WorldWideScience

Sample records for geothermal technology development

  1. Development of technologies for utilizing geothermal energy

    NONE

    1995-09-01

    In verifying the effectiveness of the deep geothermal resource exploration technology, development is being carried out on a fracture-type reservoir exploration method. The seismic exploration method investigates detailed structures of underground fracture systems by using seismic waves generated on the ground surface. Verification experiments for fiscal 1994 were carried out by selecting the Kakkonda area in which small fracture networks form reservoir beds. Geothermal resources in deep sections (deeper than 2000 m with temperatures higher than 350{degree}C) are promising in terms of amount of the resources, but anticipated with difficulty in exploration and impediments in drilling. To avoid these risks, studies are being progressed on the availability of resources in deep sections, their utilization possibility, and technologies of effective exploration and drilling. This paper summarizes the results of deep resource investigations during fiscal 1994. It also describes such technological development as hot water utilizing power generation. Development is performed on a binary cycle power generation plant which pumps and utilizes hot water of 150 to 200{degree}C by using a downhole pump. The paper also reports development on element technologies for hot rock power generation systems. It also dwells on development of safe and effective drilling and production technologies for deep geothermal resources.

  2. Technology assessment of geothermal energy resource development

    1975-04-15

    Geothermal state-of-the-art is described including geothermal resources, technology, and institutional, legal, and environmental considerations. The way geothermal energy may evolve in the United States is described; a series of plausible scenarios and the factors and policies which control the rate of growth of the resource are presented. The potential primary and higher order impacts of geothermal energy are explored, including effects on the economy and society, cities and dwellings, environmental, and on institutions affected by it. Numerical and methodological detail is included in appendices. (MHR)

  3. A Technology Roadmap for Strategic Development of Enhanced Geothermal Systems

    Ziagos, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Phillips, Benjamin R. [SRA International, Inc. and Geothermal Technologies Office, Washington, DC (United States); Boyd, Lauren [Geothermal Technologies Office, Washington, DC (United States); Jelacic, Allan [SRA International, Inc., Washington, DC (United States); Stillman, Greg [Geothermal Technologies Office, Washington, DC (United States); Hass, Eric [U.S. DOE, Golden, CO (United States)

    2013-02-13

    Realization of EGS development would make geothermal a significant contender in the renewable energy portfolio, on the order of 100+ GWe in the United States alone. While up to 90% of the geothermal power resource in the United States is thought to reside in Enhanced Geothermal Systems (EGS), hurdles to commercial development still remain. The Geothermal Technologies Office, U.S. Department of Energy (DOE), began in 2011 to outline opportunities for advancing EGS technologies on five- to 20-year timescales, with community input on the underlying technology needs that will guide research and ultimately determine commercial success for EGS. This report traces DOE's research investments, past and present, and ties them to these technology needs, forming the basis for an EGS Technology Roadmap to help guide future DOE research. This roadmap is currently open for public comment. Send your comments to geothermal@ee.doe.gov.

  4. Geothermal Technologies Program: Alaska

    2005-02-01

    This fact sheets provides a summary of geothermal potential, issues, and current development in Alaska. This fact sheet was developed as part of DOE's GeoPowering the West initiative, part of the Geothermal Technologies Program.

  5. NEDO Forum 2000. Geothermal technology development session (new development of geothermal energy); Chinetsu gijutsu kaihatsu session. Chinetsu energy no shintenkai

    NONE

    2000-09-01

    The following themes were presented at this session: (1) geothermal development in the future, (2) the current status of geothermal development and utilization, (3) surveys on the promotion of geothermal development, and (4) verification and investigation on geothermal exploration technologies, development of hot water utilizing power generation plants, and international cooperation on geothermal development and utilization. In Item 2, report was made on the current status of geothermal power plants in Japan and their future development targets, long-term overview of geothermal development, measures and budgets to achieve the targets of geothermal development. In Item 3, it is reported that out of 48 areas completed of the survey (including the new promotion surveyed areas), the areas possible of steam power generation and confirmed of temperatures higher than 200 degrees C are 30 areas, and the areas possible of binary power generation (using down hole pumps) and small to medium scale power generation, confirmed of temperatures of 100 to 200 degrees C are 13 areas. In Item 4, reports were made on the reservoir bed variation exploring method, surveys on deep geothermal resources, a 10-MW demonstration plant, a system to detect well bottom information during excavation of geothermal wells, a technology to collect deep geothermal resources, and a hot-rock using power generation system. In Item 5, geothermal exploration in remote islands in the eastern part of Indonesia, and the IEA cooperation projects were reported. (NEDO)

  6. Geothermal Power Technologies

    Montagud, Maria E. Mondejar; Chamorro, C.R.

    2017-01-01

    Although geothermal energy has been widely deployed for direct use in locations with especial geologic manifestations, its potential for power generation has been traditionally underestimated. Recent technology developments in drilling techniques and power conversion technologies from low......-temperature heat resources are bringing geothermal energy to the spotlight as a renewable baseload energy option for a sustainable energy mix. Although the environmental impact and economic viability of geothermal exploitation must be carefully evaluated for each case, the use of deep low-temperature geothermal...... reservoirs could soon become an important contributor to the energy generation around the world....

  7. Advanced Percussive Drilling Technology for Geothermal Exploration and Development

    Su, Jiann [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Raymond, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Prasad, Somuri [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wolfer, Dale [Atlas-Copco Secoroc LLC, Fagersta (Sweden)

    2017-06-12

    Percussive hammers are a promising advance in drilling technology for geothermal since they rely upon rock reduction mechanisms that are well-suited for use in the hard, brittle rock characteristic of geothermal formations. The project research approach and work plan includes a critical path to development of a high-temperature (HT) percussive hammer using a two phase approach. The work completed in Phase I of the project demonstrated the viability of percussive hammers and that solutions to technical challenges in design, material technology, and performance are likely to be resolved. Work completed in Phase II focused on testing the findings from Phase I and evaluating performance of the materials and designs at high operating temperatures. A high-operating temperature (HOT) drilling facility was designed, built, and used to test the performance of the DTH under extreme conditions. Results from the testing indicate that a high-temperature capable hammer can be developed and is a viable alternative for use in the driller’s toolbox.

  8. Geothermal technology development program. Annual progress report, October 1980-September 1981

    Kelsey, J.R. (ed.)

    1982-09-01

    The status of ongoing Research and Development (R and D) within the Geothermal Technology Development Program is described. The program emphasizes research in rock penetration mechanics, fluid technology, borehole mechanics, and diagnostics technology.

  9. Geothermal energy technology

    1977-01-01

    Geothermal energy research and development by the Sunshine Project is subdivided into five major categories: exploration and exploitation technology, hot-water power generation technology, volcanic power generation technology, environmental conservation and multi-use technology, and equipment materials research. The programs are being carried out by various National Research Institutes, universities, and private industry. During 1976 and 1977, studies were made of the extent of resources, reservoir structure, ground water movement, and neotectonics at the Onikobe and Hachimantai geothermal fields. Studies to be performed in the near future include the use of new prospecting methods, including artificial magnetotellurics, heat balance calculation, brightspot techniques, and remote sensing, as well as laboratory studies of the physical, mechanical, and chemical properties of rock. Studies are continuing in the areas of ore formation in geothermal environments, hot-dry-rock drilling and fracturing, large scale prospecting technology, high temperature-pressure drilling muds and well cements, and arsenic removal techniques.

  10. Geothermal drilling and completion technology development program. Quarterly progress report, January-March 1980

    Varnado, S.G. (ed.)

    1980-04-01

    The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987.

  11. Geothermal drilling and completion technology development program. Annual progress report, October 1979-September 1980

    Varnado, S.G. (ed.)

    1980-11-01

    The progress, status, and results of ongoing research and development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987.

  12. 2008 Geothermal Technologies Market Report

    Cross, J.; Freeman, J.

    2009-07-01

    This report describes market-wide trends for the geothermal industry throughout 2008 and the beginning of 2009. It begins with an overview of the U.S. DOE's Geothermal Technology Program's (GTP's) involvement with the geothermal industry and recent investment trends for electric generation technologies. The report next describes the current state of geothermal power generation and activity within the United States, costs associated with development, financing trends, an analysis of the levelized cost of energy (LCOE), and a look at the current policy environment. The report also highlights trends regarding direct use of geothermal energy, including geothermal heat pumps (GHPs). The final sections of the report focus on international perspectives, employment and economic benefits from geothermal energy development, and potential incentives in pending national legislation.

  13. Reservoir Maintenance and Development Task Report for the DOE Geothermal Technologies Office GeoVision Study.

    Lowry, Thomas Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Finger, John T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Carrigan, Charles R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Foris, Adam [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kennedy, Mack B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Corbet, Thomas F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Doughty, Christine A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pye, Steven [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sonnenthal, Eric L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    This report documents the key findings from the Reservoir Maintenance and Development (RM&D) Task of the U.S. Department of Energy's (DOE), Geothermal Technologies Office (GTO) Geothermal Vision Study (GeoVision Study). The GeoVision Study had the objective of conducting analyses of future geothermal growth based on sets of current and future geothermal technology developments. The RM&D Task is one of seven tasks within the GeoVision Study with the others being, Exploration and Confirmation, Potential to Penetration, Institutional Market Barriers, Environmental and Social Impacts, Thermal Applications, and Hybrid Systems. The full set of findings and the details of the GeoVision Study can be found in the final GeoVision Study report on the DOE-GTO website. As applied here, RM&D refers to the activities associated with developing, exploiting, and maintaining a known geothermal resource. It assumes that the site has already been vetted and that the resource has been evaluated to be of sufficient quality to move towards full-scale development. It also assumes that the resource is to be developed for power generation, as opposed to low-temperature or direct use applications. This document presents the key factors influencing RM&D from both a technological and operational standpoint and provides a baseline of its current state. It also looks forward to describe areas of research and development that must be pursued if the development geothermal energy is to reach its full potential.

  14. 2008 Geothermal Technologies Market Report

    Jonathan Cross

    2009-07-01

    This report describes market-wide trends for the geothermal industry throughout 2008 and the beginning of 2009. It begins with an overview of the GTP’s involvement with the geothermal industry and recent investment trends for electric generation technologies. The report next describes the current state of geothermal power generation and activity within the United States, costs associated with development, financing trends, an analysis of the levelized cost of energy (LCOE), and a look at the current policy environment. The report also highlights trends regarding direct use of geothermal energy, including GHPs.† The final sections of the report focus on international perspectives, employment and economic benefits from geothermal energy development, and potential incentives in pending national legislation.

  15. The National Energy Strategy - The role of geothermal technology development: Proceedings

    1990-01-01

    Each year the Geothermal Division of the US Department of Energy conducts an in-depth review of its entire geothermal R D program. The conference serves several purposes: a status report on current R D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal industry. Topics in this year's conference included Hydrothermal Energy Conversion Technology, Hydrothermal Reservoir Technology, Hydrothermal Hard Rock Penetration Technology, Hot Dry Rock Technology, Geopressured-Geothermal Technology and Magma Energy Technology. Each individual paper has been cataloged separately.

  16. Geothermal Today: 2003 Geothermal Technologies Program Highlights (Revised)

    2004-05-01

    This outreach publication highlights milestones and accomplishments of the DOE Geothermal Technologies Program for 2003. Included in this publication are discussions of geothermal fundamentals, enhanced geothermal systems, direct-use applications, geothermal potential in Idaho, coating technology, energy conversion R&D, and the GeoPowering the West initiative.

  17. Policy for geothermal energy development

    Kiuchi, S [Public Utilities Bureau, Ministry of International Trade and Industry, Japan

    1973-01-01

    Government actions related to Japanese geothermal energy development in the past include: a mining and industrial research subsidy of 27 million yen granted to Kyushu Electric Power Co. in 1952, a mining and industrial research subsidy of 13 million yen granted to Japan Metals and Chemicals Co. in 1960, a study on steam production technology for geothermal power generation by Japan Metals and Chemicals Co. funded at 3.5 hundred million yen from the Research Development Corporation of Japan, and a study on steam production technology for large scale geothermal power generation by Japan Metals and Chemicals Co. funded at 7.6 hundred million yen by the Research Development Corporation of Japan. The following projects are planned by the Ministry of International Trade and Industry for 1973: a two-year geothermal power promotion including investigations into the utilization of hot water, new methods for geothermal reservoir detection and steam well drilling, and environmental effects, studies on hydrothermal systems, basic investigations for geothermal indicators in 30 areas, and a means to finance the construction of geothermal power plants in Kakkonda (Iwate Prefecture) and Hatchobara (Oita Prefecture).

  18. Success in geothermal development

    Stefansson, V.

    1992-01-01

    Success in geothermal development can be defined as the ability to produce geothermal energy at compatible energy prices to other energy sources. Drilling comprises usually the largest cost in geothermal development, and the results of drilling is largely influencing the final price of geothermal energy. For 20 geothermal fields with operating power plants, the ratio between installed capacity and the total number of well in the field is 1.9 MWe/well. The drilling history in 30 geothermal fields are analyzed by plotting the average cumulative well outputs as function of the number of wells drilled in the field. The range of the average well output is 1-10 MWe/well with the mean value 4.2 MWe/well for the 30 geothermal fields studied. A leaning curve is defined as the number of wells drilled in each field before the average output per well reaches a fairly constant value, which is characteristic for the geothermal reservoir. The range for this learning time is 4-36 wells and the average is 13 wells. In general, the average well output in a given field is fairly constant after some 10-20 wells has been drilled in the field. The asymptotic average well output is considered to be a reservoir parameter when it is normalized to the average drilling depth. In average, this reservoir parameter can be expressed as 3.3 MWe per drilled km for the 30 geothermal fields studied. The lifetime of the resource or the depletion time of the geothermal reservoir should also be considered as a parameter influencing the success of geothermal development. Stepwise development, where the reservoir response to the utilization for the first step is used to determine the timing of the installment of the next step, is considered to be an appropriate method to minimize the risk for over investment in a geothermal field

  19. Geothermal technology in Australia: Investigating social acceptance

    Dowd, Anne-Maree; Boughen, Naomi; Ashworth, Peta; Carr-Cornish, Simone

    2011-01-01

    Issues of social acceptance, such as lack of awareness and negative community perceptions and reactions, can affect low emission energy technology development, despite general support observed for reducing carbon emissions and mitigating climate change. Negative community reactions and lack of understanding have affected geothermal developments, as demonstrated by the fearful community reactions and negative media experienced in response to seismic disturbances caused by 'hot rock' geothermal energy generation in Switzerland and Germany. Focusing on geothermal energy, this paper presents the results of using a participatory action research methodology to engage diverse groups within the Australian public. A key finding is that the majority of the Australian public report limited the knowledge or understanding of geothermal technology and have various concerns including water usage and seismic activity instigated by geothermal drilling. However, geothermal energy receives general support due to a common trend to champion renewable energy sources in preference to traditional forms of energy generation and controversial technologies. This paper also demonstrates the effectiveness of using an engagement process to explore public understanding of energy technologies in the context of climate change, and suggests a way forward for governments and industry to allocate resources for greatest impact when communicating about geothermal technology. - Highlights: → Majority of Australians have limited knowledge or understanding of geothermal technology. → Various concerns, including water usage and seismic activity instigated by drilling, were raised. → Geothermal energy has general support due to a common trend to champion renewable energy sources. → Methodology shows the effectiveness of an engagement process to explore public understanding. → Participants expressed intention to change behaviours, which can be a catalyst for change.

  20. Geothermal Technologies Program: Direct Use

    2004-08-01

    This general publication describes geothermal direct use systems, and how they have been effectively used throughout the country. It also describes the DOE program R&D efforts in this area, and summarizes several projects using direct use technology.

  1. Development of geothermal resources

    NONE

    1995-09-01

    This paper describes the geothermal development promotion survey project. NEDO is taking the lead in investigation and development to reduce risks for private business entities and promote their development. The program is being moved forward by dividing the surveys into three ranks of A, B and C from prospects of geothermal resource availability and the state of data accumulation. The survey A lacks number of data, but covers areas as wide as 100 to 300 km{sup 2}, and studies possible existence of high-temperature geothermal energy. The survey B covers areas of 50 to 70 km{sup 2}, investigates availability of geothermal resources, and assesses environmental impacts. The survey C covers areas of 5 to 10 km{sup 2}, and includes production well drilling and long-term discharge tests, other than those carried out by the surveys A and B. Results derived in each fiscal year are evaluated and judged to establish development plans for the subsequent fiscal year. This paper summarizes development results on 38 areas from among 45 areas surveyed since fiscal 1980. Development promotion surveys were carried out over seven areas in fiscal 1994. Development is in progress not only on utilization of high-temperature steam, but also on binary cycle geothermal power generation utilizing hot waters of 80 to 150{degree}C. Fiscal 1994 has carried out discussions for spread and practical use of the systems (particularly on economic effects), and development of small-to-medium scale binary systems. 2 figs., 1 tab.

  2. Geothermal energy utilization and technology

    Dickson, Mary H; Fanelli, Mario

    2013-01-01

    Geothermal energy refers to the heat contained within the Earth that generates geological phenomena on a planetary scale. Today, this term is often associated with man's efforts to tap into this vast energy source. Geothermal Energy: utilization and technology is a detailed reference text, describing the various methods and technologies used to exploit the earth's heat. Beginning with an overview of geothermal energy and the state of the art, leading international experts in the field cover the main applications of geothermal energy, including: electricity generation space and district heating space cooling greenhouse heating aquaculture industrial applications The final third of the book focuses upon environmental impact and economic, financial and legal considerations, providing a comprehensive review of these topics. Each chapter is written by a different author, but to a set style, beginning with aims and objectives and ending with references, self-assessment questions and answers. Case studies are includ...

  3. Application of environmental isotope tracing technology to geothermal geochemistry

    Shang Yingnan

    2006-01-01

    This paper reviews the recent application and development of environmental isotope tracing technology to geothermal geochemistry in the following aspects: gas isotopes (He, C) tracing of warm springs; H, O isotope tracing on the origin and cause of geothermal water, environmental isotope dating of geothermal water, and the advantage of excess parameter of deuterium (d) in geothermal research. The author also suggests that isotope method should combine with other geological methods to expand its advantage. (authors)

  4. Geothermal Technologies Program Blue Ribbon Panel Recommendations

    none,

    2011-06-17

    The Geothermal Technologies Program assembled a geothermal Blue Ribbon Panel on March 22-23, 2011 in Albuquerque, New Mexico for a guided discussion on the future of geothermal energy in the United States and the role of the DOE Program. The Geothermal Blue Ribbon Panel Report captures the discussions and recommendations of the experts. An addendum is available here: http://www.eere.energy.gov/geothermal/pdfs/gtp_blue_ribbon_panel_report_addendum10-2011.pdf

  5. FY 2001 report on the results of the development of the hydrothermal utilization power plant, etc. Development of collecting technology for deep geothermal resources (Development of production technology for deep geothermal resources); 1992 - 2001 nessui riyo hatsuden plant tou kaihatsu sokatsu seika hokokusho. Shinbu chinetsu shigen saishu gijutsu no kaihatsu - Shinbu chinetsu shigen seisan gijutsu no kaihatsu (2001 nendo seika hokokusho bessatsu shiryo)

    NONE

    2002-03-01

    For making effective/economical collection of deep geothermal resources, development was made from FY 1991 to FY 2001 of the 'drilling technology for deep geothermal resources' and 'production technology for deep geothermal resources,' and the results were summarized. As to the development of logging technology, the PTSD logging system was developed which can measure temperature/pressure/flow velocity/fluid density in geothermal well under the environment of temperature of 400 degrees C. Concerning the development of monitoring technology, development was made of the PT monitoring system that can make the long-term continuous measuring of temperature/pressure in deep geothermal observation well under the environment of temperature of 400 degrees C and of the C monitoring system that samples geothermal fluids at regular intervals to grasp changes in chemical component. Relating to the development of high temperature tracer monitoring technology, the following were conducted: extraction of high temperature tracer agent that can be used in geothermal reservoirs under the environment of temperature of 300 degrees C, development of simulator, and establishment of how to put tracer agent into the reservoir and how to analyze tracer agent. Further, the R and D were made of scale monitoring technology and scale prevention/removal technology. (NEDO)

  6. Human Resources in Geothermal Development

    Fridleifsson, I.B.

    1995-01-01

    Some 80 countries are potentially interested in geothermal energy development, and about 50 have quantifiable geothermal utilization at present. Electricity is produced from geothermal in 21 countries (total 38 TWh/a) and direct application is recorded in 35 countries (34 TWh/a). Geothermal electricity production is equally common in industrialized and developing countries, but plays a more important role in the developing countries. Apart from China, direct use is mainly in the industrialized countries and Central and East Europe. There is a surplus of trained geothermal manpower in many industrialized countries. Most of the developing countries as well as Central and East Europe countries still lack trained manpower. The Philippines (PNOC) have demonstrated how a nation can build up a strong geothermal workforce in an exemplary way. Data from Iceland shows how the geothermal manpower needs of a country gradually change from the exploration and field development to monitoring and operations.

  7. 2015 Annual Report - Geothermal Technologies Office

    None

    2016-04-01

    Over the past year, the U.S. Department of Energy’s (DOE’s) Geothermal Technologies Office (GTO) supported a number of exciting initiatives and research and development (R&D)activities! The GTO budget was increased in Fiscal Years (FY) 2015-2016, providing the opportunity to invest in new technologies and initiatives, such as the DOE-wide Subsurface Crosscut Initiative, and the Small Business Vouchers (SBV)Program, which is focused on growing our small business and national laboratory partnerships. These efforts will continue to advance geothermal as an economically competitive renewable energy.

  8. Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries

    Creed, R.J.; Laney, P.T.

    2002-01-01

    The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives

  9. Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries

    Creed, R.J.; Laney, P.T.

    2002-05-14

    The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives.

  10. Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries

    Creed, Robert John; Laney, Patrick Thomas

    2002-06-01

    The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives.

  11. 2016 Geothermal Technologies Office Annual Report

    None, None

    2017-03-01

    This report highlights project successes and continued efforts in all of our program areas – EGS, Hydrothermal, Low-Temperature, and Systems Analysis – which are flanked by useful tools and resources and links to more information. Such highlights include FORGE and EGS successes, projects reducing geothermal costs and risks, and advancements in technology research and development.

  12. Geothermal power development in Hawaii. Volume I. Review and analysis

    1982-06-01

    The history of geothermal exploration in Hawaii is reviewed briefly. The nature and occurrences of geothermal resources are presented island by island. An overview of geothermal markets is presented. Other topies covered are: potential markets of the identified geothermal areas, well drilling technology, hydrothermal fluid transport, overland and submarine electrical transmission, community aspects of geothermal development, legal and policy issues associated with mineral and land ownership, logistics and infrastructure, legislation and permitting, land use controls, Regulation 8, Public Utilities Commission, political climate and environment, state plans, county plans, geothermal development risks, and business planning guidelines.

  13. 2014 Annual Report, Geothermal Technologies Office

    none,

    2015-03-01

    In 2014, the Geothermal Technologies Office (GTO) made significant gains—increased budgets, new projects, key technology successes, and new staff. The Fiscal Year (FY) 2015 budget is at $55 million—roughly a 20% increase over FY 2014, and a strong vote of confidence in what the sector is doing to advance economically competitive renewable energy. GTO also remains committed to a balanced portfolio, which includes new hydrothermal development, EGS, and targeted opportunities in the low-temperature sector.

  14. Geothermal energy, what technologies for what purposes?

    2008-01-01

    This book, fully illustrated and rich of concrete examples, takes stock of the different technologies implemented today to use the Earth's heat: geothermal heat pumps for domestic, tertiary and collective residential uses, geothermal district heating networks and geothermal power plants for power generation. This overview is completed by a description of the future perspectives offered by this renewable energy source in the World and in France in terms of energy independence and technological innovation: geo-cooling, hybrid systems, absorption heat pumps or stimulated geothermal systems. (J.S.)

  15. DE-FOA-EE0005502 Advanced Percussive Drilling Technology for Geothermal Exploration and Development Phase II Report.

    Su, Jiann-Cherng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Raymond, David W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Prasad, Somuri V. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wolfer, Dale R. [Atlas-Copco Secoroc, LLC, Fagersta (Sweden)

    2017-05-01

    Percussive hammers are a promising advance in drilling technology for geothermal since they rely upon rock reduction mechanisms that are well-suited for use in the hard, brittle rock characteristic of geothermal formations. The project research approach and work plan includes a critical path to development of a high-temperature (HT) percussive hammer using a two- phase approach. The work completed in Phase I of the project demonstrated the viability of percussive hammers and that solutions to technical challenges in design, material technology, and performance are likely to be resolved. Work completed in Phase II focused on testing the findings from Phase I and evaluating performance of the materials and designs at high- operating temperatures. A high-operating temperature (HOT) drilling facility was designed, built, and used to test the performance of the DTH under extreme conditions. Results from the testing indicate that a high-temperature capable hammer can be developed and is a viable alternative for user in the driller's toolbox.

  16. Issues related to geothermal development

    Lesperance, G.O.

    1990-01-01

    This paper reports on a number of potential barriers to geothermal development in Hawaii which have been overcome but some remain. Efforts continue to address issues relating to transmission, project economics, the regulatory process, resource verification, and public acceptance

  17. Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Final Report

    Hardage, Bob A. [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; DeAngelo, Michael V. [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Ermolaeva, Elena [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Hardage, Bob A. [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Remington, Randy [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Sava, Diana [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Wagner, Donald [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Wei, Shuijion [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology

    2013-02-01

    The objective of our research was to develop and demonstrate seismic data-acquisition and data-processing technologies that allow geothermal prospects below high-velocity rock outcrops to be evaluated. To do this, we acquired a 3-component seismic test line across an area of exposed high-velocity rocks in Brewster County, Texas, where there is high heat flow and surface conditions mimic those found at numerous geothermal prospects. Seismic contractors have not succeeded in creating good-quality seismic data in this area for companies who have acquired data for oil and gas exploitation purposes. Our test profile traversed an area where high-velocity rocks and low-velocity sediment were exposed on the surface in alternating patterns that repeated along the test line. We verified that these surface conditions cause non-ending reverberations of Love waves, Rayleigh waves, and shallow critical refractions to travel across the earth surface between the boundaries of the fast-velocity and slow-velocity material exposed on the surface. These reverberating surface waves form the high level of noise in this area that does not allow reflections from deep interfaces to be seen and utilized. Our data-acquisition method of deploying a box array of closely spaced geophones allowed us to recognize and evaluate these surface-wave noise modes regardless of the azimuth direction to the surface anomaly that backscattered the waves and caused them to return to the test-line profile. With this knowledge of the surface-wave noise, we were able to process these test-line data to create P-P and SH-SH images that were superior to those produced by a skilled seismic data-processing contractor. Compared to the P-P data acquired along the test line, the SH-SH data provided a better detection of faults and could be used to trace these faults upward to the boundaries of exposed surface rocks. We expanded our comparison of the relative value of S-wave and P-wave seismic data for geothermal

  18. Geothermal energy development in Turkey

    Simsek, S.; Okandan, E.

    1990-01-01

    Geothermal fields in Turkey are related to rather complex zones of collision between the Eurasian and African continents, and penetration of the Arabian plate into the Anatolian continental mass. These processes gave rise to fracturing of the lithosphere and eruption of magmas. Geothermal regional assessment studies have proven several low enthalpy sources and some high enthalpy fields suitable for electricity generation. This paper summarizes developments in exploration-drilling and give examples of direct utilization implemented in recent years

  19. Geothermal Energy Development annual report 1979

    1980-08-01

    This report is an exerpt from Earth Sciences Division Annual Report 1979 (LBL-10686). Progress in thirty-four research projects is reported including the following area: geothermal exploration technology, geothermal energy conversion technology, reservoir engineering, and geothermal environmental research. Separate entries were prepared for each project. (MHR)

  20. Geothermal Technologies Office FY 2017 Budget At-A-Glance

    None

    2016-03-01

    The Geothermal Technologies Office (GTO) accelerates deployment of clean, domestic geothermal energy by supporting innovative technologies that reduce the cost and risks of development. This abundant resource generates energy around the clock and has the potential to supply more than 100 GWe of electricity—roughly one-tenth of America’s energy demand. By optimizing the value stream for electricity production and cascaded uses, the office aims to make geothermal energy a fully cost-competitive, widely available, and geographically diverse component of the national energy mix.

  1. Geothermal development plan: Maricopa County

    White, D.H.; Goldstone, L.A.

    1982-08-01

    The Maricopa County Geothermal Development Plan evaluated the market potential for utilizing geothermal energy. The study identified six potential geothermal resource areas with temperatures less than 100{sup 0}C (212{sup 0}F) and in addition, four suspected intermediate temperature areas (90{sup 0} to 150{sup 0}C, 194{sup 0} to 300{sup 0}F). Geothermal resources are found to occur in and near the Phoenix metropolitan area where average population growth rates of two to three percent per year are expected over the next 40 years. Rapid growth in the manufacturing, trade and service sectors of the regional economy provides opportunities for the direct utilization of geothermal energy. A regional energy use analysis is included containing energy use and price projections. Water supplies are found to be adequate to support this growth, though agricultural water use is expected to diminish. The study also contains a detailed section matching geothermal resources to potential users. Two comparative analyses providing economic details for space heating projects are incorporated.

  2. Technology, market and policy aspects of geothermal energy in Europe

    Shortall, Ruth; Uihlein, Andreas

    2017-04-01

    The Strategic Energy Technology Plan (SET-Plan) is the technology pillar of the EU's energy and climate policy. The goal of the SET-Plan is to achieve EU worldwide leadership in the production of energy technological solutions capable of delivering EU 2020 and 2050 targets for a low carbon economy. The Joint Research Centre (JRC) runs and manages the SET-Plan Information System (SETIS) to support the SET-Plan. Under SETIS, the JRC publishes a number of regularly updated key references on the state of low carbon technology, research and innovation in Europe. Within the framework of the SET-Plan, the geothermal sector is placed into context with other power and heat generation technologies. The talk will give an introduction to some of JRC's geothermal research activities. Amongst others, the JRC Geothermal status report will be presented. This report aims to contribute to the general knowledge about the geothermal sector, its technology, economics and policies, with a focus on innovation, research, development and deployment activities as well as policy support schemes within the European Union. The speech will present the main findings of the report, providing an overview of the activities and progress made by the geothermal energy sector, the status of its sub-technologies and current developments. In addition, the speech will discuss the economic, market and policy aspects of geothermal energy for power production, direct use and ground source heat pumps in Europe and beyond.

  3. Development of hot water utilizing power plants in fiscal 1999. Development of technology to collect geothermal resources in great depths/Development of technology to excavate geothermal resources in great depths (Designing whole development); 1999 nendo nessui riyo hatsuden plant nado kaihatsu seika hokokusho. Shinbu chinetsu shigen saishu gijutsu no kaihatsu / shinbu chinetsu shigen kussaku gijutsu no kaihatsu (zentai kaihatsu sekkei)

    NONE

    2000-03-01

    Technological development has been made on excavation of geothermal wells, which are dense, hard, and high in temperature and pressure, in developing geothermal resources in great depths. This paper summarizes the achievements in fiscal 1999. This fiscal year has performed the excavation test using an actual well to verify the reliability in practical use of the developed heat-resistant and durable bit. The test was executed by using a bit with a diameter of 8-1/2 inches in a ground bet having a maximum temperature of 300 degrees C in the Yamakawa geothermal field. As a result, good site evaluation was obtained that the wear and tear after lift-up showed no problems, and sufficient performance was verified in the drilling rate and durability. In addition, the low specific gravity cement for high temperature use that has been newly developed was given a cement mixing test to identify its workability at site and hardening properties, at a test well with a temperature of about 40 degrees C in the Okiri geothermal field. The actual well test was performed in a large-scale lost water occurred in a return well during an excavation by Nittestu-Kagoshima Geothermal Company. Effects were recognized in measures to prevent water loss. (NEDO)

  4. State policies for geothermal development

    Sacarto, D.M.

    1976-01-01

    The most prominent geothermal resources in the USA occur in fifteen Gulf and Western states including Alaska and Hawaii. In each state, authority and guidelines have been established for administration of geothermal leasing and for regulation of development. Important matters addressed by these policies include resource definition, leasing provisions, development regulations, water appropriation, and environmental standards. Some other policies that need attention include taxation, securities regulations, and utility regulations. It is concluded that conditions needed for the geothermal industry to pursue large-scale development are consumer (utility) confidence in the resource; equitable tax treatment; prompt exploration of extensive land areas; long and secure tenure for productive properties; prompt facility siting and development; and competitive access to various consumers. With these conditions, the industry should be competitive with other energy sectors and win its share of investment capital. This publication reviews for the states various technical, economic, and institutional aspects of geothermal development. The report summarizes research results from numerous specialists and outlines present state and Federal policies. The report concludes generally that if public policies are made favorable to their development, geothermal resources offer an important energy resource that could supply all new electric capacity for the fifteen states for the next two decades. This energy--100,000 MW--could be generated at prices competitive with electricity from fossil and nuclear power plants. An extensive bibliography is included. (MCW)

  5. Investigation on the development and introduction of new geothermal exploration technology. Part 2; Chinetsu shintansa gijutsu kaihatsu donyu ni kansuru chosa. 2

    NONE

    1996-02-01

    For the purpose of maintaining and increasing the geothermal power generation amount, the development was made of exploration technologies which become necessary in the stage of geothermal reservoir exploration and in the stage of reservoir management and peripheral development. As development technologies, the following were proposed: fracture flow characteristics exploration method (FE), production/circumference areas flow characteristics exploration method (PE), and integrated analyzing method (IA). As to FE, for the survey of geothermal fluid dynamic characteristics in fracture aggregate composing the geothermal reservoir, developments were made of the well hydraulic testing method for examining hydraulic characteristics of fracture system and of the fracture evaluation method composed of the core/logging analysis method, the permeability logging method and electroseismic exploration method. As to PE, for maintaining and managing steam production in the developmental area and developing the area to the circumference area, development was conducted of technology for exploring variations of reservoirs and fluid flow from the data on precision gravity, three-dimensional resistivity, fluid geochemistry, active seismic wave and self potential, precision electromagnetism, passive seismic wave, etc. As to IA, development was made of reservoir simulation technique, etc. 2 refs., 70 figs., 41 tabs.

  6. Development of production technology for deep-seated geothermal resources; Shinbu chinetsu shigen seisan gijutsu no kaihatsu gaiyo

    Wada, T.; Akazawa, T. [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1997-11-01

    In order to increase the geothermal power generation volume in Japan furthermore after now, it is necessary to develop the deep-seated geothermal fluid collecting technique at 3,000 to 4,000m in depth and about 350degC. In order to collect the deep-seated geothermal resources economically and effectively, there are some principally important problems on production techniques such as P (pressure)-T(temperature)-S (flow rate)-D (fluid density) logging technique, P (pressure)-T (temperature)-C (chemical composition) monitoring technique, high temperature tracer monitoring technique, scale monitoring technique, scale protection and removal technique and so on. The PTSD logging technique is a measuring technique for collecting some data necessary to conduct production management effectively. The PTC monitoring technique is a technique for collecting data on the geothermal resources essential for the resources evaluation and presumption, and tracer monitoring technique is a technique for collecting actual measurement data of fluid flow analysis in the deep-seated geothermal resources. And the sale monitoring is a technique for collecting data on various kinds of scale components of the deep-seated geothermal water and in the steam. In this paper, these techniques are summarized. 8 figs.

  7. 2013 Geothermal Technologies Office Annual Report

    none,

    2014-02-01

    For the Geothermal Technologies Office (GTO), 2013 was a year of major achievements and repositioning to introduce major initiatives. Read all about our progress and successes this year, and as we look ahead, our new opportunities and initiatives.

  8. Geothermal Technologies Program Overview - Peer Review Program

    Milliken, JoAnn [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2011-06-06

    This Geothermal Technologies Program presentation was delivered on June 6, 2011 at a Program Peer Review meeting. It contains annual budget, Recovery Act, funding opportunities, upcoming program activities, and more.

  9. Development of hot water utilizing power plants in fiscal 1999. Development of technology to collect geothermal resources in great depths (Development of technology to produce geothermal resources in great depths); 1999 nendo nessui riyo hatsuden plant nado kaihatsu seika hokokusho. Shinbu chinetsu shigen saishu gijutsu no kaihatsu / shinbu chinetsu shigen seisan gijutsu no kaihatsu

    NONE

    2000-03-01

    With an objective to develop geothermal resources, research and development has been performed on the production technologies for the deep-seated geothermal resources, such as pressure, temperature, flow speed and density (PTSD) logging technologies. This paper summarizes the achievements in fiscal 1999. In the actual well test on the developed D-probe, it was verified that the probe operates normally under high temperature environment (342 degrees C) which exceeds the measurement limit of conductive cables (315 degrees C). In developing the PTC monitoring technology, the downhole sampler was improved, and a test was performed in the actual hole in the Hijiori area in Yamagata Prefecture. As a result, collection of hot water of about 900 mL has become possible. In developing the high-temperature tracer monitoring technology, simulation was performed keeping in mind charging the tracer into the Hijiori geothermal area, whereas specifications for charging and collecting the tracer were determined. In developing the scale monitoring technology, experiments were carried out on the fluid systems under deep geothermal conditions by using scale forming devices, by which it was indicated that silica is the important scale constituent. (NEDO)

  10. Geothermal energy in Montana: site data base and development status

    Brown, K.E.

    1979-11-01

    A short description of the state's geothermal characteristics, economy, and climate is presented. More specific information is included under the planning regions and site specific data summaries. A brief discussion of the geothermal characteristics and a listing of a majority of the known hot springs is included. The factors which influence geothermal development were researched and presented, including: economics, financing, state leasing, federal leasing, direct-use technology, water quality laws, water rights, and the Major Facility Siting Act. (MHR)

  11. Geothermal Program Review XI: proceedings. Geothermal Energy - The Environmental Responsible Energy Technology for the Nineties

    1993-10-01

    These proceedings contain papers pertaining to current research and development of geothermal energy in the USA. The seven sections of the document are: Overview, The Geysers, Exploration and Reservoir Characterization, Drilling, Energy Conversion, Advanced Systems, and Potpourri. The Overview presents current DOE energy policy and industry perspectives. Reservoir studies, injection, and seismic monitoring are reported for the geysers geothermal field. Aspects of geology, geochemistry and models of geothermal exploration are described. The Drilling section contains information on lost circulation, memory logging tools, and slim-hole drilling. Topics considered in energy conversion are efforts at NREL, condensation on turbines and geothermal materials. Advanced Systems include hot dry rock studies and Fenton Hill flow testing. The Potpourri section concludes the proceedings with reports on low-temperature resources, market analysis, brines, waste treatment biotechnology, and Bonneville Power Administration activities. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  12. Final Report to DOE EERE – Geothermal Technologies Program Project Title: Monitoring and modeling of fluid flow in a developing enhanced geothermal system (EGS) reservoir

    Fehler, Michael [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2017-04-19

    The primary objective of this project was to improve our ability to predict performance of an Enhanced Geothermal System (EGS) reservoir over time by relating, in a quantitative manner, microseismic imaging with fluid and temperature changes within the reservoir. Historically, microseismic data have been used qualitatively to place bounds on the growth of EGS reservoirs created by large hydraulic fracturing experiments. Previous investigators used an experimentally based fracture opening relationship (fracture aperture as a function of pressure), the spatial extent of microseismic events, and some assumptions about fracture frequency to determine the size of an EGS reservoir created during large pumping tests. We addressed a number of issues (1) locating microearthquakes that occur during hydraulic fracturing, (2) obtaining more information about a reservoir than the microearthquake locations from the microearthquake data, for example, information about the seismic velocity structure of the reservoir or the scattering of seismic waves within the reservoir, (3) developing an improved methodology for estimating properties of fractures that intersect wellbores in a reservoir, and (4) developing a conceptual model for explaining the downward growth of observed seismicity that accompanies some hydraulic injections into geothermal reservoirs. We used two primary microseismic datasets for our work. The work was motivated by a dataset from the Salak Geothermal Field in Indonesia where seismicity accompanying a hydraulic injection was observed to migrate downward. We also used data from the Soultz EGS site in France. We also used Vertical Seismic Profiling data from a well in the United States. The work conducted is of benefit for characterizing reservoirs that are created by hydraulic fracturing for both EGS and for petroleum recovery.

  13. Survey of subjects on the geothermal technology development aiming at marked improvement of economical efficiency; Keizaisei no hiyakuteki kojo to mezashita chinetsu gijutsu kaihatsu ni kansuru chosa

    NONE

    1997-03-01

    For the purpose of reducing the geothermal development cost and increasing the amount of developable resource, the paper reviewed the geothermal developmental technology. Approximately 30 MW as a scale per unit is economical. The development cost is lowered by 2% if the period for development is shortened by two years, by 11% if the utilization rate is increased by 10%, and by 3% if the success rate is increased by 10%. The cost is reduced by 10% if the steam amount per 1 pit is increased to 1.5 times, and by 4% if the reduction amount is increased to 1.5 times. Improvement of survey/exploration/evaluation technology and improvement of power generation/management technology contribute largely to making the above possible. The drilling depth also corresponds with increases in the amount of steam obtained and the cost. The construction cost including the drilling cost is also an important factor, indicating a cost reduction of 15% if the unit price is reduced by 20%. If a 30% reduction of the power generation cost at a 30MW plant can be made, a 10 yen/kWh is realized, which shows that a geothermal power plant can be competitive with a thermal power plant. When thinking of it without subsidies, the geothermal power generation is most economical of all the renewable energy. In the light of the environment, the CO2 issue, etc., the geothermal power generation is much more advantageous than the thermal power generation. 7 refs., 28 figs., 8 tabs.

  14. Imperial County geothermal development annual meeting: summary

    1983-01-01

    All phases of current geothermal development in Imperial County are discussed and future plans for development are reviewed. Topics covered include: Heber status update, Heber binary project, direct geothermal use for high-fructose corn sweetener production, update on county planning activities, Brawley and Salton Sea facility status, status of Imperial County projects, status of South Brawley Prospect 1983, Niland geothermal energy program, recent and pending changes in federal procedures/organizations, plant indicators of geothermal fluid on East Mesa, state lands activities in Imperial County, environmental interests in Imperial County, offshore exploration, strategic metals in geothermal fluids rebuilding of East Mesa Power Plant, direct use geothermal potential for Calipatria industrial Park, the Audubon Society case, status report of the Cerro Prieto geothermal field, East Brawley Prospect, and precision gravity survey at Heber and Cerro Prieto geothermal fields. (MHR)

  15. Bibliography: injection technology applicable to geothermal utilization

    Darnell, A.J.; Eichelberger, R.L.

    1982-03-19

    This bibliography cites 500 documents that may be helpful in planning, analysis, research, and development of the various aspects of injection technology in geothermal applications. These documents include results from government research; development, demonstration, and commercialization programs; selected references from the literature; symposia; references from various technical societies and installations; reference books; reviews; and other selected material. The cited references are from (1) subject searching, using indexing, storage, and retrieval information data base of the Department of Energy's Technical Information Center's on-line retrieval system, RECON; (2) searches of references from the RECON data base, of work by authors known to be active in the field of geothermal energy research and development; (3) subject and author searches by the computerized data storage and retrieval system of Chemical Abstracts, American Chemical Society, Washington, DC; and (4) selected references from texts and reviews on this subject. Each citation includes title, author, author affiliation, date of publication, and source. The citations are listed in chronological order (most recent first) in each of the subject categories for which this search was made. The RECON accession number is also given.

  16. Advanced seismic imaging for geothermal development

    Louie, John [UNR; Pullammanappallil, Satish [Optim; Honjas, Bill [Optim

    2016-08-01

    J. N. Louie, Pullammanappallil, S., and Honjas, W., 2011, Advanced seismic imaging for geothermal development: Proceedings of the New Zealand Geothermal Workshop 2011, Nov. 21-23, Auckland, paper 32, 7 pp. Preprint available at http://crack.seismo.unr.edu/geothermal/Louie-NZGW11.pdf

  17. Mexican geothermal development and the future

    Serrano, J.M.E.V.

    1998-01-01

    Geothermics in Mexico started in 1954, by drilling the first geothermal well in Pathe, State of Hidalgo, which reached a depth of 237 meters. In 1959 electrical generation from geothermal origin began, with an installed capacity of 3.5 MW. From 1959 to 1994 Mexico increased its installed capacity to 753 MW, by developing three geothermal fields: Cerro Prieto, Los Azufres, and Los Humeros. Currently, 177 wells produce steam at a rate of 36 tons per hour (t/h) each. Comision Federal de Electricidad (CFE, Federal Commission of Electricity) has planned to increase the geothermal-electric installed capacity through construction and installation of several projects. Repowering of operating units and development of new geothermal zones will also allow Mexican geothermal growth

  18. California Geothermal Forum: A Path to Increasing Geothermal Development in California

    Young, Katherine R. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-01-01

    The genesis of this report was a 2016 forum in Sacramento, California, titled 'California Geothermal Forum: A Path to Increasing Geothermal Development in California.' The forum was held at the California Energy Commission's (CEC) headquarters in Sacramento, California with the primary goal being to advance the dialogues for the U.S. Department of Energy's Geothermal Technologies Office (GTO) and CEC technical research and development (R&D) focuses for future consideration. The forum convened a diverse group of stakeholders from government, industry, and research to lay out pathways for new geothermal development in California while remaining consistent with critical Federal and State conservation planning efforts, particularly at the Salton Sea.

  19. Geothermal Program Review VII: proceedings. DOE Research and Development for the Geothermal Marketplace

    1989-01-01

    Each year the Geothermal Technology Division of the US Department of Energy conducts an indepth review of its entire geothermal R and D program. The 2--3 day conference serves several purposes: a status report on current R and D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal industry. This year's conference, Program Review 7, was held in San Francisco on March 21--23, 1989. As indicated by its title, ''DOE Research and Development for the Geothermal Marketplace'', Program Review 7 emphasized developing technologies, concepts, and innovations having potential for commercial application in the foreseeable future. Program Review 7 was comprised of eight sessions including an opening session and a special presentation on the ''Role of Geothermal Energy in Minimizing Global Environmental Problems.'' The five technical sessions covered GTD-sponsored R and D in the areas of hydrothermal (two sessions), hot dry rock, geopressured, and magma. Presentations were made by the relevant field researchers, and sessions were chaired by the appropriate DOE Operations Office Geothermal Program Manager. The technical papers and commentary of invited speakers contained in these Proceedings have been compiled in the order in which they were presented at Program Review 7.

  20. New energy technologies 3 - Geothermal and biomass energies

    Sabonnadiere, J.C.; Alazard-Toux, N.; His, S.; Douard, F.; Duplan, J.L.; Monot, F.; Jaudin, F.; Le Bel, L.; Labeyrie, P.

    2007-01-01

    This third tome of the new energy technologies handbook is devoted to two energy sources today in strong development: geothermal energy and biomass fuels. It gives an exhaustive overview of the exploitation of both energy sources. Geothermal energy is presented under its most common aspects. First, the heat pumps which encounter a revival of interest in the present-day context, and the use of geothermal energy in collective space heating applications. Finally, the power generation of geothermal origin for which big projects exist today. The biomass energies are presented through their three complementary aspects which are: the biofuels, in the hypothesis of a substitutes to fossil fuels, the biogas, mainly produced in agricultural-type facilities, and finally the wood-fuel which is an essential part of biomass energy. Content: Forewords; geothermal energy: 1 - geothermal energy generation, heat pumps, direct heat generation, power generation. Biomass: 2 - biofuels: share of biofuels in the energy context, present and future industries, economic and environmental status of biofuel production industries; 3 - biogas: renewable natural gas, involuntary bio-gases, man-controlled biogas generation, history of methanation, anaerobic digestion facilities or biogas units, biogas uses, stakes of renewable natural gas; 4 - energy generation from wood: overview of wood fuels, principles of wood-energy conversion, wood-fueled thermal energy generators. (J.S.)

  1. Geothermal tomorrow 2008

    None, None

    2009-01-18

    Contributors from the Geothermal Technologies Program and the geothermal community highlight the current status and activities of the Program and the development of the global resource of geothermal energy.

  2. Institutional and environmental aspects of geothermal energy development

    Citron, O. R.

    1977-01-01

    Until recently, the majority of work in geothermal energy development has been devoted to technical considerations of resource identification and extraction technologies. The increasing interest in exploiting the variety of geothermal resources has prompted an examination of the institutional barriers to their introduction for commercial use. A significant effort was undertaken by the Jet Propulsion Laboratory as a part of a national study to identify existing constraints to geothermal development and possible remedial actions. These aspects included legislative and legal parameters plus environmental, social, and economic considerations.

  3. Fiscal 1996 report on the results of the subsidy operation under the Sunshine Project on the development of a geothermal water use power plant, etc. Development of the deep geothermal resource collecting technology (development of the deep geothermal resource producing technology); 1996 nendo New Sunshine keikaku hojo jigyo seika hokokusho. Nessui riyo hatsuden plant nado kaihatsu (shinbu chinetsu shigen saishu gijutsu no kaihatsu / shinbu chinetsu shigen seisan gijutsu no kaihatsu)

    NONE

    1997-03-01

    The paper reported the results of the fiscal 1996 R and D of the deep geothermal resource collecting/producing technology. In the design of the total development, characteristics of the well mouth of the deep reservoir were examined to evaluate properties of deep geothermal resource, and the necessity of the pressure design, etc. were clarified. As to PTSD logging technology, conducted were improvement of PT probe, manufacture of a sonde of which S probe was integrated with memory/battery modules, and the actual well experiment. Concerning PTC monitoring technology, an experiment was carried out on a high temperature use optical fiber GI type, and it was shown that the type was on a commercial level. Further, a prototype sampler with 300degC heat resistance was trially manufactured, and a test to confirm its work was conducted in the well in the Corn Wall area of the U.K. As to the production control technology, studied was the arrangement of the production control technology for deep geothermal resource. Moreover, an experiment was made to examine the effect of metal ions coexisting when silica in the deep fluid precipitates. 46 refs., 107 figs., 38 tabs.

  4. Status of geothermal development in Hawaii - 1992

    Lesperance, G.O.

    1992-01-01

    Hawaii plans that geothermal will be a significant part of its energy mix to reduce its 90% dependency on imported oil for its electricity. The resource on the Big Island of Hawaii appears promising. However, the geothermal program in Hawaii continues to face stiff opposition from a few people who are determined to stop development at any cost. The efforts of geothermal developers, together with the State and County regulatory framework have inadvertently created situations that have impeded progress. However, after a 20-year effort the first increment of commercial geothermal energy is expected on line in 1992

  5. Outline of the research and development of geothermal energy technology in the Sunshine Project

    None

    1977-07-01

    In Japan most of the natural hydrothermal reservoirs developed for power generation, air conditioning, snow thawing and agricultural use are located at relatively shallow (1 to 2 km) depths. The number of operating plants in 1974 and 1975 was four, having a capacity of about 70 MW. Three plants were under construction which would provide an additional 150 MW. All use natural steam as the motive agent. If reservoirs at depths greater than 2 km are exploited the capacity for power generation would progressively increase. The development of exploration and drilling techniques has been advanced by the production of remote sensing and automatic drilling equipment capable of operation at 400/sup 0/C and 500 atm. Binary power generation turbine systems are under development and if successful it is predicted that Japanese generating capacity will reach 10 GW by the year 2000.

  6. Results of the supplementary work to the fiscal 1994 New Sunshine Project. Development of geothermal power plants, etc. (development of production, technology for deep-seated geothermal resources); 1994 nendo new sunshine keikaku hojo jigyo seika hokokusho. Nessui riyo hatsuden plant to kaihatsu (shinbu chinetsu shigen saishu gijutsu no kaihatsu shinbu chinetsu shigen seisan gijutsu no kaihatsu)

    NONE

    1995-03-01

    The paper reports on the fiscal 1994 results of the study of the development of a technology for collecting deep-seated geothermal resources, which has been made for increasing the capacity of the geothermal power generation as a part of the New Sunshine Project. As a plan for the development, a development is made of logging equipment and its auxiliary system and then characteristics of the deep-seated geothermal well are clarified. The logging equipment is a PTSD (pressure/temperature/spinner flow-meter/fluid density) logger which stands the use at deep-seated geothermal wells of 400{degree}C and 490 kgf/cm{sup 2} and measures pressure, temperature, flow rate and fluid density under static and dynamic conditions. In this fiscal year, metal seals were developed for preventing geothermal fluids from penetrating into the PT probe. Qualities and inner/outer diameters of various kinds of structural materials used in the S probe were determined, and output necessary enough to detect the rotation number is obtained. Measuring precision of D logging by {gamma} rays was evaluated. The study was made of the monitoring technology including the borehole and ground measuring system, the borehole fluid sampling and the scale formation. Relating to the tracer widely used in monitoring of hydrothermal reservoirs, investigated was the trend of the technology from abroad. 8 refs., 60 figs., 26 tabs.

  7. Geothermal development plan: Maricopa county

    White, D.H.

    1981-01-01

    Maricopa county is the area of Arizona receiving top priority since it contains over half of the state's population. The county is located entirely within the Basin and Range physiographic region in which geothermal resources are known to occur. Several approaches were taken to match potential users to geothermal resources. One approach involved matching some of the largest facilities in the county to nearby geothermal resources. Other approaches involved identifying industrial processes whose heat requirements are less than the average assessed geothermal reservoir temperature of 110/sup 0/C (230/sup 0/F). Since many of the industries are located on or near geothermal resources, geothermal energy potentially could be adapted to many industrial processes.

  8. Fiscal 1995 report on the results of the subsidy operation under the Sunshine Project on the development of a geothermal water use power plant, etc. Development of the deep geothermal resource collecting technology (development of the deep geothermal resource drilling technology); 1995 nendo New Sunshine keikaku hojo jigyo seika hokokusho. Nessui riyo hatsuden plant nado kaihatsu (shinbu chinetsu shigen saishu gijutsu no kaihatsu / shinbu chinetsu shigen kussaku gijutsu no kaihatsu)

    NONE

    1996-03-01

    The paper reported the results of the fiscal 1995 R and D on the development of deep geothermal resource collecting/drilling technology. In the design of a total development, the trend of technical development was examined of bits, cement and DHM overseas. Further, the simulational prediction was conducted in deep geothermal drilling. As to the development of element technology of hard high temperature strata drilling, the R and D of seal mechanism, bearing mechanism and cutter mechanism were carried out aiming at developing heat resistant/durable bits, and a bit was trially manufactured which was integrated with element parts selected by each element technology. Concerning the development of high temperature drilling mud, studies were made of the development of drilling mud materials, a mud system, etc. Relating to the development of high temperature cement slurry, the development was conducted of high temperature cement, dewatering adjusting agents, etc. As to the development of high accuracy much inclination drilling technology, in the development of high temperature use downhole motor, tests on heat resistance/durability were carried out in the mud of 12 kinds of high heat resistant stator materials. 175 figs., 137 tabs.

  9. Environmental overview of geothermal development: northern Nevada

    Slemmons, D.B.; Stroh, J.M.; Whitney, R.A. (eds.)

    1980-08-01

    Regional environmental problems and issues associated with geothermal development in northern Nevada are studied to facilitate environmental assessment of potential geothermal resources. The various issues discussed are: environmental geology, seismicity of northern Nevada, hydrology and water quality, air quality, Nevada ecosystems, noise effects, socio-economic impacts, and cultural resources and archeological values. (MHR)

  10. Update of geothermal energy development in Greece

    Koutroupis, N.

    1992-01-01

    Following the completion of the Geothermal Reconnaissance Study in Greece and the successful drilling of seven deep geothermal wells in the Aegean islands of Milos and Nisyros, PPC started the first step towards geothermal development for electricity production as follows: A geothermal electric pilot plant of 2 MW e nominal capacity was installed on the Zephyria plain in Milos island (1985). During a nine month operation of the plant, problems connected with its long term operation were solved (hot reinjection of the high salinity brine, turbine washing etc). A feasibility study regarding exploitation of the Nisyros geothermal resources was completed and PPC connected Nisyros island electrically to Kos island via submarine cables. As consequence of the reaction against geothermal development by the people of Milos in early 1989, the power plant is still out of operation and the feasibility study planned for Milos has been postponed. For similar reasons the Nisyros drilling contract for five new geothermal deep wells has not come into force as yet. This paper summarizes the main PPC geothermal activities to date, the problems caused by the reactions of the Milos and Nisyros population and the relevant PPC countermeasures, as well as outlining the PPC development program for the near future

  11. Novel approaches for an enhanced geothermal development of residential sites

    Schelenz, Sophie; Firmbach, Linda; Shao, Haibing; Dietrich, Peter; Vienken, Thomas

    2015-04-01

    An ongoing technological enhancement drives an increasing use of shallow geothermal systems for heating and cooling applications. However, even in areas with intensive shallow geothermal use, planning of geothermal systems is in many cases solely based on geological maps, drilling databases, and literature references. Thus, relevant heat transport parameters are rather approximated than measured for the specific site. To increase the planning safety and promote the use of renewable energies in the domestic sector, this study investigates a novel concept for an enhanced geothermal development of residential neighbourhoods. This concept is based on a site-specific characterization of subsurface conditions and the implementation of demand-oriented geothermal usage options. Therefore, an investigation approach has been tested that combines non-invasive with minimum-invasive exploration methods. While electrical resistivity tomography has been applied to characterize the geological subsurface structure, Direct Push soundings enable a detailed, vertical high-resolution characterization of the subsurface surrounding the borehole heat exchangers. The benefit of this site-specific subsurface investigation is highlighted for 1) a more precise design of shallow geothermal systems and 2) a reliable prediction of induced long-term changes in groundwater temperatures. To guarantee the financial feasibility and practicability of the novel geothermal development, three different options for its implementation in residential neighbourhoods were consequently deduced.

  12. Rock melting technology and geothermal drilling

    Rowley, J. C.

    1974-01-01

    National awareness of the potential future shortages in energy resources has heightened interest in exploration and utilization of a variety of geothermal energy (GTE) reservoirs. The status of conventional drilling of GTE wells is reviewed briefly and problem areas which lead to higher drilling costs are identified and R and D directions toward solution are suggested. In the immediate future, an expanded program of drilling in GTE formations can benefit from improvements in drilling equipment and technology normally associated with oil or gas wells. Over a longer time period, the new rock-melting drill bits being developed as a part of the Los Alamos Scientific Laboratory's Subterrene Program offer new solutions to a number of problems which frequently hamper GTE drilling, including the most basic problem - high temperature. Two of the most favorable characteristics of rock-melting penetrators are their ability to operate effectively in hot rock and produce glass linings around the hole as an integral part of the drilling process. The technical advantages to be gained by use of rock-melting penetrators are discussed in relation to the basic needs for GTE wells.

  13. Alaska: a guide to geothermal energy development

    Basescu, N.; Bloomquist, R.G.; Higbee, C.; Justus, D.; Simpson, S.

    1980-06-01

    A brief overview is given of the geological characteristics of each region of the state as they relate to potential geothermal development. Those exploration methods which can lead to the siting of a deep exploration well are described. Requirements and techniques needed for drilling deeper higher temperature exploration and production wells are presented. Electrical generation, direct utilization, and indirect utilization are reviewed. Economic factors of direct use projects are presented. A general guide to the regulatory framework affecting geothermal energy development is provided. The general steps necessary to gain access to explore, develop, distribute, and use geothermal resources are outlined. (MHR)

  14. Washington: a guide to geothermal energy development

    Bloomquist, R.G.; Basescu, N.; Higbee, C.; Justus, D.; Simpson, S.

