332 keV. Remarkable agreement between experimental data and results from the present formalism has been observed for the SPI spectrometer.

  1. Theoretical Investigations of the Hexagonal Germanium Carbonitride

    Directory of Open Access Journals (Sweden)

    Xinhai Yu

    2018-04-01

    Full Text Available The structural, mechanical, elastic anisotropic, and electronic properties of hexagonal germanium carbonitride (h-GeCN are systematically investigated using the first-principle calculations method with the ultrasoft pseudopotential scheme in the frame of generalized gradient approximation in the present work. The h-GeCN are mechanically and dynamically stable, as proved by the elastic constants and phonon spectra, respectively. The h-GeCN is brittle because the ratio B/G and Poisson’s ratio v of the h-GeCN are less than 1.75 and 0.26, respectively. For h-GeCN, from brittleness to ductility, the transformation pressures are 5.56 GPa and 5.63 GPa for B/G and Poisson’s ratio v, respectively. The h-GeCN exhibits the greater elastic anisotropy in Young’s modulus and the sound velocities. In addition, the calculated band structure of h-GeCN reveals that there is no band gap for h-GeCN with the HSE06 hybrid functional, so the h-GeCN is metallic.

  2. Electrodeposition of germanium from supercritical fluids.

    Science.gov (United States)

    Ke, Jie; Bartlett, Philip N; Cook, David; Easun, Timothy L; George, Michael W; Levason, William; Reid, Gillian; Smith, David; Su, Wenta; Zhang, Wenjian

    2012-01-28

    Several Ge(II) and Ge(IV) compounds were investigated as possible reagents for the electrodeposition of Ge from liquid CH(3)CN and CH(2)F(2) and supercritical CO(2) containing as a co-solvent CH(3)CN (scCO(2)) and supercritical CH(2)F(2) (scCH(2)F(2)). For Ge(II) reagents the most promising results were obtained using [NBu(n)(4)][GeCl(3)]. However the reproducibility was poor and the reduction currents were significantly less than the estimated mass transport limited values. Deposition of Ge containing films was possible at high cathodic potential from [NBu(n)(4)][GeCl(3)] in liquid CH(3)CN and supercritical CO(2) containing CH(3)CN but in all cases they were heavily contaminated by C, O, F and Cl. Much more promising results were obtained using GeCl(4) in liquid CH(2)F(2) and supercritical CH(2)F(2). In this case the reduction currents were consistent with mass transport limited reduction and bulk electrodeposition produced amorphous films of Ge. Characterisation by XPS showed the presence of low levels of O, F and C, XPS confirmed the presence of Ge together with germanium oxides, and Raman spectroscopy showed that the as deposited amorphous Ge could be crystallised by the laser used in obtaining the Raman measurements.

  3. Tunnel current across linear homocatenated germanium chains

    International Nuclear Information System (INIS)

    Matsuura, Yukihito

    2014-01-01

    The electronic transport properties of germanium oligomers catenating into linear chains (linear Ge chains) have been theoretically studied using first principle methods. The conduction mechanism of a Ge chain sandwiched between gold electrodes was analyzed based on the density of states and the eigenstates of the molecule in a two-probe environment. Like that of silicon chains (Si chains), the highest occupied molecular orbital of Ge chains contains the extended σ-conjugation of Ge 4p orbitals at energy levels close to the Fermi level; this is in contrast to the electronic properties of linear carbon chains. Furthermore, the conductance of a Ge chain is expected to decrease exponentially with molecular length L. The decay constant β, which is defined as e −βL , of a Ge chain is similar to that of a Si chain, whereas the conductance of the Ge chains is higher than that of Si chains even though the Ge–Ge bond length is longer than the Si–Si bond length

  4. Lithium effects on the mechanical and electronic properties of germanium nanowires

    Science.gov (United States)

    González-Macías, A.; Salazar, F.; Miranda, A.; Trejo-Baños, A.; Pérez, L. A.; Carvajal, E.; Cruz-Irisson, M.

    2018-04-01

    Semiconductor nanowire arrays promise rapid development of a new generation of lithium (Li) batteries because they can store more Li atoms than conventional crystals due to their large surface areas. During the charge-discharge process, the electrodes experience internal stresses that fatigue the material and limit the useful life of the battery. The theoretical study of electronic and mechanical properties of lithiated nanowire arrays allows the designing of electrode materials that could improve battery performance. In this work, we present a density functional theory study of the electronic band structure, formation energy, binding energy, and Young’s modulus (Y) of hydrogen passivated germanium nanowires (H-GeNWs) grown along the [111] and [001] crystallographic directions with surface and interstitial Li atoms. The results show that the germanium nanowires (GeNWs) with surface Li atoms maintain their semiconducting behavior but their energy gap size decreases when the Li concentration grows. In contrast, the GeNWs can have semiconductor or metallic behavior depending on the concentration of the interstitial Li atoms. On the other hand, Y is an indicator of the structural changes that GeNWs suffer due to the concentration of Li atoms. For surface Li atoms, Y stays almost constant, whereas for interstitial Li atoms, the Y values indicate important structural changes in the GeNWs.

  5. Annealing effect on spin density of broken bonds and on the structure of amorphous germanium

    International Nuclear Information System (INIS)

    Bukhan'ko, F.N.; Okunev, V.D.; Samojlenko, Z.A.

    1989-01-01

    Dependence of volumetric spin density of broken bonds in a-Ge films, produced by cathode sputtering in argon, on the annealing temperature is investigated by ESR method. The film structure is controlled by the X-ray method. Two ESR lines with g=2.019 and g=2.003, their intensities changing non-monotonously with annealing temperature are observed. The line with g=2.019 is typical of only amorphous germanium state, and the line with g=2.003 is preserved after film crystallization. Under comparison of results with structural data a conclusion is made that the observed lines in ESR spectra are linked with broken bonds in peripheral regions of two types of clusters. The line with g=2.003 is conditioned by broken bonds in the peripheral cluster regions with standard cubic atom packing and the line with g=2.019 is linked with clusters of hexagonal type which is not typical of crystalline germanium standard structure

  6. Silicon Germanium Quantum Well Solar Cell

    Data.gov (United States)

    National Aeronautics and Space Administration — A single crystal SiGe has enormous potentials for high performance chips and solar cells. This project seeks to fabricate a rudimentary but 1st cut quantum-well...

  7. Reaction studies of hot silicon, germanium and carbon atoms

    International Nuclear Information System (INIS)

    Gaspar, P.P.

    1990-01-01

    The goal of this project was to increase the authors understanding of the interplay between the kinetic and electronic energy of free atoms and their chemical reactivity by answering the following questions: (1) what is the chemistry of high-energy carbon silicon and germanium atoms recoiling from nuclear transformations; (2) how do the reactions of recoiling carbon, silicon and germanium atoms take place - what are the operative reaction mechanisms; (3) how does the reactivity of free carbon, silicon and germanium atoms vary with energy and electronic state, and what are the differences in the chemistry of these three isoelectronic atoms? This research program consisted of a coordinated set of experiments capable of achieving these goals by defining the structures, the kinetic and internal energy, and the charge states of the intermediates formed in the gas-phase reactions of recoiling silicon and germanium atoms with silane, germane, and unsaturated organic molecules, and of recoiling carbon atoms with aromatic molecules. The reactions of high energy silicon, germanium, and carbon atoms created by nuclear recoil were studied with substrates chosen so that their products illuminated the mechanism of the recoil reactions. Information about the energy and electronic state of the recoiling atoms at reaction was obtained from the variation in end product yields and the extent of decomposition and rearrangement of primary products (usually reactive intermediates) as a function of total pressure and the concentration of inert moderator molecules that remove kinetic energy from the recoiling atoms and can induce transitions between electronic spin states. 29 refs

  8. Optical properties and thermal stability of germanium oxide (GeO2) nanocrystals with α-quartz structure

    International Nuclear Information System (INIS)

    Ramana, C.V.; Carbajal-Franco, G.; Vemuri, R.S.; Troitskaia, I.B.; Gromilov, S.A.; Atuchin, V.V.

    2010-01-01

    Germanium dioxide (GeO 2 ) crystals were prepared by a chemical precipitation method at a relatively low-temperature (100 o C). The grown crystals were characterized by studying their microstructure, optical properties and thermal stability. The results indicate that the grown GeO 2 crystals exhibit α-quartz type crystal structure. The lattice parameters obtained from XRD were a = 4.987(4) A and c = 5.652(5) A. Electron microscopy analysis indicates a high structural quality of GeO 2 crystals grown using the present approach. Optical absorption measurements indicate a direct bandgap of 5.72 eV without any additional bands arising from localized or defect states. Thermogravimetric measurements indicate the temperature stability of the grown GeO 2 nanocrystals. Microscopic analysis coupled with energy dispersive X-ray spectroscopy of the GeO 2 crystals with α-quartz type crystal structure indicates their stability in chemical composition up to a temperature of 400 deg. C. The surface morphology of GeO 2 crystals, however, found to be changing with the increase in temperature.

  9. Influence of the disorder in doped germanium changed by compensation on the critical indices of the metal-insulator transition

    International Nuclear Information System (INIS)

    Rentzsch, R.; Reich, Ch.; Ionov, A.N.; Ginodman, V.; Slimak, I.; Fozooni, P.; Lea, M.J.

    1999-01-01

    We present a critical review of the present status of the critical exponent puzzle of the metal-insulator transition of doped semiconductors with the emphasis on the role of meso- and macroscopy inhomogeneity caused by the disorder of acceptors and donors in the crystals. By using the isotopic and engineering and the neutron transmutation doping of germanium we found for low compensations (at K = 1.4 and 12%) that the critical exponents of the localization length and the dielectric constant are nearly ν = 1/2 and ξ = 1, which double for medium compensations (at K = 39 and 54%) to ν 1 and ξ = 2, respectively

  10. Study on radiation-induced defects in germanium monocrystals by the X-ray diffusive scattering method

    International Nuclear Information System (INIS)

    Malinenko, I.A.; Perelygina, E.A.; Chudinova, S.A.; Shivrin, O.N.

    1979-01-01

    The method of X-ray diffusion scattering was used to study the defective structure of germanium monocrystals exposed to 750 keV proton irradiation with 3.8x10 16 -4.6x10 17 cm -2 doses and subjected to the subsequent annealing at temperatures up to 450 deg C. Detected in the crystals were the complex radiation induced structure characterized with oriented vacancy complexes and results from the both effects: irradiation and annealing. Radiation defect sizes in the section (hhO) have been determined. With increasing the annealing temperature the structure reconstruction resulting in the complex dissociation is observed

  11. Formation of various types of nanostructures on germanium surface by nanosecond laser pulses

    Science.gov (United States)

    Mikolutskiy, S. I.; Khasaya, R. R.; Khomich, Yu V.; Yamshchikov, V. A.

    2018-03-01

    The paper describes the formation of micro- and nanostructures in different parts of irradiation zone on germanium surface by multiple action of nanosecond pulses of ArF-laser. It proposes a simple method using only one laser beam without any optional devices and masks for surface treatment. Hexa- and pentagonal cells with submicron dimensions along the surface were observed in peripheral zone of irradiation spot by atomic-force microscopy. Nanostructures in the form of bulbs with rounded peaks with lateral sizes of 40-120 nm were obtained in peripheral low-intensity region of the laser spot. Considering experimental data on material processing by nanosecond laser pulses, a classification of five main types of surface reliefs formed by nanosecond laser pulses with energy density near or slightly above ablation threshold was proposed.

  12. Radiation defects in Te-implanted germanium. Electron microscopy and computer simulation studies

    International Nuclear Information System (INIS)

    Kalitzova, M.G.; Karpuzov, D.S.; Pashov, N.K.

    1985-01-01

    Direct observation of radiation damage induced by heavy ion implantation in crystalline germanium by means of high-resolution electron microscopy is reported. The dark-field lattice imaging mode is used, under conditions suitable for object-like imaging. Conventional TEM is used for estimating the efficiency of creating visibly damaged regions. Heavy ion damage clusters with three types of inner structure are observed: with near-perfect crystalline cores, and with metastable and stable amorphous cores. The MARLOWE computer code is used to simulate the atomic collision cascades and to obtain the lateral spread distributions of point defects created. A comparison of high-resolution electron microscopy (HREM) with computer simulation results shows encouraging agreement for the average cluster dimensions and for the lateral spread of vacancies and interstitials. (author)

  13. Transport in silicon-germanium heterostructures

    International Nuclear Information System (INIS)

    Chrastina, Daniel

    2001-01-01

    The work presented here describes the electrical characterization of n- and p-type strained silicon-germanium systems. Theories of quantum transport m low magnetic fields at low temperature are discussed m terms of weak-localization: the traditional theory is shown not to account for the dephasing in a 2-dimensional hole gas behaving in a metallic manner and emergent alternative theories, while promising, require refinement. The mobility as a function of sheet density is measured in a p-type pseudomorphic Si 0.5 Ge 0.5 across the temperature range 350mK-282K; it is shown that calculations of the mobility based on semi-classical scattering mechanisms fail below 10K where quantum transport effects become relevant. A room temperature Hall scattering factor has been extracted. A new functional form has been presented to fit the resistivity as a function of temperature, below 20K: traditional theories of screening and weak localization appear not to be applicable. It is also demonstrated that simple protection circuitry is essential if commercial-scale devices are to be meaningfully investigated. Mobility spectrum analysis is performed on an n-type strained-silicon device. Established analysis methods are discussed and a new method is presented based on the Bryan's Algorithm approach to maximum entropy. The breakdown of the QHE is also investigated: the critical current density compares well to that predicted by an existing theory. Finally, devices in which both electron and hole gases can be induced are investigated. However, it is shown that the two cannier species never co-exist. Design rules are presented which may allow more successful structures to be created. Results are presented which demonstrate the success and the utility of implanted contacts which selectively reach different regions of the structure. (author)

  14. Analytical product study of germanium-containing medicine by different ICP-MS applications

    NARCIS (Netherlands)

    Krystek, Petra; Ritsema, Rob

    2004-01-01

    For several years organo-germanium containing medicine has been used for special treatments of e.g. cancer and AIDS. The active substances contain germanium as beta-carboxyethylgermanium sesquioxide ((GeCH2CH 2COO-H)2O3/"Ge-132"), spirogermanium, germanium-lactate-citrate or unspecified forms. For

  15. Phonon Anharmonicity of Germanium in the Temperature Range 80-880 K

    Energy Technology Data Exchange (ETDEWEB)

    Nelin, G; Nilsson, G

    1974-06-15

    Phonon frequency shifts and line widths in germanium have been studied in the temperature range 80 - 880 K by means of thermal neutron spectrometry. The results cannot be described in terms of the quasiharmonic approximation in which phonon frequencies are solely volume dependent. Theoretical calculations are found to be more satisfactory for the Raman frequency than for most other modes. A good account of the observed shifts is given by a proposal due to Barron according to which the relative frequency renormalization of a crystal is proportional to the total harmonic vibrational energy. An analysis of the gradients of measured dispersion relations in the principal symmetry directions at 80 K is presented. It is shown that accidental degeneracies may influence the dispersion

  16. Formation of microcrystalline germanium (μc-Ge:H) films from inductively coupled plasma CVD

    International Nuclear Information System (INIS)

    Okamoto, Y.; Makihara, K.; Higashi, S.; Miyazaki, S.

    2005-01-01

    Inductively coupled RF plasma of H 2 -diluted GeH 4 gas was applied to the growth of hydrogenated microcrystalline germanium (μc-Ge:H) films on quartz in a reactor with an external single-turn antenna placed on quartz plate window parallel to the substrate. The deposition rate, the crystallinity and the thickness of an amorphous incubation layer formed in the early stages of the film growth were evaluated as functions of GeH 4 concentration, gas flow rate, substrate temperature and the distance between the antenna and the grounded substrate susceptor. We demonstrated the growth of highly crystalized Ge films at a rate as high as 0.9 nm/s at 250 deg. C using a 8.3% GeH 4 diluted with H 2

  17. Formation and characterization of varied size germanium nanocrystals by electron microscopy, Raman spectroscopy, and photoluminescence

    DEFF Research Database (Denmark)

    Ou, Haiyan; Ou, Yiyu; Liu, Chuan

    2011-01-01

    Germanium nanocrystals are being extensively examined. Their unique optical properties (brought about by the quantum confinement effect) could potentially be applied in wide areas of nonlinear optics, light emission and solid state memory etc. In this paper, Ge nanocrystals embedded in a SiO2...... matrix were formed by complementary metal-oxide-semiconductor compatible technology, e.g. plasma enhanced chemical vapour deposition and annealing. Different sizes of the Ge nanocrystals were prepared and analyzed by transmission electron microscopy with respect to their size, distribution...... and crystallization. The samples of different size Ge nanocrystals embedded in the SiO2 matrix were characterized by Raman spectroscopy and photoluminescence. Interplayed size and strain effect of Ge nanocystals was demonstrated by Raman spectroscopy after excluding the thermal effect with proper excitation laser...

  18. Topography evolution of germanium thin films synthesized by pulsed laser deposition

    Directory of Open Access Journals (Sweden)

    P. Schumacher

    2017-04-01

    Full Text Available Germanium thin films were deposited by Pulsed Laser Deposition (PLD onto single crystal Ge (100 and Si (100 substrates with a native oxide film on the surface. The topography of the surface was investigated by Atomic Force Microscopy (AFM to evaluate the scaling behavior of the surface roughness of amorphous and polycrystalline Ge films grown on substrates with different roughnesses. Roughness evolution was interpreted within the framework of stochastic rate equations for thin film growth. Here the Kardar-Parisi-Zhang equation was used to describe the smoothening process. Additionally, a roughening regime was observed in which 3-dimensional growth occurred. Diffusion of the deposited Ge adatoms controlled the growth of the amorphous Ge thin films. The growth of polycrystalline thin Ge films was dominated by diffusion processes only in the initial stage of the growth.

  19. The defects produced by electron irradiation in tellurium-doped germanium

    International Nuclear Information System (INIS)

    Fukuoka, Noboru; Saito, Haruo

    1989-01-01

    The nature of the irradiation induced defects in a germanium single crystal doped with tellurium was studied by DLTS and electrical measurements. The E c -0.21 eV level produced by irradiation with 1.5 MeV electrons was studied using the DLTS technique. It was found that the defect associated with this level is a divacancy. The E-center like defect (group V impurity-vacancy pair) introduces the E c -0.20 eV level in samples doped with a group V impurity. The level introduced by a tellurium (group VI impurity)-vacancy pair is deeper. The E c -0.16 eV level was generated by annealing at 430 K. A tellurium-vacancies complex is proposed as the defect associated with this level. (author)

  20. Ultra-Pure Water and Extremophilic Bacteria interactions with Germanium Surfaces

    Science.gov (United States)

    Sah, Vasu R.

    Supported by a consortium of semiconductor industry sponsors, an international "TIE" project among 5 National Science Foundation (NSF) Industry/university Cooperative Research Centers discovered that a particular extremophilic microbe, Pseudomonas syzygii, persists in the UltraPure Water (UPW) supplies of chip fabrication facilities (FABs) and can bio-corrode germanium wafers to produce microbe-encased optically transparent crystals. Considered as potentially functional "biochips", this investigation explored mechanisms for the efficient and deliberate production of such microbe-germania adducts as a step toward later testing of their properties as sensors or switches in bioelectronic or biophotonic circuits. Recirculating UPW (Ultra-Pure Water) and other purified water, laminar-flow loops were developed across 50X20x1mm germanium (Ge) prisms, followed by subsequent examination of the prism surfaces using Multiple Attenuated Internal Reflection InfraRed (MAIR-IR) spectroscopy, Contact Potential measurements, Differential Interference Contrast Light Microscopy (DICLM), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Analysis (EDS), and Electron Spectroscopy for Chemical Analysis (ESCA; XPS). P. syzygii cultures originally obtained from a working FAB at University of Arizona were successfully grown on R2A minimal nutrient media. They were found to be identical to the microbes in stored UPW from the same facility, such microbes routinely capable of nucleation and entrapment within GeO2 crystals on the Ge flow surfaces. Optimum flow rates and exposure times were 1 ml/minute (3.2 s-1 shear rate) for 4 days at room temperature, producing densest crystal arrays at the prism central zones 2-3 cm from the flow inlets. Other flow rates and exposure times have higher shear rate which induces a different nucleation mechanism and saturation of crystal formation. Nucleation events began with square and circular oxide deposits surrounding active attached bacteria

  1. Niobium nitride Josephson junctions with silicon and germanium barriers

    International Nuclear Information System (INIS)

    Cukauskas, E.J.; Carter, W.L.

    1988-01-01

    Niobium nitride based junctions with silicon, germanium, and composite silicon/germanium barriers were fabricated and characterized for several barrier compositions. The current-voltage characteristics were analyzed at several temperatures using the Simmons model and numerical integration of the WKB approximation for the average barrier height and effective thickness. The zero voltage conductance was measured from 1.5 K to 300 K and compared to the Mott hopping conductivity model and the Stratton tunneling temperature dependence. Conductivity followed Mott conductivity at temperatures above 60 K for junctions with less than 100 angstrom thick barriers

  2. In vitro binding of germanium to proteins of rice shoots

    International Nuclear Information System (INIS)

    Matsumoto, Hideaki; Takahashi, Eiichi

    1976-01-01

    The possibility of in vitro binding between proteins of rice shoots and germanium (Ge) was investigated. The proteins in mixtures of aqueous extracts of rice shoots and radioactive germanium ( 68 GeO 2 ) were fractionated. The binding of radioactivity to the proteins was observed even after 5 successive fractionation steps from the original mixtures. At the final fractionation step using polyacrylamide gel electrophoresis, a constant proportionality between protein concentration and associated radioactivity was found in most samples although not all. These results indicate that the binding of 68 Ge to proteins is not due to the simple adsorption by proteins. (auth.)

  3. Characterisation of two AGATA asymmetric high purity germanium capsules

    International Nuclear Information System (INIS)

    Colosimo, S.J.; Moon, S.; Boston, A.J.; Boston, H.C.; Cresswell, J.R.; Harkness-Brennan, L.; Judson, D.S.; Lazarus, I.H.; Nolan, P.J.; Simpson, J.; Unsworth, C.

    2015-01-01

    The AGATA spectrometer is an array of highly segmented high purity germanium detectors. The spectrometer uses pulse shape analysis in order to track Compton scattered γ-rays to increase the efficiency of nuclear spectroscopy studies. The characterisation of two high purity germanium detector capsules for AGATA of the same A-type has been performed at the University of Liverpool. This work will examine the uniformity of performance of the two capsules, including a comparison of the resolution and efficiency as well as a study of charge collection. The performance of the capsules shows good agreement, which is essential for the efficient operation of the γ-ray tracking array

  4. Characterisation of two AGATA asymmetric high purity germanium capsules

    Energy Technology Data Exchange (ETDEWEB)

    Colosimo, S.J., E-mail: sjc@ns.ph.liv.ac.uk [Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Moon, S.; Boston, A.J.; Boston, H.C.; Cresswell, J.R.; Harkness-Brennan, L.; Judson, D.S. [Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Lazarus, I.H. [STFC Daresbury, Daresbury, Warrington WA4 4AD (United Kingdom); Nolan, P.J. [Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Simpson, J. [STFC Daresbury, Daresbury, Warrington WA4 4AD (United Kingdom); Unsworth, C. [Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE (United Kingdom)

    2015-02-11

    The AGATA spectrometer is an array of highly segmented high purity germanium detectors. The spectrometer uses pulse shape analysis in order to track Compton scattered γ-rays to increase the efficiency of nuclear spectroscopy studies. The characterisation of two high purity germanium detector capsules for AGATA of the same A-type has been performed at the University of Liverpool. This work will examine the uniformity of performance of the two capsules, including a comparison of the resolution and efficiency as well as a study of charge collection. The performance of the capsules shows good agreement, which is essential for the efficient operation of the γ-ray tracking array.

  5. Quantitative spectrographic determination of traces of germanium in lignite

    International Nuclear Information System (INIS)

    Martin, M.; Roca, M.

    1972-01-01

    A burning technique in a d.c. arc at 10 amp has been employed. The standards have been prepared from a natural lignite with a low germanium content. In order to enhance sensitivity, AgCl, K 2 SO 4 , CuF 2 , Sb 2 S 3 and Bi 2 S 3 have been tested as sweeping materials. Using 2% CuF 2 a detection limit of 1 ppm germanium is attainable. Bi, Cu, Sb and Sn have been studied as internal standards: the former leads to the, highest precision (1 6%. Results show good agreement with those obtained by the addition method. (Author) 6 refs

  6. Program LEPS to addition of gamma spectra from germanium detectors

    International Nuclear Information System (INIS)

    Romero, L.

    1986-01-01

    The LEP program, written in FORTRAN IV, performs the addition of two spectra, collected with different detectors, from the same sample. This application, adds the two gamma spectra obtained from two opposite LEPS Germanium Detectors (Low Energy Photon Spectrometer), correcting the differences (channel/energy) between both two spectra, and fitting them before adding. The total-spectrum is recorded at the computer memory as a single spectrum. The necessary equipment, to run this program is: - Two opposite germanium detectors, with their associate electronics. - Multichannel analyzer (2048 memory channel minimum) - Computer on-line interfacing to multichannel analyzer. (Author) 4 refs

  7. Multiplying dimensions

    CERN Multimedia

    2013-01-01

    A few weeks ago, I had a vague notion of what TED was, and how it worked, but now I’m a confirmed fan. It was my privilege to host CERN’s first TEDx event last Friday, and I can honestly say that I can’t remember a time when I was exposed to so much brilliance in such a short time.   TEDxCERN was designed to give a platform to science. That’s why we called it Multiplying Dimensions – a nod towards the work we do here, while pointing to the broader importance of science in society. We had talks ranging from the most subtle pondering on the nature of consciousness to an eighteen year old researcher urging us to be patient, and to learn from our mistakes. We had musical interludes that included encounters between the choirs of local schools and will.i.am, between an Israeli pianist and an Iranian percussionist, and between Grand Opera and high humour. And although I opened the event by announcing it as a day off from physics, we had a quite brill...

  8. Active noise canceling system for mechanically cooled germanium radiation detectors

    Science.gov (United States)

    Nelson, Karl Einar; Burks, Morgan T

    2014-04-22

    A microphonics noise cancellation system and method for improving the energy resolution for mechanically cooled high-purity Germanium (HPGe) detector systems. A classical adaptive noise canceling digital processing system using an adaptive predictor is used in an MCA to attenuate the microphonics noise source making the system more deployable.

  9. Direct observations of the vacancy and its annealing in germanium

    DEFF Research Database (Denmark)

    Slotte, J.; Kilpeläinen, S.; Tuomisto, F.

    2011-01-01

    Weakly n-type doped germanium has been irradiated with protons up to a fluence of 3×1014 cm-2 at 35 K and 100 K in a unique experimental setup. Positron annihilation measurements show a defect lifetime component of 272±4 ps at 35 K in in situ positron lifetime measurements after irradiation at 100...

  10. Radiation-enhanced self- and boron diffusion in germanium

    DEFF Research Database (Denmark)

    Schneider, S.; Bracht, H.; Klug, J.N.

    2013-01-01

    We report experiments on proton radiation-enhanced self- and boron (B) diffusion in germanium (Ge) for temperatures between 515 ∘ C and 720 ∘ C. Modeling of the experimental diffusion profiles measured by means of secondary ion mass spectrometry is achieved on the basis of the Frenkel pair reaction...

  11. Dislocation multiplication rate in the early stage of germanium plasticity

    Czech Academy of Sciences Publication Activity Database

    Fikar, J.; Dupas, Corinne; Kruml, Tomáš; Jacques, A.; Martin, J. L.

    400-401, - (2005), s. 431-434 ISSN 0921-5093. [Dislocations 2004. La Colle-sur-Loup, 13.09.2004-17.09.2004] Institutional research plan: CEZ:AV0Z2041904 Keywords : dislocation multiplication * germanium * constitutive modelling Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.347, year: 2005

  12. Effect of normal processes on thermal conductivity of germanium ...

    Indian Academy of Sciences (India)

    Abstract. The effect of normal scattering processes is considered to redistribute the phonon momentum in (a) the same phonon branch – KK-S model and (b) between differ- ent phonon branches – KK-H model. Simplified thermal conductivity relations are used to estimate the thermal conductivity of germanium, silicon and ...

  13. Development of revitalisation technique for impaired lithium doped germanium detector

    International Nuclear Information System (INIS)

    Singh, N.S.B.; Rafi Ahmed, A.G.; Balasubramanian, G.R.

    1994-01-01

    Semiconductor detectors play very significant role in photon detection and are important tools in the field of gamma spectroscopy. Lithium doped germanium detectors belong to this category. The development of revitalisation technique for these impaired detectors are discussed in this report

  14. Monte Carlo simulation of the X-ray response of a germanium microstrip detector with energy and position resolution

    CERN Document Server

    Rossi, G; Fajardo, P; Morse, J

    1999-01-01

    We present Monte Carlo computer simulations of the X-ray response of a micro-strip germanium detector over the energy range 30-100 keV. The detector consists of a linear array of lithographically defined 150 mu m wide strips on a high purity monolithic germanium crystal of 6 mm thickness. The simulation code is divided into two parts. We first consider a 10 mu m wide X-ray beam striking the detector surface at normal incidence and compute the interaction processes possible for each photon. Photon scattering and absorption inside the detector crystal are simulated using the EGS4 code with the LSCAT extension for low energies. A history of events is created of the deposited energies which is read by the second part of the code which computes the energy histogram for each detector strip. Appropriate algorithms are introduced to account for lateral charge spreading occurring during charge carrier drift to the detector surface, and Fano and preamplifier electronic noise contributions. Computed spectra for differen...

  15. Solution synthesis of lead seeded germanium nanowires and branched nanowire networks and their application as Li-ion battery anodes

    Science.gov (United States)

    Flynn, Grace; Palaniappan, Kumaranand; Sheehan, Martin; Kennedy, Tadhg; Ryan, Kevin M.

    2017-06-01

    Herein, we report the high density growth of lead seeded germanium nanowires (NWs) and their development into branched nanowire networks suitable for application as lithium ion battery anodes. The synthesis of the NWs from lead seeds occurs simultaneously in both the liquid zone (solution-liquid-solid (SLS) growth) and solvent rich vapor zone (vapor-liquid-solid (VLS) growth) of a high boiling point solvent growth system. The reaction is sufficiently versatile to allow for the growth of NWs directly from either an evaporated catalyst layer or from pre-defined nanoparticle seeds and can be extended to allowing extensive branched nanowire formation in a secondary reaction where these seeds are coated onto existing wires. The NWs are characterized using TEM, SEM, XRD and DF-STEM. Electrochemical analysis was carried out on both the single crystal Pb-Ge NWs and the branched Pb-Ge NWs to assess their suitability for use as anodes in a Li-ion battery. Differential capacity plots show both the germanium wires and the lead seeds cycle lithium and contribute to the specific capacity that is approximately 900 mAh g-1 for the single crystal wires, rising to approximately 1100 mAh g-1 for the branched nanowire networks.

  16. Efficiency for close geometries and extended sources of a p-type germanium detector with low-energy sensitivity

    International Nuclear Information System (INIS)

    Keyser, R.M.; Twomey, T.R.

    2007-01-01

    Typically, germanium detectors designed to have good sensitivity to low-energy photons and good efficiency at high energies are constructed from n-type crystals with a boron-implanted outer contact. These detectors usually exhibit inferior resolution and peak shape compared to ones made from p-type crystals. To overcome the resolution and peak-shape deficiencies, a new method of construction of a germanium detector element was developed. This has resulted in a gamma-ray detector with high sensitivity to photon energies from 14 keV to 2 MeV, while maintaining good resolution and peak shape over this energy range. Efficiency measurements, done according to the draft IEEE 325-2004 standard, show efficiencies typical of a GMX or n-type detector at low energies. The detectors are of large diameter suitable for counting extended samples such as filter papers. The Gaussian peak shape and good resolution typical of a GEM or p-type are maintained for the high count rates and peak separation needed for activation analysis. (author)

  17. Pulse shapes and surface effects in segmented germanium detectors

    International Nuclear Information System (INIS)

    Lenz, Daniel

    2010-01-01

    It is well established that at least two neutrinos are massive. The absolute neutrino mass scale and the neutrino hierarchy are still unknown. In addition, it is not known whether the neutrino is a Dirac or a Majorana particle. The GERmanium Detector Array (GERDA) will be used to search for neutrinoless double beta decay of 76 Ge. The discovery of this decay could help to answer the open questions. In the GERDA experiment, germanium detectors enriched in the isotope 76 Ge are used as source and detector at the same time. The experiment is planned in two phases. In the first, phase existing detectors are deployed. In the second phase, additional detectors will be added. These detectors can be segmented. A low background index around the Q value of the decay is important to maximize the sensitivity of the experiment. This can be achieved through anti-coincidences between segments and through pulse shape analysis. The background index due to radioactive decays in the detector strings and the detectors themselves was estimated, using Monte Carlo simulations for a nominal GERDA Phase II array with 18-fold segmented germanium detectors. A pulse shape simulation package was developed for segmented high-purity germanium detectors. The pulse shape simulation was validated with data taken with an 19-fold segmented high-purity germanium detector. The main part of the detector is 18-fold segmented, 6-fold in the azimuthal angle and 3-fold in the height. A 19th segment of 5mm thickness was created on the top surface of the detector. The detector was characterized and events with energy deposited in the top segment were studied in detail. It was found that the metalization close to the end of the detector is very important with respect to the length of the of the pulses observed. In addition indications for n-type and p-type surface channels were found. (orig.)

  18. Pulse shapes and surface effects in segmented germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lenz, Daniel

    2010-03-24

    It is well established that at least two neutrinos are massive. The absolute neutrino mass scale and the neutrino hierarchy are still unknown. In addition, it is not known whether the neutrino is a Dirac or a Majorana particle. The GERmanium Detector Array (GERDA) will be used to search for neutrinoless double beta decay of {sup 76}Ge. The discovery of this decay could help to answer the open questions. In the GERDA experiment, germanium detectors enriched in the isotope {sup 76}Ge are used as source and detector at the same time. The experiment is planned in two phases. In the first, phase existing detectors are deployed. In the second phase, additional detectors will be added. These detectors can be segmented. A low background index around the Q value of the decay is important to maximize the sensitivity of the experiment. This can be achieved through anti-coincidences between segments and through pulse shape analysis. The background index due to radioactive decays in the detector strings and the detectors themselves was estimated, using Monte Carlo simulations for a nominal GERDA Phase II array with 18-fold segmented germanium detectors. A pulse shape simulation package was developed for segmented high-purity germanium detectors. The pulse shape simulation was validated with data taken with an 19-fold segmented high-purity germanium detector. The main part of the detector is 18-fold segmented, 6-fold in the azimuthal angle and 3-fold in the height. A 19th segment of 5mm thickness was created on the top surface of the detector. The detector was characterized and events with energy deposited in the top segment were studied in detail. It was found that the metalization close to the end of the detector is very important with respect to the length of the of the pulses observed. In addition indications for n-type and p-type surface channels were found. (orig.)

  19. Germanium detector studies in the framework of the GERDA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Budjas, Dusan

    2009-05-06

    The GERmanium Detector Array (GERDA) is an ultra-low background experiment under construction at Laboratori Nazionali del Gran Sasso. GERDA will search for {sup 76}Ge neutrinoless double beta decay with an aim for 100-fold reduction in background compared to predecessor experiments. This ambition necessitates innovative design approaches, strict selection of low-radioactivity materials, and novel techniques for active background suppression. The core feature of GERDA is its array of germanium detectors for ionizing radiation, which are enriched in {sup 76}Ge. Germanium detectors are the central theme of this dissertation. The first part describes the implementation, testing, and optimisation of Monte Carlo simulations of germanium spectrometers, intensively involved in the selection of low-radioactivity materials. The simulations are essential for evaluations of the gamma ray measurements. The second part concerns the development and validation of an active background suppression technique based on germanium detector signal shape analysis. This was performed for the first time using a BEGe-type detector, which features a small read-out electrode. As a result of this work, BEGe is now one of the two detector technologies included in research and development for the second phase of the GERDA experiment. A suppression of major GERDA backgrounds is demonstrated, with (0.93{+-}0.08)% survival probability for events from {sup 60}Co, (21{+-}3)% for {sup 226}Ra, and (40{+-}2)% for {sup 228}Th. The acceptance of {sup 228}Th double escape events, which are analogous to double beta decay, was kept at (89{+-}1)%. (orig.)

