WorldWideScience

Sample records for gerda raidaru tullio

  1. Tullio phenomenon in superior semicircular canal dehiscence syndrome.

    Science.gov (United States)

    Basura, Gregory J; Cronin, Scott J; Heidenreich, Katherine D

    2014-03-18

    Tullio phenomenon refers to eye movements induced by sound.(1) This unusual examination finding may be seen in superior semicircular canal dehiscence (SSCD) syndrome.(2) This disorder is due to absent bone over the superior semicircular canal (figure). Patients complain of dizziness triggered by loud sound, aural fullness, autophony, and pulsatile tinnitus. When Tullio phenomenon exists in SSCD syndrome, the patient develops a mixed vertical-torsional nystagmus in which the slow phase rotates up and away from the affected ear (video on the Neurology® Web site at Neurology.org). This pattern of nystagmus aligns in the plane of the dehiscent semicircular canal and is due to excitation of its afferent nerves.

  2. Gerda Murre / Lidia Sooster

    Index Scriptorium Estoniae

    Sooster, Lidia, 1926-1999

    2000-01-01

    Estonia teatri laulja Gerda Murre elust Karaganda oblastis Kiilasmäe erilaagris, kus ta oli Kiilasmäe naisteteatri kunstiline juht. (1940/41 aastavahetusel arreteeriti ebaseaduslikult ja saadeti 1941 asumisele Siberisse). Ka hilisematest kokkupuudetest Eestis

  3. The GERDA calibration system

    Energy Technology Data Exchange (ETDEWEB)

    Baudis, Laura; Froborg, Francis; Tarka, Michael; Bruch, Tobias; Ferella, Alfredo [Physik-Institut, Universitaet Zuerich (Switzerland); Collaboration: GERDA-Collaboration

    2012-07-01

    A system with three identical custom made units is used for the energy calibration of the GERDA Ge diodes. To perform a calibration the {sup 228}Th sources are lowered from the parking positions at the top of the cryostat. Their positions are measured by two independent modules. One, the incremental encoder, counts the holes in the perforated steel band holding the sources, the other measures the drive shaft's angular position even if not powered. The system can be controlled remotely by a Labview program. The calibration data is analyzed by an iterative calibration algorithm determining the calibration functions for different energy reconstruction algorithms and the resolution of several peaks in the {sup 228}Th spectrum is determined. A Monte Carlo simulation using the GERDA simulation software MAGE has been performed to determine the background induced by the sources in the parking positions.

  4. GERDA: Results and perspectives

    Science.gov (United States)

    Cattadori, Carla Maria; GERDA Collaboration

    2015-08-01

    From November 2011 to May 2013, GERDA searched for 0 νββ and 2 νββ of 76Ge, operating bare in a liquid argon bath Ge detectors enriched up to ˜ 87% in 76Ge (enrGe), for a total mass of ˜ 18 kg of enrGe. A total exposure of 21.6 kgṡy, of enrGe was collected, and the existing claim [H. V. Klapdor-Kleingrothaus et al., Phys. Lett. B 586 (2004) 198] of 0 νββ evidence was scrutinized. GERDA didn't observe any peak at Qββ or in its immediate surroundings; the limit of T1/20ν > 2.1 ṡ1025 yr (90 % C.L.) is derived [GERDA collaboration: M. Agostini et al., Phys. Rev. Lett. 111, (2013) 122503]. When combining the GERDA limit with those of past HdM [HdM collaboration: H. V. Klapdor-Kleingrothaus et al., Eur. Phys. J. A12 (2001) 147] and Igex [Igex Collaboration: C. E. Aalseth et al., Phys. Rev. D 65 (2002) 092007] experiments, the lower limit of 3.0 ṡ1025 yr (90 % C.L.) on T1/20ν is achieved. The background index (BI) at Qββ (˜ 2039 keV) is ˜ 2.0 ṡ10-2 cts / (keV ṡkg ṡyr) and ˜ 1.0 ṡ10-2 cts / (keV ṡkg ṡyr), prior and after the pulse shape cuts respectively. Thanks to the low background the 2 νββ dominates the energy spectrum below 1800 keV: the Tν1/2 2 = (1.84-0.10+0.14) ṡ1021y was derived on a first data set corresponding to 5.1 kgṡyr exposure [GERDA collaboration: M. Agostini et al., J. Phys. G 40 (2013), 035110]. The ongoing experimental program, to double the exposed mass by adding new enrGe detectors with improved pulse shape discrimination features, and to implement the liquid argon scintillation light readout is outlined.

  5. Status of the GERDA experiment

    International Nuclear Information System (INIS)

    Medinaceli, E.

    2016-01-01

    The GERDA experiment is designed to search for neutrinoless double beta decay (0νββ) using "7"6Ge, therefore asses the nature of neutrinos (Dirac or Majorana). In the so-called Phase I, with an exposure of 21.6 kr yr, GERDA reached a background index (BI) of 10"−"2 cts/(keV kg yr) at 90% CL No signal was found during this phase and a lower limit on the process half-life of 2.1 × 10"2"5 yr was derived (90% CL). GERDA is currently being upgraded to its Phase II, where the "7"6Ge mass will be double, and it is expected to reduce by an order of magnitude the BI. For 0νββ half-lives at the order of 10"2"6 yr will be derived in the absence of signal. The experimental techniques used by GERDA will be depicted and the most relevant results from Phase I will be shown; as well as details on the upgrades of Phase II, including the status of the additional detectors deployed recently, and the new background reduction techniques using the active liquid Argon veto.

  6. Status of the GERDA experiment

    Science.gov (United States)

    Medinaceli, E.; Gerda Collaboration

    2017-07-01

    The GERDA experiment is designed to search for neutrinoless double beta decay (0νββ) using ^{76} Ge, therefore asses the nature of neutrinos (Dirac or Majorana). In the so-called Phase I, with an exposure of 21.6kr yr, GERDA reached a background index (BI) of 10^{-2}{ cts/(keV kg yr)} at 90% CL No signal was found during this phase and a lower limit on the process half-life of 2.1×10^{25}{ yr} was derived (90% CL). GERDA is currently being upgraded to its Phase II, where the ^{76} Ge mass will be double, and it is expected to reduce by an order of magnitude the BI. For 0νββ half-lives at the order of 10^{26}{ yr} will be derived in the absence of signal. The experimental techniques used by GERDA will be depicted and the most relevant results from Phase I will be shown; as well as details on the upgrades of Phase II, including the status of the additional detectors deployed recently, and the new background reduction techniques using the active liquid Argon veto.

  7. Upgrades for GERDA Phase II

    Science.gov (United States)

    Heisel, Mark

    2014-09-01

    The Germanium Detector Array (GERDA) experiment is searching for the neutrinoless double beta decay (0 νββ) of 76Ge. It is a process that violates lepton number conservation and is predicted to occur in extensions of the standard model of particle physics. GERDA is located underground in the Gran Sasso National Laboratory (LNGS), Italy. An array of bare high-purity germanium detectors enriched in 76Ge is operated in a cryostat with 64 m3 of liquid argon supplemented by a 3 m thick shield of water. The experiment aims at exploring the 0 νββ decay up to a half life of 2 .1026 yr in two phases: Phase I of the experiment has been concluded last year. No signal is observed and the so far best limit is derived for the half life of the 0 νββ decay of 76Ge, T1/20ν GERDA) experiment is searching for the neutrinoless double beta decay (0 νββ) of 76Ge. It is a process that violates lepton number conservation and is predicted to occur in extensions of the standard model of particle physics. GERDA is located underground in the Gran Sasso National Laboratory (LNGS), Italy. An array of bare high-purity germanium detectors enriched in 76Ge is operated in a cryostat with 64 m3 of liquid argon supplemented by a 3 m thick shield of water. The experiment aims at exploring the 0 νββ decay up to a half life of 2 .1026 yr in two phases: Phase I of the experiment has been concluded last year. No signal is observed and the so far best limit is derived for the half life of the 0 νββ decay of 76Ge, T1/20 ν GERDA Collaboration.

  8. Low background aspects of GERDA

    International Nuclear Information System (INIS)

    Simgen, Hardy

    2011-01-01

    The GERDA experiment operates bare Germanium diodes enriched in 76 Ge in an environment of pure liquid argon to search for neutrinoless double beta decay. A very low radioactive background is essential for the success of the experiment. We present here the research done in order to remove radio-impurities coming from the liquid argon, the stainless steel cryostat and the front-end electronics. We found that liquid argon can be purified efficiently from 222 Rn. The main source of 222 Rn in GERDA is the cryostat which emanates about 55 mBq. A thin copper shroud in the center of the cryostat was implemented to prevent radon from approaching the diodes. Gamma ray screening of radio-pure components for front-end electronics resulted in the development of a pre-amplifier with a total activity of less than 1 mBq 228 Th.

  9. Gerdas råd

    DEFF Research Database (Denmark)

    Evron, Lotte Orr

    2017-01-01

    I den her blogpost vil jeg præsentere det, som Gerda kalder et eksemplarisk fald og fortælle om, hvordan hun lever med fald. Posten er udarbejdet ud fra en løbende samtale jeg havde sammen med ti mennesker, der var faldet. Samtalerne var slået op som et tilbud om en individuel samtale om fald, men...... medarbejderne, andre var mødt op på eget initiativ. Workshoppen foregik i august 2014. Seks af deltagerne var til stede hele seancen, fire gik til og fra undervejs. Gerda var en af dem, som valgte at blive under hele seancen. Et par af deltagerne ønskede ikke at samtalerne blev optaget, derfor blev der taget...... noter undervejs og efter workshoppen. Alle gav mundtlig tilladelse til, at jeg måtte bruge mine noter i min forskning og faldforebyggelsesarbejde. Gerda er 82 år og bor alene med sin hund i et stort hus. Ud over lidt hjælp til rengøring hver 14. dag klarer hun selv alt andet i sin dagligdag. Ca. tre...

  10. Development and installation of the GERDA experiment

    International Nuclear Information System (INIS)

    Smolnikov, A

    2010-01-01

    The progress in the development of the GERDA (GErmanium Detector Array) experiment is presented. The goal of the experiment is the search for neutrinoless double beta decay of 76 Ge with considerable reduction of background in comparison with predecessor experiments. GERDA will operate bare germanium semiconductor detectors (enriched in 76 Ge) submerged in high purity liquid argon supplemented by a water shield. The experimental set up is currently under construction in the underground facility of LNGS, Italy. The results of various R and D efforts and the main steps of the GERDA set up design and installation are given as well as several novel methods for background reduction are described.

  11. Status of Gerda Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Victoria [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Collaboration: GERDA-Collaboration

    2016-07-01

    The GERDA experiment is designed to search for neutrinoless double beta (0νββ) decay of {sup 76}Ge. In Phase I of the experiment a background index (BI) of 10{sup -2} cts/(keV.kg.yr) was reached. No signal has been found and a lower limit on the half-life of 2.1.10{sup 25} yr (at 90% C.L.) is extracted. The aim of Phase II is to double the Ge mass and further reduce the BI by an order of magnitude to explore half-lives of about 10{sup 26} yr. Thirty new Broad Energy Germanium (BEGe) detectors have been produced. These detectors are distinct for their improved energy resolution and enhanced pulse shape discrimination of signal from background events. Further background reduction will be reached by an active veto to read out argon scintillation light. The Phase II commissioning showed that two of the major background components, external γ-rays from {sup 214}Bi and {sup 208}Tl decays, can be suppressed up to two orders of magnitude. This talk presents the current status of the GERDA Phase II upgrade.

  12. Test of GERDA Phase II detector assembly

    Energy Technology Data Exchange (ETDEWEB)

    Bode, Tobias; Gusev, Konstantin [Technische Universitaet Muenchen (Germany); Schwingenheuer, Bernhard; Wagner, Victoria [Max-Planck Institut fuer Kernphysik, Heidelberg (Germany); Collaboration: GERDA-Collaboration

    2014-07-01

    The GERDA experiment searches for the lepton number violating neutrinoless double beta decay (0νββ) of {sup 76}Ge. The experiment uses HPGe detectors enriched in {sup 76}Ge as source and detection material. In GERDA Phase I five BEGe detectors were operated successfully. These detectors are distinguished for improved energy resolution and enhanced pulse shape discrimination (PSD) against background events. In Phase II additional 25 BEGe detectors will be installed. New electronics and radio-pure low-mass holders were specially designed for Phase II. Prior to the installation in GERDA all BEGe detectors are tested in their final assembly in the LNGS underground laboratory. This talk presents the mechanics and performance of the GERDA Phase II detector assembly.

  13. Télécoms pour l’ingénierie du risque, Tullio Tanzi, Patrick Perrot

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Morin

    2013-04-01

    Full Text Available "Télécoms pour l’ingénierie du risque" est un ouvrage de 234 pages qui convoque la rencontre entre les Technologies de l’Information de la Communication (TIC et le risque. Les risques naturels, les risques industriels et technologiques ou encore les nouveaux risques générés par des usages déviants dans le domaine du numérique (cybercriminalité sont devenus monnaie courante. Les auteurs Tullio Tanzi (Professeur à Télécom ParisTech, département Traitement du Signal et des Images en télécommun...

  14. LAr instrumentation for Gerda phase II

    Energy Technology Data Exchange (ETDEWEB)

    Wegmann, Anne [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Collaboration: GERDA-Collaboration

    2015-07-01

    Gerda is an experiment to search for the neutrinoless double beta decay of {sup 76}Ge. Results of Phase I have been published in summer 2013. Currently the commissioning of Gerda Phase II is ongoing. To reach the aspired background index of ≤10{sup -3} cts/(keV.kg.yr) active background-suppression techniques will be applied, including an active liquid argon veto (LAr veto). It has been demonstrated by the LArGe test facility that the detection of argon scintillation light can be used to effectively suppress background events in the germanium, which simultaneously deposit energy in LAr. The light instrumentation consisting of photomultiplier tubes (PMT) and wavelength-shifting fibers connected to silicon multipliers (SiPM) has been installed in Gerda. In this talk the low background design of the LAr veto and its performance during the commissioning runs are reported.

  15. Experience from operating germanium detectors in GERDA

    Science.gov (United States)

    Palioselitis, Dimitrios; GERDA Collaboration

    2015-05-01

    Phase I of the Germanium Detector Array (GERDA) experiment, searching for the neutrinoless double beta (0νββ) decay of 76Ge, was completed in September 2013. The most competitive half-life lower limit for the 0νββ decay of 76Ge was set (T-0ν1/2 > 2.1 · 1025 yr at 90% C.L.). GERDA operates bare Ge diodes immersed in liquid argon. During Phase I, mainly refurbished semi-coaxial high purity Ge detectors from previous experiments were used. The experience gained with handling and operating bare Ge diodes in liquid argon, as well as the stability and performance of the detectors during GERDA Phase I are presented. Thirty additional new enriched BEGe-type detectors were produced and will be used in Phase II. A subgroup of these detectors has already been used successfully in GERDA Phase I. The present paper gives an overview of the production chain of the new germanium detectors, the steps taken to minimise the exposure to cosmic radiation during manufacturing, and the first results of characterisation measurements in vacuum cryostats.

  16. Experience from operating germanium detectors in GERDA

    International Nuclear Information System (INIS)

    Palioselitis, Dimitrios

    2015-01-01

    Phase I of the Germanium Detector Array (GERDA) experiment, searching for the neutrinoless double beta (0νββ) decay of 76 Ge, was completed in September 2013. The most competitive half-life lower limit for the 0νββ decay of 76 Ge was set (T- 0ν 1/2 > 2.1 · 10 25 yr at 90% C.L.). GERDA operates bare Ge diodes immersed in liquid argon. During Phase I, mainly refurbished semi-coaxial high purity Ge detectors from previous experiments were used. The experience gained with handling and operating bare Ge diodes in liquid argon, as well as the stability and performance of the detectors during GERDA Phase I are presented. Thirty additional new enriched BEGe-type detectors were produced and will be used in Phase II. A subgroup of these detectors has already been used successfully in GERDA Phase I. The present paper gives an overview of the production chain of the new germanium detectors, the steps taken to minimise the exposure to cosmic radiation during manufacturing, and the first results of characterisation measurements in vacuum cryostats. (paper)

  17. The GERDA experiment: results and perspectives

    Science.gov (United States)

    Macolino, Carla; Gerda Collaboration

    2014-11-01

    The Germanium Detector Array, GERDA, at Laboratori Nazionali del Gran Sasso (Italy), is designed to search for Majorana neutrinos via neutrinoless double beta (0νββ) decay of 76Ge. GERDA completed the Phase I in 2013, after an exposure of 21.6 kg·yr and with a background of about 0.01 cts/(keVkgyr): no signal was found and a limit on the half-life of T0ν1/2 > 2.1 · 1025 yr (90% C.L.) was established. The previous claim of 0νββ observation for 76Ge is strongly disfavoured in a model independent way. The commission for GERDA Phase II is currently ongoing and about 20 kg of additional enriched Ge diodes will be deployed. Pulse- shape analysis, together with the liquid argon instrumentation will allow to reach a background level one order of magnitude lower than in Phase I. In this paper the measurement of the half-life of 0νββ decay from GERDA Phase I and the expected sensitivity for Phase II are discussed.

  18. Status report of the GERDA experiment phase I

    International Nuclear Information System (INIS)

    Riboldi, Stefano

    2013-01-01

    Phase I of GERDA, aimed at investigating neutrino-less double beta decay of 76 Ge is in the active phase since November 2011 at the Gran Sasso National Laboratory of INFN—Italy. GERDA Ge detectors are non-encapsulated and operate immersed in liquid argon, equipped with a front-end readout electronics consisting of cryogenic charge sensitive preamplifiers designed and manufactured to cope with the characteristics of the GERDA experiment (radio-purity, long and resistive cables, etc.). The presentation will report on the current status of the GERDA experiment phase I, focusing on Ge detectors performance in terms of energy resolution, stability over time, counting rate and related issues

  19. Status report of the GERDA experiment phase I

    Science.gov (United States)

    Riboldi, Stefano; Gerda Collaboration

    2013-08-01

    Phase I of GERDA, aimed at investigating neutrino-less double beta decay of 76Ge is in the active phase since November 2011 at the Gran Sasso National Laboratory of INFN-Italy. GERDA Ge detectors are non-encapsulated and operate immersed in liquid argon, equipped with a front-end readout electronics consisting of cryogenic charge sensitive preamplifiers designed and manufactured to cope with the characteristics of the GERDA experiment (radio-purity, long and resistive cables, etc.). The presentation will report on the current status of the GERDA experiment phase I, focusing on Ge detectors performance in terms of energy resolution, stability over time, counting rate and related issues.

  20. Background characterization for the GERDA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Becerici-Schmidt, Neslihan [Max-Planck-Institut fuer Physik, Muenchen (Germany); Collaboration: GERDA-Collaboration

    2013-07-01

    The GERmanium Detector Array (Gerda) experiment at the LNGS laboratory of INFN searches for the neutrinoless double beta (0νββ) decay of {sup 76}Ge. A discovery of this decay can greatly advance our knowledge on the nature and properties of neutrinos. The current best limit on the half-life of {sup 76}Ge 0νββ decay is 1.9 . 10{sup 25} years (90% C.L.). In order to increase the sensitivity on the half-life with respect to past experiments, the background rate in the energy region of interest (ROI) around Q{sub ββ} = 2039 keV has been reduced by a factor 10. Gerda started data-taking with the full set of Phase I detectors in November 2011. Identification of the background in the first phase of the experiment is of major importance to further mitigate the background for Gerda Phase II. An analysis of the Phase I data resulted in a good understanding of the individual components in the Gerda background spectrum. The background components in the ROI have been identified to be mainly due to β- and γ-induced events originating from {sup 214}Bi ({sup 238}U-series), {sup 208}Tl ({sup 232}Th-series), {sup 42}K (progeny of {sup 42}Ar) and α-induced events coming from isotopes in the {sup 226}Ra decay chain. A background decomposition in the ROI will be presented, with a special emphasis on the contribution from α-induced events.

  1. Status of the GERDA Phase II upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Victoria [Max-Planck-Insitut für Kernphysik, Heidelberg (Germany)

    2016-06-21

    The GERDA experiment is designed to search for neutrinoless double beta (0νββ) decay of {sup 76}Ge. In Phase I of the experiment a background index of 10{sup −2} cts/(keV·kg·yr) was reached. A lower limit on the half-life of the 0νββ decay of {sup 76}Ge was set to 2.1·10{sup 25} yr (at 90% C.L.). The aim of Phase II is to reach a sensitivity of the half-life of about 10{sup 26} yr. To increase the exposure thirty new Broad Energy Germanium (BEGe) detectors have been produced. These detectors are distinct for their improved energy resolution and enhanced pulse shape discrimination of signal from background events. Further background reduction will be reached by a light instrumentation to read out argon scintillation light. In April 2015 the light instrumentation together with eight BEGe detectors has been successfully deployed in the GERDA cryostat. In a commissioning run it was shown that two of the major background components, external γ-rays from {sup 214}Bi and {sup 208}Tl decays, were suppressed up to two orders of magnitude. We are confident to reach a background index of 10{sup −3} cts/(keV·kg·yr) which is the design goal for GERDA Phase II.

  2. Status of the Gerda phase II experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lazzaro, Andrea [Physik-Department and Excellence Cluster Universe, Technische Universitaet Muenchen (Germany); Collaboration: GERDA-Collaboration

    2016-07-01

    The Gerda experiment searches for the neutrinoless double beta decay (0νββ) in {sup 76}Ge. The first phase of the experiment collected 21.6 kg. yr of exposure with a background index (BI) of 0.01 cts/(keV . kg . yr). No signal was observed and a lower limit for the 0νββ half-life was set to T{sup 0νββ}{sub 1/2} < 2.1 . 10{sup 25} yr (90% C.L). The apparatus has now been upgraded to the Phase II configuration. In Phase II 38 kg of HPGe detectors will be operated to reach an exposure of 100 kg . yr. The goal of Gerda Phase II is to lower the BI to 10{sup -3} cts/(keV . kg . y), in order to reach the sensitivity for T{sup 0νββ}{sub 1/2} = O(10{sup 26}) yr. The additional target mass is constituted of 30 custom made BEGe detectors with higher energy resolution and better pulse shape discrimination performance. The detectors are operated in new radio-pure low-mass holders. The liquid argon surrounding the detectors has been instrumented to veto the background events which produce scintillation light. In this talk the current status and the performance of the Gerda Phase II are presented.

  3. Status of the GERDA Phase II upgrade

    Science.gov (United States)

    Wagner, Victoria

    2016-06-01

    The GERDA experiment is designed to search for neutrinoless double beta (0νββ) decay of 76Ge. In Phase I of the experiment a background index of 10-2 cts/(keV.kg.yr) was reached. A lower limit on the half-life of the 0νββ decay of 76Ge was set to 2.1.1025 yr (at 90% C.L.). The aim of Phase II is to reach a sensitivity of the half-life of about 1026 yr. To increase the exposure thirty new Broad Energy Germanium (BEGe) detectors have been produced. These detectors are distinct for their improved energy resolution and enhanced pulse shape discrimination of signal from background events. Further background reduction will be reached by a light instrumentation to read out argon scintillation light. In April 2015 the light instrumentation together with eight BEGe detectors has been successfully deployed in the GERDA cryostat. In a commissioning run it was shown that two of the major background components, external γ-rays from 214Bi and 208Tl decays, were suppressed up to two orders of magnitude. We are confident to reach a background index of 10-3 cts/(keV.kg.yr) which is the design goal for GERDA Phase II.

  4. Status of the GERDA Phase II upgrade

    International Nuclear Information System (INIS)

    Wagner, Victoria

    2016-01-01

    The GERDA experiment is designed to search for neutrinoless double beta (0νββ) decay of "7"6Ge. In Phase I of the experiment a background index of 10"−"2 cts/(keV·kg·yr) was reached. A lower limit on the half-life of the 0νββ decay of "7"6Ge was set to 2.1·10"2"5 yr (at 90% C.L.). The aim of Phase II is to reach a sensitivity of the half-life of about 10"2"6 yr. To increase the exposure thirty new Broad Energy Germanium (BEGe) detectors have been produced. These detectors are distinct for their improved energy resolution and enhanced pulse shape discrimination of signal from background events. Further background reduction will be reached by a light instrumentation to read out argon scintillation light. In April 2015 the light instrumentation together with eight BEGe detectors has been successfully deployed in the GERDA cryostat. In a commissioning run it was shown that two of the major background components, external γ-rays from "2"1"4Bi and "2"0"8Tl decays, were suppressed up to two orders of magnitude. We are confident to reach a background index of 10"−"3 cts/(keV·kg·yr) which is the design goal for GERDA Phase II.

  5. Neutrinoless double beta decay in Gerda

    Science.gov (United States)

    Grabmayr, Peter; Gerda Collaboration

    2015-10-01

    The Germanium Detector Array (Gerda) experiment searches for the neutrinoless double beta decay in 76Ge. This lepton number violating process is predicted by extensions of the standard model. Gerda follows a staged approach by increasing mass and lowering the background level from phase to phase. Gerda is setup at the Gran Sasso underground laboratory of INFN, Italy. An array of high-purity germanium detectors is lowered directly in liquid argon for shielding and cooling. Further background reduction is achieved by an instrumented water buffer. In Phase I an exposure of 21.6 kg yr was collected at a background level of 10-2 cts/(keV kg yr). The lower limit on the half-life of 76Ge > 2 . 1 .1025 yr (90% C.L.) has been published. Further analyses search for decay into excited states or the accompanied Majoron decay. Presently, Phase II is in preparation which intends to reach a background level of 10-3 cts/(keV kg yr) and to increase the exposure to 100 kg yr. About 20 kg of novel thick-window BEGe (Broad Energy Germanium) detectors will be added and the liquid argon will be instrumented. The status of Phase II preparation and results from the commissioning runs will be presented as well as some further results from Phase I.

  6. Shielding of the GERDA experiment against external gamma background

    International Nuclear Information System (INIS)

    Barabanov, I.; Bezrukov, L.; Demidova, E.; Gurentsov, V.; Kianovsky, S.; Knoepfle, K.T.; Kornouhkov, V.; Schwingenheuer, B.; Vasenko, A.

    2009-01-01

    The GERmanium Detector Array (GERDA) experiment will search for neutrinoless double beta decay of 76 Ge and is currently under construction at the INFN Laboratori Nazionali del Gran Sasso (LNGS) in Italy. The basic design of GERDA is the use of cryogenic liquid and water of high purity as a superior shield against the hitherto dominant background from external gamma radiation. In this paper we show by Monte Carlo simulations and analytical calculations how GERDA was designed to suppress this background at Q ββ ( 76 Ge)=2039keV to a level of about 10 -4 cts/(keVkgy).

  7. Performance of GERDA phase II BEGe detectors

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Victoria [Max-Planck Institut fuer Kernphysik (Germany); Collaboration: GERDA-Collaboration

    2015-07-01

    The GERDA experiment searches for the lepton number violating neutrinoless double beta (0νββ) decay of {sup 76}Ge. GERDA uses HPGe detectors enriched in {sup 76}Ge as source and detection material. The experiment proceeds in two phases. In Phase I a background index of 10{sup -2} cts/(keV.kg.yr) was reached and a new lower limit on the half-life of the 0νββ decay of {sup 76}Ge was set to 2.1.10{sup 25} yr (at 95% C.L.). In Phase II the background index will be lowered by an order of magnitude and a sensitivity of 10{sup 26} yr will be reached. In order to achieve this goal 30 new custom-made broad energy germanium (BEGe) detectors and a liquid argon scintillation light veto will be deployed. Five BEGe detectors have been operated successfully in Phase I and demonstrated their improved energy resolution and enhanced pulse shape discrimination (PSD) against background events. Special designed electronics will further improve energy resolution and PSD performance. The first results from commissioning of the new BEGe detectors are presented in this talk.

  8. GERDA: Recent results and future plans

    Science.gov (United States)

    Lehnert, Björn

    2014-04-01

    The GERmanium Detector Array (GERDA) is an experiment designed to investigate the neutrinoless double beta decay (0 νββ) in 76Ge. An array of high purity germanium detectors isotopically enriched to 87% of 76Ge is operated within 64 m3 of liquid argon (LAr) at the Laboratori Nazionali del Gran Sasso (LNGS). The experiment aims to explore the 0 νββ half-life up to 1.4×1026 yr with a collected exposure of 100 kg yr separated into two physics phases. The data taking of Phase I started in November 2011 and finished in May 2013 with 21.6 kg yr of exposure and a background index (BI) of 2×10-2cts/(kg yr keV) around the Q-value of 2039 keV before pulse shape cuts. Phase II of the experiment is being prepared with additional 30 Broad Energy Germanium (BEGe) detectors and an instrumentation of the LAr, aiming at a BI reduction by a factor of 10 w.r. to Phase I. This paper will present the GERDA setup and the latest results of the experiment including a new measurement of the 2 νββ spectrum of 76Ge and the decomposition of the background spectrum. The 0 νββ analysis, finished in the meanwhile, will be briefly mentioned. Furthermore, the major improvements planned for Phase II will be discussed.

  9. GERDA: Recent results and future plans

    Energy Technology Data Exchange (ETDEWEB)

    Lehnert, Björn, E-mail: bjoernlehnert@gmail.com

    2014-04-01

    The GERmanium Detector Array (GERDA) is an experiment designed to investigate the neutrinoless double beta decay (0νββ) in {sup 76}Ge. An array of high purity germanium detectors isotopically enriched to 87% of {sup 76}Ge is operated within 64 m{sup 3} of liquid argon (LAr) at the Laboratori Nazionali del Gran Sasso (LNGS). The experiment aims to explore the 0νββ half-life up to 1.4×10{sup 26} yr with a collected exposure of 100 kg yr separated into two physics phases. The data taking of Phase I started in November 2011 and finished in May 2013 with 21.6 kg yr of exposure and a background index (BI) of 2×10{sup −2}cts/(kg yr keV) around the Q-value of 2039 keV before pulse shape cuts. Phase II of the experiment is being prepared with additional 30 Broad Energy Germanium (BEGe) detectors and an instrumentation of the LAr, aiming at a BI reduction by a factor of 10 w.r. to Phase I. This paper will present the GERDA setup and the latest results of the experiment including a new measurement of the 2νββ spectrum of {sup 76}Ge and the decomposition of the background spectrum. The 0νββ analysis, finished in the meanwhile, will be briefly mentioned. Furthermore, the major improvements planned for Phase II will be discussed.

  10. Malenkaja Gerda, spassaja Kaja, begala v muzei / Oleg Peranov

    Index Scriptorium Estoniae

    Peranov, Oleg

    2005-01-01

    Muinasjutufilm H.C. Anderseni järgi "Lumekuninganna" ("Snezhnaja koroleva") : stsenarist Jevgeni Shvarts : režissöör Gennadi Kazanski : Gerda osas 13-aastane Jelena Proklova : NSV Liit (Lenfilm) 1966. Filmivõtetest

  11. Status report of the GERDA experiment phase I

    Energy Technology Data Exchange (ETDEWEB)

    Riboldi, Stefano, E-mail: stefano.riboldi@mi.infn.it [Universita' degli Studi di Milano and INFN, Milano (Italy)

    2013-08-01

    Phase I of GERDA, aimed at investigating neutrino-less double beta decay of {sup 76}Ge is in the active phase since November 2011 at the Gran Sasso National Laboratory of INFN—Italy. GERDA Ge detectors are non-encapsulated and operate immersed in liquid argon, equipped with a front-end readout electronics consisting of cryogenic charge sensitive preamplifiers designed and manufactured to cope with the characteristics of the GERDA experiment (radio-purity, long and resistive cables, etc.). The presentation will report on the current status of the GERDA experiment phase I, focusing on Ge detectors performance in terms of energy resolution, stability over time, counting rate and related issues.

  12. Search for neutrinoless double beta decay beyond GERDA

    Energy Technology Data Exchange (ETDEWEB)

    Schwingenheuer, Bernhard [MPI Kernphysik, Heidelberg (Germany)

    2016-07-01

    The search for neutrinoless double beta decay might be the only window to observe lepton number violation and to determine the nature of neutrinos. Is is therefore considered to be of highest relevance. The isotope Ge-76 has historically been most important for this search and the ongoing experiment GERDA has the lowest background of all experiments in the field. The proposed experimental program beyond GERDA (and Majorana) is presented.

  13. LArGe. A liquid argon scintillation veto for GERDA

    International Nuclear Information System (INIS)

    Heisel, Mark

    2011-01-01

    LArGe is a GERDA low-background test facility to study novel background suppression methods in a low-background environment, for possible applications in the GERDA experiment. GERDA searches for the neutrinoless double-beta decay in 76 Ge, by operating naked germanium detectors submersed into 65 m 3 of liquid argon. Similarly, LArGe runs Ge-detectors in 1 m 3 (1.4 tons) of liquid argon, which in addition is instrumented with photomultipliers to detect argon scintillation light. The light is used in anti-coincidence with the germanium detectors, to effectively suppress background events that deposit energy in the liquid argon. This work adresses the design, construction, and commissioning of LArGe. The background suppression efficiency has been studied in combination with a pulse shape discrimination (PSD) technique for various sources, which represent characteristic backgrounds to GERDA. Suppression factors of a few times 10 3 have been achieved. First background data of LArGe (without PSD) yield a background index of (0.12-4.6).10 -2 cts/(keV.kg.y) (90% c.l.), which is at the level of the Gerda phase I design goal. Furthermore, for the first time we measure the natural 42 Ar abundance (in parallel to Gerda), and have indication for the 2νββ-decay in natural germanium. (orig.)

  14. LArGe. A liquid argon scintillation veto for GERDA

    Energy Technology Data Exchange (ETDEWEB)

    Heisel, Mark

    2011-04-13

    LArGe is a GERDA low-background test facility to study novel background suppression methods in a low-background environment, for possible applications in the GERDA experiment. GERDA searches for the neutrinoless double-beta decay in {sup 76}Ge, by operating naked germanium detectors submersed into 65 m{sup 3} of liquid argon. Similarly, LArGe runs Ge-detectors in 1 m{sup 3} (1.4 tons) of liquid argon, which in addition is instrumented with photomultipliers to detect argon scintillation light. The light is used in anti-coincidence with the germanium detectors, to effectively suppress background events that deposit energy in the liquid argon. This work adresses the design, construction, and commissioning of LArGe. The background suppression efficiency has been studied in combination with a pulse shape discrimination (PSD) technique for various sources, which represent characteristic backgrounds to GERDA. Suppression factors of a few times 10{sup 3} have been achieved. First background data of LArGe (without PSD) yield a background index of (0.12-4.6).10{sup -2} cts/(keV.kg.y) (90% c.l.), which is at the level of the Gerda phase I design goal. Furthermore, for the first time we measure the natural {sup 42}Ar abundance (in parallel to Gerda), and have indication for the 2{nu}{beta}{beta}-decay in natural germanium. (orig.)

  15. First results from GERDA Phase II

    Science.gov (United States)

    Agostini, M.; Allardt, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; Di Marco, N.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gooch, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hakenmüller, J.; Hegai, A.; Heisel, M.; Hemmer, S.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Kish, A.; Klimenko, A.; Kneißl, R.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Medinaceli, E.; Miloradovic, M.; Mingazheva, R.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Palioselitis, D.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salamida, F.; Salathe, M.; Schmitt, C.; Schneider, B.; Schönert, S.; Schreiner, J.; Schulz, O.; Schütz, A.-K.; Schwingenheuer, B.; Selivanenko, O.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wojcik, M.; Yanovich, E.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2017-09-01

    Gerda is designed for a background-free search of 76Ge neutrinoless double-β decay, using bare Ge detectors in liquid Ar. The experiment was upgraded after the successful completion of Phase I to double the target mass and further reduce the background. Newly-designed Ge detectors were installed along with LAr scintillation sensors. Phase II of data-taking started in Dec 2015 with approximately 36 kg of Ge detectors and is currently ongoing. The first results based on 10.8 kg· yr of exposure are presented. The background goal of 10-3 cts/(keV· kg· yr) is achieved and a search for neutrinoless double-β decay is performed by combining Phase I and II data. No signal is found and a new limit is set at T1/20ν > 5.3 \\cdot {1025} yr (90% C.L.).

  16. The Gerda Phase II detector assembly

    Energy Technology Data Exchange (ETDEWEB)

    Bode, Tobias; Schoenert, Stefan [Physik-Department E15, Technische Universitaet Muenchen (Germany); Schwingenheuer, Bernhard [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Collaboration: GERDA-Collaboration

    2013-07-01

    Phase II of the Gerda (Germanium Detector Array) experiment will continue the search for the neutrinoless double beta decay (0νββ) of {sup 76}Ge. Prerequisites for Phase II are an increased target mass and a reduced background index of < 10 {sup -3} cts/(keV.kg.yr). Major hardware upgrades to achieve these requirements are scheduled for 2013. They include the deployment of a new radio pure low mass detector assembly. The structural properties of available radio-pure materials and reduction of mass necessitate a change of the electrical contacting used to bias and read-out the detectors. The detector assembly design and the favored contacting solution are presented.

  17. Background modeling for the GERDA experiment

    Science.gov (United States)

    Becerici-Schmidt, N.; Gerda Collaboration

    2013-08-01

    The neutrinoless double beta (0νββ) decay experiment GERDA at the LNGS of INFN has started physics data taking in November 2011. This paper presents an analysis aimed at understanding and modeling the observed background energy spectrum, which plays an essential role in searches for a rare signal like 0νββ decay. A very promising preliminary model has been obtained, with the systematic uncertainties still under study. Important information can be deduced from the model such as the expected background and its decomposition in the signal region. According to the model the main background contributions around Qββ come from 214Bi, 228Th, 42K, 60Co and α emitting isotopes in the 226Ra decay chain, with a fraction depending on the assumed source positions.

  18. Background modeling for the GERDA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Becerici-Schmidt, N. [Max-Planck-Institut für Physik, München (Germany); Collaboration: GERDA Collaboration

    2013-08-08

    The neutrinoless double beta (0νββ) decay experiment GERDA at the LNGS of INFN has started physics data taking in November 2011. This paper presents an analysis aimed at understanding and modeling the observed background energy spectrum, which plays an essential role in searches for a rare signal like 0νββ decay. A very promising preliminary model has been obtained, with the systematic uncertainties still under study. Important information can be deduced from the model such as the expected background and its decomposition in the signal region. According to the model the main background contributions around Q{sub ββ} come from {sup 214}Bi, {sup 228}Th, {sup 42}K, {sup 60}Co and α emitting isotopes in the {sup 226}Ra decay chain, with a fraction depending on the assumed source positions.

  19. RELAP5/MOD2 blind calculation of GERDA small break test and data comparison

    International Nuclear Information System (INIS)

    Ogden, D.M.; Steiner, J.L.; Waterman, M.E.

    1985-01-01

    The Idaho National Engineering Laboratory (INEL), in support of the USNRC, has developed a RELAP5/MOD2 model of the GERDA facility to be used for analysis of the GERDA data, particularly relative to the phenomena of natural circulation and the boiler condenser mode of heat transfer. A blind calculation of GERDA Test 1605AA and a preliminary comparison with experimental data has been performed. The GERDA facility is a single loop integral facility with an electrically heated core. A general arrangement diagram of the facility is shown. The GERDA facility was designed for the performance of both separate effects and overall systems tests

  20. Upgrade for Phase II of the Gerda experiment

    Science.gov (United States)

    Agostini, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; Di Marco, N.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hakenmüller, J.; Hegai, A.; Heisel, M.; Hemmer, S.; Hiller, R.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Ioannucci, L.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kermaïdic, Y.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Kish, A.; Klimenko, A.; Kneißl, R.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Medinaceli, E.; Miloradovic, M.; Mingazheva, R.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Nisi, S.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Ransom, C.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salamida, F.; Salathe, M.; Schmitt, C.; Schneider, B.; Schönert, S.; Schreiner, J.; Schütz, A.-K.; Schulz, O.; Schwingenheuer, B.; Selivanenko, O.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wojcik, M.; Yanovich, E.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zsigmond, A. J.; Zuber, K.; Zuzel, G.

    2018-05-01

    The Gerda collaboration is performing a sensitive search for neutrinoless double beta decay of ^{76}Ge at the INFN Laboratori Nazionali del Gran Sasso, Italy. The upgrade of the Gerda experiment from Phase I to Phase II has been concluded in December 2015. The first Phase II data release shows that the goal to suppress the background by one order of magnitude compared to Phase I has been achieved. Gerda is thus the first experiment that will remain "background-free" up to its design exposure (100 kg year). It will reach thereby a half-life sensitivity of more than 10^{26} year within 3 years of data collection. This paper describes in detail the modifications and improvements of the experimental setup for Phase II and discusses the performance of individual detector components.

  1. Performance of the LAr scintillation veto of Gerda Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Wiesinger, Christoph [Physik-Department and Excellence Cluster Universe, Technische Universitaet Muenchen, James-Franck-Strasse, 85748 Garching (Germany); Collaboration: GERDA-Collaboration

    2016-07-01

    Gerda is an experiment to search for the neutrinoless double beta decay in {sup 76}Ge. Results of Phase I have been published in summer 2013 and Gerda has been upgraded to Phase II. To reach the aspired background index of ∝10{sup -3} cts/(keV.kg.yr) for Phase II active background-suppression techniques are applied, including an active liquid argon (LAr) veto. It has been demonstrated with the LArGe test facility that the detection of argon scintillation light can be used to effectively suppress background events in the germanium detectors, which simultaneously deposit energy in the LAr. The light instrumentation consisting of photomultiplier tubes (PMT) and wavelength-shifting fibers connected to silicon photomultipliers (SiPM) has been installed in Gerda. In this talk the low background design of the LAr veto and its performance during Phase II start-up is reported.

  2. Performance of the LAr scintillation veto of GERDA Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Wiesinger, Christoph [Technische Universitaet Muenchen, Physik Dept. E15, James-Franck-Strasse, 85748 Garching (Germany); Collaboration: GERDA-Collaboration

    2015-07-01

    Gerda is an experiment to search for the neutrinoless double beta decay in {sup 76}Ge. Results of Phase I have been published in summer 2013 and Gerda is upgraded to Phase II. To reach the aspired background index of ≤ 10{sup -3} cts/(keV.kg.yr) for Phase II active background-suppression techniques are applied, including an active liquid argon (LAr) veto. It has been demonstrated with the LArGe test facility that the detection of argon scintillation light can be used to effectively suppress background events in the germanium, which simultaneously deposit energy in the LAr. The light instrumentation consisting of photomultiplier tubes (PMT) and wavelength-shifting fibers connected to silicon multipliers (SiPM) has been installed in Gerda. In this talk the low background design of the LAr veto and its performance during the commissioning runs are reported.

  3. The calibration system of the GERDA muon veto Cherenkov detector

    International Nuclear Information System (INIS)

    Ritter, Florian; Lubsandorzhiev, Bayarto; Freund, Kai; Grabmayr, Peter; Jochum, Josef; Knapp, Markus; Meierhofer, Georg; Shaibonov, Bator

    2010-01-01

    The GERDA experiment searches for neutrinoless double beta decay (0νββ). To achieve a sensitivity of 10 -3 counts/(keVkgy) or better within a specific region of interest (ROI), a good background identification is needed. Therefore GERDA is located in the LNGS (Laboratori Nationali del Gran Sasso) underground facility. In addition to the good rejection of cosmic muons due to the surrounding bedrocks, a dual muon veto system has to be used. For calibration and monitoring of the muon veto, two separate systems have been developed.

  4. Characterisation of GERDA Phase-I detectors in liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Barnabe Heider, Marik; Schoenert, Stefan [Max-Planck-Institut fuer Kernphysik (Germany); Gusev, Konstantin [Russian Research Center, Kurchatov Institute (Russian Federation); Joint Institute for Nuclear Research (Russian Federation)

    2009-07-01

    GERDA will search for neutrinoless double beta decay in {sup 76}Ge by submerging bare enriched HPGe detectors in liquid argon. In GERDA Phase-I, reprocessed enriched-Ge detectors, which were previously operated by the Heidelberg-Moscow and IGEX collaborations, and reprocessed natural-Ge detectors from Genius-TF, will be redeployed. We have tested the operation and performance of bare HPGe detectors in liquid nitrogen and in liquid argon over more than three years with three non-enriched p-type prototype detectors. The detector handling and mounting procedures have been defined and the Phase-I detector technology, the low-mass assembly and the long-term stability in liquid argon have been tested successfully. The Phase-I detectors were reprocessed by Canberra Semiconductor NV, Olen, according to their standard technology but without the evaporation of a passivation layer. After their reprocessing, the detectors have been mounted in their low-mass holders and their characterisation in liquid argon performed. The leakage current, the counting characteristics and the efficiency of the detectors have been measured. The testing of the detectors was carried out in the liquid argon test stand of the GERDA underground Detector Laboratory (GDL) at LNGS. The detectors are now stored underground under vacuum until their operation in GERDA.

  5. Embracing "All But My Life" by Gerda Weissmann Klein.

    Science.gov (United States)

    Foster, Harold M.

    1997-01-01

    Discusses Gerda Weissmann Klein's book, "All But My Life," which chronicles the author's journey from a normal young (Jewish) woman to a slave in Nazi labor camps for six years. Argues that the book is well written, has characters of depth and complexity, affirms life through the ordeal of the Holocaust, and is a popular book with…

  6. Neutrinoless double beta decay in GERDA Phase II

    International Nuclear Information System (INIS)

    Macolino, C.

    2014-01-01

    The GERmanium Detector Array, GERDA, is designed to search for neutrinoless double beta (0νββ) decay of 76 Ge and it is installed in the Laboratori Nazionali del Gran Sasso (LNGS) of INFN, Italy. The GERDA experiment has completed the Phase I with a total collected exposure of 21.6 kg yr and a background index (BI) of the order of BI ≃ 10 −2 cts/(keVkg yr). No excess of events from 0νββ decay has been observed and a lower limit on the half-life on the 0νββ decay for 76 Ge has been estimated: T 0ν 1 /2 > 2.1·10 25 yr at 90% CL. The goal of GERDA Phase II is to reach the target sensitivity of T 0ν 1 /2 ≃ 1.4 · 10 26 yr, with an increased total mass of the enriched material and a reduced background level. In this paper the results from GERDA Phase I and the major improvements planned for Phase II are discussed.

  7. Results on neutrinoless double beta decay from GERDA phase I

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    After motivating searches of double beta decay and lepton number violation details about the construction, operation and analysis of GERDA will be given. Results of the recently completed phase I of data taking will then be presented and interpreted. Finally an outlook on future plans will be given.

  8. The background in the experiment Gerda

    Science.gov (United States)

    Agostini, M.; Allardt, M.; Andreotti, E.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Barnabé Heider, M.; Barros, N.; Baudis, L.; Bauer, C.; Becerici-Schmidt, N.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Brudanin, V.; Brugnera, R.; Budjáš, D.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; Cossavella, F.; Demidova, E. V.; Domula, A.; Egorov, V.; Falkenstein, R.; Ferella, A.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gotti, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Guthikonda, K. K.; Hampel, W.; Hegai, A.; Heisel, M.; Hemmer, S.; Heusser, G.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Ioannucci, L.; Csáthy, J. Janicskó; Jochum, J.; Junker, M.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Klimenko, A.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Liu, X.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Machado, A. A.; Majorovits, B.; Maneschg, W.; Nemchenok, I.; Nisi, S.; O'Shaughnessy, C.; Palioselitis, D.; Pandola, L.; Pelczar, K.; Pessina, G.; Pullia, A.; Riboldi, S.; Sada, C.; Salathe, M.; Schmitt, C.; Schreiner, J.; Schulz, O.; Schwingenheuer, B.; Schönert, S.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Strecker, H.; Tarka, M.; Ur, C. A.; Vasenko, A. A.; Volynets, O.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wojcik, M.; Yanovich, E.; Zavarise, P.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2014-04-01

    The GERmanium Detector Array ( Gerda) experiment at the Gran Sasso underground laboratory (LNGS) of INFN is searching for neutrinoless double beta () decay of Ge. The signature of the signal is a monoenergetic peak at 2039 keV, the value of the decay. To avoid bias in the signal search, the present analysis does not consider all those events, that fall in a 40 keV wide region centered around . The main parameters needed for the analysis are described. A background model was developed to describe the observed energy spectrum. The model contains several contributions, that are expected on the basis of material screening or that are established by the observation of characteristic structures in the energy spectrum. The model predicts a flat energy spectrum for the blinding window around with a background index ranging from 17.6 to 23.8 cts/(keV kg yr). A part of the data not considered before has been used to test if the predictions of the background model are consistent. The observed number of events in this energy region is consistent with the background model. The background at is dominated by close sources, mainly due to K, Bi, Th, Co and emitting isotopes from the Ra decay chain. The individual fractions depend on the assumed locations of the contaminants. It is shown, that after removal of the known peaks, the energy spectrum can be fitted in an energy range of 200 keV around with a constant background. This gives a background index consistent with the full model and uncertainties of the same size.

  9. Germanium detector studies in the framework of the GERDA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Budjas, Dusan

    2009-05-06

    The GERmanium Detector Array (GERDA) is an ultra-low background experiment under construction at Laboratori Nazionali del Gran Sasso. GERDA will search for {sup 76}Ge neutrinoless double beta decay with an aim for 100-fold reduction in background compared to predecessor experiments. This ambition necessitates innovative design approaches, strict selection of low-radioactivity materials, and novel techniques for active background suppression. The core feature of GERDA is its array of germanium detectors for ionizing radiation, which are enriched in {sup 76}Ge. Germanium detectors are the central theme of this dissertation. The first part describes the implementation, testing, and optimisation of Monte Carlo simulations of germanium spectrometers, intensively involved in the selection of low-radioactivity materials. The simulations are essential for evaluations of the gamma ray measurements. The second part concerns the development and validation of an active background suppression technique based on germanium detector signal shape analysis. This was performed for the first time using a BEGe-type detector, which features a small read-out electrode. As a result of this work, BEGe is now one of the two detector technologies included in research and development for the second phase of the GERDA experiment. A suppression of major GERDA backgrounds is demonstrated, with (0.93{+-}0.08)% survival probability for events from {sup 60}Co, (21{+-}3)% for {sup 226}Ra, and (40{+-}2)% for {sup 228}Th. The acceptance of {sup 228}Th double escape events, which are analogous to double beta decay, was kept at (89{+-}1)%. (orig.)

  10. GERDA - a new neutrinoless double beta experiment using 76Ge

    International Nuclear Information System (INIS)

    Meierhofer, G

    2011-01-01

    The search for neutrinoless double beta decay (0νssss) has been a very active field for the last decades. While double beta decay has been observed, 0νssss decay still waits for its experimental proof. The GErmanium Detector Array (GERDA) uses 76 Ge, an ideal candidate as it is acting as source and detector simultaneously. Germanium detectors, isotopically enriched in 76 Ge are submerged directly into an ultra pure cryo liquid, which serves as coolant and radiation shield. This concept will allow to reduce the background by up to two orders of magnitude with respect to earlier experiments. GERDA has been constructed in hall A of the underground laboratory LNGS of the INFN in Italy. The experiment started recently with a test run.

  11. Annual modulation of the muon flux in the GERDA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Falkenstein, Raphael; Freund, Kai; Grabmayr, Peter; Hegai, Alexander; Jochum, Josef; Schmitt, Christopher; Schuetz, Ann-Kathrin [Eberhard Karls Univeritaet Tuebingen (Germany); Collaboration: GERDA-Collaboration

    2015-07-01

    The Gerda collaboration aims to determine the half life of the neutrinoless double beta decay (0νββ) of {sup 76}Ge. In Phase I, the experimental background was reduced to 10{sup -2} cts/(keV.kg.yr) in the region around Q{sub ββ}. For Phase II we want to reduce the background contribution by one order of magnitude. Cosmic muons induce part of this dangerous background and must be vetoed. The muon veto consists of a water Cherenkov detector with 66 PMTs in the water tank surrounding the Gerda cryostat which contains the germanium crystals. The muon veto operated stably for 806 days where only 2 PMTs were lost. The rate however is modulated by the Cngs neutrino beam and the atmospheric temperature effect, both will be presented in this talk.

  12. Study of the GERDA Phase II background spectrum

    Science.gov (United States)

    Agostini, M.; Allardt, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; Di Marco, N.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gooch, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hakenmüller, J.; Hegai, A.; Heisel, M.; Hemmer, S.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Kish, A.; Klimenko, A.; Kneißl, R.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Medinaceli, E.; Miloradovic, M.; Mingazheva, R.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Palioselitis, D.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salamida, F.; Salathe, M.; Schmitt, C.; Schneider, B.; Schönert, S.; Schreiner, J.; Schulz, O.; Schütz, A.-K.; Schwingenheuer, B.; Selivanenko, O.; Shevzik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wojcik, M.; Yanovich, E.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2017-09-01

    The Gerda experiment, located at the Laboratori Nazionali del Gran Sasso (LNGS) of INFN in Italy, searches for the neutrinoless double beta (0νββ) decay of 76Ge. Gerda Phase II is aiming to reach a sensitivity for the 0νββ half life of 1026 yr in ˜ 3 years of physics data taking with 100 kg·yr of exposure and a background index of ˜ 10-3 cts/(keV·kg·yr). After 6 months of acquisition a first data release with 10.8 kg·yr of exposure is performed, showing that the design background is achieved. In this work a study of the Phase II background spectrum, the main spectral structures and the background sources will be presented and discussed.