    1980-01-01

    A brief overview is given of the geological characteristics of each region of the state as they relate to potential geothermal development. Those exploration methods which can lead to the siting of a deep exploration well are described. Requirements and techniques needed for drilling deeper higher temperature exploration and production wells are presented. Electrical generation, direct utilization, and indirect utilization are reviewed. Economic factors of direct use projects are presented. A general guide to the regulatory framework affecting geothermal energy development is provided. The general steps necessary to gain access to explore, develop, distribute, and use geothermal resources are outlined. (MHR)

  15. FY 2001 report on the results of the development of the hydrothermal utilization power plant, etc. Development of collecting technology for deep geothermal resources (Development of drilling technology for deep geothermal resources); 1992 - 2001 nessui riyo hatsuden plant tou kaihatsu sokatsu seika hokokusho. Shinbu chinetsu shigen saishu gijutsu no kaihatsu - Shinbu chinetsu shigen kussaku gijutsu no kaihatsu (2001 nendo seika hokokusho bessatsu shiryo)

    NONE

    2002-03-01

    For the purpose of developing deep geothermal resources, development of 'drilling technology of deep geothermal resources' was made from FY 1991 to FY 2001, and the results were summarized. As to the development of bits, the bit that can be used for 30 hours or more at a temperature of 250 degrees C was developed, and the demonstrative test was made in FY 1997. Relating to the development of the high temperature use drilling mud, the mud that can be used at a temperature of 350 degrees C was developed, and the test using the actual well was conducted in FY 1997. Concerning the development of the high temperature use cement slurry, the cement slurry with specific gravity of 1.35 or below that can be used under the environment of a temperature of 350 degrees C was developed, and the hanging test of the specimen was made in the actual well in FY 1998. About the development of the high temperature use downhole motor, a prototype of 1/12 scale was fabricated in FY 1998, and the performance test at high temperature was conducted. As to the development of the high temperature use high strength cement slurry, a cement slurry with specific gravity of 1.50 or below and compressive strength of 19.61 MPa that is used under the environment of a temperature of 300 degrees C was developed, and the test on the long-term compressive strength was made in FY 2001. (NEDO)

  16. 2013 Geothermal Technologies Office Peer Review Report

    Geothermal Technologies Office

    2014-01-01

    Geothermal Technologies Office conducted its annual program peer review in April of 2013. The review provided an independent, expert evaluation of the technical progress and merit of GTO-funded projects. Further, the review was a forum for feedback and recommendations on future GTO strategic planning. During the course of the peer review, DOE-funded projects were evaluated for 1) their contribution to the mission and goals of the GTO and 2) their progress against stated project objectives. Principal Investigators (PIs) came together in sessions organized by topic “tracks” to disseminate information, progress, and results to a panel of independent experts as well as attendees.

  17. Geothermal Technologies Program 2011 Peer Review Report

    Hollett, Douglas [Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Stillman, Greg [Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2011-06-01

    On June 6-10, 2011, the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Geothermal Technologies Program (GTP or the Program) conducted its annual program peer review in Bethesda, Maryland. In accordance with the EERE Peer Review Guide, the review provides an independent, expert evaluation of the strategic goals and direction of the program and is a forum for feedback and recommendations on future program planning. The purpose of the review was to evaluate DOE-funded projects for their contribution to the mission and goals of the Program and to assess progress made against stated objectives.

  18. Economic impacts of geothermal development in Harney County, Oregon

    Sifford, A.; Beale, K.

    1991-12-01

    This study provides local economic impact estimates for a 100 megawatt (MW) geothermal power project in Oregon. The hypothetical project would be in Harney Count. Bonneville Power Administration commissioned this study to quantify such impacts as part of regional confirmation work recommended by the Northwest Power Planning Council and its advisors. Harney County was chosen as it has both identified resources and industry interest. Geothermal energy is defined as the heat of the earth. For purposes of this study, geothermal energy is heat capable of economically generating electricity (using available technology). That translates to steam or hot water over 300 degrees F. Local economic impacts include direct, indirect, and induced changes in the local economy. Direct economic impacts result from the costs of plant development, construction, and operation. Indirect impacts result from household and local government purchases. Induced impacts result from continued respending as goods and services to support the households and local governments are purchased. Employment impacts of geothermal development follow a pattern similar to the economic impacts. The workers associated with plant development bring their families to the area. Additional labor is required to provide support services for the new population. Local government services must also increase to support the new community growth and the geothermal plant itself. These changes yield indirect and induced employment impacts associated with the geothermal plant

  19. Economic impacts of geothermal development in Deschutes County, Oregon

    Sifford, A.; Beale, K.

    1991-12-01

    This study provides local economic impact estimates for a 100 megawatt (MW) geothermal power project in Oregon. The hypothetical project would be Deschutes County. Bonneville Power Administration commissioned this study to quantify such impacts as part of regional confirmation work recommended by the Northwest Power Planning Council and its advisors. Deschutes County was chosen as it has both identified resources and industry interest. Geothermal energy is defined as the heat of the earth. For purposes of this study, geothermal energy is heat capable of economically generating electricity (using available technology). That translates to steam or hot water over 300 degrees F. Local economical impacts include direct, indirect, and induced changes in the local economy. Direct economic impacts result for the costs of plant development, construction, and operation. Indirect impacts result from household and local government purchases. Induced impacts result from continued respending as goods and services to support the households and local governments are purchased. Employment impacts of geothermal development follow a pattern similar to the economic impacts. The workers associated with plant development bring their families to the area. Additional labor is required to provide support services for the new population. Local government services must also increase to support the new community growth and the geothermal plant itself. These changes yield indirect and induced employment impacts associated with the geothermal plant

  20. Economic Impacts of Geothermal Development in Deschutes County, Oregon.

    Sifford, Alex; Beale, Kasi

    1991-12-01

    This study provides local economic impact estimates for a 100 megawatt (MW) geothermal power project in Oregon. The hypothetical project would be Deschutes County. Bonneville Power Administration commissioned this study to quantify such impacts as part of regional confirmation work recommended by the Northwest Power Planning Council and its advisors. Deschutes County was chosen as it has both identified resources and industry interest. Geothermal energy is defined as the heat of the earth. For purposes of this study, geothermal energy is heat capable of economically generating electricity (using available technology). That translates to steam or hot water over 300{degrees}F. Local economical impacts include direct, indirect, and induced changes in the local economy. Direct economic impacts result for the costs of plant development, construction, and operation. Indirect impacts result from household and local government purchases. Induced impacts result from continued respending as goods and services to support the households and local governments are purchased. Employment impacts of geothermal development follow a pattern similar to the economic impacts. The workers associated with plant development bring their families to the area. Additional labor is required to provide support services for the new population. Local government services must also increase to support the new community growth and the geothermal plant itself. These changes yield indirect and induced employment impacts associated with the geothermal plant.

  1. Economic Impacts of Geothermal Development in Harney County, Oregon.

    Sifford, Alex; Beale, Kasi

    1991-12-01

    This study provides local economic impact estimates for a 100 megawatt (MW) geothermal power project in Oregon. The hypothetical project would be in Harney Count. Bonneville Power Administration commissioned this study to quantify such impacts as part of regional confirmation work recommended by the Northwest Power Planning Council and its advisors. Harney County was chosen as it has both identified resources and industry interest. Geothermal energy is defined as the heat of the earth. For purposes of this study, geothermal energy is heat capable of economically generating electricity (using available technology). That translates to steam or hot water over 300{degrees}F. Local economic impacts include direct, indirect, and induced changes in the local economy. Direct economic impacts result from the costs of plant development, construction, and operation. Indirect impacts result from household and local government purchases. Induced impacts result from continued respending as goods and services to support the households and local governments are purchased. Employment impacts of geothermal development follow a pattern similar to the economic impacts. The workers associated with plant development bring their families to the area. Additional labor is required to provide support services for the new population. Local government services must also increase to support the new community growth and the geothermal plant itself. These changes yield indirect and induced employment impacts associated with the geothermal plant.

  2. Development of geothermal-well-completion systems. Final report

    Nelson, E.B.

    1979-01-01

    Results of a three year study concerning the completion of geothermal wells, specifically cementing, are reported. The research involved some specific tasks: (1) determination of properties an adequate geothermal well cement must possess; (2) thorough evaluation of current high temperature oilwell cementing technology in a geothermal context; (3) basic research concerning the chemical and physical behavior of cements in a geothermal environment; (4) recommendation of specific cement systems suitable for use in a geothermal well.

  3. Geothermal technology publications and related reports: a bibliography, January 1984-December 1985

    Cooper, D.L. (ed.)

    1986-09-01

    Technological limitations restrict the commercial availability of US geothermal resources and prevent effective evaluation of large resources, as magma, to meet future US needs. The US Department of Energy has asked Sandia to serve as the lead laboratory for research in Geothermal Technologies and Magma Energy Extraction. In addition, technology development and field support has been provided to the US Continental Scientific Drilling Program. Published results for this work from January 1984 through December 1985 are listed in this bibliography.

  4. Geothermal energy in the western United States and Hawaii: Resources and projected electricity generation supplies. [Contains glossary and address list of geothermal project developers and owners

    1991-09-01

    Geothermal energy comes from the internal heat of the Earth, and has been continuously exploited for the production of electricity in the United States since 1960. Currently, geothermal power is one of the ready-to-use baseload electricity generating technologies that is competing in the western United States with fossil fuel, nuclear and hydroelectric generation technologies to provide utilities and their customers with a reliable and economic source of electric power. Furthermore, the development of domestic geothermal resources, as an alternative to fossil fuel combustion technologies, has a number of associated environmental benefits. This report serves two functions. First, it provides a description of geothermal technology and a progress report on the commercial status of geothermal electric power generation. Second, it addresses the question of how much electricity might be competitively produced from the geothermal resource base. 19 figs., 15 tabs.

  5. Geothermal Technologies Office 2012 Peer Review Report

    none,

    2013-04-01

    On May 7-10, 2012, the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Geothermal Technologies Office conducted its annual program peer review in Westminster, CO. In accordance with the EERE Peer Review Guide, the review provides an independent, expert evaluation of the strategic goals and direction of the office and is a forum for feedback and recommendations on future office planning. The purpose of the review was to evaluate DOE-funded projects for their contribution to the mission and goals of the office and to assess progress made against stated objectives. Project scoring results, expert reviewer comments, and key findings and recommendations are included in this report.

  6. Achievement report for fiscal 2000 on New Sunshine Project aiding program. Development of hot water utilizing power generation plant (Development of deep seated geothermal resource collection technologies - development of deep seated geothermal resource production technologies); 2000 nendo nessui riyo hatsuden plant to kaihatsu seika hokokusho. Shinbu chinetsu shigen saishu gijutsu no kaihatsu (Shinbu chinetsu shigen seisan gijutu no kaihatsu)

    NONE

    2001-03-01

    Items of information about deep seated geothermal resource production technologies were collected, and tests and studies were performed using actual wells. This paper summarizes the achievements in fiscal 2000. In developing the PTDS logging technology, it was verified in the actual well tests that the measured density of a D probe is consistent with the theoretical density, and the accuracy is satisfactory. The extended time measurement at fixed points on temperatures of fluids in the wells, pressures, flow rates, and fluid densities has identified chronological change of the characteristics of the fluids in the wells, including the enthalpy, proving them to be effective in well control. In developing the PTC monitoring technology, a fluid extracting machine for the downhole fluid sampler was fabricated, which has collected hot water successfully in the actual well twice out of seven attempts. In developing the high temperature tracer monitoring technology, experiments were performed using vapor phase and liquid phase tracers, whereas re-discharge of all the tracer materials was identified. In developing the scale preventing and removing technology, a silica recovering device capable of treating hot water at 0.6 ton per hour as maximum was fabricated, and the site tests were performed by using cation-based coagulant. (NEDO)

  7. NEDO Forum 2001. Session on development of geothermal energy (Prospect of geothermal energy); NEDO Forum 2001. Chinetsu kaihatsu session (chinetsu energy no tenbo)

    NONE

    2001-09-20

    The presentations made at the above-named session of the NEDO (New Energy and Industrial Technology Development Organization) forum held in Tokyo on September 20, 2001, are collected in this report. Director Noda of Institute for Geo-Resources and Environment, National Institute of Advanced Industrial Science and Technology, delivered a lecture entitled 'Future course of geothermal technology development,' and Executive Director Iikura of Tokyo Toshi Kaihatsu, Inc., a lecture entitled 'Thinking of geothermal energy.' Described in an achievement report entitled 'Present state and future trend of geothermal development' were the present state of geothermal power generation and characteristics of geothermal energy, signification of the introduction of binary cycle power generation, and the promotion of the introduction of ground heat utilizing heat pump systems. Stated in a lecture entitled 'Geothermal development promotion survey' were the geothermal development promotion survey and its result and how to implement such surveys in the future. Reported in a lecture entitled 'Verification survey of geothermal energy probing technology and the like and the development of geothermal water utilizing power plant and the like' were reservoir fluctuation probing, deep-seated thermal resource probing and collecting, 10-MW class demonstration plant, Measurement While Drilling System, and a hot rock power generation system. (NEDO)

  8. National Geothermal Data System: A Geothermal Data System for Exploration and Development

    Allison, Lee [Executive Office of the State of Arizona (Arizona Geological Survey); Richard, Stephen [Executive Office of the State of Arizona (Arizona Geological Survey); Patten, Kim [Executive Office of the State of Arizona (Arizona Geological Survey); Love, Diane [Executive Office of the State of Arizona (Arizona Geological Survey); Coleman, Celia [Executive Office of the State of Arizona (Arizona Geological Survey); Chen, Genhan [Executive Office of the State of Arizona (Arizona Geological Survey)

    2012-09-30

    Geothermal-relevant geosciences data from all 50 states (www.stategeothermaldata.org), federal agencies, national labs, and academic centers are being digitized and linked in a distributed online network funded by the U.S. Department of Energy Geothermal Data System (GDS) to foster geothermal energy exploration and development through use of interactive online ‘mashups,’data integration, and applications. Emphasis is first to make as much information as possible accessible online, with a long range goal to make data interoperable through standardized services and interchange formats. A growing set of more than thirty geoscience data content models is in use or under development to define standardized interchange formats for: aqueous chemistry, borehole temperature data, direct use feature, drill stem test, seismic event hypocenter, fault feature, geologic contact feature, geologic unit feature, thermal/hot spring description, metadata, quaternary fault, volcanic vent description, well header feature, borehole lithology log, crustal stress, gravity, heat flow/temperature gradient, permeability, and feature description data like developed geothermal systems, geologic unit geothermal characterization, permeability, production data, rock alteration description, rock chemistry, and thermal conductivity. Map services are also being developed for isopach maps, aquifer temperature maps, and several states are working on geothermal resource overview maps. Content models are developed based on existing community datasets to encourage widespread adoption and promulgate content quality standards. Geoscience data and maps from other GDS participating institutions, or “nodes” (e.g., U.S. Geological Survey, Southern Methodist University, Oregon Institute of Technology, Stanford University, the University of Utah) are being supplemented with extensive land management and land use resources from the Western Regional Partnership (15 federal agencies and 5 Western states) to

  9. United States geothermal technology: Equipment and services for worldwide applications

    NONE

    1995-05-01

    This document has two intended audiences. The first part, ``Geothermal Energy at a Glance,`` is intended for energy system decision makers and others who are interested in wide ranging aspects of geothermal energy resources and technology. The second part, ``Technology Specifics,`` is intended for engineers and scientists who work with such technology in more detailed ways. The glossary at the end of the document defines many of the specialized terms. A directory of US geothermal industry firms who provide goods and services for clients around the world is available on request.

  10. FY 1995 report on verification of geothermal exploration technology. Development of fracture reservoir exploration technology (development of seismic exploration); 1995 nendo chinetsu tansa gijutsunado kensho chosa. Danretsugata choryuso tansaho kaihatsu (danseiha riyo tansaho kaihatsu) hokokusho

    NONE

    1996-03-01

    This report provides the development of new exploration technology using elastic waves, such as reflection seismic survey, VSP, and seismic tomography, for precisely characterizing subsurface fractures in geothermal reservoirs. In order to investigate and improve the effective data acquisition and analysis methods for detecting a fault type of fractures, an experiment of a seismic tomography method was conducted using wells drilled in the Ogiri geothermal field, Aira-gun, Kagoshima Prefecture. An experiment of propagation characteristics of piezo type underground seismic source in the volcanic field was also conducted as a trend survey of underground seismic sources. The fracture type in the model field was systematically analyzed by measuring the core samples obtained in the demonstration test field through remanence measurement, fluid inclusion measurement, and zircon measurement using test equipment, and by analyzing results obtained from cores and results of seismic tomography obtained from the wells. Based on these results, the effectiveness and practical application of exploration methods using elastic waves were investigated. 80 refs., 250 figs., 49 tabs.

  11. Enhanced Geothermal Systems (EGS) well construction technology evaluation report.

    Capuano, Louis, Jr. (Thermasource Inc.); Huh, Michael; Swanson, Robert (Thermasource Inc.); Raymond, David Wayne; Finger, John Travis; Mansure, Arthur James; Polsky, Yarom; Knudsen, Steven Dell

    2008-12-01

    Electricity production from geothermal resources is currently based on the exploitation of hydrothermal reservoirs. Hydrothermal reservoirs possess three ingredients critical to present day commercial extraction of subsurface heat: high temperature, in-situ fluid and high permeability. Relative to the total subsurface heat resource available, hydrothermal resources are geographically and quantitatively limited. A 2006 DOE sponsored study led by MIT entitled 'The Future of Geothermal Energy' estimates the thermal resource underlying the United States at depths between 3 km and 10 km to be on the order of 14 million EJ. For comparison purposes, total U.S. energy consumption in 2005 was 100 EJ. The overwhelming majority of this resource is present in geological formations which lack either in-situ fluid, permeability or both. Economical extraction of the heat in non-hydrothermal situations is termed Enhanced or Engineered Geothermal Systems (EGS). The technologies and processes required for EGS are currently in a developmental stage. Accessing the vast thermal resource between 3 km and 10 km in particular requires a significant extension of current hydrothermal practice, where wells rarely reach 3 km in depth. This report provides an assessment of well construction technology for EGS with two primary objectives: (1) Determining the ability of existing technologies to develop EGS wells. (2) Identifying critical well construction research lines and development technologies that are likely to enhance prospects for EGS viability and improve overall economics. Towards these ends, a methodology is followed in which a case study is developed to systematically and quantitatively evaluate EGS well construction technology needs. A baseline EGS well specification is first formulated. The steps, tasks and tools involved in the construction of this prospective baseline EGS well are then explicitly defined by a geothermal drilling contractor in terms of sequence, time and

  12. FY 1998 report on the verification survey of geothermal exploration technology, etc. 2/2. Survey of deep geothermal resource; 1998 nendo chinetsu tansa gijutsu nado kensho chosa hokokusho. 2/2. Shinbu chinetsu shigen chosa

    NONE

    1999-12-01

    For the purpose of commercializing deep geothermal resource, a deep exploration well of 4000m class was drilled in the existing geothermal development area to survey the situation of deep geothermal resource existence and the availability. Concretely, the deep geothermal exploration well was drilled for study in the Kakkonda area, Shizukuishi town, Iwate prefecture, to clarify the situation of deep geothermal resource existence and the whole image of geothermal system. Consideration was made of the deep geothermal exploration method, systematization of deep high temperature drilling technology, and availability of deep geothermal resource. The results of the survey were summed up as follows: 1) general remarks; 2) deep exploration well drilling work; 3) details of the study. This report contained 3). In 3), the items were as follows: heightening of accuracy of the deep geothermal resource exploration method, making of a geothermal model in the Kakkonda area, study of deep drilling technology, study of deep fluid utilization technology, and making of a guide for deep geothermal resource exploration/development in the Kakkonda area. As to the technology of high temperature deep geothermal well drilling, studies were made of the borehole cooling method, mud water cooling method, survey of deterioration of casing with age, etc. (NEDO)

  13. Technology and economics of near-surface geothermal resources exploitation

    Э. И. Богуславский

    2017-04-01

    Full Text Available The paper presents economic justification for applicability of near-surface geothermal installations in Luga region, based on results of techno-economic calculations as well as integrated technical and economic comparison of different prediction scenarios of heat supply, both conventional and using geothermal heat pumps (GHP. Construction costs of a near-surface geothermal system can exceed the costs of central heating by 50-100 %. However, operation and maintenance (O&M costs of heat production for geothermal systems are 50-70 % lower than for conventional sources of heating. Currently this technology is very important, it is applied in various countries (USA, Germany, Japan, China etc., and depending on the region both near-surface and deep boreholes are being used. World practice of near-surface geothermal systems application is reviewed in the paper.

  14. Development of drilling foams for geothermal applications

    McDonald, W.J.; Remont, L.J.; Rehm, W.A.; Chenevert, M.E.

    1980-01-01

    The use of foam drilling fluids in geothermal applications is addressed. A description of foams - what they are, how they are used, their properties, equipment required to use them, the advantages and disadvantages of foams, etc. - is presented. Geothermal applications are discussed. Results of industry interviews presented indicate significant potential for foams, but also indicate significant technical problems to be solved to achieve this potential. Testing procedures and results of tests on representative foams provide a basis for work to develop high-temperature foams.

  15. Verification survey of geothermal exploration technology, etc. Report on the result of the developmental research on the development of the fracture type reservoir exploration method; Chinetsu tansa gijutsu nado kensho chosa. Danretsugata choryuso tansaho kaihatsu kenkyu kaihatsu seika sokatsu hokokusho

    NONE

    1997-03-01

    For the purpose of grasping fracture groups forming geothermal reservoirs with accuracy, the development of the fracture type reservoir exploration method has advanced the technical development of exploration methods of seismic wave use, electromagnetic induction use, and micro-earthquake use. This paper summarized main results of the development and problems to be solved in the future. In the development of the seismic wave use exploration method, the high accuracy reflection method using seismic wave, VSP and seismic tomography were adopted to the geothermal field, and technology effective for the exploration of fracture type reservoirs was developed. In the development of the electromagnetic induction use exploration method, the array CSMT method which can measure multiple stations along the traverse line at the same time was developed with the aim of grasping effectively and accurately fracture groups forming geothermal reservoirs as changes of resistivity in the shallow-deep underground. In the fracture group forming geothermal reservoirs, micro-earthquakes are generated by movement of thermal water and pressure variations. In the development of the micro-earthquake use exploration method, developed was the micro-earthquake data processing and analysis system (MEPAS). 179 refs., 117 figs., 28 tabs.

  16. PROSPECTS OF GEOTHERMAL RESOURCES DEVELOPMENT FOR EAST CISCAUCASIA

    A. B. Alkhasov

    2013-01-01

    Full Text Available Abstract. Work subject. Aim. The Northern Caucasus is one of the prospective regions for development of geothermal energy.The hydrogeothermal resources of the only East Ciscaucasian Artesian basin are estimated up to 10000 MW of heat and 1000 MW of electric power. For their large-scale development it is necessary to built wells of big diameter and high flow rate involving huge capital investments. Reconstruction of idle wells for production of thermal water will allow to reduce capital investments for building of geothermal power installations. In the East Ciscaucasian Artesian basin there are a lot of promising areas with idle wells which can be converted for production of thermal water. The purpose of work is substantiation possibility of efficient development of geothermal resources of the Northern Caucasus region using idle oil and gas wells.Methods. The schematic diagram is submitted for binary geothermal power plant (GPP with use of idle gas-oil wells where the primary heat carrier in a loop of geothermal circulation system is used for heating and evaporation of the low-boiling working agent circulating in a secondary contour of steam-power unit. Calculations are carried out for selection of the optimum parameters of geothermal circulation system for obtaining the maximum useful power of GPP. The thermodynamic analysis of low-boiling working agents is made. Development of medial enthalpy thermal waters in the combined geothermal-steam-gas power installations is offered where exhaust gases of gas-turbine installation are used for evaporation and overheat of the working agent circulating in a contour of GPP. Heating of the working agent in GPP up to the temperature of evaporation is carried out by thermal water.Results. The possibility of efficient development of geothermal resources of the Northern Caucasus region by construction of binary geothermal power plants using idle oil and gas wells is substantiated. The capacities and the basic

  17. Financing geothermal resource development in the Pacific Region states

    1978-08-15

    State and federal tax treatment as an incentive to development and non-tax financial incentives such as: the federal geothermal loan guarantee program, the federal geothermal reservoir insurance, and state financial incentives are discussed. (MHR)

  18. Fiscal 1996 report on the results of the subsidy operation under the Sunshine Project on the development of a geothermal water use power plant, etc. Development of the deep geothermal resource collecting technology (development of the deep geothermal resource drilling technology); 1996 nendo New Sunshine keikaku hojo jigyo seika hokokusho. Nessui riyo hatsuden plant nado kaihatsu (shinbu chinetsu shigen saishu gijutsu no kaihatsu / shinbu chinetsu shigen kussaku gijutsu no kaihatsu)

    NONE

    1997-03-01

    The paper reported the results of the fiscal 1996 R and D on the development of deep geothermal resource collecting/drilling technology. In the design of a total development, the planned adjustment of actual well tests was conducted on bits and drilling mud at the time of drilling the exploration well of the Kakkonda area. As to the trend of overseas technology, examined was the developmental trend of high temperature type downhole motor products. In the development of hard high temperature strata drilling element technology, a drilling test was carried out on trially manufactured 300degC heat resistant/durable bits. In the development of high temperature drilling mud, drilling was done in the mud of thermally stable quality in the actual well experiment using the 300degC mud system. In the development of high temperature use cement and high temperature use cement slurry, a possibility was obtained of composing a slurry which has the targeted dewatering amount, compressive strength, and water permeability. In the development of high temperature downhole motor, data on characteristics of heat resistant stator materials were arranged in a relationship among the abrasion amount, thermal expansion amount and elastic recovery amount, and the database was obtained. 166 figs., 148 tabs.

  19. Geothermal Energy Research and Development Program; Project Summaries

    None

    1994-03-01

    This is an internal DOE Geothermal Program document. This document contains summaries of projects related to exploration technology, reservoir technology, drilling technology, conversion technology, materials, biochemical processes, and direct heat applications. [DJE-2005

  20. Geothermal Reservoir Well Stimulation Program: technology transfer

    1980-05-01

    A literature search on reservoir and/or well stimulation techniques suitable for application in geothermal fields is presented. The literature on stimulation techniques in oil and gas field applications was also searched and evaluated as to its relevancy to geothermal operations. The equivalent low-temperature work documented in the open literature is cited, and an attempt is made to evaluate the relevance of this information as far as high-temperature stimulation work is concerned. Clays play an important role in any stimulation work. Therefore, special emphasis has been placed on clay behavior anticipated in geothermal operations. (MHR)

  1. Technologies for the exploration of highly mineralized geothermal resources

    Alkhasov, A. B.; Alkhasova, D. A.; Ramazanov, A. Sh.; Kasparova, M. A.

    2017-09-01

    The prospects of the integrated processing of the high-parameter geothermal resources of the East Ciscaucasia of artesian basin (ECAB) with the conversion of their heat energy into electric energy at a binary geoPP and the subsequent extraction of solved chemical compounds from thermal waters are evaluated. The most promising areas for the exploration such resources are overviewed. The integrated exploration of hightemperature hydrogeothermal brines is a new trend in geothermal power engineering, which can make it possible to significantly increase the production volume of hydrogeothermal resources and develop the geothermal field at a higher level with the realization of the energy-efficient advanced technologies. The large-scale exploration of brines can solve the regional problems of energy supply and import substitution and fulfill the need of Russia in food and technical salt and rare elements. The necessity of the primary integrated exploration of the oil-field highly mineralized brines of the South Sukhokumskii group of gas-oil wells of Northern Dagestan was shown in view of the exacerbated environmental problems. Currently, the oil-field brines with the radioactive background exceeding the allowable levels are discharged at disposal fields. The technological solutions for their deactivation and integrated exploration are proposed. The realization of the proposed technological solutions provides 300 t of lithium carbonate, 1650 t of caustic magnesite powder, 27300 t of chemically precipitated chalk, 116100 t of food salt, and up to 1.4 mln m3 of desalinated water from oil-field brines yearly. Desalinated water at the output of a geotechnological complex can be used for different economic needs, which is important for the arid North Caucasus region, where the fresh water deficiency is acute, especially in its plain part within the ECAB.

  2. Research on geochemical exploration in geotherm development

    Hirowatari, Kazuo; Imaizumi, Yukio; Koga, Akito; Iwanaga, Tatsuto.

    1987-01-01

    The decisive factor of geotherm development is to improve the exploration techniques. By effectively carrying out the selection of promising development spots and the decision of well drilling positions, the geotherm development exceeding existing energy sources becomes feasible. There have been many problems in conventional geotherm exploration such as the high cost and long work period, therefore, it was decided to advance the research on geochemical exploration techniques which are relatively simple and can be carried out with low cost. When the techniques of geochemistry are used, for example, in the case that there are hot springs or fumaroles, the temperature, origin, properties and so on of underground hot water reservoirs can be estimated from their chemical composition. The method of examining the mercury concentration in soil and soil air has been in practical use in the geothermal districts where the ground surface symptom lacks. This time, the method of investigation using radon, thoron and gamma ray as the exploration indices was newly studied. The index compositions for geochemical exploration, new exploration index compositions, the method of measurement, the basic investigation and on-the-spot investigation are reported. (Kako, I.)

  3. Outline of geothermal energy research and development in fiscal 1999; Heisei 11 nendo chinetsu enerugi kenkyu kaihatsu no gaiyo

    Konishi, T. [Agency of Industrial Science and Tehcnology, Tokyo (Japan)

    1999-11-18

    In this paper, the outline of the budget of geothermal energy relation in fiscal 1999, the system of research and development and the outline of research and development are described. Budgets in fiscal 1999 are the general account 17 million yen, the power development special account 3,222 million yen, sum total 323,900 million yen and it is a 33 million yen decrease compared with the preceding year. Within research and development, the following are included as a survey investigation research; a geothermal energy survey and picking technology, a verification investigation of a geothermal energy exploration technique, a deep geothermal resource investigation and an analysis and evaluation therefor. As a development of geothermal energy power plants using hot water, the following are included; development of the 10 MW binary cycle power generation plant, development of the bottom hole information system (MWD) in geothermal well drilling, technology development of the geothermal hot dry rock source system. As an analysis and evaluation of the bottom hole information detection system in geothermal well drilling, the following are included; an analysis and evaluation of the hot dry rock thermal extraction system, an analysis and evaluation of the deep geothermal resources picking technology, an analysis and evaluation of metallic materials for the geothermal deep direction and an analysis and evaluation of high polymer materials for the geothermal deep direction. (NEDO)

  4. Development of the Geothermal Heat Pump Market in China; Renewable Energy in China

    2006-03-01

    This case study is one in a series of Success Stories on developing renewable energy technologies in China for a business audience. It focuses on the development of the geothermal heat pump market in China.

  5. Geothermal : Economic Impacts of Geothermal Development in Whatcom County, Washington.

    Lesser, Jonathan A.

    1992-07-01

    This report estimates the local economic impacts that could be anticipated from the development of a 100 megawatt (MW) geothermal power plant in eastern Whatcom County, Washington, near Mt. Baker, as shown in Figure 1. The study was commissioned by the Bonneville Power Administration to quantify such impacts as part of regional confirmation work recommended by the Northwest Power Planning Council. Whatcom County was chosen due to both identified geotherrnal resources and developer interest. The analysis will focus on two phases: a plant construction phase, including well field development, generating plant construction, and transmission line construction; and an operations phase. Economic impacts will occur to the extent that construction and operations affect the local economy. These impacts will depend on the existing structure of the Whatcom County economy and estimates of revenues that may accrue to the county as a result of plant construction, operation, and maintenance. Specific impacts may include additional direct employment at the plant, secondary impacts from wage payments being used to purchase locally produced goods and services, and impacts due to expenditures of royalty and tax payments received by the county. The basis for the analysis of economic impacts in this study is the US Forest Service IMPLAN input-output modeling system.

  6. Geoplat-Spanish Geothermal technology platform-; Geoplat-Plataforma Tecnologica Espanola de Geotermia-

    Gregorio, M. de

    2009-07-01

    It was recently created the Spanish Geothermal Technology Platform-GEOPLAT- to provide a framework within, all sectors involved in the development of geothermal energy, leading the industry, work together in a coordinated way to ensure the commercial settlement of this renewable energy and its continuous growth, in a competitive and sustainable form. Its main objectives and structure are briefly described in the paper. (Author)

  7. Fiscal 1996 verification survey of geothermal exploration technology. Development of the fracture type reservoir exploration method (development of the elastic wave use exploration method); 1996 nendo chinetsu tansa gijutsu nado kensho chosa. Danretsugata choryuso tansaho kaihatsu (danseiha riyo tansaho kaihatsu)

    NONE

    1997-03-01

    For the purpose of exploring accurately fracture groups greatly restricting the fluid flow of geothermal reservoirs, technical development was made for applying the elastic wave exploration technology such as the high precision reflection method, VSP, elastic wave tomography to the geothermal exploration. The Okiri area, Kagoshima prefecture was selected as a demonstrative field of a typical type where the steep and predominant fracture rules the geothermal reservoir, and experiments were conducted using the high precision reflection method and VSP. Fracture models were made, and the analysis results were studied by a survey using the array CSMT/MT method and by a comparison with existing data. Reformation of the underground receiving system used for VSP and elastic tomography is made for improvement of its viability, and was applied to the VSP experiment. The treatment/analysis system of the core analyzer was improved, and cores of the demonstrative field were analyzed/measured. Further, the exploration results, core analysis results and existing data were synthetically analyzed, and fracture models of the demonstrative field were constructed. Also, effectiveness and viability of the elastic wave use exploration method were studied. 90 refs., 418 figs., 24 tabs.

  8. Geothermal research and development program of the US Atomic Energy Commission

    Werner, L. B.

    1974-01-01

    Within the overall federal geothermal program, the Atomic Energy Commission has chosen to concentrate on development of resource utilization and advanced research and technology as the areas most suitable to the expertise of its staff and that of the National Laboratories. The Commission's work in geothermal energy is coordinated with that of other agencies by the National Science Foundation, which has been assigned lead agency by the Office of Management and Budget. The objective of the Commission's program, consistent with the goals of the total federal program is to facilitate, through technological advancement and pilot plant operations, achievement of substantial commercial production of electrical power and utilization of geothermal heat by the year 1985. This will hopefully be accomplished by providing, in conjunction with industry, credible information on the economic operation and technological reliability of geothermal power and use of geothermal heat.

  9. IN SITU GEOTHERMAL ENERGY TECHNOLOGY: AN APPROACH FOR BUILDING CLEANER AND GREENER ENVIRONMENT

    Md. Faruque Hossain

    2016-01-01

    Full Text Available Geothermal energy is abundant everywhere in the world. It certainly would be a great benefit for human being once it is produced by a sophisticated technology. Consequently, it would be the biggest console for earth considering environmental sustainability. Unfortunately, the current status of commercial production of geothermal energy primarily from hydrothermal, geopressured, hot dry rock, and magma are limited to a few countries due to technological difficulties and production cost. This paper describes a simple technology where an in situ geothermal plant assisted by a heat pump would act as a high-temperature production (>150°C to provide excellent capacity of energy generation. The issue related to costs is interestingly cheaper on production, comparing to other technologies, such as solar, hydro, wind, and traditional geothermal technology as described in this article. Therefore, it is suggested that heat pump assisted in situ geothermal energy sources has a great potentiality to be a prime energy source in near future. Since the technology has a number of positive characteristics (simple, safe, and provides continuous baseload, load following, or peaking capacity and benign environmental attributes (zero emissions of CO2, SOx, and NOx, it certainly would be an interesting technology in both developed, and developing countries as an attractive option to produce clean energy to confirm a better environment.

  10. Optimizing Geothermal Drilling: Oil and Gas Technology Transfer

    Denninger, Kate; Eustes, Alfred; Visser, Charles; Baker, Walt; Bolton, Dan; Bell, Jason; Bell, Sean; Jacobs, Amelia; Nagandran, Uneshddarann; Tilley, Mitch; Quick, Ralph

    2015-09-02

    There is a significant amount of financial risk associated with geothermal drilling. This study of drilling operations seeks opportunities to improve upon current practices and technologies. The scope of this study included analyzing 21 geothermal wells and 21 oil and gas wells. The goal was to determine a 'Perfect Well' using historical data to compare the best oil and gas well to the best geothermal well. Unfortunately, limitations encountered in the study included missing data (bit records, mud information, etc.) and poor data collection practices An online software database was used to format drilling data to IADC coded daily drilling reports and generate figures for analysis. Six major issues have been found in geothermal drilling operations. These problems include lost circulation, rig/ equipment selection, cementing, penetration rate, drilling program, and time management. As a result of these issues, geothermal drilling averaged 56.4 days longer than drilling comparable oil and gas wells in the wells in this study. Roughly $13.9 million was spent on non-productive time in the 21 geothermal wells, compared with only $1.3 million in the oil and gas wells, assuming a cost of $50,000 per day. Comparable events such as drilling the same sized hole, tripping in/out, cementing, and running the same size casing took substantially less time in the oil and gas wells. Geothermal wells were drilled using older and/or less advanced technology to depths less than 10,000 feet, while oil and gas wells reached 12,500 feet faster with purpose built rigs. A new approach is now underway that will optimize drilling programs throughout the drilling industry using Mechanical Specific Energy (MSE) as a tool to realize efficient drilling processes. Potential improvements for current geothermal operations are: the use of electronic records, real time services, and official glossary terms to describe rig operations, and advanced drilling rigs/technology.

  11. Sustainable Development of Geothermal Industry in China: An Overview

    Xu Bang

    2016-01-01

    Full Text Available With a wide distribution, large reserves, low cost, sustainable energy use and environmental protection and other unparalleled advantages, geothermal energy resources is important for China’s energy structure adjustment, energy conservation and environment improvement. Currently, geothermal utilization in China is still in its infancy, and Sustainable Development of the geothermal industry is also having a lot of problems. In this paper, the current research on sustainable development of geothermal industry focuses on two aspects: 1. the current situation of geothermal industry development and existing problems, 2. the current situation of sustainable development of the geothermal industry. On the basis of the review, some suggestions for further study on the sustainable development of geothermal industry are put forward.

  12. Recent developments in the hot dry rock geothermal energy program

    Franke, P.R.; Nunz, G.J.

    1985-01-01

    In recent years, most of the Hot Dry Rock Programs effort has been focused on the extraction technology development effort at the Fenton Hill test site. The pair of approximately 4000 m wells for the Phase II Engineering System of the Fenton Hill Project have been completed. During the past two years, hydraulic fracture operations have been carried out to develop the geothermal reservoir. Impressive advances have been made in fracture identification techniques and instrumentation. To develop a satisfactory interwellbore flow connection the next step is to redrill the lower section of one of the wells into the fractured region. Chemically reactive tracer techniques are being developed to determine the effective size of the reservoir area. A new estimate has been made of the US hot dry rock resource, based upon the latest geothermal gradiant data. 3 figs.

  13. Technologies for Extracting Valuable Metals and Compounds from Geothermal Fluids

    Harrison, Stephen [SIMBOL Materials

    2014-04-30

    Materials is evaluating other products with greater commercial value. Potassium Silicotitanates, zeolites and other sorbents were evaluated as potential reagents for the extraction of potassium from geothermal brines and production of potassium chloride (potash). It was found that zeolites were effective at removing potassium but the capacity of the zeolites and the form that the potassium is in does not have economic potential. Iron-silica by-product The conversion of iron-silica by-product produced during silica management operations into more valuable materials was studied at the laboratory scale. Results indicate that it is technically feasible to convert the iron-silica by-product into ferric chloride and ferric sulfate solutions which are precursors to a ferric phosphate product. However, additional work to purify the solutions is required to determine the commercial viability of this process. Conclusion Simbol Materials is in the process of designing its first commercial plant based on the technology developed to the pilot scale during this project. The investment in the commercial plant is hundreds of millions of dollars, and construction of the commercial plant will generate hundreds of jobs. Plant construction will be completed in 2016 and the first lithium products will be shipped in 2017. The plant will have a lithium carbonate equivalent production capacity of 15,000 tonnes per year. The gross revenues from the project are expected to be approximately $ 80 to 100 million annually. During this development program Simbol grew from a company of about 10 people to over 60 people today. Simbol is expected to employ more than 100 people once the plant is constructed. Simbol Materials’ business is scalable in the Imperial Valley region because there are eleven geothermal power plants already in operation, which allows Simbol to expand its business from one plant to multiple plants. Additionally, the scope of the resource is vast in terms of potential products such

  14. Geothermal energy technology: issues, R and D needs, and cooperative arrangements

    1987-01-01

    In 1986, the National Research Council, through its Energy Engineering Board, formed the Committee on Geothermal Energy Technology. The committee's study addressed major issues in geothermal energy technology, made recommendations for research and development, and considered cooperative arrangements among government, industry, and universities to facilitate RandD under current severe budget constraints. The report addresses four types of geothermal energy: hydrothermal, geopressured, hot dry rock, and magma systems. Hydrothermal systems are the only type that are now economically competitive commercially. Further technology development by the Department of Energy could make the uneconomical hydrothermal resources commercially attractive to the industry. The economics are more uncertain for the longer-term technologies for extracting energy from geopressured, hot dry rock, and magma systems. For some sites, the cost of energy derived from geopressured and hot dry rock systems is projected within a commercially competitive range. The use of magma energy is too far in the future to make reasonable economic calculations.

  15. Development of an Improved Cement for Geothermal Wells

    Trabits, George [Trabits Group, LLC, Wasilla, AK (United States)

    2015-04-20

    After an oil, gas, or geothermal production well has been drilled, the well must be stabilized with a casing (sections of steel pipe that are joined together) in order to prevent the walls of the well from collapsing. The gap between the casing and the walls of the well is filled with cement, which locks the casing into place. The casing and cementing of geothermal wells is complicated by the harsh conditions of high temperature, high pressure, and a chemical environment (brines with high concentrations of carbon dioxide and sulfuric acid) that degrades conventional Portland cement. During the 1990s and early 2000s, the U.S. Department of Energy’s Geothermal Technologies Office (GTO) provided support for the development of fly-ash-modified calcium aluminate phosphate (CaP) cement, which offers improved resistance to degradation compared with conventional cement. However, the use of CaP cements involves some operational constraints that can increase the cost and complexity of well cementing. In some cases, CaP cements are incompatible with chemical additives that are commonly used to adjust cement setting time. Care must also be taken to ensure that CaP cements do not become contaminated with leftover conventional cement in pumping equipment used in conventional well cementing. With assistance from GTO, Trabits Group, LLC has developed a zeolite-containing cement that performs well in harsh geothermal conditions (thermal stability at temperatures of up to 300°C and resistance to carbonation) and is easy to use (can be easily adjusted with additives and eliminates the need to “sterilize” pumping equipment as with CaP cements). This combination of properties reduces the complexity/cost of well cementing, which will help enable the widespread development of geothermal energy in the United States.

  16. Guidebook to Geothermal Finance

    Salmon, J. P.; Meurice, J.; Wobus, N.; Stern, F.; Duaime, M.

    2011-03-01

    This guidebook is intended to facilitate further investment in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project development. The trends in geothermal project finance are the focus of this tool, relying heavily on interviews with leaders in the field of geothermal project finance. Using the information provided, developers and investors may innovate in new ways, developing partnerships that match investors' risk tolerance with the capital requirements of geothermal projects in this dynamic and evolving marketplace.

  17. Geothermal Reservoir Well Stimulation Program: technology transfer

    1980-05-01

    Each of the following types of well stimulation techniques are summarized and explained: hydraulic fracturing; thermal; mechanical, jetting, and drainhole drilling; explosive and implosive; and injection methods. Current stimulation techniques, stimulation techniques for geothermal wells, areas of needed investigation, and engineering calculations for various techniques. (MHR)

  18. Environmental overview for the development of geothermal resources in the State of New Mexico. Final report

    Bryant, M.; Starkey, A.H.; Dick-Peddie, W.A.

    1980-06-01

    A brief overview of the present day geothermal applications for hydrothermal electrical generation and direct heat use and their environmental implications is provided. Technologies and environmental impacts are considered at all points on the pathway of development resource exploration; well field, plant and transmission line construction; and plant operation. The technologies for electrical generation-direct, dry steam conversion; separated steam conversion; single-flash conversion, separated-steam/single-flash conversion and binary cycle conversion and the technologies for direct heat use - direct use of geothermal waters, surface heat exhanger, down-the hole heat exchanger and heat pump are described. A summary of the geothermal technologies planned or in operation within New Mexico geothermal areas is provided. A review of regulations that affect geothermal development and its related environmental impact in New Mexico is presented. The regulatory pathway, both state and federal, of geothermal exploration after the securing of appropriate leases, development, and construction and implementation of a geothermal facility are described. Six categories (Geophysical, Water, Air, Noise, Biota and Socioeconomics) were selected for environmental assessment. The data available is described.

  19. Geothermal materials development at Brookhaven National Laboratory

    Kukacka, L.E. [Brookhaven National Lab., Upton, NY (United States)

    1997-12-31

    As part of the DOE/OGT response to recommendations and priorities established by industrial review of their overall R&D program, the Geothermal Materials Program at Brookhaven National Laboratory (BNL) is focusing on topics that can reduce O&M costs and increase competitiveness in foreign and domestic markets. Corrosion and scale control, well completion materials, and lost circulation control have high priorities. The first two topics are included in FY 1997 BNL activities, but work on lost circulation materials is constrained by budgetary limitations. The R&D, most of which is performed as cost-shared efforts with U.S. geothermal firms, is rapidly moving into field testing phases. FY 1996 and 1997 accomplishments in the development of lightweight CO{sub 2}-resistant cements for well completions; corrosion resistant, thermally conductive polymer matrix composites for heat exchange applications; and metallic, polymer and ceramic-based corrosion protective coatings are given in this paper. In addition, plans for work that commenced in March 1997 on thermally conductive cementitious grouting materials for use with geothermal heat pumps (GHP), are discussed.

  20. FY 1998 report on the project for development of hot water utilizing power generating plants and others, supported by New Sunshine Project. Development of extraction technologies and development of production technologies for the deep-seated geothermal resources; 1998 nendo nessui riyo hatsuden plant nado kaihatsu seika hokokusho. Shinbu chinetsu shigen saishu gijutsu no kaihatsu / shinbu chinetsu shigen seisan gijutsu no kaihatsu

    NONE

    1999-03-01

    Described herein are the FY 1998 results of the activities for development of extraction and production technologies for the deep-seated geothermal resources, which are expected to contribute to increased geothermal power generation capacity. The program for the PTSD logging technology connects the S probe to PT probe, to simultaneously measure temperature, pressure and volumetric flow, producing the data of good quality even in a high temperature environment over 327 degrees C. Thus, possibility of the commercial system is confirmed. The D probe also produces a density calibration curve showing very good linearity, and operates normally in a high temperature environment of 406 degrees C. The program for the PTC monitoring technology conducts the field tests at Larderello, Italy, to confirm the sampler functions in a high temperature environment. The program for the tracer monitoring technology extracts promising tracers stable at high temperature from those for the liquid, vapor and liquid/vapor mixed phases. Silica is observed to be massively dissolved at 400 to 1,000mg/kg in the fluid under deep geothermal conditions. Scale precipitation rate is minimal for the first 21 days, but increases linearly with time thereafter. The experiments are also conducted for formation and prevention of the Fe-Si-based scales during the flushing period. (NEDO)

  1. The state of exploitation of geothermal energy and some interesting achievements in geothermal research and development in the world

    Dušan Rajver

    2016-08-01

    Full Text Available The article presents the latest status of geothermal energy use worldwide and the comparison with the previous period, both in electricity generation as well as in the various categories of direct use. Electricity production takes place in 26 countries and has at the end of 2014 reached 73,700 GWh from geothermal power plants with nearly 12.8 GW of installed power. This is still only 0.31 % of the total electricity produced in the world and it will be interesting to monitor the future share of geothermal energy in doing so. In the last 5-year period the development was particularly rapid in countries where it was slower in the past and, however, with favorable geological (tectonic conditions (Iceland, Kenya, New Zealand, Turkey, etc.. Direct use of geothermal energy covers a signifiant number of countries, today there are 82, although some of them are such where it takes place almost solely by geothermal (ground-source heat pumps (GHP on shallow subsurface energy (Finland. Installed capacity in the direct use is 70,885 MWt and geothermal energy used, including the GHP, is 592,638 TJ/year (end of 2014. Within the used energy the share of GHP dominates with 55.2 %, followed by the bathing and swimming pools complexes incl. balneology by 20.2 %, space heating by 15.0 % (the majority of it is district heating, heating of greenhouses and soil with 4.9 %, etc. The second part presents some interesting technological and scientifi innovations in exploration and exploitation of geothermal energy.

  2. Crossing the Barriers: An Analysis of Land Access Barriers to Geothermal Development and Potential Improvement Scenarios

    Levine, Aaron L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Young, Katherine R [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-04

    Developers have identified many non-technical barriers to geothermal power development, including access to land. Activities required for accessing land, such as environmental review and private and public leasing can take a considerable amount of time and can delay or prevent project development. This paper discusses the impacts to available geothermal resources and deployment caused by land access challenges, including tribal and cultural resources, environmentally sensitive areas, biological resources, land ownership, federal and state lease queues, and proximity to military installations. In this analysis, we identified challenges that have the potential to prevent development of identified and undiscovered hydrothermal geothermal resources. We found that an estimated 400 MW of identified geothermal resource potential and 4,000 MW of undiscovered geothermal resource potential were either unallowed for development or contained one or more significant barriers that could prevent development at the site. Potential improvement scenarios that could be employed to overcome these barriers include (1) providing continuous funding to the U.S. Forest Service (USFS) for processing geothermal leases and permit applications and (2) the creation of advanced environmental mitigation measures. The model results forecast that continuous funding to the USFS could result in deployment of an additional 80 MW of geothermal capacity by 2030 and 124 MW of geothermal capacity by 2050 when compared to the business-as-usual scenario. The creation of advanced environmental mitigation measures coupled with continuous funding to the USFS could result in deployment of an additional 97 MW of geothermal capacity by 2030 and 152 MW of geothermal capacity by 2050 when compared to the business-as-usual scenario. The small impact on potential deployment in these improvement scenarios suggests that these 4,400 MW have other barriers to development in addition to land access. In other words, simply

  3. Sustainable Development of Geothermal Industry in China: An Overview

    Xu Bang; Li Menggang; Pi Xiyu

    2016-01-01

    With a wide distribution, large reserves, low cost, sustainable energy use and environmental protection and other unparalleled advantages, geothermal energy resources is important for China’s energy structure adjustment, energy conservation and environment improvement. Currently, geothermal utilization in China is still in its infancy, and Sustainable Development of the geothermal industry is also having a lot of problems. In this paper, the current research on sustainable development of geot...

  4. Technologies for the Comprehensive Exploitation of the Geothermal Resources of the North Caucasus Region

    Alkhasov, A. B.

    2018-03-01

    Technology for the integrated development of low-temperature geothermal resources using the thermal and water potentials for various purposes is proposed. The heat of the thermal waters is utilized in a low-temperature district heating system and for heating the water in a hot water supply system. The water cooled in heat exchangers enters a chemical treatment system where it is conditioned into potable water quality and then forwarded to the household and potable water supply system. Efficient technologies for removal of arsenic and organic contaminants from the water have been developed. For the uninterrupted supply of the consumers with power, the technologies that use two and more types of renewable energy sources (RESs) have the best prospects. Technology for processing organic waste using the geothermal energy has been proposed. According to this technology, the geothermal water is divided into two flows, one of which is delivered to a biomass conversion system and the other is directed to a geothermal steam-gas power plant (GSGP). The wastewater arrives at the pump station from which it is pumped back into the bed. Upon drying, the biogas from the conversion system is delivered into the combustion chamber of a gas-turbine plant (GTP). The heat of the turbine exhaust gases is used in the GSGP to evaporate and reheat the low-boiling working medium. The working medium is heated in the GSGP to the evaporation temperature using the heat of the thermal water. High-temperature geothermal brines are the most promising for the comprehensive processing. According to the proposed technology, the heat energy of the brines is utilized to generate the electric power at a binary geothermal power station; the electric power is then used to extract the dissolved chemical components from the rest of the brine. The comprehensive utilization of high-temperature brines of the East-Precaucasian Artesian Basin will allow to completely satisfy the demand of Russia for lithium

  5. Research and technological development on heat pumps in Mexico operating with geothermal energy; Investigacion y desarrollo tecnologico sobre bombas de calor en Mexico operando con energia geotermica

    Garcia Gutierrez, Alfonso; Barragan Reyes, Rosa Maria; Arellano Gomez, Victor Manuel [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2008-07-01

    The Instituto de Investigaciones Electricas (IIE) and the Comision Federal de Electricidad (CFE) carried out in the past an extensive work of research and development (R&D) on heat pumps (HP). The systems tried on include heat pumps by mechanical compression, thermal absorption and thermal transformers. This paper briefly describes the main aspects of R&D on heat pumps and presents a more detailed description of three of the main studies: a) a Heat Pump (HP) by mechanical compression water-water type, designed for brine purification, operating with low pressure geothermal steam at the geothermal field Los Azufres, Michoacan, Mexico; b) a HP by absorption for cooling and refrigeration, operating with ammoniac/water and low enthalpy geothermal energy, which was tested in the geothermal fields of Los Azufres, Michoacan and Cerro Prieto, Baja California, and c) a thermal transformer by absorption, named Heat Pump by Absorption Type 2, which was tested to evaluate the behavior of diverse ternary solutions as working fluids. To date, there are plans to install and test a geothermal heat pump (connected to the subsoil), in Cerro Prieto, Mexicali, Baja California, Mexico. [Spanish] El Instituto de Investigaciones Electricas (IIE) y la Comision Federal de Electricidad (CFE) realizaron un trabajo extenso de investigacion y desarrollo (I&D) sobre bombas de calor (BC) en el pasado. Los sistemas que se probaron incluyen bombas de calor por compresion mecanica, absorcion y transformadores termicos. Este trabajo describe brevemente los principales aspectos de I&D sobre bombas de calor y se da una descripcion mas detallada de tres de los principales estudios: a) una Bomba de Calor (BC) por compresion mecanica tipo agua-agua, disenada para purificacion de salmueras, operando con vapor geotermico de baja presion en el campo geotermico de Los Azufres, Michoacan; b) una BC por absorcion para enfriamiento y refrigeracion, operando con amoniaco/agua y energia geotermica de baja entalpia

  6. Geothermal Technology: A Smart Way to Lower Energy Bills

    Calahan, Scott

    2007-01-01

    Heating costs for both natural gas and oil have risen dramatically in recent years--and will likely continue to do so. Consequently, it is important that students learn not only about traditional heating technology, but also about the alternative methods that will surely grow in use in the coming years. One such method is geothermal. In this…

  7. Benchmark Problems of the Geothermal Technologies Office Code Comparison Study

    White, Mark D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Podgorney, Robert [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kelkar, Sharad M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McClure, Mark W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Danko, George [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ghassemi, Ahmad [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fu, Pengcheng [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bahrami, Davood [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Barbier, Charlotte [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cheng, Qinglu [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chiu, Kit-Kwan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Detournay, Christine [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Elsworth, Derek [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fang, Yi [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Furtney, Jason K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gan, Quan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gao, Qian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Guo, Bin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hao, Yue [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Horne, Roland N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huang, Kai [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Im, Kyungjae [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Norbeck, Jack [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rutqvist, Jonny [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Safari, M. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sesetty, Varahanaresh [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sonnenthal, Eric [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tao, Qingfeng [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); White, Signe K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wong, Yang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xia, Yidong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-12-02

    A diverse suite of numerical simulators is currently being applied to predict or understand the performance of enhanced geothermal systems (EGS). To build confidence and identify critical development needs for these analytical tools, the United States Department of Energy, Geothermal Technologies Office has sponsored a Code Comparison Study (GTO-CCS), with participants from universities, industry, and national laboratories. A principal objective for the study was to create a community forum for improvement and verification of numerical simulators for EGS modeling. Teams participating in the study were those representing U.S. national laboratories, universities, and industries, and each team brought unique numerical simulation capabilities to bear on the problems. Two classes of problems were developed during the study, benchmark problems and challenge problems. The benchmark problems were structured to test the ability of the collection of numerical simulators to solve various combinations of coupled thermal, hydrologic, geomechanical, and geochemical processes. This class of problems was strictly defined in terms of properties, driving forces, initial conditions, and boundary conditions. Study participants submitted solutions to problems for which their simulation tools were deemed capable or nearly capable. Some participating codes were originally developed for EGS applications whereas some others were designed for different applications but can simulate processes similar to those in EGS. Solution submissions from both were encouraged. In some cases, participants made small incremental changes to their numerical simulation codes to address specific elements of the problem, and in other cases participants submitted solutions with existing simulation tools, acknowledging the limitations of the code. The challenge problems were based on the enhanced geothermal systems research conducted at Fenton Hill, near Los Alamos, New Mexico, between 1974 and 1995. The problems

  8. Geothermal development in the U.S.A. and future directions

    Wright, P.M.

    1998-01-01

    The geothermal industry presently has an operating generation capacity of about 2,300 megawatts and generates about 17 billion kilowatt-hours per year in the United States. Although the domestic market is stagnant due to restructuring of the electricity industry and to the very low competing price of natural gas, the industry is doing well by developing geothermal fields and power plants in the Philippines and Indonesia. The industry strongly supports the Department of Energy research program to develop new and improved technology and help lower the costs of geothermal power generation

  9. Geopressured-geothermal energy development: government incentives and institutional structures

    Frederick, D.O.; Prestwood, D.C.L.; Roberts, K.; Vanston, J.H. Jr.

    1979-01-01

    The following subjects are included: a geothermal resource overview, the evolution of the current Texas geopressured-geothermal institutional structure, project evaluation with uncertainty and the structure of incentives, the natural gas industry, the electric utility industry, potential governmental participants in resource development, industrial users of thermal energy, current government incentives bearing on geopressured-geothermal development, six profiles for utilization of the geopressured-geothermal resources in the mid-term, and probable impacts of new government incentives on mid-term resource utilization profiles. (MHR)

  10. A hybrid geothermal energy conversion technology: Auxiliary heating of geothermally preheated water or CO2 - a potential solution for low-temperature resources

    Saar, Martin; Garapati, Nagasree; Adams, Benjamin; Randolph, Jimmy; Kuehn, Thomas

    2016-04-01

    Safe, sustainable, and economic development of deep geothermal resources, particularly in less favourable regions, often requires employment of unconventional geothermal energy extraction and utilization methods. Often "unconventional geothermal methods" is synonymously and solely used as meaning enhanced geothermal systems, where the permeability of hot, dry rock with naturally low permeability at greater depths (4-6 km), is enhanced. Here we present an alternative unconventional geothermal energy utilization approach that uses low-temperature regions that are shallower, thereby drastically reducing drilling costs. While not a pure geothermal energy system, this hybrid approach may enable utilization of geothermal energy in many regions worldwide that can otherwise not be used for geothermal electricity generation, thereby increasing the global geothermal resource base. Moreover, in some realizations of this hybrid approach that generate carbon dioxide (CO2), the technology may be combined with carbon dioxide capture and storage (CCS) and CO2-based geothermal energy utilization, resulting in a high-efficiency (hybrid) geothermal power plant with a negative carbon footprint. Typically, low- to moderate-temperature geothermal resources are more effectively used for direct heat energy applications. However, due to high thermal losses during transport, direct use requires that the heat resource is located near the user. Alternatively, we show here that if such a low-temperature geothermal resource is combined with an additional or secondary energy resource, the power production is increased compared to the sum from two separate (geothermal and secondary fuel) power plants (DiPippo et al. 1978) and the thermal losses are minimized because the thermal energy is utilized where it is produced. Since Adams et al. (2015) found that using CO2 as a subsurface working fluid produces more net power than brine at low- to moderate-temperature geothermal resource conditions, we

  11. Geothermal energy in Alaska: site data base and development status

    Markle, D.