  20. Gallium arsenide single crystal solar cell structure and method of making

    Science.gov (United States)

    Stirn, Richard J. (Inventor)

    1983-01-01

    A production method and structure for a thin-film GaAs crystal for a solar cell on a single-crystal silicon substrate (10) comprising the steps of growing a single-crystal interlayer (12) of material having a closer match in lattice and thermal expansion with single-crystal GaAs than the single-crystal silicon of the substrate, and epitaxially growing a single-crystal film (14) on the interlayer. The material of the interlayer may be germanium or graded germanium-silicon alloy, with low germanium content at the silicon substrate interface, and high germanium content at the upper surface. The surface of the interface layer (12) is annealed for recrystallization by a pulsed beam of energy (laser or electron) prior to growing the interlayer. The solar cell structure may be grown as a single-crystal n.sup.+ /p shallow homojunction film or as a p/n or n/p junction film. A Ga(Al)AS heteroface film may be grown over the GaAs film.

  1. High resolution gamma-ray spectroscopy at high count rates with a prototype High Purity Germanium detector

    Science.gov (United States)

    Cooper, R. J.; Amman, M.; Vetter, K.

    2018-04-01

    High-resolution gamma-ray spectrometers are required for applications in nuclear safeguards, emergency response, and fundamental nuclear physics. To overcome one of the shortcomings of conventional High Purity Germanium (HPGe) detectors, we have developed a prototype device capable of achieving high event throughput and high energy resolution at very high count rates. This device, the design of which we have previously reported on, features a planar HPGe crystal with a reduced-capacitance strip electrode geometry. This design is intended to provide good energy resolution at the short shaping or digital filter times that are required for high rate operation and which are enabled by the fast charge collection afforded by the planar geometry crystal. In this work, we report on the initial performance of the system at count rates up to and including two million counts per second.

  2. Defect-impurity interactions in irradiated germanium

    International Nuclear Information System (INIS)

    Cleland, J.W.; James, F.J.; Westbrook, R.D.

    1975-07-01

    Results of experiments are used to formulate a better model for the structures of lattice defects and defect-impurity complexes in irradiated n-type Ge. Single crystals were grown by the Czochralski process from P, As, or Sb-doped melts, and less than or equal to 10 15 to greater than or equal to 10 17 oxygen cm -3 was added to the furnace chamber after approximately 1 / 3 of the crystal had been solidified. Hall coefficient and resistivity measurements (at 77 0 K) were used to determine the initial donor concentration due to the dopant and clustered oxygen, and infrared absorption measurements (at 11.7 μ) were used to determine the dissociated oxygen concentration. Certain impurity and defect-impurity interactions were then investigated that occurred as a consequence of selected annealing, quenching, Li diffusion, and irradiation experiments at approximately 300 0 K with 60 Co photons, 1.5 to 2.0 MeV electrons, or thermal energy neutrons. Particular attention was given to determining the electrical role of the irradiation produced interstitial and vacancy, and to look for any evidence from electrical and optical measurements of vacancy--oxygen, lithium--oxygen, and lithium--vacancy interactions. (U.S.)

  3. Indium-hydrogen complexes in silicon and germanium under compression and tension

    International Nuclear Information System (INIS)

    Marx, G.; Vianden, R.

    1996-01-01

    The response of hydrogen-acceptor complexes in silicon and germanium to the application of uniaxial mechanical stress was studied by means of the perturbed angular correlation technique. This hyperfine interaction technique is sensitive to the microscopic structure of the immediate lattice environment of the probe atom. For the measurements, the probe 111 In was introduced into Si and Ge crystals by ion implantation at room temperature. After annealing, the radioactive probe atom 111 In acts as an acceptor in the elemental semiconductors Si and Ge and as such can easily be passivated by hydrogen indiffusion. The resulting In-H complex was subsequently exposed to uniaxial compressive and tensile stress, which was produced by bending the crystals along the three major lattice directions left angle 100 right angle, left angle 110 right angle and left angle 111 right angle. It was found that the application of uniaxial mechanical stress causes no change in the population of the four equivalent bond centred H sites surrounding the In acceptor. Evidence was found for a large mismatch of the lattice parameters between the passivated In implanted layer and the surrounding pure Si. (orig.)

  4. Event timing in high purity germanium coaxial detectors

    International Nuclear Information System (INIS)

    El-Ibiary, M.Y.

    1979-08-01

    The timing of gamma ray radiation in systems using high purity coaxial germanium detectors is analyzed and compared to that of systems using Ge(Li) detectors. The analysis takes into account the effect of the residual impurities on the electric field distribution, and hence on the rate of rise of the electrical pulses delivered to the timing module. Conditions under which the electric field distribution could lead to an improvement in timing performance, are identified. The results of the analysis confirm the experimental results published elsewhere and when compared with those for Ge(Li) detectors, which usually operate under conditions of charge carrier velocity saturation, confirm that high purity germanium detectors need not have inferior timing characteristics. A chart is given to provide a quantitative basis on which the trade off between the radius of the detector and its time resolution may be made

  5. Development of neutron-transmutation-doped germanium bolometer material

    International Nuclear Information System (INIS)

    Palaio, N.P.

    1983-08-01

    The behavior of lattice defects generated as a result of the neutron-transmutation-doping of germanium was studied as a function of annealing conditions using deep level transient spectroscopy (DLTS) and mobility measurements. DLTS and variable temperature Hall effect were also used to measure the activation of dopant impurities formed during the transmutation process. In additioon, a semi-automated method of attaching wires on to small chips of germanium ( 3 ) for the fabrication of infrared detecting bolometers was developed. Finally, several different types of junction field effect transistors were tested for noise at room and low temperature (approx. 80 K) in order to find the optimum device available for first stage electronics in the bolometer signal amplification circuit

  6. Synthesis and Gas Phase Thermochemistry of Germanium-Containing Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Classen, Nathan Robert [Iowa State Univ., Ames, IA (United States)

    2002-01-01

    The driving force behind much of the work in this dissertation was to gain further understanding of the unique olefin to carbene isomerization observed in the thermolysis of 1,1-dimethyl-2-methylenesilacyclobutane by finding new examples of it in other silicon and germanium compounds. This lead to the examination of a novel phenylmethylenesilacyclobut-2-ene, which did not undergo olefin to carbene rearrangement. A synthetic route to methylenegermacyclobutanes was developed, but the methylenegermacyclobutane system exhibited kinetic instability, making the study of the system difficult. In any case the germanium system decomposed through a complex mechanism which may not include olefin to carbene isomerization. However, this work lead to the study of the gas phase thermochemistry of a series of dialkylgermylene precursors in order to better understand the mechanism of the thermal decomposition of dialkylgermylenes. The resulting dialkylgermylenes were found to undergo a reversible intramolecular β C-H insertion mechanism.

  7. Vanadocene reactions with mixed acylates of silicon, germanium and tin

    International Nuclear Information System (INIS)

    Latyaeva, V.N.; Lineva, A.N.; Zimina, S.V.; Gordetsov, A.S.; Dergunov, Yu.I.

    1981-01-01

    Vanadocene interaction with di-and tri-alkyl (aryl)-derivatives of silicon, tin and germanium is studied. Dibutyltin dibenzoate under mild conditions (20 deg C, toluene) oxidates vanadocene to [CpV(OCOC 6 H 5 ) 2 ] 2 , at that, the splitting off of one Cp group in the form of cyclopentadiene and formation of the products of tin-organic fragment disproportionation (tributyltin benzoate, dibutyltin, metallic tin) take place. Tributyltin benzoate oxidates vanadocene at the mole ratio 2:1 and during prolong heating (120 deg C) in the absence of the solvent, [CpV(OCOC 6 H 5 ) 2 ] 2 and hexabutyldistannate are the products of the reaction. Acetates R 3 SnOCOCH 3 react in the similar way. The reactivity of mono- and diacylates of germanium and silicon decreases in the series of derivatives Sn>Ge>Si [ru

  8. Mechanically-cooled germanium detector using two stirling refrigerators

    International Nuclear Information System (INIS)

    Katagiri, Masaki; Kobayashi, Yoshii; Takahashi, Koji

    1996-01-01

    In this paper, we present a developed mechanically-cooled germanium gamma-ray detector using Stirling refrigerators. Two Stirling refrigerators having cooling faculty of 1.5W at 80K were used to cool down a germanium detector element to 77K instead of a dewar containing liquid nitrogen. An 145cm 3 (56.0mmf x 59.1 mml) closed-end Ge(I) detector having relative detection efficiency of 29.4% was attached at the refrigerators. The size of the detector was 60cml x 15cmh x 15cmw. The lowest cooling temperature, 70K was obtained after 8 hours operation. The energy resolutions for 1.33MeV gamma-rays and for pulser signals were 2.43keV and 1.84keV at an amplifier shaping time of 2μsec, respectively

  9. The Future of Low Temperature Germanium as Dark Matter Detectors

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    The Weakly Interactive Massive Particles (WIMPs) represent one of the most attractive candidates for the dark matter in the universe. With the combination of experiments attempting to detect WIMP scattering in the laboratory, of searches for their annihilation in the cosmos and of their potential production at the LHC, the next five years promise to be transformative. I will review the role played so far by low temperature germanium detectors in the direct detection of WIMPs. Because of its high signal to noise ratio, the simultaneous measurement of athermal phonons and ionization is so far the only demonstrated approach with zero-background. I will argue that this technology can be extrapolated to a target mass of the order of a tonne at reasonable cost and can keep playing a leading role, complementary to noble liquid technologies. I will describe in particular GEODM, the proposed Germanium Observatory for Dark Matter at the US Deep Underground Science and Engineering Laboratory (DUSEL).

  10. Ultraviolet-light-induced processes in germanium-doped silica

    DEFF Research Database (Denmark)

    Kristensen, Martin

    2001-01-01

    A model is presented for the interaction of ultraviolet (UV) light with germanium-doped silica glass. It is assumed that germanium sites work as gates for transferring the excitation energy into the silica. In the material the excitation induces forbidden transitions to two different defect states...... which are responsible for the observed refractive index changes. Activation energies [1.85 +/-0.15 eV and 1.91 +/-0.15 eV] and rates [(2.7 +/-1.9) x 10(13) Hz and(7.2 +/-4.5) x 10(13) Hz] are determined for thermal elimination of these states. Good agreement is found with experimental results and new UV...

  11. Germanium-doped gallium phosphide obtained by neutron irradiation

    Science.gov (United States)

    Goldys, E. M.; Barczynska, J.; Godlewski, M.; Sienkiewicz, A.; Heijmink Liesert, B. J.

    1993-08-01

    Results of electrical, optical, electron spin resonance and optically detected magnetic resonance studies of thermal neutron irradiated and annealed at 800 °C n-type GaP are presented. Evidence is found to support the view that the main dopant introduced via transmutation of GaP, germanium, occupies cation sites and forms neutral donors. This confirms the possibility of neutron transmutation doping of GaP. Simultaneously, it is shown that germanium is absent at cation sites. Presence of other forms of Ge-related defects is deduced from luminescence and absorption data. Some of them are tentatively identified as VGa-GeGa acceptors leading to the self-compensation process. This observation means that the neutron transmutation as a doping method in application to GaP is not as efficient as for Si.

  12. Effects of crystal defects on the diffuse scattering of X-rays

    International Nuclear Information System (INIS)

    Kremser, R.

    1974-01-01

    This thesis concerns with the influence of crystal defects in germanium-drifted silicium and in α=quartz on the intensity of the diffuse X-ray scattering. The experiments were performed at low and high temperatures to show the effect of the atomic thermal motion on the intensity of the diffuse maxima. The comparison of the results for pure silicium and for the germanium-drifted crystal gives information about the relation between the frequency-spectra and the defects of the drifted silicium. For α-quarts it was not possible to relate unequivocally the observed changes in the intensity to individual defects. (C.R.)

  13. The germanium wall of the GEM detector system GEM Collaboration

    International Nuclear Information System (INIS)

    Betigeri, M.; Biakowski, E.; Bojowald, H.; Budzanowski, A.; Chatterjee, A.; Drochner, M.; Ernst, J.; Foertsch, S.; Freindl, L.; Frekers, D.; Garske, W.; Grewer, K.; Hamacher, A.; Igel, S.; Ilieva, J.; Jarczyk, L.; Jochmann, M.; Kemmerling, G.; Kilian, K.; Kliczewski, S.; Klimala, W.; Kolev, D.; Kutsarova, T.; Lieb, J.; Lippert, G.; Machner, H.; Magiera, A.; Nann, H.; Pentchev, L.; Plendl, H.S.; Protic, D.; Razen, B.; Rossen, P. von; Roy, B.J.; Siudak, R.; Smyrski, J.; Srikantiah, R.V.; Strzakowski, A.; Tsenov, R.; Zolnierczuk, P.A.; Zwoll, K.

    1999-01-01

    A stack of annular detectors made of high-purity germanium was developed. The detectors are position sensitive with radial structures. The first one ('Quirl') is double-sided position sensitive defining 40,000 pixels, the following three (E1, E2 and E3) have 32 wedges each. The Quirl acts as tracker while the other three act as calorimeter. The stack was successfully operated in meson production reactions close to threshold

  14. Environmental applications for an intrinsic germanium well detector

    International Nuclear Information System (INIS)

    Stegnar, P.; Eldridge, J.S.; Teasley, N.A.; Oakes, T.W.

    1984-01-01

    The overall performance of an intrinsic germanium well detector for 125 I measurements was investigated in a program of environmental surveillance. Concentrations of 125 I and 131 I were determined in thyroids of road-killed deer showing the highest activities of 125 I in the animals from the near vicinity of Oak Ridge National Laboratory. This demonstrates the utility of road-killed deer as a bioindicator for radioiodine around nuclear facilities

  15. Environmental applications for an intrinsic germanium well detector

    International Nuclear Information System (INIS)

    Stegnar, P.; Eldridge, J.S.; Teasley, N.A.; Oakes, T.W.

    1984-01-01

    The overall performance of an intrinsic germanium well detector for 125 I measurements was investigated in a program of environmental surveillance. Concentrations of 125 I and 131 I were determined in thyroids of road-killed deer showing the highest activities of 125 I in the animals from the near vicinity of Oak Ridge National Laboratory. This demonstrates the utility of road-killed deer as a bionindicator for radioiodine around nuclear facilities. 6 refs., 2 figs., 3 tabs

  16. Environmental applications for an intrinsic germanium well detector

    International Nuclear Information System (INIS)

    Stegnar, P.; Eldridge, J.S.; Teasley, N.A.; Oakes, T.W.

    1983-01-01

    The overall performance of an intrinsic germanium well detector for 125 I measurements was investigated in a program of environmental surveillance. Concentrations of 125 I and 131 I were determined in thyroids of road-killed deer showing the highest activities of 125 I in the animals from the near vicinity of Oak Ridge National Laboratory. This demonstrates the utility of road-killed deer as a bioindicator for radioiodine around nuclear facilities. 6 refs., 2 figs., 3 tabs

  17. Diffusion of tin in germanium: A GGA+U approach

    KAUST Repository

    Tahini, H. A.; Chroneos, Alexander; Grimes, R. W.; Schwingenschlö gl, Udo

    2011-01-01

    Density functional theory calculations are used to investigate the formation and diffusion of tin-vacancy pairs (SnV) in germanium(Ge). Depending upon the Fermi energy, SnV pairs can form in neutral, singly negative, or doubly negative charged states. The activation energies of diffusion, also as function of the Fermi energy, are calculated to lie between 2.48-3.65 eV, in agreement with and providing an interpretation of available experimental work.

  18. Melting point of high-purity germanium stable isotopes

    Science.gov (United States)

    Gavva, V. A.; Bulanov, A. D.; Kut'in, A. M.; Plekhovich, A. D.; Churbanov, M. F.

    2018-05-01

    The melting point (Tm) of germanium stable isotopes 72Ge, 73Ge, 74Ge, 76Ge was determined by differential scanning calorimetry. With the increase in atomic mass of isotope the decrease in Tm is observed. The decrease was equal to 0.15 °C per the unit of atomic mass which qualitatively agrees with the value calculated by Lindemann formula accounting for the effect of "isotopic compression" of elementary cell.

  19. Determination of carbon and nitrogen in silicon and germanium

    International Nuclear Information System (INIS)

    Gebauhr, W.; Martin, J.

    1975-01-01

    The essential aim of this study is to examine the various technical and economic problems encountered in the determination of carbon and nitrogen in silicon and germanium, for this is in a way an extension of the discussion concerning the presence of oxygen in these two elements. The greater part of the study is aimed at drawing up a catalogue of the methods of analysis used and of the results obtained so far

  20. Photoluminescent polysaccharide-coated germanium(IV) oxide nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Lobaz, Volodymyr; Rabyk, Mariia; Pánek, Jiří; Doris, E.; Nallet, F.; Štěpánek, Petr; Hrubý, Martin

    2016-01-01

    Roč. 294, č. 7 (2016), s. 1225-1235 ISSN 0303-402X R&D Projects: GA MŠk(CZ) 7AMB14FR027; GA ČR(CZ) GA13-08336S; GA MZd(CZ) NV15-25781A Institutional support: RVO:61389013 Keywords : germanium oxide nanoparticles * polysaccharide coating * photoluminescent label Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.723, year: 2016

  1. Photoconductivity of Germanium Nanowire Arrays Incorporated in Anodic Aluminum Oxide

    International Nuclear Information System (INIS)

    Polyakov, B; Prikulis, J; Grigorjeva, L; Millers, D; Daly, B; Holmes, J D; Erts, D

    2007-01-01

    Photoconductivity of germanium nanowire arrays of 50 and 100 nm diameter incorporated into Anodic Aluminum Oxide (AAO) membranes illuminated with visible light is investigated. Photocurrent response to excitation radiation with time constants faster than 10 -4 s were governed by absorption of incident light by nanowires, while photokinetics with time constants of the order of 10 -3 s originates from the photoluminescence of the AAO matrix. Possible applications of nanowire arrays inside AAO as photoresistors are discussed

  2. Strain-induced changes to the electronic structure of germanium

    KAUST Repository

    Tahini, H. A.

    2012-04-17

    Density functional theory calculations (DFT) are used to investigate the strain-induced changes to the electronic structure of biaxially strained (parallel to the (001), (110) and (111) planes) and uniaxially strained (along the [001], [110] and [111] directions) germanium (Ge). It is calculated that a moderate uniaxial strain parallel to the [111] direction can efficiently transform Ge to a direct bandgap material with a bandgap energy useful for technological applications. © 2012 IOP Publishing Ltd.

  3. Diffusion of tin in germanium: A GGA+U approach

    KAUST Repository

    Tahini, H. A.

    2011-10-18

    Density functional theory calculations are used to investigate the formation and diffusion of tin-vacancy pairs (SnV) in germanium(Ge). Depending upon the Fermi energy, SnV pairs can form in neutral, singly negative, or doubly negative charged states. The activation energies of diffusion, also as function of the Fermi energy, are calculated to lie between 2.48-3.65 eV, in agreement with and providing an interpretation of available experimental work.

  4. Energy levels of germanium, Ge I through Ge XXXII

    International Nuclear Information System (INIS)

    Sugar, J.; Musgrove, A.

    1993-01-01

    Atomic energy levels of germanium have been compiled for all stages of ionization for which experimental data are available. No data have yet been published for Ge VIII through Ge XIII and Ge XXXII. Very accurate calculated values are compiled for Ge XXXI and XXXII. Experimental g-factors and leading percentages from calculated eigenvectors of levels are given. A value for the ionization energy, either experimental when available or theoretical, is included for the neutral atom and each ion. section

  5. Strain-induced changes to the electronic structure of germanium

    KAUST Repository

    Tahini, H. A.; Chroneos, Alexander I.; Grimes, Robin W.; Schwingenschlö gl, Udo; Dimoulas, Athanasios Dimoulas

    2012-01-01

    Density functional theory calculations (DFT) are used to investigate the strain-induced changes to the electronic structure of biaxially strained (parallel to the (001), (110) and (111) planes) and uniaxially strained (along the [001], [110] and [111] directions) germanium (Ge). It is calculated that a moderate uniaxial strain parallel to the [111] direction can efficiently transform Ge to a direct bandgap material with a bandgap energy useful for technological applications. © 2012 IOP Publishing Ltd.

  6. Innovation in crystal growth: A personal perspective

    Science.gov (United States)

    Mullin, J. B.

    2008-04-01

    The evolution of crystal growth has been crucially dependent on revolutionary innovations and initiatives involving ideas, technology and communication. A personal perspective is presented on some of these aspects in connection with the early history of semiconductors that have helped evolve our knowledge and advance the science and technology of crystal growth. The presentation considers examples from work on germanium, silicon, indium antimonide, gallium arsenide, indium phosphide, gallium phosphide and mercury cadmium telluride. In connection with metal organic vapour phase epitaxy (MOVPE), the influence of adduct purification for alkyls is noted together with the growth of Hg xCd 1-xTe. The role of crystal growth organisations together with initiatives in the publication of the Journal of Crystal Growth (JCG) and the pivotal role of the International Organisation of Crystal Growth (IOCG) are also highlighted in the quest for scientific excellence.

  7. γ-ray tracking in germanium: the backtracking method

    International Nuclear Information System (INIS)

    Marel, J. van der; Cederwall, B.

    2002-01-01

    In the framework of a European TMR network project the concept for a γ-ray tracking array is being developed for nuclear physics spectroscopy in the energy range of ∼10 keV up to several MeV. The tracking array will consist of a large number of position-sensitive germanium detectors in a spherical geometry around a target. Due to the high segmentation, a Compton scattered γ-ray will deposit energy in several different segments. A method has been developed to reconstruct the tracks of multiple coincident γ-rays and to find their initial energies. By starting from the final point the track can be reconstructed backwards to the origin with the help of the photoelectric and Compton cross-sections and the Compton scatter formula. Every reconstructed track is given a figure of merit, thus allowing suppression of wrongly reconstructed tracks and γ-rays that have scattered out of the detector system. This so-called backtracking method has been tested on simulated events in a shell-like geometry for germanium and in planar geometries for silicon, germanium and CdTe

  8. An environmentally-friendly vacuum reduction metallurgical process to recover germanium from coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lingen; Xu, Zhenming, E-mail: zmxu@sjtu.edu.cn

    2016-07-15

    Highlights: • An environmental friendly vacuum reduction metallurgical process is proposed. • Rare and valuable metal germanium from coal fly ash is recycled. • Residues are not a hazardous material and can be further recycled. • A germanium recovery ratio of 94.64% is obtained in pilot scale experiments. - Abstract: The demand for germanium in the field of semiconductor, electronics, and optical devices is growing rapidly; however, the resources of germanium are scarce worldwide. As a secondary material, coal fly ash could be further recycled to retrieve germanium. Up to now, the conventional processes to recover germanium have two problems as follows: on the one hand, it is difficult to be satisfactory for its economic and environmental effect; on the other hand, the recovery ratio of germanium is not all that could be desired. In this paper, an environmentally-friendly vacuum reduction metallurgical process (VRMP) was proposed to recover germanium from coal fly ash. The results of the laboratory scale experiments indicated that the appropriate parameters were 1173 K and 10 Pa with 10 wt% coke addition for 40 min, and recovery ratio germanium was 93.96%. On the basis of above condition, the pilot scale experiments were utilized to assess the actual effect of VRMP for recovery of germanium with parameter of 1473 K, 1–10 Pa and heating time 40 min, the recovery ratio of germanium reached 94.64%. This process considerably enhances germanium recovery, meanwhile, eliminates much of the water usage and residue secondary pollution compared with other conventional processes.

  9. Focusing of a new germanium counter type : the composite detector. Uses of the TREFLE detector in the EUROGAM multidetector; Mise au point d`un nouveau type de compteur germanium: le detecteur composite. Utilisation du detecteur TREFLE dans le multidetecteur EUROGAM

    Energy Technology Data Exchange (ETDEWEB)

    Han, L

    1995-05-01

    The aim of this thesis is the development of new types of germanium detectors: the composite detectors. Two types of prototypes are then conceived: the stacked planar detector (EDP) and the assembly of coaxial diodes (TREFLE). They are designed for the multidetector EUROGAM destined to the research of nuclear structure at high angular momentum. The four planar diodes of EDP detector were of 7 cm diameter and of 15 to 20 mm thick. The difference between the calculated and measured photopic efficiency is observed. The importance of surface channel induces a weak resistance of neutron damages. The sputtering method for the surface treatment reducing the germanium dead layer as well as a rule of selection concerning the impurity concentration and the thickness of crystal is helpful for the later production of germanium detector. The CLOVER detector consist of for mean size crystals in the same cryostat. The photopic efficiency is much larger than that of the greatest monocrystal detector. And the granulation of composite detector allowed the Doppler broadening correction of gamma ray observed in the nuclear reaction where the recoil velocity is very high. This new type of detector enable the linear polarization measurement of gamma ray. Twenty-four CLOVER detector are actually mounted in the EUROGAM array. The characteristics measured in source as well as in beam, reported in this thesis, meet exactly the charge account. (author). 47 refs., 61 figs., 18 tabs.

  10. Organotrichlorogermane synthesis by the reaction of elemental germanium, tetrachlorogermane and organic chloride via dichlorogermylene intermediate.

    Science.gov (United States)

    Okamoto, Masaki; Asano, Takuya; Suzuki, Eiichi

    2004-08-07

    Organotrichlorogermanes were synthesized by the reaction of elemental germanium, tetrachlorogermane and organic chlorides, methyl, propyl, isopropyl and allyl chlorides. Dichlorogermylene formed by the reaction of elemental germanium with tetrachlorogermane was the reaction intermediate, which was inserted into the carbon-chlorine bond of the organic chloride to give organotrichlorogermane. When isopropyl or allyl chloride was used as an organic chloride, organotrichlorogermane was formed also in the absence of tetrachlorogermane. These chlorides were converted to hydrogen chloride, which subsequently reacted with elemental germanium to give the dichlorogermylene intermediate. The reaction of elemental germanium, tetrachlorogermane and organic chlorides provides a simple and easy method for synthesizing organotrichlorogermanes, and all the raw materials are easily available.

  11. Electrical Manipulation of Donor Spin Qubits in Silicon and Germanium

    Science.gov (United States)

    Sigillito, Anthony James

    Many proposals for quantum information devices rely on electronic or nuclear spins in semiconductors because of their long coherence times and compatibility with industrial fabrication processes. One of the most notable qubits is the electron spin bound to phosphorus donors in silicon, which offers coherence times exceeding seconds at low temperatures. These donors are naturally isolated from their environments to the extent that silicon has been coined a "semiconductor vacuum". While this makes for ultra-coherent qubits, it is difficult to couple two remote donors so quantum information proposals rely on high density arrays of qubits. Here, single qubit addressability becomes an issue. Ideally one would address individual qubits using electric fields which can be easily confined. Typically these schemes rely on tuning a donor spin qubit onto and off of resonance with a magnetic driving field. In this thesis, we measure the electrical tunability of phosphorus donors in silicon and use the extracted parameters to estimate the effects of electric-field noise on qubit coherence times. Our measurements show that donor ionization may set in before electron spins can be sufficiently tuned. We therefore explore two alternative options for qubit addressability. First, we demonstrate that nuclear spin qubits can be directly driven using electric fields instead of magnetic fields and show that this approach offers several advantages over magnetically driven spin resonance. In particular, spin transitions can occur at half the spin resonance frequency and double quantum transitions (magnetic-dipole forbidden) can occur. In a second approach to realizing tunable qubits in semiconductors, we explore the option of replacing silicon with germanium. We first measure the coherence and relaxation times for shallow donor spin qubits in natural and isotopically enriched germanium. We find that in isotopically enriched material, coherence times can exceed 1 ms and are limited by a

  12. High level active n+ doping of strained germanium through co-implantation and nanosecond pulsed laser melting

    Science.gov (United States)

    Pastor, David; Gandhi, Hemi H.; Monmeyran, Corentin P.; Akey, Austin J.; Milazzo, Ruggero; Cai, Yan; Napolitani, Enrico; Gwilliam, Russell M.; Crowe, Iain F.; Michel, Jurgen; Kimerling, L. C.; Agarwal, Anuradha; Mazur, Eric; Aziz, Michael J.

    2018-04-01

    Obtaining high level active n+ carrier concentrations in germanium (Ge) has been a significant challenge for further development of Ge devices. By ion implanting phosphorus (P) and fluorine (F) into Ge and restoring crystallinity using Nd:YAG nanosecond pulsed laser melting (PLM), we demonstrate 1020 cm-3 n+ carrier concentration in tensile-strained epitaxial germanium-on-silicon. Scanning electron microscopy shows that after laser treatment, samples implanted with P have an ablated surface, whereas P + F co-implanted samples have good crystallinity and a smooth surface topography. We characterize P and F concentration depth profiles using secondary ion mass spectrometry and spreading resistance profiling. The peak carrier concentration, 1020 cm-3 at 80 nm below the surface, coincides with the peak F concentration, illustrating the key role of F in increasing donor activation. Cross-sectional transmission electron microscopy of the co-implanted sample shows that the Ge epilayer region damaged during implantation is a single crystal after PLM. High-resolution X-ray diffraction and Raman spectroscopy measurements both indicate that the as-grown epitaxial layer strain is preserved after PLM. These results demonstrate that co-implantation and PLM can achieve the combination of n+ carrier concentration and strain in Ge epilayers necessary for next-generation, high-performance Ge-on-Si devices.

  13. The processing of enriched germanium for the MAJORANA DEMONSTRATOR and R&D for a next generation double-beta decay experiment

    Science.gov (United States)

    Abgrall, N.; Arnquist, I. J.; Avignone, F. T., III; Barabash, A. S.; Bertrand, F. E.; Bradley, A. W.; Brudanin, V.; Busch, M.; Buuck, M.; Caja, J.; Caja, M.; Caldwell, T. S.; Christofferson, C. D.; Chu, P.-H.; Cuesta, C.; Detwiler, J. A.; Dunagan, C.; Dunstan, D. T.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Gilliss, T.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Haufe, C. R. S.; Henning, R.; Hoppe, E. W.; Jasinski, B. R.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; Lopez, A. M.; MacMullin, J.; Martin, R. D.; Massarczyk, R.; Meijer, S. J.; Mertens, S.; Meyer, J. H.; Myslik, J.; O'Shaughnessy, C.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Reine, A. L.; Reising, J. A.; Rielage, K.; Robertson, R. G. H.; Shanks, B.; Shirchenko, M.; Suriano, A. M.; Tedeschi, D.; Toth, L. M.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C.-H.; Yumatov, V.; Zhitnikov, I.; Zhu, B. X.

    2018-01-01

    The MAJORANA DEMONSTRATOR is an array of point-contact Ge detectors fabricated from Ge isotopically enriched to 88% in 76 Ge to search for neutrinoless double beta decay. The processing of Ge for germanium detectors is a well-known technology. However, because of the high cost of Ge enriched in 76 Ge special procedures were required to maximize the yield of detector mass and to minimize exposure to cosmic rays. These procedures include careful accounting for the material; shielding it to reduce cosmogenic generation of radioactive isotopes; and development of special reprocessing techniques for contaminated solid germanium, shavings, grindings, acid etchant and cutting fluids from detector fabrication. Processing procedures were developed that resulted in a total yield in detector mass of 70%. However, none of the acid-etch solution and only 50% of the cutting fluids from detector fabrication were reprocessed. Had they been processed, the projections for the recovery yield would be between 80% and 85%. Maximizing yield is critical to justify a possible future ton-scale experiment. A process for recovery of germanium from the acid-etch solution was developed with yield of about 90%. All material was shielded or stored underground whenever possible to minimize the formation of 68Ge by cosmic rays, which contributes background in the double-beta decay region of interest and cannot be removed by zone refinement and crystal growth. Formation of 68Ge was reduced by a significant factor over that in natural abundance detectors not protected from cosmic rays.

  14. Ion-beam induced structure modifications in amorphous germanium; Ionenstrahlinduzierte Strukturmodifikationen in amorphem Germanium

    Energy Technology Data Exchange (ETDEWEB)

    Steinbach, Tobias

    2012-05-03

    Object of the present thesis was the systematic study of ion-beam induced structure modifications in amorphous germanium (a-Ge) layers due to low- (LEI) and high-energetic (SHI) ion irradiation. The LEI irradiation of crystalline Ge (c-Ge) effects because the dominating nuclear scattering of the ions on the solid-state atoms the formation of a homogeneous a-Ge Layer. Directly on the surface for fluences of two orders of magnitude above the amorphization fluence the formation of stable cavities independently on the irradiation conditions was observed. For the first time for the ion-beam induced cavity formation respectively for the steady expansion of the porous layer forming with growing fluence a linear dependence on the energy {epsilon}{sub n} deposed in nuclear processes was detected. Furthermore the formation of buried cavities was observed, which shows a dependence on the type of ions. While in the c-Ge samples in the range of the high electronic energy deposition no radiation defects, cavities, or plastic deformations were observed, the high electronic energy transfer in the 3.1 {mu}m thick pre-amorphized a-Ge surface layers leads to the formation of randomly distributed cavities. Basing on the linear connection between cavity-induced vertical volume expansion and the fluence determined for different energy transfers for the first time a material-specific threshold value of {epsilon}{sub e}{sup HRF}=(10.5{+-}1.0) kev nm{sup -1} was determined, above which the ion-beam induced cavity formation in a-Ge sets on. The anisotropic plastic deformation of th a-Ge layer superposed at inclined SHI irradiation on the cavity formation was very well described by an equation derived from the viscoelastic Maxwell model, but modified under regardment of the experimental results. The positive deformation yields determined thereby exhibit above a threshold value for the ion-beam induced plastic deformation {epsilon}{sub e}{sup S{sub a}}=(12{+-}2) keV nm{sup -1} for the first

  15. The distribution of gallium, germanium and indium in conventional and non-conventional resources. Implications for global availability

    Energy Technology Data Exchange (ETDEWEB)

    Frenzel, Max

    2016-10-25

    Over the past 10 years, increased interest in the supply security of metal and mineral raw materials has resulted in the compilation of many lists of materials of particular concern. These materials are generally referred to as 'critical'. They are perceived to be both of high economic importance, as well as subject to high supply risks. Of particular relevance with respect to supply risk is the assessment of geological risk factors. However, this aspect is not considered in sufficient detail in most studies. In particular, the specific features of elements won as by-products are not adequately represented in any assessment. Yet many of these elements are often classified as critical, mostly due to their apparent importance in high-tech applications, the intransparency of their respective markets and resulting price volatility, and the concentration of their production in China. Gallium, germanium and indium are all good examples of such elements. All three are similar in many respects, and commonly have a similar rating in both the economic importance and supply risk dimensions. The aim of this work was to use these three elements as examples, and investigate whether they are truly as similar as current assessments suggest, or whether there are large underlying differences in their specific supply situations. In particular, the focus was on physical supply limitations: Since by-products can only be extracted with other main-product raw materials, their rate of extraction is limited by the extraction rate of these main products. This means that the relevant quantities for an assessment of their physical supply limitations are not reserves and/or resources, but supply potentials. The supply potential is the quantity of a given by-product which could theoretically be extracted under current market conditions (price, technology) per year if all suitable raw materials were processed accordingly. To assess the supply potentials of gallium, germanium and indium

  16. Strain distribution in single, suspended germanium nanowires studied using nanofocused x-rays

    DEFF Research Database (Denmark)

    Keplinger, Mario; Grifone, Raphael; Greil, Johannes

    2016-01-01

    Within the quest for direct band-gap group IV materials, strain engineering in germanium is one promising route. We present a study of the strain distribution in single, suspended germanium nanowires using nanofocused synchrotron radiation. Evaluating the probed Bragg reflection for different ill...

  17. Performance of a 6x6 segmented germanium detector for {gamma}-ray tracking

    Energy Technology Data Exchange (ETDEWEB)

    Valiente-Dobon, J.J. E-mail: j.valiente-dobon@surrey.ac.uk; Pearson, C.J.; Regan, P.H.; Sellin, P.J.; Gelletly, W.; Morton, E.; Boston, A.; Descovich, M.; Nolan, P.J.; Simpson, J.; Lazarus, I.; Warner, D

    2003-06-01

    A 36 fold segmented germanium coaxial detector has been supplied by EURISYS MESURES. The outer contact is segmented both radially and longitudinally. The signals from the fast preamplifiers have been digitised by 12 bit, 40 MHz ADCs. In this article we report preliminary results obtained using this detector and their relevance for future germanium {gamma}-ray tracking arrays.

  18. Point defect engineering strategies to retard phosphorous diffusion in germanium

    KAUST Repository

    Tahini, H. A.; Chroneos, Alexander I.; Grimes, Robin W.; Schwingenschlö gl, Udo; Bracht, Hartmut A.