  13. Performance of BEGe detectors for GERDA Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Lazzaro, Andrea [Physik-Department E15, Technische Universitaet Muenchen (Germany); Collaboration: GERDA-Collaboration

    2015-07-01

    After the end of the data-taking for GERDA Phase I, the apparatus has been upgraded to fulfill the requirements of the second phase. Phase II sensitivity will be driven by 30 custom made BEGe detectors. This detectors are now available and can be operated in phaseII configuration in the GERDA cryostat together with the liquid argon scintillation veto. The performances of BEGe detectors in liquid argon are presented in this talk. Besides the spectroscopy capability, the focus will be placed on the expectations in terms of background rejection via pulse shape discrimination (PSD). In particular the main goal the BEGe's pulse shape analysis is to discriminate surface events produced by beta emitters (e.g. {sup 42}K) present in the liquid Ar.

  14. Status report of the Gerda Phase II startup

    International Nuclear Information System (INIS)

    D’Andrea, Valerio

    2017-01-01

    The GERmanium Detector Array (Gerda) experiment, located at the Laboratori Nazionali del Gran Sasso (LNGS) of INFN, searches for 0νββ of "7"6Ge. Germanium diodes enriched to ∼ 86 % in the double beta emitter "7"6Ge ("e"n"rGe) are exposed being both source and detector of 0νββ decay. This process is considered a powerful probe to address still open issues in the neutrino sector of the (beyond) Standard Model of particle Physics. Since 2013, at the completion of the first experimental phase (Phase I), the Gerda setup has been upgraded to perform its next step (Phase II). The aim is to reach a sensitivity to the 0νββ decay half life larger than 10"2"6 yr in about 3 years of physics data taking, exposing a detector mass of about 35 kg of "e"n"rGe with a background index of about 10"−"3cts/(keV·kg·yr). One of the main new implementations is the liquid argon (LAr) scintillation light read-out, to veto those events that only partially deposit their energy both in Ge and in the surrounding LAr. In this paper the Gerda Phase II expected goals, the upgraded items and few selected features from the first 2016 physics and calibration runs will be presented. The main Phase I achievements will be also reviewed.

  15. Status report of the Gerda Phase II startup

    Science.gov (United States)

    D'Andrea, Valerio; Gerda Collaboration

    2017-01-01

    The GERmanium Detector Array (GERDA) experiment, located at the Laboratori Nazionali del Gran Sasso (LNGS) of INFN, searches for 0νββ of 76Ge . Germanium diodes enriched to ˜ 86 % in the double beta emitter 76Ge ( enrGe are exposed being both source and detector of 0νββ decay. This process is considered a powerful probe to address still open issues in the neutrino sector of the (beyond) Standard Model of particle Physics. Since 2013, at the completion of the first experimental phase (Phase I), the GERDA setup has been upgraded to perform its next step (Phase II). The aim is to reach a sensitivity to the 0νββ decay half-life larger than 10^{26} yr in about 3 years of physics data taking, exposing a detector mass of about 35 kg of enrGe with a background index of about 10^{-3} cts/(keV . kg . yr). One of the main new implementations is the liquid argon (LAr) scintillation light read-out, to veto those events that only partially deposit their energy both in Ge and in the surrounding LAr. In this paper the GERDA Phase II expected goals, the upgraded items and few selected features from the first 2016 physics and calibration runs will be presented. The main Phase I achievements will be also reviewed.

  16. A liquid argon scintillation veto for the GERDA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wegmann, Anne [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Collaboration: GERDA-Collaboration

    2014-07-01

    Gerda is an experiment to search for the neutrinoless double beta decay of {sup 76}Ge. Results of Phase I have been published in summer 2013. Currently Gerda is being upgraded to a second phase. To reach the aspired background index of ≤ 10{sup -3} cts/(keV . kg . yr) for Phase II active background-suppression techniques will be applied, including an active liquid argon veto (LAr veto). It has been demonstrated by the LArGe test facility that the detection of argon scintillation light can be used to effectively suppress background events in the germanium, which simultaneously deposit energy in LAr. This talk focusses on the light instrumentation which is being installed in GERDA. Photomultiplier tubes (PMT) and wavelength-shifting fibers connected to silicon photomultipliers (SiPM) are combined to maximize the photoelectron-yield with respect to various background sources. Monte Carlo simulations have been performed to optimize the design for background suppression and low self-induced background. First results of the prototypes and the progress of installation are reported.

  17. Why is the conclusion of the Gerda experiment not justified

    Science.gov (United States)

    Klapdor-Kleingrothaus, H. V.; Krivosheina, I. V.

    2013-12-01

    The first results of the GERDA double beta experiment in Gran Sasso were recently presented. They are fully consistent with the HEIDELBERG-MOSCOW experiment, but because of its low statistics cannot proof anything at this moment. It is no surprise that the statistics is still far from being able to test the signal claimed by the HEIDELBERG-MOSCOW experiment. The energy resolution of the coaxial detectors is a factor of 1.5 worse than in the HEIDELBERG-MOSCOW experiment. The original goal of background reduction to 10-2 counts/kg y keV, or by an order of magnitude compared to the HEIDELBERG-MOSCOW experiment, has not been reached. The background is only a factor 2.3 lower if we refer it to the experimental line width, i.e. in units counts/kg y energy resolution. With pulse shape analysis ( PSA) the back-ground in the HEIDELBERG-MOSCOW experiment around Q ββ is 4 × 10-3 counts/kg y keV [1], which is a factor of 4 (5 referring to the line width) lower than that of GERDA with pulse shape analysis. The amount of enriched material used in the GERDA measurement is 14.6 kg, only a factor of 1.34 larger than that used in the HEIDELBERG-MOSCOW experiment. The background model is oversimplified and not yet adequate. It is not shown that the lines of their background can be identified. GERDA has to continue the measurement further ˜5 years, until they can responsibly present an understood background. The present half life limit presented by GERDA of T {1/2/0v} > 2.1 × 1025 y (90% confidence level, i.e. 1.6ρ) is still lower than the half-life of T {1/2/0v} = 2.23{-0.31/+0.44} × 1025 y [1] determined in the HEIDELBERG-MOSCOW experiment.

  18. Results from phase I of the GERDA experiment

    International Nuclear Information System (INIS)

    Wester, Thomas

    2015-01-01

    The GERmanium Detector Array Gerda at the Laboratori Nazionali del Gran Sasso of the INFN in Italy is an experiment dedicated to the search for the neutrinoless double beta (0νββ) decay in 76 Ge. The experiment employs high purity germanium detectors enriched in 76 Ge inside a 64 m 3 cryostat filled with liquid argon. Gerda was planned in two phases of data taking with the goal to reach a half-life sensitivity in the order of 10 26 yr. Phase I of Gerda was running from November 2011 until May 2013. With about 18 kg total detector mass, data with an exposure of 21.6 kg·yr was collected and a background index of 0.01 cts/(keV·kg·yr) was achieved in the region of interest. No signal was found for the 0νββ decay and a new limit of T 1/2 > 2.1 · 10 25 yr (90% C.L.) was obtained, strongly disfavoring the previous claim of observation. Furthermore, the 2νββ decay half-life of 76 Ge was measured with unprecedented precision. Other results include new half-life limits of the order of 10 23 yr for Majoron emitting double beta decay modes with spectral indices n = 1, 2, 3, 7 and new limits in the order of 10 23 yr for 2νββ decays to the first 3 excited states of 76 Se. In Phase II, currently in preparation, the detector mass will be doubled while reducing the background index by a factor of 10

  19. Results from phase I of the GERDA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wester, Thomas [Institute of Nuclear and Particle Physics, TU Dresden, Zellescher Weg 19, Germany thomas.wester@tu-dresden.de (Germany)

    2015-10-28

    The GERmanium Detector Array Gerda at the Laboratori Nazionali del Gran Sasso of the INFN in Italy is an experiment dedicated to the search for the neutrinoless double beta (0νββ) decay in {sup 76}Ge. The experiment employs high purity germanium detectors enriched in {sup 76}Ge inside a 64 m{sup 3} cryostat filled with liquid argon. Gerda was planned in two phases of data taking with the goal to reach a half-life sensitivity in the order of 10{sup 26} yr. Phase I of Gerda was running from November 2011 until May 2013. With about 18 kg total detector mass, data with an exposure of 21.6 kg·yr was collected and a background index of 0.01 cts/(keV·kg·yr) was achieved in the region of interest. No signal was found for the 0νββ decay and a new limit of T{sub 1/2} > 2.1 · 10{sup 25} yr (90% C.L.) was obtained, strongly disfavoring the previous claim of observation. Furthermore, the 2νββ decay half-life of {sup 76}Ge was measured with unprecedented precision. Other results include new half-life limits of the order of 10{sup 23} yr for Majoron emitting double beta decay modes with spectral indices n = 1, 2, 3, 7 and new limits in the order of 10{sup 23} yr for 2νββ decays to the first 3 excited states of {sup 76}Se. In Phase II, currently in preparation, the detector mass will be doubled while reducing the background index by a factor of 10.

  20. Results from phase I of the GERDA experiment

    Science.gov (United States)

    Wester, Thomas

    2015-10-01

    The GERmanium Detector Array Gerda at the Laboratori Nazionali del Gran Sasso of the INFN in Italy is an experiment dedicated to the search for the neutrinoless double beta (0νββ) decay in 76Ge. The experiment employs high purity germanium detectors enriched in 76Ge inside a 64 m3 cryostat filled with liquid argon. Gerda was planned in two phases of data taking with the goal to reach a half-life sensitivity in the order of 1026 yr. Phase I of Gerda was running from November 2011 until May 2013. With about 18 kg total detector mass, data with an exposure of 21.6 kg.yr was collected and a background index of 0.01 cts/(keV.kg.yr) was achieved in the region of interest. No signal was found for the 0νββ decay and a new limit of T1/2 > 2.1 . 1025 yr (90% C.L.) was obtained, strongly disfavoring the previous claim of observation. Furthermore, the 2νββ decay half-life of 76Ge was measured with unprecedented precision. Other results include new half-life limits of the order of 1023 yr for Majoron emitting double beta decay modes with spectral indices n = 1, 2, 3, 7 and new limits in the order of 1023 yr for 2νββ decays to the first 3 excited states of 76Se. In Phase II, currently in preparation, the detector mass will be doubled while reducing the background index by a factor of 10.

  1. The GERDA Neutrinoless Double Beta-Decay Experiment

    International Nuclear Information System (INIS)

    Majorovits, Bela A.

    2007-01-01

    Neutrinoless double beta (0νββ)-decay is the key process to gain understanding of the nature of neutrinos. The GErmanium Detector Array (GERDA) is designed to search for 0νββ-decay of the isotope 76 Ge. Germanium crystals enriched in 76 Ge, acting as source and detector simultaneously, will be submerged directly into an ultra pure cooling medium that also serves as a radiation shield. This concept will allow for a reduction of the background by up to two orders of magnitudes with respect to earlier experiments

  2. The performance of the Muon Veto of the Gerda experiment

    Energy Technology Data Exchange (ETDEWEB)

    Freund, K.; Falkenstein, R.; Grabmayr, P.; Hegai, A.; Jochum, J.; Knapp, M.; Ritter, F.; Schmitt, C.; Schuetz, A.K. [Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Lubsandorzhiev, B. [Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Jitnikov, I.; Shevchik, E.; Shirchenko, M.; Zinatulina, D. [Joint Institute for Nuclear Research, Dubna (Russian Federation)

    2016-05-15

    Low background experiments need a suppression of cosmogenically induced events. The Gerda experiment located at Lngs is searching for the 0νββ decay of {sup 76}Ge. It is equipped with an active muon veto the main part of which is a water Cherenkov veto with 66 PMTs in the water tank surrounding the Gerda cryostat. With this system 806 live days have been recorded, 491 days were combined muon-germanium data. A muon detection efficiency of ε{sub μd} = (99.935 ± 0.015)% was found in a Monte Carlo simulation for the muons depositing energy in the germanium detectors. By examining coincident muon-germanium events a rejection efficiency of ε{sub μr} = (99.2{sub -0.4}{sup +0.3})% was found. Without veto condition the muons by themselves would cause a background index of BI{sub μ} = (3.16 ± 0.85) x 10{sup -3} cts/(keV . kg . year) at Q{sub ββ}. (orig.)

  3. ICP MS selection of radiopure materials for the GERDA experiment

    Science.gov (United States)

    di Vacri, M. L.; Nisi, S.; Cattadori, C.; Janicsko, J.; Lubashevskiy, A.; Smolnikov, A.; Walter, M.

    2015-08-01

    The GERDA (GERmanium Detector Array) experiment, located in the Gran Sasso Underground Laboratory (LNGS, Italy) aims to search for neutrinoless double beta (0νββ) decay of the 76Ge isotope. Both an ultra-low radioactivity background environment and active techniques to abate the residual background are required to reach the background index (of 10-3 counts/keV kg y) at the Qββ. In order to veto and suppress those events that partially deposit energy in Ge detectors, the readout of liquid argon (LAr) scintillation light (SL) has been implemented for the second GERDA experimental Phase. A double veto system has been designed and constructed using highly radiopure materials (scintillating fibers, wavelength shifters, polymeric foils, reflective foils). This work describes the study of lead, thorium and uranium ultra-trace content, performed at the LNGS Chemistry Laboratory by High Resolution Mass Spectrometry (HR ICP MS), for the selection of all materials involved in the construction of the veto system

  4. ICP MS selection of radiopure materials for the GERDA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Di Vacri, M. L., E-mail: divacrim@lngs.infn.it [INFN, Laboratori Nazionali del Gran Sasso, via G.Acitelli 22, 67100 Assergi (Italy); Dipartimento di Scienze Fisiche e Chimiche, University of L’Aquila, via Vetoio, 67100 L’Aquila (Italy); Nisi, S., E-mail: nisi@lngs.infn.it [INFN, Laboratori Nazionali del Gran Sasso, via G.Acitelli 22, 67100 Assergi (AQ) (Italy); Cattadori, C., E-mail: cattadori@lngs.infn.it [INFN Sezione di Milano Bicocca, Milano (Italy); Janicsko, J. [TUM Munich (Germany); Lubashevskiy, A. [MPIK, Heidelberg (Germany); JINR, Dubna (Russian Federation); Smolnikov, A. [MPIK, Heidelberg (Germany); Walter, M. [Physik-Institut, Universitat Zurich, 8057 Zurich (Switzerland)

    2015-08-17

    The GERDA (GERmanium Detector Array) experiment, located in the Gran Sasso Underground Laboratory (LNGS, Italy) aims to search for neutrinoless double beta (0νββ) decay of the {sup 76}Ge isotope. Both an ultra-low radioactivity background environment and active techniques to abate the residual background are required to reach the background index (of 10{sup −3} counts/keV kg y) at the Q{sub ββ}. In order to veto and suppress those events that partially deposit energy in Ge detectors, the readout of liquid argon (LAr) scintillation light (SL) has been implemented for the second GERDA experimental Phase. A double veto system has been designed and constructed using highly radiopure materials (scintillating fibers, wavelength shifters, polymeric foils, reflective foils). This work describes the study of lead, thorium and uranium ultra-trace content, performed at the LNGS Chemistry Laboratory by High Resolution Mass Spectrometry (HR ICP MS), for the selection of all materials involved in the construction of the veto system.

  5. Background rejection of n+ surface events in GERDA Phase II

    Science.gov (United States)

    Lehnert, Björn

    2016-05-01

    The GERDA experiment searches for neutrinoless double beta (0vββ) decay in 76Ge using an array of high purity germanium (HPGe) detectors immersed in liquid argon (LAr). Phase II of the experiment uses 30 new broad energy germanium (BEGe) detectors with superior pulse shape discrimination capabilities compared to the previously used semi-coaxial detector design. By far the largest background component for BEGe detectors in GERDA are n+-surface events from 42K β decays which are intrinsic in LAr. The β particles with up to 3.5 MeV can traverse the 0.5 to 0.9 mm thick electrode and deposit energy within the region of interest for the 0vββ decay. However, those events have particular pulse shape features allowing for a strong discrimination. The understanding and simulation of this background, showing a reduction by up to a factor 145 with pulse shape discrimination alone, is presented in this work.

  6. Searching Neutrinoless Double Beta Decay with GERDA Phase II

    Science.gov (United States)

    Agostini, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Bettini, A.; Bezrukov, L.; Bode, T.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; Comellato, T.; D’Andrea, V.; Demidova, E. V.; di Marco, N.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Gangapshev, A.; Garfagnini, A.; Giordano, M.; Gooch, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hahne, C.; Hakenmüller, J.; Hegai, A.; Heisel, M.; Hemmer, S.; Hiller, R.; Hofmann, W.; Holl, P.; Hult, M.; Inzhechik, L. V.; Ioannucci, L.; Csáthy, J. Janicskó; Jochum, J.; Junker, M.; Kazalov, V.; Kermaidic, Y.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Kish, A.; Klimenko, A.; Kneißl, R.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Marissens, G.; Miloradovic, M.; Mingazheva, R.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Nisi, S.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Ransom, C.; Reissfelder, M.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Sala, E.; Salamida, F.; Schmitt, C.; Schneider, B.; Schreiner, J.; Schulz, O.; Schweisshelm, B.; Schwingenheuer, B.; Schönert, S.; Schütz, A.-K.; Seitz, H.; Selivanenko, O.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wojcik, M.; Yanovich, E.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zschocke, A.; Zsigmond, A. J.; Zuber, K.; Zuzel, G.

    An observation of neutrinoless double beta (0νββ) decay would allow to shed light onto the nature of neutrinos. GERDA (GERmanium Detector Array) aims to discover this process in a background-free search using 76Ge. The experiment is located at the Laboratori Nazionali del Gran Sasso (LNGS) of the Istituto Nazionale di Fisica Nucleare (INFN) in Italy. Bare, isotopically enriched, high purity germanium detectors are operated in liquid argon. GERDA follows a staged approach. In Phase II 35.6 kg of enriched germanium detectors are operated since December 2015. The application of active background rejection methods, such as a liquid argon scintillation light read-out and pulse shape discrimination of germanium detector signals, allows to reduce the background index to the intended level of 10‑3 cts/(keVṡkgṡyr). No evidence for the 0νββ decay has been found in 23.2 kgṡyr of Phase II data, and together with data from Phase I the up-to-date most stringent half-life limit for this process in 76Ge has been established, at a median sensitivity of 5.8ṡ1025yr the 90% C.L. lower limit is 8.0ṡ1025yr.

  7. Off-line data processing and analysis for the GERDA experiment

    International Nuclear Information System (INIS)

    Agostini, M; Pandola, L; Zavarise, P

    2012-01-01

    Gerda is an experiment designed to look for the neutrinoless double beta decay of 76 Ge. The experiment uses an array of high-purity germanium detectors (enriched in 76 Ge) directly immersed in liquid argon. Gerda is presently operating eight enriched coaxial detectors (approximately 15 kg of 76 Ge) and about 25 new custom-made enriched BEGe detectors will be deployed in the next phase (additional 20kg of 76 Ge). The paper describes the Gerda off-line analysis of the high-purity germanium detector data. Firstly we present the signal processing flow, focusing on the digital filters and on the algorithms used. Secondly we discuss the rejection of non-physical events and the data quality monitoring. The analysis is performed completely with the Gerda software framework (Gelatio), designed to support a multi-channel processing and to perform a modular analysis of digital signals.

  8. Search for the neutrinoless ββ decay in 76Ge with the GERDA experiment

    International Nuclear Information System (INIS)

    Cattadori, C.; Knapp, M.; Kröninger, K.; Liu, X.; Pandola, L.; Pullia, A.; Tomei, C.; Ur, C.; Zocca, F.

    2011-01-01

    The GERmanium Detector Array, GERDA, [Gerda Collaboration, Abt I et al., Proposal, a (http://www.mpi-hd.mpg.de/ge76/home.html)] is designed to search for neutrinoless double beta (0νββ)-decay of 76 Ge. The importance of such a search is emphasized by the evidence of a non-zero neutrino mass from flavour oscillation experiments and by the recent claim [Klapdor-Kleingrothaus H V et al., Phys. Lett. B 586, 198 (2004)] based on data of the Heidelberg-Moscow experiment. GERDA will be installed in the Hall A of the Gran Sasso underground Laboratory (LNGS), Italy. The construction of GERDA will start in 2006.

  9. Phase II Upgrade of the GERDA Experiment for the Search of Neutrinoless Double Beta Decay

    Science.gov (United States)

    Majorovits, B.

    Observation of neutrinoless double beta decay could answer the question regarding the Majorana or Dirac nature of neutrinos. The GERDA experiment utilizes HPGe detectors enriched with the isotope 76Ge to search for this process. Recently the GERDA collaboration has unblinded data of Phase I of the experiment. In order to further improve the sensitivity of the experiment, additionally to the coaxial detectors used, 30 BEGe detectors made from germanium enriched in 76Ge will be deployed in GERDA Phase II. BEGe detectors have superior PSD capability, thus the background can be further reduced. The liquid argon surrounding the detector array will be instrumented in order to reject background by detecting scintillation light induced in the liquid argon by radiation. After a short introduction the hardware preparations for GERDA Phase II as well as the processing and characterization of the 30 BEGe detectors are discussed.

  10. Improvement of the energy resolution via an optimized digital signal processing in GERDA Phase I

    Science.gov (United States)

    Agostini, M.; Allardt, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Barros, N.; Baudis, L.; Bauer, C.; Becerici-Schmidt, N.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Budjáš, D.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; Vacri, A. di; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Fedorova, O.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hegai, A.; Heisel, M.; Hemmer, S.; Heusser, G.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Klimenko, A.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, ********************M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Medinaceli, E.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Palioselitis, D.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salathe, M.; Schmitt, C.; Schneider, B.; Schönert, S.; Schreiner, J.; Schütz, A.-K.; Schulz, O.; Schwingenheuer, B.; Selivanenko, O.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Stepaniuk, M.; Ur, C. A.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wilsenach, H.; Wojcik, M.; Yanovich, E.; Zavarise, P.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2015-06-01

    An optimized digital shaping filter has been developed for the Gerda experiment which searches for neutrinoless double beta decay in Ge. The Gerda Phase I energy calibration data have been reprocessed and an average improvement of 0.3 keV in energy resolution (FWHM) corresponding to 10 % at the value for decay in Ge is obtained. This is possible thanks to the enhanced low-frequency noise rejection of this Zero Area Cusp (ZAC) signal shaping filter.

  11. Improvement of the GERDA Ge Detectors Energy Resolution by an Optimized Digital Signal Processing

    Science.gov (United States)

    Benato, G.; D'Andrea, V.; Cattadori, C.; Riboldi, S.

    GERDA is a new generation experiment searching for neutrinoless double beta decay of 76Ge, operating at INFN Gran Sasso Laboratories (LNGS) since 2010. Coaxial and Broad Energy Germanium (BEGe) Detectors have been operated in liquid argon (LAr) in GERDA Phase I. In the framework of the second GERDA experimental phase, both the contacting technique, the connection to and the location of the front end readout devices are novel compared to those previously adopted, and several tests have been performed. In this work, starting from considerations on the energy scale stability of the GERDA Phase I calibrations and physics data sets, an optimized pulse filtering method has been developed and applied to the Phase II pilot tests data sets, and to few GERDA Phase I data sets. In this contribution the detector performances in term of energy resolution and time stability are here presented. The improvement of the energy resolution, compared to standard Gaussian shaping adopted for Phase I data analysis, is discussed and related to the optimized noise filtering capability. The result is an energy resolution better than 0.1% at 2.6 MeV for the BEGe detectors operated in the Phase II pilot tests and an improvement of the energy resolution in LAr of about 8% achieved on the GERDA Phase I calibration runs, compared to previous analysis algorithms.

  12. Design, simulation and construction of the GERDA-muon veto; Design, Simulation und Aufbau des GERDA-Myonvetos

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, Markus Alexander

    2009-10-09

    The GERmanium Detector Array (Gerda) is a experiment searching for the neutrinoless double beta decay of {sup 76}Ge. This very rare weakly interacting process is predicted to occur if the neutrino exhibits a mass and is a Majorana particle; i.e. it is its own antiparticle. Although the double beta decay with emission of two neutrinos has been found in several nuclei, there is at this moment only a part of the Heidelberg-Moscow Collaboration claiming to have observed the neutrinoless double beta decay. The best limit for the half life currently is T{sub 1/2} > 1.2.10{sup 25} y. Gerda will expose about 15 kg.y of enriched germanium detectors from the Heidelberg-Moscow and IGEX crystals in phase I. In this phase, it will be able to test the claim within one year, due to reduced background by a factor 10. In phase II about 100 kg.y of data will be accumulated, leading to T{sub 1/2} > 2.10{sup 26} y due to an additional reduction of the background by a factor of 10. For a high sensitivity at these half lives, it is necessary to detect the corresponding rare events. Therefore background reduction to a rate of 10{sup -3} (counts)/(keV.kg.year) is of utmost importance. Therefore different background identification methods, like pulseshape analysis or a muon veto will be used. In this work, the development of the Cherenkov muon veto detectors is presented. First design studies will be shown, including extensive Monte-Carlo simulations. These simulations were also used to optimize the trigger conditions of the data acquisition, to detect all muons, that cause an energy deposition in the germanium detectors. Finally the on site construction at the Laboratori Nazionali del Gran Sasso in Italy will be described. (orig.)

  13. Results on neutrinoless double beta decay of 76Ge from the GERDA experiment

    Science.gov (United States)

    Palioselitis, Dimitrios

    2015-05-01

    The Germanium Detector Array (GERDA) experiment is searching for neutrinoless double beta (0νββ) decay of 76Ge, a lepton number violating nuclear process predicted by extensions of the Standard Model. GERDA is an array of bare germanium diodes immersed in liquid argon located at the Gran Sasso National Laboratory (LNGS) in Italy. The results of the GERDA Phase I data taking with a total exposure of 21.6 kg yr and a background index of 0.01 cts/(keV kg yr) are presented in this paper. No signal was observed and a lower limit of T1/20ν > 2.1×1025 yr (90% C.L.) was derived for the half-life of the 0νββ decay of 76Ge. Phase II of the experiment aims to reduce the background around the region of interest by a factor of ten.

  14. Improvement of the energy resolution via an optimized digital signal processing in GERDA Phase I

    International Nuclear Information System (INIS)

    Agostini, M.; Allardt, M.; Bakalyarov, A. M.; Balata, M.

    2015-01-01

    An optimized digital shaping filter has been developed for the Gerda experiment which searches for neutrinoless double beta decay in 76 Ge. The Gerda Phase I energy calibration data have been reprocessed and an average improvement of 0.3 keV in energy resolution (FWHM) corresponding to 10 % at the Q value for 0νββ decay in 76 Ge is obtained. This is possible thanks to the enhanced low-frequency noise rejection of this Zero Area Cusp (ZAC) signal shaping filter

  15. Improvement of the energy resolution via an optimized digital signal processing in GERDA Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, M. [Physik Department and Excellence Cluster Universe, Technische Universität München, Munich (Germany); Allardt, M. [Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden (Germany); Bakalyarov, A. M. [National Research Center “Kurchatov Institute”, Moscow (Russian Federation); Balata, M. [INFN Laboratori Nazionali del Gran Sasso, LNGS, and Gran Sasso Science Institute, GSSI, Assergi (Italy); Collaboration: GERDA Collaboration; and others

    2015-06-09

    An optimized digital shaping filter has been developed for the Gerda experiment which searches for neutrinoless double beta decay in {sup 76}Ge. The Gerda Phase I energy calibration data have been reprocessed and an average improvement of 0.3 keV in energy resolution (FWHM) corresponding to 10 % at the Q value for 0νββ decay in {sup 76}Ge is obtained. This is possible thanks to the enhanced low-frequency noise rejection of this Zero Area Cusp (ZAC) signal shaping filter.

  16. Results on neutrinoless double beta decay of 76Ge from GERDA Phase I

    International Nuclear Information System (INIS)

    Palioselitis, Dimitrios

    2015-01-01

    The Germanium Detector Array (GERDA) experiment is searching for the neutrinoless double beta (0νββ) decay of 76 Ge by operating bare germanium diodes in liquid argon. GERDA is located at the Gran Sasso National Laboratory (LNGS) in Italy. During Phase I, a total exposure of 21.6 kg yrand a background index of 0.01 cts/(keVkg yr) were reached. No signal was observed and a lower limit of T 0ν 1/2 > 2.1 · 10 25 yr(90% C.L.) is derived for the half life of the 0νββ decay of 76 Ge. (paper)

  17. Results on neutrinoless double beta decay of 76Ge from GERDA Phase I

    Science.gov (United States)

    Palioselitis, Dimitrios; GERDA Collaboration

    2015-05-01

    The Germanium Detector Array (GERDA) experiment is searching for the neutrinoless double beta (0νββ) decay of 76Ge by operating bare germanium diodes in liquid argon. GERDA is located at the Gran Sasso National Laboratory (LNGS) in Italy. During Phase I, a total exposure of 21.6 kg yrand a background index of 0.01 cts/(keVkg yr) were reached. No signal was observed and a lower limit of T0ν1/2 > 2.1 · 1025 yr(90% C.L.) is derived for the half life of the 0νββ decay of 76Ge.

  18. Improvement of the energy resolution via an optimized digital signal processing in GERDA Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, M.; Bode, T.; Budjas, D.; Janicsko Csathy, J.; Lazzaro, A.; Schoenert, S. [Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Munich (Germany); Allardt, M.; Domula, A.; Lehnert, B.; Schneider, B.; Wester, T.; Wilsenach, H.; Zuber, K. [Technische Universitaet Dresden, Institut fuer Kern- und Teilchenphysik, Dresden (Germany); Bakalyarov, A.M.; Belyaev, S.T.; Lebedev, V.I.; Zhukov, S.V. [National Research Center ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Balata, M.; D' Andrea, V.; Di Vacri, A.; Junker, M.; Laubenstein, M.; Macolino, C.; Zavarise, P. [LNGS, Assergi (Italy); Barabanov, I.; Bezrukov, L.; Doroshkevich, E.; Fedorova, O.; Gurentsov, V.; Kazalov, V.; Kuzminov, V.V.; Lubsandorzhiev, B.; Moseev, P.; Selivanenko, O.; Veresnikova, A.; Yanovich, E. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Barros, N. [Technische Universitaet Dresden, Institut fuer Kern- und Teilchenphysik, Dresden (Germany); University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, PA (United States); Baudis, L.; Benato, G.; Walter, M. [Physik Institut der Universitaet Zuerich, Zurich (Switzerland); Bauer, C.; Heisel, M.; Heusser, G.; Hofmann, W.; Kihm, T.; Kirsch, A.; Knoepfle, K.T.; Lindner, M.; Maneschg, W.; Salathe, M.; Schreiner, J.; Schwingenheuer, B.; Simgen, H.; Smolnikov, A.; Stepaniuk, M.; Wagner, V.; Wegmann, A. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Becerici-Schmidt, N.; Caldwell, A.; Liao, H.Y.; Majorovits, B.; Palioselitis, D.; Schulz, O.; Vanhoefer, L. [Max-Planck-Institut fuer Physik, Munich (Germany); Bellotti, E. [Universita Milano Bicocca, Dipartimento di Fisica, Milan (Italy); INFN Milano Bicocca, Milan (Italy); Belogurov, S.; Kornoukhov, V.N. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Bettini, A.; Brugnera, R.; Garfagnini, A.; Hemmer, S.; Medinaceli, E.; Sada, C.; Sturm, K. von [Universita di Padova, Dipartimento di Fisica e Astronomia, Padua (Italy); INFN Padova, Padua (Italy); Borowicz, D. [Jagiellonian University, Institute of Physics, Krakow (Poland); Joint Institute for Nuclear Research, Dubna (Russian Federation); Brudanin, V.; Egorov, V.; Kochetov, O.; Nemchenok, I.; Rumyantseva, N.; Zhitnikov, I.; Zinatulina, D. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Cattadori, C. [INFN Milano Bicocca, Milan (Italy); Chernogorov, A.; Demidova, E.V.; Kirpichnikov, I.V.; Vasenko, A.A. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Falkenstein, R.; Freund, K.; Grabmayr, P.; Hegai, A.; Jochum, J.; Schmitt, C.; Schuetz, A.K. [Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Frodyma, N.; Misiaszek, M.; Panas, K.; Pelczar, K.; Wojcik, M.; Zuzel, G. [Jagiellonian University, Institute of Physics, Krakow (Poland); Gangapshev, A. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Gusev, K. [Joint Institute for Nuclear Research, Dubna (Russian Federation); National Research Center ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Munich (Germany); Hult, M.; Lutter, G. [Institute for Reference Materials and Measurements, Geel (Belgium); Inzhechik, L.V. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Moscow Institute of Physics and Technology, Moscow (Russian Federation); Klimenko, A. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); International University for Nature, Society and Man ' ' Dubna' ' , Dubna (Russian Federation); Lippi, I.; Stanco, L.; Ur, C.A. [INFN Padova, Padua (Italy); Lubashevskiy, A. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Pandola, L. [INFN Laboratori Nazionali del Sud, Catania (Italy); Pullia, A.; Riboldi, S. [Universita degli Studi di Milano, Dipartimento di Fisica, Milan (Italy); INFN, Milano (Italy); Shirchenko, M. [Joint Institute for Nuclear Research, Dubna (Russian Federation); National Research Center ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Collaboration: GERDA Collaboration

    2015-06-15

    An optimized digital shaping filter has been developed for the Gerda experiment which searches for neutrinoless double beta decay in {sup 76}Ge. The GERDA Phase I energy calibration data have been reprocessed and an average improvement of 0.3 keV in energy resolution (FWHM) corresponding to 10% at the Q value for 0νββ decay in {sup 76}Ge is obtained. This is possible thanks to the enhanced low-frequency noise rejection of this Zero Area Cusp (ZAC) signal shaping filter. (orig.)

  19. The Gerda search for neutrinoless double beta decay

    Science.gov (United States)

    O'Shaughnessy, Christopher; Gerda Collaboration

    2013-10-01

    The Germanium Detector Array (Gerda) is a search for the neutrinoless double beta decay of 76Ge. High Purity Germanium (HPGe) detectors enriched in the isotope-76 are operated bare in liquid argon (LAr). LAr is used for both cooling of the HPGe diodes to their operating temperatures and for shielding from external radiation sources. From the measurements of the first phase that began data taking on 1 Nov. 2011 it is expected to have a sensitivity on the level of T1/2>2E25 yr at a 90% CL after 15 kġyr. The goal of this phase will be to probe the claim of an observation by part of the Heidelberg-Moscow collaboration. Efforts will then focus on increasing the sensitivity of the experiment by deploying additional enriched detectors that are in an advanced stage of production and by reducing the background index further by making use of pulse shape discrimination techniques as well as an active LAr veto. While the 0νββ region of interest continues to remain blinded, here the status of Phase-I data taking is presented along with the work towards improving the experimental sensitivity.

  20. Search of Neutrinoless Double Beta Decay with the GERDA Experiment

    Science.gov (United States)

    Agostini, M.; Allardt, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Becerici-Schmidt, N.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Budjáš, D.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Fedorova, O.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gooch, C.; Gotti, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hampel, W.; Hegai, A.; Heisel, M.; Hemmer, S.; Heusser, G.; Hoffmann, W.; Hult, M.; Inzhechik, L. V.; Ioannucci, L.; Janicksó Csáthy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Klimenko, A.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Marissens, G.; Medinaceli, E.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Nisi, S.; Palioselitis, D.; Panas, K.; Pandola, L.; Pelczar, K.; Pessina, G.; Pullia, A.; Reissfelder, M.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salathe, M.; Schmitt, C.; Schneider, B.; Schreiner, J.; Schulz, O.; Schwingenheuer, B.; Schönert, S.; Seitz, H.; Selivalenko, O.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Stepaniuk, M.; Strecker, H.; Ur, C. A.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wilsenach, H.; Wojcik, M.; Yanovich, E.; Zavarise, P.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2016-04-01

    The GERDA (GERmanium Detector Array) is an experiment for the search of neutrinoless double beta decay (0 νββ) in 76Ge, located at Laboratori Nazionali del Gran Sasso of INFN (Italy). In the first phase of the experiment, a 90% confidence level (C.L.) sensitivity of 2.4 ṡ1025 yr on the 0 νββ decay half-life was achieved with a 21.6 kgṡyr exposure and an unprecedented background index in the region of interest of 10-2 counts/(keVṡkgṡyr). No excess of signal events was found, and an experimental lower limit on the half-life of 2.1 ṡ 1025 yr (90% C.L.) was established. Correspondingly, the limit on the effective Majorana neutrino mass is mee < 0.2- 0.4 eV, depending on the considered nuclear matrix element. The previous claim for evidence of a 0 νββ decay signal is strongly disfavored, and the field of research is open again.

  1. Search for neutrinoless double beta decay with GERDA phase II

    Science.gov (United States)

    Agostini, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; Di Marco, N.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Gangapshev, A.; Garfagnini, A.; Gooch, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hakenmüller, J.; Hegai, A.; Heisel, M.; Hemmer, S.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Csáthy, J. Janicskó; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Kish, A.; Klimenko, A.; Kneißl, R.; Knies, J.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Majorovits, B.; Maneschg, W.; Marissens, G.; Miloradovic, M.; Mingazheva, R.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Ransom, C.; Reissfelder, M.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salamida, F.; Schmitt, C.; Schneider, B.; Schönert, S.; Schreiner, J.; Schulz, O.; Schütz, A.-K.; Schwingenheuer, B.; Seitz, H.; Selivanenko, O.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wojcik, M.; Yanovich, E.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2017-10-01

    The GERmanium Detector Array (gerda) experiment, located at the Gran Sasso underground laboratory in Italy, is one of the leading experiments for the search of 0νββ decay. In Phase II of the experiment 35.6 kg of enriched germanium detectors are operated. The application of active background rejection methods, such as a liquid argon scintillation light read-out and pulse shape discrimination of germanium detector signals, allowed to reduce the background index to the intended level of 10-3 cts/(keV.kg.yr). In the first five month of data taking 10.8 kg yr of exposure were accumulated. No signal has been found and together with data from Phase I a new limit for the neutrinoless double beta decay half-life of 76Ge of 5.3 . 1025 yr at 90% C.L. was established in June 2016. Phase II data taking is ongoing and will allow the exploration of half-lifes in the 1026 yr regime. The current status of data taking and an update on the background index are presented.

  2. LArGe: active background suppression using argon scintillation for the GERDA 0νββ-experiment

    International Nuclear Information System (INIS)

    Agostini, M.; Budjas, D.; Schoenert, S.; Barnabe-Heider, M.; Cattadori, C.; Gangapshev, A.; Gusev, K.; Heisel, M.; Smolnikov, A.; Junker, M.; Klimenko, A.; Lubashevskiy, A.; Pelczar, K.; Zuzel, G.

    2015-01-01

    LArGe is a GERDA low-background test facility to study novel background suppression methods in a low-background environment, for future application in the GERDA experiment. Similar to GERDA, LArGe operates bare germanium detectors submersed into liquid argon (1 m 3 , 1.4tons), which in addition is instrumented with photomultipliers to detect argon scintillation light. The scintillation signals are used in anti-coincidence with the germanium detectors to effectively suppress background events that deposit energy in the liquid argon. The background suppression efficiency was studied in combination with a pulse shape discrimination (PSD) technique using a BEGe detector for various sources, which represent characteristic backgrounds to GERDA. Suppression factors of a few times 10 3 have been achieved. First background data of LArGe with a coaxial HPGe detector (without PSD) yield a background index of (0.12 - 4.6) x 10 -2 cts/(keV kg year) (90 % C.L.), which is at the level of GERDA Phase I. Furthermore, for the first time we monitor the natural 42 Ar abundance (parallel to GERDA), and have indication for the 2νββ-decay in natural germanium. These results show the effectivity of an active liquid argon veto in an ultra-low background environment. As a consequence, the implementation of a liquid argon veto in GERDA Phase II is pursued. (orig.)

  3. LArGe: active background suppression using argon scintillation for the Gerda 0ν β β -experiment

    Science.gov (United States)

    Agostini, M.; Barnabé-Heider, M.; Budjáš, D.; Cattadori, C.; Gangapshev, A.; Gusev, K.; Heisel, M.; Junker, M.; Klimenko, A.; Lubashevskiy, A.; Pelczar, K.; Schönert, S.; Smolnikov, A.; Zuzel, G.

    2015-10-01

    LArGe is a Gerda low-background test facility to study novel background suppression methods in a low-background environment, for future application in the Gerda experiment. Similar to Gerda, LArGe operates bare germanium detectors submersed into liquid argon (1 m^3, 1.4 tons), which in addition is instrumented with photomultipliers to detect argon scintillation light. The scintillation signals are used in anti-coincidence with the germanium detectors to effectively suppress background events that deposit energy in the liquid argon. The background suppression efficiency was studied in combination with a pulse shape discrimination (PSD) technique using a BEGe detector for various sources, which represent characteristic backgrounds to Gerda. Suppression factors of a few times 10^3 have been achieved. First background data of LArGe with a coaxial HPGe detector (without PSD) yield a background index of (0.12-4.6)× 10^{-2} cts/(keV kg year) (90 % C.L.), which is at the level of Gerda Phase I. Furthermore, for the first time we monitor the natural ^{42}Ar abundance (parallel to Gerda), and have indication for the 2ν β β -decay in natural germanium. These results show the effectivity of an active liquid argon veto in an ultra-low background environment. As a consequence, the implementation of a liquid argon veto in Gerda Phase II is pursued.

  4. LArGe: active background suppression using argon scintillation for the GERDA 0νββ-experiment

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, M.; Budjas, D.; Schoenert, S. [Technische Universitaet Muenchen, Munich (Germany); Barnabe-Heider, M. [Technische Universitaet Muenchen, Munich (Germany); Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Cattadori, C. [Universita degli Studi di Milano, Milan (Italy); INFN, Milan (Italy); Gangapshev, A. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Institut for Nuclear Research, Moscow (Russian Federation); Gusev, K. [Technische Universitaet Muenchen, Munich (Germany); Joint Institut for Nuclear Research, Dubna (Russian Federation); National Research Center Kurchatov Institut, Moscow (Russian Federation); Heisel, M.; Smolnikov, A. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Junker, M. [Laboratori Nazionali del Gran Sasso, Assergi (Italy); Klimenko, A.; Lubashevskiy, A. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Joint Institut for Nuclear Research, Dubna (Russian Federation); Pelczar, K. [Jagellonian University, Cracow (Poland); Zuzel, G. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Jagellonian University, Cracow (Poland)

    2015-10-15

    LArGe is a GERDA low-background test facility to study novel background suppression methods in a low-background environment, for future application in the GERDA experiment. Similar to GERDA, LArGe operates bare germanium detectors submersed into liquid argon (1 m{sup 3}, 1.4tons), which in addition is instrumented with photomultipliers to detect argon scintillation light. The scintillation signals are used in anti-coincidence with the germanium detectors to effectively suppress background events that deposit energy in the liquid argon. The background suppression efficiency was studied in combination with a pulse shape discrimination (PSD) technique using a BEGe detector for various sources, which represent characteristic backgrounds to GERDA. Suppression factors of a few times 10{sup 3} have been achieved. First background data of LArGe with a coaxial HPGe detector (without PSD) yield a background index of (0.12 - 4.6) x 10{sup -2} cts/(keV kg year) (90 % C.L.), which is at the level of GERDA Phase I. Furthermore, for the first time we monitor the natural {sup 42}Ar abundance (parallel to GERDA), and have indication for the 2νββ-decay in natural germanium. These results show the effectivity of an active liquid argon veto in an ultra-low background environment. As a consequence, the implementation of a liquid argon veto in GERDA Phase II is pursued. (orig.)

  5. Teadlased loovad laboris narkokoera tehisnina / Vilja Kohler

    Index Scriptorium Estoniae

    Kohler, Vilja, 1966-

    2004-01-01

    Bionina projekti kallal on 2000. aastast töötanud Tartu Ülikooli kolloid- ja keskkonnakeemia õppetooli teadur filosoofiadoktor Toonika Rinken, Tartu Ülikooli orgaanilise ja bioorgaanilise keemia instituudi teadlased professor Ago Rinken ja teadur Gerda Raidaru. Samas ka: Maailma levinuim biosensor aitab suhkruhaigeid. Lisa: Biosensor kopeerib meeleelundeid

  6. Results on Neutrinoless Double-Beta Decay from Gerda Phase I

    Science.gov (United States)

    Macolino, Carla

    2014-12-01

    The GERmanium Detector Array, GERDA, is designed to search for neutrinoless double-beta (0νββ) decay of 76Ge and it is installed in the Laboratori Nazionali del Gran Sasso (LNGS) of INFN, Italy. In this review, the detection principle and detector setup of GERDA are described. Also, the main physics results by GERDA Phase I, are discussed. They include the measurement of the half-life of 2νββ decay, the background decomposition of the energy spectrum and the techniques for the discrimination of the background, based on the pulse shape of the signal. In the last part of this review, the estimation of a limit on the half-life of 0νββ (T0ν 1/2>2.1ḑot 1025 yr at 90% C.L.) and the comparison with previous results are discussed. GERDA data from Phase I strongly disfavor the recent claim of 0νββ discovery, based on data from the Heidelberg-Moscow experiment.

  7. Search for 0νββ-decay with gerda phase II

    Science.gov (United States)

    Majorovits, B.

    2018-01-01

    The Gerda experiment is designed to search for neutrinoless double beta decay of 76Ge. From data taken during Phase I of the experiment some knowledge on background contributions important for future experiments could be obtained: limits on the bulk contamination of HPGe with primordial uranium and thorium are presented and first evidence for observation of the decay of the meta-stable state of 77mGe due to neutron capture on 76Ge is discussed. In Phase II of the Gerda experiment 37 HPGe detectors enriched in the isotope 76Ge are deployed into the Gerda cryostat. From non-observation of a peak at 2039 keV a half-life limit on neutrinoless double beta decay of 76Ge of T1/2 > 5.3 . 1025 yr has been obtained. The background rate in the energy region of interest, after pulse shape discrimination and liquid argon veto cuts is in the range of a few Cts//ROI ton yr). This makes Gerda the first 0νββ-experiment that has a background so low that <1 counts are expected in the RoI within the anticipated life time of the experiment.

  8. All but Her Life: Holocaust Survivor Gerda Klein Shares with Learners

    Science.gov (United States)

    Lincoln, Margaret

    2007-01-01

    During the 2006-2007 school year, students from Battle Creek, Michigan, high school joined numerous others from across the state in reading holocaust survivor Gerda Klein's memoir, "All But My Life." Published in 57 editions and still in print after 50 years, the book is the inspiring account of a remarkable individual who endured unspeakable…

  9. In-situ measurement of the light attenuation in liquid argon in the GERDA cryostat

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Birgit [IKTP, TU Dresden (Germany); Collaboration: GERDA-Collaboration

    2015-07-01

    GERDA is an experiment searching for neutrinoless double beta decay in {sup 76}Ge. It uses germanium detectors which are enriched in {sup 76}Ge and operates them naked in liquid argon (LAr), which serves both as a coolant and a shield for external radiation. For phase II of GERDA it is planned to reach an exposure of 100 kg . yr with a BI of 10{sup -3} cts/(kg . yr . keV). One of the major improvements to further reduce the BI is to instrument the LAr to act as an additional background veto. The attenuation of the scintillation light in LAr creates a constraint on the effective active volume of the LAr veto and is therefore a key parameter to characterize the instrumentation. In order to measure the light attenuation in LAr, a setup was designed that could be deployed directly into the GERDA cryostat. This setup contains a movable beta source and a PMT to detect the scintillation light at different distances. The talk will describe in detail the construction of the setup, its successful deployment in the GERDA cryostat and the consecutive analysis of the acquired data.

  10. Suppression of the background coming from {sup 42}Ar in the GERDA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lubashevskiy, Alexey [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Collaboration: GERDA-Collaboration

    2016-07-01

    The GERDA experiment aims at the 0νββ search in {sup 76}Ge. The search is performed with high purity germanium detectors operated in liquid argon. One of the most dangerous backgrounds in GERDA is the background from {sup 42}K which is a daughter isotope of cosmogenically produced {sup 42}Ar, presented in natural argon. {sup 42}K ions collect on the surface of the detector and increase its background level. Several ways to suppress such background has been investigated. The tests were performed at LArGe low-background test facility, which gives a possibility to operate bare detectors in about 1m{sup 3} of LAr. It is equipped with a scintillation veto, so particles which deposit part of their energy in LAr can be detected by PMTs. The experimental setup is located at LNGS underground laboratory close to GERDA experiment location. Different experimental techniques were tested together with pulse shape discrimination (PSD) method in order to suppress {sup 42}K background. The chosen solution for GERDA Phase II is so called ''nylon mini-shroud'' (NMS). It is made from nylon foil and covered with wavelength shifter from both sides. NMS allows to suppress collection of {sup 42}K ions towards to the surface significantly. It was demonstrated in LArGe that together with PSD and scintillation veto the {sup 42}K background can be suppressed in more than 1000 times. The results obtained during commissioning runs in GERDA Phase II are also presented.

  11. Pulse shape discrimination for Gerda Phase I data

    Science.gov (United States)

    Agostini, M.; Allardt, M.; Andreotti, E.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Barnabé Heider, M.; Barros, N.; Baudis, L.; Bauer, C.; Becerici-Schmidt, N.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Brudanin, V.; Brugnera, R.; Budjáš, D.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; Cossavella, F.; Demidova, E. V.; Domula, A.; Egorov, V.; Falkenstein, R.; Ferella, A.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gotti, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Guthikonda, K. K.; Hampel, W.; Hegai, A.; Heisel, M.; Hemmer, S.; Heusser, G.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Ioannucci, L.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Klimenko, A.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Liu, X.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Machado, A. A.; Majorovits, B.; Maneschg, W.; Misiaszek, M.; Nemchenok, I.; Nisi, S.; O'Shaughnessy, C.; Pandola, L.; Pelczar, K.; Pessina, G.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salathe, M.; Schmitt, C.; Schreiner, J.; Schulz, O.; Schwingenheuer, B.; Schönert, S.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Strecker, H.; Tarka, M.; Ur, C. A.; Vasenko, A. A.; Volynets, O.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wojcik, M.; Yanovich, E.; Zavarise, P.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2013-10-01

    The Gerda experiment located at the Laboratori Nazionali del Gran Sasso of INFN searches for neutrinoless double beta (0 νββ) decay of 76Ge using germanium diodes as source and detector. In Phase I of the experiment eight semi-coaxial and five BEGe type detectors have been deployed. The latter type is used in this field of research for the first time. All detectors are made from material with enriched 76Ge fraction. The experimental sensitivity can be improved by analyzing the pulse shape of the detector signals with the aim to reject background events. This paper documents the algorithms developed before the data of Phase I were unblinded. The double escape peak (DEP) and Compton edge events of 2.615 MeV γ rays from 208Tl decays as well as two-neutrino double beta (2 νββ) decays of 76Ge are used as proxies for 0 νββ decay. For BEGe detectors the chosen selection is based on a single pulse shape parameter. It accepts 0.92±0.02 of signal-like events while about 80 % of the background events at Q ββ =2039 keV are rejected. For semi-coaxial detectors three analyses are developed. The one based on an artificial neural network is used for the search of 0 νββ decay. It retains 90 % of DEP events and rejects about half of the events around Q ββ . The 2 νββ events have an efficiency of 0.85±0.02 and the one for 0 νββ decays is estimated to be . A second analysis uses a likelihood approach trained on Compton edge events. The third approach uses two pulse shape parameters. The latter two methods confirm the classification of the neural network since about 90 % of the data events rejected by the neural network are also removed by both of them. In general, the selection efficiency extracted from DEP events agrees well with those determined from Compton edge events or from 2 νββ decays.