    1979-04-01

    The following are presented: the history of geothermal energy in Alaska; a history of Alaska land ownership; legal and institutional barriers; and economics. Development, the socio-economic and physical data concerning geothermal energy are documented by regions. The six regions presented are those of the present Alaska State Planning Activities and those of the Federal Land Use Commission. Site data summaries of the one hundred and four separate geothermal spring locations are presented by these regions. (MHR)

  12. Geothermal energy in Montana: site data base and development status

    Brown, K.E.

    1979-11-01

    A short description of the state's geothermal characteristics, economy, and climate is presented. A listing of the majority of the known hot springs is included. A discussion of present and projected demand is included. The results of the site specific studies are addressed within the state energy picture. Possible uses and process requirements of geothermal resources are discussed. The factors which influence geothermal development were researched and presented according to relative importance. (MHR)

  13. Optimizing Geothermal Drilling: Oil and Gas Technology Transfer

    Tilley, Mitch; Eustes, Alfred; Visser, Charles; Baker, Walt; Bolton, Dan; Bell, Jason; Nagandran, Uneshddarann; Quick, Ralph

    2015-01-26

    There is a significant amount of financial risk associated with geothermal drilling; however, there are opportunities to improve upon current practices and technologies used. The scope of this drilling operational study included 21 geothermal wells and 21 oil and gas wells. The goal was to determine a 'perfect well' using historical data to compare the best oil and gas well to the best geothermal well. Unfortunately, limitations encountered in the study included missing data (bit records, mud information, etc.), poor data collection, and difficult to ascertain handwriting. An online software database was used to format drilling data to IADC coded daily drilling reports and generate analysis figures. Six major issues have been found in geothermal drilling operations. These problems include lost circulation, rig/equipment selection, cementing, penetration rate, drilling program, and time management. As a result of these issues, geothermal drilling averages 56.4 days longer than drilling comparable oil and gas wells in the wells in this study. Roughly $13.9 million would be lost due to non-productive time in the 21 geothermal wells and only $1.3 million in the oil and gas wells, assuming a cost of $50,000 per day. Comparable events such as drilling the same sized hole, tripping in/out, cementing, and running the same size casing took substantially less time in the oil and gas wells. Geothermal wells were drilled using older and/or less advanced technology to depths less than 10,000 feet, while oil and gas wells reached 12,500 feet faster with purpose built rigs. A new approach is now underway that will optimize drilling programs throughout the drilling industry. It is the use of Mechanical Specific Energy (MSE) as a tool to realize efficient drilling processes. However, a work-flow must also be established in order for there to be an efficient drilling program. Potential improvements for current geothermal operations are: the use of electronic records, real

  14. Daemen Alternative Energy/Geothermal Technologies Demonstration Program, Erie County

    Beiswanger, Robert C. [Daemen College, Amherst, NY (United States)

    2013-02-28

    The purpose of the Daemen Alternative Energy/Geothermal Technologies Demonstration Project is to demonstrate the use of geothermal technology as model for energy and environmental efficiency in heating and cooling older, highly inefficient buildings. The former Marian Library building at Daemen College is a 19,000 square foot building located in the center of campus. Through this project, the building was equipped with geothermal technology and results were disseminated. Gold LEED certification for the building was awarded. 1) How the research adds to the understanding of the area investigated. This project is primarily a demonstration project. Information about the installation is available to other companies, organizations, and higher education institutions that may be interested in using geothermal energy for heating and cooling older buildings. 2) The technical effectiveness and economic feasibility of the methods or techniques investigated or demonstrated. According to the modeling and estimates through Stantec, the energy-efficiency cost savings is estimated at 20%, or $24,000 per year. Over 20 years this represents $480,000 in unrestricted revenue available for College operations. See attached technical assistance report. 3) How the project is otherwise of benefit to the public. The Daemen College Geothermal Technologies Ground Source Heat Pumps project sets a standard for retrofitting older, highly inefficient, energy wasting and environmentally irresponsible buildings that are quite typical of many of the buildings on the campuses of regional colleges and universities. As a model, the project serves as an energy-efficient system with significant environmental advantages. Information about the energy-efficiency measures is available to other colleges and universities, organizations and companies, students, and other interested parties. The installation and renovation provided employment for 120 individuals during the award period. Through the new Center

  15. Development of a code of practice for deep geothermal wells

    Leaver, J.D.; Bolton, R.S.; Dench, N.D.; Fooks, L.

    1990-01-01

    Recent and on-going changes to the structure of the New Zealand geothermal industry has shifted responsibility for the development of geothermal resources from central government to private enterprise. The need for a code of practice for deep geothermal wells was identified by the Geothermal Inspectorate of the Ministry of Commerce to maintain adequate standards of health and safety and to assist with industry deregulation. This paper reports that the Code contains details of methods, procedures, formulae and design data necessary to attain those standards, and includes information which drilling engineers having experience only in the oil industry could not be expected to be familiar with

  16. Enhanced Geothermal System Development of the AmeriCulture Leasehold in the Animas Valley; FINAL

    Duchane, David V; Seawright, Gary L; Sewright, Damon E; Brown, Don; Witcher, James c.; Nichols, Kenneth E.

    2001-01-01

    Working under the grant with AmeriCulture, Inc., and its team of geothermal experts, assembled a plan to apply enhanced geothermal systems (EGS) techniques to increase both the temperature and flow rate of the geothermal waters on its leasehold. AmeriCulture operates a commercial aquaculture facility that will benefit from the larger quantities of thermal energy and low cost electric power that EGS technology can provide. The project brought together a team of specialists that, as a group, provided the full range of expertise required to successfully develop and implement the project

  17. Community Geothermal Technology Program: Experimental lumber drying kiln. Final report

    Leaman, D.; Irwin, B.

    1989-10-01

    Goals were to demonstrate feasibility of using the geothermal waste effluent from the HGP-A well as a heat source for a kiln operation to dry hardwoods, develop drying schedules, and develop automatic systems to monitor/control the geothermally heated lumber dry kiln systems. The feasibility was demonstrated. Lumber was dried in periods of 2 to 6 weeks in the kiln, compared to 18 months air drying and 6--8 weeks using a dehumidified chamber. Larger, plate-type heat exchangers between the primary fluid and water circulation systems may enable the kiln to reach the planned temperatures (180--185 F). However, the King Koa partnership cannot any longer pursue the concept of geothermal lumber kilns.

  18. Proceedings of the Conference on Research for the Development of Geothermal Energy Resources

    1974-01-01

    The proceedings of a conference on the development of geothermal energy resources are presented. The purpose of the conference was to acquaint potential user groups with the Federal and National Science Foundation geothermal programs and the method by which the users and other interested members can participate in the program. Among the subjects discussed are: (1) resources exploration and assessment, (2) environmental, legal, and institutional research, (3) resource utilization projects, and (4) advanced research and technology.

  19. Geothermal development and policy in the Philippines

    Datuin, R.; Roxas, F.

    1990-01-01

    The Philippines is the second largest geothermal energy producer in the world although its geothermal energy potential has barely been utilized. Out of an estimated total reserves of 8,000 MW, only about 11 percent or 894 MW are currently on stream for power generation. The electricity production from geothermal steam registered a growth of 8.9 percent from 1988 to 1989, one of the highest among local energy sources. During that same period, geothermal energy rated the highest capacity utilization of 67 percent compared to the average system capacity utilization of 43 percent. This paper describes both the use of geothermal energy and government policies concerning geothermal energy in the Philippines

  20. Washington: a guide to geothermal energy development

    Bloomquist, R.G.; Basescu, N.; Higbee, C.; Justus, D.; Simpson, S.

    1980-06-01

    Washington's geothermal potential is discussed. The following topics are covered: exploration, drilling, utilization, legal and institutional setting, and economic factors of direct use projects. (MHR)

  1. Development of an Enhanced Two-Phase Production System at the Geysers Geothermal Field; FINAL

    Steven Enedy

    2001-01-01

    A method was developed to enhance geothermal steam production from two-phase wells at THE Geysers Geothermal Field. The beneficial result was increased geothermal production that was easily and economically delivered to the power plant

  2. Geothermal energy in Alaska: site data base and development status

    Markle, D.R.

    1979-04-01

    The various factors affecting geothermal resource development are summarized for Alaska including: resource data base, geological description, reservoir characteristics, environmental character, base and development status, institutional factors, economics, population and market, and development potential. (MHR)

  3. Geothermal energy in Idaho: site data base and development status

    1979-07-01

    The various factors affecting geothermal resource development are summarized for Idaho, including: resource data base, geological description, reservoir characteristics, environmental character, lease and development status, institutional factors, legal aspects, population and market, and development. (MHR)

  4. FY 1998 report on the verification survey of geothermal exploration technology, etc. 1/2. Survey of deep geothermal resource; 1998 nendo chinetsu tansa gijutsu nado kensho chosa hokokusho. 1/2. Shinbu chinetsu shigen chosa

    NONE

    1999-12-01

    For the purpose of commercializing deep geothermal resource, a deep exploration well of 4000m class was drilled in the existing geothermal development area to survey the situation of deep geothermal resource existence and the availability. Concretely, the deep geothermal exploration well was drilled for study in the Kakkonda area, Shizukuishi town, Iwate prefecture, to clarify the situation of deep geothermal resource existence and the whole image of geothermal system. Consideration was made of the deep geothermal exploration method, systematization of deep high temperature drilling technology, and availability of deep geothermal resource. The results of the survey were summed up as follows: 1) general remarks; 2) deep exploration well drilling work; 3) details of the study. 1) and 2) were included in this report, and 3) in the next report. In 1), the items were as follows: the study plan/gist of study execution, the details and results of the deep geothermal resource survey, the outline of the deep exploration well drilling work, and the outline of the results of the FY 1998 study. In 2), the drilling work plan/the actual results of the drilling work were summed up. As to the results of the study, summarized were the acquisition of survey data on deep exploration well, heightening of accuracy of the deep geothermal resource exploration method, etc. (NEDO)

  5. Environmental impacts during geothermal development: Some examples from Central America

    Goff, S.; Goff, F.

    1997-01-01

    The impacts of geothermal development projects are usually positive. However, without appropriate monitoring plans and mitigation actions firmly incorporated into the project planning process, there exists the potential for significant negative environmental impacts. The authors present five examples from Central America of environmental impacts associated with geothermal development activities. These brief case studies describe landslide hazards, waste brine disposal, hydrothermal explosions, and air quality issues. Improved Environmental Impact Assessments are needed to assist the developing nations of the region to judiciously address the environmental consequences associated with geothermal development

  6. Development of Genetic Occurrence Models for Geothermal Prospecting

    Walker, J. D.; Sabin, A.; Unruh, J.; Monastero, F. C.; Combs, J.

    2007-12-01

    Exploration for utility-grade geothermal resources has mostly relied on identifying obvious surface manifestations of possible geothermal activity, e.g., locating and working near steaming ground or hot springs. This approach has lead to the development of over 130 resources worldwide, but geothermal exploration done in this manner is akin to locating hydrocarbon plays by searching for oil seeps. Confining exploration to areas with such features will clearly not discover a blind resource, that is, one that does not have surface expression. Blind resources, however, constitute the vast majority of hydrocarbon plays; this may be the case for geothermal resources as well. We propose a geothermal exploration strategy for finding blind systems that is based on an understanding of the geologic processes that transfer heat from the mantle to the upper crust and foster the conditions for hydrothermal circulation or enhanced geothermal exploration. The strategy employs a genetically based screening protocol to assess potential geothermal sites. The approach starts at the plate boundary scale and progressively focuses in on the scale of a producing electrical-grade field. Any active margin or hot spot is a potential location for geothermal resources. Although Quaternary igneous activity provides a clear indication of active advection of hot material into the upper crust, it is not sufficient to guarantee a potential utility-grade resource. Active faulting and/or evidence of high strain rates appear to be the critical features associated with areas of utility-grade geothermal potential. This is because deformation on its own can advect sufficient heat into the upper crust to create conditions favorable for geothermal exploitation. In addition, active deformation is required to demonstrate that open pathways for circulation of geothermal fluids are present and/or can be maintained. The last step in the screening protocol is to identify any evidence of geothermal activity

  7. Fiscal 1995 verification survey of geothermal exploration technology. Report on a deep geothermal resource survey; 1995 nendo chinetsu tansa gijutsu nado kensho chosa. Shinbu chinetsu shigen hokokusho

    NONE

    1996-06-01

    For the purpose of reducing the risk of deep geothermal resource development, the paper investigated three factors for the formation of geothermal resource in the deep underground, that is, heat supply from heat source, supply of geothermal fluids, and the developmental status of fracture systems forming reservoir structures. The survey further clarified the status of existence of deep geothermal resource and the whole image of the geothermal system including shallow geothermal energy in order to research/study usability of deep geothermal resource. In the deep geothermal resource survey, drilling/examination were made of a deep geothermal exploration well (`WD-1,` target depth: approximately 3,000-4,000m) in the already developed area, with the aim of making rationalized promotion of the geothermal development. And the status of existence of deep geothermal resource and the whole image of the geothermal system were clarified to investigate/study usability of the geothermal system. In fiscal 1995, `WD-1` in the Kakkonda area reached a depth of 3,729m. By this, surveys were made to grasp the whole image of the shallow-deep geothermal system and to obtain basic data for researching usability of deep geothermal resource. 22 refs., 531 figs., 136 tabs.

  8. Geothermal Loan Guaranty Program and its impact on geothermal exploration and development

    Nasr, L.H.

    1978-05-01

    The study showed that the Geothermal Loan Guaranty Program has had only a negligible effect on geothermal development and the response to the program was far less than expected. The streamlining of environmental regulations and leasing policies, and the granting of intangible drilling cost write-offs and depletion allowances to operators would have had a greater impact on geothermal energy development. The loan guaranty program did not promote the undertaking of any new projects that would not have been undertaken without it. The program only accelerated the pace for some development which might have commenced in the future. Included in the study are recommendations for improving the operation of the program thereby increasing its attractiveness to potential applicants.

  9. Geothermal energy in Idaho: site data base and development status

    McClain, D.W.

    1979-07-01

    Detailed site specific data regarding the commercialization potential of the proven, potential, and inferred geothermal resource areas in Idaho are presented. To assess the potential for geothermal resource development in Idaho, several kinds of data were obtained. These include information regarding institutional procedures for geothermal development, logistical procedures for utilization, energy needs and forecasted demands, and resource data. Area reports, data sheets, and scenarios were prepared that described possible geothermal development at individual sites. In preparing development projections, the objective was to base them on actual market potential, forecasted growth, and known or inferred resource conditions. To the extent possible, power-on-line dates and energy utilization estimates are realistic projections of the first events. Commercialization projections were based on the assumption that an aggressive development program will prove sufficient known and inferred resources to accomplish the projected event. This report is an estimate of probable energy developable under an aggressive exploration program and is considered extremely conservative. (MHR)

  10. Geothermal energy in Idaho: site data base and development status

    McClain, D.V.

    1979-07-01

    A summary of known information about the nature of the resource, its potential for development, and the infrastructure of government which will guide future development is presented. Detailed site specific data regarding the commercialization potential of the proven, potential, and inferred geothermal resource areas in Idaho are included. Leasing and development status, institutional parameters, and a legal overview of geothermal resources in Idaho are given. (MHR)

  11. Geothermal power development in Hawaii. Volume II. Infrastructure and community-services requirements, Island of Hawaii

    Chapman, G.A.; Buevens, W.R.

    1982-06-01

    The requirements of infrastructure and community services necessary to accommodate the development of geothermal energy on the Island of Hawaii for electricity production are identified. The following aspects are covered: Puna District-1981, labor resources, geothermal development scenarios, geothermal land use, the impact of geothermal development on Puna, labor resource requirments, and the requirements for government activity.

  12. Vegetation and geothermal development in the vicinity of the Takinogami geothermal field

    Ohba, T

    1973-07-01

    After site studies for a new geothermal power plant at the Takinogami geothermal field, the Japan Natural Conservation Association recommended against locating the plant near the office and dormitory complexes at Matsukurasawa junction. An alternate site located about 1 km upstream on the Takinogami River was proposed. It was recommended that a buffer zone be established between the construction road and the local forest. This zone would be planted with Uwamizu cherry, Azuki pear, Tani deutia, Tamu brushwood, Clathracea, Rowan, Kobano ash and Yama (Japanese lacquer tree). A road embankment would be constructed of terraced masonry which would be landscaped with Tani deutia, Kuma raspberry, giant knotweed and mugwort. Previous development of geothermal wells in the area resulted in severe effects on the local flora. Consequently, further development was not recommended.

  13. On geothermal resources of India. Geotectonic aspects and recent developments

    Gupta, M L [National Geophysical Research Inst., Hyderabad (India)

    1988-11-10

    Research programs launched for exploration and development of the geothermal energy in India, since the 1973-1974 oil embargo, have led to the identification of many potential areas for geothermal resources. Resources comprise high/intermediate/low temperature hydrothermal convection and hot water aquifer systems, geopressured geothermal system and conduction-dominated regimes. Location and properties of these geothermal systems are controlled by the geodynamic and tectonic characteristics of the Indian continental lithosphere Main sectors for the utilization of India's proved and identified geothermal resources are the power generation, space heating, green house cultivation, aquaculture, poultry, sheep breeding, mineral processing, mushroom raising, processing of farm and forest produce, refrigeration, tourism, health-resorts and mineral water bottling. The R and D efforts have given some encouraging results. Geothermal resources of India, although primarily are of medium to low grade, could supplement, to a great extent, direct heat energy needs and may also provide electricity to some of the remote hilly areas. Development of geothermal energy sources in India is likely to get some more attention, with the setting up of separate departments and agencies, by various Provincial Governments, for R and D backing toward the alternate sources of energy.

  14. Recovery Act:Rural Cooperative Geothermal development Electric & Agriculture

    Culp, Elzie Lynn [Surprise Valley Electrification Corp., Alturas, CA (United States)

    2016-01-12

    Surprise Valley Electric, a small rural electric cooperative serving northeast California and southern Oregon, developed a 3mw binary geothermal electric generating plant on a cooperative member's ranch. The geothermal resource had been discovered in 1980 when the ranch was developing supplemental irrigation water wells. The 240°F resource was used for irrigation until developed through this project for generation of electricity. A portion of the spent geothermal fluid is now used for irrigation in season and is available for other purposes, such as greenhouse agriculture, aquaculture and direct heating of community buildings. Surprise Valley Electric describes many of the challenges a small rural electric cooperative encountered and managed to develop a geothermal generating plant.

  15. The geothermal power organization

    Scholl, K.L. [National Renewable Energy Lab., Golden, CO (United States)

    1997-12-31

    The Geothermal Power Organization is an industry-led advisory group organized to advance the state-of-the-art in geothermal energy conversion technologies. Its goal is to generate electricity from geothermal fluids in the most cost-effective, safe, and environmentally benign manner possible. The group achieves this goal by determining the Member`s interest in potential solutions to technological problems, advising the research and development community of the needs of the geothermal energy conversion industry, and communicating research and development results among its Members. With the creation and adoption of a new charter, the Geothermal Power Organization will now assist the industry in pursuing cost-shared research and development projects with the DOE`s Office of Geothermal Technologies.

  16. Low-Temperature Projects of the Department of Energy's Geothermal Technologies Program: Evaluation and Lessons Learned: Preprint

    Williams, Tom; Snyder, Neil; Gosnold, Will

    2016-12-01

    This paper discusses opportunities and challenges related to the technical and economic feasibility of developing power generation from geothermal resources at temperatures of 150 degrees C and lower. Insights from projects funded by the U.S. Department of Energy (DOE), Geothermal Technologies Office inform these discussions and provide the basis for some lessons learned to help guide decisions by DOE and the industry in further developing this resource. The technical basis for low-temperature geothermal energy is well established and the systems can be economic today in certain situations. However, these applications are far from a 'plug and play' product; successful development today requires a good knowledge of geothermal system design and operation.

  17. Low-Temperature Projects of the Department of Energy's Geothermal Technologies Program: Evaluation and Lessons Learned

    Williams, Tom; Snyder, Neil; Gosnold, Will

    2016-10-23

    This paper discusses opportunities and challenges related to the technical and economic feasibility of developing power generation from geothermal resources at temperatures of 150 degrees C and lower. Insights from projects funded by the U.S. Department of Energy (DOE), Geothermal Technologies Office inform these discussions and provide the basis for some lessons learned to help guide decisions by DOE and the industry in further developing this resource. The technical basis for low-temperature geothermal energy is well established and the systems can be economic today in certain situations. However, these applications are far from a 'plug and play' product; successful development today requires a good knowledge of geothermal system design and operation.

  18. Hot Dry Rock Geothermal Energy Development Program

    Smith, M.C.; Hendron, R.H.; Murphy, H.D.; Wilson, M.G.

    1989-12-01

    During Fiscal Year 1987, emphasis in the Hot Dry Rock Geothermal Energy Development Program was on preparations for a Long-Term Flow Test'' of the Phase II'' or Engineering'' hot dry rock energy system at Fenton Hill, New Mexico. A successful 30-day flow test of the system during FY86 indicated that such a system would produce heat at a temperature and rate that could support operation of a commercial electrical power plant. However, it did not answer certain questions basic to the economics of long-term operation, including the rate of depletion of the thermal reservoir, the rate of water loss from the system, and the possibility of operating problems during extended continuous operation. Preparations for a one-year flow test of the system to answer these and more fundamental questions concerning hot dry rock systems were made in FY87: design of the required surface facilities; procurement and installation of some of their components; development and testing of slimline logging tools for use through small-diameter production tubing; research on temperature-sensitive reactive chemical tracers to monitor thermal depletion of the reservoir; and computer simulations of the 30-day test, extended to modeling the planned Long-Term Flow Test. 45 refs., 34 figs., 5 tabs.

  19. Geothermal energy in Washington: site data base and development status

    Bloomquist, R.G.

    1979-04-01

    This is an attempt to identify the factors which have affected and will continue to affect geothermal assessment and development in the state. The eight potential sites chosen for detailed analysis include: Indian Heaven KGRA, Mount St. Helens KGRA, Kennedy Hot Springs KGRA, Mount Adams PGRA (Potential Geothermal Resource Area), Mount Rainier PGRA, Mount Baker PGRA, Olympic-Sol Duc Hot Springs, and Yakima. The following information is included for each site: site data, site location and physical description, geological/geophysical description, reservoir characteristics, land ownership and leasing, geothermal development status, institutional characteristics, environmental factors, transportation and utilities, and population. A number of serious impediments to geothermal development were identified which can be solved only by legislative action at the state or federal level and/or changes in attitudes by regulatory agencies. (MHR)

  20. Geothermal energy

    Manzella A.

    2017-01-01

    Full Text Available Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology, spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth’s crust.

  1. Geothermal energy

    Manzella, A.

    2017-07-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity) worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology), spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth's crust.

  2. FY 2000 report on the verification survey of geothermal exploration technology, etc. Development of the reservoir fluctuation exploration method - Phase 2 (Feasibility survey); 2000 nendo chinetsu tansa gijutsu nado kensho chosa hokokusho. Choryuso hendo tansaho kaihatsu phase 2 F/S chosa

    NONE

    2001-03-01

    For the purpose of developing the technology to grasp the behavior of geothermal fluids flowing inside the deep-seated reservoir, study of subjects was made for the reservoir fluctuation exploration method - Phase 2. In the overview of the reservoir fluctuation exploration method - Phase 1, various element technologies being developed in Phase 1 were arranged in terms of the overview of technology, results concretely obtained, present subjects, achievement of technical development, etc. In the overview of geothermal fields, domestic geothermal fields and overseas geothermal fields were outlined of which demonstrative tests in Phase 2 can be made. In the survey, data on characteristics of reservoirs at the sites proposed, existing data usable for the project and information of the existing facilities were covered in terms of the those that can be collected being based on the public data. In the study of demonstrative testing fields, to make selection of demonstrative testing fields in Phase 2, selection of conditions was made from the two points of view: 'necessary conditions for demonstrative testing field' and 'comparison in adaptability of geothermal fields by method.' (NEDO)

  3. Economic impacts of geothermal development in Malheur County, Oregon

    Sifford, A.; Beale, K.

    1993-01-01

    This study provides local economic impact estimates for a 100 megawatt (MW) geothermal power project in Oregon. The hypothetical project would be in Malheur County, shown in Figure 1. Bonneville Power Administration commissioned this study to quantify such impacts as part of regional confirmation work recommended by the Northwest Power Planning Council and its advisors. Malheur County was chosen as it has both identified resources and industry interest. Local economic impacts include direct, indirect, and induced changes in the local economy. Direct economic impacts result from the costs of plant development, construction, and operation. Indirect impacts result from household and local government purchases. Induced impacts result from continued responding as goods and services to support the households and local governments are purchased. Employment impacts of geothermal development follow a pattern similar to the economic impacts. Public service impacts include costs such as education, fire protection, roads, waste disposal, and water supply. The project assumption discussion notes experiences at other geothermal areas. The background section compares geothermal with conventional power plants. Power plant fuel distinguishes geothermal from other power sources. Other aspects of development are similar to small scale conventional thermal sources. The process of geothermal development is then explained. Development consists of well drilling, gathering system construction, power plant construction, plant operation and maintenance, and wellfield maintenance

  4. Vegetation component of geothermal EIS studies: Introduced plants, ecosystem stability, and geothermal development

    1994-10-01

    This paper contributes new information about the impacts from introduced plant invasions on the native Hawaiian vegetation as consequences of land disturbance and geothermal development activities. In this regard, most geothermal development is expected to act as another recurring source of physical disturbance which favors the spread and maintenance of introduced organisms throughout the region. Where geothermal exploration and development activities extend beyond existing agricultural and residential development, they will become the initial or sole source of disturbance to the naturalized vegetation of the area. Kilauea has a unique ecosystem adapted to the dynamics of a volcanically active landscape. The characteristics of this ecosystem need to be realized in order to understand the major threats to the ecosystem and to evaluate the effects of and mitigation for geothermal development in Puna. The native Puna vegetation is well adapted to disturbances associated with volcanic eruption, but it is ill-adapted to compete with alien plant species in secondary disturbances produced by human activities. Introduced plant and animal species have become a major threat to the continued presence of the native biota in the Puna region of reference

  5. Vegetation component of geothermal EIS studies: Introduced plants, ecosystem stability, and geothermal development

    NONE

    1994-10-01

    This paper contributes new information about the impacts from introduced plant invasions on the native Hawaiian vegetation as consequences of land disturbance and geothermal development activities. In this regard, most geothermal development is expected to act as another recurring source of physical disturbance which favors the spread and maintenance of introduced organisms throughout the region. Where geothermal exploration and development activities extend beyond existing agricultural and residential development, they will become the initial or sole source of disturbance to the naturalized vegetation of the area. Kilauea has a unique ecosystem adapted to the dynamics of a volcanically active landscape. The characteristics of this ecosystem need to be realized in order to understand the major threats to the ecosystem and to evaluate the effects of and mitigation for geothermal development in Puna. The native Puna vegetation is well adapted to disturbances associated with volcanic eruption, but it is ill-adapted to compete with alien plant species in secondary disturbances produced by human activities. Introduced plant and animal species have become a major threat to the continued presence of the native biota in the Puna region of reference.

  6. Geothermal energy in Wyoming: site data base and development status

    James, R.W.

    1979-04-01

    An overview of geothermal energy and its current and potential uses in Wyoming is presented. Chapters on each region are concluded with a summary of thermal springs in the region. The uniqueness of Yellowstone is discussed from both an institutional point of view and a natural one. The institutional situation at the federal and state level is discussed as it applies to geothermal development in Wyoming. (MHR)

  7. Legal and institutional problems facing geothermal development in Hawaii

    1978-10-01

    The problems discussed confronting future geothermal development in Hawaii include: a seemingly insoluble mismatch of resource and market; the burgeoning land claims of the Native Hawaiian community; a potential legal challenge to the State's claim to hegemony over all of Hawaii's geothermal resources, regardless of surface ownership; resistance to any sudden, large scale influx of Mainland industry, and questionable economics for the largest potential industrial users. (MHR)

  8. Population analysis relative to geothermal energy development, Imperial County, California

    Pick, J.B.; Jung, T.H.; Butler, E.

    1977-01-01

    The historical and current population characteristics of Imperial County, California, are examined. These include vital rates, urbanization, town sizes, labor force composition, income, utility usage, and ethnic composition. Inferences are drawn on some of the important social and economic processes. Multivariate statistical analysis is used to study present relationships between variables. Population projections for the County were performed under historical, standard, and geothermal projection assumptions. The transferability of methods and results to other geothermal regions anticipating energy development is shown. (MHR)

  9. The development of geothermal energy constraints and opportunities

    Bronicki, L.Y.; Doron, B.

    1990-01-01

    No single resource can meet the world energy demand. What is under consideration is the possible contribution of geothermal energy in the future. According to World Energy Council (WEC) perspectives, by 2020 the new energy resources will contribute 170 to 365 MTOE, of which the share of hydropower will be very significant. This is a realistic view based on the actual state of the market. This paper reports on the competitive advantages and economics of geothermal energy development

  10. Geothermal energy

    Rummel, F.; Kappelmeyer, O.; Herde, O.A.

    1992-01-01

    Objective of this brochure is to present the subject Geothermics and the possible use of geothermal energy to the public. The following aspects will be refered to: -present energy situation -geothermal potential -use of geothermal energy -environemental aspects -economics. In addition, it presents an up-dated overview of geothermal projects funded by the German government, and a list of institutions and companies active in geothermal research and developments. (orig./HP) [de

  11. Fiscal 1999 research and verification of geothermal energy exploring technologies and the like. Development of reservoir mass and heat flow characterization (Development of seismic monitoring technology - Summary); 1999 nendo chinetsu tansa gijutsu nado kensho chosa hokokusho (yoyaku). Choryuso hendo tansaho kaihatsu (jishinha tansaho kaihatsu)

    NONE

    2000-03-01

    Development is under way of a reservoir mass and heat flow characterization method using seismic wave analysis. Specifics of the endeavor cover detailed studies of techniques for monitoring and analyzing seismic wave changes due to changes in the reservoir that accompanies production and reinjection of geothermal fluids, which are carried out through preliminary monitoring accomplished at the test field. For the construction of a microearthquake monitoring network, a monitoring network design is prepared, a data processing/analyzing system is improved and tested for serviceability, analysis programs for 3-dimensional velocity structure analysis technology are improved, and methods for analyzing changes in the reservoir are deliberated, all these based on the results of microearthquake preliminary monitoring and simulation carried out at the Akinomiya district, Akita Prefecture. For the research of elastic wave velocity structure change, short-duration reflection events and waveform changes due to geothermal power plant periodic inspections are extracted, and studies are conducted about the applicability of the diffraction stacking method to the exploration of geothermal energy. (NEDO)

  12. Messing with paradise: Air quality and geothermal development in Hawaii

    Campbell, A.W.

    1993-01-01

    In the last decade, scientists and the media have publicized several significant air-quality-related issues facing our nation and threatening the Earth. Our need for energy is at the heart of many environmental problems. Most of us would not dispute that global issues are vitally important. However, to many of us, who have live one day at a time, global issues are often overshadowed by those at the microcosmic (i.e., regional or local) level. This paper focuses on a continuing problem citizens experienced by the resident of Hawaii: controversial air quality and health issues linked to geothermal resource development. In Hawaii, air quality degradation and related health issues have been associated with geothermal development on the Kilauea volcano on the Big Island. This paper begins with an overview of Hawaii's ambient air quality based on data collected by the State Department of Health (DOH). A chronology of geothermal resource development in Hawaii follows. The potential atmospheric contaminants from development of the Hawaiian resource are listed, and health effects of acute and chronic exposures are identified. Public controversy about geothermal development and the efforts of local and state agencies and officials to effectively control geothermal development in concert with protection of public health and safety use discussed, in particular the recent development and promulgation of a State of Hawaii H 2 S standard. This paper concludes with some suggestions for integrating the diverse interests of government, regulators, citizens, and geothermal developers in seeking to meet the energy and economic needs of Hawaii while carefully planning geothermal development in a safe and environmentally responsible manner

  13. Geothermal heat pumps, a booming technology in North America; Geothermal Heat Pumps - der Boom der oberflaechennahen Geothermie in Nordamerika

    Sanner, B [Giessen Univ. (Germany). Inst. fuer Angewandte Geowissenschaften

    1997-12-01

    Over the last years, the interest in and the use of ground-source heat pumps has substantially increased in North America. In a market dominated by space cooling heat pumps can show clearly their advantages. This paper describes the development in Canada and USA, gives examples of the technologies used and presents some large plants. The differences to the Central European situation are discussed. Also mentioned are the various activities in market penetration, which peaked in the foundation of the `Geothermal Heat Pump Consortium` in Washington in 1994. (orig.) [Deutsch] In den letzten Jahren hat das Interesse an und der Einsatz von erdgekoppelten Waermepumpen in Nordamerika stark zugenommen. In einem von der Raumkuehlung dominierten Markt koennen Waermepumpen ihre Vorteile voll ausspielen. Der Beitrag beschreibt die Entwicklung in Kanada und den USA, stellt Beispiele der eingesetzten Technik vor und geht auf einige Grossanlagen ein. Ausserdem werden die Unterschiede zu der Situation in Mitteleuropa herausgearbeitet und die verschiedenen Aktivitaeten zu `Markt Penetration` behandelt, die 1994 in die Gruendung des `Geothermal Heat Pump Consortiums` in Washington muendeten. (orig.)

  14. Potential for offshore geothermal developments using deep gas wells

    Teodoriu, C.; Falcone, G. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). ITE

    2013-08-01

    The development of geothermal resources is steadily increasing as operators meet the challenge of maximising the temperature difference between production and injection wells, while minimising the wellhead temperature of the latter. At present, the minimum working wellhead temperature reported for the heat-to-electricity conversion cycles is limited to about 80 C. The cycle efficiency can be improved by reducing the injection temperature, which is the temperature at which the fluid exits the process. This paper evaluates the potential for generating electricity with a subsea geothermal plant using the difference between downhole reservoir temperature and that of the cold seawater at the mud line. The temperature in the world's oceans is relatively constant, ranging from 0 to 4 C at around 400 meters water depth. The use of these lower offshore water temperatures may help boost geothermal energy development. Deep gas resources are considered to be held within reservoirs below 4600 meters (15000 feet) and are relatively undeveloped as the risks and costs involved in drilling and producing such resources are extremely high. These deep resources have high reservoir temperatures, which offer an opportunity for geothermal exploitation if a new development concept can be formulated. In particular, the well design and reservoir development plan should consider reutilising existing well stock, including dry and plugged and abandoned wells for geothermal application once the gas field has been depleted. The major risks considered in this study include alternative uses of wells in no flow or rapid depletion situations. Reutilisation of the wells of depleted gas reservoirs will invariably lead to lower geothermal development costs compared with starting a geothermal campaign by drilling new wells. In particular, the well design and reservoir development plan should consider reutilising existing well stock, including dry and plugged and abandoned wells for geothermal

  15. Accelerating Geothermal Research (Fact Sheet)

    2014-05-01

    Geothermal research at the National Renewable Energy Laboratory (NREL) is advancing geothermal technologies to increase renewable power production. Continuous and not dependent on weather, the geothermal resource has the potential to jump to more than 500 gigawatts in electricity production, which is equivalent to roughly half of the current U.S. capacity. Enhanced geothermal systems have a broad regional distribution in the United States, allowing the potential for development in many locations across the country.

  16. National forecast for geothermal resource exploration and development with techniques for policy analysis and resource assessment

    Cassel, T.A.V.; Shimamoto, G.T.; Amundsen, C.B.; Blair, P.D.; Finan, W.F.; Smith, M.R.; Edeistein, R.H.

    1982-03-31

    The backgrund, structure and use of modern forecasting methods for estimating the future development of geothermal energy in the United States are documented. The forecasting instrument may be divided into two sequential submodels. The first predicts the timing and quality of future geothermal resource discoveries from an underlying resource base. This resource base represents an expansion of the widely-publicized USGS Circular 790. The second submodel forecasts the rate and extent of utilization of geothermal resource discoveries. It is based on the joint investment behavior of resource developers and potential users as statistically determined from extensive industry interviews. It is concluded that geothermal resource development, especially for electric power development, will play an increasingly significant role in meeting US energy demands over the next 2 decades. Depending on the extent of R and D achievements in related areas of geosciences and technology, expected geothermal power development will reach between 7700 and 17300 Mwe by the year 2000. This represents between 8 and 18% of the expected electric energy demand (GWh) in western and northwestern states.

  17. Geothermal energy development - a boon to Philippine energy self-reliance efforts

    Alcaraz, A.P.; Ogena, M.S.

    1997-01-01

    The Philippine success story in geothermal energy development is the first of the nation's intensified search for locally available alternative energy sources to oil. Due to its favorable location in the Pacific belt of fire, together with the presence of the right geologic conditions for the formation of geothermal (earth heat) reservoirs, the country has been able to develop commercially six geothermal fields. These are the Makiling-Banahaw area, just south of Manila, Tiwi in Albay, Bacon-Manito in Sorsogon, Tongonan in Leyte, Palinpinon in Southern Negros, and the Mt. Apo region of Mindanao. Together these six geothermal fields have a combined installed generation capacity of 1,448 Mwe, which the Philippines second largest user geothermal energy in the world today. Since 1977 to mid-1997, a total of 88,475 gigawatt-hours have been generated equivalent to 152.54 million barrels of oil. Based on the average yearly price of oil for the period, this translates into a savings of $3,122 billion for the country that otherwise would have gone for oil importations. It is planned that by the year 2000, geothermal shall be accounting for 28.4% of the 42,000 gigawatt-hours of the energy needed for that year, coal-based plants will contribute 24.6% and hydropower 18.6%. This will reduce oil-based contribution to just 28.4%. Geothermal energy as an indigenous energy resource provides the country a sustainable option to other conventional energy sources such as coal, oil and even hydro. Technologies have long been developed to maintain the environmental quality of the geothermal site. It serves to minimize changes in the support systems found on the land, water and air environments. The country has hopped, skipped and jumped towards energy self-reliance anchored on development of its large geothermal resources. And as the Philippines pole-vaults into the 21st century, the nation can look forward to geothermal energy to remain as one of the pillars of its energy self

  18. Achievement report for fiscal 1998 on business auxiliary to New Sunshine Program. Hot water-aided power generation plant development (Development of deep-seated geothermal resources exploitation technology and development of deep-seated geothermal resources excavating technology); 1998 nendo new sunshine keikaku hojo jigyo seika hokokusho. Nessui riyo hatsuden plant nado kaihatsu (shinbu chinetsu shigen saishu gijutsu no kaihatsu, shinbu chinetsu shigen kussaku gijutsu no kaihatsu)

    NONE

    1999-03-01

    In the general exploitation scheme, technological information is collected about cement overseas, DHM (down hole motor), etc. In the development of heat-resistant durable bits, an improved version of the 350 degrees C real bit manufactured in fiscal 1997 undergoes a test in a real bore, and is evaluated for its general performance. In the development of high-temperature cement slurries, the ultralow specific gravity cement slurry for casing cement developed in fiscal 1997 is subjected to evaluation. It is examined by chemical analysis and powder X-ray diffraction, and its fluidity, free water, rate of dehydration, and compression strength at 250 degrees C are measured. In a real bore test, a slurry of the optimum composition is prepared and then hardened, and the hardened body is kept exposed to geothermal environments for eight weeks. It is then found that the hardened body retains a compression strength of 70kgf/cm{sup 2}. In the development of a down hole motor, a scale model, real in diameter and shortened in length, is built of the motor section, and is tested in circulating water and oil at normal and high temperatures, and its behavior and performance are evaluated. (NEDO)

  19. Geothermal Energy

    Haluska, Oscar P.; Tangir, Daniel; Perri, Matias S.

    2002-01-01

    A general overview of geothermal energy is given that includes a short description of the active and stable areas in the world. The possibilities of geothermal development in Argentina are analyzed taking into account the geothermal fields of the country. The environmental benefits of geothermal energy are outlined

  20. Geothermal energy

    Manzella A.

    2015-01-01

    Full Text Available Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG emissions. Geothermal energy is stored in rocks and in fluids circulating in the underground. Electricity generation usually requires geothermal resources temperatures of over 100°C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology, spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Geothermal technology, which has focused so far on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth’s crust.

  1. Report on research and development achievements in fiscal 1979 in Sunshine Project for geothermal water utilizing power plants. Separate volume of surveys and studies on plant development plans (Surveys on trends in overseas technologies); 1979 nendo chinetsu nessui riyo hatsuden plant no kenkyu kaihatsu seika hokokusho (plant kaihatsu keikaku chosa kenkyu). Bessatsu (Kaigai gijutsu doko chosa)

    NONE

    1980-03-01

    This paper describes surveys on trends in overseas technologies in development plans for geothermal water utilizing power plants. In heat cycles, the binary and two-stage flash cycles were analyzed by using a generalized equation of state, and theses on optimizing working fluid properties and cycle conditions with maximum thermal efficiency were described. Theses that were described include those for criteria to select working fluids and thermal power cycles against the binary cycle using a heat source at 104 to 204 degree C. The binary cycle working fluid was found better in mixed systems than in pure systems as seen from process and economic performance. The paper introduces a heat conductivity experimenting device and data required for designing a heat exchanger. It also describes the Heber geothermal experimental plant to demonstrate reasonability of assumed working media. A fluidized bed type and a shell tube type were applied to heat exchangers at the Raft River 50 MW geothermal power plant for comparison and discussion. Fouling factor was also estimated. A discussion was given on fluidity distribution of a fluidized bed heat exchanger. Design of a heat discharge system is important for geothermal power generation because heat source temperatures are so low that more than 85% of heat that has been taken in is discharged. The paper also describes turbines and other facilities. (NEDO)

  2. Geothermal industry position paper: EPA regulatory options and research and development information needs

    D' Alessio, G.

    1977-08-01

    The environmental impact of geothermal energy development may be less intense or widespread than that of some other energy sources; however, it is the first example of a number of emerging energy technologies that must be dealt with by EPA. EPA may consider a spectrum of options ranging from a posutre of business as usual to one of immediate setting of standards, as favored by ERDA. The paper discusses the regulatory approaches and the potential problems that geothermal energy may present in the areas of air quality, water quality, and other impacts. It is recommended that a coordinated program of research be drawn up, comprised of specific research projects, the types of geothermal resource to which they apply, and the date by which the information is required.

  3. Geothermal Industry Position Paper: EPA Regulatory Options and Research and Development Information Needs

    Swetnam, G.F.

    1976-11-01

    The environmental impact of geothermal energy development may be less intense or widespread than that of some other energy sources; however, it is the first example of a number of emerging energy technologies that must be dealt with by EPA. EPA may consider a spectrum of options ranging from a posture of business as usual to one of immediate setting of standards, as favored by ERDA. The paper discusses the regulatory approaches and the potential problems that geothermal energy may present in the areas of air quality, water quality, and other impacts. It is recommended that a coordinated program of research be drawn up, comprised of specific research projects, the types of geothermal resource to which they apply, and the date by which the information is required.

  4. Balancing energy and the environment: the case of geothermal development

    Ellickson, P.L.; Brewer, S.

    1978-06-01

    The results of part of a Rand study on the federal role in resolving environmental issues arising out of the implementation of energy projects are reported. The projects discussed are two geothermal programs in California: the steam resource development at The Geysers (Lake and Sonoma counties) in northern California, and the wet brine development in the Imperial Valley in southern California.

  5. Prospects of development of highly mineralized high-temperature resources of the Tarumovskoye geothermal field

    Alkhasov, A. B.; Alkhasova, D. A.; Ramazanov, A. Sh.; Kasparova, M. A.

    2016-06-01

    The promising nature of integrated processing of high-temperature geothermal brines of the Tarumovskoye geothermal field is shown. Thermal energy of a geothermal brine can be converted to the electric power at a binary geothermal power plant (GPP) based on low-boiling working substance. The thermodynamic Rankine cycles are considered which are implemented in the GPP secondary loop at different evaporation temperatures of the working substance―isobutane. Among them, the most efficient cycle from the standpoint of attaining a maximum power is the supercritical one which is close to the so-called triangular cycle with an evaporation pressure of p e = 5.0 MPa. The used low-temperature brine is supplied from the GPP to a chemical plant, where main chemical components (lithium carbonate, burnt magnesia, calcium carbonate, and sodium chloride) are extracted from it according to the developed technology of comprehensive utilization of geothermal brines of chloride-sodium type. The waste water is delivered to the geotechnological complex and other consumers. For producing valuable inorganic materials, the electric power generated at the GPP is used. Owing to this, the total self-sufficiency of production and independence from external conditions is achieved. The advantages of the proposed geotechnological complex are the full utilization of the heat potential and the extraction of main chemical components of multiparameter geothermal resources. In this case, there is no need for reverse pumping, which eliminates the significant capital costs for building injection wells and a pumping station and the operating costs for their service. A characteristic of the modern state of the field and estimated figures of the integrated processing of high-temperature brines of well no. 6 are given, from which it follows that the proposed technology has a high efficiency. The comprehensive development of the field resources will make it possible to improve the economic structure of the

  6. Geothermal Energy Program overview

    1991-12-01

    The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained with the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost- effective heat and electricity for our nation's energy needs. Geothermal energy -- the heat of the Earth -- is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40% of the total US energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The US Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma ( the four types of geothermal energy) still depends on the technical advancements sought by DOE's Geothermal Energy Program

  7. Geothermal energy worldwide

    Barbier, Enriko

    1997-01-01

    Geothermal energy, as a natural steam and hot water, has been exploited for decades in order to generate electricity as well as district heating and industrial processes. The present geothermal electrical installed capacity in the world is about 10.000 MWe and the thermal capacity in non-electrical uses is about 8.200 MWt. Electricity is produced with an efficiency of 10-17%, and the cost of the kWh is competitive with conventional energy sources. In the developing countries, where a total installed electrical power is still low, geothermal energy can play a significant role: in El Salvador, for example, 25% of electricity comes from geothermal spring, 20% in the Philippines and 8% in Kenya. Present technology makes it possible to control the environmental impact of geothermal exploitation. Geothermal energy could also be extracted from deep geopressured reservoirs in large sedimentary basins, hot dry rock systems and magma bodies. (author)

  8. Japanese geothermics

    Laplaige, P.

    1995-01-01

    At the end of the seventies, the NEDO (New Energy and Industrial Technology Development Organisation) and the Central Research Institute of Electric Power Industry have started two independent projects of deep geothermics research in Honshu island (Japan). The two sites are 50 km apart of each other and the boreholes have been drilled up to 2300 and 1100 m of depth, respectively, in hot-dry moderately fractured volcanic rocks. These sites are characterized by high geothermal gradients with a rock temperature reaching 250 C at the bottom of the wells. Hydraulic circulation tests are still in progress to evaluate the profitability of these sites. (J.S.). 1 fig., 1 photo

  9. Fiscal 1999 research and verification of geothermal energy exploring technologies and the like. Development of reservoir change prediction technology (Development of modelling support technology); 1999 nendo chinetsu tansa gijutsu nado kensho chosa hokokusho (yoyaku). Choryuso hendo tansaho kaihatsu (choryuso hendo yosoku gijutsu (modeling shien gijutsu))

    NONE

    2000-03-01

    The aim is to develop and popularize techniques relating to geological information such as thermal history. The efforts center about the application of a now-available core fracture measuring system to developed geothermal fields and about the development of new technologies. The measuring system is applied to some core cuttings collected from five boreholes in the Akinomiya district, Akita Prefecture, and the system is used for (1) the evaluation of homogenization temperatures of inclusions in the fluid, (2) the measurement of the points of melting from ice of inclusions in the fluid, and (3) the implementation of laser Raman spectroscopy. Under item (1), it is found that the minimum homogenization temperature of quartz phenocryst in the mother rock or of low-salinity fluid inclusion in a quartz vein is near the current subsurface temperature and that subsurface and reservoir temperatures may be known by evaluating their homogenization temperature. Under item (2), it is found that the NaCl equivalent salinity is distributed in the range of 0.0 to 25wt% and that, in this connection, there is difference between a fluid in a fluid flow and a fluid spurting as thermal water in the Akinomiya district. Under item (3), CO2, N{sub 2}, and CH{sub 4} are detected in most of the boreholes. Efforts are exerted to develop a hydrothermal fluid analyzing technique using a rapid rock dating method and traces of chemical ingredients in hydrothermal minerals. (NEDO)

  10. Sectoral programming mission isotope techniques for geothermal development. Philippines. UNDP sectoral support

    Froehlich, K.; Sun, Y.

    1995-10-01

    This report discusses the accomplishments of IAEA Technical Cooperation project PHI/8/016 ''Isotope Techniques in Geothermal Hydrology''. It is intended to help Philippine National Oil Company's Energy Development Corporation (PNOC-EDC) in use of isotope techniques for geothermal development. This report discusses outcomes of the mission, conclusions and recommendations on applications of isotopes techniques in geothermal agro-industrial plants and geothermal hydrology

  11. Geothermal energy

    Anon.

    1992-01-01

    This chapter discusses the role of geothermal energy may have on the energy future of the US. The topics discussed in the chapter include historical aspects of geothermal energy, the geothermal resource, hydrothermal fluids, electricity production, district heating, process heating, geopressured brines, technology and costs, hot dry rock, magma, and environmental and siting issues

  12. EVALUATION OF PROSPECTS OF INTEGRATED DEVELOPMENT OF GEOTHERMAL RESOURCES OF THE NORTH CAUCASUS REGION

    A. B. Alkhasov

    2017-01-01

    Full Text Available The aim is to assess the prospects for the integrated development of geothermal resources in the North Caucasus region.Methods. Technological solutions are proposed for integrated development of hightemperature hydrogeothermal resources of the North Caucasus region. The evaluation of the effectiveness of the proposed technologies was carried out with the use of physico-mathematical, thermodynamic and optimization methods of calculation and physico-chemical experimental studies.Findings. Were estimated the prospects of complex processing of highly parametrical geothermal resources of the Eastern Ciscaucasian artesian basin (ECAB with conversion of thermal energy into electric power in a binary GeoPP and subsequent extraction of dissolved chemical compounds. The most promising areas for the development of such resources were indicated. In connection with the exacerbated environmental problems, it was shown the need for the firstpriority integrated development of associated high-mineralized brines of the South Sukhokum group of gas-oil wells in North Dagestan. At present, associated brines with a radioactive background exceeding permissible standards are discharged to surface filtration fields; technological solutions for their decontamination and integrated development were proposed.Conclusions. The comprehensive development of high-temperature hydrogeothermal brines is a new direction in geothermal energy, which will significantly increase the production of hydrogeothermal resources and develop the geothermal industry at a higher level with the implementation of energy-efficient advanced technologies. Large-scale development of brines will solve significant problems of energy supply in the region and import substitution, fully meeting Russia's needs for food and technical salt and other rare elements. 

  13. Development of Models to Simulate Tracer Tests for Characterization of Enhanced Geothermal Systems

    Williams, Mark D.; Reimus, Paul; Vermeul, Vincent R.; Rose, Peter; Dean, Cynthia A.; Watson, Tom B.; Newell, D.; Leecaster, Kevin; Brauser, Eric

    2013-05-01

    A recent report found that power and heat produced from enhanced (or engineered) geothermal systems (EGSs) could have a major impact on the U.S energy production capability while having a minimal impact on the environment. EGS resources differ from high-grade hydrothermal resources in that they lack sufficient temperature distribution, permeability/porosity, fluid saturation, or recharge of reservoir fluids. Therefore, quantitative characterization of temperature distributions and the surface area available for heat transfer in EGS is necessary for the design and commercial development of the geothermal energy of a potential EGS site. The goal of this project is to provide integrated tracer and tracer interpretation tools to facilitate this characterization. This project was initially focused on tracer development with the application of perfluorinated tracer (PFT) compounds, non-reactive tracers used in numerous applications from atmospheric transport to underground leak detection, to geothermal systems, and evaluation of encapsulated PFTs that would release tracers at targeted reservoir temperatures. After the 2011 midyear review and subsequent discussions with the U.S. Department of Energy Geothermal Technology Program (GTP), emphasis was shifted to interpretive tool development, testing, and validation. Subsurface modeling capabilities are an important component of this project for both the design of suitable tracers and the interpretation of data from in situ tracer tests, be they single- or multi-well tests. The purpose of this report is to describe the results of the tracer and model development for simulating and conducting tracer tests for characterizing EGS parameters.

  14. Recent trends in the development of heat exchangers for geothermal systems

    Franco, A.; Vaccaro, M.

    2017-11-01

    The potential use of geothermal resources has been a remarkable driver for market players and companies operating in the field of geothermal energy conversion. For this reason, medium to low temperature geothermal resources have been the object of recent rise in consideration, with strong reference to the perspectives of development of Organic Rankine Cycle (ORC) technology. The main components of geothermal plants based on ORC cycle are surely the heat exchangers. A lot of different heat exchangers are required for the operation of ORC plants. Among those it is surely of major importance the Recovery Heat Exchanger (RHE, typically an evaporator), in which the operating fluid is evaporated. Also the Recuperator, in regenerative Organic Rankine Cycle, is of major interest in technology. Another important application of the heat exchangers is connected to the condensation, according to the possibility of liquid or air cooling media availability. The paper analyzes the importance of heat exchangers sizing and the connection with the operation of ORC power plants putting in evidence the real element of innovation: the consideration of the heat exchangers as central element for the optimum design of ORC systems.

  15. The Main Problems in the Development of Geothermal Energy Industry in China

    Yan, Jiahong; Wang, Shejiao; Li, Feng

    2017-04-01

    As early as 1980-1985, the geothermal energy research group of the Institute of Geology and Geophisics (Chinese Academy of Sciences) has proposed to pay attention to geothermal energy resources in oil fields. PetroChina began to study the geothermal energy resources in the region of Beijing-Tianjin-Hebei from 1995. Subsequently, the geothermal resources in the Huabei, Daqing and Liaohe oil regions were evaluated. The total recoverable hot water of the three oilfields reached 19.3 × 1011m3. PetroChina and Kenya have carried out geothermal energy development and utilization projects, with some relevant technical achievements.On the basis of many years' research on geothermal energy, we summarized the main problems in the formation and development of geothermal energy in China. First of all, China's geothermal resources research is still unable to meet the needs of the geothermal energy industry. Secondly, the development and utilization of geothermal energy requires multi-disciplinary cooperation. Thirdly, the development and utilization of geothermal energy needs consideration of local conditions. Finally, the development and utilization of geothermal energy resources requires the effective management of local government.

  16. Development case histories: Tongonan and Palinpinon geothermal fields, Philippines

    Ogena, M.S.

    1992-01-01

    The background on the general scenario of energy resource development in the country is described. Highlights of the exploration history of the Tongonan and Palinpinon geothermal fields in the Philippines are then presented. This is discussed in conjunction with the strategies and policies taken in the development of each field. Finally, the common policies and contrasting development strategies are compared and evaluated. The conclusion derived is that the development strategy decisions at Tongonan are influenced by the regional power demand, topography, and the large extent of the resource. In contrast, the development at Palinpinon is less constrained by the external influence of regional power needs, but, instead, is significantly dominated by the limitations imposed by the rugged terrain and the physical characteristics of the resource area. Such comparison demonstrates the site-specific nature of geothermal development. (auth.). 8 figs.; 2 refs

  17. Technology for Increasing Geothermal Energy Productivity. Computer Models to Characterize the Chemical Interactions of Geothermal Fluids and Injectates with Reservoir Rocks, Wells, Surface Equipment

    Nancy Moller Weare

    2006-01-01

    This final report describes the results of a research program we carried out over a five-year (3/1999-9/2004) period with funding from a Department of Energy geothermal FDP grant (DE-FG07-99ID13745) and from other agencies. The goal of research projects in this program were to develop modeling technologies that can increase the understanding of geothermal reservoir chemistry and chemistry-related energy production processes. The ability of computer models to handle many chemical variables and complex interactions makes them an essential tool for building a fundamental understanding of a wide variety of complex geothermal resource and production chemistry. With careful choice of methodology and parameterization, research objectives were to show that chemical models can correctly simulate behavior for the ranges of fluid compositions, formation minerals, temperature and pressure associated with present and near future geothermal systems as well as for the very high PT chemistry of deep resources that is intractable with traditional experimental methods. Our research results successfully met these objectives. We demonstrated that advances in physical chemistry theory can be used to accurately describe the thermodynamics of solid-liquid-gas systems via their free energies for wide ranges of composition (X), temperature and pressure. Eight articles on this work were published in peer-reviewed journals and in conference proceedings. Four are in preparation. Our work has been presented at many workshops and conferences. We also considerably improved our interactive web site (geotherm.ucsd.edu), which was in preliminary form prior to the grant. This site, which includes several model codes treating different XPT conditions, is an effective means to transfer our technologies and is used by the geothermal community and other researchers worldwide. Our models have wide application to many energy related and other important problems (e.g., scaling prediction in petroleum

  18. Value distribution assessment of geothermal development in Lake County, CA

    Churchman, C.W.; Nelson, H.G.; Eacret, K.

    1977-10-01

    A value distribution assessment is defined as the determination of the distribution of benefits and costs of a proposed or actual development, with the intent of comparing such a development with alternative plans. Included are not only the social and economic effects, but also people's perceptions of their roles and how they are affected by the proposed or actual development. Discussion is presented under the following section headings: on morality and ethics; the vanishing community; case study of pre-development planning--Lake County; methodology for research; Lake County geothermal energy resource; decision making; Planning Commission hearing; communication examples; benefit tracing; response to issues raised by the report of the State Geothermal Task Force; and, conclusions and recommendations. (JGB)

  19. Federal Geothermal Research Program Update Fiscal Year 1999

    2004-02-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal and Wind Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The following mission and goal statements guide the overall activities of the Office of Geothermal and Wind Technologies. This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 1999. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal and Wind Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy.

  20. PROSPECTS OF GEOTHERMAL RESOURCES DEVELOPMENT FOR EAST CISCAUCASIA

    A. B. Alkhasov; D. A. Alkhasova

    2013-01-01

    Abstract. Work subject. Aim. The Northern Caucasus is one of the prospective regions for development of geothermal energy.The hydrogeothermal resources of the only East Ciscaucasian Artesian basin are estimated up to 10000 MW of heat and 1000 MW of electric power. For their large-scale development it is necessary to built wells of big diameter and high flow rate involving huge capital investments. Reconstruction of idle wells for production of thermal water will allow to reduce capital invest...