    2013-01-01

    The diffusion of phosphorous in germanium is very fast, requiring point defect engineering strategies to retard it in support of technological application. Density functional theory corroborated with hybrid density functional calculations are used to investigate the influence of the isovalent codopants tin and hafnium in the migration of phosphorous via the vacancy-mediated diffusion process. The migration energy barriers for phosphorous are increased significantly in the presence of oversized isovalent codopants. Therefore, it is proposed that tin and in particular hafnium codoping are efficient point defect engineering strategies to retard phosphorous migration. © the Owner Societies 2013.

  19. Multiple pulse traveling wave excitation of neon-like germanium

    International Nuclear Information System (INIS)

    Moreno, J. C.; Nilsen, J.; Silva, L. B. da

    1995-01-01

    Traveling wave excitation has been shown to significantly increase the output intensity of the neon-like germanium x-ray laser. The driving laser pulse consisted of three 100 ps Gaussian laser pulses separated by 400 ps. Traveling wave excitation was employed by tilting the wave front of the driving laser by 45 degrees to match the propagation speed of the x-ray laser photons along the length of the target. We show results of experiments with the traveling wave, with no traveling wave, and against the traveling wave and comparisons to a numerical model. Gain was inferred from line intensity measurements at two lengths

  20. Liquid-helium scintillation detection with germanium photodiodes

    International Nuclear Information System (INIS)

    Luke, P.N.; Haller, E.E.; Steiner, H.M.

    1982-05-01

    Special high-purity germanium photodiodes have been developed for the direct detection of vacuum ultraviolet scintillations in liquid helium. The photodiodes are immersed in the liquid helium, and scintillations are detected through one of the bare sides of the photodiodes. Test results with scintillation photons produced by 5.3-MeV α particles are presented. The use of these photodiodes as liquid-helium scintillation detectors may offer substantial improvements over the alternate detection method requiring the use of wavelength shifters and photomultiplier tubes

  1. Self-absorption corrections for well-type germanium detectors

    International Nuclear Information System (INIS)

    Appleby, P.G.; Richardson, N.; Nolan, P.J.

    1992-01-01

    Corrections for self-absorption are of vital importance to accurate determination by gamma spectrometry of radionuclides such as 210 Pb, 241 Am and 234 Th which emit low energy gamma radiation. A simple theoretical model for determining the necessary corrections for well-type germanium detectors is presented. In this model, self-absorption factors are expressed in terms of the mass attenuation coefficient of the sample and a parameter characterising the well geometry. Experimental measurements of self-absorption are used to evaluate the model and to determine a semi-empirical algorithm for improved estimates of the geometrical parameter. (orig.)

  2. Effect of pressure on arsenic diffusion in germanium

    International Nuclear Information System (INIS)

    Mitha, S.; Theiss, S.D.; Aziz, M.J.; Schiferl, D.; Poker, D.B.

    1994-01-01

    We report preliminary results of a study of the activation volume for diffusion of arsenic in germanium. High-temperature high-pressure anneals were performed in a liquid argon pressure medium in a diamond anvil cell capable of reaching 5 GPa and 750 C,l which is externally heated for uniform and repeatable temperature profiles. Broadening of an ion-implanted arsenic profile was measured by Secondary Ion Mass Spectrometry. Hydrostatic pressure retards the diffusivity at 575 C, characterized by an activation volume that is +15% of the atomic volume of Ge. Implications for diffusion mechanisms are discussed

  3. Crystal diffraction lens telescope for focusing nuclear gamma rays

    International Nuclear Information System (INIS)

    Smither, R.K.; Fernandez, P.B.; Graber, T.; Faiz, M.

    1996-08-01

    A crystal diffraction lens was constructed at Argonne National Laboratory for use as a telescope to focus nuclear gamma rays. It consisted of 600 single crystals of germanium arranged in 8 concentric rings. The mounted angle of each crystal was adjusted to intercept and diffract the incoming gamma rays with an accuracy of a few arc sec. The performance of the lens was tested in two ways. In one case, the gamma rays were focused on a single medium size germanium detector. In the second case, the gamma rays were focused on the central germanium detector of a 3 x 3 matrix of small germanium detectors. The efficiency, image concentration and image quality, and shape were measured. The tests performed with the 3 x 3 matrix detector system were particularly interesting. The wanted radiation was concentrated in the central detector. The 8 other detectors were used to detect the Compton scattered radiation, and their energy was summed with coincident events in the central detector. This resulted in a detector with the efficiency of a large detector (all 9 elements) and the background of a small detector (only the central element). The use of the 3 x 3 detector matrix makes it possible to tell if the source is off axis and, if so, to tell in which direction. The crystal lens acts very much like a simple convex lens for visible light. Thus if the source is off to the left then the image will focus off to the right illuminating the detector on the right side: telling one in which direction to point the telescope. Possible applications of this type of crystal lens to balloon and satellite experiments will be discussed

  4. Bandgap-customizable germanium using lithographically determined biaxial tensile strain for silicon-compatible optoelectronics.

    Science.gov (United States)

    Sukhdeo, David S; Nam, Donguk; Kang, Ju-Hyung; Brongersma, Mark L; Saraswat, Krishna C

    2015-06-29

    Strain engineering has proven to be vital for germanium-based photonics, in particular light emission. However, applying a large permanent biaxial tensile strain to germanium has been a challenge. We present a simple, CMOS-compatible technique to conveniently induce a large, spatially homogenous strain in circular structures patterned within germanium nanomembranes. Our technique works by concentrating and amplifying a pre-existing small strain into a circular region. Biaxial tensile strains as large as 1.11% are observed by Raman spectroscopy and are further confirmed by photoluminescence measurements, which show enhanced and redshifted light emission from the strained germanium. Our technique allows the amount of biaxial strain to be customized lithographically, allowing the bandgaps of different germanium structures to be independently customized in a single mask process.

  5. Structure of compensating centers in neutron irradiated n-type germanium

    International Nuclear Information System (INIS)

    Erchak, D.P.; Kosobutskij, V.S.; Stel'makh, V.F.

    1989-01-01

    Structural model of one of the main compensating defects of Ge-M1, Ge-M5, Ge-M6 in neutron irradiated (10 18 -10 20 cm -2 ) germanium, strongly alloyed (2x10 18 -3x10 19 cm -3 ) with antimony, phosphorus and arsenic respectively, is suggested. The above mentioned compensating centers are paramagnetic in a positive charge state and represent a vacancy, two nearby germanium atoms of which are replaced with two atoms of corresponding fine donor impurity. It is mainly contributed (63%- for Ge-M5 centers, 56% - for Ge-M6 centers) by orbitals of two germanium atoms neighbouring the vacancy. The angle of the bonds of each of two mentioned germanium atoms with its three neighbours and orientation of maximum electron density of hybride orbital, binding both germanium atoms, is approximately by 5 deg greater the tetrahedral one

  6. Al203 thin films on Silicon and Germanium substrates for CMOS and flash memory applications

    Science.gov (United States)

    Gopalan, Sundararaman; Dutta, Shibesh; Ramesh, Sivaramakrishnan; Prathapan, Ragesh; Sreehari G., S.

    2017-07-01

    As scaling of device dimensions has continued, it has become necessary to replace traditional SiO2 with high dielectric constant materials in the conventional CMOS devices. In addition, use of metal gate electrodes and Germanium substrates may have to be used in order to address leakage and mobility issues. Al2O3 is one of the potential candidates both for CMOS and as a blocking dielectric for Flash memory applications owing to its low leakage. In this study, the effects of sputtering conditions and post-deposition annealing conditions on the electrical and reliability characteristics of MOS capacitors using Al2O3 films on Si and Ge substrates with Aluminium gate electrodes have been presented. It was observed that higher sputtering power resulted in larger flat-band voltage (Vfb) shifts, more hysteresis, higher interface state density (Dit) and a poorer reliability. Wit was also found that while a short duration high temperature annealing improves film characteristics, a long duration anneal even at 800C was found to be detrimental to MOS characteristics. Finally, the electronic conduction mechanism in Al2O3 films was also studied. It was observed that the conduction mechanism varied depending on the annealing condition, thickness of film and electric field.

  7. Fundamental aspects of nucleation and growth in the solution-phase synthesis of germanium nanocrystals

    KAUST Repository

    Codoluto, Stephen C.

    2010-01-01

    Colloidal Ge nanocrystals (NCs) were synthesized via the solution phase reduction of germanium(ii) iodide. We report a systematic investigation of the nanocrystal nucleation and growth as a function of synthesis conditions including the nature of coordinating solvents, surface bound ligands, synthesis duration and temperature. NC synthesis in reaction environments with weakly bound phosphine surface ligand led to the coalescence of nascent particles leading to ensembles with broad lognormal particle diameter distributions. Synthesis in the presence of amine or alkene ligands mitigated particle coalescence. High-resolution transmission electron micrographs revealed that NCs grown in the presence of weak ligands had a high crystal defect density whereas NCs grown in amine solutions were predominantly defect-free. We applied infrared spectroscopy to study the NC surface chemistry and showed that alkene ligands project the NCs from surface oxidation. Photoluminescence spectroscopy measurements showed that alkene ligands passivate surface traps, as indicated by infrared fluorescence, conversely oxidized phosphine and amine passivated NCs did not fluoresce. © 2010 The Royal Society of Chemistry.

  8. Features of light attenuation in crystals under violation of the Bouguer law

    International Nuclear Information System (INIS)

    Kolesnikov, A. I.; Kaplunov, I. A.; Talyzin, I. V.; Tret'yakov, S. A.; Gritsunova, O. V.; Vorontsova, E. Yu.

    2008-01-01

    A computer simulation and measurements of the light transmittance of germanium and paratellurite crystals of different thickness were used to show that, at scattering probabilities of photons comparable to their absorption probabilities, the standard methods for calculating light extinction coefficients on the basis of the Bouguer law lead to rough errors in estimation of the optical quality of a material.

  9. Performance of a Small Anode Germanium Well detector

    International Nuclear Information System (INIS)

    Adekola, A.S.; Colaresi, J.; Douwen, J.; Mueller, W.F.; Yocum, K.M.

    2015-01-01

    The performance of Small Anode Germanium (SAGe) Well detector [1] has been evaluated for a range of sample sizes and geometries counted inside the well, on the end cap or in Marinelli beakers. The SAGe Well is a new type of low capacitance germanium well detector manufactured using small anode technology. The detector has similar energy resolution performance to semi-planar detectors, and offers significant improvement over the Coaxial and existing Well detectors. Resolution performance of 0.75 keV Full Width at Half Maxiumum (FWHM) at 122 keV γ-ray energy and resolution of 2.0–2.3 keV FWHM at 1332 keV γ-ray energy are guaranteed. Such outstanding resolution performance will benefit environmental applications in revealing the detailed radionuclide content of samples, particularly at low energy, and will enhance the detection sensitivity resulting in reduced counting time. This paper reports the counting performance of SAGe Well detector for range of sample sizes and geometries and how it compares to other detector types

  10. Performance of a Small Anode Germanium Well detector

    Energy Technology Data Exchange (ETDEWEB)

    Adekola, A.S., E-mail: aderemi.adekola@canberra.com; Colaresi, J.; Douwen, J.; Mueller, W.F.; Yocum, K.M.

    2015-06-01

    The performance of Small Anode Germanium (SAGe) Well detector [1] has been evaluated for a range of sample sizes and geometries counted inside the well, on the end cap or in Marinelli beakers. The SAGe Well is a new type of low capacitance germanium well detector manufactured using small anode technology. The detector has similar energy resolution performance to semi-planar detectors, and offers significant improvement over the Coaxial and existing Well detectors. Resolution performance of 0.75 keV Full Width at Half Maxiumum (FWHM) at 122 keV γ-ray energy and resolution of 2.0–2.3 keV FWHM at 1332 keV γ-ray energy are guaranteed. Such outstanding resolution performance will benefit environmental applications in revealing the detailed radionuclide content of samples, particularly at low energy, and will enhance the detection sensitivity resulting in reduced counting time. This paper reports the counting performance of SAGe Well detector for range of sample sizes and geometries and how it compares to other detector types.

  11. Characterisation of the SmartPET planar Germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Boston, H.C. [Department of Physics, University of Liverpool, Oliver Lodge Laboratory, Liverpool L69 7ZE (United Kingdom)], E-mail: H.C.Boston@liverpool.ac.uk; Boston, A.J.; Cooper, R.J.; Cresswell, J.; Grint, A.N.; Mather, A.R.; Nolan, P.J.; Scraggs, D.P.; Turk, G. [Department of Physics, University of Liverpool, Oliver Lodge Laboratory, Liverpool L69 7ZE (United Kingdom); Hall, C.J.; Lazarus, I. [CCLRC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Berry, A.; Beveridge, T.; Gillam, J.; Lewis, R. [School of Physics and Materials Engineering, Monash University, Melbourne (Australia)

    2007-08-21

    Small Animal Reconstruction PET (SmartPET) is a project funded by the UK medical research council (MRC) to demonstrate proof of principle that Germanium can be utilised in Positron Emission Tomography (PET). The SmartPET demonstrator consists of two orthogonal strip High Purity Germanium (HPGe) planar detectors manufactured by ORTEC. The aim of the project is to produce images of an internal source with sub mm{sup 3} spatial resolution. Before this image can be achieved the detectors have to be fully characterised to understand the response at any given location to a {gamma}-ray interaction. This has been achieved by probing the two detectors at a number of specified points with collimated sources of various energies and strengths. A 1 mm diameter collimated beam of photons was raster scanned in 1 mm steps across the detector. Digital pulse shape data were recorded from all the detector channels and the performance of the detector for energy and position determination has been assessed. Data will be presented for the first SmartPET detector.

  12. An ultralow background germanium gamma-ray spectrometer

    International Nuclear Information System (INIS)

    Reeves, R.H.; Brodzinski, R.L.; Hensley, W.K.; Ryge, P.

    1984-01-01

    The monitoring of minimum detectable activity is becoming increasingly important as environmental concerns and regulations require more sensitive measurement of the radioactivity levels in the workplace and the home. In measuring this activity, however, the background becomes one of the limiting factors. Anticoincidence systems utilizing both NaI(T1) and plastic scintillators have proven effective in reducing some components of the background, but radiocontaminants in the various regions of these systems have limited their effectiveness, and their cost is often prohibitive. In order to obtain a genuinely low background detector system, all components must be free of detectable radioactivity, and the cosmic ray produced contribution must be significantly reduced. Current efforts by the authors to measure the double beta decay of Germanium 76 as predicted by Grand Unified Theories have resulted in the development of a high resolution germanium diode gamma spectrometer with an exceptionally low background. This paper describes the development of this system, outlines the configuration and operation of its preamplifier, linear amplifier, analog-to-digital converter, 4096-channel analyzer, shielding consisting of lead-sandwiched plastic scintillators wrapped in cadmium foil, photomultiplier, and its pulse generator and discriminator, and then discusses how the system can be utilized to significantly reduce the background in high resolution photon spectrometers at only moderate cost

  13. Germanium-76 Isotope Separation by Cryogenic Distillation. Final Report

    International Nuclear Information System (INIS)

    Stohler, Eric

    2007-01-01

    The current separation method for Germanium isotopes is electromagnetic separation using Calutrons. The Calutrons have the disadvantage of having a low separation capacity and a high energy cost to achieve the separation. Our proposed new distillation method has the advantage that larger quantities of Germanium isotopes can be separated at a significantly lower cost and in a much shorter time. After nine months of operating the column that is 1.5 meter in length, no significant separation of the isotopes has been measured. We conclude that the length of the column we have been using is too short. In addition, other packing material than the 0.16 inch Propak, 316 ss Protruded metal packing that we used in the column, should be evaluated which may have a better separation factor than the 0.16 inch Propak, 316 ss Protruded metal packing that has been used. We conclude that a much longer column - a minimum of 50 feet length - should be built and additional column packing should be tested to verify that isotopic separation can be achieved by cryogenic distillation. Even a longer column than 50 feet would be desirable.

  14. Zeeman spectroscopy of Zn-H complex in germanium

    International Nuclear Information System (INIS)

    Prabakar, J.P.C.; Vickers, R.E.M.; Fisher, P.

    1998-01-01

    Full text: A divalent substitutional zinc atom in germanium complexed with an interstitial hydrogen atom gives rise to a monovalent acceptor of trigonal symmetry. The axial nature of this complex splits the four-fold degenerate states associated with substitutional point defects into two two-fold degenerate states. Zeeman spectra of the Zn-H complex have been observed for B along and crystallographic directions in the Voigt configuration using linearly polarised radiation. Spectra of the C and D lines for B ≤ 2 Tesla are essentially identical to those of these lines of group III impurities; here B is the field strength. At all fields, splitting of the excited state of the D lines is identical to that for group III acceptors in germanium. The magnetic field dependence of the D components for both E parallel B and E perpendicular B and the selection rules demand that only one of the two two-fold 1s-like energy levels is occupied at the temperatures used instead of both. The results confirm piezospectroscopic studies which demonstrated that the axes of the complexes are along the four covalent bond directions of the host

  15. DIFFERENT DIMENSIONS OF TEAMS

    OpenAIRE

    Goparaju Purna SUDHAKAR

    2013-01-01

    Popularity of teams is growing in 21st Century. Organizations are getting their work done through different types of teams. Teams have proved that the collective performance is more than the sum of the individual performances. Thus, the teams have got different dimensions such as quantitative dimensions and qualitative dimensions. The Quantitative dimensions of teams such as team performance, team productivity, team innovation, team effectiveness, team efficiency, team decision making and tea...

  16. Pulsed laser ablation of Germanium under vacuum and hydrogen environments at various fluences

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad Hassan [Centre for Advanced Studies in Physics, Government College University, Lahore (Pakistan); Bashir, Shazia, E-mail: shaziabashir@gcu.edu.pk [Centre for Advanced Studies in Physics, Government College University, Lahore (Pakistan); Rafique, Muhammad Shahid [Department of Physics, University of Engineering and Technology, Lahore (Pakistan); Dawood, Asadullah; Akram, Mahreen; Mahmood, Khaliq; Hayat, Asma; Ahmad, Riaz; Hussain, Tousif [Centre for Advanced Studies in Physics, Government College University, Lahore (Pakistan); Mahmood, Arshad [National Institute of Laser and Optronics (NILOP), Islamabad (Pakistan)

    2015-07-30

    Highlights: • Germanium targets were exposed under vacuum and H{sub 2} environment by nanosecond laser pulses. • The effect of laser fluence and ambient environment has been investigated. • The surface morphology is investigated by SEM analysis. • Raman and FTIR Spectroscopy are performed to reveal structural modification. • Electrical conductivity is probed by four probe method. - Abstract: Laser fluence and ambient environment play a significant role for the formation and development of the micro/nano-structures on the laser irradiated targets. Single crystal (1 0 0) Germanium (Ge) has been ablated under two environments of vacuum (10{sup −3} Torr) and hydrogen (100 Torr) at various fluences ranging from 4.5 J cm{sup −2} to 6 J cm{sup −2}. For this purpose KrF Excimer laser with wavelength of 248 nm, pulse duration of 18 ns and repetition rate of 20 Hz has been employed. Surface morphology has been observed by Scanning Electron Microscope (SEM). Whereas, structural modification of irradiated targets was explored by Fourier Transform Infrared Spectroscopy (FTIR) and Raman spectroscopy. Electrical conductivity of the irradiated Ge is measured by four probe method. SEM analysis exhibits the formation of laser-induced periodic surface structures (LIPSS), cones and micro-bumps in both ambient environments (vacuum and hydrogen). The formation as well as development of these structures is strongly dependent upon the laser fluence and environmental conditions. The periodicity of LIPSS or ripples varies from 38 μm to 60 μm in case of vacuum whereas in case of hydrogen environment, the periodicity varies from 20 μm to 45 μm. The difference in number of ripples and periodicity as well as in shape and size of cones and bumps in vacuum and hydrogen is explained on the basis of confinement and shielding effect of plasma. FTIR spectroscopy reveals that no new bands are formed for laser ablated Ge under vacuum, whereas C−H stretching vibration band is

  17. Dimension of chaotic attractors

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J.D.; Ott, E.; Yorke, J.A.

    1982-09-01

    Dimension is perhaps the most basic property of an attractor. In this paper we discuss a variety of different definitions of dimension, compute their values for a typical example, and review previous work on the dimension of chaotic attractors. The relevant definitions of dimension are of two general types, those that depend only on metric properties, and those that depend on probabilistic properties (that is, they depend on the frequency with which a typical trajectory visits different regions of the attractor). Both our example and the previous work that we review support the conclusion that all of the probabilistic dimensions take on the same value, which we call the dimension of the natural measure, and all of the metric dimensions take on a common value, which we call the fractal dimension. Furthermore, the dimension of the natural measure is typically equal to the Lyapunov dimension, which is defined in terms of Lyapunov numbers, and thus is usually far easier to calculate than any other definition. Because it is computable and more physically relevant, we feel that the dimension of the natural measure is more important than the fractal dimension.

  18. Germanium CMOS potential from material and process perspectives: Be more positive about germanium

    Science.gov (United States)

    Toriumi, Akira; Nishimura, Tomonori

    2018-01-01

    CMOS miniaturization is now approaching the sub-10 nm level, and further downscaling is expected. This size scaling will end sooner or later, however, because the typical size is approaching the atomic distance level in crystalline Si. In addition, it is said that electron transport in FETs is ballistic or nearly ballistic, which means that the injection velocity at the virtual source is a physical parameter relevant for estimating the driving current. Channel-materials with higher carrier mobility than Si are nonetheless needed, and the carrier mobility in the channels is a parameter important with regard to increasing the injection velocity. Although the density of states in the channel has not been discussed often, it too is relevant for estimating the channel current. Both the mobility and the density of states are in principle related to the effective mass of the carrier. From this device physics viewpoint, we expect germanium (Ge) CMOS to be promising for scaling beyond the Si CMOS limit because the bulk mobility values of electrons and holes in Ge are much higher than those of electrons and holes in Si, and the electron effective mass in Ge is not much less than that in III-V compounds. There is a debate that Ge should be used for p-MOSFETs and III-V compounds for n-MOSFETs, but considering that the variability or nonuniformity of the FET performance in today’s CMOS LSIs is a big challenge, it seems that much more attention should be paid to the simplicity of the material design and of the processing steps. Nevertheless, Ge faces a number of challenges even in case that only the FET level is concerned. One of the big problems with Ge CMOS technology has been its poor performance in n-MOSFETs. While the hole mobility in p-FETs has been improved, the electron mobility in the inversion layer of Ge FETs remains a serious concern. If this is due to the inherent properties of Ge, only p-MOSFETs might be used for device applications. To make Ge CMOS devices

  19. Dimensions of Creative Evaluation

    DEFF Research Database (Denmark)

    Christensen, Bo; Ball, Linden J.

    2016-01-01

    We examined evaluative reasoning taking place during expert ‘design critiques’. We focused on key dimensions of creative evaluation (originality, functionality and aesthetics) and ways in which these dimensions impact reasoning strategies and suggestions offered by experts for how the student could...... continue. Each dimension was associated with a specific underpinning ‘logic’ determining how these dimensions were evaluated in practice. Our analysis clarified how these dimensions triggered reasoning strategies such as running mental simulations or making design suggestions, ranging from ‘go...

  20. More dimensions: Less entropy

    International Nuclear Information System (INIS)

    Kolb, E.W.; Lindley, D.; Seckel, D.

    1984-01-01

    For a cosmological model with d noncompact and D compact spatial dimensions and symmetry R 1 x S/sup d/ x S/sup D/, we calculate the entropy produced in d dimensions due to the compactification of D dimensions and show it too small to be of cosmological interest. Although insufficient entropy is produced in the model we study, the contraction of extra dimensions does lead to entropy production. We discuss modifications of our assumptions, including changing our condition for decoupling of the extra dimensions, which may lead to a large entropy production and change our conclusions

  1. Gamma ray polarimetry using a position sensitive germanium detector

    CERN Document Server

    Kroeger, R A; Kurfess, J D; Phlips, B F

    1999-01-01

    Imaging gamma-ray detectors make sensitive polarimeters in the Compton energy regime by measuring the scatter direction of gamma rays. The principle is to capitalize on the angular dependence of the Compton scattering cross section to polarized gamma rays and measure the distribution of scatter directions within the detector. This technique is effective in a double-sided germanium detector between roughly 50 keV and 1 MeV. This paper reviews device characteristics important to the optimization of a Compton polarimeter, and summarizes measurements we have made using a device with a 5x5 cm active area, 1 cm thickness, and strip-electrodes on a 2 mm pitch.

  2. Long-wavelength germanium photodetectors by ion implantation

    International Nuclear Information System (INIS)

    Wu, I.C.; Beeman, J.W.; Luke, P.N.; Hansen, W.L.; Haller, E.E.

    1990-11-01

    Extrinsic far-infrared photoconductivity in thin high-purity germanium wafers implanted with multiple-energy boron ions has been investigated. Initial results from Fourier transform spectrometer(FTS) measurements have demonstrated that photodetectors fabricated from this material have an extended long-wavelength threshold near 192μm. Due to the high-purity substrate, the ability to block the hopping conduction in the implanted IR-active layer yields dark currents of less than 100 electrons/sec at temperatures below 1.3 K under an operating bias of up to 70 mV. Optimum peak responsivity and noise equivalent power (NEP) for these sensitive detectors are 0.9 A/W and 5 x 10 -16 W/Hz 1/2 at 99 μm, respectively. The dependence of the performance of devices on the residual donor concentration in the implanted layer will be discussed. 12 refs., 4 figs

  3. Structure and electron-ion correlation of liquid germanium

    Energy Technology Data Exchange (ETDEWEB)

    Kawakita, Y. [Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan)]. E-mail: kawakita@rc.kyushu-u.ac.jp; Fujita, S. [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan); Kohara, S. [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto Mikazuki-cho, Hyogo 679-5198 (Japan); Ohshima, K. [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan); Fujii, H. [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan); Yokota, Y. [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan); Takeda, S. [Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan)

    2005-08-15

    Structure factor of liquid germanium (Ge) has a shoulder at {theta} = 3.2 A{sup -1} in the high-momentum-transfer region of the first peak. To investigate the origin of such a non-simplicity in the structure, high energy X-ray diffraction measurements have been performed using 113.26 keV incident X-ray, at BL04B2 beamline of SPring-8. By a combination of the obtained structure factor with the reported neutron diffraction data, charge density function and electron-ion partial structure factor have been deduced. The peak position of the charge distribution is located at about 1 A, rather smaller r value than the half value of nearest neighbor distance ({approx}2.7 A), which suggests that valence electrons of liquid Ge play a role of screening electrons around a metallic ion rather than covalently bonding electrons.

  4. Young’s modulus of [111] germanium nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Maksud, M.; Palapati, N. K. R.; Subramanian, A., E-mail: asubramanian@vcu.edu [Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); Yoo, J. [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Harris, C. T. [Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2015-11-01

    This paper reports a diameter-independent Young’s modulus of 91.9 ± 8.2 GPa for [111] Germanium nanowires (Ge NWs). When the surface oxide layer is accounted for using a core-shell NW approximation, the YM of the Ge core approaches a near theoretical value of 147.6 ± 23.4 GPa. The ultimate strength of a NW device was measured at 10.9 GPa, which represents a very high experimental-to-theoretical strength ratio of ∼75%. With increasing interest in this material system as a high-capacity lithium-ion battery anode, the presented data provide inputs that are essential in predicting its lithiation-induced stress fields and fracture behavior.

  5. Secondary ion formation during electronic and nuclear sputtering of germanium

    Science.gov (United States)

    Breuer, L.; Ernst, P.; Herder, M.; Meinerzhagen, F.; Bender, M.; Severin, D.; Wucher, A.

    2018-06-01

    Using a time-of-flight mass spectrometer attached to the UNILAC beamline located at the GSI Helmholtz Centre for Heavy Ion Research, we investigate the formation of secondary ions sputtered from a germanium surface under irradiation by swift heavy ions (SHI) such as 5 MeV/u Au by simultaneously recording the mass spectra of the ejected secondary ions and their neutral counterparts. In these experiments, the sputtered neutral material is post-ionized via single photon absorption from a pulsed, intensive VUV laser. After post-ionization, the instrument cannot distinguish between secondary ions and post-ionized neutrals, so that both signals can be directly compared in order to investigate the ionization probability of different sputtered species. In order to facilitate an in-situ comparison with typical nuclear sputtering conditions, the system is also equipped with a conventional rare gas ion source delivering a 5 keV argon ion beam. For a dynamically sputter cleaned surface, it is found that the ionization probability of Ge atoms and Gen clusters ejected under electronic sputtering conditions is by more than an order of magnitude higher than that measured for keV sputtered particles. In addition, the mass spectra obtained under SHI irradiation show prominent signals of GenOm clusters, which are predominantly detected as positive or negative secondary ions. From the m-distribution for a given Ge nuclearity n, one can deduce that the sputtered material must originate from a germanium oxide matrix with approximate GeO stoichiometry, probably due to residual native oxide patches even at the dynamically cleaned surface. The results clearly demonstrate a fundamental difference between the ejection and ionization mechanisms in both cases, which is interpreted in terms of corresponding model calculations.

  6. E-Government Dimension

    OpenAIRE

    Rosiyadi, Didi; Suryana, Nana; Cahyana, Ade; Nuryani, Nuryani

    2007-01-01

    Makalah ini mengemukakan E-Government Dimension yang merupakan salah satu hasil TahapanPengumpulan Data, dimana tahapan ini adalah bagian dari penelitian kompetitif di Lembaga Ilmu PengetahuanIndonesia 2007 yang sekarang sedang dilakukan. Data E-Government Dimension ini didapatkan dari berbagaisumber yang meliputi E-Government beberapa Negara di dunia, E-Government yang dibangun oleh beberapapenyedia aplikasi E-Government. E-Government Dimension terdiri dari tiga dimensi yaitu DemocraticDimen...

  7. Relaxing to Three Dimensions

    CERN Document Server

    CERN. Geneva

    2006-01-01

    Extra dimensions of space might be present in our universe. If so, we want to know 'How do dimensions hide?' and 'Why are three dimensions special?' I'll give potential answers to both these questions in the context of localized gravity. Organiser(s): L. Alvarez-Gaume / PH-THNote: * Tea & coffee will be served at 16:00. Talk is broadcasted in Council Chamber

  8. The Modal Dimension

    Directory of Open Access Journals (Sweden)

    Giluano Torrengo

    2018-05-01

    Full Text Available Space and time are two obvious candidates as dimensions of reality. Yet, are they the only two dimensions of reality? Famously, David Lewis maintained the doctrine of ―modal realism‖, the thesis that possible worlds exist and are entities as concrete as the actual world that we live in. In this paper, I will explore the idea that modality can be construed as a dimension along with space and time. However, although Lewis‘ modal realism is the main source of inspiration for this construal of modality, I will argue that something else is required for having a modal dimension.

  9. An Implant-Passivated Blocked Impurity Band Germanium Detector for the Far Infrared, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to investigate the feasibility of fabricating a germanium blocked-impurity-band (BIB) detector using a novel process which will enable us to: 1- fabricate...

  10. An Implant-Passivated Blocked Impurity Band Germanium Detector for the Far Infrared, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to fabricate a germanium blocked-impurity-band (BIB) detector using a novel process which will enable us to: 1- fabricate a suitably-doped active layer...

  11. Charge Spreading and Position Sensitivity in a Segmented Planar Germanium Detector (Preprint)

    National Research Council Canada - National Science Library

    Kroeger, R. A; Gehrels, N; Johnson, W. N; Kurfess, J. D; Phlips, B. P; Tueller, J

    1998-01-01

    The size of the charge cloud collected in a segmented germanium detector is limited by the size of the initial cloud, uniformity of the electric field, and the diffusion of electrons and holes through the detector...

  12. Quantum interference magnetoconductance of polycrystalline germanium films in the variable-range hopping regime

    Science.gov (United States)

    Li, Zhaoguo; Peng, Liping; Zhang, Jicheng; Li, Jia; Zeng, Yong; Zhan, Zhiqiang; Wu, Weidong

    2018-06-01

    Direct evidence of quantum interference magnetotransport in polycrystalline germanium films in the variable-range hopping (VRH) regime is reported. The temperature dependence of the conductivity of germanium films fulfilled the Mott VRH mechanism with the form of ? in the low-temperature regime (?). For the magnetotransport behaviour of our germanium films in the VRH regime, a crossover, from negative magnetoconductance at the low-field to positive magnetoconductance at the high-field, is observed while the zero-field conductivity is higher than the critical value (?). In the regime of ?, the magnetoconductance is positive and quadratic in the field for some germanium films. These features are in agreement with the VRH magnetotransport theory based on the quantum interference effect among random paths in the hopping process.

  13. Germanium microstrip detectors with 50 and 100 μm pitch

    International Nuclear Information System (INIS)

    Amendolia, S.R.; Bedeschi, F.; Bertolucci, E.; Bettoni, D.; Bosisio, L.; Bottigli, U.; Bradaschia, C.; Dell'Orso, M.; Fidecaro, F.; Foa, L.; Focardi, E.; Giannetti, P.; Giorgi, M.A.; Marrocchesi, P.S.; Menzione, A.; Raso, G.; Ristori, L.; Scribano, A.; Stefanini, A.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Haller, E.E.; Hansen, W.L.; Luke, P.N.

    1984-01-01

    Multi-electrode germanium detectors are being used as an active target for decay path measurements of charmed mesons. The procedure used to fabricate such detectors is described and a brief analysis of their performance is given. (orig.)

  14. Induced Radioactivity Measured in a Germanium Detector After a Long Duration Balloon Flight

    Science.gov (United States)

    Starr, R.; Evans, L. G.; Floyed, S. R.; Drake, D. M.; Feldman, W. C.; Squyres, S. W.; Rester, A. C.

    1997-01-01

    A 13-day long duration balloon flight carrying a germanium detector was flown from Williams Field, Antartica in December 1992. After recovery of the payload the activity induced in the detector was measured.

  15. Silicon-Germanium Front-End Electronics for Space-Based Radar Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — Over the past two decades, Silicon-Germanium (SiGe) heterojunction bipolar transistor (HBT) technology has emerged as a strong platform for high-frequency...

  16. Fundamental aspects of nucleation and growth in the solution-phase synthesis of germanium nanocrystals

    KAUST Repository

    Codoluto, Stephen C.; Baumgardner, William J.; Hanrath, Tobias

    2010-01-01

    Colloidal Ge nanocrystals (NCs) were synthesized via the solution phase reduction of germanium(ii) iodide. We report a systematic investigation of the nanocrystal nucleation and growth as a function of synthesis conditions including the nature

  17. Experimental study on the CsI (Tl) crystal anti-compton detector in CDEX

    International Nuclear Information System (INIS)

    Liu Shukui; Yue Qian; Tang Changjian

    2012-01-01

    CDEX (China Dark matter Experiment) Collaboration will carry out direct search for dark matter with Ultra-Low Energy Threshold High Purity germanium (ULE-HPGe) detector at CJPL (China Jinping deep underground Laboratory). Before underground research, some experiments of the CsI (Tl) crystal Anti-Compton detector have been done on the ground, including light guide choice, wrapping material choice, height uniformity of CsI (Tl) crystal, side uniformity of CsI (Tl) crystal and the test results of all the crystals. Through the preliminary work on the ground, we have got some knowledge of the anti-compton detector and prepared for the underground experiment. (authors)

  18. The construction of the CMS electromagnetic calorimeter: automatic measurements of the physics parameters of PWO crystals

    CERN Multimedia

    2005-01-01

    Crystal properties (dimensions, optical transmission, light yield) are automatically measured. The pictures show different measurement stations of the automatic machine. Crystals are measured on trays containing five crystals each.

  19. Direct band gap electroluminescence from bulk germanium at room temperature using an asymmetric fin type metal/germanium/metal structure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dong, E-mail: wang.dong.539@m.kyushu-u.ac.jp; Maekura, Takayuki; Kamezawa, Sho [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Yamamoto, Keisuke; Nakashima, Hiroshi [Art, Science and Technology Center for Cooperative Research, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan)

    2015-02-16

    We demonstrated direct band gap (DBG) electroluminescence (EL) at room temperature from n-type bulk germanium (Ge) using a fin type asymmetric lateral metal/Ge/metal structure with TiN/Ge and HfGe/Ge contacts, which was fabricated using a low temperature (<400 °C) process. Small electron and hole barrier heights were obtained for TiN/Ge and HfGe/Ge contacts, respectively. DBG EL spectrum peaked at 1.55 μm was clearly observed even at a small current density of 2.2 μA/μm. Superlinear increase in EL intensity was also observed with increasing current density, due to superlinear increase in population of elections in direct conduction band. The efficiency of hole injection was also clarified.