  12. Pulse shape discrimination for Gerda Phase I data

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, M.; Bode, T.; Budjas, D.; Janicsko Csathy, J.; Lazzaro, A.; Schoenert, S. [Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Muenchen (Germany); Allardt, M.; Barros, N.; Domula, A.; Lehnert, B.; Wester, T.; Zuber, K. [Technische Universitaet Dresden, Institut fuer Kern- und Teilchenphysik, Dresden (Germany); Andreotti, E. [Institute for Reference Materials and Measurements, Geel (Belgium); Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Bakalyarov, A.M.; Belyaev, S.T.; Lebedev, V.I.; Zhukov, S.V. [National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Balata, M.; Ioannucci, L.; Junker, M.; Laubenstein, M.; Macolino, C.; Nisi, S.; Pandola, L.; Zavarise, P. [LNGS, INFN Laboratori Nazionali del Gran Sasso, Assergi (Italy); Barabanov, I.; Bezrukov, L.; Gurentsov, V.; Inzhechik, L.V.; Kuzminov, V.V.; Lubsandorzhiev, B.; Yanovich, E. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Barnabe Heider, M. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Muenchen (Germany); Baudis, L.; Benato, G.; Ferella, A.; Guthikonda, K.K.; Tarka, M.; Walter, M. [Physik Institut der Universitaet Zuerich, Zuerich (Switzerland); Bauer, C.; Hampel, W.; Heisel, M.; Heusser, G.; Hofmann, W.; Kihm, T.; Kirsch, A.; Knoepfle, K.T.; Lindner, M.; Lubashevskiy, A.; Machado, A.A.; Maneschg, W.; Salathe, M.; Schreiner, J.; Schwingenheuer, B.; Simgen, H.; Smolnikov, A.; Strecker, H.; Wagner, V.; Wegmann, A. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Becerici-Schmidt, N.; Caldwell, A.; Cossavella, F.; Liao, H.Y.; Liu, X.; Majorovits, B.; O' Shaughnessy, C.; Schulz, O.; Volynets, O. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Bellotti, E.; Pessina, G. [Universita Milano Bicocca, Dipartimento di Fisica, Milano (Italy); INFN Milano Bicocca, Milano (Italy); Belogurov, S.; Kornoukhov, V.N. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Bettini, A.; Brugnera, R.; Garfagnini, A.; Hemmer, S.; Sada, C. [Universita di Padova, Dipartimento di Fisica e Astronomia, Padova (Italy); INFN Padova, Padova (Italy); Brudanin, V.; Egorov, V.; Kochetov, O.; Nemchenok, I.; Rumyantseva, N.; Shevchik, E.; Zhitnikov, I.; Zinatulina, D. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Cattadori, C.; Gotti, C. [INFN Milano Bicocca, Milano (Italy); Chernogorov, A.; Demidova, E.V.; Kirpichnikov, I.V.; Vasenko, A.A. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Falkenstein, R.; Freund, K.; Grabmayr, P.; Hegai, A.; Jochum, J.; Schmitt, C. [Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Frodyma, N.; Misiaszek, M.; Pelczar, K.; Wojcik, M.; Zuzel, G. [Jagiellonian University, Institute of Physics, Cracow (Poland); Gangapshev, A. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Gusev, K. [Joint Institute for Nuclear Research, Dubna (Russian Federation); National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Muenchen (Germany); Hult, M.; Lutter, G. [Institute for Reference Materials and Measurements, Geel (Belgium); Klimenko, A. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Lippi, I.; Stanco, L.; Ur, C.A. [INFN Padova, Padova (Italy); Pullia, A.; Riboldi, S. [Universita degli Studi di Milano (IT); INFN Milano, Dipartimento di Fisica, Milano (IT); Shirchenko, M. [Joint Institute for Nuclear Research, Dubna (RU); National Research Centre ' ' Kurchatov Institute' ' , Moscow (RU); Sturm, K. von [Universita di Padova, Dipartimento di Fisica e Astronomia, Padova (IT); INFN Padova, Padova (IT); Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (DE)

    2013-10-15

    The Gerda experiment located at the Laboratori Nazionali del Gran Sasso of INFN searches for neutrinoless double beta (0{nu}{beta}{beta}) decay of {sup 76}Ge using germanium diodes as source and detector. In Phase I of the experiment eight semi-coaxial and five BEGe type detectors have been deployed. The latter type is used in this field of research for the first time. All detectors are made from material with enriched {sup 76}Ge fraction. The experimental sensitivity can be improved by analyzing the pulse shape of the detector signals with the aim to reject background events. This paper documents the algorithms developed before the data of Phase I were unblinded. The double escape peak (DEP) and Compton edge events of 2.615 MeV {gamma} rays from {sup 208}Tl decays as well as two-neutrino double beta (2{nu}{beta}{beta}) decays of {sup 76}Ge are used as proxies for 0{nu}{beta}{beta} decay. For BEGe detectors the chosen selection is based on a single pulse shape parameter. It accepts 0.92{+-}0.02 of signal-like events while about 80 % of the background events at Q{sub {beta}{beta}} =2039 keV are rejected. For semi-coaxial detectors three analyses are developed. The one based on an artificial neural network is used for the search of 0 {nu}{beta}{beta} decay. It retains 90 % of DEP events and rejects about half of the events around Q{sub {beta}{beta}}. The 2 {nu}{beta}{beta} events have an efficiency of 0.85 {+-}0.02 and the one for 0 {nu}{beta}{beta} decays is estimated to be 0.90{sup +0.05}{sub -0.09}. A second analysis uses a likelihood approach trained on Compton edge events. The third approach uses two pulse shape parameters. The latter two methods confirm the classification of the neural network since about 90 % of the data events rejected by the neural network are also removed by both of them. In general, the selection efficiency extracted from DEP events agrees well with those determined from Compton edge events or from 2{nu}{beta}{beta} decays. (orig.)

  13. Mitigation of ^{42}Ar/^{42}K background for the GERDA Phase II experiment

    Science.gov (United States)

    Lubashevskiy, A.; Agostini, M.; Budjáš, D.; Gangapshev, A.; Gusev, K.; Heisel, M.; Klimenko, A.; Lazzaro, A.; Lehnert, B.; Pelczar, K.; Schönert, S.; Smolnikov, A.; Walter, M.; Zuzel, G.

    2018-01-01

    Background coming from the ^{42}Ar decay chain is considered to be one of the most relevant for the Gerda experiment, which searches for the neutrinoless double beta decay of ^{76}Ge. The sensitivity strongly relies on the absence of background around the Q-value of the decay. Background coming from ^{42}K, a progeny of ^{42}Ar, can contribute to that background via electrons from the continuous spectrum with an endpoint at 3.5 MeV. Research and development on the suppression methods targeting this source of background were performed at the low-background test facility LArGe . It was demonstrated that by reducing ^{42}K ion collection on the surfaces of the broad energy germanium detectors in combination with pulse shape discrimination techniques and an argon scintillation veto, it is possible to suppress ^{42}K background by three orders of magnitude. This is sufficient for Phase II of the Gerda experiment.

  14. Gerda: A new 76Ge Double Beta Decay Experiment at Gran Sasso

    International Nuclear Information System (INIS)

    Simgen, Hardy

    2005-01-01

    In the new 76 Ge double beta decay experiment Gerda [I. Abt et al., arXiv hep-ex/0404039; Gerda proposal, to be submitted to the Gran Sasso scientific committee] bare diodes of enriched 76 Ge will be operated in highly pure liquid nitrogen or argon. The goal is to reduce the background around Q ββ =2039 keV below 10 -3 counts/(kg-bar keV-bar y). With presently available diodes from the Igex and HdMs experiments the current evidence for neutrinoless double beta decay [H.-V. Klapdor-Kleingrothaus, et al., Mod. Phys. Lett. A16 (2001) 2409ff] can unambigously be checked within one year of measurement

  15. First results of neutrinoless double beta decay search with the GERmanium Detector Array "GERDA"

    Science.gov (United States)

    Janicskó Csáthy, József

    2014-06-01

    The study of neutrinoless double beta decay is the most powerful approach to the fundamental question if the neutrino is a Majorana particle, i.e. its own anti-particle. The observation of the lepton number violating neutrinoless double beta decay would establish the Majorana nature of the neutrino. Until now neutrinoless double beta decay was not observed. The GERmanium Detector Array, GERDA is a double beta decay experiment located at the INFN Gran Sasso National Laboratory, Italy. GERDA operates bare Ge diodes enriched in 76Ge in liquid argon supplemented by a water shield. The exposure accumulated adds up to 21.6 kg· yr with a background level of 1.8 · 10-2 cts/(keV·kg·yr). The results of the Phase I of the experiment are presented and the preparation of the Phase II is briefly discussed.

  16. The search for 0νββ decay with the GERDA experiment: Status and prospects

    Science.gov (United States)

    Majorovits, B.

    2015-08-01

    The GERDA experiment is designed to search for neutrinoless double beta decay of 76Ge using HPGe detectors directly immersed into liquid argon. In its first phase the GERDA experiment has yielded a half life limit on this decay of T1/2 0 v>2.1 ṡ1025 . A background model has been developed. It explains the measured spectrum well, taking into account only components with distances to the detectors less then 2 cm. Competitive limits on Majoron accompanied double beta decay have been derived. Phase II of the experiment, now with additional liquid argon veto installed, is presently starting its commissioning phase. First commissioning spectra from calibration measurements are shown, proving that the liquid argon veto leads to a significant reduction of background events.

  17. Current experiments in germanium 0 ν β β search -- GERDA and MAJORANA

    Science.gov (United States)

    von Sturm, K.

    2015-01-01

    There are unanswered questions regarding neutrino physics that are of great interest for the scientific community. For example the absolute masses, the mass hierarchy and the nature of neutrinos are unknown up to now. The discovery of neutrinoless double beta decay (0νββ) would prove the existence of a Majorana mass, which would be linked to the half-life of the decay, and would in addition provide an elegant solution for the small mass of the neutrinos via the seesaw mechanism. Because of an existing discovery claim of 0νββ of 76Ge and the excellent energy resolution achievable, germanium is of special interest in the search for 0νββ . In this article the state of the art of germanium 0νββ search, namely the GERDA experiment and MAJORANA demonstrator, is presented. In particular, recent results of the GERDA collaboration, which strongly disfavour the above mentioned claim, are discussed.

  18. BEGe detectors in GERDA Phase I - performance, physics analysis and surface events

    Energy Technology Data Exchange (ETDEWEB)

    Lazzaro, Andrea [Physik-Department E15, Technische Universitaet Muenchen (Germany); Collaboration: GERDA-Collaboration

    2014-07-01

    The Phase I of the Gerda experiment, which has concluded its data taking in Summer 2013, was based on coaxial HPGe detectors already used for IGEX and HdM experiments. In the upcoming Phase II customized Broad Energy Germanium (BEGe) detectors will provide the major contribution to the total exposure. The first set of BEGe detectors has been deployed in Gerda since June 2012. The data collected in Phase I show the performance achieved in terms of spectroscopy and pulse shape discrimination. In particular the strongest background source, the {sup 42}K beta decay from the liquid argon surrounding the detectors, has been effectively rejected. The signals due to beta decay on the detector surface are indeed characterized by a longer charge collection time. This talk focuses on this key feature of the BEGe-PSD.

  19. Current experiments in germanium 0νββ search — GERDA and MAJORANA

    International Nuclear Information System (INIS)

    Von Sturm, K.

    2015-01-01

    There are unanswered questions regarding neutrino physics that are of great interest for the scientific community. For example the absolute masses, the mass hierarchy and the nature of neutrinos are unknown up to now. The discovery of neutrinoless double beta decay (0νββ) would prove the existence of a Majorana mass, which would be linked to the half-life of the decay, and would in addition provide an elegant solution for the small mass of the neutrinos via the seesaw mechanism. Because of an existing discovery claim of 0νββ of 76 Ge and the excellent energy resolution achievable, germanium is of special interest in the search for 0νββ. In this article the state of the art of germanium 0νββ search, namely the Gerda experiment and Majorana demonstrator, is presented. In particular, recent results of the Gerda collaboration, which strongly disfavour the above mentioned claim, are discussed.

  20. Signal and background studies for the search of neutrinoless double beta decay in GERDA

    International Nuclear Information System (INIS)

    Agostini, Matteo

    2013-01-01

    The GERDA experiment searches for the neutrinoless double beta decay in Ge-76, by operating bare HPGe detectors in ultra-pure liquid Ar. This dissertation presents a first decomposition of the background measured in the current data-taking phase. The background at the energy of interest was found to be dominated by 214 Bi, 208 Tl and 42 K gamma-rays, with secondary contributions from 42 K and 214 Bi beta-rays, and 210 Po alpha-rays. For the forthcoming upgrade of the apparatus, a new HPGe detector design (BEGe) has been studied, with focus on its capability of suppressing the identified backgrounds through pulse shape analysis. This included the development of a comprehensive modeling of the detectors and the experimental characterization of their response to surface interactions. The achieved results show that GERDA can improve the present limit on the neutrinoless double beta decay half-life by an order of magnitude.

  1. MaGe: a Monte Carlo framework for the Gerda and Majorana double beta decay experiments

    International Nuclear Information System (INIS)

    Bauer, M; Belogurov, S; Chan, Yd; Descovich, M; Detwiler, J; Di Marco, M; Fujikawa, B; Franco, D; Gehman, V; Henning, R; Hudek, K; Johnson, R; Jordan, D; Kazkaz, K; Klimenko, A; Knapp, M; Kroeninger, K; Lesko, K; Liu, X; Marino, M; Mokhtarani, A; Pandola, L; Perry, M; Poon, A; Radford, D; Tomei, C; Tull, C

    2006-01-01

    The Gerda and Majorana projects, both searching for the neutrinoless double beta-decay of 76 Ge, are developing a joint Monte-Carlo simulation framework called MaGe. Such an approach has many benefits: the workload for the development of general tools is shared between more experts, the code is tested in more detail, and more experimental data is made available for validation

  2. First results of GERDA Phase II and consistency with background models

    Science.gov (United States)

    Agostini, M.; Allardt, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode1, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; Di Marco, N.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gooch, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hakenmüller, J.; Hegai, A.; Heisel, M.; Hemmer, S.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Kish, A.; Klimenko, A.; Kneißl, R.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Medinaceli, E.; Miloradovic, M.; Mingazheva, R.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Palioselitis, D.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salamida, F.; Salathe, M.; Schmitt, C.; Schneider, B.; Schönert, S.; Schreiner, J.; Schulz, O.; Schütz, A.-K.; Schwingenheuer, B.; Selivanenko, O.; Shevzik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wojcik, M.; Yanovich, E.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2017-01-01

    The GERDA (GERmanium Detector Array) is an experiment for the search of neutrinoless double beta decay (0νββ) in 76Ge, located at Laboratori Nazionali del Gran Sasso of INFN (Italy). GERDA operates bare high purity germanium detectors submersed in liquid Argon (LAr). Phase II of data-taking started in Dec 2015 and is currently ongoing. In Phase II 35 kg of germanium detectors enriched in 76Ge including thirty newly produced Broad Energy Germanium (BEGe) detectors is operating to reach an exposure of 100 kg·yr within about 3 years data taking. The design goal of Phase II is to reduce the background by one order of magnitude to get the sensitivity for T1/20ν = O≤ft( {{{10}26}} \\right){{ yr}}. To achieve the necessary background reduction, the setup was complemented with LAr veto. Analysis of the background spectrum of Phase II demonstrates consistency with the background models. Furthermore 226Ra and 232Th contamination levels consistent with screening results. In the first Phase II data release we found no hint for a 0νββ decay signal and place a limit of this process T1/20ν > 5.3 \\cdot {1025} yr (90% C.L., sensitivity 4.0·1025 yr). First results of GERDA Phase II will be presented.

  3. Production, characterization and operation of {sup 76}Ge enriched BEGe detectors in GERDA

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, M.; Bode, T.; Budjas, D.; Janicsko Csathy, J.; Lazzaro, A.; Schoenert, S. [Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Munich (Germany); Allardt, M.; Barros, N.; Domula, A.; Lehnert, B.; Wester, T.; Wilsenach, H.; Zuber, K. [Technische Universitaet Dresden, Institut fuer Kern- und Teilchenphysik, Dresden (Germany); Andreotti, E. [Institute for Reference Materials and Measurements, Geel (Belgium); Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Bakalyarov, A.M.; Belyaev, S.T.; Lebedev, V.I.; Zhukov, S.V. [National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Balata, M.; D' Andrea, V.; Ioannucci, L.; Junker, M.; Laubenstein, M.; Macolino, C.; Nisi, S.; Zavarise, P. [INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, Assergi (Italy); Barabanov, I.; Bezrukov, L.; Gurentsov, V.; Inzhechik, L.V.; Kazalov, V.; Kuzminov, V.V.; Lubsandorzhiev, B.; Yanovich, E. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Baudis, L.; Benato, G.; Walter, M. [Physik Institut der Universitaet Zuerich, Zurich (Switzerland); Bauer, C.; Heisel, M.; Heusser, G.; Hofmann, W.; Kihm, T.; Kirsch, A.; Knoepfle, K.T.; Lindner, M.; Maneschg, W.; Salathe, M.; Schreiner, J.; Schwingenheuer, B.; Simgen, H.; Smolnikov, A.; Strecker, H.; Wagner, V.; Wegmann, A. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Becerici-Schmidt, N.; Caldwell, A.; Liao, H.Y.; Majorovits, B.; O' Shaughnessy, C.; Palioselitis, D.; Schulz, O.; Vanhoefer, L. [Max-Planck-Institut fuer Physik, Munich (Germany); Bellotti, E.; Pessina, G. [Universita Milano Bicocca, Dipartimento di Fisica, Milan (Italy); INFN Milano Bicocca, Milan (Italy); Belogurov, S.; Kornoukhov, V.N. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Bettini, A.; Brugnera, R.; Garfagnini, A.; Hemmer, S.; Sada, C.; Von Sturm, K. [Dipartimento di Fisica e Astronomia dell' Universita di Padova, Padua (Italy); INFN Padova, Padua (Italy); Borowicz, D. [Jagiellonian University, Institute of Physics, Cracow (Poland); Joint Institute for Nuclear Research, Dubna (Russian Federation); Brudanin, V.; Egorov, V.; Kochetov, O.; Nemchenok, I.; Rumyantseva, N.; Shevchik, E.; Zhitnikov, I.; Zinatulina, D. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Cattadori, C.; Gotti, C. [INFN Milano Bicocca, Milan (Italy); Chernogorov, A.; Demidova, E.V.; Kirpichnikov, I.V.; Vasenko, A.A. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Falkenstein, R.; Freund, K.; Grabmayr, P.; Hegai, A.; Jochum, J.; Schmitt, C.; Schuetz, A.K. [Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Frodyma, N.; Misiaszek, M.; Pelczar, K.; Wojcik, M.; Zuzel, G. [Jagiellonian University, Institute of Physics, Cracow (Poland); Gangapshev, A. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Gusev, K. [Joint Institute for Nuclear Research, Dubna (Russian Federation); National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Munich (Germany); Hult, M.; Lutter, G. [Institute for Reference Materials and Measurements, Geel (Belgium); Klimenko, A.; Lubashevskiy, A. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Lippi, I.; Stanco, L.; Ur, C.A. [INFN Padova, Padua (Italy); Pandola, L. [INFN Laboratori Nazionali del Sud, Catania (Italy); Pullia, A.; Riboldi, S. [Universita degli Studi di Milano, Dipartimento di Fisica, Milan (Italy); INFN Milano (Italy); Shirchenko, M. [Joint Institute for Nuclear Research, Dubna (Russian Federation); National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Collaboration: GERDA Collaboration

    2015-02-01

    The GERmanium Detector Array (GERDA) at the Gran Sasso Underground Laboratory (LNGS) searches for the neutrinoless double beta decay (0νββ) of {sup 76}Ge. Germanium detectors made of material with an enriched {sup 76}Ge fraction act simultaneously as sources and detectors for this decay. During Phase I of the experiment mainly refurbished semi-coaxial Ge detectors from former experiments were used. For the upcoming Phase II, 30 new {sup 76}Ge enriched detectors of broad energy germanium (BEGe)- type were produced. A subgroup of these detectors has already been deployed in GERDA during Phase I. The present paper reviews the complete production chain of these BEGe detectors including isotopic enrichment, purification, crystal growth and diode production. The efforts in optimizing the mass yield and in minimizing the exposure of the {sup 76}Ge enriched germanium to cosmic radiation during processing are described. Furthermore, characterization measurements in vacuum cryostats of the first subgroup of seven BEGe detectors and their long-term behavior in liquid argon are discussed. The detector performance fulfills the requirements needed for the physics goals of GERDA Phase II. (orig.)

  4. In-situ measurement of the light attenuation in liquid argon in the GERDA cryostat

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Birgit [TU Dresden, Institut fuer Kern- und Teilchenphysik (Germany); Collaboration: GERDA-Collaboration

    2016-07-01

    GERDA is an experiment searching for neutrinoless double beta decay in {sup 76}Ge. It operates the enriched germanium detectors bare in liquid argon (LAr), which serves both as a coolant and a shield for external radiation. Phase II of GERDA aims for an exposure of 100 kg . yr with a background index (BI) of 10{sup -3} cts/(kg . yr . keV). One of the major improvements to further reduce the BI comes from the instrumentation of the LAr to readout its scintillation light. The attenuation of the scintillation light in LAr limits the effective active volume of the LAr veto and is therefore a key parameter to characterize the instrumentation. In order to measure the light attenuation in LAr, a setup was designed that could be deployed directly into the GERDA cryostat. This setup contains a movable beta source and a PMT to detect the scintillation light at different distances. The talk will present the acquired data as well as a detailed description of the performed analysis technique and the current results.

  5. Production, characterization and operation of {sup 76}Ge enriched BEGe detectors in GERDA

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, M. [Physik Department and Excellence Cluster Universe, Technische Universität München, Munich (Germany); Allardt, M. [Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden (Germany); Andreotti, E. [Institute for Reference Materials and Measurements, Geel (Belgium); Physikalisches Institut, Eberhard Karls Universität Tübingen, Tübingen (Germany); Bakalyarov, A. M. [National Research Centre “Kurchatov Institute”, Moscow (Russian Federation); Balata, M. [INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, Assergi (Italy); and others

    2015-02-03

    The GERmanium Detector Array (Gerda) at the Gran Sasso Underground Laboratory (LNGS) searches for the neutrinoless double beta decay (0νββ) of {sup 76}Ge. Germanium detectors made of material with an enriched {sup 76}Ge fraction act simultaneously as sources and detectors for this decay. During Phase I of theexperiment mainly refurbished semi-coaxial Ge detectors from former experiments were used. For the upcoming Phase II, 30 new {sup 76}Ge enriched detectors of broad energy germanium (BEGe)-type were produced. A subgroup of these detectors has already been deployed in Gerda during Phase I. The present paper reviews the complete production chain of these BEGe detectors including isotopic enrichment, purification, crystal growth and diode production. The efforts in optimizing the mass yield and in minimizing the exposure of the {sup 76}Ge enriched germanium to cosmic radiation during processing are described. Furthermore, characterization measurements in vacuum cryostats of the first subgroup of seven BEGe detectors and their long-term behavior in liquid argon are discussed. The detector performance fulfills the requirements needed for the physics goals of Gerda Phase II.

  6. Search for neutrinoless double beta decay of Ge-76 with the GERmanium Detector Array '' GERDA ''

    International Nuclear Information System (INIS)

    Brugnera, R.

    2009-01-01

    The study of neutrinoless double beta decay (DBD) is the most powerful approach to the fundamental question if the neutrino is a Majorana particle, i.e. its own anti-particle. The observation of neutrinoless DBD would not only establish the Majorana nature of the neutrino but also represent a determination of its effective mass if the nuclear matrix element is given. So far, the most sensitive results have been obtained with Ge-76, and the group of Klapdor-Kleingrothaus has made a claim of discovery. Future experiments have to reduce radioactive backgrounds to increase the sensitivity. '' GERDA '' is a new double beta-decay experiment which is currently under construction in the INFN Gran Sasso National Laboratory, Italy. It is implementing a new shielding concept by operating bare Ge diodes - enriched in Ge-76 - in high purity liquid argon supplemented by a water shield. The aim of '' GERDA '' is to verify or refute the recent claim of discovery, and, in a second phase, to achieve a two orders of magnitude lower background index than recent experiments, increasing the sensitive mass and reaching exposure of 100 kg yr. It be will discuss design, physics reach, and status of construction of '' GERDA '', and present results from various R efforts including long term stability of bare Ge diodes in cryogenic liquids, material screening, cryostat performance, detector segmentation, cryogenic precision electronics, safety aspects, and Monte Carlo simulations. (author)

  7. Dead layer and active volume determination for GERDA Phase II detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lehnert, Bjoern [TU Dresden (Germany); Collaboration: GERDA-Collaboration

    2013-07-01

    The GERDA experiment investigates the neutrinoless double beta decay of {sup 76}Ge and is currently running Phase I of its physics program. Using the same isotope as the Heidelberg Moscow (HDM) experiment, GERDA aims to directly test the claim of observation by a subset of the HDM collaboration. For the update to Phase II of the experiment in 2013, the collaboration organized the production of 30 new Broad Energy Germanium (BEGe) type detectors from original 35 kg enriched material and tested their performance in the low background laboratory HADES in SCK.CEN, Belgium. With additional 20 kg of detectors, GERDA aims to probe the degenerated hierarchy scenario. One of the crucial detector parameters is the active volume (AV) fraction which directly enters into all physics analysis. This talk presents the methodology of dead layer and AV determination with different calibration sources such as {sup 241}Am, {sup 133}Ba, {sup 60}Co and {sup 228}Th and the results obtained for the new Phase II detectors. Furthermore, the AV fraction turned out to be the largest systematic uncertainty in the analysis of Phase I data which makes it imperative to reduce its uncertainty for Phase II. This talk addresses the major contributions to the AV uncertainty and gives an outlook for improvements in Phase II analysis.

  8. Production, characterization and operation of Ge enriched BEGe detectors in GERDA

    Science.gov (United States)

    Agostini, M.; Allardt, M.; Andreotti, E.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Barros, N.; Baudis, L.; Bauer, C.; Becerici-Schmidt, N.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Budjáš, D.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; Domula, A.; Egorov, V.; Falkenstein, R.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gotti, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hegai, A.; Heisel, M.; Hemmer, S.; Heusser, G.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Ioannucci, L.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Klimenko, A.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Misiaszek, M.; Nemchenok, I.; Nisi, S.; O'Shaughnessy, C.; Palioselitis, D.; Pandola, L.; Pelczar, K.; Pessina, G.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salathe, M.; Schmitt, C.; Schreiner, J.; Schulz, O.; Schütz, A.-K.; Schwingenheuer, B.; Schönert, S.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Strecker, H.; Ur, C. A.; Vanhoefer, L.; Vasenko, A. A.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wilsenach, H.; Wojcik, M.; Yanovich, E.; Zavarise, P.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2015-02-01

    The GERmanium Detector Array ( Gerda) at the Gran Sasso Underground Laboratory (LNGS) searches for the neutrinoless double beta decay () of Ge. Germanium detectors made of material with an enriched Ge fraction act simultaneously as sources and detectors for this decay. During Phase I of theexperiment mainly refurbished semi-coaxial Ge detectors from former experiments were used. For the upcoming Phase II, 30 new Ge enriched detectors of broad energy germanium (BEGe)-type were produced. A subgroup of these detectors has already been deployed in Gerda during Phase I. The present paper reviews the complete production chain of these BEGe detectors including isotopic enrichment, purification, crystal growth and diode production. The efforts in optimizing the mass yield and in minimizing the exposure of the Ge enriched germanium to cosmic radiation during processing are described. Furthermore, characterization measurements in vacuum cryostats of the first subgroup of seven BEGe detectors and their long-term behavior in liquid argon are discussed. The detector performance fulfills the requirements needed for the physics goals of Gerda Phase II.

  9. Application of the A/E pulse shape discrimination method to first Ge-76 enriched BEGe detectors operated in GERDA

    Energy Technology Data Exchange (ETDEWEB)

    Lazzaro, Andrea; Agostini, Matteo; Budjas, Dusan; Schoenert, Stefan [Physik-Department E15, Technische Universitaet Muenchen (Germany); Collaboration: GERDA-Collaboration

    2013-07-01

    In 2013 the Gerda experiment will be upgraded to its second phase with more than double of the current {sup 76}Ge mass. The additional diodes are custom made Broad Energy Germanium (BEGe) detectors. This design has been chosen to enhance the pulse shape discrimination (PSD) capability, with respect to the Phase I coaxial detectors. The goal of Phase II is to improve by one order of magnitude the current background index; the PSD will bring a major contribution to this result. Since summer 2012 the first set of five enriched BEGe detectors are operated in Gerda Phase I. This offers us the possibility to test the PSD performances and the signal analysis in an environment as close as possible to the Gerda Phase II configuration. In this talk I present the A/E analysis, the calibration of the cut parameters and the results in terms of background reduction for the data taken with these enriched BEGe.

  10. GERDA, a GERmanium Detector Array for the search for neutrinoless ββ decay in 76Ge

    International Nuclear Information System (INIS)

    Pandola, L.; Tomei, C.

    2006-01-01

    The GERDA project, searching for neutrinoless double beta-decay of 76Ge with enriched germanium detectors submerged in a cryogenic bath, has been approved for installation at the Gran Sasso National Laboratory (LNGS), Italy. The GERDA technique is aiming at a dramatic reduction of the background due to radioactive contaminations of the materials surrounding the detectors. This will lead to a sensitivity of about 1026 years on the half-life of neutrinoless double beta decay. Already in the first phase of the experiment, GERDA will be able to investigate with high statistical significance the claimed evidence for neutrinoless double beta decay of 76Ge based on the data of the Heidelberg-Moscow experiment

  11. Limit on the radiative neutrinoless double electron capture of {sup 36}Ar from GERDA Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, M.; Balata, M.; D' Andrea, V.; Di Vacri, A.; Junker, M.; Laubenstein, M. [INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, Assergi (Italy); Allardt, M.; Domula, A.; Lehnert, B.; Schneider, B.; Wester, T.; Wilsenach, H.; Zuber, K. [Technische Universitaet Dresden, Institut fuer Kern- und Teilchenphysik, Dresden (Germany); Bakalyarov, A.M.; Belyaev, S.T.; Lebedev, V.I.; Zhukov, S.V. [National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Barabanov, I.; Bezrukov, L.; Doroshkevich, E.; Fedorova, O.; Gurentsov, V.; Kazalov, V.; Kuzminov, V.V.; Lubsandorzhiev, B.; Moseev, P.; Selivanenko, O.; Veresnikova, A.; Yanovich, E. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Barros, N. [Technische Universitaet Dresden, Institut fuer Kern- und Teilchenphysik, Dresden (Germany); University of Pennsylvania, Philadelphia, PA (United States); Baudis, L.; Benato, G.; Kish, A.; Miloradovic, M.; Mingazheva, R.; Walter, M. [Physik Institut der Universitaet Zuerich, Zurich (Switzerland); Bauer, C.; Hakenmueller, J.; Heisel, M.; Heusser, G.; Hofmann, W.; Kihm, T.; Kirsch, A.; Knoepfle, K.T.; Lindner, M.; Maneschg, W.; Salathe, M.; Schreiner, J.; Schwingenheuer, B.; Simgen, H.; Smolnikov, A.; Stepaniuk, M.; Wagner, V.; Wegmann, A. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Bellotti, E. [Universita Milano Bicocca, Dipartimento di Fisica, Milan (Italy); INFN Milano Bicocca, Milan (Italy); Belogurov, S.; Kornoukhov, V.N. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Institute for Theoretical and Experimental Physics NRC ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Bettini, A.; Brugnera, R.; Garfagnini, A.; Medinaceli, E.; Sada, C.; Sturm, K. von [Dipartimento di Fisica e Astronomia dell' Universita di Padova, Padua (Italy); INFN Padova, Padua (Italy); Bode, T.; Csathy, J.J.; Lazzaro, A.; Schoenert, S.; Wiesinger, C. [Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Munich (Germany); Borowicz, D. [Jagiellonian University, Institute of Physics, Krakow (Poland); Joint Institute for Nuclear Research, Dubna (Russian Federation); Brudanin, V.; Egorov, V.; Kochetov, O.; Nemchenok, I.; Rumyantseva, N.; Zhitnikov, I.; Zinatulina, D. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Caldwell, A.; Gooch, C.; Kneissl, R.; Liao, H.Y.; Majorovits, B.; Palioselitis, D.; Schulz, O.; Vanhoefer, L. [Max-Planck-Institut fuer Physik, Munich (Germany); Cattadori, C.; Salamida, F. [INFN Milano Bicocca, Milan (Italy); Chernogorov, A.; Demidova, E.V.; Kirpichnikov, I.V.; Vasenko, A.A. [Institute for Theoretical and Experimental Physics NRC ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Falkenstein, R.; Freund, K.; Grabmayr, P.; Hegai, A.; Jochum, J.; Schmitt, C.; Schuetz, A.K. [Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Frodyma, N.; Misiaszek, M.; Panas, K.; Pelczar, K.; Wojcik, M.; Zuzel, G. [Jagiellonian University, Institute of Physics, Krakow (Poland); Gangapshev, A. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Gusev, K. [Joint Institute for Nuclear Research, Dubna (Russian Federation); National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Munich (Germany); Hemmer, S.; Lippi, I.; Stanco, L. [INFN Padova, Padua (Italy); Hult, M.; Lutter, G. [European Commission, JRC-Geel, Geel (Belgium); Inzhechik, L.V. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Moscow Institute of Physics and Technology, Moscow (Russian Federation); Klimenko, A. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); International University for Nature, Society and Man ' ' Dubna' ' , Dubna (Russian Federation); Lubashevskiy, A. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Macolino, C. [INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, Assergi (Italy); LAL, CNRS/IN2P3, Universite Paris-Saclay, Orsay (France); Pandola, L. [INFN Laboratori Nazionali del Sud, Catania (Italy); Pullia, A.; Riboldi, S. [Universita degli Studi di Milano, Dipartimento di Fisica, Milan (Italy); INFN Milano (Italy); Shirchenko, M. [Joint Institute for Nuclear Research, Dubna (Russian Federation); National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Collaboration: GERDA collaboration

    2016-12-15

    Neutrinoless double electron capture is a process that, if detected, would give evidence of lepton number violation and the Majorana nature of neutrinos. A search for neutrinoless double electron capture of {sup 36}Ar has been performed with germanium detectors installed in liquid argon using data from Phase I of the GERmanium Detector Array (Gerda) experiment at the Gran Sasso Laboratory of INFN, Italy. No signal was observed and an experimental lower limit on the half-life of the radiative neutrinoless double electron capture of {sup 36}Ar was established: T{sub 1/2} > 3.6 x 10{sup 21} years at 90% CI. (orig.)

  12. Results on decay with emission of two neutrinos or Majorons in Ge from GERDA Phase I

    Science.gov (United States)

    Agostini, M.; Allardt, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Barros, N.; Baudis, L.; Bauer, C.; Becerici-Schmidt, N.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Budjáš, D.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; di Vacri, A.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Fedorova, O.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hegai, A.; Heisel, M.; Hemmer, S.; Heusser, G.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Csáthy, J. Janicskó; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Klimenko, A.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Medinaceli, E.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Palioselitis, D.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salathe, M.; Schmitt, C.; Schneider, B.; Schönert, S.; Schreiner, J.; Schütz, A.-K.; Schulz, O.; Schwingenheuer, B.; Selivanenko, O.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Stepaniuk, M.; Ur, C. A.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wilsenach, H.; Wojcik, M.; Yanovich, E.; Zavarise, P.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2015-09-01

    A search for neutrinoless decay processes accompanied with Majoron emission has been performed using data collected during Phase I of the GERmanium Detector Array (GERDA) experiment at the Laboratori Nazionali del Gran Sasso of INFN (Italy). Processes with spectral indices were searched for. No signals were found and lower limits of the order of 10 yr on their half-lives were derived, yielding substantially improved results compared to previous experiments with Ge. A new result for the half-life of the neutrino-accompanied decay of Ge with significantly reduced uncertainties is also given, resulting in yr.

  13. Limit on Neutrinoless Double Beta Decay of 76Ge by GERDA

    Science.gov (United States)

    Agostini, M.; Allardt, M.; Andreotti, E.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Heider, M. Barabè; Barros, N.; Baudis, L.; Bauer, C.; Becerici-Schmidt, N.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Brudanin, V.; Brugnera, R.; Budjáš, D.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; Cossavella, F.; Demidova, E. V.; Domula, A.; Egorov, V.; Falkenstein, R.; Ferella, A.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gotti, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Guthikonda, K. K.; Hampel, W.; Hegai, A.; Heisel, M.; Hemmer, S.; Heusser, G.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Csáthy, J. Janicskó; Jochum, J.; Junker, M.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Klimenko, A.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Machado, A. A.; Macolino, C.; Majorovits, B.; Maneschg, W.; Misiaszek, M.; Nemchenok, I.; Nisi, S.; Shaughnessy, C. O.'.; Pandola, L.; Pelczar, K.; Pessina, G.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salathe, M.; Schmitt, C.; Schreiner, J.; Schulz, O.; Schwingenheuer, B.; Schönert, S.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Strecker, H.; Tarka, M.; Ur, C. A.; Vasenko, A. A.; Volynets, O.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wojcik, M.; Yanovich, E.; Zavarise, P.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    The Gerda experiment at the Laboratori Nazionali del Gran Sasso in Italy uses germanium detectors made from material with an enriched 76Ge isotope fraction to search for neutrinoless double beta decay of this nucleus. Applying a blind analysis we find no signal after an exposure of 21.6 kg·yr and a background of about 0.01 cts/(keV·kg·yr). A half-life limit of Tov1/2> 2.1 · 1025 yr (90% C.L.) is extracted. The previous claim of a signal for 76Ge is excluded with 99% probability in a model independent way.

  14. Limit on the radiative neutrinoless double electron capture of ^{36}Ar from GERDA Phase I

    Science.gov (United States)

    Agostini, M.; Allardt, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Barros, N.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; di Vacri, A.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Fedorova, O.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gooch, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hakenmüller, J.; Hegai, A.; Heisel, M.; Hemmer, S.; Heusser, G.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Csáthy, J. Janicskó; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Kish, A.; Klimenko, A.; Kneißl, R.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Medinaceli, E.; Miloradovic, M.; Mingazheva, R.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Palioselitis, D.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salamida, F.; Salathe, M.; Schmitt, C.; Schneider, B.; Schönert, S.; Schreiner, J.; Schütz, A.-K.; Schulz, O.; Schwingenheuer, B.; Selivanenko, O.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Stepaniuk, M.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wilsenach, H.; Wojcik, M.; Yanovich, E.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2016-12-01

    Neutrinoless double electron capture is a process that, if detected, would give evidence of lepton number violation and the Majorana nature of neutrinos. A search for neutrinoless double electron capture of ^{36}Ar has been performed with germanium detectors installed in liquid argon using data from Phase I of the GERmanium Detector Array ( Gerda) experiment at the Gran Sasso Laboratory of INFN, Italy. No signal was observed and an experimental lower limit on the half-life of the radiative neutrinoless double electron capture of ^{36}Ar was established: T_{1/2} > 3.6 × 10^{21} years at 90% CI.

  15. Active background suppression with the liquid argon scintillation veto of GERDA Phase II

    Science.gov (United States)

    Agostini, M.; Allardt, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; Di Marco, N.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gooch, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hakenmüller, J.; Hegai, A.; Heisel, M.; Hemmer, S.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Kish, A.; Klimenko, A.; Kneißl, R.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Medinaceli, E.; Miloradovic, M.; Mingazheva, R.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Palioselitis, D.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salamida, F.; Salathe, M.; Schmitt, C.; Schneider, B.; Schönert, S.; Schreiner, J.; Schulz, O.; Schütz, A.-K.; Schwingenheuer, B.; Selivanenko, O.; Shevzik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wojcik, M.; Yanovich, E.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2017-09-01

    The observation of neutrinoless double beta decay would allow to shed light onto the particle nature of neutrinos. Gerda is aiming to perform a background-free search for this process using high purity germanium detectors enriched in 76Ge operated in liquid argon. This goal relies on the application of active background suppression techniques. A low background light instrumentation has been installed for Phase II to detect events with coincident energy deposition in the nearby liquid argon. The intended background index of ˜10-3 cts/(keV·ky·yr) has been confirmed.

  16. Enesetapp - rääkida või vaikida? / Gerda Kordemets, Mart Laisk ja Merike Sisask ; intervjueerinud Tiina Jõgeda

    Index Scriptorium Estoniae

    Kordemets, Gerda, 1960-

    2010-01-01

    Kas noorte enesetappudest rääkimine toob matkijaid või on teemast rääkimine vajalik? Suitsiiditeemaga kokku puutunud Mart Laisk, Eesti Televisiooni uue sarja "Klass: elu pärast" üks režissööre Gerda Kordemets ja suitsidoloog Merike Sisask arutlevad

  17. Investigation of n{sup +} surface events in HPGe detectors for liquid argon background rejection in GERDA

    Energy Technology Data Exchange (ETDEWEB)

    Lehnert, Bjoern [TU-Dresden, Dresden (Germany); Collaboration: GERDA-Collaboration

    2015-07-01

    The GERDA experiment is searching for neutrinoless double beta decay (0νββ) in {sup 76}Ge using an array of germanium detectors immersed in liquid argon (LAr). Phase II of the experiment aims to improve the background level by a factor 10 in order to reach 10{sup -3} counts / (kg.keV.yr). A strong suppression technique is required to suppress the intrinsic LAr background of {sup 42}Ar/{sup 42}K. 30 newly produced p-type Broad Energy Germanium (BEGe) detectors will be deployed in Phase II. The n{sup +} electrode of the GERDA BEGe detectors is covering 96-98 % of the surface and is between 0.5 and 1.2 mm thick. Betas from the {sup 42}K decay can penetrated the detector surface and deposit energies within the 0νββ region. Experiences from GERDA Phase I show that these surface events are the dominate background component without suppression. Energy depositions inside the n{sup +} layer create pulse shapes that are slower than those from interactions in the bulk. This talk presents a rejection technique for those events. The signal development inside the n{sup +} layer is modeled and applied in Geant4 Monte Carlo simulations. The simulations are compared with data for {sup 241}Am and {sup 90}Sr calibration source measurements. The suppression capabilities are extrapolated for {sup 42}K in GERDA Phase II.

  18. The Gerda experiment for the search of 0{nu}{beta}{beta} decay in {sup 76}Ge

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, K.H.; Altmann, M.; Becerici-Schmidt, N.; Caldwell, A.; Cossavella, F.; Lenz, D.; Liao, H.; Majorovits, B.; Mayer, S.; O' Shaughnessy, C.; Schubert, J.; Schulz, O.; Seitz, H.; Stelzer, F.; Vogt, S.; Volynets, O. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Agostini, M.; Bode, T.; Budjas, D.; Janicsko Csathy, J.; Lazzaro, A.; Schoenert, S. [Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Munich (Germany); Allardt, M.; Barros, N.; Domula, A.; Lehnert, B.; Zuber, K. [Technische Universitaet Dresden, Institut fuer Kern- und Teilchenphysik, Dresden (Germany); Andreotti, E. [Institute for Reference Materials and Measurements, Geel (Belgium); Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Bakalyarov, A.M.; Belyaev, S.T.; Lebedev, V.I.; Zhukov, S.V. [National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Balata, M.; Ioannucci, L.; Junker, M.; Laubenstein, M.; Nisi, S.; Pandola, L. [LNGS, INFN Laboratori Nazionali del Gran Sasso, Assergi (Italy); Barabanov, I.; Bezrukov, L.; Denisov, A.; Gurentsov, V.; Kianovsky, S.; Kusminov, V.; Lubsandorzhiev, B.; Yanovich, E. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Barnabe Heider, M. [Max Planck Institut fuer Kernphysik, Heidelberg (Germany); Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Munich (Germany); CEGEP St-Hyacinthe, Quebec (Canada); Baudis, L.; Benato, G.; Ferella, A.; Froborg, F.; Guthikonda, K.K.; Tarka, M.; Walter, M. [Physik Institut der Universitaet Zuerich, Zuerich (Switzerland); Bauer, C.; Hampel, W.; Heisel, M.; Heusser, G.; Hofmann, W.; Kankanyan, R.; Kihm, T.; Kiko, J.; Kirsch, A.; Knoepfle, K.T.; Lindner, M.; Lubashevskiy, A.; Machado, A.A.; Maneschg, W.; Oehm, J.; Salathe, M.; Schreiner, J.; Schwan, U.; Schwingenheuer, B.; Simgen, H.; Smolnikov, A.; Strecker, H.; Wagner, V.; Wegmann, A. [Max Planck Institut fuer Kernphysik, Heidelberg (Germany); Bellotti, E. [Universita Milano Bicocca, Dipartimento di Fisica, Milano (Italy); INFN Milano Bicocca, Milano (Italy); Belogurov, S.; Kornoukhov, V.N. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Bettini, A.; Brugnera, R.; Garfagnini, A.; Hemmer, S.; Sada, C. [Dipartimento di Fisica e Astronomia dell' Universita di Padova, Padova (Italy); INFN Padova, Padova (Italy); Brudanin, V.; Egorov, V.; Kochetov, O.; Nemchenok, I.; Shevchik, E.; Zhitnikov, I.; Zinatulina, D. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Cattadori, C. [INFN Milano Bicocca, Milano (Italy); Chernogorov, A.; Demidova, E.V.; Kirpichnikov, I.V.; Vasenko, A.A. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Chkvorets, O. [Max Planck Institut fuer Kernphysik, Heidelberg (Germany); Laurentian University, Sudbury (Canada); D' Andragora, A. [LNGS, INFN Laboratori Nazionali del Gran Sasso, Assergi (Italy); Brookhaven National Laboratory, Upton, NY (United States); Di Vacri, A. [LNGS, INFN Laboratori Nazionali del Gran Sasso, Assergi (Italy); University ' ' G. d' Annunzio' ' di Chieti-Pescara, Department of Neurosciences and Imaging, Chieti (Italy); Falkenstein, R.; Freund, K.; Grabmayr, P.; Hegai, A.; Jochum, J.; Knapp, M.; Niedermeier, L.; Schmitt, C.; Sturm, K. von [Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Frodyma, N.; Pelczar, K.; Wojcik, M.; Zuzel, G. [Jagiellonian University, Institute of Physics, Cracow (Poland); Gangapshev, A. [Max Planck Institut fuer Kernphysik, Heidelberg (Germany); Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Gasparro, J. [Institute for Reference Materials and Measurements, Geel (Belgium); National Physical Laboratory, Teddigton (United Kingdom); Gazzana, S. [LNGS, INFN Laboratori Nazionali del Gran Sasso, Assergi (Italy); Max Planck Institut fuer Kernphysik, Heidelberg (Germany); Gonzalez de Orduna, R.; Hult, M.; Marissens, G. [Institute for Reference Materials and Measurements, Geel (Belgium); Gusev, K. [Joint Institute for Nuclear Research, Dubna (Russian Federation); National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Munich (Germany); Inzhechik, L.V. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Moscow Institute of Physics and Technology, Moscow (Russian Federation); Klimenko, A. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Max Planck Institut fuer Kernphysik, Heidelberg (Germany); Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Kroeninger, K. [Max-Planck-Institut fuer Physik, Muenchen (Germany); U. Goettingen, II. Physikalisches Institut, Goettingen (Germany); U. Siegen, Department Physik, Siegen (Germany); Lippi, I.; Rossi Alvarez, C.; Stanco, L.; Ur, C.A. [INFN Padova, Padova (Italy); Liu, J. [Max-Planck-Institut fuer Physik, Muenchen (Germany); University of Tokyo, Kavli IPMU, Tokyo (Japan); Liu, X. [Shanghai Jiaotong University, Shanghai (China); Meierhofer, G. [Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); TUeV-SUeD, Muenchen (Germany); Peiffer, P. [Max Planck Institut fuer Kernphysik, Heidelberg (Germany); Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Pullia, A.; Riboldi, S. [Universita degli Studi di Milano (Italy); INFN Milano, Dipartimento di Fisica, Milano (Italy); Ritter, F. [Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Robert Bosch GmbH, Reutlingen (Germany); Shirchenko, M. [Joint Institute for Nuclear Research, Dubna (Russian Federation); National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Trunk, U. [Max Planck Institut fuer Kernphysik, Heidelberg (Germany); DESY, Photon-Science Detector Group, Hamburg (Germany); Zavarise, P. [LNGS, INFN Laboratori Nazionali del Gran Sasso, Assergi (Italy); University of L' Aquila, Dipartimento di Fisica, L' Aquila (Italy)

    2013-03-15

    The Gerda collaboration is performing a search for neutrinoless double beta decay of {sup 76}Ge with the eponymous detector. The experiment has been installed and commissioned at the Laboratori Nazionali del Gran Sasso and has started operation in November 2011. The design, construction and first operational results are described, along with detailed information from the R and D phase. (orig.)

  19. Signal and background studies for the search of neutrinoless double beta decay in GERDA

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, Matteo

    2013-04-24

    The GERDA experiment searches for the neutrinoless double beta decay in Ge-76, by operating bare HPGe detectors in ultra-pure liquid Ar. This dissertation presents a first decomposition of the background measured in the current data-taking phase. The background at the energy of interest was found to be dominated by {sup 214}Bi, {sup 208}Tl and {sup 42}K gamma-rays, with secondary contributions from {sup 42}K and {sup 214}Bi beta-rays, and {sup 210}Po alpha-rays. For the forthcoming upgrade of the apparatus, a new HPGe detector design (BEGe) has been studied, with focus on its capability of suppressing the identified backgrounds through pulse shape analysis. This included the development of a comprehensive modeling of the detectors and the experimental characterization of their response to surface interactions. The achieved results show that GERDA can improve the present limit on the neutrinoless double beta decay half-life by an order of magnitude.

  20. Mitigation of {sup 42}Ar/{sup 42}K background for the GERDA Phase II experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lubashevskiy, A.; Klimenko, A.; Smolnikov, A. [Max Planck Institut fuer Kernphysik, Heidelberg (Germany); Joint Institute for Nuclear Research, Dubna (Russian Federation); Agostini, M. [Gran Sasso Science Institute, L' Aquila (Italy); Budjas, D.; Lazzaro, A.; Schoenert, S. [Technische Universitaet Muenchen, Physik Department E15, Munich (Germany); Gangapshev, A. [Max Planck Institut fuer Kernphysik, Heidelberg (Germany); Institute for Nuclear Research, Russian Academy of Sciences, Moscow (Russian Federation); Gusev, K. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Technische Universitaet Muenchen, Physik Department E15, Munich (Germany); Russian Research Center Kurchatov Institute, Moscow (Russian Federation); Heisel, M. [Max Planck Institut fuer Kernphysik, Heidelberg (Germany); Lehnert, B. [Institut fuer Kern- und Teilchenphysik Technische Universitaet Dresden, Dresden (Germany); Carleton University, Physics Department, Ottawa (Canada); Pelczar, K. [Jagellonian University, Institute of Physics, Cracow (Poland); INFN Laboratori Nazionali del Gran Sasso, LNGS, Assergi (Italy); Walter, M. [Physik Institut der Universitaet Zuerich, Zurich (Switzerland); Zuzel, G. [Jagellonian University, Institute of Physics, Cracow (Poland)

    2018-01-15

    Background coming from the {sup 42}Ar decay chain is considered to be one of the most relevant for the Gerda experiment, which searches for the neutrinoless double beta decay of {sup 76}Ge. The sensitivity strongly relies on the absence of background around the Q-value of the decay. Background coming from {sup 42}K, a progeny of {sup 42}Ar, can contribute to that background via electrons from the continuous spectrum with an endpoint at 3.5 MeV. Research and development on the suppression methods targeting this source of background were performed at the low-background test facility LArGe. It was demonstrated that by reducing {sup 42}K ion collection on the surfaces of the broad energy germanium detectors in combination with pulse shape discrimination techniques and an argon scintillation veto, it is possible to suppress {sup 42}K background by three orders of magnitude. This is sufficient for Phase II of the Gerda experiment. (orig.)

  1. Production and characterization of 228Th calibration sources with low neutron emission for GERDA

    Science.gov (United States)

    Baudis, L.; Benato, G.; Carconi, P.; Cattadori, C.; De Felice, P.; Eberhardt, K.; Eichler, R.; Petrucci, A.; Tarka, M.; Walter, M.

    2015-12-01

    The GERDA experiment at the Laboratori Nazionali del Gran Sasso (LNGS) searches for the neutrinoless double beta decay of 76Ge. In view of the GERDA Phase II data collection, four new 228Th radioactive sources for the calibration of the germanium detectors enriched in 76Ge have been produced with a new technique, leading to a reduced neutron emission rate from (α, n) reactions. The gamma activities of the sources were determined with a total uncertainty of ~4% using an ultra-low background HPGe detector operated underground at LNGS. The neutron emission rate was determined using a low background LiI(Eu) detector and a 3He counter at LNGS. In both cases, the measured neutron activity is ~10-6 n/(sṡBq), with a reduction of about one order of magnitude with respect to commercially available 228Th sources. Additionally, a specific leak test with a sensitivity to leaks down to ~10 mBq was developed to investigate the tightness of the stainless steel capsules housing the sources after their use in cryogenic environment.

  2. GERDA phase II detectors: Behind the production and characterisation at low background conditions

    Energy Technology Data Exchange (ETDEWEB)

    Maneschg, Werner [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Collaboration: GERDA Collaboration; and others

    2013-08-08

    The low background GERmanium Detector Array (GERDA) at Laboratori Nazionali del Gran Sasso (LNGS) is designed to search for the rare neutrinoless double beta decay (0νββ) in {sup 76}Ge. Bare germanium diodes are operated in liquid argon which is used as coolant, as passive and soon active as well shield against external radiation. Currently, Phase I of the experiment is running using ∼15 kg of co-axial High Purity Germanium diodes. In order to increase the sensitivity of the experiment 30 Broad Energy Germanium (BEGe) diodes will be added within 2013. This presentation reviews the production chain of the new BEGe detectors from isotopic enrichment to diode production and testing. As demonstrated all steps were carefully planned in order to minimize the exposure of the enriched germanium to cosmic radiation. Following this premise, acceptance and characterisation measurement of the newly produced diodes have been performed within the HEROICA project in the Belgian underground laboratory HADES close to the diode manufacturer. The test program and the results from a subset of the recently terminated GERDA Phase II BEGe survey will be presented.

  3. GERDA and the search for neutrinoless double beta decay: first results and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, Matteo [Physik Department and Excellence Cluster Universe, Technische Universitaet Muenchen (Germany); Collaboration: GERDA-Collaboration

    2014-07-01

    Neutrinoless double beta decay is a lepton-number-violating nuclear transition predicted by several extensions of the Standard Model. The Gerda experiment searches for this transition in {sup 76}Ge by operating bare Ge detectors in liquid Ar. The talk focuses on the results of data acquired during Phase I of the experiment, in which 21.6 kg.yr of exposure were accumulated with a background index of about 0.01 cts/(keV.kg.yr). No signal was observed and a lower limit was derived for the half-life of neutrinoless double beta decay of {sup 76}Ge, T{sub 1/2} > 2.1 . 10{sup 25} yr (90% C.L.). The experiment is currently undergoing a major upgrade in preparation for the next phase of data taking. Thanks to an increased target mass, an improved energy resolution and the introduction of novel background reduction techniques, the sensitivity of Gerda will increase of about one order of magnitude in a few years of operation.

  4. Flux modulations seen by the muon veto of the GERDA experiment

    Science.gov (United States)

    GERDA Collaboration; Agostini, M.; Allardt, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Barros, N.; Baudis, L.; Bauer, C.; Becerici-Schmidt, N.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; di Vacri, A.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Fedorova, O.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hegai, A.; Heisel, M.; Hemmer, S.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Ioannucci, L.; Janicsk'o Cs'athy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Klimenko, A.; Knapp, M.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Medinaceli, E.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Palioselitis, D.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Riboldi, S.; Ritter, F.; Rumyantseva, N.; Sada, C.; Salathe, M.; Schmitt, C.; Schneider, B.; Schönert, S.; Schreiner, J.; Schütz, A.-K.; Schulz, O.; Schwingenheuer, B.; Selivanenko, O.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Stepaniuk, M.; Strecker, H.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wilsenach, H.; Wojcik, M.; Yanovich, E.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2016-11-01

    The GERDA experiment at LNGS of INFN is equipped with an active muon veto. The main part of the system is a water Cherenkov veto with 66 PMTs in the water tank surrounding the GERDA cryostat. The muon flux recorded by this veto shows a seasonal modulation. Two causes have been identified: (i) secondary muons from the CNGS neutrino beam (2.2%) and (ii) a temperature modulation of the atmosphere (1.4%). A mean cosmic muon rate of Iμ0 =(3.477 ± 0 .002stat ± 0 .067sys) ×10-4 /(s · m2) was found in good agreement with other experiments at LNGS. Combining the present result with those from previous experiments at LNGS the effective temperature coefficient αT , Lngs is determined to 0.93 ± 0.03. A fit of the temperature coefficients measured at various underground sites yields a kaon to pion ratio rK/π of 0.10 ± 0.03.

  5. WATER TEMPERATURE and other data from GERDA and CALANUS from 1972-03-14 to 1972-03-24 (NCEI Accession 9500067)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data in this accession were collected from ships CALANUS and GERDA between March 14, 1972 and March 24, 1972. The real time data of water temperature at varying...

  6. Kibe kolimine Mustamäel / Jüri Järs, Gerda Koidla, Hilja Rikmann, Siret Mikumets ; intervjueerinud Taimi Nurmiste

    Index Scriptorium Estoniae

    Järs, Jüri, 1951-

    2009-01-01

    Intervjuu Tallinna Tehnikaülikooli Raamatukogu direktori Jüri Järsi, asedirektori Gerda Koidla, hoidlakogude peaspetsialisti Hilja Rikmanni ja teenindusosakonna avakogude peaspetsialisti Siret Mikumetsaga raamatukogu uude hoonesse kolimise protsessist ja uutest võimalustest teeninduses

  7. Muonic background in the GERDA 0νββ experiment

    Energy Technology Data Exchange (ETDEWEB)

    Freund, Kai Lorenz

    2014-07-18

    Muons can cause a non-negligible background in rare-event experiments like GERDA which searches for the neutrinoless double-beta decay (0νββ) in the isotope {sup 76}Ge. The kinetic energy of cosmogenic muons depends on the progenitor particle, hence they can have an energy which is high enough to penetrate even the deepest underground laboratory. For this reason GERDA is equipped with a powerful muon veto system which in most parts was developed in Tuebingen. In this work, a plastic scintillator veto was added to the existing water Cherenkov veto in order to protect a weak spot. Existing hardware was maintained, frequently calibrated and faulty modules exchanged when possible. The DAQ and analysis was upgraded in order to run both veto systems simultaneously. The system was simulated with a GEANT4-based Monte-Carlo simulation. Multiplicity and photon spectra of the simulations were found to be in good agreement with the experimental data and give an efficiency for the detection of energy-depositing muons of ε{sup sim}{sub μd}=(99.935±0.015)%. Two external effects were clearly identified in the muon veto data: additional muons originating from the CNGS-beam at CERN and an annual flux modulation due to seasonal atmospheric temperature changes. Both effects were measured with high precision and agree well with other experiments. Coincidences with the germanium detectors were studied and muon-germanium coincidences were clearly identified. By defining a muon cut, a muon rejection efficiency of the germanium detectors of ε{sup Ge}{sub μr}=(99.2{sup +0.3}{sub -0.4})% was found. Two methods were pursued to find radioactive isotopes produced by muons through spallation or neutron activation. The result of both methods is compatible with zero, i.e. no events could be clearly identified. The overall functionality of the muon veto for Phase I of GERDA was successfully maintained and verified.

  8. GERDA results and the future perspectives for the neutrinoless double beta decay search using 76Ge

    Science.gov (United States)

    Agostini, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Bettini, A.; Bezrukov, L.; Biernat, J.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; Comellato, T.; D’Andrea, V.; Demidova, E. V.; di Marco, N.; Domula, A.; Doroshkevich, E.; Egorov, V.; Gangapshev, A.; Garfagnini, A.; Giordano, M.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hakenmüller, J.; Heisel, M.; Hemmer, S.; Hiller, R.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kermaidic, Y.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Klimenko, A.; Kneißl, R.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Miloradovic, M.; Mingazheva, R.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Panas, K.; Pandola, L.; Pelczar, K.; Pertoldi, L.; Pullia, A.; Ransom, C.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salamida, F.; Schneider, B.; Schönert, S.; Schreiner, J.; Schütz, A.-K.; Schulz, O.; Schwingenheuer, B.; Selivanenko, O.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wojcik, M.; Yanovich, E.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zschocke, A.; Zsigmond, A. J.; Zuber, K.; Zuzel, G.

    2018-03-01

    The GERmanium Detector Array (GERDA) is a low background experiment at the Laboratori Nazionali del Gran Sasso (LNGS) of INFN designed to search for the rare neutrinoless double beta decay (0νββ) of 76Ge. In the first phase (Phase I) of the experiment, high purity germanium diodes were operated in a “bare” mode and immersed in liquid argon. The overall background level of 10‑2cts/(keV ṡkg ṡyr) was a factor of ten better than those of its predecessors. No signal was found and a lower limit was set on the half-life for the 0νββ decay of 76Ge T1/20ν > 2.1 × 1025 yr (90% CL), while the corresponding median sensitivity was 2.4 × 1025 yr (90% CL). A second phase (Phase II) started at the end of 2015 after a major upgrade. Thanks to the increased detector mass and performance of the enriched germanium diodes and due to the introduction of liquid argon instrumentation techniques, it was possible to reduce the background down to 10‑3cts/(keV ṡkg ṡyr). After analyzing 23.2 kgṡyr of these new data no signal was seen. Combining these with the data from Phase I a stronger half-life limit of the 76Ge 0νββ decay was obtained: T1/20ν > 8.0 × 1025 yr (90% CL), reaching a sensitivity of 5.8 × 1025 yr (90% CL). Phase II will continue for the collection of an exposure of 100 kg ṡyr. If no signal is found by then the GERDA sensitivity will have reached 1.4 × 1026 yr for setting a 90% CL. limit. After the end of GERDA Phase II, the flagship experiment for the search of 0νββ decay of 76Ge will be LEGEND. LEGEND experiment is foreseen to deploy up to 1-ton of 76Ge. After ten years of data taking, it will reach a sensitivity beyond 1028 yr, and hence fully cover the inverted hierarchy region.

  9. Results on neutrinoless double beta decay search in GERDA. Background modeling and limit setting

    Energy Technology Data Exchange (ETDEWEB)

    Becerici Schmidt, Neslihan

    2014-07-22

    The search for the neutrinoless double beta decay (0νββ) process is primarily motivated by its potential of revealing the possible Majorana nature of the neutrino, in which the neutrino is identical to its antiparticle. It has also the potential to yield information on the intrinsic properties of neutrinos, if the underlying mechanism is the exchange of a light Majorana neutrino. The Gerda experiment is searching for 0νββ decay of {sup 76}Ge by operating high purity germanium (HPGe) detectors enriched in the isotope {sup 76}Ge (∝ 87%), directly in ultra-pure liquid argon (LAr). The first phase of physics data taking (Phase I) was completed in 2013 and has yielded 21.6 kg.yr of data. A background index of B∼10{sup -2} cts/(keV.kg.yr) at Q{sub ββ}=2039 keV has been achieved. A comprehensive background model of the Phase I energy spectrum is presented as the major topic of this dissertation. Decomposition of the background energy spectrum into the individual contributions from different processes provides many interesting physics results. The specific activity of {sup 39}Ar has been determined. The obtained result, A=(1.15±0.11) Bq/kg, is in good agreement with the values reported in literature. The contribution from {sup 42}K decays in LAr to the background spectrum has yielded a {sup 42}K({sup 42}Ar) specific activity of A=(106.2{sub -19.2}{sup +12.7}) μBq/kg, for which only upper limits exist in literature. The analysis of high energy events induced by α decays in the {sup 226}Ra chain indicated a total {sup 226}Ra activity of (3.0±0.9) μBq and a total initial {sup 210}Po activity of (0.18±0.01) mBq on the p{sup +} surfaces of the enriched semi-coaxial HPGe detectors. The half life of the two-neutrino double beta (2νββ) decay of {sup 76}Ge has been determined as T{sub 1/2}{sup 2ν}=(1.926±0.094).10{sup 21} yr, which is in good agreement with the result that was obtained with lower exposure and has been published by the Gerda collaboration

  10. Development and test results of a readout chip for the GERDA experiment

    CERN Document Server

    Smale, Nigel; Knöpfle, K T; Schwingenheuer, B; Trunk, U; Fallot-Burghardt, W

    2007-01-01

    This paper describes the F-CSA104 architecture and its measurement results. The F-CSA104 is for γ spectroscopy with Ge detectors. It is a low noise, fully integrated, four channel XFAB 0.6μm CMOS technology ASIC, that has been developed for the GERDA experiment. Each channel contains a charge sensitive preamplifier (CSA) followed by a 11.7MHz differential line driver. It has been particularly designed to operate in liquid argon (T = 87K/-186°C) and to have a measuring sensitivity of 660e- with an ENC of 110e-, after offline filtering with 10μs shaping, when connected to a 30pF load. Special techniques are used to improve the SNR such as a large input PMOS FET, an integrated 500MΩ CSA feedback resistor and a noise degeneration drain resistor.

  11. Keeping the Background Low: Production and Testing of the GERDA Phase II Detectors

    International Nuclear Information System (INIS)

    Hemmer, Sabine

    2013-06-01

    The Germanium Detector Array (GERDA) experiment at the INFN Laboratori Nazionali del Gran Sasso searches for neutrinoless double beta decay of 76 Ge. The first phase using ∼15 kg of coaxial germanium detectors is ongoing. In a second phase, additional ∼20 kg of newly produced Broad Energy Germanium (BEGe) detectors will be deployed. To limit the generation of cosmogenically induced radioisotopes, the exposure of the germanium to cosmic radiation during the detector production and testing was minimized. An acceptance and characterization campaign of the newly produced detectors was carried out at the HEROICA facility in the HADES underground laboratory in Mol, Belgium. An overview over the complete production process, from isotopic enrichment of the material to the detector testing protocol, is given. (authors)

  12. Limits on uranium and thorium bulk content in GERDA Phase I detectors

    Science.gov (United States)

    GERDA Collaboration; Agostini, M.; Allardt, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Becerici-Schmidt, N.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; di Vacri, A.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Fedorova, O.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hakemüller, J.; Hegai, A.; Heisel, M.; Hemmer, S.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Kish, A.; Klimenko, A.; Kneißl, R.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Medinaceli, E.; Mingazheva, R.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Palioselitis, D.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salamida, F.; Salathe, M.; Schmitt, C.; Schneider, B.; Schönert, S.; Schreiner, J.; Schütz, A.-K.; Schulz, O.; Schwingenheuer, B.; Selivanenko, O.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Stepaniuk, M.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wojcik, M.; Yanovich, E.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2017-05-01

    Internal contaminations of 238U, 235U and 232Th in the bulk of high purity germanium detectors are potential backgrounds for experiments searching for neutrinoless double beta decay of 76Ge. The data from GERDA Phase I have been analyzed for alpha events from the decay chain of these contaminations by looking for full decay chains and for time correlations between successive decays in the same detector. No candidate events for a full chain have been found. Upper limits on the activities in the range of a few nBq/kg for 226Ra, 227Ac and 228Th, the long-lived daughter nuclides of 238U, 235U and 232Th, respectively, have been derived. With these upper limits a background index in the energy region of interest from 226Ra and 228Th contamination is estimated which satisfies the prerequisites of a future ton scale germanium double beta decay experiment.

  13. Toxicity of phosphor esters: Willy Lange (1900-1976) and Gerda von Krueger (1907-after 1970).

    Science.gov (United States)

    Petroianu, G A

    2010-10-01

    In 1851 Williamson serendipitously discovered a new and efficient way to produce ethers using ethyl iodide and potassium salts. Based on this new synthetic approach, the Frenchman Philippe de Clermont and the Muscovite Wladimir Moschnin, both élèves of Adolphe Wurtz in his Paris School of Chemistry, achieved the synthesis of the first ester of pyrophosphoric acid (TEPP). de Clermont "tasted" the new compound and although TEPP is a potent cholinesterase inhibitor he failed to recognize its toxicity. Almost a century later, in 1932, Willy Lange (1900-1976) and his graduate student Gerda v. Krueger (1907-after 1970) described the toxicity of organophosphonates. While the classic paper of the two "Uber Ester der Monofluorphosphorsäure." is cited by almost everybody working in the field, little is known about Lange and almost nothing about v. Krueger. This brief communication attempts to shed some light on the life of both.

  14. Results on neutrinoless double beta decay search in GERDA. Background modeling and limit setting

    International Nuclear Information System (INIS)

    Becerici Schmidt, Neslihan

    2014-01-01

    The search for the neutrinoless double beta decay (0νββ) process is primarily motivated by its potential of revealing the possible Majorana nature of the neutrino, in which the neutrino is identical to its antiparticle. It has also the potential to yield information on the intrinsic properties of neutrinos, if the underlying mechanism is the exchange of a light Majorana neutrino. The Gerda experiment is searching for 0νββ decay of 76 Ge by operating high purity germanium (HPGe) detectors enriched in the isotope 76 Ge (∝ 87%), directly in ultra-pure liquid argon (LAr). The first phase of physics data taking (Phase I) was completed in 2013 and has yielded 21.6 kg.yr of data. A background index of B∼10 -2 cts/(keV.kg.yr) at Q ββ =2039 keV has been achieved. A comprehensive background model of the Phase I energy spectrum is presented as the major topic of this dissertation. Decomposition of the background energy spectrum into the individual contributions from different processes provides many interesting physics results. The specific activity of 39 Ar has been determined. The obtained result, A=(1.15±0.11) Bq/kg, is in good agreement with the values reported in literature. The contribution from 42 K decays in LAr to the background spectrum has yielded a 42 K( 42 Ar) specific activity of A=(106.2 -19.2 +12.7 ) μBq/kg, for which only upper limits exist in literature. The analysis of high energy events induced by α decays in the 226 Ra chain indicated a total 226 Ra activity of (3.0±0.9) μBq and a total initial 210 Po activity of (0.18±0.01) mBq on the p + surfaces of the enriched semi-coaxial HPGe detectors. The half life of the two-neutrino double beta (2νββ) decay of 76 Ge has been determined as T 1/2 2ν =(1.926±0.094).10 21 yr, which is in good agreement with the result that was obtained with lower exposure and has been published by the Gerda collaboration. According to the model, the background in Q ββ ±5 keV window is resulting from close

  15. GERDA test facility for pressurized water reactors with straight tube steam generators

    International Nuclear Information System (INIS)

    Ahrens, G.; Haury, G.; Lahner, K.; Schatz, A.

    1983-01-01

    A number of large-scale experimental facilities have been constructed and operate in order to experiment on the thermodynamic and thermohydraulic behaviour of nuclear facilities in case of LOCA. Most of them were designed for ''large leak'' accidents, but as ''small leak'' accidents became the focus of interest, such experiments were also carried out. Experiments carried out with this arrangement for PWR-type reactors with straight-tube steam generators are only partially evaluable. BBR and B and W therefore cooperated in the construction of the test facility GERDA, designed for testing reactors of BBR design. It supplied relevant experimental results for the nuclear power plant at Muelheim-Kaerlich. (orig.) [de

  16. Background-free search for neutrinoless double-β decay of 76Ge with GERDA

    Science.gov (United States)

    Agostini, M.; Allardt, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; di Marco, N.; di Vacri, A.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Fedorova, O.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gooch, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hakenmüller, J.; Hegai, A.; Heisel, M.; Hemmer, S.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Kish, A.; Klimenko, A.; Kneißl, R.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Medinaceli, E.; Miloradovic, M.; Mingazheva, R.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Palioselitis, D.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salamida, F.; Salathe, M.; Schmitt, C.; Schneider, B.; Schönert, S.; Schreiner, J.; Schulz, O.; Schütz, A.-K.; Schwingenheuer, B.; Selivanenko, O.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wojcik, M.; Yanovich, E.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.; GERDA Collaboration

    2017-04-01

    Many extensions of the Standard Model of particle physics explain the dominance of matter over antimatter in our Universe by neutrinos being their own antiparticles. This would imply the existence of neutrinoless double-β decay, which is an extremely rare lepton-number-violating radioactive decay process whose detection requires the utmost background suppression. Among the programmes that aim to detect this decay, the GERDA Collaboration is searching for neutrinoless double-β decay of 76Ge by operating bare detectors, made of germanium with an enriched 76Ge fraction, in liquid argon. After having completed Phase I of data taking, we have recently launched Phase II. Here we report that in GERDA Phase II we have achieved a background level of approximately 10-3 counts keV-1 kg-1 yr-1. This implies that the experiment is background-free, even when increasing the exposure up to design level. This is achieved by use of an active veto system, superior germanium detector energy resolution and improved background recognition of our new detectors. No signal of neutrinoless double-β decay was found when Phase I and Phase II data were combined, and we deduce a lower-limit half-life of 5.3 × 1025 years at the 90 per cent confidence level. Our half-life sensitivity of 4.0 × 1025 years is competitive with the best experiments that use a substantially larger isotope mass. The potential of an essentially background-free search for neutrinoless double-β decay will facilitate a larger germanium experiment with sensitivity levels that will bring us closer to clarifying whether neutrinos are their own antiparticles.

  17. Gamma-ray spectrometry of ultra low levels of radioactivity within the material screening program for the GERDA experiment.

    Science.gov (United States)

    Budjás, D; Gangapshev, A M; Gasparro, J; Hampel, W; Heisel, M; Heusser, G; Hult, M; Klimenko, A A; Kuzminov, V V; Laubenstein, M; Maneschg, W; Simgen, H; Smolnikov, A A; Tomei, C; Vasiliev, S I

    2009-05-01

    In present and future experiments in the field of rare events physics a background index of 10(-3) counts/(keV kg a) or better in the region of interest is envisaged. A thorough material screening is mandatory in order to achieve this goal. The results of a systematic study of radioactive trace impurities in selected materials using ultra low-level gamma-ray spectrometry in the framework of the GERDA experiment are reported.

  18. Characterization of the first true coaxial 18-fold segmented n-type prototype HPGe detector for the gerda project

    International Nuclear Information System (INIS)

    Abt, I.; Caldwell, A.; Gutknecht, D.; Kroeninger, K.; Lampert, M.; Liu, X.; Majorovits, B.; Quirion, D.; Stelzer, F.; Wendling, P.

    2007-01-01

    The first true coaxial 18-fold segmented n-type HPGe prototype detector produced by Canberra-France for the GERDA neutrinoless double beta-decay project was tested both at Canberra-France and at the Max-Planck-Institut fur Physik in Munich. The main characteristics of the detector are given and measurements concerning detector properties are described. A novel method to establish contacts between the crystal and a Kapton cable is presented

  19. Operation of bare HPGe detectors in LAr/LN{sub 2} for the GERDA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Heider, M Barnabe; Chkvorets, O; Schoenert, S [MPI fuer Kernphysik, Heidelberg (Germany); Cattadori, C [INFN-Milano Bicocca, Milano (Italy); Vacri, A di [INFN-LNGS, L' Aquila (Italy); Gusev, K; Shirchenko, M [Russian Research Center Kurchatov Institute, Moscow, Russia and JINR, Dubna (Russian Federation)], E-mail: assunta.divacri@lngs.infn.it

    2008-11-01

    GERDA is designed to search for 0{nu}{beta}{beta}-decay of {sup 76}Ge using high purity germanium detectors (HPGe), enriched ({approx} 85%) in {sup 76}Ge, directly immersed in LAr which acts both as shield against {gamma} radiation and as cooling medium. The cryostat is located in a stainless steel water tank providing an additional shield against external background. The GERDA experiment aims at a background (b) {approx}<10{sup -3} cts/(kg-y-keV) and energy resolution (FWHM) {<=} 4 keV at Q{sub {beta}}{sub {beta}} = 2039 keV. GERDA experiment is foreseen to proceed in two phases. For Phase I, eight reprocessed enriched HPGe detectors from the past HdM [C Balysh et al., Phys. Rev. D 66 (1997) 54] and IGEX [C E Aalseth et al., Phys. of Atomic Nuclei 63 (2000) 1225] experiments ({approx} 18 kg) and six reprocessed natural HPGe detectors ({approx} 15 kg) from the Genius Test-Facility [H V Klapdor et al., HIM A 481 (2002) 149] will be deployed in strings. GERDA aims at b {approx}< 10{sup -2} cts/(kg{center_dot}keV{center_dot}y). With an exposure of {approx} 15 kg{center_dot}y of {sup 76}Ge and resolution {approx} 3.6 keV, the sensitivity on the half-life will be T{sup 0{nu}}{sub 1/2} 3 {center_dot} 10{sup 25} y (90 % C.L.) corresponding to m{sub ee} < 270 meV [V A Rodin et al., Nucl. Phys. A 766 (2006) 107]. In Phase II, new diodes, able to discriminate between single- and multi-site events, will be added ({approx} 20 kg of {sup 76}Ge with intrinsic b {approx} 10{sup -2} cts/(kg{center_dot}keV{center_dot}y). With an exposure of {approx} 120 kg{center_dot}y, it is expected T{sup 0{nu}}{sub 1/2} > 1.5 {center_dot} 10{sup 26} y (90% C.L.) corresponding to m{sub ee} < 110 meV [V A Rodin et al., Nucl. Phys. A 766 (2006) 107]. Three natural p-type HPGe prototypes (different passivation layer designs) are available in the GERDA underground facility at LNGS to investigate the effect of the detector assembly (low-mass low-activity holder), of the handling procedure and of the

  20. The slow control system of the GERDA double beta decay experiment at Gran Sasso

    International Nuclear Information System (INIS)

    Brugnera, R; Garfagnini, A; Gigante, G; Hemmer, S; Zinato, D; Costa, F; Lippi, I; Michelotto, M; Ur, C

    2012-01-01

    GERDA is an experiment designed and built to study double beta decays of 76 Ge. It is currently in operation at the Gran Sasso underground laboratories (LNGS). A custom slow control system has been designed to monitor and control all the critical parameters for the proper functioning of the experiment. The main sub-components of the experiment (Cryostat, Clean Room, Water Tank, electronic crates and temperatures, High Voltage Systems, Radon Monitor and Source Insertion System) are constantly monitored by several distributed clients which write acquired data to a relational database (PostgreSQL). The latter allows to maintain a history of the whole experiment and, performing correlation between different and independent components, is useful to debug possible system malfunctions. The system is complemented by a Web server, a lightweight and efficient interface to the user on shifts and to the on-call experts, and by a dedicated Alarm dispatcher which distributes the errors generated by the components to the users allowing to react in short time. The whole project has been built around open source and custom software.

  1. 2νββ decay of 76Ge into excited states with GERDA phase I

    Science.gov (United States)

    GERDA Collaboration; Agostini, M.; Allardt, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Barros, N.; Baudis, L.; Bauer, C.; Becerici-Schmidt, N.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Budjáš, D.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; di Vacri, A.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Fedorova, O.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gooch, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hegai, A.; Heisel, M.; Hemmer, S.; Heusser, G.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Klimenko, A.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Medinaceli, E.; Mi, Y.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Palioselitis, D.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salathe, M.; Schmitt, C.; Schneider, B.; Schreiner, J.; Schulz, O.; Schwingenheuer, B.; Schönert, S.; Schütz, A.-K.; Selivanenko, O.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Stepaniuk, M.; Ur, C. A.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wilsenach, H.; Wojcik, M.; Yanovich, E.; Zavarise, P.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2015-11-01

    Two neutrino double beta decay of {}76{Ge} to excited states of {}76{Se} has been studied using data from Phase I of the GERDA experiment. An array composed of up to 14 germanium detectors including detectors that have been isotopically enriched in {}76{Ge} was deployed in liquid argon. The analysis of various possible transitions to excited final states is based on coincidence events between pairs of detectors where a de-excitation γ ray is detected in one detector and the two electrons in the other. No signal has been observed and an event counting profile likelihood analysis has been used to determine Frequentist 90% C.L. bounds for three transitions: {0}{{g}.{{s}}.}+-{2}1+: {T}1/22ν \\gt 1.6× {10}23 yr, {0}{{g}.{{s}}.}+-{0}1+: {T}1/22ν \\gt 3.7× {10}23 yr and {0}{{g}.{{s}}.}+-{2}2+: {T}1/22ν \\gt 2.3× {10}23 yr. These bounds are more than two orders of magnitude larger than those reported previously. Bayesian 90% credibility bounds were extracted and used to exclude several models for the {0}{{g}.{{s}}.}+-{0}1+ transition.

  2. Double-beta decay with majoron emission in GERDA Phase I

    Science.gov (United States)

    Hemmer, Sabine

    2015-07-01

    Neutrinoless double-beta decay with emission of one or two majorons (0 νββχ( χ)) is predicted by several beyond-Standard-Model theories. This article reviews the results of a search for 0 νββχ( χ) of 76Ge using data from the Germanium Detector Array (GERDA) experiment, located underground at the INFN Laboratori Nazionali del Gran Sasso (LNGS) in Italy. The analysis comprised data with an exposure of 20.3 kg·yr from the first phase of the experiment. No indication of contributions to the observed energy spectra was detected for any of the majoron models. The lower limit on the half-life for the ordinary majoron model (spectral index n = 1 was determined to be T {1/2/0 νβ } > 4.2 · 1023 yr (90% quantile). This limit and the limits derived for the other majoron modes constitute the most stringent limits on 0 νββχ( χ) decay of 76Ge measured to date.

  3. Monte Carlo studies and optimization for the calibration system of the GERDA experiment

    Science.gov (United States)

    Baudis, L.; Ferella, A. D.; Froborg, F.; Tarka, M.

    2013-11-01

    The GERmanium Detector Array, GERDA, searches for neutrinoless double β decay in 76Ge using bare high-purity germanium detectors submerged in liquid argon. For the calibration of these detectors γ emitting sources have to be lowered from their parking position on the top of the cryostat over more than 5 m down to the germanium crystals. With the help of Monte Carlo simulations, the relevant parameters of the calibration system were determined. It was found that three 228Th sources with an activity of 20 kBq each at two different vertical positions will be necessary to reach sufficient statistics in all detectors in less than 4 h of calibration time. These sources will contribute to the background of the experiment with a total of (1.07±0.04(stat)-0.19+0.13(sys))×10-4 cts/(keV kg yr)) when shielded from below with 6 cm of tantalum in the parking position.

  4. Monte Carlo studies and optimization for the calibration system of the GERDA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Baudis, L. [Physics Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zürich (Switzerland); Ferella, A.D. [Physics Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zürich (Switzerland); INFN Laboratori Nazionali del Gran Sasso, 67010 Assergi (Italy); Froborg, F., E-mail: francis@froborg.de [Physics Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zürich (Switzerland); Tarka, M. [Physics Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zürich (Switzerland); Physics Department, University of Illinois, 1110 West Green Street, Urbana, IL 61801 (United States)

    2013-11-21

    The GERmanium Detector Array, GERDA, searches for neutrinoless double β decay in {sup 76}Ge using bare high-purity germanium detectors submerged in liquid argon. For the calibration of these detectors γ emitting sources have to be lowered from their parking position on the top of the cryostat over more than 5 m down to the germanium crystals. With the help of Monte Carlo simulations, the relevant parameters of the calibration system were determined. It was found that three {sup 228}Th sources with an activity of 20 kBq each at two different vertical positions will be necessary to reach sufficient statistics in all detectors in less than 4 h of calibration time. These sources will contribute to the background of the experiment with a total of (1.07±0.04(stat){sub −0.19}{sup +0.13}(sys))×10{sup −4}cts/(keVkgyr)) when shielded from below with 6 cm of tantalum in the parking position.

  5. Improved Limit on Neutrinoless Double-β Decay of ^{76}Ge from GERDA Phase II.

    Science.gov (United States)

    Agostini, M; Bakalyarov, A M; Balata, M; Barabanov, I; Baudis, L; Bauer, C; Bellotti, E; Belogurov, S; Bettini, A; Bezrukov, L; Biernat, J; Bode, T; Borowicz, D; Brudanin, V; Brugnera, R; Caldwell, A; Cattadori, C; Chernogorov, A; Comellato, T; D'Andrea, V; Demidova, E V; Di Marco, N; Domula, A; Doroshkevich, E; Egorov, V; Falkenstein, R; Gangapshev, A; Garfagnini, A; Grabmayr, P; Gurentsov, V; Gusev, K; Hakenmüller, J; Hegai, A; Heisel, M; Hemmer, S; Hiller, R; Hofmann, W; Hult, M; Inzhechik, L V; Janicskó Csáthy, J; Jochum, J; Junker, M; Kazalov, V; Kermaidic, Y; Kihm, T; Kirpichnikov, I V; Kirsch, A; Kish, A; Klimenko, A; Kneißl, R; Knöpfle, K T; Kochetov, O; Kornoukhov, V N; Kuzminov, V V; Laubenstein, M; Lazzaro, A; Lindner, M; Lippi, I; Lubashevskiy, A; Lubsandorzhiev, B; Lutter, G; Macolino, C; Majorovits, B; Maneschg, W; Miloradovic, M; Mingazheva, R; Misiaszek, M; Moseev, P; Nemchenok, I; Panas, K; Pandola, L; Pelczar, K; Pertoldi, L; Pullia, A; Ransom, C; Riboldi, S; Rumyantseva, N; Sada, C; Salamida, F; Schmitt, C; Schneider, B; Schönert, S; Schütz, A-K; Schulz, O; Schwingenheuer, B; Selivanenko, O; Shevchik, E; Shirchenko, M; Simgen, H; Smolnikov, A; Stanco, L; Vanhoefer, L; Vasenko, A A; Veresnikova, A; von Sturm, K; Wagner, V; Wegmann, A; Wester, T; Wiesinger, C; Wojcik, M; Yanovich, E; Zhitnikov, I; Zhukov, S V; Zinatulina, D; Zschocke, A; Zsigmond, A J; Zuber, K; Zuzel, G

    2018-03-30

    The GERDA experiment searches for the lepton-number-violating neutrinoless double-β decay of ^{76}Ge (^{76}Ge→^{76}Se+2e^{-}) operating bare Ge diodes with an enriched ^{76}Ge fraction in liquid argon. The exposure for broad-energy germanium type (BEGe) detectors is increased threefold with respect to our previous data release. The BEGe detectors feature an excellent background suppression from the analysis of the time profile of the detector signals. In the analysis window a background level of 1.0_{-0.4}^{+0.6}×10^{-3}  counts/(keV kg yr) has been achieved; if normalized to the energy resolution this is the lowest ever achieved in any 0νββ experiment. No signal is observed and a new 90% C.L. lower limit for the half-life of 8.0×10^{25}  yr is placed when combining with our previous data. The expected median sensitivity assuming no signal is 5.8×10^{25}  yr.

  6. HEROICA: a test facility for the characterization of BEGe detectors for the Gerda experiment

    Energy Technology Data Exchange (ETDEWEB)

    Falkenstein, Raphael [Eberhard Karls Universitaet Tuebingen (Germany); Collaboration: GERDA-Collaboration

    2013-07-01

    The Gerda experiment is designed to search for neutrinoless double beta (0νββ) decay of {sup 76}Ge. It uses bare, enriched Germanium diodes that are operated in liquid argon. Currently, Phase I is running at Laboratori Nazionali del Gran Sasso in Italy. For Phase II, ∝20 kg of Broad Energy Germanium (BEGe) detectors enriched in {sup 76}Ge at 86% level will be additionally deployed. These detectors allow for advanced pulse shape discrimination techniques, to suppress the background, which will be necessary to reach the goal of Phase II with a background index of 10{sup -3} cts/(keV.kg.yr) in the Region of Interest. The HEROICA project aims for acceptance tests and the characterization of the BEGe detectors. In this talk, the infrastructure of the Belgian HADES underground test facility, as well as the full test protocol for the characterization campaign of the enrBEGe detectors, is described. This test protocol includes the determination of important detector parameters, such as energy resolution, depletion voltage, dead-layer thickness and uniformity, active volume, as well as pulse shape discrimination parameters.

  7. Improved Limit on Neutrinoless Double-β Decay of Ge 76 from GERDA Phase II

    Science.gov (United States)

    Agostini, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Bettini, A.; Bezrukov, L.; Biernat, J.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; Comellato, T.; D'Andrea, V.; Demidova, E. V.; di Marco, N.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Gangapshev, A.; Garfagnini, A.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hakenmüller, J.; Hegai, A.; Heisel, M.; Hemmer, S.; Hiller, R.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kermaidic, Y.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Kish, A.; Klimenko, A.; Kneißl, R.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Miloradovic, M.; Mingazheva, R.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Panas, K.; Pandola, L.; Pelczar, K.; Pertoldi, L.; Pullia, A.; Ransom, C.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salamida, F.; Schmitt, C.; Schneider, B.; Schönert, S.; Schütz, A.-K.; Schulz, O.; Schwingenheuer, B.; Selivanenko, O.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wojcik, M.; Yanovich, E.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zschocke, A.; Zsigmond, A. J.; Zuber, K.; Zuzel, G.; Gerda Collaboration

    2018-03-01

    The GERDA experiment searches for the lepton-number-violating neutrinoless double-β decay of Ge 76 (Ge 76 →Se 76 +2 e- ) operating bare Ge diodes with an enriched Ge 76 fraction in liquid argon. The exposure for broad-energy germanium type (BEGe) detectors is increased threefold with respect to our previous data release. The BEGe detectors feature an excellent background suppression from the analysis of the time profile of the detector signals. In the analysis window a background level of 1. 0-0.4+0.6×10-3 counts /(keV kg yr ) has been achieved; if normalized to the energy resolution this is the lowest ever achieved in any 0 νβ β experiment. No signal is observed and a new 90% C.L. lower limit for the half-life of 8.0 ×1025 yr is placed when combining with our previous data. The expected median sensitivity assuming no signal is 5.8 ×1025 yr .

  8. Performance and stability tests of bare high purity germanium detectors in liquid argon for the GERDA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Barnabe Heider, Marik

    2009-05-27

    GERDA will search for neutrinoless double beta decay of {sup 76}Ge by using a novel approach of bare germanium detectors in liquid argon (LAr). Enriched germanium detectors from the previous Heidelberg-Moscow and IGEX experiments have been reprocessed and will be deployed in GERDA Phase-I. At the center of this thesis project is the study of the performance of bare germanium detectors in cryogenic liquids. Identical detector performance as in vacuum cryostats (2.2 keV FWHM at 1.3 MeV) was achieved in cryogenic liquids with a new low-mass detector assembly and contacts. One major result is the discovery of a radiation induced leakage current (LC) increase when operating bare detectors with standard passivation layers in LAr. Charge collection and build-up on the passivation layer were identified as the origin of the LC increase. It was found that diodes without passivation do not exhibit this feature. Three month-long stable operation in LAr at {proportional_to} 5 pA LC under periodic gamma irradiation demonstrated the suitability of the modi ed detector design. Based on these results, all Phase-I detectors were reprocessed without passivation layer and subsequently successfully characterized in LAr in the GERDA underground Detector Laboratory. The mass loss during the reprocessing was {proportional_to}300 g out of 17.9 kg and the exposure above ground {proportional_to} 5 days. This results in a negligible cosmogenic background increase of {proportional_to} 5.10{sup -4} cts/(keV.kg.y) at {sup 76}Ge Q{sub {beta}}{sub {beta}} for {sup 60}Co and {sup 68}Ge. (orig.)

  9. Search for the neutrinoless double beta decay (0νββ) of {sup 76}Ge: GERDA Phase II commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Bode, Tobias [Physik-Department E15, Technische Universitaet Muenchen (Germany); Collaboration: GERDA-Collaboration

    2015-07-01

    After successful completion of Phase I the Gerda (Germanium Detector Array) experiment underwent a major upgrade of the experimental apparatus. These upgrades include additional 20 kg of custom-made detectors with improved background rejection capabilities, accompanied by improved front-end electronics and an active liquid argon scintillation light veto. A sensitivity on the neutrinoless double beta decay half-life (T{sub 1/2}{sup 0ν}) of 10{sup 26} yr should be reached after a few years of data taking (Phase II). First results of Phase II commissioning and latest results from Phase I analyses are presented in this talk.

  10. Limit on the radiative neutrinoless double electron capture of "3"6Ar from GERDA Phase I

    International Nuclear Information System (INIS)

    Agostini, M.; Balata, M.; D'Andrea, V.; Di Vacri, A.; Junker, M.; Laubenstein, M.; Allardt, M.; Domula, A.; Lehnert, B.; Schneider, B.; Wester, T.; Wilsenach, H.; Zuber, K.; Bakalyarov, A.M.; Belyaev, S.T.; Lebedev, V.I.; Zhukov, S.V.; Barabanov, I.; Bezrukov, L.; Doroshkevich, E.; Fedorova, O.; Gurentsov, V.; Kazalov, V.; Kuzminov, V.V.; Lubsandorzhiev, B.; Moseev, P.; Selivanenko, O.; Veresnikova, A.; Yanovich, E.; Barros, N.; Baudis, L.; Benato, G.; Kish, A.; Miloradovic, M.; Mingazheva, R.; Walter, M.; Bauer, C.; Hakenmueller, J.; Heisel, M.; Heusser, G.; Hofmann, W.; Kihm, T.; Kirsch, A.; Knoepfle, K.T.; Lindner, M.; Maneschg, W.; Salathe, M.; Schreiner, J.; Schwingenheuer, B.; Simgen, H.; Smolnikov, A.; Stepaniuk, M.; Wagner, V.; Wegmann, A.; Bellotti, E.; Belogurov, S.; Kornoukhov, V.N.; Bettini, A.; Brugnera, R.; Garfagnini, A.; Medinaceli, E.; Sada, C.; Sturm, K. von; Bode, T.; Csathy, J.J.; Lazzaro, A.; Schoenert, S.; Wiesinger, C.; Borowicz, D.; Brudanin, V.; Egorov, V.; Kochetov, O.; Nemchenok, I.; Rumyantseva, N.; Zhitnikov, I.; Zinatulina, D.; Caldwell, A.; Gooch, C.; Kneissl, R.; Liao, H.Y.; Majorovits, B.; Palioselitis, D.; Schulz, O.; Vanhoefer, L.; Cattadori, C.; Salamida, F.; Chernogorov, A.; Demidova, E.V.; Kirpichnikov, I.V.; Vasenko, A.A.; Falkenstein, R.; Freund, K.; Grabmayr, P.; Hegai, A.; Jochum, J.; Schmitt, C.; Schuetz, A.K.; Frodyma, N.; Misiaszek, M.; Panas, K.; Pelczar, K.; Wojcik, M.; Zuzel, G.; Gangapshev, A.; Gusev, K.; Hemmer, S.; Lippi, I.; Stanco, L.; Hult, M.; Lutter, G.; Inzhechik, L.V.; Klimenko, A.; Lubashevskiy, A.; Macolino, C.; Pandola, L.; Pullia, A.; Riboldi, S.; Shirchenko, M.

    2016-01-01

    Neutrinoless double electron capture is a process that, if detected, would give evidence of lepton number violation and the Majorana nature of neutrinos. A search for neutrinoless double electron capture of "3"6Ar has been performed with germanium detectors installed in liquid argon using data from Phase I of the GERmanium Detector Array (Gerda) experiment at the Gran Sasso Laboratory of INFN, Italy. No signal was observed and an experimental lower limit on the half-life of the radiative neutrinoless double electron capture of "3"6Ar was established: T_1_/_2 > 3.6 x 10"2"1 years at 90% CI. (orig.)

  11. Status of the GERDA Experiment at the Laboratori Nazionali del Gran Sasso

    Directory of Open Access Journals (Sweden)

    R. Brugnera

    2013-01-01

    Full Text Available The Germanium Detector Array (Gerda is a low background experiment at the Laboratori Nazionali del Gran Sasso (LNGS of the INFN designed to search for the rare neutrinoless double beta decay (0νββ of 76Ge. In its first phase, high purity germanium diodes inherited from the former Heidelberg-Moscow and Igex experiments are operated “bare” and immersed in liquid argon, with an overall background environment of 10−2 cts/(keV·kg·yr, a factor of ten better than its predecessors. Measurements on two-neutrino double beta decay (2νββ giving T1/22ν=(1.88±0.10×1021 yr and recently published background model and pulse shape performances of the detectors are discussed in the paper. A new result on 0νββ has been recently published with a half-life limit on 0νββ decay T1/20ν>2.1×1025 yr (90% C.L.. A second phase of the experiment is scheduled to start during the year 2014, after a major upgrade shutdown. Thanks to the increased detector mass with new designed diodes and to the introduction of liquid argon instrumentation techniques, the experiment aims to reduce further the expected background to about 10−3 cts/(keV·kg·yr and to improve the 0νββ sensitivity to about T1/20ν>1.5×1026 yr (90% C.L..

  12. The background in the 0νββ experiment GERDA

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, M.; Bode, T.; Budjas, D.; Csathy, J.J.; Lazzaro, A.; Schoenert, S. [Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Muenchen (Germany); Allardt, M.; Barros, N.; Domula, A.; Lehnert, B.; Wester, T.; Zuber, K. [Technische Universitaet Dresden, Institut fuer Kern- und Teilchenphysik, Dresden (Germany); Andreotti, E. [Institute for Reference Materials and Measurements, Geel (Belgium); Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Bakalyarov, A.M.; Belyaev, S.T.; Lebedev, V.I.; Zhukov, S.V. [National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Balata, M.; Ioannucci, L.; Junker, M.; Laubenstein, M.; Macolino, C.; Nisi, S.; Pandola, L.; Zavarise, P. [INFN Laboratori Nazionali del Gran Sasso, LNGS, Assergi (Italy); Barabanov, I.; Bezrukov, L.; Gurentsov, V.; Inzhechik, L.V.; Kuzminov, V.V.; Lubsandorzhiev, B.; Yanovich, E. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Barnabe Heider, M. [Max Planck Institut fuer Kernphysik, Heidelberg (Germany); Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Muenchen (Germany); Baudis, L.; Benato, G.; Ferella, A.; Guthikonda, K.K.; Tarka, M.; Walter, M. [Physik Institut der Universitaet Zuerich, Zurich (Switzerland); Bauer, C.; Hampel, W.; Heisel, M.; Heusser, G.; Hofmann, W.; Kihm, T.; Kirsch, A.; Knoepfle, K.T.; Lindner, M.; Lubashevskiy, A.; Machado, A.A.; Maneschg, W.; Salathe, M.; Schreiner, J.; Schwingenheuer, B.; Simgen, H.; Smolnikov, A.; Strecker, H.; Wagner, V.; Wegmann, A. [Max Planck Institut fuer Kernphysik, Heidelberg (Germany); Becerici-Schmidt, N.; Caldwell, A.; Cossavella, F.; Liao, H.Y.; Liu, X.; Majorovits, B.; O' Shaughnessy, C.; Palioselitis, D.; Schulz, O.; Volynets, O. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Bellotti, E.; Pessina, G. [Universita Milano Bicocca, Dipartimento di Fisica, Milan (Italy); INFN Milano Bicocca, Milan (Italy); Belogurov, S.; Kornoukhov, V.N. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Bettini, A.; Brugnera, R.; Garfagnini, A.; Hemmer, S.; Sada, C. [Dipartimento di Fisica e Astronomia dell' Universita di Padova, Padua (Italy); INFN Padova, Padua (Italy); Brudanin, V.; Egorov, V.; Kochetov, O.; Nemchenok, I.; Shevchik, E.; Zhitnikov, I.; Zinatulina, D. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Cattadori, C.; Gotti, C. [INFN Milano Bicocca, Milan (Italy); Chernogorov, A.; Demidova, E.V.; Kirpichnikov, I.V.; Vasenko, A.A. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Falkenstein, R.; Freund, K.; Grabmayr, P.; Hegai, A.; Jochum, J.; Schmitt, C. [Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Frodyma, N.; Pelczar, K.; Wojcik, M.; Zuzel, G. [Jagiellonian University, Institute of Physics, Cracow (Poland); Gangapshev, A. [Max Planck Institut fuer Kernphysik, Heidelberg (Germany); Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Gusev, K. [Joint Institute for Nuclear Research, Dubna (Russian Federation); National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Muenchen (Germany); Hult, M.; Lutter, G. [Institute for Reference Materials and Measurements, Geel (Belgium); Klimenko, A. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Max Planck Institut fuer Kernphysik, Heidelberg (Germany); Lippi, I.; Stanco, L.; Ur, C.A. [INFN Padova, Padua (Italy); Pullia, A.; Riboldi, S. [Universita degli Studi di Milano (IT); INFN Milano, Dipartimento di Fisica, Milan (IT); Shirchenko, M. [Joint Institute for Nuclear Research, Dubna (RU); National Research Centre ' ' Kurchatov Institute' ' , Moscow (RU); Sturm, K. von [Dipartimento di Fisica e Astronomia dell' Universita di Padova, Padua (IT); INFN Padova, Padua (IT); Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (DE)

    2014-04-15

    The GERmanium Detector Array (GERDA) experiment at the Gran Sasso underground laboratory (LNGS) of INFN is searching for neutrinoless double beta (0νββ) decay of {sup 76}Ge. The signature of the signal is a monoenergetic peak at 2039 keV, the Q{sub ββ} value of the decay. To avoid bias in the signal search, the present analysis does not consider all those events, that fall in a 40 keV wide region centered around Q{sub ββ}. The main parameters needed for the 0νββ analysis are described. A background model was developed to describe the observed energy spectrum. The model contains several contributions, that are expected on the basis of material screening or that are established by the observation of characteristic structures in the energy spectrum. The model predicts a flat energy spectrum for the blinding window around Q{sub ββ} with a background index ranging from 17.6 to 23.8 x 10{sup -3} cts/(keV kg yr). A part of the data not considered before has been used to test if the predictions of the background model are consistent. The observed number of events in this energy region is consistent with the background model. The background at Q{sub ββ} is dominated by close sources,mainly due to {sup 42}K, {sup 214}Bi, {sup 228}Th, {sup 60}Co and α emitting isotopes from the {sup 226}Ra decay chain. The individual fractions depend on the assumed locations of the contaminants. It is shown, that after removal of the known γ peaks, the energy spectrum can be fitted in an energy range of 200 keV around Q{sub ββ} with a constant background. This gives a background index consistent with the full model and uncertainties of the same size. (orig.)

  13. Background reduction at low energies with BEGe detector operated in liquid argon using the GERDA-LArGe facility

    Energy Technology Data Exchange (ETDEWEB)

    Budjas, Dusan [Physik-Department E15, Technische Universitaet Muenchen (Germany); Collaboration: GERDA-Collaboration

    2014-07-01

    LArGe is a low background test facility used for proving innovative approaches to background reduction in support of the neutrinoless double beta decay experiment Gerda. These approaches include an anti-Compton veto using scintillation light detection from liquid argon, as well as a novel pulse shape discrimination method exploiting the characteristic electrical field distribution inside BEGe detectors. The latter technique can identify single-site events (typical for double beta decays) and efficiently reject multi-site events (typical for backgrounds from gamma-ray interactions), as well as different types of background events from detector surfaces. While the main focus of the LArGe facility is to assist with reaching the goal of Gerda - improving the sensitivity for {sup 76}Ge neutrinoless double beta decay search, reducing the background at low energies and lowering the energy threshold is also of interest. In particular such efforts can be potentially relevant for search of dark matter or low energy neutrino interactions. In this talk I present the experimental measurement of the low energy region with a BEGe detector operated in LArGe with the application of powerful background suppression methods. The performance will be compared to that of some dedicated dark matter detection experiments.

  14. Water physics and chemistry data from bottle casts from the GERDA as part of the Rosenstiel School of Marine and Atmospheric Science (RSMAS) project from 20 July 1955 to 29 May 1957 (NODC Accession 7000057)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water physics and chemistry data were collected from bottle casts from the GERDA from 20 July 1955 to 29 May 1957. Data were collected as part of the Rosenstiel...

  15. Background suppression in Gerda Phase II and its study in the LArGe low background set-up

    Energy Technology Data Exchange (ETDEWEB)

    Budjas, Dusan [Physik-Department E15, Technische Universitaet Muenchen (Germany); Collaboration: GERDA-Collaboration

    2013-07-01

    In Phase II of the Gerda experiment additional ∝20 kg of BEGe-type germanium detectors, enriched in {sup 76}Ge, will be deployed in liquid argon (LAr) to further increase the sensitivity for the half-life of neutrinoless double beta (0νββ) decay of {sup 76}Ge to > 2 . 10{sup 26} yr. To reduce background by a factor of 10 to the required level of < 10{sup -3} cts/(keV.kg.yr), it is necessary to employ active background-suppression techniques, including anti-Compton veto using scintillation light detection from LAr and pulse shape discrimination exploiting the characteristic electrical field distribution inside BEGe detectors. The latter technique can identify single-site events (typical for 0νββ) and efficiently reject multi-site events (mainly from γ-rays), as well as different types of background events from detector surfaces. The combined power of these techniques was studied for {sup 42}K and other background sources at the low background facility LArGe. Together with extensive simulations, the information from tracking of the Phase II detector material exposure to cosmic rays and based on the background contributions observed in Phase I, the expected background level in Phase II in the region of interest at 2039 keV, the Q{sub ββ} energy of {sup 76}Ge, is estimated. The preliminary analysis shows that contributions from all expected background components after all cuts are in line with the goal of Gerda Phase II.

  16. Excited state transitions in 2νββ decays of {sup 76}Ge from phase I of the GERDA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wester, Thomas [IKTP, TU Dresden (Germany); Collaboration: GERDA-Collaboration

    2015-07-01

    The Germanium Detector Array GERDA is an experiment searching for the neutrinoless double beta decay in {sup 76}Ge. The observation of such a decay would prove the Majorana character of the neutrino and could provide a hint about the neutrino mass and possibly identify the mass hierarchy scheme. The half life of the neutrino accompanied double beta decay (2νββ) of {sup 76}Ge has been measured by GERDA Phase I with unprecedented precision. The observed spectrum comes mostly from the transition from the 0{sup +} ground state of {sup 76}Ge to the 0{sup +} ground state of {sup 76}Se. However, phase space suppressed 2νββ transitions to excited states of {sup 76}Se exist as well. At current state, the predicted half lives for such decays vary by several orders of magnitude, due to the large uncertainties in the nuclear matrix elements and the available nuclear models. An observation would therefore help to constrain model parameters and decrease those uncertainties. This study investigates the 2νββ decay of {sup 76}Ge into various excited states of {sup 76}Se using the data from GERDA Phase I. An event counting method is performed based on coincident events between two germanium detectors. Several analysis parameters are optimized with the help of Monte Carlo simulations to maximize the sensitivity. The presentation discusses the procedure and results of this analysis.

  17. Outbreak of contact sensitization to methylisothiazolinone: an analysis of French data from the REVIDAL-GERDA network.

    Science.gov (United States)

    Hosteing, Stéphanie; Meyer, Nicolas; Waton, Julie; Barbaud, Annick; Bourrain, Jean-Luc; Raison-Peyron, Nadia; Felix, Brigitte; Milpied-Homsi, Brigitte; Ferrier Le Bouedec, Marie-Christine; Castelain, Michel; Vital-Durand, Dominique; Debons, Michèle; Collet, Evelyne; Avenel-Audran, Martine; Mathelier-Fusade, Pascale; Vermeulen, Christophe; Assier, Haudrey; Gener, Gwendoline; Lartigau-Sezary, Isabelle; Catelain-Lamy, Amandine; Giordano-Labadie, Françoise

    2014-05-01

    The preservative methylisothiazolinone (MI) is used in combination with methylchloroisothiazolinone (MCI), but the MCI/MI mixture has been identified as highly allergenic. MI is considered to be less allergenic, and since the mid-2000s has been widely used alone, but is now clearly identified as a contact allergen. The French Vigilance Network for Dermatology and Allergy of the Study and Research Group on Contact Dermatitis (REVIDAL-GERDA) added MI to its baseline patch testing series in 2010. To evaluate the change in the proportion of MI-positive tests in France between 2010 and 2012. We conducted a nationwide, multicentre, retrospective study of all MI-tested patients between 2010 and 2012. Sixteen centres participated in the study (7874 patients were tested). Patch tests were performed mainly at a concentration of MI 200 ppm aq. We observed a significant increase in the proportion of MI-positive tests in 2012 and 2011 as compared with 2010 (5.6%, 3.3%, and 1.5%, respectively; p < 0.001). We report a significant increase in the number of MI-positive tests. MI is confirmed to be a rapidly emerging allergen, as also observed in other European countries. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Results on neutrinoless double-β decay of 76Ge from phase I of the GERDA experiment.

    Science.gov (United States)

    Agostini, M; Allardt, M; Andreotti, E; Bakalyarov, A M; Balata, M; Barabanov, I; Barnabé Heider, M; Barros, N; Baudis, L; Bauer, C; Becerici-Schmidt, N; Bellotti, E; Belogurov, S; Belyaev, S T; Benato, G; Bettini, A; Bezrukov, L; Bode, T; Brudanin, V; Brugnera, R; Budjáš, D; Caldwell, A; Cattadori, C; Chernogorov, A; Cossavella, F; Demidova, E V; Domula, A; Egorov, V; Falkenstein, R; Ferella, A; Freund, K; Frodyma, N; Gangapshev, A; Garfagnini, A; Gotti, C; Grabmayr, P; Gurentsov, V; Gusev, K; Guthikonda, K K; Hampel, W; Hegai, A; Heisel, M; Hemmer, S; Heusser, G; Hofmann, W; Hult, M; Inzhechik, L V; Ioannucci, L; Janicskó Csáthy, J; Jochum, J; Junker, M; Kihm, T; Kirpichnikov, I V; Kirsch, A; Klimenko, A; Knöpfle, K T; Kochetov, O; Kornoukhov, V N; Kuzminov, V V; Laubenstein, M; Lazzaro, A; Lebedev, V I; Lehnert, B; Liao, H Y; Lindner, M; Lippi, I; Liu, X; Lubashevskiy, A; Lubsandorzhiev, B; Lutter, G; Macolino, C; Machado, A A; Majorovits, B; Maneschg, W; Misiaszek, M; Nemchenok, I; Nisi, S; O'Shaughnessy, C; Pandola, L; Pelczar, K; Pessina, G; Pullia, A; Riboldi, S; Rumyantseva, N; Sada, C; Salathe, M; Schmitt, C; Schreiner, J; Schulz, O; Schwingenheuer, B; Schönert, S; Shevchik, E; Shirchenko, M; Simgen, H; Smolnikov, A; Stanco, L; Strecker, H; Tarka, M; Ur, C A; Vasenko, A A; Volynets, O; von Sturm, K; Wagner, V; Walter, M; Wegmann, A; Wester, T; Wojcik, M; Yanovich, E; Zavarise, P; Zhitnikov, I; Zhukov, S V; Zinatulina, D; Zuber, K; Zuzel, G

    2013-09-20

    Neutrinoless double beta decay is a process that violates lepton number conservation. It is predicted to occur in extensions of the standard model of particle physics. This Letter reports the results from phase I of the Germanium Detector Array (GERDA) experiment at the Gran Sasso Laboratory (Italy) searching for neutrinoless double beta decay of the isotope (76)Ge. Data considered in the present analysis have been collected between November 2011 and May 2013 with a total exposure of 21.6 kg yr. A blind analysis is performed. The background index is about 1 × 10(-2) counts/(keV kg yr) after pulse shape discrimination. No signal is observed and a lower limit is derived for the half-life of neutrinoless double beta decay of (76)Ge, T(1/2)(0ν) >2.1 × 10(25) yr (90% C.L.). The combination with the results from the previous experiments with (76)Ge yields T(1/2)(0ν)>3.0 × 10(25) yr (90% C.L.).

  19. Results on Neutrinoless Double-β Decay of Ge76 from Phase I of the GERDA Experiment

    Science.gov (United States)

    Agostini, M.; Allardt, M.; Andreotti, E.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Barnabé Heider, M.; Barros, N.; Baudis, L.; Bauer, C.; Becerici-Schmidt, N.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Brudanin, V.; Brugnera, R.; Budjáš, D.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; Cossavella, F.; Demidova, E. V.; Domula, A.; Egorov, V.; Falkenstein, R.; Ferella, A.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gotti, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Guthikonda, K. K.; Hampel, W.; Hegai, A.; Heisel, M.; Hemmer, S.; Heusser, G.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Ioannucci, L.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Klimenko, A.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Liu, X.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Machado, A. A.; Majorovits, B.; Maneschg, W.; Misiaszek, M.; Nemchenok, I.; Nisi, S.; O'Shaughnessy, C.; Pandola, L.; Pelczar, K.; Pessina, G.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salathe, M.; Schmitt, C.; Schreiner, J.; Schulz, O.; Schwingenheuer, B.; Schönert, S.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Strecker, H.; Tarka, M.; Ur, C. A.; Vasenko, A. A.; Volynets, O.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wojcik, M.; Yanovich, E.; Zavarise, P.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2013-09-01

    Neutrinoless double beta decay is a process that violates lepton number conservation. It is predicted to occur in extensions of the standard model of particle physics. This Letter reports the results from phase I of the Germanium Detector Array (GERDA) experiment at the Gran Sasso Laboratory (Italy) searching for neutrinoless double beta decay of the isotope Ge76. Data considered in the present analysis have been collected between November 2011 and May 2013 with a total exposure of 21.6 kg yr. A blind analysis is performed. The background index is about 1×10-2counts/(keVkgyr) after pulse shape discrimination. No signal is observed and a lower limit is derived for the half-life of neutrinoless double beta decay of Ge76, T1/20ν>2.1×1025yr (90% C.L.). The combination with the results from the previous experiments with Ge76 yields T1/20ν>3.0×1025yr (90% C.L.).

  20. Search for 2νββ excited state transitions and HPGe characterization for surface events in GERDA phase II

    Energy Technology Data Exchange (ETDEWEB)

    Lehnert, Bjoern

    2016-03-01

    The search for the neutrinoless double beta (0νββ) decay is one of the most active fields in modern particle physics. This process is not allowed within the Standard Model and its observation would imply lepton number violation and would lead to the Majorana nature of neutrinos. The experimentally observed quantity is the half-life of the decay, which can be connected to the effective Majorana neutrino mass via nuclear matrix elements. The latter can only be determined theoretically and are currently affected by large uncertainties. To reduce these uncertainties one can investigate the well established two-neutrino double beta (2νββ) decay into the ground and excited states of the daughter isotope. These similar processes are allowed within the Standard Model. In this dissertation, the search for 2νββ decays into excited states is performed in {sup 110}Pd, {sup 102}Pd and {sup 76}Ge. Three gamma spectroscopy setups at the Felsenkeller (Germany), HADES (Belgium) and LNGS (Italy) underground laboratories are used to search for the transitions in {sup 110}Pd and {sup 102}Pd. No signal is observed leading to lower half-live bounds (90% C.I.) of 2.9 . 10{sup 20} yr, 3.9 . 10{sup 20} yr and 2.9 . 10{sup 20} yr for the 0/2νββ 2{sup +}{sub 1}, 0{sup +}{sub 1} and 2{sup +}{sub 2} transitions in {sup 110}Pd and 7.9 . 10{sup 18} yr, 9.2 . 10{sup 18} yr and 1.5 . 10{sup 19} yr for the 0/2νββ 2{sup +}{sub 1}, 0{sup +}{sub 1} and 2{sup +}{sub 2} transitions in {sup 102}Pd, respectively. This is a factor of 1.3 to 3 improvement compared to previous limits. The data of Phase I (Nov 2011 - May 2013) of the 0νββ decay experiment GERDA at LNGS is used to search for excited state transitions in {sup 76}Ge. The analysis is based on coincidences between two detectors and finds no signal. Lower half-life limits (90 % C.L.) of 1.6.10{sup 23} yr, 3.7.10{sup 23} yr and 2.3.10{sup 23} yr are obtained for the 2νββ 2{sup +}{sub 1}, 0{sup +}{sub 1} and 2{sup +}{sub 2

  1. Search for the neutrinoless double β-decay in GERDA phase I using a pulse shape discrimination technique

    International Nuclear Information System (INIS)

    Kirsch, Andrea

    2014-01-01

    The Germanium Detector Array (Gerda) experiment, located underground at the INFN Laboratori Nazionali del Gran Sasso (LNGS) in Italy, deploys high-purity germanium detectors to search for the neutrinoless double β-decay (0νββ) of 76 Ge. An observation of this lepton number violating process, which is expected by many extensions of the Standard Model, would not only generate a fundamental shift in our understanding of particle physics, but also unambiguously prove the neutrino to have a non-vanishing Majorana mass component. A first phase of data recording lasted from November 2011 to May 2013 - resulting in a total exposure (defined as the product of detector mass and measurement time) of 21.6 kg.yr. Within this thesis a thorough study of this data with special emphasis on the development and scrutiny of an active background suppression technique by means of a signal shape analysis has been performed. Among several investigated multivariate approaches, particularly a selection algorithm based on an artificial neural network is found to yield the best performance; i.a. the background index close to the Q-value of the 0νββ-decay could be suppressed by 45% to 1.10 -2 cts/(keV.kg.yr), while still retaining a considerably high signal survival fraction of (83±3)% leading to a significant improvement of the experimental sensitivity. The efficiency is derived by a simulation and further validated by substantiated consistency checks availing themselves of measurements taken with different calibration sources and physics data. No signal is observed and a new lower limit of T 0ν 1/2 (90%C.L.)> 2.2. 10 25 yr for the half-life of neutrinoless double β-decay of 76 Ge is established.

  2. Search for the neutrinoless double β-decay in GERDA phase I using a pulse shape discrimination technique

    Energy Technology Data Exchange (ETDEWEB)

    Kirsch, Andrea

    2014-07-09

    The Germanium Detector Array (Gerda) experiment, located underground at the INFN Laboratori Nazionali del Gran Sasso (LNGS) in Italy, deploys high-purity germanium detectors to search for the neutrinoless double β-decay (0νββ) of {sup 76}Ge. An observation of this lepton number violating process, which is expected by many extensions of the Standard Model, would not only generate a fundamental shift in our understanding of particle physics, but also unambiguously prove the neutrino to have a non-vanishing Majorana mass component. A first phase of data recording lasted from November 2011 to May 2013 - resulting in a total exposure (defined as the product of detector mass and measurement time) of 21.6 kg.yr. Within this thesis a thorough study of this data with special emphasis on the development and scrutiny of an active background suppression technique by means of a signal shape analysis has been performed. Among several investigated multivariate approaches, particularly a selection algorithm based on an artificial neural network is found to yield the best performance; i.a. the background index close to the Q-value of the 0νββ-decay could be suppressed by 45% to 1.10{sup -2} cts/(keV.kg.yr), while still retaining a considerably high signal survival fraction of (83±3)% leading to a significant improvement of the experimental sensitivity. The efficiency is derived by a simulation and further validated by substantiated consistency checks availing themselves of measurements taken with different calibration sources and physics data. No signal is observed and a new lower limit of T{sup 0ν}{sub 1/2} (90%C.L.)> 2.2. 10{sup 25} yr for the half-life of neutrinoless double β-decay of {sup 76}Ge is established.

  3. Oceanographic and meteorological data measurements collected from CTD, bottle and other instruments from Gerda, J.E., Pillsbury and Calanus in the North Atlantic Ocean and Gulf of Mexico from 1967-02-24 to 1970-11-13 (NCEI Accession 7100821)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic and meteorological data measurements collected from CTD, bottle and other instruments. Data were collected from Gerda, J.E., Pillsbury and Calanus in...

  4. Pulse shape analysis for the GERDA experiment to set a new limit on the half-life of 0νββ decay of {sup 76}Ge

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Victoria Elisabeth

    2017-01-25

    The GERDA experiment searches for neutrinoless double beta (0νββ) decay of {sup 76}Ge using high purity germanium (HPGe) detectors operated in liquid argon (LAr). The aim is to explore half-lives of the order of 10{sup 26} yr. Therefore, GERDA relies on improved active background reduction techniques such as pulse shape discrimination (PSD) in which the time structure of the germanium signals is analyzed to discriminate signal- from background-like events. Two types of HPGe detectors are operated: semi-coaxial detectors previously used in the Heidelberg-Moscow and IGEX experiments and new Broad Energy Germanium (BEGe) detectors which feature an improved energy resolution and enhanced PSD. In Phase I of the experiment, five enriched BEGe detectors were used for the first time in the search for 0νββ decay. A PSD based on a single parameter, the ratio of the maximum current amplitude over the energy A/E is applied. 83% of the background events in a 232 keV region around Q{sub ββ} are rejected with a high signal efficiency of (92.1 ± 1.9) %. The achieved background index (BI) is (5.4{sup +4.1}{sub -3.4}) . 10{sup -3} (counts)/(keV.kg.yr). This is an improvement by a factor of 10 compared to previous germanium based 0νββ experiments. Phase II of the experiment includes a major upgrade: for further background rejection, the LAr cryostat is instrumented to detect argon scintillation light. Additional 25 BEGe detectors are installed. After PSD and LAr veto a BI of (0.7{sup +1.3}{sub -0.5}) . 10{sup -3} (counts)/(keV.kg.yr) is achieved. This is the best BI achieved in 0νββ experiments so far. A frequentist statistical analysis is performed on the combined data collected in GERDA Phase I and the first Phase II release. A new limit on the half-life of 0νββ decay of {sup 76}Ge is set to T{sup 0ν}{sub 1/2}>5.3.10{sup 25} yr at 90% C.L., with a median sensitivity of T{sup 0ν}{sub 1/2}>4.0.10{sup 25} yr at 90% C.L.

  5. Results on ββ decay with emission of two neutrinos or Majorons in {sup 76}Ge from GERDA Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, M.; Bode, T.; Budjas, D.; Csathy, J.J.; Lazzaro, A.; Schoenert, S. [Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Munich (Germany); Allardt, M.; Domula, A.; Lehnert, B.; Schneider, B.; Wester, T.; Wilsenach, H.; Zuber, K. [Technische Universitaet Dresden, Institut fuer Kern- und Teilchenphysik, Dresden (Germany); Bakalyarov, A.M.; Belyaev, S.T.; Lebedev, V.I.; Zhukov, S.V. [National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Balata, M.; D' Andrea, V.; Di Vacri, A.; Junker, M.; Laubenstein, M.; Macolino, C.; Zavarise, P. [INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, Assergi (Italy); Barabanov, I.; Bezrukov, L.; Doroshkevich, E.; Fedorova, O.; Gurentsov, V.; Kazalov, V.; Kuzminov, V.V.; Lubsandorzhiev, B.; Moseev, P.; Selivanenko, O.; Veresnikova, A.; Yanovich, E. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Barros, N. [Technische Universitaet Dresden, Institut fuer Kern- und Teilchenphysik, Dresden (Germany); University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, PA (United States); Baudis, L.; Benato, G.; Walter, M. [Physik Institut der Universitaet Zuerich, Zurich (Switzerland); Bauer, C.; Heisel, M.; Heusser, G.; Hofmann, W.; Kihm, T.; Kirsch, A.; Knoepfle, K.T.; Lindner, M.; Maneschg, W.; Salathe, M.; Schreiner, J.; Schwingenheuer, B.; Simgen, H.; Smolnikov, A.; Stepaniuk, M.; Wagner, V.; Wegmann, A. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Becerici-Schmidt, N.; Caldwell, A.; Liao, H.Y.; Majorovits, B.; Palioselitis, D.; Schulz, O.; Vanhoefer, L. [Max-Planck-Institut fuer Physik, Munich (Germany); Bellotti, E. [Universita Milano Bicocca, Dipartimento di Fisica, Milan (Italy); INFN Milano Bicocca, Milan (Italy); Belogurov, S.; Kornoukhov, V.N. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Bettini, A.; Brugnera, R.; Garfagnini, A.; Hemmer, S.; Medinaceli, E.; Sada, C.; Sturm, K. von [Dipartimento di Fisica e Astronomia dell' Universita di Padova, Padua (Italy); INFN Padova, Padua (Italy); Borowicz, D. [Jagiellonian University, Institute of Physics, Cracow (Poland); Joint Institute for Nuclear Research, Dubna (Russian Federation); Brudanin, V.; Egorov, V.; Kochetov, O.; Nemchenok, I.; Rumyantseva, N.; Zhitnikov, I.; Zinatulina, D. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Cattadori, C. [INFN Milano Bicocca, Milan (Italy); Chernogorov, A.; Demidova, E.V.; Kirpichnikov, I.V.; Vasenko, A.A. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Falkenstein, R.; Freund, K.; Grabmayr, P.; Hegai, A.; Jochum, J.; Schmitt, C.; Schuetz, A.K. [Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Frodyma, N.; Misiaszek, M.; Panas, K.; Pelczar, K.; Wojcik, M.; Zuzel, G. [Jagiellonian University, Institute of Physics, Cracow (Poland); Gangapshev, A. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Gusev, K. [Joint Institute for Nuclear Research, Dubna (Russian Federation); National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Munich (Germany); Hult, M.; Lutter, G. [Institute for Reference Materials and Measurements, Geel (Belgium); Inzhechik, L.V. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Moscow Institute of Physics and Technology, Moscow (Russian Federation); Klimenko, A. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); International University for Nature, Society and Man ' ' Dubna' ' , Dubna (Russian Federation); Lippi, I.; Stanco, L.; Ur, C.A. [INFN Padova, Padua (Italy); Lubashevskiy, A. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Pandola, L. [INFN Laboratori Nazionali del Sud, Catania (Italy); Pullia, A.; Riboldi, S. [Universita degli Studi di Milano, Dipartimento di Fisica, Milan (Italy); INFN, Milano (Italy); Shirchenko, M. [Joint Institute for Nuclear Research, Dubna (Russian Federation); National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Collaboration: GERDA Collaboration

    2015-09-15

    A search for neutrinoless ββ decay processes accompanied with Majoron emission has been performed using data collected during Phase I of the GERmanium Detector Array (GERDA) experiment at the Laboratori Nazionali del Gran Sasso of INFN (Italy). Processes with spectral indices n = 1, 2, 3, 7 were searched for. No signals were found and lower limits of the order of 10{sup 23} yr on their half-lives were derived, yielding substantially improved results compared to previous experiments with {sup 76}Ge. A new result for the half-life of the neutrino-accompanied ββ decay of {sup 76}Ge with significantly reduced uncertainties is also given, resulting in T{sub 1/2}{sup 2ν} = (1.926 ± 0.094) @ x 10{sup 21} yr. (orig.)

  6. Results on ββ decay with emission of two neutrinos or Majorons in {sup 76}Ge from GERDA Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, M. [Physik Department and Excellence Cluster Universe, Technische Universität München, Munich (Germany); Allardt, M. [Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden (Germany); Bakalyarov, A. M. [National Research Centre “Kurchatov Institute”, Moscow (Russian Federation); Balata, M. [INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, Assergi (Italy); Collaboration: GERDA Collaboration; and others

    2015-09-09

    A search for neutrinoless ββ decay processes accompanied with Majoron emission has been performed using data collected during Phase I of the GERmanium Detector Array (GERDA) experiment at the Laboratori Nazionali del Gran Sasso of INFN (Italy). Processes with spectral indices n=1,2,3,7 were searched for. No signals were found and lower limits of the order of 10{sup 23} yr on their half-lives were derived, yielding substantially improved results compared to previous experiments with {sup 76}Ge. A new result for the half-life of the neutrino-accompanied ββ decay of {sup 76}Ge with significantly reduced uncertainties is also given, resulting in T{sub 1/2}{sup 2ν}=(1.926±0.094)×10{sup 21} yr.

  7. Systolic blood pressure decline in very old individuals is explained by deteriorating health: Longitudinal changes from Umeå85+/GERDA.

    Science.gov (United States)

    Weidung, Bodil; Toots, Annika; Nordström, Peter; Carlberg, Bo; Gustafson, Yngve

    2017-12-01

    Declining systolic blood pressure (SBP) is common in very old age and is associated with adverse events, such as dementia. Knowledge of factors associated with SBP changes could explain the etiology of this decline in SBP. This study investigated longitudinal changes in socioeconomic factors, medical conditions, drug prescriptions, and assessments and their associations with SBP changes among very old followed individuals.The study was based on data from the Umeå85+/Gerontological Regional Database (GERDA) cohort study, which provided cross-sectional and longitudinal data on participants aged 85, 90, and ≥95 years from 2000 to 2015. Follow-up assessments were conducted after 5 years. The main outcome was a change in SBP. Factors associated with SBP changes were assessed using multivariate linear regression models.In the Umeå85+/GERDA study, 454 surviving individuals underwent follow-up assessment after 5 years. Of these, 297 had SBP measured at baseline and follow-up. The mean change ± standard deviation in SBP was -12 ± 25 mm Hg. SBP decline was associated independently with later investigation year (P = .009), higher baseline SBP (P < .001), baseline antidepressant prescription (P = .011), incident acute myocardial infarction during follow-up (P = .003), new diuretic prescription during follow-up (P = .044), and a decline in the Barthel Activities of Daily Living index at follow-up (P < .001).In conclusion, SBP declines among very old individuals. This decline seems to be associated with initial SBP level, investigation year, and health-related factors. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  8. Risk analysis and reliability of the GERDA Experiment extraction and ventilation plant at Gran Sasso mountain underground laboratory of Italian National Institute for Nuclear Physics

    International Nuclear Information System (INIS)

    Lombardi, Mara; Garzia, Fabio; Guarascio, Massimo; Giovannone, Enzo Paolo; Giampaoli, Antonio; Musti, Mafalda; Ranalli, Maria Teresa; Perruzza, Roberto; Tartaglia, Roberto

    2017-01-01

    The aim of this study is the risk analysis evaluation about argon release from the GERDA experiment in the Gran Sasso underground National Laboratories (LNGS) of the Italian National Institute for Nuclear Physics (INFN). The GERDA apparatus, located in Hall A of the LNGS, is a facility with germanium detectors located in a wide tank filled with about 70 m"3 of cold liquefied argon. This cryo-tank sits in another water-filled tank (700 m"3 ) at atmospheric pressure. In such cryogenic processes, the main cause of an accidental scenario is lacking insulation of the cryo-tank. A preliminary HazOp analysis has been carried out on the whole system. The risk assessment identified two possible top-events: explosion due to a Rapid Phase Transition - RPT and argon runaway evaporation. Risk analysis highlighted a higher probability of occurrence of the latter top event. To avoid emission in Hall A, the HazOp, Fault Tree and Event tree analyses of the cryogenic gas extraction and ventilation plant have been made. The failures related to the ventilation system are the main cause responsible for the occurrence. To improve the system reliability some corrective actions were proposed: the use of UPS and the upgrade of damper opening devices. Furthermore, the Human Reliability Analysis identified some operating and management improvements: action procedure optimization, alert warnings and staff training. The proposed model integrates the existing analysis techniques by applying the results to an atypical work environment and there are useful suggestions for improving the system reliability. (author)

  9. Risk analysis and reliability of the GERDA Experiment extraction and ventilation plant at Gran Sasso mountain underground laboratory of Italian National Institute for Nuclear Physics

    Directory of Open Access Journals (Sweden)

    Mara Lombardi

    Full Text Available Abstract The aim of this study is the risk analysis evaluation about argon release from the GERDA experiment in the Gran Sasso underground National Laboratories (LNGS of the Italian National Institute for Nuclear Physics (INFN. The GERDA apparatus, located in Hall A of the LNGS, is a facility with germanium detectors located in a wide tank filled with about 70 m3 of cold liquefied argon. This cryo-tank sits in another water-filled tank (700 m3 at atmospheric pressure. In such cryogenic processes, the main cause of an accidental scenario is lacking insulation of the cryo-tank. A preliminary HazOp analysis has been carried out on the whole system. The risk assessment identified two possible top-events: explosion due to a Rapid Phase Transition - RPT and argon runaway evaporation. Risk analysis highlighted a higher probability of occurrence of the latter top event. To avoid emission in Hall A, the HazOp, Fault Tree and Event tree analyses of the cryogenic gas extraction and ventilation plant have been made. The failures related to the ventilation system are the main cause responsible for the occurrence. To improve the system reliability some corrective actions were proposed: the use of UPS and the upgrade of damper opening devices. Furthermore, the Human Reliability Analysis identified some operating and management improvements: action procedure optimization, alert warnings and staff training. The proposed model integrates the existing analysis techniques by applying the results to an atypical work environment and there are useful suggestions for improving the system reliability.

  10. Risk analysis and reliability of the GERDA Experiment extraction and ventilation plant at Gran Sasso mountain underground laboratory of Italian National Institute for Nuclear Physics

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, Mara; Garzia, Fabio; Guarascio, Massimo; Giovannone, Enzo Paolo; Giampaoli, Antonio; Musti, Mafalda; Ranalli, Maria Teresa; Perruzza, Roberto; Tartaglia, Roberto, E-mail: mara.lombardi@uniroma1.it, E-mail: fabio.garzia@uniroma1.it, E-mail: massimo.guarascio@uniroma1.it [Universita degli Studi di Roma La Sapienza-Engineering Roma (Italy); Corpo Nazionale Vigili del Fuoco L' Aquila (CNVF) (Italy); Istituto Nazionale di Fisica Nucleare - Laboratori del Gran Sasso L' Aquila, Abruzzo (Italy)

    2017-07-15

    The aim of this study is the risk analysis evaluation about argon release from the GERDA experiment in the Gran Sasso underground National Laboratories (LNGS) of the Italian National Institute for Nuclear Physics (INFN). The GERDA apparatus, located in Hall A of the LNGS, is a facility with germanium detectors located in a wide tank filled with about 70 m{sup 3} of cold liquefied argon. This cryo-tank sits in another water-filled tank (700 m{sup 3} ) at atmospheric pressure. In such cryogenic processes, the main cause of an accidental scenario is lacking insulation of the cryo-tank. A preliminary HazOp analysis has been carried out on the whole system. The risk assessment identified two possible top-events: explosion due to a Rapid Phase Transition - RPT and argon runaway evaporation. Risk analysis highlighted a higher probability of occurrence of the latter top event. To avoid emission in Hall A, the HazOp, Fault Tree and Event tree analyses of the cryogenic gas extraction and ventilation plant have been made. The failures related to the ventilation system are the main cause responsible for the occurrence. To improve the system reliability some corrective actions were proposed: the use of UPS and the upgrade of damper opening devices. Furthermore, the Human Reliability Analysis identified some operating and management improvements: action procedure optimization, alert warnings and staff training. The proposed model integrates the existing analysis techniques by applying the results to an atypical work environment and there are useful suggestions for improving the system reliability. (author)

  11. [Gerda Alexander eutonia].

    Science.gov (United States)

    Murcia, R

    1991-01-01

    One of the most important objectives of euronia is to find the adequate tonus in situations of total rest or of maximum dynamism. The dimension of tonic mastery together with relaxation make eutonia an extremely useful method in phoniatrics and orthophony.

  12. Characterization of the liquid argon veto of the GERDA experiment and its application for the measurement of the "7"6Ge half-life

    International Nuclear Information System (INIS)

    Wegmann, Anne Christin

    2017-01-01

    The search for neutrinoless double-beta decay (0νββ) is one of the most active fields in modern particle physics as the observation of this process would prove lepton number violation and imply new physics beyond the Standard Model of particle physics. The GERDA experiment searches for this decay by operating bare Germanium detectors, enriched in the ββ isotope "7"6Ge, in liquid argon. For the first time, a ββ-experiment combines the excellent properties of semiconductor Germanium detectors with an active background suppression technique based on the simultaneous detection of liquid argon scintillation light by photomultiplier tubes and silicon photomultipliers coupled to scintillating fibers (LAr veto). The LAr veto has been successfully operated during the first six months of Phase II of the experiment and yielded - in combination with a Germanium detector pulse shape discrimination technique - a background index of (0.7"+"1"."1_-_0_._5).10"-"3 ((cts)/(kg.keV.yr)). With an ultimate exposure of 100 kg.yr this will allow for a 0νββ-decay half-life sensitivity of the Gerda Phase II experiment of 10"2"6 yr. Double-beta decay under the emission of two neutrinos (2νββ) is a second-order process but which is allowed by the Standard Model. The excellent background reduction of the LAr veto results in an unprecedented signal-to-background ratio of 30:1 in the energy region dominated by 2νββ-decay of "7"6Ge. The remaining background after LAr veto is estimated using the suppression factor from calibration source measurements and results in a measurement of T"2"ν_1_/_2=(1.98±0.02(stat)±0.05(syst)).10"2"1 yr and T_1_/_2"2"ν=(1.92 ±0.02(stat)±0.11(syst)).10"2"1 yr based on two different detector designs and give uncertainties on the detector parameters but both with improved systematic uncertainties in comparison to earlier measurements.

  13. Liquid argon as active shielding and coolant for bare germanium detectors. A novel background suppression method for the GERDA 0νββ experiment

    International Nuclear Information System (INIS)

    Peiffer, J.P.

    2007-01-01

    Two of the most important open questions in particle physics are whether neutrinos are their own anti-particles (Majorana particles) as required by most extensions of the StandardModel and the absolute values of the neutrino masses. The neutrinoless double beta (0νββ) decay, which can be investigated using 76 Ge (a double beta isotope), is the most sensitive probe for these properties. There is a claim for an evidence for the 0νββ decay in the Heidelberg-Moscow (HdM) 76 Ge experiment by a part of the HdM collaboration. The new 76 Ge experiment Gerda aims to check this claim within one year with 15 kg.y of statistics in Phase I at a background level of ≤10 -2 events/(kg.keV.y) and to go to higher sensitivity with 100 kg.y of statistics in Phase II at a background level of ≤10 -3 events/(kg.keV.y). In Gerda bare germanium semiconductor detectors (enriched in 76 Ge) will be operated in liquid argon (LAr). LAr serves as cryogenic coolant and as high purity shielding against external background. To reach the background level for Phase II, new methods are required to suppress the cosmogenic background of the diodes. The background from cosmogenically produced 60 Co is expected to be ∝2.5.10 -3 events/(kg.keV.y). LAr scintillates in UV (λ=128 nm) and a novel concept is to use this scintillation light as anti-coincidence signal for background suppression. In this work the efficiency of such a LAr scintillation veto was investigated for the first time. In a setup with 19 kg active LAr mass a suppression of a factor 3 has been achieved for 60 Co and a factor 17 for 232 Th around Q ββ = 2039 keV. This suppression will further increase for a one ton active volume (factor O(100) for 232 Th and 60 Co). LAr scintillation can also be used as a powerful tool for background diagnostics. For this purpose a new, very stable and robust wavelength shifter/reflector combination for the light detection has been developed, leading to a photo electron (pe) yield of as much as

  14. Characterization of the liquid argon veto of the GERDA experiment and its application for the measurement of the {sup 76}Ge half-life

    Energy Technology Data Exchange (ETDEWEB)

    Wegmann, Anne Christin

    2017-01-18

    The search for neutrinoless double-beta decay (0νββ) is one of the most active fields in modern particle physics as the observation of this process would prove lepton number violation and imply new physics beyond the Standard Model of particle physics. The GERDA experiment searches for this decay by operating bare Germanium detectors, enriched in the ββ isotope {sup 76}Ge, in liquid argon. For the first time, a ββ-experiment combines the excellent properties of semiconductor Germanium detectors with an active background suppression technique based on the simultaneous detection of liquid argon scintillation light by photomultiplier tubes and silicon photomultipliers coupled to scintillating fibers (LAr veto). The LAr veto has been successfully operated during the first six months of Phase II of the experiment and yielded - in combination with a Germanium detector pulse shape discrimination technique - a background index of (0.7{sup +1.1}{sub -0.5}).10{sup -3} ((cts)/(kg.keV.yr)). With an ultimate exposure of 100 kg.yr this will allow for a 0νββ-decay half-life sensitivity of the Gerda Phase II experiment of 10{sup 26} yr. Double-beta decay under the emission of two neutrinos (2νββ) is a second-order process but which is allowed by the Standard Model. The excellent background reduction of the LAr veto results in an unprecedented signal-to-background ratio of 30:1 in the energy region dominated by 2νββ-decay of {sup 76}Ge. The remaining background after LAr veto is estimated using the suppression factor from calibration source measurements and results in a measurement of T{sup 2ν}{sub 1/2}=(1.98±0.02(stat)±0.05(syst)).10{sup 21} yr and T{sub 1/2}{sup 2ν}=(1.92 ±0.02(stat)±0.11(syst)).10{sup 21} yr based on two different detector designs and give uncertainties on the detector parameters but both with improved systematic uncertainties in comparison to earlier measurements.

  15. Liquid argon as active shielding and coolant for bare germanium detectors. A novel background suppression method for the GERDA 0{nu}{beta}{beta} experiment

    Energy Technology Data Exchange (ETDEWEB)

    Peiffer, J.P.

    2007-07-25

    Two of the most important open questions in particle physics are whether neutrinos are their own anti-particles (Majorana particles) as required by most extensions of the StandardModel and the absolute values of the neutrino masses. The neutrinoless double beta (0{nu}{beta}{beta}) decay, which can be investigated using {sup 76}Ge (a double beta isotope), is the most sensitive probe for these properties. There is a claim for an evidence for the 0{nu}{beta}{beta} decay in the Heidelberg-Moscow (HdM) {sup 76}Ge experiment by a part of the HdM collaboration. The new {sup 76}Ge experiment Gerda aims to check this claim within one year with 15 kg.y of statistics in Phase I at a background level of {<=}10{sup -2} events/(kg.keV.y) and to go to higher sensitivity with 100 kg.y of statistics in Phase II at a background level of {<=}10{sup -3} events/(kg.keV.y). In Gerda bare germanium semiconductor detectors (enriched in {sup 76}Ge) will be operated in liquid argon (LAr). LAr serves as cryogenic coolant and as high purity shielding against external background. To reach the background level for Phase II, new methods are required to suppress the cosmogenic background of the diodes. The background from cosmogenically produced {sup 60}Co is expected to be {proportional_to}2.5.10{sup -3} events/(kg.keV.y). LAr scintillates in UV ({lambda}=128 nm) and a novel concept is to use this scintillation light as anti-coincidence signal for background suppression. In this work the efficiency of such a LAr scintillation veto was investigated for the first time. In a setup with 19 kg active LAr mass a suppression of a factor 3 has been achieved for {sup 60}Co and a factor 17 for {sup 232}Th around Q{sub {beta}}{sub {beta}} = 2039 keV. This suppression will further increase for a one ton active volume (factor O(100) for {sup 232}Th and {sup 60}Co). LAr scintillation can also be used as a powerful tool for background diagnostics. For this purpose a new, very stable and robust wavelength

  16. Patients with vestibular loss, tullio phenomenon, and pressure-induced nystagmus: vestibular atelectasis?

    Science.gov (United States)

    Wenzel, Angela; Ward, Bryan K; Schubert, Michael C; Kheradmand, Amir; Zee, David S; Mantokoudis, Georgios; Carey, John Patrick

    2014-06-01

    To propose an etiology for a syndrome of bilateral vestibular hypofunction and sound and/or pressure-evoked eye movements with normal hearing thresholds. Retrospective case series. Tertiary care referral center. Four patients with bilateral vestibular hypofunction, sound and/or pressure-evoked nystagmus and normal hearing thresholds were identified over a 3-year period. No evidence of other known vestibular disorders was identified. None of these patients presented with a history of exposure to toxins, radiation, aminoglycosides or chemotherapy; head trauma; or a family history of inherited vestibular loss. All patients underwent high-resolution CT scan of the temporal bones to evaluate for labyrinthine dehiscence. Additionally, all individuals underwent audiometric testing to ANSI standards, vestibular-evoked myogenic potentials (VEMP) testing using either click stimulus cervical VEMPs (cVEMPs), or tone burst ocular VEMPs (oVEMPs). Bithermal caloric stimulation was used to measure horizontal semicircular canal function, with either videonystagmography (VNG) or electronystagmography (ENG) to record eye movements. Individual responses of each of the 6 semicircular canals (SCC) to rapid head rotations were tested with the bedside head impulse test. We identified 4 patients with a combination of bilateral vestibular hypofunction and sound and/or pressure-induced eye movements, normal-hearing thresholds and no evidence for any other vestibular disorder. We suggest that this unique combination of symptoms should be considered as the clinical presentation of vestibular atelectasis, which has been previously described histologically as collapse of the endolymph-containing portions of the labyrinth.

  17. Positive effects, side effects, and adverse events of clinical holistic medicine. A review of Gerda Boyesen's nonpharmaceutical mind-body medicine (biodynamic body-psychotherapy) at two centers in the United Kingdom and Germany.

    Science.gov (United States)

    Allmer, Charlotte; Ventegodt, Søren; Kandel, Isack; Merrick, Joav

    2009-01-01

    To review adverse events of intensive, clinical holistic medicine (CHM) as it is practiced in holistic body-psychotherapy in England and Germany. Gerda Boyesen's "biodynamic body-psychotherapy" (BBP) is an intensive type of holistic mind-body medicine used by Boyesen at two centers. About 13,500 patients were treated during 1985-2005 period and studied for side effects and adverse events. The first author worked closely with Boyesen 1995-2005 with full insight in all aspects of the therapy and provided the data on side-effects. Therapy helped chronic patients with physical, psychological, sexual, psychiatric and existential problems to improve health, ability, and quality of life (NNT (number needed to treat) = 1-3). Effective in the treatment of mentally ill patients (schizophrenia, anxiety, poor mental health, low general ability). For retraumatization, brief reactive psychosis, depression, depersonalization and derealization, implanted memories, side effects from manipulations of the body, suicide/suicide attempts, hospitalization for physical and mental health problem during or 90 days after treatment, NNH (number needed to harm) > 13,500. Intensive, holistic non-drug medicine is helpful for physical, sexual, psychological, psychiatric and existential problems and is completely safe for the patient. The therapeutic value TV = NNH/NNT > 5,000. Altogether about 18,000 patients treated with different subtypes of CHM in four different countries have now been evaluated for effects, side effects and adverse events, with similar results.

  18. Jutud / Jerome K Jerome ; tlk. Gerda Kroom

    Index Scriptorium Estoniae

    Jerome, Jerome K., 1859-1927

    1997-01-01

    Järjejutt. Lõpp: 26. juuni 1997. Sisu : Onu Podger töötamas; Joostes rongile; Kaks tüdrukut sisseoste tegemas; Tandem; Mees, kes ei uskunud õnne; Hajameelne mees; Telefoni esimesed sammud; Üks hea nõuanne; Vestlussõnastikud; Kas parandada või sõita?

  19. Kirjandus- ja kultuuritegelased Pärnu Alevi kalmistul / Gerda Kuum

    Index Scriptorium Estoniae

    Kuum, Gerda

    2007-01-01

    Jutukirjanik Suve Jaan, kodanikunimega Sommer Johann Friedrich (1777-1851); baltisaksa kirjamees ja pastor Johann Heinrich Rosenplänter (1782-1846); kirjamees ja köster Caspar Franz Lorenzsonn (1811-1880); köster Heinrich Gottlieb Lorenzsonn (1803-1847); trükkal ja kirjastaja Friedrich Wilhelm Bonn (1812-1881); linnapead Oskar Alexander Brackmann (1841-1927) ja Jaan Leesment (1870-1941)

  20. Kelder. Gerda Taljaard. Kaapstad: Tafelberg, 2012. 224 pp. ISBN ...

    African Journals Online (AJOL)

    There are. Benjamin's girlfriends—Elzette, the evil blonde skinny lawyer, and Martine, the goth with porcelain skin who plays jazz saxophone in her soundproof bathroom whilst standing on the toilet seat. One of Esmeralda's boyfriends is a butcher with massive sideburns. Another boyfriend is a professional big game hunter,.

  1. Ester Tuiksoo: Tuvi tänava korter võlus oma hea asukohaga / Ester Tuiksoo ; interv. Tuuli Koch

    Index Scriptorium Estoniae

    Tuiksoo, Ester, 1965-

    2007-01-01

    Ilmunud ka: Postimees : na russkom jazõke, 11. okt. 2007, lk. 3. Parlamendiliige vastab küsimustele Tullio Liblikult üüritava korteri kohta. Vt. samas: Risto Berendson, Tuuli Koch. Maadevahetuses kahtlustatav üürib Tuiksoole odavalt korterit; Risto Berendsoni intervjuu Tullio Liblikuga: Tullio Liblik: eelistasin Estrit üürnikuna vana tutvuse pärast. Lisa: Tullio Liblik; Rahvaliit kutsub Villu Reiljani kapo-komisjonist tagasi

  2. 20 aastat tagasi talletatud Siberi elulugudest valmib telesari / Gerda Kulli-Kordemets ; intervjueerinud Erika Klaats

    Index Scriptorium Estoniae

    Kulli-Kordemets, Gerda

    2010-01-01

    Uuest telesarjast tööpealkirjaga "Siber", mis räägib 14. 06. 1941 Virumaalt küüditatud politseinike lastest, kes viidi Tomski oblastisse Vasjuganje piirkonda. Stsenarist Merle Karusoo, kunstnik Eugen Tamberg, tegevprodutsent Mart Saar. Dokumentaalfilm tööpealkirjaga "Memento" tutvustab telesarja tegelaste prototüüpe ja reaalseid tegevuskohti. ETV võttegrupi käigust Tomski oblastisse

  3. Ümberkujundava juhtimise karismaatiline aspekt ja selle tõhusus / Kulno Türk, Gerda Mihhailova

    Index Scriptorium Estoniae

    Türk, Kulno, 1954-

    2004-01-01

    Autorite arvates ei tohi vastandada klassikalist juhtimist eestvedamisele ning juhi ja liidri rollid on mõlemad olulised organisatsiooni edukuse eeldused. Edukas juht peab kasutama tasakaalustatult erinevaid juhtimisstiile. Skeem

  4. Subjectivity Matters: Using Gerda Lerner's Writing and Rhetoric to Claim an Alternative Epistemology for the Feminist Writing Classroom

    Science.gov (United States)

    Ryan, Kathleen J.

    2006-01-01

    In this article, the author argues the common assumption among teachers that the traditional academic essay is the most appropriate sustained writing activity for students. As a feminist, the author believes that the traditional academic essay considers a positivist, patriarchal epistemology that governs beliefs about knowledge and teaching…

  5. Pronksiööl küpsenud valus tõde / Gerda Kordemets ; intervjueeris Jüri Aarma

    Index Scriptorium Estoniae

    Kordemets, Gerda, 1960-

    2009-01-01

    ETV lavastuslike saadete toimetuse juhataja meenutab Tallinna Linnateatri lavastuse "Karin ja Indrek. Tõde ja õigus" Eesti Televisioonile lindistamist aprillis 2007. Lavastaja Elmo Nüganen, aluseks Tammsaare "Tõe ja õiguse" IV osa

  6. Kuriteoohvrite abistamisest Eestis : [bakalaureusetöö] / Gerda Sepp ; Tartu Ülikool, õigusteaduskond ; juhendaja: Silvia Kaugia

    Index Scriptorium Estoniae

    Sepp, Gerda

    2009-01-01

    Viktimoloogia mõistest ja olemusest, kuritegevusest Eestis viimasel viiel aastal, kuriteo negatiivsest mõjust selle ohvrile, ohvrite reaalsetest võimalustest abisaamiseks praeguses Eestis, hinnangust ohvriabi süsteemile Eestis

  7. Charismatic aspect of transformational leadership and its role in creating organizational culture / Gerda Mihhailova, Kulno Türk

    Index Scriptorium Estoniae

    Mihhailova, Gerda

    2006-01-01

    Ettevõtte kasvu- ja küpsusfaasis vajatakse autorite hinnangul enam nn. klassikalisi juhte, karismaatilised juhid sobivad pigem radikaalseid muutusi nõudvatesse situatsioonidesse, nagu näiteks ettevõtte rajamine või selle langusfaasist välja toomine. Skeemid. Tabel. Lisa lk. 194

  8. Evaluating the use of a customer resource management system in selected South African business schools / Gerda Schilling

    OpenAIRE

    Schilling, Gerda

    2014-01-01

    The management and implementation of unique resources contribute to the creation of a sustainable competitive advantage that has a positive impact on the owner of the resource’s profits. Customer relationship management becomes very important because customers with their own personal devices and options such as cloud computing, social media and mobility have converged into a renewed driving force expecting organisations to remember their experiences. These experiences should not been stored i...

  9. CERN presentations

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    Presentation by CERN (10 minutes each) Rolf Landua - Education and Outreach Salvatore Mele - Open Access Jean-Yves Le Meur - Digital Library in Africa Francois Fluckiger - Open Source/Standards (tbc) Tim Smith - Open Data for Science Tullio Basiglia - tbc

  10. Filmimaailm / Aare Ermel

    Index Scriptorium Estoniae

    Ermel, Aare, 1957-2013

    2009-01-01

    Lühisõnumeid filmimaailmast: 21.- 30. augustini peetavast 20. rahvusvahelisest filmifestivalist "Espoo Cine"; Martin Scorsese hakkab tegema eluloofilmi Frank Sinatrast; Lahkus itaalia filmikriitik, dramaturg ja stsenarist Tullio Kezich (17. IX 1928 - 17. VIII 2009)

  11. Cronache dell'universo fisica moderna e cosmologia

    CERN Document Server

    Regge, Tullio

    1981-01-01

    Dall'infinitamente piccolo all'infinitamente grande: è il viaggio che ci propone Tullio Regge, che oltre ad essere uno dei massimi fisici contemporanei, ha rivelato un talento eccezionale per la divulgazione.

  12. Patch test reactions to mite antigens: a GERDA multicentre study. Groupe d'Etudes et de Recherches en Dermato-Allergie.

    Science.gov (United States)

    Castelain, M; Birnbaum, J; Castelain, P Y; Ducombs, G; Grosshans, E; Jelen, G; Lacroix, M; Meynadier, J; Mougeolle, J M; Lachapelle, J M

    1993-11-01

    We performed patch tests with Dermatophagoides pteronyssinus (Dp) antigens from 2 different sources in 355 non-randomly selected patients with atopic dermatitis (AD) and 398 subjects of a control group. The study demonstrated that contact sensitization to mites occurred in an appreciable % of AD cases (20.8%), using commonly available assay products. The differences recorded between the 2 materials tested were related to the concentration of P1 antigen. Non-atopic patients rarely showed positive reactions to Dp (0.75%), when strict criteria for readings were applied and if 2 readings were performed. Patients with positive patch tests did not necessarily show positive immediate skin tests. It would be useful to carry out tests systematically in atopic patients, even if it is not yet known what modern treatment would be best for the patient. Laboratories still do not provide standardized house dust mite preparations--measuring and codifying their biological activity--for use in patch tests. It is to be hoped that the extension of this type of test will lead to the production of better test materials, in syringes with homogeneous dispersion and concentration.

  13. Kelle nimel NO99 seekord kõneleb ja kelle poole pöördub? / Valle-Sten Maiste, Gerda Kordemets, Madli Pesti...[jt.

    Index Scriptorium Estoniae

    2011-01-01

    23. märtsil esietendub Nokia kontserdimajas NO99 lavastus"The Rise and Fall of Estonia", mis saab olema Eesti-teemaliste lavastuste tsükli lõpp. Lavastajad Ene-Liis Semper ja Tiit Ojasoo. Eesti teatrikriitikute ühendus tegi eksperimendi ja otsustas oma teatrimuljed kohe jäädvustada: esietendusjärgsel hilisõhtul vestlesid lavastusest erinevad eesti teatrikriitikud

  14. The Roman Empire - The Third Century Crisis and Crisis Management

    Science.gov (United States)

    2012-04-04

    December 2010. Hekster, Olivier, Gerda De Kleijn, and Danielle Slootjes. "Introduction." Impact of Empire. 7, (2006, June 1): 3-10. Koselleck...Crisis of the Third Century. Edited by Olivier Hekster, Gerda De Kleijn, and Danielle Slootjes. Vol. 7, Impact of EMpire. Boston: Brill Academic, 2012...1. Protagoras and John Nicols, Mapping the Crisis of the Third Century, ed. Olivier Hekster, Gerda De Kleijn, and Danielle Slootjes

  15. Fondamenti di meccanica relativistica redatti dal Prof. E. Persico

    CERN Document Server

    Levi-Civita, T

    1982-01-01

    Evoluzione della meccanica e dell'ottica geometrica, loro subordinazione ad uno schema quadridimensionale secondo Einstein ; le equazioni gravitationali e la relatività generale ; sulla curvatura degli spazi riemanniani a tre dimensioni ; Tullio Regge : il trasporto parallelo di Levi-Civita e sue generalizzazioni.

  16. Milline on Saare maakonna ettevõtjate koostöö / Vilma Rauniste

    Index Scriptorium Estoniae

    Rauniste, Vilma

    2007-01-01

    Saaremaa ettevõtete, omavalitsuste, koolitusasutuste ja riigi esindajad arutasid maakonna tulevikku. Vt. samas: Kohalviibinute arvamusi organisatsiooni loomise kohta. Arvamust avaldavad: Aadu Keskpaik, Marek Lepamets, Tullio Liblik, Villu Vatsfeld, Jüri Aus, Enn Meri, Riivo Asuja, Tarmo Sink, Robert Pajussaar, Kalle Koov

  17. La riforma della società per azioni nel pensiero di Sylos Labini e dei suoi contemporanei (Corporate Law Reform in Sylos Labini’s Thought and His Contemporaries’

    Directory of Open Access Journals (Sweden)

    Mario Stella Richter

    2016-06-01

    Full Text Available he article describes corporate law in Italy in the Postwar period, as viewed by Paolo Sylos Labini and Tullio Ascarelli. This is the revised version of a speech given at the conference "Paolo Sylos Labini e la politica delle riforme", held at Sapienza University of Rome on 04 December 2015, organized by the Accademia dei Lincei and Economia civile.

  18. Veneetsia filmifestival lõppes Iraani võiduga / Tiit Tuumalu

    Index Scriptorium Estoniae

    Tuumalu, Tiit, 1971-

    2000-01-01

    Kuldlõvi sai Jafar Panahi mängufilm "Ring" ("Dayereh"), žürii suure preemia USA režissööri Julian Schnabeli "Enne kui öö saabub" ("Before Night Falls"), parima stsenaariumi preemia itaallase Marco Tullio Giordana "Sada sammu" ("I cento passi")

  19. Saving Coalition Lives and Limbs: Disrupting the Improvised Explosive Device Network in Iraq with Center of Gravity Analysis and Social Network Viral Targeting

    Science.gov (United States)

    2008-12-21

    63, 73. 64. Evelin Gerda Lindner, ―In Times of In Times of Globalization and Human Rights: Does Humiliation Become the Most Disruptive Force...Force-Protection Issue, General Says.‖ American Forces Press Service, 14 February 2007. Lindner, Evelin Gerda . ―In Times of In Times of

  20. Værk og værksted

    DEFF Research Database (Denmark)

    Kjølsen, Tine; Gammelgaard, Jørgen

    2012-01-01

    Gerda Thune Andersen – Værk og Værksted Bogen er udgivet i forbindelse med jubilæumsudstillingen på Vendsyssel Kunstmuseum 31 august – 25 november 2012. Udstillingen er blevet til i et samarbejde mellem Vendsyssel Kunstmuseum og Gerda Thune Andersen. Tak til: Jørgen Gammelgaard, Tine Kjølsen, Anne...

  1. Reference: 359 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 359 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u16531491i Cnops Gerda...leaf development in Arabidopsis thaliana. 4 852-66 16531491 2006 Apr The Plant cell Azmi Abdelkrim|Cnops Gerda

  2. "Klass : elu pärast" võitis peaauhinna

    Index Scriptorium Estoniae

    2009-01-01

    Genfis toimunud rahvusvahelisel festivalil Cinema Tous Ecrans sai telesarjade võistlusprogrammis peaauhinna ETV sari "Klass : elu pärast", produtsent Gerda Kordemets, stsenarist Margit Keerdo, režissöörid Ilmar Raag, Gerda Kordemets, Liina Paakspuu, Priit Valkna ja Marek Miil

  3. "Klass : elu pärast" võitis rahvusvahelisel festivalil peaauhinna

    Index Scriptorium Estoniae

    2009-01-01

    Genfis toimunud rahvusvahelisel festivalil Cinema Tous Ecrans sai telesarjade võistlusprogrammis peaauhinna ETV sari "Klass : elu pärast", produtsent Gerda Kordemets, stsenarist Margit Keerdo, režissöörid Ilmar Raag, Gerda Kordemets, Liina Paakspuu, Priit Valkna ja Marek Miil

  4. Oceanographic profile temperature, salinity, oxygen, and nutrients measurements collected using bottle from the LCM Red in the Alaskan Coastal waters, from the Gerda in the Atlantic Ocean, and from DeSteiguer in the Pacific Ocean (NODC Accession 0002231)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity, oxygen and other profile data received at NODC on 06/10/04 by Olga Baranova, digitized from "William J. Teague, Zachariah R. Hallock, Jan M....

  5. Uus film tegi Raagist tegija / Andres Keil

    Index Scriptorium Estoniae

    Keil, Andres, 1974-

    2005-01-01

    Eesti Televisiooni fiktiivne dokumentaaldraama "August 1991" : stsenarist ja režissöör Ilmar Raag : produtsent Gerda Kordemets : operaator Janno-Hans Arro. Lisatud augustiputshi ajal teletorni kaitsnud Jüri Joosti ja Peeter Milli kommentaar

  6. Association of the pitch canker pathogen Fusarium circinatum with ...

    African Journals Online (AJOL)

    Association of the pitch canker pathogen Fusarium circinatum with grass hosts in commercial pine production areas of South Africa. Cassandra L Swett, Bernice Porter, Gerda Fourie, Emma T Steenkamp, Thomas R Gordon, Michael J Wingfield ...

  7. 77 FR 67665 - National Register of Historic Places; Notification of Pending Nominations and Related Actions

    Science.gov (United States)

    2012-11-13

    ... Mill, Jesus Barcinas Rd., Merizo, 12000973 INDIANA Porter County Meyer, Dr. John and Gerda, House, 360..., 345 Main St., East Aurora, 12000981 Herkimer County Perry, Stuart and William Swezey Houses, 7541...

  8. New generation in Estonian animation / Mari-Liis Rebane

    Index Scriptorium Estoniae

    Rebane, Mari-Liis, 1988-

    2010-01-01

    Eesti animafilmide loojate uuest põlvkonnast, animafilmide tegemise võimalustest, uute animafilmide tasemest. Martinus Daane Klemeti animafilmidest "Furry Flurry" (2006) ja "Light My Fire" (2007) ning joonisfilmist "Õhus" (Eesti Joonisfilm, 2009, kunstnik Gerda Märtens)

  9. Re-use of seedling containers and Fusarium circinatum association ...

    African Journals Online (AJOL)

    Re-use of seedling containers and Fusarium circinatum association with asymptomatic Pinus patula planting stock. Andrew R Morris, Gerda Fourie, Izette Greyling, Emma T Steenkamp, Nicoletta B Jones ...

  10. La riforma della società per azioni nel pensiero di Sylos Labini e dei suoi contemporanei (Corporate Law Reform in Sylos Labini’s Thought and His Contemporaries’

    Directory of Open Access Journals (Sweden)

    Mario Stella Richter

    2016-07-01

    Full Text Available The article describes corporate law in Italy in the Postwar period, as viewed by Paolo Sylos Labini and Tullio Ascarelli.This is the revised version of a speech given at the conference "Paolo Sylos Labini e la politica delle riforme", held at Sapienza University of Rome on 04 December 2015, organized by the Accademia dei Lincei and Economia civile.JEL code: B31; K21; K23

  11. The absolute differential calculus calculus of tensors

    CERN Document Server

    Levi-Cività, Tullio

    1926-01-01

    Written by a towering figure of twentieth-century mathematics, this classic examines the mathematical background necessary for a grasp of relativity theory. Tullio Levi-Civita provides a thorough treatment of the introductory theories that form the basis for discussions of fundamental quadratic forms and absolute differential calculus, and he further explores physical applications.Part one opens with considerations of functional determinants and matrices, advancing to systems of total differential equations, linear partial differential equations, algebraic foundations, and a geometrical intro

  12. Resolving the Gordian Knot: Srs2 Strips Intermediates Formed during Homologous Recombination.

    Science.gov (United States)

    Ghodke, Harshad; Lewis, Jacob S; van Oijen, Antoine M

    2018-03-01

    Cells use a suite of specialized enzymes to repair chromosomal double-strand breaks (DSBs). Two recent studies describe how single-molecule fluorescence imaging techniques are used in the direct visualization of some of the key molecular steps involved. De Tullio et al. and Kaniecki et al. watch individual Srs2 helicase molecules disrupt repair intermediates formed by RPA, Rad51, and Rad52 on DNA during homologous recombination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The 76Ge Program to Search for Neutrinoless Double-Beta Decay

    Science.gov (United States)

    Guiseppe, Vincente

    2017-09-01

    Neutrinoless double-beta decay searches play a major role in determining the nature of neutrinos, the existence of a lepton violating process, and the effective Majorana neutrino mass. The Majorana and Gerda Collaborations are operating arrays of high purity Ge detectors to search for neutrinoless double-beta decay in 76Ge. The Majorana Demonstrator is operating at the Sanford Underground Research Facility in South Dakota while the Gerda experiment is operating at LNGS in Italy. The Gerda and Majorana Demonstrator experiments have achieved the lowest backgrounds in the neutrinoless double-beta decay region of interest. These results, coupled with the superior energy resolution (0.1%) of Ge detectors demonstrate that 76Ge is an ideal isotope for a large next generation experiment. The LEGEND collaboration, with 220 members from 47 institutions around the world, has been formed to pursue a ton scale 76Ge experiment. Building on the successes of Gerda and Majorana, the LEGEND collaboration aims to develop a phased neutrinoless double-beta decay experimental program with discovery potential at a half-life significantly longer than 1027 years. This talk will present the initial results from the Majorana Demonstrator and Gerda experiments and the plan for the LEGEND program.

  14. Knowledge, Skills, Abilities, and Other Characteristics for Remotely Piloted Aircraft Pilots and Operators

    Science.gov (United States)

    2011-10-19

    Editor Dr. Gregory Manley HQ AFPC/DSYX, Dr. Lisa Mills AF/A1PF, Dr. Paul DiTullio HQ Af/A1PFA, Kenneth Schwartz HQ AFPC/DSYX, Johnny Weissmuller HQ...B ru s k ie w ic z e t a l. , 2 0 0 7 : A V O , M P O C h a p p e ll e e t a l. , 2 0 1 0 : M P O C h a p p e ll e e t a l. , 2 0 1 1

  15. Phenomenology of experiential sharing

    DEFF Research Database (Denmark)

    León, Felipe; Zahavi, Dan

    2016-01-01

    The chapter explores the topic of experiential sharing by drawing on the early contributions of the phenomenologists Alfred Schutz and Gerda Walther. It is argued that both Schutz and Walther support, from complementary perspectives, an approach to experiential sharing that has tended to be overl......The chapter explores the topic of experiential sharing by drawing on the early contributions of the phenomenologists Alfred Schutz and Gerda Walther. It is argued that both Schutz and Walther support, from complementary perspectives, an approach to experiential sharing that has tended...

  16. Free access to science... but at what cost?

    CERN Multimedia

    Anaïs Schaeffer

    2011-01-01

    At the last meeting of CERN’s Scientific Information Policy Board (SIPB), on 20 October this year, participants were informed of a practice that is disconcerting to say the least: some publishers are compiling books from free access material, which they then market at relatively high prices.   Some theses, which are freely accessible on CDS, are being sold at incredibly high prices on Amazon. The problem is that buyers don't know they are buying theses that are available for free. “When I found out, I was really astonished!” admits Tullio Basaglia, head of the Library Section of CERN’s Scientific Information Service. Tullio was referring to the distinctly unorthodox practice of certain unscrupulous publishers who are selling freely available information! They simply poach articles from Wikipedia, compile them, bind them into a book, and then sell them at a high price under the name of a non-existent author. Thus, for instance, a certain Lambert...

  17. "August 1991" - film ajaloost ja teletöötajaist / Sergo Selder

    Index Scriptorium Estoniae

    Selder, Sergo

    2005-01-01

    Eesti Televisiooni fiktiivne dokumentaaldraama "August 1991" : stsenarist ja režissöör Ilmar Raag : produtsent Gerda Kordemets : operaator Janno-Hans Arro. "Prototüübid" Enn Eesmaa ja Andres Raid kommenteerivad endi ja kolleegide kujutamist filmis

  18. Techniques to distinguish between electron and photon induced events using segmented germanium detectors

    International Nuclear Information System (INIS)

    Kroeninger, K.

    2007-01-01

    Two techniques to distinguish between electron and photon induced events in germanium detectors were studied: (1) anti-coincidence requirements between the segments of segmented germanium detectors and (2) the analysis of the time structure of the detector response. An 18-fold segmented germanium prototype detector for the GERDA neutrinoless double beta-decay experiment was characterized. The rejection of photon induced events was measured for the strongest lines in 60 Co, 152 Eu and 228 Th. An accompanying Monte Carlo simulation was performed and the results were compared to data. An overall agreement with deviations of the order of 5-10% was obtained. The expected background index of the GERDA experiment was estimated. The sensitivity of the GERDA experiment was determined. Special statistical tools were developed to correctly treat the small number of events expected. The GERDA experiment uses a cryogenic liquid as the operational medium for the germanium detectors. It was shown that germanium detectors can be reliably operated through several cooling cycles. (orig.)

  19. Cryogenic readout techniques for germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Benato, G. [University of Zurich, (Switzerland); Cattadori, C. [INFN - Milano Bicocca, (Italy); Di Vacri, A. [INFN LNGS, (Italy); Ferri, E. [Universita Milano Bicocca/INFN Milano Bicocca, (Italy); D' Andrea, V.; Macolino, C. [GSSI/INFN LNGS, (Italy); Riboldi, S. [Universita degli Studi di Milano/INFN Milano, (Italy); Salamida, F. [Universita Milano Bicocca/INFN Milano Bicocca, (Italy)

    2015-07-01

    High Purity Germanium detectors are used in many applications, from nuclear and astro-particle physics, to homeland security or environment protection. Although quite standard configurations are often used, with cryostats, charge sensitive amplifiers and analog or digital acquisition systems all commercially available, it might be the case that a few specific applications, e.g. satellites, portable devices, cryogenic physics experiments, etc. also require the development of a few additional or complementary techniques. An interesting case is for sure GERDA, the Germanium Detector Array experiment, searching for neutrino-less double beta decay of {sup 76}Ge at the Gran Sasso National Laboratory of INFN - Italy. In GERDA the entire detector array, composed of semi-coaxial and BEGe naked crystals, is operated suspended inside a cryostat filled with liquid argon, that acts not only as cooling medium and but also as an active shield, thanks to its scintillation properties. These peculiar circumstances, together with the additional requirement of a very low radioactive background from all the materials adjacent to the detectors, clearly introduce significant constraints on the design of the Ge front-end readout electronics. All the Ge readout solutions developed within the framework of the GERDA collaboration, for both Phase I and Phase II, will be briefly reviewed, with their relative strength and weakness compared together and with respect to ideal Ge readout. Finally, the digital processing techniques developed by the GERDA collaboration for energy estimation of Ge detector signals will be recalled. (authors)

  20. Pulse shape analysis of enriched BEGe detectors in vacuum cryostat and liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Victoria [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Collaboration: GERDA-Collaboration

    2013-07-01

    The Gerda experiment searches for the lepton number violating neutrinoless double beta (0νββ) decay of {sup 76}Ge. Germanium diodes of BEGe type (Canberra, Belgium) made from isotopically modified material have been procured for Phase II of Gerda. They will improve the sensitivity of the experiment by additional target mass, improved energy resolution and enhanced pulse shape discrimination (PSD) against background events. The PSD efficiencies of the new enriched BEGe detectors were studied in vacuum cryostats as part of the characterization campaign at the HADES underground laboratory. For a deeper understanding of the pulse shape performance of the enriched BEGe detectors, detailed {sup 241}Am surface scans were performed. Unexpectedly high position-dependence of the pulse shape parameter Amplitude-over-Energy was found for some of the detectors. With further investigation this effect was traced to surface charge effects specific to the operational configuration of the detectors inside the vacuum cryostats. The standard behavior is restored when they are operated in liquid argon in the configuration intended for Gerda Phase II. Finally, five of the enriched BEGe diodes were installed in the Gerda liquid argon cryostat prior to the full upgrade. They show a good performance and are able to reject efficiently multi-site-events as well as β- and α-particles.

  1. Antitrypanosomal isoflavan quinones from Abrus precatorius

    CSIR Research Space (South Africa)

    Hata, Y

    2014-03-01

    Full Text Available Fitoterapia Vol. 93, pp 81-87 Antitrypanosomal isoflavan quinones from Abrus precatorius Yoshie Hata a,d, Samad Nejad Ebrahimi a,e, Maria De Mieri a, Stefanie Zimmermann a, Tsholofelo Mokoka c, Dashnie Naidoo c, Gerda Fouche c, Vinesh Maharaj c...

  2. [Patch testing: historical aspects].

    Science.gov (United States)

    Lachapelle, J-M

    2009-01-01

    This article reviews the key points in the history of patch testing, which spans more than a century, starting with the first description of the method by J. Jadassohn in 1895. Special attention is paid to the contribution of French schools in this field, which led to the foundation of the Groupe d'études et de recherches en dermato-allergologie (GERDA).

  3. Semiconductor-based experiments for neutrinoless double beta decay search

    International Nuclear Information System (INIS)

    Barnabé Heider, Marik

    2012-01-01

    Three experiments are employing semiconductor detectors in the search for neutrinoless double beta (0νββ) decay: COBRA, Majorana and GERDA. COBRA is studying the prospects of using CdZnTe detectors in terms of achievable energy resolution and background suppression. These detectors contain several ββ emitters and the most promising for 0νββ-decay search is 116 Cd. Majorana and GERDA will use isotopically enriched high purity Ge detectors to search for 0νββ-decay of 76 Ge. Their aim is to achieve a background ⩽10 −3 counts/(kg⋅y⋅keV) at the Q improvement compared to the present state-of-art. Majorana will operate Ge detectors in electroformed-Cu vacuum cryostats. A first cryostat housing a natural-Ge detector array is currently under preparation. In contrast, GERDA is operating bare Ge detectors submerged in liquid argon. The construction of the GERDA experiment is completed and a commissioning run started in June 2010. A string of natural-Ge detectors is operated to test the complete experimental setup and to determine the background before submerging the detectors enriched in 76 Ge. An overview and a comparison of these three experiments will be presented together with the latest results and developments.

  4. Techniques to distinguish between electron and photon induced events using segmented germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kroeninger, K.

    2007-06-05

    Two techniques to distinguish between electron and photon induced events in germanium detectors were studied: (1) anti-coincidence requirements between the segments of segmented germanium detectors and (2) the analysis of the time structure of the detector response. An 18-fold segmented germanium prototype detector for the GERDA neutrinoless double beta-decay experiment was characterized. The rejection of photon induced events was measured for the strongest lines in {sup 60}Co, {sup 152}Eu and {sup 228}Th. An accompanying Monte Carlo simulation was performed and the results were compared to data. An overall agreement with deviations of the order of 5-10% was obtained. The expected background index of the GERDA experiment was estimated. The sensitivity of the GERDA experiment was determined. Special statistical tools were developed to correctly treat the small number of events expected. The GERDA experiment uses a cryogenic liquid as the operational medium for the germanium detectors. It was shown that germanium detectors can be reliably operated through several cooling cycles. (orig.)

  5. Indigenous edible plants as sources of nutrients and health benefitting components (nutraceuticals)

    CSIR Research Space (South Africa)

    Dlamini, N

    2010-08-31

    Full Text Available Africa, not only to address health problems and malnutrition, but also to create employment through establishment of industries © CSIR 2010 Slide 21 The Team at CSIR Tshidi Moroka Nomusa Dlamini Gerda Botha Judy Reddy Lauraine Mlotshwa Middah...

  6. Valik konkursi "Noored poeedid 2009" alapealkirjaga "See on rõõm elust endast" tunnustust pälvinud töödest : [luuletused

    Index Scriptorium Estoniae

    2009-01-01

    Vanem vanuseaste 1. koht Triin Sepp, 2. koht Triinu Ansper, 3.-4. koht Kairi Sepp ja Heli Armus. Keskmine vanuseaste 1. koht Annaliis Lehto, 2. koht Liina Salonen, 3. koht Gerda-Liis Palmiste. Noorem vanuseaste 1. koht Reet Rüütel, 2. koht Diana Kasesalu, 3. koht Eliis Mets

  7. Bruno 2016 / Karin Paulus

    Index Scriptorium Estoniae

    Paulus, Karin, 1975-

    2016-01-01

    Valik disainiauhinnale Bruno 2016 kandideerivatest esemetest (Gerda Retter "Jääkideta nahadisain", Raul Abner "Kummut Mix", Argo Ader ja Rain Aduson "Fitbi - spordi mugavalt!", Merili Sulg "Seinašabloon Kasemets", Rita Assor "Lugemispesa-mänguala Aas", Mare Kelpman "Terra pleedid", Henri Viljarand "Vineervalamu Gniss")

  8. The impact of telecommuting on the division of labour in the domestic setting

    NARCIS (Netherlands)

    Casimir, G.J.

    2001-01-01

    When people start working at home, it is plausible that the division of labour within the home will change, in particular the division between men and women. Gerda Casimir studied these changes, by analysing the results of an Internet survey, to which 171 respondents reacted. The core of

  9. Obituaries and biographical notes

    NARCIS (Netherlands)

    NN,

    1985-01-01

    AMSHOFF, Ms. Dr. Gerda Jane Hillegonda (5 January 1913 — 10 February 1985) Ms. Amshoff studied biology at the State University of Utrecht. Her Ph.D. thesis was on the Leguminosae of Surinam. In later years she was attached to the Agricultural College of Wageningen and worked as a staffmember of WAG,

  10. Conoscere Fermi nel centenario della nascita : 29 settembre 1901 - 2001

    CERN Document Server

    Bonolis, Luisa

    2001-01-01

    Il lavoro scientifico di Fermi riguarda molti campi disparati, ciascuno dei quali ha avuto uno sviluppo peculiare in tempi successivi alla morte. In questo volume un certo numero di specialisti contemporanei di ciascun settore espone in forma semplice l'idea originaria e la sua successiva evoluzione. INDICE. Carlo Bernardini, "Introduzione"; Giorgio Salvini, "Enrico Fermi. La sua vita, ed un commento alla sua opera"; Edoardo Amaldi, "Commemorazione del Socio Enrico Fermi"; Enrico Persico, "Commemorazione di Enrico Fermi"; Franco Rasetti, "Enrico Fermi e la Fisica Italiana"; Franco Bassani, "Enrico Fermi e la Fisica dello Stato Solido"; Giorgio Parisi, "La statistica di Fermi"; Giovanni Gallavotti, "La meccanica classica e la rivoluzione quantistica nei lavori giovanili di Fermi"; Tullio Levi-Civita, "Sugli invarianti adiabatici"; Bruno Bertotti, "Le coordinate di Fermi e il Principio di Equivalenza"; Marcello Cini, "Fermi e l'elettrodinamica quantistica"; Nicola Cabibbo. "Le interazioni deboli"; Ugo Amaldi, "...

  11. “C’è un furto con scasso in ogni vera lettura”. Calvino’s Thefts from Ariosto

    Directory of Open Access Journals (Sweden)

    Martin McLaughlin

    2013-06-01

    Full Text Available Calvino’s love for Ariosto throughout his writing life is well known. However, despite this life-long enthusiasm for Ariosto, there are some variations. In a 1980 interview with Tullio Pericoli Calvino used the metaphor of “stealing” words from other texts and discussed notions of artistic thievery, citing his own “thefts” from Ariosto. The article examines how Calvino carries out his thefts, and how he then systematically develops in his own way what he has “stolen”, concentrating on key episodes from Il cavaliere inesistente and Il castello dei destini incrociati. What emerges is that in the first phase of his literary career Calvino was more concerned with the content of the Furioso, while in later years he became fascinated by the poem’s structural and stylistic qualities.

  12. Le interferenze dell’inglese nella lingua italiana tra “protezionismo” e “descrittivismo” linguistico: il caso del lessico della crisi

    Directory of Open Access Journals (Sweden)

    Antonio Taglialatela

    2012-07-01

    Full Text Available The issue of the interference of English in modern Italian has always been of interest to researchers in Italy. This paper outlines how this interference has affected the Italian language over the last two decades. To this purpose, it has been deemed interesting to quote and contrast the views of two eminent Italian scholars involved in the long-lasting debate between linguistic ‘protectionism’ and ‘descriptivism’ – i.e. Arrigo Castellani and Tullio De Mauro. The most widespread English loanwords of the economic crisis found in the three major Italian newspapers from 1 September 2011 to 1 March 2012 have been taken into account and it has been verified whether they are present in three wellknown Italian monolingual dictionaries. It will also be shown that most of these loanwords have been adequately integrated into the Italian language in both written and oral texts.

  13. Editorial

    Directory of Open Access Journals (Sweden)

    Rodolfo Souza Cardoso

    2013-09-01

    Full Text Available Prezados leitores da RCS, é com imensa comoção que dedicamos essa edição para homenagear o ilustre cientista, o homem brilhante e humanitário, o grande educador, o agradável e fiel amigo, o artista com olhar de criança e um jeito especial de D. Quixote, o Professor Doutor Marco Tullio Barcellos de Assis Figueiredo. A tarefa dessa homenagem é árdua por se tratar de um pessoa tão diferenciada, de merecida representatividade internacional, que nos honrou com sua imensa sabedoria e profissionalismo, fazendo parte do corpo docente da FMIt nos últimos quatro anos.

  14. News from the Library: E-book or printed book? You can have the best of both worlds!

    CERN Multimedia

    CERN Library

    2011-01-01

    Over the last couple of years, the Library has been expanding its collection of electronic books. The most popular titles are, of course, also bought as paper copies and are available for loan.   More than 15,000 titles, across all CERN-relevant disciplines, are now available for download from the Library. Recently, Springer physics and astronomy books, as well as all volumes from Lecture Notes in Physics, were added. So, from now on, readers will not have to queue up for popular books such as "Particle Accelerator Physics" (Wiedemann) or "Particle Detection with Drift Chambers" (Blum, Rolandi and Riegler), which are often in high demand. From left to right: Tullio Basaglia (CERN Library), Christian Caron (Springer) and Wim van der Stelt (Springer). In addition to providing electronic access, the publisher offers people at CERN the possibility to purchase paperback copies, distributed under the label “My Copy”, for the tempting price of &a...

  15. D'Alembert's paradox, 1900-1914: Levi-Civita and his Italian and French followers

    Science.gov (United States)

    Tazzioli, Rossana

    2017-07-01

    Before the First World War, Tullio Levi-Civita (1873-1941) was already a well-known mathematician in Italy and abroad, in particular in France. Professor at the University of Padua since 1898, he had published important contributions to tensor calculus, theory of relativity, differential geometry, hydrodynamics, and the three-body problem. In 1918, when he moved to the University of Rome, he created an international school of mathematics. In this paper, we focus on d'Alembert's paradox to which Levi-Civita and some of his Italian and French followers contributed remarkable solutions. This case-study is used to illustrate Levi-Civita's approach to hydrodynamics and its influence in Italy and France, especially in the period 1910-1914.

  16. Active volume studies with depleted and enriched BEGe detectors

    Energy Technology Data Exchange (ETDEWEB)

    Sturm, Katharina von [Eberhard Karls Universitaet Tuebingen (Germany); Universita degli Studi di Padova, Padua (Italy); Collaboration: GERDA-Collaboration

    2013-07-01

    The Gerda experiment is currently taking data for the search of the 0νββ decay in {sup 76}Ge. In 2013, 30 newly manufactured Broad Energy Germanium (BEGe) diodes will be deployed which will double the active mass within Gerda. These detectors were fabricated from high-purity germanium enriched in {sup 76}Ge and tested in the HADES underground laboratory, owned by SCK.CEN, in Mol, Belgium. As the BEGes are source and detector at the same time, one crucial parameter is their active volume which directly enters into the evaluation of the half-life. This talk illustrates the dead layer and active volume determination of prototype detectors from depleted germanium as well as the newly produced detectors from enriched material, using gamma spectroscopy methods and comparing experimental results to Monte-Carlo simulations. Recent measurements and their results are presented, and systematic effects are discussed.

  17. Study of pulse shapes in Ge detectors with PET

    Energy Technology Data Exchange (ETDEWEB)

    Grabmayr, Peter; Hegai, Alexander; Jochum, Josef; Schmitt, Christopher; Schuetz, Ann-Kathrin [Eberhard Karls Univeritaet Tuebingen (Germany); Collaboration: GERDA-Collaboration

    2016-07-01

    The Gerda collaboration aims to determine the half life of the neutrinoless double beta decay (0νββ) of {sup 76}Ge. For Phase II Gerda wants to reduce the background contribution significantly by active background-suppression techniques. One of such techniques is the pulse shape analysis of signals induced by the interaction of radiation with the detector. The pulse shapes depend not only on the energy of the interacting gamma, the geometry and field configuration but also on the location of interaction in the crystal. The waveform and the location of the interaction in the germanium can be determined by positron-emission-tomography (PET). First results of this novel pulse shape study with the PET will be presented in this talk.

  18. Double Beta Decay Experiments: Present Status and Prospects for the Future

    Science.gov (United States)

    Barabash, A. S.

    The review of modern experiments on search and studying of double beta decay processes is done. Results of the most sensitive current experiments are discussed. The main attention is paid to EXO-200, KamLAND-Zen, GERDA-I and CUORE-0 experiments. Modern values of T1/2(2ν) and best present limits on neutrinoless double beta decay and double beta decay with Majoron emission are presented. Conservative limits on effective mass of a Majorana neutrino ( at the level of ˜ (0.01-0.1) eV are discussed. The main attention is paid to experiments of CUORE, GERDA, MAJORANA, EXO, KamLAND-Zen-2, SuperNEMO and SNO+. Possibilities of low-temperature scintillating bolometers on the basis of inorganic crystals (ZnSe, ZnMoO4, Li2MoO4, CaMoO4 and CdWO4) are considered too.

  19. Wavelength shifting reflector foils for liquid Ar scintillation light

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Manuel [Physik Institut, Universitaet Zuerich (Switzerland); Collaboration: GERDA-Collaboration

    2013-07-01

    Liquid argon is used as a scintillator in several present and upcoming experiments. In Gerda it is used as a coolant, shielding and will be instrumented to become an active veto in Phase II. Its scintillation light has a wavelength of 128 nm, that gets absorbed by quartz. In order to measure the light using photo multiplier tubes (PMT) for cryogenic temperatures which have a quartz window, it is converted to longer wavelength by coated reflector foils. The conversion efficiency and stability of several such coatings was optimized using VM2000 and Tetratex separately as reflector foils. The efficiency has been measured in a liquid Ar set up build especially for this purpose. It employs a 3'' low radioactivity PMT of type R11065-10 from Hamamatsu, the favorite photo sensor candidate to be used in Gerda.

  20. Computational studies of BEGe detectors

    Energy Technology Data Exchange (ETDEWEB)

    Salathe, Marco [Max Planck Institut fuer Kernphysik, Heidelberg (Germany)

    2013-07-01

    The GERDA experiment searches for the neutrinoless double beta decay within the active volume of germanium detectors. Simulations of the physical processes within such detectors are vital to gain a better understanding of the measurements. The simulation procedure follows three steps: First it calculates the electric potential, next it simulates the electron and hole drift within the germanium crystal and finally it generates a corresponding signal. The GERDA collaboration recently characterized newly produced Broad Energy Germanium Detectors (BEGe) in the HADES underground laboratory in Mol, Belgium. A new pulse shape simulation library was established to examine the results of these measurements. The library has also proven to be a very powerful tool for other applications such as detector optimisation studies. The pulse shape library is based on ADL 3.0 (B. Bruyneel, B. Birkenbach, http://www.ikp.uni-koeln.de/research/agata/download.php) and m3dcr (D. Radford, http://radware.phy.ornl.gov/MJ/m3dcr).

  1. Susiseb ja podiseb I-II / Mihkel Mutt

    Index Scriptorium Estoniae

    Mutt, Mihkel, 1953-

    1998-01-01

    Järg: 27. märts. 1998. a. riigi kultuuripreemiate jagamisest; Eesti Draamateatrist. Vastukajad: Kasterpalu, Margus. Marutõbine teatripäev // Postimees (1998) 30. märts, lk. 15; Aarma, Jüri. Kolm tähelepanekut susisemise ja podisemise asjus // Sõnumileht (1998) 18. apr., lk. 15; Kordemets, Gerda. Pind põues või palk silmas // Sõnumileht (1998) 18. apr., lk. 15

  2. NDM06: 2. symposium on neutrinos and dark matter in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Akerib, D; Arnold, R; Balantekin, A; Barabash, A; Barnabe, H; Baroni, S; Baussan, E; Bellini, F; Bobisut, F; Bongrand, M; Brofferio, Ch; Capolupo, A; Enrico, Carrara; Caurier, E; Cermak, P; Chardin, G; Civitarese, O; Couchot, F; Kerret, H de; Heros, C de los; Detwiler, J; Dracos, M; Drexlin, G; Efremenko, Y; Ejiri, H; Falchini, E; Fatemi-Ghomi, N; Finger, M Ch; Finger Miroslav, Ch; Fiorillo, G; Fiorini, E; Fracasso, S; Frekers, D; Fushimi, K I; Gascon, J; Genest, M H; Georgadze, A; Giuliani, A; Goeger-Neff, M; Gomez-Cadenas, J J; Greenfield, M; H de Jesus, J; Hallin, A; Hannestad, St; Hirai, Sh; Hoessl, J; Ianni, A; Ieva, M B; Ishihara, N; Jullian, S; Kaim, S; Kajino, T; Kayser, B; Kochetov, O; Kopylov, A; Kortelainen, M; Kroeninger, K; Lachenmaier, T; Lalanne, D; Lanfranchi, J C; Lazauskas, R; Lemrani, A R; Li, J; Mansoulie, B; Marquet, Ch; Martinez, J; Mirizzi, A; Morfin Jorge, G; Motz, H; Murphy, A; Navas, S; Niedermeier, L; Nishiura, H; Nomachi, M; Nones, C.; Ogawa, H; Ogawa, I; Ohsumi, H; Palladino, V; Paniccia, M; Perotto, L; Petcov, S; Pfister, S; Piquemal, F; Poves, A; Praet, Ch; Raffelt, G; Ramberg, E; Rashba, T; Regnault, N; Ricol, J St; Rodejohann, W; Rodin, V; Ruz, J; Sander, Ch; Sarazin, X; Scholberg, K; Sigl, G; Simkovic, F; Sousa, A; Stanev, T; Strolger, L; Suekane, F; Thomas, J; Titov, N; Toivanen, J; Torrente-Lujan, E; Tytler, D; Vala, L; Vignaud, D; Vitiello, G; Vogel, P; Volkov, G; Volpe, C; Wong, H; Yilmazer, A

    2006-07-01

    This second symposium on neutrinos and dark matter is aimed at discussing research frontiers and perspectives on currently developing subjects. It has been organized around 6 topics: 1) double beta decays, theory and experiments (particularly: GERDA, MOON, SuperNEMO, CUORE, CANDLES, EXO, and DCBA), 2) neutrinos and nuclear physics, 3) single beta decays and nu-responses, 4) neutrino astrophysics, 5) solar neutrino review, and 6) neutrino oscillations. This document is made up of the slides of the presentations.

  3. Structure-activity relationship study of sesquiterpene lactones and their semi-synthetic amino derivatives as potential antitrypanosomal products

    CSIR Research Space (South Africa)

    Zimmermann, S

    2014-03-01

    Full Text Available Stefanie Zimmermann 1,2, Gerda Fouché 3, Maria De Mieri 1, Yukiko Yoshimoto 4, Toyonobu Usuki 4, Rudzani Nthambeleni 3, Christopher J. Parkinson 5, Christiaan van der Westhuyzen 3, Marcel Kaiser 2,6, Matthias Hamburger 1 and Michael Adams 1,* 1... 1. Introduction Sleeping sickness, or human African trypanosomiasis (HAT), is a deadly protozoal disease caused by Trypanosoma brucei species spread by tsetse flies (Glossina spp.). The two human pathogenic subspecies, T. b. rhodesiense (95...

  4. Kaliningradi biennaal / Sandra Jõgeva

    Index Scriptorium Estoniae

    Jõgeva, Sandra, 1976-

    2008-01-01

    IX rahvusvaheline graafikabiennaal "Kaliningrad-Königsberg 2008" Kaliningradi kunstigaleriis 15. IX-15. XI. Eesti väljapanek (kuraator Eha Komissarov, kujundaja Marko Nautras, osalejad: Jaanika Okk, Kaarel Kütas, Lauri Koppel, Gerda Märtens, Raul Meel, Lembe Ruben, HULA, Villem Jahu, Tiiu Pirsko, Mati Veermets, Sandra Jõgeva) sai ekspositsioonipreemia. Grand prix - Paulis Liepa, I preemia - Olrik Kohlhoff, II - Dominica Sadowska, III - Raffael Rheinsberg, eripreemia - Markus Lampinen

  5. Neutrinoless double beta decay searches with 76Ge

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    The search for neutrinoless double beta decay might be the only window to observe lepton number violation. Its observation would favour the leptogenesis mechanism for the explanation of the baryon asymmetry of the universe and is therefore considered to be of highest relevance. The isotope 76Ge has historically been most important for this search and the ongoing experiment GERDA has the lowest background of all experiments in the field. The talk reviews the motivation, the current status of experiments and future programs.

  6. EU REPRO: The Production of fish feed enriched with poly-unsaturated fatty acid

    CSIR Research Space (South Africa)

    Erasmus, C

    2007-01-01

    Full Text Available .2 The Production of Fish Feed enriched with poly-unsaturated fatty acids Corinda Erasmus Annali Jacobs Gerda Lombard Petrus van Zyl Judy Reddy Ntombikayise Nkomo Elizabeth Timme Partner 11 Slide 2 © CSIR 2006 www... www.csir.co.za FLOW DIAGRAM OF THE PRODUCTION OF EPA- ENRICHED FISH FEED BSG (SPENT GRAIN) Eicosapentaenoic Acid (EPA) Protein-rich BSG FISH FEED PELLETS MODIFICATION OF BSG (ENZYME/CHEMICAL/MECHANICAL) FERMENTATION (RECOVERY OF EPA...

  7. Kiasma - muzei s vidom na Laplandiju / Galina Balashova

    Index Scriptorium Estoniae

    Balashova, Galina

    2006-01-01

    Steven Holli projekteeritud Kiasma muuseumihoonest Helsingis. Kontseptuaalkunsti näitusest ARS 06 "Reaalsustunne" Kiasmas. Eestlastest esineb Mark Raidpere. Vene kunstnikegrupi AEC+F ja vene kunstnike Juri Vassiljevi ning Aleksandr Ponomarjovi töödest näitusel. Ka Gerda Steineri & Jörg Lenzlingeri (Šveits), Martin & Munoz'i (USA, Hispaania), videokunstnik Bill Viola (USA) töödest

  8. ARS - Helsinki - 2006 / Galina Balashova

    Index Scriptorium Estoniae

    Balashova, Galina

    2006-01-01

    Steven Holli projekteeritud Kiasma muuseumihoonest Helsingis. Kontseptuaalkunsti näitusest ARS 06 "Reaalsustunne" Kiasmas. Eestlastest esineb Mark Raidpere. Vene kunstnikegrupi AEC+F ja vene kunstnike Juri Vassiljevi ning Aleksandr Ponomarjovi töödest näitusel. Ka Gerda Steineri & Jörg Lenzlingeri (Šveits), Martin & Munoz'i (USA, Hispaania), arvutigraafik Charles Sandisoni (SB), videokunstnik Bill Viola (USA) jt. töödest

  9. NDM06: 2. symposium on neutrinos and dark matter in nuclear physics

    International Nuclear Information System (INIS)

    Akerib, D.; Arnold, R.; Balantekin, A.; Barabash, A.; Barnabe, H.; Baroni, S.; Baussan, E.; Bellini, F.; Bobisut, F.; Bongrand, M.; Brofferio, Ch.; Capolupo, A.; Carrara Enrico; Caurier, E.; Cermak, P.; Chardin, G.; Civitarese, O.; Couchot, F.; Kerret, H. de; Heros, C. de los; Detwiler, J.; Dracos, M.; Drexlin, G.; Efremenko, Y.; Ejiri, H.; Falchini, E.; Fatemi-Ghomi, N.; Finger, M.Ch.; Finger Miroslav, Ch.; Fiorillo, G.; Fiorini, E.; Fracasso, S.; Frekers, D.; Fushimi, K.I.; Gascon, J.; Genest, M.H.; Georgadze, A.; Giuliani, A.; Goeger-Neff, M.; Gomez-Cadenas, J.J.; Greenfield, M.; H de Jesus, J.; Hallin, A.; Hannestad, St.; Hirai, Sh.; Hoessl, J.; Ianni, A.; Ieva, M.B.; Ishihara, N.; Jullian, S.; Kaim, S.; Kajino, T.; Kayser, B.; Kochetov, O.; Kopylov, A.; Kortelainen, M.; Kroeninger, K.; Lachenmaier, T.; Lalanne, D.; Lanfranchi, J.C.; Lazauskas, R.; Lemrani, A.R.; Li, J.; Mansoulie, B.; Marquet, Ch.; Martinez, J.; Mirizzi, A.; Morfin Jorge, G.; Motz, H.; Murphy, A.; Navas, S.; Niedermeier, L.; Nishiura, H.; Nomachi, M.; Nones, C.; Ogawa, H.; Ogawa, I.; Ohsumi, H.; Palladino, V.; Paniccia, M.; Perotto, L.; Petcov, S.; Pfister, S.; Piquemal, F.; Poves, A.; Praet, Ch.; Raffelt, G.; Ramberg, E.; Rashba, T.; Regnault, N.; Ricol, J.St.; Rodejohann, W.; Rodin, V.; Ruz, J.; Sander, Ch.; Sarazin, X.; Scholberg, K.; Sigl, G.; Simkovic, F.; Sousa, A.; Stanev, T.; Strolger, L.; Suekane, F.; Thomas, J.; Titov, N.; Toivanen, J.; Torrente-Lujan, E.; Tytler, D.; Vala, L.; Vignaud, D.; Vitiello, G.; Vogel, P.; Volkov, G.; Volpe, C.; Wong, H.; Yilmazer, A.

    2006-01-01

    This second symposium on neutrinos and dark matter is aimed at discussing research frontiers and perspectives on currently developing subjects. It has been organized around 6 topics: 1) double beta decays, theory and experiments (particularly: GERDA, MOON, SuperNEMO, CUORE, CANDLES, EXO, and DCBA), 2) neutrinos and nuclear physics, 3) single beta decays and nu-responses, 4) neutrino astrophysics, 5) solar neutrino review, and 6) neutrino oscillations. This document is made up of the slides of the presentations

  10. GELATIO: a general framework for modular digital analysis of high-purity Ge detector signals

    International Nuclear Information System (INIS)

    Agostini, M; Pandola, L; Zavarise, P; Volynets, O

    2011-01-01

    GELATIO is a new software framework for advanced data analysis and digital signal processing developed for the GERDA neutrinoless double beta decay experiment. The framework is tailored to handle the full analysis flow of signals recorded by high purity Ge detectors and photo-multipliers from the veto counters. It is designed to support a multi-channel modular and flexible analysis, widely customizable by the user either via human-readable initialization files or via a graphical interface. The framework organizes the data into a multi-level structure, from the raw data up to the condensed analysis parameters, and includes tools and utilities to handle the data stream between the different levels. GELATIO is implemented in C++. It relies upon ROOT and its extension TAM, which provides compatibility with PROOF, enabling the software to run in parallel on clusters of computers or many-core machines. It was tested on different platforms and benchmarked in several GERDA-related applications. A stable version is presently available for the GERDA Collaboration and it is used to provide the reference analysis of the experiment data.

  11. Geneva University

    CERN Multimedia

    2006-01-01

    Université de Genève Ecole de physique 24 quai Ernest Ansermet 1211 Genève 4 Tél : + 41 22 379 63 83 (secrétariat) Tél : + 41 22 379 62 56 (réception) Fax: + 41 22 379 69 22 Wednesday 29th November 2006 PARTICLE PHYSICS SEMINAR at 17.00 hrs - Stückelberg Auditorium The Germanium Detector Array (GERDA) for the search of neutrinoless double beta decays of 76 Ge at LNGS line by Prof. Stefan Schoenert - Max-Planck-Institut für Kernphysik Heidelberg The Germanium Detector Array (GERDA [1]) for the search of neutrinoless double beta decays of 76Ge at LNGS will operate bare germanium diodes enriched in 76 Ge in an (optional active) cryogenic fluid shield to investigate neutrinoless double beta decay with a sensitivity of T_{1/2} > 2 x 1026~years after an exposure of 100~rm kg x rm years. In this talk, I shall introduce the relevance of neutrinoless double beta decay, the experimental concepts of GERDA, the challenges and techniques to reduce backgrounds to neutrinoless double beta decay, and summarize...

  12. Feature extraction with deep neural networks by a generalized discriminant analysis.

    Science.gov (United States)

    Stuhlsatz, André; Lippel, Jens; Zielke, Thomas

    2012-04-01

    We present an approach to feature extraction that is a generalization of the classical linear discriminant analysis (LDA) on the basis of deep neural networks (DNNs). As for LDA, discriminative features generated from independent Gaussian class conditionals are assumed. This modeling has the advantages that the intrinsic dimensionality of the feature space is bounded by the number of classes and that the optimal discriminant function is linear. Unfortunately, linear transformations are insufficient to extract optimal discriminative features from arbitrarily distributed raw measurements. The generalized discriminant analysis (GerDA) proposed in this paper uses nonlinear transformations that are learnt by DNNs in a semisupervised fashion. We show that the feature extraction based on our approach displays excellent performance on real-world recognition and detection tasks, such as handwritten digit recognition and face detection. In a series of experiments, we evaluate GerDA features with respect to dimensionality reduction, visualization, classification, and detection. Moreover, we show that GerDA DNNs can preprocess truly high-dimensional input data to low-dimensional representations that facilitate accurate predictions even if simple linear predictors or measures of similarity are used.

  13. Status of double beta decay experiments using isotopes other than 136Xe

    Science.gov (United States)

    Pandola, L.

    2014-09-01

    Neutrinoless double beta decay is a lepton-number violating process predicted by many extensions of the standard model. It is actively searched for in several candidate isotopes within many experimental projects. The status of the experimental initiatives which are looking for the neutrinoless double beta decay in isotopes other than 136Xe is reviewed, with special emphasis given to the projects that passed the R&D phase. The results recently released by the experiment GERDA are also summarized and discussed. The GERDA data give no positive indication of neutrinoless double beta decay of 76Ge and disfavor in a model-independent way the long-standing observation claim on the same isotope. The lower limit reported by GERDA for the half-life of neutrinoless double beta decay of 76Ge is T1/20ν > 2.1 ṡ1025 yr (90% C.L.), or T1/20ν > 3.0 ṡ1025 yr, when combined with the results of other 76Ge predecessor experiments.

  14. Investigation and development of the suppression methods of the {sup 42}K background in LArGe

    Energy Technology Data Exchange (ETDEWEB)

    Lubashevskiy, Alexey [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Collaboration: GERDA-Collaboration

    2013-07-01

    GERDA is an ultra-low background experiment aimed for the neutrinoless double beta decay search. The search is performed using HPGe detectors operated in liquid argon (LAr). One of the most dangerous backgrounds in GERDA is the background from {sup 42}K which is a daughter isotope of cosmogenically produced {sup 42}Ar. {sup 42}K ions are collected towards to the detector by the electric field of the detector. Estimation of the background contribution and development of the suppression methods were performed in the low background test facility LArGe. For this purpose encapsulated HPGe and bare BEGe detectors were operated in 1m{sup 3} of LAr in the LArGe setup. It is equipped with scintillation veto, so particles which deposit part of their energy in LAr can be detected by 9 PMTs. In order to better understand background and to increase statistics the LAr of LArGe was spiked with specially produced {sup 42}Ar. All these investigations allowed us to estimate background contribution from {sup 42}K and demonstrate the possibility to suppress it in future measurements in GERDA Phase II.

  15. GELATIO: a general framework for modular digital analysis of high-purity Ge detector signals

    Science.gov (United States)

    Agostini, M.; Pandola, L.; Zavarise, P.; Volynets, O.

    2011-08-01

    GELATIO is a new software framework for advanced data analysis and digital signal processing developed for the GERDA neutrinoless double beta decay experiment. The framework is tailored to handle the full analysis flow of signals recorded by high purity Ge detectors and photo-multipliers from the veto counters. It is designed to support a multi-channel modular and flexible analysis, widely customizable by the user either via human-readable initialization files or via a graphical interface. The framework organizes the data into a multi-level structure, from the raw data up to the condensed analysis parameters, and includes tools and utilities to handle the data stream between the different levels. GELATIO is implemented in C++. It relies upon ROOT and its extension TAM, which provides compatibility with PROOF, enabling the software to run in parallel on clusters of computers or many-core machines. It was tested on different platforms and benchmarked in several GERDA-related applications. A stable version is presently available for the GERDA Collaboration and it is used to provide the reference analysis of the experiment data.

  16. Pulse shapes and surface effects in segmented germanium detectors

    International Nuclear Information System (INIS)

    Lenz, Daniel

    2010-01-01

    It is well established that at least two neutrinos are massive. The absolute neutrino mass scale and the neutrino hierarchy are still unknown. In addition, it is not known whether the neutrino is a Dirac or a Majorana particle. The GERmanium Detector Array (GERDA) will be used to search for neutrinoless double beta decay of 76 Ge. The discovery of this decay could help to answer the open questions. In the GERDA experiment, germanium detectors enriched in the isotope 76 Ge are used as source and detector at the same time. The experiment is planned in two phases. In the first, phase existing detectors are deployed. In the second phase, additional detectors will be added. These detectors can be segmented. A low background index around the Q value of the decay is important to maximize the sensitivity of the experiment. This can be achieved through anti-coincidences between segments and through pulse shape analysis. The background index due to radioactive decays in the detector strings and the detectors themselves was estimated, using Monte Carlo simulations for a nominal GERDA Phase II array with 18-fold segmented germanium detectors. A pulse shape simulation package was developed for segmented high-purity germanium detectors. The pulse shape simulation was validated with data taken with an 19-fold segmented high-purity germanium detector. The main part of the detector is 18-fold segmented, 6-fold in the azimuthal angle and 3-fold in the height. A 19th segment of 5mm thickness was created on the top surface of the detector. The detector was characterized and events with energy deposited in the top segment were studied in detail. It was found that the metalization close to the end of the detector is very important with respect to the length of the of the pulses observed. In addition indications for n-type and p-type surface channels were found. (orig.)

  17. Pulse shapes and surface effects in segmented germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lenz, Daniel

    2010-03-24

    It is well established that at least two neutrinos are massive. The absolute neutrino mass scale and the neutrino hierarchy are still unknown. In addition, it is not known whether the neutrino is a Dirac or a Majorana particle. The GERmanium Detector Array (GERDA) will be used to search for neutrinoless double beta decay of {sup 76}Ge. The discovery of this decay could help to answer the open questions. In the GERDA experiment, germanium detectors enriched in the isotope {sup 76}Ge are used as source and detector at the same time. The experiment is planned in two phases. In the first, phase existing detectors are deployed. In the second phase, additional detectors will be added. These detectors can be segmented. A low background index around the Q value of the decay is important to maximize the sensitivity of the experiment. This can be achieved through anti-coincidences between segments and through pulse shape analysis. The background index due to radioactive decays in the detector strings and the detectors themselves was estimated, using Monte Carlo simulations for a nominal GERDA Phase II array with 18-fold segmented germanium detectors. A pulse shape simulation package was developed for segmented high-purity germanium detectors. The pulse shape simulation was validated with data taken with an 19-fold segmented high-purity germanium detector. The main part of the detector is 18-fold segmented, 6-fold in the azimuthal angle and 3-fold in the height. A 19th segment of 5mm thickness was created on the top surface of the detector. The detector was characterized and events with energy deposited in the top segment were studied in detail. It was found that the metalization close to the end of the detector is very important with respect to the length of the of the pulses observed. In addition indications for n-type and p-type surface channels were found. (orig.)

  18. Thomas A. Foster, ed. Women in Early America

    OpenAIRE

    Detsi, Zoe

    2016-01-01

    Women in Early America is an intriguing collection of essays offering richly diverse readings of women’s lives and experiences in 17th- and 18th- century America. This volume is a significant contribution to the scholarship concerning the role of women in history and their participation in historical moments of political change and cultural negotiation. From Gerda Lerner’s seminal work on The Woman in American History (1971) to Linda Kerber’s enlightening book titled Women’s America: Refocusi...

  19. Review of modern double beta decay experiments

    Science.gov (United States)

    Barabash, A. S.

    2015-10-01

    The review of modern experiments on search and studying of double beta decay processes is done. Results of the most sensitive current experiments are discussed. The main attention is paid to EXO-200, KamLAND-Zen, GERDA-I and CUORE-0 experiments. Modern values of T1/2(2ν) and best present limits on neutrinoless double beta decay and double beta decay with Majoron emission are presented. Conservative limits on effective mass of a Majorana neutrino ( at the level of ˜ 0.01-0.1 eV are discussed.

  20. Development of segmented germanium detectors for neutrinoless double beta decay experiments

    International Nuclear Information System (INIS)

    Liu, Jing

    2009-01-01

    The results from neutrino oscillation experiments indicate that at least two neutrinos have mass. However, the value of the masses and whether neutrinos and anti-neutrinos are identical, i.e., Majorana particles, remain unknown. Neutrinoless double beta decay experiments can help to improve our understanding in both cases and are the only method currently possible to tackle the second question. The GERmanium Detector Array (GERDA) experiment, which will search for the neutrinoless double beta decay of 76 Ge, is currently under construction in Hall A of the INFN Gran Sasso National Laboratory (LNGS), Italy. In order to achieve an extremely low background level, segmented germanium detectors are considered to be operated directly in liquid argon which serves simultaneously as cooling and shielding medium. Several test cryostats were built at the Max-Planck-Institut fuer Physik in Muenchen to operate segmented germanium detectors both in vacuum and submerged in cryogenic liquid. The performance and the background discrimination power of segmented germanium detectors were studied in detail. It was proven for the first time that segmented germanium detectors can be operated stably over long periods submerged in a cryogenic liquid. It was confirmed that the segmentation scheme employed does well in the identification of photon induced background and demonstrated for the first time that also neutron interactions can be identified. The C++ Monte Carlo framework, MaGe (Majorana-GERDA), is a joint development of the Majorana and GERDA collaborations. It is based on GEANT4, but tailored especially to simulate the response of ultra-low background detectors to ionizing radiation. The predictions of the simulation were veri ed to be accurate for a wide range of conditions. Some shortcomings were found and corrected. Pulse shape analysis is complementary to segmentation in identifying background events. Its efficiency can only be correctly determined using reliable pulse shape

  1. A eutonia e o trabalho do ator: experimentos

    OpenAIRE

    Fernanda Moretti Pereira de Faria

    2010-01-01

    A proposta da presente pesquisa é a prática corporal da Eutonia como ferramenta de suporte para o trabalho do ator, exemplificado pelo Sistema de K. Stanislavski. Sua leitura permite a assimilação dos conceitos teóricos da Eutonia criada por Gerda Alexander e a compreensão dos resultados práticos, descritos através de um experimento com um grupo de atores em formação. O estudo realizado em uma etapa literária e outra vivencial demonstra as possíveis conexões entre Alexander e Stanislavski. De...

  2. La Eutonía-Sus Principios

    OpenAIRE

    Rovella, Adriana

    2008-01-01

    El presente trabajo pretende dar cuenta de la Eutonía como práctica corporal dando cuenta de sus objetivos y principios La Eutonía fue creada por Gerda Alexander.El término, del griego, Eu: bueno, óptimo-Tonus: tensión; expresa la idea de una tonicidad armoniosamente equilibrada en adaptación constante al estado o actividad del momento. Es una disciplina basada en la experiencia del propio cuerpo, que conduce a la persona hacia una toma de conciencia de si misma y propone un aprendizaje para ...

  3. En la construcción del espacio interno desde la Eutonia - Escenas

    OpenAIRE

    Rovella, Adriana

    2011-01-01

    El presente trabajo contará sobre la Eutonía. Creada a mediados de 1900 por Gerda Alexander quien para el desarrollo de la misma supo integrar sus formaciones previas de música, danza, pedagogía con nuevas búsquedas, algunas surgidas durante períodos de tiempo en que guardó reposo por enfermedades. Propuso a la Eutonía como una pedagogía desde la que se alienta a aprendizajes a través del cuerpo, la atención y la concentración, a percibirse, reconocerse, moverse con economía, flexibilidad, fu...

  4. La ciencia del cosmos, la ciencia en el cosmos : 2013-2014 : ciclo de conferencias de astrofisica y cosmologia

    CERN Document Server

    Science of the Cosmos, Science in the Cosmos : 2013-2014 : series of lectures on astrophysics and cosmology

    2014-01-01

    Welcome to "Science of the Cosmos, Sciences in the Cosmos", the series of lectures that the BBVA Foundation has been offering, live and on DVD, since March 2011. Lecture 1 : Let there be light : finding the earliest galaxies / Richard Ellis ; lecture 2 : The origin of the galaxies / Simon White ; lecture 3 : Astrobiology : the quest for the conditions of life in the Universe / Gerda Horneck ; lecture 4 : The long-term stability of planetary systems / Scott Tremaine ; lecture 5 : Asteroseismology : the study of starquakes and its impact on astrophysics / Conny Aerts ; lecture 6 : From Mars to multiverse / Martin Rees

  5. Search for Neutrinoless Double-Beta Decay

    OpenAIRE

    Tornow, Werner

    2014-01-01

    After the pioneering work of the Heidelberg-Moscow (HDM) and International Germanium Experiment (IGEX) groups, the second round of neutrinoless double-$\\beta$ decay searches currently underway has or will improve the life-time limits of double-$\\beta$ decay candidates by a factor of two to three, reaching in the near future the $T_{1/2} = 3 \\times 10^{25}$ yr level. This talk will focus on the large-scale experiments GERDA, EXO-200, and KamLAND-Zen, which have reported already lower half-life...