  1. A Thermoelastic Hydraulic Fracture Design Tool for Geothermal Reservoir Development

    Ahmad Ghassemi

    2003-06-30

    Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Thus, knowledge of conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fracture are created in the reservoir using hydraulic fracturing. At times, the practice aims to create a number of parallel fractures connecting a pair of wells. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have set out to develop advanced thermo-mechanical models for design of artificial fractures and rock fracture research in geothermal reservoirs. These models consider the significant hydraulic and thermo-mechanical processes and their interaction with the in-situ stress state. Wellbore failure and fracture initiation is studied using a model that fully couples poro-mechanical and thermo-mechanical effects. The fracture propagation model is based on a complex variable and regular displacement discontinuity formulations. In the complex variable approach the displacement discontinuities are

  2. Enhanced Geothermal Systems (EGS) Well Construction Technology Evaluation Report

    Polsky, Yarom [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Capuano, Louis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Finger, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Huh, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knudsen, Steve [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Chip, A.J. Mansure [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Raymond, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Swanson, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2008-12-01

    This report provides an assessment of well construction technology for EGS with two primary objectives: 1. Determining the ability of existing technologies to develop EGS wells. 2. Identifying critical well construction research lines and development technologies that are likely to enhance prospects for EGS viability and improve overall economics.

  3. Case studies of geothermal leasing and development on federal lands

    Trummel, Marc

    1978-09-29

    In response to a widely expressed need to examine the impact of the federal regulatory system on the rate of geothermal power development, the Department of Energy-Division of Geothermal Energy (DGE) has established a Streamlining Task Force in cooperation with appropriate federal agencies. The intent is to find a way of speeding development by modification of existing laws or regulations or by better understanding and mechanization of the existing ones. The initial focus was on the leasing and development of federal lands. How do the existing processes work? Would changes produce positive results in a variety of cases? These are questions which must be considered in a national streamlining process. This report presents case studies of federal leasing actions on seven diverse locations in the western region. Characteristics of existing high geothermal potential areas are quite diverse; geography, environment, industry interest and the attitudes and activities of the responsible federal land management agencies and the interested public vary widely. Included are descriptions of post and current activities in leasing exploration and development and discussions of the probable future direction of activities based on current plans. Implications of these plans are presented. The case studies were based on field interviews with the appropriate State and District BLM officer and with the regional forester's office and the particular forest office. Documentation was utilized to the extent possible and has been included in whole or in part in appendices as appropriate.

  4. Geothermal Energy Development in the Eastern United States. Final Report

    None

    1981-10-01

    This document represents the final report from the Applied Physics Laboratory (APL) of The Johns Hopkins University on its efforts on behalf of the Division of Geothermal Energy (DGE) of the Department of Energy (DOE). For the past four years, the Laboratory has been fostering development of geothermal energy in the Eastern United States. While the definition of ''Eastern'' has changed somewhat from time to time, basically it means the area of the continental United States east of the Rocky Mountains, plus Puerto Rico but excluding the geopressured regions of Texas and Louisiana. During these years, the Laboratory developed a background in geology, hydrology, and reservoir analysis to aid it in establishing the marketability of geothermal energy in the east. Contrary to the situation in the western states, the geothermal resource in the east was clearly understood to be inferior in accessible temperature. On the other hand, there were known to be copious quantities of water in various aquifers to carry the heat energy to the surface. More important still, the east possesses a relatively dense population and numerous commercial and industrial enterprises, so that thermal energy, almost wherever found, would have a market. Thus, very early on it was clear that the primary use for geothermal energy in the east would be for process heat and space conditioning--heating and cool electrical production was out of the question. The task then shifted to finding users colocated with resources. This task met with modest success on the Atlantic Coastal Plain. A great deal of economic and demographic analysis pinpointed the prospective beneficiaries, and an intensive ''outreach'' campaign was mounted to persuade the potential users to invest in geothermal energy. The major handicaps were: (1) The lack of demonstrated hydrothermal resources with known temperatures and expected longevity; and (2) The lack of a &apos

  5. Development of an Advanced Stimulation / Production Predictive Simulator for Enhanced Geothermal Systems

    Pritchett, John W. [Leidos, Inc., San Diego, CA (United States)

    2015-04-15

    There are several well-known obstacles to the successful deployment of EGS projects on a commercial scale, of course. EGS projects are expected to be deeper, on the average, than conventional “natural” geothermal reservoirs, and drilling costs are already a formidable barrier to conventional geothermal projects. Unlike conventional resources (which frequently announce their presence with natural manifestations such as geysers, hot springs and fumaroles), EGS prospects are likely to appear fairly undistinguished from the earth surface. And, of course, the probable necessity of fabricating a subterranean fluid circulation network to mine the heat from the rock (instead of simply relying on natural, pre-existing permeable fractures) adds a significant degree of uncertainty to the prospects for success. Accordingly, the basic motivation for the work presented herein was to try to develop a new set of tools that would be more suitable for this purpose. Several years ago, the Department of Energy’s Geothermal Technologies Office recognized this need and funded a cost-shared grant to our company (then SAIC, now Leidos) to partner with Geowatt AG of Zurich, Switzerland and undertake the development of a new reservoir simulator that would be more suitable for EGS forecasting than the existing tools. That project has now been completed and a new numerical geothermal reservoir simulator has been developed. It is named “HeatEx” (for “Heat Extraction”) and is almost completely new, although its methodology owes a great deal to other previous geothermal software development efforts, including Geowatt’s “HEX-S” code, the STAR and SPFRAC simulators developed here at SAIC/Leidos, the MINC approach originally developed at LBNL, and tracer analysis software originally formulated at INEL. Furthermore, the development effort was led by engineers with many years of experience in using reservoir simulation software to make meaningful forecasts for real geothermal

  6. Geothermal development in southwest Idaho: the socioeconomic data base

    Spencer, S.G.; Russell, B.F.

    1979-09-01

    This report inventories, analyzes, and appraises the exiting socioeconomic data base for the ten counties in southwest Idaho that would be impacted by any significant geothermal development. The inventory describes key sociological demographic, and economic characteristics, and presents spatial boundaries, housing data, and projections of population and economic activity for the counties. The inventory identifies the significant gaps in the existing data base and makes recommendations for future research.

  7. Geothermal energy developments in the district heating of Szeged

    Osvald, Máté; Szanyi, János; Medgyes, Tamás; Kóbor, Balázs; Csanádi, Attila

    2017-01-01

    The District Heating Company of Szeged supplies heat and domestic hot water to 27,000 households and 500 public buildings in Szeged. In 2015, the company decided to introduce geothermal sources into 4 of its 23 heating circuits and started the preparation activities of the development. Preliminary investigations revealed that injection into the sandstone reservoir and the hydraulic connection with already existing wells pose the greatest hydrogeological risks, while placement and operation of...

  8. Geothermal development in southwest Idaho: the socioeconomic data base

    Spencer,S.G.; Russell, B.F. (eds.)

    1979-09-01

    This report inventories, analyzes, and appraises the existing socioeconomic data base for the ten counties in southwest Idaho that would be impacted by any significant geothermal development. The inventory describes key sociological demographic, and economic characteristics, and presents spatial boundaries, housing data, and projections of population and economic activity for the counties. The inventory identifies the significant gaps in the existing data base and makes recommendations for future research.

  9. Rotation-Enabled 7-Degree of Freedom Seismometer for Geothermal Resource Development. Phase 1 Final Report

    Pierson, Bob [Applied Technology Associates, Albuquerque, NM (United States); Laughlin, Darren [Applied Technology Associates, Albuquerque, NM (United States)

    2013-10-29

    Under this Department of Energy (DOE) grant, A-Tech Corporation d.b.a. Applied Technology Associates (ATA), seeks to develop a seven-degree-of-freedom (7-DOF) seismic measurement tool for high-temperature geothermal applications. The Rotational-Enabled 7-DOF Seismometer includes a conventional tri-axial accelerometer, a conventional pressure sensor or hydrophone, and a tri-axial rotational sensor. The rotational sensing capability is novel, based upon ATA's innovative research in rotational sensing technologies. The geothermal industry requires tools for high-precision seismic monitoring of crack formation associated with Enhanced Geothermal System (EGS) stimulation activity. Currently, microseismic monitoring is conducted by deploying many seismic tools at different depth levels along a 'string' within drilled observation wells. Costs per string can be hundreds of thousands of dollars. Processing data from the spatial arrays of linear seismometers allows back-projection of seismic wave states. In contrast, a Rotational-Enabled 7-DOF Seismometer would simultaneously measure p-wave velocity, s-wave velocity, and incident seismic wave direction all from a single point measurement. In addition, the Rotational-Enabled 7-DOF Seismometer will, by its nature, separate p- and s-waves into different data streams, simplifying signal processing and facilitating analysis of seismic source signatures and geological characterization. By adding measurements of three additional degrees-of-freedom at each level and leveraging the information from this new seismic observable, it is likely that an equally accurate picture of subsurface seismic activity could be garnered with fewer levels per hole. The key cost savings would come from better siting of the well due to increased information content and a decrease in the number of confirmation wells drilled, also due to the increase in information per well. Improved seismic tools may also increase knowledge, understanding

  10. Federal Geothermal Research Program Update Fiscal Year 2004

    2005-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermal electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently

  11. Federal Geothermal Research Program Update - Fiscal Year 2004

    Patrick Laney

    2005-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermal electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently possible or

  12. Design, Development and Testing of a Drillable Straddle Packer for Lost Circulation Control in Geothermal Drilling

    Gabaldon, J.; Glowka, D.A.; Gronewald, P.; Knudsen, S.D.; Raymond, D.W.; Staller, G.E.; Westmoreland, J.J.; Whitlow, G.L.; Wise, J.L.; Wright, E.K.

    1999-04-01

    Lost Circulation is a widespread problem encountered when drilling geothermal wells, and often represents a substantial portion of the cost of drilling a well. The U.S. Department of Energy sponsors research and development work at Sandia National Laboratories in an effort to reduce these lost circulation expenditures. Sandia has developed a down hole tool that improves the effectiveness and reduces th cost of lost circulation cement treatment while drilling geothermal wells. This tool, the Drillable Straddle Packer, is a low-cost disposable device that is used to isolate the loss zone and emplace the cement treatment directly into the region of concern. This report documents the design and development of the Drillabe Straddle Packer, the laboratory and field test results, and the design package that is available to transfer this technology to industry users.

  13. Community Geothermal Technology Program: Fruit drying with geothermal energy. Final report

    1988-03-14

    Largest problem was lack of proper recording and controlling instrumentation. Agricultural products tested were green papaya powder, banana slices, and pineapple slices. Results show that a temperature of 120 F is a good drying temperature. Papaya should be mature green and not overly ripe; banana ripeness is also important; and pineapple slice thickness should be very uniform for even drying. Geothermal drying is feasible. Figs, tabs.

  14. A case study of radial jetting technology for enhancing geothermal energy systems at Klaipeda geothermal demonstration plant

    Nair, R.; Peters, E.; Sliaupa, S.; Valickas, R.; Petrauskas, S.

    2017-01-01

    In 1996 a geothermal energy project was initiated at Klaipėda, Lithuania, to demonstrate the feasibility of using low enthalpy geothermal water as a renewable energy resource in district heating systems. The Klaipėda geothermal plant is situated within the West Lithuanian geothermal anomaly with a

  15. Developing a framework for assessing the impact of geothermal development phases on ecosystem services

    Semedi, Jarot M.; Willemen, Louise; Nurlambang, Triarko; van der Meer, Freek; Koestoer, Raldi H.

    2017-12-01

    The 2014 Indonesian National Energy Policy has set a target to provide national primary energy usage reached 2.500 kWh per capita in the year 2025 and reached 7.000 kWh in the year 2050. The National Energy Policy state that the development of energy should consider the balance of energy economic values, energy supply security, and the conservation of the environment. This has led to the prioritization of renewable energy sources. Geothermal energy a renewable energy source that produces low carbon emissions and is widely available in Indonesia due to the country’s location in the “volcanic arc”. The development of geothermal energy faces several problems related to its potential locations in Indonesia. The potential sites for geothermal energy are mostly located in the volcanic landscapes that have a high hazard risk and are often designated protected areas. Local community low knowledge of geothermal use also a challenge for geothermal development where sometimes strong local culture stand in the way. Each phase of geothermal energy development (exploration, construction, operation and maintenance, and decommissioning) will have an impact on the landscape and everyone living in it. Meanwhile, natural and other human-induced drivers will keep landscapes and environments changing. This conference paper addresses the development of an integrated assessment to spatially measure the impact of geothermal energy development phases on ecosystem services. Listing the effects on the ecosystem services induced by each geothermal development phases and estimating the spatial impact using Geographic Information System (GIS) will result in an overview on where and how much each geothermal development phase affects the ecosystem and how this information could be included to improve national spatial planning.

  16. Geothermal direct use developments in the United States

    Lienau, P.J.; Culver, G.; Lund, J.W.

    1988-08-01

    Direct heat use of geothermal energy in the United States is recognized as one of the alternative energy resources that has proven itself technically and economically, and is commercially available. Developments include space conditioning of buildings, district heating, groundwater heat pumps, greenhouse heating, industrial processing, aquaculture, and swimming pool heating. Forty-four states have experienced significant geothermal direct use development in the last ten years. The total installed capacity is 5.7 billion Btu/hr (1700 MW/sub t/), with an annual energy use of nearly 17,000 billion Btu/yr (4.5 million barrels of oil energy equivalent). In this report we provide an overview of how and where geothermal energy is used, the extent of that use, the economics and growth trends. The data is based on an extensive site data gathering effort by the Geo-Heat Center in the spring of 1988, under contract to the US Department of Energy. 100 refs., 4 figs., 4 tabs.

  17. Minutes of the conference 'Geothermal energy in Asia '98'. Symposium on the current status and the future of developing geothermal energy in Asia

    NONE

    1998-10-22

    This paper summarizes the proceedings presented at the 'Geothermal energy in Asia '98' held on October 22, 1998 in the Philippines. The Philippines, Japan, Indonesia, China, Malaysia, and Vietnam presented proceedings on the current status and the future of developing geothermal energy in each country. Technical theses presented relate to the following matters: a geothermal development model in the Khoy geothermal area in Iran, the result of surveys on promotion of geothermal development in Japan, the thermal fluid sources in the geothermal fluid systems in the Hachijo volcanic island in Japan, strategies for heat reservoir management by using numerical simulation in the Hacchobari geothermal area in Japan, a geological model for the north Negros geothermal area in the center of the Philippines, application of the NEDO rock core analyzing method in the Wasabizawa geothermal development area in Japan, measurements of geomagnetism, geocurrent, and gravity in the north Negros in the center of the Philippines, geophysical studies in geothermal exploration in the Mataloko area in the Nustenggara island in the eastern Indonesia, and the background of magma/crust structure in the geothermal systems. (NEDO)

  18. Minutes of the conference 'Geothermal energy in Asia '98'. Symposium on the current status and the future of developing geothermal energy in Asia

    NONE

    1998-10-22

    This paper summarizes the proceedings presented at the 'Geothermal energy in Asia '98' held on October 22, 1998 in the Philippines. The Philippines, Japan, Indonesia, China, Malaysia, and Vietnam presented proceedings on the current status and the future of developing geothermal energy in each country. Technical theses presented relate to the following matters: a geothermal development model in the Khoy geothermal area in Iran, the result of surveys on promotion of geothermal development in Japan, the thermal fluid sources in the geothermal fluid systems in the Hachijo volcanic island in Japan, strategies for heat reservoir management by using numerical simulation in the Hacchobari geothermal area in Japan, a geological model for the north Negros geothermal area in the center of the Philippines, application of the NEDO rock core analyzing method in the Wasabizawa geothermal development area in Japan, measurements of geomagnetism, geocurrent, and gravity in the north Negros in the center of the Philippines, geophysical studies in geothermal exploration in the Mataloko area in the Nustenggara island in the eastern Indonesia, and the background of magma/crust structure in the geothermal systems. (NEDO)

  19. Building a regulatory framework for geothermal energy development in the NWT

    Holroyd, Peggy; Dagg, Jennifer [Pembina Institute (Canada)

    2011-03-15

    There is a high potential in Canada's Northwest Territories (NWT) for using geothermal energy, the thermal energy generated and stored in the Earth, and this could help the NWT meet their greenhouse gas emissions reduction targets. The Pembina Institute was engaged by the government of the NWT to perform a jurisdictional analysis of geothermal energy legislation and policy around the world; this report presents its findings. The jurisdictional review was carried out in 9 countries and interviews were conducted with various geothermal energy experts. Following this research, the Pembina Institute made recommendations to the NWT government on the development of a geothermal energy regulatory framework which would cover the need to define geothermal energy legislation and resource ownership as well as a plan and vision for geothermal energy use. This report highlighted that with an effective government policy in place, the use of geothermal energy in the NWT could provide the territories with a stable and secure energy supply.

  20. Building a regulatory framework for geothermal energy development in the NWT

    Holroyd, Peggy; Dagg, Jennifer [Pembina Institute (Canada)

    2011-03-15

    There is a high potential in Canada's Northwest Territories (NWT) for using geothermal energy, the thermal energy generated and stored in the Earth, and this could help the NWT meet their greenhouse gas emissions reduction targets. The Pembina Institute was engaged by the government of the NWT to perform a jurisdictional analysis of geothermal energy legislation and policy around the world; this report presents its findings. The jurisdictional review was carried out in 9 countries and interviews were conducted with various geothermal energy experts. Following this research, the Pembina Institute made recommendations to the NWT government on the development of a geothermal energy regulatory framework which would cover the need to define geothermal energy legislation and resource ownership as well as a plan and vision for geothermal energy use. This report highlighted that with an effective government policy in place, the use of geothermal energy in the NWT could provide the territories with a stable and secure energy supply.

  1. Mt. Apo geothermal project : a learning experience in sustainable development

    Ote, Leonardo M.; De Jesus, Agnes C.

    1997-01-01

    The Mt. Apo geothermal project, a critical component of the Philippine energy program met stiff opposition from 1988-1991. Seemingly unresolvable legal, environmental and cultural issues between the government developer, the Philippine National Oil Company-Energy Development Corporation (PNOC-EDC) and various affected sectors delayed the project for two years. The paper discusses the efforts undertaken by the developer to resolve these conflicts through a series of initiatives that transformed the project into a legally, environmentally and socially acceptable project. Lastly, the PNOC-EDC experience has evolved a new set of procedures for the environmental evaluation of development project in the Philippines. (author)

  2. 2014 Low-Temperature and Coproduced Geothermal Resources Fact Sheet

    Tim Reinhardt, Program Manager

    2014-09-01

    As a growing sector of geothermal energy development, the Low-Temperature Program supports innovative technologies that enable electricity production and cascaded uses from geothermal resources below 300° Fahrenheit.

  3. Present status of geothermal power development in Kyushu; Kyushu ni okeru chinetsu hatsuden no genjo

    Akiyoshi, M. [Kyushu Electric Power Co. Inc., Fukuoka (Japan)

    1997-10-20

    The present situation was introduced of the geothermal power generation in Kyushu. In Kyushu, where there are lots of volcanos and abundant geothermal resources, the geothermal exploration has been made since long ago. Three non-utility use units at three geothermal power generation points and six commercial use units at five points are now in operation in Kyushu. The total output is approximately 210 MW, about 40% of the domestic geothermal power generation. At Otake and Hacchobaru geothermal power plants, the Kyushu Electric Power Company made the geothermal resource exploration through the installation/operation of power generation facilities. At the Otake power plant, a geothermal water type single flashing system was adopted first in the country because of its steam mixed with geothermal water. At the Hacchobaru power plant, adopted were a two-phase flow transportation system and a double flashing system in which the geothermal water separated from primary steam by separator is more reduced in pressure to take out secondary steam. Yamakawa, Ogiri and Takigami power plants are all for the joint exploration. Geothermal developers drill steam wells and generate steam, and the Kyushu Electric Power Company buys the steam and uses it for power generation. 5 figs., 1 tab.

  4. Proposal for the further development of the 'Ribeira Grande' agricultural geothermal project

    Popovski, Kiril; De Medeiros, Jorge Rosa; Rodrigues, Ana Catarina Tavares

    2000-01-01

    Geothermal project Ribeira Grande has been the first trial to introduce the possibilities of direct application of geothermal energy at Azores. As all the first experiences, it's development has been escorted with a list of difficulties and problems, resulting with non proper completion of some systems and installations. However, even not complete, the reached results justified both technically and economically the indigenous resource door for further activities and development. Presented proposal for the second phase of project development consists two very important advantages: 1) Enables development of new demonstration and productive projects, without engaging new import of fuels or other energents; 2) Enables development based on the already existing economy sectors at the islands and makes them more profitable and accommodated to the requests of the national and international market. However, influencing national and international preconditions for the realization of the proposed activities are not very convenient and are requesting a concentrate engagement of the Institute for Innovative Technologies of Azores INOVA during the period of next 5 years. The final success of this engagement shall open very wide possibilities for direct application of geothermal energy development in this isolated EC community, presently mainly orientated towards import both of energy and food. (Authors)

  5. Fiscal 1999 research and verification of geothermal energy exploring technologies and the like. Development of reservoir mass and heat flow characterization (Development of gravity monitoring technology - Summary); 1999 nendo chinetsu tansa gijutsu nado kensho chosa hokokusho (yoyaku). Choryuso hendo tansaho kaihatsu (Juryoku tansaho kaihatsu)

    NONE

    2000-03-01

    For developing a natural state simulation system to enable the seizure of reservoir characteristics from gravity changes, a gravity measuring network system is about to be constructed in the Nishiyama district, Yanaizu-machi, Kawanuma-gun, Fukushima Prefecture, where a geothermal power station is situated. The work centers about (1) the construction of a gravity measuring network system, (2) the development of a borehole gravimeter utilization technology, and (3) the development of analysis/evaluation technologies. Under item (1), 138 gravity measuring stations and 10 groundwater measuring stations are completed, and continuous and periodic measurements of gravity and groundwater levels are carried out. Furthermore, gravimeters are calibrated, and the elevation, latitude, and longitude are precisely determined for each of the measuring stations. Under item (2), model calculations are conducted for the Nishiyama district boreholes, as a step preparatory to borehole gravity measuring, by investigating the records of actual operation of equipment and by operating a reservoir simulation system. Under item (3), measures to deal with factors that impede precise measurement and conditions to meet for the analysis of gravity changes are studied, and efforts are started to construct the said natural state simulation system. (NEDO)

  6. Geothermal Program Review XII: proceedings. Geothermal Energy and the President's Climate Change Action Plan

    1994-12-31

    Geothermal Program Review XII, sponsored by the Geothermal Division of US Department of Energy, was held April 25--28, 1994, in San Francisco, California. This annual conference is designed to promote effective technology transfer by bringing together DOE-sponsored researchers; utility representatives; geothermal energy developers; suppliers of geothermal goods and services; representatives from federal, state, and local agencies; and others with an interest in geothermal energy. In-depth reviews of the latest technological advancements and research results are presented during the conference with emphasis on those topics considered to have the greatest potential to impact the near-term commercial development of geothermal energy.

  7. Program planner's guide to geothermal development in California

    Yen, W.W.S.; Chambers, D.M.; Elliott, J.F.; Whittier, J.P.; Schnoor, J.J.; Blachman, S.

    1980-09-30

    The resource base, status of geothermal development activities, and the state's energy flow are summarized. The present and projected geothermal share of the energy market is discussed. The public and private sector initiatives supporting geothermal development in California are described. These include legislation to provide economic incentives, streamline regulation, and provide planning assistance to local communities. Private sector investment, research, and development activities are also described. The appendices provide a ready reference of financial incentives. (MHR)

  8. Geothermal energy. A national proposal for geothermal resources research

    Denton, J.C. (ed.)

    1972-01-01

    Discussions are given for each of the following topics: (1) importance to the Nation of geothermal resources, (2) budget recommendations, (3) overview of geothermal resources, (4) resource exploration, (5) resource assessment, (6) resource development and production, (7) utilization technology and economics, (8) environmental effects, (9) institutional considerations, and (10) summary of research needs.

  9. Community Geothermal Technology Program: Silica bronze project. Final report

    Bianchini, H.

    1989-10-01

    Objective was to incorporate waste silica from the HGP-A geothermal well in Pohoiki with other refractory materials for investment casting of bronze sculpture. The best composition for casting is about 50% silica, 25% red cinders, and 25% brick dust; remaining ingredient is a binder, such as plaster and water.

  10. Analysis of ecological effects of geopressured-geothermal resource development. Geopressured-geothermal technical paper No. 4

    1979-07-01

    The activities involved in geopressured-geothermal resource production are identified and their ecological impacts are discussed. The analysis separates those activites that are unique to geopressured-geothermal development from those that also occur in oil and gas and other resource developments. Of the unique activities, those with the greatest potential for serious ecological effect are: (1) accidental brine discharge as a result of a blowout during well drilling; (2) subsidence; (3) fault activation and enhanced seismicity; and (4) subsurface contamination of water, hydrocarbon, and mineral reservoirs. Available methods to predict and control these effects are discussed.

  11. The analysis of subsidence associated with geothermal development. Volume 1. Handbook

    Atherton, R.W.; Finnemore, E.J.; Gillam, M.L.

    1976-09-01

    This study evaluates the state of knowledge of subsidence associated with geothermal development, and provides preliminary methods to assess the potential of land subsidence for any specific geothermal site. The results of this study are presented in three volumes. Volume 1 is designed to serve as a concise reference, a handbook, for the evaluation of the potential for land subsidence from the development of geothermal resources.

  12. Significant Problems in Geothermal Development in California, Final Report on Four Workshops, December 1978 - March 1979

    None

    1979-07-15

    From November 1978 through March 1979 the California Geothermal Resources Board held four workshops on the following aspects of geothermal development in California: County Planning for Geothermal Development; Federal Leasing and Environmental Review Procedures; Transmission Corridor Planning; and Direct Heat Utilization. One of the objectives of the workshops was to increase the number of people aware of geothermal resources and their uses. This report is divided into two parts. Part 1 provides summaries of all the key information discussed in the workshops. For those people who were not able to attend, this part of the report provides you with a capsule version of the workshop sessions. Part 2 focuses on the key issues raised at the workshops which need to be acted upon to expedite geothermal resource development that is acceptable to local government and environmentally prudent. For the purpose of continuity, similar Geothermal Resources Task Force recommendations are identified.

  13. Geothermal progress monitor: Report Number 19

    1997-12-01

    Short articles are presented related to activities in the federal government and the geothermal industry, international developments, state and local government activities, technology development, and technology transfer. Power plant tables and a directory of organizations involved in geothermal resource development are included

  14. Geothermal progress monitor: Report Number 19

    NONE

    1997-12-01

    Short articles are presented related to activities in the federal government and the geothermal industry, international developments, state and local government activities, technology development, and technology transfer. Power plant tables and a directory of organizations involved in geothermal resource development are included.

  15. Water use in the development and operation of geothermal power plants.

    Clark, C. E.; Harto, C. B.; Sullivan, J. L.; Wang, M. Q. (Energy Systems); ( EVS)

    2010-09-17

    Geothermal energy is increasingly recognized for its potential to reduce carbon emissions and U.S. dependence on foreign oil. Energy and environmental analyses are critical to developing a robust set of geothermal energy technologies. This report summarizes what is currently known about the life cycle water requirements of geothermal electric power-generating systems and the water quality of geothermal waters. It is part of a larger effort to compare the life cycle impacts of large-scale geothermal electricity generation with other power generation technologies. The results of the life cycle analysis are summarized in a companion report, Life Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems. This report is divided into six chapters. Chapter 1 gives the background of the project and its purpose, which is to inform power plant design and operations. Chapter 2 summarizes the geothermal electricity generation technologies evaluated in this study, which include conventional hydrothermal flash and binary systems, as well as enhanced geothermal systems (EGS) that rely on engineering a productive reservoir where heat exists but water availability or permeability may be limited. Chapter 3 describes the methods and approach to this work and identifies the four power plant scenarios evaluated: a 20-MW EGS plant, a 50-MW EGS plant, a 10-MW binary plant, and a 50-MW flash plant. The two EGS scenarios include hydraulic stimulation activities within the construction stage of the life cycle and assume binary power generation during operations. The EGS and binary scenarios are assumed to be air-cooled power plants, whereas the flash plant is assumed to rely on evaporative cooling. The well field and power plant design for the scenario were based on simulations using DOE's Geothermal Economic Technology Evaluation Model (GETEM). Chapter 4 presents the water requirements for the power plant life cycle for the scenarios evaluated. Geology

  16. FY 2000 report on the verification survey of geothermal exploration technology, etc. Summary. Development of the exploration method of reservoir changes (Theme 3 - Development of the electrical/electromagnetic prospecting method); 2000 nendo chinetsu tansa gijutsu tou kensho chosa hokokusho (Yoyaku). Choryusou hendou tansaho kaihatsu (Tema 3 - Denki denjiki tansa ho kaihatsu)

    NONE

    2001-03-01

    For the purpose of developing the technology for accurately predicting the spread of reservoir and future changes by grasping changes in self- potential and resistivity caused by sampling/reduction of geothermal fluids, an investigational study was conducted, and the FY 2000 results were summarized. As to the development of the self- potential monitoring system, observation was continuously made at 50 points on the earth's surface and 3 measuring points of bottom hole, and changes in self-potential associated with the production/reduction in the Ogiri power plant were smoothly observed. Concerning the development of the resistivity monitoring system, in the preliminary test made in the previous fiscal year, effectiveness was recognized of the high accuracy MT method monitoring system that can detect resistivity changes caused by reservoir changes, and the monitoring was started in this fiscal year. As to the development of the method for predicting reservoir changes using self-potential/resistivity, STAR-TOUGH 2 and self-potential post processor were applied to the geothermal simulation model in the Ogiri area, and study of the applicability and improvement of reservoir models were made. (NEDO)

  17. Probes for the development of medium deep geothermal energy; Sonden zur Erschliessung der mitteltiefen Geothermie

    Stuckmann, Uwe; Gottschalk, Daniel [REHAU AG und Co., Rehau (Germany)

    2011-10-24

    Compared to the near-surface geothermal energy, higher temperatures can be developed in the medium-depth geothermal energy (400 to 1,000 meters). Thus, the efficiency of geothermal power plants can be increased. The significantly higher yield performance and extraction performance are opposite to the higher costs of installation. At high thermal gradients of the surface one may completely dispense with the heat pump and directly heat. Geothermal probes at the current state of the art are reaching the limits of its applicability. Only newly developed geothermal probes offer a pressure resistance and temperature resistance in order to exploit these deeper regions. Such projects will be accompanied by the mining authority according to the power of approval. Extensive financial supports are available with the market incentive program of the Federal Government. Thus, the use of geothermal probes is possible in deeper regions. The feasibility and cost of future projects will be affected positively.

  18. Geothermal energy

    Manzella A.

    2017-01-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity) worldwide, usually requires geothermal resources temperatures of over 100 °C. Fo...

  19. Cumulative biological impacts of The Geysers geothermal development

    Brownell, J.A.

    1981-10-01

    The cumulative nature of current and potential future biological impacts from full geothermal development in the steam-dominated portion of The Geysers-Calistoga KGRA are identified by the California Energy Commission staff. Vegetation, wildlife, and aquatic resources information have been reviewed and evaluated. Impacts and their significance are discussed and staff recommendations presented. Development of 3000 MW of electrical energy will result in direct vegetation losses of 2790 acres, based on an estimate of 11.5% loss per lease-hold of 0.93 acres/MW. If unmitigated, losses will be greater. Indirect vegetation losses and damage occur from steam emissions which contain elements (particularly boron) toxic to vegetation. Other potential impacts include chronic low-level boron exposure, acid rain, local climate modification, and mechanical damage. A potential exists for significant reduction and changes in wildlife from direct habitat loss and development influences. Highly erosive soils create the potential for significant reduction of aquatic resources, particularly game fish. Toxic spills have caused some temporary losses of aquatic species. Staff recommends monitoring and implementation of mitigation measures at all geothermal development stages.

  20. Report (summarized) for fiscal 2000 on survey for demonstration of geothermal exploration technologies. Development of exploration method using reservoir bed fluctuation (Theme 4. Development of seismic wave exploration method); 2000 nendo chinetsu tansa gijutsu to kensho chosa hokokusho (yoyaku). Choryuso hendo tansaho kaihatsu - 4 (jishinha tansaho kaihatsu)

    NONE

    2001-03-01

    With an objective of developing a method effective to evaluate reservoir beds in the initial stage of development, to maintain output stability of power plants after having started the operation and to extract reservoirs existing in the vicinity of areas that have already been developed, research has been performed on a method to forecast spread of the reservoir beds and future variation, by identifying distribution of very small earthquakes generated by steam production activities, and change in three-dimensional velocity structure of elastic waves. This paper summarizes the achievements in fiscal 2000. In the research of the seismic wave variation monitoring technology, AE observation was performed during a long-term blowout test of geothermal survey wells in the Akinomiya area in Ak ita Prefecture, wherein it was verified that the reservoir bed fluctuation can be identified as the number of AE occurrence. In the research of the three dimensional seismic wave variation analysis, a three dimensional velocity structure analyzing program was used to analyze the status in the Kakkonda area. In the survey of elastic wave velocity structure, a survey was carried out in the Akinomiya area in Akita Prefecture by using the reflection method. As a result, sharp fall was verified in the western side of side tracks of basic rocks, which corresponds to the past survey result. A plurality of reflection events corresponding to depths of geothermal reservoir beds were detected successfully. (NEDO)

  1. Geothermal Reservoir Technology Research Program: Abstracts of selected research projects

    Reed, M.J. (ed.)

    1993-03-01

    Research projects are described in the following areas: geothermal exploration, mapping reservoir properties and reservoir monitoring, and well testing, simulation, and predicting reservoir performance. The objectives, technical approach, and project status of each project are presented. The background, research results, and future plans for each project are discussed. The names, addresses, and telephone and telefax numbers are given for the DOE program manager and the principal investigators. (MHR)

  2. Some issues regarding regulatory policy, political participation, and social implications of geothermal resource development in the Imperial Valley

    Green, P.S.; Steinberger, M.F.

    1976-02-01

    The early stages of geothermal resource development in the Imperial Valley have been characterized by an emphasis on the technological expertise of private developers and government officials. Government officials have created a complex array of Federal, state and county regulations to monitor the development. Local control is under the jurisdiction of the Imperial County government. The County has as its responsibility the protection of the general welfare of its residents, including any potentially adverse social, economic, or environmental impacts caused by geothermal resource development. Private developers and government officials are interested in the resources as a source of water desalination and electric power generation. An assessment of the interests and concerns of the public was made early in the development stage. In view of all these interests, it is essential in a democratic society that the various interests be identified so government can be representative of, and responsive to, those interests. Therefore, the four issues discussed in the paper are: (1) regulatory problems faced by local government officials in determining the course of development; (2) the social and political context in which the development is taking place; (3) the potential of geothermal development as perceived by community leaders and local government officials; and (4) the desirability of expanding citizen participation in geothermal decision-makingduring a period in which, as public opinion polls indicated, many citizens feel separated from government actions which may significantly affect their lives. Recommendations for regulations of geothermal resources and recommendations for improving public input into geothermal regulation are summarized in depth. (MCW)

  3. Geothermal spas

    Woodruff, J.L.; Takahashi, P.K.

    1990-01-01

    The spa business, part of the health and fitness industry that has sprung up in recent years, is highly successful world-wide. The most traditional type of spa is the geothermal spa, found in geothermal areas around the world. In Japan, for example, some 2,000 geothermal spas and resorts generate $6 billion annually. Hawaii has an ideal environment for geothermal spas, and several locations in the islands could supply warm mineral water for spa development. Hawaii receives about 6 million visitors annually, a high percentage of whom are familiar with the relaxing and therapeutic value of geothermal spas, virtually guaranteeing the success of this industry in Hawaii. Presently, Hawaii does not have a single geothermal spa. This paper reports that the geothermal spa business is an industry whose time has come, an industry that offers very promising investment opportunities, and one that would improve the economy while expanding the diversity of pleasurable vacation options in Hawaii

  4. Economic impacts of geothermal development in Skamania County, Washington

    Lesser, J.A.

    1992-07-01

    This report estimates the local economic impacts that could be anticipated from the development of a 100 megawatt (MW) geothermal power plant in eastern Skamania County, Washington, near Mt. Adams, as shown in Figure 1. The study was commissioned by the Bonneville Power Administration to quantify such impacts as part of regional confirmation work recommended by the Northwest Power Planning Council. Skamania County was chosen due to both identified geothermal resources and developer interest. The analysis will focus on two phases: a plant construction phase, including well field development, generating plant construction, and transmission line construction; and an operations phase. Economic impacts will occur to the extent that construction and operations affect the local economy. These impacts will depend on the existing structure of the Skamania County economy and estimates of revenues that may accrue to the county as a result of plant construction, operation, and maintenance. Specific impacts may include additional direct employment at the plant, secondary impacts from wage payments being used to purchase locally produced goods and services, and impacts due to expenditures of royalty and tax payments received by the county. The basis for the analysis of economic impacts in this study is the US Forest Service IMPLAN input-output modeling system

  5. Advanced Heat/Mass Exchanger Technology for Geothermal and Solar Renewable Energy Systems

    Greiner, Miles [Univ. of Nevada, Reno, NV (United States); Childress, Amy [Univ. of Nevada, Reno, NV (United States); Hiibel, Sage [Univ. of Nevada, Reno, NV (United States); Kim, Kwang [Univ. of Nevada, Reno, NV (United States); Park, Chanwoo [Univ. of Nevada, Reno, NV (United States); Wirtz, Richard [Univ. of Nevada, Reno, NV (United States)

    2014-12-16

    Northern Nevada has abundant geothermal and solar energy resources, and these renewable energy sources provide an ample opportunity to produce economically viable power. Heat/mass exchangers are essential components to any energy conversion system. Improvements in the heat/mass exchange process will lead to smaller, less costly (more efficient) systems. There is an emerging heat transfer technology, based on micro/nano/molecular-scale surface science that can be applied to heat/mass exchanger design. The objective is to develop and characterize unique coating materials, surface configurations and membranes capable of accommodating a 10-fold increase in heat/mass exchanger performance via phase change processes (boiling, condensation, etc.) and single phase convective heat/mass transfer.

  6. Advanced Geothermal Turbodrill

    W. C. Maurer

    2000-05-01

    Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of large diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.

  7. National Deployment of Domestic Geothermal Heat Pump Technology: Observations on the UK Experience 1995–2013

    Simon Rees

    2014-08-01

    Full Text Available Uptake of geothermal heat pump technology in the UK and corresponding development of a domestic installation industry has progressed significantly in the last decade. This paper summarizes the growth process and reviews the research that has been specifically concerned with conditions in the UK. We discuss the driving forces behind these developments and some of the supporting policy initiatives that have been implemented. Publically funded national trials were completed to assess the performance and acceptance of the technology and validate design and installation standards. We comment on both the technical and non-technical findings of the trials and the related academic research and their relevance to standards development. A number of technical issues can be identified—some of which may be particular to the UK—and we suggest a number of research and development questions that need to be addressed further. Current national support for the technology relies solely on a tariff mechanism and it is uncertain that this will be effective enough to ensure sufficient growth to meet the national renewable heat target in 2020. A broader package of support that includes mandatory measures applied to future housing development and retrofit may be necessary to ensure long-term plans for national deployment and decarbonization of heat are achieved. Industry needs to demonstrate that efficiency standards can be assured, capital costs reduced in the medium-term and that national training schemes are effective.

  8. Suitability Evaluation of Specific Shallow Geothermal Technologies Using a GIS-Based Multi Criteria Decision Analysis Implementing the Analytic Hierarchic Process

    Francesco Tinti

    2018-02-01

    Full Text Available The exploitation potential of shallow geothermal energy is usually defined in terms of site-specific ground thermal characteristics. While true, this assumption limits the complexity of the analysis, since feasibility studies involve many other components that must be taken into account when calculating the effective market viability of a geothermal technology or the economic value of a shallow geothermal project. In addition, the results of a feasibility study are not simply the sum of the various factors since some components may be conflicting while others will be of a qualitative nature only. Different approaches are therefore needed to evaluate the suitability of an area for shallow geothermal installation. This paper introduces a new GIS platform-based multicriteria decision analysis method aimed at comparing as many different shallow geothermal relevant factors as possible. Using the Analytic Hierarchic Process Tool, a geolocalized Suitability Index was obtained for a specific technological case: the integrated technologies developed within the GEOTeCH Project. A suitability map for the technologies in question was drawn up for Europe.

  9. Analysis of technologies and economics for geothermal energy utilization of electric power plant

    Haijie, C.

    1993-01-01

    Geothermal energy -- it is a kind of heat energy which pertains to the internal heat of the earth. It carries the heat of the earth outward by the underground water of the rock section of the earth. Normally, the temperature of the thermal water is 50 degrees-140 degrees. During the 20th century, the rapid development of industry and agriculture quickly increased the need for large amounts of electric power. Now, although there are coal power plants, oil and nature gas power plants, hydroelectric power and nuclear power plants, all countries of the world attach importance to the prospect of geothermal power plants. It is the most economic (no consumption fuel) and safe (no pollution) power plant. (Present author considered that the chlorofluorocarbon refrigerants such as RII, R12, and etc. are not used). In 1904, Italy established the first geothermal power plant in the world. Soon afterwards, the U.S.A., Iceland, Japan, Russia, and New Zealand also established geothermal power plants. In 1970, China, North China, Jiang province and Guangdong province also established geothermal power plants. In 1975, the U.S.A. geothermal power plant capacity of 522mw was the first in the world

  10. The Potential of Geothermal as a Major Supplier of U.S. Primary Energy using EGS technology

    Tester, J. W.

    2012-12-01

    Recent national focus on the value of increasing our supply of indigenous, renewable energy underscores the need for re-evaluating all alternatives, particularly those that are large and well-distributed nationally. To transition from our current hydrocarbon-based energy system, we will need to expand and diversify the portfolio of options we currently have. One such option that has been undervalued and often ignored completely in national assessments is geothermal energy from both conventional hydrothermal resources and enhanced or engineered geothermal systems (EGS). Although geothermal energy is currently used for both electric and non-electric applications worldwide from conventional hydrothermal resources and in groundsource heat pumps, most of the emphasis in the US has been generating electricity. For example, a 2006 MIT-led study focused on the potential for EGS to provide 100,000 MWe of base-load electric generating capacity in the US by 2050. Since that time, a Cornell-led study has evaluated the potential for geothermal to meet the more than 25 EJ per year demand in the US for low temperature thermal energy for heating and other direct process applications Field testing of EGS in the US, Europe, and Australia is reviewed to outline what remains to be done for large-scale deployment. Research, Development and Demonstration (RD&D) needs in five areas important to geothermal deployment on a national scale will be reviewed: 1. Resource - estimating the magnitude and distribution of the US resource 2. Reservoir Technology - establishing requirements for extracting and utilizing energy from EGS reservoirs including drilling, reservoir design and stimulation 3. Utilization - exploring end use options for district heating, electricity generation and co-generation. 4. Environmental impacts and tradeoffs -- dealing with water and land use and seismic risk and quantifying the reduction in carbon emissions with increased deployment 5. Economics - projecting costs

  11. Present state and future of new energy technology development

    Kitamura, N

    1976-08-01

    The Sunshine Project was begun in 1973 by the Japanese Ministry of Industry to investigate all alternative energy sources other than nuclear. The project is subdivided into four separate areas, those being solar energy, geothermal energy, liquefaction and gasification of coal, and hydrogen fuel. This article describes the present state of these technologies and their probable future development. Although hydrogen fuel and coal liquefaction/gasification are still in the basic research stage solar and geothermal technologies are already well developed.

  12. The GEOFAR Project - Geothermal Finance and Awareness in Europeans Regions - Development of new schemes to overcome non-technical barriers, focusing particularly on financial barriers

    Poux, Adeline; Wendel, Marco; Jaudin, Florence; Hiegl, Mathias

    2010-05-01

    planners, developers and politicians when developing a new geothermal project. Each of the analyzed countries is facing a distinct bundle of non-technical barriers. Globally, deep geothermal projects are characterized by high up-front costs and are facing the geological risk of the non discovery of the resources in adequacy to the initial expectations. Moreover, investors are facing directly the competitiveness of fossils energy. The very long pay back period makes it also difficult for them to face the geological risk. GEOFAR will propose new targeting financing and funding schemes, in order to remove the financial barriers hindering the initial stages of geothermal energy projects. GEOFAR also considers a lack of awareness as important barrier hindering the future development of geothermal energy projects. Public opinion is globally positive to geothermal energy, but deep geothermal projects are often suffering from a lack of information leading sometimes to non public acceptance. By underlining the range of possibilities offered by the geothermal energy and the potential and emerging technologies, GEOFAR tends to increase the awareness of geothermal energy in order to boost the development and the investment in new geothermal energy projects. Geothermal energy is expected to contribute significantly to the future European energy sources and the GEOFAR project aims to facilitate it.

  13. Community Geothermal Technology Program: Cloth dyeing by geothermal steam. An experiment in technology transfer from Japan to Hawaii, Final report

    Furumoto, A.S.

    1987-12-31

    This was an experiment to test whether cloth dyeing using geothermal steam (already proven in Japan) would be feasible in Hawaii. Results: Using a fabricated steam vat, cotton, silk, and synthetic can be dyed; the resulting material received high grades for steadfastness and permanency under dye testing. Techniques that were successful in Matsukawa, were replicated in Puna. However, attempts to embed leaf patterns on cloth using natural leaves and to extract natural dyes from Hawaiian plants were unsuccessful; the color of natural dyes deteriorated in hours. But chemical dyes gave brilliant hues or shades, in contrast to those in Japan where the steam there gave subdued tones. It is concluded that geothermal dyeing can be a viable cottage industry in Puna, Hawaii.

  14. INTEGRATED EXPLORATION OF GEOTHERMAL RESOURCES

    A. B. Alkhasov; D. A. Аlkhasova; R. M. Aliyev; A. Sh. Ramazanov

    2016-01-01

    The aim. The aim is to develop the energy efficient technologies to explore hydro geothermal resources of different energy potential.Methods. Evaluation of the effectiveness of the proposed technologies has been carried out with the use of physical and mathematical, thermodynamic and optimization methods of calculation and the physical and chemical experimental research.Results. We propose the technology of integrated exploration of low-grade geothermal resources with the application of heat ...

  15. 76 FR 38648 - Availability of the Geothermal Technologies Program Blue Ribbon Panel Report and Request for...

    2011-07-01

    ....S. has lagged that of solar and wind energy. The purpose of the Blue Ribbon Panel meeting was to... Geothermal Technologies Program Blue Ribbon Panel Report and Request for Public Comment AGENCY: Office of... Panel (the Panel) on March 22/23, 2011 in Albuquerque, New Mexico for a guided discussion on the future...

  16. Geopressured-geothermal resource development on public free school lands

    1979-07-01

    The study's findings and recommendations are based upon analysis of the following: financial and economic feasibility of geopressured-geothermal resource development; possible ecological, social, and economic impacts of resource development on PFSL; and legal issues associated with resource development. The results of the analysis are summarized and are discussed in detail in a series of four technical papers which accompany this volume. Existing rules of the General Land Office (GLO), the School Land Board (SLB), and the Railroad Commission of Texas (RRC) were reviewed in light of the above analysis and were discussed with the agencies. The study's recommendations resulted from this analytical and review process; they are discussed. The preliminary draft rules and regulations to govern resource development on PFSL are presented in Appendix A; the accompanying forms and model lease are found in Appendix B.

  17. Geothermal Program Review IV: proceedings

    1985-01-01

    The research and development program of DOE's Geothermal Technology Division is reviewed in separate presentations according to program area. Separate abstracts have been prepared for the individual papers. (ACR)

  18. INTEGRATED EXPLORATION OF GEOTHERMAL RESOURCES

    A. B. Alkhasov

    2016-01-01

    Full Text Available The aim. The aim is to develop the energy efficient technologies to explore hydro geothermal resources of different energy potential.Methods. Evaluation of the effectiveness of the proposed technologies has been carried out with the use of physical and mathematical, thermodynamic and optimization methods of calculation and the physical and chemical experimental research.Results. We propose the technology of integrated exploration of low-grade geothermal resources with the application of heat and water resource potential on various purposes. We also argue for the possibility of effective exploration of geothermal resources by building a binary geothermal power plant using idle oil and gas wells. We prove the prospect of geothermal steam and gas technologies enabling highly efficient use of thermal water of low energy potential (80 - 100 ° C degrees to generate electricity; the prospects of complex processing of high-temperature geothermal brine of Tarumovsky field. Thermal energy is utilized in a binary geothermal power plant in the supercritical Rankine cycle operating with a low-boiling agent. The low temperature spent brine from the geothermal power plant with is supplied to the chemical plant, where the main chemical components are extracted - lithium carbonate, magnesium burning, calcium carbonate and sodium chloride. Next, the waste water is used for various water management objectives. Electricity generated in the binary geothermal power plant is used for the extraction of chemical components.Conclusions. Implementation of the proposed technologies will facilitate the most efficient development of hydro geothermal resources of the North Caucasus region. Integrated exploration of the Tarumovsky field resources will fully meet Russian demand for lithium carbonate and sodium chloride.

  19. Geothermal Progress Monitor. Report No. 15

    1993-12-01

    Two themes dominate this issue of the Geothermal Progress Monitor, the 15th since its inception in 1980. The first of these is the significance of the government/industry partnership role in geothermal development. This joint effort is reflected in the continued, measured growth in the use of geothermal energy, for both power generation and direct use applications, in this country and abroad, as well as in the development of new, innovative technologies to ensure a bright future for the resource. The second theme is the growing popularity of geothermal heat pumps (GHPs) among utilities, their customers, and federal agencies, all with disparate interests in the technology.

  20. Report on the results of the Sunshine Project - Verification survey for geothermal exploration technology, etc. Summary. Survey of deep geothermal resource; Chinetsu tansa gijutsu tou kensho chosa. Shinbu chinetsu shigen chosa sokatsu seika hokokusho (Yoyaku)

    NONE

    2002-03-01

    As to the development of deep geothermal resource which is expected to contribute to increasing the capacity of future power generation in Japan, investigational study was made from FY 1992 to FY 2000, and the results were summed up. The investigational study was conducted for the hydrothermal convection type deep geothermal resource with a thermal conducting heating mechanism, of which Kakkonda is typical, including the drilling of deep exploration well using the existing technology. As a result, new information/knowledge were acquired about the thermal structure, reservoir structure and hydrothermal supply structure of the depths, and a deep geothermal model was made. Based on the model, a detailed simulation was made possible, and a whole image of the hydrothermal convection type deep geothermal resource with the thermal conducting heating mechanism was made clear. In the surface survey, observation of microearthquakes, high-accuracy MT method, etc. were carried out, and a grasp of the shape of a new granite body from the surface was made possible. Concerning the drilling technology, the geologic stratum with a temperature over 500 degrees C was successfully drilled down to a depth of 3,729m by prolonging the life of bit at the time of drilling by introducing the top drive system, the closed mud cooling device, etc. (NEDO)

  1. Geothermal development of the Salton Trough, California and Mexico

    Palmer, T.D.; Howard, J.H.; Lande, D.P. (eds.)

    1975-04-01

    A geological description is given of the Salton Trought followed by a chronological history of attempts to exploit the area's geothermal resources. In addition, detailed descriptions are given of all ongoing geothermal projects in the area and the organizations conducting them.

  2. Deep geothermal resources in Quebec and in Colombia: an area that may develop based on French experience on geothermal power plants

    Blessent, D.; Raymond, J.; Dezayes, C.

    2016-01-01

    Because of an increasing demand in electricity and a necessity of reducing greenhouse gas emissions, several countries envisage the development of the renewable energies. The geothermal energy is a particularly interesting alternative because it allows a production of electricity which is not influenced by weather conditions and it requires relatively restricted surface areas compared, for example, to the area required by a hydroelectric power plant. The literature review presented here summarizes the main characteristics of the geothermal potential in Quebec, in sedimentary basins, and in Colombia, in the area of the Nevado del Ruiz volcanic complex. Currently, in these two regions, the hydro-electric power dominates the electricity production, but there is a similar interest to the development of geothermal power plants. The French sites of Soultz-sous-Forets in Alsace and Boiling in Guadeloupe are respectively presented as an example of exploitation of geothermal improved systems (Enhanced Geothermal System; EGS) and geothermal resources in volcanic regions. The first site constitutes a model for the future development of the deep geothermal exploitation in Quebec, whereas the second is an example for Colombia. A description of environmental impacts related to the exploitation of deep geothermal resources is presented at the end of this paper. (authors)

  3. Geothermal energy

    Le Du, H.; Bouchot, V.; Lopez, S.; Bialkowski, A.; Colnot, A.; Rigollet, C.; Sanjuan, B.; Millot, R.; Brach, M.; Asmundsson, R.; Giroud, N.

    2010-01-01

    Geothermal energy has shown a revival for several years and should strongly develop in a near future. Its potentiality is virtually unexhaustible. Its uses are multiple and various: individual and collective space heating, heat networks, power generation, heat storage, heat exchanges etc.. Re-launched by the demand of renewable energy sources, geothermal energy has become credible thanks to the scientific works published recently which have demonstrated its economical and technical relevance. Its image to the public is changing as well. However, lot of work remains to do to make geothermal energy a real industry in France. Several brakes have to be removed rapidly which concern the noise pollution of geothermal facilities, the risk of bad results of drillings, the electricity costs etc. This dossier gives an overview of today's main research paths in the domain of geothermal energy: 1 - geothermal energy in France: historical development, surface and deep resources, ambitions of the French national energy plan (pluri-annual investment plan for heat generation, incentives, regional 'climate-air-energy' schemes), specific regulations; 2 - geothermal energy at the city scale - sedimentary basins: Ile-de-France 40 years of Dogger reservoir exploitation, potentialities of clastic reservoirs - the Chaunoy sandstones example; 3 - geothermal power generation: conventional reservoirs - the Bouillante model (Guadeloupe, French Indies); the Soultz-sous-Forets pilot plant (Bas-Rhin, France); the supercritical reservoirs - the Krafla geothermal area (Iceland). (J.S.)

  4. Geothermal application feasibility study for the New Mexico Institute of Mining and Technology Campus

    Miller, A.R.

    1978-04-01

    This study was limited to determining the economic feasibility of providing the space heating, water heating, space cooling, and electrical power needs of New Mexico Tech from geothermal energy. The means of obtaining the required heat and water from the earth, and the possibility of corrosive effects were not part of this study. The results indicate that space heating and water heating are economically feasible if the cost of developing a geothermal source is not included. The major expense then is the pipeline used to convey the energy to the campus. calculations show that this cost is approximately two to three times our current annual heating bill, The study also showed that it would not be economically feasible to provide our relatively small space cooling and electrical energy needs from geothermal energy.

  5. Geophysics of Geothermal Areas: State of the Art and Future Development

    Mabey, Don R.

    In May 1980 a workshop organized by the Advanced School of Geophysics of the Ettore Majorana Center for Scientific Culture was held in Erice, Italy. The purpose was to present the state of the art and future development of geophysics as related to exploration for geothermal resources and the environmental impact of the development of geothermal systems. The workshop was addressed to “younger researchers working in scientific institutions and in public or private agencies and who are particularly interested in these aspects of the energy problem.” Fourteen formal lectures were presented to the workshop. This volume contains papers based on 10 of these lectures with a preface, forward, and introduction by the editors. The ten papers are “Heat Transfer in Geothermal Areas,” “Interpretation of Conductive Heat Flow Anomalies,” “Deep Electromagnetic Soundings in Geothermal Exploration,” “A Computation Method for dc Geoelectric Fields,” “Measurement of Ground Deformation in Geothermal Areas,” “Active Seismic Methods in Geothermal Exploration,” “The Role of Geophysical Investigations in the Discovery of the Latera Geothermal Field,” “Geothermal Resources Exploration in the European Community: The Geophysical Case,” “Activity Performed by AGIP (ENI Group) in the Field of Geothermal Energy,” and “Geothermal Exploration in the Western United States.” Six of the authors are from Italy, and one each is from Iceland, the Netherlands, West Germany, and the United States. All of the papers are in English.

  6. Proposal for an initial development strategy for the Borinquen geothermal zone (Cañas Dulces, Costa Rica)

    Molina, F.; Martí Molist, Joan

    2017-01-01

    The uncertainty regarding the dimensions and exact location of the geothermal resource, along with the cost of drilling process of geothermal wells, are usually two factors that hinder the wider use of high enthalpy geothermal energy to generate electricity. In the first half of 2018, the Costa Rican Institute of Electricity (ICE) will begin to develop the Borinquen geothermal zone (drilling). In order to increase the probability of success in this phase, based on the experience acquired duri...

  7. Geothermal development on federal lands: the impediments and potential solutions. Final report, September 6, 1977--January 13, 1978

    Beeland, G.V.; Sebian, D.J.; Whitenight, D.K.

    1978-01-01

    It is concluded that the regulatory program devised by the Bureau of Land Management and the US Geological Survey to implement the Geothermal Steam Act of 1970 has been ineffective thus far in encouraging private enterprise to invest in and develop this resource. After seven years, there is still no commercial production or utilization of the geothermal resource underlying federal lands. There are a number of factors--such as the unknown character of the resource and the less-than-perfect technologies for utilizing it and disposing of the resulting wastes--which are retarding the growth of a geothermal industry. However, would-be developers point to the complexity of the federal geothermal leasing and post-leasing requirements as the major impediment, and, specifically, the repetitive environmental review procedures involved. A fundamental fault in the regulatory process is that there is no provision for identification of the resource before a lease is issued. Identification of its characteristics is mandatory before the use to be made of it can be determined, if indeed it is found to be adequate and economic for any use. A very large percentage of the exploratory holes drilled will be abandoned as non-productive of a usable resource, in which case there is no need for the long term commitment of a lease. A streamlined regulatory process was designed to overcome these and other problems. If adopted, it would provide for orderly development of the resource and adequately protect the public interest and the environment.

  8. Hawaii Energy Resource Overviews. Volume 4. Impact of geothermal resource development in Hawaii (including air and water quality)

    Siegel, S.M.; Siegel, B.Z.

    1980-06-01

    The environmental consequences of natural processes in a volcanic-fumerolic region and of geothermal resource development are presented. These include acute ecological effects, toxic gas emissions during non-eruptive periods, the HGP-A geothermal well as a site-specific model, and the geothermal resources potential of Hawaii. (MHR)

  9. "Assistance to States on Geothermal Energy"

    Linda Sikkema; Jennifer DeCesaro

    2006-07-10

    NGC. The briefs addressed: Benefits of Geothermal Energy Common Questions about Geothermal Energy Geothermal Direct Use Geothermal Energy and Economic Development Geothermal Energy: Technologies and Costs Location of Geothermal Resources Geothermal Policy Options for States Guidelines for Siting Geothermal Power Plants and Electricity Transmission Lines

  10. Geothermal resource areas database for monitoring the progress of development in the United States

    Lawrence, J.D.; Lepman, S.R.; Leung, K.; Phillips, S.L.

    1981-01-01

    The Geothermal Resource Areas Database (GRAD) and associated data system provide broad coverage of information on the development of geothermal resources in the United States. The system is designed to serve the information requirements of the National Progress Monitoring System. GRAD covers development from the initial exploratory phase through plant construction and operation. Emphasis is on actual facts or events rather than projections and scenarios. The selection and organization of data are based on a model of geothermal development. Subjects in GRAD include: names and addresses, leases, area descriptions, geothermal wells, power plants, direct use facilities, and environmental and regulatory aspects of development. Data collected in the various subject areas are critically evaluated, and then entered into an on-line interactive computer system. The system is publically available for retrieval and use. The background of the project, conceptual development, software development, and data collection are described here. Appendices describe the structure of the database in detail.