  20. Influence of reductant and germanium concentration on the growth and stress development of germanium nanocrystals in silicon oxide matrix

    International Nuclear Information System (INIS)

    Chew, H G; Zheng, F; Choi, W K; Chim, W K; Foo, Y L; Fitzgerald, E A

    2007-01-01

    Germanium (Ge) nanocrystals have been synthesized by annealing co-sputtered SiO 2 -Ge samples in N 2 or forming gas (90% N 2 +10% H 2 ) at temperatures ranging from 700 to 1000 deg. C. We concluded that the annealing ambient, temperature and Ge concentration have a significant influence on the formation and evolution of the nanocrystals. We showed that a careful selective etching of the annealed samples in hydrofluoric acid solution enabled the embedded Ge nanocrystals to be liberated from the SiO 2 matrix. From the Raman results of the as-grown and the liberated nanocrystals, we established that the nanocrystals generally experienced compressive stress in the oxide matrix and the evolution of these stress states was intimately linked to the distribution, density, size and quality of the Ge nanocrystals

  1. Optical properties of Germanium nanoparticles synthesized by pulsed laser ablation in acetone

    Directory of Open Access Journals (Sweden)

    Saikiran eVadavalli

    2014-10-01

    Full Text Available Germanium (Ge nanoparticles (NPs are synthesized by means of pulsed laser ablation of bulk germanium target immersed in acetone with ns laser pulses at different pulse energies. The fabricated NPs are characterized by employing different techniques such as UV-visible absorption spectroscopy, photoluminescence, micro-Raman spectroscopy, transmission electron microscopy (TEM and field emission scanning electron microscopy (FESEM. The mean size of the Ge NPs is found to vary from few nm to 40 nm with the increase in laser pulse energy. Shift in the position of the absorption spectra is observed and also the photoluminescence peak shift is observed due to quantum confinement effects. High resolution TEM combined with micro-Raman spectroscopy confirms the crystalline nature of the generated germanium nanoparticles. The formation of various sizes of germanium NPs at different laser pulse energies is evident from the asymmetry in the Raman spectra and the shift in its peak position towards the lower wavenumber side. The FESEM micrographs confirm the formation of germanium micro/nanostructures at the laser ablated position of the bulk germanium. In particular, the measured NP sizes from the micro-Raman phonon quantum confinement model are found in good agreement with TEM measurements of Ge NPs.

  2. Dimensions of Adolescent Employment.

    Science.gov (United States)

    Mael, Fred A.; Morath, Ray A.; McLellan, Jeffrey A.

    1997-01-01

    Examines positive and negative correlates of adolescent work as a function of work dimensions. Results indicate that concurrent costs and benefits of adolescent employment may depend on dimensions of work as well as adolescent characteristics. Adolescent employment was generally related to subsequent work motivation and nonacademic performance.…

  3. User Experience Dimensions

    DEFF Research Database (Denmark)

    Lykke, Marianne; Jantzen, Christian

    2016-01-01

    The present study develops a set of 10 dimensions based on a systematic understanding of the concept of experience as a holistic psychological. Seven of these are derived from a psychological conception of what experiencing and experiences are. Three supplementary dimensions spring from the obser...

  4. Dimensions des stabulations 2018

    OpenAIRE

    Früh, Barbara; Maurer, Veronika; Schneider, Claudia; Schürmann, Stefan; Spengler Neff, Anet; Werne, Steffen

    2018-01-01

    Les «Dimensions des stabulations» contiennent toutes les dimensions pour les stabulations et les parcours pour la production animale en agriculture biologique. Cette liste sert d’instrument de planification pour les éleveurs, d’outil de travail pour la vulgarisation et d’ouvrage de référence pour le contrôle bio.

  5. Experimental verification of agreement between thermal and real time visual melt-solid interface positions in vertical Bridgman grown germanium

    Science.gov (United States)

    Barber, P. G.; Fripp, A. L.; Debnam, W. J.; Woodell, G.; Berry, R. F.; Simchick, R. T.

    1996-03-01

    Measurements of the liquid-solid interface position during crystal growth were made by observing the discontinuity of the temperature gradient with movable thermocouples in a centerline, quartz capillary placed inside a sealed quartz ampoule of germanium in a vertical Bridgman furnace. Simultaneously, in situ, real time visual observations, using X-ray imaging technology, determined the position of the melt-solid interface. The radiographically detected interface position was several millimeters from the thermal interface position and the direction of displacement depended upon the direction of thermocouple insertion. Minimization of this spurious heat flow was achieved by using an unclad thermocouple that had each of its two wire leads entering the capillary from different ends of the furnace. Using this configuration the visual interface coincided with the thermal interface. Such observations show the utility of using in situ, real time visualization to record the melt-solid interface shape and position during crystal growth; and they suggest improvements in furnace and ampoule designs for use in high thermal gradients.

  6. Dimension of linear models

    DEFF Research Database (Denmark)

    Høskuldsson, Agnar

    1996-01-01

    Determination of the proper dimension of a given linear model is one of the most important tasks in the applied modeling work. We consider here eight criteria that can be used to determine the dimension of the model, or equivalently, the number of components to use in the model. Four of these cri......Determination of the proper dimension of a given linear model is one of the most important tasks in the applied modeling work. We consider here eight criteria that can be used to determine the dimension of the model, or equivalently, the number of components to use in the model. Four...... the basic problems in determining the dimension of linear models. Then each of the eight measures are treated. The results are illustrated by examples....

  7. Maximizing Tensile Strain in Germanium Nanomembranes for Enhanced Optoelectronic Properties

    Science.gov (United States)

    Sanchez Perez, Jose Roberto

    Silicon, germanium, and their alloys, which provide the leading materials platform of microelectronics, are extremely inefficient light emitters because of their indirect fundamental energy band gap. This basic materials property has so far hindered the development of group-IV photonic-active devices, including light emitters and diode lasers, thereby significantly limiting our ability to integrate electronic and photonic functionalities at the chip level. Theoretical studies have predicted that tensile strain in Ge lowers the direct energy band gap relative to the indirect one, and that, with sufficient strain, Ge becomes direct-band gap, thus enabling facile interband light emission and the fabrication of Group IV lasers. It has, however, not been possible to impart sufficient strain to Ge to reach the direct-band gap goal, because bulk Ge fractures at much lower strains. Here it is shown that very thin sheets of Ge(001), called nanomembranes (NMs), can be used to overcome this materials limitation. Germanium nanomembranes (NMs) in the range of thicknesses from 20nm to 100nm were fabricated and then transferred and mounted to a flexible substrate [a polyimide (PI) sheet]. An apparatus was developed to stress the PI/NM combination and provide for in-situ Raman measurements of the strain as a function of applied stress. This arrangement allowed for the introduction of sufficient biaxial tensile strain (>1.7%) to transform Ge to a direct-band gap material, as determined by photoluminescence (PL) measurements and theory. Appropriate shifts in the emission spectrum and increases in PL intensities were observed. The advance in this work was nanomembrane fabrication technology; i.e., making thin enough Ge sheets to accept sufficiently high levels of strain without fracture. It was of interest to determine if the strain at which fracture ultimately does occur can be raised, by evaluating factors that initiate fracture. Attempts to assess the effect of free edges (enchant

  8. The fourth dimension

    CERN Document Server

    Rucker, Rudy

    2014-01-01

    ""This is an invigorating book, a short but spirited slalom for the mind."" - Timothy Ferris, The New York Times Book Review ""Highly readable. One is reminded of the breadth and depth of Hofstadter's Gödel, Escher, Bach."" - Science""Anyone with even a minimal interest in mathematics and fantasy will find The Fourth Dimension informative and mind-dazzling... [Rucker] plunges into spaces above three with a zest and energy that is breathtaking."" - Martin Gardner ""Those who think the fourth dimension is nothing but time should be encouraged to read The Fourth Dimension, along with anyone else

  9. Dimension from covariance matrices.

    Science.gov (United States)

    Carroll, T L; Byers, J M

    2017-02-01

    We describe a method to estimate embedding dimension from a time series. This method includes an estimate of the probability that the dimension estimate is valid. Such validity estimates are not common in algorithms for calculating the properties of dynamical systems. The algorithm described here compares the eigenvalues of covariance matrices created from an embedded signal to the eigenvalues for a covariance matrix of a Gaussian random process with the same dimension and number of points. A statistical test gives the probability that the eigenvalues for the embedded signal did not come from the Gaussian random process.

  10. Thermal stability of simple tetragonal and hexagonal diamond germanium

    Science.gov (United States)

    Huston, L. Q.; Johnson, B. C.; Haberl, B.; Wong, S.; Williams, J. S.; Bradby, J. E.

    2017-11-01

    Exotic phases of germanium, that form under high pressure but persist under ambient conditions, are of technological interest due to their unique optical and electrical properties. The thermal evolution and stability of two of these exotic Ge phases, the simple tetragonal (st12) and hexagonal diamond (hd) phases, are investigated in detail. These metastable phases, formed by high pressure decompression in either a diamond anvil cell or by nanoindentation, are annealed at temperatures ranging from 280 to 320 °C for st12-Ge and 200 to 550 °C for hd-Ge. In both cases, the exotic phases originated from entirely pure Ge precursor materials. Raman microspectroscopy is used to monitor the phase changes ex situ following annealing. Our results show that hd-Ge synthesized via a pure form of a-Ge first undergoes a subtle change in structure and then an irreversible phase transformation to dc-Ge with an activation energy of (4.3 ± 0.2) eV at higher temperatures. St12-Ge was found to transform to dc-Ge with an activation energy of (1.44 ± 0.08) eV. Taken together with results from previous studies, this study allows for intriguing comparisons with silicon and suggests promising technological applications.

  11. Point defect states in Sb-doped germanium

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Neil S., E-mail: neilp@mit.edu; Monmeyran, Corentin, E-mail: comonmey@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139 (United States); Agarwal, Anuradha [Microphotonics Center, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139 (United States); Kimerling, Lionel C. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139 (United States); Microphotonics Center, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139 (United States)

    2015-10-21

    Defect states in n-type Sb-doped germanium were investigated by deep-level transient spectroscopy. Cobalt-60 gamma rays were used to generate isolated vacancies and interstitials which diffuse and react with impurities in the material to form four defect states (E{sub 37}, E{sub 30}, E{sub 22}, and E{sub 21}) in the upper half of the bandgap. Irradiations at 77 K and 300 K as well as isothermal anneals were performed to characterize the relationships between the four observable defects. E{sub 37} is assigned to the Sb donor-vacancy associate (E-center) and is the only vacancy containing defect giving an estimate of 2 × 10{sup 11 }cm{sup −3} Mrad{sup −1} for the uncorrelated vacancy-interstitial pair introduction rate. The remaining three defect states are interstitial associates and transform among one another. Conversion ratios between E{sub 22}, E{sub 21}, and E{sub 30} indicate that E{sub 22} likely contains two interstitials.

  12. gamma-ray tracking in germanium the backtracking method

    CERN Document Server

    Marel, J V D

    2002-01-01

    In the framework of a European TMR network project the concept for a gamma-ray tracking array is being developed for nuclear physics spectroscopy in the energy range of approx 10 keV up to several MeV. The tracking array will consist of a large number of position-sensitive germanium detectors in a spherical geometry around a target. Due to the high segmentation, a Compton scattered gamma-ray will deposit energy in several different segments. A method has been developed to reconstruct the tracks of multiple coincident gamma-rays and to find their initial energies. By starting from the final point the track can be reconstructed backwards to the origin with the help of the photoelectric and Compton cross-sections and the Compton scatter formula. Every reconstructed track is given a figure of merit, thus allowing suppression of wrongly reconstructed tracks and gamma-rays that have scattered out of the detector system. This so-called backtracking method has been tested on simulated events in a shell-like geometry ...

  13. Etching of germanium-tin using ammonia peroxide mixture

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Yuan; Ong, Bin Leong; Wang, Wei; Gong, Xiao; Liang, Gengchiau; Yeo, Yee-Chia, E-mail: yeo@ieee.org [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Zhang, Zheng; Pan, Jisheng [Institute of Material Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634 (Singapore); Tok, Eng-Soon [Department of Physics, National University of Singapore, Singapore 117551 (Singapore)

    2015-12-28

    The wet etching of germanium-tin (Ge{sub 1-x}Sn{sub x}) alloys (4.2% < x < 16.0%) in ammonia peroxide mixture (APM) is investigated. Empirical fitting of the data points indicates that the etch depth of Ge{sub 1-x}Sn{sub x} is proportional to the square root of the etch time t and decreases exponentially with increasing x for a given t. In addition, X-ray photoelectron spectroscopy results show that increasing t increases the intensity of the Sn oxide peak, whereas no obvious change is observed for the Ge oxide peak. This indicates that an accumulation of Sn oxide on the Ge{sub 1-x}Sn{sub x} surface decreases the amount of Ge atoms exposed to the etchant, which accounts for the decrease in etch rate with increasing etch time. Atomic force microscopy was used to examine the surface morphologies of the Ge{sub 0.918}Sn{sub 0.082} samples. Both root-mean-square roughness and undulation periods of the Ge{sub 1-x}Sn{sub x} surface were observed to increase with increasing t. This work provides further understanding of the wet etching of Ge{sub 1-x}Sn{sub x} using APM and may be used for the fabrication of Ge{sub 1-x}Sn{sub x}-based electronic and photonic devices.

  14. The ACCUSCAN-II vertical scanning germanium whole body counter

    International Nuclear Information System (INIS)

    Bronson, F.L.

    1987-01-01

    The ACCUSCAN-II is manufactured by Canberra Industries, and represents a new generation of WBC systems. One or two Germanium detectors are used for precise nuclide identification. The detectors scan the total body and can accurately quantify radioactive material anywhere in the body. The shield is a full 4'' thick steel or 2'' lead and weighs about 9000 lbs. The subject can be counted standing for full body scans, or seated for longer counting times of limited portions of the body. Optional electronics also generate a count rate vs. body position profile, as an aid to interpretation of the dose implications of the count. Typical LLD's are 5 - 10 nCi for a 5 minute total body count and 0.5 - 0.7 nCi for a 5 minute long screening count. The system is available in several flavors. The manual version is an inexpensive system intended for universities, hospitals and small industrial facilities. The automatic system includes a MicroVAX-II computer and runs ABACOS0-II Body Burden Software, and is ideal for facilities with large numbers of people to count and where automated analysis of the data is desirable

  15. Ductile-regime turning of germanium and silicon

    Science.gov (United States)

    Blake, Peter N.; Scattergood, Ronald O.

    1989-01-01

    Single-point diamond turning of silicon and germanium was investigated in order to clarify the role of cutting depth in coaxing a ductile chip formation in normally brittle substances. Experiments based on the rapid withdrawal of the tool from the workpiece have shown that microfracture damage is a function of the effective depth of cut (as opposed to the nominal cutting depth). In essence, damage created by the leading edge of the tool is removed several revolutions later by lower sections of the tool edge, where the effective cutting depth is less. It appears that a truly ductile cutting response can be achieved only when the effective cutting depth, or critical chip thickness, is less than about 20 nm. Factors such as tool rake angle are significant in that they will affect the actual value of the critical chip thickness for transition from brittle to ductile response. It is concluded that the critical chip thickness is an excellent parameter for measuring the effects of machining conditions on the ductility of the cut and for designing tool-workpiece geometry in both turning and grinding.

  16. Isotopic germanium targets for high beam current applications at GAMMASPHERE

    International Nuclear Information System (INIS)

    Greene, J. P.; Lauritsen, T.

    2000-01-01

    The creation of a specific heavy ion residue via heavy ion fusion can usually be achieved through a number of beam and target combinations. Sometimes it is necessary to choose combinations with rare beams and/or difficult targets in order to achieve the physics goals of an experiment. A case in point was a recent experiment to produce 152 Dy at very high spins and low excitation energy with detection of the residue in a recoil mass analyzer. Both to create the nucleus cold and with a small recoil-cone so that the efficiency of the mass analyzer would be high, it was necessary to use the 80 Se on 76 Ge reaction rather than the standard 48 Ca on 108 Pd reaction. Because the recoil velocity of the 152 Dy residues was very high using this symmetric reaction (5% v/c), it was furthermore necessary to use a stack of two thin targets to reduce the Doppler broadening. Germanium targets are fragile and do not withstand high beam currents, therefore the 76 Ge target stacks were mounted on a rotating target wheel. A description of the 76 Ge target stack preparation will be presented and the target performance described

  17. Ion beam induced stress formation and relaxation in germanium

    Energy Technology Data Exchange (ETDEWEB)

    Steinbach, T., E-mail: Tobias.Steinbach@uni-jena.de [Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena (Germany); Reupert, A.; Schmidt, E.; Wesch, W. [Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena (Germany)

    2013-07-15

    Ion irradiation of crystalline solids leads not only to defect formation and amorphization but also to mechanical stress. In the past, many investigations in various materials were performed focusing on the ion beam induced damage formation but only several experiments were done to investigate the ion beam induced stress evolution. Especially in microelectronic devices, mechanical stress leads to several unwanted effects like cracking and peeling of surface layers as well as changing physical properties and anomalous diffusion of dopants. To study the stress formation and relaxation process in semiconductors, crystalline and amorphous germanium samples were irradiated with 3 MeV iodine ions at different ion fluence rates. The irradiation induced stress evolution was measured in situ with a laser reflection technique as a function of ion fluence, whereas the damage formation was investigated by means of Rutherford backscattering spectrometry. The investigations show that mechanical stress builds up at low ion fluences as a direct consequence of ion beam induced point defect formation. However, further ion irradiation causes a stress relaxation which is attributed to the accumulation of point defects and therefore the creation of amorphous regions. A constant stress state is reached at high ion fluences if a homogeneous amorphous surface layer was formed and no further ion beam induced phase transition took place. Based on the results, we can conclude that the ion beam induced stress evolution seems to be mainly dominated by the creation and accumulation of irradiation induced structural modification.

  18. Escaping in extra dimensions

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit

    2002-01-01

    Recent progress in the formulation of fundamental theories for a Universe with more than 4 dimensions will be reviewed. Particular emphasis will be given to theories predicting the existence of extra dimensions at distance scales within the reach of current or forthcoming experiments. The phenomenological implications of these theories, ranging from detectable deviations from Newton's law at sub-millimeter scales, to phenomena of cosmological and astrophysical interest, as well as to high-energy laboratory experiments, will be discussed.

  19. Gender Dimensions Framework Application

    OpenAIRE

    Rubin, D.

    2011-01-01

    This is a presentation of the The Gender Dimensions Framework (GDF). The GDF was developed to provide guidance to USAID staff and partner organizations for working with USAID projects looking at promoting equitable opportunities in agricultural value chains. The GDF contemplates four dimensions: access to and control over key productive assets (tangible and intangible); beliefs and perceptions; practices and participation, and legal frameworks. CCRA-7 (Gendered Knowledge)

  20. Controllable growth of stable germanium dioxide ultra-thin layer by means of capacitively driven radio frequency discharge

    Energy Technology Data Exchange (ETDEWEB)

    Svarnas, P., E-mail: svarnas@ece.upatras.gr [High Voltage Laboratory, Department of Electrical and Computer Engineering, University of Patras, Rion 26 504, Patras (Greece); Botzakaki, M.A. [Department of Physics, University of Patras, Rion 26 504 (Greece); Skoulatakis, G.; Kennou, S.; Ladas, S. [Surface Science Laboratory, Department of Chemical Engineering, University of Patras, Rion 26 504 (Greece); Tsamis, C. [NCSR “Demokritos”, Institute of Advanced Materials, Physicochemical Processes, Nanotechnology & Microsystems, Aghia Paraskevi 15 310, Athens (Greece); Georga, S.N.; Krontiras, C.A. [Department of Physics, University of Patras, Rion 26 504 (Greece)

    2016-01-29

    It is well recognized that native oxide of germanium is hygroscopic and water soluble, while germanium dioxide is thermally unstable and it is converted to volatile germanium oxide at approximately 400 °C. Different techniques, implementing quite complicated plasma setups, gas mixtures and substrate heating, have been used in order to grow a stable germanium oxide. In the present work a traditional “RF diode” is used for germanium oxidation by cold plasma. Following growth, X-ray photoelectron spectroscopy demonstrates that traditional capacitively driven radio frequency discharges, using molecular oxygen as sole feedstock gas, provide the possibility of germanium dioxide layer growth in a fully reproducible and controllable manner. Post treatment ex-situ analyses on day-scale periods disclose the stability of germanium oxide at room ambient conditions, offering thus the ability to grow (ex-situ) ultra-thin high-k dielectrics on top of germanium oxide layers. Atomic force microscopy excludes any morphological modification in respect to the bare germanium surface. These results suggest a simple method for a controllable and stable germanium oxide growth, and contribute to the challenge to switch to high-k dielectrics as gate insulators for high-performance metal-oxide-semiconductor field-effect transistors and to exploit in large scale the superior properties of germanium as an alternative channel material in future technology nodes. - Highlights: • Simple one-frequency reactive ion etcher develops GeO{sub 2} thin layers controllably. • The layers remain chemically stable at ambient conditions over day-scale periods. • The layers are unaffected by the ex-situ deposition of high-k dielectrics onto them. • GeO{sub 2} oxidation and high-k deposition don't affect the Ge morphology significantly. • These conditions contribute to improved Ge-based MOS structure fabrication.

  1. Techniques to distinguish between electron and photon induced events using segmented germanium detectors

    International Nuclear Information System (INIS)

    Kroeninger, K.

    2007-01-01

    Two techniques to distinguish between electron and photon induced events in germanium detectors were studied: (1) anti-coincidence requirements between the segments of segmented germanium detectors and (2) the analysis of the time structure of the detector response. An 18-fold segmented germanium prototype detector for the GERDA neutrinoless double beta-decay experiment was characterized. The rejection of photon induced events was measured for the strongest lines in 60 Co, 152 Eu and 228 Th. An accompanying Monte Carlo simulation was performed and the results were compared to data. An overall agreement with deviations of the order of 5-10% was obtained. The expected background index of the GERDA experiment was estimated. The sensitivity of the GERDA experiment was determined. Special statistical tools were developed to correctly treat the small number of events expected. The GERDA experiment uses a cryogenic liquid as the operational medium for the germanium detectors. It was shown that germanium detectors can be reliably operated through several cooling cycles. (orig.)

  2. Techniques to distinguish between electron and photon induced events using segmented germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kroeninger, K.

    2007-06-05

    Two techniques to distinguish between electron and photon induced events in germanium detectors were studied: (1) anti-coincidence requirements between the segments of segmented germanium detectors and (2) the analysis of the time structure of the detector response. An 18-fold segmented germanium prototype detector for the GERDA neutrinoless double beta-decay experiment was characterized. The rejection of photon induced events was measured for the strongest lines in {sup 60}Co, {sup 152}Eu and {sup 228}Th. An accompanying Monte Carlo simulation was performed and the results were compared to data. An overall agreement with deviations of the order of 5-10% was obtained. The expected background index of the GERDA experiment was estimated. The sensitivity of the GERDA experiment was determined. Special statistical tools were developed to correctly treat the small number of events expected. The GERDA experiment uses a cryogenic liquid as the operational medium for the germanium detectors. It was shown that germanium detectors can be reliably operated through several cooling cycles. (orig.)

  3. Biallelic and Genome Wide Association Mapping of Germanium Tolerant Loci in Rice (Oryza sativa L..

    Directory of Open Access Journals (Sweden)

    Partha Talukdar

    Full Text Available Rice plants accumulate high concentrations of silicon. Silicon has been shown to be involved in plant growth, high yield, and mitigating biotic and abiotic stresses. However, it has been demonstrated that inorganic arsenic is taken up by rice through silicon transporters under anaerobic conditions, thus the ability to efficiently take up silicon may be considered either a positive or a negative trait in rice. Germanium is an analogue of silicon that produces brown lesions in shoots and leaves, and germanium toxicity has been used to identify mutants in silicon and arsenic transport. In this study, two different genetic mapping methods were performed to determine the loci involved in germanium sensitivity in rice. Genetic mapping in the biparental cross of Bala × Azucena (an F6 population and a genome wide association (GWA study with 350 accessions from the Rice Diversity Panel 1 were conducted using 15 μM of germanic acid. This identified a number of germanium sensitive loci: some co-localised with previously identified quantitative trait loci (QTL for tissue silicon or arsenic concentration, none co-localised with Lsi1 or Lsi6, while one single nucleotide polymorphism (SNP was detected within 200 kb of Lsi2 (these are genes known to transport silicon, whose identity was discovered using germanium toxicity. However, examining candidate genes that are within the genomic region of the loci detected above reveals genes homologous to both Lsi1 and Lsi2, as well as a number of other candidate genes, which are discussed.

  4. A variational principle for the Hausdorff dimension of fractal sets

    DEFF Research Database (Denmark)

    Olsen, Lars; Cutler, Colleen D.

    1994-01-01

    Matematik, fraktal (fractal), Hausdorff dimension, Renyi dimension, pakke dimension (packing dimension)......Matematik, fraktal (fractal), Hausdorff dimension, Renyi dimension, pakke dimension (packing dimension)...

  5. Perceptual dimensions differentiate emotions.

    Science.gov (United States)

    Cavanaugh, Lisa A; MacInnis, Deborah J; Weiss, Allen M

    2015-08-26

    Individuals often describe objects in their world in terms of perceptual dimensions that span a variety of modalities; the visual (e.g., brightness: dark-bright), the auditory (e.g., loudness: quiet-loud), the gustatory (e.g., taste: sour-sweet), the tactile (e.g., hardness: soft vs. hard) and the kinaesthetic (e.g., speed: slow-fast). We ask whether individuals use perceptual dimensions to differentiate emotions from one another. Participants in two studies (one where respondents reported on abstract emotion concepts and a second where they reported on specific emotion episodes) rated the extent to which features anchoring 29 perceptual dimensions (e.g., temperature, texture and taste) are associated with 8 emotions (anger, fear, sadness, guilt, contentment, gratitude, pride and excitement). Results revealed that in both studies perceptual dimensions differentiate positive from negative emotions and high arousal from low arousal emotions. They also differentiate among emotions that are similar in arousal and valence (e.g., high arousal negative emotions such as anger and fear). Specific features that anchor particular perceptual dimensions (e.g., hot vs. cold) are also differentially associated with emotions.

  6. Steering of sub-GeV electrons by ultrashort Si and Ge bent crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sytov, A.I. [Ferrara Univ. (Italy). Dipt. di Fisica e Scienze della Terra; Belarusian State Univ., Minsk (Belarus). Inst. for Nuclear Problems; INFN Sezione di Ferrara (Italy); Bandiera, L.; Mazzolari, A.; Bagli, E.; Germogli, G.; Guidi, V.; Romagnoni, M. [Ferrara Univ. (Italy). Dipt. di Fisica e Scienze della Terra; INFN Sezione di Ferrara (Italy); De Salvador, D.; Carturan, S.; Maggioni, G. [INFN, Laboratori Nazionali di Legnaro (Italy); Padova Univ. (Italy). Dipt. di Fisica; Berra, A.; Prest, M. [Univ. dell' Insubria, Como (Italy); INFN, Sezione di Milano Bicocca, Milan (Italy); Durighello, C. [Ferrara Univ. (Italy). Dipt. di Fisica e Scienze della Terra; INFN, Laboratori Nazionali di Legnaro (Italy); Padova Univ. (Italy). Dipt. di Fisica; INFN Sezione di Ferrara (Italy); Klag, P.; Lauth, W. [Mainz Univ. (Germany). Inst. fuer Kernphysik; Tikhomirov, V.V. [Belarusian State Univ., Minsk (Belarus). Inst. for Nuclear Problems; Vallazza, E. [INFN, Sezione di Trieste (Italy)

    2017-12-15

    We report the observation of the steering of 855 MeV electrons by bent silicon and germanium crystals at the MAinzer MIkrotron. Crystals with 15 μm of length, bent along (111) planes, were exploited to investigate orientational coherent effects. By using a piezo-actuated mechanical holder, which allowed to remotely change the crystal curvature, it was possible to study the steering capability of planar channeling and volume reflection vs. the curvature radius and the atomic number, Z. For silicon, the channeling efficiency exceeds 35%, a record for negatively charged particles. This was possible due to the realization of a crystal with a thickness of the order of the dechanneling length. On the other hand, for germanium the efficiency is slightly below 10% due to the stronger contribution of multiple scattering for a higher-Z material. Nevertheless this is the first evidence of negative beam steering by planar channeling in a Ge crystal. Having determined for the first time the dechanneling length, one may design a Ge crystal based on such knowledge providing nearly the same channeling efficiency of silicon. The presented results are relevant for crystal-based beam manipulation as well as for the generation of e.m. radiation in bent and periodically bent crystals. (orig.)

  7. Steering of Sub-GeV electrons by ultrashort Si and Ge bent crystals

    Science.gov (United States)

    Sytov, A. I.; Bandiera, L.; De Salvador, D.; Mazzolari, A.; Bagli, E.; Berra, A.; Carturan, S.; Durighello, C.; Germogli, G.; Guidi, V.; Klag, P.; Lauth, W.; Maggioni, G.; Prest, M.; Romagnoni, M.; Tikhomirov, V. V.; Vallazza, E.

    2017-12-01

    We report the observation of the steering of 855 MeV electrons by bent silicon and germanium crystals at the MAinzer MIkrotron. Crystals with 15 μ m of length, bent along (111) planes, were exploited to investigate orientational coherent effects. By using a piezo-actuated mechanical holder, which allowed to remotely change the crystal curvature, it was possible to study the steering capability of planar channeling and volume reflection vs. the curvature radius and the atomic number, Z. For silicon, the channeling efficiency exceeds 35%, a record for negatively charged particles. This was possible due to the realization of a crystal with a thickness of the order of the dechanneling length. On the other hand, for germanium the efficiency is slightly below 10% due to the stronger contribution of multiple scattering for a higher-Z material. Nevertheless this is the first evidence of negative beam steering by planar channeling in a Ge crystal. Having determined for the first time the dechanneling length, one may design a Ge crystal based on such knowledge providing nearly the same channeling efficiency of silicon. The presented results are relevant for crystal-based beam manipulation as well as for the generation of e.m. radiation in bent and periodically bent crystals.

  8. Etching of semiconductor cubic crystals: Determination of the dissolution slowness surfaces

    Science.gov (United States)

    Tellier, C. R.

    1990-03-01

    Equations of the representative surface of dissolution slowness for cubic crystals are determined in the framework of a tensorial approach of the orientation-dependent etching process. The independent dissolution constants are deduced from symmetry considerations. Using previous data on the chemical etching of germanium and gallium arsenide crystals, some possible polar diagrams of the dissolution slowness are proposed. A numerical and graphical simulation method is used to obtain the derived dissolution shapes. The influence of extrema in the dissolution slowness on the successive dissolution shapes is also examined. A graphical construction of limiting shapes of etched crystals appears possible using the tensorial representation of the dissolution slowness.

  9. Thermal expansion of LATGS crystals

    International Nuclear Information System (INIS)

    Kassem, M.E.; Kandil, S.H.; Hamed, A.E.; Stankowska, J.

    1989-04-01

    The thermal expansion of triglycine sulphate crystals doped with L-α alanine (LATGS) has been studied around the phase transition temperature (30-60 deg. C) using thermomechanical analysis TMA. With increasing the content of admixture, the transition temperature (T c ) was shifted towards higher values, while the relative changes in the dimension of the crystals (ΔL/L 0 ) of the studied directions varied both in the para- and ferroelectric phases. The transition width in the case of doped crystals was found to be broad, and this broadening increases with increasing the content of L-α alanine. (author). 12 refs, 3 figs

  10. Experimental investigation on oxidation kinetics of germanium by ozone

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaolei, E-mail: wangxiaolei@ime.ac.cn [Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China); Zhao, Zhiqian; Xiang, Jinjuan [Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China); Wang, Wenwu, E-mail: wangwenwu@ime.ac.cn [Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China); Zhang, Jing, E-mail: zhangj@ncut.edu.cn [Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China); Microelectronics Department, North China University of Technology, Beijing 100041 (China); Zhao, Chao; Ye, Tianchun [Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China)

    2016-12-30

    Highlights: • Kinetics mechanism of Ge surface oxidation by ozone at low temperature is experimentally investigated. • The growth process contains initially linear growth region and following parabolic growth region. • The GeO{sub x} thickness vs. oxidation time plot obeys the well-known Deal-Grove or linear parabolic model. • The linear growth region includes the oxidation of two topmost Ge layers, and the oxidation of third layer and following layers of Ge is diffusion limited. • The activation energies for linear and parabolic regions are 0.04 and 0.55 eV, respectively. - Abstract: Oxidation kinetics of germanium surface by ozone at low temperature (≤400 °C) is experimentally investigated. The growth process contains two regions: initial linear growth region and following parabolic growth region. The GeO{sub x} thickness vs. oxidation time plot obeys the well-known Deal-Grove or linear parabolic model. The linear growth region contains reaction of oxygen atoms with surface bond and back bonds of outmost Ge layer. And the activation energy is experimentally estimated to be 0.06 eV. Such small activation energy indicates that the linear growth region is nearly barrier-less. The parabolic growth region starts when the oxygen atoms diffuse into back bonds of second outmost Ge layers. And the activation energy for this process is found to be 0.54 eV. Furthermore, in the ozone oxidation it is not O{sub 3} molecules but O radicals that go through the GeO{sub x} film.

  11. Timing of gamma rays in coaxial germanium detector systems

    International Nuclear Information System (INIS)

    El-Ibiary, M.Y.

    1979-01-01

    A study is reported on the timing uncertainty in gamma ray coaxial germanium detector systems. The work deals with the zero cross over method which is widely used to reduce the dependence of the instant of timing on the radiation energy absorbed and on the position within the detector at which absorption takes place. It is found that the amplitude risetime compensated (ARC) method gives, under normal conditions, the best resolution at a specific energy. For higher energies, the resolution improves and there is no shift of the mean instant of timing. The method is therefore well suited for wide energy coverage. The parameters involved in implementing an ARC system for optimum performance at a specific energy are identified in terms of the preamplifier noise level and risetime. A trade off can be made between the resolutions at high and at low energies. The time resolution attained is given by means of a series of charts which use normalized dimensionless variables for ready application to any given case. Lithium compensated Ge detectors which normally operate under conditions of velocity saturation of the charge carriers by applying sufficient bias voltage create an electric field in excess of 1 kV/cm throughout the depleted region. High purity Ge detectors where velocity saturation may not be reached within certain parts of the depleted region are studied. Special attention is given to the probability of pulses being incorrectly timed because of their slow rise or small magnitude. Such incorrect timing is energy-dependent and results in a noticeable distortion of the timing spectrum that relates to a wide energy range. Limitations on system parameters to keep the probability of incorrect timing below a specified fraction are given

  12. Trace radioactive measurement in foodstuffs using high purity germanium detector

    International Nuclear Information System (INIS)

    Morco, Ryan P.; Racho, Joseph Michael D.; Castaneda, Soledad S.; Almoneda, Rosalina V.; Pabroa, Preciosa Corazon B.; Sucgang, Raymond J.

    2010-01-01

    Trace radioactivity in food has been seriously considered sources of potential harm after the accidental radioactive releases in the last decades which led to contamination of the food chain. Countermeasures are being used to reduce the radiological health risk to the population and to ensure that public safety and international commitments are met. Investigation of radioactive traces in foods was carried out by gamma-ray spectrometry. The radionuclides being measured were fission products 1 37Cs and 1 34Cs and naturally occurring 4 0Κ. Gamma-ray measurements were performed using a hybrid gamma-ray counting system with coaxial p-type Tennelec High Purity Germanium (HPGe) detector with relative efficiency of 18.4%. Channels were calibrated to energies using a standard check source with 1 37Cs and 6 0Co present. Self-shielding within samples was taken into account by comparing directly with reference standards of similar matrix and geometry. Efficiencies of radionuclides of interests were accounted in calculating the activity concentrations in the samples. Efficiency calibration curve was generated using an in-house validated program called FINDPEAK, a least-square method that fits a polynomial up to sixth-order of equation. Lower Limits of Detection (LLD) obtained for both 1 37Cs and 1 34Cs ranges from 1-6 Bq/Kg depending on the sample matrix. In the last five years, there have been no foodstuffs analyzed exceeded the local and international regulatory limit of 1000Bq/Kg for the summed activities of 1 37Cs and 1 34Cs. (author)

  13. New dimensions new hopes

    International Nuclear Information System (INIS)

    Sarkar, Utpal

    2001-05-01

    We live in a four dimensional world. But the idea of unification of fundamental interactions lead us to higher dimensional theories. Recently a new theory with extra dimensions has emerged where only gravity propagates in the extra dimension and all other interactions are confined to only four dimensions. This theory gives us many new hopes. In earlier theories unification of strong, weak and the electromagnetic forces was possible at around 10 16 GeV in a grand unified theory (GUT) and it could get unified with gravity at around the Planck scale of 10 19 GeV. With this new idea it is possible to bring down all unification scales within the reach of the new generation accelerators, i.e., around 10 4 GeV. (author)

  14. Dimension of linear models

    DEFF Research Database (Denmark)

    Høskuldsson, Agnar

    1996-01-01

    Determination of the proper dimension of a given linear model is one of the most important tasks in the applied modeling work. We consider here eight criteria that can be used to determine the dimension of the model, or equivalently, the number of components to use in the model. Four...... the basic problems in determining the dimension of linear models. Then each of the eight measures are treated. The results are illustrated by examples....... of these criteria are widely used ones, while the remaining four are ones derived from the H-principle of mathematical modeling. Many examples from practice show that the criteria derived from the H-principle function better than the known and popular criteria for the number of components. We shall briefly review...