  6. Development of segmented germanium detectors for neutrinoless double beta decay experiments

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing

    2009-06-09

    The results from neutrino oscillation experiments indicate that at least two neutrinos have mass. However, the value of the masses and whether neutrinos and anti-neutrinos are identical, i.e., Majorana particles, remain unknown. Neutrinoless double beta decay experiments can help to improve our understanding in both cases and are the only method currently possible to tackle the second question. The GERmanium Detector Array (GERDA) experiment, which will search for the neutrinoless double beta decay of {sup 76}Ge, is currently under construction in Hall A of the INFN Gran Sasso National Laboratory (LNGS), Italy. In order to achieve an extremely low background level, segmented germanium detectors are considered to be operated directly in liquid argon which serves simultaneously as cooling and shielding medium. Several test cryostats were built at the Max-Planck-Institut fuer Physik in Muenchen to operate segmented germanium detectors both in vacuum and submerged in cryogenic liquid. The performance and the background discrimination power of segmented germanium detectors were studied in detail. It was proven for the first time that segmented germanium detectors can be operated stably over long periods submerged in a cryogenic liquid. It was confirmed that the segmentation scheme employed does well in the identification of photon induced background and demonstrated for the first time that also neutron interactions can be identified. The C++ Monte Carlo framework, MaGe (Majorana-GERDA), is a joint development of the Majorana and GERDA collaborations. It is based on GEANT4, but tailored especially to simulate the response of ultra-low background detectors to ionizing radiation. The predictions of the simulation were veri ed to be accurate for a wide range of conditions. Some shortcomings were found and corrected. Pulse shape analysis is complementary to segmentation in identifying background events. Its efficiency can only be correctly determined using reliable pulse

  7. Famiglia e geno-poiesi nel Nazionalsocialismo - Family and genos-poiesis in National Socialism

    Directory of Open Access Journals (Sweden)

    Alberto Castaldini

    2014-12-01

    Full Text Available The Nazi regime (1933-45 wanted to protect and promote through the creation of a new family structure the conservation of the biological heredity of the German nation, in order to preserve and refine obsessively the identity and the purity of the so-called Blutsgemeinschaft, the “community of blood” in which to identify the political and the cultural entity of the Volk, one of the pillars of Hitler’s biocracy. In the first half of the 20th century the value of memory, the nature of the family and the meaning of the relationship between the generations were manipulated and debased. This view, with its tragic ethical and juridical consequences, was scientifically warranted by German academic world, whose leading exponents took controversial positions. For instance the human biologist and eugenicist Otmar von Verschuer (1896-1969 theorized a biological unity between present and past, stating that the “German people is a large community of ancestors, namely a consanguineous solidarity”. In this way the Nazis deeply redefined the bonds of kinship and the genos assumed the nature of a “fictitious symbol” (C. Tullio-Altan in the service of a regime that in the name of an imaginary ancestral vitalism pursued a systematic policy of death.

  8. Einstein and the history of general relativity

    International Nuclear Information System (INIS)

    Howard, D.; Stachel, J.

    1989-01-01

    This book is a collection of essays by the authors and other people that deal with scientific opinions that led Einstein and his contemporaries to their views of general relativity. Some of the essays explore Einstein's passage from the special theory through a sequence of gravitational theories to the discovery of the field equations of the grand theory in November 1915. Two other essays discuss Einstein's public and private exchanges with Max Abraham and Tullio Levi-Civita in 1913 and 1914. A sympathetic picture of H.A. Lorentz's reaction to the general theory of relativity is included, and a careful and insightful essay on the early understanding of the Schwarzschild-Droste solution to the field equations of general relativity is presented. One paper presents a discussion on the state of the enterprise of general relativity between 1925 and 1928, and a short essay details the history of steps toward quantum gravitational through canonical quantization. A discussion of the history of derivations of the geodesic equation of motion from the field equation and conservation laws of the general theory is presented. The early history of geometrical unified field theories is included

  9. Preparing for the future

    CERN Multimedia

    Panos Charitos

    2016-01-01

    The second annual meeting of the Future Circular Collider (FCC) design study took place from 11 to 15 April in Rome.   The participants in the second annual meeting of the FCC design study. (Photo: Vinicio Tullio/INFN) More than 450 scientists, researchers and leaders of high-tech industry gathered in Rome to review the progress of the Future Circular Collider (FCC) design study. The study was kicked off in 2014 as a response to a statement in the European Strategy for Particle Physics, and today embraces 74 institutes from 26 countries. With the LHC programme well under way, particle physicists are at an exciting juncture. New results from the 13 TeV run could show that we are on the threshold of an eye-opening era that presents new challenges and calls for developments. “To prepare for its future, CERN should continue to develop a vibrant R&D programme that should take advantage of its strengths and uniqueness, pursue design studies for...

  10. Behind the scenes of GS: CERN’s beating heart

    CERN Multimedia

    Antonella Del Rosso

    2014-01-01

    Founded at the same time as CERN, the library has followed, and sometimes even moved ahead of, the changes in the Organization. Today, far from being a simple book depository, the Scientific Information Service (SIS) that manages CERN's library is increasingly digitising its material and investing in innovative projects, such as Open Access.   Ever since it was set up in Building 52 on 1 September 1957, the library has played a vital role in the Organization.  “Our only official task is to provide a complete list of the publications by CERN researchers, but, in fact, this place is the memory bank of the whole Laboratory,” emphasises Tullio Basaglia, head of the Library Section within SIS.  “The role of the library and archives is to preserve, document and disseminate the knowledge produced at CERN.” Sixty years after its creation, the library today contains 90,000 books, two thirds of which are available in a digital ...

  11. Le «Tusculane» di Tulio clarissimo oratore tradocte di latino in volgare fiorentino, a pititione di messere Nugnio Gusmano ispagnuolo

    Directory of Open Access Journals (Sweden)

    Luca Bellone

    2013-07-01

    Full Text Available RIASSUNTO: Il contributo focalizza la propria attenzione sul volgarizzamento toscano delle Tusculanae disputationes di Marco Tullio Cicerone, opera ancora sostanzialmente inesplorata, portata a termine a Firenze intorno alla metà del secolo XV su committenza dell’umanista spagnolo Nuño de Guzmán, tramandata da un unico codice precocemente confluito nella Biblioteca del Marchese di Santillana e oggi conservato presso la Bibliothèque Nationale de France di Parigi. Nella prospettiva della futura edizione dell’esemplare, vengono in questa sede affrontate in via preliminare alcune questioni legate alla peculiare storia del testo, accompagnate dalla sintesi descrittiva del manoscritto e dalla trascrizione del Proemio dell’opera.ABSTRACT: This contribution aims at focusing the attention on the tuscan vulgarization of the Tusculanae disputationes by Marcus Tullius Cicero, a work that is still essentially unexplored, finished in Florence around half of XV Century for commission of the spanish humanist Nuño de Guzmán, transmitted by a unique code contained in the Library of the Marquis of Santillana and nowadays kept inside the Bibliothèque Nationale de France in Paris. In the perspective of a future edition of this work, some episodes connected to the history of the text are herein illustrated and examined. There is also a complement with the descriptive synthesis of the manuscript and the transcription of the Proemio of the work.

  12. Consistency check of pulse shape discrimination for broad energy germanium detectors using double beta decay data

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Heng-Ye [Max-Planck-Institut fuer Physik, Muenchen (Germany); Collaboration: GERDA-Collaboration

    2013-07-01

    The Gerda (GERmanium Detector Array) experiment was built to study fundamental neutrino properties via neutrinoless double beta decay (0νββ). 0νββ events are single-site events (SSE) confined to a scale about millimeter. However, most of backgrounds are multi-site events (MSE). Broad Energy Germanium detectors (BEGes) offer the potential merits of improved pulse shape recognition efficiencies of SSE/MSE. They allow us to reach the goal of Phase II with a background index of 10{sup -3} cts/(keV.kg.yr) in the ROI. BEGe detectors with a total target mass of 3.63 kg have been installed to the Gerda setup in the Laboratori Nazionali del Gran Sasso (LNGS) in July 2012 and are collecting data since. A consistency check of the pulse shape discrimination (PSD) efficiencies by comparison of calibration data and 2νββ data will be presented. The PSD power of these detectors is demonstrated.

  13. The performance of the Muon Veto of the G erda experiment

    Science.gov (United States)

    Freund, K.; Falkenstein, R.; Grabmayr, P.; Hegai, A.; Jochum, J.; Knapp, M.; Lubsandorzhiev, B.; Ritter, F.; Schmitt, C.; Schütz, A.-K.; Jitnikov, I.; Shevchik, E.; Shirchenko, M.; Zinatulina, D.

    2016-05-01

    Low background experiments need a suppression of cosmogenically induced events. The Gerda experiment located at Lngs is searching for the 0ν β β decay of ^{76}Ge. It is equipped with an active muon veto the main part of which is a water Cherenkov veto with 66 PMTs in the water tank surrounding the Gerda cryostat. With this system 806 live days have been recorded, 491 days were combined muon-germanium data. A muon detection efficiency of \\varepsilon _\\upmu d=(99.935± 0.015) % was found in a Monte Carlo simulation for the muons depositing energy in the germanium detectors. By examining coincident muon-germanium events a rejection efficiency of \\varepsilon _{\\upmu r}=(99.2_{-0.4}^{+0.3}) % was found. Without veto condition the muons by themselves would cause a background index of {BI}_{μ }=(3.16 ± 0.85)× 10^{-3} cts/(keV\\cdot kg\\cdot year) at Q_{β β }.

  14. γ production and neutron inelastic scattering cross sections for 76Ge

    Science.gov (United States)

    Rouki, C.; Domula, A. R.; Drohé, J. C.; Koning, A. J.; Plompen, A. J. M.; Zuber, K.

    2013-11-01

    The 2040.7-keV γ ray from the 69th excited state of 76Ge was investigated in the interest of Ge-based double-β-decay experiments like the Germanium Detector Array (GERDA) experiment. The predicted transition could interfere with valid 0νββ events at 2039.0 keV, creating false signals in large-volume 76Ge enriched detectors. The measurement was performed with the Gamma Array for Inelastic Neutron Scattering (GAINS) at the Geel Electron Linear Accelerator (GELINA) white neutron source, using the (n,n'γ) technique and focusing on the strongest γ rays originating from the level. Upper limits obtained for the production cross section of the 2040.7-keV γ ray showed no possible influence on GERDA data. Additional analysis of the data yielded high-resolution cross sections for the low-lying states of 76Ge and related γ rays, improving the accuracy and extending existing data for five transitions and five levels. The inelastic scattering cross section for 76Ge was determined for incident neutron energies up to 2.23 MeV, significantly increasing the energy range for which experimental data are available. Comparisons with model calculations using the talys code are presented indicating that accounting for the recently established asymmetric rotor structure should lead to an improved description of the data.

  15. Constraining neutrino mass from neutrinoless double beta decay

    Science.gov (United States)

    Dev, P. S. Bhupal; Goswami, Srubabati; Mitra, Manimala; Rodejohann, Werner

    2013-11-01

    We study the implications of the recent results on neutrinoless double beta decay (0νββ) from GERDA-I (Ge76) and KamLAND-Zen+EXO-200 (Xe136) and the upper limit on the sum of light neutrino masses from Planck. We show that the upper limits on the effective neutrino mass from Xe136 are stronger than those from Ge76 for most of the recent calculations of the nuclear matrix elements (NMEs). We also analyze the compatibility of these limits with the claimed observation in Ge76 and show that while the updated claim value is still compatible with the recent GERDA limit as well as the individual Xe136 limits for a few NME calculations, it is inconsistent with the combined Xe136 limit for all but one NME. Imposing the most stringent limit from Planck, we find that the canonical light neutrino contribution cannot saturate the current limit, irrespective of the NME uncertainties. Saturation can be reached by inclusion of the right-handed (RH) neutrino contributions in TeV-scale left-right symmetric models with type-II seesaw. This imposes a lower limit on the lightest neutrino mass. Using the 0νββ bounds, we also derive correlated constraints in the RH sector, complimentary to those from direct searches at the LHC.

  16. Pulse shape discrimination studies of Phase I Ge-detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kirsch, Andrea [MPI fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Collaboration: GERDA-Collaboration

    2013-07-01

    The GERmanium Detector Array experiment aims to search for the neutrinoless double beta decay (0νββ) of {sup 76}Ge by using isotopically enriched germanium crystals as source and detector simultaneously. The bare semiconductor diodes are operated in liquid argon at cryogenic temperatures in an ultra-low background environment. In addition, Gerda applies different active background reduction techniques, one of which is pulse shape discrimination studies of the current Phase I germanium detectors. The analysis of the signal time structure provides an important tool to distinguish single site events (SSE) of the ββ-decay from multi site events (MSE) of common gamma-ray background or surface events. To investigate the correlation between the signal shape and the interaction position, a new, also to the predominantly deployed closed-ended coaxial HPGe detectors applicable analysis technique has been developed. A summary of the used electronic/detector assembly is given and followed by a discussion of the performed classification procedure by means of accurate pulse shape simulations of 0νββ-like signals. Finally, the obtained results are presented along with an evaluation of the relevance for the Gerda experiment.

  17. L’INCHIESTA ITALIANO 2010. ANTEPRIMA DI ALCUNI RISULTATI

    Directory of Open Access Journals (Sweden)

    Claudio Giovanardi

    2011-02-01

    Full Text Available L’inchiesta Italiano 2010, promossa dal Ministero degli Esteri, mette in luce una forte crescita della domanda di lingua italiana nel mondo. I corsi svolti nel 2009-2010 dagli Istituti Italiani di Cultura sono in tutto 6.429, mentre dalla rilevazione eseguita nel 2000 sotto la guida di Tullio De Mauro (Italiano 2000 ne risultavano 3.548, poco più della metà. L’aumento dei corsi si riflette sul numero degli studenti, che in dieci anni è salito di 22.073 unità, ovvero di quasi il 50%, passando da 45.699 a 67.772. Fra le motivazioni che spingono gli stranieri a studiare l’italiano, prevale più nettamente che nel 2000 il fattore «Tempo libero e interessi vari» (56%, a conferma dell’immagine tradizionale della lingua italiana come lingua di cultura. Al secondo posto si colloca lo «Studio» (21%, seguita dal «Lavoro» (13% e dai «Motivi personali e familiari» (10%. Oggi più di ieri, la crescita dell’interesse per la lingua italiana nel mondo è in stretta relazione con la crescita dell’interesse per la nostra cultura. Rispetto alla precedente inchiesta Italiano 2000, il progetto Italiano 2010 ha aggiunto la somministrazione agli studenti universitari di due test linguistici di diverso livello. Grazie alla collaborazione dei lettori MAE si è potuto ricavare un corpus di oltre 1700 test che costituisce un importante contributo allo studio dei “punti di crisi” dell’italiano per gli apprendenti stranieri. Per questo articolo ci si sofferma sulle indicazioni linguistiche e testuali che si ricavano dal testo libero previsto per il livello avanzato: un riassunto tratto da un brano della Guida del Touring Club per la regione Abruzzo.     Italiano 2010: initial results of an enquiry   The survey Italiano 2010, promoted by the Foreign Ministry, highlights the strong demand for the Italian language in the world. There were 6,429 courses offered in 2009-2010 by the Italian Cultural Institutes, compared to the data collected in

  18. Review of modern double beta decay experiments

    Energy Technology Data Exchange (ETDEWEB)

    Barabash, A. S., E-mail: barabash@itep.ru [Institute of Theoretical and Experimental Physics (NRC ”Kurchatov Institute”), B. Cheremushkinskaya 25, Moscow (Russian Federation)

    2015-10-28

    The review of modern experiments on search and studying of double beta decay processes is done. Results of the most sensitive current experiments are discussed. The main attention is paid to EXO-200, KamLAND-Zen, GERDA-I and CUORE-0 experiments. Modern values of T{sub 1/2}(2ν) and best present limits on neutrinoless double beta decay and double beta decay with Majoron emission are presented. Conservative limits on effective mass of a Majorana neutrino (〈m{sub ν}〉 < 0.46 eV) and a coupling constant of Majoron to neutrino (〈g{sub ee}〉 < 1.3 · 10{sup −5}) are obtained. Prospects of search for neutrinoless double beta decay in new experiments with sensitivity to 〈m{sub ν}〉 at the level of ∼ 0.01-0.1 eV are discussed.

  19. Testing Left-Right extensions of the standard model of electroweak interactions with double-beta decay and LHC measurements

    Science.gov (United States)

    Civitarese, O.; Suhonen, J.; Zuber, K.

    2015-07-01

    The minimal extension of the standard model of electroweak interactions allows for massive neutrinos, a massive right-handed boson WR, and a left-right mixing angle ζ. While an estimate of the light (electron) neutrino can be extracted from the non-observation of the neutrinoless double beta decay, the limits on the mixing angle and the mass of the righthanded (RH) boson may be extracted from a combined analysis of the double beta decay measurements (GERDA, EXO-200 and KamLAND-Zen collaborations) and ATLAS data on the two-jets two-leptons signals following the excitation of a virtual RH boson mediated by a heavy-mass neutrino. In this work we shall compare results of both types of experiments, and show that the estimates are not in tension.

  20. Extracting information from 0νββ decay and LHC pp-cross sections: Limits on the left-right mixing angle and right-handed boson mass

    Science.gov (United States)

    Civitarese, O.; Suhonen, J.; Zuber, K.

    2015-10-01

    The existence of massive neutrinos forces the extension of the Standard Model of electroweak interactions, to accommodate them and/or right-handed currents. This is one of the fundamental questions in todays's physics. The consequences of it would reflect upon several decay processes, like the very exotic nuclear double-beta-decay. By the other hand, high-energy proton-proton reactions of the type performed at the LHC accelerator can provide information about the existence of a right-handed generation of the W and Z-bosons. Here we shall address the possibility of performing a joint analysis of the results reported by the ATLAS and CMS collaborations (σ(pp- > 2l + jets)) and the latest measurements of nuclear-double-beta decays reported by the GERDA and EXO collaborations.

  1. Ciudadanas y heroinas antifranquistas: morir por la república española

    Directory of Open Access Journals (Sweden)

    Ana Aguado

    2008-12-01

    Full Text Available This text raises the analysis of historical context and biographical characterization of several women considered as “republican heroines”. This women died because of their anti-Franco identity and their link with Spanish second Republic; that is, because of their political commitment and their defence of freedom. Women who died because of the same Franco violence during both the civil war and the repression developed after the war and the victory of the revolted. The case of photographer Gerda Taro, Robert Capa’s colleague, is analyzed like this; with another few cases of women who died in the postwar, executed because of their antifascist militancy, like Águeda Campos, POUM’s militant executed in 1941, or María Pérez Lacruz, “La Jabalina”, young libertarian executed in 1942.

  2. Characterization of BEGe detectors in the HADES underground laboratory

    Science.gov (United States)

    Andreotti, Erica; Gerda Collaboration

    2013-08-01

    This paper describes the characterization of newly produced Broad Energy Germanium (BEGe) detectors, enriched in the isotope 76Ge. These detectors have been produced in the frame of the GERDA experiment. The aim of the characterization campaign consists in the determination of all the important operational parameters (active volume, dead layer thickness and uniformity, energy resolution, detector stability in time, quality of pulse shape discrimination). A protocol test procedure and devoted set-ups, partially automated, have been developed in view of the large number (∼ 25) of BEGe's detectors to be tested. The characterization is carried out in the HADES underground laboratory, located 225 m below ground (∼ 500 m water equivalent) in Mol, Belgium.

  3. Extracting information from 0νββ decay and LHC pp-cross sections: Limits on the left-right mixing angle and right-handed boson mass

    Energy Technology Data Exchange (ETDEWEB)

    Civitarese, O., E-mail: osvaldo.civitarese@fisica.unlp.edu.ar [Departamento de Física, UNLP, C.C. 67, (1900) La Plata (Argentina); Suhonen, J. [University of Jyvaskyla, Department of Physics, P.O. Box 35, FI-40014 (Finland); Zuber, K. [Department of Physics, TU-University, Dresden (Germany)

    2015-10-28

    The existence of massive neutrinos forces the extension of the Standard Model of electroweak interactions, to accommodate them and/or right-handed currents. This is one of the fundamental questions in todays’s physics. The consequences of it would reflect upon several decay processes, like the very exotic nuclear double-beta-decay. By the other hand, high-energy proton-proton reactions of the type performed at the LHC accelerator can provide information about the existence of a right-handed generation of the W and Z-bosons. Here we shall address the possibility of performing a joint analysis of the results reported by the ATLAS and CMS collaborations (σ(pp− > 2l + jets)) and the latest measurements of nuclear-double-beta decays reported by the GERDA and EXO collaborations.

  4. Conceptions and tendencies of age discrimination and attitudes

    Directory of Open Access Journals (Sweden)

    Fredrik Nils Christian Snellman

    2013-11-01

    Full Text Available This study aims to access and explore tendencies in the conceptualization of age discrimination and the perceived attitudes towards older people in regions of Finland and Sweden. The analysis draws on GERDA survey data (GErontological Regional DAtabase, a repeated cross-sectional study in which data was collected in 2005 and 2010. The results indicate that the conceptions of age discrimination are changing in a positive direction, which is contrary to results shown in the Eurobarometer. On the basis of balance coefficients we show that conceived attitudes towards older people are changing as well, except for individuals in some sub-groups. We discuss the role of political rhetoric in relation to ageing awareness, the (nonindividualization of society and the negotiation of age relations as tentative interpretations that strongly challenge the observed empirical tendencies.

  5. Characterization of BEGe detectors in the HADES underground laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Andreotti, Erica, E-mail: Erica.ANDREOTTI@ec.europa.eu [Joint Research Centre, Institute for Reference Materials and Measurements, Retieseweg 111, B-2440 Geel (Belgium)

    2013-08-01

    This paper describes the characterization of newly produced Broad Energy Germanium (BEGe) detectors, enriched in the isotope {sup 76}Ge. These detectors have been produced in the frame of the GERDA experiment. The aim of the characterization campaign consists in the determination of all the important operational parameters (active volume, dead layer thickness and uniformity, energy resolution, detector stability in time, quality of pulse shape discrimination). A protocol test procedure and devoted set-ups, partially automated, have been developed in view of the large number (∼25) of BEGe's detectors to be tested. The characterization is carried out in the HADES underground laboratory, located 225 m below ground (∼500m water equivalent) in Mol, Belgium.

  6. Should governments in Europe be more aggressive in pushing for gender equality to raise fertility? The second "YES"

    Directory of Open Access Journals (Sweden)

    Livia Sz. Oláh

    2011-02-01

    Full Text Available This paper is based on my contribution to a debate, organized by MPIDR, on the question displayed in the title above. I was asked to present arguments for the "yes"-response (together with Laurent Toulemon, and arguing against the "no"-side represented by Gerda Neyer and Dimiter Philipov. As pointed out in the paper, the most important theoretical reasoning relevant for this question is the gender equity theory. A number of studies provide sound empirical support to it, as discussed in the paper in details, and thereby also a rationale for a positive impact of increased gender equality on fertility. As the dual-earner family is here to stay, and given the well-known negative consequences of long-term very low fertility for a society, pushing for gender equality seems to be a reasonable strategy to be considered aiming for sustainable societal development.

  7. Research and Development Supporting a Next Generation Germanium Double Beta Decay Experiment

    Science.gov (United States)

    Rielage, Keith; Elliott, Steve; Chu, Pinghan; Goett, Johnny; Massarczyk, Ralph; Xu, Wenqin

    2015-10-01

    To improve the search for neutrinoless double beta decay, the next-generation experiments will increase in source mass and continue to reduce backgrounds in the region of interest. A promising technology for the next generation experiment is large arrays of Germanium p-type point contact detectors enriched in 76-Ge. The experience, expertise and lessons learned from the MAJORANA DEMONSTRATOR and GERDA experiments naturally lead to a number of research and development activities that will be useful in guiding a future experiment utilizing Germanium. We will discuss some R&D activities including a hybrid cryostat design, background reduction in cabling, connectors and electronics, and modifications to reduce assembly time. We acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program.

  8. Measurements of the 40Ar(n, γ)41Ar radiative-capture cross section between 0.4 and 14.8 MeV

    Science.gov (United States)

    Bhike, Megha; Fallin, B.; Tornow, W.

    2014-09-01

    The 40Ar(n, γ)41Ar neutron capture cross section has been measured between 0.4 and 14.8 MeV neutron energy using the activation technique. The data are important for estimating backgrounds in argon-based neutrino and dark-matter detectors and in the neutrino-less double-beta decay search GERDA, which uses liquid argon as cooling and shielding medium. For the first time the 40Ar(n, γ)41Ar cross section has been measured for neutron energies above 1 MeV. Our results are compared to the evaluation ENDF/B-VII.1 and the calculated prediction TENDL-2013. The latter agrees very well with the present results.

  9. Investigating lithological and geophysical relationships with applications to geological uncertainty analysis using Multiple-Point Statistical methods

    DEFF Research Database (Denmark)

    Barfod, Adrian

    The PhD thesis presents a new method for analyzing the relationship between resistivity and lithology, as well as a method for quantifying the hydrostratigraphic modeling uncertainty related to Multiple-Point Statistical (MPS) methods. Three-dimensional (3D) geological models are im...... is to improve analysis and research of the resistivity-lithology relationship and ensemble geological/hydrostratigraphic modeling. The groundwater mapping campaign in Denmark, beginning in the 1990’s, has resulted in the collection of large amounts of borehole and geophysical data. The data has been compiled...... in two publicly available databases, the JUPITER and GERDA databases, which contain borehole and geophysical data, respectively. The large amounts of available data provided a unique opportunity for studying the resistivity-lithology relationship. The method for analyzing the resistivity...

  10. Wilcoxon signed-rank-based technique for the pulse-shape analysis of HPGe detectors

    Science.gov (United States)

    Martín, S.; Quintana, B.; Barrientos, D.

    2016-07-01

    The characterization of the electric response of segmented-contact high-purity germanium detectors requires scanning systems capable of accurately associating each pulse with the position of the interaction that generated it. This process requires an algorithm sensitive to changes above the electronic noise in the pulse shapes produced at different positions, depending on the resolution of the Ge crystal. In this work, a pulse-shape comparison technique based on the Wilcoxon signed-rank test has been developed. It provides a method to distinguish pulses coming from different interaction points in the germanium crystal. Therefore, this technique is a necessary step for building a reliable pulse-shape database that can be used later for the determination of the position of interaction for γ-ray tracking spectrometry devices such as AGATA, GRETA or GERDA. The method was validated by comparison with a χ2 test using simulated and experimental pulses corresponding to a Broad Energy germanium detector (BEGe).

  11. Wilcoxon signed-rank-based technique for the pulse-shape analysis of HPGe detectors

    International Nuclear Information System (INIS)

    Martín, S.; Quintana, B.; Barrientos, D.

    2016-01-01

    The characterization of the electric response of segmented-contact high-purity germanium detectors requires scanning systems capable of accurately associating each pulse with the position of the interaction that generated it. This process requires an algorithm sensitive to changes above the electronic noise in the pulse shapes produced at different positions, depending on the resolution of the Ge crystal. In this work, a pulse-shape comparison technique based on the Wilcoxon signed-rank test has been developed. It provides a method to distinguish pulses coming from different interaction points in the germanium crystal. Therefore, this technique is a necessary step for building a reliable pulse-shape database that can be used later for the determination of the position of interaction for γ-ray tracking spectrometry devices such as AGATA, GRETA or GERDA. The method was validated by comparison with a χ"2 test using simulated and experimental pulses corresponding to a Broad Energy germanium detector (BEGe).

  12. Measurements of the {sup 40}Ar(n, γ){sup 41}Ar radiative-capture cross section between 0.4 and 14.8 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Bhike, Megha, E-mail: megha@tunl.duke.edu [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Fallin, B.; Tornow, W. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States)

    2014-09-07

    The {sup 40}Ar(n, γ){sup 41}Ar neutron capture cross section has been measured between 0.4 and 14.8 MeV neutron energy using the activation technique. The data are important for estimating backgrounds in argon-based neutrino and dark-matter detectors and in the neutrino-less double-beta decay search GERDA, which uses liquid argon as cooling and shielding medium. For the first time the {sup 40}Ar(n, γ){sup 41}Ar cross section has been measured for neutron energies above 1 MeV. Our results are compared to the evaluation ENDF/B-VII.1 and the calculated prediction TENDL-2013. The latter agrees very well with the present results.

  13. Measurements of the 40Ar(n, γ41Ar radiative-capture cross section between 0.4 and 14.8 MeV

    Directory of Open Access Journals (Sweden)

    Megha Bhike

    2014-09-01

    Full Text Available The 40Ar(n, γ41Ar neutron capture cross section has been measured between 0.4 and 14.8 MeV neutron energy using the activation technique. The data are important for estimating backgrounds in argon-based neutrino and dark-matter detectors and in the neutrino-less double-beta decay search GERDA, which uses liquid argon as cooling and shielding medium. For the first time the 40Ar(n, γ41Ar cross section has been measured for neutron energies above 1 MeV. Our results are compared to the evaluation ENDF/B-VII.1 and the calculated prediction TENDL-2013. The latter agrees very well with the present results.

  14. Long-term results of middle fossa plugging of superior semicircular canal dehiscences: clinically and instrumentally demonstrated efficiency in a retrospective series of 16 ears.

    Science.gov (United States)

    Thomeer, Hans; Bonnard, Damien; Castetbon, Vincent; Franco-Vidal, Valérie; Darrouzet, Patricia; Darrouzet, Vincent

    2016-07-01

    The objective of this study is to report the surgical outcome after middle fossa approach (MFA) plugging in patients suffering from a superior semi-circular canal dehiscence (SCD) syndrome. This is a retrospective case review. Tertiary referral center. Sixteen ears in 13 patients with a SCD syndrome suffering from severe and disabling vestibular symptoms with a bony dehiscence on CT scan >3 mm and decreased threshold of cervical vestibular evoked potentials (cVEMPs). We assessed preoperatively: clinical symptoms, hearing, cVEMPs threshold, size of dehiscence and videonystagmography (VNG) with caloric and 100 Hz vibratory tests. Postoperatively, we noted occurrences of neurosurgical complication, evolution of audiological and vestibular symptoms, and evaluation of cVEMP data. Tullio's phenomenon was observed in 13 cases (81.3 %) and subjectively reported hearing loss in seven (43.7 %). All patients were so disabled that they had to stop working. No neurosurgical complications were observed in the postoperative course. In three cases (16.6 %), an ipsilateral and transitory immediate postoperative vestibular deficit associated with a sensorineural hearing loss (SNHL) was noted, which totally resolved with steroids and bed rest. All patients were relieved of audiological and vestibular symptoms and could return to normal activity with a mean follow-up of 31.1 months (range 3-95). No patient had residual SNHL. cVEMPs were performed in 14 ears postoperatively and were normalized in 12 (85.7 %). Two of the three patients operated on both sides kept some degree of unsteadiness and oscillopsia. MFA plugging of the superior semi-circular canal is an efficient and non-hearing deteriorating procedure.

  15. Measurement of the neutron-capture cross section of 76Ge and 74Ge below 15 MeV and its relevance to 0 νββ decay searches of 76Ge

    Science.gov (United States)

    Bhike, Megha; Fallin, B.; Krishichayan; Tornow, W.

    2015-02-01

    The neutron radiative-capture cross section of 76Ge was measured between 0.4 and 14.8 MeV using the activation technique. Germanium samples with the isotopic abundance of ∼ 86%76Ge and ∼ 14%74Ge used in the 0 νββ searches by the GERDA and Majorana Collaborations were irradiated with monoenergetic neutrons produced at eleven energies via the 3H (p , n)3He, 2H (d , n)3He and 3H (d , n)4He reactions. Previously, data existed only at thermal energies and at 14 MeV. As a by-product, capture cross-section data were also obtained for 74Ge at neutron energies below 8 MeV. Indium and gold foils were irradiated simultaneously for neutron fluence determination. High-resolution γ-ray spectroscopy was used to determine the γ-ray activity of the daughter nuclei of interest. For the 76Ge total capture cross section the present data are in good agreement with the TENDL-2013 model calculations and the ENDF/B-VII.1 evaluations, while for the 74Ge (n , γ)75Ge reaction, the present data are about a factor of two larger than predicted. It was found that the 74Ge (n , γ)75Ge yield in the High-Purity Germanium (HPGe) detectors used by the GERDA and Majorana Collaborations is only about a factor of two smaller than the 76Ge (n , γ)77Ge yield due to the larger cross section of the former reaction.

  16. 6th International Symposium on Molecular Allergology (ISMA

    Directory of Open Access Journals (Sweden)

    Christiane Hilger

    2016-10-01

    -patient quantification of allergen-specific IgE Petra Zavadakova, Aurélie Buchwalder, Fabien Rebeaud, Iwan Märki Symposium 4: Relevance of molecular diagnostics for intervention and treatment O7 Longitudinal analysis of Bet v 1-specific epitope repertoires during birch pollen immunotherapy Barbara Gepp, Nina Lengger, Christian Möbs, Wolfgang Pfützner, Christian Radauer, Barbara Bohle O8 A natural CCD-free tool: is polistes sp. venom suitable for polybia paulista diagnosis and therapy? Karine Marafigo De Amicis, Alexandra Sayuri Watanabe, Clovis Eduardo Galvao, Daniele Danella Figo, Jose Roberto Aparecido Santos-Pinto, Mario Sergio Palma, Fabio Fernandes Morato Castro, Jorge Kalil, Fatima Ferreira, Gabriele Gadermaier, Keity Souza Santos Symposium 5: The advent of molecular allergology in epidemiology O9 Peanut oleosins: from identification to diagnostic testing Christian Schwager, Skadi Kull, Frauke Schocker, Jochen Behrends, Wolf-Meinhard Becker, Uta Jappe O10 Endotypes of oral allergy syndrome in childhood: a molecular diagnostic approach Carla Mastrorilli, Salvatore Tripodi, Carlo Caffarelli, Riccardo Asero, Arianna Dondi, Giampaolo Ricci, Carlotta Povesi Dascola, Elisabetta Calamelli, Andrea Di Rienzo Businco, Annamaria Bianchi, Tullio Frediani, Carmen Verga, Iride Dello Iacono, Diego Peroni, Giuseppe Pingitore, Roberto Bernardini, Paolo Maria Matricardi Symposium 6: Molecular AIT: which approaches will make it to market? O11 Mbc4: an innovative molecule to tackle birch pollen and concomitant food allergies Heidi Hofer, Claudia Asam, Michael Hauser, Peter Briza, Martin Himly, Christof Ebner, Fatima Ferreira O12 Challenges and solutions associated with the production of recombinant Bet v 1 allergen as a therapeutic protein Emmanuel Nony, Maxime Le Mignon, Pierrick Lemoine, Karine Jain, Kathy Abiteboul, Monica Arvidsson, Sabina Rak, Philippe Moingeon Clinical Cases: Breakthroughs and headaches from CRD: interactive session CC1 Anaphylaxis caused by lipid transfer proteins: a

  17. BAKUNIN'S SON, A DIALOGIC NOVEL BY SERGIO ATZENI

    Directory of Open Access Journals (Sweden)

    Masina Depperu (Universidade de Lisboa

    2013-10-01

    Full Text Available Bakunin’s Son, a short novel by Sergio Atzeni, is the perfect embodiment of Bakhtin’s theory of the dialogic novel. The author sets his stories and characters - mostly humble outcast defeated people - in his own homeland, Sardinia. The accurately planned structure as an interview to thirty-two people reflects a multifarious reality with its complex rules and mentality expressed through different points of view, languages and ideologies. The protagonist’s story may result contradictory according to the different opinions of people who met him. Also the choice of a hybrid language contributes to create a highly connoted cultural context. In Bakunin’s Son, in fact, the Italian and the Sardinian overlap in a manner that cannot be distinguished or graphically marked, since form and meaning are fused together.Key words: dialogic novel, hybrid language.O filho de Bakunin, um romance polifónico de Sergio AtzeniO romance breve de Sergio Atzeni, O filho de Bakunin, è a perfeita exemplificação da teoria bachtininana do romance polifónico. O autor insere as histórias e as persona gens, geralmente abatidas, pessoas humildes e marginalizadas, na sua terra natal, a Sardenha. A história è estruturada na forma de entrevista a trinta e duas persona gens que com os seus pontos de vista criam una realidade multi-facetada e subjectiva. A vida de Tullio Saba, o protagonista, está narrada às vezes em modo contraditório e, por isso, os factos podem ser divergentes nas opiniões de quem esteve mais ou menos em contacto directo com ele. O uso característico de um instrumento linguístico híbrido, a meio caminho entre o italiano e o sardo, conota não somente o léxico mas também a estruturação inteira do discurso que atinge o efeito final pretendido pelo autor de descrever uma diversa ealidade antropológico-cultural.Palavras chave: romance polifónico, instrumento linguístico híbrido

  18. New strategies to ensure good patient–physician communication when treating adolescents and young adults with cancer: the proposed model of the Milan Youth Project

    Directory of Open Access Journals (Sweden)

    Magni MC

    2015-08-01

    Full Text Available Maria Chiara Magni,1 Laura Veneroni,1 Carlo Alfredo Clerici,2 Tullio Proserpio,3 Giovanna Sironi,1 Michela Casanova,1 Stefano Chiaravalli,1 Maura Massimino,1 Andrea Ferrari1 1Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy; 2Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; 3Pastoral Care Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy Abstract: Adolescence is a particularly complex time of life, entailing physiological, psychological, and social changes that further the individual's cognitive, emotional, and social growth. Being diagnosed with cancer at this time can have important consequences on an individual's emotional and physical development, and adolescent and young adult cancer patients have particular medical and psychosocial needs. Patient–physician communications are important in any clinical relationship, but fundamental in the oncological sphere because their quality can affect the patient–physician relationship, the therapeutic alliance, and patient compliance. A major challenge when dealing with adolescent and young adult patients lies in striking the right balance between their need and right to understand their disease, treatment, and prognosis, and the need for them to remain hopeful and to protect their emotional sensitivity. We herein describe the activities of the Youth Project of the Istituto Nazionale Tumori in Milan, Italy in order to share a possible model of interaction with these special patients and the tactics our group has identified to help them communicate and share their thoughts. This model implies not only the involvement of a multidisciplinary team, including psychologists and spirituality experts, but also the constitution of dedicated creative activities to give patients the opportunity to express feelings they would otherwise never feel at ease putting into words. These efforts seek the goal to minimize the potentially

  19. Investigation of advanced materials for fusion alpha particle diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Bonheure, G., E-mail: g.bonheure@fz-juelich.de [Laboratory for Plasma Physics, Association “Euratom-Belgian State”, Royal Military Academy, Avenue de la Renaissance, 30 Kunstherlevinglaan, B-1000 Brussels (Belgium); Van Wassenhove, G. [Laboratory for Plasma Physics, Association “Euratom-Belgian State”, Royal Military Academy, Avenue de la Renaissance, 30 Kunstherlevinglaan, B-1000 Brussels (Belgium); Hult, M.; González de Orduña, R. [Institute for Reference Materials and Measurements (IRMM), Retieseweg 111, B-2440 Geel (Belgium); Strivay, D. [Centre Européen d’Archéométrie, Institut de Physique Nucléaire, Atomique et de Spectroscopie, Université de Liège (Belgium); Vermaercke, P. [SCK-CEN, Boeretang, B-2400 Mol (Belgium); Delvigne, T. [DSI SPRL, 3 rue Mont d’Orcq, Froyennes B-7503 (Belgium); Chene, G.; Delhalle, R. [Centre Européen d’Archéométrie, Institut de Physique Nucléaire, Atomique et de Spectroscopie, Université de Liège (Belgium); Huber, A.; Schweer, B.; Esser, G.; Biel, W.; Neubauer, O. [Forschungszentrum Jülich GmbH, Institut für Plasmaphysik, EURATOM-Assoziation, Trilateral Euregio Cluster, D-52425 Jülich (Germany)

    2013-10-15

    Highlights: ► We examine the feasibility of alpha particle measurements in ITER. ► We test advanced material detectors borrowed from the GERDA neutrino experiment. ► We compare experimental results on TEXTOR tokamak with our detector response model. ► We investigate the detector response in ITER full power D–T plasmas. ► Advanced materials show good signal to noise ratio and alpha particle selectivity. -- Abstract: Fusion alpha particle diagnostics for ITER remain a challenging task. Standard escaping alpha particle detectors in present tokamaks are not applicable to ITER and techniques suitable for fusion reactor conditions need further research and development [1,2]. The activation technique is widely used for the characterization of high fluence rates inside neutron reactors. Tokamak applications of the neutron activation technique are already well developed [3] whereas measuring escaping ions using this technique is a novel fusion plasma diagnostic development. Despite low alpha particle fluence levels in present tokamaks, promising results using activation technique combined with ultra-low level gamma-ray spectrometry [4] were achieved before in JET [5,6]. In this research work, we use new advanced detector materials. The material properties beneficial for alpha induced activation are (i) moderate neutron cross-sections (ii) ultra-high purity which reduces neutron-induced background activation and (iii) isotopic tailoring which increases the activation yield of the measured activation product. Two samples were obtained from GERDA[7], an experiment aimed at measuring the neutrinoless double beta decay in {sup 76}Ge. These samples, made of highly pure (9 N) germanium highly enriched to 87% in isotope Ge-76, were irradiated in real D–D fusion plasma conditions inside the TEXTOR tokamak. Comparison of the calculated and the experimentally measured activity shows good agreement. Compared to previously investigated high temperature ceramic material [8

  20. Partial versus complete fundoplication for the correction of pediatric GERD: a systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Peter Glen

    Full Text Available There is no consensus as to what extent of "wrap" is required in a fundoplication for correction of gastroesophageal reflux disease (GERD.To evaluate if a complete (360 degree or partial fundoplication gives better control of GERD.A systematic search of MEDLINE and Scopus identified interventional and observational studies of fundoplication in children. Screening identified those comparing techniques. The primary outcome was recurrence of GERD following surgery. Dysphagia and complications were secondary outcomes of interest. Meta-analysis was performed when appropriate. Study quality was assessed using the Cochrane Risk of Bias Tool.2289 abstracts were screened, yielding 2 randomized controlled trials (RCTs and 12 retrospective cohort studies. The RCTs were pooled. There was no difference in surgical success between partial and complete fundoplication, OR 1.33 [0.67,2.66]. In the 12 cohort studies, 3 (25% used an objective assessment of the surgery, one of which showed improved outcomes with complete fundoplication. Twenty-five different complications were reported; common were dysphagia and gas-bloat syndrome. Overall study quality was poor.The comparison of partial fundoplication with complete fundoplication warrants further study. The evidence does not demonstrate superiority of one technique. The lack of high quality RCTs and the methodological heterogeneity of observational studies limits a powerful meta-analysis.

  1. Standard and Nonstandard Neutrino-Nucleus Reactions Cross Sections and Event Rates to Neutrino Detection Experiments

    Directory of Open Access Journals (Sweden)

    D. K. Papoulias

    2015-01-01

    Full Text Available In this work, we explore ν-nucleus processes from a nuclear theory point of view and obtain results with high confidence level based on accurate nuclear structure cross sections calculations. Besides cross sections, the present study includes simulated signals expected to be recorded by nuclear detectors and differential event rates as well as total number of events predicted to be measured. Our original cross sections calculations are focused on measurable rates for the standard model process, but we also perform calculations for various channels of the nonstandard neutrino-nucleus reactions and come out with promising results within the current upper limits of the corresponding exotic parameters. We concentrate on the possibility of detecting (i supernova neutrinos by using massive detectors like those of the GERDA and SuperCDMS dark matter experiments and (ii laboratory neutrinos produced near the spallation neutron source facilities (at Oak Ridge National Lab by the COHERENT experiment. Our nuclear calculations take advantage of the relevant experimental sensitivity and employ the severe bounds extracted for the exotic parameters entering the Lagrangians of various particle physics models and specifically those resulting from the charged lepton flavour violating μ-→e- experiments (Mu2e and COMET experiments.

  2. The body in the processes of musical sensitizing

    Directory of Open Access Journals (Sweden)

    Sonia Albano de Lima

    2007-05-01

    Full Text Available This article highlights part of the bibliographic collecting of Alexandre Ruger’s Master Degree dissertation entitled “The corporal percussion as a proposal of musical sensitizing for actors and theater students”, developed in the IA-UNESP (Arts Institute – State of São Paulo University. The research was supervised by Sonia Albano de Lima. The bibliographic collection was sub-divided into three items: the body and the musical teaching, the understanding of the body-mind binomial and the musical teaching in the Scenic Arts as a means of developing the expressivity and the corporal awareness. In the present text the two first items will be exposed. In the first one, the work of the educators Emile Jacques-Dalcroze (1865-1950, Carl Orff (1895-1982, Edgar Willems (1890-1978, Murray Schafer (1933-, among others, served as a theoretical subsidy, as well as the work of corporal percussion developed by the Grupo Barbatuques. In the inter-relationship between the body and the mind the theoretical foundation was taken from the texts by Paul Sivadon, from the area of Social Psychology; Jean Claude Coste, from the Psychomotility area; Patrícia Pederiva, from the musical research area; James J. Gibson, from the Psychology area; Gerda Alexander, from the Eutonia area, among others.

  3. Neutrinoless Double Beta Decay Experiments

    International Nuclear Information System (INIS)

    Garfagnini, A.

    2014-08-01

    Neutrinoless double beta decay is the only process known so far able to test the neutrino intrinsic nature: its experimental observation would imply that the lepton number is violated by two units and prove that neutrinos have a Majorana mass components, being their own anti-particle. While several experiments searching for such a rare decay have been per- formed in the past, a new generation of experiments using different isotopes and techniques have recently released their results or are taking data and will provide new limits, should no signal be observed, in the next few years to come. The present contribution reviews the latest public results on double beta decay searches and gives an overview on the expected sensitivities of the experiments in construction which will be able to set stronger limits in the near future. EXO and KamLAND-Zen experiments are based on the decay of Xe 136 , GERDA and MAJORANA experiments are based on the decay of Ge 76 , and the CUORE experiment is based on the decay of Te 130

  4. Pulse shape discrimination performance of inverted coaxial Ge detectors

    Science.gov (United States)

    Domula, A.; Hult, M.; Kermaïdic, Y.; Marissens, G.; Schwingenheuer, B.; Wester, T.; Zuber, K.

    2018-05-01

    We report on the characterization of two inverted coaxial Ge detectors in the context of being employed in future 76Ge neutrinoless double beta (0 νββ) decay experiments. It is an advantage that such detectors can be produced with bigger Ge mass as compared to the planar Broad Energy Ge (BEGe) or p-type Point Contact (PPC) detectors that are currently used in the GERDA and MAJORANA DEMONSTRATOR 0 νββ decay experiments respectively. This will result in a lower background for the search of 0 νββ decay due to a reduction of detector surface to volume ratio, cables, electronics and holders which are dominating nearby radioactive sources. The measured resolution near the 76Ge Q-value at 2039 keV is 2.3 keV FWHM and their pulse-shape discrimination of background events are similar to BEGe and PPC detectors. It is concluded that this type of Ge-detector is suitable for usage in 76Ge 0 νββ decay experiments.

  5. Five-year change in morale is associated with negative life events in very old age.

    Science.gov (United States)

    Näsman, Marina; Niklasson, Johan; Saarela, Jan; Nygård, Mikael; Olofsson, Birgitta; Conradsson, Mia; Lövheim, Hugo; Gustafson, Yngve; Nyqvist, Fredrica

    2017-10-27

    The objectives were to study changes in morale in individuals 85 years and older, and to assess the effect of negative life events on morale over a five-year follow-up period. The present study is based on longitudinal data from the Umeå85+/GERDA-study, including individuals 85 years and older at baseline (n = 204). Morale was measured with the Philadelphia Geriatric Center Morale Scale (PGCMS). Negative life events were assessed using an index including 13 negative life events occurring during the follow-up period. Linear regression was used for the multivariate analyses. The majority of the sample (69.1%) had no significant changes in morale during the five-year follow-up. However, the accumulation of negative life events was significantly associated with a greater decrease in PGCMS. A higher baseline PGCMS score did not attenuate the adverse effect negative life events had on morale. Morale seemed to be mainly stable in a five-year follow-up of very old people. It seems, nonetheless, that individuals are affected by negative life events, regardless of level of morale. Preventing negative life events and supporting individuals who experience multiple negative life events could have important implications for the care of very old people.

  6. Inelastic neutron scattering cross-section measurements on 7Li and 63,65Cu

    Science.gov (United States)

    Nyman, Markus; Belloni, Francesca; Ichinkhorloo, Dagvadorj; Pirovano, Elisa; Plompen, Arjan; Rouki, Chariklia

    2017-09-01

    The γ-ray production cross section for the 477.6-keV transition in 7Li following inelastic neutron scattering has been measured from the reaction threshold up to 18 MeV. This cross section is interesting as a possible standard for other inelastic scattering measurements. The experiment was conducted at the Geel Electron LINear Accelerator (GELINA) pulsed white neutron source with the Gamma Array for Inelastic Neutron Scattering (GAINS) spectrometer. Previous measurements of this cross section are reviewed and compared with our results. Recently, this cross section has also been calculated using the continuum discretized coupled-channels (CDCC) method. Experiments for studying neutrinoless double-β decay (2β0ν) or other very rare processes require greatly reducing the background radiation level (both intrinsic and external). Copper is a common shielding and structural material, used extensively in experiments such as COBRA, CUORE, EXO, GERDA, and MAJORANA. Understanding the background contribution arising from neutron interactions in Cu is important when searching for very weak experimental signals. Neutron inelastic scattering on natCu was investigated with GAINS. The results are compared with previous experimental data and evaluated nuclear data libraries.

  7. Inelastic neutron scattering cross-section measurements on 7Li and 63,65Cu

    Directory of Open Access Journals (Sweden)

    Nyman Markus

    2017-01-01

    Full Text Available The γ-ray production cross section for the 477.6-keV transition in 7Li following inelastic neutron scattering has been measured from the reaction threshold up to 18 MeV. This cross section is interesting as a possible standard for other inelastic scattering measurements. The experiment was conducted at the Geel Electron LINear Accelerator (GELINA pulsed white neutron source with the Gamma Array for Inelastic Neutron Scattering (GAINS spectrometer. Previous measurements of this cross section are reviewed and compared with our results. Recently, this cross section has also been calculated using the continuum discretized coupled-channels (CDCC method. Experiments for studying neutrinoless double-β decay (2β0ν or other very rare processes require greatly reducing the background radiation level (both intrinsic and external. Copper is a common shielding and structural material, used extensively in experiments such as COBRA, CUORE, EXO, GERDA, and MAJORANA. Understanding the background contribution arising from neutron interactions in Cu is important when searching for very weak experimental signals. Neutron inelastic scattering on natCu was investigated with GAINS. The results are compared with previous experimental data and evaluated nuclear data libraries.

  8. Improving axion detection sensitivity in high purity germanium detector based experiments

    Science.gov (United States)

    Xu, Wenqin; Elliott, Steven

    2015-04-01

    Thanks to their excellent energy resolution and low energy threshold, high purity germanium (HPGe) crystals are widely used in low background experiments searching for neutrinoless double beta decay, e.g. the MAJORANA DEMONSTRATOR and the GERDA experiments, and low mass dark matter, e.g. the CDMS and the EDELWEISS experiments. A particularly interesting candidate for low mass dark matter is the axion, which arises from the Peccei-Quinn solution to the strong CP problem and has been searched for in many experiments. Due to axion-photon coupling, the postulated solar axions could coherently convert to photons via the Primakeoff effect in periodic crystal lattices, such as those found in HPGe crystals. The conversion rate depends on the angle between axions and crystal lattices, so the knowledge of HPGe crystal axis is important. In this talk, we will present our efforts to improve the HPGe experimental sensitivity to axions by considering the axis orientations in multiple HPGe crystals simultaneously. We acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program.

  9. The large enriched germanium experiment for neutrinoless double beta decay (LEGEND)

    Science.gov (United States)

    Abgrall, N.; Abramov, A.; Abrosimov, N.; Abt, I.; Agostini, M.; Agartioglu, M.; Ajjaq, A.; Alvis, S. I.; Avignone, F. T.; Bai, X.; Balata, M.; Barabanov, I.; Barabash, A. S.; Barton, P. J.; Baudis, L.; Bezrukov, L.; Bode, T.; Bolozdynya, A.; Borowicz, D.; Boston, A.; Boston, H.; Boyd, S. T. P.; Breier, R.; Brudanin, V.; Brugnera, R.; Busch, M.; Buuck, M.; Caldwell, A.; Caldwell, T. S.; Camellato, T.; Carpenter, M.; Cattadori, C.; Cederkäll, J.; Chan, Y.-D.; Chen, S.; Chernogorov, A.; Christofferson, C. D.; Chu, P.-H.; Cooper, R. J.; Cuesta, C.; Demidova, E. V.; Deng, Z.; Deniz, M.; Detwiler, J. A.; Di Marco, N.; Domula, A.; Du, Q.; Efremenko, Yu.; Egorov, V.; Elliott, S. R.; Fields, D.; Fischer, F.; Galindo-Uribarri, A.; Gangapshev, A.; Garfagnini, A.; Gilliss, T.; Giordano, M.; Giovanetti, G. K.; Gold, M.; Golubev, P.; Gooch, C.; Grabmayr, P.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Gurentsov, V.; Gurov, Y.; Gusev, K.; Hakenmüeller, J.; Harkness-Brennan, L.; Harvey, Z. R.; Haufe, C. R.; Hauertmann, L.; Heglund, D.; Hehn, L.; Heinz, A.; Hiller, R.; Hinton, J.; Hodak, R.; Hofmann, W.; Howard, S.; Howe, M. A.; Hult, M.; Inzhechik, L. V.; Csáthy, J. Janicskó; Janssens, R.; Ješkovský, M.; Jochum, J.; Johansson, H. T.; Judson, D.; Junker, M.; Kaizer, J.; Kang, K.; Kazalov, V.; Kermadic, Y.; Kiessling, F.; Kirsch, A.; Kish, A.; Klimenko, A.; Knöpfle, K. T.; Kochetov, O.; Konovalov, S. I.; Kontul, I.; Kornoukhov, V. N.; Kraetzschmar, T.; Kröninger, K.; Kumar, A.; Kuzminov, V. V.; Lang, K.; Laubenstein, M.; Lazzaro, A.; Li, Y. L.; Li, Y.-Y.; Li, H. B.; Lin, S. T.; Lindner, M.; Lippi, I.; Liu, S. K.; Liu, X.; Liu, J.; Loomba, D.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Ma, H.; Majorovits, B.; Mamedov, F.; Martin, R. D.; Massarczyk, R.; Matthews, J. A. J.; McFadden, N.; Mei, D.-M.; Mei, H.; Meijer, S. J.; Mengoni, D.; Mertens, S.; Miller, W.; Miloradovic, M.; Mingazheva, R.; Misiaszek, M.; Moseev, P.; Myslik, J.; Nemchenok, I.; Nilsson, T.; Nolan, P.; O'Shaughnessy, C.; Othman, G.; Panas, K.; Pandola, L.; Papp, L.; Pelczar, K.; Peterson, D.; Pettus, W.; Poon, A. W. P.; Povinec, P. P.; Pullia, A.; Quintana, X. C.; Radford, D. C.; Rager, J.; Ransom, C.; Recchia, F.; Reine, A. L.; Riboldi, S.; Rielage, K.; Rozov, S.; Rouf, N. W.; Rukhadze, E.; Rumyantseva, N.; Saakyan, R.; Sala, E.; Salamida, F.; Sandukovsky, V.; Savard, G.; Schönert, S.; Schütz, A.-K.; Schulz, O.; Schuster, M.; Schwingenheuer, B.; Selivanenko, O.; Sevda, B.; Shanks, B.; Shevchik, E.; Shirchenko, M.; Simkovic, F.; Singh, L.; Singh, V.; Skorokhvatov, M.; Smolek, K.; Smolnikov, A.; Sonay, A.; Spavorova, M.; Stekl, I.; Stukov, D.; Tedeschi, D.; Thompson, J.; Van Wechel, T.; Varner, R. L.; Vasenko, A. A.; Vasilyev, S.; Veresnikova, A.; Vetter, K.; von Sturm, K.; Vorren, K.; Wagner, M.; Wang, G.-J.; Waters, D.; Wei, W.-Z.; Wester, T.; White, B. R.; Wiesinger, C.; Wilkerson, J. F.; Willers, M.; Wiseman, C.; Wojcik, M.; Wong, H. T.; Wyenberg, J.; Xu, W.; Yakushev, E.; Yang, G.; Yu, C.-H.; Yue, Q.; Yumatov, V.; Zeman, J.; Zeng, Z.; Zhitnikov, I.; Zhu, B.; Zinatulina, D.; Zschocke, A.; Zsigmond, A. J.; Zuber, K.; Zuzel, G.

    2017-10-01

    The observation of neutrinoless double-beta decay (0νββ) would show that lepton number is violated, reveal that neu-trinos are Majorana particles, and provide information on neutrino mass. A discovery-capable experiment covering the inverted ordering region, with effective Majorana neutrino masses of 15 - 50 meV, will require a tonne-scale experiment with excellent energy resolution and extremely low backgrounds, at the level of ˜0.1 count /(FWHM.t.yr) in the region of the signal. The current generation 76Ge experiments GERDA and the Majorana Demonstrator, utilizing high purity Germanium detectors with an intrinsic energy resolution of 0.12%, have achieved the lowest backgrounds by over an order of magnitude in the 0νββ signal region of all 0νββ experiments. Building on this success, the LEGEND collaboration has been formed to pursue a tonne-scale 76Ge experiment. The collaboration aims to develop a phased 0νββ experimental program with discovery potential at a half-life approaching or at 1028 years, using existing resources as appropriate to expedite physics results.

  10. Generalized ℤ 2 × ℤ 2 in scaling neutrino Majorana mass matrix and baryogenesis via flavored leptogenesis

    Science.gov (United States)

    Sinha, Roopam; Samanta, Rome; Ghosal, Ambar

    2017-12-01

    We investigate the consequences of a generalized ℤ 2 × ℤ 2 symmetry on a scaling neutrino Majorana mass matrix. It enables us to determine definite analytical relations between the mixing angles θ 12 and θ 13, maximal CP violation for the Dirac type and vanishing for the Majorana type. Beside the other testable predictions on the low energy neutrino parameters such as ββ 0ν decay matrix element | M ee | and the light neutrino masses m 1,2,3, the model also has intriguing consequences from the perspective of leptogenesis. With the assumption that the required CP violation for leptogenesis is created by the decay of lightest ( N 1) of the heavy Majorana neutrinos, only τ -flavored leptogenesis scenario is found to be allowed in this model. For a normal (inverted) ordering of light neutrino masses, θ 23 is found be less (greater) than its maximal value, for the final baryon asymmetry Y B to be in the observed range. Besides, an upper and a lower bound on the mass of N 1 have also been estimated. Effect of the heavier neutrinos N 2,3 on final Y B has been worked out subsequently. The predictions of this model will be tested in the experiments such as nEXO, LEGEND, GERDA-II, T2K, NO νA, DUNE etc.

  11. Cross Section Measurements of the 76Ge (n ,n' γ) Reaction

    Science.gov (United States)

    Crider, B. P.; Peters, E. E.; Prados-Estévez, F. M.; Ross, T. J.; McEllistrem, M. T.; Yates, S. W.; Vanhoy, J. R.

    2013-10-01

    Neutrinoless double-beta decay (0 νββ) is a topic of great current interest and, as such, is the focus of several experiments and international collaborations. Two of these experiments, Majorana and GERDA, are seeking evidence of 0 νββ in the decay of 76Ge, where the signal would appear as a sharp peak in the energy spectrum at the Q-value of the reaction plus a small amount of recoil energy, or 2039 keV. Due to the high sensitivity of such a measurement, knowledge of background lines is critical. A study of 76Ga β- decay into 76Ge revealed a 2040.70(25)-keV transition from the 3951.70(14)-keV level, which, if populated, could potentially be a background line of concern. In addition to β- decay from 76Ga, a potential population mechanism could be cosmic-ray-induced inelastic neutron scattering. Measurements of the neutron-induced cross section of the 3951.70-keV level have been performed utilizing the 76 Ge (n ,n' γ) reaction at the University of Kentucky at neutron energies ranging from 4.3 to 4.9 MeV. This material is based upon work is supported by the U.S. National Science Foundation under grant no. PHY-0956310.

  12. Updated constraints on the light-neutrino exchange mechanisms of the 0νββ-decay

    Energy Technology Data Exchange (ETDEWEB)

    Štefánik, Dušan, E-mail: dus.stefanik@gmail.com [Comenius University, Mlynská dolina F1, SK-842 48 Bratislava (Slovakia); Dvornický, Rastislav [Comenius University, Mlynská dolina F1, SK-842 48 Bratislava (Slovakia); Dzhelepov Laboratory of Nuclear Problems, JINR 141980 Dubna (Russian Federation); Šimkovic, Fedor [Comenius University, Mlynská dolina F1, SK-842 48 Bratislava (Slovakia); Boboliubov Laboratory of Theoretical Physics, JINR 141980 Dubna (Russian Federation); Czech Technical University in Prague, 128-00 Prague (Czech Republic)

    2015-10-28

    The neutrinoless double-beta (0νββ) decay associated with light neutrino exchange mechanisms, which are due to both left-handed V-A and right-handed V+A leptonic and hadronic currents, is discussed by using the recent progress achieved by the GERDA, EXO and KamlandZen experiments. The upper limits for effective neutrino mass m{sub ββ} and the parameters 〈λ〉 and 〈η〉 characterizing the right handed current mechanisms are deduced from the data on the 0νββ-decay of {sup 76}Ge and {sup 136}Xe using nuclear matrix elements calculated within the nuclear shell model and quasiparticle random phase approximation and phase-space factors calculated with exact Dirac wave functions with finite nuclear size and electron screening. The careful analysis of upper constraints on effective lepton number violating parameters assumes a competition of the above mechanisms and arbitrary values of involved CP violating phases.

  13. Optimized digital filtering techniques for radiation detection with HPGe detectors

    Energy Technology Data Exchange (ETDEWEB)

    Salathe, Marco, E-mail: marco.salathe@mpi-hd.mpg.de; Kihm, Thomas, E-mail: mizzi@mpi-hd.mpg.de

    2016-02-01

    This paper describes state-of-the-art digital filtering techniques that are part of GEANA, an automatic data analysis software used for the GERDA experiment. The discussed filters include a novel, nonlinear correction method for ballistic deficits, which is combined with one of three shaping filters: a pseudo-Gaussian, a modified trapezoidal, or a modified cusp filter. The performance of the filters is demonstrated with a 762 g Broad Energy Germanium (BEGe) detector, produced by Canberra, that measures γ-ray lines from radioactive sources in an energy range between 59.5 and 2614.5 keV. At 1332.5 keV, together with the ballistic deficit correction method, all filters produce a comparable energy resolution of ~1.61 keV FWHM. This value is superior to those measured by the manufacturer and those found in publications with detectors of a similar design and mass. At 59.5 keV, the modified cusp filter without a ballistic deficit correction produced the best result, with an energy resolution of 0.46 keV. It is observed that the loss in resolution by using a constant shaping time over the entire energy range is small when using the ballistic deficit correction method.

  14. Probing flavor models with {sup 76}Ge-based experiments on neutrinoless double-β decay

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, Matteo [Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Munich (Germany); Gran Sasso Science Institute (INFN), L' Aquila (Italy); Merle, Alexander [Max-Planck-Institut fuer Physik (Werner-Heisenberg-Institut), Munich (Germany); Zuber, Kai [Technische Universitaet Dresden, Institute for Nuclear and Particle Physics, Dresden (Germany)

    2016-04-15

    The physics impact of a staged approach for double-β decay experiments based on {sup 76}Ge is studied. The scenario considered relies on realistic time schedules envisioned by the Gerda and the Majorana collaborations, which are jointly working towards the realization of a future larger scale {sup 76}Ge experiment. Intermediate stages of the experiments are conceived to perform quasi background-free measurements, and different data sets can be reliably combined to maximize the physics outcome. The sensitivity for such a global analysis is presented, with focus on how neutrino flavor models can be probed already with preliminary phases of the experiments. The synergy between theory and experiment yields strong benefits for both sides: the model predictions can be used to sensibly plan the experimental stages, and results from intermediate stages can be used to constrain whole groups of theoretical scenarios. This strategy clearly generates added value to the experimental efforts, while at the same time it allows to achieve valuable physics results as early as possible. (orig.)

  15. Neutron-capture cross-section measurements of 74Ge and 76Ge in the energy region 0.4-14.8 MeV for neutrinoless double β decay applications

    Science.gov (United States)

    Bhike, Megha; Tornow, Werner

    2013-10-01

    Fast neutron capture cross sections for the reactions 74Ge(n, γ)75Ge and 76Ge(n, γ)77Ge have been measured in the neutron energy region 0.4-14.8 MeV with the activation method. The results are important to identify backgrounds in the neutrinoless double- β decay experiments GERDA and MAJORANA, which use germanium as both source and detector. Isotopically enriched targets which consisted of 86% of 76Ge and 14% of 74Ge were irradiated with mono-energetic neutrons produced via 3H(p,n)3He, 2H(d,n)3He and 3H(d,n)4He reactions. The cross sections were determined relative to 197Au(n, γ)198Au, 115In(n,n')115mIn and 197Au(n,2n)196Au standard cross sections. The activities of the products were measured using high-resolution γ-ray spctroscopy. The present results are compared with the evaluated data from ENDF/B-VII.1 and TALYS.

  16. Neutrinoless double beta decay in type I+II seesaw models

    Energy Technology Data Exchange (ETDEWEB)

    Borah, Debasish [Department of Physics, Tezpur University,Tezpur-784028 (India); Dasgupta, Arnab [Institute of Physics, Sachivalaya Marg,Bhubaneshwar-751005 (India)

    2015-11-30

    We study neutrinoless double beta decay in left-right symmetric extension of the standard model with type I and type II seesaw origin of neutrino masses. Due to the enhanced gauge symmetry as well as extended scalar sector, there are several new physics sources of neutrinoless double beta decay in this model. Ignoring the left-right gauge boson mixing and heavy-light neutrino mixing, we first compute the contributions to neutrinoless double beta decay for type I and type II dominant seesaw separately and compare with the standard light neutrino contributions. We then repeat the exercise by considering the presence of both type I and type II seesaw, having non-negligible contributions to light neutrino masses and show the difference in results from individual seesaw cases. Assuming the new gauge bosons and scalars to be around a TeV, we constrain different parameters of the model including both heavy and light neutrino masses from the requirement of keeping the new physics contribution to neutrinoless double beta decay amplitude below the upper limit set by the GERDA experiment and also satisfying bounds from lepton flavor violation, cosmology and colliders.

  17. Lepton number violation, lepton flavor violation and non zero Θ_1_3 in LRSM

    International Nuclear Information System (INIS)

    Borgohain, Happy; Das, Mrinal Kumar

    2017-01-01

    We have done a phenomenological study of lepton number violation and lepton flavour violation in a generic left-right symmetric model (LRSM) considering broken ϻ-τ symmetry. The leading order TBM mass matrix originates from the type I (II) seesaw mechanism, whereas the perturbations to generate non-zero reactor mixing angle Θ_1_3, originates from the type II (I) seesaw mechanism. We studied the new physics contributions to neutrinoless double beta decay (NDBD) ignoring the left-right gauge boson mixing and the heavy-light neutrino mixing within the framework of left-right symmetric regime by considering the presence of both type I and type II seesaw. We assumed the mass of the gauge bosons and scalars to be around TeV and studied the effects of the new physics contributions on the effective mass and compared with the current experimental limit imposed by GERDA. We further extended our analysis by correlating the lepton flavour violation of the decay process, (ϻ→ 3e) with Θ_1_3. (author)

  18. Wilcoxon signed-rank-based technique for the pulse-shape analysis of HPGe detectors

    Energy Technology Data Exchange (ETDEWEB)

    Martín, S., E-mail: sergiomr@usal.es; Quintana, B.; Barrientos, D.

    2016-07-01

    The characterization of the electric response of segmented-contact high-purity germanium detectors requires scanning systems capable of accurately associating each pulse with the position of the interaction that generated it. This process requires an algorithm sensitive to changes above the electronic noise in the pulse shapes produced at different positions, depending on the resolution of the Ge crystal. In this work, a pulse-shape comparison technique based on the Wilcoxon signed-rank test has been developed. It provides a method to distinguish pulses coming from different interaction points in the germanium crystal. Therefore, this technique is a necessary step for building a reliable pulse-shape database that can be used later for the determination of the position of interaction for γ-ray tracking spectrometry devices such as AGATA, GRETA or GERDA. The method was validated by comparison with a χ{sup 2} test using simulated and experimental pulses corresponding to a Broad Energy germanium detector (BEGe).

  19. Nemo-3 experiment assets and limitations. Perspective for the double β physics

    International Nuclear Information System (INIS)

    Augier, C.

    2005-06-01

    After an introduction to this report in Chapter 1, I present a status of our knowledge in neutrino physics in Chapter 2. Then, I detail in Chapter 3 all the choices made for the design and realisation of the NEMO 3 detector for the research of double beta decay process. Performance of the detector is presented, concerning both the capacity of the detector to identify the backgrounds and the ability to study all the ββ process. I also explain the methods chosen by the NEMO collaboration to reduce the radon activity inside the detector and to make this background negligible today. This chapter, which is written in English, is the 'Technical report of the NEMO 3 detector' and forms an independent report for the NEMO collaborators. I finish this report in Chapter 4 with a ten years prospect for experimental projects in physics, with both the SuperNEMO project and its experiment program, and also by comparing the most interesting experiments, CUORE and GERDA, showing as an example the effect of nuclear matrix elements on the neutrino effective mass measurement. (author)

  20. Methods to improve and understand the sensitivity of high purity germanium detectors for searches of rare events

    International Nuclear Information System (INIS)

    Volynets, Oleksandr

    2012-01-01

    Observation of neutrinoless double beta-decay could answer fundamental questions on the nature of neutrinos. High purity germanium detectors are well suited to search for this rare process in germanium. Successful operation of such experiments requires a good understanding of the detectors and the sources of background. Possible background sources not considered before in the presently running GERDA high purity germanium detector experiment were studied. Pulse shape analysis using artificial neural networks was used to distinguish between signal-like and background-like events. Pulse shape simulation was used to investigate systematic effects influencing the efficiency of the method. Possibilities to localize the origin of unwanted radiation using Compton back-tracking in a granular detector system were examined. Systematic effects in high purity germanium detectors influencing their performance have been further investigated using segmented detectors. The behavior of the detector response at different operational temperatures was studied. The anisotropy effects due to the crystallographic structure of germanium were facilitated in a novel way to determine the orientation of the crystallographic axes.

  1. Inner strength in relation to age, gender and culture among old people--a cross-sectional population study in two Nordic countries.

    Science.gov (United States)

    Viglund, Kerstin; Jonsén, Elisabeth; Lundman, Berit; Strandberg, Gunilla; Nygren, Björn

    2013-01-01

    The theoretical framework for the study was the Model of Inner Strength, and the Inner Strength Scale (ISS)developed based on the Model was used. The aim was to examine inner strength in relation to age, gender and culture among old people in Sweden and Finland. This study forms part of the GErontological Regional DAtabase (GERDA)-Botnia project that investigates healthy ageing with focus on the dignity, social participation and health of old people. The participants (N = 6119) were 65-, 70-, 75- and 80-year old and living in two counties in Sweden or Finland. The ISS consists of 20 items relating to four interrelated dimensions of inner strength, according to the Model of Inner Strength. The range of possible ISS scores is 20-120, a higher score denoting higher inner strength. The result showed that the 65-year-old participants had the highest mean ISS score, with a decrease in score for every subsequent age. The lowest score was achieved by the 80-year-old participants. Women had slightly but significantly higher mean ISS scores than men. Only small differences were found between the counties. The study population came from Sweden and Finland; still, despite the different backgrounds, patterns in the distribution of inner strength were largely similar. The present study provides basic and essential information about inner strength in a population of old people.

  2. Methods to improve and understand the sensitivity of high purity germanium detectors for searches of rare events

    Energy Technology Data Exchange (ETDEWEB)

    Volynets, Oleksandr

    2012-07-27

    Observation of neutrinoless double beta-decay could answer fundamental questions on the nature of neutrinos. High purity germanium detectors are well suited to search for this rare process in germanium. Successful operation of such experiments requires a good understanding of the detectors and the sources of background. Possible background sources not considered before in the presently running GERDA high purity germanium detector experiment were studied. Pulse shape analysis using artificial neural networks was used to distinguish between signal-like and background-like events. Pulse shape simulation was used to investigate systematic effects influencing the efficiency of the method. Possibilities to localize the origin of unwanted radiation using Compton back-tracking in a granular detector system were examined. Systematic effects in high purity germanium detectors influencing their performance have been further investigated using segmented detectors. The behavior of the detector response at different operational temperatures was studied. The anisotropy effects due to the crystallographic structure of germanium were facilitated in a novel way to determine the orientation of the crystallographic axes.

  3. Long-Term Benefits of Smoking Cessation on Gastroesophageal Reflux Disease and Health-Related Quality of Life.

    Directory of Open Access Journals (Sweden)

    Yukie Kohata

    Full Text Available Smoking is associated with gastroesophageal reflux disease (GERD. Varenicline, a nicotinic receptor partial agonist, is used to aid smoking cessation. The purpose of this study was to prospectively examine the long-term benefits of smoking cessation on GERD and health-related quality of life (HR-QOL.Patients treated with varenicline were asked to fill out a self-report questionnaire about their smoking habits, gastrointestinal symptoms, and HR-QOL before and 1 year after smoking cessation. The prevalence of GERD, frequency of symptoms, and HR-QOL scores were compared. We also investigated associations between clinical factors and newly-developed GERD.A total of 141 patients achieved smoking cessation (success group and 50 did not (failure group at 1 year after the treatment. The GERD improvement in the success group (43.9% was significantly higher than that in the failure group (18.2%. The frequency of reflux symptoms significantly decreased only in the success group. There were no significant associations between newly developed GERD and clinical factors including increased body mass index and successful smoking cessation. HR-QOL significantly improved only in the success group.Smoking cessation improved both GERD and HR-QOL. Smoking cessation should be recommended for GERD patients.

  4. Surface Alpha Interactions in P-Type Point-Contact HPGe Detectors: Maximizing Sensitivity of 76Ge Neutrinoless Double-Beta Decay Searches

    Science.gov (United States)

    Gruszko, Julieta

    Though the existence of neutrino oscillations proves that neutrinos must have non-zero mass, Beyond-the-Standard-Model physics is needed to explain the origins of that mass. One intriguing possibility is that neutrinos are Majorana particles, i.e., they are their own anti-particles. Such a mechanism could naturally explain the observed smallness of the neutrino masses, and would have consequences that go far beyond neutrino physics, with implications for Grand Unification and leptogenesis. If neutrinos are Majorana particles, they could undergo neutrinoless double-beta decay (0nBB), a hypothesized rare decay in which two antineutrinos annihilate one another. This process, if it exists, would be exceedingly rare, with a half-life over 1E25 years. Therefore, searching for it requires experiments with extremely low background rates. One promising technique in the search for 0nBB is the use of P-type point-contact (P-PC) high-purity Germanium (HPGe) detectors enriched in 76Ge, operated in large low-background arrays. This approach is used, with some key differences, by the MAJORANA and GERDA Collaborations. A problematic background in such large granular detector arrays is posed by alpha particles incident on the surfaces of the detectors, often caused by 222Rn contamination of parts or of the detectors themselves. In the MAJORANA DEMONSTRATOR, events have been observed that are consistent with energy-degraded alphas originating near the passivated surface of the detectors, leading to a potential background contribution in the region-of-interest for neutrinoless double-beta decay. However, it is also observed that when energy deposition occurs very close to the passivated surface, high charge trapping occurs along with subsequent slow charge re-release. This leads to both a reduced prompt signal and a measurable change in slope of the tail of a recorded pulse. Here we discuss the characteristics of these events and the development of a filter that can identify the

  5. Fraunhofer Institut fuer Molekularbiologie und Angewandte Oekologie (IME). Annual report 2014/2015

    International Nuclear Information System (INIS)

    2015-01-01

    The Annual report 2014/2015 of the Fraunhofer Institute for molecular biology and applied ecology includes the following contributions: (A) Molecular Biology: TheraSECOURE - Novel immunotherapeutics for targeted cancer therapy; ''MultiNaBel ''- Automated diagnosis of leukemia; Breeding potato for optimized specialty starches; NGS-based zygosity detection in transgenic maize; High-throughput screen ing system for cellulases based on microfluidic devices; Filter aids reduce production costs for plant-derived biopharmaceuticals; Transient expression of recombinant proteins in packed plant cells; ERA-NET Biodiversa EXOTIC project on the invasive harlequin ladybird; AIM-Biotech supported by the Fraunhofer-Max Planck Cooperation program; Metabolic control analysis of the MEP pathway; Metabolic engineering of Clostridium spp. by genomic integration; The Fraunhofer Future Foundation malaria project; Autoantibodies to type 11 collagen as biomarkers of rheumatoid arthritis; Development of a new drug for the treatment of sepsis; Databionic drug research; Structure-based drug design; Neu 2 : competence consortium for multiple sclerosis drug development; Natural compounds from marine fungi for the treatment of cancer; FCR Center for Systems Biotechnology (CSB): Two selected projects; Development and implementation of a plant-derived vaccine against yellow fever. (B) Applied Ecology: Comparison and improvement of laboratory water/sediment test systems; Inter-laboratory comparison of Hyalella Azteca exposure tests lasting 10-42 days; Substance- and matrix-related environmental monitoring of biocides; GERDA-geobased runoff, erosion and drainage risk assessment; The minimum detectable difference and reliability of mesocosm studies; Mechanistic effect models for the ecological risk assessment of pesticides; Molecular biology test for the online analysis of spontaneously-fermented wines; Coupling two test systems to determine the effect of wastewater

  6. The GALATEA test facility and a first study of α-induced surface events in a germanium detector

    Energy Technology Data Exchange (ETDEWEB)

    Irlbeck, Sabine

    2014-01-30

    Germanium detectors are a choice technology in fundamental research. They are suitable for the search for rare events due to their high sensitivity and excellent energy resolution. As an example, the GERDA (GERmanium Detector Array) experiment searching for neutrinoless double beta decay is described. The observation of this decay would resolve the fundamental question whether the neutrino is its own antiparticle. Especially adapted detector technologies and low background rates needed to detect very rare events such as neutrinoless double beta decays are discussed. The identification of backgrounds originating from the interaction of radiation, especially α-particles, is a focus of this thesis. Low background experiments face problems from α-particles due to unavoidable surface contaminations of the germanium detectors. The segmentation of detectors is used to obtain information about the special characteristics of selected events. The high precision test stand GALATEA was especially designed for surface scans of germanium detectors. As part of this work, GALATEA was completed and commissioned. The final commissioning required major upgrades of the original design which are described in detail. Collimator studies with two commercial germanium detectors are presented. Different collimation levels for a β-source were investigated and crystal axis effects were examined. The first scan with an α-source of the passivated end-plate of a special 19-fold segmented prototype detector mounted in GALATEA is described. The α-induced surface events were studied and characterized. Crosstalk and mirror pulses seen in the segments of the germanium detector were analyzed. The detector studies presented in this thesis will help to further improve the design of germanium detectors for low background experiments.

  7. Eradication of tephritid fruit fly pest populations: outcomes and prospects.

    Science.gov (United States)

    Suckling, David Maxwell; Kean, John M; Stringer, Lloyd D; Cáceres-Barrios, Carlos; Hendrichs, Jorge; Reyes-Flores, Jesus; Dominiak, Bernard C

    2016-03-01

    The number of insect eradication programmes is rising in response to globalisation. A database of arthropod and plant pathogen eradications covers 1050 incursion responses, with 928 eradication programmes on 299 pest and disease taxa in 104 countries (global eradication database b3.net.nz/gerda). A subset of the database was assembled with 211 eradication or response programmes against 17 species of fruit flies (Tephritidae) in 31 countries, in order to investigate factors affecting the outcome. The failure rate for fruit fly eradication programmes was about 7%, with 0% for Ceratitis capitata (n = 85 programmes) and 0% for two Anastrepha species (n = 12 programmes), but 12% for 13 Bactrocera species (n = 108 programmes). A number of intended eradication programmes against long-established populations were not initiated because of cost and other considerations, or evolved during the planning phase into suppression programmes. Cost was dependent on area, ranged from $US 0.1 million to $US 240 million and averaged about $US 12 million (normalised to $US in 2012). In addition to the routine use of surveillance networks, quarantine and fruit destruction, the key tactics used in eradication programmes were male annihilation, protein bait sprays (which can attract both sexes), fruit destruction and the sterile insect technique. Eradication success generally required the combination of several tactics applied on an area-wide basis. Because the likelihood of eradication declines with an increase in the area infested, it pays to invest in effective surveillance networks that allow early detection and delimitation while invading populations are small, thereby greatly favouring eradication success. © 2014 Society of Chemical Industry.

  8. Fraunhofer Institut fuer Molekularbiologie und Angewandte Oekologie (IME). Annual report 2014/2015; Fraunhofer Institut fuer Molekularbiologie und Angewandte Oekologie (IME). Jahresbericht 2014/2015

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-01

    The Annual report 2014/2015 of the Fraunhofer Institute for molecular biology and applied ecology includes the following contributions: (A) Molecular Biology: TheraSECOURE - Novel immunotherapeutics for targeted cancer therapy; ''MultiNaBel ''- Automated diagnosis of leukemia; Breeding potato for optimized specialty starches; NGS-based zygosity detection in transgenic maize; High-throughput screen ing system for cellulases based on microfluidic devices; Filter aids reduce production costs for plant-derived biopharmaceuticals; Transient expression of recombinant proteins in packed plant cells; ERA-NET Biodiversa EXOTIC project on the invasive harlequin ladybird; AIM-Biotech supported by the Fraunhofer-Max Planck Cooperation program; Metabolic control analysis of the MEP pathway; Metabolic engineering of Clostridium spp. by genomic integration; The Fraunhofer Future Foundation malaria project; Autoantibodies to type 11 collagen as biomarkers of rheumatoid arthritis; Development of a new drug for the treatment of sepsis; Databionic drug research; Structure-based drug design; Neu{sup 2}: competence consortium for multiple sclerosis drug development; Natural compounds from marine fungi for the treatment of cancer; FCR Center for Systems Biotechnology (CSB): Two selected projects; Development and implementation of a plant-derived vaccine against yellow fever. (B) Applied Ecology: Comparison and improvement of laboratory water/sediment test systems; Inter-laboratory comparison of Hyalella Azteca exposure tests lasting 10-42 days; Substance- and matrix-related environmental monitoring of biocides; GERDA-geobased runoff, erosion and drainage risk assessment; The minimum detectable difference and reliability of mesocosm studies; Mechanistic effect models for the ecological risk assessment of pesticides; Molecular biology test for the online analysis of spontaneously-fermented wines; Coupling two test systems to determine the effect of wastewater

  9. Correlation of endoscopic severity of gastroesophageal reflux disease (gerd) with body mass index (bmi)

    International Nuclear Information System (INIS)

    Zafar, S.; Haq, I.U.; Butt, A.R.; Shafiq, F.; Huda, G.; Mirza, G.; Rehman, A.U.

    2007-01-01

    To assess the correlation of endoscopic severity of Gastroesophageal Reflux Disease (GERD) with Body Mass Index (BMI). This study was conducted on 203 patients, who presented with upper GI symptoms. Patients who fulfilled the symptom criteria were referred for endoscopy. Classification of GERD was done according to LA Grading classification system. Body mass index (BMI) was calculated as Body Weight (BW) in kilograms (kg) divided by the square of the body height (BH) in meter (m2). Patient data was analyzed using SPSS 12 software. Statistical evaluation was done using non-parametric Wilcoxon's-sign Rank test. P-value <0.05 was considered to be statistically significant. Distribution of GERD was as follows: GERD-A subjects 65 (32%), GERD B subjects 72 (35.4%), GERD-C subjects 23 (11.3%), GERD-D subjects 10 (4.92%), while Non-Erosive Reflux Disease (NERD) was present in 33 subjects (16.2%). Mean BMI was 27+5.02SD (range of 18.2-38.3). BMI of patients having NERD was in normal range but patients who were having advanced disease i.e. Grade C-D were in obese range of BMI, while those who were having LA grade A-B were in overweight BMI range. When regrouped as mild GERD (grade A-B) and NERD versus severe GERD (grade C-D), there was a strong significant correlation between severity of GERD and BMI, as detected by Wilcoxon's signed Rank test (p=0.001). Higher BMI seems to be associated with higher degree of endoscopic GERD severity. (author)

  10. The GALATEA test facility and a first study of α-induced surface events in a germanium detector

    International Nuclear Information System (INIS)

    Irlbeck, Sabine

    2014-01-01

    Germanium detectors are a choice technology in fundamental research. They are suitable for the search for rare events due to their high sensitivity and excellent energy resolution. As an example, the GERDA (GERmanium Detector Array) experiment searching for neutrinoless double beta decay is described. The observation of this decay would resolve the fundamental question whether the neutrino is its own antiparticle. Especially adapted detector technologies and low background rates needed to detect very rare events such as neutrinoless double beta decays are discussed. The identification of backgrounds originating from the interaction of radiation, especially α-particles, is a focus of this thesis. Low background experiments face problems from α-particles due to unavoidable surface contaminations of the germanium detectors. The segmentation of detectors is used to obtain information about the special characteristics of selected events. The high precision test stand GALATEA was especially designed for surface scans of germanium detectors. As part of this work, GALATEA was completed and commissioned. The final commissioning required major upgrades of the original design which are described in detail. Collimator studies with two commercial germanium detectors are presented. Different collimation levels for a β-source were investigated and crystal axis effects were examined. The first scan with an α-source of the passivated end-plate of a special 19-fold segmented prototype detector mounted in GALATEA is described. The α-induced surface events were studied and characterized. Crosstalk and mirror pulses seen in the segments of the germanium detector were analyzed. The detector studies presented in this thesis will help to further improve the design of germanium detectors for low background experiments.

  11. Impacts of endoscopic gastroesophageal flap valve grading on pediatric gastroesophageal reflux disease.

    Directory of Open Access Journals (Sweden)

    Kai-Chi Chang

    Full Text Available Gastroesophageal flap valve (GEFV endoscopic grading is reported to be associated with gastroesophageal reflux disease (GERD in adults; however its role in pediatric groups remains unknown. This study aimed to investigate the significance of GEFV grading and the associations to multichannel intraluminal impedance and pH monitoring (MII-pH in children with GERD.A total of 48 children with GERD symptoms who received esophagogastroduodenoscopy and MII-pH monitoring were enrolled. The degree of GEFV was graded from I to IV according to the Hill classification, and classified into two groups: normal GEFV (Hill grades I and II, and abnormal GEFV (Hill grades III and VI. Endoscopic findings and MII-pH monitoring were analyzed among the groups.Thirty-six patients had normal GEFV while 12 had abnormal GEFV. The presence of erosive esophagitis was significantly more common in the patients with abnormal GEFV (p = 0.037, OR 9.84, 95% CI 1.15-84.42. Pathological acidic gastroesophageal reflux (GER determined by MII-pH was more prevalent in the patients with loosened GEFV geometry (p = 0.01, OR 7.0, 95% CI 1.67-27.38. There were significant positive correlations between GEFV Hill grading I to IV and the severity of erosive esophagitis (r = 0.49, p<0.001, percentage of supine acid reflux (r = 0.37, p = 0.009, percentage of total acid reflux (r = 0.3284, p = 0.023, and DeMeester score (r = 0.36, p = 0.01 detected by pH monitoring. In the impedance study, GEFV Hill grading also positively correlated to median number of acid reflux events (r = 0.3015, p = 0.037.GEFV dysfunction highly associated with acid GER and severe erosive esophagitis. An abnormal GEFV is a sign of acid GER in children.

  12. Eradication of tephritid fruit fly pest populations: outcomes and prospects

    International Nuclear Information System (INIS)

    Suckling, David Maxwell; Kean, John M.; Stringer, Lloyd D.; Cáceres-Barrios, Carlos; Hendrichs, Jorge; Reyes-Flores, Jesus; Dominiak, Bernard C.

    2015-01-01

    BACKGROUND: The number of insect eradication programmes is rising in response to globalisation. A database of arthropod and plant pathogen eradications covers 1050 incursion responses, with 928 eradication programmes on 299 pest and disease taxa in 104 countries (global eradication database b3.net.nz/gerda). METHODS: A subset of the database was assembled with 211 eradication or response programmes against 17 species of fruit flies (Tephritidae) in 31 countries, in order to investigate factors affecting the outcome. RESULTS: The failure rate for fruit fly eradication programmes was about 7%, with 0% for Ceratitis capitata (n=85 programmes) and 0% for two Anastrepha species (n=12 programmes), but 12% for 13 Bactrocera species (n=108 programmes). A number of intended eradication programmesagainst long-established populations were not initiated because of cost and other considerations, or evolved during the planning phase into suppression programmes. Cost was dependent on area, ranged from $US 0.1 million to $US 240 million and averaged about $US 12 million (normalised to $US in 2012). In addition to the routine use of surveillance networks, quarantine and fruit destruction, the key tactics used in eradication programmes were male annihilation, protein bait sprays (which can attract both sexes), fruit destruction and the sterile insect technique. CONCLUSIONS: Eradication success generally required the combination of several tactics applied on an area-wide basis. Because the likelihood of eradication declines with an increase in the area infested, it pays to invest in effective surveillance networks that allow early detection and delimitation while invading populations are small, thereby greatly favouring eradication success. (author)

  13. Factors associated with medication information in diabetes care: differences in perceptions between patients and health care professionals

    Directory of Open Access Journals (Sweden)

    Längst G

    2015-10-01

    Full Text Available Gerda Längst,1 Hanna Marita Seidling,2,3 Marion Stützle,2,3 Dominik Ose,1 Ines Baudendistel,1 Joachim Szecsenyi,1 Michel Wensing,1,4 Cornelia Mahler1 1Department of General Practice and Health Services Research, University Hospital of Heidelberg, Heidelberg, Germany; 2Cooperation Unit Clinical Pharmacy, University of Heidelberg, Heidelberg, Germany; 3Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany; 4Radboud University Nijmegen Medical Centre, Scientific Institute for Quality of Healthcare, Nijmegen, the Netherlands Purpose: This qualitative study in patients with type 2 diabetes and health care professionals (HCPs aimed to investigate which factors they perceive to enhance or impede medication information provision in primary care. Similarities and differences in perspectives were explored.Methods: Eight semistructured focus groups were conducted, four with type 2 diabetes patients (n=25 and four with both general practitioners (n=13 and health care assistants (n=10. Sessions were audio and video recorded, transcribed verbatim, and subjected to computer-aided qualitative content analysis.Results: Diabetes patients and HCPs broadly highlighted similar factors as enablers for satisfactory medication information delivery. Perceptions substantially differed regarding impeding factors. Both patients and HCPs perceived it to be essential to deliver tailored information, to have a trustful and continuous patient–provider relationship, to regularly reconcile medications, and to provide tools for medication management. However, substantial differences in perceptions related to impeding factors included the causes of inadequate information, the detail required for risk-related information, and barriers to medication reconciliation. Medication self-management was a prevalent topic among patients, whereas HCPs’ focus was on fulfilling therapy and medication management responsibilities

  14. Association between socioeconomic and health factors and edentulism in people aged 65 and older - a population-based survey.

    Science.gov (United States)

    Olofsson, Hanna; Ulander, Eva Lena; Gustafson, Yngve; Hörnsten, Carl

    2017-08-01

    To study edentulism and use of dental services in a population-based sample of people aged 65 years and older from northern Sweden and western Finland. In 2010, people aged 65, 70, 75 and 80 years who were living in one of 32 municipalities in northern Sweden and western Finland were invited to answer a questionnaire as part of the Gerontological Regional Database (GERDA) study ( n = 6099). The questionnaire contained items related to socioeconomic status, general health and edentulism. The prevalence of edentulism was 34.9% in Finland, compared with 20.6% in Sweden ( p < 0.001), 31.9% in rural areas, compared with 20.9% in urban areas ( p < 0.001), and 25% overall. The prevalence of edentulism rose from 17.8% in 65-year-olds, 23.8% in 70-year-olds, 33.5% in 75-year-olds and 37.3% in 80-year-olds ( p < 0.001), and was 23.8% in women, compared with 27% in men ( p < 0.001). In multivariate models, edentulism was associated with lower educational level (odds ratio (OR) 2.87, 95% confidence interval (CI) 2.31-3.58), low income level (OR 1.7, CI 1.09-1.47), residence in a rural area (OR 1.43, CI 1.23-1.66), male sex (OR 1.30, CI 1.12-1.52), dependence in instrumental activities of daily living (OR 1.48, CI 1.25-1.74), social isolation (OR 1.52, CI 1.17-1.98) and poor self-experienced health (OR 1.38, CI 1.17-1.62). One-quarter of the total sample was edentulous, with a higher prevalence of edentulism in Finland than in Sweden and in rural than in urban areas. Edentulism was associated with socioeconomic, psychological and health-related factors. These findings could be used to inform preventive measures and identify people aged 65 years and older who are in need of oral care.

  15. Developing a Shared Patient-Centered, Web-Based Medication Platform for Type 2 Diabetes Patients and Their Health Care Providers: Qualitative Study on User Requirements.

    Science.gov (United States)

    Bernhard, Gerda; Mahler, Cornelia; Seidling, Hanna Marita; Stützle, Marion; Ose, Dominik; Baudendistel, Ines; Wensing, Michel; Szecsenyi, Joachim

    2018-03-27

    the platform to users' workflow. By employing a UCD, this study provides insight into the desired functionalities and usability of patients and HCPs regarding a shared patient-centered, Web-based medication platform, thus increasing the likelihood to achieve a functional and useful system. Substantial and ongoing engagement by all intended user groups is necessary to reconcile differences in requirements of patients and HCPs, especially regarding medication safety alerts and access control. Moreover, effective training of patients and HCPs on medication self-management (support) and optimal use of the tool will be a prerequisite to unfold the platform's full potential. ©Gerda Bernhard, Cornelia Mahler, Hanna Marita Seidling, Marion Stützle, Dominik Ose, Ines Baudendistel, Michel Wensing, Joachim Szecsenyi. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 27.03.2018.

  16. Textual Differences in Alexander von Humboldt’s Essai politique sur l'île de Cuba. An editorial commentary on the first volume of the „Humboldt in English“ (HiE book series

    Directory of Open Access Journals (Sweden)

    Tobias Kraft

    2012-10-01

    Full Text Available Zusammenfassung Die vorliegende Studie basiert auf einem Editionsbericht, der 2009 im Rahmen der Konferenz „Alexander von Humboldt and the Hemisphere“ an der Vanderbilt University (Nashville, TN vorgestellt wurde. Die für diese Publikation weiter entwickelte Untersuchung verdeutlicht die Textgenese von Humboldts Essai politique sur l’île de Cuba auf der Basis eines Textvergleichs zwischen allen drei „Originalquellen“ des Texts. Der hier in seinen Ergebnissen vorgestellte Textvergleich ist Teil des Editionsprojektes „Humboldt in English“ (HiE, bei dem sich ein US-deutsches Editorenteam seit 2007 zum Ziel gesetzt haben, kritische Neuübersetzungen von drei wichtigen Schriften aus Humboldts „Opus Americanum“ anzufertigen (s.a. Fußnote. Der Textvergleich des Essai politique sur l’île de Cuba bildete die Textgrundlage für den ersten Band der HiE-Reihe, den 2011 bei Chicago University Press erschienenen The Political Essay on the Island of Cuba (hg. von Vera M. Kutzinski und Ottmar Ette. Summary This study is based on an editorial report, which was presented at the 2009 working conference „Alexander von Humboldt and the Hemisphere“ at Vanderbilt University (Nashville, TN. It demonstrates the textual genesis of Humboldt’s writings on Cuba through examples, which were obtained from a detailed text comparison of the three existing „original“ versions of Humboldt’s Essai politique sur l’île de Cuba. The collation was part of a larger strategy to regain philological ground for the „Humboldt in English“ (HiE project. Since 2007 and funded with grants from the National Endowment for the Humanities, the Alexander von Humboldt-Foundation, and the Gerda Henkel Foundation, the US-German research team behind HiE has been working on new and unabridged translations and critical editions of three of Humboldt’s most significant texts from his American oeuvre.[1] The following observations will outline the most important

  17. PREFACE: 2nd Workshop on Germanium Detectors and Technologies

    Science.gov (United States)

    Abt, I.; Majorovits, B.; Keller, C.; Mei, D.; Wang, G.; Wei, W.

    2015-05-01

    The 2nd workshop on Germanium (Ge) detectors and technology was held at the University of South Dakota on September 14-17th 2014, with more than 113 participants from 8 countries, 22 institutions, 15 national laboratories, and 8 companies. The participants represented the following big projects: (1) GERDA and Majorana for the search of neutrinoless double-beta decay (0νββ) (2) SuperCDMS, EDELWEISS, CDEX, and CoGeNT for search of dark matter; (3) TEXONO for sub-keV neutrino physics; (4) AGATA and GRETINA for gamma tracking; (5) AARM and others for low background radiation counting; (5) as well as PNNL and LBNL for applications of Ge detectors in homeland security. All participants have expressed a strong desire on having better understanding of Ge detector performance and advancing Ge technology for large-scale applications. The purpose of this workshop was to leverage the unique aspects of the underground laboratories in the world and the germanium (Ge) crystal growing infrastructure at the University of South Dakota (USD) by brining researchers from several institutions taking part in the Experimental Program to Stimulate Competitive Research (EPSCoR) together with key leaders from international laboratories and prestigious universities, working on the forefront of the intensity to advance underground physics focusing on the searches for dark matter, neutrinoless double-beta decay (0νββ), and neutrino properties. The goal of the workshop was to develop opportunities for EPSCoR institutions to play key roles in the planned world-class research experiments. The workshop was to integrate individual talents and existing research capabilities, from multiple disciplines and multiple institutions, to develop research collaborations, which includes EPSCor institutions from South Dakota, North Dakota, Alabama, Iowa, and South Carolina to support multi-ton scale experiments for future. The topic areas covered in the workshop were: 1) science related to Ge

  18. PREFACE: Fourth Meeting on Constrained Dynamics and Quantum Gravity

    Science.gov (United States)

    Cadoni, Mariano; Cavaglia, Marco; Nelson, Jeanette E.

    2006-04-01

    ) Georgi Dvali (NYU, USA) Sergio Ferrara (CERN) Gian Francesco Giudice (CERN) Roman Jackiw (MIT, USA) Edward W. Kolb (Fermilab, USA) Luca Lusanna (INFN Firenze, Italy) Roy Maartens (Univ. Portsmouth, UK) Hermann Nicolai (AEI, Potsdam, Germany) Tullio Regge (Politecnico di Torino, Italy) Augusto Sagnotti (Univ. Roma Tor Vergata, Italy) Kellogg S. Stelle (Imperial College London, UK) Ruth Williams (DAMTP, Cambridge, UK) SPONSORS Istituto Nazionale di Fisica Nucleare Università di Cagliari Università di Torino University of Mississippi Università di Pisa Regione autonoma della Sardegna Tiscali LIST OF PARTICIPANTS Eun-Joo Ahn (University of Chicago, USA) David Alba (Università di Firenze, Italy) Stanislav Alexeyev (Lomonosov Moscow State U., Russia) Damiano Anselmi (Università di Pisa, Italy) Ignatios Antoniadis (CERN, Geneva, Switzerland) Maria Da Conceicao Bento (Instituto Superior Técnico, Lisboa, Portugal) Orfeu Bertolami (Instituto Superior Técnico, Lisboa, Portugal) Massimo Bianchi (Università di Roma Tor Vergata, Italy) Mariam Bouhmadi-Lopez (University of Portsmouth, UK) Raphael Bousso (University of California at Berkeley, USA) Mariano Cadoni (Università di Cagliari, Italy) Steven Carlip (University of California at Davis, USA) Roberto Casadio (Università di Bologna, Italy) Marco Cavaglià (University of Mississippi, USA) Demian Cho (Raman Research Institute, Bangalore, India) Theodosios Christodoulakis (University of Athens, Greece) Chryssomalis Chryssomalakos (Inst. de Ciencias Nucleares - UNAM, Mexico) Diego Julio Cirilo-Lombardo (JINR, Dubna, Russia) Denis Comelli INFN, Sezione di Ferrara, Italy ) Ruben Cordero-Elizalde (Instituto Politecnico Nacional, Mexico) Lorenzo Cornalba (Università di Roma Tor Vergata, Italy) Branislav Cvetkovic (Institute of Physics, Belgrade, Serbia ) Maro Cvitan (University of Zagreb, Croatia) Alessandro D'Adda (Università di Torino, Italy) Claudio Dappiaggi (Università di Pavia, Italy) Roberto De Leo (Università di

  19. Planetary and Space Simulation Facilities (PSI) at DLR

    Science.gov (United States)

    Panitz, Corinna; Rabbow, E.; Rettberg, P.; Kloss, M.; Reitz, G.; Horneck, G.

    2010-05-01

    Cyanobacterium, Chroococcidiopsis sp. 029, Astrobiology, 5/2 127-140Aman, A. (1996) LPS XXVII, 1344-1 [4] de la Torre Noetzel, R.; Sancho, L.G.; Pintado,A.; Rettberg, Petra; Rabbow, Elke; Panitz,Corinna; Deutschmann, U.; Reina, M.; Horneck, Gerda (2007): BIOPAN experiment LICHENS on the Foton M2 mission Pre-flight verification tests of the Rhizocarpon geographicum-granite ecosystem. COSPAR [Hrsg.]: Advances in Space Research, 40, Elsevier, S. 1665 - 1671, DOI 10.1016/j.asr.2007.02.022

  20. Survival of the lichen model system Circinaria gyrosa before flight to the ISS (EXPOSE R2 mission)

    Science.gov (United States)

    De la Torre Noetzel, Rosa

    potential to space and Mars conditions, contributing to our understanding of extremotolerance and the Lithopanspermia hypothesis [7]. References [1] Rabbow, E., und Rettberg, Petra und Barczyk, Simon und Bohmeier, Maria und Parpart, André und Panitz, Corinna und Horneck, Gerda und von Heise-Rotenburg, Ralf und Hoppenbrouwers, Tom und Willnecker, Rainer und Baglioni, Pietro und Demets, René und Dettmann, Jan und Reitz, Guenther (2012) EXPOSE-E: An ESA Astrobiology Mission 1.5 Years in Space. Astrobiology, 12 (5), Seiten 374-386. Mary Ann Liebert, Inc.. DOI: 10.1089/ast.2011.0760. [2] De la Torre, R. L.G. Sancho, G. Horneck, A.de los Ríos, J. Wierzchos, K. Olsson-Francis, C.S. Cockell, Rettberg P., T. Berger, J.P. de Vera, S. Ott, J. Martinez Frías, P.Gonzalez Melendi M.M. Lucas, M. Reina, A. Pintado, R.Demets. Survival of lichens and bacteria exposed to outer space conditions. Results of the Lithopanspermia experiments. Icarus, doi:10.1016/j.icarus.2010.03.010 (2010). [3] Sanchez, F.J., E. Mateo-Martí, J. Raggio, J. Meessen, J. Martinez-Frias, L. Gª Sancho, S. Ott and R. de la Torre. The resistance of the lichen Circinaria gyrosa (nom. provis.) towards simulated Mars conditions - a model test for the survival capacity of an eukaryotic extremophyle. Planetary and Space Science 72, 102-110 (2012). [4] de Vera JP and the BIOMEX-Team (2012) Supporting Mars exploration: BIOMEX in Low Earth Orbit and further astrobiological studies on the Moon using Raman and PanCam technology. Planetary and Space Science, 74 (1), Seiten 103-110. Elsevier. DOI:10.1016/j.pss.2012.06.010. [5] Meeßen J, Sánchez FJ, Brandt A, Balzer EM, de la Torre R, Sancho LG, de Vera JP, Ott S (2013) Extremotolerance and resistance of lichens: Comparative studies on five species used in astrobiological research I. Morphological and anatomical characteristics. Origins of Life and Evolution of Biospheres 43 (3): 283-303 [6] Meeßen J, Sánchez FJ, Sadowsky A, de Vera JP, de la Torre R, Ott S (2013

  1. Dergilerden Özetler

    Directory of Open Access Journals (Sweden)

    Mete Korkut Gülmen

    1997-10-01

    Full Text Available ANİ BEBEK ÖLÜMÜNE PATOLOJİ AÇISINDAN YAKLAŞIM - ANLAŞMA VEYA KARARSIZLIK? The Pathological Approach to Sudden Infant Death - Consensus or Confusion? RW Byard, LE Becker, PJ Berry, PE Campbell, K Fitzge- rald, JMN Hiltorı, HF Krous, TO Rogrıum AmJ Forensic Med Pathol 1996;17(2:103-5. Ani bebek ölümü sendromu (ABÖS ile ilgili temel sorun, otopsiyi yapan hekim tarafından diğer ani bebek ölüm nedenlerini araştırma ve dışlama işlemlerine gösterilen özenin derecesine bağlı bir eleyici tanı olmasıdır. Ama dikkatli bif otopsi yapıldıktan sonra bile, sadece patolojik zemine dayanarak kasıtlı ya da kaza sonucu oluşan asfiksiyi ani bebek sendromundan ayırmak mümkün olmayabilir. Ayrıca, ülkelerin kendi içinde veya ülkeler arasında protokoller farklıdır. Yatağında ölü bulunan ve ABÖS olarak tanımlanan her bebeğe otopsi yapılmamaktadır. Bu çerçevede ABÖS tanısı konamadığı ve ölüm nedeninin saptanmadan kaldığı vurgulanmalıdır. Olası etyolojik mekanizmaların (ki bunlar kompleks, birden fazladır ve birbirleri ile ilgili değildir anlaşılma eksikliği nedeni ile ilgili diğer güçlükler de ortaya çıkmaktadır. Makroskopik inceleme ve cesedin disseksiyonundan sonra histolojik muayene, araştırma ve saklama için dokuların alıkonulması da dava ile ilgili bir sorun olabilir. İkinci ABÖS global strateji toplantısında (Stavan- gerda yapılmıştır aşağıdaki asgari standardlar savunulmuştur. Toplum ve ailenin yararına, tüm beklenmeyen bebek ölümleri tam olarak incelenmelidir. Ölüm nedeni ve şeklinin saptanması için aşağıdakilerin yapılması gereklidir. 1.\tOlay yeri ve çevresinin değerlendirilmesi eğitimli ve işin uzmanı kişiler tarafından yürütülmelidir. 2.\tBebeğin veya çocuğun ve ailenin öyküsünü de içeren anamnez gözden geçirilmelidir. 3.\tAyrıntılı otopsi ve uygun yardımcı çalışmalar yapılmalıdır. 4.\tOlgu baştan başa gözden ge