  11. Proceedings of NEDO International Geothermal Symposium

    NONE

    1997-03-11

    This is a proceedings of the NEDO International Geothermal Symposium held in Sendai in 1997. The worldwide geothermal energy power generation capacity exceeds 7000 MW. Geothermal energy is widely used also for heating, snow melting, greenhouse cultivation as well as electric power generation. Geothermal energy generates far less CO2 causing the global warming than fossil fuels. The geothermal energy is clean and renewable. Considering the environmental issue and energy supply/demand of the world, we have to exert further efforts for the geothermal development. In this conference, discussions were made on each country`s experiences of the geothermal development, and future prediction and strategies for geothermal utilization in the Asia/Pacific region, in particular. Further, in the technical session, conducted were the IEA study and technical presentation/discussion for technical cooperation. The proceedings includes research reports of more than 30, which are clarified into three fields: impacts of the geothermal development on the environment, technical development of the hot dry rock power generation system, and development of technology for collecting deep-seated geothermal resource

  12. Industrial uses of geothermal energy: A framework for application in a developing country

    Vasquez, N.C.; Bernardo, R.O.; Cornelio, R.L.

    1992-01-01

    This paper presents a model of approach for agroindustrial development utilizing geothermal energy in an agriculturally based tropical developing country. Presented is the complexity of patterns in raw materials productivity, demand and the present problems of preserving their quality from biological deterioration thru drying. Utilization of a geothermal agroindustrial estate have to be carefully studied and programmed in reply to an almost constant heat demand profile consistent with seasonal available raw materials. This study uses the Tongonan Geothermal Field in Leyte Island as the model for presentation

  13. Geothermal energy utilisation in Slowakia and its future development

    Sidorová Marína

    2004-09-01

    Full Text Available Owing to favourable geological conditions Slovakia is a country abundant in occurrence of low-enthalpy sources. The government of the state sponsors new renewable ecological energy sources, among which belongs geothermal energy. Geothermal water is utilized for recreation (swimming pools, spas, agriculture (heating of greenhouses, fishing and heating of houses. Effectivity of utilisation is about 30 % due to its seasonal use. That is why the annual house-heating and hot water supply from geothermal sources are supported. Recently company Slovgeoterm has initiated heating of greenhouses in Podhajska and heating of hospital and 1231 flats in town Galanta. Nowadays, research for the biggest geothermal project in the Middle Europe – construction in Košice basin has started.

  14. Optimization of Wellhead Piping Design for Production Wells at Development of Steam-Water Geothermal Fields

    A.N. Shulyupin

    2017-03-01

    Full Text Available At present, the exploitation of geothermal resources develops in a fair competition with other types of energy resources. This leads to actuality of questions which associated with the more efficient use of existing wells, because cost of their drilling is a significant share of geothermal projects. In domestic practice of development of geothermal resources the steam-water wells have greatest energy potential. One way to improve the performance of these wells is a providing of smooth change of direction of motion of steam-water mixture from the vertical, in the well, to the horizontal, in steam gathering system. Typical wellhead piping of domestic steam-water wells involves the removal of the mixture through a cross bar at a right angle. Cross bar can generate considerable pressure loss that increases the operating pressure at the mouth of the well and reduces flow rate. It seems reasonable to substitute the typical cross bar by smooth pipe bend. This reduces wellhead resistance coefficient by more than on 2. Increase of curvature radius of pipe bend reduces the pressure loss to a local resistance but increases the friction pressure loss. There is an optimal curvature radius of pipe bend for minimum pressure loss in view of a local resistance and friction in the pipe bend. Calculations have shown that the optimum value for the radius of curvature is found in the range from 1.4 to 4.5 tube internal diameters. However, for technological reasons it is recommended to choose the radius of curvature from 1.4 to 2.4 diameters. Mounting of smooth pipe bend on the wellhead can provide significant economic benefits. For Mutnovka field (Kamchatka, this effect is estimated at 17.5 million rubles in year.

  15. Public service impacts of geothermal development: cumulative impacts study of the Geysers KGRA. Final staff report

    Matthews, K.M.

    1983-07-01

    The number of workers currently involved in the various aspects of geothermal development in the Geysers are identified. Using two different development scenarios, projections are made for the number of power plants needed to reach the electrical generation capacity of the steam resource in the Geysers. The report also projects the cumulative number of workers needed to develop the steam field and to construct, operate, and maintain these power plants. Although the number of construction workers fluctuates, most are not likely to become new, permanent residents of the KGRA counties. The administrative and public service costs of geothermal development to local jurisdications are examined, and these costs are compared to geothermal revenues accruing to the local governments. Revenues do not cover the immediate fiscal needs resulting from increases in local road maintenance and school enrollment attributable to geothermal development. Several mitigation options are discussed and a framework presented for calculating mitigation costs for school and road impacts.

  16. Geothermal energy utilisation in Slowakia and its future development

    Sidorová Marína; Pinka Ján; Wittenberger Gabriel

    2004-01-01

    Owing to favourable geological conditions Slovakia is a country abundant in occurrence of low-enthalpy sources. The government of the state sponsors new renewable ecological energy sources, among which belongs geothermal energy. Geothermal water is utilized for recreation (swimming pools, spas), agriculture (heating of greenhouses, fishing) and heating of houses. Effectivity of utilisation is about 30 % due to its seasonal use. That is why the annual house-heating and hot water supply from ge...

  17. 17th Symposium of NEDO projects. Geothermal subcommittee; Chinetsu bunkakai. Dai 17 kai jigyo hokokukai

    NONE

    1997-09-01

    Described herein are the reports presented to the geothermal subcommittee. The NEDO's Geothermal Research Department is developing the technologies for accurately predicting the reservoir changes in the future by the geothermal development promotion investigations for distributed conditions of geothermal resources and related environmental impacts, and also by clarifying the hydrogic characteristics of the fracture systems which form the reservoirs. The department is also implementing the projects for investigating/ researching possibilities of resources distribution conditions and utilization for eventual commercialization of the deep underground geothermal resources, and also investigating utilization of small- to medium-sized geothermal binary power generation systems for effective utilization of unutilized geothermal energy. The geothermal technology development group is developing the technologies for the binary cycle power generation plants which effectively utilize unutilized medium- to high-temperature geothermal water for power generation, and also the technologies for collecting conditions at the bottom of a geothermal well being excavated in real time to improve efficiency and precision of the excavation. The other technologies being developed include those for excavation and production essential for development of power generation systems using high-temperature rocks and deep underground geothermal resources, the former being expected to contribute to expanded utilization of geothermal resources and the latter to increased geothermal power generation capacity. (NEDO)

  18. 17th Symposium of NEDO projects. Geothermal subcommittee; Chinetsu bunkakai. Dai 17 kai jigyo hokokukai

    NONE

    1997-09-01

    Described herein are the reports presented to the geothermal subcommittee. The NEDO's Geothermal Research Department is developing the technologies for accurately predicting the reservoir changes in the future by the geothermal development promotion investigations for distributed conditions of geothermal resources and related environmental impacts, and also by clarifying the hydrogic characteristics of the fracture systems which form the reservoirs. The department is also implementing the projects for investigating/ researching possibilities of resources distribution conditions and utilization for eventual commercialization of the deep underground geothermal resources, and also investigating utilization of small- to medium-sized geothermal binary power generation systems for effective utilization of unutilized geothermal energy. The geothermal technology development group is developing the technologies for the binary cycle power generation plants which effectively utilize unutilized medium- to high-temperature geothermal water for power generation, and also the technologies for collecting conditions at the bottom of a geothermal well being excavated in real time to improve efficiency and precision of the excavation. The other technologies being developed include those for excavation and production essential for development of power generation systems using high-temperature rocks and deep underground geothermal resources, the former being expected to contribute to expanded utilization of geothermal resources and the latter to increased geothermal power generation capacity. (NEDO)

  19. The geothermal potentials for electric development in Maluku Province

    Vijaya Isnaniawardhani

    2018-03-01

    Full Text Available The characteristic of small to medium size islands is the limited amount of natural resources for electric generation. Presently the needs of energy in Maluku Province are supplied by the diesel generation units. The electricity distributes through an isolated grid system of each island. There are 10 separate systems in Maluku Province, namely Ambon, Namlea, Tual, Saumlaki, Mako, Piru, Bula, Masohi, Dobo and Langgur. From the geothermal point of view, this condition is suitable because the nature of the generation is small to medium and the locations are dispersed. The geological condition of Maluku Province is conducive for the formation of geothermal resources. The advanced utilization of geothermal energy in Maluku Province is in Tulehu located about 8 kilometers NE of Ambon. It is expected that 60 MW electric will be produced at the first stage in 2019. A total of 100 MW resources were estimated. Other places of geothermal potentials are Lauke and Tawen both located in Ambon Island with the potentials of 25 MW respectively. In Oma Haruku, Saparua and Nusa Laut the geothermal potentials were estimated to be 25 MW each. The total amount of geothermal energy in Maluku Province is thus, 225 MW which will contribute significantly to the needs of projected 184 MW in the year 2025.

  20. Economic impacts of geothermal development in Whatcom County, Washington

    Lesser, J.A.

    1992-07-01

    This report estimates the local economic impacts that could be anticipated from the development of a 100 megawatt (MW) geothermal power plant in eastern Whatcom County, Washington, near Mt. Baker, as shown in Figure 1. The study was commissioned by the Bonneville Power Administration to quantify such impacts as part of regional confirmation work recommended by the Northwest Power Planning Council. Whatcom County was chosen due to both identified geotherrnal resources and developer interest. The analysis will focus on two phases: a plant construction phase, including well field development, generating plant construction, and transmission line construction; and an operations phase. Economic impacts will occur to the extent that construction and operations affect the local economy. These impacts will depend on the existing structure of the Whatcom County economy and estimates of revenues that may accrue to the county as a result of plant construction, operation, and maintenance. Specific impacts may include additional direct employment at the plant, secondary impacts from wage payments being used to purchase locally produced goods and services, and impacts due to expenditures of royalty and tax payments received by the county. The basis for the analysis of economic impacts in this study is the US Forest Service IMPLAN input-output modeling system

  1. Technology development for high temperature logging tools

    Veneruso, A.F.; Coquat, J.A.

    1979-01-01

    A set of prototype, high temperature logging tools (temperature, pressure and flow) were tested successfully to temperatures up to 275/sup 0/C in a Union geothermal well during November 1978 as part of the Geothermal Logging Instrumentation Development Program. This program is being conducted by Sandia Laboratories for the Department of Energy's Division of Geothermal Energy. The progress and plans of this industry based program to develop and apply the high temperature instrumentation technology needed to make reliable geothermal borehole measurements are described. Specifically, this program is upgrading existing sondes for improved high temperature performance, as well as applying new materials (elastomers, polymers, metals and ceramics) and developing component technology such as high temperature cables, cableheads and electronics to make borehole measurements such as formation temperature, flow rate, high resolution pressure and fracture mapping. In order to satisfy critical existing needs, the near term goal is for operation up to 275/sup 0/C and 7000 psi by the end of FY80. The long term goal is for operation up to 350/sup 0/C and 20,000 psi by the end of FY84.

  2. Geothermal energy

    Kappelmeyer, O.

    1991-01-01

    Geothermal energy is the natural heat of the earth. It represents an inexhaustible source of energy. In many countries, which are mostly located within the geothermal belts of the world, geothermal energy is being used since many decades for electricity generation and direct heating applications comprising municipal, industrial and agricultural heating. Outside the geothermal anomalous volcanic regions, hot ground water from deep rock formations at temperatures above 70 o C is used for process heat and space heating. Low prices for gas and oil hinder the development of geothermal plants in areas outside positive geothermal anomalies; the cost of drilling to reach depths, where temperatures are above 50 o C to 70 o C, is high. The necessary total investment per MW th installed capacity is in the order of 5 Mio- DM/MW th (3 Mio $/MW th ). Experience shows, that an economic break even with oil is reached at an oil price of 30$ per barrel or if an adequate bonus for the clean, environmentally compatible production of geothermal heat is granted. Worldwide the installed electric capacity of geothermal power plants is approximately 6 000 MW e . About 15 000 MW th of thermal capacity is being extracted for process heat and space heat. The importance of the terrestrial heat as an energy resource would be substantially increased, if the heat, stored in the hot crystalline basement could be extracted at economical production costs. Geothermal energy is a competitive energy source in areas with high geothermal gradients (relative low cost for drilling) and would be competitive in areas with normal geothermal gradients, if a fair compensation for environmental implications from fossil and nuclear power production would be granted. (author) 2 figs., 1 tab., 6 refs

  3. Assessment of geothermal development in the Imperial Valley of California. Volume 1. Environment, health, and socioeconomics

    Layton, D. (ed.)

    1980-07-01

    Utilization of the Imperial Valley's geothermal resources to support energy production could be hindered if environmental impacts prove to be unacceptable or if geothermal operations are incompatible with agriculture. To address these concerns, an integrated environmental and socioeconomic assessment of energy production in the valley was prepared. The most important impacts examined in the assessment involved air quality changes resulting from emissions of hydrogen sulfide, and increases in the salinity of the Salton Sea resulting from the use of agricultural waste waters for power plant cooling. The socioeconomics consequences of future geothermal development will generally be beneficial. (MHR)

  4. Detection and Characterization of Natural and Induced Fractures for the Development of Enhanced Geothermal Systems

    Toksoz, M. Nafi [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Earth, Atmospheric and Planetary Sciences

    2013-04-06

    The objective of this 3-year project is to use various geophysical methods for reservoir and fracture characterization. The targeted field is the Cove Fort-Sulphurdale Geothermal Field in Utah operated by ENEL North America (ENA). Our effort has been focused on 1) understanding the regional and local geological settings around the geothermal field; 2) collecting and assembling various geophysical data sets including heat flow, gravity, magnetotelluric (MT) and seismic surface and body wave data; 3) installing the local temporary seismic network around the geothermal site; 4) imaging the regional and local seismic velocity structure around the geothermal field using seismic travel time tomography; and (5) determining the fracture direction using the shear-wave splitting analysis and focal mechanism analysis. Various geophysical data sets indicate that beneath the Cove Fort-Sulphurdale Geothermal Field, there is a strong anomaly of low seismic velocity, low gravity, high heat flow and high electrical conductivity. These suggest that there is a heat source in the crust beneath the geothermal field. The high-temperature body is on average 150 °C – 200 °C hotter than the surrounding rock. The local seismic velocity and attenuation tomography gives a detailed velocity and attenuation model around the geothermal site, which shows that the major geothermal development target is a high velocity body near surface, composed mainly of monzonite. The major fracture direction points to NNE. The detailed velocity model along with the fracture direction will be helpful for guiding the geothermal development in the Cove Fort area.

  5. Analysis of requirements for accelerating the development of geothermal energy resources in California

    Fredrickson, C. D.

    1978-01-01

    Various resource data are presented showing that geothermal energy has the potential of satisfying a singificant part of California's increasing energy needs. General factors slowing the development of geothermal energy in California are discussed and required actions to accelerate its progress are presented. Finally, scenarios for developing the most promising prospects in the state directed at timely on-line power are given. Specific actions required to realize each of these individual scenarios are identified.

  6. Environmental overview of geothermal development: the Mono-Long Valley KGRA

    Strojan, C.L.; Romney, E.M. (eds.)

    1979-01-01

    Major issues and concerns relating to geothermal development were identified and assessed in seven broad areas: (1) air quality, (2) archaeology and cultural resources, (3) geology, (4) natural ecosystems, (5) noise, (6) socioeconomics, and (7) water quality. Existing data for each of these areas was identified and evaluated to determine if the data can be used to help resolve major issues. Finally, specific areas where additional data are needed to ensure that geothermal development is environmentally acceptable were recommended.

  7. New Mexico low-temperature geothermal resources and economic development programs

    Whittier, J.; Schoenmackers, R.

    1990-01-01

    This paper reports on New Mexico's low-temperature geothermal resources which have been utilized to promote economic development initiatives within the state. Public funds have been leveraged to foster exploration activities which have led to the establishment of several direct-use projects at various sites within New Mexico. State policies have focused on attracting one business sector, the commercial greenhouse industry, to expand and/or relocate in New Mexico. Geothermal-related promotional activities have begun to show success in achieving economic growth. New Mexico now has almost half of the geothermally-heated greenhouse space in the nation. It is anticipated that the greenhouse sector will continue to grow within the state. Future economic development activities, also relying upon the geothermal resource base, will include vegetable dehydration and aquaculture with a focus on the microalgae sector

  8. DEVELOPING DIRECT USE OF GEOTHERMAL ENERGY IN ORADEA CITY

    VASIU I.

    2015-09-01

    Full Text Available Thermal energy demand for district heating in the city of Oradea is supplied at present, almost at whole, by the Cogeneration Thermal Power Plant, based on classical fuels, mainly consisting of low grade coal and natural gas, with a small contribution of the geothermal energy. Geothermal resource at low enthalpy, located within the city area of Oradea, available at an estimated level of 250 GWh/year, exploited at present by 12 production wells, can provide a share of 55 GWh/year for district heating, representing at present about 7 % from the overall thermal demand at the end users inlet. Geothermal energy is delivered by means of 3 main thermal stations, in order to prepare, especially household warm water, but sometimes also secondary agent for space heating, using additionally heat, based on natural gas. At present, in the city area of Oradea, more than 7,000 dwellings are supplied by geothermal stations with warm water and in addition for about 3,400 dwellings is assured simultaneously warm water and space heating. Even if the geothermal energy provides at present only a small part of the overall heating requirement at the city level, nevertheless by increased financial support, in the near future is expected its much more contribution, as an alternative to polluting energy of coal and natural gas.

  9. Regulatory aspects, an important factor for geothermal energy application for district heating development. European insurance scheme to cover geological risk related to geothermal operations

    Popovski, Kiril

    2000-01-01

    District heating is one of the most interesting fields of geothermal energy application development in Europe. However, besides the technical/technological/economical and organizational aspects of the problem in question, the related legal and regulatory aspects influence very much the real possibilities for wider introduction of this energy source in the state energy balances in most of the countries. Based on the official EU report for the State-of-the-art of the problem of the insurance to cover geological risks and necessary aspects to be developed and resolved in a better and 'common' way in order to enable higher investments in bigger projects (district heating) development, the paper presents the situation in different European countries in relation to the Macedonian one. Conclusions extracted should give a positive contribution to the process of the Macedonian laws accommodation to the common EU practice. (Author)

  10. Geothermal Information Dissemination and Outreach

    Clutter, Ted J. [Geothermal Resources Council (United States)

    2005-02-18

    Project Purpose. To enhance technological and topical information transfer in support of industry and government efforts to increase geothermal energy use in the United States (power production, direct use, and geothermal groundsource heat pumps). Project Work. GRC 2003 Annual Meeting. The GRC convened the meeting on Oct. 12-15, 2003, at Morelia's Centro de Convenciones y ExpoCentro in Mexico under the theme, International Collaboration for Geothermal Energy in the Americas. The event was also sponsored by the Comision Federal de Electricidad. ~600 participants from more than 20 countries attended the event. The GRC convened a Development of Geothermal Projects Workshop and Geothermal Exploration Techniques Workshop. GRC Field Trips included Los Azufres and Paricutin Volcano on Oct. 11. The Geothermal Energy Association (Washington, DC) staged its Geothermal Energy Trade Show. The Annual Meeting Opening Session was convened on Oct. 13, and included the governor of Michoacan, the Mexico Assistant Secretary of Energy, CFE Geothermal Division Director, DOE Geothermal Program Manager, and private sector representatives. The 2003 Annual Meeting attracted 160 papers for oral and poster presentations. GRC 2004. Under the theme, Geothermal - The Reliable Renewable, the GRC 2004 Annual Meeting convened on Aug. 29-Sept. 1, 2004, at the Hyatt Grand Champions Resort at Indian Wells, CA. Estimated total attendance (including Trade Show personnel, guests and accompanying persons) was ~700. The event included a workshop, Geothermal Production Well Pump Installation, Operation and Maintenance. Field trips went to Coso/Mammoth and Imperial Valley/Salton Sea geothermal fields. The event Opening Session featured speakers from the U.S. Department of Energy, U.S. Department of the Interior, and the private sector. The Geothermal Energy Association staged its Geothermal Energy Trade Show. The Geothermal Education Office staged its Geothermal Energy Workshop. Several local radio and

  11. Report on achievements in fiscal 1973 in studies of technologies to develop and utilize resources and preserve national land. Study on hot water systems in geothermal areas; 1973 nendo chinetsu chiiki no nessuikei ni kansuru kenkyu seika chukan hokokusho

    NONE

    1977-03-01

    It is important for geothermal energy to develop and utilize it in a rational manner. To achieve the objective, hot water systems must be studied comprehensively and elucidated from the standpoint of the systems as a whole. The present study, standing on this viewpoint, is intended to elucidate hot water systems and establish a survey method thereon. Fiscal 1973 has selected four areas (northern Hachimantai, southern Hachimantai, Onikubi and Kuju areas) as the model study fields, and used as the main field the Onikubi area, which clearly shows the structural catchment basin. Studies were performed in this area on hydraulic hot flow rates, isotopic geology, and reservoirs. In the hydraulic hot flow rate study, the amount of rainfall, amount of flowing water, and amount of hot spring water flow-out were observed continually. In the isotopic geology study, hydrogen in hot spring water and underground water, and composition of oxygen isotope were analyzed. Estimation was made from the result thereof on water balance, heat balance, and underground residence time. In the study of reservoirs, measurements were performed inside the wells, and estimation was made on locations and sizes of the reservoirs by surveying distribution of transformed minerals and cracks. (NEDO)

  12. Mathematics as a key technology in geothermal power; Mathematik als Schluesseltechnologie in der Geothermie

    Freeden, Willi; Augustin, Matthias [TU Kaiserslautern (Germany); Ostermann, Isabel [Fraunhofer ITWM, Kaiserslautern (Germany)

    2011-07-15

    The demand on alternative energy sources is growing daily - more and more it determines the current economic situation and economic development. One of the most promising renewable energy source is the geothermal energy. From the perspective of mathematics, the reduction of occuring prospecting risk means a modelling of both the necessary parameters as well as the occuring processes using existing data. In the working group Geomathematics of the Technical University of Kaiserslautern a column model has been developed.

  13. Uncertainty analysis of geothermal energy economics

    Sener, Adil Caner

    This dissertation research endeavors to explore geothermal energy economics by assessing and quantifying the uncertainties associated with the nature of geothermal energy and energy investments overall. The study introduces a stochastic geothermal cost model and a valuation approach for different geothermal power plant development scenarios. The Monte Carlo simulation technique is employed to obtain probability distributions of geothermal energy development costs and project net present values. In the study a stochastic cost model with incorporated dependence structure is defined and compared with the model where random variables are modeled as independent inputs. One of the goals of the study is to attempt to shed light on the long-standing modeling problem of dependence modeling between random input variables. The dependence between random input variables will be modeled by employing the method of copulas. The study focuses on four main types of geothermal power generation technologies and introduces a stochastic levelized cost model for each technology. Moreover, we also compare the levelized costs of natural gas combined cycle and coal-fired power plants with geothermal power plants. The input data used in the model relies on the cost data recently reported by government agencies and non-profit organizations, such as the Department of Energy, National Laboratories, California Energy Commission and Geothermal Energy Association. The second part of the study introduces the stochastic discounted cash flow valuation model for the geothermal technologies analyzed in the first phase. In this phase of the study, the Integrated Planning Model (IPM) software was used to forecast the revenue streams of geothermal assets under different price and regulation scenarios. These results are then combined to create a stochastic revenue forecast of the power plants. The uncertainties in gas prices and environmental regulations will be modeled and their potential impacts will be

  14. The National Geothermal Energy Research Program

    Green, R. J.

    1974-01-01

    The continuous demand for energy and the concern for shortages of conventional energy resources have spurred the nation to consider alternate energy resources, such as geothermal. Although significant growth in the one natural steam field located in the United States has occurred, a major effort is now needed if geothermal energy, in its several forms, is to contribute to the nation's energy supplies. From the early informal efforts of an Interagency Panel for Geothermal Energy Research, a 5-year Federal program has evolved whose objective is the rapid development of a commercial industry for the utilization of geothermal resources for electric power production and other products. The Federal program seeks to evaluate the realistic potential of geothermal energy, to support the necessary research and technology needed to demonstrate the economic and environmental feasibility of the several types of geothermal resources, and to address the legal and institutional problems concerned in the stimulation and regulation of this new industry.

  15. Federal Geothermal Research Program Update, FY 2000

    Renner, Joel Lawrence

    2001-08-01

    The Department of Energy's Geothermal Program serves two broad purposes: 1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and 2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermal systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.

  16. Federal Geothermal Research Program Update Fiscal Year 2002

    2003-09-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The goals are: (1) Double the number of States with geothermal electric power facilities to eight by 2006; (2) Reduce the levelized cost of generating geothermal power to 3-5 cents per kWh by 2007; and (3) Supply the electrical power or heat energy needs of 7 million homes and businesses in the United States by 2010. This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 2002. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy. balanced strategy for the Geothermal Program.

  17. Federal Geothermal Research Program Update Fiscal Year 2003

    2004-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The following mission and goal statements guide the overall activities of the Office. The goals are: (1) Reduce the levelized cost of generating geothermal power to 3-5 cents per kWh by 2007; (2) Double the number of States with geothermal electric power facilities to eight by 2006; and (3) Supply the electrical power or heat energy needs of 7 million homes and businesses in the United States by 2010. This Federal Geothermal Program Research Update reviews the accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 2003. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy. balanced strategy for the Geothermal Program.

  18. Enhanced Geothermal Systems Research and Development: Models of Subsurface Chemical Processes Affecting Fluid Flow

    Moller, Nancy; Weare J. H.

    2008-05-29

    Successful exploitation of the vast amount of heat stored beneath the earth’s surface in hydrothermal and fluid-limited, low permeability geothermal resources would greatly expand the Nation’s domestic energy inventory and thereby promote a more secure energy supply, a stronger economy and a cleaner environment. However, a major factor limiting the expanded development of current hydrothermal resources as well as the production of enhanced geothermal systems (EGS) is insufficient knowledge about the chemical processes controlling subsurface fluid flow. With funding from past grants from the DOE geothermal program and other agencies, we successfully developed advanced equation of state (EOS) and simulation technologies that accurately describe the chemistry of geothermal reservoirs and energy production processes via their free energies for wide XTP ranges. Using the specific interaction equations of Pitzer, we showed that our TEQUIL chemical models can correctly simulate behavior (e.g., mineral scaling and saturation ratios, gas break out, brine mixing effects, down hole temperatures and fluid chemical composition, spent brine incompatibilities) within the compositional range (Na-K-Ca-Cl-SO4-CO3-H2O-SiO2-CO2(g)) and temperature range (T < 350°C) associated with many current geothermal energy production sites that produce brines with temperatures below the critical point of water. The goal of research carried out under DOE grant DE-FG36-04GO14300 (10/1/2004-12/31/2007) was to expand the compositional range of our Pitzer-based TEQUIL fluid/rock interaction models to include the important aluminum and silica interactions (T < 350°C). Aluminum is the third most abundant element in the earth’s crust; and, as a constituent of aluminosilicate minerals, it is found in two thirds of the minerals in the earth’s crust. The ability to accurately characterize effects of temperature, fluid mixing and interactions between major rock-forming minerals and hydrothermal and

  19. Fiscal 1992 report on geothermal development promotion survey (Development of geothermal reservoir assessment technique); 1989 nendo chinetsu kaihatsu sokushin chosa (Chinetsu choryusou hyoka shuho kaihatsu hokokusho)

    NONE

    1994-03-01

    Efforts were exerted in fiscal 1984-1992 to develop techniques for appropriately assessing a geothermal reservoir for its productivity for duly predicting the optimum scale of power generation to be provided thereby. In the development of simulators, geothermal reservoir simulators (SING-1, -2, -3) and a geothermal well 2-phase flow simulator (WENG) were developed. As for the treatment of fractures in a reservoir and of substances soluble in the hot water, the methods for dealing with them were improved and augmented. In a model field study in a Hokkaido forest, reservoir pressure continuous observation and monitoring, temperature logging and pressure logging for existing wells, and geothermal fluid chemical analysis were performed for reservoir analysis, in which both natural state simulation and history mapping excellently reproduced the temperature and pressure distributions. The temperature and pressure distributions in a natural state simulation, out of the results of an analysis of the Oguni district model field, Kumamoto Prefecture, agreed not only with those in the natural state but also with the pressure transition data in the observation well. (NEDO)

  20. Developing advocacy for geothermal energy in the United States

    Wright, P.M.

    1990-01-01

    There is little public advocacy for geothermal energy in the United States outside of the geothermal community itself. Yet, broad-based advocacy is needed to provide impetus for a nourishing economic, regulatory and R and D environment. If such an environment could be created, the prosperity of the geothermal industry would improve and positive environmental effects compared to most other energy sources would be realized. We need an organized sustained effort to provide information and education to all segments of our society, including market-makers and end users, administrators, legislators, regulators, educators, special-interest groups and the public. This effort could be provided by an organization of three main components, a network to gather and disseminate pertinent information on marketing, educational and lobbying opportunities to action committees, a repository of current information on geothermal energy, and action committees each responsible for certain parts of the total marketing, education and lobbying task. In this paper, the author suggests a mechanism for forming such an organization and making it work. The author proposes an informal organization staffed largely by volunteered labor in which no one person would have to devote more than a few percent of his or her work time

  1. Development of thermal fractures in two Dutch geothermal doublets

    Loeve, D.; Veldkamp, J.G.; Peters, E.; Wees, J.D.A.M. van

    2015-01-01

    In the production well of a low-enthalpy geothermal doublet hot water is pumped from reservoirs at about 50-1007deg;C. After passing through a heat exchanger, the cold water is re-injected at about 20-357deg;C in the injection well into the reservoir, which initially has the same temperature as the

  2. Geothermal energy

    Vuataz, F.-D.

    2005-01-01

    This article gives a general overview of the past and present development of geothermal energy worldwide and a more detailed one in Switzerland. Worldwide installed electrical power using geothermal energy sources amounts to 8900 MW el . Worldwide utilization of geothermal energy for thermal applications amounts to 28,000 MW th . The main application (56.5%) is ground-coupled heat pumps, others are thermal spas and swimming pools (17.7%), space heating (14.9%), heating of greenhouses (4.8%), fish farming (2.2%), industrial uses (1,8%), cooling and melting of snow (1.2%), drying of agricultural products (0.6 %). Switzerland has become an important user of geothermal energy only in the past 25 years. Earlier, only the exploitation of geothermal springs (deep aquifers) in Swiss thermal baths had a long tradition, since the time of the Romans. Today, the main use of geothermal energy is as a heat source for heat pumps utilizing vertical borehole heat exchangers of 50 to 350 meters length. 35,000 installations of this type with heating powers ranging from a few kW to 1000 kW already exist, representing the highest density of such installations worldwide. Other developments are geostructures and energy piles, the use of groundwater for heating and cooling, geothermal district heating, the utilization of draining water from tunnels and the project 'Deep Heat Mining' allowing the combined production of heat and electric power

  3. National Geothermal Academy. Geo-Heat Center Quarterly Bulletin, Vol. 31 No. 2 (Complete Bulletin). A Quarterly Progress and Development Report on the Direct Utilization of Geothermal Resources

    Boyd, Tonya [ed.; Maddi, Phillip [ed.

    2012-08-01

    The National Geothermal Academy (NGA) is an intensive 8-week overview of the different aspects involved in developing a geothermal project, hosted at University of Nevada, Reno. The class of 2012 was the second graduating class from the academy and included 21 students from nine states, as well as Saudi Arabia, Dominica, India, Trinidad, Mexico. The class consisted of people from a wide range of scholastic abilities from students pursuing a Bachelor’s or Master’s degrees, to entrepreneurs and professionals looking to improve their knowledge in the geothermal field. Students earned 6 credits, either undergraduate or graduate, in engineering or geology. Overall, the students of the NGA, although having diverse backgrounds in engineering, geology, finance, and other sciences, came together with a common passion to learn more about geothermal.

  4. The current status of geothermal direct use development in the United States

    Lund, J.W.; Lienau, P.J.; Culver, G.G.

    1990-01-01

    In this paper information is provided on the status of geothermal direct heat utilization in the United States, with emphasis on developments from 1985 to 1990. A total of 452 sites, which include approximately 130,000 individual installations, have been identified with an annual energy use of 19.7 x 10 12 kJ. Approximately 44% of this use is due to enhanced oil recovery in four midwestern states, and 30% is due to geothermal heat pumps. Since 1985, 25 new projects, which include approximately 200 individual installations, and representing a thermal capacity of 106.7 MWt and annual energy utilization of 1.1 x 10 12 kJ, have become operational or are under construction. Earth-coupled and groundwater heat pumps, representing the largest growth sector during this period, add an additional 400 MWt and 1.2 x 10 12 kJ to these figures. Geothermal heat pumps have extended geothermal direct heat use into almost every state in the nation. Slightly over 200 direct heat geothermal wells, averaging 150 m in depth, along with approximately 30,000 heat pump wells, have been drilled for these projects. Between 20 and 25 professional man-years of effort are estimated to have been allocated to geothermal direct heat projects during each of the five years

  5. Report on strategic survey on promising areas for geothermal development in fiscal 1999. Hohi Area (second report); 1999 nendo chinetsu kaihatsu yubo chiiki wo taisho to shita senryakuteki chosa hokokusho. 2. Hohi chiiki

    NONE

    2000-03-01

    This paper describes a strategic consideration on promising areas for geothermal development in fiscal 1999. Areas of importance to be given surveys corresponding to the geothermal development promotion survey range C were extracted from the promising areas extracted in the previous year, based on further objective analysis and evaluation criteria. Geothermal structure models were prepared on each promising area from geological and geothermal structural elements according to the standard method for the geothermal structure model structuring technology. Amount of geothermal resources in the promising areas was evaluated by using the evaluation supporting tools. In order to extract the areas of importance to be given the surveys, the extraction criteria were discussed based on the resource density, the Natural Park Law, and the data accuracy. Furthermore, comprehensive evaluation was given on geothermal structure properties, location and environmental conditions based on the geothermal structure models. Areas expected of effective achievements in the development promotion survey were selected, and a reservoir conception model was prepared. Assuming the single flash power generation, the resource amount was evaluated by using the Monte Carlo analysis of the Stored Heat Law. Social and environmental issues were also considered. A draft of the optimum survey program corresponding to each survey stage was prepared, with the areas of importance to be given the survey as the object. (NEDO)

  6. Fiscal 1997 report on the verification survey of geothermal exploration technology. 2. Development of the reservoir variation survey method (development of the gravity survey method); 1997 nendo chinetsu tansa gijutsu nado kensho chosa. Choryuso hendo tansaho kaihatsu (juryoku tansaho kaihatsu) hokokusho

    NONE

    1998-03-01

    Among technology developments such as the reservoir evaluation at initial developmental stage and stabilization/maintenance of power after the start of operation, the fiscal 1997 result was described of the development of the gravity survey method. The paper conducted the installation of gravity measuring points outside the existing monitoring range, introduction of CG-3M gravimeter/GPS measuring system, drilling of ground water level monitoring well, etc. for the setup of a system for new gravity monitoring. Moreover, regular measurement of gravity was made for the first fiscal year, and at the same time the continued observation of ground water level, precipitation, atmospheric pressure, and temperature was started. It is necessary to study the effects on gravity variation such as gravity gradient and tidal correction. Conducted were collection/arrangement of the existing data and database construction for history matching/variation prediction in the Yanaizu Nishiyama area. The paper made surveys of the trends/literature. In the future, needed are the computation using density models of geothermal reservoirs and test use of EDCON`s downhole gravimeter. 44 refs., 30 figs., 17 tabs.

  7. THE PROBLEM OF ENERGY EFFICIENCY OF THE GEOTHERMAL CIRCULATION SYSTEM IN DIFFERENT MODES OF REINJECTION OF THE COOLANT

    D. K. Djavatov; A. A. Azizov

    2017-01-01

    Aim. Advanced technologies are crucial for widespread use of geothermal energy to ensure its competitiveness with conventional forms of energy. To date, the basis for the development of geothermal energy is the technology of extracting the heat transfer fluids from the subsoil. There are the following ways to extract the coolant: freeflow; pumping and circular methods. Of greatest interest is the technology to harness the geothermal energy based on geothermal circulatory system (GCS). There i...

  8. A new assessment of combined geothermal electric generation and desalination in western Saudi Arabia: targeted hot spot development

    Missimer, Thomas M.

    2014-07-17

    High heat flow associated with the tectonic spreading of the Red Sea make western Saudi Arabia a region with high potential for geothermal energy development. The hydraulic properties of the Precambrian-age rocks occurring in this region are not conducive to direct production of hot water for heat exchange, which will necessitate use of the hot dry rock (HDR) heat harvesting method. This would require the construction of coupled deep wells; one for water injection and the other for steam recovery. There are some technological challenges in the design, construction, and operation of HDR geothermal energy systems. Careful geotechnical evaluation of the heat reservoir must be conducted to ascertain the geothermal gradient at the chosen site to allow pre-design modeling of the system for assessment of operational heat flow maintenance. Also, naturally occurring fractures or faults must be carefully evaluated to make an assessment of the potential for induced seismicity. It is anticipated that the flow heat exchange capacity of the system will require enhancement by the use of horizontal drilling and hydraulic fracturing in the injection well with the production well drilled into the fracture zone to maximum water recovery efficiency and reduce operating pressure. The heated water must be maintained under pressure and flashed to steam at surface to produce to the most effective energy recovery. Most past evaluations of geothermal energy development in this region have been focused on the potential for solely electricity generation, but direct use of produced steam could be coupled with thermally driven desalination technologies such as multi-effect distillation, adsorption desalination, and/or membrane distillation to provide a continuous source of heat to allow very efficient operation of the plants. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

  9. A new assessment of combined geothermal electric generation and desalination in western Saudi Arabia: targeted hot spot development

    Missimer, Thomas M.; Mai, Martin; Ghaffour, NorEddine

    2014-01-01

    High heat flow associated with the tectonic spreading of the Red Sea make western Saudi Arabia a region with high potential for geothermal energy development. The hydraulic properties of the Precambrian-age rocks occurring in this region are not conducive to direct production of hot water for heat exchange, which will necessitate use of the hot dry rock (HDR) heat harvesting method. This would require the construction of coupled deep wells; one for water injection and the other for steam recovery. There are some technological challenges in the design, construction, and operation of HDR geothermal energy systems. Careful geotechnical evaluation of the heat reservoir must be conducted to ascertain the geothermal gradient at the chosen site to allow pre-design modeling of the system for assessment of operational heat flow maintenance. Also, naturally occurring fractures or faults must be carefully evaluated to make an assessment of the potential for induced seismicity. It is anticipated that the flow heat exchange capacity of the system will require enhancement by the use of horizontal drilling and hydraulic fracturing in the injection well with the production well drilled into the fracture zone to maximum water recovery efficiency and reduce operating pressure. The heated water must be maintained under pressure and flashed to steam at surface to produce to the most effective energy recovery. Most past evaluations of geothermal energy development in this region have been focused on the potential for solely electricity generation, but direct use of produced steam could be coupled with thermally driven desalination technologies such as multi-effect distillation, adsorption desalination, and/or membrane distillation to provide a continuous source of heat to allow very efficient operation of the plants. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

  10. Innovative exploration technologies in the Jemez Geothermal Project, New Mexico, USA; Innovative Explorationstechniken im Jemez Geothermal Projekt, New Mexico, USA

    Albrecht, Michael [TBAPower Inc., Salt Lake City, UT (United States); Tenzer, Helmut; Sperber, Axel; Bussmann, Werner [uutGP GmbH, Geeste (Germany)

    2012-10-16

    First geothermal explorations were carried out in the year 1989 in the sovereign Indian Reservation situated nearly 70 km northwest of Albuquerque. (New Mexico, United States of America). In 1991, an exploration drilling at a depth of 80 meter supplied artesian 52 Celsius hot water with xx L/s. Different feasibility studies on the geothermal utilization and on different utilization concepts were established. The economic situation of the region has to be improved by means of a coupled geothermal utilization. The region was explored by means of magnetotellurics (up to depth of 8 kilometre) and reflection seismics (up to a depth of 2.2 kilometre). A graben structure between the Indian Spring fault in the west and the Vallecitos fault in the east are indicative of a geothermal convection zone. Subsequently, an innovative seismic data analysis by means of Elastic Wave Reverse-Time Migration and Wavefield-Separation Imaging Condition was performed. The previous model could be improved considerably. A preliminary drilling program up to a depth of 2,000 meter with Casing design and planning of the borepath occurred. Under socio-economic aspects, up to nine members of the tribe enjoyed an education or further training to engineers under the control of TBA Power Inc. (Salt Laky City, Utah, United State of America).

  11. Geothermal Progress Monitor report No. 11

    1989-12-01

    This issue of the Geothermal Progress Monitor (GPM) is the 11th since the inception of the publication in 1980. It continues to synthesize information on all aspects of geothermal development in this country and abroad to permit identification and quantification of trends in the use of this energy technology. In addition, the GPM is a mechanism for transferring current information on geothermal technology development to the private sector, and, over time, provides a historical record for those interested in the development pathway of the resource. In sum, the Department of Energy makes the GPM available to the many diverse interests that make up the geothermal community for the multiple uses it may serve. This issue of the GPM points up very clearly how closely knit many of those diverse interests have become. It might well be called an international issue'' since many of its pages are devoted to news of geothermal development abroad, to the efforts of the US industry to participate in overseas development, to the support given those efforts by federal and state agencies, and to the formation of the International Geothermal Association (IGA). All of these events indicate that the geothermal community has become truly international in character, an occurrence that can only enhance the future of geothermal energy as a major source of energy supply worldwide. 15 figs.

  12. Federal Geothermal Research Program Update Fiscal Year 1998

    Keller, J.G.

    1999-05-01

    This report reviews the specific objectives, status, and accomplishments of DOE's Geothermal Research Program for Fiscal Year 1998. The Exploration Technology research area focuses on developing instruments and techniques to discover hidden hydrothermal systems and to expose the deep portions of known systems. The Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal and hot dry rock reservoirs. The Drilling Technology projects focus on developing improved, economic drilling and completion technology for geothermal wells. The Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Direct use research covers the direct use of geothermal energy sources for applications in other than electrical production.

  13. Geothermal probes for the development of medium-deep geothermal heating; Erdwaermesonden zur Erschliessung der mitteltiefen Geothermie

    Stuckmann, Uwe [REHAU AG + Co, Erlangen (Germany)

    2012-07-01

    Compared to the near-surface geothermal energy, in the medium-deep geothermal between between 400 and 1,000 meters higher temperature levels may opened up. Thus the efficiency of geothermal power plants can be increased. The possibly higher installation costs are significantly higher yield compared to the yields and withdrawal benefits. At higher thermal gradient of the underground it even is possible to dispense entirely on the heat pump and to heat directly.

  14. 1990 update of the United Nations geothermal activities in developing countries

    Di Paola, G.M.; Stefansson, V.

    1990-01-01

    The Department of Technical Co-operation for Development (UN/DTCD), is the United Nations executing agency for technical co-operation projects in developing countries. This paper reports that the UN/DTCD, inter alia, has played an important role for 30 years to promote geothermal resources exploration and development in many developing countries worldwide. During the period 1985-1990 some major geothermal projects have been executed and very successfully completed by the UN/DTCD, thanks to the availability of sufficient funds provided by the international community. New geothermal project proposals in 20 developing countries totaling an estimated financial requirement of $60 million have also been formulated by the UN/DTCD during the last 5 years

  15. The Role of Cost Shared R&D in the Development of Geothermal Resources

    None

    1995-03-16

    This U.S. Department of Energy Geothermal Program Review starts with two interesting pieces on industries outlook about market conditions. Dr. Allan Jelacics introductory talk includes the statistics on the impacts of the Industry Coupled Drilling Program (late-1970's) on geothermal power projects in Nevada and Utah (about 140 MWe of power stimulated). Most of the papers in these Proceedings are in a technical report format, with results. Sessions included: Exploration, The Geysers, Reservoir Engineering, Drilling, Energy Conversion (including demonstration of a BiPhase Turbine Separator), Energy Partnerships (including the Lake County effluent pipeline to The Geysers), and Technology Transfer (Biochemical processing of brines, modeling of chemistry, HDR, the OIT low-temperature assessment of collocation of resources with population, and geothermal heat pumps). There were no industry reviews at this meeting.

  16. Geothermal Permeability Enhancement - Final Report

    Joe Beall; Mark Walters

    2009-06-30

    The overall objective is to apply known permeability enhancement techniques to reduce the number of wells needed and demonstrate the applicability of the techniques to other undeveloped or under-developed fields. The Enhanced Geothermal System (EGS) concept presented in this project enhances energy extraction from reduced permeability zones in the super-heated, vapor-dominated Aidlin Field of the The Geysers geothermal reservoir. Numerous geothermal reservoirs worldwide, over a wide temperature range, contain zones of low permeability which limit the development potential and the efficient recovery of heat from these reservoirs. Low permeability results from poorly connected fractures or the lack of fractures. The Enhanced Geothermal System concept presented here expands these technologies by applying and evaluating them in a systematic, integrated program.

  17. Fiscal 1997 report on the survey of verification of geothermal exploration technology, etc. 1. Development of the reservoir variation exploration method (development of the fracture hydraulic exploration method); 1997 nendo chinetsu tansa gijutsu nado kensho chosa. Choryuso hendo tansaho kaihatsu (danretsu suiri tansaho kaihatsu) hokokusho

    NONE

    1998-03-01

    The paper described the fiscal 1997 result of the fracture hydraulic exploration method as the variation exploration method of geothermal reservoirs. By elucidating hydraulic characteristics of the fracture system forming reservoir, technologies are established which are effective for the reservoir evaluation in early stages of development, maintenance of stable power after operational start-up, and extraction of peripheral reservoirs. As for the pressure transient test method, a test supporting system was basically designed to obtain high accuracy hydraulic parameters. As to the tiltmeter fracture monitoring method, a simulation was made for distribution of active fractures and evaluation of hydraulic constants without drilling wells. In relation to the two-phase flow measuring method, for stable steam production, the use of the orifice plate, the existing flow measuring method, etc. was forecast as a simple measuring method of the two-phase state of reservoir. Concerning the hydrophone VSP method, a feasibility study was made of the practical VSP for high temperature which can analyze hydraulic characteristics and geological structures around the well at the same time which the existing methods were unable to grasp, and brought the results. Moreover, to make high accuracy reservoir modeling possible, Doppler borehole televiewer was made in each reservoir. 80 refs., 147 figs., 22 tabs.

  18. The Oregon Geothermal Planning Conference

    None

    1980-10-02

    Oregon's geothermal resources represent a large portion of the nation's total geothermal potential. The State's resources are substantial in size, widespread in location, and presently in various stages of discovery and utilization. The exploration for, and development of, geothermal is presently dependent upon a mixture of engineering, economic, environmental, and legal factors. In response to the State's significant geothermal energy potential, and the emerging impediments and incentives for its development, the State of Oregon has begun a planning program intended to accelerate the environmentally prudent utilization of geothermal, while conserving the resource's long-term productivity. The program, which is based upon preliminary work performed by the Oregon Institute of Technology's Geo-Heat Center, will be managed by the Oregon Department of Energy, with the assistance of the Departments of Economic Development, Geology and Mineral Industries, and Water Resources. Funding support for the program is being provided by the US Department of Energy. The first six-month phase of the program, beginning in July 1980, will include the following five primary tasks: (1) coordination of state and local agency projects and information, in order to keep geothermal personnel abreast of the rapidly expanding resource literature, resource discoveries, technological advances, and each agency's projects. (2) Analysis of resource commercialization impediments and recommendations of incentives for accelerating resource utilization. (3) Compilation and dissemination of Oregon geothermal information, in order to create public and potential user awareness, and to publicize technical assistance programs and financial incentives. (4) Resource planning assistance for local governments in order to create local expertise and action; including a statewide workshop for local officials, and the formulation of two specific community resource development

  19. Hot dry rock geothermal energy development program. Annual report, fiscal year 1980

    Cremer, G.M. (comp.)

    1981-07-01

    Investigation and flow testing of the enlarged Phase I heat-extraction system at Fenton Hill continued throughout FY80. Temperature drawdown observed at that time indicated an effective fracture of approximately 40,000 to 60,000 m/sup 2/. In May 1980, hot dry rock (HDR) technology was used to produce electricity in an interface demonstration experiment at Fenton Hill. A 60-kVA binary-cycle electrical generator was installed in the Phase I surface system and heat from about 3 kg/s of geothermal fluid at 132/sup 0/C was used to boil Freon R-114, whose vapor drove a turboalternator. A Phase II system was designed and is now being constructed at Fenton Hill that should approach commercial requirements. Borehole EE-2, the injection well, was completed on May 12, 1980. It was drilled to a vertical depth of about 4500 m, where the rock temperature is approximately 320/sup 0/C. The production well, EE-3 had been drilled to a depth of 3044 m and drilling was continuing. Environmental monitoring of Fenton Hill site continued. Development of equipment, instruments, and materials for technical support at Fenton Hill continued during FY80. Several kinds of models were also developed to understand the behavior of the Phase I system and to develop a predictive capability for future systems. Data from extensive resource investigations were collected, analyzed, and assembled into a geothermal gradient map of the US, and studies were completed on five specific areas as possible locations for HDR Experimental Site 2.

  20. Fiscal 1980 Sunshine Project research report. International cooperation project for energy technology. International research cooperation for geothermal energy (Japan-U.S. R and D cooperation for geothermal resource assessment); 1980 nendo energy gijutsu kokusai kyoryoku jigyo chinetsu energy kokusai kyoryoku seika hokokusho. Chinetsu shigen hyoka ni kansuru Nichibei kenkyu kaihatsu kyoryoku

    NONE

    1981-03-01

    Based on the Japan-U.S. agreement on promotion of geothermal energy applications, the R and D cooperation specialist panel was held in America on March 12-20, 1981 to exchange the current R and D information on geothermal resources. It was clarified through the meeting in Department of Energy (DOE) that the U.S. budget was reduced by the Reagan Administration largely, resulting in delays in development of geothermal energy and construction of geothermal power plants. The following themes were discussed: Japanese and American geothermal development programs, DOE's industrialization activity, hot dry rock program, geoscience program, and geothermal prospecting technology program. It was clarified through the meeting in U.S. Geological Survey (USGS) that since the governmental resource assessment is made by USGS, however, wide data collection is made by other organizations generally, acquisition of data required for the assessment is difficult. Study on MOU is necessary together with fund allocation. Field survey was also made in Raft River, Cove Fort and Roosevelt. (NEDO)

  1. Fiscal 1980 Sunshine Project research report. International cooperation project for energy technology. International research cooperation for geothermal energy (Japan-U.S. R and D cooperation for geothermal resource assessment); 1980 nendo energy gijutsu kokusai kyoryoku jigyo chinetsu energy kokusai kyoryoku seika hokokusho. Chinetsu shigen hyoka ni kansuru Nichibei kenkyu kaihatsu kyoryoku

    NONE

    1981-03-01

    Based on the Japan-U.S. agreement on promotion of geothermal energy applications, the R and D cooperation specialist panel was held in America on March 12-20, 1981 to exchange the current R and D information on geothermal resources. It was clarified through the meeting in Department of Energy (DOE) that the U.S. budget was reduced by the Reagan Administration largely, resulting in delays in development of geothermal energy and construction of geothermal power plants. The following themes were discussed: Japanese and American geothermal development programs, DOE's industrialization activity, hot dry rock program, geoscience program, and geothermal prospecting technology program. It was clarified through the meeting in U.S. Geological Survey (USGS) that since the governmental resource assessment is made by USGS, however, wide data collection is made by other organizations generally, acquisition of data required for the assessment is difficult. Study on MOU is necessary together with fund allocation. Field survey was also made in Raft River, Cove Fort and Roosevelt. (NEDO)

  2. The The geothermal potentials for electric development in Maluku Province

    Isnaniawardhani, Vijaya; Sukiyah, Emi; Sudradjat, Adjat; Nanlohy, Martha Magdalena

    2018-01-01

    The characteristic of small to medium size islands is the limited amount of natural resources for electric generation. Presently the needs of energy in Maluku Province are supplied by the diesel generation units. The electricity distributes through an isolated grid system of each island. There are 10 separate systems in Maluku Province, namely Ambon, Namlea, Tual, Saumlaki, Mako, Piru, Bula, Masohi, Dobo and Langgur. From the geothermal point of view, this condition is suitable because the na...

  3. Development of an active solar humidification-dehumidification (HDH) desalination system integrated with geothermal energy

    Elminshawy, Nabil A.S.; Siddiqui, Farooq R.; Addas, Mohammad F.

    2016-01-01

    Highlights: • Productivity increases with increasing geothermal water flow rate up to 0.15 kg/s. • Geothermal energy increases productivity by 187–465% when used with solar energy. • Daytime experimental productivity (8AM-5PM) up to 104 L/m"2 was achieved. • Daily experimental productivity (24 h) up to 192 L/m"2 was achieved. • Fresh potable water can be produced at 0.003 USD/L using this desalination setup. - Abstract: This paper investigates the technical and economic feasibility of using a hybrid solar-geothermal energy source in a humidification-dehumidification (HDH) desalination system. The newly developed HDH system is a modified solar still with air blower and condenser used at its inlet and outlet respectively. A geothermal water tank in a temperature range 60–80 °C which imitates a low-grade geothermal energy source was used to supply heat to water inside the humidification chamber. The experiments were conducted in January 2015 under the climatological conditions of Madinah (latitude: 24°33′N, longitude: 39°36′0″E), Saudi Arabia to study the effect of geothermal water temperature and flow rate on the performance and productivity of proposed desalination system. Analytical model was also developed to compare the effect of solar energy and combined solar-geothermal energy on accumulated productivity. Daytime experimental accumulated productivity up to 104 L/m"2 and daily average gained output ratio (GOR) in the range 1.2–1.58 was achieved using the proposed desalination system. Cost of fresh water produced using the presented desalination system is 0.003 USD/L.

  4. Is development of geothermal energy resource in Macedonia justified or not?

    Popovski, Kiril; Popovska Vasilevska, Sanja

    2007-01-01

    During the 80-ies of last century, Macedonia has been one of the world leaders in development of direct application of geothermal energy. During a period of only 6-7 years a participation of 0,7% in the State energy balance has been reached. However, situation has been changed during the last 20 years and the development of this energy resource has been not only stopped but some of the existing projects have been abandoned leading to regression. This situation is illogical, due the fact that it practically proved of being technically feasible and absolutely economically justified. A summary of the present situation with geothermal projects in Macedonia is made in the paper, and possibilities for their improvement and possibilities and justifications for development of new resources foreseen. Final conclusion is that the development of direct application of geothermal energy in Macedonia offer (in comparison with other renewable energy resources) the best energy and economic effects. (Author)

  5. Generation by heated rock. Technology for hot dry rock geothermal power; Yakeishi ni mizu de hatsuden. Koon gantai hatsuden no gijutsu

    Hori, Y. [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    1995-06-15

    Japan is one of the most distinguished volcanic country in the world and about 8% of the active volcanos of the world are distributed in Japan. This kind of a large quantity and natural energy resource near us are used as hot springs in the whole country and as for electricity in 10 geothermal power stations. In future, if this enormous underground geothermal energy could be utilized safely and economically by using new power generation system like hot dry rock geothermal power generation (HDR), it may contribute a little to the 21st century`s energy problem of Japan. Central Research Inst. of Electric Power Industry has installed `Okachi HDR testing ground` in Okachi-machi of Akita Ken, and is carrying out experiments since 1989. Hot dry rock geothermal power generation is a method in which water is injected to the hot dry rock and the thermal energy is recovered that the natural rock bed is used as a boiler. However, development of many new technologies is necessary to bring this system in practical use. 9 refs., 5 figs., 1 tab.

  6. Report on the FY 1999 survey for making a data book related to new energy technology development. Trends of solar energy utilization, waste power generation, clean energy vehicle, geothermal power generation, clean coal technology, other new energy technology and new energy technology development; 1999 nendo shin energy gijutsu kaihatsu kankei data shu sakusei chosa hokokusho. Taiyonetsu riyo, haikibutsu hatsuden, clean energy jidosha, chinetsu hatsuden, clean coal technology, sonota no shin energy gijutsu, shin energy gijutsu kaihatsu kanren doko

    NONE

    2000-03-01

    The paper collected/arranged the most up-to-date data made public in the new energy technology field. As to the solar energy utilization, the utilization is on the decrease with the beginning of the 1980s as a peak, and the solar systems introduced in FY 1998 totaled 15,000 and the water heaters 56,000. The waste power generation is showing a steady growth both in the general use and in the industrial use, and the introduction of 5 million KW is expected for FY 2010. The sale of the hybrid car started at the end of 1997, and the subjects are the price/performance/fuel supply system. Concerning the geothermal power generation, 497,000 KW and 36,000 KW were introduced for business use and non-utility use, respectively. Japan ranks sixth among nations of the world. Relating to the coal liquefaction, the pilot plant (PP) of Japan's original bituminous coal liquefaction NEDOL process finished operation in 1998, and the construction of technology package, international cooperation, etc. are being conducted. About the coal gasification, the construction of demonstrative equipment and operation are planned during FY 2002 - FY 2007, making use of the PP achievements of IGCC. In regard to the biomass-based waste power generation, the lignocellulose system is large in potential quantity. As to the hydrogen energy, the WE-NET project entered Period II. With respect to the ocean thermal energy conversion, the demonstrative study started. In relation to the wave power generation, a small size of approximately several hundred W was commercialized. (NEDO)

  7. Present Status and Future Prospects of Geothermal Development in Italy with an Appendix on Reservoir Engineering

    Cataldi, R.; Calamai, A.; Neri, G.; Manetti, G.

    1983-12-15

    This paper consists of two parts and an appendix. In the first part a review is made of the geothermal activity in Italy from 1975 to 1982, including electrical and non-electrical applications. Remarks then follow on the trends that occurred and the operational criteria that were applied in the same period, which can be considered a transitional period of geothermal development in Italy. Information on recent trends and development objectives up to 1990 are given in the second part of the paper, together with a summary on program activities in the various geothermal areas of Italy. The appendix specifically reviews the main reseroir engineering activities carried out in the past years and the problems likely to be faced in the coming years in developing Itallian fields.

  8. Present status of exploration and development of the geothermal resources of Guatemala

    Caicedo, A.; Palma, J.

    1990-01-01

    This paper reports on the study of geothermal exploration and geothermal development in the nation of Guatemala that is being led by the Instituto Nacionai de electrificacion (INDE) through the Unidad de Desarrollo Geotermico (UDG), for the purpose of developing the geothermal resources in order to generate electricity. Since 1972, it has accomplished geoscientific studies with regional surveys in 13 areas located in the volcanic region in the southern part of the country. Also, prefeasibility studies have been carried out in geothermal areas such as Moyuta and Tecuamburro in the southeast of the country; Amatitlan in the central region and San Marcos in the west. Moreover, in the geothermal field of Zunil I, which is located in the western Department of Quetzaltenango, the feasibility study has been completed, and the first geothermo-electric plant of 15 MW is being schedule for June of 1993. By then, the feasibility study for the second power plant in the more promising area of Zunil II located on the outskirts of Zunil I or Amatitlan. Also, in the area of Zunil I a farm-produce dehydration plant has been built through a technical cooperation agreement between INDE and Los Alamos National Laboratory, LANL. It has the purpose of showing the use of direct-heat through produced steam from the slim hole Z-11

  9. Two 175 ton geothermal chiller heat pumps for leed platinum building technology demonstration project. Operation data, data collection and marketing

    Kolo, Daniel [Johnson Controls, Inc., Glendale, WI (United States)

    2016-08-15

    The activities funded by this grant helped educate and inform approximately six thousand individuals who participated in guided tours of the geothermal chiller plant at Johnson Controls Corporate Headquarters in Glendale, Wisconsin over the three year term of the project. In addition to those who took the formal tour, thousands more were exposed to hands-on learning at the self-service video kiosks located in the headquarters building and augmented reality tablet app that allowed for self-guided tours. The tours, video, and app focused on the advantages of geothermal heat pump chillers, including energy savings and environmental impact. The overall tour and collateral also demonstrated the practical application of this technology and how it can be designed into a system that includes many other sustainable technologies without sacrificing comfort or health of building occupants Among tour participants were nearly 1,000 individuals, representing 130 organizations identified as potential purchasers of geothermal heat pump chillers. In addition to these commercial clients, tours were well attended by engineering, facilities, and business trade groups. This has also been a popular tour for groups from Universities around the Midwest and K-12 schools from Wisconsin and Northern Illinois A sequence of operations was put into place to control the chillers and they have been tuned and maintained to optimize the benefit from the geothermal water loop. Data on incoming and outgoing water temperature and flow from the geothermal field was logged and sent to DOE monthly during the grant period to demonstrate energy savings.