  15. Mapping the electromagnetic field confinement in the gap of germanium nanoantennas with plasma wavelength of 4.5 micrometers

    NARCIS (Netherlands)

    Calandrini, Eugenio; Venanzi, Tommaso; Appugliese, Felice; Badioli, Michela; Giliberti, Valeria; Baldassarre, Leonetta; Biagioni, Paolo; De Angelis, Francesco; Klesse, Wolfgang M.; Scappucci, G.; Ortolani, Michele

    2016-01-01

    We study plasmonic nanoantennas for molecular sensing in the mid-infrared made of heavily doped germanium, epitaxially grown with a bottom-up doping process and featuring free carrier density in excess of 1020 cm-3. The dielectric function of the 250 nm thick germanium film

  16. Lithium-Ion (de)insertion reaction of Germanium thin-film electrodes : an electrochemical and in situ XRD study

    NARCIS (Netherlands)

    Baggetto, L.; Notten, P.H.L.

    2009-01-01

    Germanium is a promising negative electrode candidate for lithium-ion thin-film batteries because of its very high theoretical storage capacity. When assuming full conversion of the material into the room-temperature equilibrium lithium saturated germanium phase, a theoretical capacity of or of

  17. Crystals in crystals

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Schmidt, I.; Carlsson, A.

    2005-01-01

    A major factor governing the performance of catalytically active particles supported on a zeolite carrier is the degree of dispersion. It is shown that the introduction of noncrystallographic mesopores into zeolite single crystals (silicalite-1, ZSM-5) may increase the degree of particle dispersion....... As representative examples, a metal (Pt), an alloy (PtSn), and a metal carbide (beta-Mo2C) were supported on conventional and mesoporous zeolite carriers, respectively, and the degree of particle dispersion was compared by TEM imaging. On conventional zeolites, the supported material aggregated on the outer surface...

  18. Use of Germanium as comparator and integral monitor of neutron flux in activation analysis

    International Nuclear Information System (INIS)

    Furnari, Juan C.; Cohen, Isaac M.; Arribere, Maria A.; Kestelman, Abraham J.

    1997-01-01

    The possibility of using germanium as monitor of the thermal and epithermal components of the neutron flux, and comparator in parametric activation analysis, is discussed. The advantages and drawbacks associated to the use of this element are commented on, and the comparison with zirconium, in terms of the determination relative error, is performed. The utilisation of germanium as integral flux monitor, including the fast component of the neutron spectrum, is also discussed. Data corresponding to measurements of k 0 factor for the most relevant gamma transitions from Ge-75 and Be-77 are presented, as well as the results of the reference material analysis, employing germanium as flux monitor and comparator in a simultaneous way. (author). 8 refs., 3 figs., 2 tabs

  19. X-ray radiometric analysis of lead and zinc concentrates using germanium radiation detector

    International Nuclear Information System (INIS)

    Vajgachev, A.A.; Mamysh, V.A.; Mil'chakov, V.I.; Shchekin, K.I.; Berezkin, V.V.

    1975-01-01

    The results of determination of lead, zinc and iron in lead and zinc concentrates by the X-ray-radiometric method with the use of germanium semiconductor detector are presented. In the experiments the 57 Co source and tritium-zirconium target were used. The activity of 57 Co was 2 mc. The area of the germanium detector employed was 5g mm 2 , its thickness - 2.3 mm. In lead concentrates zinc and iron were determined from the direct intensity of K-series radiation. In the analysis of zinc concentrates the same conditions of recording and excitation were used as in the case of lead concentrates, but the measurements were conducted in saturated layers. It is demonstrated that the use of germanium semiconductor detectors in combination with the suggested methods of measurements makes it possible to perform determination of iron, zinc and lead in zinc and lead concentrates with permissible error

  20. The MAJORANA DEMONSTRATOR: A Search for Neutrinoless Double-beta Decay of Germanium-76

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, Alexis G.; Aguayo, Estanislao; Avignone, F. T.; Zhang, C.; Back, Henning O.; Barabash, Alexander S.; Bergevin, M.; Bertrand, F.; Boswell, M.; Brudanin, V.; Busch, Matthew; Chan, Yuen-Dat; Christofferson, Cabot-Ann; Collar, J. I.; Combs, Dustin C.; Cooper, R. J.; Detwiler, Jason A.; Leon, Jonathan D.; Doe, Peter J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, S. R.; Esterline, James H.; Fast, James E.; Fields, N.; Finnerty, P.; Fraenkle, Florian; Gehman, Victor M.; Giovanetti, G. K.; Green, M.; Guiseppe, Vincente; Gusey, K.; Hallin, A. L.; Hazama, R.; Henning, Reyco; Hime, Andrew; Hoppe, Eric W.; Horton, Mark; Howard, Stanley; Howe, Mark; Johnson, R. A.; Keeter, K.; Keillor, Martin E.; Keller, C.; Kephart, Jeremy D.; Kidd, M. F.; Knecht, A.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; LaFerriere, Brian D.; LaRoque, B. H.; Leviner, L.; Loach, J. C.; MacMullin, S.; Marino, Michael G.; Martin, R. D.; Mei, Dong-Ming; Merriman, Jason H.; Miller, M. L.; Mizouni, Leila; Nomachi, Masaharu; Orrell, John L.; Overman, Nicole R.; Phillips, D.; Poon, Alan; Perumpilly, Gopakumar; Prior, Gersende; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Ronquest, M. C.; Shima, T.; Shirchenko, M.; Snavely, Kyle J.; Sobolev, V.; Steele, David; Strain, J.; Thomas, K.; Timkin, V.; Tornow, Werner; Vanyushin, I.; Varner, R. L.; Vetter, Kai; Vorren, Kris R.; Wilkerson, J. F.; Wolfe, B. A.; Yakushev, E.; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir

    2012-09-28

    The observation of neutrinoless double-beta decay would determine whether the neutrino is a Majorana particle and provide information on the absolute scale of neutrino mass. The MAJORANA Collaboration is constructing the DEMONSTRATOR, an array of germanium detectors, to search for neutrinoless double-beta decay of 76Ge. The DEMONSTRATOR will contain 40 kg of germanium; up to 30 kg will be enriched to 86% in 76Ge. The DEMONSTRATOR will be deployed deep underground in an ultra-low-background shielded environment. Operation of the DEMONSTRATOR aims to determine whether a future tonne-scale germanium experiment can achieve a background goal of one count per tonne-year in a 4-keV region of interest around the 76Ge neutrinoless double-beta decay Q-value of 2039 keV.

  1. Gold catalytic Growth of Germanium Nanowires by chemical vapour deposition method

    Directory of Open Access Journals (Sweden)

    M. Zahedifar

    2013-03-01

    Full Text Available Germanium nanowires (GeNWs were synthesized using chemical vapor deposition (CVD based on vapor–liquid–solid (VLS mechanism with Au nanoparticles as catalyst and germanium tetrachloride (GeCl4 as a precursor of germanium. Au catalysts were deposited on silicon wafer as a thin film, firstly by sputtering technique and secondly by submerging the silicon substrates in Au colloidal solution, which resulted in Au nanoparticles with different sizes. GeNWs were synthesized at 400 °C, which is a low temperature for electrical device fabrication. Effect of different parameters such as Au nanoparticles size, carrier gas (Ar flow and mixture of H2 with the carrier gas on GeNWs diameter and shape was studied by SEM images. The chemical composition of the nanostructure was also examined by energy dispersive X-ray spectroscopy (EDS.

  2. Germanium field-effect transistor made from a high-purity substrate

    International Nuclear Information System (INIS)

    Hansen, W.L.; Goulding, F.S.; Haller, E.E.

    1978-11-01

    Field effect transistors have been fabricated on high-purity germanium substrates using low-temperature technology. The aim of this work is to preserve the low density of trapping centers in high-quality starting material by low-temperature ( 0 C) processing. The use of germanium promises to eliminate some of the traps which cause generation-recombination noise in silicon field-effect transistors (FET's) at low temperatures. Typically, the transconductance (g/sub m/) in the germanium FET's is 10 mA/V and the gate leakage can be less than 10 -12 A. Present devices exhibit a large 1/f noise component and most of this noise must be eliminated if they are to be competitive with silicon FET's commonly used in high-resolution nuclear spectrometers

  3. Cosmogenic activation of germanium used for tonne-scale rare event search experiments

    Science.gov (United States)

    Wei, W.-Z.; Mei, D.-M.; Zhang, C.

    2017-11-01

    We report a comprehensive study of cosmogenic activation of germanium used for tonne-scale rare event search experiments. The germanium exposure to cosmic rays on the Earth's surface are simulated with and without a shielding container using Geant4 for a given cosmic muon, neutron, and proton energy spectrum. The production rates of various radioactive isotopes are obtained for different sources separately. We find that fast neutron induced interactions dominate the production rate of cosmogenic activation. Geant4-based simulation results are compared with the calculation of ACTIVIA and the available experimental data. A reasonable agreement between Geant4 simulations and several experimental data sets is presented. We predict that cosmogenic activation of germanium can set limits to the sensitivity of the next generation of tonne-scale experiments.

  4. Impurity engineering for germanium-doped Czochralski silicon wafer used for ultra large scale integrated circuit

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiahe; Yang, Deren [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou (China)

    2009-07-01

    Internal gettering (IG) technology has been challenged by both the reduction of thermal budget during device fabrication and the enlargement of wafer diameter. Improving the properties of Czochralski (Cz) silicon wafers by intentional impurity doping, the so-called 'impurity engineering (IE)', is defined. Germanium has been found to be one of the important impurities for improving the internal gettering effect in Cz silicon wafer. In this paper, the investigations on IE involved with the conventional furnace anneal based denudation processing for germanium-doped Cz silicon wafer are reviewed. Meanwhile, the potential mechanisms of germanium effects for the IE of Cz silicon wafer are also interpreted based on the experimental facts. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Impurity diffusion, point defect engineering, and surface/interface passivation in germanium

    KAUST Repository

    Chroneos, Alexander I.

    2012-01-26

    In recent years germanium has been emerging as a mainstream material that could have important applications in the microelectronics industry. The principle aim of this study is to review investigations of the diffusion of technologically important p- and n-type dopants as well as surface and interface passivation issues in germanium. The diffusion of impurities in germanium is interrelated to the formation of clusters whenever possible, and possibilities for point defect engineering are discussed in view of recent results. The importance of electrically active defects on the Ge surface and interfaces is addressed considering strategies to suppress them and to passivate the surfaces/interfaces, bearing in mind their importance for advanced devices. © 2012 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Electrodeposition at room temperature of amorphous silicon and germanium nanowires in ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Martineau, F; Namur, K; Mallet, J; Delavoie, F; Troyon, M; Molinari, M [Laboratoire de Microscopies et d' Etude de Nanostructures (LMEN EA3799), Universite de Reims Champagne Ardennes (URCA), Reims Cedex 2 (France); Endres, F, E-mail: michael.molinari@univ-reims.fr [Institute of Particle Technology, Chair of Interface Processes, Clausthal University of Technology, D-36678 Clausthal-Zellerfeld (Germany)

    2009-11-15

    The electrodeposition at room temperature of silicon and germanium nanowires from the air- and water-stable ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (P{sub 1,4}) containing SiCl{sub 4} as Si source or GeCl{sub 4} as Ge source is investigated by cyclic voltammetry. By using nanoporous polycarbonate membranes as templates, it is possible to reproducibly grow pure silicon and germanium nanowires of different diameters. The nanowires are composed of pure amorphous silicon or germanium. The nanowires have homogeneous cylindrical shape with a roughness of a few nanometres on the wire surfaces. The nanowires' diameters and lengths well match with the initial membrane characteristics. Preliminary photoluminescence experiments exhibit strong emission in the near infrared for the amorphous silicon nanowires.

  7. Diffusion of interstitial oxygen in silicon and germanium: a hybrid functional study

    International Nuclear Information System (INIS)

    Colleoni, Davide; Pasquarello, Alfredo

    2016-01-01

    The minimum-energy paths for the diffusion of an interstitial O atom in silicon and germanium are studied through the nudged-elastic-band method and hybrid functional calculations. The reconsideration of the diffusion of O in silicon primarily serves the purpose of validating the procedure for studying the O diffusion in germanium. Our calculations show that the minimum energy path goes through an asymmetric transition state in both silicon and germanium. The stability of these transition states is found to be enhanced by the generation of unpaired electrons in the highest occupied single-particle states. Calculated energy barriers are 2.54 and 2.14 eV for Si and Ge, in very good agreement with corresponding experimental values of 2.53 and 2.08 eV, respectively. (paper)

  8. Virtual Crystallizer

    Energy Technology Data Exchange (ETDEWEB)

    Land, T A; Dylla-Spears, R; Thorsness, C B

    2006-08-29

    Large dihydrogen phosphate (KDP) crystals are grown in large crystallizers to provide raw material for the manufacture of optical components for large laser systems. It is a challenge to grow crystal with sufficient mass and geometric properties to allow large optical plates to be cut from them. In addition, KDP has long been the canonical solution crystal for study of growth processes. To assist in the production of the crystals and the understanding of crystal growth phenomena, analysis of growth habits of large KDP crystals has been studied, small scale kinetic experiments have been performed, mass transfer rates in model systems have been measured, and computational-fluid-mechanics tools have been used to develop an engineering model of the crystal growth process. The model has been tested by looking at its ability to simulate the growth of nine KDP boules that all weighed more than 200 kg.

  9. single crystals

    Indian Academy of Sciences (India)

    2018-05-18

    May 18, 2018 ... Abstract. 4-Nitrobenzoic acid (4-NBA) single crystals were studied for their linear and nonlinear optical ... studies on the proper growth, linear and nonlinear optical ..... between the optic axes and optic sign of the biaxial crystal.

  10. Crystal Systems.

    Science.gov (United States)

    Schomaker, Verner; Lingafelter, E. C.

    1985-01-01

    Discusses characteristics of crystal systems, comparing (in table format) crystal systems with lattice types, number of restrictions, nature of the restrictions, and other lattices that can accidently show the same metrical symmetry. (JN)

  11. Inelastic Neutron Scattering from Doped Germanium and Silicon; Diffusion Inelastique des Neutrons dans du Germanium et du Silicium Contenant une 'Impurete'; Neuprugoe rasseyanie nejtronov na germanii i kremnii s prisadkoj; Dispersion Inelastica de Neutrones en Germanio y Silicio Deliberadamente Impurificados

    Energy Technology Data Exchange (ETDEWEB)

    Dolling, G. [Chalk River Nuclear Laboratories, Chalk River, ON (Canada)

    1965-04-15

    The normal modes of vibration of the pure semiconductors germanium and silicon have been extensively studied by means of coherent one-phonon scattering of slow neutrons from single-crystal specimens. The present paper describes similar experiments performed (i) on germanium heavily doped ({approx}0.1%) with (a) arsenic and (b) gallium, and also (ii) on silicon doped with phosphorus. In each case, control experiments were carried out on high- purity crystals. All measurements were performed with the triple-axis crystal spectrometer at Chalk River Nuclear Laboratories. The elastic constant C{sub 44} for germanium is known to be appreciably dependent on the dopant concentration, and so certain transverse acoustic (TA) modes of long wavelength were studied to see if such effects persisted into the dispersive region. Other TA modes whose frequencies could be measured with high precision were also studied in both materials to check as sensitively as possible for small effects which might be ascribed to the existence of excess electrons or holes. A particularly careful study was made of modes having the following wave vectors (aq/2{pi}, where a is the cubic unit cell side): (i) in germanium, (1,0,0), (ii) in silicon, (0.85, 0.85, 0) and (0.3, 0, 0). Such normal modes might be expected to show anomalous behaviour in the n-type crystals, since inter-valley scattering of electrons between adjacent conduction band minima would require their co-operation in order to conserve ''crystal momentum''. The results in all cases were negative, i. e. no differences in phonon frequencies or energy widths between pure and doped specimens were observed, within the experimental accuracy. In the most favourable cases, this (relative) accuracy is about 0.5% in frequency, rising to 2.0% for certain longitudinal optic modes in silicon. (author) [French] L'auteur a etudie, a l'aide d'experiences de diffusion coherente (a un phonon) de neutrons lents par des monocristaux, les modes normaux de

  12. Pellet dimension checker

    International Nuclear Information System (INIS)

    Marmo, A.R.

    1980-01-01

    A pellet dimension checker was developed for use in making nuclear-fuel pellets. This checker eliminates operator handling of the pellet but permits remote-monitoring of the operation, and is thus suitable for mass production of green fuel pellets particularly in reprocessing plants handling irradiated uranium or plutonium. It comprises a rotatable arm for transferring a pellet from a conveyor to several dimensional measuring stations and back to the conveyor if the dimensions of the pellet are within predetermined limits. If the pellet is not within the limits, the arm removes the pellet from the process stream. (DN)

  13. Physics of extra dimensions

    International Nuclear Information System (INIS)

    Antoniadis, I

    2006-01-01

    Lowering the string scale in the TeV region provides a theoretical framework for solving the mass hierarchy problem and unifying all interactions. The apparent weakness of gravity can then be accounted by the existence of large internal dimensions, in the submillimeter region, and transverse to a braneworld where our universe must be confined. I review the main properties of this scenario and its implications for observations at both particle colliders, and in non-accelerator gravity experiments. Such effects are for instance the production of Kaluza-Klein resonances, graviton emission in the bulk of extra dimensions, and a radical change of gravitational forces in the submillimeter range

  14. Fractal dimension of cantori

    International Nuclear Information System (INIS)

    Li, W.; Bak, P.

    1986-01-01

    At a critical point the golden-mean Kolmogorov-Arnol'd-Moser trajectory of Chirikov's standard map breaks up into a fractal orbit called a cantorus. The transition describes a pinning of the incommensurate phase of the Frenkel-Kontorowa model. We find that the fractal dimension of the cantorus is D = 0 and that the transition from the Kolmogorov-Arnol'd-Moser trajectory with dimension D = 1 to the cantorus is governed by an exponent ν = 0.98. . . and a universal scaling function. It is argued that the exponent is equal to that of the Lyapunov exponent

  15. Coexistence in even-even nuclei with emphasis on the germanium isotopes

    International Nuclear Information System (INIS)

    Carchidi, M.A.V.

    1985-01-01

    No simple model to date can explain in a self-consistent way the results of direct transfer data and BE2 electromagnetic rates in the germanium isotopes. The simplest models use a two-state interaction for describing the ground state and first excited O + state. In all cases, these models can account for some of the data, but they are in drastic conflict with other experimental measurements. In this thesis, it is shown that a two-state model can consistently account for two-neutron and alpha transfer O + 2 /g.s. cross-section ratio data in the germanium region (ie. zinc, germanium, and selenium), proton occupation number data in the ground states of the even stable zinc, germanium, and selenium isotopes, and BE2 transition rates in isotopes of germanium and zinc. In addition the author can account for most of the one-neutron and two-neutron transfer O + 2 /g.s. and (9/2 + 2 )/(9/2 + 1 ) cross-section ratio data in the odd-mass germanium isotopes. In this generalized two-state model (called Rerg1), the author makes as few assumptions as possible about the nature of the basis states; rather the author allows the experimental data to dictate the properties of the basis-state overlaps. In this sense, the author has learned much about the basis states and has a useful tool for constructing them. The author also shows that the Rerg1 model can quantitatively account for all two-neutron O + 2 /g.s. cross-section ratio data in all even-even nuclei from calcium to uranium

  16. Selective Attention to Perceptual Dimensions and Switching between Dimensions

    Science.gov (United States)

    Meiran, Nachshon; Dimov, Eduard; Ganel, Tzvi

    2013-01-01

    In the present experiments, the question being addressed was whether switching attention between perceptual dimensions and selective attention to dimensions are processes that compete over a common resource? Attention to perceptual dimensions is usually studied by requiring participants to ignore a never-relevant dimension. Selection failure…

  17. Study of new germanium bolometers with interleaved concentric electrodes for non-baryonic cold dark matter direct detection in the Edelweiss-II experiment

    International Nuclear Information System (INIS)

    Domange, J.

    2011-09-01

    EDELWEISS is a direct non-baryonic cold dark matter detection experiment in the form of weakly interacting massive particles (also known as WIMPs), which currently constitute the most popular candidates to account for the missing mass in the Universe. To this purpose, EDELWEISS uses germanium bolometers at cryogenic temperature (20 mK approximately) in the Underground Laboratory of Modane (LSM) at the French-Italian border. Since 2008, a new type of detector is operated, equipped with concentric electrodes to optimize the rejection of surface events (coplanar-grid detectors). This thesis work is divided into several research orientations. First, we carried out measurements concerning charge collection in the crystals. The velocity laws of the carriers (electrons and holes) have been determined in germanium at 20 mK in the orientation, and a complete study of charge sharing has been done, including an evaluation of the transport anisotropy and of the straggling of the carriers. These results lead to a better understanding of the inner properties of the EDELWEISS detectors. Then, studies relating to the improvement of the performances were carried out. In particular, we have optimized the space-charge cancellation procedure in the crystals and improved the passive rejection of surface events (β). The fiducial volume of the detectors has been evaluated using two X-ray lines from cosmically activated radionuclides: 68 Ge and 65 Zn. Finally, an exhaustive study of the low energy spectra has been carried out, which makes it possible to develop a systematic analysis method for the search of low-mass WIMPs in EDELWEISS. (author)

  18. GIOVE: a new detector setup for high sensitivity germanium spectroscopy at shallow depth

    International Nuclear Information System (INIS)

    Heusser, G.; Weber, M.; Hakenmüller, J.; Laubenstein, M.; Lindner, M.; Maneschg, W.; Simgen, H.; Stolzenburg, D.; Strecker, H.

    2015-01-01

    We report on the development and construction of the high-purity germanium spectrometer setup GIOVE (Germanium Inner Outer VEto), recently built and now operated at the shallow underground laboratory of the Max-Planck-Institut für Kernphysik, Heidelberg. Particular attention was paid to the design of a novel passive and active shield, aiming at efficient rejection of environmental and muon induced radiation backgrounds. The achieved sensitivity level of ≤100 μBq kg -1 for primordial radionuclides from U and Th in typical γ ray sample screening measurements is unique among instruments located at comparably shallow depths and can compete with instruments at far deeper underground sites

  19. Atomic ionization of germanium by neutrinos from an ab initio approach

    International Nuclear Information System (INIS)

    Chen, Jiunn-Wei; Chi, Hsin-Chang; Huang, Keh-Ning; Liu, C.-P.; Shiao, Hao-Tse; Singh, Lakhwinder; Wong, Henry T.; Wu, Chih-Liang; Wu, Chih-Pan

    2014-01-01

    An ab initio calculation of atomic ionization of germanium by neutrinos was carried out in the framework of multiconfiguration relativistic random phase approximation and benchmarked by related atomic structure and photoabsorption data. This improves over the conventional approach based on scattering off free electrons whose validity at sub-keV energy transfer is questionable. Limits on neutrino magnetic moments are derived using reactor neutrino data taken with low threshold germanium detectors. Future applications of these atomic techniques will greatly reduce the atomic uncertainties in low-energy neutrino and dark matter detections.

  20. Segmentation of the Outer Contact on P-Type Coaxial Germanium Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hull, Ethan L.; Pehl, Richard H.; Lathrop, James R.; Martin, Gregory N.; Mashburn, R. B.; Miley, Harry S.; Aalseth, Craig E.; Hossbach, Todd W.

    2006-09-21

    Germanium detector arrays are needed for low-level counting facilities. The practical applications of such user facilities include characterization of low-level radioactive samples. In addition, the same detector arrays can also perform important fundamental physics measurements including the search for rare events like neutrino-less double-beta decay. Coaxial germanium detectors having segmented outer contacts will provide the next level of sensitivity improvement in low background measurements. The segmented outer detector contact allows performance of advanced pulse shape analysis measurements that provide additional background reduction. Currently, n-type (reverse electrode) germanium coaxial detectors are used whenever a segmented coaxial detector is needed because the outer boron (electron barrier) contact is thin and can be segmented. Coaxial detectors fabricated from p-type germanium cost less, have better resolution, and are larger than n-type coaxial detectors. However, it is difficult to reliably segment p-type coaxial detectors because thick (~1 mm) lithium-diffused (hole barrier) contacts are the standard outside contact for p-type coaxial detectors. During this Phase 1 Small Business Innovation Research (SBIR) we have researched the possibility of using amorphous germanium contacts as a thin outer contact of p-type coaxial detectors that can be segmented. We have developed amorphous germanium contacts that provide a very high hole barrier on small planar detectors. These easily segmented amorphous germanium contacts have been demonstrated to withstand several thousand volts/cm electric fields with no measurable leakage current (<1 pA) from charge injection over the hole barrier. We have also demonstrated that the contact can be sputter deposited around and over the curved outside surface of a small p-type coaxial detector. The amorphous contact has shown good rectification properties on the outside of a small p-type coaxial detector. These encouraging

  1. Time-resolved spectroscopy of plasma resonances in highly excited silicon and germanium

    International Nuclear Information System (INIS)

    Huang, C.Y.; Malvezzi, A.M.; Bloembergen, N.; Kurz, H.

    1985-01-01

    The dynamics of the electron-hole plasma in silicon and germanium samples irradiated by 20 ps. 532 nm laser pulses has been investigated in the near infrared by the time-resolved picosecond optical spectroscopy. The experimental reflectivities and transmission are compared with the predictions of the thermal model for degenerate carrier distributions through the Drude formalism. Above a certain fluence, a significant deviation between measured and calculated values indicates a strong increase of the recombination rate as soon as the plasma resonances become comparable with the band gaps. These new plasmon-aided recombination channels are particularly pronounced in germanium. 15 refs., 8 figs

  2. Nature of oxygen donors and radiation defects in oxygen-doped germanium

    International Nuclear Information System (INIS)

    Fukuoka, Noboru; Atobe, Kozo; Honda, Makoto; Matsuda, Koji.

    1991-01-01

    The nature of oxygen donors and radiation defects in oxygen-doped germanium were studied through measurements of the infrared absorption spectrum, deep level transient spectroscopy spectrum and carrier concentration. It is revealed that a new donor is not formed in oxygen-doped germanium. An A-center (interstitial oxygen-vacancy pair) forms a complex with a thermal donor in its annealing stage at 60degC-140degC. The introduction rate of defects by 1.5 MeV electron irradiation was enhanced in thermal-donor-doped samples. (author)

  3. GIOVE: a new detector setup for high sensitivity germanium spectroscopy at shallow depth

    Energy Technology Data Exchange (ETDEWEB)

    Heusser, G.; Weber, M.; Hakenmueller, J.; Lindner, M.; Maneschg, W.; Simgen, H.; Stolzenburg, D.; Strecker, H. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Laubenstein, M. [Laboratori Nazionali del Gran Sasso, Assergi (Italy)

    2015-11-15

    We report on the development and construction of the high-purity germanium spectrometer setup GIOVE (Germanium Inner Outer VEto), recently built and now operated at the shallow underground laboratory of the Max-Planck-Institut fuer Kernphysik, Heidelberg. Particular attention was paid to the design of a novel passive and active shield, aiming at efficient rejection of environmental and muon induced radiation backgrounds. The achieved sensitivity level of ≤ 100μBq kg{sup -1} for primordial radionuclides from U and Th in typical γ ray sample screening measurements is unique among instruments located at comparably shallow depths and can compete with instruments at far deeper underground sites. (orig.)

  4. First-principles study of the diffusion mechanisms of the self-interstitial in germanium

    International Nuclear Information System (INIS)

    Carvalho, A; Jones, R; Janke, C; Goss, J P; Briddon, P R; Oeberg, S

    2008-01-01

    The self-interstitial in germanium can assume multiple configurations depending on the temperature and charge state. Here, we employ a first-principles density functional method to investigate the diffusion mechanisms of this defect. The energy barriers associated with the transformation between different structures are determined by the climbing nudged elastic band method, as a function of the charge state. The relation between the thermodynamic properties of the self-interstitial and the temperature evolution of electron radiation damage in germanium are discussed

  5. A study on the forms of existence of germanium in uranium-bearing coals of Bangmai basin of Yunnan

    International Nuclear Information System (INIS)

    Zhang Shuling; Wang Shuying; Yin Jinshuang

    1988-07-01

    The Bangmai basin is an asymmetrical intermontane synclinal basin with a Hercynian-Yenshan granitic body (γ 3 3 -γ 5 2 ) as its basement. Its overlying strata are made up of the N 1 of coal-bearing clastic rocks of Neogene period. Germanium ore mostly occur within the N 1 2 coal-seam. Uranium, germanium-bearing coals are mainly lignites of low grade in coalation and belong to semidurain, semiclarain, duroclarain and clarodurain. In order to probe into the forms of existence of germanium in coal, six kinds of analytical methods (electronic probe analysis, separation of heavy liquid, grain-size analysis, electric osmosis, chemical extraction and grade-extraction) have been adopted. A simulated test of humic complex germanium in the laboratory was carried out. According to infrared spectral analysis, it is found that 1700 cm -1 wavecrest almost disappears, 1250 cm -1 peak weakens and 1600 cm -1 peak strengthens, 1400 cm -1 peak slightly strengthens. No doubt, these illustrate the formatiion of humic germanium complex. Afterward, through differential thermal analysis and measurement of pH variation of media, it futher proves the presence of humic germanium complex. It is considered that the forms of existence of germanium in uranium-bearing coals mainly are: (1) In close chemical combination with organic matter, usually in the form of humic germanium complex and germanium organic compound; (2) In the state of adsorption, germanium is adsorbed by some organic matter, clay minerals and limonite etc.; (3) A very rare part occurring as isomorphous form

  6. Self-assembly of tin wires via phase transformation of heteroepitaxial germanium-tin on germanium substrate

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Li, Lingzi; Yeo, Yee-Chia, E-mail: yeo@ieee.org [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Tok, Eng Soon [Department of Physics, National University of Singapore, Singapore 117551 (Singapore)

    2015-06-14

    This work demonstrates and describes for the first time an unusual strain-relaxation mechanism by the formation and self-assembly of well-ordered tin wires during the thermal annealing of epitaxial Ge{sub 0.83}Sn{sub 0.17}-on-Ge(001) substrate. Fully strained germanium-tin alloys (Ge{sub 0.83}Sn{sub 0.17}) were epitaxially grown on Ge(001) substrate by molecular beam epitaxy. The morphological and compositional evolution of Ge{sub 0.83}Sn{sub 0.17} during thermal annealing is studied by atomic force microscopy, X-ray diffraction, transmission electron microscopy. Under certain annealing conditions, the Ge{sub 0.83}Sn{sub 0.17} layer decomposes into two stable phases, and well-defined Sn wires that are preferentially oriented along two orthogonal 〈100〉 azimuths are formed. The formation of the Sn wires is related to the annealing temperature and the Ge{sub 0.83}Sn{sub 0.17} thickness, and can be explained by the nucleation of a grain with Sn islands on the outer front, followed by grain boundary migration. The Sn wire formation process is found to be thermally activated, and an activation enthalpy (E{sub c}) of 0.41 eV is extracted. This thermally activated phase transformation, i.e., 2D epitaxial layer to 3D wires, occurs via a mechanism akin to “cellular precipitation.” This synthesis route of Sn wires opens new possibilities for creation of nanoscale patterns at high-throughput without the need for lithography.

  7. Dimension and extensions

    CERN Document Server

    Aarts, JM

    1993-01-01

    Two types of seemingly unrelated extension problems are discussed in this book. Their common focus is a long-standing problem of Johannes de Groot, the main conjecture of which was recently resolved. As is true of many important conjectures, a wide range of mathematical investigations had developed, which have been grouped into the two extension problems. The first concerns the extending of spaces, the second concerns extending the theory of dimension by replacing the empty space with other spaces. The problem of de Groot concerned compactifications of spaces by means of an adjunction of a set of minimal dimension. This minimal dimension was called the compactness deficiency of a space. Early success in 1942 lead de Groot to invent a generalization of the dimension function, called the compactness degree of a space, with the hope that this function would internally characterize the compactness deficiency which is a topological invariant of a space that is externally defined by means of compact extensions of a...

  8. Extra Dimensions of Space

    Science.gov (United States)

    Lincoln, Don

    2013-01-01

    They say that there is no such thing as a stupid question. In a pedagogically pure sense, that's probably true. But some questions do seem to flirt dangerously close to being really quite ridiculous. One such question might well be, "How many dimensions of space are there?" I mean, it's pretty obvious that there are three:…

  9. Dimension theory and forcing

    Czech Academy of Sciences Publication Activity Database

    Zapletal, Jindřich

    2014-01-01

    Roč. 167, April 15 (2014), s. 31-35 ISSN 0166-8641 R&D Projects: GA AV ČR IAA100190902 Institutional support: RVO:67985840 Keywords : Cohen real * infinite dimension * calibrated ideal Subject RIV: BA - General Mathematics Impact factor: 0.551, year: 2014 http://www.sciencedirect.com/science/article/pii/S0166864114001151

  10. Tungsten silicide contacts to polycrystalline silicon and silicon-germanium alloys

    International Nuclear Information System (INIS)

    Srinivasan, G.; Bain, M.F.; Bhattacharyya, S.; Baine, P.; Armstrong, B.M.; Gamble, H.S.; McNeill, D.W.

    2004-01-01

    Silicon-germanium alloy layers will be employed in the source-drain engineering of future MOS transistors. The use of this technology offers advantages in reducing series resistance and decreasing junction depth resulting in reduction in punch-through and SCE problems. The contact resistance of metal or metal silicides to the raised source-drain material is a serious issue at sub-micron dimensions and must be minimised. In this work, tungsten silicide produced by chemical vapour deposition has been investigated as a contact metallization scheme to both boron and phosphorus doped polycrystalline Si 1- x Ge x , with 0 ≤x ≤ 0.3. Cross bridge Kelvin resistor (CKBR) structures were fabricated incorporating CVD WSi 2 and polycrystalline SiGe. Tungsten silicide contacts to control polysilicon CKBR structures have been shown to be of high quality with specific contact resistance ρ c values 3 x 10 -7 ohm cm 2 and 6 x 10 -7 ohm cm 2 obtained to boron and phosphorus implanted samples respectively. The SiGe CKBR structures show that the inclusion of Ge yields a reduction in ρ c for both dopant types. The boron doped SiGe exhibits a reduction in ρ c from 3 x 10 -7 to 5 x 10 -8 ohm cm 2 as Ge fraction is increased from 0 to 0.3. The reduction in ρ c has been shown to be due to (i) the lowering of the tungsten silicide Schottky barrier height to p-type SiGe resulting from the energy band gap reduction, and (ii) increased activation of the implanted boron with increased Ge fraction. The phosphorus implanted samples show less sensitivity of ρ c to Ge fraction with a lowest value in this work of 3 x 10 -7 ohm cm 2 for a Ge fraction of 0.3. The reduction in specific contact resistance to the phosphorus implanted samples has been shown to be due to increased dopant activation alone

  11. Krull dimension in modal logic

    NARCIS (Netherlands)

    Bezhanishvili, G.; Bezhanishvili, N.; Lucero-Bryan, J.; van Mill, J.

    2017-01-01

    We develop the theory of Krull dimension for S4-algebras and Heyting algebras. This leads to the concept of modal Krull dimension for topological spaces. We compare modal Krull dimension to other well-known dimension functions, and show that it can detect differences between topological spaces that

  12. Monomial Crystals and Partition Crystals

    Science.gov (United States)

    Tingley, Peter

    2010-04-01

    Recently Fayers introduced a large family of combinatorial realizations of the fundamental crystal B(Λ0) for ^sln, where the vertices are indexed by certain partitions. He showed that special cases of this construction agree with the Misra-Miwa realization and with Berg's ladder crystal. Here we show that another special case is naturally isomorphic to a realization using Nakajima's monomial crystal.

  13. Crystallization method employing microwave radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chu, P; Dwyer, F G; Vartuli, J C

    1992-12-01

    This invention relates to a method of crystallizing materials from aqueous crystallization media. Zeolite materials, both natural and synthetic, have been demonstrated in the past to have catalytic properties for various types of hydrocarbon conversion. Certain zeolitic materials are ordered, porous crystalline metallosilicates having a definite crystalline structure as determined by X-ray diffraction within which there are a number of smaller cavities which may be interconnected by a number of still smaller channels or pores. These cavities and pores are uniform in size within a specific zeolite material. Since the dimensions of these pores are such as to accept for adsorption molecules of certain dimensions while rejecting those of large dimensions, these materials have come to be known as molecular sieves and are utilized in a variety of ways to take advantage of these properties. (author). 3 tabs.

  14. Crystallization method employing microwave radiation

    International Nuclear Information System (INIS)

    Chu, P.; Dwyer, F.G.; Vartuli, J.C.

    1992-01-01

    This invention relates to a method of crystallizing materials from aqueous crystallization media. Zeolite materials, both natural and synthetic, have been demonstrated in the past to have catalytic properties for various types of hydrocarbon conversion. Certain zeolitic materials are ordered, porous crystalline metallosilicates having a definite crystalline structure as determined by X-ray diffraction within which there are a number of smaller cavities which may be interconnected by a number of still smaller channels or pores. These cavities and pores are uniform in size within a specific zeolite material. Since the dimensions of these pores are such as to accept for adsorption molecules of certain dimensions while rejecting those of large dimensions, these materials have come to be known as molecular sieves and are utilized in a variety of ways to take advantage of these properties. (author). 3 tabs

  15. Interactive Dimensioning of Parametric Models

    KAUST Repository

    Kelly, T.

    2015-06-22

    We propose a solution for the dimensioning of parametric and procedural models. Dimensioning has long been a staple of technical drawings, and we present the first solution for interactive dimensioning: A dimension line positioning system that adapts to the view direction, given behavioral properties. After proposing a set of design principles for interactive dimensioning, we describe our solution consisting of the following major components. First, we describe how an author can specify the desired interactive behavior of a dimension line. Second, we propose a novel algorithm to place dimension lines at interactive speeds. Third, we introduce multiple extensions, including chained dimension lines, controls for different parameter types (e.g. discrete choices, angles), and the use of dimension lines for interactive editing. Our results show the use of dimension lines in an interactive parametric modeling environment for architectural, botanical, and mechanical models.

  16. High bit rate germanium single photon detectors for 1310nm

    Science.gov (United States)

    Seamons, J. A.; Carroll, M. S.

    2008-04-01

    There is increasing interest in development of high speed, low noise and readily fieldable near infrared (NIR) single photon detectors. InGaAs/InP Avalanche photodiodes (APD) operated in Geiger mode (GM) are a leading choice for NIR due to their preeminence in optical networking. After-pulsing is, however, a primary challenge to operating InGaAs/InP single photon detectors at high frequencies1. After-pulsing is the effect of charge being released from traps that trigger false ("dark") counts. To overcome this problem, hold-off times between detection windows are used to allow the traps to discharge to suppress after-pulsing. The hold-off time represents, however, an upper limit on detection frequency that shows degradation beginning at frequencies of ~100 kHz in InGaAs/InP. Alternatively, germanium (Ge) single photon avalanche photodiodes (SPAD) have been reported to have more than an order of magnitude smaller charge trap densities than InGaAs/InP SPADs2, which allowed them to be successfully operated with passive quenching2 (i.e., no gated hold off times necessary), which is not possible with InGaAs/InP SPADs, indicating a much weaker dark count dependence on hold-off time consistent with fewer charge traps. Despite these encouraging results suggesting a possible higher operating frequency limit for Ge SPADs, little has been reported on Ge SPAD performance at high frequencies presumably because previous work with Ge SPADs has been discouraged by a strong demand to work at 1550 nm. NIR SPADs require cooling, which in the case of Ge SPADs dramatically reduces the quantum efficiency of the Ge at 1550 nm. Recently, however, advantages to working at 1310 nm have been suggested which combined with a need to increase quantum bit rates for quantum key distribution (QKD) motivates examination of Ge detectors performance at very high detection rates where InGaAs/InP does not perform as well. Presented in this paper are measurements of a commercially available Ge APD

  17. Ion-beam induced structure modifications in amorphous germanium

    International Nuclear Information System (INIS)

    Steinbach, Tobias

    2012-01-01

    Object of the present thesis was the systematic study of ion-beam induced structure modifications in amorphous germanium (a-Ge) layers due to low- (LEI) and high-energetic (SHI) ion irradiation. The LEI irradiation of crystalline Ge (c-Ge) effects because the dominating nuclear scattering of the ions on the solid-state atoms the formation of a homogeneous a-Ge Layer. Directly on the surface for fluences of two orders of magnitude above the amorphization fluence the formation of stable cavities independently on the irradiation conditions was observed. For the first time for the ion-beam induced cavity formation respectively for the steady expansion of the porous layer forming with growing fluence a linear dependence on the energy ε n deposed in nuclear processes was detected. Furthermore the formation of buried cavities was observed, which shows a dependence on the type of ions. While in the c-Ge samples in the range of the high electronic energy deposition no radiation defects, cavities, or plastic deformations were observed, the high electronic energy transfer in the 3.1 μm thick pre-amorphized a-Ge surface layers leads to the formation of randomly distributed cavities. Basing on the linear connection between cavity-induced vertical volume expansion and the fluence determined for different energy transfers for the first time a material-specific threshold value of ε e HRF =(10.5±1.0) kev nm -1 was determined, above which the ion-beam induced cavity formation in a-Ge sets on. The anisotropic plastic deformation of th a-Ge layer superposed at inclined SHI irradiation on the cavity formation was very well described by an equation derived from the viscoelastic Maxwell model, but modified under regardment of the experimental results. The positive deformation yields determined thereby exhibit above a threshold value for the ion-beam induced plastic deformation ε e S a =(12±2) keV nm -1 for the first time extracted for a Ge the characteristic linear behaviour of the

  18. Si-Based Germanium Tin Semiconductor Lasers for Optoelectronic Applications

    Science.gov (United States)

    Al-Kabi, Sattar H. Sweilim

    Silicon-based materials and optoelectronic devices are of great interest as they could be monolithically integrated in the current Si complementary metal-oxide-semiconductor (CMOS) processes. The integration of optoelectronic components on the CMOS platform has long been limited due to the unavailability of Si-based laser sources. A Si-based monolithic laser is highly desirable for full integration of Si photonics chip. In this work, Si-based germanium-tin (GeSn) lasers have been demonstrated as direct bandgap group-IV laser sources. This opens a completely new avenue from the traditional III-V integration approach. In this work, the material and optical properties of GeSn alloys were comprehensively studied. The GeSn films were grown on Ge-buffered Si substrates in a reduced pressure chemical vapor deposition system with low-cost SnCl4 and GeH4 precursors. A systematic study was done for thin GeSn films (thickness 400 nm) with Sn composition 5 to 17.5%. The room temperature photoluminescence (PL) spectra were measured that showed a gradual shift of emission peaks towards longer wavelength as Sn composition increases. Strong PL intensity and low defect density indicated high material quality. Moreover, the PL study of n-doped samples showed bandgap narrowing compared to the unintentionally p-doped (boron) thin films with similar Sn compositions. Finally, optically pumped GeSn lasers on Si with broad wavelength coverage from 2 to 3 mum were demonstrated using high-quality GeSn films with Sn compositions up to 17.5%. The achieved maximum Sn composition of 17.5% broke the acknowledged Sn incorporation limit using similar deposition chemistry. The highest lasing temperature was measured at 180 K with an active layer thickness as thin as 270 nm. The unprecedented lasing performance is due to the achievement of high material quality and a robust fabrication process. The results reported in this work show a major advancement towards Si-based electrically pumped mid

  19. The crystallization of a solid solution in a solvent and the stability of a growth interface

    International Nuclear Information System (INIS)

    Malmejac, Yves

    1971-03-01

    The potential uses of germanium-silicon alloys as thermoelectric generators in hitherto unexploited temperature ranges initiated the present study. Many delicate problems are encountered in the classical methods of preparation. An original technique was sought for crystallization in a metallic solvent. The thermodynamic equilibria between the various phases of the ternary System used were studied in order to justify the method used. The conditions (temperature and composition) were determined in which the cooling of a ternary liquid mixture induces the precipitation of a binary solid solution with the desired composition. If large crystals are to be obtained from the solid solution, metallic solvent precipitation must be replaced by a mono-directional solvent crystallization. The combined effect of a certain number of simple physical phenomena on the stability of a crystal liquid interface was studied: the morphological stability of the crystal growth interface is the first step towards obtaining perfect crystals. (author) [fr

  20. Cultural dimensions of learning

    Science.gov (United States)

    Eyford, Glen A.

    1990-06-01

    How, what, when and where we learn is frequently discussed, as are content versus process, or right brain versus left brain learning. What is usually missing is the cultural dimension. This is not an easy concept to define, but various aspects can be identified. The World Decade for Cultural Development emphasizes the need for a counterbalance to a quantitative, economic approach. In the last century poets also warned against brutalizing materialism, and Sorokin and others have described culture more recently in terms of cohesive basic values expressed through aesthetics and institutions. Bloom's taxonomy incorporates the category of affective learning, which internalizes values. If cultural learning goes beyond knowledge acquisition, perhaps the surest way of understanding the cultural dimension of learning is to examine the aesthetic experience. This can use myths, metaphors and symbols, and to teach and learn by using these can help to unlock the human potential for vision and creativity.

  1. Dimensions of Openness

    DEFF Research Database (Denmark)

    Dalsgaard, Christian; Thestrup, Klaus

    2015-01-01

    The objective of the paper is to present a pedagogical approach to openness. The paper develops a framework for understanding the pedagogical opportunities of openness in education. Based on the pragmatism of John Dewey and sociocultural learning theory, the paper defines openness in education...... as a matter of engaging educational activities in sociocultural practices of a surrounding society. Openness is not only a matter of opening up the existing, but of developing new educational practices that interact with society. The paper outlines three pedagogical dimensions of openness: transparency...... practices. Openness as joint engagement in the world aims at establishing interdependent collaborative relationships between educational institutions and external practices. To achieve these dimensions of openness, educational activities need to change and move beyond the course as the main format...

  2. Introduction to Extra Dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, Thomas G.; /SLAC

    2010-04-29

    Extra dimensions provide a very useful tool in addressing a number of the fundamental problems faced by the Standard Model. The following provides a very basic introduction to this very broad subject area as given at the VIII School of the Gravitational and Mathematical Physics Division of the Mexican Physical Society in December 2009. Some prospects for extra dimensional searches at the 7 TeV LHC with {approx}1 fb{sup -1} of integrated luminosity are provided.

  3. Physics in few dimensions

    International Nuclear Information System (INIS)

    Emery, V.J.

    1981-03-01

    This article is a qualitative account of some aspects of physics in few dimensions, and its relationship to nonlinear field theories. After a survey of materials and some of the models that have been used to describe them, the various methods of solution are compared and contrasted. The roles of exact results, operator representations and the renormalization group transformation are described, and a uniform picture of the behavior of low-dimensional systems is presented

  4. Characterization of segmented large volume, high purity germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bruyneel, B. [Koeln Univ. (Germany). Inst. fuer Kernphysik

    2006-07-01

    {gamma}-ray tracking in future HPGe arrays like AGATA will rely on pulse shape analysis (PSA) of multiple {gamma}-interactions. For this purpose, a simple and fast procedure was developed which enabled the first full characterization of a segmented large volume HPGe detector. An analytical model for the hole mobility in a Ge crystal lattice was developed to describe the hole drift anisotropy with experimental velocity values along the crystal axis as parameters. The new model is based on the drifted Maxwellian hole distribution in Ge. It is verified by reproducing successfully experimental longitudinal hole anisotropy data. A comparison between electron and hole mobility shows large differences for the longitudinal and tangential velocity anisotropy as a function of the electrical field orientation. Measurements on a 12 fold segmented, n-type, large volume, irregular shaped HPGe detector were performed in order to determine the parameters of anisotropic mobility for electrons and holes as charge carriers created by {gamma}-ray interactions. To characterize the electron mobility the complete outer detector surface was scanned in small steps employing photopeak interactions at 60 keV. A precise measurement of the hole drift anisotropy was performed with 356 keV rays. The drift velocity anisotropy and crystal geometry cause considerable rise time differences in pulse shapes depending on the position of the spatial charge carrier creation. Pulse shapes of direct and transient signals are reproduced by weighting potential calculations with high precision. The measured angular dependence of rise times is caused by the anisotropic mobility, crystal geometry, changing field strength and space charge effects. Preamplified signals were processed employing digital spectroscopy electronics. Response functions, crosstalk contributions and averaging procedures were taken into account implying novel methods due to the segmentation of the Ge-crystal and the digital electronics

  5. Characterization of segmented large volume, high purity germanium detectors

    International Nuclear Information System (INIS)

    Bruyneel, B.

    2006-01-01

    γ-ray tracking in future HPGe arrays like AGATA will rely on pulse shape analysis (PSA) of multiple γ-interactions. For this purpose, a simple and fast procedure was developed which enabled the first full characterization of a segmented large volume HPGe detector. An analytical model for the hole mobility in a Ge crystal lattice was developed to describe the hole drift anisotropy with experimental velocity values along the crystal axis as parameters. The new model is based on the drifted Maxwellian hole distribution in Ge. It is verified by reproducing successfully experimental longitudinal hole anisotropy data. A comparison between electron and hole mobility shows large differences for the longitudinal and tangential velocity anisotropy as a function of the electrical field orientation. Measurements on a 12 fold segmented, n-type, large volume, irregular shaped HPGe detector were performed in order to determine the parameters of anisotropic mobility for electrons and holes as charge carriers created by γ-ray interactions. To characterize the electron mobility the complete outer detector surface was scanned in small steps employing photopeak interactions at 60 keV. A precise measurement of the hole drift anisotropy was performed with 356 keV rays. The drift velocity anisotropy and crystal geometry cause considerable rise time differences in pulse shapes depending on the position of the spatial charge carrier creation. Pulse shapes of direct and transient signals are reproduced by weighting potential calculations with high precision. The measured angular dependence of rise times is caused by the anisotropic mobility, crystal geometry, changing field strength and space charge effects. Preamplified signals were processed employing digital spectroscopy electronics. Response functions, crosstalk contributions and averaging procedures were taken into account implying novel methods due to the segmentation of the Ge-crystal and the digital electronics. The results are

  6. Inflation from extra dimensions

    International Nuclear Information System (INIS)

    Barr, S.M.

    1984-01-01

    Recently there has been growing interest (1) in the possibility that the universe could have more than four dimensions. Aside from any light this may shed on problems in particle physics, if true it would undoubtedly have important implications for early cosmology. A rather speculative but very appealing possibility suggested by D. Sahdev and by E. Alvarez and B. Gavela is that the gravitational collapse of extra spatial dimensions could drive an inflation of ordinary space. This kind of inflationary cosmology would be quite different from the inflationary cosmologies now so intensively studied which are supposed to result from changes in vacuum energy during phase transitions in the early universe. In our work we examine the physics of these Kaluza-Klein inflationary cosmologies and come to three main conclusions. (1) It is desirable to have many extra dimensions, many being of order forty or fifty. (2) For models which give a realistically large inflation almost all of this inflation occurs in a period when quantum gravity is certainly important. This means that Einstein's equations cannot be used to calculate the details of this inflationary period. (3) Under plausible assumptions one may argue from the second law of thermodynamics that given appropriate initial conditions a large inflation will occur even when details of the inflationary phase cannot be calculated classically

  7. Fabrication of diamond-coated germanium ATR prisms for IR-spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Babchenko, Oleg; Kozak, Halyna; Ižák, Tibor; Stuchlík, Jiří; Remeš, Zdeněk; Rezek, Bohuslav; Kromka, Alexander

    2016-01-01

    Roč. 87, May (2016), 67-73 ISSN 0924-2031 R&D Projects: GA ČR GA15-01687S Institutional support: RVO:68378271 Keywords : diamond * low temperature growth * linear antenna microwave plasma * germanium * SEM * FTIR Subject RIV: JI - Composite Materials Impact factor: 1.740, year: 2016

  8. Reduced graphene oxide-germanium quantum dot nanocomposite: electronic, optical and magnetic properties

    Science.gov (United States)

    Amollo, Tabitha A.; Mola, Genene T.; Nyamori, Vincent O.

    2017-12-01

    Graphene provides numerous possibilities for structural modification and functionalization of its carbon backbone. Localized magnetic moments can, as well, be induced in graphene by the formation of structural defects which include vacancies, edges, and adatoms. In this work, graphene was functionalized using germanium atoms, we report the effect of the Ge ad atoms on the structural, electrical, optical and magnetic properties of graphene. Reduced graphene oxide (rGO)-germanium quantum dot nanocomposites of high crystalline quality were synthesized by the microwave-assisted solvothermal reaction. Highly crystalline spherical shaped germanium quantum dots, of diameter ranging between 1.6-9.0 nm, are anchored on the basal planes of rGO. The nanocomposites exhibit high electrical conductivity with a sheet resistance of up to 16 Ω sq-1. The electrical conductivity is observed to increase with the increase in Ge content in the nanocomposites. High defect-induced magnetization is attained in the composites via germanium adatoms. The evolution of the magnetic moments in the nanocomposites and the coercivity showed marked dependence on the Ge quantum dots size and concentration. Quantum confinement effects is evidenced in the UV-vis absorbance spectra and photoluminescence emission spectra of the nanocomposites which show marked size-dependence. The composites manifest strong absorption in the UV region, strong luminescence in the near UV region, and a moderate luminescence in the visible region.

  9. Overview of multi-element monolithic germanium detectors for XAFS experiments at diamond light source

    International Nuclear Information System (INIS)

    Chatterji, S.; Dennis, G. J.; Dent, A.; Diaz-Moreno, S.; Cibin, G.; Tartoni, N.; Helsby, W. I.

    2016-01-01

    An overview of multi-element monolithic germanium detectors being used at the X-ray absorption spectroscopy (XAS) beam lines at Diamond Light Source (DLS) is being reported. The hardware details and a summary of the performance of these detectors have also been provided. Recent updates about various ongoing projects being worked on to improve the performance of these detectors are summarized.

  10. Tunable band gap emission and surface passivation of germanium nanocrystals synthesized in the gas phase

    NARCIS (Netherlands)

    Wheeler, LM; Levij, L.M.; Kortshagen, U.R.

    2013-01-01

    The narrow bulk band gap and large exciton Bohr radius of germanium (Ge) make it an attractive material for optoelectronics utilizing band-gap-tunable photoluminescence (PL). However, realization of PL due to quantum confinement remains scarcely reported. Instead, PL is often observed from surface

  11. Dark Matter Search with sub-keV Germanium Detectors at the China Jinping Underground Laboratory

    International Nuclear Information System (INIS)

    Yue Qian; Wong, Henry T

    2012-01-01

    Germanium detectors with sub-keV sensitivities open a window to search for low-mass WIMP dark matter. The CDEX-TEXONO Collaboration is conducting the first research program at the new China Jinping Underground Laboratory with this approach. The status and plans of the laboratory and the experiment are discussed.

  12. Overview of multi-element monolithic germanium detectors for XAFS experiments at diamond light source

    Energy Technology Data Exchange (ETDEWEB)

    Chatterji, S.; Dennis, G. J.; Dent, A.; Diaz-Moreno, S.; Cibin, G.; Tartoni, N. [Diamond Light Source Ltd, Oxfordshire (United Kingdom); Helsby, W. I. [STFC Daresbury Laboratory, Warrington (United Kingdom)

    2016-07-27

    An overview of multi-element monolithic germanium detectors being used at the X-ray absorption spectroscopy (XAS) beam lines at Diamond Light Source (DLS) is being reported. The hardware details and a summary of the performance of these detectors have also been provided. Recent updates about various ongoing projects being worked on to improve the performance of these detectors are summarized.

  13. Quadrupole boson densities in the germanium region by inelastic electron scattering

    International Nuclear Information System (INIS)

    Goutte, D.

    1984-08-01

    The collective properties of four germanium isotopes have been explored through the measurement of the transition charge densities of the first two 2 + states. Their spatial features and their apparent anomalous behavior is readily explained in the frame of the Interacting Boson Model

  14. Germanium detectors for nuclear spectroscopy: Current research and development activity at LNL

    Energy Technology Data Exchange (ETDEWEB)

    Napoli, D. R., E-mail: daniel.r.napoli@lnl.infn.it [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Legnaro, Padova (Italy); Maggioni, G., E-mail: maggioni@lnl.infn.it; Carturan, S.; Gelain, M. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Legnaro, Padova (Italy); Department of Physics and Astronomy “G. Galilei”, University of Padova, Via Marzolo 8, 35121 Padova (Italy); Eberth, J. [Institut für Kernphysik, Universität zu Köln, Zülpicher Straße 77, D-50937 Köln (Germany); Grimaldi, M. G.; Tatí, S. [Department of Physics and Astronomy, University of Catania (Italy); Riccetto, S. [University of Camerino and INFN of Perugia (Italy); Mea, G. Della [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Legnaro, Padova (Italy); University of Trento (Italy)

    2016-07-07

    High-purity Germanium (HPGe) detectors have reached an unprecedented level of sophistication and are still the best solution for high-resolution gamma spectroscopy. In the present work, we will show the results of the characterization of new surface treatments for the production of these detectors, studied in the framework of our multidisciplinary research program in HPGe detector technologies.

  15. Recrystallization behaviour and electrical properties of germanium ion implanted polycrystalline silicon films

    International Nuclear Information System (INIS)

    Kang, Myeon-Koo; Matsui, Takayuki; Kuwano, Hiroshi

    1996-01-01

    The recrystallization behaviour of undoped and phosphorus-doped polycrystalline silicon films amorphized by germanium ion implantation at doses ranging from 1 x 10 15 to 1 x 10 16 cm -2 are investigated, and the electrical properties of phosphorus-doped films after recrystallization are studied. The phosphorus doping concentration ranges from 3 x 10 18 to 1 x 10 20 cm -3 . It is found that the nucleation rate decreases for undoped films and increases for phosphorus-doped films with increasing germanium dose; the growth rates decrease for both doped and undoped films. The decrease in nucleation rate is caused by the increase in implantation damage. The decrease in growth rate is considered to be due to the increase in lattice strain. The grain size increases with germanium dose for undoped films, but decreases for phosphorus-doped films. The dependence of the electrical properties of the recrystallized films as a function of phosphorus doping concentration with different germanium doses can be explained in terms of the grain size, crystallinity and grain boundary barrier height. (Author)

  16. Neutrino and dark matter physics with sub-keV germanium detectors

    Indian Academy of Sciences (India)

    2014-11-04

    Nov 4, 2014 ... Germanium detectors with sub-keV sensitivities open a window to study neutrino physics to search for light weakly interacting massive particle (WIMP) dark matter. We summarize the recent results on spin-independent couplings of light WIMPs from the TEXONO experiment at the Kuo-Sheng Reactor ...

  17. Strong quantum-confined stark effect in germanium quantum-well structures on silicon

    International Nuclear Information System (INIS)

    Kuo, Y.; Lee, Y. K.; Gei, Y.; Ren, S; Roth, J. E.; Miller, D. A.; Harris, J. S.

    2006-01-01

    Silicon is the dominant semiconductor for electronics, but there is now a growing need to integrate such component with optoelectronics for telecommunications and computer interconnections. Silicon-based optical modulators have recently been successfully demonstrated but because the light modulation mechanisms in silicon are relatively weak, long (for example, several millimeters) devices or sophisticated high-quality-factor resonators have been necessary. Thin quantum-well structures made from III-V semiconductors such as GaAs, InP and their alloys exhibit the much stronger Quantum-Confined Stark Effect (QCSE) mechanism, which allows modulator structures with only micrometers of optical path length. Such III-V materials are unfortunately difficult to integrate with silicon electronic devices. Germanium is routinely integrated with silicon in electronics, but previous silicon-germanium structures have also not shown strong modulation effects. Here we report the discovery of the QCSE, at room temperature, in thin germanium quantum-well structures grown on silicon. The QCSE here has strengths comparable to that in III-V materials. Its clarity and strength are particularly surprising because germanium is an indirect gap semiconductor, such semiconductors often display much weak optical effects than direct gap materials (such as the III-V materials typically used for optoelectronics). This discovery is very promising for small, high-speed, low-power optical output devices fully compatible with silicon electronics manufacture. (author)

  18. High-resolution imaging gamma-ray spectroscopy with externally segmented germanium detectors

    Science.gov (United States)

    Callas, J. L.; Mahoney, W. A.; Varnell, L. S.; Wheaton, W. A.

    1993-01-01

    Externally segmented germanium detectors promise a breakthrough in gamma-ray imaging capabilities while retaining the superb energy resolution of germanium spectrometers. An angular resolution of 0.2 deg becomes practical by combining position-sensitive germanium detectors having a segment thickness of a few millimeters with a one-dimensional coded aperture located about a meter from the detectors. Correspondingly higher angular resolutions are possible with larger separations between the detectors and the coded aperture. Two-dimensional images can be obtained by rotating the instrument. Although the basic concept is similar to optical or X-ray coded-aperture imaging techniques, several complicating effects arise because of the penetrating nature of gamma rays. The complications include partial transmission through the coded aperture elements, Compton scattering in the germanium detectors, and high background count rates. Extensive electron-photon Monte Carlo modeling of a realistic detector/coded-aperture/collimator system has been performed. Results show that these complicating effects can be characterized and accounted for with no significant loss in instrument sensitivity.

  19. Fabrication and research of high purity germanium detectors with abrupt and thin diffusion layer

    International Nuclear Information System (INIS)

    Rodriguez Cabal, A. E.; Diaz Garcia, A.

    1997-01-01

    A different high purity germanium detector's fabrication method is described. A very thin diffusion film with an abrupt change of the type of conductivity is obtained. The fine diffusion layer thickness makes possibly their utilization in experimental systems in which all the data are elaborated directly on the computer. (author) [es

  20. Germanium recovery from gasification fly ash: evaluation of end-products obtained by precipitation methods.

    Science.gov (United States)

    Arroyo, Fátima; Font, Oriol; Fernández-Pereira, Constantino; Querol, Xavier; Juan, Roberto; Ruiz, Carmen; Coca, Pilar

    2009-08-15

    In this study the purity of the germanium end-products obtained by two different precipitation methods carried out on germanium-bearing solutions was evaluated as a last step of a hydrometallurgy process for the recovery of this valuable element from the Puertollano Integrated Gasification Combined Cycle (IGCC) fly ash. Since H(2)S is produced as a by-product in the gas cleaning system of the Puertollano IGCC plant, precipitation of germanium as GeS(2) was tested by sulfiding the Ge-bearing solutions. The technological and hazardous issues that surround H(2)S handling conducted to investigate a novel precipitation procedure: precipitation as an organic complex by adding 1,2-dihydroxy benzene pyrocatechol (CAT) and cetyltrimethylammonium bromide (CTAB) to the Ge-bearing solutions. Relatively high purity Ge end-products (90 and 93% hexagonal-GeO(2) purity, respectively) were obtained by precipitating Ge from enriched solutions, as GeS(2) sulfiding the solutions with H(2)S, or as organic complex with CAT/CTAB mixtures and subsequent roasting of the precipitates. Both methods showed high efficiency (>99%) to precipitate selectively Ge using a single precipitation stage from germanium-bearing solutions.

  1. Thermophysical Properties of Molten Germanium Measured by the High Temperature Electrostatic Levitator

    Science.gov (United States)

    Rhim, W. K.; Ishikawa, T.

    1998-01-01

    Thermophysical properties of molten germanium such as the density, the thermal expansion coefficient, the hemisphereical total emissivity, the constant pressure specific heat capacity, the surface tension, and the electrical resistivity have been measured using the High Temperature Electrostatic Levitator at JPL.

  2. Advanced characterization of carrier profiles in germanium using micro-machined contact probes

    DEFF Research Database (Denmark)

    Clarysse, T.; Konttinen, M.; Parmentier, B.

    2012-01-01

    of new concepts based on micro machined, closely spaced contact probes (10 μm pitch). When using four probes to perform sheet resistance measurements, a quantitative carrier profile extraction based on the evolution of the sheet resistance versus depth along a beveled surface is obtained. Considering...... the properties of both approaches on Al+ implants in germanium with different anneal treatments....

  3. Hall mobility of free charge carriers in highly compensated p-Germanium

    International Nuclear Information System (INIS)

    Gavrilyuk, V.Yi.; Kirnas, Yi.G.; Balakyin, V.D.

    2000-01-01

    Hall mobility of free charge carriers in initial detectors Ge (Ga) is studied. It is established that an increase in the compensation factor results in the enlargement of Hall mobility in germanium highly compensated by introduction of Li ions during their drift in an electrical field

  4. Reaction studies of hot silicon and germanium radicals. Progress report, February 1, 1982-July 31, 1984

    International Nuclear Information System (INIS)

    Gaspar, P.P.

    1984-01-01

    The experimental approach toward attaining the goals of this research program is briefly outlined, and the progress made in the 1982 to 1984 period is reviewed in sections entitled: (1) Recoil atom experiments, (2) Studies of thermally and photochemically generated silicon and germanium radicals, and (3) Ion-molecule reaction studies

  5. Synthesis of self-assembled Ge nano crystals employing reactive RF sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez H, A. [Universidad Autonoma del Estado de Hidalgo, Escuela Superior de Apan, Calle Ejido de Chimalpa Tlalayote s/n, Col. Chimalpa, Apan, Hidalgo (Mexico); Hernandez H, L. A. [IPN, Escuela Superior de Fisica y Matematicas, San Pedro Zacatenco, 07730 Ciudad de Mexico (Mexico); Monroy, B. M.; Santana R, G. [UNAM, Instituto de Investigaciones en Materiales, Apdo. Postal 70-360, 04510 Ciudad de Mexico (Mexico); Santoyo S, J.; Gallardo H, S. [IPN, Centro de Investigacion y de Estudios Avanzados, Departamento de Fisica, Apdo. Postal 14740, 07300 Ciudad de Mexico (Mexico); Marquez H, A. [Universidad de Guanajuato, Campus Irapuato-Salamanca, Departamento de Ingenieria Agricola, Km. 9 Carretera Irapuato-Silao, 36500 Irapuato, Guanajuato (Mexico); Mani G, P. G.; Melendez L, M. [Universidad Autonoma de Ciudad Juarez, Instituto de Ingenieria y Tecnologia, Departamento de Fisica y Matematicas, 32310 Ciudad Juarez, Chihuahua (Mexico)

    2016-11-01

    This work presents the results of a simple methodology able to control crystal size, dispersion and spatial distribution of germanium nano crystals (Ge-NCs). It takes advantage of a self-assembled process taken place during the deposit of the system SiO{sub 2}/Ge/SiO{sub 2} by reactive RF sputtering. Nanoparticles formation is controlled mainly by the roughness of the first SiO{sub 2} layer buy the ulterior interaction of the interlayer with the top layer also play a role. Structural quality of germanium nano crystals increases with roughness and the interlayer thickness. The tetragonal phase of germanium is produced and its crystallographic quality improves with interlayer thickness and oxygen partial pressure. Room temperature photoluminescence emission without a post growth thermal annealing process indicates that our methodology produces a low density of non-radiative traps. The surface topography of SiO{sub 2} reference samples was carried out by atomic force microscopy. The crystallographic properties of the samples were studied by grazing incidence X-ray diffraction at 1.5 degrees carried out in a Siemens D-5000 system employing the Cu Kα wavelength. (Author)

  6. RNA Crystallization

    Science.gov (United States)

    Golden, Barbara L.; Kundrot, Craig E.

    2003-01-01

    RNA molecules may be crystallized using variations of the methods developed for protein crystallography. As the technology has become available to syntheisize and purify RNA molecules in the quantities and with the quality that is required for crystallography, the field of RNA structure has exploded. The first consideration when crystallizing an RNA is the sequence, which may be varied in a rational way to enhance crystallizability or prevent formation of alternate structures. Once a sequence has been designed, the RNA may be synthesized chemically by solid-state synthesis, or it may be produced enzymatically using RNA polymerase and an appropriate DNA template. Purification of milligram quantities of RNA can be accomplished by HPLC or gel electrophoresis. As with proteins, crystallization of RNA is usually accomplished by vapor diffusion techniques. There are several considerations that are either unique to RNA crystallization or more important for RNA crystallization. Techniques for design, synthesis, purification, and crystallization of RNAs will be reviewed here.

  7. Temperature dependence on the time and momentum spectra in germanium

    International Nuclear Information System (INIS)

    Schultz, P.J.; MacKenzie, I.K.

    1982-01-01

    Recent measurements using the slow-#betta# + beam at Brookhaven, have suggested a thermally activated trapping mechanism which inhibited positron diffusion in single-crystal Ge. Supporting evidence has now been obtained from both Doppler broadening and lifetime measurements but, in both cases, the temperature dependence was so weak that it required the use of dual digital stabilization and unusual statistical precision in both types of spectrometry. (Auth.)

  8. Crystallization mechanisms of acicular crystals

    Science.gov (United States)

    Puel, François; Verdurand, Elodie; Taulelle, Pascal; Bebon, Christine; Colson, Didier; Klein, Jean-Paul; Veesler, Stéphane

    2008-01-01

    In this contribution, we present an experimental investigation of the growth of four different organic molecules produced at industrial scale with a view to understand the crystallization mechanism of acicular or needle-like crystals. For all organic crystals studied in this article, layer-by-layer growth of the lateral faces is very slow and clear, as soon as the supersaturation is high enough, there is competition between growth and surface-activated secondary nucleation. This gives rise to pseudo-twinned crystals composed of several needle individuals aligned along a crystallographic axis; this is explained by regular over- and inter-growths as in the case of twinning. And when supersaturation is even higher, nucleation is fast and random. In an industrial continuous crystallization, the rapid growth of needle-like crystals is to be avoided as it leads to fragile crystals or needles, which can be partly broken or totally detached from the parent crystals especially along structural anisotropic axis corresponding to weaker chemical bonds, thus leading to slower growing faces. When an activated mechanism is involved such as a secondary surface nucleation, it is no longer possible to obtain a steady state. Therefore, the crystal number, size and habit vary significantly with time, leading to troubles in the downstream processing operations and to modifications of the final solid-specific properties. These results provide valuable information on the unique crystallization mechanisms of acicular crystals, and show that it is important to know these threshold and critical values when running a crystallizer in order to obtain easy-to-handle crystals.

  9. [Christian dimension of suffering].

    Science.gov (United States)

    Kubik, K

    1999-01-01

    Human existence is marked by imperfection, whose expression--among other things--is suffering. The problem of answering the question about the meaning of suffering for human life in its entirety is of great significance in philosophy and theology. In the Old Testament it meant God's punishment for the evil done by man. In Christianity this bleak notion of suffering has found a new dimension--suffering is creative, redemptive in character; it enables a man to surpass his limits. The understanding of suffering and its sense has a profound meaning in building a suitable attitude of a sick person towards his own weakness.

  10. Public Value Dimensions

    DEFF Research Database (Denmark)

    Andersen, lotte bøgh; Beck Jørgensen, Torben; Kjeldsen, Anne-Mette

    2012-01-01

    Further integration of the public value literature with other strands of literature within Public Administration necessitates a more specific classification of public values. This paper applies a typology linked to organizational design principles, because this is useful for empirical public...... administration studies. Based on an existing typology of modes of governance, we develop a classification and test it empirically, using survey data from a study of the values of 501 public managers. We distinguish between seven value dimensions (the public at large, rule abidance, societal interests, budget...... the integration between the public value literature and other parts of the Public Administration discipline....

  11. Dimensions of energy efficiency

    International Nuclear Information System (INIS)

    Ramani, K.V.

    1992-01-01

    In this address the author describes three dimensions of energy efficiency in order of increasing costs: conservation, resource and technology substitution, and changes in economic structure. He emphasizes the importance of economic rather than environmental rationales for energy efficiency improvements in developing countries. These countries do not place high priority on the problems of global climate change. Opportunities for new technologies may exist in resource transfer, new fuels and, possibly, small reactors. More research on economic and social impacts of technologies with greater sensitivity to user preferences is needed

  12. One dimension harmonic oscillator

    International Nuclear Information System (INIS)

    Cohen-Tannoudji, Claude; Diu, Bernard; Laloe, Franck.

    1977-01-01

    The importance of harmonic oscillator in classical and quantum physics, eigenvalues and eigenstates of hamiltonian operator are discussed. In complement are presented: study of some physical examples of harmonic oscillators; study of stationnary states in the /x> representation; Hermite polynomials; resolution of eigenvalue equation of harmonic oscillator by polynomial method; isotope harmonic oscillator with three dimensions; charged harmonic oscillator in uniform electric field; quasi classical coherent states of harmonic oscillator; eigenmodes of vibration of two coupled harmonic oscillators; vibration modus of a continuous physical system (application to radiation: photons); vibration modus of indefinite linear chain of coupled harmonic oscillators (phonons); one-dimensional harmonic oscillator in thermodynamic equilibrium at temperature T [fr

  13. Inhomogeneous compact extra dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Bronnikov, K.A. [Center of Gravity and Fundamental Metrology, VNIIMS, 46 Ozyornaya st., Moscow 119361 (Russian Federation); Budaev, R.I.; Grobov, A.V.; Dmitriev, A.E.; Rubin, Sergey G., E-mail: kb20@yandex.ru, E-mail: buday48@mail.ru, E-mail: alexey.grobov@gmail.com, E-mail: alexdintras@mail.ru, E-mail: sergeirubin@list.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow (Russian Federation)

    2017-10-01

    We show that an inhomogeneous compact extra space possesses two necessary features— their existence does not contradict the observable value of the cosmological constant Λ{sub 4} in pure f ( R ) theory, and the extra dimensions are stable relative to the 'radion mode' of perturbations, the only mode considered. For a two-dimensional extra space, both analytical and numerical solutions for the metric are found, able to provide a zero or arbitrarily small Λ{sub 4}. A no-go theorem has also been proved, that maximally symmetric compact extra spaces are inconsistent with 4D Minkowski space in the framework of pure f ( R ) gravity.

  14. An ion-sputtering gun to clean crystal surfaces in-situ in an ultra-high-vacuum electron microscope

    International Nuclear Information System (INIS)

    Morita, Etsuo; Takayanagi, Kunio; Kobayashi, Kunio; Yagi, Katsumichi; Honjo, Goro

    1980-01-01

    The design and performance of an ion-sputtering gun for cleaning crystal surfaces in-situ in an ultra-high-vacuum electron microscope are reported. The electron microscopic aspects of ion-bombardment damage to ionic magnesium oxide, covalent germanium and silicon, and metallic gold and copper crystals, and the effects of annealing after and during sputtering are described. The growth of various kinds of films deposited in-situ on crystals cleaned by ion-sputtering are described and discussed. (author)

  15. 1. Dimensions of sustainable development

    International Nuclear Information System (INIS)

    Repetto, R.

    1992-01-01

    This chapter discusses the following topics: the concept of sustainable development; envisioning sustainable development (economic dimensions, human dimensions, environmental dimensions, technological dimensions); policy implications (economic policies, people-oriented policies, environmental policies, creating sustainable systems); and global issues (effect of war on development and the environment and the debt burden). This chapter also introduces the case studies by discussing the levels of economic development and comparing key trends (economic growth, human development, population growth, and energy use)

  16. Structural and magnetic properties of some pseudo-binary and ternary compounds at high curie temperature prepared in the systems: -) rare earth (Nd, Sm) iron hydrogen, -) gadolinium iron aluminium, and -) uranium iron or cobalt silicon or germanium; Proprietes structurales et magnetiques de quelques composes pseudobinaires et ternaires ferromagnetiques a temperature de curie elevee prepares dans les systemes: -) terres rares Nd Sm fer hydrogene, -) gadolinium fer aluminium, and -) uranium fer ou cobalt silicium ou germanium

    Energy Technology Data Exchange (ETDEWEB)

    Berlureau, T

    1991-07-15

    This work highlights the importance of crystal and chemical studies for understanding the magnetic properties of systems as complex as inter-metallic compounds involving rare-earth elements, uranium, silicon or germanium. With a view of finding new compounds with high Curie temperature and strong magneto-crystal anisotropy, it appears that uranium compounds such as UFe{sub 10}Si{sub 2}, UCo{sub 10}Si{sub 2}, U(Fe{sub 10-x}Co{sub x})Si{sub 2} and U{sub 2}M{sub 17-y}X{sub y} where M is Fe or Co and Y is Si or Ge, are interesting because of the 5f orbital that can form bands through direct overlapping and can link itself very strongly with orbitals of nearby atoms.

  17. Properties of lead tungstate crystals for high-energy physics

    CERN Document Server

    Ippolitov, M S; Burachas, S; Ikonnikov, V; Kuriakin, A; Lebedev, V; Makov, I; Man'ko, V; Nikulin, S P; Nyanin, A; Saveliev, Yu; Tamulaitis, G; Tsvetkov, A A; Vasilev, A; Vinogradov, Yu I

    2004-01-01

    Technology for the mass production of high-quality PbWO//4 (PWO) scintillating crystals is described. Scintillators produced from PWO crystals are intented for the ALICE CERN heavy ion experiment. Light yield, emission and decay time spectra as well as optical transmission of about 3600 crystals (dimensions 22 multiplied by 22 multiplied by 180 mm**3) were measured. Beam-test results of the ALICE PHOS prototype obtained with such PWO crystals are presented.

  18. Nonlinear optics in germanium mid-infrared fiber material: Detuning oscillations in femtosecond mid-infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    M. Ordu

    2017-09-01

    Full Text Available Germanium optical fibers hold great promise in extending semiconductor photonics into the fundamentally important mid-infrared region of the electromagnetic spectrum. The demonstration of nonlinear response in fabricated Ge fiber samples is a key step in the development of mid-infrared fiber materials. Here we report the observation of detuning oscillations in a germanium fiber in the mid-infrared region using femtosecond dispersed pump-probe spectroscopy. Detuning oscillations are observed in the frequency-resolved response when mid-infrared pump and probe pulses are overlapped in a fiber segment. The oscillations arise from the nonlinear frequency resolved nonlinear (χ(3 response in the germanium semiconductor. Our work represents the first observation of coherent oscillations in the emerging field of germanium mid-infrared fiber optics.

  19. Study of the effect of neutron and electron irradiations on the low temperature thermal conductivity of germanium and silicon

    International Nuclear Information System (INIS)

    Vandevyver, M.

    1967-06-01

    The main results obtained from this work are the following: 1 Neutron irradiation (at 300 deg. K) produces lattice defects in germanium and silicon, and a corresponding very large lowering of the thermal conductivity is observed in the low temperature region (4-300 ). The results obtained have been explained with the help of the following hypotheses: for silicon a scattering of phonons by the stress fields produced by the defects; for germanium, a supplementary scattering of the electron phonon type. 2 Annealing treatments carried out on these materials above 373 deg. K restored the thermal conductivity over the whole temperature range of the measurements (4-300 deg. K); in the case of both germanium and silicon there were two steps in the annealing process. 3 A study of the thermal conductivity of germanium (initially P or N) after an electronic irradiation showed that the scattering of phonons could depend on the state of charge of the defects thus produced. (author) [fr

  20. Enhanced light trapping by focused ion beam (FIB) induced self-organized nanoripples on germanium (100) surface

    Science.gov (United States)

    Kamaliya, Bhaveshkumar; Mote, Rakesh G.; Aslam, Mohammed; Fu, Jing

    2018-03-01

    In this paper, we demonstrate enhanced light trapping by self-organized nanoripples on the germanium surface. The enhanced light trapping leading to high absorption of light is confirmed by the experimental studies as well as the numerical simulations using the finite-difference time-domain method. We used gallium ion (Ga+) focused ion beam to enable the formation of the self-organized nanoripples on the germanium (100) surface. During the fabrication, the overlap of the scanning beam is varied from zero to negative value and found to influence the orientation of the nanoripples. Evolution of nanostructures with the variation of beam overlap is investigated. Parallel, perpendicular, and randomly aligned nanoripples with respect to the scanning direction are obtained via manipulation of the scanning beam overlap. 95% broadband absorptance is measured in the visible electromagnetic region for the nanorippled germanium surface. The reported light absorption enhancement can significantly improve the efficiency of germanium-silicon based photovoltaic systems.

  1. Low temperature carrier transport properties in isotopically controlled germanium

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Kohei [Univ. of California, Berkeley, CA (United States)

    1994-12-01

    Investigations of electronic and optical properties of semiconductors often require specimens with extremely homogeneous dopant distributions and precisely controlled net-carrier concentrations and compensation ratios. The previous difficulties in fabricating such samples are overcome as reported in this thesis by growing high-purity Ge single crystals of controlled 75Ge and 70Ge isotopic compositions, and doping these crystals by the neutron transmutation doping (NTD) technique. The resulting net-impurity concentrations and the compensation ratios are precisely determined by the thermal neutron fluence and the [74Ge]/[70Ge] ratios of the starting Ge materials, respectively. This method also guarantees unprecedented doping uniformity. Using such samples the authors have conducted four types of electron (hole) transport studies probing the nature of (1) free carrier scattering by neutral impurities, (2) free carrier scattering by ionized impurities, (3) low temperature hopping conduction, and (4) free carrier transport in samples close to the metal-insulator transition.

  2. Electronic processes in uniaxially stressed p-type germanium

    Energy Technology Data Exchange (ETDEWEB)

    Dubon, Jr., Oscar Danilo [Univ. of California, Berkeley, CA (United States)

    1996-02-01

    Effect of uniaxial stress on acceptor-related electronic processes in Ge single crystals doped with Ga, Be, and Cu were studied by Hall and photo-Hall effect measurements in conjunction with infrared spectroscopy. Stress dependence of hole lifetime in p-type Ge single crystals is used as a test for competing models of non-radiative capture of holes by acceptors. Photo-Hall effect shows that hole lifetime in Ga- and Be-doped Ge increases by over one order of magnitude with uniaxial stress at liq. He temps. Photo-Hall of Ge:Be shows a stress-induced change in the temperature dependence of hole lifetime. This is consistent with observed increase of responsivity of Ge:Ga detectors with uniaxial stress. Electronic properties of Ge:Cu are shown to change dramatically with uniaxial stress; the results provide a first explanation for the performance of uniaxially stressed, Cu-diffused Ge:Ga detectors which display a high conductivity in absence of photon signal and therefore have poor sensitivity.

  3. Assessing the potential roles of silicon and germanium phthalocyanines in planar heterojunction organic photovoltaic devices and how pentafluoro phenoxylation can enhance π-π interactions and device performance.

    Science.gov (United States)

    Lessard, Benoît H; White, Robin T; Al-Amar, Mohammad; Plint, Trevor; Castrucci, Jeffrey S; Josey, David S; Lu, Zheng-Hong; Bender, Timothy P

    2015-03-11

    In this study, we have assessed the potential application of dichloro silicon phthalocyanine (Cl2-SiPc) and dichloro germanium phthalocyanine (Cl2-GePc) in modern planar heterojunction organic photovoltaic (PHJ OPV) devices. We have determined that Cl2-SiPc can act as an electron donating material when paired with C60 and that Cl2-SiPc or Cl2-GePc can also act as an electron acceptor material when paired with pentacene. These two materials enabled the harvesting of triplet energy resulting from the singlet fission process in pentacene. However, contributions to the generation of photocurrent were observed for Cl2-SiPc with no evidence of photocurrent contribution from Cl2-GePc. The result of our initial assessment established the potential for the application of SiPc and GePc in PHJ OPV devices. Thereafter, bis(pentafluoro phenoxy) silicon phthalocyanine (F10-SiPc) and bis(pentafluoro phenoxy) germanium phthalocyanine (F10-GePc) were synthesized and characterized. During thermal processing, it was discovered that F10-SiPc and F10-GePc underwent a reaction forming small amounts of difluoro SiPc (F2-SiPc) and difluoro GePc (F2-GePc). This undesirable reaction could be circumvented for F10-SiPc but not for F10-GePc. Using single crystal X-ray diffraction, it was determined that F10-SiPc has significantly enhanced π-π interactions compared with that of Cl2-SiPc, which had little to none. Unoptimized PHJ OPV devices based on F10-SiPc were fabricated and directly compared to those constructed from Cl2-SiPc, and in all cases, PHJ OPV devices based on F10-SiPc had significantly improved device characteristics compared to Cl2-SiPc.

  4. Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing

    Science.gov (United States)

    Rao, Feng; Ding, Keyuan; Zhou, Yuxing; Zheng, Yonghui; Xia, Mengjiao; Lv, Shilong; Song, Zhitang; Feng, Songlin; Ronneberger, Ider; Mazzarello, Riccardo; Zhang, Wei; Ma, Evan

    2017-12-01

    Operation speed is a key challenge in phase-change random-access memory (PCRAM) technology, especially for achieving subnanosecond high-speed cache memory. Commercialized PCRAM products are limited by the tens of nanoseconds writing speed, originating from the stochastic crystal nucleation during the crystallization of amorphous germanium antimony telluride (Ge2Sb2Te5). Here, we demonstrate an alloying strategy to speed up the crystallization kinetics. The scandium antimony telluride (Sc0.2Sb2Te3) compound that we designed allows a writing speed of only 700 picoseconds without preprogramming in a large conventional PCRAM device. This ultrafast crystallization stems from the reduced stochasticity of nucleation through geometrically matched and robust scandium telluride (ScTe) chemical bonds that stabilize crystal precursors in the amorphous state. Controlling nucleation through alloy design paves the way for the development of cache-type PCRAM technology to boost the working efficiency of computing systems.

  5. Development of segmented germanium detectors for neutrinoless double beta decay experiments

    International Nuclear Information System (INIS)

    Liu, Jing

    2009-01-01

    The results from neutrino oscillation experiments indicate that at least two neutrinos have mass. However, the value of the masses and whether neutrinos and anti-neutrinos are identical, i.e., Majorana particles, remain unknown. Neutrinoless double beta decay experiments can help to improve our understanding in both cases and are the only method currently possible to tackle the second question. The GERmanium Detector Array (GERDA) experiment, which will search for the neutrinoless double beta decay of 76 Ge, is currently under construction in Hall A of the INFN Gran Sasso National Laboratory (LNGS), Italy. In order to achieve an extremely low background level, segmented germanium detectors are considered to be operated directly in liquid argon which serves simultaneously as cooling and shielding medium. Several test cryostats were built at the Max-Planck-Institut fuer Physik in Muenchen to operate segmented germanium detectors both in vacuum and submerged in cryogenic liquid. The performance and the background discrimination power of segmented germanium detectors were studied in detail. It was proven for the first time that segmented germanium detectors can be operated stably over long periods submerged in a cryogenic liquid. It was confirmed that the segmentation scheme employed does well in the identification of photon induced background and demonstrated for the first time that also neutron interactions can be identified. The C++ Monte Carlo framework, MaGe (Majorana-GERDA), is a joint development of the Majorana and GERDA collaborations. It is based on GEANT4, but tailored especially to simulate the response of ultra-low background detectors to ionizing radiation. The predictions of the simulation were veri ed to be accurate for a wide range of conditions. Some shortcomings were found and corrected. Pulse shape analysis is complementary to segmentation in identifying background events. Its efficiency can only be correctly determined using reliable pulse shape

  6. Development of segmented germanium detectors for neutrinoless double beta decay experiments

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing

    2009-06-09

    The results from neutrino oscillation experiments indicate that at least two neutrinos have mass. However, the value of the masses and whether neutrinos and anti-neutrinos are identical, i.e., Majorana particles, remain unknown. Neutrinoless double beta decay experiments can help to improve our understanding in both cases and are the only method currently possible to tackle the second question. The GERmanium Detector Array (GERDA) experiment, which will search for the neutrinoless double beta decay of {sup 76}Ge, is currently under construction in Hall A of the INFN Gran Sasso National Laboratory (LNGS), Italy. In order to achieve an extremely low background level, segmented germanium detectors are considered to be operated directly in liquid argon which serves simultaneously as cooling and shielding medium. Several test cryostats were built at the Max-Planck-Institut fuer Physik in Muenchen to operate segmented germanium detectors both in vacuum and submerged in cryogenic liquid. The performance and the background discrimination power of segmented germanium detectors were studied in detail. It was proven for the first time that segmented germanium detectors can be operated stably over long periods submerged in a cryogenic liquid. It was confirmed that the segmentation scheme employed does well in the identification of photon induced background and demonstrated for the first time that also neutron interactions can be identified. The C++ Monte Carlo framework, MaGe (Majorana-GERDA), is a joint development of the Majorana and GERDA collaborations. It is based on GEANT4, but tailored especially to simulate the response of ultra-low background detectors to ionizing radiation. The predictions of the simulation were veri ed to be accurate for a wide range of conditions. Some shortcomings were found and corrected. Pulse shape analysis is complementary to segmentation in identifying background events. Its efficiency can only be correctly determined using reliable pulse

  7. Flowing to four dimensions

    International Nuclear Information System (INIS)

    Dudas, Emilian; Papineau, Chloe; Rubakov, Valery

    2006-01-01

    We analyze the properties of a model with four-dimensional brane-localized Higgs type potential of a six dimensional scalar field satisfying the Dirichlet boundary condition on the boundary of a transverse two-dimensional compact space. The regularization of the localized couplings generates classical renormalization group running. A tachyonic mass parameter grows in the infrared, in analogy with the QCD gauge coupling in four dimensions. We find a phase transition at a critical value of the bare mass parameter such that the running mass parameter becomes large in the infrared precisely at the compactification scale. Below the critical coupling, the theory is in symmetric phase, whereas above it spontaneous symmetry breaking occurs. Close to the phase transition point there is a very light mode in the spectrum. The massive Kaluza-Klein spectrum at the critical coupling becomes independent of the UV cutoff

  8. Dimensions of trust

    DEFF Research Database (Denmark)

    Frederiksen, Morten

    2012-01-01

    Georg Simmel is the seminal author on trust within sociology, but though inspired by Simmel, subsequent studies of intersubjective trust have failed to address Simmel’s suggestion that trust is as differentiated as the social relations of which it is part. Rather, trust has been studied within...... limited sets of exchange or work relations. This article revisits Simmel’s concept of trust as social form in order to investigate this differentiation. From an interview study, the differentiation and limits of trust are analysed within different types of social relations. Trust is found to vary greatly...... in scope and mode influenced by the intersecting dimensions of relations, objects and situations. Furthermore, trust exists between an outer threshold of expected deceit and an inner threshold of confident reliance. The findings from the qualitative study contribute new knowledge on the diversity of trust...

  9. The Regional Dimension

    DEFF Research Database (Denmark)

    Eskjær, Mikkel Fugl

    2013-01-01

    is largely dependent on regional media systems, yet the role this regional dimension plays has been largely overlooked. This article presents a comparative study of climate-change coverage in three geo-cultural regions, The Middle East, Scandinavia, and North America, and explores the link between global......Global perspectives and national approaches have dominated studies of climate-change communication, reflecting the global nature of climate change as well as the traditional research focus on national media systems. In the absence of a global public sphere, however, transnational issue attention...... climate-change communication and regional media systems. It finds that regional variations in climate-change communication carry important communicative implications concerning perceptions of climate change's relevance and urgency...

  10. Method card design dimensions

    DEFF Research Database (Denmark)

    Wölfel, Christiane; Merritt, T.

    2013-01-01

    There are many examples of cards used to assist or provide structure to the design process, yet there has not been a thorough articulation of the strengths and weaknesses of the various examples. We review eighteen card-based design tools in order to understand how they might benefit designers....... The card-based tools are explained in terms of five design dimensions including the intended purpose and scope of use, duration of use, methodology, customization, and formal/material qualities. Our analysis suggests three design patterns or archetypes for existing card-based design method tools...... and highlights unexplored areas in the design space. The paper concludes with recommendations for the future development of card-based methods for the field of interaction design....

  11. Correlation dimension of financial market

    Science.gov (United States)

    Nie, Chun-Xiao

    2017-05-01

    In this paper, correlation dimension is applied to financial data analysis. We calculate the correlation dimensions of some real market data and find that the dimensions are significantly smaller than those of the simulation data based on geometric Brownian motion. Based on the analysis of the Chinese and US stock market data, the main results are as follows. First, by calculating three data sets for the Chinese and US market, we find that large market volatility leads to a significant decrease in the dimensions. Second, based on 5-min stock price data, we find that the Chinese market dimension is significantly larger than the US market; this shows a significant difference between the two markets for high frequency data. Third, we randomly extract stocks from a stock set and calculate the correlation dimensions, and find that the average value of these dimensions is close to the dimension of the original set. In addition, we analyse the intuitional meaning of the relevant dimensions used in this paper, which are directly related to the average degree of the financial threshold network. The dimension measures the speed of the average degree that varies with the threshold value. A smaller dimension means that the rate of change is slower.

  12. Dazai super-large uranium-bearing germanium deposit in western Yunnan region metallogenic geological conditions and prospect

    International Nuclear Information System (INIS)

    Han Yanrong; Yuan Qingbang; Li Yonghua; Zhang Ling; Dai Jiemin

    1995-05-01

    The Dazai super-large uranium-bearing germanium deposit is located in Bangmai Fault Basin, Western Yunnan, China. The basin basement is migmatitic granite and the cover is miocene coal-bearing clastics, Bangmai Formation. The basin development had undergone faulted rhombus basin forming, synsedimentary structure-developing and up-lifted-denuded stages. Synsedimentary faults had controlled distribution of sedimentary formation and lithofacies, and uranium and germanium mineralization. Germanium ore-bodies occur mainly in master lignite-bed of lower rhythmite. Hosted germanium-lignite is taken as main ore-type. Germanium occurs in vitrinite of lignite in the form of metal-organic complex. The metallogenetic geological conditions of the deposit are that ground preparation is uplift zone-migmatitic granite-fault basin-geothermal anomaly area, rich and thick ore-body is controlled by synsedimentary fault, peat-bog phase is favorable to accumulation for ore-forming elements, and unconformity between overlying cover and underlying basement is a channel-way of mineralizing fluid. A multiperiodic composite, being regarded sedimentation and diagenesis as a major process, uranium and germanium ore deposit has been formed through two mineralization. Four prospecting areas have been forecasted and two deposits have been accordingly discovered again. Technical-economic provableness shows that the deposit is characterized by shallow-buried, rich grade, large scale, easy mining and smelting. (9 figs.)

  13. Positron annihilation in germanium in thermal equilibrium at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Uedono, Akira; Moriya, Tsuyoshi; Komuro, Naoyuki; Tanigawa, Shoichiro [Tsukuba Univ., Ibaraki (Japan). Inst. of Materials Science; Kawano, Takao; Ikari, Atsushi

    1996-09-01

    Annihilation characteristics of positrons in Ge in thermal equilibrium at high temperature were studied using a monoenergetic positron beam. Precise measurements of Doppler broadening profiles of annihilation radiation were performed in the temperature range between 300 K and 1211 K. The line shape parameters of Doppler broadening profiles were found to be almost constant at 300-600 K. The changes in these parameters were observed to start above 600 K. This was attributed to both the decrease in the fraction of positrons annihilating with core electrons and the lowering of the crystal symmetry around the region detected by positron-electron pairs. This suggests that behaviors of positrons are dominated by some form of positron-lattice coupling in Ge at high temperatures. The temperature dependence of the diffusion length of positrons was also discussed. (author)

  14. Synthesis, structure, and thermal properties of soluble hydrazinium germanium(IV) and tin(IV) selenide salts.

    Science.gov (United States)

    Mitzi, David B

    2005-05-16

    The crystal structures of two hydrazinium-based germanium(IV) and tin(IV) selenide salts are determined. (N(2)H(5))(4)Ge(2)Se(6) (1) [I4(1)cd, a = 12.708(1) Angstroms, c = 21.955(2) Angstroms, Z = 8] and (N(2)H(4))(3)(N(2)H(5))(4)Sn(2)Se(6) (2) [P, a = 6.6475(6) Angstroms, b = 9.5474(9) Angstroms, c = 9.8830(10) Angstroms, alpha = 94.110(2) degrees, beta = 99.429(2) degrees, gamma = 104.141(2) degrees, Z = 1] each consist of anionic dimers of edge-sharing metal selenide tetrahedra, M(2)Se(6)(4-) (M = Ge or Sn), separated by hydrazinium cations and, for 2, additional neutral hydrazine molecules. Substantial hydrogen bonding exists among the hydrazine/hydrazinium molecules as well as between the hydrazinium cations and the selenide anions. Whereas the previously reported tin(IV) sulfide system, (N(2)H(5))(4)Sn(2)S(6), decomposes cleanly to microcrystalline SnS(2) when heated to 200 degrees C in an inert atmosphere, higher temperatures (>300 degrees C) are required to dissociate selenium from 1 and 2 for the analogous preparations of single-phase metal selenides. The metal chalcogenide salts are highly soluble in hydrazine, as well as in a variety of amines and DMSO, highlighting the potential usefulness of these compounds as precursors for the solution deposition of the corresponding metal chalcogenide films.

  15. Selective Etching of Silicon in Preference to Germanium and Si0.5Ge0.5.

    Science.gov (United States)

    Ahles, Christopher F; Choi, Jong Youn; Wolf, Steven; Kummel, Andrew C

    2017-06-21

    The selective etching characteristics of silicon, germanium, and Si 0.5 Ge 0.5 subjected to a downstream H 2 /CF 4 /Ar plasma have been studied using a pair of in situ quartz crystal microbalances (QCMs) and X-ray photoelectron spectroscopy (XPS). At 50 °C and 760 mTorr, Si can be etched in preference to Ge and Si 0.5 Ge 0.5 , with an essentially infinite Si/Ge etch-rate ratio (ERR), whereas for Si/Si 0.5 Ge 0.5 , the ERR is infinite at 22 °C and 760 mTorr. XPS data showed that the selectivity is due to the differential suppression of etching by a ∼2 ML thick C x H y F z layer formed by the H 2 /CF 4 /Ar plasma on Si, Ge, and Si 0.5 Ge 0.5 . The data are consistent with the less exothermic reaction of fluorine radicals with Ge or Si 0.5 Ge 0.5 being strongly suppressed by the C x H y F z layer, whereas, on Si, the C x H y F z layer is not sufficient to completely suppress etching. Replacing H 2 with D 2 in the feed gas resulted in an inverse kinetic isotope effect (IKIE) where the Si and Si 0.5 Ge 0.5 etch rates were increased by ∼30 times with retention of significant etch selectivity. The use of D 2 /CF 4 /Ar instead of H 2 /CF 4 /Ar resulted in less total carbon deposition on Si and Si 0.5 Ge 0.5 and gave less Ge enrichment of Si 0.5 Ge 0.5 . These results are consistent with the selectivity being due to the differential suppression of etching by an angstrom-scale carbon layer.

  16. Germanium enrichment in supergene settings: evidence from the Cristal nonsulfide Zn prospect, Bongará district, northern Peru

    Science.gov (United States)

    Mondillo, Nicola; Arfè, Giuseppe; Herrington, Richard; Boni, Maria; Wilkinson, Clara; Mormone, Angela

    2018-02-01

    Supergene nonsulfide ores form from the weathering of sulfide mineralization. Given the geochemical affinity of Ge to Si4+ and Fe3+, weathering of Ge-bearing sulfides could potentially lead to Ge enrichments in silicate and Fe-oxy-hydroxide minerals, although bulk rock Ge concentrations in supergene nonsulfide deposits are rarely reported. Here, we present the results of an investigation into Ge concentrations and deportment in the Cristal supergene Zn nonsulfide prospect (Bongará, northern Peru), which formed from the weathering of a preexisting Mississippi Valley-type (MVT) sulfide deposit. Material examined in this study originates from drillcore recovered from oxidized Zn-rich bodies 15-20 m thick, containing 5-45 wt% Zn and Ge concentrations 100 ppm. Microanalysis and laser ablation-ICP-MS show that precursor sphalerite is rich in both Fe (mean Fe = 8.19 wt%) and Ge (mean Ge = 142 ppm). Using the mineral geothermometer GGIMFis—geothermometer for Ga, Ge, In, Mn, and Fe in sphalerite—proposed by Frenzel et al. (Ore Geol Rev 76:52-78, 2016), sphalerite trace element data from the Cristal prospect suggest a possible formation temperature ( T GGIMFis) of 225 ± 50 °C, anomalously high for a MVT deposit. Germanium concentrations measured in both goethite (mean values 100 to 229 ppm, max 511 ppm) and hemimorphite (mean values 39 to 137 ppm, max 258 ppm) are similar to concentrations measured in hypogene sphalerite. Additionally, the Ge concentrations recorded in bulk rock analyses of sphalerite-bearing and oxidized samples are also similar. A persistent warm-humid climate is interpreted for the region, resulting in the development of an oxidation zone favoring the formation of abundant Zn hydrosilicates and Fe hydroxides, both able to incorporate Ge in their crystal structure. In this scenario, Ge has been prevented from dispersion during the weathering of the Ge-bearing sulfide bodies and remains in the resultant nonsulfide ore.

  17. Effects of Germanium Tetrabromide Addition to Zinc Tetraphenyl Porphyrin / Fullerene Bulk Heterojunction Solar Cells

    Directory of Open Access Journals (Sweden)

    Atsushi Suzuki

    2014-03-01

    Full Text Available The effects of germanium tetrabromide addition to tetraphenyl porphyrin zinc (Zn-TPP/fullerene (C60 bulk heterojunction solar cells were characterized. The light-induced charge separation and charge transfer were investigated by current density and optical absorption. Addition of germanium tetrabromide inserted into active layer of Zn-TPP/C60 as bulk heterojunction had a positive effect on the photovoltaic and optical properties. The photovoltaic mechanism of the solar cells was discussed by experimental results. The photovoltaic performance was due to light-induced exciton promoted by insert of GeBr4 and charge transfer from HOMO of Zn-TPP to LUMO of C60 in the active layer.

  18. Optical properties of highly n-doped germanium obtained by in situ doping and laser annealing

    International Nuclear Information System (INIS)

    Frigerio, J; Ballabio, A; Isella, G; Gallacher, K; Millar, R; Paul, D; Gilberti, V; Baldassarre, L; Ortolani, M; Milazzo, R; Napolitani, E; Maiolo, L; Minotti, A; Pecora, A; Bottegoni, F; Biagioni, P

    2017-01-01

    High n-type doping in germanium is essential for many electronic and optoelectronic applications especially for high performance Ohmic contacts, lasing and mid-infrared plasmonics. We report on the combination of in situ doping and excimer laser annealing to improve the activation of phosphorous in germanium. An activated n-doping concentration of 8.8  ×  10 19 cm −3 has been achieved starting from an incorporated phosphorous concentration of 1.1  ×  10 20 cm −3 . Infrared reflectivity data fitted with a multi-layer Drude model indicate good uniformity over a 350 nm thick layer. Photoluminescence demonstrates clear bandgap narrowing and an increased ratio of direct to indirect bandgap emission confirming the high doping densities achieved. (paper)

  19. Optical properties of highly n-doped germanium obtained by in situ doping and laser annealing

    Science.gov (United States)

    Frigerio, J.; Ballabio, A.; Gallacher, K.; Giliberti, V.; Baldassarre, L.; Millar, R.; Milazzo, R.; Maiolo, L.; Minotti, A.; Bottegoni, F.; Biagioni, P.; Paul, D.; Ortolani, M.; Pecora, A.; Napolitani, E.; Isella, G.

    2017-11-01

    High n-type doping in germanium is essential for many electronic and optoelectronic applications especially for high performance Ohmic contacts, lasing and mid-infrared plasmonics. We report on the combination of in situ doping and excimer laser annealing to improve the activation of phosphorous in germanium. An activated n-doping concentration of 8.8  ×  1019 cm-3 has been achieved starting from an incorporated phosphorous concentration of 1.1  ×  1020 cm-3. Infrared reflectivity data fitted with a multi-layer Drude model indicate good uniformity over a 350 nm thick layer. Photoluminescence demonstrates clear bandgap narrowing and an increased ratio of direct to indirect bandgap emission confirming the high doping densities achieved.

  20. Amorphous Silicon-Germanium Films with Embedded Nanocrystals for Thermal Detectors with Very High Sensitivity

    Directory of Open Access Journals (Sweden)

    Cesar Calleja

    2016-01-01

    Full Text Available We have optimized the deposition conditions of amorphous silicon-germanium films with embedded nanocrystals in a plasma enhanced chemical vapor deposition (PECVD reactor, working at a standard frequency of 13.56 MHz. The objective was to produce films with very large Temperature Coefficient of Resistance (TCR, which is a signature of the sensitivity in thermal detectors (microbolometers. Morphological, electrical, and optical characterization were performed in the films, and we found optimal conditions for obtaining films with very high values of thermal coefficient of resistance (TCR = 7.9% K−1. Our results show that amorphous silicon-germanium films with embedded nanocrystals can be used as thermosensitive films in high performance infrared focal plane arrays (IRFPAs used in commercial thermal cameras.

  1. Characterization of a high-purity germanium detector for small-animal SPECT.

    Science.gov (United States)

    Johnson, Lindsay C; Campbell, Desmond L; Hull, Ethan L; Peterson, Todd E

    2011-09-21

    We present an initial evaluation of a mechanically cooled, high-purity germanium double-sided strip detector as a potential gamma camera for small-animal SPECT. It is 90 mm in diameter and 10 mm thick with two sets of 16 orthogonal strips that have a 4.5 mm width with a 5 mm pitch. We found an energy resolution of 0.96% at 140 keV, an intrinsic efficiency of 43.3% at 122 keV and a FWHM spatial resolution of approximately 1.5 mm. We demonstrated depth-of-interaction estimation capability through comparison of pinhole acquisitions with a point source on and off axes. Finally, a flood-corrected flood image exhibited a strip-level uniformity of less than 1%. This high-purity germanium offers many desirable properties for small-animal SPECT.

  2. Current experiments in germanium 0 ν β β search -- GERDA and MAJORANA

    Science.gov (United States)

    von Sturm, K.

    2015-01-01

    There are unanswered questions regarding neutrino physics that are of great interest for the scientific community. For example the absolute masses, the mass hierarchy and the nature of neutrinos are unknown up to now. The discovery of neutrinoless double beta decay (0νββ) would prove the existence of a Majorana mass, which would be linked to the half-life of the decay, and would in addition provide an elegant solution for the small mass of the neutrinos via the seesaw mechanism. Because of an existing discovery claim of 0νββ of 76Ge and the excellent energy resolution achievable, germanium is of special interest in the search for 0νββ . In this article the state of the art of germanium 0νββ search, namely the GERDA experiment and MAJORANA demonstrator, is presented. In particular, recent results of the GERDA collaboration, which strongly disfavour the above mentioned claim, are discussed.

  3. Research and Development Supporting a Next Generation Germanium Double Beta Decay Experiment

    Science.gov (United States)

    Rielage, Keith; Elliott, Steve; Chu, Pinghan; Goett, Johnny; Massarczyk, Ralph; Xu, Wenqin

    2015-10-01

    To improve the search for neutrinoless double beta decay, the next-generation experiments will increase in source mass and continue to reduce backgrounds in the region of interest. A promising technology for the next generation experiment is large arrays of Germanium p-type point contact detectors enriched in 76-Ge. The experience, expertise and lessons learned from the MAJORANA DEMONSTRATOR and GERDA experiments naturally lead to a number of research and development activities that will be useful in guiding a future experiment utilizing Germanium. We will discuss some R&D activities including a hybrid cryostat design, background reduction in cabling, connectors and electronics, and modifications to reduce assembly time. We acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program.

  4. Deformation potentials for band-to-band tunneling in silicon and germanium from first principles

    Science.gov (United States)

    Vandenberghe, William G.; Fischetti, Massimo V.

    2015-01-01

    The deformation potentials for phonon-assisted band-to-band tunneling (BTBT) in silicon and germanium are calculated using a plane-wave density functional theory code. Using hybrid functionals, we obtain: DTA = 4.1 × 108 eV/cm, DTO = 1.2 × 109 eV/cm, and DLO = 2.2 × 109 eV/cm for BTBT in silicon and DTA = 7.8 × 108 eV/cm and DLO = 1.3 × 109 eV/cm for BTBT in germanium. These values agree with experimentally measured values and we explain why in diodes, the TA/TO phonon-assisted BTBT dominates over LO phonon-assisted BTBT despite the larger deformation potential for the latter. We also explain why LO phonon-assisted BTBT can nevertheless dominate in many practical applications.

  5. Split Bull's eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector.

    Science.gov (United States)

    Ren, Fang-Fang; Ang, Kah-Wee; Ye, Jiandong; Yu, Mingbin; Lo, Guo-Qiang; Kwong, Dim-Lee

    2011-03-09

    Bull's eye antennas are capable of efficiently collecting and concentrating optical signals into an ultrasmall area, offering an excellent solution to break the bottleneck between speed and photoresponse in subwavelength photodetectors. Here, we exploit the idea of split bull's eye antenna for a nanometer germanium photodetector operating at a standard communication wavelength of 1310 nm. The nontraditional plasmonic metal aluminum has been implemented in the resonant antenna structure fabricated by standard complementary metal-oxide-semiconductor (CMOS) processing. A significant enhancement in photoresponse could be achieved over the conventional bull's eye scheme due to an increased optical near-field in the active region. Moreover, with this novel antenna design the effective grating area could be significantly reduced without sacrificing device performance. This work paves the way for the future development of low-cost, high-density, and high-speed CMOS-compatible germanium-based optoelectronic devices.

  6. Dissolution chemistry and biocompatibility of silicon- and germanium-based semiconductors for transient electronics.

    Science.gov (United States)

    Kang, Seung-Kyun; Park, Gayoung; Kim, Kyungmin; Hwang, Suk-Won; Cheng, Huanyu; Shin, Jiho; Chung, Sangjin; Kim, Minjin; Yin, Lan; Lee, Jeong Chul; Lee, Kyung-Mi; Rogers, John A

    2015-05-06

    Semiconducting materials are central to the development of high-performance electronics that are capable of dissolving completely when immersed in aqueous solutions, groundwater, or biofluids, for applications in temporary biomedical implants, environmentally degradable sensors, and other systems. The results reported here include comprehensive studies of the dissolution by hydrolysis of polycrystalline silicon, amorphous silicon, silicon-germanium, and germanium in aqueous solutions of various pH values and temperatures. In vitro cellular toxicity evaluations demonstrate the biocompatibility of the materials and end products of dissolution, thereby supporting their potential for use in biodegradable electronics. A fully dissolvable thin-film solar cell illustrates the ability to integrate these semiconductors into functional systems.

  7. Interaction between radiation-induced defects and lithium impurity atoms in germanium

    International Nuclear Information System (INIS)

    Vasil'eva, E.D.; Daluda, Yu.N.; Emtsev, V.V.; Kervalishvili, P.D.; Mashovets, T.V.

    1981-01-01

    The effect of gamma radiation on germanium doped with lithium in the course of extraction from a melt was studied. 60 Co γ-ray irradiation with the 6.2x10 12 cm -2 x1 -1 intensity was performed at 300 K. The temperature dependences of conductivity and Hall effect was studied in the 4.2-300 K range. It was shown that using this alloying technique lithium atoms in germanium were in a ''free'' state. It was found that on irradiation the lithium atom concentration decreases as a result of production of electrically inactive complexes with participation of lithium atoms. Besides this principal process secondary ones are observed: production of radiation donor-defects with the ionization energy Esub(c) of 80 MeV and compensating acceptors

  8. Modelling the structure factors and pair distribution functions of amorphous germanium, silicon and carbon

    International Nuclear Information System (INIS)

    Dalgic, Seyfettin; Gonzalez, Luis Enrique; Baer, Shalom; Silbert, Moises

    2002-01-01

    We present the results of calculations of the static structure factor S(k) and the pair distribution function g(r) of the tetrahedral amorphous semiconductors germanium, silicon and carbon using the structural diffusion model (SDM). The results obtained with the SDM for S(k) and g(r) are of comparable quality with those obtained by the unconstrained Reverse Monte Carlo simulations and existing ab initio molecular dynamics simulations for these systems. We have found that g(r) exhibits a small peak, or shoulder, a weak remnant of the prominent third neighbour peak present in the crystalline phase of these systems. This feature has been experimentally found to be present in recently reported high energy X-ray experiments of amorphous silicon (Phys. Rev. B 60 (1999) 13520), as well as in the previous X-ray diffraction of as-evaporated amorphous germanium (Phys. Rev. B 50 (1994) 539)

  9. Modelling the structure factors and pair distribution functions of amorphous germanium, silicon and carbon

    Energy Technology Data Exchange (ETDEWEB)

    Dalgic, Seyfettin; Gonzalez, Luis Enrique; Baer, Shalom; Silbert, Moises

    2002-12-01

    We present the results of calculations of the static structure factor S(k) and the pair distribution function g(r) of the tetrahedral amorphous semiconductors germanium, silicon and carbon using the structural diffusion model (SDM). The results obtained with the SDM for S(k) and g(r) are of comparable quality with those obtained by the unconstrained Reverse Monte Carlo simulations and existing ab initio molecular dynamics simulations for these systems. We have found that g(r) exhibits a small peak, or shoulder, a weak remnant of the prominent third neighbour peak present in the crystalline phase of these systems. This feature has been experimentally found to be present in recently reported high energy X-ray experiments of amorphous silicon (Phys. Rev. B 60 (1999) 13520), as well as in the previous X-ray diffraction of as-evaporated amorphous germanium (Phys. Rev. B 50 (1994) 539)

  10. Determination of Shear Deformation Potentials from the Free-Carrier Piezobirefringence in Germanium and Silicon

    DEFF Research Database (Denmark)

    Riskaer, Sven

    1966-01-01

    The present investigations of the free-carrier piezobirefringence phenomenon verify that in n-type germanium and silicon as well as in p-type silicon this effect can be ascribed to intraband transitions of the carriers. It is demonstrated how a combined investigation of the low-stress and high......-stress piezobirefringence in these materials provides a direct and independent method for determining deformation-potential constants. For n-type germanium we obtain Ξu=18.0±0.5 eV, for n-type silicon Ξu=8.5±0.4 eV; for p-type silicon a rather crude analytical approximation yields b=-3.1 eV and d=-8.3 eV. Finally...

  11. Position resolution simulations for the inverted-coaxial germanium detector, SIGMA

    Science.gov (United States)

    Wright, J. P.; Harkness-Brennan, L. J.; Boston, A. J.; Judson, D. S.; Labiche, M.; Nolan, P. J.; Page, R. D.; Pearce, F.; Radford, D. C.; Simpson, J.; Unsworth, C.

    2018-06-01

    The SIGMA Germanium detector has the potential to revolutionise γ-ray spectroscopy, providing superior energy and position resolving capabilities compared with current large volume state-of-the-art Germanium detectors. The theoretical position resolution of the detector as a function of γ-ray interaction position has been studied using simulated detector signals. A study of the effects of RMS noise at various energies has been presented with the position resolution ranging from 0.33 mm FWHM at Eγ = 1 MeV, to 0.41 mm at Eγ = 150 keV. An additional investigation into the effects pulse alignment have on pulse shape analysis and in turn, position resolution has been performed. The theoretical performance of SIGMA operating in an experimental setting is presented for use as a standalone detector and as part of an ancillary system.

  12. Calibration of Single High Purity Germanium Detector for Whole Body Counter

    International Nuclear Information System (INIS)

    Taha, T.M.; Morsi, T.M.

    2009-01-01

    A new Accuscan II single germanium detector for whole body counter was installed in NRC (Egypt). The current paper concerned on calibration of single high purity germanium detector for whole body counter. Physical parameters affecting on performance of whole body counter such as linearity, minimum detectable activity and source detector distance, SDD were investigated. Counting efficiencies for the detector have been investigated in rear wall, fixed diagnostic position in air. Counting efficiencies for organ compartments such as thyroid, lung, upper and lower gastrointestinal tract have been investigated using transfer phantom in fixed diagnostic and screening positions respectively. The organ compartment efficiencies in screening geometry were higher than that value of diagnostic geometry by a factor of three. The committed dose equivalents of I-131 in thyroid were ranged from 0.073 ± 0.004 to 1.73±0.09 mSv and in lung was 0.02±0.001 mSv

  13. Current experiments in germanium 0νββ search — GERDA and MAJORANA

    International Nuclear Information System (INIS)

    Von Sturm, K.

    2015-01-01

    There are unanswered questions regarding neutrino physics that are of great interest for the scientific community. For example the absolute masses, the mass hierarchy and the nature of neutrinos are unknown up to now. The discovery of neutrinoless double beta decay (0νββ) would prove the existence of a Majorana mass, which would be linked to the half-life of the decay, and would in addition provide an elegant solution for the small mass of the neutrinos via the seesaw mechanism. Because of an existing discovery claim of 0νββ of 76 Ge and the excellent energy resolution achievable, germanium is of special interest in the search for 0νββ. In this article the state of the art of germanium 0νββ search, namely the Gerda experiment and Majorana demonstrator, is presented. In particular, recent results of the Gerda collaboration, which strongly disfavour the above mentioned claim, are discussed.

  14. Numerical evaluation of Auger recombination coefficients in relaxed and strained germanium

    Energy Technology Data Exchange (ETDEWEB)

    Dominici, Stefano [Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Department of Electrical and Computer Engineering, Boston University, 8 Saint Mary' s Street, Boston, Massachusetts 02215 (United States); Wen, Hanqing; Bellotti, Enrico [Department of Electrical and Computer Engineering, Boston University, 8 Saint Mary' s Street, Boston, Massachusetts 02215 (United States); Bertazzi, Francesco; Goano, Michele [Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); IEIIT-CNR, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2016-05-23

    The potential applications of germanium and its alloys in infrared silicon-based photonics have led to a renewed interest in their optical properties. In this letter, we report on the numerical determination of Auger coefficients at T = 300 K for relaxed and biaxially strained germanium. We use a Green's function based model that takes into account all relevant direct and phonon-assisted processes and perform calculations up to a strain level corresponding to the transition from indirect to direct energy gap. We have considered excess carrier concentrations ranging from 10{sup 16} cm{sup −3} to 5 × 10{sup 19} cm{sup −3}. For use in device level simulations, we also provide fitting formulas for the calculated electron and hole Auger coefficients as functions of carrier density.

  15. GIOVE: a new detector setup for high sensitivity germanium spectroscopy at shallow depth

    Energy Technology Data Exchange (ETDEWEB)

    Heusser, G., E-mail: gerd.heusser@mpi-hd.mpg.de; Weber, M., E-mail: marc.weber@mpi-hd.mpg.de; Hakenmüller, J. [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117, Heidelberg (Germany); Laubenstein, M. [Laboratori Nazionali del Gran Sasso, Via G. Acitelli 22, 67100, Assergi, AQ (Italy); Lindner, M.; Maneschg, W.; Simgen, H.; Stolzenburg, D.; Strecker, H. [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117, Heidelberg (Germany)

    2015-11-09

    We report on the development and construction of the high-purity germanium spectrometer setup GIOVE (Germanium Inner Outer VEto), recently built and now operated at the shallow underground laboratory of the Max-Planck-Institut für Kernphysik, Heidelberg. Particular attention was paid to the design of a novel passive and active shield, aiming at efficient rejection of environmental and muon induced radiation backgrounds. The achieved sensitivity level of ≤100 μBq kg{sup -1} for primordial radionuclides from U and Th in typical γ ray sample screening measurements is unique among instruments located at comparably shallow depths and can compete with instruments at far deeper underground sites.

  16. Bibliographical study on the high-purity germanium radiation detectors used in gamma and X spectrometry

    International Nuclear Information System (INIS)

    Bornand, Bernard; Friant, Alain

    1979-03-01

    The germanium or silicon lithium-drifted detectors, Ge(Li) or Si(Li), and high-purity germanium detectors, HP Ge (impurity concentration approximately 10 10 cm -3 ), are the most commonly used at the present time as gamma and X-ray spectrometers. The HP Ge detectors for which room temperature storage is the main characteristic can be obtained with a large volume and a thin window, and are used as the Ge(Li) in γ ray spectrometry or the Si(Li) in X-ray spectrometry. This publication reviews issues from 1974 to 1978 on the state of the art and applications of the HP Ge semiconductor detectors. 101 bibliographical notices with French summaries are presented. An index for authors, documents and periodicals, and subjects is included [fr

  17. Crystal growth and properties of novel organic nonlinear optical crystals of 4-Nitrophenol urea

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, M. Krishna, E-mail: krishnamohan.m@ktr.srmuniv.ac.in; Ponnusamy, S.; Muthamizhchelvan, C.

    2017-07-01

    Single crystals of 4-Nitrophenol urea have been grown from water using slow evaporation technique at constant temperature, with the vision to improve the properties of the crystals. The unit cell parameters of the grown crystals were determined by single crystal and powder X-Ray diffraction. FTIR studies reveals the presence of different vibrational bands. The Optical studies confirmed that the crystal is transparent up to 360 nm .TGA and DSC studies were carried out to understand the thermal behavior of crystals. The SHG studies show the suitability of the crystals for NLO applications. The etching studies were carried out to study the behavior of the crystals under different conditions.These studies reveal that the crystals of 4-Nitrophenol urea are suitable for device applications. - Highlights: • 4-Nitrophenol urea crystals of dimensions 14 mm × 1 mm were grown. • UV–Visible studies indicate the crystal is transparent in the region of 370–800 nm. • Thermal studies show the crystal starts decomposing at 170 °C. • SHG studies indicate that the crystals have NLO efficiency 3.5 times that of KDP.

  18. Electronic and Mechanical Properties of GrapheneGermanium Interfaces Grown by Chemical Vapor Deposition

    Science.gov (United States)

    2015-10-27

    that graphene acts as a diffusion barrier to ambient contaminants, as similarly prepared bare Ge exposed to ambient conditions possesses a much...in-plane order underneath the graphene (Figure 1b,f). The stabilization of Ge terraces with half-step heights indicates that the graphene modifies the...Electronic and Mechanical Properties of Graphene −Germanium Interfaces Grown by Chemical Vapor Deposition Brian Kiraly,†,‡ Robert M. Jacobberger

  19. Perfomance of a high purity germanium multi-detector telescope for long range particles

    International Nuclear Information System (INIS)

    Riepe, G.; Protic, D.; Suekoesd, C.; Didelez, J.P.; Frascaria, N.; Gerlic, E.; Hourani, E.; Morlet, M.

    1980-01-01

    A telescope of stacked high purity germanium detectors designed for long range charged particles was tested using medium energy protons. Particle identification and the rejection of the low energy tail could be accomplished on-line allowing the measurement of complex spectra. The efficiency of the detector stack for protons was measured up to 156 MeV incoming energy. The various factors affecting the energy resolution are discussed and their estimated contributions are compared with the experimental results

  20. Reaction studies of hot silicon and germanium radicals. Progress report, September 1, 1978-August 31, 1979

    International Nuclear Information System (INIS)

    Gaspar, P.P.

    1979-01-01

    The experimental approach to attaining the goals of this research program is briefly outlined and the progress made in the last year is reviewed in sections entitled: (a) Primary steps in the reaction of recoiling silicon and germanium atoms and the identification of reactive intermediates; (b) Thermally induced silylene and germylene reactions; (c) Silicon free radical chemistry; (d) The role of ionic reactions in the chemistry of recoiling silicon atoms

  1. Reaction studies of hot silicon and germanium radicals. Period covered: September 1, 1977--August 31, 1978

    International Nuclear Information System (INIS)

    Gaspar, P.P.

    1978-01-01

    The experimental approach to attaining the goals of this research program is briefly outlined and the progress made in the last year is reviewed in sections entitled: primary steps in the reaction of recoiling silicon and germanium atoms and the identification of reactive intermediates; thermally induced silylene and germylene reactions; the role of ionic reactions in the chemistry of recoiling silicon atoms and other ion-molecule reactions studies; and silicon free radical chemistry

  2. Self-interstitials and Frenkel pairs in electron-irradiated germanium

    International Nuclear Information System (INIS)

    Carvalho, A.; Jones, R.; Goss, J.; Janke, C.; Coutinho, J.; Oberg, S.; Briddon, P.R.

    2007-01-01

    First principles calculations were used to study the structures and electrical levels of the self-interstitial in Ge. We considered the possibility of structural changes consequent with change in charge state and show these have important implications in the mobility and electrical activity of the defect. The theoretical model is compared to the results of low temperature electron irradiation in germanium reported in the literature

  3. Neutron Transmutation Doped (NTD) germanium thermistors for sub-mm bolometer applications

    Science.gov (United States)

    Haller, E. E.; Itoh, K. M.; Beeman, J. W.

    1996-01-01

    Recent advances in the development of neutron transmutation doped (NTD) semiconductor thermistors fabricated from natural and controlled isotopic composition germanium are reported. The near ideal doping uniformity that can be achieved with the NTD process, the device simplicity of NTD Ge thermistors and the high performance of cooled junction field effect transistor preamplifiers led to the widespread acceptance of these thermal sensors in ground-based, airborne and spaceborne radio telescopes. These features made possible the development of efficient bolometer arrays.

  4. Charge collection performance of a segmented planar high-purity germanium detector

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.J. [Department of Physics, The University of Liverpool, Oliver Lodge Laboratory, Liverpool Merseyside L69 7ZE (United Kingdom)], E-mail: R.Cooper@liverpool.ac.uk; Boston, A.J.; Boston, H.C.; Cresswell, J.R.; Grint, A.N.; Harkness, L.J.; Nolan, P.J.; Oxley, D.C.; Scraggs, D.P. [Department of Physics, The University of Liverpool, Oliver Lodge Laboratory, Liverpool Merseyside L69 7ZE (United Kingdom); Lazarus, I.; Simpson, J. [STFC Daresbury Laboratory, Warrington, Cheshire WA4 4AD (United Kingdom); Dobson, J. [Rosemere Cancer Centre, Royal Preston Hospital, Preston PR2 9HT (United Kingdom)

    2008-10-01

    High-precision scans of a segmented planar high-purity germanium (HPGe) detector have been performed with a range of finely collimated gamma ray beams allowing the response as a function of gamma ray interaction position to be quantified. This has allowed the development of parametric pulse shape analysis (PSA) techniques and algorithms for the correction of imperfections in performance. In this paper we report on the performance of this detector, designed for use in a positron emission tomography (PET) development system.

  5. High-capacity nanostructured germanium-containing materials and lithium alloys thereof

    Energy Technology Data Exchange (ETDEWEB)

    Graetz, Jason A. (Upton, NY); Fultz, Brent T. (Pasadena, CA); Ahn, Channing (Pasadena, CA); Yazami, Rachid (Los Angeles, CA)

    2010-08-24

    Electrodes comprising an alkali metal, for example, lithium, alloyed with nanostructured materials of formula Si.sub.zGe.sub.(z-1), where 0germanium exhibit a combination of improved capacities, cycle lives, and/or cycling rates compared with similar electrodes made from graphite. These electrodes are useful as anodes for secondary electrochemical cells, for example, batteries and electrochemical supercapacitors.

  6. Nanorods of Silicon and Germanium with Well-Defined Shapes and Sizes

    Energy Technology Data Exchange (ETDEWEB)

    Slavi C. Sevov

    2012-05-03

    We have made number of important discoveries along the major goals of the project, namely i) electrodeposition of germanium thin films from clusters, ii) synthesis of cluster-based surfactants with long hydrocarbon chains and micelles made of them, iii) grafting of Ge{sub 9}-clusters onto self assembled films of siloxanes attached to glass substrates, iv) doping of Ge{sub 9}-clusters, and v) expanding the clusters to ten-atom cages of Ge{sub 10}{sup 2-}.

  7. Ultralow background germanium gamma-ray spectrometer using superclean materials and cosmic-ray anticoincidence

    International Nuclear Information System (INIS)

    Reeves, J.H.; Hensley, W.K.; Brodzinski, R.L.; Ryge, P.

    1983-10-01

    Efforts to measure the double beta decay of 76 Ge as predicted by Grand Unified Theories have resulted in the development of a high resolution germanium diode gamma-ray spectrometer with an exceptionally low background. This paper describes the development of this system and how these techniques can be utilized to significantly reduce the background in high resolution photon spectrometers at only a moderate cost

  8. Millimeter-Wave Receiver Concepts for 77 GHz Automotive Radar in Silicon-Germanium Technology

    CERN Document Server

    Kissinger, Dietmar

    2012-01-01

    The book presents the analysis and design of integrated automotive radar receivers in Silicon-Germanium technology, for use in complex multi-channel radar transceiver front-ends in the 77GHz frequency band. The main emphasis of the work is the realization of high-linearity and low-power modular receiver channels as well as the investigation of millimeter-wave integrated test concepts for the receiver front-end.

  9. 1-Dodecanethiol based highly stable self-assembled monolayers for germanium passivation

    International Nuclear Information System (INIS)

    Cai, Qi; Xu, Baojian; Ye, Lin; Di, Zengfeng; Huang, Shanluo; Du, Xiaowei; Zhang, Jishen; Jin, Qinghui; Zhao, Jianlong

    2015-01-01

    Highlights: • A simple and effective approach for higly stable germanium passivation. • 1-Dodecanethiol self-assembled monolayers for germanium oxidation resistance. • The influence factors of germanium passivation were systematically studied. • The stability of the passivated Ge was more than 10 days even in water conditions. - Abstract: As a typical semiconductor material, germanium has the potential to replace silicon for future-generation microelectronics, due to its better electrical properties. However, the lack of stable surface state has limited its extensive use for several decades. In this work, we demonstrated highly stable self-assembled monolayers (SAMs) on Ge surface to prevent oxidization for further applications. After the pretreatment in hydrochloric acid, the oxide-free and Cl-terminated Ge could be further coated with 1-dodecanethiol (NDM) SAMs. The influence factors including reaction time, solvent component and reaction temperature were optimized to obtain stable passivated monolayer for oxidation resistance. Contact angle analysis, atomic force microscopy, ellipsometer and X-ray photoelectron spectroscopy were performed to characterize the functionalized Ge surface respectively. Meanwhile, the reaction mechanism and stability of thiols SAMs on Ge (1 1 1) surface were investigated. Finally, highly stable passivated NDM SAMs on Ge surface could be formed through immersing oxide-free Ge in mixture solvent (water/ethanol, v/v = 1:1) at appropriately elevated temperature (∼80 °C) for 24 h. And the corresponding optimized passivated Ge surface was stable for more than 10 days even in water condition, which was much longer than the data reported and paved the way for the future practical applications of Ge.

  10. 1-Dodecanethiol based highly stable self-assembled monolayers for germanium passivation

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Qi [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No. 865, Changning Road, Shanghai 200050 (China); University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049 (China); Xu, Baojian, E-mail: xbj@mail.sim.ac.cn [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No. 865, Changning Road, Shanghai 200050 (China); Shanghai Internet of Things Co., LTD, No. 1455, Pingcheng Road, Shanghai 201899 (China); Ye, Lin [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No. 865, Changning Road, Shanghai 200050 (China); University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049 (China); Di, Zengfeng [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No. 865, Changning Road, Shanghai 200050 (China); Huang, Shanluo; Du, Xiaowei [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No. 865, Changning Road, Shanghai 200050 (China); University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049 (China); Zhang, Jishen; Jin, Qinghui [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No. 865, Changning Road, Shanghai 200050 (China); Zhao, Jianlong, E-mail: jlzhao@mail.sim.ac.cn [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No. 865, Changning Road, Shanghai 200050 (China)

    2015-10-30

    Highlights: • A simple and effective approach for higly stable germanium passivation. • 1-Dodecanethiol self-assembled monolayers for germanium oxidation resistance. • The influence factors of germanium passivation were systematically studied. • The stability of the passivated Ge was more than 10 days even in water conditions. - Abstract: As a typical semiconductor material, germanium has the potential to replace silicon for future-generation microelectronics, due to its better electrical properties. However, the lack of stable surface state has limited its extensive use for several decades. In this work, we demonstrated highly stable self-assembled monolayers (SAMs) on Ge surface to prevent oxidization for further applications. After the pretreatment in hydrochloric acid, the oxide-free and Cl-terminated Ge could be further coated with 1-dodecanethiol (NDM) SAMs. The influence factors including reaction time, solvent component and reaction temperature were optimized to obtain stable passivated monolayer for oxidation resistance. Contact angle analysis, atomic force microscopy, ellipsometer and X-ray photoelectron spectroscopy were performed to characterize the functionalized Ge surface respectively. Meanwhile, the reaction mechanism and stability of thiols SAMs on Ge (1 1 1) surface were investigated. Finally, highly stable passivated NDM SAMs on Ge surface could be formed through immersing oxide-free Ge in mixture solvent (water/ethanol, v/v = 1:1) at appropriately elevated temperature (∼80 °C) for 24 h. And the corresponding optimized passivated Ge surface was stable for more than 10 days even in water condition, which was much longer than the data reported and paved the way for the future practical applications of Ge.

  11. Calibration curve for germanium spectrometers from solutions calibrated by liquid scintillation counting

    International Nuclear Information System (INIS)

    Grau, A.; Navarro, N.; Rodriguez, L.; Alvarez, A.; Salvador, S.; Diaz, C.

    1996-01-01

    The beta-gamma emitters ''60Co, ''137 Cs, ''131 I, ''210 Pb y ''129 Iare radionuclides for which the calibration by the CIEMAT/NIST method ispossible with uncertainties less than 1%. We prepared, from standardized solutions of these radionuclides, samples in vials of 20 ml. We obtained the calibration curves, efficiency as a function of energy, for two germanium detectors. (Author) 5 refs

  12. On the timing properties of germanium detectors: The centroid diagrams of prompt photopeaks and Compton events

    International Nuclear Information System (INIS)

    Penev, I.; Andrejtscheff, W.; Protochristov, Ch.; Zhelev, Zh.

    1987-01-01

    In the applications of the generalized centroid shift method with germanium detectors, the energy dependence of the time centroids of prompt photopeaks (zero-time line) and of Compton background events reveal a peculiar behavior crossing each other at about 100 keV. The effect is plausibly explained as associated with the ratio of γ-quanta causing the photoeffect and Compton scattering, respectively, at the boundaries of the detector. (orig.)

  13. Photonic Crystals Towards Nanoscale Photonic Devices

    CERN Document Server

    Lourtioz, Jean-Michel; Berger, Vincent; Gérard, Jean-Michel; Maystre, Daniel; Tchelnokov, Alexei; Pagnoux, Dominique

    2008-01-01

    Just like the periodical crystalline potential in solid state crystals determines their properties for the conduction of electrons, the periodical structuring of photonic crystals leads to envisioning the possibility of achieving a control of the photon flux in dielectric and metallic materials. The use of photonic crystals as cages for storing, filtering or guiding light at the wavelength scale paves the way to the realization of optical and optoelectronic devices with ultimate properties and dimensions. This will contribute towards meeting the demands for greater miniaturization imposed by the processing of an ever increasing number of data. Photonic Crystals will provide students and researchers from different fields with the theoretical background required for modelling photonic crystals and their optical properties, while at the same time presenting the large variety of devices, ranging from optics to microwaves, where photonic crystals have found application. As such, it aims at building bridges between...

  14. Photonic Crystals Towards Nanoscale Photonic Devices

    CERN Document Server

    Lourtioz, Jean-Michel; Berger, Vincent; Gérard, Jean-Michel; Maystre, Daniel; Tchelnokov, Alexis

    2005-01-01

    Just like the periodical crystalline potential in solid-state crystals determines their properties for the conduction of electrons, the periodical structuring of photonic crystals leads to envisioning the possibility of achieving a control of the photon flux in dielectric and metallic materials. The use of photonic crystals as a cage for storing, filtering or guiding light at the wavelength scale thus paves the way to the realisation of optical and optoelectronic devices with ultimate properties and dimensions. This should contribute toward meeting the demands for a greater miniaturisation that the processing of an ever increasing number of data requires. Photonic Crystals intends at providing students and researchers from different fields with the theoretical background needed for modelling photonic crystals and their optical properties, while at the same time presenting the large variety of devices, from optics to microwaves, where photonic crystals have found applications. As such, it aims at building brid...

  15. High temperature dielectric function of silicon, germanium and GaN

    Energy Technology Data Exchange (ETDEWEB)

    Leyer, Martin; Pristovsek, Markus; Kneissl, Michael [Technische Universitaet Berlin (Germany). Institut fuer Festkoerperphysik

    2010-07-01

    In the last few years accurate values for the optical properties of silicon, germanium and GaN at high temperatures have become important as a reference for in-situ analysis, e.g. reflectometry. Precise temperature dependent dielectric measurements are necessary for the growth of GaInP/GaInAs/Ge triple-junction solar cells and the hetero epitaxy of GaN on silicon and sapphire. We performed spectroscopic ellipsometry (SE) measurements of the dielectric function of silicon, germanium and GaN between 1.5 eV and 6.5 eV in the temperature range from 300 K to 1300 K. The Samples were deoxidized chemically or by heating. High resolution SE spectra were taken every 50 K while cooling down to room temperature. The temperature dependence of the critical energies is compared to literature. Measurements for germanium showed a shift of the E{sub 2} critical point of {proportional_to}0.1 eV toward lower energies. The reason for this behavior is a non-negligible oxide layer on the samples in the literature.

  16. Boron doping compensation of hydrogenated amorphous and polymorphous germanium thin films for infrared detection applications

    International Nuclear Information System (INIS)

    Moreno, M.; Delgadillo, N.; Torres, A.; Ambrosio, R.; Rosales, P.; Kosarev, A.; Reyes-Betanzo, C.; Hidalga-Wade, J. de la; Zuniga, C.; Calleja, W.

    2013-01-01

    In this work we have studied boron doping of hydrogenated amorphous germanium a-Ge:H and polymorphous germanium (pm-Ge:H) in low regimes, in order to compensate the material from n-type (due to oxygen contamination that commonly occurs during plasma deposition) to intrinsic, and in this manner improve the properties that are important for infrared (IR) detection, as activation energy (E a ) and temperature coefficient of resistance (TCR). Electrical, structural and optical characterization was performed on the films produced. Measurements of the temperature dependence of conductivity, room temperature conductivity (σ RT ), E a and current–voltage characteristics under IR radiation were performed in the compensated a-Ge:H and pm-Ge:H films. Our results demonstrate that, effectively, the values of E a , TCR and IR detection are improved on the a-Ge:H/pm-Ge:H films, using boron doping in low regimes, which results of interest for infrared detectors. - Highlights: • We reported boron doping compensation of amorphous and polymorphous germanium. • The films were deposited by plasma enhanced chemical vapor deposition. • The aim is to use the films as thermo-sensing elements in un-cooled microbolometers. • Those films have advantages over boron doped a-Si:H used in commercial detectors

  17. The electronic and optical properties of germanium tellurite glasses containing various transition metal oxides

    International Nuclear Information System (INIS)

    Khan, M.N.

    1988-01-01

    Various transition metal oxides, such as TiO 2 , V 2 O 5 , NiO, CuO, and ZnO are added to germanium-tellurite glass and measurements are reported of the electrical conductivity, density, optical absorption, infra-red absorption spectra, and electron spin resonance. It is found that the d.c. conductivity of glasses containing the same amount of V 2 O 5 is higher than that of germanium tellurite glasses containing a similar amount of other transition metal oxides, and is due to hopping between localized states. The optical absorption measurements show that the fundamental absorption edge is a function of glass composition and the optical absorption is due to forbidden indirect transitions. From the infra-red absorption spectra, it is found that the addition of transition metal oxides does not introduce any new absorption band in the infra-red spectrum of germanium tellurite glasses. A small shift of existing absorptions toward higher wave number is observed. The ESR measurements revealed that some transition metal ions are diamagnetic while others are paramagnetic in the glass network. (author)

  18. CDEX-1 1 kg point-contact germanium detector for low mass dark matter searches

    International Nuclear Information System (INIS)

    Kang Kejun; Yue Qian; Wu Yucheng

    2013-01-01

    The CDEX collaboration has been established for direct detection of light dark matter particles, using ultra-low energy threshold point-contact p-type germanium detectors, in China JinPing underground Laboratory (CJPL). The first 1 kg point-contact germanium detector with a sub-keV energy threshold has been tested in a passive shielding system located in CJPL. The outputs from both the point-contact P + electrode and the outside N + electrode make it possible to scan the lower energy range of less than 1 keV and at the same time to detect the higher energy range up to 3 MeV. The outputs from both P + and N + electrode may also provide a more powerful method for signal discrimination for dark matter experiment. Some key parameters, including energy resolution, dead time, decay times of internal X-rays, and system stability, have been tested and measured. The results show that the 1 kg point-contact germanium detector, together with its shielding system and electronics, can run smoothly with good performances. This detector system will be deployed for dark matter search experiments. (authors)

  19. Boron doping compensation of hydrogenated amorphous and polymorphous germanium thin films for infrared detection applications

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, M., E-mail: mmoreno@inaoep.mx [National Institute of Astrophysics, Optics and Electronics, INAOE, P.O. Box 51 and 216, Puebla, Z. P. 72840 Puebla (Mexico); Delgadillo, N. [Universidad Autónoma de Tlaxcala, Av. Universidad No. 1, Z. P. 90006 Tlaxcala (Mexico); Torres, A. [National Institute of Astrophysics, Optics and Electronics, INAOE, P.O. Box 51 and 216, Puebla, Z. P. 72840 Puebla (Mexico); Ambrosio, R. [Technology and Engineering Institute, Ciudad Juarez University UACJ, Av. Del Charro 450N, Z. P. 32310 Chihuahua (Mexico); Rosales, P.; Kosarev, A.; Reyes-Betanzo, C.; Hidalga-Wade, J. de la; Zuniga, C.; Calleja, W. [National Institute of Astrophysics, Optics and Electronics, INAOE, P.O. Box 51 and 216, Puebla, Z. P. 72840 Puebla (Mexico)

    2013-12-02

    In this work we have studied boron doping of hydrogenated amorphous germanium a-Ge:H and polymorphous germanium (pm-Ge:H) in low regimes, in order to compensate the material from n-type (due to oxygen contamination that commonly occurs during plasma deposition) to intrinsic, and in this manner improve the properties that are important for infrared (IR) detection, as activation energy (E{sub a}) and temperature coefficient of resistance (TCR). Electrical, structural and optical characterization was performed on the films produced. Measurements of the temperature dependence of conductivity, room temperature conductivity (σ{sub RT}), E{sub a} and current–voltage characteristics under IR radiation were performed in the compensated a-Ge:H and pm-Ge:H films. Our results demonstrate that, effectively, the values of E{sub a}, TCR and IR detection are improved on the a-Ge:H/pm-Ge:H films, using boron doping in low regimes, which results of interest for infrared detectors. - Highlights: • We reported boron doping compensation of amorphous and polymorphous germanium. • The films were deposited by plasma enhanced chemical vapor deposition. • The aim is to use the films as thermo-sensing elements in un-cooled microbolometers. • Those films have advantages over boron doped a-Si:H used in commercial detectors.

  20. MOVPE growth and characterization of heteroepitaxial germanium on silicon using iBuGe as precursor

    Energy Technology Data Exchange (ETDEWEB)

    Attolini, G. [IMEM-CNR, Parco Area delle Scienze, 37 A, 43124 Parma (Italy); Ponraj, J.S. [University of Information Science and Technology, St Paul the Apostle, Ohrid 6000 (Macedonia, The Former Yugoslav Republic of); Frigeri, C.; Buffagni, E.; Ferrari, C. [IMEM-CNR, Parco Area delle Scienze, 37 A, 43124 Parma (Italy); Musayeva, N.; Jabbarov, R. [Research and Development Center for Hi-Technologies, MCIT, Inshaatchilar ave., 2, AZ1073, Baku (Azerbaijan); Institute of Physics, ANAS, H. Javid ave., 33, AZ1143, Baku (Azerbaijan); Bosi, M., E-mail: bosi@imem.cnr.it [IMEM-CNR, Parco Area delle Scienze, 37 A, 43124 Parma (Italy)

    2016-01-01

    Graphical abstract: - Highlights: • Germanium layer were deposited on silicon substrates. • A novel metal organic precursor (isobutyl germane) was used. • MOVPE growth process was optimized. • Layers were characterized by TEM, XRD; SEM and AFM. - Abstract: Being an attractive and demanding candidate in the field of energy conversion, germanium has attained widespread applications. The present work is aimed at the study of metal organic vapour phase epitaxy of germanium thin films on (0 0 1) silicon at different growth temperatures using isobutyl germane as a precursor. The epilayers were characterized by X-ray diffraction, high resolution transmission electron microscopy, atomic force microscopy and scanning electron microscopy in order to understand the structural and morphological properties. The films were found to be epitaxially grown and single crystalline with slight misorientation (below 0.1 degrees). The interface between the film and substrate was analyzed in depth and different temperature dependent growth behaviours were evidenced. The major relevant lattice imperfections observed were attributed to planar defects and threading dislocations.