  10. Is the Philippine geothermal resource sustainable?

    Lalo, J.; Raymundo, E.

    2005-01-01

    This paper aims to illustrate the scenario in the Geothermal Energy Development Projects in the Philippines, to make the Filipino population aware that there is an existing cleaner technology available that is being utilized in Europe; for the Philippine geothermal energy project operators to adapt a cleaner production technology that has no harmful emission, hence, no pollution technology; to help end the conflict between stake holders and geothermal players through the introduction of cleaner production technology intervention. While it is a fact that the Philippines' Geothermal resource is second to U.S. or around the globe, the unwise utilization of geothermal energy may lead to depletion, hence, becomes non-renewable. It should be understood that the geothermal energy is a renewable resource only if the development process is sustainable. There is a need to educate the Filipino populace regarding a cleaner production technology as well as our government and political leaders. This cleaner production technology is a solution to the stake holders. It is of great importance to inform the Filipino people that there is an existing cleaner new technology from Europe and U.S. that is not pollutive in nature and is essentially sustainable development scheme since underground reservoirs are not depleted in the process. (author)

  11. South Dakota geothermal handbook

    1980-06-01

    The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are described. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resource are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized. (MHR)

  12. Local population impacts of geothermal energy development in the Geysers: Calistoga region

    Haven, K.F.; Berg, V.; Ladson, Y.W.

    1980-09-01

    The country-level population increase implications of two long-term geothermal development scenarios for the Geysers region in California are addressed. This region is defined to include the counties of Lake, Sonoma, Mendocino and Napa, all four in northern California. The development scenarios include two components: development for electrical energy production and direct use applications. Electrical production scenarios are derived by incorporating current development patterns into previous development scenarios by both industry and research organizations. The scenarios are made county-specific, specific to the type of geothermal system constructed, and are projected through the year 2000. Separate high growth rate and low growth rate scenarios are developed, based on a set of specified assumptions. Direct use scenarios are estimated from the nature of the available resource, existing local economic and demographic patterns, and available experience with various separate direct use options. From the composite development scenarios, required numbers of direct and indirect employees and the resultant in-migration patterns are estimated. In-migration patterns are compared to current county level population and ongoing trends in the county population change for each of the four counties. From this comparison, conclusions are drawn concerning the contributions of geothermal resource development to future population levels and the significance of geothermally induced population increase from a county planning perspective.

  13. The Momotombo Geothermal Field, Nicaragua: Exploration and development case history study

    None

    1982-07-01

    This case history discusses the exploration methods used at the Momotombo Geothermal Field in western Nicaragua, and evaluates their contributions to the development of the geothermal field models. Subsequent reservoir engineering has not been synthesized or evaluated. A geothermal exploration program was started in Nicaragua in 1966 to discover and delineate potential geothermal reservoirs in western Nicaragua. Exploration began at the Momotombo field in 1970 using geological, geochemical, and geophysical methods. A regional study of thermal manifestations was undertaken and the area on the southern flank of Volcan Momotombo was chosen for more detailed investigation. Subsequent exploration by various consultants produced a number of geotechnical reports on the geology, geophysics, and geochemistry of the field as well as describing production well drilling. Geological investigations at Momotombo included photogeology, field mapping, binocular microscope examination of cuttings, and drillhole correlations. Among the geophysical techniques used to investigate the field sub-structure were: Schlumberger and electromagnetic soundings, dipole mapping and audio-magnetotelluric surveys, gravity and magnetic measurements, frequency domain soundings, self-potential surveys, and subsurface temperature determinations. The geochemical program analyzed the thermal fluids of the surface and in the wells. This report presents the description and results of exploration methods used during the investigative stages of the Momotombo Geothermal Field. A conceptual model of the geothermal field was drawn from the information available at each exploration phase. The exploration methods have been evaluated with respect to their contributions to the understanding of the field and their utilization in planning further development. Our principal finding is that data developed at each stage were not sufficiently integrated to guide further work at the field, causing inefficient use of

  14. FY 1994 Report on the feasibility study results of the geothermal exploitation technologies for the international joint demonstration research; 1994 nendo chinetsu tansa gijutsu no kaigai kyodo jissho kenkyu kanosei chosa hokokusho

    NONE

    1995-03-01

    Described herein are the FY 1994 results of the feasibility study of the geothermal exploitation technologies for the international joint demonstration research with Indonesia. The survey methods are considered for the areas difficult to access by land transportation means (e.g., tropical rain forests) to promote development of geothermal resources in remote areas (small- to medium-scale geothermal power generation plans). The satellite and air remote sensing are used for the wide-area survey. The data obtained by the satellite are analyzed using the JERS-1 data, and then surveyed in detail by the air remote sensing for the selected areas to find, e.g., abnormal ground temperature regions, faults, volcanoes, geothermally altered regions and landslide regions. They are surveyed in more detail by the air electromagnetic and magnetic exploitation methods. Although they have high resolution, their application tends to be hindered by hot and humid climates in the prospective exploitation areas. The GEMS-aided resources analysis is used to establish the geothermal models, to help extract the promising areas. These techniques are basically common, but it is necessary to take into consideration, e.g., the environments and regional characteristics of these areas when they are actually used. Diversification of fossil fuel supply sources is advantageous for Japan, and her energy security will be improved by supporting geothermal resources development promotion in the supply sources. (NEDO)

  15. Further Development and Application of GEOFRAC-FLOW to a Geothermal Reservoir

    Einstein, Herbert [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Vecchiarelli, Alessandra [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2014-05-01

    GEOFRAC is a three-dimensional, geology-based, geometric-mechanical, hierarchical, stochastic model of natural rock fracture systems. The main characteristics of GEOFRAC are its use of statistical input representing fracture patterns in the field in form of the fracture intensity P32 (fracture area per volume) and the best estimate fracture size E(A). This information can be obtained from boreholes or scanlines on the surface, on the one hand, and from window sampling of fracture traces on the other hand. In the context of this project, “Recovery Act - Decision Aids for Geothermal Systems”, GEOFRAC was further developed into GEOFRAC-FLOW as has been reported in the reports, “Decision Aids for Geothermal Systems - Fracture Pattern Modelling” and “Decision Aids for Geothermal Systems - Fracture Flow Modeling”. GEOFRAC-FLOW allows one to determine preferred, interconnected fracture paths and the flow through them.

  16. Effects of potential geothermal development in the Corwin Springs Known Geothermal Resources Area, Montana, on the thermal features of Yellowstone National Park. Water Resources Investigation

    Sorey, M.L.

    1991-01-01

    A two-year study by the U.S. Geological Survey, in collaboration with the National Park Service, Argonne National Laboratory, and Los Alamos National Laboratory was initiated in 1988 to determine the effects of potential geothermal development in the Corwin Springs Known Geothermal Resources Area (KGRA), Montana, on the thermal features of Yellowstone National Park. The study addressed three principal issues: (1) the sources of thermal water in the hot springs at Mammoth, La Duke, and Bear Creek; (2) the degree of subsurface connection between these areas; and (3) the effects of geothermal development in the Corwin Springs KGRA on the Park's thermal features. The authors investigations included, but were not limited to, geologic mapping, electrical geophysical surveys, chemical sampling and analyses of waters and rocks, determinations of the rates of discharge of various thermal springs, and hydrologic tracer tests

  17. Problem definition study of subsidence caused by geopressured geothermal resource development

    1980-12-01

    The environmental and socio-economic settings of four environmentally representative Gulf Coast geopressured geothermal fairways were inventoried. Subsidence predictions were prepared using feasible development scenarios for the four representative subsidence sites. Based on the results of the subsidence estimates, an assessment of the associated potential environmental and socioeconomic impacts was prepared. An inventory of mitigation measures was also compiled. Results of the subsidence estimates and impact assessments are presented, as well as conclusions as to what are the major uncertainties, problems, and issues concerning the future study of geopressured geothermal subsidence.

  18. Exploration and development of the Cerro Prieto geothermal field

    Lippmann, M.J.; Goldstein, N.E.; Halfman, S.E.; Witherspoon, P.A.

    1983-07-01

    A multidisciplinary effort to locate, delineate, and characterize the geothermal system at Cerro Prieto, Baja California, Mexico, began about 25 years ago. It led to the identification of an important high-temperature, liquid-dominated geothermal system which went into production in 1973. Initially, the effort was undertaken principally by the Mexican electric power agency, the Comision Federal de Electricidad (CFE). Starting in 1977 a group of US organizations sponsored by the US Department of Energy, joined CFE in this endeavor. An evaluation of the different studies carried out at Cerro Prieto has shown that: (1) surface electrical resistivity and seismic reflection surveys are useful in defining targets for exploratory drilling; (2) the mineralogical studies of cores and cuttings and the analysis of well logs are important in designing the completion of wells, identifying geological controls on fluid movement, determining thermal effects and inferring the thermal history of the field; (3) geochemical surveys help to define zones of recharge and paths of fluid migration; and (4) reservoir engineering studies are necessary in establishing the characteristics of the reservoir and in predicting its response to fluid production.

  19. Capacity building in renewable energy technologies in developing countries

    Fridleifsson, Ingvar

    2010-09-15

    The renewable energy sources are expected to provide 20-40% of the world primary energy in 2050, depending on scenarios. A key element in the mitigation of climate change is capacity building in renewable energy technologies in the developing countries, where the main energy use growth is expected. An innovative training programme for geothermal energy professionals developed in Iceland is an example of how this can be done effectively. In 1979-2009, 424 scientists/engineers from 44 developing countries have completed the 6 month courses. In many countries in Africa, Asia, C-America, and E-Europe, UNU-GTP Fellows are among the leading geothermal specialists.

  20. Geothermal handbook

    1976-01-01

    The Bureau of Land Management offered over 400,000 hectares (one million acres) for geothermal exploration and development in 1975, and figure is expected to double this year. The Energy Research and Development Administration hopes for 10-15,000 megawatts of geothermal energy by 1985, which would require, leasing over 16.3 million hectares (37 million acres) of land, at least half of which is federal land. Since there is an 8 to 8-1/2 year time laf between initial exploration and full field development, there would have to be a ten-fold increase in the amount of federal land leased within the next three years. Seventy percent of geothermal potential, 22.3 million hectares (55 million acres), is on federal lands in the west. The implication for the Service are enormous and the problems immediate. Geothermal resource are so widespread they are found to some extent in most biomes and ecosystems in the western United States. In most cases exploitation and production of geothermal resources can be made compatible with fish and wildlife management without damage, if probable impacts are clearly understood and provided for before damage has unwittingly been allowed to occur. Planning for site suitability and concern with specific operating techniques are crucial factors. There will be opportunities for enhancement: during exploration and testing many shallow groundwater bodies may be penetrated which might be developed for wildlife use. Construction equipment and materials needed for enhancement projects will be available in areas heretofore considered remote projects will be available in areas heretofore considered remote by land managers. A comprehensive knowledge of geothermal development is necessary to avoid dangers and seize opportunities. This handbook is intended to serve as a working tool in the field. It anticipated where geothermal resource development will occur in the western United States in the near future. A set of environmental assessment procedures are

  1. Determining barriers to developing geothermal power generation in Japan: Societal acceptance by stakeholders involved in hot springs

    Kubota, Hiromi; Hondo, Hiroki; Hienuki, Shunichi; Kaieda, Hideshi

    2013-01-01

    After many years of stagnant growth in geothermal power generation, development plans for new geothermal plants have recently emerged throughout Japan. Through a literature review, we investigated the relationships between the principal barriers to geothermal development and we thereby analyzed the deciding factors in the future success of such enterprises. The results show that the societal acceptance of geothermal power by local stakeholders is the fundamental barrier as it affects almost all other barriers, such as financial, technical, and political risks. Thus, we conducted semi-structured interviews with 26 stakeholders including developers, hot spring inn managers, and local government officials. Some hot spring inn managers and local government officials noted that they have always been strongly concerned about the adverse effects of geothermal power generation on hot springs; their opposition has delayed decision-making by local governments regarding drilling permits, prolonged lead times, and caused other difficulties. A key reason for opposition was identified as uncertainty about the reversibility and predictability of the adverse effects on hot springs and other underground structures by geothermal power production and reinjection of hot water from reservoirs. Therefore, we discuss and recommend options for improving the risk management of hot springs near geothermal power plants. - Highlights: • We clarify relationships between barriers to geothermal power development in Japan. • Local acceptance by hot spring managers is the most prominent barrier. • Uncertainty of reversibility and predictability induces low acceptance. • Risk transfer system and dialogue are needed to alleviate concerns

  2. A comparison of economic evaluation models as applied to geothermal energy technology

    Ziman, G. M.; Rosenberg, L. S.

    1983-01-01

    Several cost estimation and financial cash flow models have been applied to a series of geothermal case studies. In order to draw conclusions about relative performance and applicability of these models to geothermal projects, the consistency of results was assessed. The model outputs of principal interest in this study were net present value, internal rate of return, or levelized breakeven price. The models used were VENVAL, a venture analysis model; the Geothermal Probabilistic Cost Model (GPC Model); the Alternative Power Systems Economic Analysis Model (APSEAM); the Geothermal Loan Guarantee Cash Flow Model (GCFM); and the GEOCOST and GEOCITY geothermal models. The case studies to which the models were applied include a geothermal reservoir at Heber, CA; a geothermal eletric power plant to be located at the Heber site; an alcohol fuels production facility to be built at Raft River, ID; and a direct-use, district heating system in Susanville, CA.

  3. Geothermal heat pumps - gaining ground in the UK and worldwide

    Curtis, Robin

    2001-01-01

    This 2001 edition of the guide to UK renewable energy companies examines the geothermal heat pump sector, and discusses the technology involved, installations of geothermal heat pumps, the activity in the UK market with increased interest in UK geothermal heat pump products from abroad, and developments in the building sector. The UK government's increased support for the industry including its sponsorship of the Affordable Warmth programme, and the future potential of ground source systems are discussed

  4. Hawaii Energy Resource Overviews. Volume 5. Social and economic impacts of geothermal development in Hawaii

    Canon, P.

    1980-06-01

    The overview statement of the socio-economic effects of developing geothermal energy in the State of Hawaii is presented. The following functions are presented: (1) identification of key social and economic issues, (2) inventory of all available pertinent data, (3) analysis and assessment of available data, and (4) identification of what additional information is required for adequate assessment.

  5. Governmental costs and revenues associated with geothermal energy development in Imperial County. Special Publication 3241

    Goldman, G.; Strong, D.

    1977-10-01

    This study estimates the cost and revenue impacts to local governments of three geothermal energy growth scenarios in Imperial County. The level of geothermal energy potential for the three development scenarios tested is 2,000, 4,000 and 8,000 MW--enough power to serve 270,000 to 1,000,000 people. The government agencies involved do not expect any substantial additional capital costs due to geothermal energy development; therefore, average costing techniques have been used for projecting public service costs and government revenues. The analysis of the three growth scenarios tested indicates that county population would increase by 3, 7 and 19 percent and assessed values would increase by 20, 60, and 165 percent for Alternatives No. 1, No. 2 and No. 3 respectively. Direct and indirect effects would increase new jobs in the county by 1,000, 3,000 and 8,000. Government revenues would tend to exceed public service costs for county and school districts, while city costs would tend to exceed revenues. In each of the alternatives, if county, cities and school districts are grouped together, the revenues exceed costs by an estimated $1,600 per additional person either directly or indirectly related to geothermal energy development in the operational stages. In the tenth year of development, while facilities are still being explored, developed and constructed, the revenues would exceed costs by an approximate $1,000 per additional person for each alternative. School districts with geothermal plants in their boundaries would be required by legislation SB 90 to reduce their tax rates by 15 to 87 percent, depending on the level of energy development. Revenue limits and school taxing methods will be affected by the Serrano-Priest decision and by new school legislation in process.

  6. Development of geothermal energy in the Gulf Coast: socio-economic, demographic, and political considerations

    Letlow, K.; Lopreato, S.C.; Meriwether, M.; Ramsey, P.; Williamson, J.K.; Vanston, J.H.; Elmer, D.B.; Gustavson, T.C.; Kreitler, C.W.; Letlow, K.; Lopreato, S.C.; Meriwether, M.; Ramsey, P.; Rogers, K.E.; Williamson, J.K.

    1976-01-01

    The institutional aspect of the study attempts to identify possible effects of geothermal research, development, and utilization on the area and its inhabitants in three chapters. Chapters I and II address key socio-economic and demographic variables. The initial chapter provides an overview of the area where the resource is located. Major data are presented that can be used to establish a baseline description of the region for comparison over time and to delineate crucial area for future study with regard to geothermal development. The chapter highlights some of the variables that reflect the cultural nature of the Gulf Coast, its social characteristics, labor force, and service in an attempt to delineate possible problems with and barriers to the development of geothermal energy in the region. The following chapter focuses on the local impacts of geothermal wells and power-generating facilities using data on such variables as size and nature of construction and operating crews. Data are summarized for the areas studied. A flow chart is utilized to describe research that is needed in order to exploit the resource as quickly and effectively as possible. Areas of interface among various parts of the research that will include exchange of data between the social-cultural group and the institutional, legal, environmental, and resource utilization groups are identified. (MCW)

  7. Technology for Increasing Geothermal Energy Productivity. Computer Models to Characterize the Chemical Interactions of Goethermal Fluids and Injectates with Reservoir Rocks, Wells, Surface Equiptment

    Nancy Moller Weare

    2006-07-25

    This final report describes the results of a research program we carried out over a five-year (3/1999-9/2004) period with funding from a Department of Energy geothermal FDP grant (DE-FG07-99ID13745) and from other agencies. The goal of research projects in this program were to develop modeling technologies that can increase the understanding of geothermal reservoir chemistry and chemistry-related energy production processes. The ability of computer models to handle many chemical variables and complex interactions makes them an essential tool for building a fundamental understanding of a wide variety of complex geothermal resource and production chemistry. With careful choice of methodology and parameterization, research objectives were to show that chemical models can correctly simulate behavior for the ranges of fluid compositions, formation minerals, temperature and pressure associated with present and near future geothermal systems as well as for the very high PT chemistry of deep resources that is intractable with traditional experimental methods. Our research results successfully met these objectives. We demonstrated that advances in physical chemistry theory can be used to accurately describe the thermodynamics of solid-liquid-gas systems via their free energies for wide ranges of composition (X), temperature and pressure. Eight articles on this work were published in peer-reviewed journals and in conference proceedings. Four are in preparation. Our work has been presented at many workshops and conferences. We also considerably improved our interactive web site (geotherm.ucsd.edu), which was in preliminary form prior to the grant. This site, which includes several model codes treating different XPT conditions, is an effective means to transfer our technologies and is used by the geothermal community and other researchers worldwide. Our models have wide application to many energy related and other important problems (e.g., scaling prediction in petroleum

  8. Federal Interagency Geothermal Activities

    Anderson, Arlene [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Prencipe, Loretta [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Todaro, Richard M. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Cuyler, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Eide, Elizabeth [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2011-06-01

    This collaborative document describes the roles and responsibilities of key Federal agencies in the development of geothermal technologies including the U.S. Department of Energy (DOE); the U.S. Department of Agriculture (USDA), including the U.S. Forest Service; the U.S. Department of Interior (DOI), including the United States Geological Survey (USGS) and Bureau of Land Management (BLM); the Environmental Protection Agency (EPA); and the Department of Defense (DOD).

  9. Geothermal energy: a brief assessment

    Lunis, B.C.; Blackett, R.; Foley, D. (eds.)

    1982-07-01

    This document includes discussions about geothermal energy, its applications, and how it is found and developed. It identifies known geothermal resources located in Western's power marketing area, and covers the use of geothermal energy for both electric power generation and direct applications. Economic, institutional, environmental, and other factors are discussed, and the benefits of the geothermal energy resource are described.

  10. FY 1993 report on the survey of geothermal development promotion. Survey of geothermal water (No.36 - Amemasu-dake area); 1993 nendo chinetsu kaihatsu sokushin chosa. Nessui no chosa hokokusho (No.36 Amemasu dake chiiki)

    NONE

    1995-01-01

    As a part of the survey of geothermal development promotion in FY 1993, survey of geothermal fluid was made using a precise structure drilling well N5-AM-5 as exploration well in the Amemasu-dake area, Hokkaido. The induced jetting of geothermal fluid was carried out by the Swabbing method in the total number of times of 185 in 11 days at 10-20 times/day, but did not result in the jetting of geothermal water. The sampling of geothermal water was conducted by guiding the geothermal water that overflowed the guide pipe to the tank. The temperature of geothermal water indicated approximately 20 degrees C in the 1st time and 40-60 degrees C in and after the 2nd time every day. The electric conductivity of geothermal water was 2.033 mS/cm, chlorine ion concentration was 420-500 ppm, and pH value was 7.17-7.72. As a result of the survey, it was presumed that the geothermal water of this well originated in the meteoric water around the area and formed slightly supported by emitted volcanic matters. As to the geochemical temperature, the silica temperature indicated about 120 degrees C and the alkali ratio temperature did about 180 degrees C. It was considered that there possibly existed geothermal reservoirs of approximately 180 degrees C in alkali ratio temperature around the well. (NEDO)

  11. 2012 geothermal energy congress. Proceedings

    2012-01-01

    Within the Geothermal Energy Congress 2012 from 13th to 16th November 2012, in Karlsruhe (Federal Republic of Germany), the following lectures were held: (1) Comparison of different methods for the design of geothermal probes on the example of the thermal utilization of smouldering fires at heaps (Sylvia Kuerten); (2) Determination of the thermo-physical features of loose rocks (Johannes Stegner); (3) Tools for the planning and operation of district heating grids (Werner Seichter); (4) geo:build - System optimisation of the cooling mode of the ground-source heat and cooling supply (Franziska Bockelmann); (5) Successful and economic conception, planning and optimization of district heating grids (Werner Seichter); (6) Treacer / Heat transfer decoupling in a heterogeneous hydrothermal reservoir characterized by geological faults in the Upper Rhine Graben (I. Ghergut); (7) Determination of the porosity, thermal conductivity and particle size distribution in selected sections of the Meisenheim-1 drilling core (Saar-Nahe basin, Rheinland-Palatinate) under consideration of geothermally relevant formulation of questions (Gillian Inderwies); (8) Innovative technologies of exploration in the Jemez Geothermal project, New Mexico, USA (Michael Albrecht); (9) Geothermal energy, heat pump and TABS - optimization of planning, operational control and control (Franziska Bockelmann); (10) The impact of large-scale geothermal probes (storage probes) on the heat transfer and heat loss (Christopher Steins); (11) Numeric modelling of the permocarbon in the northern Upper Rhine Graben (L. Dohrer); (12) Engineering measurement solutions on quality assurance in the exploitation of geothermal fields (C. Lehr); (13) Evaluation and optimization of official buildings with the near-surface geothermal energy for heating and cooling (Franziska Bockelmann); (14) On-site filtration for a rapid and cost-effective quantification of the particle loading in the thermal water stream (Johannes Birner

  12. World geothermal congress

    Povarov, O.A.; Tomarov, G.V.

    2001-01-01

    The World geothermal congress took place in the period from 28 May up to 10 June 2000 in Japan. About 2000 men from 43 countries, including specialists in the area of developing geothermal fields, creating and operating geothermal electrical and thermal plants and various systems for the earth heat application, participated in the work of the Congress. It was noted at the Congress, that development of the geothermal power engineering in the world is characterized by the large-scale application of geothermal resources for the electrical energy generation [ru

  13. Hawaii geothermal project

    Kamins, R. M.

    1974-01-01

    Hawaii's Geothermal Project is investigating the occurrence of geothermal resources in the archipelago, initially on the Island of Hawaii. The state's interest in geothermal development is keen, since it is almost totally dependent on imported oil for energy. Geothermal development in Hawaii may require greater participation by the public sector than has been true in California. The initial exploration has been financed by the national, state, and county governments. Maximization of net benefits may call for multiple use of geothermal resources; the extraction of by-products and the application of treated effluents to agricultural and aquacultural uses.

  14. Report on fiscal 2000 survey for geothermal exploration technology verification. Survey of deep-seated geothermal resources; 2000 nendo chinetsu tansa gijutsu nado kensho chosa hokokusho. Shinbu chinetsu shigen chosa

    NONE

    2001-03-01

    To promote the development of deep-seated geothermal resources in a rationalized way, studies are conducted about deep-seated geothermal resource assessment techniques, development guidelines, and the like. Data were collected at the Sumikawa-Onuma district, Ogiri district, Mori district, Yanaizu-Nishiyama district, and the Onikobe district, and compiled into a database to be open to the public. Studies were made about methods for estimating parameters for deep-seated geothermal reservoirs. The resultant findings indicate that, in the Uenotai and Sumikawa-Onuma districts where geothermal reservoirs are governed mainly by a fracture network, the relaxation method and extrapolation will be effective for deep-seated reservoir temperature estimation, and the ascending current analysis method and extrapolation for permeability estimation. The findings also indicate that the expanse of deep-seated reservoirs will be suitably estimated using a method similar to that applied to shallow-seated reservoirs. In the study of the estimation of the amount of deep-seated geothermal resources, it is concluded that the simplified model A will be effective in dealing with a geothermal district where there is a well-developed fracture network and the simplified model B in dealing with a geothermal district where supply of deep-seated fluid governed by an extensive fault prevails. (NEDO)

  15. Multi-purpose utilization and development of geothermal water: European overseas investigation

    Ochiai, T [Natl. Research Institute of Agricultural Engineering, Japan

    1978-01-01

    In order to investigate the agricultural utilization of geothermal waters, a fact-finding team visited France, Italy, Iceland, and Turkey. In France, it was seen that the development and utilization of geothermal waters is in accord with Japanese practices. The production and reinjection wells are drilled to a depth of 1800 m. They are spaced about 10 m apart at the surface and about 800 m apart at the bottom. This is accomplished by drilling at an angle. The hot water is produced at a rate of about 90 t/h. It is passed through a heat exchanger where it warms surface water to about 70/sup 0/C. The warmed water is then supplied for purposes of district heating, greenhouse culture, and fish farming. The used hot water is then returned to the producing stratum via the reinjection well. Iceland began the production of hot geothermal water in 1925, and, at present, 99% of the city of Reykjavik is heated geothermally. The deepest production wells at Reykjavik reach 2000 m. The water produced has a temperature of 90-103/sup 0/C, and is also used for agricultural purposes.

  16. Geothermal projects funded under the NER 300 programme - current state of development and knowledge gained

    Shortall, Ruth; Uihlein, Andreas

    2017-04-01

    Introduction The NER 300 programme, managed by the European Commission is one of the largest funding programmes for innovative low-carbon energy demonstration projects. NER 300 is so called because it is funded from the sale of 300 million emission allowances from the new entrants' reserve (NER) set up for the third phase of the EU emissions trading system (ETS). The programme aims to successfully demonstrate environmentally safe carbon capture and storage (CCS) and innovative renewable energy (RES) technologies on a commercial scale with a view to scaling up production of low-carbon technologies in the EU. Consequently, it supports a wide range of CCS and RES technologies (bioenergy, concentrated solar power, photovoltaics, geothermal, wind, ocean, hydropower, and smart grids). Funded projects and the role of geothermal projects for the programme In total, about EUR 2.1 billion have been awarded through the programme's 2 calls for proposals (the first awarded in December 2012, the second in July 2014). The programme has awarded around EUR 70 million funding to 3 geothermal projects in Hungary, Croatia and France. The Croatian geothermal project will enter into operation during 2017 the Hungarian in 2018, and the French in 2020. Knowledge Sharing Knowledge sharing requirements are built into the legal basis of the programme as a critical tool to lower risks in bridging the transition to large-scale production of innovative renewable energy and CCS deployment. Projects have to submit annually to the European Commission relevant knowledge gained during that year in the implementation of their project. The relevant knowledge is aggregated and disseminated by the European Commission to industry, research, government, NGO and other interest groups and associations in order to provide a better understanding of the practical challenges that arise in the important step of scaling up technologies and operating them at commercial scale. The knowledge sharing of the NER 300

  17. Fiscal 1997 report of the verification research on geothermal prospecting technology. Theme 5-2. Development of a reservoir change prospecting method (reservoir change prediction technique (modeling support technique)); 1997 nendo chinetsu tansa gijutsu nado kensho chosa. 5-2. Choryuso hendo tansaho kaihatsu (choryuso hendo yosoku gijutsu (modeling shien gijutsu)) hokokusho

    NONE

    1998-03-01

    To evaluate geothermal reservoirs in the initial stage of development, to keep stable output in service operation, and to develop a technology effective for extraction from peripheral reservoirs, study was made on a reservoir variation prediction technique, in particular, a modeling support technique. This paper describes the result in fiscal 1997. Underground temperature estimation technique using homogenization temperatures of fluid inclusions among core fault system measurement systems was applied to Wasabizawa field. The effect of stretching is important to estimate reservoir temperatures, and use of a minimum homogenization temperature of fluid inclusions in quartz was suitable. Even in the case of no quartz in hydrothermal veins, measured data of quartz (secondary fluid inclusion) in parent rocks adjacent to hydrothermal veins well agreed with measured temperature data. The developmental possibility of a new modeling support technique was confirmed enough through collection of documents and information. Based on the result, measurement equipment suitable for R and D was selected, and a measurement system was established through preliminary experiments. 39 refs., 35 figs., 6 tabs.

  18. Fiscal 1996 verification and survey of geothermal prospecting technology etc. 2/2. Survey report on deep-seated geothermal resources; 1996 nendo chinetsu tansa gijutsu nado kensho chosa hokokusho. 2/2. Shinbu chinetsu shigen chosa

    NONE

    1998-03-01

    For the purpose of reducing the risk to accompany the exploitation of deep-seated geothermal resources, investigations are conducted into the three factors that govern the formation of geothermal resources at deep levels, that is, the supply of heat from heat sources, the supply of geothermal fluids, and the development of fracture systems contributing to the constitution of reservoir structures. In the study of deep-seated geothermal models for the Kakkonda area, a reservoir structure model, a thermal structure model, and a geothermal fluid/hydraulic structure model are deliberated. Then, after studying the relations of the said three structure models to fracture systems, the boundary between the geothermal fluid convection region and the thermal conduction region near the 3,100m-deep level, the existence of high-salinity fluids and the depth of gas inflow, the ranges of shallow-seated reservoirs and deep-seated reservoirs, the trend of reduction in reservoir pressure and the anisotropy in water permeability in shallow-seated reservoirs, etc., a latest reservoir model is constructed into which all the findings obtained so far are incorporated. As for guidelines for deep-seated thermal resources survey and development, it is so decided that deep-seated geothermal survey guidelines, deep-seated fluid production guidelines, and deep-seated well drilling guidelines be prepared and that assessment be made of their economic effectiveness. (NEDO)

  19. Exploitation of geothermal energy as a priority of sustainable energetic development in Serbia

    Golusin, Mirjana; Bagaric, Ivan; Ivanovic, Olja Munitlak; Vranjes, Sanja

    2010-01-01

    The actual global economic crisis, including all other well-known problems of sustainable development, reflects the direction of development of all countries in the world. Serbia, as a European country in its early stage of development, is trying to synchronize its progress with experience of other countries from the field of sustainable development and in accordance with rules in the field of energetic and energetic efficiency, and, as well as to promote and develop the sector of use of renewable sources of energy. On the other hand, Serbia is a country which largely depends on import of all forms of energy, which to a great extent affects its economic stability. Therefore, in Serbia the strategy for development of energetic was imposed and it considers all the aspects of development of energetic until 2015 and it also defines the priorities which can be mostly seen in the choice of forms of alternative sources of energy. These sources, based on some criteria, can be considered the most convenient for a gradual substitution of energy which is gotten from the conventional sources. Taking into account strategically defined goals and domestic potentials which are at disposal, as well as economic parameters, an alternative source of energy of basic importance for the future exploitation on the territory of Serbia geothermal energy, was chosen. The research points to the fact that Serbia will be capable to respond adequately to Kyoto protocol demands and to the European rules regarding the substitution of a certain amounts of fossil fuels by the fuel origin from the raw biological materials. The research defines the existent and non-existent capacities and the assessment of positive effects of usage of geothermal energy. At the moment, 160 long holes are being exploited whose water temperature is around 60 C (140 F) and their heat power reach 160 MJ/s. It was stated that adequate exploitation of existing and new geothermal sources a yearly would save about 500,000 tons

  20. The USGS national geothermal resource assessment: An update

    Williams, C.F.; Reed, M.J.; Galanis, S.P.; DeAngelo, J.

    2007-01-01

    The U. S. Geological Survey (USGS) is working with the Department of Energy's (DOE) Geothermal Technologies Program and other geothermal organizations on a three-year effort to produce an updated assessment of available geothermal resources. The new assessment will introduce significant changes in the models for geothermal energy recovery factors, estimates of reservoir volumes, and limits to temperatures and depths for electric power production. It will also include the potential impact of evolving Enhanced Geothermal Systems (EGS) technology. An important focus in the assessment project is on the development of geothermal resource models consistent with the production histories and observed characteristics of exploited geothermal fields. New models for the recovery of heat from heterogeneous, fractured reservoirs provide a physically realistic basis for evaluating the production potential of both natural geothermal reservoirs and reservoirs that may be created through the application of EGS technology. Project investigators have also made substantial progress studying geothermal systems and the factors responsible for their formation through studies in the Great Basin-Modoc Plateau region, Coso, Long Valley, the Imperial Valley and central Alaska, Project personnel are also entering the supporting data and resulting analyses into geospatial databases that will be produced as part of the resource assessment.

  1. An economic prefeasibility study of geothermal energy development at Platonares, Honduras

    Trocki, L.K.

    1989-01-01

    The expected economic benefits from development of a geothermal power plant at Plantanares in the Department of Copan, Honduras are evaluated in this report. The economic benefits of geothermal plants ranging in size from a 10-MW plant in the shallow reservoir to a 20-, 30-, 55-, or 110-MW plant in the assumed deeper reservoir were measured by computing optimal expansion plans for each size of geothermal computing optimal expansion plans for each size of geothermal plant. Savings are computed as the difference in present value cost between a plan that contains no geothermal plant and one that does. Present value savings in millions of 1987 dollars range from $25 million for the 10-MW plant to $110 million for the 110-MW plant -- savings of 6% to 25% over the time period 1988 through 2008. The existence of the shallow reservoir is relatively well-characterized, and much indirect scientific evidence indicate the existence of the deeper reservoir. Based on probability distributions estimated by geologists of temperature, areal extent, depth, and porosity, the expected size of power plant that the deep reservoir can support was estimated with the following results: O-MW -- 16% (i.e., there is a 16% chance that the deep reservoir will not support a power plant); 20-MW -- 38%; 30-MW -- 25%; 55-MW -- 19%; and 110-MW -- 2%. When the cost savings from each size of plant are weighted by the probability that the reservoir will support a plant of that size, the expected monetary value of the deep reservoir can be computed. It is $42 million in present value 1987 dollars -- a cost savings of 10%. The expected savings from the 10-MW plant in the shallow reservoir are expected to be close to the computed value of $25 million, i.e., the probability that the shallow reservoir can support the plant is high. 4 refs., 3 figs., 2 tabs.

  2. Niland development project geothermal loan guaranty: 49-MW (net) power plant and geothermal well field development, Imperial County, California: Environmental assessment

    1984-10-01

    The proposed federal action addressed by this environmental assessment is the authorization of disbursements under a loan guaranteed by the US Department of Energy for the Niland Geothermal Energy Program. The disbursements will partially finance the development of a geothermal well field in the Imperial Valley of California to supply a 25-MW(e) (net) power plant. Phase I of the project is the production of 25 MW(e) (net) of power; the full rate of 49 MW (net) would be achieved during Phase II. The project is located on approximately 1600 acres (648 ha) near the city of Niland in Imperial County, California. Well field development includes the initial drilling of 8 production wells for Phase I, 8 production wells for Phase II, and the possible need for as many as 16 replacement wells over the anticipated 30-year life of the facility. Activities associated with the power plant in addition to operation are excavation and construction of the facility and associated systems (such as cooling towers). Significant environmental impacts, as defined in Council on Environmental Quality regulation 40 CFR Part 1508.27, are not expected to occur as a result of this project. Minor impacts could include the following: local degradation of ambient air quality due to particulate and/or hydrogen sulfide emissions, temporarily increased ambient noise levels due to drilling and construction activities, and increased traffic. Impacts could be significant in the event of a major spill of geothermal fluid, which could contaminate groundwater and surface waters and alter or eliminate nearby habitat. Careful land use planning and engineering design, implementation of mitigation measures for pollution control, and design and implementation of an environmental monitoring program that can provide an early indication of potential problems should ensure that impacts, except for certain accidents, will be minimized.

  3. Impact of geothermal development on the state of Hawaii. Executive summary. Volume 7

    Siegel, B.Z.

    1980-06-01

    Questions regarding the sociological, legal, environmental, and geological concerns associated with the development of geothermal resources in the Hawaiian Islands are addressed in this summary report. Major social changes, environmental degradation, legal and economic constraints, seismicity, subsidence, changes in volcanic activity, accidents, and ground water contamination are not major problems with the present state of development, however, the present single well does not provide sufficient data for extrapolation. (ACR)

  4. Deep geothermics

    Anon.

    1995-01-01

    The hot-dry-rocks located at 3-4 km of depth correspond to low permeable rocks carrying a large amount of heat. The extraction of this heat usually requires artificial hydraulic fracturing of the rock to increase its permeability before water injection. Hot-dry-rocks geothermics or deep geothermics is not today a commercial channel but only a scientific and technological research field. The Soultz-sous-Forets site (Northern Alsace, France) is characterized by a 6 degrees per meter geothermal gradient and is used as a natural laboratory for deep geothermal and geological studies in the framework of a European research program. Two boreholes have been drilled up to 3600 m of depth in the highly-fractured granite massif beneath the site. The aim is to create a deep heat exchanger using only the natural fracturing for water transfer. A consortium of german, french and italian industrial companies (Pfalzwerke, Badenwerk, EdF and Enel) has been created for a more active participation to the pilot phase. (J.S.). 1 fig., 2 photos

  5. Evaluating the level and nature of sustainable development for a geothermal power plant

    Phillips, Jason

    2010-01-01

    The paper provides for an evaluation of the potential level and nature of sustainable development of the Sabalan geothermal power plant in NW Iran, to be operational in 2011. The paper achieves this by applying a mathematical model of sustainable development developed by the author (re: Phillips), in respect to the Environmental Impact Assessment (EIA) conducted by Yousefi et al. using the Rapid Impact Assessment Matrix (RIAM) methodology (re: Pastakia; Pastakia and Jensen). Using a model application methodology developed for the RIAM, the results indicated that the nature of sustainable development for Sabalan was considered to be very weak (S = 0.063). This was due to the imbalance between negative environmental impacts and positive socio-economic impacts deriving from the project. Further, when placed into context with a similar set of results obtained from the EIA of the Tuzla geothermal power plant by Baba also using the RIAM methodology, then the similarities between the results obtained raises some legimate questions as to the sustainable development credentials of geothermal power production. (author)

  6. Michrohole Arrays Drilled with Advanced Abrasive Slurry Jet Technology to Efficiently Exploit Enhanced Geothermal Systems

    Oglesby, Kenneth [Impact Technologies, Tulsa, OK (United States); Finsterle, Stefan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhang, Yingqi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pan, Lehua [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dobson, Parick [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mohan, Ram [Univ. of Tulsa, OK (United States); Shoham, Ovadia [Univ. of Tulsa, OK (United States); Felber, Betty [Impact Technologies, Tulsa, OK (United States); Rychel, Dwight [Impact Technologies, Tulsa, OK (United States)

    2014-03-12

    This project had two major areas of research for Engineered/ Enhanced Geothermal System (EGS) development - 1) study the potential benefits from using microholes (i.e., bores with diameters less than 10.16 centimeters/ 4 inches) and 2) study FLASH ASJ to drill/ install those microbores between a well and a fracture system. This included the methods and benefits of drilling vertical microholes for exploring the EGS reservoir and for installing multiple (forming an array of) laterals/ directional microholes for creating the in-reservoir heat exchange flow paths. Significant benefit was found in utilizing small microbore sized connecting bores for EGS efficiency and project life. FLASH ASJ was deemed too complicated to optimally work in such deep reservoirs at this time.

  7. Federal Geothermal Research Program Update Fiscal Year 2000

    Renner, J.L.

    2001-08-15

    The Department of Energy's Geothermal Program serves two broad purposes: (1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and (2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermal systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.

  8. Federal Geothermal Research Program Update Fiscal Year 2000; ANNUAL

    Renner, J.L.

    2001-01-01

    The Department of Energy's Geothermal Program serves two broad purposes: (1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and (2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermal systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research

  9. The multi-level perspective analysis: Indonesia geothermal energy transition study

    Wisaksono, A.; Murphy, J.; Sharp, J. H.; Younger, P. L.

    2018-01-01

    The study adopts a multi-level perspective in technology transition to analyse how the transition process in the development of geothermal energy in Indonesia is able to compete against the incumbent fossil-fuelled energy sources. Three levels of multi-level perspective are socio-technical landscape (ST-landscape), socio-technical regime (ST-regime) and niche innovations in Indonesia geothermal development. The identification, mapping and analysis of the dynamic relationship between each level are the important pillars of the multi-level perspective framework. The analysis considers the set of rules, actors and controversies that may arise in the technological transition process. The identified geothermal resource risks are the basis of the emerging geothermal technological innovations in Indonesian geothermal. The analysis of this study reveals the transition pathway, which yields a forecast for the Indonesian geothermal technology transition in the form of scenarios and probable impacts.

  10. High-temperature explosive development for geothermal well stimulation. Final report

    Schmidt, E.W.; Mars, J.E.; Wang, C.

    1978-03-31

    A two-component, temperature-resistant liquid explosive called HITEX has been developed which is capable of withstanding 561/sup 0/K (550/sup 0/F) for 24 hours in a geothermal environment. The explosive is intended for the stimulation of nonproducing or marginally producing geothermal (hot dry rock, vapor-dominated or hydrothermal) reservoirs by fracturing the strata in the vicinity of a borehole. The explosive is inherently safe because it is mixed below ground downhole from two nondetonable liquid components. Development and safety tests included differential scanning calorimetry, thermal stability, minerals compatibility, drop-weight sensitivity, adiabatic compression, electrostatic discharge sensitivity, friction sensitivity, detonation arrest capability, cook-off tests, detonability at ambient and elevated pressure, detonation velocity and thin film propagation in a wedge.

  11. Hot Dry Rock Geothermal Energy Development Project. Annual report, fiscal year 1977

    1978-02-01

    The feasibility of extracting geothermal energy from hot dry rock in the earth's crust was investigated. The concept being investigated involves drilling a deep hole, creating an artificial geothermal reservoir at the bottom of the hole by hydraulic fracturing, and then intersecting the fracture with a second borehole. At the beginning of FY77, the downhole system was complete, but the impedance to the flow of fluid was too high to proceed confidently with the planned energy extraction demonstration. Therefore, in FY77 work focused on an intensive investigation of the characteristics of the downhole system and on the development of the necessary tools and techniques for understanding and improving it. Research results are presented under the following section headings: introduction and history; hot dry rock resource assessment and site selection; instrumentation and equipment development; drilling and fracturing; reservoir engineering; energy extraction system; environmental studies; project management and liaison; and, looking back and ahead. (JGB)

  12. Evaluation of state taxes and tax incentives and their impact on the development of geothermal energy in western states

    Bronder, L.D.; Meyer, R.T.

    1981-01-01

    The economic impact of existing and prospective state taxes and tax incentives on direct thermal applications of geothermal energy are evaluated. Study area is twelve western states which have existing and potential geothermal activities. Economic models representing the geothermal producer and business enterprise phases of four industrial/commercial uses of geothermal energy are synthesized and then placed in the existing tax structures of each state for evaluation. The four enterprises are a commercial greenhouse (low temperature process heat), apartment complex (low temperature space heat), food processor (moderate temperature process heat), and small scale energy system (electrical and direct thermal energy for a small industrial park). The effects of the state taxations on net profits and tax revenues are determined. Tax incentives to accelerate geothermal development are also examined. The magnitudes of total state and local tax collections vary considerably from state to state, which implies that geothermal producers and energy-using businesses may be selective in expanding or locating their geothermal operations.

  13. Legal and institutional impediments to geothermal energy resource development: a bibliography

    1978-01-01

    This bibliography contains 485 references to literature on the subject of legal and institutional constraints to the development and use of geothermal resources. In addition to government-sponsored reports, journal articles, and books, the bibliography includes specific state and Federal laws and regulations, court cases of interest, and conference proceedings. For each reference, abstract or a listing of subject descriptors is given along with the complete bibliographic citation. Corporate, author, subject, and report number indexes are included. (LS)

  14. Report on fiscal 1999 survey for geothermal exploration technology verification. Survey of deep-seated geothermal resources; 1999 nendo chinetsu tansa gijutsu nado kensho chosa hokokusho. Shinbu chinetsu shigen chosa

    NONE

    2001-03-01

    To promote the development of deep-seated geothermal resources in a rationalized way, studies were conducted about deep-seated geothermal resource assessment techniques, development guidelines, and the like. For the development of techniques for estimating deep-seated geothermal reservoir parameters, the Uenotai district, Akita Prefecture, and the Hatchobaru district, Oita Prefecture, were designated as model fields, and a geothermal system conceptual model was fabricated. Data of the two districts were registered in a database. Using these data, verification was performed of the validity of stochastic estimation techniques, large area flow simulation, rock/water equilibrium reaction simulation, and the like. As for the technique of deep-seated resource amount estimation, a simplified reservoir model was experimentally constructed based on parameters determined by the stochastic estimation of deep-seated reservoirs and on the conceptual model, and a method was studied for TOUGH2-based production prediction. Studies were also made about deep-seated geothermal resource development guidelines, such as exploration guidelines, exploration well boring guidelines, and geothermal fluid production guidelines. (NEDO)

  15. Noise-control needs in the developing energy technologies

    Keast, D.N.

    1978-03-01

    The noise characteristics of existing energy conversion technologies, e.g., from obtaining and processing fossil fuels to power plants operations, and of developing energy technologies (wind, geothermal sources, solar energy or fusion systems) are discussed in terms of the effects of noise on humans, animals, structures, and equipment and methods for noise control. Regulations for noise control are described. Recommendations are made for further research on noise control and noise effects. (LCL)

  16. World status of geothermal energy use: past and potential

    Lund, John

    2000-01-01

    The past and potential development of geothermal energy is reviewed, and the use of geothermal energy for power generation and direct heat utilisation is examined. The energy savings that geothermal energy provides in terms of fuel oil and carbon savings are discussed. Worldwide development of geothermal electric power (1940-2000) and direct heat utilisation (1960 to 2000), regional geothermal use in 2000, the national geothermal contributions of geothermal energy, and the installed geothermal electric generating capacities in 2000 are tabulated

  17. Effective use of environmental impact assessments (EIAs) for geothermal development projects

    Goff, S.J.

    2000-01-01

    Both the developed and developing nations of the world would like to move toward a position of sustainable development while paying attention to the restoration of natural resources, improving the environment, and improving the quality of life. The impacts of geothermal development projects are generally positive. It is important, however, that the environmental issues associated with development be addressed in a systematic fashion. Drafted early in the project planning stage, a well-prepared Environmental Impact Assessment (EIA) can significantly add to the quality of the overall project. An EIA customarily ends with the decision to proceed with the project. The environmental analysis process could be more effective if regular monitoring, detailed in the EIA, continues during project implementation. Geothermal development EIAs should be analytic rather than encyclopedic, emphasizing the impacts most closely associated with energy sector development. Air quality, water resources and quality, geologic factors, and socioeconomic issues will invariably be the most important factors. The purpose of an EIA should not be to generate paperwork, but to enable superb response. The EIA should be intended to help public officials make decisions that are based on an understanding of environmental consequences and take proper actions. The EIA process has been defined in different ways throughout the world. In fact, it appears that no two countries have defined it in exactly the same way. Going hand in hand with the different approaches to the process is the wide variety of formats available. It is recommended that the world geothermal community work towards the adoption of a standard. The Latin American Energy Organization (OLADE) and the Inter-American Development Bank (IDB)(OLADE, 1993) prepared a guide that presents a comprehensive discussion of the environmental impacts and suggested mitigation alternatives associated with geothermal development projects. The OLADE guide

  18. MeProRisk - a Joint Venture for Minimizing Risk in Geothermal Reservoir Development

    Clauser, C.; Marquart, G.

    2009-12-01

    Exploration and development of geothermal reservoirs for the generation of electric energy involves high engineering and economic risks due to the need for 3-D geophysical surface surveys and deep boreholes. The MeProRisk project provides a strategy guideline for reducing these risks by combining cross-disciplinary information from different specialists: Scientists from three German universities and two private companies contribute with new methods in seismic modeling and interpretation, numerical reservoir simulation, estimation of petrophysical parameters, and 3-D visualization. The approach chosen in MeProRisk consists in considering prospecting and developing of geothermal reservoirs as an iterative process. A first conceptual model for fluid flow and heat transport simulation can be developed based on limited available initial information on geology and rock properties. In the next step, additional data is incorporated which is based on (a) new seismic interpretation methods designed for delineating fracture systems, (b) statistical studies on large numbers of rock samples for estimating reliable rock parameters, (c) in situ estimates of the hydraulic conductivity tensor. This results in a continuous refinement of the reservoir model where inverse modelling of fluid flow and heat transport allows infering the uncertainty and resolution of the model at each iteration step. This finally yields a calibrated reservoir model which may be used to direct further exploration by optimizing additional borehole locations, estimate the uncertainty of key operational and economic parameters, and optimize the long-term operation of a geothermal resrvoir.

  19. Fiscal 1999 research and verification of geothermal energy exploring technologies and the like. Development of reservoir mass and heat flow characterization (Development of reservoir change prediction technology - Summary); 1999 nendo chinetsu tansa gijutsu nado kensho chosa hokokusho (yoyaku). Choryuso hendo tansaho kaihatsu (choryuso hendo yosoku gijutsu)

    NONE

    2000-03-01

    Efforts are exerted to develop technologies for accurately predicting reservoir expansion or other changes through a comprehensive analysis of the fracture hydrology method, gravity monitoring method, electrical and magnetic monitoring method, seismic monitoring method, and their associated technologies. The endeavors cover the development of a post processor system which involves gravity, self-potential, geochemistry, resistivity, etc., and is related to a reservoir simulator, and the development of a reservoir modelling technology. For the development of a post processor system, efforts continue (1) to develop a processor to deal with gravity, self-potential, resistivity, and geochemistry, (2) to carry out basic studies of changes in seismic propagation characteristics, (3) to develop databases, and (4) to develop a simulator interface. Under item (1), development involving gravity, self-potential, and geochemistry is complete, and now manuals are being prepared. A prototype design is complete for resistivity. For the development of a reservoir modelling technology, modelling is under way for the Onikobe and Sumikawa districts. Existing data are taken care of, and productivity predicting simulation is carried out. (NEDO)

  20. DEVELOPING THE NATIONAL GEOTHERMAL DATA SYSTEM ADOPTION OF CKAN FOR DOMESTIC & INTERNATIONAL DATA DEPLOYMENT

    Clark, Ryan J. [Arizona Geological Survey; Kuhmuench, Christoph [Siemens Corporation; Richard, Stephen M. [Arizona Geological Survey

    2013-03-01

    The National Geothermal Data System (NGDS) De- sign and Testing Team is developing NGDS software currently referred to as the “NGDS Node-In-A-Box”. The software targets organizations or individuals who wish to host at least one of the following: • an online repository containing resources for the NGDS; • an online site for creating metadata to register re- sources with the NGDS • NDGS-conformant Web APIs that enable access to NGDS data (e.g., WMS, WFS, WCS); • NDGS-conformant Web APIs that support dis- covery of NGDS resources via catalog service (e.g. CSW) • a web site that supports discovery and under- standing of NGDS resources A number of different frameworks for development of this online application were reviewed. The NGDS Design and Testing Team determined to use CKAN (http://ckan.org/), because it provides the closest match between out of the box functionality and NGDS node-in-a-box requirements. To achieve the NGDS vision and goals, this software development project has been inititated to provide NGDS data consumers with a highly functional inter- face to access the system, and to ease the burden on data providers who wish to publish data in the sys- tem. It is important to note that this software package constitutes a reference implementation. The NGDS software is based on open standards, which means other server software can make resources available, and other client applications can utilize NGDS data. A number of international organizations have ex- pressed interest in the NGDS approach to data access. The CKAN node implementation can provide a sim- ple path for deploying this technology in other set- tings.

  1. Prospects of geothermal energy

    Manzella, A.; Bianchi, A.

    2008-01-01

    Geothermal energy has great potential as a renewable energy with low environmental impact, the use of heat pumps is becoming established in Italy but the national contributions are still modest when compared to other nations. Mature technologies could double the installed geothermal power in Italy at 2020. [it

  2. Geothermal energy in the western United States and Hawaii: Resources and projected electricity generation supplies

    1991-09-01

    Geothermal energy comes from the internal heat of the Earth, and has been continuously exploited for the production of electricity in the United States since 1960. Currently, geothermal power is one of the ready-to-use baseload electricity generating technologies that is competing in the western United States with fossil fuel, nuclear and hydroelectric generation technologies to provide utilities and their customers with a reliable and economic source of electric power. Furthermore, the development of domestic geothermal resources, as an alternative to fossil fuel combustion technologies, has a number of associated environmental benefits. This report serves two functions. First, it provides a description of geothermal technology and a progress report on the commercial status of geothermal electric power generation. Second, it addresses the question of how much electricity might be competitively produced from the geothermal resource base. 19 figs., 15 tabs

  3. Low enthalpy geothermal for oil sands (LEGO)

    NONE

    2008-07-01

    Geothermal energy is generated by the slow decay of radioactive materials within the Earth. Geothermal energy resources include the water from hot springs used for heating; the withdrawal of high temperature steam from deep wells; and the use of stable ground or water temperatures near the Earth's surface to heat or cool buildings or in industrial processes. Heat pumps are used to transfer heat or water from the ground into buildings in winter. This paper discussed low enthalpy geothermal options for oil sands processes in order to reduce the use of natural gas and emissions from greenhouse gases (GHGs). The study was also conducted to aid in the development of a portfolio of renewable energy options for the oil and gas sector. The study estimated the costs and benefits of operating a shallow geothermal borehole cluster for meeting a portion of process heat demands for the Nexen's Albian mine. The costs and benefits of operating thermo-chillers integrated with a shallow geothermal borehole cluster for waste heat mitigation were also evaluated. The study showed that geothermal designs can be used to meet a portion of oil sands process heat and cooling demands. Mining operators may reduce carbon emissions and energy costs for process heat demands by installing closed loop borehole heat exchangers. Geothermal heat storage capacity can also be used to increase the efficiency of thermal chillers. It was concluded that pilot plant studies would contribute to a better understanding of the technology. tabs., figs.

  4. FY 1998 survey report. Survey to prepare a data book related to new energy technology development (Trends on the waste power generation, solar heat utilization, geothermal power generation, clean energy cars, coal liquefaction/coal gasification and new energy); 1998 nendo chosa hokokusho. Shin energy gijutsu kaihatsu kankei data shu sakusei chosa (haikibutsu hatsuden, taiyonetsu riyo, chinetsu hatsuden, clean energy, jidosha, sekitan ekika gas ka oyobi shin energy kanren doko)

    NONE

    1999-03-01

    Together with the progress of technology development, policies for the introduction/promotion of new energy technology are being developed such as promotion of the commercialization development, revision of the law system, and expansion of the subsidy system for promotion. To push the introduction/promotion forward more effectively, it is necessary to arrange various kinds of data comprehensively/systematically and to make them the basic data for contribution to the spread/education. As to the six fields of the waste power generation, solar heat utilization, geothermal power generation, clean energy cars, coal liquefaction, and coal gasification of the technology fields of new energy, this report collected/arranged the data made public recently in terms mainly of the following: trends of the introduction in Japan and abroad, policy/law/subsidy system in Japan and abroad, cost, system outline, basic terms, a list of the main affiliated companies and groups, and the nation's outlook for energy introduction and policies of each new energy technology in Japan and abroad, and the trends. Moreover, characteristics by field were described of the state of the commercialization/introduction of new energy technology. (NEDO)

  5. FY1997 geothermal development promotion survey. Development feasibility study 'Ashiro area'; 1997 nendo chinetsu kaihatsu sokushin chosa. Kaihatsu kanosei chosa (Ashiro chiiki) hokokusho

    NONE

    1998-12-01

    With regard to the Ashiro Town area in Iwate Prefecture, this paper reports the result of evaluations based on temperature and pressure logging after a lapse of an extended period of time (well No.2) and a steam jet test (well No.1). These activities were performed as the survey on promotion of geothermal development and survey on development feasibility in fiscal 1997. As a result of the overall analysis based on the present survey and ones in the past, the geothermal system model in the surveyed area may be conceived as follows: in both of the N7-AR-1 and N7-AR-2 wells drilled in the southern part of the surveyed area, temperature as high as 250 degrees C or higher was confirmed; the underground temperature is 200 degrees C or higher at an altitude level of zero meter and 250 degrees C at around -500 m, leading to a belief that the high temperature area spreads to south; as a fracture system holding geothermal fluid, a fault was identified at the N7-AR-1 well drilling depth of 1710 m; in the steam jet test, a geothermal reservoir (a shallow geothermal reservoir) was confirmed to exist; the geothermal fluid that has jetted out shows alkaline Na-SO{sub 4} type; and the deep geothermal reservoir has high temperature and is presumed to be in the two-phase condition, presenting promising factors as the geothermal resources. (NEDO)

  6. Deep geothermics in Germany. An energy-economic analysis of the status and possible developments

    Janczik, Sebastian

    2015-01-01

    With the aim to supply the energy-intense and highly industrialized economy of the Federal Republic of Germany more climate-friendly and crisis-safely with a larger contribution of homelike energy in the past years by the federal government a manifold of obligatory aims were composed. So for instance the greenhouse-gas emissions of 1990 shall be reduced against 2020 by 40 %. This shall be reached among others by an increased use of the renewable energies. But a transformation of these ambitionized aims seems from the present view only realistic, if in future all in Germany available options for the supply of current and heat from renewable energies are distinctly more intensively used. In front of the background of the geothermic potentials available in Germany the current and heat supply from deep geothermics is a very much promising option. But in 2012 only one facility and in 2013 three facilities have gone to the net. But against this a far-reaching usage of the geothermics in the context of the energy transition and the large heat and current production potentials in Germany is worth to be aspired. In front of the described problematics the aim of this work is to show how the system technics of the facilities for the usage of the deep underground for a current respectively heat production present themselves and how such complete facilities can be evaluated by means of technical, economical, and ecological characteristics. Base on the shown political aim settings it then shall be analyzed, how the calculated characteristics could change in future and whether the deep geothermics can provide an increasing contribution in the energy system of the future. The corresponding potential further developments are thereby analyzed regarding a short-termed (i. e. 2020) and an intermediate-termed (i. e. 2030) time horizon.

  7. Outdoor recreational use of the Salton Sea with reference to potential impacts of geothermal development

    Twiss, R.; Sidener, J.; Bingham, G.; Burke, J.E.

    1978-04-01

    The objectives of this study were to describe the types, levels, and locations of outdoor recreation uses in the Salton Sea area, the number and principal activities of visitors, and to estimate the consequences upon outdoor recreation of geothermal development and other activities that might affect the Salton Sea. It is concluded that since the Salton Sea is considered legally to be a sump for agricultural, municipal, and presumably geothermal waste waters, recreational use of the Sea for fishing and boating (from present marinas) will undoubtedly continue to decline, unless there is a major policy change. Use of the shoreline for camping, the surrounding roads and lands for scenic viewing, ORV events, and retirement or recreation communities will not decline, and will probably increase, assuming control of hydrogen sulfide odors. Two ways in which the fishing and present boating facilities could be returned to a wholly usable steady state are discussed. One is by construction of a diked evaporation pond system at the south end of the Sea. This would allow a means of control over both water level and salinity. Another means, less costly but more difficult to effectively control, would be to budget geothermal plant use of, and disposal of wastes in, Salton Sea water. (JGB)

  8. Geothermal energy abstract sets. Special report No. 14

    Stone, C. (comp.)

    1985-01-01

    This bibliography contains annotated citations in the following areas: (1) case histories; (2) drilling; (3) reservoir engineering; (4) injection; (5) geothermal well logging; (6) environmental considerations in geothermal development; (7) geothermal well production; (8) geothermal materials; (9) electric power production; (10) direct utilization of geothermal energy; (11) economics of geothermal energy; and (12) legal, regulatory and institutional aspects. (ACR)

  9. Fiscal 1999 research and verification of geothermal energy exploring technologies and the like. Development of reservoir mass and heat flow characterization (Electrical and electromagnetic monitoring technology - Summary); 1999 nendo chinetsu tansa gijutsu nado kensho chosa hokokusho (yoyaku). Choryuso hendo tansaho kaihatsu (denki denjiki tansaho kaihatsu)

    NONE

    2000-03-01

    Facilities for monitoring self-potential and resistivity are installed in the Ogiri district, Kagoshima Prefecture, where the Ogiri geothermal power plant is situated, and studies are made about relations between hot water production/reinjection and potential/resistivity at the power plant for the development of a high-performance numerical simulation system for the reservoir. The activities cover the development of (1) a self-potential monitoring system, (2) the development of a resistivity monitoring system, and (3) the development of a reservoir change prediction technique using self-potential and resistivity. Under item (1), eight self-potential monitoring stations are newly installed for the monitoring effort to continue now at a total of 50 stations. Potential has risen by 20 mV in two years since the drilling of a production replenishment well in February of 1999, with the domain of change in potential also expanding. Under item (2), the 3D MT (3-dimensional magnetotelluric) technique is used for resistivity profile investigation at 80 monitoring stations and preliminary monitoring tests are conducted to deliberate positions for resistivity monitoring. Under item (3), tracer tests are conducted for constructing a high-precision reservoir model for predicting changes in temperature, etc., attributable to the return of reinjected hot water, and a natural state reservoir simulation model is fabricated. (NEDO)

  10. Fiscal 1997 verification and survey of geothermal prospecting technology etc. 2/2. Survey report on deep-seated geothermal resources; 1997 nendo chinetsu tansa gijutsu nado kensho chosa hokokusho. 2/2. Shinbu chinetsu shigen chosa

    NONE

    1999-02-01

    For the purpose of reducing the risk to accompany the exploitation of deep-seated geothermal resources, investigations are conducted into the three factors that govern the formation of geothermal resources at deep levels, that is, the supply of heat from heat sources, the supply of geothermal fluids, and the development of fracture systems contributing to the constitution of reservoir structures. In the evaluation and study of reservoirs and the amount of resources, a reservoir simulation is conducted to grasp the characteristics of reservoirs and the amount of resources. For this purpose, the origin and history of the Kakkonda geothermal field are studied, with special attention paid to the origin of the difference in temperature between the shallow-seated and deep-seated reservoirs, the geometry of granite at Kakkonda, the region of recharge of meteoric water, the distribution of saline concentration in the natural state and the cause of the occurrence, the amount of supply of fluids and heat from the depth to the reservoirs, etc. In the evaluation and study of the economic effectiveness of the exploitation of deep-seated geothermal resources, it is learned that, if a 50MW geothermal power station is to be built at a deep level (drilled depth of 3000m on the average) with a rate of 50% attained in drilling, the steam amount required at such a deep level (presumed to be 75t/h) will be more than twice that required at a shallow level (presumed to be 35/h). (NEDO)

  11. Geothermal Frontier: Penetrate a boundary between hydrothermal convection and heat conduction zones to create 'Beyond Brittle Geothermal Reservoir'

    Tsuchiya, N.; Asanuma, H.; Sakaguchi, K.; Okamoto, A.; Hirano, N.; Watanabe, N.; Kizaki, A.

    2013-12-01

    EGS has been highlightened as a most promising method of geothermal development recently because of applicability to sites which have been considered to be unsuitable for geothermal development. Meanwhile, some critical problems have been experimentally identified, such as low recovery of injected water, difficulties to establish universal design/development methodology, and occurrence of large induced seismicity. Future geothermal target is supercritical and superheated geothermal fluids in and around ductile rock bodies under high temperatures. Ductile regime which is estimated beyond brittle zone is target region for future geothermal development due to high enthalpy fluids and relatively weak water-rock interaction. It is very difficult to determine exact depth of Brittle-Ductile boundary due to strong dependence of temperature (geotherm) and strain rate, however, ductile zone is considered to be developed above 400C and below 3 km in geothermal fields in Tohoku District. Hydrothermal experiments associated with additional advanced technology will be conducting to understand ';Beyond brittle World' and to develop deeper and hotter geothermal reservoir. We propose a new concept of the engineered geothermal development where reservoirs are created in ductile basement, expecting the following advantages: (a)simpler design and control the reservoir, (b)nearly full recovery of injected water, (c)sustainable production, (d)cost reduction by development of relatively shallower ductile zone in compression tectonic zones, (e)large quantity of energy extraction from widely distributed ductile zones, (f)establishment of universal and conceptual design/development methodology, and (g) suppression of felt earthquakes from/around the reservoirs. In ductile regime, Mesh-like fracture cloud has great potential for heat extraction between injection and production wells in spite of single and simple mega-fracture. Based on field observation and high performance hydrothermal

  12. Coordination of geothermal research

    Jessop, A.M.; Drury, M.J.

    1983-01-01

    Visits were made in 1983 to various investigators and institutions in Canada to examine developments in geothermal research. Proposals for drilling geothermal wells to provide hot water for heating at a college in Prince Edward Island were made. In Alberta, the first phase of a program examining the feasibility of mapping sedimentary geothermal reservoirs was discussed. Some sites for possible geothermal demonstration projects were identified. In British Columbia, discussions were held between BC Hydro and Energy, Mines and Resources Canada on the drilling of a research hole into the peak of a temperature anomaly in the Meager Creek Valley. The British Columbia government has offered blocks of land in the Mount Cayley volcanic complex for lease to develop geothermal resources. A list of papers of interest to the Canadian geothermal energy program is appended.

  13. Geothermal Prospecting with Remote Sensing and Geographical Information System Technologies in Xilingol Volcanic Field in the Eastern Inner Mongolia, NE China

    Peng, F.; Huang, S.; Xiong, Y.; Zhao, Y.; Cheng, Y.

    2013-05-01

    Geothermal energy is a renewable and low-carbon energy source independent of climate change. It is most abundant in Cenozoic volcanic areas where high temperature can be obtained within a relatively shallow depth. Like other geological resources, geothermal resource prospecting and exploration require a good understanding of the host media. Remote sensing (RS) has the advantages of high spatial and temporal resolution and broad spatial coverage over the conventional geological and geophysical prospecting, while geographical information system (GIS) has intuitive, flexible, and convenient characteristics. In this study, we apply RS and GIS technics in prospecting the geothermal energy potential in Xilingol, a Cenozoic volcanic field in the eastern Inner Mongolia, NE China. Landsat TM/ETM+ multi-temporal images taken under clear-sky conditions, digital elevation model (DEM) data, and other auxiliary data including geological maps of 1:2,500,000 and 1:200,000 scales are used in this study. The land surface temperature (LST) of the study area is retrieved from the Landsat images with the single-channel algorithm on the platform of ENVI developed by ITT Visual Information Solutions. Information of linear and circular geological structure is then extracted from the LST maps and compared to the existing geological data. Several useful technologies such as principal component analysis (PCA), vegetation suppression technique, multi-temporal comparative analysis, and 3D Surface View based on DEM data are used to further enable a better visual geologic interpretation with the Landsat imagery of Xilingol. The Preliminary results show that major faults in the study area are mainly NE and NNE oriented. Several major volcanism controlling faults and Cenozoic volcanic eruption centers have been recognized from the linear and circular structures in the remote images. Seven areas have been identified as potential targets for further prospecting geothermal energy based on the visual

  14. Consuming technologies - developing routines

    Gram-Hanssen, Kirsten

    2008-01-01

    technologies and in this article these processes will be investigated from three different perspectives: an historical perspective of how new technologies have entered homes, a consumer perspective of how both houses and new technologies are purchased and finally, as the primary part of the article, a user...... perspective of how routines develop while these technologies are being used. In the conclusion these insights are discussed in relation to possible ways of influencing routines....

  15. Data on development of new energy technologies

    1994-03-01

    The paper compiles data on the trend of development of new energy technologies into a book. By category, renewable energy is solar energy, wind power generation, geothermal power generation, ocean energy, and biomass. As a category of fuel form conversion, cited are coal liquefaction/gasification, coal gasification combined cycle power generation, and natural gas liquefaction/decarbonization. The other categories are cogeneration by fuel cell and ceramic gas turbine, district heat supply system, power load leveling technology, transportation-use substitution-fuel vehicle, and others (Stirling engine, superconducting power generator, etc.). The data are systematically compiled on essential principles, transition of introduction, objectives of introduction, status of production, cost, development schedule, performance, etc. The paper also deals with the related legislation system, developmental organizations, and a menu for power companies' buying surplus power.

  16. Geothermal Brief: Market and Policy Impacts Update

    Speer, B.

    2012-10-01

    Utility-scale geothermal electricity generation plants have generally taken advantage of various government initiatives designed to stimulate private investment. This report investigates these initiatives to evaluate their impact on the associated cost of energy and the development of geothermal electric generating capacity using conventional hydrothermal technologies. We use the Cost of Renewable Energy Spreadsheet Tool (CREST) to analyze the effects of tax incentives on project economics. Incentives include the production tax credit, U.S. Department of Treasury cash grant, the investment tax credit, and accelerated depreciation schedules. The second half of the report discusses the impact of the U.S. Department of Energy's (DOE) Loan Guarantee Program on geothermal electric project deployment and possible reasons for a lack of guarantees for geothermal projects. For comparison, we examine the effectiveness of the 1970s DOE drilling support programs, including the original loan guarantee and industry-coupled cost share programs.

  17. Estimation of the state-of-the-art and possibilities for development of the geothermal resource in the Republic of Macedonia

    Popovski, Kiril

    1995-01-01

    Based on the present k now-how in Macedonia and the world, a trial is made to analyse and estimate the influencing factors defining the situation and justifiability of development of the geothermal energy resource in Macedonia, as it follows: 1) Nature and location of the energy resource; 2) 'Know-how' on disposal; 3) Application technologies on disposal; 4) Industrial production of equipment and materials on disposal; 5) Possible market for the energy resource; 6) Financial competitiveness; 7) Environment protection; 8) Regional aspects of possible development; 9) Barriers for development; 10) Necessary measures to enable development. (Original)

  18. Challenges in the Development of Geothermal Energy Resources

    Williams, C. F.

    2011-12-01

    As a member of Esri's Geoportal Server team for the past six years, I have been involved in hundreds of customer portal, geoportal, and spatial data infrastructure implementations. Our team's goal for each implementation is - of course- for it to be successful. A successful data portal can be defined by a number of indicators. The foremost measure of success is that the target end users are able to easily find and access data that meets their needs. Other indicators are effectiveness of the user interface, interoperability mechanisms to enhance discoverability and usability across contexts, compliance with data sharing mandates, extendibility/portability of the system as technology evolves, and staff expertise to maintain the system. Further, some data portals have not only been successful by these measures but have also challenged and expanded the state of the art in the areas of discovery, access, and managing data. This talk will address models, principles, and best practices for deploying data portals that are successful by these measures, identify examples of excellence in the field, and discuss upcoming advances in portal technology to support scientists in sharing their work.

  19. FY 1998 report on the verification survey of geothermal survey technology, etc./Development of the reservoir fluctuation survey method (Summary). Theme 5-1. Technology to predict reservoir fluctuations; 1998 nendo chinetsu tansa gijutsu nado kensho chosa choryuso hendo tanhsaho kaihatsu hokokusho (yoyaku ). 5-1. Choryuso hendo (choryuso hendo yooku gijutsu)

    NONE

    1999-03-01

    The existing gravity post processor was improved and a feasibility study of downhole gravity profile measurement was conducted. As compared with the earth surface, great fluctuations could be observed in the downhole, indicating a possibility of acquiring the useful information on underground steam zones. The existing self-potential post processor was improved, which made the history matching analysis easy. A geochemical post processor was developed which can analyze geochemical fluctuations. Changes in resistivity in reservoir associated with production/injection of geothermal fluids were calculated, and a feasibility was shown of developing the resistivity post processor into which the existing MT forward calculation method was efficiently integrated. From the data on effects of changes in temperature/fluid phase on seismic wave velocity and damping, usability of the seismic wave post processor was made clear. From the reservoir fluctuation analysis using gravity/self-potential post processor, it was found out that gravity fluctuations at Onikobe had already finished and presently there are less fluctuations. Self-potential is still in fluctuations and becomes indices of reservoir fluctuations. Study was made also on Sumikawa where steam is dominant. (NEDO)

  20. Hot Dry Rock Geothermal Energy Development Program. Annual report, fiscal year 1979

    Cremer, G.M.; Duffield, R.B.; Smith, M.C.; Wilson, M.G. (comps.)

    1980-08-01

    The Fenton Hill Project is still the principal center for developing methods, equipment, and instrumentation for creating and utilizing HDR geothermal reservoirs. The search for a second site for a similar experimental system in a different geological environment has been intensified, as have the identification and characterization of other HDR areas that may prove suitable for either experimental or commercial development. The Phase I fracture system was enlarged during FY79. Drilling of the injection well of the Phase II system began at Fenton Hill in April 1979. Environmental monitoring of the Fenton Hill area continued through FY79. The environmental studies indicate that the hot dry rock operations have caused no significant environmental impact. Other supporting activities included rock physics, rock mechanics, fracture mapping, and instrumentation development. Two closely related activities - evaluation of the potential HDR energy resource of the US and the selection of a site for development of a second experimental heat-extraction system generally similar to that at Fenton Hill - have resulted in the collection of geology, hydrology, and heat-flow data on some level of field activity in 30 states. The resource-evaluation activity included reconnaissance field studies and a listing and preliminary characterization of US geothermal areas in which HDR energy extraction methods may be applicable. The selection of Site 2 has taken into account such legal, institutional, and economic factors as land ownership and use, proximity to possible users, permitting and licensing requirements and procedures, environmental issues, areal extent of the geothermal area, and visibility to and apparent interest by potential industrial developers.

  1. Supplement to the technical assessment of geoscience-related research for geothermal energy technology. Final report

    1983-09-01

    Detailed information (e.g., project title, sponsoring organization, research area, objective status, etc.) is presented for 338 geoscience/geothermal related projects. A summary of the projects conducted by sponsoring organization is presented and an easy reference to obtain detailed information on the number and type of efforts being sponsored is presented. The projects are summarized by research area (e.g., volcanology, fluid inclusions, etc.) and an additional project cross-reference mechanism is also provided. Subsequent to the collection of the project information, a geosciences classification system was developed to categorize each project by research area (e.g., isotope geochemistry, heat flow studies) and by type of research conducted (e.g., theoretical research, modeling/simulation). A series of matrices is included that summarize, on a project-by-project basis, the research area addressed and the type of R and D conducted. In addition, a summary of the total number of projects by research area and R and D type is given.

  2. Coordinating Permit Offices and the Development of Utility-Scale Geothermal Energy (Presentation)

    Levine, A.; Young, K.; Witherbee, K.

    2013-10-01

    Permitting is a major component of the geothermal development process. Better coordination across government agencies could reduce uncertainty of the process and the actual time of permitting. This presentation highlights various forms of coordinating permit offices at the state and federal level in the western United States, discusses inefficiencies and mitigation techniques for permitting natural resource projects, analyzes whether various approaches are easily adaptable to utility-scale geothermal development, and addresses advantages and challenges for coordinating permit offices. Key successful strategies identified include: 1. Flexibility in implementing the approach (i.e. less statutory requirements for the approach); 2. Less dependence on a final environmental review for information sharing and permit coordination; 3. State and federal partnerships developed through memorandum of understanding to define roles and share data and/or developer information. A few of the most helpful techniques include: 1. A central point of contact for the developer to ask questions surrounding the project; 2. Pre-application meetings to assist the developer in identifying all of the permits, regulatory approvals, and associated information or data required; 3. A permit schedule or timeline to set expectations for the developer and agencies; 4. Consolidating the public notice, comment, and hearing period into fewer hearings held concurrently.

  3. NEDO geothermal energy subcommittee. 18th project report meeting; NEDO chinetsu bunkakai. Dai 18 kai jigyo hokokukai

    NONE

    1998-09-01

    Reporting on geothermal energy-related efforts, Taro Yamayasu, a NEDO (New Energy and Industrial Technology Development Organization) director, explains the promotion of researches on geothermal energy exploitation, researches on small and medium scale geothermal binary power system utilization, researches on geothermal exploration technology verification, and joint researches on small scale geothermal exploration on remote islands. Achievement reports are delivered concerning geothermal survey technology verification involving the development of reservoir fluctuation probing technology, deep-seated geothermal resources survey, and international joint projects. Concerning the research cooperation promotion project, a joint research program is reported involving a comprehensive geothermal resources analysis system for a remote island in the eastern part of Indonesia. In relation with the development of thermal water power plants, reports are delivered on the development of a 10MW class demonstration plant, development of technologies (study of elements) for a hot dry rock power system, development of a hole bottom data detection system for drilling in thermal water, and the development of deep-seated geothermal resources sampling technologies. (NEDO)

  4. Geothermal Program Review XIV: proceedings. Keeping Geothermal Energy Competitive in Foreign and Domestic Markets

    NONE

    1996-01-01

    The U.S. Department of Energy`s Office of Geothermal Technologies conducted its annual Program Review XIV in Berkeley, April 8-10, 1996. The geothermal community came together for an in-depth review of the federally-sponsored geothermal research and development program. This year`s theme focused on ``Keeping Geothermal Energy Competitive in Foreign and Domestic Markets.`` This annual conference is designed to promote technology transfer by bringing together DOE-sponsored researchers; utility representatives; geothermal developers; equipment and service suppliers; representatives from local, state, and federal agencies; and others with an interest in geothermal energy. Program Review XIV consisted of eight sessions chaired by industry representatives. Introductory and overview remarks were presented during every session followed by detailed reports on specific DOE-funded research projects. The progress of R&D projects over the past year and plans for future activities were discussed. The government-industry partnership continues to strengthen -- its success, achievements over the past twenty years, and its future direction were highlighted throughout the conference. The comments received from the conference evaluation forms are published in this year`s proceedings. Individual papers have been processed for inclusion in the Energy Science and Technology Database.

  5. Geothermal resources in Oregon: site data base and development status

    Justus, D.L.

    1979-04-01

    An inventory of resources based on available information is presented. Potential for utilization and the legal and institutional environment in which development is likely to occur were also considered. Sites selected for this investigation include the 13 identified KGRA's, one PGRA which was chosen because of substantial local interest expressed in favor of development, and one major geologic fault zone which shows indications of high potential. Each chapter represents a planning region and is introduced by a regional overview of the physical setting followed by a narrative summary statement of the specific resource location and characteristics, existing utilization and potential end-uses for future development. Detailed site information in the form of data sheets follows each narrative. (MHR)

  6. Guidelines for Provision and Interchange of Geothermal Data Assets

    none,

    2014-07-03

    The US Department of Energy Office of Geothermal Technologies (OGT) is funding and overseeing the development of the National Geothermal Data System (NGDS), a distributed information system providing access to integrated data in support of, and generated in, all phases of geothermal development. NGDS is being built in an open paradigm and will employ state-of-the-art informatics approaches and capabilities to advance the state of geothermal knowledge in the US. This document presents guidelines related to provision and interchange of data assets in the context of the National Geothermal Data System. It identifies general specifications for NGDS catalog metadata and data content, and provides specific instructions for preparation and submission of data assets by OGT-funded projects.

  7. Geothermal Energy: Current abstracts

    Ringe, A.C. (ed.)

    1988-02-01

    This bulletin announces the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. (ACR)

  8. GeoBest - A contribution to the long term development of deep geothermal energy in Switzerland.

    Kraft, T.; Wiemer, S.; Husen, S.

    2012-04-01

    The processes and conditions underpinning induced seismicity associated with deep geothermal operations are still not sufficiently well understood to make useful predictions as to the likely seismic response to reservoir development and exploitation. The empirical data include only a handful of well-monitored EGS experiments; models are consequently poorly constrained. Unfortunately, data sets of well-monitored deep hydrothermal experiments are missing and empirical constraints of induced seismicity models for these cases do not exist. Given that the majority of the projects underway or planned in Europe are of the hydrothermal type, there is hope that this deficit can be remedied in the near future through a close cooperation of geothermal industry, science and public authorities. The GeoBest project was initiated in Switzerland to facilitate the dialog between geothermal industry, science and public authorities. The Swiss Seismological Service (SED) is implementing the GeoBest project on behalf of the Swiss Federal Office for Energy (SFOE) to provide cantonal and federal authorities with guidelines on how to handle seismic monitoring and hazard in the framework of the environmental risk assessment. Within GeoBest, selected pilot projects in Switzerland will be supported during the necessary seismic monitoring of natural and induced seismicity. GeoBest supports the pilot project in the first two years, that are most critical with respect to the financial risk, by providing seismological instrumentation from the GeoBest instrument pool and partial financial support for the operation of the seismic monitoring network. In return the pilot projects grant SED access to project data needed for seismic hazard assessment and the development of best practice guidelines. These types of collaboration offer the unique opportunity to collect high-quality seismological data and, by combining them with relevant project data, to gain first hand practical experience for the

  9. Geothermal direct-heat utilization assistance: Federal assistance program. Quarterly project progress report, October--December 1995

    NONE

    1996-02-01

    The report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the first quarter of FY-96. It describes 90 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment and resources. Research activities are summarized on low-temperature resource assessment, geothermal district heating system cost evaluation and silica waste utilization project. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, development of a webpage, and progress monitor reports on geothermal resources and utilization.

  10. Geothermal Progress Monitor, report No. 13

    1992-02-01

    Geothermal Progress Monitor (GPM) Issue No. 13 documents that most related factors favor the growth and geographic expansion of the US geothermal industry and that the industry is being technologically prepared to meet those challenges into the next century. It is the function of GPM to identify trends in the use of this resource and to provide a historical record of its development pathway. The information assembled for this issue of GPM indicates that trends in the use of geothermal energy in this country and abroad continue to be very positive. Favorable sentiments as well as pertinent actions on the part of both government and industry are documented in almost every section. The FEDERAL BEAT points up that the National Energy Strategy (NES) developed at the highest levels of the US government recognizes the environmental and energy security advantages of renewable energy, including geothermal, and makes a commitment to substantial diversification'' of US sources of energy. With the announcement of the construction of several new plants and plant expansions, the INDUSTRY SCENE illustrates industry's continued expectation tha the use of geothermal energy will prove profitable to investors. In DEVELOPMENT STATUS, spokesmen for both an investor-owned utility and a major geothermal developer express strong support for geothermal power, particularly emphasizing its environmental advantages. DEVELOPMENT STATUS also reports that early successes have been achieved by joint DOE/industry R D at The Geysers which will have important impacts on the future management of this mature field. Also there is increasing interest in hot dry rock. Analyses conducted in support of the NES indicate that if all the postulated technology developments occur in this field, the price of energy derived from hot dry rock in the US could drop.

  11. Geothermal heat pump performance

    Boyd, Tonya L.; Lienau, Paul J.

    1995-01-01

    Geothermal heat pump systems are a promising new energy technology that has shown rapid increase in usage over the past ten years in the United States. These systems offer substantial benefits to customers and utilities in energy (kWh) and demand (kW) savings. The purpose of this study was to determine what existing monitored data was available mainly from electric utilities on heat pump performance, energy savings and demand reduction for residential, school, and commercial building applications. Information was developed on the status of electric utility marketing programs, barriers to market penetration, incentive programs, and benefits.

  12. Geothermal Heat Pump Performance

    Boyd, Tonya L.; Lienau, Paul J.

    1995-01-01

    Geothermal heat pump systems are a promising new energy technology that has shown rapid increase in usage over the past ten years in the United States. These systems offer substantial benefits to customers and utilities in energy (kWh) and demand (kW) savings. The purpose of this study was to determine what existing monitored data was available mainly from electric utilities on heat pump performance, energy savings and demand reduction for residential, school, and commercial building applications. Information was developed on the status of electric utility marketing programs, barriers to market penetration, incentive programs, and benefits.

  13. Realizing the geothermal electricity potential—water use and consequences

    Shankar Mishra, Gouri; Glassley, William E.; Yeh, Sonia

    2011-07-01

    Electricity from geothermal resources has the potential to supply a significant portion of US baseload electricity. We estimate the water requirements of geothermal electricity and the impact of potential scaling up of such electricity on water demand in various western states with rich geothermal resources but stressed water resources. Freshwater, degraded water, and geothermal fluid requirements are estimated explicitly. In general, geothermal electricity has higher water intensity (l kWh - 1) than thermoelectric or solar thermal electricity. Water intensity decreases with increase in resource enthalpy, and freshwater gets substituted by degraded water at higher resource temperatures. Electricity from enhanced geothermal systems (EGS) could displace 8-100% of thermoelectricity generated in most western states. Such displacement would increase stress on water resources if re-circulating evaporative cooling, the dominant cooling system in the thermoelectric sector, is adopted. Adoption of dry cooling, which accounts for 78% of geothermal capacity today, will limit changes in state-wide freshwater abstraction, but increase degraded water requirements. We suggest a research and development focus to develop advanced energy conversion and cooling technologies that reduce water use without imposing energy and consequent financial penalties. Policies should incentivize the development of higher enthalpy resources, and support identification of non-traditional degraded water sources and optimized siting of geothermal plants.

  14. Realizing the geothermal electricity potential-water use and consequences

    Mishra, Gouri Shankar; Yeh, Sonia; Glassley, William E

    2011-01-01

    Electricity from geothermal resources has the potential to supply a significant portion of US baseload electricity. We estimate the water requirements of geothermal electricity and the impact of potential scaling up of such electricity on water demand in various western states with rich geothermal resources but stressed water resources. Freshwater, degraded water, and geothermal fluid requirements are estimated explicitly. In general, geothermal electricity has higher water intensity (l kWh -1 ) than thermoelectric or solar thermal electricity. Water intensity decreases with increase in resource enthalpy, and freshwater gets substituted by degraded water at higher resource temperatures. Electricity from enhanced geothermal systems (EGS) could displace 8-100% of thermoelectricity generated in most western states. Such displacement would increase stress on water resources if re-circulating evaporative cooling, the dominant cooling system in the thermoelectric sector, is adopted. Adoption of dry cooling, which accounts for 78% of geothermal capacity today, will limit changes in state-wide freshwater abstraction, but increase degraded water requirements. We suggest a research and development focus to develop advanced energy conversion and cooling technologies that reduce water use without imposing energy and consequent financial penalties. Policies should incentivize the development of higher enthalpy resources, and support identification of non-traditional degraded water sources and optimized siting of geothermal plants.

  15. Geothermal energy, an environmental and safety mini-overview survey

    1976-07-01

    A survey is presented in order to determine the technology status, gaps, and needs for research and development programs in the environment and safety areas of this resource. The information gathered from a survey of geothermal energy development undertaken to provide background for an environment and safety overview program is summarized. A technology assessment for resource development is presented. The three specific environmental problems identified as most potentially limiting to geothermal development; hydrogen sulfide control, brine disposal, and subsidence, are discussed. Current laws, regulations, and standards applying to geothermal systems are summarized. The elements of the environment, health, and safety program considered to be intrinsically related to the development of geothermal energy systems are discussed. Interagency interfaces are touched on briefly. (MHR)

  16. Geothermal Economics Calculator (GEC) - additional modifications to final report as per GTP's request.

    Gowda, Varun; Hogue, Michael

    2015-07-17

    This report will discuss the methods and the results from economic impact analysis applied to the development of Enhanced Geothermal Systems (EGS), conventional hydrothermal, low temperature geothermal and coproduced fluid technologies resulting in electric power production. As part of this work, the Energy & Geoscience Institute (EGI) has developed a web-based Geothermal Economics Calculator (Geothermal Economics Calculator (GEC)) tool that is aimed at helping the industry perform geothermal systems analysis and study the associated impacts of specific geothermal investments or technological improvements on employment, energy and environment. It is well-known in the industry that geothermal power projects will generate positive economic impacts for their host regions. Our aim in the assessment of these impacts includes quantification of the increase in overall economic output due to geothermal projects and of the job creation associated with this increase. Such an estimate of economic impacts of geothermal investments on employment, energy and the environment will also help us understand the contributions that the geothermal industry will have in achieving a sustainable path towards energy production.

  17. Ocean Technology Development Tank

    Federal Laboratory Consortium — The new SWFSC laboratory in La Jolla incorporates a large sea- and fresh-water Ocean Technology Development Tank. This world-class facility expands NOAA's ability to...

  18. Technology research and development

    Haas, G.M.; Abdov, M.A.; Baker, C.C.; Beuligmann, R.F.

    1985-01-01

    The U.S. Dept. of Energy discusses the new program plan, the parameters of which are a broad scientific and technology knowledge base, an attractive plasma configuration to be determined, and other issues concerning uncertainty as to what constitutes attractive fusion options to be determined in the future, and increased collaboration. Tables show changing directions in magnetic fusion energy, two examples of boundary condition impacts on long-term technology development, and priority classes of the latter. The Argonne National Laboratory comments on the relationship between science, technology and the engineering aspects of the fusion program. UCLA remarks on the role of fusion technology in the fusion program plan, particularly on results from the recent studies of FINESSE. General Dynamics offers commentary on the issues of a reduced budget, and new emphasis on science which creates an image of the program. A table illustrates technology research and development in the program plan from an industrial perspective

  19. Fiscal 1997 verification and survey of geothermal prospecting technology etc. 1/2. Survey report on deep-seated geothermal resources; 1997 nendo chinetsu tansa gijutsu nado kensho chosa hokokusho. 1/2. Shinbu chinetsu shigen chosa

    NONE

    1999-02-01

    For the purpose of reducing the risk to accompany the exploitation of deep-seated geothermal resources, investigations are conducted into the three factors that govern the formation of geothermal resources at deep levels, that is, the supply of heat from heat sources, the supply of geothermal fluids, and the development of fracture systems contributing to the constitution of reservoir structures. In fiscal 1997, a fumarolic gas test is conducted at the deep-seated geothermal well WD-1b which was drilled in the preceding fiscal year. In the test, chemical and isotopic characteristics are compared between the fluids of the WD-1b and the other existing deep-seated wells, and it is found that the fluids from the WD1b originates in surface water just like the fluids from the others and that the constitution of its gas is not greatly affected by magmatic fluids. A PTS (Pressure, Temperature, Spinner flowmeter) logging is performed to observe conditions in the well with the fluids being discharged and to know the inflow point and rate the fumarolic fluids, and the result is utilized to presume the 3-dimensional stress in the vicinity of the WD-1. An isotopic measurement of water included in the fluids is conducted to examine the origin of the geothermal fluids, constant observation and analysis of micro-earthquakes are carried out, and the fluid flow and fluid hydraulic characteristics are also studied. (NEDO)

  20. Fusion development and technology

    Montgomery, D.B.

    1991-01-01

    This report discusses the following topics: superconducting magnet technology high field superconductors; advanced magnetic system and divertor development; poloidal field coils; gyrotron development; commercial reactor studies -- Aries; ITER physics; ITER superconducting PF scenario and magnet analysis; and safety, environmental and economic factors in fusion development

  1. Geothermal Exploration Case Studies on OpenEI (Presentation)

    Young, K.; Bennett, M.; Atkins, D.

    2014-03-01

    The U.S. Geological Survey (USGS) resource assessment (Williams et al., 2008) outlined a mean 30 GWe of undiscovered hydrothermal resource in the western United States. One goal of the U.S. Department of Energy's (DOE) Geothermal Technology Office (GTO) is to accelerate the development of this undiscovered resource. DOE has focused efforts on helping industry identify hidden geothermal resources to increase geothermal capacity in the near term. Increased exploration activity will produce more prospects, more discoveries, and more readily developable resources. Detailed exploration case studies akin to those found in oil and gas (e.g. Beaumont and Foster, 1990-1992) will give developers central location for information gives models for identifying new geothermal areas, and guide efficient exploration and development of these areas. To support this effort, the National Renewable Energy Laboratory (NREL) has been working with GTO to develop a template for geothermal case studies on the Geothermal Gateway on OpenEI. In 2012, the template was developed and tested with two case studies: Raft River Geothermal Area (http://en.openei.org/wiki/Raft_River_Geothermal_Area) and Coso Geothermal Area (http://en.openei.org/wiki/Coso_Geothermal_Area). In 2013, ten additional case studies were completed, and Semantic MediaWiki features were developed to allow for more data and the direct citations of these data. These case studies are now in the process of external peer review. In 2014, NREL is working with universities and industry partners to populate additional case studies on OpenEI. The goal is to provide a large enough data set to start conducting analyses of exploration programs to identify correlations between successful exploration plans for areas with similar geologic occurrence models.

  2. Geothermal Program Review XVII: proceedings. Building on 25 years of Geothermal Partnership with Industry

    NONE

    1999-10-01

    The US Department of Energy's Office (DOE) of Geothermal Technologies conducted its annual Program Review XVII in Berkeley, California, on May 18--20, 1999. The theme this year was "Building on 25 Years of Geothermal Partnership with Industry". In 1974, Congress enacted Public Law 93-410 which sanctioned the Geothermal Energy Coordination and Management Project, the Federal Government's initial partnering with the US geothermal industry. The annual program review provides a forum to foster this federal partnership with the US geothermal industry through the presentation of DOE-funded research papers from leaders in the field, speakers who are prominent in the industry, topical panel discussions and workshops, planning sessions, and the opportunity to exchange ideas. Speakers and researchers from both industry and DOE presented an annual update on research in progress, discussed changes in the environment and deregulated energy market, and exchanged ideas to refine the DOE Strategic Plan for research and development of geothermal resources in the new century. A panel discussion on Climate Change and environmental issues and regulations provided insight into the opportunities and challenges that geothermal project developers encounter. This year, a pilot peer review process was integrated with the program review. A team of geothermal industry experts were asked to evaluate the research in progress that was presented. The evaluation was based on the Government Performance and Results Act (GPRA) criteria and the goals and objectives of the Geothermal Program as set forth in the Strategic Plan. Despite the short timeframe and cursory guidance provided to both the principle investigators and the peer reviewers, the pilot process was successful. Based on post review comments by both presenters and reviewers, the process will be refined for next year's program review.

  3. Geothermal progress monitor: Report No. 10

    1987-07-01

    This issue synthesizes information on all aspects of geothermal development in this country and abroad to permit identification and quantification of trends in the use of this source of energy. The contents include: (1) the Federal Beat; (2) The Industry Scene; (3) Financing; (4) Development Status; (5) Leasing and Drilling; (6) State and Local; (7) International; and (8) Technology Transfer. (ACR)

  4. Technology development for safeguards

    Kim, Ho Dong; Kang, H. Y.; Song, D. Y. [and others

    2005-04-01

    The objective of this project are to establish the safeguards technology of the nuclear proliferation resistance to the facilities which handle with high radioactivity nuclear materials like the spent fuel, to provide the foundation of the technical independency for the establishment of the effective management of domestic spent fuels, and to construct the base of the early introduction of the key technology relating to the back-end nuclear fuel cycle through the development of the safeguards technology of the DFDF of the nuclear non-proliferation. The essential safeguards technologies of the facility such as the measurement and account of nuclear materials and the C/S technology were carried out in this stage (2002-2004). The principal results of this research are the development of error reduction technology of the NDA equipment and a new NDA system for the holdup measurement of process materials, the development of the intelligent surveillance system based on the COM, the evaluation of the safeguardability of the Pyroprocessing facility which is the core process of the nuclear fuel cycle, the derivation of the research and development items which are necessary to satisfy the safeguards criteria of IAEA, and the presentation of the direction of the technology development relating to the future safeguards of Korea. This project is the representative research project in the field of the Korea's safeguards. The safeguards technology and equipment developed while accomplishing this project can be applied to other nuclear fuel cycle facilities as well as DFDF and will be contributed to increase the international confidence in the development of the nuclear fuel cycle facility of Korea and its nuclear transparency.

  5. Energy, technology, development

    Goldemberg, J [Ministerio da Educacao, Brasilia (Brazil)

    1992-02-01

    Energy and technology are essential ingredients of development, it is only through their use that it became possible to sustain a population of almost 5 billion on Earth. The challenges to eradicate poverty and underdevelopment in developing countries in the face of strong population increases can only be successfully met with the use of advanced technology, leapfrogging the path followed in the past by today's industrialized countries. It is shown in the paper that energy consumption can be decoupled from economic development. Such possibility will contribute significantly in achieving sustainable development. 10 refs., 4 figs., 3 tabs.

  6. THE PROBLEM OF ENERGY EFFICIENCY OF THE GEOTHERMAL CIRCULATION SYSTEM IN DIFFERENT MODES OF REINJECTION OF THE COOLANT

    D. K. Djavatov

    2017-01-01

    Full Text Available Aim. Advanced technologies are crucial for widespread use of geothermal energy to ensure its competitiveness with conventional forms of energy. To date, the basis for the development of geothermal energy is the technology of extracting the heat transfer fluids from the subsoil. There are the following ways to extract the coolant: freeflow; pumping and circular methods. Of greatest interest is the technology to harness the geothermal energy based on geothermal circulatory system (GCS. There is the problem of the right choice of technological parameters for geothermal systems to ensure their effective functioning.Methods. We consider the development of geothermal energy technology based on geothermal circulatory system, as this technology solves the dumping of the waste water containing environmentally harmful substances. In addition to the environmental issues, this technology makes it possible to intensify the process of production and the degree of extraction of thermal resources, which significantly increases the potential for geothermal heat resources in terms of the fuel and energy balance.Findings. Were carried out optimization calculations for Ternairsky deposits of thermal waters. In the calculations, was taken into account the temperature dependence of important characteristics, such as the density and heat capacity of the coolant.Conclusions. There is the critical temperature of the coolant injected, depending on the flow rate and the diameter of the well, ensuring the effective functioning of the geothermal circulatory systems. 

  7. Novel Geothermal Development of Deep Sedimentary Systems in the United States

    Moore, Joseph [Univ. of Utah, Salt Lake City, UT (United States); Allis, Rick [Utah Geological Survey, Salt Lake City, UT (United States)

    2017-10-11

    Economic and reservoir engineering models show that stratigraphic reservoirs have the potential to contribute significant geothermal power in the U.S. If the reservoir temperature exceeds about 150 – 200 °C at 2 – 4 km depth, respectively, and there is good permeability, then these resources can generate power with a levelized cost of electricity (LCOE) of close to 10 ¢/kWh (without subsidies) on a 100 MW power plant scale. There is considerable evidence from both groundwater geology and petroleum reservoir geology that relatively clean carbonates and sandstones have, and can sustain, the required high permeability to depths of at least 5 km. This paper identifies four attractive stratigraphic reservoir prospects which are all located in the eastern Great Basin, and have temperatures of 160 – 230 °C at 3 – 3.5 km depth. They are the Elko basins (Nevada), North Steptoe Valley (Nevada), Pavant Butte (Utah), and the Idaho Thrust Belt. The reservoir lithologies are Paleozoic carbonates in the first three, and Jurassic sandstone and carbonate in the Idaho Thrust Belt. All reservoir lithologies are known to have high permeability characteristics. At North Steptoe Valley and Pavant Butte, nearby transmission line options allow interconnection to the California power market. Modern techniques for drilling and developing tight oil and gas reservoirs are expected to have application to geothermal development of these reservoirs.

  8. Measurement of attitudes toward commercial development of geothermal energy in Federal Region IX. Final report

    1981-06-01

    A survey was conducted of ten target study groups and subgroups for Klamath Falls, Oregon, and Susanville, California: local government, current and potential industry at the site, relocators to the site, current and potential financial community, regulators, and current and potential promoters and developers. The results of benchmark attitudinal measurement is presented separately for each target group. A literature review was conducted and Macro-environmental attitudes of a sample of local government and industry personnel at the sites were assessed. An assessment of capabilities was made which involved two measurements. The first was a measurement of a sample of promoters, developers, and industrial service companies active at the site to determine infrastructure capabilities required by industry for geothermal plants. The second measurement involved analyzing a sample of industry management in the area and defining their requirements for plant retrofit and expansion. Finally, the processes used by the study group to analyze information to reach commitment and regulatory decisions that significantly impact on geothermal energy projects at the site were identified and defined.

  9. Development of a Plan to Implement Enhanced Geothermal Systems (EGS) in the Animas Valley, New Mexico - Final Report - 07/26/2000 - 02/01/2001

    Schochet, Daniel N.; Cunniff, Roy A.

    2001-02-01

    The concept of producing energy from hot dry rock (HDR), originally proposed in 1971 at the Los Alamos National Laboratory, contemplated the generation of electric power by injecting water into artificially created fractures in subsurface rock formations with high heat flow. Recognizing the inherent difficulties associated with HDR, the concept of Enhanced Geothermal Systems was proposed. This embraces the idea that the amount of permeability and fluid in geothermal resources varies across a spectrum, with HDR at one end, and conventional hydrothermal systems at the other. This report provides a concept for development of a ''Combined Technologies Project'' with construction and operation of a 6 MW (net) binary-cycle geothermal power plant that uses both the intermediate-depth hydrothermal system at 1,200 to 3,300 feet and a deeper EGS capable system at 3,000 to 4,000 feet. Two production/injection well pairs will be drilled, one couplet for the hydrothermal system, and one for the E GS system. High-pressure injection may be required to drive fluid through the EGS reservoir from the injection to the production well.

  10. Development of a Plan to Implement Enhanced Geothermal Systems (EGS) in the Animas Valley, New Mexico - Final Report - 07/26/2000 - 02/01/2001; FINAL

    Schochet, Daniel N.; Cunniff, Roy A.

    2001-01-01

    The concept of producing energy from hot dry rock (HDR), originally proposed in 1971 at the Los Alamos National Laboratory, contemplated the generation of electric power by injecting water into artificially created fractures in subsurface rock formations with high heat flow. Recognizing the inherent difficulties associated with HDR, the concept of Enhanced Geothermal Systems was proposed. This embraces the idea that the amount of permeability and fluid in geothermal resources varies across a spectrum, with HDR at one end, and conventional hydrothermal systems at the other. This report provides a concept for development of a ''Combined Technologies Project'' with construction and operation of a 6 MW (net) binary-cycle geothermal power plant that uses both the intermediate-depth hydrothermal system at 1,200 to 3,300 feet and a deeper EGS capable system at 3,000 to 4,000 feet. Two production/injection well pairs will be drilled, one couplet for the hydrothermal system, and one for the E GS system. High-pressure injection may be required to drive fluid through the EGS reservoir from the injection to the production well

  11. FY 1998 report on the verification survey of geothermal survey technology, etc./Development of the reservoir fluctuation survey method (Summary). Theme 1. Development of the fracture hydraulic survey method; 1998 nendo chinetsu tansa gijutsu nado kensho chosa choryuso hendo tansaho kaihatsu hokokusho (Yoyaku). 1. Danretsu suiri tansaho kaihatsu

    NONE

    1999-03-01

    The paper reported the results of the development of the fracture hydraulic method. As to the geothermal well hydraulic test method, the following were studied. Relating to the pressure transient test method, the detailed design of a system was conducted on a prototype hydraulic test system through the manufacture of element parts and feed back control mechanism and experiments to evaluate performance/operation characteristics of fields. Concerning the tiltmeter use measurement method, the field experiment by tiltmeter measurement was carried out in the Hijiori area where existing data and the wells used exist. With respect to the two-phase flow rate measuring method, by a combination of the existing vortex flow meter, vapor quality meter and tracer method, conducted were a field experiment on comparison/calibration of the existing flow meter and tracer method and a numerical simulation of change in vapor liquid in association with temperature/pressure changes in two-phase flow pipe, and the semi-quantitative calibration method was studied. About the water permeable logging method, study was made on the following items. In regard to the hydrophone VSP method, data analysis of the method was conducted. As to the development of individual feed zone flow meter measuring device, the evaluation was conducted of accuracy of Doppler shift rates for flow rate, pressure, flow velocity, well diameter and change in concentration and characteristics of acoustic unit. As a result, the flow rate was unable to be detected with satisfactory accuracy. (NEDO)

  12. Corrosion in geothermal plants; Korrosion in geothermischen Anlagen

    Milles, Uwe [BINE Informationsdienst, FIZ Karlsruhe - Buero Bonn (Germany)

    2012-12-15

    Geothermal energy can contribute much more than before to the energy supply in Germany. Further-developed technologies being specially adjusted to geothermal energy and its mostly very salty waters are needed for this. Thereby, the mostly reasonable priced avoidance of corrosion at pipes, pumps and heat exchangers is an objective. Among other things, the geothermal research laboratory Gross Schoenebeck (Federal Republic of Germany) fundamentally investigates corrosion processes, the composition of deep waters as well as material properties in order to develop location-independent recommendations.

  13. Fiscal 1999 research and verification of geothermal energy exploring technologies and the like. Development of reservoir mass and heat flow characterization (Development of fracture hydrological properties characterization technology - Summary); 1999 nendo chinetsu tansa gijutsu nado kensho chosa hokokusho (yoyaku). Choryuso hendo tansaho kaihatsu (danretsu suiri tansaho kaihatsu)

    NONE

    2000-03-01

    Efforts are under way to develop reservoir change evaluation technologies to be effective in evaluating reservoirs at their initial stage of development, in stabilizing the output of power stations after their commencement of service operation, and in probing into reservoirs in already-developed areas. One of them concerns the characterization of the hydrological properties of fractures. The development efforts involve (1) a pressure transient test method (measurement of the response of reservoirs to changes in borehole internal pressure), (2) a tiltmeter observation method (ground surface deformation measurement), and (3) a 2-phase flow metering method (metering of spurting fluids). Under item (1), a computer-aided borehole hydrology test system is built and field-tested to isolate problems. Also, a pressure transient test system is built by way of trial by use of which compressor-aided control is performed over air pressure in the borehole. Under item (2), it is made clear that changes, several MPa in scale, in the pressure in a borehole is detected by simulation and that a sufficiently capable system is realized using a tiltmeter available on the market. Under item (3), a device is fabricated which is a combination of a laser flowmeter and a void fraction meter, and a field test is conducted to assess its feasibility and to identify problems. (NEDO)

  14. Technology transfer for development

    Abraham, D.

    1990-07-01

    The IAEA has developed a multifaceted approach to ensure that assistance to Member States results in assured technology transfer. Through advice and planning, the IAEA helps to assess the costs and benefits of a given technology, determine the basic requirements for its efficient use in conditions specific to the country, and prepare a plan for its introduction. This report describes in brief the Technical Co-operation Programmes

  15. Exploitation and Utilization of Oilfield Geothermal Resources in China

    Shejiao Wang

    2016-09-01

    Full Text Available Geothermal energy is a clean, green renewable resource, which can be utilized for power generation, heating, cooling, and could effectively replace oil, gas, and coal. In recent years, oil companies have put more efforts into exploiting and utilizing geothermal energy with advanced technologies for heat-tracing oil gathering and transportation, central heating, etc., which has not only reduced resource waste, but also improved large-scale and industrial resource utilization levels, and has achieved remarkable economic and social benefits. Based on the analysis of oilfield geothermal energy development status, resource potential, and exploitation and utilization modes, the advantages and disadvantages of harnessing oilfield geothermal resource have been discussed. Oilfield geothermal energy exploitation and utilization have advantages in resources, technical personnel, technology, and a large number of abandoned wells that could be reconstructed and utilized. Due to the high heat demand in oilfields, geothermal energy exploitation and utilization can effectively replace oil, gas, coal, and other fossil fuels, and has bright prospects. The key factors limiting oilfield geothermal energy exploitation and utilization are also pointed out in this paper, including immature technologies, lack of overall planning, lack of standards in resource assessment, and economic assessment, lack of incentive policies, etc.

  16. GEO-TEP. Development of thermoelectric materials for geothermal energy conversion systems. Final report 2008

    Bocher, L.; Weidenkaff, A.

    2008-07-01

    Geothermal heat can be directly converted into electricity by using thermoelectric converters. Thermoelectric conversion relies on intrinsic materials properties which have to be optimised. In this work novel environmentally friendly and stable oxide ceramics were developed to fulfil this task. Thus, manganate phases were studied regarding their potential thermoelectric properties for converting geothermal heat into electricity. Perovskite-type phases were synthesized by applying different methods: the ceramic route, and innovative synthesis routes such as the 'chimie douce' method by bulk thermal decomposition of the citrate precursor or using an USC process, and also the polyol-mediated synthesis route. The crystal structures of the manganate phases are evaluated by XRPD, NPD, and ED techniques while specific microstructures such as twinned domains are highlighted by HRTEM imaging. Besides, the thermal stability of the Mn-oxide phases in air atmosphere are controlled over a wide temperature range (T < 1300 K). The thermoelectric figure of merit ZT was enhanced from 0.021 to 0.3 in a broad temperature range for the studied phases which makes these phases the best perovskitic candidates as n-type polycrystalline thermoelectric materials operating in air at high temperatures. (author)

  17. Survey for development feasibility in fiscal 1999 investigation of geothermal development and promotion. Evaluation report on practicability technology survey SWD method (Evaluation report concerning verification test); 1999 nendo chinetsu kaihatsu sokushin chosa no uchi kaihatsu kanosei chosa. Jitsuyoka gijutsu chosa SWD ho hyoka hokokusho (jissho shiken ni kakawaru hyoka hokokusho)

    NONE

    2000-05-01

    An evaluation test was conducted on SWD (Seismic While Drilling) method as a part of the investigation of geothermal development and promotion. The test was implemented at the time of drilling of N11-MD-3 well in the northeast base area of Busadake, Hokkaido. The test items were such as verification of direct waves propagating from a bit to the surface, identification of signals passing through a fault zone using direct waves and reflected waves, estimation of distance between a fault and a bent zone, and grasping the direction of signal propagation at the time of inclined drilling. As a result of the experiments and studies, following conclusions were obtained. Reflected waves extracted are not necessarily limited to those from a reflection area from which the shape of a fault can be grasped; unless there is a clear reflection area that can be picked up on the surface near a fault, the application of this method is not effective. In an analysis using direct waves, it was possible to obtain an inclined angle of a fault plane from the estimation of velocity structure, propagation route, and assumption of the shape of the fault plane and, therefore, to grasp the shape of the fault. Obtaining reference data is essential for identifying bit signals. (NEDO)

  18. Outline of geothermal activity in Czechoslovakia

    Franko, O.; Bodis, D.; Dendek, M.; Remsik, A.

    1990-01-01

    This paper reports that in respect of different geothermal conditions in the Bohemian Massif (unfavorable) and in the West Carpathians (favorable), the development and utilization of geothermal energy are concentrated in Slovakia. THe utilization of geothermal energy for the heating of buildings in spas commenced in 1958. Thermal energy of geothermal waters was used for direct heating through heat exchangers, and in one case by a heat pump. Concentrated continuous development and utilization of geothermal energy started in 1971

  19. Development of a Deep-Penetrating, Compact Geothermal Heat Flow System for Robotic Lunar Geophysical Missions

    Nagihara, Seiichi; Zacny, Kris; Hedlund, Magnus; Taylor, Patrick T.

    2012-01-01

    Geothermal heat flow measurements are a high priority for the future lunar geophysical network missions recommended by the latest Decadal Survey of the National Academy. Geothermal heat flow is obtained as a product of two separate measurements of geothermal gradient and thermal conductivity of the regolith/soil interval penetrated by the instrument. The Apollo 15 and 17 astronauts deployed their heat flow probes down to 1.4-m and 2.3-m depths, respectively, using a rotary-percussive drill. However, recent studies show that the heat flow instrument for a lunar mission should be capable of excavating a 3-m deep hole to avoid the effect of potential long-term changes of the surface thermal environment. For a future robotic geophysical mission, a system that utilizes a rotary/percussive drill would far exceed the limited payload and power capacities of the lander/rover. Therefore, we are currently developing a more compact heat flow system that is capable of 3-m penetration. Because the grains of lunar regolith are cohesive and densely packed, the previously proposed lightweight, internal hammering systems (the so-called moles ) are not likely to achieve the desired deep penetration. The excavation system for our new heat flow instrumentation utilizes a stem which winds out of a pneumatically driven reel and pushes its conical tip into the regolith. Simultaneously, gas jets, emitted from the cone tip, loosen and blow away the soil. Lab tests have demonstrated that this proboscis system has much greater excavation capability than a mole-based heat flow system, while it weighs about the same. Thermal sensors are attached along the stem and at the tip of the penetrating cone. Thermal conductivity is measured at the cone tip with a short (1- to 1.5-cm long) needle sensor containing a resistance temperature detector (RTD) and a heater wire. When it is inserted into the soil, the heater is activated. Thermal conductivity of the soil is obtained from the rate of temperature

  20. Fusion development and technology

    Montgomery, D.B.

    1992-01-01

    This report discusses the following: superconducting magnet technology; high field superconductors; advanced magnetic system and divertor development; poloidal field coils; gyrotron development; commercial reactor studies--aries; ITER physics: alpha physics and alcator R ampersand D for ITER; lower hybrid current drive and heating in the ITER device; ITER superconducting PF scenario and magnet analysis; ITER systems studies; and safety, environmental and economic factors in fusion development

  1. Biofuel technologies. Recent developments

    Gupta, Vijai Kumar [National Univ. of Ireland Galway (Ireland). Dept. of Biochemistry; MITS Univ., Rajasthan (India). Dept. of Science; Tuohy, Maria G. (eds.) [National Univ. of Ireland Galway (Ireland). Dept. of Biochemistry

    2013-02-01

    Written by experts. Richly illustrated. Of interest to both experienced researchers and beginners in the field. Biofuels are considered to be the main potential replacement for fossil fuels in the near future. In this book international experts present recent advances in biofuel research and related technologies. Topics include biomethane and biobutanol production, microbial fuel cells, feedstock production, biomass pre-treatment, enzyme hydrolysis, genetic manipulation of microbial cells and their application in the biofuels industry, bioreactor systems, and economical processing technologies for biofuel residues. The chapters provide concise information to help understand the technology-related implications of biofuels development. Moreover, recent updates on biofuel feedstocks, biofuel types, associated co- and byproducts and their applications are highlighted. The book addresses the needs of postgraduate researchers and scientists across diverse disciplines and industrial sectors in which biofuel technologies and related research and experimentation are pursued.

  2. Interagency Geothermal Coordinating Council fifth annual report. Final draft

    Abel, Fred H.

    1981-07-07

    Geothermal energy is the natural heat of the earth, and can be tapped as a clean, safe, economical alternative source of energy. Much of the geothermal energy resource is recoverable with current or near-current technology and could make a significant contribution both to increasing domestic energy supplies and to reducing the US dependence on imported oil. Geothermal energy can be used for electric power production, residential and commercial space heating and cooling, industrial process heat, and agricultural process applications. This report describes the progress for fiscal year 1980 (FY80) of the Federal Geothermal Program. It also summarizes the goals, strategy, and plans which form the basis for the FY81 and FY82 program activities and reflects the recent change in national policy affecting Federal research, development and demonstration programs. The Interagency Geothermal Coordinating Council (IGCC) believes that substantial progress can and will be made in the development of geothermal energy. The IGCC goals are: (1) reduce the institutional barriers so that geothermal projects can be on-line in one-half the current time; (2) make moderate temperature resources an economically competitive source of electricity; (3) remove the backlog of noncompetitive lease applications; (4) competitive lease all KGRA lands; and (5) cut the cost of hydrothermal technology by 25%.

  3. Geothermal Progress Monitor. Report No. 18

    NONE

    1996-12-31

    The near-term challenges of the US geothermal industry and its long-range potential are dominant themes in this issue of the US Department of Energy (DOE) Geothermal Progress Monitor which summarizes calendar-year 1996 events in geothermal development. Competition is seen as an antidote to current problems and a cornerstone of the future. Thus, industry's cost-cutting strategies needed to increase the competitiveness of geothermal energy in world markets are examined. For example, a major challenge facing the US industry today is that the sales contracts of independent producers have reached, or soon will, the critical stage when the prices utilities must pay them drop precipitously, aptly called the cliff. However, Thomas R. Mason, President and CEO of CalEnergy told the DOE 1996 Geothermal Program Review XIV audience that while some of his company's plants have ''gone over the cliff, the world is not coming to an end.'' With the imposition of severe cost-cutting strategies, he said, ''these plants remain profitable... although they have to be run with fewer people and less availability.'' The Technology Development section of the newsletter discusses enhancements to TOUGH2, the general purpose fluid and heat flow simulator and the analysis of drill cores from The Geysers, but the emphasis is on advanced drilling technologies.

  4. Geothermal progress monitor. Report No. 16

    NONE

    1994-12-01

    This issue, the 16th since 1980, illustrates the potential of the liquid-dominated geothermal resource. Achievement of this potential by publicly held companies, who are required to publish financial statements, has involved the use of high-quality resources and the best available technologies or, in some instances, their own innovative modifications of existing technologies as well as a high degree of technical and management expertise. This issue also documents some effects of the new climate of utility deregulation and competition among independent power producers on the geothermal industry. The continuing importance attached to geothermal heat pumps as a preferred space conditioning technology by a number of disparate interests is illustrated by a number of articles. Magma Power Co. reported record gains in both 1993 revenues and earnings over 1992; California Energy has acquired Magma, creating the largest geothermal energy producer in the world. Owing to stagnation in USA, it was decided to focus on international markets. After the introduction, the issue has sections on: Federal beat, industry scene, financing, technology development, direct use technology, state and local, international, technology transfer, and directory.

  5. Using the geothermal resources in the power engineering of Russia

    Dobrokhotov, V.I.; Povarov, O.A.

    2003-01-01

    The areas of the geothermal heat application in various regions of Russia are considered. Expansion of applying the local nontraditional renewable sources of energy, primarily the earth geothermal heat, should be considered one of the basic directions of improving and developing the heat supply systems. Already in the nearest 7-10 years it is possible to save significant sources of organic heat due to the geothermal heat through application of the modern heat supply technologies. The proposals for organization of the financial schemes for realization of new power projects are considered by the example of the GeoPP construction on the Kamchatka [ru

  6. Using GeoRePORT to report socio-economic potential for geothermal development

    Young, Katherine R.; Levine, Aaron

    2018-07-01

    The Geothermal Resource Portfolio Optimization and Reporting Tool (GeoRePORT, http://en.openei.org/wiki/GeoRePORT) was developed for reporting resource grades and project readiness levels, providing the U.S. Department of Energy a consistent and comprehensible means of evaluating projects. The tool helps funding organizations (1) quantitatively identify barriers, (2) develop measureable goals, (3) objectively evaluate proposals, including contribution to goals, (4) monitor progress, and (5) report portfolio performance. GeoRePORT assesses three categories: geological, technical, and socio-economic. Here, we describe GeoRePORT, then focus on the socio-economic assessment and its applications for assessing deployment potential in the U.S. Socio-economic attributes include land access, permitting, transmission, and market.

  7. Review of the status of geothermal development and operation in Indonesia 1985 to 1990

    Radja, V.T.

    1990-01-01

    This paper reports that the electric power sector in Indonesia will be expanded by an additional generating capacity of about 1,225 MW at the end of the fifth 5-year development plan (1989/1990 to 1993/1994) from the existing 8,529 MW. At present a 140 MW geothermal condensing plant (one unit of 230 MW and 2 units of 55 MW, all in Kamojang) and two noncondensing nonobloks (2 MW in Dieng and 25 kW in Kamojang) have been operating successfully since 1979. Based on the fifth 5-year development plan the government of Indonesia has decided to install an additional 235 MW on the island of Java and 15 MW on North Sulawesi, for a total installed capacity of 377.25 MW

  8. Geothermal Modesty

    Anon.

    2004-01-01

    This publication of the Areva Group, a world nuclear industry leader, provides information on the energy in many domains. This issue deals with the uses for radioactivity, the future of the green electricity, the energy policy of Rhone-alps region, the end of the nuclear in Belgium, the nuclear propulsion to explore the solar system, the involvement of the Unites States in the hydrogen development, the gas exportation of China. A special part is devoted to the possibility of the geothermal energy. (A.L.B.)

  9. Remediation Technology Collaboration Development

    Mahoney, John; Olsen, Wade

    2010-01-01

    This slide presentation reviews programs at NASA aimed at development at Remediation Technology development for removal of environmental pollutants from NASA sites. This is challenging because there are many sites with different environments, and various jurisdictions and regulations. There are also multiple contaminants. There must be different approaches based on location and type of contamination. There are other challenges: such as costs, increased need for resources and the amount of resources available, and a regulatory environment that is increasing.

  10. Tailored Working Fluids for Enhanced Binary Geothermal Power Plants

    Mahmoud, Ahmad [United Technologies Research Center, East Hartford, CT (United States)

    2013-01-29

    United Technologies Research Center (UTRC), in collaboration with the Georgia Institute of Technology and the National Institute of Standards and Technology will evaluate and develop fundamental and component level models, conduct experiments and generate data to support the use of mixed or enhanced working fluids for geothermal power generation applications.

  11. SBWR technology and development

    Rao, A.S.; McCandless, R.J.; Sawyer, C.D.

    1991-01-01

    The simplified boiling water reactor (SBWR) is based on utilizing to the maximum extent possible proven light water reactor (LWR) technology developed through 30 years of operating plant experience plus the advanced boiling water reactor (ABWR) technology development program. For the unique features, developmental programs have been put in place to qualify the design. Thus, the focus of technology development has been on the passive safety features - the gravity-driven ECCS (GDCS) and the containment heat removal (PCCS). General Electric constructed a full-height, scaled, integral facility to demonstrate the GDCS concept and provide data for methods qualification. For the PCCS, a three-pronged program was implemented. Basic heat transfer data were obtained via testing at the Massachusetts Institute of Technology and the University of California at Berkeley. A full-height scaled integral facility to demonstrate the PCCS concept and provide data for methods qualification was constructed in Japan in 1989. Initial testing is now complete. Design of a full-scale heat exchanger unit is underway and testing is planned for completion in early 1993

  12. ABC Technology Development Program

    1994-01-01

    The Accelerator-Based Conversion (ABC) facility will be designed to accomplish the following mission: 'Provide a weapon's grade plutonium disposition capability in a safe, economical, and environmentally sound manner on a prudent schedule for [50] tons of weapon's grade plutonium to be disposed on in [20] years.' This mission is supported by four major objectives: provide a reliable plutonium disposition capability within the next [15] years; provide a level of safety and of safety assurance that meets or exceeds that afforded to the public by modern commercial nuclear power plants; meet or exceed all applicable federal, state, and local regulations or standards for environmental compliance; manage the program in a cost effective manner. The ABC Technology Development Program defines the technology development activities that are required to accomplish this mission. The technology development tasks are related to the following topics: blanket system; vessel systems; reactivity control systems; heat transport system components; energy conversion systems; shutdown heat transport systems components; auxiliary systems; technology demonstrations - large scale experiments

  13. Regional Systems Development for Geothermal Energy Resources Pacific Region (California and Hawaii). Task 3: water resources evaluation. Topical report

    Sakaguchi, J.L.

    1979-03-19

    The fundamental objective of the water resources analysis was to assess the availability of surface and ground water for potential use as power plant make-up water in the major geothermal areas of California. The analysis was concentrated on identifying the major sources of surface and ground water, potential limitations on the usage of this water, and the resulting constraints on potentially developable electrical power in each geothermal resource area. Analyses were completed for 11 major geothermal areas in California: four in the Imperial Valley, Coso, Mono-Long Valley, Geysers-Calistoga, Surprise Valley, Glass Mountain, Wendel Amedee, and Lassen. One area in Hawaii, the Puna district, was also included in the analysis. The water requirements for representative types of energy conversion processes were developed using a case study approach. Cooling water requirements for each type of energy conversion process were estimated based upon a specific existing or proposed type of geothermal power plant. The make-up water requirements for each type of conversion process at each resource location were then estimated as a basis for analyzing any constraints on the megawatts which potentially could be developed.

  14. Robotics Technology Development Program

    1994-02-01

    The Robotics Technology Development Program (RTDP) is a ''needs-driven'' effort. A lengthy series of presentations and discussions at DOE sites considered critical to DOE's Environmental Restoration and Waste Management (EM) Programs resulted in a clear understanding of needed robotics applications toward resolving definitive problems at the sites. A detailed analysis of the Tank Waste Retrieval (TWR), Contaminant Analysis Automation (CAA), Mixed Waste Operations (MWO), and Decontamination ampersand Dismantlement (D ampersand D). The RTDP Group realized that much of the technology development was common (Cross Cutting-CC) to each of these robotics application areas, for example, computer control and sensor interface protocols. Further, the OTD approach to the Research, Development, Demonstration, Testing, and Evaluation (RDDT ampersand E) process urged an additional organizational break-out between short-term (1--3 years) and long-term (3--5 years) efforts (Advanced Technology-AT). The RDTP is thus organized around these application areas -- TWR, CAA, MWO, D ampersand D and CC ampersand AT -- with the first four developing short-term applied robotics. An RTDP Five-Year Plan was developed for organizing the Program to meet the needs in these application areas

  15. The significance of "geothermal microzonation" for the correct planning of low-grade source geothermal systems

    Viccaro, Marco; Pezzino, Antonino; Belfiore, Giuseppe Maria; Campisano, Carlo

    2016-04-01

    Despite the environmental-friendly energy systems are solar thermal technologies, photovoltaic and wind power, other advantageous technologies exist, although they have not found wide development in countries such as Italy. Given the almost absent environmental impact and the rather favorable cost/benefit ratio, low-enthalpy geothermal systems are, however, likely to be of strategic importance also in Italy during the next years. The importance of geology for a sustainable exploitation of the ground through geothermal systems from low-grade sources is becoming paramount. Specifically, understanding of the lithological characteristics of the subsurface along with structures and textures of rocks is essential for a correct planning of the probe/geo-exchanger field and their associated ground source heat pumps. The complex geology of Eastern Sicily (Southern Italy), which includes volcanic, sedimentary and metamorphic units over limited extension, poses the question of how thermal conductivity of rocks is variable at the scale of restricted areas (even within the same municipality). This is the innovative concept of geothermal microzonation, i.e., how variable is the geothermal potential as a function of geology at the microscale. Some pilot areas have been therefore chosen to test how the geological features of the subsurface can influence the low-enthalpy geothermal potential of an area. Our geologically based evaluation and micro-zonation of the low-grade source geothermal potential of the selected areas have been verified to be fundamental for optimization of all the main components of a low-enthalpy geothermal system. Saving realization costs and limiting the energy consumption through correct sizing of the system are main ambitions to have sustainable development of this technology with intensive utilization of the subsurface. The variegated territory of countries such as Italy implies that these goals can be only reached if, primarily, the geological features

  16. Development of an Internet based geothermal information system for Germany; Aufbau eines geothermischen Informationssystems fuer Deutschland

    Schulz, R.; Agemar, T.; Alten, J.A.; Kuehne, K.; Maul, A.A.; Pester, S.; Wirth, W. [Inst. fuer Geowissenschaftliche Gemeinschaftsaufgaben (GGA), Hannover (Germany)

    2007-02-15

    The Leibniz Institute for Applied Geosciences (GGA-Institut) is setting up an internet based information system on geothermal resources in close collaboration with partners. For a start, the geothermal information system will contain data about hydrogeothermal resources only. The project aims at an improvement of quality in the planning of geothermal plants and at a minimization of exploration risks. The key parameters for this purpose are production rate (Q) and temperature (T). The basis for the estimation of subsurface hydraulic properties comes from the information system on hydrocarbons. This information system provides permeability and porosity values derived from the analyses of drilling cores. The IT targets will be realised by a relational database providing all data relevant to the project. A 3D model of the ground provides the basis for visualisation and calculation of geothermal resources. As a prototype, a data-recall facility of geothermal sites in Germany is available online. (orig.)

  17. Renewable energy technology development at Sandia National Laboratories

    Klimas, P. C.

    1994-02-01

    The use of renewable energy technologies is typically thought of as an integral part of creating and sustaining an environment that maximizes the overall quality of life of the Earth's present inhabitants and does not leave an undue burden on future generations. Sandia National Laboratories has been a leader in developing many of these technologies over the last two decades. This paper describes innovative solar, wind and geothermal energy systems and components that Sandia is helping to bring to the marketplace. A common but special aspect of all of these activities is that they are conducted in partnership with non-federal government entities. A number of these partners are from New Mexico.

  18. Transmutation Technology Development

    Song, T. Y.; Park, W. S.; Kim, Y. H. (and others)

    2007-06-15

    The spent fuel coming from the PWR is one of the most difficult problems to be solved for the continuous use of nuclear power. It takes a few million years to be safe under the ground. Therefore, it is not easy to take care of the spent fuel for such a long time. Transmutation technology is the key technology which can solve the spent fuel problem basically. Transmutation is to transmute long-lived radioactive nuclides in the spent fuel into short-lived or stable nuclide through nuclear reactions. The long-lived radioactive nuclides can be TRU and fission products such as Tc-99 and I-129. Although the transmutation technology does not make the underground disposal totally unnecessary, the period to take care of the spent fuel can be reduced to the order of a few hundred years. In addition to the environmental benefit, transmutation can be considered to recycle the energy in the spent fuel since the transmutation is performed through nuclear fission reaction of the TRU in the spent fuel. Therefore, transmutation technology is worth being developed in economical aspect. The results of this work can be a basis for the next stage research. The objective of the third stage research was to complete the core conceptual design and verification of the key technologies. The final results will contribute to the establishment of Korean back end fuel cycle policy by providing technical guidelines.

  19. Baseline System Costs for 50.0 MW Enhanced Geothermal System -- A Function of: Working Fluid, Technology, and Location, Location, Location

    Dunn, Paul [Gas Equipment Engineering Corp., Milford, CT (United States); Selman, Nancy [Gas Equipment Engineering Corp., Milford, CT (United States); Volpe, Anthony Della [Gas Equipment Engineering Corp., Milford, CT (United States); Moss, Deborah [Gas Equipment Engineering Corp., Milford, CT (United States); Mobley, Rick [Plasma Energy Services, LLC, Putnam, CT (United States); Dickey, Halley [Turbine Air Systems, Houston, TX (United States); Unruh, Jeffery [Fugro NV/Wm. Lettis & Associates, Houston, TX (United States); Hitchcock, Chris [Fugro NV/Wm. Lettis & Associates, Houston, TX (United States); Tanguay, Jasmine [Conservation Law Foundation/CLF Ventures, Boston, MA (United States); Larsen, Walker [Conservation Law Foundation/CLF Ventures, Boston, MA (United States); Sanyal, Sabir [GeothermEx, Inc., San Pablo, CA (United States); Butler, Steven [GeothermEx, Inc., San Pablo, CA (United States); Stacey, Robert [GeothermEx, Inc., San Pablo, CA (United States); Robertson-Tait, Ann [GeothermEx, Inc., San Pablo, CA (United States); Pruess, Karsten [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gutoski, Greg [Fairbanks Morse Engines (FME), Beloit, WI (United States); Fay, Jamie M. [Fort Point Associates, Boston, MA (United States); Stitzer, John T. [Fort Point Associates, Boston, MA (United States); Oglesby, Ken [Impact Technologies LLC, Tulsa, OK (United States)

    2012-04-30

    Substantial unexploited opportunity exists for the US, and the world, in Enhanced Geothermal Systems (EGS). As a result of US DOE investment, new drilling technology, new power generation equipment and cycles enable meaningful power production, in a compact and modular fashion; at lower and lower top side EGS working fluid temperatures and in a broader range of geologies and geographies. This cost analysis effort supports the expansion of Enhanced Geothermal Systems (EGS), furthering DOE strategic themes of energy security and sub goal of energy diversity; reducing the Nation's dependence on foreign oil while improving the environment.

  20. Textile technology development

    Shah, Bharat M.

    1995-01-01

    The objectives of this report were to evaluate and select resin systems for Resin Transfer Molding (RTM) and Powder Towpreg Material, to develop and evaluate advanced textile processes by comparing 2-D and 3-D braiding for fuselage frame applications and develop window belt and side panel structural design concepts, to evaluate textile material properties, and to develop low cost manufacturing and tooling processes for the automated manufacturing of fuselage primary structures. This research was in support of the NASA and Langley Research Center (LaRc) Advanced Composite Structural Concepts and Materials Technologies for Primary Aircraft Structures program.

  1. ECH Technology Development

    Temkin, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2014-12-24

    Electron Cyclotron Heating (ECH) is needed for plasma heating, current drive, plasma stability control, and other applications in fusion energy sciences research. The program of fusion energy sciences supported by U. S. DOE, Office of Science, Fusion Energy Sciences relies on the development of ECH technology to meet the needs of several plasma devices working at the frontier of fusion energy sciences research. The largest operating ECH system in the world is at DIII-D, consisting of six 1 MW, 110 GHz gyrotrons capable of ten second pulsed operation, plus two newer gyrotrons. The ECH Technology Development research program investigated the options for upgrading the DIII-D 110 GHz ECH system. Options included extending present-day 1 MW technology to 1.3 – 1.5 MW power levels or developing an entirely new approach to achieve up to 2 MW of power per gyrotron. The research consisted of theoretical research and designs conducted by Communication and Power Industries of Palo Alto, CA working with MIT. Results of the study would be validated in a later phase by research on short pulse length gyrotrons at MIT and long pulse / cw gyrotrons in industry. This research follows a highly successful program of development that has led to the highly reliable, six megawatt ECH system at the DIII-D tokamak. Eventually, gyrotrons at the 1.5 megawatt to multi-megawatt power level will be needed for heating and current drive in large scale plasmas including ITER and DEMO.

  2. Geothermal energy development in Colorado. Appendix 7 of regional operations research program for development of geothermal energy in the Southwest United States. Final technical report, June 1977--August 1978

    Pearl, Richard A.; Coe, Barbara

    1979-01-01

    The term ''geothermal energy'' is a term that means different things to different people. To an increasing number, it means a practical, environmentally compatible energy resource that can, right now, help to relieve an overdependency upon fossil fuels. The potential for use of geothermal energy in Colorado seems to be substantial. As described by Barrett and Pearl (1978), at least 56 separate areas have surface manifestations of hydrothermal (hot water) resources. These areas are estimated to contain 5.914 quads (5.914 x 10{sup 15} Btu) of energy, with extractable energy of 1.48 quads. Geothermal resources already contribute to Colorado's energy supply. In fact, since the early 1900's, practical uses of geothermal resources have been common in Pagosa Springs, in Southwest Colorado. Residents there have used hot-water wells to heat numerous buildings, including the County Court House, schools, churches, the newspaper office, a liquor store, 2 hotels, 2 service stations, a drugstore, and a bank, as well as for the swimming pool and spa. Where resources are in use in other parts of the State, most are used for swimming pools or baths. A few wells or springs serve other purposes, among them space heating and agriculture, including greenhouses, a fish farm and algae-growing. Seemingly, interest in and awareness of the resources is growing. If leases and permits are made available, along with some economic incentives, some or all of the three potential power-generation sites may be developed by private industry. Perhaps with the assistance of federal programs, initially, lower temperature resources, too, will be developed by private industry. While government can provide opportunities, the outcome depends upon the decisions of numerous individuals throughout the system. Colorado does have geothermal resources that can contribute to the energy supply. It remains to be seen whether these resources will fulfill their promise.

  3. Geothermal life cycle assessment - part 3

    Sullivan, J. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Frank, E. D. [Argonne National Lab. (ANL), Argonne, IL (United States); Han, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Elgowainy, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, M. Q. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-11-01

    A set of key issues pertaining to the environmental performance of geothermal electric power have been addressed. They include: 1) greenhouse gas emissions (GHG) from geothermal facilities, 2) the use of supercritical carbon dioxide (scCO2) as a geofluid for enhanced geothermal systems (EGS), 3) quantifying the impact of well field exploration on the life cycle of geothermal power, and finally 4) criteria pollutant emissions for geothermal and other electric power generation. A GHG emission rate (g/kWh) distribution as function of cumulative running capacity for California has been developed based on California and U. S. government data. The distribution is similar to a global distribution for compared geothermal technologies. A model has been developed to estimate life cycle energy of and CO2 emissions from a coupled pair of coal and EGS plants, the latter of which is powered by scCO2 captured from coal plant side. Depending on the CO2 capture rate on the coal side and the CO2 consumption rate on the EGS side, significant reductions in GHG emissions were computed when the combined system is compared to its conventional coal counterpart. In effect, EGS CO2 consumption acts as a sequestration mechanism for the coal plant. The effects CO2 emissions from the coupled system, prompt on the coal side and reservoir leakage on the EGS side, were considered as well as the subsequent decline of these emissions after entering the atmosphere over a time frame of 100 years. A model was also developed to provide better estimates of the impact of well field exploration on the life cycle performance of geothermal power production. The new estimates increase the overall life cycle metrics for the geothermal systems over those previously estimated. Finally, the GREET model has been updated to include the most recent criteria pollutant emissions for a range of renewable (including geothermal) and other power

  4. Deep Geothermal Drilling Using Millimeter Wave Technology. Final Technical Research Report

    Oglesby, Kenneth [Impact Technologies LLC, Tulsa, OK (United States); Woskov, Paul [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Einstein, Herbert [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Livesay, Bill [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States)

    2014-12-30

    Conventional drilling methods are very mature, but still have difficulty drilling through very deep,very hard and hot rocks for geothermal, nuclear waste entombment and oil and gas applications.This project demonstrated the capabilities of utilizing only high energy beams to drill such rocks,commonly called ‘Direct Energy Drilling’, which has been the dream of industry since the invention of the laser in the 1960s. A new region of the electromagnetic spectrum, millimeter wave (MMW) wavelengths at 30-300 giga-hertz (GHz) frequency was used to accomplish this feat. To demonstrate MMW beam drilling capabilities a lab bench waveguide delivery, monitoring and instrument system was designed, built and tested around an existing (but non-optimal) 28 GHz frequency, 10 kilowatt (kW) gyrotron. Low waveguide efficiency, plasma generation and reflected power challenges were overcome. Real-time monitoring of the drilling process was also demonstrated. Then the technical capability of using only high power intense millimeter waves to melt (with some vaporization) four different rock types (granite, basalt, sandstone, limestone) was demonstrated through 36 bench tests. Full bore drilling up to 2” diameter (size limited by the available MMW power) was demonstrated through granite and basalt samples. The project also demonstrated that MMW beam transmission losses through high temperature (260°C, 500oF), high pressure (34.5 MPa, 5000 psi) nitrogen gas was below the error range of the meter long path length test equipment and instruments utilized. To refine those transmission losses closer, to allow extrapolation to very great distances, will require a new test cell design and higher sensitivity instruments. All rock samples subjected to high peak temperature by MMW beams developed fractures due to thermal stresses, although the peak temperature was thermodynamically limited by radiative losses. Therefore, this limited drill rate and rock strength data were not able to be

  5. Induced seismicity associated with enhanced geothermal system

    Majer, Ernest; Majer, Ernest L.; Baria, Roy; Stark, Mitch; Oates, Stephen; Bommer, Julian; Smith, Bill; Asanuma, Hiroshi

    2006-09-26

    Enhanced Geothermal Systems (EGS) offer the potential to significantly add to the world energy inventory. As with any development of new technology, some aspects of the technology has been accepted by the general public, but some have not yet been accepted and await further clarification before such acceptance is possible. One of the issues associated with EGS is the role of microseismicity during the creation of the underground reservoir and the subsequent extraction of the energy. The primary objectives of this white paper are to present an up-to-date review of the state of knowledge about induced seismicity during the creation and operation of enhanced geothermal systems, and to point out the gaps in knowledge that if addressed will allow an improved understanding of the mechanisms generating the events as well as serve as a basis to develop successful protocols for monitoring and addressing community issues associated with such induced seismicity. The information was collected though literature searches as well as convening three workshops to gather information from a wide audience. Although microseismicity has been associated with the development of production and injection operations in a variety of geothermal regions, there have been no or few adverse physical effects on the operations or on surrounding communities. Still, there is public concern over the possible amount and magnitude of the seismicity associated with current and future EGS operations. It is pointed out that microseismicity has been successfully dealt with in a variety of non-geothermal as well as geothermal environments. Several case histories are also presented to illustrate a variety of technical and public acceptance issues. It is concluded that EGS Induced seismicity need not pose any threat to the development of geothermal resources if community issues are properly handled. In fact, induced seismicity provides benefits because it can be used as a monitoring tool to understand the

  6. Development of alternative energy technologies. Entrepreneurs, new technologies, and social change

    Burns, T R

    1985-01-01

    This paper discusses the introduction and development of several alternative energy technologies in countries where the innovation process has enjoyed some measure of success: solar water heating (California, Israel), windmills (Denmark), wood and peat for co-generation (Northern New England, Finland) and geo-thermal power (California) as well as heat pumps designed to save energy (West Germany). It is argued that the introduction and development of new technologies - and the socio-technical systems which utilize these technologies - depend on the initiatives of entrepreneurs and social change agents. They engage in adapting and matching technology and social structure (laws, institutions, norms, political and economic forces and social structure generally). Successful developments - as well as blocked or retarded developments - are discussed in terms of such ''compatibility analysis''. Policy implications are also discussed. (orig.).

  7. Navy Geothermal Plan

    1984-12-01

    Domestic geothermal resources with the potential for decreasing fossil fuel use and energy cost exist at a significant number of Navy facilities. The Geothermal Plan is part of the Navy Energy R and D Program that will evaluate Navy sites and provide a technical, economic, and environmental base for subsequent resource use. One purpose of the program will be to provide for the transition of R and D funded exploratory efforts into the resource development phase. Individual Navy geothermal site projects are described as well as the organizational structure and Navy decision network. 2 figs.

  8. Smart geo-energy village development by using cascade direct use of geothermal energy in Bonjol, West Sumatera

    Prasetya, Novrisal; Erwinsyah Umra Lubis, Defry; Raharjo, Dharmawan; Miryani Saptadji, Nenny; Pratama, Heru Berian

    2017-12-01

    West Sumatera is a province which has a huge geothermal potential - approximately 6% of Indonesia’s total geothermal potential which equals to 1,656 MWe. One of the significant reserves located in Bonjol subdistrict which accounts for more than 50 MWe. The energy from geothermal manifestation in Bonjol can be utilized prior to indirect development. Manifestation at the rate 3 kg/s and 87 °C will flow to cascading system consisting several applications, arranged in order from high to low temperature to efficiently use the excessive energy. The direct use application selected is based on the best potential commodities as well as temperature constraint of heat source. The objective of this paper is to perform a conceptual design for the first cascade direct use of geothermal energy in Indonesia to establish Bonjol Smart Geo-Energy Village which will be transformed as the center of agricultural, stockbreeding, tourism as well as cultural site. A comprehenssive research was performed through remote survey area, evaluation featured product, analysis of heat loss and heat exchange in cascade system. From potential commodities, the three applications selected are cocoa drying and egg hatching incubation machine as well as new tourism site called Terapi Panas Bumi. The optimum temperature for cocoa drying is 62°C with the moisture content 7% which consumes 78 kW for one tones cocoa dried. Whereas, egg incubation system consists of two chamber with the same temperature 40°C for each room and relative humidity 55% and 70%. For the last stage, Terapi Panas Bumi works in temperature 40°C. Based on the result technical and economical aspect, it exhibits cascade direct use of geothermal energy is very recommended to develop.

  9. Geothermal energy

    Laplaige, Ph.; Lemale, J.

    2008-01-01

    Geothermal energy is a renewable energy source which consists in exploiting the heat coming from the Earth. It covers a wide range of techniques and applications which are presented in this article: 1 - the Earth, source of heat: structure of the Earth, geodynamic model and plate tectonics, origin of heat, geothermal gradient and terrestrial heat flux; 2 - geothermal fields and resources; 3 - implementation of geothermal resources: exploration, main characteristic parameters, resource exploitation; 4 - uses of geothermal resources: power generation, thermal uses, space heating and air conditioning heat pumps, district heating, addition of heat pumps; 5 - economical aspects: power generation, heat generation for district heating; 6 - environmental aspects: conditions of implementation, impacts as substitute to fossil fuels; 7 - geothermal energy in France: resources, organisation; 8 - conclusion. (J.S.)

  10. Geothermal Program Review XV: proceedings. Role of Research in the Changing World of Energy Supply

    NONE

    1997-01-01

    The U.S. Department of Energy`s Office of Geothermal Technologies conducted its annual Program Review XV in Berkeley, March 24-26, 1997. The geothermal community came together for an in-depth review of the federally-sponsored geothermal research and development program. This year`s theme focussed on {open_quotes}The Role of Research in the Changing World of Energy Supply.{close_quotes} This annual conference is designed to promote technology transfer by bringing together DOE-sponsored researchers; utility representatives; geothermal developers; equipment and service suppliers; representatives from local, state, and federal agencies; and others with an interest in geothermal energy. Separate abstracts have been indexed to the database for contributions to this conference.

  11. Fiscal 1997 report on the verification survey of geothermal exploration technology. 5-1. Development of the reservoir variation survey method (technology of prediction of reservoir variation); 1997 nendo chinetsu tansa gijutsu nado kensho chosa. Choryuso hendo tansaho kaihatsu (choryuso hendo yosoku gijutsu) hokokusho

    NONE

    1998-03-01

    For the reservoir evaluation at an initial developmental stage and stabilization/maintenance of power after the start of operation, the fiscal 1997 result was described of the study of technology of prediction of reservoir variation. Using the conventional post processor, feasibilities were computed of reservoir models and behavior after the development, and gravity/self potential/resistivity variation. Variation in the seismic wave speed structure was large in travel time change distribution. The measuring accuracy of 1m sec is required to get enough detection resolving power. A conceptual design of the post processor development was conducted to study a system operated on Windows. Based on the reservoir numerical simulation technology, by taking in variation parameters such as gravity and self potentials as new model constraint conditions, the reservoir modeling technology which increased in accuracy by history matching was trially developed. Using the conventional reservoir model in the Oguni area, predictably computed were reservoir behaviors during 50 years which simulated a 20 MW development. Effectiveness of the post processor were able to be shown though influenced by characteristics such as permeability and resistivity. 74 refs., 95 refs., 12 tabs.

  12. Geothermal Energy: Tapping the Potential

    Johnson, Bill

    2008-01-01

    Ground source geothermal energy enables one to tap into the earth's stored renewable energy for heating and cooling facilities. Proper application of ground-source geothermal technology can have a dramatic impact on the efficiency and financial performance of building energy utilization (30%+). At the same time, using this alternative energy…

  13. The Future of Geothermal Energy

    Kubik, Michelle [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2006-01-01

    A comprehensive assessment of enhanced, or engineered, geothermal systems was carried out by an 18-member panel assembled by the Massachusetts Institute of Technology (MIT) to evaluate the potential of geothermal energy becoming a major energy source for the United States.

  14. FY 1998 report on the verification survey of geothermal survey technology, etc./Development of the reservoir fluctuation survey method (Summary). Theme 3. Development of the electric/electromagnetic survey method; 1998 nendo chinetsu tansa gijutsu nado kensho chosa choryuso hendo tansaho kaihatsu hokokusho (yoyaku). 3. Denki denjiki tansaho kaihatsu

    NONE

    1999-03-01

    Three observation wells were drilled in the Ogiri experimental field. The depth of drilling was 101-120m. In the self-potential observation, admitted were fluctuations, etc. caused by daily changes (tidal changes and earth current), earth current by external magnetic field induction, well drilling noise and injection well. In the resistivity structure survey, the whole area indicated a three-layer (high/low/high) structure, and the shallow high-resistivity layer was correspondent with the new unaltered volcanic rock, and the medium-depth low-resistivity layer with the clayey alteration. On the assumption that the reservoir model is improved by properties of geothermal water and 35% of the returning geothermal water goes back to the production region, pressure/chlorine concentration were satisfactorily explained. Changes in chlorine concentration by the returning geothermal water are estimated at 22% within production reservoir and at 52% in injection region, and when considering temperature changes, it was predicted that fluctuations of the resistivity underground are within 20%. The accuracy of the MT method was studied by using the MT method with the existing MT method. The accuracy was not enough to detect a resistivity of 10%, and therefore, the repeated measurement by fixed electrode or the continued MT method monitoring is needed. (NEDO)

  15. Geothermal Energy: Evaluation of a Resource

    Bockemuehl, H. W.

    1976-01-01

    This article suggests the use of geothermal energy for producing electricity, using as an example the development at Wairakei, New Zealand. Other geothermal areas are identified, and economic and environmental co sts of additional development are explored. (Author/AV)

  16. Development of Sodium Technology

    Choi, Jong Hyun; Nam, H. Y.; Kim, T. J.; Jeong, K. C.; Park, J. H.; Kim, B. H.; Jeong, J. Y.; Kim, J. M.; Choi, B. H.; Kim, B. S.

    2003-02-01

    The basic P and ID and fabrication method for IHTS simplification experiment were prepared for the experimental apparatus. In order to investigate the later phase of a SWR event, an experimental apparatus was designed and manufactured. The 620 data set have been obtained in the experiment of free surface fluctuation and an experimental correlation for the critical gas entertainment condition is additionally developed. For development of water into sodium leak detection technology, the properties from leak noises were extracted, and the tools for analyzing acoustic noises were constructed. The state-of-the-art on the flow and differential pressure measuring techniques in the piping system is investigated to develop new techniques which are applicable to high temperature sodium flow environment. The plan for the minimization of errors in temperature measurement was drawn up by analysing the error factors in temperature measurement. And the countermeasures for the minimization of errors in temperature measurement due to complex heat transfer were prepared

  17. Recovery act. Development of design and simulation tool for hybrid geothermal heat pump system

    Wang, Shaojie [ClimateMaster, Inc., Oklahoma City, OK (United States); Ellis, Dan [ClimateMaster, Inc., Oklahoma City, OK (United States)

    2014-05-29

    The ground source heat pump (GSHP) system is one of the most energy efficient HVAC technologies in the current market. However, the heat imbalance may degrade the ability of the ground loop heat exchanger (GLHX) to absorb or reject heat. The hybrid GSHP system, which combines a geothermal well field with a supplemental boiler or cooling tower, can balance the loads imposed on the ground loop heat exchangers to minimize its size while retaining superior energy efficiency. This paper presents a recent simulation-based study with an intention to compare multiple common control strategies used in hybrid GSHP systems, including fixed setpoint, outside air reset, load reset, and wetbulb reset. A small office in Oklahoma City conditioned by a hybrid GSHP system was simulated with the latest version of eQUEST 3.7[1]. The simulation results reveal that the hybrid GSHP system has the excellent capability to meet the cooling and heating setpoints during the occupied hours, balance thermal loads on the ground loop, as well as improve the thermal comfort of the occupants with the undersized well field.

  18. FY 2000 report on the survey for extraction of areas promising in strategic exploration geothermal development. Kirishima region; 2000 nendo senryakuteki chosa chinetsu kaihatsu yubo chiiki chushutsu chosa hokokusho. Kirishima chiiki

    NONE

    2001-03-01

    An investigational study was conducted for the Kirishima region with the aim of contributing to working out future medium- and long-term plans of geothermal development promotion survey, estimation of the developmental resource amount, extraction of technology development subjects effectively connecting to the increase in kW, etc. In the study, literature is collected such as reports of the surveys already made in the Kirishima region and the periphery, the data were re-analyzed and divided into geological structure elements and geological structure elements, and a conceptual model of the geothermal system in the whole Kirishima region was made. As a result, two areas were extracted for which the existence of high temperature geothermal reservoirs is expected. The total resource amount was estimated at 2,785MWe at promising area 1 and at 3,237MWe at promising area 2. With the resource amount density, data likelihood and distribution status of national/quasi-national parks as extraction criteria, 6 out of these promising areas were focused on important areas for survey. Geothermal structure models were made for each of the 6 areas, and the evaluation of the resource amount using evaluation assist tools was carried out. (NEDO)

  19. Potential for enhanced geothermal systems in Alberta, Canada

    Hofmann, Hannes; Weides, Simon; Babadagli, Tayfun; Zimmermann, Günter; Moeck, Inga; Majorowicz, Jacek; Unsworth, Martyn

    2014-01-01

    The province of Alberta has a high demand of thermal energy for both industrial and residential applications. Currently, the vast majority of the heat used in these applications is obtained by burning natural gas. Geothermal energy production from deep aquifer systems in the sedimentary basin could provide an alternative sustainable source of heat that would significantly reduce greenhouse gas emissions. To date there has been no geothermal field development in Alberta because the average geothermal gradient was considered to be too low for economic geothermal energy generation. However, with new technologies for Enhanced Geothermal Systems (EGS), it may be possible to develop geothermal resources from the sedimentary rocks in the Western Canadian Sedimentary Basin (WCSB). A numerical feasibility study based on a regional geological model and existing and newly gained data was conducted to identify scenarios for geothermal energy production in the region. In central Alberta, three Devonian carbonate formations (Cooking Lake, Nisku, Wabamun) and the Cambrian Basal Sandstone Unit were identified as the highest geothermal potential zones. Thermal-hydraulic reservoir simulations for a 5 km × 5 km site in the city of Edmonton were performed to evaluate reservoir development concepts for these four potential target formations; therefore, hydraulic fracturing treatments were also simulated. Different utilization concepts are presented for possible applications of geothermal energy generation in residential, industrial and agricultural areas. The Cooking Lake formation and the Basal Sandstone Unit are potentially the most promising reservoirs because the most heat can be extracted and the applications for the heat are widespread although the costs are higher than utilizing the shallower formations. Reservoir stimulation considerably improves the economics in all formations

  20. Developing technologies and resources

    Walker, R.S. [Canadian Nuclear Laboratories, Chalk River, ON (Canada)

    2015-07-01

    Our success as a nuclear nation rests on interdependent pillars involving industry, governments, regulators, and academia. In a context of coherent public policy, we must achieve: 5 Nuclear Industry Priorities: Ensure refurbishments are completed to cost and schedule; Achieve Canadian supply chain success in international nuclear business; Support a strong Canadian nuclear science, technology and innovation agenda; Enhance the supply of skilled workers; Develop a coordinated and integrated strategy for the long term management of all radioactive waste materials; Refine communication strategies informed by insights from social sciences. Canada's nuclear sector has the opportunity to adapt to the opportunities presented by having a national laboratory in Canada.

  1. Developing technologies and resources

    Walker, R.S.

    2015-01-01

    Our success as a nuclear nation rests on interdependent pillars involving industry, governments, regulators, and academia. In a context of coherent public policy, we must achieve: 5 Nuclear Industry Priorities: Ensure refurbishments are completed to cost and schedule; Achieve Canadian supply chain success in international nuclear business; Support a strong Canadian nuclear science, technology and innovation agenda; Enhance the supply of skilled workers; Develop a coordinated and integrated strategy for the long term management of all radioactive waste materials; Refine communication strategies informed by insights from social sciences. Canada's nuclear sector has the opportunity to adapt to the opportunities presented by having a national laboratory in Canada.

  2. Water-related constraints to the development of geothermal electric generating stations

    Robertson, R.C.; Shepherd, A.D.; Rosemarin, C.S.; Mayfield, M.W.

    1981-06-01

    The water-related constraints, which may be among the most complex and variable of the issues facing commercialization of geothermal energy, are discussed under three headings: (1) water requirements of geothermal power stations, (2) resource characteristics of the most promising hydrothermal areas and regional and local water supply situations, and (3) legal issues confronting potential users of water at geothermal power plants in the states in which the resource areas are located. A total of 25 geothermal resource areas in California, New Mexico, Oregon, Idaho, Utah, Hawaii, and Alaska were studied. Each had a hydrothermal resource temperature in excess of 150/sup 0/C (300/sup 0/F) and an estimated 30-year potential of greater than 100-MW(e) capacity.

  3. Improving geothermal power plants with a binary cycle

    Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.

    2015-12-01

    The recent development of binary geothermal technology is analyzed. General trends in the introduction of low-temperature geothermal sources are summarized. The use of single-phase low-temperature geothermal fluids in binary power plants proves possible and expedient. The benefits of power plants with a binary cycle in comparison with traditional systems are shown. The selection of the working fluid is considered, and the influence of the fluid's physicochemical properties on the design of the binary power plant is discussed. The design of binary power plants is based on the chemical composition and energy potential of the geothermal fluids and on the landscape and climatic conditions at the intended location. Experience in developing a prototype 2.5 MW Russian binary power unit at Pauzhetka geothermal power plant (Kamchatka) is outlined. Most binary systems are designed individually for a specific location. Means of improving the technology and equipment at binary geothermal power plants are identified. One option is the development of modular systems based on several binary systems that employ the heat from the working fluid at different temperatures.

  4. Water Intensity of Electricity from Geothermal Resources

    Mishra, G. S.; Glassley, W. E.

    2010-12-01

    BACKGROUND Electricity from geothermal resources could play a significant role in the United States over the next few decades; a 2006 study by MIT expects a capacity of 100GWe by 2050 as feasible; approximately 10% of total electricity generating capacity up from less than 1% today. However, there is limited research on the water requirements and impacts of generating electricity from geothermal resources - conventional as well as enhanced. To the best of our knowledge, there is no baseline exists for water requirements of geothermal electricity. Water is primarily required for cooling and dissipation of waste heat in the power plants, and to account for fluid losses during heat mining of enhanced geothermal resources. MODEL DESCRIPTION We have developed a model to assess and characterize water requirements of electricity from hydrothermal resources and enhanced geothermal resources (EGS). Our model also considers a host of factors that influence cooling water requirements ; these include the temperature and chemical composition of geothermal resource; installed power generation technology - flash, organic rankine cycle and the various configurations of these technologies; cooling technologies including air cooled condensers, wet recirculating cooling, and hybrid cooling; and finally water treatment and recycling installations. We expect to identify critical factors and technologies. Requirements for freshwater, degraded water and geothermal fluid are separately estimated. METHODOLOGY We have adopted a lifecycle analysis perspective that estimates water consumption at the goethermal field and power plant, and accounts for transmission and distribution losses before reaching the end user. Our model depends upon an extensive literature review to determine various relationships necessary to determine water usage - for example relationship between thermal efficiency and temperature of a binary power plant, or differences in efficiency between various ORC configurations

  5. Geothermal program review 16: Proceedings. A strategic plan for geothermal research

    NONE

    1998-12-31

    The proceedings contain 21 papers arranged under the following topical sections: Exploration technology (4 papers); Reservoir technology (5 papers); Energy conversion technology (8 papers); Drilling technology (2 papers); and Direct use and geothermal heat pump technology (2 papers). An additional section contains a report on a workshop on dual-use technologies for hydrothermal and advanced geothermal reservoirs.

  6. Fiscal 1997 report on the survey for a data book on new energy technology development. Waste power generation, solar energy utilization. geothermal power generation, clean energy vehicles, coal liquefaction/gasification, and traverse themes; 1997 nendo chosa hokokusho. Shin energy gijutsu kaihatsu kankei data shu sakusei chosa (haikibutsu hatsuden, taiyonetsu riyo, chinetsu hatsuden, clean energy jidosha, sekitan ekika gas ka oyobi odanteki theme)

    NONE

    1998-03-01

    The paper collected and arranged data on new energy technology. As to the waste power generation, in terms of general waste, 161 places have power generation facilities, 657,000 kW in output, as of the end of FY 1996. Out of them, 100 facilities (scale of output: 555,000 kW) are selling power. In terms of industrial waste, 53 places (209,000 kW) have power generation facilities. The output will be 2 million kW in FY 2000. In relation to the solar energy utilization, the number of solar systems introduced in FY 1996 is 25,000, that of water heating appliances produced in FY 1996 is 170,000. Geothermal power of 494,000 kW and 37,000 kW was introduced for electric power industry use and private use, respectively. Clean energy vehicles have not been so much spread, but the hybrid car was put on sale in 1997. Concerning the coal liquefaction, the R and D were made at a pilot plant of NEDOL process, and operation started in 1997. As to the coal gasification, investigational study and element study on the demonstration plant are being conducted in FY 1997 and 1998, making use of the research results obtained from the existing pilot plant of coal gasification combined power generation

  7. Health impacts of geothermal energy

    Layton, D.W.; Anspaugh, L.R.

    1982-01-01

    Geothermal resources are used to produce electrical energy and to supply heat for non-electric applications like residential heating and crop drying. The utilization of geothermal energy consists of the extraction of hot water or steam from an underground reservoir followed by different methods of surface processing along with the disposal of liquid, gaseous, and even solid wastes. The focus of this paper is on electric power production using geothermal resources greater than 150 0 C because this form of geothermal energy utilization has the most serious health-related consequences. Based on measurements and experience at existing geothermal power plants, atmospheric emissions of non-condensing gases such as hydrogen sulphide and benzene pose the greatest hazards to public health. Surface and ground waters contaminated by discharges of spent geothermal fluids constitute another health hazard. In this paper it is shown that hydrogen sulphide emissions from most geothermal power plants are apt to cause odour annoyances among members of the exposed public -some of whom can detect this gas at concentrations as low as 0.002 ppmv. A risk-assessment model is used to estimate the lifetime risk of incurring leukaemia from atmospheric benzene caused by 2000 MW(e) of geothermal development in California's Imperial Valley. Also assessed is the risk of skin cancer due to the ingestion of river water in New Zealand that is contaminated by waste geothermal fluids containing arsenic. Finally, data on the occurrence of occupational disease in the geothermal industry is briefly summarized. (author)

  8. Utilization of geothermal energy for agribusiness development in southwestern New Mexico. Technical completion report, July 19, 1978-May 30, 1980

    Landsford, R.R.; Abernathy, G.H.; Gollehon, N.R.

    1981-01-01

    An evaluation is presented of the direct heat utilization from geothermal resources for agribusiness uses in the Animas Valley, Southwestern New Mexico. The analysis includes an evaluation of the groundwater and geothermal resources in the Animas Valley, monitoring of an existing geothermal greenhouse, and evaluation of two potential agribusiness applications of geothermal waters (greenhouses and meat precooking).

  9. District space heating potential of low temperature hydrothermal geothermal resources in the southwestern United States. Technical report

    McDevitt, P.K.; Rao, C.R.

    1978-10-01

    A computer simulation model (GIRORA-Nonelectric) is developed to study the economics of district space heating using geothermal energy. GIRORA-Nonelectric is a discounted cashflow investment model which evaluates the financial return on investment for space heating. This model consists of two major submodels: the exploration for and development of a geothermal anomaly by a geothermal producer, and the purchase of geothermal fluid by a district heating unit. The primary output of the model is a calculated rate of return on investment earned by the geothermal producer. The results of the sensitivity analysis of the model subject to changes in physical and economic parameters are given in this report. Using the results of the economic analysis and technological screening criteria, all the low temperature geothermal sites in Southwestern United States are examined for economic viability for space heating application. The methodology adopted and the results are given.

  10. Geothermal progress monitor: Report No. 17

    NONE

    1995-12-01

    DOE is particularly concerned with reducing the costs of geothermal power generation, especially with the abundant moderate to low-temperature resources in the US. This concern is reflected in DOE`s support of a number of energy conversion projects. Projects which focus on the costs and performance of binary cycle technology include a commercial demonstration of supersaturated turbine expansions, which earlier studies have indicated could increase the power produced per pound of fluid. Other binary cycle projects include evaluations of the performance of various working fluid mixtures and the development and testing of advanced heat rejection systems which are desperately needed in water-short geothermal areas. DOE is also investigating the applicability of flash steam technology to low-temperature resources, as an economic alternative to binary cycle systems. A low-cost, low-pressure steam turbine, selected for a grant, will be constructed to utilize fluid discharged from a flash steam plant in Nevada. Another project addresses the efficiency of high-temperature flash plants with a demonstration of the performance of the Biphase turbine which may increase the power output of such installations with no increase in fluid flow. Perhaps the most noteworthy feature of this issue of the GPM, the 17th since its inception in 1980, is the high degree of industry participation in federally-sponsored geothermal research and development. This report describes geothermal development activities.

  11. Recovery act. Characterizing structural controls of EGS-candidate and conventional geothermal reservoirs in the Great Basin. Developing successful exploration strategies in extended terranes

    Faulds, James [Univ. of Nevada, Reno, NV (United States)

    2015-06-25

    We conducted a comprehensive analysis of the structural controls of geothermal systems within the Great Basin and adjacent regions. Our main objectives were to: 1) Produce a catalogue of favorable structural environments and models for geothermal systems. 2) Improve site-specific targeting of geothermal resources through detailed studies of representative sites, which included innovative techniques of slip tendency analysis of faults and 3D modeling. 3) Compare and contrast the structural controls and models in different tectonic settings. 4) Synthesize data and develop methodologies for enhancement of exploration strategies for conventional and EGS systems, reduction in the risk of drilling non-productive wells, and selecting the best EGS sites.

  12. Geochemistry of thermal/mineral waters in the Clear Lake region, California, and implications for hot dry rock geothermal development

    Goff, F.; Adams, A.I.; Trujillo, P.E.; Counce, D.; Mansfield, J.

    1993-02-01

    Thermal/mineral waters of the Clear Lake region are broadly classified as thermal meteoric and connote types based on chemical and isotopic criteria. Ratios of conservative components such as B/Cl are extremely different among all thermal/mineral waters of the Clear Lake region except for clusters of waters emerging from specific areas such as the Wilbur Springs district and the Agricultural Park area south of Mt. Konocti. In contrast, ratios of conservative components in large, homogeneous geothermal reservoirs are constant. Stable isotope values of Clear Lake region waters show a mixing trend between thermal meteoric and connote end-members. The latter end-member has enriched [delta]D as well as enriched d[sup l8]O, very different from typical high-temperature geothermal reservoir waters. Tritium data and modeling of ages indicate most Clear Lake region waters are 500 to > 10,000 yr., although mixing of old and young components is implied by the data. The age of end-member connate water is probably > 10,000 yr. Subsurface equilibration temperature of most thermal/mineral waters of the Clear Lake region is [le] 150[degrees]C based on chemical geothermometers but it is recognized that Clear Lake region waters are not typical geothermal fluids and that they violate rules of application of many geothermometers. The combined data indicate that no large geothermal reservoir underlies the Clear Lake region and that small localized reservoirs have equilibration temperatures [le] 150[degrees]C (except for Sulphur Bank Mine). Hot dry rock technologies are the best way to commercially exploit the known high temperatures existing beneath the Clear Lake region, particularly within the main Clear Lake volcanic field.

  13. Twelfth workshop on geothermal reservoir engineering: Proceedings

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Rivera, J. (Stanford Geothermal Program)

    1987-01-22

    Preface The Twelfth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 20-22, 1987. The year ending December 1986 was very difficult for the domestic geothermal industry. Low oil prices caused a sharp drop in geothermal steam prices. We expected to see some effect upon attendance at the Twelfth Workshop. To our surprise, the attendance was up by thirteen from previous years, with one hundred and fifty-seven registered participants. Eight foreign countries were represented: England, France, Iceland, Italy, Japan, Mexico, New Zealand, and Turkey. Despite a worldwide surplus of oil, international geothermal interest and development is growing at a remarkable pace. There were forty-one technical presentations at the Workshop. All of these are published as papers in this Proceedings volume. Seven technical papers not presented at the Workshop are also published; they concern geothermal developments and research in Iceland, Italy, and New Zealand. In addition to these forty-eight technical presentations or papers, the introductory address was given by Henry J. Ramey, Jr. from the Stanford Geothermal Program. The Workshop Banquet speaker was John R. Berg from the Department of Energy. We thank him for sharing with the Workshop participants his thoughts on the expectations of this agency in the role of alternative energy resources, specifically geothermal, within the country???s energy framework. His talk is represented as a paper in the back of this volume. The chairmen of the technical sessions made an important contribution to the workshop. Other than Stanford faculty members they included: M. Gulati, K. Goyal, G.S. Bodvarsson, A.S. Batchelor, H. Dykstra, M.J. Reed, A. Truesdell, J.S. Gudmundsson, and J.R. Counsil. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and students. We would like to thank Jean Cook, Marilyn King, Amy Osugi, Terri Ramey, and Rosalee Benelli for their valued help with the meeting

  14. Report (summarized) for fiscal 2000 on survey for demonstration of geothermal exploration technologies. Development of exploration method using reservoir bed fluctuation (Theme 5-1. Reservoir fluctuation forecasting technology); 2000 nendo chinetsu tansa gijutsu to kensho chosa hokokusho (yoyaku). Choryuso hendo tansaho kaihatsu - 5-1 (choryuso hendo yosoku gijutsu)

    NONE

    2001-03-01

    With an objective of developing a method effective to evaluate reservoir beds in the initial stage of development, to maintain output stability of power plants after having started the operation and to extract reservoirs existing in the vicinity of areas that have already been developed, R and D has been performed in relation with a reservoir simulator on post processors for gravity, SP, and resistivity, and on reservoir modeling. This paper summarizes the achievements in fiscal 2000. In developing the resistivity post processor, a prototype was completed. In developing the resistivity post processor for MT/CSAMT method, an analysis code was structured, and an input/output format was discussed. In developing the seismic wave post processor, a seismic wave characteristics fluctuation model was formulated. Regarding the input/output aiding GUI tools, a conceptual design was made. In developing the reservoir modeling technology, production forecasting simulation using a porous model and an MINC model was performed for the Sumikawa area. Based on the result thereof, forecast calculation was carried out on gravity change, resistivity change and natural potential change. (NEDO)

  15. Development of sodium technology

    Hwang, Sung Tai; Nam, H. Y.; Choi, Y. D.

    2000-05-01

    The objective of present study is to produce the experimental data for development and verification of computer codes for development of LMR and to develop the preliminary technologies for the future large scale verification experiments. A MHD experimental test loop has been constructed for the quantitative analysis of the effect of magnetic field on the sodium flow and experiments are carried out for three EM pumps. The previous pressure drop correlations are evaluated using the experimental data obtained from the pressure drop experiment in a 19-pin fuel assembly with wire spacer. An dimensionless variable is proposed to describe the amplitude and frequency of the fluctuation of free surface using the experimental data obtained from free surface experimental apparatus and an empirical correlation is developed using this dimensionless variable. An experimental test loop is constructed to measure the flow characteristics in IHX shell side and the local pressure drop in fuel assembly, and to test the vibration behaviour of fuel pins due to flow induced vibration. The sodium two-phase flow measuring technique using the electromagnetic flowmeter is developed and the sodium differential pressure drop measuring technique using the method of direct contact of sodium and oil is established. The work on the analysis of sodium fire characteristics and produce data for vlidation of computer code is performed. Perfect reopen time of self plugged leak path was observed to be about 130 minutes after water leak initiation. Reopen shape of a specimen appeared to be double layer of circular type, and reopen size of this specimen surface was about 2mm diameter on sodium side. In small water leakage experiments, the following correlation equation about the reopen time between sodium temperature and initial leak rate was obtained, τ c = δ·g -0.83 ·10 (3570/T Na -3.34) , in 400-500 deg C of liquid sodium atmosphere. The characteristics of pressure propagation and gas flow, and

  16. Development of sodium technology

    Hwang, Sung Tai; Nam, H Y; Choi, Y D [and others

    2000-05-01

    The objective of present study is to produce the experimental data for development and verification of computer codes for development of LMR and to develop the preliminary technologies for the future large scale verification experiments. A MHD experimental test loop has been constructed for the quantitative analysis of the effect of magnetic field on the sodium flow and experiments are carried out for three EM pumps. The previous pressure drop correlations are evaluated using the experimental data obtained from the pressure drop experiment in a 19-pin fuel assembly with wire spacer. An dimensionless variable is proposed to describe the amplitude and frequency of the fluctuation of free surface using the experimental data obtained from free surface experimental apparatus and an empirical correlation is developed using this dimensionless variable. An experimental test loop is constructed to measure the flow characteristics in IHX shell side and the local pressure drop in fuel assembly, and to test the vibration behaviour of fuel pins due to flow induced vibration. The sodium two-phase flow measuring technique using the electromagnetic flowmeter is developed and the sodium differential pressure drop measuring technique using the method of direct contact of sodium and oil is established. The work on the analysis of sodium fire characteristics and produce data for vlidation of computer code is performed. Perfect reopen time of self plugged leak path was observed to be about 130 minutes after water leak initiation. Reopen shape of a specimen appeared to be double layer of circular type, and reopen size of this specimen surface was about 2mm diameter on sodium side. In small water leakage experiments, the following correlation equation about the reopen time between sodium temperature and initial leak rate was obtained, {tau}{sub c} = {delta}{center_dot}g{sup -0.83}{center_dot}10{sup (3570/T{sub Na}-3.34)}, in 400-500 deg C of liquid sodium atmosphere. The characteristics

  17. Report on the geothermal development promotion survey. No.B-7. Kuwanosawa area; Chinetsu kaihatsu sokushin chosa hokokusho. No. B-7 Kuwanosawa chiiki

    NONE

    2002-03-01

    The paper summed up the results of the geothermal development promotion survey B 'Kuwanosawa area' which was carried out in Yuzawa city, Akita prefecture, from FY 1998 to FY 1999. In the survey, the following were conducted for the comprehensive analysis: geology/alteration zone survey, gravity exploration, electromagnetic exploration, environmental effect survey, well geology survey by drilling structural boreholes of N11-KN-1 and N12-KN-2, cuttings test, temperature log, temperature recovery test, electrical log, water injection test, etc. The geology in the Kuwanosawa area is composed of Pre-neogene period basement rocks, Neogene system and Quaternary system. In this area, there were recognized no gush of geothermal fluids such as hot spring and fumarolic gas and no obvious geothermal manifestation such as high-temperature places and new geothermal alteration zones. Around N12-KN-2, there exists the geothermal water with comparatively high-temperature/high-Cl concentration which is similar to that in the Wasabizawa area, but how it flows is unknown because there was no lost circulation in the depths of the borehole. Around N11-KN-1, there exists the low-temperature/low-Cl concentration geothermal water originating in meteoric water, and therefore, the area can be a rechargeable area. The Kuwanosawa area is regarded as the periphery of the Wasabizawa-Akinomiya geothermal area. (NEDO)

  18. Report on the geothermal development promotion survey. No.B-7. Kuwanosawa area; Chinetsu kaihatsu sokushin chosa hokokusho. No. B-7 Kuwanosawa chiiki

    NONE

    2002-03-01

    The paper summed up the results of the geothermal development promotion survey B 'Kuwanosawa area' which was carried out in Yuzawa city, Akita prefecture, from FY 1998 to FY 1999. In the survey, the following were conducted for the comprehensive analysis: geology/alteration zone survey, gravity exploration, electromagnetic exploration, environmental effect survey, well geology survey by drilling structural boreholes of N11-KN-1 and N12-KN-2, cuttings test, temperature log, temperature recovery test, electrical log, water injection test, etc. The geology in the Kuwanosawa area is composed of Pre-neogene period basement rocks, Neogene system and Quaternary system. In this area, there were recognized no gush of geothermal fluids such as hot spring and fumarolic gas and no obvious geothermal manifestation such as high-temperature places and new geothermal alteration zones. Around N12-KN-2, there exists the geothermal water with comparatively high-temperature/high-Cl concentration which is similar to that in the Wasabizawa area, but how it flows is unknown because there was no lost circulation in the depths of the borehole. Around N11-KN-1, there exists the low-temperature/low-Cl concentration geothermal water originating in meteoric water, and therefore, the area can be a rechargeable area. The Kuwanosawa area is regarded as the periphery of the Wasabizawa-Akinomiya geothermal area. (NEDO)

  19. The use of Geothermal Energy Resources in the Tourism Industry of Vojvodina (Northern Serbia

    Nemanja Tomić

    2013-01-01

    Full Text Available Exploitation of geothermal energy in Vojvodina is still at an unjustly low level taking into account the abundance of resource locations, some of which are ranked among the most affluent in Europe. Moreover, development of geothermal exploitation started in Serbia at about the same time as in other countries whose geothermal energy facilities are now at the highest technological level and which are leaders in this field. The largest use of geothermal energy in Vojvodina is present in the non-energetic area, especially in spas and sports–recreational centers. Other, seasonal consumers of geothermal energy are from the field of industry and agricultural production where the energy is used for heating of cattle and poultry farms, greenhouses and other facilities. However these consumers use only a small portion of available geothermal resources. The main users are those from the tourism industry. The goal of this paper is to give an overview and an analysis of the use of geothermal energy resources, mainly geothermal waters, in the tourism industry of Vojvodina. It shows how these resources are used and also for what are they used by the tourism industry. The paper covers only geothermal resources that are currently being used by the tourism industry. The potential for future usage in this area is also briefly discussed

  20. Telephone Flat Geothermal Development Project Environmental Impact Statement Environmental Impact Report. Final: Comments and Responses to Comments

    None

    1999-02-01

    This document is the Comments and Responses to Comments volume of the Final Environmental Impact Statement and Environmental Impact Report prepared for the proposed Telephone Flat Geothermal Development Project (Final EIS/EIR). This volume of the Final EIS/EIR provides copies of the written comments received on the Draft EIS/EIR and the leady agency responses to those comments in conformance with the requirements of the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA).