WorldWideScience

Sample records for geothermal development opportunities

  1. The development of geothermal energy constraints and opportunities

    International Nuclear Information System (INIS)

    Bronicki, L.Y.; Doron, B.

    1990-01-01

    No single resource can meet the world energy demand. What is under consideration is the possible contribution of geothermal energy in the future. According to World Energy Council (WEC) perspectives, by 2020 the new energy resources will contribute 170 to 365 MTOE, of which the share of hydropower will be very significant. This is a realistic view based on the actual state of the market. This paper reports on the competitive advantages and economics of geothermal energy development

  2. Success in geothermal development

    International Nuclear Information System (INIS)

    Stefansson, V.

    1992-01-01

    Success in geothermal development can be defined as the ability to produce geothermal energy at compatible energy prices to other energy sources. Drilling comprises usually the largest cost in geothermal development, and the results of drilling is largely influencing the final price of geothermal energy. For 20 geothermal fields with operating power plants, the ratio between installed capacity and the total number of well in the field is 1.9 MWe/well. The drilling history in 30 geothermal fields are analyzed by plotting the average cumulative well outputs as function of the number of wells drilled in the field. The range of the average well output is 1-10 MWe/well with the mean value 4.2 MWe/well for the 30 geothermal fields studied. A leaning curve is defined as the number of wells drilled in each field before the average output per well reaches a fairly constant value, which is characteristic for the geothermal reservoir. The range for this learning time is 4-36 wells and the average is 13 wells. In general, the average well output in a given field is fairly constant after some 10-20 wells has been drilled in the field. The asymptotic average well output is considered to be a reservoir parameter when it is normalized to the average drilling depth. In average, this reservoir parameter can be expressed as 3.3 MWe per drilled km for the 30 geothermal fields studied. The lifetime of the resource or the depletion time of the geothermal reservoir should also be considered as a parameter influencing the success of geothermal development. Stepwise development, where the reservoir response to the utilization for the first step is used to determine the timing of the installment of the next step, is considered to be an appropriate method to minimize the risk for over investment in a geothermal field

  3. Geothermal Greenhouse Development Update

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, Paul J.

    1997-01-01

    Greenhouse heating is one of the popular applications of low-to moderated-temperature geothermal resources. Using geothermal energy is both an economical and efficient way to heat greenhouses. Greenhouse heating systems can be designed to utilize low-temperature (>50oC or 122oF) resources, which makes the greenhouse an attractive application. These resources are widespread throughout the western states providing a significant potential for expansion of the geothermal greenhouse industry. This article summarizes the development of geothermal heated greenhouses, which mainly began about the mid-1970's. Based on a survey (Lienau, 1988) conducted in 1988 and updated in 1997, there are 37 operators of commercial greenhouses. Table 1 is a listing of known commercial geothermal greenhouses, we estimate that there may be an additional 25% on which data is not available.

  4. Geothermal development plan: Maricopa County

    Energy Technology Data Exchange (ETDEWEB)

    White, D.H.; Goldstone, L.A.

    1982-08-01

    The Maricopa County Geothermal Development Plan evaluated the market potential for utilizing geothermal energy. The study identified six potential geothermal resource areas with temperatures less than 100{sup 0}C (212{sup 0}F) and in addition, four suspected intermediate temperature areas (90{sup 0} to 150{sup 0}C, 194{sup 0} to 300{sup 0}F). Geothermal resources are found to occur in and near the Phoenix metropolitan area where average population growth rates of two to three percent per year are expected over the next 40 years. Rapid growth in the manufacturing, trade and service sectors of the regional economy provides opportunities for the direct utilization of geothermal energy. A regional energy use analysis is included containing energy use and price projections. Water supplies are found to be adequate to support this growth, though agricultural water use is expected to diminish. The study also contains a detailed section matching geothermal resources to potential users. Two comparative analyses providing economic details for space heating projects are incorporated.

  5. The Geothermal Potential, Current and Opportunity in Taiwan

    Science.gov (United States)

    Song, Sheng-Rong

    2016-04-01

    -load electricity and offers an opportunity for a country with naturally free-resource and less dependence on fossil fuel. However, development of geothermal energy has been stopped for more than 30 years, and currently no working geothermal power plant existed in Taiwan. To jump-start the geothermal exploitation rather than solely rely on knowledge, we also need to introduce the techniques from outside of this country.

  6. Development of geothermal resources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This paper describes the geothermal development promotion survey project. NEDO is taking the lead in investigation and development to reduce risks for private business entities and promote their development. The program is being moved forward by dividing the surveys into three ranks of A, B and C from prospects of geothermal resource availability and the state of data accumulation. The survey A lacks number of data, but covers areas as wide as 100 to 300 km{sup 2}, and studies possible existence of high-temperature geothermal energy. The survey B covers areas of 50 to 70 km{sup 2}, investigates availability of geothermal resources, and assesses environmental impacts. The survey C covers areas of 5 to 10 km{sup 2}, and includes production well drilling and long-term discharge tests, other than those carried out by the surveys A and B. Results derived in each fiscal year are evaluated and judged to establish development plans for the subsequent fiscal year. This paper summarizes development results on 38 areas from among 45 areas surveyed since fiscal 1980. Development promotion surveys were carried out over seven areas in fiscal 1994. Development is in progress not only on utilization of high-temperature steam, but also on binary cycle geothermal power generation utilizing hot waters of 80 to 150{degree}C. Fiscal 1994 has carried out discussions for spread and practical use of the systems (particularly on economic effects), and development of small-to-medium scale binary systems. 2 figs., 1 tab.

  7. Opportunities for Small Geothermal Projects: Rural Power for Latin America, the Caribbean, and the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Vimmerstedt, L.

    1998-11-30

    The objective of this report is to provide information on small geothermal project (less than 5 MW) opportunities in Latin America, the Caribbean, and the Philippines. This overview of issues facing small geothermal projects is intended especially for those who are not already familiar with small geothermal opportunities. This is a summary of issues and opportunities and serves as a starting point in determining next steps to develop this market.

  8. Opportunities for Small Geothermal Projects: Rural Power for Latin America, the Caribbean, and the Philippines

    International Nuclear Information System (INIS)

    Vimmerstedt, L.

    1998-01-01

    The objective of this report is to provide information on small geothermal project (less than 5 MW) opportunities in Latin America, the Caribbean, and the Philippines. This overview of issues facing small geothermal projects is intended especially for those who are not already familiar with small geothermal opportunities. This is a summary of issues and opportunities and serves as a starting point in determining next steps to develop this market

  9. Review of international geothermal activities and assessment of US industry opportunities: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1987-08-01

    This study was initiated to review and assess international developments in the geothermal energy field and to define business opportunities for the US geothermal industry. The report establishes data bases on the status of worldwide geothermal development and the competitiveness of US industry. Other factors identified include existing legislation, tax incentives, and government institutions or agencies and private sector organizations that promote geothermal exports. Based on the initial search of 177 countries and geographic entities, 71 countries and areas were selected as the most likely targets for the expansion of the geothermal industry internationally. The study then determined to what extent their geothermal resource had been developed, what countries had aided or participated in this development, and what plans existed for future development. Data on the energy, economic, and financial situations were gathered.

  10. Review of international geothermal activities and assessment of US industry opportunities: Summary report

    Energy Technology Data Exchange (ETDEWEB)

    1987-08-01

    This report summarizes a study initiated to review and assess international developments in the geothermal energy field and to define business opportunities for the US geothermal industry. The report establishes data bases on the status of worldwide geothermal development and the competitiveness of US industry. Other factors identified include existing legislation, tax incentives, and government institutions or agencies and private sector organizations that promote geothermal exports. Based on the initial search of 177 countries and geographic entities, 71 countries and areas were selected as the most likely targets for the expansion of the geothermal industry internationally. The study then determined to what extent their geothermal resource had been developed, what countries had aided or participated in this development, and what plans existed for future development. Data on the energy, economic, and financial situations were gathered.

  11. Issues related to geothermal development

    International Nuclear Information System (INIS)

    Lesperance, G.O.

    1990-01-01

    This paper reports on a number of potential barriers to geothermal development in Hawaii which have been overcome but some remain. Efforts continue to address issues relating to transmission, project economics, the regulatory process, resource verification, and public acceptance

  12. Colorado geothermal commercialization program. Geothermal energy opportunities at four Colorado towns: Durango, Glenwood Springs, Idaho Springs, Ouray

    Energy Technology Data Exchange (ETDEWEB)

    Coe, B.A.; Zimmerman, J.

    1981-01-01

    The potential of four prospective geothermal development sites in Colorado was analyzed and hypothetical plans prepared for their development. Several broad areas were investigated for each site. The first area of investigation was the site itself: its geographic, population, economic, energy demand characteristics and the attitudes of its residents relative to geothermal development potential. Secondly, the resource potential was described, to the extent it was known, along with information concerning any exploration or development that has been conducted. The third item investigated was the process required for development. There are financial, institutional, environmental, technological and economic criteria for development that must be known in order to realistically gauge the possible development. Using that information, the next concern, the geothermal energy potential, was then addressed. Planned, proposed and potential development are all described, along with a possible schedule for that development. An assessment of the development opportunities and constraints are included. Technical methodologies are described in the Appendix. (MHR)

  13. Geothermal energy development in Turkey

    International Nuclear Information System (INIS)

    Simsek, S.; Okandan, E.

    1990-01-01

    Geothermal fields in Turkey are related to rather complex zones of collision between the Eurasian and African continents, and penetration of the Arabian plate into the Anatolian continental mass. These processes gave rise to fracturing of the lithosphere and eruption of magmas. Geothermal regional assessment studies have proven several low enthalpy sources and some high enthalpy fields suitable for electricity generation. This paper summarizes developments in exploration-drilling and give examples of direct utilization implemented in recent years

  14. State policies for geothermal development

    Energy Technology Data Exchange (ETDEWEB)

    Sacarto, D.M.

    1976-01-01

    The most prominent geothermal resources in the USA occur in fifteen Gulf and Western states including Alaska and Hawaii. In each state, authority and guidelines have been established for administration of geothermal leasing and for regulation of development. Important matters addressed by these policies include resource definition, leasing provisions, development regulations, water appropriation, and environmental standards. Some other policies that need attention include taxation, securities regulations, and utility regulations. It is concluded that conditions needed for the geothermal industry to pursue large-scale development are consumer (utility) confidence in the resource; equitable tax treatment; prompt exploration of extensive land areas; long and secure tenure for productive properties; prompt facility siting and development; and competitive access to various consumers. With these conditions, the industry should be competitive with other energy sectors and win its share of investment capital. This publication reviews for the states various technical, economic, and institutional aspects of geothermal development. The report summarizes research results from numerous specialists and outlines present state and Federal policies. The report concludes generally that if public policies are made favorable to their development, geothermal resources offer an important energy resource that could supply all new electric capacity for the fifteen states for the next two decades. This energy--100,000 MW--could be generated at prices competitive with electricity from fossil and nuclear power plants. An extensive bibliography is included. (MCW)

  15. Geothermal energy: opportunities for California commerce. Phase I report

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    California's geographic and end-use markets which could directly use low and moderate temperature geothermal resources are ranked and described, as well as those which have the highest potential for near-term commercial development of these resources. Building on previous market surveys, the assessment determined that out of 38 geothermal resource areas with characteristics for direct use development, five areas have no perceived impediments to near-term development: Susanville, Litchfield, Ontario Hot Springs, Lake Elsinore, and the Salton Sea Geothermal Field. Twenty-nine applications were compared with previously selected criteria to determine their near-term potential for direct use of geothermal fluids. Seven categories were found to have the least impediments to development; agriculture and district heating applications are considered the highest. Ten-year projections were conducted for fossil fuel displacement from the higher rated applications. It is concluded that greenhouses have the greatest displacement of 18 x 10/sup 6/ therms per year.

  16. Imperial County geothermal development annual meeting: summary

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    All phases of current geothermal development in Imperial County are discussed and future plans for development are reviewed. Topics covered include: Heber status update, Heber binary project, direct geothermal use for high-fructose corn sweetener production, update on county planning activities, Brawley and Salton Sea facility status, status of Imperial County projects, status of South Brawley Prospect 1983, Niland geothermal energy program, recent and pending changes in federal procedures/organizations, plant indicators of geothermal fluid on East Mesa, state lands activities in Imperial County, environmental interests in Imperial County, offshore exploration, strategic metals in geothermal fluids rebuilding of East Mesa Power Plant, direct use geothermal potential for Calipatria industrial Park, the Audubon Society case, status report of the Cerro Prieto geothermal field, East Brawley Prospect, and precision gravity survey at Heber and Cerro Prieto geothermal fields. (MHR)

  17. A Technology Roadmap for Strategic Development of Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ziagos, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Phillips, Benjamin R. [SRA International, Inc. and Geothermal Technologies Office, Washington, DC (United States); Boyd, Lauren [Geothermal Technologies Office, Washington, DC (United States); Jelacic, Allan [SRA International, Inc., Washington, DC (United States); Stillman, Greg [Geothermal Technologies Office, Washington, DC (United States); Hass, Eric [U.S. DOE, Golden, CO (United States)

    2013-02-13

    Realization of EGS development would make geothermal a significant contender in the renewable energy portfolio, on the order of 100+ GWe in the United States alone. While up to 90% of the geothermal power resource in the United States is thought to reside in Enhanced Geothermal Systems (EGS), hurdles to commercial development still remain. The Geothermal Technologies Office, U.S. Department of Energy (DOE), began in 2011 to outline opportunities for advancing EGS technologies on five- to 20-year timescales, with community input on the underlying technology needs that will guide research and ultimately determine commercial success for EGS. This report traces DOE's research investments, past and present, and ties them to these technology needs, forming the basis for an EGS Technology Roadmap to help guide future DOE research. This roadmap is currently open for public comment. Send your comments to geothermal@ee.doe.gov.

  18. Advanced seismic imaging for geothermal development

    Energy Technology Data Exchange (ETDEWEB)

    Louie, John [UNR; Pullammanappallil, Satish [Optim; Honjas, Bill [Optim

    2016-08-01

    J. N. Louie, Pullammanappallil, S., and Honjas, W., 2011, Advanced seismic imaging for geothermal development: Proceedings of the New Zealand Geothermal Workshop 2011, Nov. 21-23, Auckland, paper 32, 7 pp. Preprint available at http://crack.seismo.unr.edu/geothermal/Louie-NZGW11.pdf

  19. Mexican geothermal development and the future

    International Nuclear Information System (INIS)

    Serrano, J.M.E.V.

    1998-01-01

    Geothermics in Mexico started in 1954, by drilling the first geothermal well in Pathe, State of Hidalgo, which reached a depth of 237 meters. In 1959 electrical generation from geothermal origin began, with an installed capacity of 3.5 MW. From 1959 to 1994 Mexico increased its installed capacity to 753 MW, by developing three geothermal fields: Cerro Prieto, Los Azufres, and Los Humeros. Currently, 177 wells produce steam at a rate of 36 tons per hour (t/h) each. Comision Federal de Electricidad (CFE, Federal Commission of Electricity) has planned to increase the geothermal-electric installed capacity through construction and installation of several projects. Repowering of operating units and development of new geothermal zones will also allow Mexican geothermal growth

  20. Geothermal Program Review VII: proceedings. DOE Research and Development for the Geothermal Marketplace

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    Each year the Geothermal Technology Division of the US Department of Energy conducts an indepth review of its entire geothermal R and D program. The 2--3 day conference serves several purposes: a status report on current R and D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal industry. This year's conference, Program Review 7, was held in San Francisco on March 21--23, 1989. As indicated by its title, ''DOE Research and Development for the Geothermal Marketplace'', Program Review 7 emphasized developing technologies, concepts, and innovations having potential for commercial application in the foreseeable future. Program Review 7 was comprised of eight sessions including an opening session and a special presentation on the ''Role of Geothermal Energy in Minimizing Global Environmental Problems.'' The five technical sessions covered GTD-sponsored R and D in the areas of hydrothermal (two sessions), hot dry rock, geopressured, and magma. Presentations were made by the relevant field researchers, and sessions were chaired by the appropriate DOE Operations Office Geothermal Program Manager. The technical papers and commentary of invited speakers contained in these Proceedings have been compiled in the order in which they were presented at Program Review 7.

  1. Pollution Control Guidance for Geothermal Energy Development

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, Robert P.

    1978-06-01

    This report summarizes the EPA regulatory approach toward geothermal energy development. The state of knowledge is described with respect to the constituents of geothermal effluents and emissions, including water, air, solid wastes, and noise. Pollutant effects are discussed. Pollution control technologies that may be applicable are described along with preliminary cost estimates for their application. Finally discharge and emission limitations are suggested that may serve as interim guidance for pollution control during early geothermal development.

  2. Report on a mission to the Philippines regarding the opportunities for private investment in geothermal power generation

    International Nuclear Information System (INIS)

    1990-12-01

    The Philippines has a rich potential for geothermal energy development, according to the assessment of opportunities for U.S. private investment in the sector. Areas covered in detail are the Philippines' geothermal resources, the legal structure of the geothermal industry, conditions acting as stimuli to geothermal power generation, and interest in private geothermal investment. Major finding are as follows. (1) The Philippine geothermal power industry is the world's second largest. (2) Geothermal resources are owned by the Government of the Philippines and a complex legal structure governs their exploitation. (3) Since the Philippines is poor in most energy resources (e.g., coal, oil, and gas), use of geothermal energy is necessary. (4) Despite legal and structural obstacles, various foreign private enterprises are interested in participating in geothermal development. Two possible options for U.S. investors are presented: a joint venture with the National Oil Company, and negotiation of a service contract, either alone or with a Philippine partner, for a concession on land administered by the Office of Energy Affairs

  3. Geothermal energy: opportunities for California commerce. Phase I report

    Energy Technology Data Exchange (ETDEWEB)

    Longyear, A.B. (ed.)

    1981-12-01

    The potential geothermal direct-use energy market and its application to projects in California are assessed. Project identification effort is to be focused on those that have the highest probability for near-term successful commercial operations. Near-term herein means 2 to 5 years for project implementation. Phase I has been focused on defining and assessing: (1) the geothermal direct-use resources that are suitable for near-term utilization; and (2) the generic applications (municipal heating districts, horticultural greenhouse firms, laundries, etc.) that are suitable for near-term projects. Five economic development regions in the state, containing recognized geothermal direct-use resources, have been defined. Thirty-eight direct use resources have been evaluated in these regions. After assessment against pre-selected criteria, twenty-seven have been rated with a priority of I, II or III, thereby qualifying them for further marketing effort. The five areas with a priority of I are summarized. These areas have no perceived impediments to near-term development. Twenty-nine generic categories of applications were assessed against previously selected criteria to determine their near term potential for direct use of geothermal fluids. Some twenty industry, commercial and institutional application categories were rated with a priority of I, II or III and warrant further marketing efforts. The seven categories with a priority of I are listed. These categories were found to have the least impediments to near-term application projects.

  4. Geothermal Field Development in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, Hector Alonso

    1983-12-15

    Mexico is a Country characterized by its diversified means of Power Gerneration. Actual installed capacity is almost 19000 MW, of which 205 MW corresponds to Geothermal Plants, that is, 180 MW in Cerro Prieto and 25 MW of Portable Plants in Los Azufres. To date, 346 area with exploitation possibilites, are known. They are mainly distributed along the Volcanic Belt where the most prominent are, Los Azufres, La Primavera, Los Humeros, Ixtlan De Los Hervores and Los Negritos, among others. Proved reserves are 920 MW, and the accessible resource base are 4600 MW identified and 6000 MW undiscovered. The long range construction studies intends to achieve a total installed capacity of 100000 MW, by the end of this century, including 2000 MW Geothermal, through conventional and Portable Plants. It is not a definite program but a development strategy. The carrying out of a definite program, will depend upon the confirmation of Hypothesis made in previous studies, and the economic decisions related to the financial sources availability, and techologies to be used in the future as well.

  5. Geothermal development plan: Maricopa county

    Energy Technology Data Exchange (ETDEWEB)

    White, D.H.

    1981-01-01

    Maricopa county is the area of Arizona receiving top priority since it contains over half of the state's population. The county is located entirely within the Basin and Range physiographic region in which geothermal resources are known to occur. Several approaches were taken to match potential users to geothermal resources. One approach involved matching some of the largest facilities in the county to nearby geothermal resources. Other approaches involved identifying industrial processes whose heat requirements are less than the average assessed geothermal reservoir temperature of 110/sup 0/C (230/sup 0/F). Since many of the industries are located on or near geothermal resources, geothermal energy potentially could be adapted to many industrial processes.

  6. Environmental overview of geothermal development: northern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Slemmons, D.B.; Stroh, J.M.; Whitney, R.A. (eds.)

    1980-08-01

    Regional environmental problems and issues associated with geothermal development in northern Nevada are studied to facilitate environmental assessment of potential geothermal resources. The various issues discussed are: environmental geology, seismicity of northern Nevada, hydrology and water quality, air quality, Nevada ecosystems, noise effects, socio-economic impacts, and cultural resources and archeological values. (MHR)

  7. Geothermal resources development project: Phase I

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-30

    Generic and site specific issues and problems are identified that relate directly to geothermal development in California, including changes in the state permitting process, land use issues, coordination between state entities, and geothermal revenues from BLM leased lands. Also discussed are the formation of working groups, preparation of a newsletter, the economic incentives workshops, and recommendations for future actions. (MHR)

  8. Update of geothermal energy development in Greece

    International Nuclear Information System (INIS)

    Koutroupis, N.

    1992-01-01

    Following the completion of the Geothermal Reconnaissance Study in Greece and the successful drilling of seven deep geothermal wells in the Aegean islands of Milos and Nisyros, PPC started the first step towards geothermal development for electricity production as follows: A geothermal electric pilot plant of 2 MW e nominal capacity was installed on the Zephyria plain in Milos island (1985). During a nine month operation of the plant, problems connected with its long term operation were solved (hot reinjection of the high salinity brine, turbine washing etc). A feasibility study regarding exploitation of the Nisyros geothermal resources was completed and PPC connected Nisyros island electrically to Kos island via submarine cables. As consequence of the reaction against geothermal development by the people of Milos in early 1989, the power plant is still out of operation and the feasibility study planned for Milos has been postponed. For similar reasons the Nisyros drilling contract for five new geothermal deep wells has not come into force as yet. This paper summarizes the main PPC geothermal activities to date, the problems caused by the reactions of the Milos and Nisyros population and the relevant PPC countermeasures, as well as outlining the PPC development program for the near future

  9. Oregon: a guide to geothermal energy development

    Energy Technology Data Exchange (ETDEWEB)

    Justus, D.; Basescu, N.; Bloomquist, R.G.; Higbee, C.; Simpson, S.

    1980-06-01

    A brief overview is given of the geological characteristics of each region of the state as they relate to potential geothermal development. Those exploration methods which can lead to the siting of a deep exploration well are described. Requirements and techniques needed for drilling deeper higher temperature exploration and production wells are presented. Electrical generation, direct utilization, and indirect utilization are reviewed. Economic factors of direct use projects are presented. A general guide to the regulatory framework affecting geothermal energy development is provided. The general steps necessary to gain access to explore, develop, distribute, and use geothermal resources are outlined. (MHR)

  10. Washington: a guide to geothermal energy development

    Energy Technology Data Exchange (ETDEWEB)

    Bloomquist, R.G.; Basescu, N.; Higbee, C.; Justus, D.; Simpson, S.

    1980-01-01

    A brief overview is given of the geological characteristics of each region of the state as they relate to potential geothermal development. Those exploration methods which can lead to the siting of a deep exploration well are described. Requirements and techniques needed for drilling deeper higher temperature exploration and production wells are presented. Electrical generation, direct utilization, and indirect utilization are reviewed. Economic factors of direct use projects are presented. A general guide to the regulatory framework affecting geothermal energy development is provided. The general steps necessary to gain access to explore, develop, distribute, and use geothermal resources are outlined. (MHR)

  11. Alaska: a guide to geothermal energy development

    Energy Technology Data Exchange (ETDEWEB)

    Basescu, N.; Bloomquist, R.G.; Higbee, C.; Justus, D.; Simpson, S.

    1980-06-01

    A brief overview is given of the geological characteristics of each region of the state as they relate to potential geothermal development. Those exploration methods which can lead to the siting of a deep exploration well are described. Requirements and techniques needed for drilling deeper higher temperature exploration and production wells are presented. Electrical generation, direct utilization, and indirect utilization are reviewed. Economic factors of direct use projects are presented. A general guide to the regulatory framework affecting geothermal energy development is provided. The general steps necessary to gain access to explore, develop, distribute, and use geothermal resources are outlined. (MHR)

  12. Regulation of geothermal energy development in Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Coe, B.A.; Forman, N.A.

    1980-01-01

    The regulatory system is presented in a format to help guide geothermal energy development. State, local, and federal agencies, legislation, and regulations are presented. Information sources are listed. (MHR)

  13. Geothermal Energy Research Development and Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    The Federal program's goal, strategy, plans, and achievements are summarized. In addition, geothermal development by state and local governments and, where available, by the private sector is described. (MHR)

  14. Geothermal energy and the utility market -- the opportunities and challenges for expanding geothermal energy in a competitive supply market: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Each year the Geothermal Division of the US Department of Energy conducts an in-depth review of its entire geothermal R D program. The conference serves several purposes: a status report on current R D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal city. This year's conference, Program Review X, was held in San Francisco on March 24--26, 1992. The theme of the review, Geothermal Energy and the Utility Market -- The Opportunities and Challenges for Expanding Geothermal Energy in a Competitive Supply Market,'' focused on the needs of the electric utility sector. Geothermal energy, with its power capacity potential of 10 GWe by the year 2010, can provide reliable, enviromentally clean electricity which can help offset the projected increase in demand. Program Review X consisted of seven sessions including an opening session with presentations by Mr. Vikram Budhraja, Vice President of System Planning and Operations, Southern California Edison Company, and Mr. Richard Jaros, President and Chief Operating Officer, California Energy Company. The six technical sessions included presentations by the relevant field researchers covering DOE-sponsored R D in hydrothermal, hot dry rock, and geopressured energy. Individual projects are processed separately for the data bases.

  15. Support research for development of improved geothermal drill bits

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, R.R.; Barker, L.M.; Green, S.J.; Winzenried, R.W.

    1977-06-01

    Progress in background research needed to develop drill bits for the geothermal environment is reported. Construction of a full-scale geothermal wellbore simulator and geothermal seal testing machine was completed. Simulated tests were conducted on full-scale bits. Screening tests on elastometric seals under geothermal conditions are reported. (JGB)

  16. FIJI geothermal resource assessment and development programme

    Energy Technology Data Exchange (ETDEWEB)

    Autar, Rohit K.

    1996-01-24

    The Fiji Department of Energy (DOE) has a comprehensive resource assessment programme which assesses and promotes the use of local renewable energy resources where they are economically viable. DOE is currently involved in the investigation of the extent of geothermal resources for future energy planning and supply purposes. The aim is to determine (a) whether exploitable geothermal fields exist in the Savusavu or Labasa areas. the two geothermal fields with the greatest potential, (b) the cost of exploiting these fields for electricity generation/process heat on Vanua Levu. (c) the comparative cost per mega-watt-hour (MWh) of geothermal electricity generation with other generating options on Vanua Levu, and. (d) to promote the development of the geothermal resource by inviting BOO/BOOT schemes. Results to date have indicated that prospects for using geothermal resource for generating electricity lies in Savusavu only - whereas the Labasa resource can only provide process heat. All geophysical surveys have been completed and the next stage is deep drilling to verify the theoretical findings and subsequent development.

  17. Geothermal energy: opportunities for California commerce. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1982-08-01

    This report provides a preliminary engineering and economic assessment of five direct use projects using low and moderate temperature geothermal resources. Each project site and end-use application was selected because each has a high potential for successful, near-term (2 to 5 years) commercial development. The report also includes an extensive bibliography, and reference and contact lists. The five projects are: Wendel Agricultural Complex, East Mesa Livestock Complex, East Mesa Vegetable Dehydration Facility, Calapatria Heating District and Bridgeport Heating District. The projects involve actual investors, resource owners, and operators with varying financial commitments for project development. For each project, an implementation plan is defined which identifies major barriers to development and methods to overcome them. All projects were determined to be potentially feasible. Three of the projects cascade heat from a small-scale electric generator to direct use applications. Small-scale electric generation technology (especially in the 0.5 to 3 MW range) has recently evolved to such a degree as to warrant serious consideration. These systems provide a year-round heating load and substantially improve the economic feasibility of most direct use energy projects using geothermal resources above 200/sup 0/F.

  18. Geothermal spas

    International Nuclear Information System (INIS)

    Woodruff, J.L.; Takahashi, P.K.

    1990-01-01

    The spa business, part of the health and fitness industry that has sprung up in recent years, is highly successful world-wide. The most traditional type of spa is the geothermal spa, found in geothermal areas around the world. In Japan, for example, some 2,000 geothermal spas and resorts generate $6 billion annually. Hawaii has an ideal environment for geothermal spas, and several locations in the islands could supply warm mineral water for spa development. Hawaii receives about 6 million visitors annually, a high percentage of whom are familiar with the relaxing and therapeutic value of geothermal spas, virtually guaranteeing the success of this industry in Hawaii. Presently, Hawaii does not have a single geothermal spa. This paper reports that the geothermal spa business is an industry whose time has come, an industry that offers very promising investment opportunities, and one that would improve the economy while expanding the diversity of pleasurable vacation options in Hawaii

  19. Geothermal : Economic Impacts of Geothermal Development in Skamania County, Washington.

    Energy Technology Data Exchange (ETDEWEB)

    Lesser, Jonathan A.

    1992-07-01

    This report estimates the local economic impacts that could be anticipated from the development of a 100 megawatt (MW) geothermal power plant in eastern Skamania County, Washington, near Mt. Adams, as shown in Figure 1. The study was commissioned by the Bonneville Power Administration to quantify such impacts as part of regional confirmation work recommended by the Northwest Power Planning Council. Skamania County was chosen due to both identified geothermal resources and developer interest. The analysis will focus on two phases: a plant construction phase, including well field development, generating plant construction, and transmission line construction; and an operations phase. Economic impacts will occur to the extent that construction and operations affect the local economy. These impacts will depend on the existing structure of the Skamania County economy and estimates of revenues that may accrue to the county as a result of plant construction, operation, and maintenance. Specific impacts may include additional direct employment at the plant, secondary impacts from wage payments being used to purchase locally produced goods and services, and impacts due to expenditures of royalty and tax payments received by the county. The basis for the analysis of economic impacts in this study is the US Forest Service IMPLAN input-output modeling system.

  20. Geothermal Program Review X: proceedings. Geothermal Energy and the Utility Market -- the Opportunities and Challenges for Expanding Geothermal Energy in a Competitive Supply Market

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Each year the Geothermal Division of the US Department of Energy conducts an in-depth review of its entire geothermal R&D program. The conference serves several purposes: a status report on current R&D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal city. This year`s conference, Program Review X, was held in San Francisco on March 24--26, 1992. The theme of the review, ``Geothermal Energy and the Utility Market -- The Opportunities and Challenges for Expanding Geothermal Energy in a Competitive Supply Market,`` focused on the needs of the electric utility sector. Geothermal energy, with its power capacity potential of 10 GWe by the year 2010, can provide reliable, enviromentally clean electricity which can help offset the projected increase in demand. Program Review X consisted of seven sessions including an opening session with presentations by Mr. Vikram Budhraja, Vice President of System Planning and Operations, Southern California Edison Company, and Mr. Richard Jaros, President and Chief Operating Officer, California Energy Company. The six technical sessions included presentations by the relevant field researchers covering DOE-sponsored R&D in hydrothermal, hot dry rock, and geopressured energy. Individual projects are processed separately for the data bases.

  1. Geothermal energy sources as opportunity for Turkish greenhouse horticulture and the Dutch commercial sector

    NARCIS (Netherlands)

    Zwart, de H.F.; Ruijs, M.N.A.

    2009-01-01

    The objective of this report is to identify the opportunities offered by exploration of geothermal energy sources, and to specify actions to be taken by Dutch governmental bodies and private companies in collaboration with Turkish partners.

  2. Geothermal energy and its application opportunities in Serbia

    Directory of Open Access Journals (Sweden)

    Andrić Nenad M.

    2015-01-01

    Full Text Available Geothermal energy is accumulated heat in the fluid and rock masses in the Earth 's crust. The natural decay of radioactive elements (uranium, thorium and potassium in rocks produces heat energy. The simplest use of geothermal energy for heating is by heat pump. Geothermal energy can be used for production of electricity. It uses hot water and steam from the earth to run the generator. Serbia has significant potential for geothermal energy. The total amount of accumulated heat in geothermal resources in a depth of 3 km is two times higher than the equivalent thermal energy that could be obtained by burning all types of coal from all their sites in Serbia! The total abundance of geothermal resources in Serbia is 4000 l/s. Abundance of wells in Vojvodina is 10-20 l/s, and the temperature is from 40 to 60°C. Exploitation of thermal waters in Mačva could cause heating of following cities: Bogatić, Šabac, Sremska Mitrovica and Loznica, with a total population of 150.000 people. The richest hydrogeothermal resources are in Mačva, Vranje and Jošanička Banja. Using heat pumps, geothermal water can be exploited on the entire territory of Serbia! Although large producer, Serbia is importing food, ie., fruits and vegetables. With the construction of greenhouses, which will be heated with geothermal energy, Serbia can become an exporting country.

  3. Geothermal power development in Hawaii. Volume I. Review and analysis

    Energy Technology Data Exchange (ETDEWEB)

    1982-06-01

    The history of geothermal exploration in Hawaii is reviewed briefly. The nature and occurrences of geothermal resources are presented island by island. An overview of geothermal markets is presented. Other topies covered are: potential markets of the identified geothermal areas, well drilling technology, hydrothermal fluid transport, overland and submarine electrical transmission, community aspects of geothermal development, legal and policy issues associated with mineral and land ownership, logistics and infrastructure, legislation and permitting, land use controls, Regulation 8, Public Utilities Commission, political climate and environment, state plans, county plans, geothermal development risks, and business planning guidelines.

  4. Financing geothermal resource development in the Pacific Region states

    Energy Technology Data Exchange (ETDEWEB)

    1978-08-15

    State and federal tax treatment as an incentive to development and non-tax financial incentives such as: the federal geothermal loan guarantee program, the federal geothermal reservoir insurance, and state financial incentives are discussed. (MHR)

  5. Geothermal : Economic Impacts of Geothermal Development in Whatcom County, Washington.

    Energy Technology Data Exchange (ETDEWEB)

    Lesser, Jonathan A.

    1992-07-01

    This report estimates the local economic impacts that could be anticipated from the development of a 100 megawatt (MW) geothermal power plant in eastern Whatcom County, Washington, near Mt. Baker, as shown in Figure 1. The study was commissioned by the Bonneville Power Administration to quantify such impacts as part of regional confirmation work recommended by the Northwest Power Planning Council. Whatcom County was chosen due to both identified geotherrnal resources and developer interest. The analysis will focus on two phases: a plant construction phase, including well field development, generating plant construction, and transmission line construction; and an operations phase. Economic impacts will occur to the extent that construction and operations affect the local economy. These impacts will depend on the existing structure of the Whatcom County economy and estimates of revenues that may accrue to the county as a result of plant construction, operation, and maintenance. Specific impacts may include additional direct employment at the plant, secondary impacts from wage payments being used to purchase locally produced goods and services, and impacts due to expenditures of royalty and tax payments received by the county. The basis for the analysis of economic impacts in this study is the US Forest Service IMPLAN input-output modeling system.

  6. Governance Obstacles to Geothermal Energy Development in Indonesia

    Directory of Open Access Journals (Sweden)

    Matthew S. Winters

    2015-01-01

    Full Text Available Despite having 40 per cent of the world’s potential for geothermal power production, Indonesia exploits less than five per cent of its own geothermal resources. We explore the reasons behind this lagging development of geothermal power and highlight four obstacles: (1 delays caused by the suboptimal decentralisation of permitting procedures to local governments that have few incentives to support geothermal exploitation; (2 rent-seeking behaviour originating in the point-source nature of geothermal resources; (3 the opacity of central government decision making; and (4 a historically deleterious national fuel subsidy policy that disincentivised geothermal investment. We situate our arguments against the existing literature and three shadow case studies from other Pacific countries that have substantial geothermal resources. We conclude by arguing for a more centralised geothermal governance structure.

  7. Development of technologies for utilizing geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    In verifying the effectiveness of the deep geothermal resource exploration technology, development is being carried out on a fracture-type reservoir exploration method. The seismic exploration method investigates detailed structures of underground fracture systems by using seismic waves generated on the ground surface. Verification experiments for fiscal 1994 were carried out by selecting the Kakkonda area in which small fracture networks form reservoir beds. Geothermal resources in deep sections (deeper than 2000 m with temperatures higher than 350{degree}C) are promising in terms of amount of the resources, but anticipated with difficulty in exploration and impediments in drilling. To avoid these risks, studies are being progressed on the availability of resources in deep sections, their utilization possibility, and technologies of effective exploration and drilling. This paper summarizes the results of deep resource investigations during fiscal 1994. It also describes such technological development as hot water utilizing power generation. Development is performed on a binary cycle power generation plant which pumps and utilizes hot water of 150 to 200{degree}C by using a downhole pump. The paper also reports development on element technologies for hot rock power generation systems. It also dwells on development of safe and effective drilling and production technologies for deep geothermal resources.

  8. Recent Developments in Geothermal Drilling Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Kelsey, J. R.; Rand, P. B.; Nevins, M. J.; Clements, W. R.; Hilscher, L. W.; Remont, L. J.; Matula, G. W.; Balley, D. N.

    1981-01-01

    In the past, standard drilling muds have been used to drill most geothermal wells. However, the harsh thermal and chemical environment and the unique geothermal formations have led to such problems as excessive thickening of the fluid, formation damage, and lost circulation. This paper describes three recent development efforts aimed at solving some of these drilling fluid problems. Each of the efforts is at a different stage of development. The Sandia aqueous foam studies are still in the laboratory phase, NL Baroid's polymeric deflocculant is soon to be field tested, and the Mudtech high-temperature mud was field tested several months ago. Low density and the capability to suspend particles at low relative velocities are two factors which make foam an attractive drilling fluid. The stability of these foams and their material properties at high temperatures are presently unknown and this lack of information has precluded their use as a geothermal drilling fluid. The aqueous foam studies being conducted at Sandia are aimed at screening available surfactants for temperature and chemical stability. Approximately 100 surfactants have been tested at temperatures of 260 and 310 C (500 and 590 F), and several of these candidates appear very promising. NL Baroid has developed a polymeric deflocculant for water-based muds which shows promise in retarding thermal degradation effects and associated gelation. Formulations containing this new polymer have shown good rheological properties up to 260 C (500 F) in laboratory testing. A high-temperature mud consisting primarily of sepiolite, bentonite, and brown coal has been developed by Mudtech, Inc. A field test of this mud was conducted in a geothermal well in the Imperial Valley of California in May 1980. The fluid exhibited good hole-cleaning characteristics and good rheological properties throughout the test.

  9. Geothermal materials development at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kukacka, L.E. [Brookhaven National Lab., Upton, NY (United States)

    1997-12-31

    As part of the DOE/OGT response to recommendations and priorities established by industrial review of their overall R&D program, the Geothermal Materials Program at Brookhaven National Laboratory (BNL) is focusing on topics that can reduce O&M costs and increase competitiveness in foreign and domestic markets. Corrosion and scale control, well completion materials, and lost circulation control have high priorities. The first two topics are included in FY 1997 BNL activities, but work on lost circulation materials is constrained by budgetary limitations. The R&D, most of which is performed as cost-shared efforts with U.S. geothermal firms, is rapidly moving into field testing phases. FY 1996 and 1997 accomplishments in the development of lightweight CO{sub 2}-resistant cements for well completions; corrosion resistant, thermally conductive polymer matrix composites for heat exchange applications; and metallic, polymer and ceramic-based corrosion protective coatings are given in this paper. In addition, plans for work that commenced in March 1997 on thermally conductive cementitious grouting materials for use with geothermal heat pumps (GHP), are discussed.

  10. A Roadmap for Strategic Development of Geothermal Exploration Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Benjamin R. [SRA International Inc. and Geothermal Technologies Office, Washington, DC (United States); Ziagos, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thorsteinsson, Hildigunnur [Geothermal Technologies Office, Washington, DC (United States); Hass, Eric [Geothermal Technologies Office, Golden, CO (United States)

    2013-02-13

    Characterizing productive geothermal systems is challenging yet critical to identify and develop an estimated 30 gigawatts electric (GWe) of undiscovered hydrothermal resources in the western U.S. This paper, undertaken by the U.S. Department of Energy’s Geothermal Technologies Office (GTO), summarizes needs and technical pathways that target the key geothermal signatures of temperature, permeability, and fluid content, and develops the time evolution of these pathways, tying in past and current GTO exploration Research and Development (R&D) projects. Beginning on a five-year timescale and projecting out to 2030, the paper assesses technologies that could accelerate the confirmation of 30 GWe. The resulting structure forms the basis for a Geothermal Exploration Technologies Roadmap, a strategic development plan to help guide GTO R&D investments that will lower the risk and cost of geothermal prospect identification. This roadmap is currently open for public comment. Send your comments to geothermal@ee.doe.gov.

  11. Geothermal Energy Development annual report 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    This report is an exerpt from Earth Sciences Division Annual Report 1979 (LBL-10686). Progress in thirty-four research projects is reported including the following area: geothermal exploration technology, geothermal energy conversion technology, reservoir engineering, and geothermal environmental research. Separate entries were prepared for each project. (MHR)

  12. Geopressured-geothermal energy development: government incentives and institutional structures

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, D.O.; Prestwood, D.C.L.; Roberts, K.; Vanston, J.H. Jr.

    1979-01-01

    The following subjects are included: a geothermal resource overview, the evolution of the current Texas geopressured-geothermal institutional structure, project evaluation with uncertainty and the structure of incentives, the natural gas industry, the electric utility industry, potential governmental participants in resource development, industrial users of thermal energy, current government incentives bearing on geopressured-geothermal development, six profiles for utilization of the geopressured-geothermal resources in the mid-term, and probable impacts of new government incentives on mid-term resource utilization profiles. (MHR)

  13. Geothermal energy in Alaska: site data base and development status

    Energy Technology Data Exchange (ETDEWEB)

    Markle, D.

    1979-04-01

    The following are presented: the history of geothermal energy in Alaska; a history of Alaska land ownership; legal and institutional barriers; and economics. Development, the socio-economic and physical data concerning geothermal energy are documented by regions. The six regions presented are those of the present Alaska State Planning Activities and those of the Federal Land Use Commission. Site data summaries of the one hundred and four separate geothermal spring locations are presented by these regions. (MHR)

  14. Geothermal energy in Montana: site data base and development status

    Energy Technology Data Exchange (ETDEWEB)

    Brown, K.E.

    1979-11-01

    A short description of the state's geothermal characteristics, economy, and climate is presented. More specific information is included under the planning regions and site specific data summaries. A brief discussion of the geothermal characteristics and a listing of a majority of the known hot springs is included. The factors which influence geothermal development were researched and presented, including: economics, financing, state leasing, federal leasing, direct-use technology, water quality laws, water rights, and the Major Facility Siting Act. (MHR)

  15. Geothermal energy in Montana: site data base and development status

    Energy Technology Data Exchange (ETDEWEB)

    Brown, K.E.

    1979-11-01

    A short description of the state's geothermal characteristics, economy, and climate is presented. A listing of the majority of the known hot springs is included. A discussion of present and projected demand is included. The results of the site specific studies are addressed within the state energy picture. Possible uses and process requirements of geothermal resources are discussed. The factors which influence geothermal development were researched and presented according to relative importance. (MHR)

  16. California Geothermal Forum: A Path to Increasing Geothermal Development in California

    Energy Technology Data Exchange (ETDEWEB)

    Young, Katherine R. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-01-01

    The genesis of this report was a 2016 forum in Sacramento, California, titled 'California Geothermal Forum: A Path to Increasing Geothermal Development in California.' The forum was held at the California Energy Commission's (CEC) headquarters in Sacramento, California with the primary goal being to advance the dialogues for the U.S. Department of Energy's Geothermal Technologies Office (GTO) and CEC technical research and development (R&D) focuses for future consideration. The forum convened a diverse group of stakeholders from government, industry, and research to lay out pathways for new geothermal development in California while remaining consistent with critical Federal and State conservation planning efforts, particularly at the Salton Sea.

  17. Geothermal development and policy in the Philippines

    International Nuclear Information System (INIS)

    Datuin, R.; Roxas, F.

    1990-01-01

    The Philippines is the second largest geothermal energy producer in the world although its geothermal energy potential has barely been utilized. Out of an estimated total reserves of 8,000 MW, only about 11 percent or 894 MW are currently on stream for power generation. The electricity production from geothermal steam registered a growth of 8.9 percent from 1988 to 1989, one of the highest among local energy sources. During that same period, geothermal energy rated the highest capacity utilization of 67 percent compared to the average system capacity utilization of 43 percent. This paper describes both the use of geothermal energy and government policies concerning geothermal energy in the Philippines

  18. Washington: a guide to geothermal energy development

    Energy Technology Data Exchange (ETDEWEB)

    Bloomquist, R.G.; Basescu, N.; Higbee, C.; Justus, D.; Simpson, S.

    1980-06-01

    Washington's geothermal potential is discussed. The following topics are covered: exploration, drilling, utilization, legal and institutional setting, and economic factors of direct use projects. (MHR)

  19. Technology assessment of geothermal energy resource development

    Energy Technology Data Exchange (ETDEWEB)

    1975-04-15

    Geothermal state-of-the-art is described including geothermal resources, technology, and institutional, legal, and environmental considerations. The way geothermal energy may evolve in the United States is described; a series of plausible scenarios and the factors and policies which control the rate of growth of the resource are presented. The potential primary and higher order impacts of geothermal energy are explored, including effects on the economy and society, cities and dwellings, environmental, and on institutions affected by it. Numerical and methodological detail is included in appendices. (MHR)

  20. Development of an Enhanced Two-Phase Production System at the Geysers Geothermal Field; FINAL

    International Nuclear Information System (INIS)

    Steven Enedy

    2001-01-01

    A method was developed to enhance geothermal steam production from two-phase wells at THE Geysers Geothermal Field. The beneficial result was increased geothermal production that was easily and economically delivered to the power plant

  1. Geothermal energy in Idaho: site data base and development status

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-01

    The various factors affecting geothermal resource development are summarized for Idaho, including: resource data base, geological description, reservoir characteristics, environmental character, lease and development status, institutional factors, legal aspects, population and market, and development. (MHR)

  2. Geothermal energy in Alaska: site data base and development status

    Energy Technology Data Exchange (ETDEWEB)

    Markle, D.R.

    1979-04-01

    The various factors affecting geothermal resource development are summarized for Alaska including: resource data base, geological description, reservoir characteristics, environmental character, base and development status, institutional factors, economics, population and market, and development potential. (MHR)

  3. Institutional and environmental problems in geothermal resource development

    Science.gov (United States)

    Maslan, F.; Gordon, T. J.; Deitch, L.

    1974-01-01

    A number of regulatory and institutional impediments to the development of geothermal energy exist. None of these seem likely to prevent the development of this energy source, but in the aggregate they will pace its growth as certainly as the technological issues. The issues are associated with the encouragement of exploration and development, assuring a market for geothermal steam or hot water, and accomplishing the required research and development in a timely manner. The development of geothermal energy in the United States at a high level is apt to cause both favorable and unfavorable, though manageable, impacts in eight major areas, which are discussed.

  4. Environmental impacts during geothermal development: Some examples from Central America

    International Nuclear Information System (INIS)

    Goff, S.; Goff, F.

    1997-01-01

    The impacts of geothermal development projects are usually positive. However, without appropriate monitoring plans and mitigation actions firmly incorporated into the project planning process, there exists the potential for significant negative environmental impacts. The authors present five examples from Central America of environmental impacts associated with geothermal development activities. These brief case studies describe landslide hazards, waste brine disposal, hydrothermal explosions, and air quality issues. Improved Environmental Impact Assessments are needed to assist the developing nations of the region to judiciously address the environmental consequences associated with geothermal development

  5. Geothermal energy in Idaho: site data base and development status

    Energy Technology Data Exchange (ETDEWEB)

    McClain, D.W.

    1979-07-01

    Detailed site specific data regarding the commercialization potential of the proven, potential, and inferred geothermal resource areas in Idaho are presented. To assess the potential for geothermal resource development in Idaho, several kinds of data were obtained. These include information regarding institutional procedures for geothermal development, logistical procedures for utilization, energy needs and forecasted demands, and resource data. Area reports, data sheets, and scenarios were prepared that described possible geothermal development at individual sites. In preparing development projections, the objective was to base them on actual market potential, forecasted growth, and known or inferred resource conditions. To the extent possible, power-on-line dates and energy utilization estimates are realistic projections of the first events. Commercialization projections were based on the assumption that an aggressive development program will prove sufficient known and inferred resources to accomplish the projected event. This report is an estimate of probable energy developable under an aggressive exploration program and is considered extremely conservative. (MHR)

  6. Geothermal Loan Guaranty Program and its impact on geothermal exploration and development

    Energy Technology Data Exchange (ETDEWEB)

    Nasr, L.H.

    1978-05-01

    The study showed that the Geothermal Loan Guaranty Program has had only a negligible effect on geothermal development and the response to the program was far less than expected. The streamlining of environmental regulations and leasing policies, and the granting of intangible drilling cost write-offs and depletion allowances to operators would have had a greater impact on geothermal energy development. The loan guaranty program did not promote the undertaking of any new projects that would not have been undertaken without it. The program only accelerated the pace for some development which might have commenced in the future. Included in the study are recommendations for improving the operation of the program thereby increasing its attractiveness to potential applicants.

  7. Institutional and environmental aspects of geothermal energy development

    Science.gov (United States)

    Citron, O. R.

    1977-01-01

    Until recently, the majority of work in geothermal energy development has been devoted to technical considerations of resource identification and extraction technologies. The increasing interest in exploiting the variety of geothermal resources has prompted an examination of the institutional barriers to their introduction for commercial use. A significant effort was undertaken by the Jet Propulsion Laboratory as a part of a national study to identify existing constraints to geothermal development and possible remedial actions. These aspects included legislative and legal parameters plus environmental, social, and economic considerations.

  8. Geothermal Direct Use Program Opportunity Notice Projects Lessons Learned Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lunis, B.C.

    1986-01-01

    The use of geothermal energy for direct-use applications was aided through the development of a number of successful field experiment projects funded on a cost-shared basis by the US Department of Energy, Division of Geothermal Technology. This document provides a summary of the projects administered by the US Department of Energy's Idaho Operations Office and technically monitored through the Idaho National Engineering Laboratory (EG and G Idaho, Inc.). An overview of significant findings and conclusions is provided, as are project descriptions and activities, resource development, design, construction, and operational features. Legal and institutional considerations are also discussed.

  9. Geothermal energy in Idaho: site data base and development status

    Energy Technology Data Exchange (ETDEWEB)

    McClain, D.V.

    1979-07-01

    A summary of known information about the nature of the resource, its potential for development, and the infrastructure of government which will guide future development is presented. Detailed site specific data regarding the commercialization potential of the proven, potential, and inferred geothermal resource areas in Idaho are included. Leasing and development status, institutional parameters, and a legal overview of geothermal resources in Idaho are given. (MHR)

  10. Geothermal power development in Hawaii. Volume II. Infrastructure and community-services requirements, Island of Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, G.A.; Buevens, W.R.

    1982-06-01

    The requirements of infrastructure and community services necessary to accommodate the development of geothermal energy on the Island of Hawaii for electricity production are identified. The following aspects are covered: Puna District-1981, labor resources, geothermal development scenarios, geothermal land use, the impact of geothermal development on Puna, labor resource requirments, and the requirements for government activity.

  11. Deep Unconventional Geothermal Resources: a major opportunity to harness new sources of sustainable energy

    Energy Technology Data Exchange (ETDEWEB)

    Fridleifsson, G.O.; Albertsson, A.; Stefansson, B.; Gunnlaugsson, E.; Adalsteinsson, H.

    2007-07-01

    The Iceland Deep Drilling Project (IDDP) is a long-term program to improve the efficiency and economics of geothermal energy by harnessing Deep Unconventional Geothermal Resources (DUGR). Its aim is to produce electricity from natural supercritical hydrous fluids from drillable depths. Producing supercritical fluids will require drilling wells and sampling fluids and rocks to depths of 3.5 to 5 km, and at temperatures of 450-600{sup o}C. The long-term plan is to drill and test a series of such deep boreholes in Iceland at the Krafla, the Hengill, and the Reykjanes high temperature geothermal systems. Beneath these three developed drill fields temperatures should exceed 550-650{sup o}C, and the occurrence of frequent seismic activity below 5 km, indicates that the rocks are brittle and therefore likely to be permeable. Modeling indicates that if the wellhead enthalpy is to exceed that of conventionally produced geothermal steam, the reservoir temperature must be higher than 450{sup o}C. A deep well producing 0.67 m3/sec steam ({approx}2400 m3/h) from a reservoir with a temperature significantly above 450{sup o}C could yield enough high-enthalpy steam to generate 40-50 MW of electric power. This exceeds by an order of magnitude the power typically obtained from conventional geothermal wells. (auth)

  12. Investigating ultra high-enthalpy geothermal systems: a collaborative initiative to promote scientific opportunities

    Science.gov (United States)

    Elders, W. A.; Nielson, D.; Schiffman, P.; Schriener, A., Jr.

    2014-12-01

    Scientists, engineers, and policy makers gathered at a workshop in the San Bernardino Mountains of southern California in October 2013 to discuss the science and technology involved in developing high-enthalpy geothermal fields. A typical high-enthalpy geothermal well between 2000 and 3000 m deep produces a mixture of hot water and steam at 200-300 °C that can be used to generate about 5-10 MWe of electric power. The theme of the workshop was to explore the feasibility and economic potential of increasing the power output of geothermal wells by an order of magnitude by drilling deeper to reach much higher pressures and temperatures. Development of higher enthalpy geothermal systems for power production has obvious advantages; specifically higher temperatures yield higher power outputs per well so that fewer wells are needed, leading to smaller environmental footprints for a given size of power plant. Plans for resource assessment and drilling in such higher enthalpy areas are already underway in Iceland, New Zealand, and Japan. There is considerable potential for similar developments in other countries that already have a large production of electricity from geothermal steam, such as Mexico, the Philippines, Indonesia, Italy, and the USA. However drilling deeper involves technical and economic challenges. One approach to mitigating the cost issue is to form a consortium of industry, government and academia to share the costs and broaden the scope of investigation. An excellent example of such collaboration is the Iceland Deep Drilling Project (IDDP), which is investigating the economic feasibility of producing electricity from supercritical geothermal reservoirs, and this approach could serve as model for future developments elsewhere. A planning committee was formed to explore creating a similar initiative in the USA.

  13. Recovery Act:Rural Cooperative Geothermal development Electric & Agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Culp, Elzie Lynn [Surprise Valley Electrification Corp., Alturas, CA (United States)

    2016-01-12

    Surprise Valley Electric, a small rural electric cooperative serving northeast California and southern Oregon, developed a 3mw binary geothermal electric generating plant on a cooperative member's ranch. The geothermal resource had been discovered in 1980 when the ranch was developing supplemental irrigation water wells. The 240°F resource was used for irrigation until developed through this project for generation of electricity. A portion of the spent geothermal fluid is now used for irrigation in season and is available for other purposes, such as greenhouse agriculture, aquaculture and direct heating of community buildings. Surprise Valley Electric describes many of the challenges a small rural electric cooperative encountered and managed to develop a geothermal generating plant.

  14. Recent developments in geothermal drilling fluids

    Energy Technology Data Exchange (ETDEWEB)

    Kelsey, J.R.; Rand, P.B.; Nevins, M.J.; Clements, W.R.; Hilscher, L.W.; Remont, L.J.; Matula, G.W.; Bailey, D.N.

    1981-01-01

    Three recent development efforts are described, aimed at solving some of these drilling fluid problems. The Sandia aqueous foam studies are still in the laboratory phase; NL Baroid's polymeric deflocculant is being field tested; and the Mudtech high temperature mud was field tested several months ago. The aqueous foam studies are aimed at screening available surfactants for temperture and chemical stability. Approximately 100 surfactants have been tested at temperatures of 260/sup 0/C and 310/sup 0/C and several of these candidates appear very promising. A polymeric deflocculant was developed for water-based muds which shows promise in laboratory tests of retarding thermal degradation effects and associated gelation. Formulations containing this new polymer have shown good rheological properties up to 500/sup 0/F. A high temperature mud consisting primarily of sepiolite, bentonite, and brown coal has been developed. A field test of this mud was conducted in a geothermal well in the Imperial Valley of California in May of last year. The fluid exhibited good hole-cleaning characteristics and good rheological properties throughout the test. (MHR)

  15. Geothermal energy in Washington: site data base and development status

    Energy Technology Data Exchange (ETDEWEB)

    Bloomquist, R.G.

    1979-04-01

    This is an attempt to identify the factors which have affected and will continue to affect geothermal assessment and development in the state. The eight potential sites chosen for detailed analysis include: Indian Heaven KGRA, Mount St. Helens KGRA, Kennedy Hot Springs KGRA, Mount Adams PGRA (Potential Geothermal Resource Area), Mount Rainier PGRA, Mount Baker PGRA, Olympic-Sol Duc Hot Springs, and Yakima. The following information is included for each site: site data, site location and physical description, geological/geophysical description, reservoir characteristics, land ownership and leasing, geothermal development status, institutional characteristics, environmental factors, transportation and utilities, and population. A number of serious impediments to geothermal development were identified which can be solved only by legislative action at the state or federal level and/or changes in attitudes by regulatory agencies. (MHR)

  16. Hot Dry Rock Geothermal Energy Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.C.; Hendron, R.H.; Murphy, H.D.; Wilson, M.G.

    1989-12-01

    During Fiscal Year 1987, emphasis in the Hot Dry Rock Geothermal Energy Development Program was on preparations for a Long-Term Flow Test'' of the Phase II'' or Engineering'' hot dry rock energy system at Fenton Hill, New Mexico. A successful 30-day flow test of the system during FY86 indicated that such a system would produce heat at a temperature and rate that could support operation of a commercial electrical power plant. However, it did not answer certain questions basic to the economics of long-term operation, including the rate of depletion of the thermal reservoir, the rate of water loss from the system, and the possibility of operating problems during extended continuous operation. Preparations for a one-year flow test of the system to answer these and more fundamental questions concerning hot dry rock systems were made in FY87: design of the required surface facilities; procurement and installation of some of their components; development and testing of slimline logging tools for use through small-diameter production tubing; research on temperature-sensitive reactive chemical tracers to monitor thermal depletion of the reservoir; and computer simulations of the 30-day test, extended to modeling the planned Long-Term Flow Test. 45 refs., 34 figs., 5 tabs.

  17. Economic Impacts of Geothermal Development in Malheur County, Oregon.

    Energy Technology Data Exchange (ETDEWEB)

    Sifford, Alex; Beale, Kasi

    1993-01-01

    This study provides local economic impact estimates for a 100 megawatt (MW) geothermal power project in Oregon. The hypothetical project would be in Malheur County, shown in Figure 1. Bonneville Power Administration commissioned this study to quantify such impacts as part of regional confirmation work recommended by the Northwest Power Planning Council and its advisors. Malheur County was chosen as it has both identified resources and industry interest. Local economic impacts include direct, indirect, and induced changes in the local economy. Direct economic impacts result from the costs of plant development, construction, and operation. Indirect impacts result from household and local government purchases. Induced impacts result from continued responding as goods and services to support the households and local governments are purchased. Employment impacts of geothermal development follow a pattern similar to the economic impacts. Public service impacts include costs such as education, fire protection, roads, waste disposal, and water supply. The project assumption discussion notes experiences at other geothermal areas. The background section compares geothermal with conventional power plants. Power plant fuel distinguishes geothermal from other power sources. Other aspects of development are similar to small scale conventional thermal sources. The process of geothermal development is then explained. Development consists of well drilling, gathering system construction, power plant construction, plant operation and maintenance, and wellfield maintenance.

  18. Economic impacts of geothermal development in Malheur County, Oregon

    International Nuclear Information System (INIS)

    Sifford, A.; Beale, K.

    1993-01-01

    This study provides local economic impact estimates for a 100 megawatt (MW) geothermal power project in Oregon. The hypothetical project would be in Malheur County, shown in Figure 1. Bonneville Power Administration commissioned this study to quantify such impacts as part of regional confirmation work recommended by the Northwest Power Planning Council and its advisors. Malheur County was chosen as it has both identified resources and industry interest. Local economic impacts include direct, indirect, and induced changes in the local economy. Direct economic impacts result from the costs of plant development, construction, and operation. Indirect impacts result from household and local government purchases. Induced impacts result from continued responding as goods and services to support the households and local governments are purchased. Employment impacts of geothermal development follow a pattern similar to the economic impacts. Public service impacts include costs such as education, fire protection, roads, waste disposal, and water supply. The project assumption discussion notes experiences at other geothermal areas. The background section compares geothermal with conventional power plants. Power plant fuel distinguishes geothermal from other power sources. Other aspects of development are similar to small scale conventional thermal sources. The process of geothermal development is then explained. Development consists of well drilling, gathering system construction, power plant construction, plant operation and maintenance, and wellfield maintenance

  19. Vegetation component of geothermal EIS studies: Introduced plants, ecosystem stability, and geothermal development

    International Nuclear Information System (INIS)

    1994-10-01

    This paper contributes new information about the impacts from introduced plant invasions on the native Hawaiian vegetation as consequences of land disturbance and geothermal development activities. In this regard, most geothermal development is expected to act as another recurring source of physical disturbance which favors the spread and maintenance of introduced organisms throughout the region. Where geothermal exploration and development activities extend beyond existing agricultural and residential development, they will become the initial or sole source of disturbance to the naturalized vegetation of the area. Kilauea has a unique ecosystem adapted to the dynamics of a volcanically active landscape. The characteristics of this ecosystem need to be realized in order to understand the major threats to the ecosystem and to evaluate the effects of and mitigation for geothermal development in Puna. The native Puna vegetation is well adapted to disturbances associated with volcanic eruption, but it is ill-adapted to compete with alien plant species in secondary disturbances produced by human activities. Introduced plant and animal species have become a major threat to the continued presence of the native biota in the Puna region of reference

  20. Vegetation component of geothermal EIS studies: Introduced plants, ecosystem stability, and geothermal development

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    This paper contributes new information about the impacts from introduced plant invasions on the native Hawaiian vegetation as consequences of land disturbance and geothermal development activities. In this regard, most geothermal development is expected to act as another recurring source of physical disturbance which favors the spread and maintenance of introduced organisms throughout the region. Where geothermal exploration and development activities extend beyond existing agricultural and residential development, they will become the initial or sole source of disturbance to the naturalized vegetation of the area. Kilauea has a unique ecosystem adapted to the dynamics of a volcanically active landscape. The characteristics of this ecosystem need to be realized in order to understand the major threats to the ecosystem and to evaluate the effects of and mitigation for geothermal development in Puna. The native Puna vegetation is well adapted to disturbances associated with volcanic eruption, but it is ill-adapted to compete with alien plant species in secondary disturbances produced by human activities. Introduced plant and animal species have become a major threat to the continued presence of the native biota in the Puna region of reference.

  1. Solicitation - Geothermal Drilling Development and Well Maintenance Projects

    Energy Technology Data Exchange (ETDEWEB)

    Sattler, A.R.

    1999-07-07

    Energy (DOE)-industry research and development (R and D) organization, sponsors near-term technology development projects for reducing geothermal drilling and well maintenance costs. Sandia National Laboratories (Albuquerque, NM) administers DOE funds for GDO cost-shared projects and provides technical support. The GDO serves a very important function in fostering geothermal development. It encourages commercialization of emerging, cost-reducing drilling technologies, while fostering a spirit of cooperation among various segments of the geothermal industry. For Sandia, the GDO also serves as a means of identifying the geothermal industry's drilling fuel/or well maintenance problems, and provides an important forum for technology transfer. Successfully completed GDO projects include: the development of a high-temperature borehole televiewer, high-temperature rotating head rubbers, a retrievable whipstock, and a high-temperature/high-pressure valve-changing tool. Ongoing GDO projects include technology for stemming lost circulation; foam cement integrity log interpretation, insulated drill pipe, percussive mud hammers for geothermal drilling, a high-temperature/ high-pressure valve changing tool assembly (adding a milling capability), deformed casing remediation, high- temperature steering tools, diagnostic instrumentation for casing in geothermal wells, and elastomeric casing protectors.

  2. Geothermal energy in Wyoming: site data base and development status

    Energy Technology Data Exchange (ETDEWEB)

    James, R.W.

    1979-04-01

    An overview of geothermal energy and its current and potential uses in Wyoming is presented. Chapters on each region are concluded with a summary of thermal springs in the region. The uniqueness of Yellowstone is discussed from both an institutional point of view and a natural one. The institutional situation at the federal and state level is discussed as it applies to geothermal development in Wyoming. (MHR)

  3. Population analysis relative to geothermal energy development, Imperial County, California

    Energy Technology Data Exchange (ETDEWEB)

    Pick, J.B.; Jung, T.H.; Butler, E.

    1977-01-01

    The historical and current population characteristics of Imperial County, California, are examined. These include vital rates, urbanization, town sizes, labor force composition, income, utility usage, and ethnic composition. Inferences are drawn on some of the important social and economic processes. Multivariate statistical analysis is used to study present relationships between variables. Population projections for the County were performed under historical, standard, and geothermal projection assumptions. The transferability of methods and results to other geothermal regions anticipating energy development is shown. (MHR)

  4. Legal and institutional problems facing geothermal development in Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    1978-10-01

    The problems discussed confronting future geothermal development in Hawaii include: a seemingly insoluble mismatch of resource and market; the burgeoning land claims of the Native Hawaiian community; a potential legal challenge to the State's claim to hegemony over all of Hawaii's geothermal resources, regardless of surface ownership; resistance to any sudden, large scale influx of Mainland industry, and questionable economics for the largest potential industrial users. (MHR)

  5. Geothermal energy

    International Nuclear Information System (INIS)

    Rummel, F.; Kappelmeyer, O.; Herde, O.A.

    1992-01-01

    Objective of this brochure is to present the subject Geothermics and the possible use of geothermal energy to the public. The following aspects will be refered to: -present energy situation -geothermal potential -use of geothermal energy -environemental aspects -economics. In addition, it presents an up-dated overview of geothermal projects funded by the German government, and a list of institutions and companies active in geothermal research and developments. (orig./HP) [de

  6. Colorado geothermal commercialization program: community development of geothermal energy in Pagosa Springs, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Coe, B.A.

    1980-01-01

    A district heating system for the Pagosa Springs central business district is in the planning stage. A detailed analysis of the project is presented. It comprises area and site specific studies and describes in detail the recent, current, anticipated, and postulated geothermal development activities. (MHR)

  7. National Geothermal Data System: A Geothermal Data System for Exploration and Development

    Energy Technology Data Exchange (ETDEWEB)

    Allison, Lee [Executive Office of the State of Arizona (Arizona Geological Survey); Richard, Stephen [Executive Office of the State of Arizona (Arizona Geological Survey); Patten, Kim [Executive Office of the State of Arizona (Arizona Geological Survey); Love, Diane [Executive Office of the State of Arizona (Arizona Geological Survey); Coleman, Celia [Executive Office of the State of Arizona (Arizona Geological Survey); Chen, Genhan [Executive Office of the State of Arizona (Arizona Geological Survey)

    2012-09-30

    Geothermal-relevant geosciences data from all 50 states (www.stategeothermaldata.org), federal agencies, national labs, and academic centers are being digitized and linked in a distributed online network funded by the U.S. Department of Energy Geothermal Data System (GDS) to foster geothermal energy exploration and development through use of interactive online ‘mashups,’data integration, and applications. Emphasis is first to make as much information as possible accessible online, with a long range goal to make data interoperable through standardized services and interchange formats. A growing set of more than thirty geoscience data content models is in use or under development to define standardized interchange formats for: aqueous chemistry, borehole temperature data, direct use feature, drill stem test, seismic event hypocenter, fault feature, geologic contact feature, geologic unit feature, thermal/hot spring description, metadata, quaternary fault, volcanic vent description, well header feature, borehole lithology log, crustal stress, gravity, heat flow/temperature gradient, permeability, and feature description data like developed geothermal systems, geologic unit geothermal characterization, permeability, production data, rock alteration description, rock chemistry, and thermal conductivity. Map services are also being developed for isopach maps, aquifer temperature maps, and several states are working on geothermal resource overview maps. Content models are developed based on existing community datasets to encourage widespread adoption and promulgate content quality standards. Geoscience data and maps from other GDS participating institutions, or “nodes” (e.g., U.S. Geological Survey, Southern Methodist University, Oregon Institute of Technology, Stanford University, the University of Utah) are being supplemented with extensive land management and land use resources from the Western Regional Partnership (15 federal agencies and 5 Western states) to

  8. Economic Impacts of Geothermal Development in Harney County, Oregon.

    Energy Technology Data Exchange (ETDEWEB)

    Sifford, Alex; Beale, Kasi

    1991-12-01

    This study provides local economic impact estimates for a 100 megawatt (MW) geothermal power project in Oregon. The hypothetical project would be in Harney Count. Bonneville Power Administration commissioned this study to quantify such impacts as part of regional confirmation work recommended by the Northwest Power Planning Council and its advisors. Harney County was chosen as it has both identified resources and industry interest. Geothermal energy is defined as the heat of the earth. For purposes of this study, geothermal energy is heat capable of economically generating electricity (using available technology). That translates to steam or hot water over 300{degrees}F. Local economic impacts include direct, indirect, and induced changes in the local economy. Direct economic impacts result from the costs of plant development, construction, and operation. Indirect impacts result from household and local government purchases. Induced impacts result from continued respending as goods and services to support the households and local governments are purchased. Employment impacts of geothermal development follow a pattern similar to the economic impacts. The workers associated with plant development bring their families to the area. Additional labor is required to provide support services for the new population. Local government services must also increase to support the new community growth and the geothermal plant itself. These changes yield indirect and induced employment impacts associated with the geothermal plant.

  9. Economic Impacts of Geothermal Development in Deschutes County, Oregon.

    Energy Technology Data Exchange (ETDEWEB)

    Sifford, Alex; Beale, Kasi

    1991-12-01

    This study provides local economic impact estimates for a 100 megawatt (MW) geothermal power project in Oregon. The hypothetical project would be Deschutes County. Bonneville Power Administration commissioned this study to quantify such impacts as part of regional confirmation work recommended by the Northwest Power Planning Council and its advisors. Deschutes County was chosen as it has both identified resources and industry interest. Geothermal energy is defined as the heat of the earth. For purposes of this study, geothermal energy is heat capable of economically generating electricity (using available technology). That translates to steam or hot water over 300{degrees}F. Local economical impacts include direct, indirect, and induced changes in the local economy. Direct economic impacts result for the costs of plant development, construction, and operation. Indirect impacts result from household and local government purchases. Induced impacts result from continued respending as goods and services to support the households and local governments are purchased. Employment impacts of geothermal development follow a pattern similar to the economic impacts. The workers associated with plant development bring their families to the area. Additional labor is required to provide support services for the new population. Local government services must also increase to support the new community growth and the geothermal plant itself. These changes yield indirect and induced employment impacts associated with the geothermal plant.

  10. Economic impacts of geothermal development in Deschutes County, Oregon

    International Nuclear Information System (INIS)

    Sifford, A.; Beale, K.

    1991-12-01

    This study provides local economic impact estimates for a 100 megawatt (MW) geothermal power project in Oregon. The hypothetical project would be Deschutes County. Bonneville Power Administration commissioned this study to quantify such impacts as part of regional confirmation work recommended by the Northwest Power Planning Council and its advisors. Deschutes County was chosen as it has both identified resources and industry interest. Geothermal energy is defined as the heat of the earth. For purposes of this study, geothermal energy is heat capable of economically generating electricity (using available technology). That translates to steam or hot water over 300 degrees F. Local economical impacts include direct, indirect, and induced changes in the local economy. Direct economic impacts result for the costs of plant development, construction, and operation. Indirect impacts result from household and local government purchases. Induced impacts result from continued respending as goods and services to support the households and local governments are purchased. Employment impacts of geothermal development follow a pattern similar to the economic impacts. The workers associated with plant development bring their families to the area. Additional labor is required to provide support services for the new population. Local government services must also increase to support the new community growth and the geothermal plant itself. These changes yield indirect and induced employment impacts associated with the geothermal plant

  11. Economic impacts of geothermal development in Harney County, Oregon

    International Nuclear Information System (INIS)

    Sifford, A.; Beale, K.

    1991-12-01

    This study provides local economic impact estimates for a 100 megawatt (MW) geothermal power project in Oregon. The hypothetical project would be in Harney Count. Bonneville Power Administration commissioned this study to quantify such impacts as part of regional confirmation work recommended by the Northwest Power Planning Council and its advisors. Harney County was chosen as it has both identified resources and industry interest. Geothermal energy is defined as the heat of the earth. For purposes of this study, geothermal energy is heat capable of economically generating electricity (using available technology). That translates to steam or hot water over 300 degrees F. Local economic impacts include direct, indirect, and induced changes in the local economy. Direct economic impacts result from the costs of plant development, construction, and operation. Indirect impacts result from household and local government purchases. Induced impacts result from continued respending as goods and services to support the households and local governments are purchased. Employment impacts of geothermal development follow a pattern similar to the economic impacts. The workers associated with plant development bring their families to the area. Additional labor is required to provide support services for the new population. Local government services must also increase to support the new community growth and the geothermal plant itself. These changes yield indirect and induced employment impacts associated with the geothermal plant

  12. Messing with paradise: Air quality and geothermal development in Hawaii

    International Nuclear Information System (INIS)

    Campbell, A.W.

    1993-01-01

    In the last decade, scientists and the media have publicized several significant air-quality-related issues facing our nation and threatening the Earth. Our need for energy is at the heart of many environmental problems. Most of us would not dispute that global issues are vitally important. However, to many of us, who have live one day at a time, global issues are often overshadowed by those at the microcosmic (i.e., regional or local) level. This paper focuses on a continuing problem citizens experienced by the resident of Hawaii: controversial air quality and health issues linked to geothermal resource development. In Hawaii, air quality degradation and related health issues have been associated with geothermal development on the Kilauea volcano on the Big Island. This paper begins with an overview of Hawaii's ambient air quality based on data collected by the State Department of Health (DOH). A chronology of geothermal resource development in Hawaii follows. The potential atmospheric contaminants from development of the Hawaiian resource are listed, and health effects of acute and chronic exposures are identified. Public controversy about geothermal development and the efforts of local and state agencies and officials to effectively control geothermal development in concert with protection of public health and safety use discussed, in particular the recent development and promulgation of a State of Hawaii H 2 S standard. This paper concludes with some suggestions for integrating the diverse interests of government, regulators, citizens, and geothermal developers in seeking to meet the energy and economic needs of Hawaii while carefully planning geothermal development in a safe and environmentally responsible manner

  13. Geothermal handbook

    Science.gov (United States)

    1976-01-01

    The Bureau of Land Management offered over 400,000 hectares (one million acres) for geothermal exploration and development in 1975, and figure is expected to double this year. The Energy Research and Development Administration hopes for 10-15,000 megawatts of geothermal energy by 1985, which would require, leasing over 16.3 million hectares (37 million acres) of land, at least half of which is federal land. Since there is an 8 to 8-1/2 year time laf between initial exploration and full field development, there would have to be a ten-fold increase in the amount of federal land leased within the next three years. Seventy percent of geothermal potential, 22.3 million hectares (55 million acres), is on federal lands in the west. The implication for the Service are enormous and the problems immediate. Geothermal resource are so widespread they are found to some extent in most biomes and ecosystems in the western United States. In most cases exploitation and production of geothermal resources can be made compatible with fish and wildlife management without damage, if probable impacts are clearly understood and provided for before damage has unwittingly been allowed to occur. Planning for site suitability and concern with specific operating techniques are crucial factors. There will be opportunities for enhancement: during exploration and testing many shallow groundwater bodies may be penetrated which might be developed for wildlife use. Construction equipment and materials needed for enhancement projects will be available in areas heretofore considered remote projects will be available in areas heretofore considered remote by land managers. A comprehensive knowledge of geothermal development is necessary to avoid dangers and seize opportunities. This handbook is intended to serve as a working tool in the field. It anticipated where geothermal resource development will occur in the western United States in the near future. A set of environmental assessment procedures are

  14. Development situation and prospecting division of geothermal resources in Yangshan county, Guangdong Province

    Science.gov (United States)

    Yin, Lijun; Luo, Yizhen; Ma, Huiying; Xie, Yanxiao; Liu, Zhenzhen

    2017-03-01

    Yangshan County has abundant low-geothermal resources in its northeast, southwest, and midwest regions. These low-temperature geothermal resources in Yangshan County can prove to be beneficial for different purposes such as tourism, recuperation, sauna, and agriculture. Thirteen geothermal hot springs (spots) and seven geothermal anomalies have been discovered till now in this area. The geothermal resources are grouped on the basis of their conditions as follows: The Chengjia-Dianzhan and Dongguan-Jietan geothermal areas are classified as priority development zones, the Huangben-Mazishui and Qigongyuntankeng areas as sub-priority development zones, the Jiangying geothermal area as a general development zone, the Yangshan geothermal area as a potential development zone, and the Chengjia and Longfeng geothermal areas as restricted development zones.

  15. Impact of geothermal development on stockraising homestead landowners

    Energy Technology Data Exchange (ETDEWEB)

    1981-04-16

    Surface use and compensation conflicts have developed at the Geysers in California between owners of surface lands acquired under the Stockraising Homestead Act of 1916 and geothermal lessees with the right to develop the mineral interests reserved to the Federal Government. Several recommendations are made to the Secretary of the Interior concerning the problems identified. The following are discussed: conditions at the Geysers concerning geothermal development on stockraising lands that could be considered in regard to compensation, existence or potential for similar conflicts on this land outside the Geysers, protection and compensation provided surface owners in existence of legislation and the need for amendments, and alternative methods for paying compensation.

  16. Developing advocacy for geothermal energy in the United States

    International Nuclear Information System (INIS)

    Wright, P.M.

    1990-01-01

    There is little public advocacy for geothermal energy in the United States outside of the geothermal community itself. Yet, broad-based advocacy is needed to provide impetus for a nourishing economic, regulatory and R and D environment. If such an environment could be created, the prosperity of the geothermal industry would improve and positive environmental effects compared to most other energy sources would be realized. We need an organized sustained effort to provide information and education to all segments of our society, including market-makers and end users, administrators, legislators, regulators, educators, special-interest groups and the public. This effort could be provided by an organization of three main components, a network to gather and disseminate pertinent information on marketing, educational and lobbying opportunities to action committees, a repository of current information on geothermal energy, and action committees each responsible for certain parts of the total marketing, education and lobbying task. In this paper, the author suggests a mechanism for forming such an organization and making it work. The author proposes an informal organization staffed largely by volunteered labor in which no one person would have to devote more than a few percent of his or her work time

  17. Geothermal resource area 9: Nye County. Area development plan

    Energy Technology Data Exchange (ETDEWEB)

    Pugsley, M.

    1981-01-01

    Geothermal Resource area 9 encompasses all of Nye County, Nevada. Within this area there are many different known geothermal sites ranging in temperature from 70/sup 0/ to over 265/sup 0/ F. Fifteen of the more major sites have been selected for evaluation in this Area Development Plan. Various potential uses of the energy found at each of the resource sites discussed in this Area Development Plan were determined after evaluating the area's physical characteristics, land ownership and land use patterns, existing population and projected growth rates, and transportation facilities, and comparing those with the site specific resource characteristics. The uses considered were divided into five main categories: electrical generation, space heating, recreation, industrial process heat, and agriculture. Within two of these categories certain subdivisions were considered separately. The findings about each of the 15 geothermal sites considered in this Area Development Plan are summarized.

  18. Geothermal Energy

    International Nuclear Information System (INIS)

    Haluska, Oscar P.; Tangir, Daniel; Perri, Matias S.

    2002-01-01

    A general overview of geothermal energy is given that includes a short description of the active and stable areas in the world. The possibilities of geothermal development in Argentina are analyzed taking into account the geothermal fields of the country. The environmental benefits of geothermal energy are outlined

  19. Status of Environmental Controls for Geothermal Energy Development

    Energy Technology Data Exchange (ETDEWEB)

    Caskey, John F.

    1980-05-01

    This report presents the initial findings and recommendations of the Environmental Controls Panel to the Interagency Geothermal Coordinating Council (IGCC). The Panel has been charged to assess the adequacy of existing environmental controls for geothermal energy systems, to review ongoing programs to develop environmental controls, and to identify controls-related research areas where redirection of federal efforts are appropriate to assure the availability of controls on a timely basis. In its deliberations, the Panel placed greatest emphasis on the use of geothermal resources for electricity generation, the application of geothermal energy receiving greatest attention today. The Panel discussed major known environmental concerns and their potential impact on the commercialization of geothermal resources, control options, regulatory considerations, and ongoing and planned research programs. The environmental concerns reviewed in this report include: air emissions, liquid discharges, solid wastes, noise, subsidence, seismicity, and hydrological alterations. For each of these concerns a brief description of the concern, associated legislation and regulations, control approaches, federal funding trend, and the Panel's recommendations and priorities are presented. In short, the Panel recommends that controls-related research efforts be rebalanced and enhanced, with the greatest emphasis placed on controls for hydrogen sulfide (H{sub 2}S) and non-H{sub 2}S gaseous emissions, injection monitoring methods, systems to treat and use nongeothermal waters for environmental control purposes, solid waste characterization and management methods evaluation, and subsidence controls.

  20. Balancing energy and the environment: the case of geothermal development

    Energy Technology Data Exchange (ETDEWEB)

    Ellickson, P.L.; Brewer, S.

    1978-06-01

    The results of part of a Rand study on the federal role in resolving environmental issues arising out of the implementation of energy projects are reported. The projects discussed are two geothermal programs in California: the steam resource development at The Geysers (Lake and Sonoma counties) in northern California, and the wet brine development in the Imperial Valley in southern California.

  1. Environmental research needs for geothermal resources development. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Carstea, D.

    1977-04-01

    A detailed analysis was conducted to determine the adequacy of the total research efforts regarding the potential environmental impacts related to the exploration, drilling, production, and transmission stages of vapor-dominated, liquid-dominated, geopressured, and hot-dry-rock geothermal resources. The following environmental considerations were selected and analyzed in detail: air emissions (hydrogen sulfide, ammonia, mercury, boron, radon, etc.); liquid emissions (brine, and toxic chemicals); land subsidence; seismic activity; and noise. Following the definition of the problem and the assessment of the past and ongoing research efforts, environmental research needs were then recommended based on: (1) the severity of the environmental problems as perceived by literature and contacts with the research community; (2) probability of occurrence; (3) and the research dependency for a solution to that particular problem. The recommended research needs consisted of: (1) an evaluation of the past and ongoing research efforts to ascertain gaps in knowledge for a particular pollutant, process, or control technology; (2) baseline studies of air, soil, water, and ecology around the existing geothermal facilities and in the locations scheduled for future geothermal development; (3) need for the development of appropriate models for predicting concentration and dispersion of pollutants; (4) development of predictive models for potential health and environmental effects associated with geothermal operations; and (5) development of appropriate control technology to destroy, remove or reduce harmful emissions in order to prevent the occurrence of environmental and health hazards and to comply with existing standards and criteria.

  2. Barriers and enablers to geothermal district heating system development in the United States

    International Nuclear Information System (INIS)

    Thorsteinsson, Hildigunnur H.; Tester, Jefferson W.

    2010-01-01

    According to the US Energy Information Administration, space and hot water heating represented about 20% of total US energy demand in 2006. Given that most of this demand is met by burning natural gas, propane, and fuel oil, an enormous opportunity exists for directly utilizing indigenous geothermal energy as a cleaner, nearly emissions-free renewable alternative. Although the US is rich in geothermal energy resources, they have been frequently undervalued in America's portfolio of options as a means of offsetting fossil fuel emissions while providing a local, reliable energy source for communities. Currently, there are only 21 operating GDHS in the US with a capacity of about 100 MW thermal. Interviews with current US district heating operators were used to collect data on and analyze the development of these systems. This article presents the current structure of the US regulatory and market environment for GDHS along with a comparative study of district heating in Iceland where geothermal energy is extensively utilized. It goes on to review the barriers and enablers to utilizing geothermal district heating systems (GDHS) in the US for space and hot water heating and provides policy recommendations on how to advance this energy sector in the US.

  3. Sectoral programming mission isotope techniques for geothermal development. Philippines. UNDP sectoral support

    International Nuclear Information System (INIS)

    Froehlich, K.; Sun, Y.

    1995-10-01

    This report discusses the accomplishments of IAEA Technical Cooperation project PHI/8/016 ''Isotope Techniques in Geothermal Hydrology''. It is intended to help Philippine National Oil Company's Energy Development Corporation (PNOC-EDC) in use of isotope techniques for geothermal development. This report discusses outcomes of the mission, conclusions and recommendations on applications of isotopes techniques in geothermal agro-industrial plants and geothermal hydrology

  4. Development of an Improved Cement for Geothermal Wells

    Energy Technology Data Exchange (ETDEWEB)

    Trabits, George [Trabits Group, LLC, Wasilla, AK (United States)

    2015-04-20

    After an oil, gas, or geothermal production well has been drilled, the well must be stabilized with a casing (sections of steel pipe that are joined together) in order to prevent the walls of the well from collapsing. The gap between the casing and the walls of the well is filled with cement, which locks the casing into place. The casing and cementing of geothermal wells is complicated by the harsh conditions of high temperature, high pressure, and a chemical environment (brines with high concentrations of carbon dioxide and sulfuric acid) that degrades conventional Portland cement. During the 1990s and early 2000s, the U.S. Department of Energy’s Geothermal Technologies Office (GTO) provided support for the development of fly-ash-modified calcium aluminate phosphate (CaP) cement, which offers improved resistance to degradation compared with conventional cement. However, the use of CaP cements involves some operational constraints that can increase the cost and complexity of well cementing. In some cases, CaP cements are incompatible with chemical additives that are commonly used to adjust cement setting time. Care must also be taken to ensure that CaP cements do not become contaminated with leftover conventional cement in pumping equipment used in conventional well cementing. With assistance from GTO, Trabits Group, LLC has developed a zeolite-containing cement that performs well in harsh geothermal conditions (thermal stability at temperatures of up to 300°C and resistance to carbonation) and is easy to use (can be easily adjusted with additives and eliminates the need to “sterilize” pumping equipment as with CaP cements). This combination of properties reduces the complexity/cost of well cementing, which will help enable the widespread development of geothermal energy in the United States.

  5. Development case histories: Tongonan and Palinpinon geothermal fields, Philippines

    International Nuclear Information System (INIS)

    Ogena, M.S.

    1992-01-01

    The background on the general scenario of energy resource development in the country is described. Highlights of the exploration history of the Tongonan and Palinpinon geothermal fields in the Philippines are then presented. This is discussed in conjunction with the strategies and policies taken in the development of each field. Finally, the common policies and contrasting development strategies are compared and evaluated. The conclusion derived is that the development strategy decisions at Tongonan are influenced by the regional power demand, topography, and the large extent of the resource. In contrast, the development at Palinpinon is less constrained by the external influence of regional power needs, but, instead, is significantly dominated by the limitations imposed by the rugged terrain and the physical characteristics of the resource area. Such comparison demonstrates the site-specific nature of geothermal development. (auth.). 8 figs.; 2 refs

  6. Preliminary plan for the development of geothermal energy in the town of Hawthorne, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    1981-11-04

    Site characteristics pertinent to the geothermal development are described, including: physiography, demography, economy, and goals and objectives of the citizens as they relate to geothermal development. The geothermal reservoir is characterized on the basis of available information. The probable drilling depth to the reservoir, anticipated water production rates, water quality, and resource temperature are indicated. Uses of the energy that seem appropriate to the situation both now and in the near future at Hawthorne are described. The essential institutional requirements for geothermal energy development are discussed, including the financial, environmental, and legal and regulatory aspects. The various steps that are necessary to accomplish the construction of the geothermal district heating system are described.

  7. Value distribution assessment of geothermal development in Lake County, CA

    Energy Technology Data Exchange (ETDEWEB)

    Churchman, C.W.; Nelson, H.G.; Eacret, K.

    1977-10-01

    A value distribution assessment is defined as the determination of the distribution of benefits and costs of a proposed or actual development, with the intent of comparing such a development with alternative plans. Included are not only the social and economic effects, but also people's perceptions of their roles and how they are affected by the proposed or actual development. Discussion is presented under the following section headings: on morality and ethics; the vanishing community; case study of pre-development planning--Lake County; methodology for research; Lake County geothermal energy resource; decision making; Planning Commission hearing; communication examples; benefit tracing; response to issues raised by the report of the State Geothermal Task Force; and, conclusions and recommendations. (JGB)

  8. The National Energy Strategy - The role of geothermal technology development: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    Each year the Geothermal Division of the US Department of Energy conducts an in-depth review of its entire geothermal R D program. The conference serves several purposes: a status report on current R D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal industry. Topics in this year's conference included Hydrothermal Energy Conversion Technology, Hydrothermal Reservoir Technology, Hydrothermal Hard Rock Penetration Technology, Hot Dry Rock Technology, Geopressured-Geothermal Technology and Magma Energy Technology. Each individual paper has been cataloged separately.

  9. A Thermoelastic Hydraulic Fracture Design Tool for Geothermal Reservoir Development

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad Ghassemi

    2003-06-30

    Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Thus, knowledge of conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fracture are created in the reservoir using hydraulic fracturing. At times, the practice aims to create a number of parallel fractures connecting a pair of wells. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have set out to develop advanced thermo-mechanical models for design of artificial fractures and rock fracture research in geothermal reservoirs. These models consider the significant hydraulic and thermo-mechanical processes and their interaction with the in-situ stress state. Wellbore failure and fracture initiation is studied using a model that fully couples poro-mechanical and thermo-mechanical effects. The fracture propagation model is based on a complex variable and regular displacement discontinuity formulations. In the complex variable approach the displacement discontinuities are

  10. Case studies of geothermal leasing and development on federal lands

    Energy Technology Data Exchange (ETDEWEB)

    Trummel, Marc

    1978-09-29

    In response to a widely expressed need to examine the impact of the federal regulatory system on the rate of geothermal power development, the Department of Energy-Division of Geothermal Energy (DGE) has established a Streamlining Task Force in cooperation with appropriate federal agencies. The intent is to find a way of speeding development by modification of existing laws or regulations or by better understanding and mechanization of the existing ones. The initial focus was on the leasing and development of federal lands. How do the existing processes work? Would changes produce positive results in a variety of cases? These are questions which must be considered in a national streamlining process. This report presents case studies of federal leasing actions on seven diverse locations in the western region. Characteristics of existing high geothermal potential areas are quite diverse; geography, environment, industry interest and the attitudes and activities of the responsible federal land management agencies and the interested public vary widely. Included are descriptions of post and current activities in leasing exploration and development and discussions of the probable future direction of activities based on current plans. Implications of these plans are presented. The case studies were based on field interviews with the appropriate State and District BLM officer and with the regional forester's office and the particular forest office. Documentation was utilized to the extent possible and has been included in whole or in part in appendices as appropriate.

  11. Geothermal Energy Development in the Eastern United States. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-10-01

    This document represents the final report from the Applied Physics Laboratory (APL) of The Johns Hopkins University on its efforts on behalf of the Division of Geothermal Energy (DGE) of the Department of Energy (DOE). For the past four years, the Laboratory has been fostering development of geothermal energy in the Eastern United States. While the definition of ''Eastern'' has changed somewhat from time to time, basically it means the area of the continental United States east of the Rocky Mountains, plus Puerto Rico but excluding the geopressured regions of Texas and Louisiana. During these years, the Laboratory developed a background in geology, hydrology, and reservoir analysis to aid it in establishing the marketability of geothermal energy in the east. Contrary to the situation in the western states, the geothermal resource in the east was clearly understood to be inferior in accessible temperature. On the other hand, there were known to be copious quantities of water in various aquifers to carry the heat energy to the surface. More important still, the east possesses a relatively dense population and numerous commercial and industrial enterprises, so that thermal energy, almost wherever found, would have a market. Thus, very early on it was clear that the primary use for geothermal energy in the east would be for process heat and space conditioning--heating and cool electrical production was out of the question. The task then shifted to finding users colocated with resources. This task met with modest success on the Atlantic Coastal Plain. A great deal of economic and demographic analysis pinpointed the prospective beneficiaries, and an intensive ''outreach'' campaign was mounted to persuade the potential users to invest in geothermal energy. The major handicaps were: (1) The lack of demonstrated hydrothermal resources with known temperatures and expected longevity; and (2) The lack of a &apos

  12. Geothermal energy developments in the district heating of Szeged

    OpenAIRE

    Osvald, Máté; Szanyi, János; Medgyes, Tamás; Kóbor, Balázs; Csanádi, Attila

    2017-01-01

    The District Heating Company of Szeged supplies heat and domestic hot water to 27,000 households and 500 public buildings in Szeged. In 2015, the company decided to introduce geothermal sources into 4 of its 23 heating circuits and started the preparation activities of the development. Preliminary investigations revealed that injection into the sandstone reservoir and the hydraulic connection with already existing wells pose the greatest hydrogeological risks, while placement and operation of...

  13. Geothermal development in southwest Idaho: the socioeconomic data base

    Energy Technology Data Exchange (ETDEWEB)

    Spencer,S.G.; Russell, B.F. (eds.)

    1979-09-01

    This report inventories, analyzes, and appraises the existing socioeconomic data base for the ten counties in southwest Idaho that would be impacted by any significant geothermal development. The inventory describes key sociological demographic, and economic characteristics, and presents spatial boundaries, housing data, and projections of population and economic activity for the counties. The inventory identifies the significant gaps in the existing data base and makes recommendations for future research.

  14. Geothermal development in southwest Idaho: the socioeconomic data base

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, S.G.; Russell, B.F.

    1979-09-01

    This report inventories, analyzes, and appraises the exiting socioeconomic data base for the ten counties in southwest Idaho that would be impacted by any significant geothermal development. The inventory describes key sociological demographic, and economic characteristics, and presents spatial boundaries, housing data, and projections of population and economic activity for the counties. The inventory identifies the significant gaps in the existing data base and makes recommendations for future research.

  15. Developing a framework for assessing the impact of geothermal development phases on ecosystem services

    Science.gov (United States)

    Semedi, Jarot M.; Willemen, Louise; Nurlambang, Triarko; van der Meer, Freek; Koestoer, Raldi H.

    2017-12-01

    The 2014 Indonesian National Energy Policy has set a target to provide national primary energy usage reached 2.500 kWh per capita in the year 2025 and reached 7.000 kWh in the year 2050. The National Energy Policy state that the development of energy should consider the balance of energy economic values, energy supply security, and the conservation of the environment. This has led to the prioritization of renewable energy sources. Geothermal energy a renewable energy source that produces low carbon emissions and is widely available in Indonesia due to the country’s location in the “volcanic arc”. The development of geothermal energy faces several problems related to its potential locations in Indonesia. The potential sites for geothermal energy are mostly located in the volcanic landscapes that have a high hazard risk and are often designated protected areas. Local community low knowledge of geothermal use also a challenge for geothermal development where sometimes strong local culture stand in the way. Each phase of geothermal energy development (exploration, construction, operation and maintenance, and decommissioning) will have an impact on the landscape and everyone living in it. Meanwhile, natural and other human-induced drivers will keep landscapes and environments changing. This conference paper addresses the development of an integrated assessment to spatially measure the impact of geothermal energy development phases on ecosystem services. Listing the effects on the ecosystem services induced by each geothermal development phases and estimating the spatial impact using Geographic Information System (GIS) will result in an overview on where and how much each geothermal development phase affects the ecosystem and how this information could be included to improve national spatial planning.

  16. Imperial County geothermal development semi-annual report, October 1, 1980-March 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    The current geothermal progress in Imperial County is reported. Three areas are reported: Geothermal Administration, Geothermal Planning, and other Geothermal Activities. Geothermal Administration addresses the status of the Imperial Valley Environmental Project (IVEP) transfer, update of the Geothermal Resource Center, and findings of Geothermal field inspections. In addition, the cooperative efforts between industry and the County; Master EIR for the Salton Sea KGRA and the resurveying of the subsidence detection network are covered. Geothermal Planning addresses a Board of Supervisor action on the Union Oil Geothermal Production Permit for 16 wells in the Salton Sea KGRA and a permit for Southern California Edison 10 megawatts power plant in the Salton Sea KGRA. Planning Commission action covers: Amendment of Magma Power's 49 megawatts Geothermal Production Permit to 28 megawatt power plant and relocation of the plant and wells within the Salton Sea KGRA; Exploration permit to Occidental Geothermal for four exploratory wells in East Brawley; Geothermal Production Permit to Southern California Edison to operate a 10 megawatt power plant in the Salton Sea KGRA; and Geothermal production permit to Union Oil for 16 production-injection wells in the Salton Sea KGRA. Lastly, EIR exemptions to CEQA were granted to Chevron for 70 shallow temperature observation holes and Union for fifteen. Other Geothermal Activity addresses the County Direct Heat Development study; the solicitation for district heating and cooling proposals; the new Geothermal Class II-1 disposal site; the DOE Region IX meeting in Tucson; and USGA designating a new KGRA, the East Brawley KGRA, the Westmorland KGRA, and revising the southern border of the Salton Sea KGRA.

  17. Geothermal direct use developments in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.; Culver, G.; Lund, J.W.

    1988-08-01

    Direct heat use of geothermal energy in the United States is recognized as one of the alternative energy resources that has proven itself technically and economically, and is commercially available. Developments include space conditioning of buildings, district heating, groundwater heat pumps, greenhouse heating, industrial processing, aquaculture, and swimming pool heating. Forty-four states have experienced significant geothermal direct use development in the last ten years. The total installed capacity is 5.7 billion Btu/hr (1700 MW/sub t/), with an annual energy use of nearly 17,000 billion Btu/yr (4.5 million barrels of oil energy equivalent). In this report we provide an overview of how and where geothermal energy is used, the extent of that use, the economics and growth trends. The data is based on an extensive site data gathering effort by the Geo-Heat Center in the spring of 1988, under contract to the US Department of Energy. 100 refs., 4 figs., 4 tabs.

  18. Building a regulatory framework for geothermal energy development in the NWT

    Energy Technology Data Exchange (ETDEWEB)

    Holroyd, Peggy; Dagg, Jennifer [Pembina Institute (Canada)

    2011-03-15

    There is a high potential in Canada's Northwest Territories (NWT) for using geothermal energy, the thermal energy generated and stored in the Earth, and this could help the NWT meet their greenhouse gas emissions reduction targets. The Pembina Institute was engaged by the government of the NWT to perform a jurisdictional analysis of geothermal energy legislation and policy around the world; this report presents its findings. The jurisdictional review was carried out in 9 countries and interviews were conducted with various geothermal energy experts. Following this research, the Pembina Institute made recommendations to the NWT government on the development of a geothermal energy regulatory framework which would cover the need to define geothermal energy legislation and resource ownership as well as a plan and vision for geothermal energy use. This report highlighted that with an effective government policy in place, the use of geothermal energy in the NWT could provide the territories with a stable and secure energy supply.

  19. Suborbital Research and Development Opportunities

    Science.gov (United States)

    Davis, Jeffrey R.

    2011-01-01

    This slide presentation reviews the new strategies for problem solving in the life sciences in the suborbital realm. Topics covered are: an overview of the space life sciences, the strategic initiatives that the Space Life Sciences organization engaged in, and the new business model that these initiatives were developed. Several opportunities for research are also reviewed.

  20. Mt. Apo geothermal project : a learning experience in sustainable development

    International Nuclear Information System (INIS)

    Ote, Leonardo M.; De Jesus, Agnes C.

    1997-01-01

    The Mt. Apo geothermal project, a critical component of the Philippine energy program met stiff opposition from 1988-1991. Seemingly unresolvable legal, environmental and cultural issues between the government developer, the Philippine National Oil Company-Energy Development Corporation (PNOC-EDC) and various affected sectors delayed the project for two years. The paper discusses the efforts undertaken by the developer to resolve these conflicts through a series of initiatives that transformed the project into a legally, environmentally and socially acceptable project. Lastly, the PNOC-EDC experience has evolved a new set of procedures for the environmental evaluation of development project in the Philippines. (author)

  1. The state of exploitation of geothermal energy and some interesting achievements in geothermal research and development in the world

    Directory of Open Access Journals (Sweden)

    Dušan Rajver

    2016-08-01

    Full Text Available The article presents the latest status of geothermal energy use worldwide and the comparison with the previous period, both in electricity generation as well as in the various categories of direct use. Electricity production takes place in 26 countries and has at the end of 2014 reached 73,700 GWh from geothermal power plants with nearly 12.8 GW of installed power. This is still only 0.31 % of the total electricity produced in the world and it will be interesting to monitor the future share of geothermal energy in doing so. In the last 5-year period the development was particularly rapid in countries where it was slower in the past and, however, with favorable geological (tectonic conditions (Iceland, Kenya, New Zealand, Turkey, etc.. Direct use of geothermal energy covers a signifiant number of countries, today there are 82, although some of them are such where it takes place almost solely by geothermal (ground-source heat pumps (GHP on shallow subsurface energy (Finland. Installed capacity in the direct use is 70,885 MWt and geothermal energy used, including the GHP, is 592,638 TJ/year (end of 2014. Within the used energy the share of GHP dominates with 55.2 %, followed by the bathing and swimming pools complexes incl. balneology by 20.2 %, space heating by 15.0 % (the majority of it is district heating, heating of greenhouses and soil with 4.9 %, etc. The second part presents some interesting technological and scientifi innovations in exploration and exploitation of geothermal energy.

  2. Program planner's guide to geothermal development in California

    Energy Technology Data Exchange (ETDEWEB)

    Yen, W.W.S.; Chambers, D.M.; Elliott, J.F.; Whittier, J.P.; Schnoor, J.J.; Blachman, S.

    1980-09-30

    The resource base, status of geothermal development activities, and the state's energy flow are summarized. The present and projected geothermal share of the energy market is discussed. The public and private sector initiatives supporting geothermal development in California are described. These include legislation to provide economic incentives, streamline regulation, and provide planning assistance to local communities. Private sector investment, research, and development activities are also described. The appendices provide a ready reference of financial incentives. (MHR)

  3. Crossing the Barriers: An Analysis of Permitting Barriers to Geothermal Development and Potential Improvement Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Aaron L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Young, Katherine R [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-04

    Developers have identified many non-technical barriers to geothermal power development, including permitting. Activities required for permitting, such as the associated environmental reviews, can take a considerable amount of time and delay project development. This paper discusses the impacts to geothermal development timelines due to the permitting challenges, including the regulatory framework, environmental review process, and ancillary permits. We identified barriers that have the potential to prevent geothermal development or delay timelines and defined improvement scenarios that could assist in expediting geothermal development and permitting timelines and lead to the deployment of additional geothermal resources by 2030 and 2050: (1) the creation of a centralized federal geothermal permitting office and utilization of state permit coordination offices as well as (2) an expansion of existing categorical exclusions applicable to geothermal development on Bureau of Land Management public lands to include the oil and gas categorical exclusions passed as part of the Energy Policy Act of 2005. We utilized the Regional Energy Deployment System (ReEDS) and the Geothermal Electricity Technology Evaluation Model (GETEM) to forecast baseline geothermal deployment based on previous analysis of geothermal project development and permitting timelines. The model results forecast that reductions in geothermal project timelines can have a significant impact on geothermal deployment. For example, using the ReEDS model, we estimated that reducing timelines by two years, perhaps due to the creation of a centralized federal geothermal permitting office and utilization of state permit coordination offices, could result in deployment of an additional 204 MW by 2030 and 768 MW by 2050 - a 13% improvement when compared to the business as usual scenario. The model results forecast that a timeline improvement of four years - for example with an expansion of existing categorical

  4. A sustainability analysis of geothermal energy development on the island of Dominica

    Science.gov (United States)

    Edwards, Kiyana Marie-Jose

    Dominica is heavily dependent on fossil fuels to meet its electricity generation needs. Dominica's volcanic origin and current volcanic activity allow the island to be an ideal place for the production of geothermal energy. Once geothermal exploration and development has begun in Dominica, it is uncertain whether the efforts will produce an environmentally, economically and socially feasible exploitation of the resource. Using content analysis and cost benefit analysis, this study examined the impacts of geothermal energy development based on the triple bottom line of sustainability for the Wotten Waven community, as well as the island as a whole. The results indicate that this project will have an overall positive impact on the triple bottom line of sustainability for Dominica. Therefore, geothermal energy may provide substantial net benefits to economic and sustainable development of the island. Assessing the sustainability of geothermal development is important as Dominica begins to produce geothermal energy.

  5. Area development plan of the geothermal potential in planning region 8, Roosevelt - Custer area

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-01

    Geothermal resource data, the Roosevelt-Custer Region development plan, and energy, economic, and institutional considerations are presented. Environmental considerations and water availability are discussed. (MHR)

  6. Analysis of ecological effects of geopressured-geothermal resource development. Geopressured-geothermal technical paper No. 4

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-01

    The activities involved in geopressured-geothermal resource production are identified and their ecological impacts are discussed. The analysis separates those activites that are unique to geopressured-geothermal development from those that also occur in oil and gas and other resource developments. Of the unique activities, those with the greatest potential for serious ecological effect are: (1) accidental brine discharge as a result of a blowout during well drilling; (2) subsidence; (3) fault activation and enhanced seismicity; and (4) subsurface contamination of water, hydrocarbon, and mineral reservoirs. Available methods to predict and control these effects are discussed.

  7. The analysis of subsidence associated with geothermal development. Volume 1. Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Atherton, R.W.; Finnemore, E.J.; Gillam, M.L.

    1976-09-01

    This study evaluates the state of knowledge of subsidence associated with geothermal development, and provides preliminary methods to assess the potential of land subsidence for any specific geothermal site. The results of this study are presented in three volumes. Volume 1 is designed to serve as a concise reference, a handbook, for the evaluation of the potential for land subsidence from the development of geothermal resources.

  8. Geothermal energy development in Washington State. A guide to the federal, state and local regulatory process

    Energy Technology Data Exchange (ETDEWEB)

    Bloomquist, R.G.; Simpson, S.J.

    1986-03-01

    Washington State's geothermal potential is wide spread. Hot springs and five strato volcanoes existing throughout the Cascade Range, limited hot spring activity on the Olympic Peninsula, and broad reaching, low temperature geothermal resources found in the Columbia Basin comprise the extent of Washington's known geothermal resources. Determination of resource ownership is the first step in proceeding with geothermal exploration and development activities. The federal and state processes are examined from pre-lease activity through leasing and post-lease development concerns. Plans, permits, licenses, and other requirements are addressed for the federal, state, and local level. Lease, permit, and other forms for a number of geothermal exploration and development activities are included. A map of public lands and another displaying the measured geothermal resources throughout the state are provided.

  9. Significant Problems in Geothermal Development in California, Final Report on Four Workshops, December 1978 - March 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-07-15

    From November 1978 through March 1979 the California Geothermal Resources Board held four workshops on the following aspects of geothermal development in California: County Planning for Geothermal Development; Federal Leasing and Environmental Review Procedures; Transmission Corridor Planning; and Direct Heat Utilization. One of the objectives of the workshops was to increase the number of people aware of geothermal resources and their uses. This report is divided into two parts. Part 1 provides summaries of all the key information discussed in the workshops. For those people who were not able to attend, this part of the report provides you with a capsule version of the workshop sessions. Part 2 focuses on the key issues raised at the workshops which need to be acted upon to expedite geothermal resource development that is acceptable to local government and environmentally prudent. For the purpose of continuity, similar Geothermal Resources Task Force recommendations are identified.

  10. Geothermal Drilling and Completion Technology Development Program. Quarterly progress report, October 1980-December 1980

    Energy Technology Data Exchange (ETDEWEB)

    Kelsey, J.R. (ed.)

    1981-03-01

    The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development.

  11. Geothermal resource area 3: Elko County. Area development plan

    Energy Technology Data Exchange (ETDEWEB)

    Pugsley, M.

    1981-01-01

    Geothermal Resource Area 3 includes all of the land in Elko County, Nevada. There are in excess of 50 known thermal anomalies in this area. Several of the more major resources have been selected for detailed description and evaluation in this Area Development Plan. The other resources are considered too small, too low in temperature, or too remote to be considered for development in the near future. Various potential uses of the energy found at each of the studied resource sites in Elko County were determined after evaluating the area's physical characteristics; the land ownership and land use patterns; existing population and projected growth rates; transportation facilities and energy requirements. These factors were then compared with resource site specific data to determine the most likely uses of the resource. The uses considered in this evaluation were divided into five main categories: electrical generation, space heating, recreation, industrial process heat, and agriculture. Within two of these categories several subdivisions were considered separately. It was determined that several of the geothermal resources evaluated in the Area Development Plan could be commercially developed. The potential for development for the seven sites considered in this study is summarized.

  12. Plan for developing moderate temperature/low salinity geothermal resources

    Energy Technology Data Exchange (ETDEWEB)

    Kunze, J.F.; Whitbeck, J.F.

    1976-05-01

    The approach to developing moderate temperature (150/sup 0/ to 300/sup 0/F) geothermal resources so that these can competitively enter the energy market is herein described. The specifics discussed relate to experiments in the Idaho National Engineering Laboratory's program effort. These involve the energy supply and disposal systems, the surface conversion equipment for generating electricity, and supplementary uses of the heat directly for industrial and agricultural applications. The experimental facilities are located in the Raft River Valley area of southcentral Idaho, close to the Utah border, and the document describes the purpose and likely economic benefit to result from this experimental program.

  13. Geothermal Drilling and Completion Technology Development Program. Quarterly progress report, January 1981-March 1981

    Energy Technology Data Exchange (ETDEWEB)

    Kelsey, J.R. (ed.)

    1981-06-01

    The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods as they apply to advanced drilling systems.

  14. Support research for development of improved geothermal drill bits. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    hendrickson, R.R.; Barker, L.M.; Green, S.J.; Winzenried, R.W.

    1977-06-01

    A full-scale geothermal wellbore simulator and geothermal seal testing machine were constructed. The major emphasis in the Phase II program, in addition to constructing the above research simulators, includes: simulated tests on full-scale components, i.e., full-scale bits; screening tests on elastomeric seals under geothermal conditions; and initial considerations of research needs for development of sealed high-temperature bits. A detailed discussion of the work is presented. (MHR)

  15. Guidelines to the Preparation of Environmental Reports for Geothermal Development Projects

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-02-01

    The US Energy Research and Development Administration (ERDA) through its Division of Geothermal Energy (DGE) is the federal agency responsible for certain actions that pertain to the development of geothermal resources. Such resources include (1) all products of geothermal processes, embracing indigenous steam, geopressured fluids, hot water, and brines; (2) steam and other gases, hot water and hot brines resulting from water, and natural gas or other fluids introduced into geothermal formations; (3) any by-products derived from geothermal resources, such as minerals or gases. By-products must either have a value less than 75% of the value of the geothermal resources from which they are derived or must not be of sufficient value alone to warrant extraction and production. in order to encourage the development of geothermal resources, ERDA conducts a program to assess those resources and to establish the technical, economic, and environmental acceptability of geothermal technologies. This program includes some proposed actions that could affect the environment. As a means of obtaining information essential to satisfying the requirements of NEAP and its own regulations (10 CFR Part 711), ERDA requests that certain participants in the agency's programmatic activities submit an environmental report. The report describes the proposed programmatic activities and considers the potential impacts of those activities with respect to the existing environment. This guidelines document has been developed to provide assistance to participants in the preparation of environmental reports about geothermal activities.

  16. Cumulative biological impacts of The Geysers geothermal development

    Energy Technology Data Exchange (ETDEWEB)

    Brownell, J.A.

    1981-10-01

    The cumulative nature of current and potential future biological impacts from full geothermal development in the steam-dominated portion of The Geysers-Calistoga KGRA are identified by the California Energy Commission staff. Vegetation, wildlife, and aquatic resources information have been reviewed and evaluated. Impacts and their significance are discussed and staff recommendations presented. Development of 3000 MW of electrical energy will result in direct vegetation losses of 2790 acres, based on an estimate of 11.5% loss per lease-hold of 0.93 acres/MW. If unmitigated, losses will be greater. Indirect vegetation losses and damage occur from steam emissions which contain elements (particularly boron) toxic to vegetation. Other potential impacts include chronic low-level boron exposure, acid rain, local climate modification, and mechanical damage. A potential exists for significant reduction and changes in wildlife from direct habitat loss and development influences. Highly erosive soils create the potential for significant reduction of aquatic resources, particularly game fish. Toxic spills have caused some temporary losses of aquatic species. Staff recommends monitoring and implementation of mitigation measures at all geothermal development stages.

  17. Geothermal development. Semi-annual report, October 1, 1980-March 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-31

    Three areas are reported: geothermal administration, geothermal planning, and other geothermal activities. Administration covers the status of the Imperial Valley Environmental Project transfer, update of the Geothermal Resource Center, and findings of the geothermal field inspections. Planning addresses Board of Supervisor actions, Planning Commission actions, notice of exemptions, and the master Environmental Impact Report for Salton Sea. The other activity includes the County Direct Heat Development study; the solicitation for district heating and cooling proposals; the new Geothermal Class II-1 disposal site; the DOE Region IX meeting in Tucson; and USGA designating a new KGRA, the East Brawley KGRA, the Westmoreland KGRA, and revising the southern border of the Salton Sea KGRA. (MHR)

  18. Economic impacts of geothermal development in Skamania County, Washington

    International Nuclear Information System (INIS)

    Lesser, J.A.

    1992-07-01

    This report estimates the local economic impacts that could be anticipated from the development of a 100 megawatt (MW) geothermal power plant in eastern Skamania County, Washington, near Mt. Adams, as shown in Figure 1. The study was commissioned by the Bonneville Power Administration to quantify such impacts as part of regional confirmation work recommended by the Northwest Power Planning Council. Skamania County was chosen due to both identified geothermal resources and developer interest. The analysis will focus on two phases: a plant construction phase, including well field development, generating plant construction, and transmission line construction; and an operations phase. Economic impacts will occur to the extent that construction and operations affect the local economy. These impacts will depend on the existing structure of the Skamania County economy and estimates of revenues that may accrue to the county as a result of plant construction, operation, and maintenance. Specific impacts may include additional direct employment at the plant, secondary impacts from wage payments being used to purchase locally produced goods and services, and impacts due to expenditures of royalty and tax payments received by the county. The basis for the analysis of economic impacts in this study is the US Forest Service IMPLAN input-output modeling system

  19. Energy Development Opportunities for Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Larry Demick

    2012-11-01

    The Wyoming Business Council, representing the state’s interests, is participating in a collaborative evaluation of energy development opportunities with the NGNP Industry Alliance (an industry consortium), the University of Wyoming, and the US Department of Energy’s Idaho National Laboratory. Three important energy-related goals are being pursued by the State of Wyoming: Ensuring continued reliable and affordable sources of energy for Wyoming’s industries and people Restructuring the coal economy in Wyoming Restructuring the natural gas economy in Wyoming

  20. Measuring Impact of U.S. DOE Geothermal Technologies Office Funding: Considerations for Development of a Geothermal Resource Reporting Metric

    Energy Technology Data Exchange (ETDEWEB)

    Young, Katherine R.; Wall, Anna M.; Dobson, Patrick F.; Bennett, Mitchell; Segneri, Brittany

    2015-04-25

    This paper reviews existing methodologies and reporting codes used to describe extracted energy resources such as coal and oil and describes a comparable proposed methodology to describe geothermal resources. The goal is to provide the U.S. Department of Energy's (DOE) Geothermal Technologies Office (GTO) with a consistent and comprehensible means of assessing the impacts of its funding programs. This framework will allow for GTO to assess the effectiveness of research, development, and deployment (RD&D) funding, prioritize funding requests, and demonstrate the value of RD&D programs to the U.S. Congress. Standards and reporting codes used in other countries and energy sectors provide guidance to inform development of a geothermal methodology, but industry feedback and our analysis suggest that the existing models have drawbacks that should be addressed. In order to formulate a comprehensive metric for use by GTO, we analyzed existing resource assessments and reporting methodologies for the geothermal, mining, and oil and gas industries, and we sought input from industry, investors, academia, national labs, and other government agencies. Using this background research as a guide, we describe a methodology for assessing and reporting on GTO funding according to resource knowledge and resource grade (or quality). This methodology would allow GTO to target funding or measure impact by progression of projects or geological potential for development.

  1. Geothermal tomorrow 2008

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-01-18

    Contributors from the Geothermal Technologies Program and the geothermal community highlight the current status and activities of the Program and the development of the global resource of geothermal energy.

  2. Constraints to leasing and development of federal resources: OCS oil and gas and geothermal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Chapter I identifies possible technological, economic, and environmental constraints to geothermal resource development. Chapter II discusses constraints relative to outer continental shelf and geothermal resources. General leasing information for each resource is detailed. Chapter III summarizes the major studies relating to development constraints. 37 refs. (PSB)

  3. Advanced Percussive Drilling Technology for Geothermal Exploration and Development

    Energy Technology Data Exchange (ETDEWEB)

    Su, Jiann [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Raymond, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Prasad, Somuri [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wolfer, Dale [Atlas-Copco Secoroc LLC, Fagersta (Sweden)

    2017-06-12

    Percussive hammers are a promising advance in drilling technology for geothermal since they rely upon rock reduction mechanisms that are well-suited for use in the hard, brittle rock characteristic of geothermal formations. The project research approach and work plan includes a critical path to development of a high-temperature (HT) percussive hammer using a two phase approach. The work completed in Phase I of the project demonstrated the viability of percussive hammers and that solutions to technical challenges in design, material technology, and performance are likely to be resolved. Work completed in Phase II focused on testing the findings from Phase I and evaluating performance of the materials and designs at high operating temperatures. A high-operating temperature (HOT) drilling facility was designed, built, and used to test the performance of the DTH under extreme conditions. Results from the testing indicate that a high-temperature capable hammer can be developed and is a viable alternative for use in the driller’s toolbox.

  4. Testing geopressured geothermal reservoirs in existing wells: Detailed completion prognosis for geopressured-geothermal well of opportunity, prospect #2

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-03-01

    A geopressured-geothermal test of Martin Exploration Company's Crown Zellerbach Well No. 2 will be conducted in the Tuscaloosa Trend. The Crown Zellerbach Well No. 1 will be converted to a saltwater disposal well for disposal of produced brine. The well is located in the Satsuma Area, Livingston parish, Louisiana. Eaton proposes to test the Tuscaloosa by perforating the 7 inch casing from 16,718 feet to 16,754 feet. The reservoir pressure at an intermediate formation depth of 16,736 feet is anticipated to be 12,010 psi and the temperature is anticipated to be 297 F. Calculated water salinity is 16,000 ppm. The well is expected to produce a maximum of 16,000 barrels of water a day with a gas content of 51 SCF/bbl. Eaton will re-enter the test well, clean out to 17,000 feet, run production casing and complete the well. The disposal well will be re-entered and completed in the 9-5/8 inch casing for disposal of produced brine. Testing will be conducted similar to previous Eaton annular flow WOO tests. An optional test from 16,462 feet to 16,490 feet may be performed after the original test and will require a workover with a rig on location to perform the plugback. The surface production equipment utilized on previous tests will be utilized on this test. The equipment has worked satisfactorily and all parties involved in the testing are familiar with its operation. Weatherly Engineering will operate the test equipment. The Institute of Gas Technology (IGT) and Mr. Don Clark will handle sampling, testing and reservoir engineering evaluation, respectively. wireline work required will be awarded on basis of bid evaluation. At the conclusion of the test period, the D.O.E. owned test equipment will be removed from the test site, the test and disposal wells plugged and abandoned and the sites restored to the satisfaction of all parties.

  5. Geopressured-geothermal resource development on public free school lands

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-01

    The study's findings and recommendations are based upon analysis of the following: financial and economic feasibility of geopressured-geothermal resource development; possible ecological, social, and economic impacts of resource development on PFSL; and legal issues associated with resource development. The results of the analysis are summarized and are discussed in detail in a series of four technical papers which accompany this volume. Existing rules of the General Land Office (GLO), the School Land Board (SLB), and the Railroad Commission of Texas (RRC) were reviewed in light of the above analysis and were discussed with the agencies. The study's recommendations resulted from this analytical and review process; they are discussed. The preliminary draft rules and regulations to govern resource development on PFSL are presented in Appendix A; the accompanying forms and model lease are found in Appendix B.

  6. CORIDORS: DEVELOPMENT OPPORTUNITY OF SERBIA

    Directory of Open Access Journals (Sweden)

    Laketa Marko

    2011-12-01

    Full Text Available Long-term vision of the Republic of Serbia is for it to be: territorially determined and regionally balanced, of sustainable economic growth and competitive, socially coherent and stable, infrastructurally equipped and accessible in terms of transportation, of preserved and protected natural and cultural heritage, high-quality living environment and functionally integrated into environment. High-quality transportation infrastructure is one of the main conditions of linking and integration into a broader environment. The aim of this paper is to show, based on the identification of the effects expected (internal and external, that Corridors 7 and 10, as logistics resources, are a development opportunity of Serbia and that its realization will multiply contribute to the achievement of long-term development goals of Serbia.

  7. GeoBest - A contribution to the long term development of deep geothermal energy in Switzerland.

    Science.gov (United States)

    Kraft, T.; Wiemer, S.; Husen, S.

    2012-04-01

    The processes and conditions underpinning induced seismicity associated with deep geothermal operations are still not sufficiently well understood to make useful predictions as to the likely seismic response to reservoir development and exploitation. The empirical data include only a handful of well-monitored EGS experiments; models are consequently poorly constrained. Unfortunately, data sets of well-monitored deep hydrothermal experiments are missing and empirical constraints of induced seismicity models for these cases do not exist. Given that the majority of the projects underway or planned in Europe are of the hydrothermal type, there is hope that this deficit can be remedied in the near future through a close cooperation of geothermal industry, science and public authorities. The GeoBest project was initiated in Switzerland to facilitate the dialog between geothermal industry, science and public authorities. The Swiss Seismological Service (SED) is implementing the GeoBest project on behalf of the Swiss Federal Office for Energy (SFOE) to provide cantonal and federal authorities with guidelines on how to handle seismic monitoring and hazard in the framework of the environmental risk assessment. Within GeoBest, selected pilot projects in Switzerland will be supported during the necessary seismic monitoring of natural and induced seismicity. GeoBest supports the pilot project in the first two years, that are most critical with respect to the financial risk, by providing seismological instrumentation from the GeoBest instrument pool and partial financial support for the operation of the seismic monitoring network. In return the pilot projects grant SED access to project data needed for seismic hazard assessment and the development of best practice guidelines. These types of collaboration offer the unique opportunity to collect high-quality seismological data and, by combining them with relevant project data, to gain first hand practical experience for the

  8. Crossing the Barriers: An Analysis of Land Access Barriers to Geothermal Development and Potential Improvement Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Aaron L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Young, Katherine R [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-04

    Developers have identified many non-technical barriers to geothermal power development, including access to land. Activities required for accessing land, such as environmental review and private and public leasing can take a considerable amount of time and can delay or prevent project development. This paper discusses the impacts to available geothermal resources and deployment caused by land access challenges, including tribal and cultural resources, environmentally sensitive areas, biological resources, land ownership, federal and state lease queues, and proximity to military installations. In this analysis, we identified challenges that have the potential to prevent development of identified and undiscovered hydrothermal geothermal resources. We found that an estimated 400 MW of identified geothermal resource potential and 4,000 MW of undiscovered geothermal resource potential were either unallowed for development or contained one or more significant barriers that could prevent development at the site. Potential improvement scenarios that could be employed to overcome these barriers include (1) providing continuous funding to the U.S. Forest Service (USFS) for processing geothermal leases and permit applications and (2) the creation of advanced environmental mitigation measures. The model results forecast that continuous funding to the USFS could result in deployment of an additional 80 MW of geothermal capacity by 2030 and 124 MW of geothermal capacity by 2050 when compared to the business-as-usual scenario. The creation of advanced environmental mitigation measures coupled with continuous funding to the USFS could result in deployment of an additional 97 MW of geothermal capacity by 2030 and 152 MW of geothermal capacity by 2050 when compared to the business-as-usual scenario. The small impact on potential deployment in these improvement scenarios suggests that these 4,400 MW have other barriers to development in addition to land access. In other words, simply

  9. Geothermal development of the Salton Trough, California and Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, T.D.; Howard, J.H.; Lande, D.P. (eds.)

    1975-04-01

    A geological description is given of the Salton Trought followed by a chronological history of attempts to exploit the area's geothermal resources. In addition, detailed descriptions are given of all ongoing geothermal projects in the area and the organizations conducting them.

  10. Geothermal energy development in Colorado. Appendix 7 of regional operations research program for development of geothermal energy in the Southwest United States. Final technical report, June 1977--August 1978

    Energy Technology Data Exchange (ETDEWEB)

    Pearl, Richard A.; Coe, Barbara

    1979-01-01

    The term ''geothermal energy'' is a term that means different things to different people. To an increasing number, it means a practical, environmentally compatible energy resource that can, right now, help to relieve an overdependency upon fossil fuels. The potential for use of geothermal energy in Colorado seems to be substantial. As described by Barrett and Pearl (1978), at least 56 separate areas have surface manifestations of hydrothermal (hot water) resources. These areas are estimated to contain 5.914 quads (5.914 x 10{sup 15} Btu) of energy, with extractable energy of 1.48 quads. Geothermal resources already contribute to Colorado's energy supply. In fact, since the early 1900's, practical uses of geothermal resources have been common in Pagosa Springs, in Southwest Colorado. Residents there have used hot-water wells to heat numerous buildings, including the County Court House, schools, churches, the newspaper office, a liquor store, 2 hotels, 2 service stations, a drugstore, and a bank, as well as for the swimming pool and spa. Where resources are in use in other parts of the State, most are used for swimming pools or baths. A few wells or springs serve other purposes, among them space heating and agriculture, including greenhouses, a fish farm and algae-growing. Seemingly, interest in and awareness of the resources is growing. If leases and permits are made available, along with some economic incentives, some or all of the three potential power-generation sites may be developed by private industry. Perhaps with the assistance of federal programs, initially, lower temperature resources, too, will be developed by private industry. While government can provide opportunities, the outcome depends upon the decisions of numerous individuals throughout the system. Colorado does have geothermal resources that can contribute to the energy supply. It remains to be seen whether these resources will fulfill their promise.

  11. Deep geothermal resources in Quebec and in Colombia: an area that may develop based on French experience on geothermal power plants

    International Nuclear Information System (INIS)

    Blessent, D.; Raymond, J.; Dezayes, C.

    2016-01-01

    Because of an increasing demand in electricity and a necessity of reducing greenhouse gas emissions, several countries envisage the development of the renewable energies. The geothermal energy is a particularly interesting alternative because it allows a production of electricity which is not influenced by weather conditions and it requires relatively restricted surface areas compared, for example, to the area required by a hydroelectric power plant. The literature review presented here summarizes the main characteristics of the geothermal potential in Quebec, in sedimentary basins, and in Colombia, in the area of the Nevado del Ruiz volcanic complex. Currently, in these two regions, the hydro-electric power dominates the electricity production, but there is a similar interest to the development of geothermal power plants. The French sites of Soultz-sous-Forets in Alsace and Boiling in Guadeloupe are respectively presented as an example of exploitation of geothermal improved systems (Enhanced Geothermal System; EGS) and geothermal resources in volcanic regions. The first site constitutes a model for the future development of the deep geothermal exploitation in Quebec, whereas the second is an example for Colombia. A description of environmental impacts related to the exploitation of deep geothermal resources is presented at the end of this paper. (authors)

  12. Geothermal research and development program of the US Atomic Energy Commission

    Science.gov (United States)

    Werner, L. B.

    1974-01-01

    Within the overall federal geothermal program, the Atomic Energy Commission has chosen to concentrate on development of resource utilization and advanced research and technology as the areas most suitable to the expertise of its staff and that of the National Laboratories. The Commission's work in geothermal energy is coordinated with that of other agencies by the National Science Foundation, which has been assigned lead agency by the Office of Management and Budget. The objective of the Commission's program, consistent with the goals of the total federal program is to facilitate, through technological advancement and pilot plant operations, achievement of substantial commercial production of electrical power and utilization of geothermal heat by the year 1985. This will hopefully be accomplished by providing, in conjunction with industry, credible information on the economic operation and technological reliability of geothermal power and use of geothermal heat.

  13. Geothermal drilling and completion technology development program. Quarterly progress report, January-March 1980

    Energy Technology Data Exchange (ETDEWEB)

    Varnado, S.G. (ed.)

    1980-04-01

    The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987.

  14. Geothermal drilling and completion technology development program. Annual progress report, October 1979-September 1980

    Energy Technology Data Exchange (ETDEWEB)

    Varnado, S.G. (ed.)

    1980-11-01

    The progress, status, and results of ongoing research and development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987.

  15. Geothermal drilling and completion technology development program. Quarterly progress report, April-June 1980

    Energy Technology Data Exchange (ETDEWEB)

    Varnado, S.G.

    1980-07-01

    The progress, status, and results of ongoing research and development (R and D) within the Geothermal Drilling and Completion Technology Development Program are reported. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987.

  16. Testing geopressured geothermal reservoirs in existing wells: Detailed completion prognosis for geopressured-geothermal well of opportunity, prospect #7

    Energy Technology Data Exchange (ETDEWEB)

    Godchaux, Frank A.

    1981-06-01

    This book is a detailed prognosis covering the acquisition, completion, drilling, testing and abandonment of the Frank A. Godchaux, III, Well No. 1 under the Wells of Opportunity Program. The well is located approximately 12 miles southeast of the city of Abbeville, Louisiana. Eaton Operating Company proposes to test a section of the Planulina sand at a depth ranging from 15,584 to 15,692 feet. The reservoir pressure is estimated to be 14,480 psi and the temperature of the formation water is expected to be 298 F. The water salinity is calculated to be 75,000 ppm. The well is expected to produce 20,000 barrels of water per day with a gas content of 44 standard cubic feet pre barrel. The well was acquired from C and K Petroleu, Inc. on March 20, 1981. C and K abandoned the well at a total depth of 16,000 feet. The well has a 7-5/8 inches liner set at 13,387 feet. Eaton proposes to set 5-1/2 inch casing at 16,000 feet and produce the well through the casing using a 2-3/8 inch tubing string for wireline protection and for pressure control. A 4,600 foot saltwater disposal well will be drilled on the site and testing will be conducted similar to previous Eaton tests. The total estimated cost to perform the work is $2,959,000. An optional test from 14,905 to 15,006 feet may be performed after the original test and will require a workover with a rig on location to perform the plugback. The surface production equipment utilized on previous Eaton WOO tests will be utilized on this test. This equipment has worked satisfactorily and all parties involved in the testing are familiar with its operation. The Institute of Gas Technology and Mr. Don Clark will handle the sampling and testing and reservoir evaluation, respectively, as on the previous Eaton tests.

  17. Geothermal energy

    International Nuclear Information System (INIS)

    Le Du, H.; Bouchot, V.; Lopez, S.; Bialkowski, A.; Colnot, A.; Rigollet, C.; Sanjuan, B.; Millot, R.; Brach, M.; Asmundsson, R.; Giroud, N.

    2010-01-01

    Geothermal energy has shown a revival for several years and should strongly develop in a near future. Its potentiality is virtually unexhaustible. Its uses are multiple and various: individual and collective space heating, heat networks, power generation, heat storage, heat exchanges etc.. Re-launched by the demand of renewable energy sources, geothermal energy has become credible thanks to the scientific works published recently which have demonstrated its economical and technical relevance. Its image to the public is changing as well. However, lot of work remains to do to make geothermal energy a real industry in France. Several brakes have to be removed rapidly which concern the noise pollution of geothermal facilities, the risk of bad results of drillings, the electricity costs etc. This dossier gives an overview of today's main research paths in the domain of geothermal energy: 1 - geothermal energy in France: historical development, surface and deep resources, ambitions of the French national energy plan (pluri-annual investment plan for heat generation, incentives, regional 'climate-air-energy' schemes), specific regulations; 2 - geothermal energy at the city scale - sedimentary basins: Ile-de-France 40 years of Dogger reservoir exploitation, potentialities of clastic reservoirs - the Chaunoy sandstones example; 3 - geothermal power generation: conventional reservoirs - the Bouillante model (Guadeloupe, French Indies); the Soultz-sous-Forets pilot plant (Bas-Rhin, France); the supercritical reservoirs - the Krafla geothermal area (Iceland). (J.S.)

  18. Geothermal technology development program. Annual progress report, October 1981-September 1982

    Energy Technology Data Exchange (ETDEWEB)

    Kelsey, J.R. (ed.)

    1983-08-01

    The status of ongoing Research and Development (R and D) within the Geothermal Technology Development Program is described. The program emphasizes research in rock penetration mechanics, fluid technology, borehole mechanics, diagnostics technology, and permeability enhancement.

  19. Development of the Geothermal Heat Pump Market in China; Renewable Energy in China

    Energy Technology Data Exchange (ETDEWEB)

    2006-03-01

    This case study is one in a series of Success Stories on developing renewable energy technologies in China for a business audience. It focuses on the development of the geothermal heat pump market in China.

  20. Geothermal technology development program. Annual progress report, October 1980-September 1981

    Energy Technology Data Exchange (ETDEWEB)

    Kelsey, J.R. (ed.)

    1982-09-01

    The status of ongoing Research and Development (R and D) within the Geothermal Technology Development Program is described. The program emphasizes research in rock penetration mechanics, fluid technology, borehole mechanics, and diagnostics technology.

  1. Geophysics of Geothermal Areas: State of the Art and Future Development

    Science.gov (United States)

    Mabey, Don R.

    In May 1980 a workshop organized by the Advanced School of Geophysics of the Ettore Majorana Center for Scientific Culture was held in Erice, Italy. The purpose was to present the state of the art and future development of geophysics as related to exploration for geothermal resources and the environmental impact of the development of geothermal systems. The workshop was addressed to “younger researchers working in scientific institutions and in public or private agencies and who are particularly interested in these aspects of the energy problem.” Fourteen formal lectures were presented to the workshop. This volume contains papers based on 10 of these lectures with a preface, forward, and introduction by the editors. The ten papers are “Heat Transfer in Geothermal Areas,” “Interpretation of Conductive Heat Flow Anomalies,” “Deep Electromagnetic Soundings in Geothermal Exploration,” “A Computation Method for dc Geoelectric Fields,” “Measurement of Ground Deformation in Geothermal Areas,” “Active Seismic Methods in Geothermal Exploration,” “The Role of Geophysical Investigations in the Discovery of the Latera Geothermal Field,” “Geothermal Resources Exploration in the European Community: The Geophysical Case,” “Activity Performed by AGIP (ENI Group) in the Field of Geothermal Energy,” and “Geothermal Exploration in the Western United States.” Six of the authors are from Italy, and one each is from Iceland, the Netherlands, West Germany, and the United States. All of the papers are in English.

  2. Hawaii Energy Resource Overviews. Volume 4. Impact of geothermal resource development in Hawaii (including air and water quality)

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, S.M.; Siegel, B.Z.

    1980-06-01

    The environmental consequences of natural processes in a volcanic-fumerolic region and of geothermal resource development are presented. These include acute ecological effects, toxic gas emissions during non-eruptive periods, the HGP-A geothermal well as a site-specific model, and the geothermal resources potential of Hawaii. (MHR)

  3. The The geothermal potentials for electric development in Maluku Province

    Directory of Open Access Journals (Sweden)

    Vijaya Isnaniawardhani

    2018-03-01

    Full Text Available The characteristic of small to medium size islands is the limited amount of natural resources for electric generation. Presently the needs of energy in Maluku Province are supplied by the diesel generation units. The electricity distributes through an isolated grid system of each island. There are 10 separate systems in Maluku Province, namely Ambon, Namlea, Tual, Saumlaki, Mako, Piru, Bula, Masohi, Dobo and Langgur. From the geothermal point of view, this condition is suitable because the nature of the generation is small to medium and the locations are dispersed. The geological condition of Maluku Province is conducive for the formation of geothermal resources. The advanced utilization of geothermal energy in Maluku Province is in Tulehu located about 8 kilometers NE of Ambon. It is expected that 60 MW electric will be produced at the first stage in 2019. A total of 100 MW resources were estimated. Other places of geothermal potentials are Lauke and Tawen both located in Ambon Island with the potentials of 25 MW respectively. In Oma Haruku, Saparua and Nusa Laut the geothermal potentials were estimated to be 25 MW each. The total amount of geothermal energy in Maluku Province is thus, 225 MW which will contribute significantly to the needs of projected 184 MW in the year 2025. Keywords: Maluku Province, geothermal energy, suitable, dispersed, conducive

  4. National Geothermal Data System: Case Studies on Exploration and Development of Potential Geothermal Sites Through Distributed Data Sharing

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Arlene [DOE Geothermal Technologies Office; Allison, Lee [Executive Office of the State of Arizona (Arizona Geological Survey); Richard, Steve [Executive Office of the State of Arizona (Arizona Geological Survey); Caudill-Daugherty, Christy [Executive Office of the State of Arizona (Arizona Geological Survey); Patten, Kim [Executive Office of the State of Arizona (Arizona Geological Survey)

    2014-09-29

    The NGDS released version 1 of the system on April 30, 2014 using the US Geoscience Information Network (USGIN) as its data integration platform. NGDS supports the 2013 Open Data Policy, and as such, the launch was featured at the 2014 Energy Datapalooza. Currently, the NGDS features a comprehensive user interface for searching and accessing nearly 41,000 documents and more than 9 million data points shared by scores of data providers across the U.S. The NGDS supports distributed data sharing, permitting the data owners to maintain the raw data that is made available to the consumer. Researchers and industry have been utilizing the NGDS as a mechanism for promoting geothermal development across the country, from hydrothermal to ground source heat pump applications. Case studies in geothermal research and exploration from across the country are highlighted.

  5. Geothermal resource areas database for monitoring the progress of development in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, J.D.; Lepman, S.R.; Leung, K.; Phillips, S.L.

    1981-01-01

    The Geothermal Resource Areas Database (GRAD) and associated data system provide broad coverage of information on the development of geothermal resources in the United States. The system is designed to serve the information requirements of the National Progress Monitoring System. GRAD covers development from the initial exploratory phase through plant construction and operation. Emphasis is on actual facts or events rather than projections and scenarios. The selection and organization of data are based on a model of geothermal development. Subjects in GRAD include: names and addresses, leases, area descriptions, geothermal wells, power plants, direct use facilities, and environmental and regulatory aspects of development. Data collected in the various subject areas are critically evaluated, and then entered into an on-line interactive computer system. The system is publically available for retrieval and use. The background of the project, conceptual development, software development, and data collection are described here. Appendices describe the structure of the database in detail.

  6. Environmental overview for the development of geothermal resources in the State of New Mexico. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, M.; Starkey, A.H.; Dick-Peddie, W.A.

    1980-06-01

    A brief overview of the present day geothermal applications for hydrothermal electrical generation and direct heat use and their environmental implications is provided. Technologies and environmental impacts are considered at all points on the pathway of development resource exploration; well field, plant and transmission line construction; and plant operation. The technologies for electrical generation-direct, dry steam conversion; separated steam conversion; single-flash conversion, separated-steam/single-flash conversion and binary cycle conversion and the technologies for direct heat use - direct use of geothermal waters, surface heat exhanger, down-the hole heat exchanger and heat pump are described. A summary of the geothermal technologies planned or in operation within New Mexico geothermal areas is provided. A review of regulations that affect geothermal development and its related environmental impact in New Mexico is presented. The regulatory pathway, both state and federal, of geothermal exploration after the securing of appropriate leases, development, and construction and implementation of a geothermal facility are described. Six categories (Geophysical, Water, Air, Noise, Biota and Socioeconomics) were selected for environmental assessment. The data available is described.

  7. Geothermal development in the U.S.A. and future directions

    International Nuclear Information System (INIS)

    Wright, P.M.

    1998-01-01

    The geothermal industry presently has an operating generation capacity of about 2,300 megawatts and generates about 17 billion kilowatt-hours per year in the United States. Although the domestic market is stagnant due to restructuring of the electricity industry and to the very low competing price of natural gas, the industry is doing well by developing geothermal fields and power plants in the Philippines and Indonesia. The industry strongly supports the Department of Energy research program to develop new and improved technology and help lower the costs of geothermal power generation

  8. Engineering aspects of geothermal development with emphasis on the Imperial Valley of California

    Science.gov (United States)

    Goldsmith, M.

    1978-01-01

    This review was prepared in support of a geothermal planning activity of the County of Imperial. Engineering features of potential geothermal development are outlined. Acreage requirements for drilling and powerplants are estimated, as are the costs for wells, fluid transmission pipes, and generating stations. Rough scaling relationships are developed for cost factors as a function of reservoir temperature. Estimates are made for cooling water requirements, and possible sources of cooling water are discussed. Availability and suitability of agricultural wastewater for cooling are emphasized. The utility of geothermal resources for fresh water production in the Imperial Valley is considered.

  9. Industrial uses of geothermal energy: A framework for application in a developing country

    International Nuclear Information System (INIS)

    Vasquez, N.C.; Bernardo, R.O.; Cornelio, R.L.

    1992-01-01

    This paper presents a model of approach for agroindustrial development utilizing geothermal energy in an agriculturally based tropical developing country. Presented is the complexity of patterns in raw materials productivity, demand and the present problems of preserving their quality from biological deterioration thru drying. Utilization of a geothermal agroindustrial estate have to be carefully studied and programmed in reply to an almost constant heat demand profile consistent with seasonal available raw materials. This study uses the Tongonan Geothermal Field in Leyte Island as the model for presentation

  10. Site specific analysis of geothermal development-data files of prospective sites. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Trehan, R.; Cohen, A.; Gupta, J.; Jacobsen, W.; Leigh, J.; True, S.

    1978-08-01

    Development scenarios for 37 hydrothermal and geopressured prospects in the United States were analyzed to assist DOE's Division of Geothermal Energy in mission-oriented planning of geothermal resource development. This second volume of the three-volume series contains the detailed site-specific analyses in terms of technological, economic, and other requirements for meeting the postulated schedules. This presentation should be used in conjunction with Volume III, which contains detailed descriptive data files for each of the 37 prospects. These data files were used for the analyses contained in Volume II and should be useful for other geothermal resource studies. (JGB)

  11. Public service impacts of geothermal development: cumulative impacts study of the Geysers KGRA. Final staff report

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, K.M.

    1983-07-01

    The number of workers currently involved in the various aspects of geothermal development in the Geysers are identified. Using two different development scenarios, projections are made for the number of power plants needed to reach the electrical generation capacity of the steam resource in the Geysers. The report also projects the cumulative number of workers needed to develop the steam field and to construct, operate, and maintain these power plants. Although the number of construction workers fluctuates, most are not likely to become new, permanent residents of the KGRA counties. The administrative and public service costs of geothermal development to local jurisdications are examined, and these costs are compared to geothermal revenues accruing to the local governments. Revenues do not cover the immediate fiscal needs resulting from increases in local road maintenance and school enrollment attributable to geothermal development. Several mitigation options are discussed and a framework presented for calculating mitigation costs for school and road impacts.

  12. Oregon: a guide to geothermal energy development. [Includes glossary

    Energy Technology Data Exchange (ETDEWEB)

    Justus, D.; Basescu, N.; Bloomquist, R.G.; Higbee, C.; Simpson, S.

    1980-06-01

    The following subjects are covered: Oregons' geothermal potential, exploration methods and costs, drilling, utilization methods, economic factors of direct use projects, and legal and institutional setting. (MHR)

  13. Geothermal Energy Research and Development Program; Project Summaries

    Energy Technology Data Exchange (ETDEWEB)

    None

    1994-03-01

    This is an internal DOE Geothermal Program document. This document contains summaries of projects related to exploration technology, reservoir technology, drilling technology, conversion technology, materials, biochemical processes, and direct heat applications. [DJE-2005

  14. Geothermal energy utilisation in Slowakia and its future development

    Directory of Open Access Journals (Sweden)

    Sidorová Marína

    2004-09-01

    Full Text Available Owing to favourable geological conditions Slovakia is a country abundant in occurrence of low-enthalpy sources. The government of the state sponsors new renewable ecological energy sources, among which belongs geothermal energy. Geothermal water is utilized for recreation (swimming pools, spas, agriculture (heating of greenhouses, fishing and heating of houses. Effectivity of utilisation is about 30 % due to its seasonal use. That is why the annual house-heating and hot water supply from geothermal sources are supported. Recently company Slovgeoterm has initiated heating of greenhouses in Podhajska and heating of hospital and 1231 flats in town Galanta. Nowadays, research for the biggest geothermal project in the Middle Europe – construction in Košice basin has started.

  15. Geothermal Small Business Workbook [Geothermal Outreach and Project Financing

    Energy Technology Data Exchange (ETDEWEB)

    Elizabeth Battocletti

    2003-05-01

    Small businesses are the cornerstone of the American economy. Over 22 million small businesses account for approximately 99% of employers, employ about half of the private sector workforce, and are responsible for about two-thirds of net new jobs. Many small businesses fared better than the Fortune 500 in 2001. Non-farm proprietors income rose 2.4% in 2001 while corporate profits declined 7.2%. Yet not all is rosy for small businesses, particularly new ones. One-third close within two years of opening. From 1989 to 1992, almost half closed within four years; only 39.5% were still open after six years. Why do some new businesses thrive and some fail? What helps a new business succeed? Industry knowledge, business and financial planning, and good management. Small geothermal businesses are no different. Low- and medium-temperature geothermal resources exist throughout the western United States, the majority not yet tapped. A recent survey of ten western states identified more than 9,000 thermal wells and springs, over 900 low- to moderate-temperature geothermal resource areas, and hundreds of direct-use sites. Many opportunities exist for geothermal entrepreneurs to develop many of these sites into thriving small businesses. The ''Geothermal Small Business Workbook'' (''Workbook'') was written to give geothermal entrepreneurs, small businesses, and developers the tools they need to understand geothermal applications--both direct use and small-scale power generation--and to write a business and financing plan. The Workbook will: Provide background, market, and regulatory data for direct use and small-scale (< 1 megawatt) power generation geothermal projects; Refer you to several sources of useful information including owners of existing geothermal businesses, trade associations, and other organizations; Break down the complicated and sometimes tedious process of writing a business plan into five easy steps; Lead you

  16. Testing geopressured geothermal reservoirs in existing wells. Wells of Opportunity Program final contract report, 1980-1981

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    The geopressured-geothermal candidates for the Wells of Opportunity program were located by the screening of published information on oil industry activity and through direct contact with the oil and gas operators. This process resulted in the recommendation to the DOE of 33 candidate wells for the program. Seven of the 33 recommended wells were accepted for testing. Of these seven wells, six were actually tested. The first well, the No. 1 Kennedy, was acquired but not tested. The seventh well, the No. 1 Godchaux, was abandoned due to mechanical problems during re-entry. The well search activities, which culminated in the acceptance by the DOE of 7 recommended wells, were substantial. A total of 90,270 well reports were reviewed, leading to 1990 wells selected for thorough geological analysis. All of the reservoirs tested in this program have been restricted by one or more faults or permeability barriers. A comprehensive discussion of test results is presented.

  17. Economic impacts of geothermal development in Whatcom County, Washington

    International Nuclear Information System (INIS)

    Lesser, J.A.

    1992-07-01

    This report estimates the local economic impacts that could be anticipated from the development of a 100 megawatt (MW) geothermal power plant in eastern Whatcom County, Washington, near Mt. Baker, as shown in Figure 1. The study was commissioned by the Bonneville Power Administration to quantify such impacts as part of regional confirmation work recommended by the Northwest Power Planning Council. Whatcom County was chosen due to both identified geotherrnal resources and developer interest. The analysis will focus on two phases: a plant construction phase, including well field development, generating plant construction, and transmission line construction; and an operations phase. Economic impacts will occur to the extent that construction and operations affect the local economy. These impacts will depend on the existing structure of the Whatcom County economy and estimates of revenues that may accrue to the county as a result of plant construction, operation, and maintenance. Specific impacts may include additional direct employment at the plant, secondary impacts from wage payments being used to purchase locally produced goods and services, and impacts due to expenditures of royalty and tax payments received by the county. The basis for the analysis of economic impacts in this study is the US Forest Service IMPLAN input-output modeling system

  18. Assessment of geothermal development in the Imperial Valley of California. Volume 1. Environment, health, and socioeconomics

    Energy Technology Data Exchange (ETDEWEB)

    Layton, D. (ed.)

    1980-07-01

    Utilization of the Imperial Valley's geothermal resources to support energy production could be hindered if environmental impacts prove to be unacceptable or if geothermal operations are incompatible with agriculture. To address these concerns, an integrated environmental and socioeconomic assessment of energy production in the valley was prepared. The most important impacts examined in the assessment involved air quality changes resulting from emissions of hydrogen sulfide, and increases in the salinity of the Salton Sea resulting from the use of agricultural waste waters for power plant cooling. The socioeconomics consequences of future geothermal development will generally be beneficial. (MHR)

  19. Enhanced Geothermal System Development of the AmeriCulture Leasehold in the Animas Valley

    Energy Technology Data Exchange (ETDEWEB)

    Duchane, David V; Seawright, Gary L; Sewright, Damon E; Brown, Don; Witcher, James c.; Nichols, Kenneth E.

    2001-03-02

    Working under the grant with AmeriCulture, Inc., and its team of geothermal experts, assembled a plan to apply enhanced geothermal systems (EGS) techniques to increase both the temperature and flow rate of the geothermal waters on its leasehold. AmeriCulture operates a commercial aquaculture facility that will benefit from the larger quantities of thermal energy and low cost electric power that EGS technology can provide. The project brought together a team of specialists that, as a group, provided the full range of expertise required to successfully develop and implement the project.

  20. Enhanced Geothermal System Development of the AmeriCulture Leasehold in the Animas Valley; FINAL

    International Nuclear Information System (INIS)

    Duchane, David V; Seawright, Gary L; Sewright, Damon E; Brown, Don; Witcher, James c.; Nichols, Kenneth E.

    2001-01-01

    Working under the grant with AmeriCulture, Inc., and its team of geothermal experts, assembled a plan to apply enhanced geothermal systems (EGS) techniques to increase both the temperature and flow rate of the geothermal waters on its leasehold. AmeriCulture operates a commercial aquaculture facility that will benefit from the larger quantities of thermal energy and low cost electric power that EGS technology can provide. The project brought together a team of specialists that, as a group, provided the full range of expertise required to successfully develop and implement the project

  1. Detection and Characterization of Natural and Induced Fractures for the Development of Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Toksoz, M. Nafi [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Earth, Atmospheric and Planetary Sciences

    2013-04-06

    The objective of this 3-year project is to use various geophysical methods for reservoir and fracture characterization. The targeted field is the Cove Fort-Sulphurdale Geothermal Field in Utah operated by ENEL North America (ENA). Our effort has been focused on 1) understanding the regional and local geological settings around the geothermal field; 2) collecting and assembling various geophysical data sets including heat flow, gravity, magnetotelluric (MT) and seismic surface and body wave data; 3) installing the local temporary seismic network around the geothermal site; 4) imaging the regional and local seismic velocity structure around the geothermal field using seismic travel time tomography; and (5) determining the fracture direction using the shear-wave splitting analysis and focal mechanism analysis. Various geophysical data sets indicate that beneath the Cove Fort-Sulphurdale Geothermal Field, there is a strong anomaly of low seismic velocity, low gravity, high heat flow and high electrical conductivity. These suggest that there is a heat source in the crust beneath the geothermal field. The high-temperature body is on average 150 °C – 200 °C hotter than the surrounding rock. The local seismic velocity and attenuation tomography gives a detailed velocity and attenuation model around the geothermal site, which shows that the major geothermal development target is a high velocity body near surface, composed mainly of monzonite. The major fracture direction points to NNE. The detailed velocity model along with the fracture direction will be helpful for guiding the geothermal development in the Cove Fort area.

  2. Analysis of requirements for accelerating the development of geothermal energy resources in California

    Science.gov (United States)

    Fredrickson, C. D.

    1978-01-01

    Various resource data are presented showing that geothermal energy has the potential of satisfying a singificant part of California's increasing energy needs. General factors slowing the development of geothermal energy in California are discussed and required actions to accelerate its progress are presented. Finally, scenarios for developing the most promising prospects in the state directed at timely on-line power are given. Specific actions required to realize each of these individual scenarios are identified.

  3. Environmental overview of geothermal development: the Mono-Long Valley KGRA

    Energy Technology Data Exchange (ETDEWEB)

    Strojan, C.L.; Romney, E.M. (eds.)

    1979-01-01

    Major issues and concerns relating to geothermal development were identified and assessed in seven broad areas: (1) air quality, (2) archaeology and cultural resources, (3) geology, (4) natural ecosystems, (5) noise, (6) socioeconomics, and (7) water quality. Existing data for each of these areas was identified and evaluated to determine if the data can be used to help resolve major issues. Finally, specific areas where additional data are needed to ensure that geothermal development is environmentally acceptable were recommended.

  4. Geothermal energy

    International Nuclear Information System (INIS)

    Kappelmeyer, O.

    1991-01-01

    Geothermal energy is the natural heat of the earth. It represents an inexhaustible source of energy. In many countries, which are mostly located within the geothermal belts of the world, geothermal energy is being used since many decades for electricity generation and direct heating applications comprising municipal, industrial and agricultural heating. Outside the geothermal anomalous volcanic regions, hot ground water from deep rock formations at temperatures above 70 o C is used for process heat and space heating. Low prices for gas and oil hinder the development of geothermal plants in areas outside positive geothermal anomalies; the cost of drilling to reach depths, where temperatures are above 50 o C to 70 o C, is high. The necessary total investment per MW th installed capacity is in the order of 5 Mio- DM/MW th (3 Mio $/MW th ). Experience shows, that an economic break even with oil is reached at an oil price of 30$ per barrel or if an adequate bonus for the clean, environmentally compatible production of geothermal heat is granted. Worldwide the installed electric capacity of geothermal power plants is approximately 6 000 MW e . About 15 000 MW th of thermal capacity is being extracted for process heat and space heat. The importance of the terrestrial heat as an energy resource would be substantially increased, if the heat, stored in the hot crystalline basement could be extracted at economical production costs. Geothermal energy is a competitive energy source in areas with high geothermal gradients (relative low cost for drilling) and would be competitive in areas with normal geothermal gradients, if a fair compensation for environmental implications from fossil and nuclear power production would be granted. (author) 2 figs., 1 tab., 6 refs

  5. Cumulative impacts study of The Geysers KGRA: public-service impacts of geothermal development

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, K.M.

    1982-05-01

    Geothermal development in The Geysers KGRA has affected local public services and fiscal resources in Sonoma, Lake, Mendocino, and Napa counties. Each of these counties underwent rapid population growth between 1970 and 1980, some of which can be attributed to geothermal development. The number of workers currently involved in the various aspects of geothermal development in The Geysers is identified. Using three different development scenarios, projections are made for the number of power plants needed to reach the electrical generation capacity of the steam resource in The Geysers. The report also projects the cumulative number of workers needed to develop the steam field and to construct, operate, and maintain these power plants. Although the number of construction workers fluctuates, most are not likely to become new, permanent residents of the KGRA counties. The administrative and public service costs of geothermal development to local jurisdictions are examined and compared to geothermal revenues accruing to the local governments. Revenues do not cover the immediate fiscal needs resulting from increases in local road maintenance and school enrollment attributable to geothermal development. Several mitigation options are discussed, and a framework is presented for calculating mitigation costs per unit of public service.

  6. Reservoir Maintenance and Development Task Report for the DOE Geothermal Technologies Office GeoVision Study.

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, Thomas Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Finger, John T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Carrigan, Charles R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Foris, Adam [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kennedy, Mack B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Corbet, Thomas F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Doughty, Christine A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pye, Steven [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sonnenthal, Eric L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    This report documents the key findings from the Reservoir Maintenance and Development (RM&D) Task of the U.S. Department of Energy's (DOE), Geothermal Technologies Office (GTO) Geothermal Vision Study (GeoVision Study). The GeoVision Study had the objective of conducting analyses of future geothermal growth based on sets of current and future geothermal technology developments. The RM&D Task is one of seven tasks within the GeoVision Study with the others being, Exploration and Confirmation, Potential to Penetration, Institutional Market Barriers, Environmental and Social Impacts, Thermal Applications, and Hybrid Systems. The full set of findings and the details of the GeoVision Study can be found in the final GeoVision Study report on the DOE-GTO website. As applied here, RM&D refers to the activities associated with developing, exploiting, and maintaining a known geothermal resource. It assumes that the site has already been vetted and that the resource has been evaluated to be of sufficient quality to move towards full-scale development. It also assumes that the resource is to be developed for power generation, as opposed to low-temperature or direct use applications. This document presents the key factors influencing RM&D from both a technological and operational standpoint and provides a baseline of its current state. It also looks forward to describe areas of research and development that must be pursued if the development geothermal energy is to reach its full potential.

  7. New Mexico low-temperature geothermal resources and economic development programs

    International Nuclear Information System (INIS)

    Whittier, J.; Schoenmackers, R.

    1990-01-01

    This paper reports on New Mexico's low-temperature geothermal resources which have been utilized to promote economic development initiatives within the state. Public funds have been leveraged to foster exploration activities which have led to the establishment of several direct-use projects at various sites within New Mexico. State policies have focused on attracting one business sector, the commercial greenhouse industry, to expand and/or relocate in New Mexico. Geothermal-related promotional activities have begun to show success in achieving economic growth. New Mexico now has almost half of the geothermally-heated greenhouse space in the nation. It is anticipated that the greenhouse sector will continue to grow within the state. Future economic development activities, also relying upon the geothermal resource base, will include vegetable dehydration and aquaculture with a focus on the microalgae sector

  8. DEVELOPING DIRECT USE OF GEOTHERMAL ENERGY IN ORADEA CITY

    Directory of Open Access Journals (Sweden)

    VASIU I.

    2015-09-01

    Full Text Available Thermal energy demand for district heating in the city of Oradea is supplied at present, almost at whole, by the Cogeneration Thermal Power Plant, based on classical fuels, mainly consisting of low grade coal and natural gas, with a small contribution of the geothermal energy. Geothermal resource at low enthalpy, located within the city area of Oradea, available at an estimated level of 250 GWh/year, exploited at present by 12 production wells, can provide a share of 55 GWh/year for district heating, representing at present about 7 % from the overall thermal demand at the end users inlet. Geothermal energy is delivered by means of 3 main thermal stations, in order to prepare, especially household warm water, but sometimes also secondary agent for space heating, using additionally heat, based on natural gas. At present, in the city area of Oradea, more than 7,000 dwellings are supplied by geothermal stations with warm water and in addition for about 3,400 dwellings is assured simultaneously warm water and space heating. Even if the geothermal energy provides at present only a small part of the overall heating requirement at the city level, nevertheless by increased financial support, in the near future is expected its much more contribution, as an alternative to polluting energy of coal and natural gas.

  9. Geothermal Development and the Use of Categorical Exclusions Under the National Environmental Policy Act of 1969 (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Levine, A.; Young, K. R.

    2014-09-01

    The federal environmental review process under the National Environmental Policy Act of 1969 (NEPA) can be complex and time consuming. Currently, a geothermal developer may have to complete the NEPA process multiple times during the development of a geothermal project. One mechanism to reduce the timeframe of the federal environmental review process for activities that do not have a significant environmental impact is the use of Categorical Exclusions (CXs), which can exempt projects from having to complete an Environmental Assessment or Environmental Impact Statement. This study focuses primarily on the CX process and its applicability to geothermal exploration. In this paper, we: Provide generalized background information on CXs, including previous NEPA reports addressing CXs, the process for developing CXs, and the role of extraordinary circumstances; Examine the history of the Bureau of Land Management's (BLM) geothermal CXs; Compare current CXs for oil, gas, and geothermal energy; Describe bills proposing new statutory CXs; Examine the possibility of standardizing geothermal CXs across federal agencies; and Present analysis from the Geothermal NEPA Database and other sources on the potential for new geothermal exploration CXs. As part of this study, we reviewed Environmental Assessments (EAs) conducted in response to 20 geothermal exploration drilling permit applications (Geothermal Drilling Permits or Notices of Intents) since the year 2001, the majority of which are from the last 5 years. All 20 EAs reviewed for this study resulted in a Finding of No Significant Impact (FONSI). While many of these FONS's involved proponent proposed or federal agency required mitigation, this still suggests it may be appropriate to create or expand an exploration drilling CX for geothermal, which would have a significant impact on reducing geothermal exploration timelines and up-front costs. Ultimately, federal agencies tasked with permitting and completing

  10. Proceedings of the Conference on Research for the Development of Geothermal Energy Resources

    Science.gov (United States)

    1974-01-01

    The proceedings of a conference on the development of geothermal energy resources are presented. The purpose of the conference was to acquaint potential user groups with the Federal and National Science Foundation geothermal programs and the method by which the users and other interested members can participate in the program. Among the subjects discussed are: (1) resources exploration and assessment, (2) environmental, legal, and institutional research, (3) resource utilization projects, and (4) advanced research and technology.

  11. Development of an acoustic sensor for a geothermal Borehole Televiewer

    Energy Technology Data Exchange (ETDEWEB)

    Wonn, J.W.

    1979-03-01

    The objective of this project is to upgrade acoustic sensor technology such that appropriate well logging instruments can be made to operate under the hostile environment conditions anticipated in geothermal resource exploration and evaluation. The Borehole Televiewer (BHTV) was selected as the vehicle for this sensor improvement work, primarily because of its demonstrated ability to detect and characterize fractures under sub-geothermal conditions. The work done toward providing an improved sensor for the televiewer is described. An experimental sensor concept was devised, incorporating a thin metal acoustic window, an improved, high-temperature internal coupling fluid, and thermally resistant sensor internals. During an autoclave test, it was successfully demonstrated that the resulting experimental sensor design concept provides the basic target detection and characterization functions required of a fracture mapping, Borehole Televiewer under simulated geothermal conditions. In particular, the experimental sensor remained operational at 275/sup 0/C and 7000 psi.

  12. Development of an acoustic sensor for a geothermal borehole televiewer

    Energy Technology Data Exchange (ETDEWEB)

    Wonn, J.W.

    1979-03-01

    The objective of this project is to upgrade acoustic sensor technology such that appropriate well logging instruments can be made to operate under the hostile environment conditions anticipated in geothermal resource exploration and evaluation. The Borehole Televiewer (BHTV) was selected as the vehicle for this sensor improvement work, primarily because of its demonstrated ability to detect and characterize fractures under sub-geothermal conditions. The work done toward providing an improved sensor for the televiewer is described. An experimental sensor concept was devised, incorporating a thin metal acoustic window, an improved, high-temperature internal coupling fluid, and thermally resistant sensor internals. During an autoclave test, it was successfully demonstrated that the resulting experimental sensor design concept provides the basic target detection and characterization functions required of a fracture mapping, Borehole Televiewer under simulated geothermal conditions. In particular, the experimental sensor remained operational at 275/sup 0/C and 7000 psi.

  13. Fiscal 1992 report on geothermal development promotion survey (Development of geothermal reservoir assessment technique); 1989 nendo chinetsu kaihatsu sokushin chosa (Chinetsu choryusou hyoka shuho kaihatsu hokokusho)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    Efforts were exerted in fiscal 1984-1992 to develop techniques for appropriately assessing a geothermal reservoir for its productivity for duly predicting the optimum scale of power generation to be provided thereby. In the development of simulators, geothermal reservoir simulators (SING-1, -2, -3) and a geothermal well 2-phase flow simulator (WENG) were developed. As for the treatment of fractures in a reservoir and of substances soluble in the hot water, the methods for dealing with them were improved and augmented. In a model field study in a Hokkaido forest, reservoir pressure continuous observation and monitoring, temperature logging and pressure logging for existing wells, and geothermal fluid chemical analysis were performed for reservoir analysis, in which both natural state simulation and history mapping excellently reproduced the temperature and pressure distributions. The temperature and pressure distributions in a natural state simulation, out of the results of an analysis of the Oguni district model field, Kumamoto Prefecture, agreed not only with those in the natural state but also with the pressure transition data in the observation well. (NEDO)

  14. National Geothermal Academy. Geo-Heat Center Quarterly Bulletin, Vol. 31 No. 2 (Complete Bulletin). A Quarterly Progress and Development Report on the Direct Utilization of Geothermal Resources

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Tonya [ed.; Maddi, Phillip [ed.

    2012-08-01

    The National Geothermal Academy (NGA) is an intensive 8-week overview of the different aspects involved in developing a geothermal project, hosted at University of Nevada, Reno. The class of 2012 was the second graduating class from the academy and included 21 students from nine states, as well as Saudi Arabia, Dominica, India, Trinidad, Mexico. The class consisted of people from a wide range of scholastic abilities from students pursuing a Bachelor’s or Master’s degrees, to entrepreneurs and professionals looking to improve their knowledge in the geothermal field. Students earned 6 credits, either undergraduate or graduate, in engineering or geology. Overall, the students of the NGA, although having diverse backgrounds in engineering, geology, finance, and other sciences, came together with a common passion to learn more about geothermal.

  15. Geothermal energy

    International Nuclear Information System (INIS)

    Vuataz, F.-D.

    2005-01-01

    This article gives a general overview of the past and present development of geothermal energy worldwide and a more detailed one in Switzerland. Worldwide installed electrical power using geothermal energy sources amounts to 8900 MW el . Worldwide utilization of geothermal energy for thermal applications amounts to 28,000 MW th . The main application (56.5%) is ground-coupled heat pumps, others are thermal spas and swimming pools (17.7%), space heating (14.9%), heating of greenhouses (4.8%), fish farming (2.2%), industrial uses (1,8%), cooling and melting of snow (1.2%), drying of agricultural products (0.6 %). Switzerland has become an important user of geothermal energy only in the past 25 years. Earlier, only the exploitation of geothermal springs (deep aquifers) in Swiss thermal baths had a long tradition, since the time of the Romans. Today, the main use of geothermal energy is as a heat source for heat pumps utilizing vertical borehole heat exchangers of 50 to 350 meters length. 35,000 installations of this type with heating powers ranging from a few kW to 1000 kW already exist, representing the highest density of such installations worldwide. Other developments are geostructures and energy piles, the use of groundwater for heating and cooling, geothermal district heating, the utilization of draining water from tunnels and the project 'Deep Heat Mining' allowing the combined production of heat and electric power

  16. New Mexico Southwest Regional Geothermal Development Operations Research Project. Appendix 9 of regional operations research program for development of geothermal energy in the Southwest United States. Final technical report, June 1977--August 1978

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Thomas A.; Fedor, Dennis

    1979-01-01

    This final report describes the findings and conclusions of the New Mexico Team during the first project year of the Southwest Regional Geothermal Development Operations Research Project. The purpose of this project is to help realize a goal of the USDOE , Division of Geothermal Energy (DOE/DGE), to accelerate the actual commercial utilization of geothermal energy. This was done by: (1) identifying the potential for development of geothermal energy in the five-state regions of Arizona, Colorado, New Mexico, Nevada and Utah; and (2) identifying the actions needed to accomplish that development.

  17. New Zealand geothermal: Wairakei -- 40 years

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This quarterly bulletin highlights the geothermal developments in New Zealand with the following articles: A brief history of the Wairakei geothermal power project; Geothermal resources in New Zealand -- An overview; Domestic and commercial heating and bathing -- Rotorua area; Kawerau geothermal development: A case study; Timber drying at Kawerau; Geothermal greenhouses at Kawerau; Drying of fibrous crops using geothermal steam and hot water at the Taupo Lucerne Company; Prawn Park -- Taupo, New Zealand; Geothermal orchids; Miranda hot springs; and Geothermal pipeline.

  18. The current status of geothermal direct use development in the United States

    International Nuclear Information System (INIS)

    Lund, J.W.; Lienau, P.J.; Culver, G.G.

    1990-01-01

    In this paper information is provided on the status of geothermal direct heat utilization in the United States, with emphasis on developments from 1985 to 1990. A total of 452 sites, which include approximately 130,000 individual installations, have been identified with an annual energy use of 19.7 x 10 12 kJ. Approximately 44% of this use is due to enhanced oil recovery in four midwestern states, and 30% is due to geothermal heat pumps. Since 1985, 25 new projects, which include approximately 200 individual installations, and representing a thermal capacity of 106.7 MWt and annual energy utilization of 1.1 x 10 12 kJ, have become operational or are under construction. Earth-coupled and groundwater heat pumps, representing the largest growth sector during this period, add an additional 400 MWt and 1.2 x 10 12 kJ to these figures. Geothermal heat pumps have extended geothermal direct heat use into almost every state in the nation. Slightly over 200 direct heat geothermal wells, averaging 150 m in depth, along with approximately 30,000 heat pump wells, have been drilled for these projects. Between 20 and 25 professional man-years of effort are estimated to have been allocated to geothermal direct heat projects during each of the five years

  19. Geothermal energy development - a boon to Philippine energy self-reliance efforts

    International Nuclear Information System (INIS)

    Alcaraz, A.P.; Ogena, M.S.

    1997-01-01

    The Philippine success story in geothermal energy development is the first of the nation's intensified search for locally available alternative energy sources to oil. Due to its favorable location in the Pacific belt of fire, together with the presence of the right geologic conditions for the formation of geothermal (earth heat) reservoirs, the country has been able to develop commercially six geothermal fields. These are the Makiling-Banahaw area, just south of Manila, Tiwi in Albay, Bacon-Manito in Sorsogon, Tongonan in Leyte, Palinpinon in Southern Negros, and the Mt. Apo region of Mindanao. Together these six geothermal fields have a combined installed generation capacity of 1,448 Mwe, which the Philippines second largest user geothermal energy in the world today. Since 1977 to mid-1997, a total of 88,475 gigawatt-hours have been generated equivalent to 152.54 million barrels of oil. Based on the average yearly price of oil for the period, this translates into a savings of $3,122 billion for the country that otherwise would have gone for oil importations. It is planned that by the year 2000, geothermal shall be accounting for 28.4% of the 42,000 gigawatt-hours of the energy needed for that year, coal-based plants will contribute 24.6% and hydropower 18.6%. This will reduce oil-based contribution to just 28.4%. Geothermal energy as an indigenous energy resource provides the country a sustainable option to other conventional energy sources such as coal, oil and even hydro. Technologies have long been developed to maintain the environmental quality of the geothermal site. It serves to minimize changes in the support systems found on the land, water and air environments. The country has hopped, skipped and jumped towards energy self-reliance anchored on development of its large geothermal resources. And as the Philippines pole-vaults into the 21st century, the nation can look forward to geothermal energy to remain as one of the pillars of its energy self

  20. Guidebook to Geothermal Finance

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, J. P.; Meurice, J.; Wobus, N.; Stern, F.; Duaime, M.

    2011-03-01

    This guidebook is intended to facilitate further investment in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project development. The trends in geothermal project finance are the focus of this tool, relying heavily on interviews with leaders in the field of geothermal project finance. Using the information provided, developers and investors may innovate in new ways, developing partnerships that match investors' risk tolerance with the capital requirements of geothermal projects in this dynamic and evolving marketplace.

  1. Geothermal Technologies Program: Alaska

    Energy Technology Data Exchange (ETDEWEB)

    2005-02-01

    This fact sheets provides a summary of geothermal potential, issues, and current development in Alaska. This fact sheet was developed as part of DOE's GeoPowering the West initiative, part of the Geothermal Technologies Program.

  2. National forecast for geothermal resource exploration and development with techniques for policy analysis and resource assessment

    Energy Technology Data Exchange (ETDEWEB)

    Cassel, T.A.V.; Shimamoto, G.T.; Amundsen, C.B.; Blair, P.D.; Finan, W.F.; Smith, M.R.; Edeistein, R.H.

    1982-03-31

    The backgrund, structure and use of modern forecasting methods for estimating the future development of geothermal energy in the United States are documented. The forecasting instrument may be divided into two sequential submodels. The first predicts the timing and quality of future geothermal resource discoveries from an underlying resource base. This resource base represents an expansion of the widely-publicized USGS Circular 790. The second submodel forecasts the rate and extent of utilization of geothermal resource discoveries. It is based on the joint investment behavior of resource developers and potential users as statistically determined from extensive industry interviews. It is concluded that geothermal resource development, especially for electric power development, will play an increasingly significant role in meeting US energy demands over the next 2 decades. Depending on the extent of R and D achievements in related areas of geosciences and technology, expected geothermal power development will reach between 7700 and 17300 Mwe by the year 2000. This represents between 8 and 18% of the expected electric energy demand (GWh) in western and northwestern states.

  3. Annual Report: Support Research for Development of Improved Geothermal Drill Bits

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, R.R.; Winzenried, R.W.; Jones, A.H.; Green, S.J.

    1978-07-01

    The work reported herein is a continuation of the program initiated under DOE contract E(10-1)-1546* entitled "Program to Design and Experimentally Test an Improved Geothermal Bit"; the program is now DOE Contract EG-76-C-1546*. The objective of the program has been to accelerate the commercial availability of a tolling cutter drill bit for geothermal applications. Data and experimental tests needed to develop a bit suited to the harsh thermal, abrasive, and chemical environment of the more problematic geothermal wells, including those drilled with air, have been obtained. Efforts were directed at the improvement of both the sealed (lubricated) and unsealed types of bits. The unsealed bit effort included determination of the rationale for materials selection, the selection of steels for the bit body, cutters, and bearings, the selection of tungsten carbide alloys for the friction bearing, and preliminary investigation of optimized tungsten carbide drilling inserts. Bits build** with the new materials were tested under stimulated wellbore conditions. The sealed bit effort provided for the evaluation of candidate high temperature seals and lubricants, utilizing two specially developed test apparatus which simulate the conditions found in a sealed bit operating in a geothermal wellbore. Phase I of the program was devoted largely to (1) the study of the geothermal environment and the failure mechanisms of existing geothermal drill bits, (2) the design and construction of separate facilities for testing both drill-bit seals and full-scale drill bits under simulated geothermal drilling conditions, and (3) fabrication of the MK-I research drill bits from high-temperature steels, and testing in the geothermal drill-bit test facility. The work accomplished in Phase I is reported in References 1 through 9. In Phase II, the first generation experimental bits were tested in the geothermal drill-bit test facility. Test results indicated that hardness retention at temperature

  4. Is development of geothermal energy resource in Macedonia justified or not?

    International Nuclear Information System (INIS)

    Popovski, Kiril; Popovska Vasilevska, Sanja

    2007-01-01

    During the 80-ies of last century, Macedonia has been one of the world leaders in development of direct application of geothermal energy. During a period of only 6-7 years a participation of 0,7% in the State energy balance has been reached. However, situation has been changed during the last 20 years and the development of this energy resource has been not only stopped but some of the existing projects have been abandoned leading to regression. This situation is illogical, due the fact that it practically proved of being technically feasible and absolutely economically justified. A summary of the present situation with geothermal projects in Macedonia is made in the paper, and possibilities for their improvement and possibilities and justifications for development of new resources foreseen. Final conclusion is that the development of direct application of geothermal energy in Macedonia offer (in comparison with other renewable energy resources) the best energy and economic effects. (Author)

  5. Development of an active solar humidification-dehumidification (HDH) desalination system integrated with geothermal energy

    International Nuclear Information System (INIS)

    Elminshawy, Nabil A.S.; Siddiqui, Farooq R.; Addas, Mohammad F.

    2016-01-01

    Highlights: • Productivity increases with increasing geothermal water flow rate up to 0.15 kg/s. • Geothermal energy increases productivity by 187–465% when used with solar energy. • Daytime experimental productivity (8AM-5PM) up to 104 L/m 2 was achieved. • Daily experimental productivity (24 h) up to 192 L/m 2 was achieved. • Fresh potable water can be produced at 0.003 USD/L using this desalination setup. - Abstract: This paper investigates the technical and economic feasibility of using a hybrid solar-geothermal energy source in a humidification-dehumidification (HDH) desalination system. The newly developed HDH system is a modified solar still with air blower and condenser used at its inlet and outlet respectively. A geothermal water tank in a temperature range 60–80 °C which imitates a low-grade geothermal energy source was used to supply heat to water inside the humidification chamber. The experiments were conducted in January 2015 under the climatological conditions of Madinah (latitude: 24°33′N, longitude: 39°36′0″E), Saudi Arabia to study the effect of geothermal water temperature and flow rate on the performance and productivity of proposed desalination system. Analytical model was also developed to compare the effect of solar energy and combined solar-geothermal energy on accumulated productivity. Daytime experimental accumulated productivity up to 104 L/m 2 and daily average gained output ratio (GOR) in the range 1.2–1.58 was achieved using the proposed desalination system. Cost of fresh water produced using the presented desalination system is 0.003 USD/L.

  6. The The geothermal potentials for electric development in Maluku Province

    OpenAIRE

    Isnaniawardhani, Vijaya; Sukiyah, Emi; Sudradjat, Adjat; Nanlohy, Martha Magdalena

    2018-01-01

    The characteristic of small to medium size islands is the limited amount of natural resources for electric generation. Presently the needs of energy in Maluku Province are supplied by the diesel generation units. The electricity distributes through an isolated grid system of each island. There are 10 separate systems in Maluku Province, namely Ambon, Namlea, Tual, Saumlaki, Mako, Piru, Bula, Masohi, Dobo and Langgur. From the geothermal point of view, this condition is suitable because the na...

  7. Idaho geothermal development projects. Annual report for 1976

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    A third successful well in Raft River was completed, to 6000 ft, striking a 149/sup 0/C (300/sup 0/F) reservoir, at less cost than either of the other two wells, despite being drilled in a formation of lower productivity. This well employed a special multiple channel drilling technique, which in retrospect was necessary to make the well useful for production of fluids. Two successful wells of shallow depth (1200 ft) were also finished in Boise this summer, both producing artesian flows of the predicted temperature, 75/sup 0/C (167/sup 0/F). The sources in tapping both the Raft River and Boise geothermal reservoirs was followed by an extensive reservoir monitoring program. By-product uses of the Raft River geothermal water received season long testing for irrigation of crops and for fish culture. Both results were highly encouraging. In Boise, the success of the two shallow wells and some design innovations lead to the conclusion that providing geothermal space heat to the capitol and other state-owned buildings could be a major economic success if double or triple the number of buildings could be served. (MHR)

  8. Session 10: The Cerro Prieto Geothermal Field, Mexico: The Experiences Gained from Its Exploration and Development

    Energy Technology Data Exchange (ETDEWEB)

    Lippman, M.J.; Goldstein, N.E.; Halfman, S.E.; Witherspoon, P.A.

    1983-12-01

    The Cerro Prieto case study demonstrated the value of a multidisciplinary effort for exploring and developing a geothermal field. There was no problem in recognizing the geothermal potential of the Cerro Prieto area because of the many obvious surface manifestations. However, the delineation of the geothermal reservoir at depth was not so straightforward. Wells drilled near the abundant surface manifestations only produced fluids of relatively low enthalpy. Later it was determined that these zones of high heat loss corresponded to discharge areas where faults and fractures allowed thermal fluids to leak to the surface, and not to the main geothermal reservoir. The early gravity and seismic refraction surveys provided important information on the general structure of the area. Unaware of the existence of a higher density zone of hydrothermally altered sediments capping the geothermal reservoir, CFE interpreted a basement horst in the western part of the field and hypothesized that the bounding faults were controlling the upward flow of thermal fluids. Attempting to penetrate the sedimentary column to reach the ''basement horst'', CFE discovered the {alpha} geothermal reservoir (in well M-5). The continuation of the geothermal aquifer (actually the {beta} reservoir) east of the original well field was later confirmed by a deep exploration well (M-53). The experience of Cerro Prieto showed the importance of chemical ratios, and geothermometers in general, in establishing the subsurface temperatures and fluid flow patterns. Fluid chemical and isotopic compositions have also been helpful to determine the origin of the fluids, fluid-production mechanisms and production induced effects on the reservoir.

  9. Present status of exploration and development of the geothermal resources of Guatemala

    International Nuclear Information System (INIS)

    Caicedo, A.; Palma, J.

    1990-01-01

    This paper reports on the study of geothermal exploration and geothermal development in the nation of Guatemala that is being led by the Instituto Nacionai de electrificacion (INDE) through the Unidad de Desarrollo Geotermico (UDG), for the purpose of developing the geothermal resources in order to generate electricity. Since 1972, it has accomplished geoscientific studies with regional surveys in 13 areas located in the volcanic region in the southern part of the country. Also, prefeasibility studies have been carried out in geothermal areas such as Moyuta and Tecuamburro in the southeast of the country; Amatitlan in the central region and San Marcos in the west. Moreover, in the geothermal field of Zunil I, which is located in the western Department of Quetzaltenango, the feasibility study has been completed, and the first geothermo-electric plant of 15 MW is being schedule for June of 1993. By then, the feasibility study for the second power plant in the more promising area of Zunil II located on the outskirts of Zunil I or Amatitlan. Also, in the area of Zunil I a farm-produce dehydration plant has been built through a technical cooperation agreement between INDE and Los Alamos National Laboratory, LANL. It has the purpose of showing the use of direct-heat through produced steam from the slim hole Z-11

  10. Imperial County, geothermal development. Quarterly report, October 1-December 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    Geothermal development activities have increased during the October to December period. Nine power plant projects are proceeding, this includes two constructed facilities, one facility under construction, three facilities scheduled to begin construction in 1982, and three facilities in the planning or permitting stage. Geothermal exploration activities are continuing with activities in East Brawley, Truckhaven, and near the Superstition Mountains. Interest in direct heat development seems to be increasing. The City of El Centro project is under construction and there are several direct heat projects in preliminary planning stages. Permitting, planning, and waste disposal activities are reviewed.

  11. Local population impacts of geothermal energy development in the Geysers: Calistoga region

    Energy Technology Data Exchange (ETDEWEB)

    Haven, K.F.; Berg, V.; Ladson, Y.W.

    1980-09-01

    The country-level population increase implications of two long-term geothermal development scenarios for the Geysers region in California are addressed. This region is defined to include the counties of Lake, Sonoma, Mendocino and Napa, all four in northern California. The development scenarios include two components: development for electrical energy production and direct use applications. Electrical production scenarios are derived by incorporating current development patterns into previous development scenarios by both industry and research organizations. The scenarios are made county-specific, specific to the type of geothermal system constructed, and are projected through the year 2000. Separate high growth rate and low growth rate scenarios are developed, based on a set of specified assumptions. Direct use scenarios are estimated from the nature of the available resource, existing local economic and demographic patterns, and available experience with various separate direct use options. From the composite development scenarios, required numbers of direct and indirect employees and the resultant in-migration patterns are estimated. In-migration patterns are compared to current county level population and ongoing trends in the county population change for each of the four counties. From this comparison, conclusions are drawn concerning the contributions of geothermal resource development to future population levels and the significance of geothermally induced population increase from a county planning perspective.

  12. Geothermal energy

    Science.gov (United States)

    Manzella, A.

    2017-07-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity) worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology), spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth's crust.

  13. Geothermal energy

    Directory of Open Access Journals (Sweden)

    Manzella A.

    2017-01-01

    Full Text Available Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology, spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth’s crust.

  14. The Momotombo Geothermal Field, Nicaragua: Exploration and development case history study

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-07-01

    This case history discusses the exploration methods used at the Momotombo Geothermal Field in western Nicaragua, and evaluates their contributions to the development of the geothermal field models. Subsequent reservoir engineering has not been synthesized or evaluated. A geothermal exploration program was started in Nicaragua in 1966 to discover and delineate potential geothermal reservoirs in western Nicaragua. Exploration began at the Momotombo field in 1970 using geological, geochemical, and geophysical methods. A regional study of thermal manifestations was undertaken and the area on the southern flank of Volcan Momotombo was chosen for more detailed investigation. Subsequent exploration by various consultants produced a number of geotechnical reports on the geology, geophysics, and geochemistry of the field as well as describing production well drilling. Geological investigations at Momotombo included photogeology, field mapping, binocular microscope examination of cuttings, and drillhole correlations. Among the geophysical techniques used to investigate the field sub-structure were: Schlumberger and electromagnetic soundings, dipole mapping and audio-magnetotelluric surveys, gravity and magnetic measurements, frequency domain soundings, self-potential surveys, and subsurface temperature determinations. The geochemical program analyzed the thermal fluids of the surface and in the wells. This report presents the description and results of exploration methods used during the investigative stages of the Momotombo Geothermal Field. A conceptual model of the geothermal field was drawn from the information available at each exploration phase. The exploration methods have been evaluated with respect to their contributions to the understanding of the field and their utilization in planning further development. Our principal finding is that data developed at each stage were not sufficiently integrated to guide further work at the field, causing inefficient use of

  15. Further Development and Application of GEOFRAC-FLOW to a Geothermal Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Einstein, Herbert [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Vecchiarelli, Alessandra [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2014-05-01

    GEOFRAC is a three-dimensional, geology-based, geometric-mechanical, hierarchical, stochastic model of natural rock fracture systems. The main characteristics of GEOFRAC are its use of statistical input representing fracture patterns in the field in form of the fracture intensity P32 (fracture area per volume) and the best estimate fracture size E(A). This information can be obtained from boreholes or scanlines on the surface, on the one hand, and from window sampling of fracture traces on the other hand. In the context of this project, “Recovery Act - Decision Aids for Geothermal Systems”, GEOFRAC was further developed into GEOFRAC-FLOW as has been reported in the reports, “Decision Aids for Geothermal Systems - Fracture Pattern Modelling” and “Decision Aids for Geothermal Systems - Fracture Flow Modeling”. GEOFRAC-FLOW allows one to determine preferred, interconnected fracture paths and the flow through them.

  16. Effects of potential geothermal development in the Corwin Springs Known Geothermal Resources Area, Montana, on the thermal features of Yellowstone National Park. Water Resources Investigation

    International Nuclear Information System (INIS)

    Sorey, M.L.

    1991-01-01

    A two-year study by the U.S. Geological Survey, in collaboration with the National Park Service, Argonne National Laboratory, and Los Alamos National Laboratory was initiated in 1988 to determine the effects of potential geothermal development in the Corwin Springs Known Geothermal Resources Area (KGRA), Montana, on the thermal features of Yellowstone National Park. The study addressed three principal issues: (1) the sources of thermal water in the hot springs at Mammoth, La Duke, and Bear Creek; (2) the degree of subsurface connection between these areas; and (3) the effects of geothermal development in the Corwin Springs KGRA on the Park's thermal features. The authors investigations included, but were not limited to, geologic mapping, electrical geophysical surveys, chemical sampling and analyses of waters and rocks, determinations of the rates of discharge of various thermal springs, and hydrologic tracer tests

  17. Geothermal direct applications hardware systems development and testing. 1979 summary report

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.G.

    1980-03-01

    Activities performed during calendar year 1979 for the hardware system development and testing task are presented. The fluidized bed technology was applied to the drying of potato by-products and to the exchange of heat to air in the space heating experiment. Geothermal water was flashed to steam and also used as the prime energy source in the steam distillation of peppermint oil. Geothermal water temperatures as low as 112.8/sup 0/C were utilized to distill alcohol from sugar beet juice, and lower temperature water provided air conditioning through an absorption air conditioning system. These experiments are discussed.

  18. Problem definition study of subsidence caused by geopressured geothermal resource development

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The environmental and socio-economic settings of four environmentally representative Gulf Coast geopressured geothermal fairways were inventoried. Subsidence predictions were prepared using feasible development scenarios for the four representative subsidence sites. Based on the results of the subsidence estimates, an assessment of the associated potential environmental and socioeconomic impacts was prepared. An inventory of mitigation measures was also compiled. Results of the subsidence estimates and impact assessments are presented, as well as conclusions as to what are the major uncertainties, problems, and issues concerning the future study of geopressured geothermal subsidence.

  19. Exploration and development of the Cerro Prieto geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Lippmann, M.J.; Goldstein, N.E.; Halfman, S.E.; Witherspoon, P.A.

    1983-07-01

    A multidisciplinary effort to locate, delineate, and characterize the geothermal system at Cerro Prieto, Baja California, Mexico, began about 25 years ago. It led to the identification of an important high-temperature, liquid-dominated geothermal system which went into production in 1973. Initially, the effort was undertaken principally by the Mexican electric power agency, the Comision Federal de Electricidad (CFE). Starting in 1977 a group of US organizations sponsored by the US Department of Energy, joined CFE in this endeavor. An evaluation of the different studies carried out at Cerro Prieto has shown that: (1) surface electrical resistivity and seismic reflection surveys are useful in defining targets for exploratory drilling; (2) the mineralogical studies of cores and cuttings and the analysis of well logs are important in designing the completion of wells, identifying geological controls on fluid movement, determining thermal effects and inferring the thermal history of the field; (3) geochemical surveys help to define zones of recharge and paths of fluid migration; and (4) reservoir engineering studies are necessary in establishing the characteristics of the reservoir and in predicting its response to fluid production.

  20. Development of Models to Simulate Tracer Tests for Characterization of Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Mark D.; Reimus, Paul; Vermeul, Vincent R.; Rose, Peter; Dean, Cynthia A.; Watson, Tom B.; Newell, D.; Leecaster, Kevin; Brauser, Eric

    2013-05-01

    A recent report found that power and heat produced from enhanced (or engineered) geothermal systems (EGSs) could have a major impact on the U.S energy production capability while having a minimal impact on the environment. EGS resources differ from high-grade hydrothermal resources in that they lack sufficient temperature distribution, permeability/porosity, fluid saturation, or recharge of reservoir fluids. Therefore, quantitative characterization of temperature distributions and the surface area available for heat transfer in EGS is necessary for the design and commercial development of the geothermal energy of a potential EGS site. The goal of this project is to provide integrated tracer and tracer interpretation tools to facilitate this characterization. This project was initially focused on tracer development with the application of perfluorinated tracer (PFT) compounds, non-reactive tracers used in numerous applications from atmospheric transport to underground leak detection, to geothermal systems, and evaluation of encapsulated PFTs that would release tracers at targeted reservoir temperatures. After the 2011 midyear review and subsequent discussions with the U.S. Department of Energy Geothermal Technology Program (GTP), emphasis was shifted to interpretive tool development, testing, and validation. Subsurface modeling capabilities are an important component of this project for both the design of suitable tracers and the interpretation of data from in situ tracer tests, be they single- or multi-well tests. The purpose of this report is to describe the results of the tracer and model development for simulating and conducting tracer tests for characterizing EGS parameters.

  1. Investigations into early rift development and geothermal resources in the Pyramid Lake fault zone, Western Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Eisses, A.; Kell, A.; Kent, G.; Driscoll, N. [UCSD; Karlin, R.; Baskin, R. [USGS; Louie, J. [UNR; Pullammanappallil, S. [Optim

    2016-08-01

    A. K. Eisses, A. M. Kell, G. Kent, N. W. Driscoll, R. E. Karlin, R. L. Baskin, J. N. Louie, S. Pullammanappallil, 2010, Investigations into early rift development and geothermal resources in the Pyramid Lake fault zone, Western Nevada: Abstract T33C-2278 presented at 2010 Fall Meeting, AGU, San Francisco, Calif., 13-17 Dec.

  2. Hawaii Energy Resource Overviews. Volume 5. Social and economic impacts of geothermal development in Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Canon, P.

    1980-06-01

    The overview statement of the socio-economic effects of developing geothermal energy in the State of Hawaii is presented. The following functions are presented: (1) identification of key social and economic issues, (2) inventory of all available pertinent data, (3) analysis and assessment of available data, and (4) identification of what additional information is required for adequate assessment.

  3. Thermal spa Kezovica, opportunities for tourism development

    OpenAIRE

    Taskov, Nako; Metodijeski, Dejan

    2012-01-01

    Subject of this article is the spa Kezhovica and opportunities for its tourism development. First part of the paper provides general information related to the spa, its location, the historical development and current condition and capacity. The second part natural and anthropogenic resources for tourism development are processed and presented. The third part is devoted to the features of water and the medical treatment abilities of the spa. The last section includes conclusions and recommend...

  4. Farmers’ perception of opportunities for farm development

    NARCIS (Netherlands)

    Methorst, Ron

    2016-01-01

    Differences in the perception of opportunities for farm development is researched in this thesis in relation to differences in the embedding of the farm in the socio-material context. This study contributes to a Sociology of Entrepreneurship in focusing on the decision-maker specific aspects using

  5. Governmental costs and revenues associated with geothermal energy development in Imperial County. Special Publication 3241

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, G.; Strong, D.

    1977-10-01

    This study estimates the cost and revenue impacts to local governments of three geothermal energy growth scenarios in Imperial County. The level of geothermal energy potential for the three development scenarios tested is 2,000, 4,000 and 8,000 MW--enough power to serve 270,000 to 1,000,000 people. The government agencies involved do not expect any substantial additional capital costs due to geothermal energy development; therefore, average costing techniques have been used for projecting public service costs and government revenues. The analysis of the three growth scenarios tested indicates that county population would increase by 3, 7 and 19 percent and assessed values would increase by 20, 60, and 165 percent for Alternatives No. 1, No. 2 and No. 3 respectively. Direct and indirect effects would increase new jobs in the county by 1,000, 3,000 and 8,000. Government revenues would tend to exceed public service costs for county and school districts, while city costs would tend to exceed revenues. In each of the alternatives, if county, cities and school districts are grouped together, the revenues exceed costs by an estimated $1,600 per additional person either directly or indirectly related to geothermal energy development in the operational stages. In the tenth year of development, while facilities are still being explored, developed and constructed, the revenues would exceed costs by an approximate $1,000 per additional person for each alternative. School districts with geothermal plants in their boundaries would be required by legislation SB 90 to reduce their tax rates by 15 to 87 percent, depending on the level of energy development. Revenue limits and school taxing methods will be affected by the Serrano-Priest decision and by new school legislation in process.

  6. Development of a Special Application Coiled Tubing Applied Plug for Geothermal Well Casing Remediation

    Energy Technology Data Exchange (ETDEWEB)

    STALLER,GEORGE E.; KNUDSEN,STEVEN D.; SATTLER,ALLAN R.

    1999-10-01

    Casing deformation in producing geothermal wells is a common problem in many geothermal fields, mainly due to the active geologic formations where these wells are typically located. Repairs to deformed well casings are necessary to keep the wells in production and to occasionally enter a well for approved plugging and abandonment procedures. The costly alternative to casing remediation is to drill a new well to maintain production and/or drill a well to intersect the old well casing below the deformation for abandonment purposes. The U.S. Department of Energy and the Geothermal Drilling Organization sponsored research and development work at Sandia National Laboratories in an effort to reduce these casing remediation expenditures. Sandia, in cooperation with Halliburton Energy Services, developed a low cost, bridge-plug-type, packer for use in casing remediation work in geothermal well environments. This report documents the development and testing of this commercially available petal-basket packer called the Special Application Coiled Tubing Applied Plug (SACTAP).

  7. Geothermal energy: a brief assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lunis, B.C.; Blackett, R.; Foley, D. (eds.)

    1982-07-01

    This document includes discussions about geothermal energy, its applications, and how it is found and developed. It identifies known geothermal resources located in Western's power marketing area, and covers the use of geothermal energy for both electric power generation and direct applications. Economic, institutional, environmental, and other factors are discussed, and the benefits of the geothermal energy resource are described.

  8. Technological opportunities and paths of development

    DEFF Research Database (Denmark)

    Plichta, Kirsten

    1993-01-01

    in the industry. 6) It is argued that such paths of incremental improvement at the industry level may be an outcome of a) the dynamics that produce the technological opportunities; b) the institutions that govern decisions and expectations and c) the criteria by which the chooses between different firms...... technological development efforts. 7) The dynamic that produces opportunities for technological development will in part depend on characteristics of the product (e.g., its complexity), the interdependence between the product and production techniques, the diffusion of the product and in part...... the outcome of different firms development effort may also help shape a path at the industry level. This may be because the criteria by which the market selects between the different product may to some extent be anticipated by the developing firms or because the criteria by which the market select betwee...

  9. World geothermal congress

    International Nuclear Information System (INIS)

    Povarov, O.A.; Tomarov, G.V.

    2001-01-01

    The World geothermal congress took place in the period from 28 May up to 10 June 2000 in Japan. About 2000 men from 43 countries, including specialists in the area of developing geothermal fields, creating and operating geothermal electrical and thermal plants and various systems for the earth heat application, participated in the work of the Congress. It was noted at the Congress, that development of the geothermal power engineering in the world is characterized by the large-scale application of geothermal resources for the electrical energy generation [ru

  10. Hawaii geothermal project

    Science.gov (United States)

    Kamins, R. M.

    1974-01-01

    Hawaii's Geothermal Project is investigating the occurrence of geothermal resources in the archipelago, initially on the Island of Hawaii. The state's interest in geothermal development is keen, since it is almost totally dependent on imported oil for energy. Geothermal development in Hawaii may require greater participation by the public sector than has been true in California. The initial exploration has been financed by the national, state, and county governments. Maximization of net benefits may call for multiple use of geothermal resources; the extraction of by-products and the application of treated effluents to agricultural and aquacultural uses.

  11. Recent trends in the development of heat exchangers for geothermal systems

    Science.gov (United States)

    Franco, A.; Vaccaro, M.

    2017-11-01

    The potential use of geothermal resources has been a remarkable driver for market players and companies operating in the field of geothermal energy conversion. For this reason, medium to low temperature geothermal resources have been the object of recent rise in consideration, with strong reference to the perspectives of development of Organic Rankine Cycle (ORC) technology. The main components of geothermal plants based on ORC cycle are surely the heat exchangers. A lot of different heat exchangers are required for the operation of ORC plants. Among those it is surely of major importance the Recovery Heat Exchanger (RHE, typically an evaporator), in which the operating fluid is evaporated. Also the Recuperator, in regenerative Organic Rankine Cycle, is of major interest in technology. Another important application of the heat exchangers is connected to the condensation, according to the possibility of liquid or air cooling media availability. The paper analyzes the importance of heat exchangers sizing and the connection with the operation of ORC power plants putting in evidence the real element of innovation: the consideration of the heat exchangers as central element for the optimum design of ORC systems.

  12. Geothermal energy

    Directory of Open Access Journals (Sweden)

    Manzella A.

    2015-01-01

    Full Text Available Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG emissions. Geothermal energy is stored in rocks and in fluids circulating in the underground. Electricity generation usually requires geothermal resources temperatures of over 100°C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology, spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Geothermal technology, which has focused so far on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth’s crust.

  13. Sustainable energy development and water supply security in Kamojang Geothermal Field: The Energy-Water Nexus

    Science.gov (United States)

    Sofyan, Y.; Nishijima, J.; Fujimitsu, Y.

    2014-12-01

    The Kamojang Geothermal Field (KGF) is a typical vapor dominated hydrothermal system in West Java, Indonesia. This geothermal field is the oldest exploited geothermal field in Indonesia. From 1983 to 2005, more than 160 million tons of steam have been exploited from the KGF and more than 30 million tons of water were injected into the reservoir system. The injected water come from condensed water, local river and ground water. Sustainable production in the geothermal energy development is the ability of the production system applied to sustain the stable production level over long times and to manage the mass balance between production, injection and natural recharge in the geothermal reservoir during exploitation. Mass balance in the reservoir system can be monitored by using time lapse gravity monitoring. Mass variation of hydrodynamic in the reservoir of KGF from 1999 to 2005 is about -3.34 Mt/year while is about -3.78 Mt/year from 1999 to 2008. Another period between 2009 and 2010, mass variation decreased about -8.24 Mt. According to the history of production and injection, natural recharge to the KGF's reservoir is estimated at about 2.77 Mt/year from 1999 to 2005 and 2.75 Mt/year from 1999 to 2008. Between 2009 and 2010, KGF has a bigger mass deficiency rate throughout 200 MWe maintain production. Large amount of fresh water is needed for sustainable geothermal energy production, while the domestic water supply need is also increased. Natural recharge, about 50% of injected water, cooling system, drilling and other production activities in KGF spend large amounts of fresh water. Water consumption for local people around KGF is about 1.46 MT/year. The water volume around KGF of total runoff is the range between dry season 0.07 MT/month and rainy season 4.4 MT/month. The water demands for sustainable geothermal production of KGF and for local people's consumption will increase in the future. Integrated planning between the energy and water sectors in KGF

  14. Development of an Advanced Stimulation / Production Predictive Simulator for Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Pritchett, John W. [Leidos, Inc., San Diego, CA (United States)

    2015-04-15

    There are several well-known obstacles to the successful deployment of EGS projects on a commercial scale, of course. EGS projects are expected to be deeper, on the average, than conventional “natural” geothermal reservoirs, and drilling costs are already a formidable barrier to conventional geothermal projects. Unlike conventional resources (which frequently announce their presence with natural manifestations such as geysers, hot springs and fumaroles), EGS prospects are likely to appear fairly undistinguished from the earth surface. And, of course, the probable necessity of fabricating a subterranean fluid circulation network to mine the heat from the rock (instead of simply relying on natural, pre-existing permeable fractures) adds a significant degree of uncertainty to the prospects for success. Accordingly, the basic motivation for the work presented herein was to try to develop a new set of tools that would be more suitable for this purpose. Several years ago, the Department of Energy’s Geothermal Technologies Office recognized this need and funded a cost-shared grant to our company (then SAIC, now Leidos) to partner with Geowatt AG of Zurich, Switzerland and undertake the development of a new reservoir simulator that would be more suitable for EGS forecasting than the existing tools. That project has now been completed and a new numerical geothermal reservoir simulator has been developed. It is named “HeatEx” (for “Heat Extraction”) and is almost completely new, although its methodology owes a great deal to other previous geothermal software development efforts, including Geowatt’s “HEX-S” code, the STAR and SPFRAC simulators developed here at SAIC/Leidos, the MINC approach originally developed at LBNL, and tracer analysis software originally formulated at INEL. Furthermore, the development effort was led by engineers with many years of experience in using reservoir simulation software to make meaningful forecasts for real geothermal

  15. Exploitation of geothermal energy as a priority of sustainable energetic development in Serbia

    International Nuclear Information System (INIS)

    Golusin, Mirjana; Bagaric, Ivan; Ivanovic, Olja Munitlak; Vranjes, Sanja

    2010-01-01

    The actual global economic crisis, including all other well-known problems of sustainable development, reflects the direction of development of all countries in the world. Serbia, as a European country in its early stage of development, is trying to synchronize its progress with experience of other countries from the field of sustainable development and in accordance with rules in the field of energetic and energetic efficiency, and, as well as to promote and develop the sector of use of renewable sources of energy. On the other hand, Serbia is a country which largely depends on import of all forms of energy, which to a great extent affects its economic stability. Therefore, in Serbia the strategy for development of energetic was imposed and it considers all the aspects of development of energetic until 2015 and it also defines the priorities which can be mostly seen in the choice of forms of alternative sources of energy. These sources, based on some criteria, can be considered the most convenient for a gradual substitution of energy which is gotten from the conventional sources. Taking into account strategically defined goals and domestic potentials which are at disposal, as well as economic parameters, an alternative source of energy of basic importance for the future exploitation on the territory of Serbia geothermal energy, was chosen. The research points to the fact that Serbia will be capable to respond adequately to Kyoto protocol demands and to the European rules regarding the substitution of a certain amounts of fossil fuels by the fuel origin from the raw biological materials. The research defines the existent and non-existent capacities and the assessment of positive effects of usage of geothermal energy. At the moment, 160 long holes are being exploited whose water temperature is around 60 C (140 F) and their heat power reach 160 MJ/s. It was stated that adequate exploitation of existing and new geothermal sources a yearly would save about 500,000 tons

  16. Equal employment opportunity plan development guidance

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-09-01

    The purpose of this publication is to provide instructions for the development of EEO Plans for Fiscal Year 1979. It supplements the National EEO Plan for the Department of Energy issued in August 1978 (DOE/S-0002). The material included should be used immediately as guidance to develop, document, and implement subordinate echelon commitments to EEO. A schedule for the development and submission of EEO Plans is included. Most of the continuing requirements will be published at a later date as part of the directives system. Any comments or helpful suggestions concerned with the program outlined would be appreciated by the Office of Equal Opportunity.

  17. Geothermal Program Review XVII: proceedings. Building on 25 years of Geothermal Partnership with Industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-10-01

    The US Department of Energy's Office (DOE) of Geothermal Technologies conducted its annual Program Review XVII in Berkeley, California, on May 18--20, 1999. The theme this year was "Building on 25 Years of Geothermal Partnership with Industry". In 1974, Congress enacted Public Law 93-410 which sanctioned the Geothermal Energy Coordination and Management Project, the Federal Government's initial partnering with the US geothermal industry. The annual program review provides a forum to foster this federal partnership with the US geothermal industry through the presentation of DOE-funded research papers from leaders in the field, speakers who are prominent in the industry, topical panel discussions and workshops, planning sessions, and the opportunity to exchange ideas. Speakers and researchers from both industry and DOE presented an annual update on research in progress, discussed changes in the environment and deregulated energy market, and exchanged ideas to refine the DOE Strategic Plan for research and development of geothermal resources in the new century. A panel discussion on Climate Change and environmental issues and regulations provided insight into the opportunities and challenges that geothermal project developers encounter. This year, a pilot peer review process was integrated with the program review. A team of geothermal industry experts were asked to evaluate the research in progress that was presented. The evaluation was based on the Government Performance and Results Act (GPRA) criteria and the goals and objectives of the Geothermal Program as set forth in the Strategic Plan. Despite the short timeframe and cursory guidance provided to both the principle investigators and the peer reviewers, the pilot process was successful. Based on post review comments by both presenters and reviewers, the process will be refined for next year's program review.

  18. Japanese geothermics

    International Nuclear Information System (INIS)

    Laplaige, P.

    1995-01-01

    At the end of the seventies, the NEDO (New Energy and Industrial Technology Development Organisation) and the Central Research Institute of Electric Power Industry have started two independent projects of deep geothermics research in Honshu island (Japan). The two sites are 50 km apart of each other and the boreholes have been drilled up to 2300 and 1100 m of depth, respectively, in hot-dry moderately fractured volcanic rocks. These sites are characterized by high geothermal gradients with a rock temperature reaching 250 C at the bottom of the wells. Hydraulic circulation tests are still in progress to evaluate the profitability of these sites. (J.S.). 1 fig., 1 photo

  19. An economic prefeasibility study of geothermal energy development at Platonares, Honduras

    Energy Technology Data Exchange (ETDEWEB)

    Trocki, L.K.

    1989-01-01

    The expected economic benefits from development of a geothermal power plant at Plantanares in the Department of Copan, Honduras are evaluated in this report. The economic benefits of geothermal plants ranging in size from a 10-MW plant in the shallow reservoir to a 20-, 30-, 55-, or 110-MW plant in the assumed deeper reservoir were measured by computing optimal expansion plans for each size of geothermal computing optimal expansion plans for each size of geothermal plant. Savings are computed as the difference in present value cost between a plan that contains no geothermal plant and one that does. Present value savings in millions of 1987 dollars range from $25 million for the 10-MW plant to $110 million for the 110-MW plant -- savings of 6% to 25% over the time period 1988 through 2008. The existence of the shallow reservoir is relatively well-characterized, and much indirect scientific evidence indicate the existence of the deeper reservoir. Based on probability distributions estimated by geologists of temperature, areal extent, depth, and porosity, the expected size of power plant that the deep reservoir can support was estimated with the following results: O-MW -- 16% (i.e., there is a 16% chance that the deep reservoir will not support a power plant); 20-MW -- 38%; 30-MW -- 25%; 55-MW -- 19%; and 110-MW -- 2%. When the cost savings from each size of plant are weighted by the probability that the reservoir will support a plant of that size, the expected monetary value of the deep reservoir can be computed. It is $42 million in present value 1987 dollars -- a cost savings of 10%. The expected savings from the 10-MW plant in the shallow reservoir are expected to be close to the computed value of $25 million, i.e., the probability that the shallow reservoir can support the plant is high. 4 refs., 3 figs., 2 tabs.

  20. Development of a geothermal resource in a fractured volcanic formation: Case study of the Sumikawa Geothermal Field, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Garg, S.K.; Pritchett, J.W.; Stevens, J.L.; Luu, L. [Maxwell Federal Div., Inc., San Diego, CA (United States); Combs, J. [Geo-Hills Associates, Los Altos, CA (United States)

    1996-11-01

    The principal purpose of this case study of the Sumikawa Geothermal Field is to document and to evaluate the use of drilling logs, surface and downhole geophysical measurements, chemical analyses, and pressure transient data for the assessment of a high temperature volcanic geothermal field. The work accomplished during Year 1 of this ongoing program is described in the present report. A brief overview of the Sumikawa Geothermal Field is given. The drilling information and downhole pressure, temperature, and spinner surveys are used to determine feedzone locations, pressures and temperatures. Available injection and production data from both slim holes and large-diameter wells are analyzed to evaluate injectivity/productivity indices and to investigate the variation of discharge rate with borehole diameter. Finally, plans for future work are outlined.

  1. Niland development project geothermal loan guaranty: 49-MW (net) power plant and geothermal well field development, Imperial County, California: Environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    1984-10-01

    The proposed federal action addressed by this environmental assessment is the authorization of disbursements under a loan guaranteed by the US Department of Energy for the Niland Geothermal Energy Program. The disbursements will partially finance the development of a geothermal well field in the Imperial Valley of California to supply a 25-MW(e) (net) power plant. Phase I of the project is the production of 25 MW(e) (net) of power; the full rate of 49 MW (net) would be achieved during Phase II. The project is located on approximately 1600 acres (648 ha) near the city of Niland in Imperial County, California. Well field development includes the initial drilling of 8 production wells for Phase I, 8 production wells for Phase II, and the possible need for as many as 16 replacement wells over the anticipated 30-year life of the facility. Activities associated with the power plant in addition to operation are excavation and construction of the facility and associated systems (such as cooling towers). Significant environmental impacts, as defined in Council on Environmental Quality regulation 40 CFR Part 1508.27, are not expected to occur as a result of this project. Minor impacts could include the following: local degradation of ambient air quality due to particulate and/or hydrogen sulfide emissions, temporarily increased ambient noise levels due to drilling and construction activities, and increased traffic. Impacts could be significant in the event of a major spill of geothermal fluid, which could contaminate groundwater and surface waters and alter or eliminate nearby habitat. Careful land use planning and engineering design, implementation of mitigation measures for pollution control, and design and implementation of an environmental monitoring program that can provide an early indication of potential problems should ensure that impacts, except for certain accidents, will be minimized.

  2. Impact of geothermal development on the state of Hawaii. Executive summary. Volume 7

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, B.Z.

    1980-06-01

    Questions regarding the sociological, legal, environmental, and geological concerns associated with the development of geothermal resources in the Hawaiian Islands are addressed in this summary report. Major social changes, environmental degradation, legal and economic constraints, seismicity, subsidence, changes in volcanic activity, accidents, and ground water contamination are not major problems with the present state of development, however, the present single well does not provide sufficient data for extrapolation. (ACR)

  3. EVALUATION OF PROSPECTS OF INTEGRATED DEVELOPMENT OF GEOTHERMAL RESOURCES OF THE NORTH CAUCASUS REGION

    Directory of Open Access Journals (Sweden)

    A. B. Alkhasov

    2017-01-01

    Full Text Available The aim is to assess the prospects for the integrated development of geothermal resources in the North Caucasus region.Methods. Technological solutions are proposed for integrated development of hightemperature hydrogeothermal resources of the North Caucasus region. The evaluation of the effectiveness of the proposed technologies was carried out with the use of physico-mathematical, thermodynamic and optimization methods of calculation and physico-chemical experimental studies.Findings. Were estimated the prospects of complex processing of highly parametrical geothermal resources of the Eastern Ciscaucasian artesian basin (ECAB with conversion of thermal energy into electric power in a binary GeoPP and subsequent extraction of dissolved chemical compounds. The most promising areas for the development of such resources were indicated. In connection with the exacerbated environmental problems, it was shown the need for the firstpriority integrated development of associated high-mineralized brines of the South Sukhokum group of gas-oil wells in North Dagestan. At present, associated brines with a radioactive background exceeding permissible standards are discharged to surface filtration fields; technological solutions for their decontamination and integrated development were proposed.Conclusions. The comprehensive development of high-temperature hydrogeothermal brines is a new direction in geothermal energy, which will significantly increase the production of hydrogeothermal resources and develop the geothermal industry at a higher level with the implementation of energy-efficient advanced technologies. Large-scale development of brines will solve significant problems of energy supply in the region and import substitution, fully meeting Russia's needs for food and technical salt and other rare elements. 

  4. Geothermal Power Potential in the Tatun Volcano Group, Taiwan

    Science.gov (United States)

    Tseng, H. H.; Song, S.

    2013-12-01

    Recent energy issues have concentrated the attention on finding alternative ones. National demands for renewable and sustainable energy increase rapidly, especially the geothermal power production, which is viewed as the most potential opportunity. This study attempts to estimate the geothermal powers in the Tatung Volcano Group (TVG), Taiwan and evaluate the possibility to develop the Enhanced Geothermal System. Tatung Volcano Group is located at the northwest part of Taiwan. It has violent volcanism during 0.8-0.20Ma, and is still active with many thermal manifestations. The young volcanic activity provides the TVG with high geothermal gradient and is well suitable for exploiting geothermal resources. Many explorations on geothermal energy have been accomplished in this area during1966-1973. They included resistivity survey, magnetic prospecting, gravity method, seismic prospecting and etc. In this study, we base on previous data and apply the probabilistic volumetric method proposed by Geotherm EX Inc., modified from the approach introduced by the USGS to evaluate the geothermal power potential in TVG. Meanwhile, use a Monte Carlo simulation technique to calculate the probability distribution of potentially recoverable energy reserves. The results show that the mean value is 270Mw, and P50 is 254Mw for 30 years, separately. Furthermore, the power potential of enhanced geothermal system in TVG is also estimated by the quantitative model proposed by Massachusetts Institute of Technology (MIT 2006). The results suggest that the mean value is 3,000 MW and P50 is 2,780 MW for 30 years, separately.

  5. Design, Development and Testing of a Drillable Straddle Packer for Lost Circulation Control in Geothermal Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Gabaldon, J.; Glowka, D.A.; Gronewald, P.; Knudsen, S.D.; Raymond, D.W.; Staller, G.E.; Westmoreland, J.J.; Whitlow, G.L.; Wise, J.L.; Wright, E.K.

    1999-04-01

    Lost Circulation is a widespread problem encountered when drilling geothermal wells, and often represents a substantial portion of the cost of drilling a well. The U.S. Department of Energy sponsors research and development work at Sandia National Laboratories in an effort to reduce these lost circulation expenditures. Sandia has developed a down hole tool that improves the effectiveness and reduces th cost of lost circulation cement treatment while drilling geothermal wells. This tool, the Drillable Straddle Packer, is a low-cost disposable device that is used to isolate the loss zone and emplace the cement treatment directly into the region of concern. This report documents the design and development of the Drillabe Straddle Packer, the laboratory and field test results, and the design package that is available to transfer this technology to industry users.

  6. Evaluating the level and nature of sustainable development for a geothermal power plant

    International Nuclear Information System (INIS)

    Phillips, Jason

    2010-01-01

    The paper provides for an evaluation of the potential level and nature of sustainable development of the Sabalan geothermal power plant in NW Iran, to be operational in 2011. The paper achieves this by applying a mathematical model of sustainable development developed by the author (re: Phillips), in respect to the Environmental Impact Assessment (EIA) conducted by Yousefi et al. using the Rapid Impact Assessment Matrix (RIAM) methodology (re: Pastakia; Pastakia and Jensen). Using a model application methodology developed for the RIAM, the results indicated that the nature of sustainable development for Sabalan was considered to be very weak (S = 0.063). This was due to the imbalance between negative environmental impacts and positive socio-economic impacts deriving from the project. Further, when placed into context with a similar set of results obtained from the EIA of the Tuzla geothermal power plant by Baba also using the RIAM methodology, then the similarities between the results obtained raises some legimate questions as to the sustainable development credentials of geothermal power production. (author)

  7. Proposal for the further development of the 'Ribeira Grande' agricultural geothermal project

    International Nuclear Information System (INIS)

    Popovski, Kiril; De Medeiros, Jorge Rosa; Rodrigues, Ana Catarina Tavares

    2000-01-01

    Geothermal project Ribeira Grande has been the first trial to introduce the possibilities of direct application of geothermal energy at Azores. As all the first experiences, it's development has been escorted with a list of difficulties and problems, resulting with non proper completion of some systems and installations. However, even not complete, the reached results justified both technically and economically the indigenous resource door for further activities and development. Presented proposal for the second phase of project development consists two very important advantages: 1) Enables development of new demonstration and productive projects, without engaging new import of fuels or other energents; 2) Enables development based on the already existing economy sectors at the islands and makes them more profitable and accommodated to the requests of the national and international market. However, influencing national and international preconditions for the realization of the proposed activities are not very convenient and are requesting a concentrate engagement of the Institute for Innovative Technologies of Azores INOVA during the period of next 5 years. The final success of this engagement shall open very wide possibilities for direct application of geothermal energy development in this isolated EC community, presently mainly orientated towards import both of energy and food. (Authors)

  8. High-temperature explosive development for geothermal well stimulation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, E.W.; Mars, J.E.; Wang, C.

    1978-03-31

    A two-component, temperature-resistant liquid explosive called HITEX has been developed which is capable of withstanding 561/sup 0/K (550/sup 0/F) for 24 hours in a geothermal environment. The explosive is intended for the stimulation of nonproducing or marginally producing geothermal (hot dry rock, vapor-dominated or hydrothermal) reservoirs by fracturing the strata in the vicinity of a borehole. The explosive is inherently safe because it is mixed below ground downhole from two nondetonable liquid components. Development and safety tests included differential scanning calorimetry, thermal stability, minerals compatibility, drop-weight sensitivity, adiabatic compression, electrostatic discharge sensitivity, friction sensitivity, detonation arrest capability, cook-off tests, detonability at ambient and elevated pressure, detonation velocity and thin film propagation in a wedge.

  9. Evaluation of state taxes and tax incentives and their impact on the development of geothermal energy in western states

    Energy Technology Data Exchange (ETDEWEB)

    Bronder, L.D.; Meyer, R.T.

    1981-01-01

    The economic impact of existing and prospective state taxes and tax incentives on direct thermal applications of geothermal energy are evaluated. Study area is twelve western states which have existing and potential geothermal activities. Economic models representing the geothermal producer and business enterprise phases of four industrial/commercial uses of geothermal energy are synthesized and then placed in the existing tax structures of each state for evaluation. The four enterprises are a commercial greenhouse (low temperature process heat), apartment complex (low temperature space heat), food processor (moderate temperature process heat), and small scale energy system (electrical and direct thermal energy for a small industrial park). The effects of the state taxations on net profits and tax revenues are determined. Tax incentives to accelerate geothermal development are also examined. The magnitudes of total state and local tax collections vary considerably from state to state, which implies that geothermal producers and energy-using businesses may be selective in expanding or locating their geothermal operations.

  10. Future Scenario Development from Disruptive Exploration Technologies and Business Models in the U.S. Geothermal Industry

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Anna

    2017-05-01

    With recent trends toward intermittent renewable energy sources in the U.S., the geothermal industry in its current form faces a crossroad: adapt, disrupt, or be left behind. Strategic planning with scenario analysis offers a framework to characterize plausible views of the future given current trends - as well as disruptions to the status quo. To inform strategic planning in the Department of Energy's (DOE) Geothermal Technology Office (GTO), the Geothermal Vision Study is tasked with offering data-driven pathways for future geothermal development. Scenario analysis is a commonly used tool in private industry corporate strategic planning as a way to prioritize and manage large investments in light of uncertainty and risk. Since much of the uncertainty and risk in a geothermal project is believed to occur within early stage exploration and drilling, this paper focuses on the levers (technical and financial) within the exploration process that can be pulled to affect change. Given these potential changes, this work first qualitatively explores potential shifts to the geothermal industry. Future work within the Geothermal Vision Study will incorporate these qualitative scenarios quantitatively, in competition with other renewable and conventional energy industries.

  11. World status of geothermal energy use: past and potential

    International Nuclear Information System (INIS)

    Lund, John

    2000-01-01

    The past and potential development of geothermal energy is reviewed, and the use of geothermal energy for power generation and direct heat utilisation is examined. The energy savings that geothermal energy provides in terms of fuel oil and carbon savings are discussed. Worldwide development of geothermal electric power (1940-2000) and direct heat utilisation (1960 to 2000), regional geothermal use in 2000, the national geothermal contributions of geothermal energy, and the installed geothermal electric generating capacities in 2000 are tabulated

  12. Legal and institutional impediments to geothermal energy resource development: a bibliography

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This bibliography contains 485 references to literature on the subject of legal and institutional constraints to the development and use of geothermal resources. In addition to government-sponsored reports, journal articles, and books, the bibliography includes specific state and Federal laws and regulations, court cases of interest, and conference proceedings. For each reference, abstract or a listing of subject descriptors is given along with the complete bibliographic citation. Corporate, author, subject, and report number indexes are included. (LS)

  13. Effective use of environmental impact assessments (EIAs) for geothermal development projects

    International Nuclear Information System (INIS)

    Goff, S.J.

    2000-01-01

    Both the developed and developing nations of the world would like to move toward a position of sustainable development while paying attention to the restoration of natural resources, improving the environment, and improving the quality of life. The impacts of geothermal development projects are generally positive. It is important, however, that the environmental issues associated with development be addressed in a systematic fashion. Drafted early in the project planning stage, a well-prepared Environmental Impact Assessment (EIA) can significantly add to the quality of the overall project. An EIA customarily ends with the decision to proceed with the project. The environmental analysis process could be more effective if regular monitoring, detailed in the EIA, continues during project implementation. Geothermal development EIAs should be analytic rather than encyclopedic, emphasizing the impacts most closely associated with energy sector development. Air quality, water resources and quality, geologic factors, and socioeconomic issues will invariably be the most important factors. The purpose of an EIA should not be to generate paperwork, but to enable superb response. The EIA should be intended to help public officials make decisions that are based on an understanding of environmental consequences and take proper actions. The EIA process has been defined in different ways throughout the world. In fact, it appears that no two countries have defined it in exactly the same way. Going hand in hand with the different approaches to the process is the wide variety of formats available. It is recommended that the world geothermal community work towards the adoption of a standard. The Latin American Energy Organization (OLADE) and the Inter-American Development Bank (IDB)(OLADE, 1993) prepared a guide that presents a comprehensive discussion of the environmental impacts and suggested mitigation alternatives associated with geothermal development projects. The OLADE guide

  14. Water use in the development and operation of geothermal power plants.

    Energy Technology Data Exchange (ETDEWEB)

    Clark, C. E.; Harto, C. B.; Sullivan, J. L.; Wang, M. Q. (Energy Systems); ( EVS)

    2010-09-17

    Geothermal energy is increasingly recognized for its potential to reduce carbon emissions and U.S. dependence on foreign oil. Energy and environmental analyses are critical to developing a robust set of geothermal energy technologies. This report summarizes what is currently known about the life cycle water requirements of geothermal electric power-generating systems and the water quality of geothermal waters. It is part of a larger effort to compare the life cycle impacts of large-scale geothermal electricity generation with other power generation technologies. The results of the life cycle analysis are summarized in a companion report, Life Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems. This report is divided into six chapters. Chapter 1 gives the background of the project and its purpose, which is to inform power plant design and operations. Chapter 2 summarizes the geothermal electricity generation technologies evaluated in this study, which include conventional hydrothermal flash and binary systems, as well as enhanced geothermal systems (EGS) that rely on engineering a productive reservoir where heat exists but water availability or permeability may be limited. Chapter 3 describes the methods and approach to this work and identifies the four power plant scenarios evaluated: a 20-MW EGS plant, a 50-MW EGS plant, a 10-MW binary plant, and a 50-MW flash plant. The two EGS scenarios include hydraulic stimulation activities within the construction stage of the life cycle and assume binary power generation during operations. The EGS and binary scenarios are assumed to be air-cooled power plants, whereas the flash plant is assumed to rely on evaporative cooling. The well field and power plant design for the scenario were based on simulations using DOE's Geothermal Economic Technology Evaluation Model (GETEM). Chapter 4 presents the water requirements for the power plant life cycle for the scenarios evaluated. Geology

  15. Legal issues in the development of geopressured-geothermal resources of Texas and Louisiana Gulf Coast

    Energy Technology Data Exchange (ETDEWEB)

    Elmer, D.B.; Rogers, K.; Vanston, J.H.; Elmer, D.B.; Gustavson, T.C.; Kreitler, C.W.; Letlow, K.; Lopreato, S.C.; Meriwether, M.; Ramsey, P.; Rogers, K.E.; Williamson, J.K.

    1976-01-01

    The legal issues are discussed in two areas: legal scholarship and legal support. Scholorship is distinguished from support by concentration on abstract analyses of issue that include resource definition, ownership, taxation, and multistate reservoirs. Support is based entirely on those legal tasks called up by the technical work schedule in the areas of Resource Assessment, Advanced Research and Technology, Institutional and Environmental, and Resonance Utilization. The legal section will, in the future, make recommendations and implement procedures designed to assist in the rapid and orderly development of the resource. The PERT (Program Evaluation Review Techniques) chart for sequencing of legal scholarship and support tasks is included. An oral presentation on geothermal resources in Texas, a resource model for the resource utilization section, and some excerpts from legislation pertaining to geothermal energy are provided in an Appendix. (MCW)

  16. Geothermal Loan Guarantee Program: Westmorland Development Project, Imperial County, California: Environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    1979-04-01

    The action assessed is the guaranty of a loan by DOE to finance geothermal exploration, development, and testing by Mapco Geothermal, Inc. and Republic Geothermal, Inc. in the Westmorland area of Imperial County, California. Initial drilling and flow testing of up to three production wells will occur in the exploratory phase. Exploration is proposed for either or both of two portions of the leasehold area. If exploration confirms the presence of a viable resource in the Sweetwater area, the preferred site based on limited temperature data, then up to 19 new production wells and three new injection wells may be drilled and tested there in preparation for the construction of a 55-MW double-flash electric power plant. If, however, the Sweetwater resource proves infeasible, further exploration and possible full-field development may occur instead at the Dearborn-Kalin-Landers area. At this site, up to 19 new production wells and three new injection wells may be drilled and tested, with six existing wells also used for injection. This environmental assessment chiefly addresses effects of the drilling and testing program. In summary, this paper discusses the proposed action, describes the existing environment and discusses the potential environmental impacts. 75 refs. (LSP)

  17. Rotation-Enabled 7-Degree of Freedom Seismometer for Geothermal Resource Development. Phase 1 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Pierson, Bob [Applied Technology Associates, Albuquerque, NM (United States); Laughlin, Darren [Applied Technology Associates, Albuquerque, NM (United States)

    2013-10-29

    Under this Department of Energy (DOE) grant, A-Tech Corporation d.b.a. Applied Technology Associates (ATA), seeks to develop a seven-degree-of-freedom (7-DOF) seismic measurement tool for high-temperature geothermal applications. The Rotational-Enabled 7-DOF Seismometer includes a conventional tri-axial accelerometer, a conventional pressure sensor or hydrophone, and a tri-axial rotational sensor. The rotational sensing capability is novel, based upon ATA's innovative research in rotational sensing technologies. The geothermal industry requires tools for high-precision seismic monitoring of crack formation associated with Enhanced Geothermal System (EGS) stimulation activity. Currently, microseismic monitoring is conducted by deploying many seismic tools at different depth levels along a 'string' within drilled observation wells. Costs per string can be hundreds of thousands of dollars. Processing data from the spatial arrays of linear seismometers allows back-projection of seismic wave states. In contrast, a Rotational-Enabled 7-DOF Seismometer would simultaneously measure p-wave velocity, s-wave velocity, and incident seismic wave direction all from a single point measurement. In addition, the Rotational-Enabled 7-DOF Seismometer will, by its nature, separate p- and s-waves into different data streams, simplifying signal processing and facilitating analysis of seismic source signatures and geological characterization. By adding measurements of three additional degrees-of-freedom at each level and leveraging the information from this new seismic observable, it is likely that an equally accurate picture of subsurface seismic activity could be garnered with fewer levels per hole. The key cost savings would come from better siting of the well due to increased information content and a decrease in the number of confirmation wells drilled, also due to the increase in information per well. Improved seismic tools may also increase knowledge, understanding

  18. FY1997 geothermal development promotion survey. Development feasibility study 'Ashiro area'; 1997 nendo chinetsu kaihatsu sokushin chosa. Kaihatsu kanosei chosa (Ashiro chiiki) hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    With regard to the Ashiro Town area in Iwate Prefecture, this paper reports the result of evaluations based on temperature and pressure logging after a lapse of an extended period of time (well No.2) and a steam jet test (well No.1). These activities were performed as the survey on promotion of geothermal development and survey on development feasibility in fiscal 1997. As a result of the overall analysis based on the present survey and ones in the past, the geothermal system model in the surveyed area may be conceived as follows: in both of the N7-AR-1 and N7-AR-2 wells drilled in the southern part of the surveyed area, temperature as high as 250 degrees C or higher was confirmed; the underground temperature is 200 degrees C or higher at an altitude level of zero meter and 250 degrees C at around -500 m, leading to a belief that the high temperature area spreads to south; as a fracture system holding geothermal fluid, a fault was identified at the N7-AR-1 well drilling depth of 1710 m; in the steam jet test, a geothermal reservoir (a shallow geothermal reservoir) was confirmed to exist; the geothermal fluid that has jetted out shows alkaline Na-SO{sub 4} type; and the deep geothermal reservoir has high temperature and is presumed to be in the two-phase condition, presenting promising factors as the geothermal resources. (NEDO)

  19. The geothermal power organization

    Energy Technology Data Exchange (ETDEWEB)

    Scholl, K.L. [National Renewable Energy Lab., Golden, CO (United States)

    1997-12-31

    The Geothermal Power Organization is an industry-led advisory group organized to advance the state-of-the-art in geothermal energy conversion technologies. Its goal is to generate electricity from geothermal fluids in the most cost-effective, safe, and environmentally benign manner possible. The group achieves this goal by determining the Member`s interest in potential solutions to technological problems, advising the research and development community of the needs of the geothermal energy conversion industry, and communicating research and development results among its Members. With the creation and adoption of a new charter, the Geothermal Power Organization will now assist the industry in pursuing cost-shared research and development projects with the DOE`s Office of Geothermal Technologies.

  20. Geothermal energy abstract sets. Special report No. 14

    Energy Technology Data Exchange (ETDEWEB)

    Stone, C. (comp.)

    1985-01-01

    This bibliography contains annotated citations in the following areas: (1) case histories; (2) drilling; (3) reservoir engineering; (4) injection; (5) geothermal well logging; (6) environmental considerations in geothermal development; (7) geothermal well production; (8) geothermal materials; (9) electric power production; (10) direct utilization of geothermal energy; (11) economics of geothermal energy; and (12) legal, regulatory and institutional aspects. (ACR)

  1. Outdoor recreational use of the Salton Sea with reference to potential impacts of geothermal development

    Energy Technology Data Exchange (ETDEWEB)

    Twiss, R.; Sidener, J.; Bingham, G.; Burke, J.E.

    1978-04-01

    The objectives of this study were to describe the types, levels, and locations of outdoor recreation uses in the Salton Sea area, the number and principal activities of visitors, and to estimate the consequences upon outdoor recreation of geothermal development and other activities that might affect the Salton Sea. It is concluded that since the Salton Sea is considered legally to be a sump for agricultural, municipal, and presumably geothermal waste waters, recreational use of the Sea for fishing and boating (from present marinas) will undoubtedly continue to decline, unless there is a major policy change. Use of the shoreline for camping, the surrounding roads and lands for scenic viewing, ORV events, and retirement or recreation communities will not decline, and will probably increase, assuming control of hydrogen sulfide odors. Two ways in which the fishing and present boating facilities could be returned to a wholly usable steady state are discussed. One is by construction of a diked evaporation pond system at the south end of the Sea. This would allow a means of control over both water level and salinity. Another means, less costly but more difficult to effectively control, would be to budget geothermal plant use of, and disposal of wastes in, Salton Sea water. (JGB)

  2. Evaluation of noise associated with geothermal-development activities. Final report, July 31, 1979-April 30, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Long, M.; Stern, R.

    1982-01-01

    This report was prepared for the purpose of ascertaining the current state of noise generation, suppression, and mitigation techniques associated with geothermal development. A description of the geothermal drilling process is included as well as an overview of geothermal development activities in the United States. Noise sources at the well site, along geothermal pipelines, and at the power plants are considered. All data presented are measured values by workers in the field and by Marshall Long/Acoustics. One particular well site was monitored for a period of 55 continuous days, and includes all sources of noise from the time that the drilling rig was brought in until the time that it was moved off site. A complete log of events associated with the drilling process is correlated with the noise measurements including production testing of the completed well. Data are also presented which compare measured values of geothermal noise with federal, state, county, and local standards. A section on control of geothermal noise is also given. Volume I of this document presents summary information.

  3. Geothermal Today - 2001

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-08-01

    U.S. Department of Energy Geothermal Energy Program Highlights Partnering with Industry A New Power Source for Nevada Drilling Research Finding Geothermal Resources Small-Scale Geothermal Power Plants The Heat Beneath Your Feet R&D 100 Award Program in Review Milestones January 2000 The U.S. Department of Energy GeoPowering the West initiative was launched. February 2000 Grants totaling $4.8 million were awarded in six western states, primarily for development of reservoir exploration, character

  4. Development of production technology for deep-seated geothermal resources; Shinbu chinetsu shigen seisan gijutsu no kaihatsu gaiyo

    Energy Technology Data Exchange (ETDEWEB)

    Wada, T.; Akazawa, T. [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1997-11-01

    In order to increase the geothermal power generation volume in Japan furthermore after now, it is necessary to develop the deep-seated geothermal fluid collecting technique at 3,000 to 4,000m in depth and about 350degC. In order to collect the deep-seated geothermal resources economically and effectively, there are some principally important problems on production techniques such as P (pressure)-T(temperature)-S (flow rate)-D (fluid density) logging technique, P (pressure)-T (temperature)-C (chemical composition) monitoring technique, high temperature tracer monitoring technique, scale monitoring technique, scale protection and removal technique and so on. The PTSD logging technique is a measuring technique for collecting some data necessary to conduct production management effectively. The PTC monitoring technique is a technique for collecting data on the geothermal resources essential for the resources evaluation and presumption, and tracer monitoring technique is a technique for collecting actual measurement data of fluid flow analysis in the deep-seated geothermal resources. And the sale monitoring is a technique for collecting data on various kinds of scale components of the deep-seated geothermal water and in the steam. In this paper, these techniques are summarized. 8 figs.

  5. Geothermal energy worldwide

    International Nuclear Information System (INIS)

    Barbier, Enriko

    1997-01-01

    Geothermal energy, as a natural steam and hot water, has been exploited for decades in order to generate electricity as well as district heating and industrial processes. The present geothermal electrical installed capacity in the world is about 10.000 MWe and the thermal capacity in non-electrical uses is about 8.200 MWt. Electricity is produced with an efficiency of 10-17%, and the cost of the kWh is competitive with conventional energy sources. In the developing countries, where a total installed electrical power is still low, geothermal energy can play a significant role: in El Salvador, for example, 25% of electricity comes from geothermal spring, 20% in the Philippines and 8% in Kenya. Present technology makes it possible to control the environmental impact of geothermal exploitation. Geothermal energy could also be extracted from deep geopressured reservoirs in large sedimentary basins, hot dry rock systems and magma bodies. (author)

  6. OPPORTUNITIES OF DEVELOPING TOURISM INDUSTRY IN BANGLADESH

    Directory of Open Access Journals (Sweden)

    Tayub CHOWDHURY

    2009-12-01

    Full Text Available Tourism appeal includes natural places like beaches, eco-parks, lakes, valleys, rivers, islands etc., archeological sites, historic mosques and monuments, resorts, picnic spots, forest and wildlife. Bangladesh is a riverine country having attractive panoramic beauty. There are hills, valley, canals, lake, eco-park and mangrove forests, rivers, so many islands and the longest beach in the world. In this country, the scope of nature based tourism, resource based tourism, culture based tourism and eco-tourism is quite evident. Bangladesh is trying hard to develop its tourism industry. Therefore the whole situation deserves to be seen from right perspectives. Role of government is positive since the last twenty years both private and public organizations have come forwarded to attract the local and foreign tourists. The cracks of problem could not identify accurately because of the paucity number of researches and investigations in our country. Developed and organized tourism industry could change the economic condition and contribute a big share in the GDP of Bangladesh. This study will impede the opportunities of developing tourism industry in the light of existing resources.

  7. California geothermal resource development environmental implications for ERCDC Environmental Analysis Office. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, J.A.

    1977-02-01

    The results of an analysis of the environmental implications for ERCDC Environmental Analysis Office (EAO) in relation to the development of California's geothermal resources are reported. While focusing primarily on environmental implications, particularly the natural, social, and economic elements, the report includes some ERCDC-wide policy and program considerations. The primary thrusts of the work have been in the development of an understanding of the interagency and intergovernmental environmental data and data-management roles and responsibilities and in the formulation of recommendations related thereto. Five appendices are included, one of which is a tax credit agreement between a power company and Skagit County, Washington. (JGB)

  8. Hot Dry Rock Geothermal Energy Development Program. Annual report, fiscal year 1979

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, G.M.; Duffield, R.B.; Smith, M.C.; Wilson, M.G. (comps.)

    1980-08-01

    The Fenton Hill Project is still the principal center for developing methods, equipment, and instrumentation for creating and utilizing HDR geothermal reservoirs. The search for a second site for a similar experimental system in a different geological environment has been intensified, as have the identification and characterization of other HDR areas that may prove suitable for either experimental or commercial development. The Phase I fracture system was enlarged during FY79. Drilling of the injection well of the Phase II system began at Fenton Hill in April 1979. Environmental monitoring of the Fenton Hill area continued through FY79. The environmental studies indicate that the hot dry rock operations have caused no significant environmental impact. Other supporting activities included rock physics, rock mechanics, fracture mapping, and instrumentation development. Two closely related activities - evaluation of the potential HDR energy resource of the US and the selection of a site for development of a second experimental heat-extraction system generally similar to that at Fenton Hill - have resulted in the collection of geology, hydrology, and heat-flow data on some level of field activity in 30 states. The resource-evaluation activity included reconnaissance field studies and a listing and preliminary characterization of US geothermal areas in which HDR energy extraction methods may be applicable. The selection of Site 2 has taken into account such legal, institutional, and economic factors as land ownership and use, proximity to possible users, permitting and licensing requirements and procedures, environmental issues, areal extent of the geothermal area, and visibility to and apparent interest by potential industrial developers.

  9. 2015 Annual Report - Geothermal Technologies Office

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-04-01

    Over the past year, the U.S. Department of Energy’s (DOE’s) Geothermal Technologies Office (GTO) supported a number of exciting initiatives and research and development (R&D)activities! The GTO budget was increased in Fiscal Years (FY) 2015-2016, providing the opportunity to invest in new technologies and initiatives, such as the DOE-wide Subsurface Crosscut Initiative, and the Small Business Vouchers (SBV)Program, which is focused on growing our small business and national laboratory partnerships. These efforts will continue to advance geothermal as an economically competitive renewable energy.

  10. Geothermal Power Technologies

    DEFF Research Database (Denmark)

    Montagud, Maria E. Mondejar; Chamorro, C.R.

    2017-01-01

    Although geothermal energy has been widely deployed for direct use in locations with especial geologic manifestations, its potential for power generation has been traditionally underestimated. Recent technology developments in drilling techniques and power conversion technologies from low......-temperature heat resources are bringing geothermal energy to the spotlight as a renewable baseload energy option for a sustainable energy mix. Although the environmental impact and economic viability of geothermal exploitation must be carefully evaluated for each case, the use of deep low-temperature geothermal...

  11. Geothermal energy use in terms of a more balanced & sustainable urban-rural development of Southeast Serbia, with focus on Nis region

    Directory of Open Access Journals (Sweden)

    Jovanović Aleksandar

    2017-01-01

    -term planning opportunity of Nis region, once geothermal energy is made more accessible and the constraints, being mostly of financial nature, however of societal nature, are minimized. The problem of the equilibrium between the city and its surrounding rural places can be made through the local resource's utilization, such as geothermal, where this can be applicable or in combination with other renewable sources available at the locale (solar, biomass etc.. It is of great importance that the regions in Serbia cooperate in terms of geothermal energy planning. Various studies in Vojvodina are beneficial for Nis region. On the example of Reykjavik in Iceland, one can draw lessons on urban sprawl that has been influenced by the abundance of energy despite the clean energy utilization. Nis as a city is characterized by urban sprawling and environmental burden created by fossil fuel use and this can be further mitigated by utilizing geothermal and more importantly, strategic rural-urban planning with the existing geothermal resources. A change for the individual user still must make a 'break-through' for renewable energy to 'pay off'. In terms of geothermal application in rural places, there is a question of densities of the end users, that still should be tackled as a problem in the future of urban planning for the Nis region. As recommendations of this paper, a new initiative for achieving long-term planning goals is suggested, involving more profound geothermal energy utilization in the region of Nis as one of the possible generators for sustaining the urban-rural development of the region in the long run. Next thing to do would be to do long-term research involving multidisciplinary teams and to come closer to developing maps of geothermal potentials and their connection to urban and spatial planning of the region in the future. This is important for achieving a contra-weight to the existing inert energy situation and to the common global city strategy in planning cities such as

  12. Geothermal energy program overview

    Science.gov (United States)

    1991-12-01

    The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained within the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost-effective heat and electricity for our nation's energy needs. Geothermal energy - the heat of the Earth - is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40 percent of the total U.S. energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The U.S. Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma (the four types of geothermal energy), still depends on the technical advancements sought by DOE's Geothermal Energy Program.

  13. Geothermal Energy Program overview

    International Nuclear Information System (INIS)

    1991-12-01

    The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained with the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost- effective heat and electricity for our nation's energy needs. Geothermal energy -- the heat of the Earth -- is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40% of the total US energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The US Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma ( the four types of geothermal energy) still depends on the technical advancements sought by DOE's Geothermal Energy Program

  14. Geothermal resources in Oregon: site data base and development status

    Energy Technology Data Exchange (ETDEWEB)

    Justus, D.L.

    1979-04-01

    An inventory of resources based on available information is presented. Potential for utilization and the legal and institutional environment in which development is likely to occur were also considered. Sites selected for this investigation include the 13 identified KGRA's, one PGRA which was chosen because of substantial local interest expressed in favor of development, and one major geologic fault zone which shows indications of high potential. Each chapter represents a planning region and is introduced by a regional overview of the physical setting followed by a narrative summary statement of the specific resource location and characteristics, existing utilization and potential end-uses for future development. Detailed site information in the form of data sheets follows each narrative. (MHR)

  15. Survey of environmental regulations applying to geothermal exploration, development, and use.

    Energy Technology Data Exchange (ETDEWEB)

    Beeland, G.V.

    1984-03-01

    Federal, State, and local environmental laws and regulations that apply to geothermal energy development are summarized. Most attention is given to those regulations which deal with air pollution, water pollution, solid wastes and impact assessments. Analyses are made of the regulations with respect to resource definition, pollutants currently not controlled, duplicity and overlap in permit and impact assessment requirements, the lack of uniformity of regulations between states, and the probable future approaches to the regulatory problems. This project updates a similar document (EPA/600/7-78-014) dated February 1978.

  16. Geothermal Energy in Ecuador

    International Nuclear Information System (INIS)

    Aguilera, Eduardo; Villalba, Fabio

    1999-11-01

    Energy represents an essential element for economy, and for any sustainable development strategy, assuming it is a basic input for all production activities. It is a fundamental contra int for country's competitivity and also a main component of population's standard of life. The Agenda 21 and the General Agreement on Climatic Changes emphasize that the development and sustainable use of energy should promote economy, but taking care of the environment. Under these basic concepts, for the particular case of energy, the sustain ability of development requires the adoption of a strategy which guarantee an energy supply in terms of quality, opportunity, continuity and afford ability and, in addition, without production of negative environmental impacts. Geothermal energy is a serious energetic option for sustainable development, since presents technical and economic advantages for production of electricity at medium and large scale. Furthermore, geothermal energy allows a wide spectrum of direct applications of heat in profitable projects of high social impact as green houses, drying of seeds and wood products, fish farming, recreation and others. All of them can help the increase of communal production activities in rural areas affected by poverty

  17. Optimization of Wellhead Piping Design for Production Wells at Development of Steam-Water Geothermal Fields

    Directory of Open Access Journals (Sweden)

    A.N. Shulyupin

    2017-03-01

    Full Text Available At present, the exploitation of geothermal resources develops in a fair competition with other types of energy resources. This leads to actuality of questions which associated with the more efficient use of existing wells, because cost of their drilling is a significant share of geothermal projects. In domestic practice of development of geothermal resources the steam-water wells have greatest energy potential. One way to improve the performance of these wells is a providing of smooth change of direction of motion of steam-water mixture from the vertical, in the well, to the horizontal, in steam gathering system. Typical wellhead piping of domestic steam-water wells involves the removal of the mixture through a cross bar at a right angle. Cross bar can generate considerable pressure loss that increases the operating pressure at the mouth of the well and reduces flow rate. It seems reasonable to substitute the typical cross bar by smooth pipe bend. This reduces wellhead resistance coefficient by more than on 2. Increase of curvature radius of pipe bend reduces the pressure loss to a local resistance but increases the friction pressure loss. There is an optimal curvature radius of pipe bend for minimum pressure loss in view of a local resistance and friction in the pipe bend. Calculations have shown that the optimum value for the radius of curvature is found in the range from 1.4 to 4.5 tube internal diameters. However, for technological reasons it is recommended to choose the radius of curvature from 1.4 to 2.4 diameters. Mounting of smooth pipe bend on the wellhead can provide significant economic benefits. For Mutnovka field (Kamchatka, this effect is estimated at 17.5 million rubles in year.

  18. Accelerating Geothermal Research (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2014-05-01

    Geothermal research at the National Renewable Energy Laboratory (NREL) is advancing geothermal technologies to increase renewable power production. Continuous and not dependent on weather, the geothermal resource has the potential to jump to more than 500 gigawatts in electricity production, which is equivalent to roughly half of the current U.S. capacity. Enhanced geothermal systems have a broad regional distribution in the United States, allowing the potential for development in many locations across the country.

  19. Geothermal Loop Experimental Facility. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-04-01

    Research at the Geothermal Loop Experimental Facility was successfully concluded in September 1979. In 13,000 hours of operation over a three and one half year period, the nominal 10 megawatt electrical equivalent GLEF provided the opportunity to identify problems in working with highly saline geothermal fluids and to develop solutions that could be applied to a commercial geothermal power plant producing electricity. A seven and one half year period beginning in April 1972, with early well flow testing and ending in September 1979, with the completion of extensive facility and reservoir operations is covered. During this period, the facility was designed, constructed and operated in several configurations. A comprehensive reference document, addressing or referencing documentation of all the key areas investigated is presented.

  20. Final Report to DOE EERE – Geothermal Technologies Program Project Title: Monitoring and modeling of fluid flow in a developing enhanced geothermal system (EGS) reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Fehler, Michael [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2017-04-19

    The primary objective of this project was to improve our ability to predict performance of an Enhanced Geothermal System (EGS) reservoir over time by relating, in a quantitative manner, microseismic imaging with fluid and temperature changes within the reservoir. Historically, microseismic data have been used qualitatively to place bounds on the growth of EGS reservoirs created by large hydraulic fracturing experiments. Previous investigators used an experimentally based fracture opening relationship (fracture aperture as a function of pressure), the spatial extent of microseismic events, and some assumptions about fracture frequency to determine the size of an EGS reservoir created during large pumping tests. We addressed a number of issues (1) locating microearthquakes that occur during hydraulic fracturing, (2) obtaining more information about a reservoir than the microearthquake locations from the microearthquake data, for example, information about the seismic velocity structure of the reservoir or the scattering of seismic waves within the reservoir, (3) developing an improved methodology for estimating properties of fractures that intersect wellbores in a reservoir, and (4) developing a conceptual model for explaining the downward growth of observed seismicity that accompanies some hydraulic injections into geothermal reservoirs. We used two primary microseismic datasets for our work. The work was motivated by a dataset from the Salak Geothermal Field in Indonesia where seismicity accompanying a hydraulic injection was observed to migrate downward. We also used data from the Soultz EGS site in France. We also used Vertical Seismic Profiling data from a well in the United States. The work conducted is of benefit for characterizing reservoirs that are created by hydraulic fracturing for both EGS and for petroleum recovery.

  1. Measurement of attitudes toward commercial development of geothermal energy in Federal Region IX. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1981-06-01

    A survey was conducted of ten target study groups and subgroups for Klamath Falls, Oregon, and Susanville, California: local government, current and potential industry at the site, relocators to the site, current and potential financial community, regulators, and current and potential promoters and developers. The results of benchmark attitudinal measurement is presented separately for each target group. A literature review was conducted and Macro-environmental attitudes of a sample of local government and industry personnel at the sites were assessed. An assessment of capabilities was made which involved two measurements. The first was a measurement of a sample of promoters, developers, and industrial service companies active at the site to determine infrastructure capabilities required by industry for geothermal plants. The second measurement involved analyzing a sample of industry management in the area and defining their requirements for plant retrofit and expansion. Finally, the processes used by the study group to analyze information to reach commitment and regulatory decisions that significantly impact on geothermal energy projects at the site were identified and defined.

  2. Novel Geothermal Development of Deep Sedimentary Systems in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Joseph [Univ. of Utah, Salt Lake City, UT (United States); Allis, Rick [Utah Geological Survey, Salt Lake City, UT (United States)

    2017-10-11

    Economic and reservoir engineering models show that stratigraphic reservoirs have the potential to contribute significant geothermal power in the U.S. If the reservoir temperature exceeds about 150 – 200 °C at 2 – 4 km depth, respectively, and there is good permeability, then these resources can generate power with a levelized cost of electricity (LCOE) of close to 10 ¢/kWh (without subsidies) on a 100 MW power plant scale. There is considerable evidence from both groundwater geology and petroleum reservoir geology that relatively clean carbonates and sandstones have, and can sustain, the required high permeability to depths of at least 5 km. This paper identifies four attractive stratigraphic reservoir prospects which are all located in the eastern Great Basin, and have temperatures of 160 – 230 °C at 3 – 3.5 km depth. They are the Elko basins (Nevada), North Steptoe Valley (Nevada), Pavant Butte (Utah), and the Idaho Thrust Belt. The reservoir lithologies are Paleozoic carbonates in the first three, and Jurassic sandstone and carbonate in the Idaho Thrust Belt. All reservoir lithologies are known to have high permeability characteristics. At North Steptoe Valley and Pavant Butte, nearby transmission line options allow interconnection to the California power market. Modern techniques for drilling and developing tight oil and gas reservoirs are expected to have application to geothermal development of these reservoirs.

  3. Idaho Geothermal Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, Gay Davis; Esposito, Louis; Montgomery, Martin

    1979-07-01

    Idaho's energy problems have increased at alarming rates due to their dependency on imports of gas and oil. The large hydroelectric base developed in Idaho has for years kept the electric rates relatively low and supplied them with energy on a consumer demand basis. However, this resource cannot be 4expected to meet their growing demands in the years to come. Energy alternatives, in whatever form, are extremely important to the future welfare of the State of Idaho. This handbook addresses the implications, uses, requirements and regulations governing one of Idaho's most abundant resources, geothermal energy. The intent of the Idaho Geothermal Handbook is to familiarize the lay person with the basis of geothermal energy in Idaho. The potential for geothermal development in the State of Idaho is tremendous. The authors hope this handbook will both increase your knowledge of geothermal energy and speed you on your way to utilizing this renewable resource.

  4. Environment - Geothermal, the energy to wake up - Stimulation rather than fracturing - Iceland, the Texas of geothermal energy

    International Nuclear Information System (INIS)

    Chandes, Camille; Moragues, Manuel

    2013-01-01

    A first article comments the current efforts for the development of geothermal in France after a period during which it has been given up. It evokes the project of a geothermal plant near Paris (to supply Arcueil and Gentilly with energy), the increasing number of projects in different countries. It outlines the French delay in this sector, and that geothermal energy is as difficult to find as oil. It evokes the new actors of the sector and outlines the fierce competition in front of Icelander, Italian, US and Japanese actors, and the opportunities for the French ones. A second article comments the use of the hydraulic stimulation in geothermal energy exploration rather than hydraulic fracturing as in shale gas exploration, and outlines that according to geothermal energy actors this technique avoids the risk of micro-earthquake. A last article describes the activity of the geothermal sector in Iceland: geothermal energy supplies two thirds of primary energy consumption in this country. It exploits the Icelander volcanism. This development has been particularly noticeable since 2000, but some questions are raised regarding the production potential

  5. Outline of geothermal activity in Czechoslovakia

    International Nuclear Information System (INIS)

    Franko, O.; Bodis, D.; Dendek, M.; Remsik, A.

    1990-01-01

    This paper reports that in respect of different geothermal conditions in the Bohemian Massif (unfavorable) and in the West Carpathians (favorable), the development and utilization of geothermal energy are concentrated in Slovakia. THe utilization of geothermal energy for the heating of buildings in spas commenced in 1958. Thermal energy of geothermal waters was used for direct heating through heat exchangers, and in one case by a heat pump. Concentrated continuous development and utilization of geothermal energy started in 1971

  6. Hot dry rock geothermal energy: A renewable energy resource that is ready for development now

    Science.gov (United States)

    Brown, D. W.; Potter, R. M.; Myers, C. W.

    Hot dry rock (HDR) geothermal energy, which utilizes the natural heat contained in the earth's crust, is a very large and well-distributed resource of nonpolluting, and essentially renewable, energy that is available globally. Its use could help mitigate climatic change and reduce acid rain, two of the major environmental consequences of our ever-increasing use of fossil fuels for heating and power generation. In addition, HDR, as a readily available source of indigenous energy, can reduce our nations's dependence on imported oil, enhancing national security and reducing our trade deficit. On a national scale we can begin to develop this new source, using it directly for power generation or for direct-heat applications, or indirectly in hybrid geothermal/fossil-fuel power plants. In the HDR concept, which has been demonstrated in the field in two different applications and flow-tested for periods up to one year, heat is recovered from the earth by pressurized water in a closed-loop circulation system. As a consequence, minimal effluents are released to the atmosphere, and no wastes are produced. This paper describes the nature of the HDR resource and the technology required to implement the heat-mining concept. An assessment of the requirements for establishing HDR feasibility is presented in the context of providing a commercially competitive energy source.

  7. Geothermal well completions: an overview of existing methods in four types of developments

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, R.E.

    1978-01-01

    Existing practices and capabilities for completing producing and injection wells for geothermal application in each of four categories of geothermal environments are discussed. Included are steam wells in hard, fractured rocks (The Geysers, California), hot water wells in sedimentary formations (Imperial Valley, California), hot, dry impermeable rocks with circulating water systems (Valles Caldera, New Mexico), and geopressured, geothermal water wells with associated hydrocarbon production on the U.S. Gulf Coast.

  8. Development of a Deep-Penetrating, Compact Geothermal Heat Flow System for Robotic Lunar Geophysical Missions

    Science.gov (United States)

    Nagihara, Seiichi; Zacny, Kris; Hedlund, Magnus; Taylor, Patrick T.

    2012-01-01

    Geothermal heat flow measurements are a high priority for the future lunar geophysical network missions recommended by the latest Decadal Survey of the National Academy. Geothermal heat flow is obtained as a product of two separate measurements of geothermal gradient and thermal conductivity of the regolith/soil interval penetrated by the instrument. The Apollo 15 and 17 astronauts deployed their heat flow probes down to 1.4-m and 2.3-m depths, respectively, using a rotary-percussive drill. However, recent studies show that the heat flow instrument for a lunar mission should be capable of excavating a 3-m deep hole to avoid the effect of potential long-term changes of the surface thermal environment. For a future robotic geophysical mission, a system that utilizes a rotary/percussive drill would far exceed the limited payload and power capacities of the lander/rover. Therefore, we are currently developing a more compact heat flow system that is capable of 3-m penetration. Because the grains of lunar regolith are cohesive and densely packed, the previously proposed lightweight, internal hammering systems (the so-called moles ) are not likely to achieve the desired deep penetration. The excavation system for our new heat flow instrumentation utilizes a stem which winds out of a pneumatically driven reel and pushes its conical tip into the regolith. Simultaneously, gas jets, emitted from the cone tip, loosen and blow away the soil. Lab tests have demonstrated that this proboscis system has much greater excavation capability than a mole-based heat flow system, while it weighs about the same. Thermal sensors are attached along the stem and at the tip of the penetrating cone. Thermal conductivity is measured at the cone tip with a short (1- to 1.5-cm long) needle sensor containing a resistance temperature detector (RTD) and a heater wire. When it is inserted into the soil, the heater is activated. Thermal conductivity of the soil is obtained from the rate of temperature

  9. Water-related constraints to the development of geothermal electric generating stations

    Science.gov (United States)

    Robertson, R. C.; Shepherd, A. D.; Rosemarin, C. S.; Mayfield, M. W.

    1981-06-01

    The water related constraints concerning geothermal energy are discussed. Three different constraints are: (1) water requirements of geothermal power stations; (2) resource characteristics of the most promising hydrothermal areas and regional and local water supply situations; and (3) legal issues confronting potential users of water at geothermal power plants in the states in which the resource areas are located. A total of 25 geothermal resource areas were studied. It is found that each had a hydrothermal resource temperature in excess of 150 C and an estimated 30 year potential of greater than 100-MW(e) capacity.

  10. Geothermal energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role of geothermal energy may have on the energy future of the US. The topics discussed in the chapter include historical aspects of geothermal energy, the geothermal resource, hydrothermal fluids, electricity production, district heating, process heating, geopressured brines, technology and costs, hot dry rock, magma, and environmental and siting issues

  11. Review of the status of geothermal development and operation in Indonesia 1985 to 1990

    International Nuclear Information System (INIS)

    Radja, V.T.

    1990-01-01

    This paper reports that the electric power sector in Indonesia will be expanded by an additional generating capacity of about 1,225 MW at the end of the fifth 5-year development plan (1989/1990 to 1993/1994) from the existing 8,529 MW. At present a 140 MW geothermal condensing plant (one unit of 230 MW and 2 units of 55 MW, all in Kamojang) and two noncondensing nonobloks (2 MW in Dieng and 25 kW in Kamojang) have been operating successfully since 1979. Based on the fifth 5-year development plan the government of Indonesia has decided to install an additional 235 MW on the island of Java and 15 MW on North Sulawesi, for a total installed capacity of 377.25 MW

  12. Using GeoRePORT to report socio-economic potential for geothermal development

    Energy Technology Data Exchange (ETDEWEB)

    Young, Katherine R.; Levine, Aaron

    2018-07-01

    The Geothermal Resource Portfolio Optimization and Reporting Tool (GeoRePORT, http://en.openei.org/wiki/GeoRePORT) was developed for reporting resource grades and project readiness levels, providing the U.S. Department of Energy a consistent and comprehensible means of evaluating projects. The tool helps funding organizations (1) quantitatively identify barriers, (2) develop measureable goals, (3) objectively evaluate proposals, including contribution to goals, (4) monitor progress, and (5) report portfolio performance. GeoRePORT assesses three categories: geological, technical, and socio-economic. Here, we describe GeoRePORT, then focus on the socio-economic assessment and its applications for assessing deployment potential in the U.S. Socio-economic attributes include land access, permitting, transmission, and market.

  13. 2008 Geothermal Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Cross, J.; Freeman, J.

    2009-07-01

    This report describes market-wide trends for the geothermal industry throughout 2008 and the beginning of 2009. It begins with an overview of the U.S. DOE's Geothermal Technology Program's (GTP's) involvement with the geothermal industry and recent investment trends for electric generation technologies. The report next describes the current state of geothermal power generation and activity within the United States, costs associated with development, financing trends, an analysis of the levelized cost of energy (LCOE), and a look at the current policy environment. The report also highlights trends regarding direct use of geothermal energy, including geothermal heat pumps (GHPs). The final sections of the report focus on international perspectives, employment and economic benefits from geothermal energy development, and potential incentives in pending national legislation.

  14. Institutional opportunities and constraints to biomass development

    International Nuclear Information System (INIS)

    Costello, R.; Finnell, J.

    1998-01-01

    This paper examines a number of institutional opportunities and constraints applicable to biomass as well as other renewable energy technologies. Technological progress that improves performance or increases system efficiencies can open doors to deployment; however, market success depends on overcoming the institutional challenges that these technologies will face. It can be far more difficult to put into place the necessary institutional mechanisms which will drive these commercialization efforts. The keys to the successful implementation of energy technologies and, in particular, biomass power technologies, are issues that can be categorized as: (1) regulatory; (2) financial; (3) infrastructural; and (4) perceptual. (author)

  15. Regulatory aspects, an important factor for geothermal energy application for district heating development. European insurance scheme to cover geological risk related to geothermal operations

    International Nuclear Information System (INIS)

    Popovski, Kiril

    2000-01-01

    District heating is one of the most interesting fields of geothermal energy application development in Europe. However, besides the technical/technological/economical and organizational aspects of the problem in question, the related legal and regulatory aspects influence very much the real possibilities for wider introduction of this energy source in the state energy balances in most of the countries. Based on the official EU report for the State-of-the-art of the problem of the insurance to cover geological risks and necessary aspects to be developed and resolved in a better and 'common' way in order to enable higher investments in bigger projects (district heating) development, the paper presents the situation in different European countries in relation to the Macedonian one. Conclusions extracted should give a positive contribution to the process of the Macedonian laws accommodation to the common EU practice. (Author)

  16. The GEOFAR Project - Geothermal Finance and Awareness in Europeans Regions - Development of new schemes to overcome non-technical barriers, focusing particularly on financial barriers

    Science.gov (United States)

    Poux, Adeline; Wendel, Marco; Jaudin, Florence; Hiegl, Mathias

    2010-05-01

    Numerous advantages of geothermal energy like its widespread distribution, a base-load power and availability higher than 90%, a small footprint and low carbon emissions, and the growing concerns about climate changes strongly promote the development of geothermal projects. Geothermal energy as a local energy source implies needs on surface to be located close to the geothermal resource. Many European regions dispose of a good geothermal potential but it is mostly not sufficiently developed due to non-technical barriers occurring at the very early stages of the project. The GEOFAR Project carried out within the framework of EU's "Intelligent Energy Europe" (IEE) program, gathers a consortium of European partners from Germany, France, Greece, Spain and Portugal. Launched in September 2008, the aim of this research project is to analyze the mentioned non-technical barriers, focusing most particularly on economic and financial aspects. Based on this analysis GEOFAR aims at developing new financial and administrative schemes to overcome the main financial barriers for deep geothermal projects (for electricity and direct use, without heat pumps). The analysis of the current situation and the future development of geothermal energy in GEOFAR target countries (Germany, France, Greece, Spain, Portugal, Slovakia, Bulgaria and Hungary) was necessary to understand and expose the diverging status of the geothermal sector and the more and less complicated situation for geothermal projects in different Europeans Regions. A deeper analysis of 40 cases studies (operating, planned and failed projects) of deep geothermal projects also contributed to this detailed view. An exhaustive analysis and description of financial mechanisms already existing in different European countries and at European level to support investors completed the research on non-technical barriers. Based on this profound analysis, the GEOFAR project has made an overview of the difficulties met by project

  17. Introduction: Sign Language, Sustainable Development, and Equal Opportunities

    Science.gov (United States)

    De Clerck, Goedele A. M.

    2017-01-01

    This article has been excerpted from "Introduction: Sign Language, Sustainable Development, and Equal Opportunities" (De Clerck) in "Sign Language, Sustainable Development, and Equal Opportunities: Envisioning the Future for Deaf Students" (G. A. M. De Clerck & P. V. Paul (Eds.) 2016). The idea of exploring various…

  18. Positive Youth Development through Physical Activity: Opportunities for Physical Educators

    Science.gov (United States)

    Hemphill, Michael A.

    2014-01-01

    As physical educators continue to advocate for school-based PE, they should also consider ways to extend their work into community settings in an effort to ensure that all kids have an opportunity to develop physical literacy. This article describes how positive youth development programs can provide an opportunity for physical educators to engage…

  19. Advanced Geothermal Turbodrill

    Energy Technology Data Exchange (ETDEWEB)

    W. C. Maurer

    2000-05-01

    Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of large diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.

  20. Geothermal development on federal lands: the impediments and potential solutions. Final report, September 6, 1977--January 13, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Beeland, G.V.; Sebian, D.J.; Whitenight, D.K.

    1978-01-01

    It is concluded that the regulatory program devised by the Bureau of Land Management and the US Geological Survey to implement the Geothermal Steam Act of 1970 has been ineffective thus far in encouraging private enterprise to invest in and develop this resource. After seven years, there is still no commercial production or utilization of the geothermal resource underlying federal lands. There are a number of factors--such as the unknown character of the resource and the less-than-perfect technologies for utilizing it and disposing of the resulting wastes--which are retarding the growth of a geothermal industry. However, would-be developers point to the complexity of the federal geothermal leasing and post-leasing requirements as the major impediment, and, specifically, the repetitive environmental review procedures involved. A fundamental fault in the regulatory process is that there is no provision for identification of the resource before a lease is issued. Identification of its characteristics is mandatory before the use to be made of it can be determined, if indeed it is found to be adequate and economic for any use. A very large percentage of the exploratory holes drilled will be abandoned as non-productive of a usable resource, in which case there is no need for the long term commitment of a lease. A streamlined regulatory process was designed to overcome these and other problems. If adopted, it would provide for orderly development of the resource and adequately protect the public interest and the environment.

  1. 2014 Annual Report, Geothermal Technologies Office

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2015-03-01

    In 2014, the Geothermal Technologies Office (GTO) made significant gains—increased budgets, new projects, key technology successes, and new staff. The Fiscal Year (FY) 2015 budget is at $55 million—roughly a 20% increase over FY 2014, and a strong vote of confidence in what the sector is doing to advance economically competitive renewable energy. GTO also remains committed to a balanced portfolio, which includes new hydrothermal development, EGS, and targeted opportunities in the low-temperature sector.

  2. Currently developing opportunities in food irradiation and modern irradiation facilities

    International Nuclear Information System (INIS)

    Wanke, R.

    1997-01-01

    I. Factor currently influencing advancing opportunities for food irradiation include: heightened incidence and awareness of food borne illnesses and causes. Concerns about ensuring food safety in international as well as domestic trade. Regulatory actions regarding commonly used fumigants/pesticides e.g. Me Br. II. Modern irradiator design: the SteriGenics M ini Cell . A new design for new opportunities. Faster installation of facility. Operationally and space efficient. Provides local o nsite control . Red meat: a currently developing opportunity. (Author)

  3. The opportunities for uranium development in South Australia

    International Nuclear Information System (INIS)

    Jackson, N.

    1979-07-01

    The opportunities for uranium development in South Australia are discussed. The author outlines the likely development of three known uranium deposits, shows the world energy and uranium requirements and makes some observations on uranium enrichment

  4. Nevada Renewable Energy Training Project: Geothermal Power Plant Operators

    Energy Technology Data Exchange (ETDEWEB)

    Jim, Nichols [Truckee Meadows Community College, Reno, NV (United States)

    2014-04-29

    The purpose of this project was to develop and institute a training program for certified geothermal power plant operators (GPO). An advisory board consisting of subject matter experts from the geothermal energy industry and academia identified the critical skill sets required for this profession. A 34-credit Certificate of Achievement (COA), Geothermal Power Plant Operator, was developed using eight existing courses and developing five new courses. Approval from the Nevada System of Higher Education Board of Regents was obtained. A 2,400 sq. ft. geothermal/fluid mechanics laboratory and a 3,000 sq. ft. outdoor demonstration laboratory were constructed for hands-on training. Students also participated in field trips to geothermal power plants in the region. The majority of students were able to complete the program in 2-3 semesters, depending on their level of math proficiency. Additionally the COA allowed students to continue to an Associate of Applied Science (AAS), Energy Technologies with an emphasis in Geothermal Energy (26 additional credits), if they desired. The COA and AAS are stackable degrees, which provide students with an ongoing career pathway. Articulation agreements with other NSHE institutions provide students with additional opportunities to pursue a Bachelor of Applied Science in Management or Instrumentation. Job placement for COA graduates has been excellent.

  5. FY 2001 report on the results of the development of the hydrothermal utilization power plant, etc. Development of collecting technology for deep geothermal resources (Development of production technology for deep geothermal resources); 1992 - 2001 nessui riyo hatsuden plant tou kaihatsu sokatsu seika hokokusho. Shinbu chinetsu shigen saishu gijutsu no kaihatsu - Shinbu chinetsu shigen seisan gijutsu no kaihatsu (2001 nendo seika hokokusho bessatsu shiryo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-03-01

    For making effective/economical collection of deep geothermal resources, development was made from FY 1991 to FY 2001 of the 'drilling technology for deep geothermal resources' and 'production technology for deep geothermal resources,' and the results were summarized. As to the development of logging technology, the PTSD logging system was developed which can measure temperature/pressure/flow velocity/fluid density in geothermal well under the environment of temperature of 400 degrees C. Concerning the development of monitoring technology, development was made of the PT monitoring system that can make the long-term continuous measuring of temperature/pressure in deep geothermal observation well under the environment of temperature of 400 degrees C and of the C monitoring system that samples geothermal fluids at regular intervals to grasp changes in chemical component. Relating to the development of high temperature tracer monitoring technology, the following were conducted: extraction of high temperature tracer agent that can be used in geothermal reservoirs under the environment of temperature of 300 degrees C, development of simulator, and establishment of how to put tracer agent into the reservoir and how to analyze tracer agent. Further, the R and D were made of scale monitoring technology and scale prevention/removal technology. (NEDO)

  6. Differences in farmers’ perception of opportunities for farm development

    NARCIS (Netherlands)

    Methorst, Ron; Roep, Dirk; Verhees, Frans; Verstegen, Jos

    2017-01-01

    This paper empirically identifies differences between dairy farmers in their perception of opportunities for farm development. The construct ‘perceived Room for Manoeuvre’ (pRfM) is used which is defined as: ‘the opportunities perceived as viable in order to obtain a (substantial part of) business

  7. Navy Geothermal Plan

    Energy Technology Data Exchange (ETDEWEB)

    1984-12-01

    Domestic geothermal resources with the potential for decreasing fossil fuel use and energy cost exist at a significant number of Navy facilities. The Geothermal Plan is part of the Navy Energy R and D Program that will evaluate Navy sites and provide a technical, economic, and environmental base for subsequent resource use. One purpose of the program will be to provide for the transition of R and D funded exploratory efforts into the resource development phase. Individual Navy geothermal site projects are described as well as the organizational structure and Navy decision network. 2 figs.

  8. Modern geothermal power: GeoPP with geothermal steam turbines

    Science.gov (United States)

    Tomarov, G. V.; Shipkov, A. A.

    2017-03-01

    The first part of the review presents information on the scale and specific features of geothermal energy development in various countries. The classification of geothermal power plant (GeoPP) process flow diagrams by a phase state of the primary heat source (a geothermal fluid), thermodynamic cycle, and applicable turbines is proposed. Features of geothermal plants using methods of flashing and steam separation in the process loop and a flowsheet and thermodynamic process of a geothermal fluid heat-to-power conversion in a GeoPP of the most widespread type using a double-flash separation are considered. It is shown that, for combined cycle power units, the specific power-to-consumption geothermal fluid ratio is 20-25% higher than that for traditional single-loop GeoPP. Information about basic chemical components and their concentration range for geothermal fluids of various formations around the world is presented. Three historic stages of improving geothermal energy technologies are determined, such as development of high-temperature geothermal resources (dry, superheated steam) and application of a two-phase wet-steam geothermal fluid in GeoPP power units with one or two expansion pressures and development of binary cycle GeoPPs. A current trend of more active use of binary power plants in GeoPP technological processes is noted. Design features of GeoPP's steam turbines and steam separating devices, determined by the use of low-potential geothermal saturated steam as a working medium, which is characterized by corrosion aggressiveness and a tendency to form deposits, are considered. Most promising Russian geothermal energy projects are determined. A list of today's most advanced geothermal turbine performance technologies is presented. By an example of a 25 MW steam turbine design, made by JSC Kaluga Turbine Works, advantages of the internal moisture separation with a special turbine-separator stage are shown.

  9. Smart geo-energy village development by using cascade direct use of geothermal energy in Bonjol, West Sumatera

    Science.gov (United States)

    Prasetya, Novrisal; Erwinsyah Umra Lubis, Defry; Raharjo, Dharmawan; Miryani Saptadji, Nenny; Pratama, Heru Berian

    2017-12-01

    West Sumatera is a province which has a huge geothermal potential - approximately 6% of Indonesia’s total geothermal potential which equals to 1,656 MWe. One of the significant reserves located in Bonjol subdistrict which accounts for more than 50 MWe. The energy from geothermal manifestation in Bonjol can be utilized prior to indirect development. Manifestation at the rate 3 kg/s and 87 °C will flow to cascading system consisting several applications, arranged in order from high to low temperature to efficiently use the excessive energy. The direct use application selected is based on the best potential commodities as well as temperature constraint of heat source. The objective of this paper is to perform a conceptual design for the first cascade direct use of geothermal energy in Indonesia to establish Bonjol Smart Geo-Energy Village which will be transformed as the center of agricultural, stockbreeding, tourism as well as cultural site. A comprehenssive research was performed through remote survey area, evaluation featured product, analysis of heat loss and heat exchange in cascade system. From potential commodities, the three applications selected are cocoa drying and egg hatching incubation machine as well as new tourism site called Terapi Panas Bumi. The optimum temperature for cocoa drying is 62°C with the moisture content 7% which consumes 78 kW for one tones cocoa dried. Whereas, egg incubation system consists of two chamber with the same temperature 40°C for each room and relative humidity 55% and 70%. For the last stage, Terapi Panas Bumi works in temperature 40°C. Based on the result technical and economical aspect, it exhibits cascade direct use of geothermal energy is very recommended to develop.

  10. Geothermal energy

    International Nuclear Information System (INIS)

    Laplaige, Ph.; Lemale, J.

    2008-01-01

    Geothermal energy is a renewable energy source which consists in exploiting the heat coming from the Earth. It covers a wide range of techniques and applications which are presented in this article: 1 - the Earth, source of heat: structure of the Earth, geodynamic model and plate tectonics, origin of heat, geothermal gradient and terrestrial heat flux; 2 - geothermal fields and resources; 3 - implementation of geothermal resources: exploration, main characteristic parameters, resource exploitation; 4 - uses of geothermal resources: power generation, thermal uses, space heating and air conditioning heat pumps, district heating, addition of heat pumps; 5 - economical aspects: power generation, heat generation for district heating; 6 - environmental aspects: conditions of implementation, impacts as substitute to fossil fuels; 7 - geothermal energy in France: resources, organisation; 8 - conclusion. (J.S.)

  11. New opportunities offered by sustainable development

    International Nuclear Information System (INIS)

    Dolle, G.

    2005-01-01

    The evolution of the global steel industry has accelerated in the past years, fuelled by massive demographic and economic growth rates in developing countries. China is the leading force in this development. 'Old world' steel makers are in a particularly challenging yet promising position. (author)

  12. Geothermal Energy: Evaluation of a Resource

    Science.gov (United States)

    Bockemuehl, H. W.

    1976-01-01

    This article suggests the use of geothermal energy for producing electricity, using as an example the development at Wairakei, New Zealand. Other geothermal areas are identified, and economic and environmental co sts of additional development are explored. (Author/AV)

  13. Geothermal Orientation Handbook

    Energy Technology Data Exchange (ETDEWEB)

    None

    1984-07-01

    This is a useful overview of the Department of Energy's outlook on geothermal energy development in the U.S. as of late 1983. For example, Exhibit 4 shows how electric utility planners' estimates of likely amounts of geothermal power on line for 1990 and 2000 first increased and then declined over time as they were surveyed in 1977 through 1983 (date are from the EPRI Survey). Additions to direct heat uses in 1979 through 1981 are in Exhibit 7. A Table (not numbered) at the back of the report "Historical Development of Geothermal Power ..." shows world installed geothermal capacity by nation at decadal intervals from 1950 to 1980, and the first year of power production for each country. (DJE 2005)

  14. Water-related constraints to the development of geothermal electric generating stations

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, R.C.; Shepherd, A.D.; Rosemarin, C.S.; Mayfield, M.W.

    1981-06-01

    The water-related constraints, which may be among the most complex and variable of the issues facing commercialization of geothermal energy, are discussed under three headings: (1) water requirements of geothermal power stations, (2) resource characteristics of the most promising hydrothermal areas and regional and local water supply situations, and (3) legal issues confronting potential users of water at geothermal power plants in the states in which the resource areas are located. A total of 25 geothermal resource areas in California, New Mexico, Oregon, Idaho, Utah, Hawaii, and Alaska were studied. Each had a hydrothermal resource temperature in excess of 150/sup 0/C (300/sup 0/F) and an estimated 30-year potential of greater than 100-MW(e) capacity.

  15. Regional systems development for geothermal energy resources: Pacific region (California and Hawaii). Task I: implementation plan development, topical report

    Energy Technology Data Exchange (ETDEWEB)

    Michler, D.W.

    1979-03-26

    Eleven implementation plans were prepared. They represent some 21 reservoir-site developments and 48 geothermal power plant developments. The plans consist of three integrated elements: (1) a bar-chart schedule that depicts interdependencies among activities and shows significant milestones on the path from initial exploration to power on-line, (2) task descriptions, and (3) the responsible performers. During the preparation of the implementation plans, the tasks required for resource development at each KGRA were defined on a generalized work breakdown structure (WBS) diagram. A generalized WBS dictionary (task descriptions) was also compiled. In addition, a specific WBS for each KGRA was prepared in a tabular and indented format. The tasks formed the basis for the schedular activities. Institutional responsibilities, based upon the WBS, were identified and are also shown on the tabular WBS. In this manner, implementation plans evolved whose schedular, task, and responsibility elements were integrated with one another. In order to provide logically consistent time estimates, and a reasonable basis for comparison, schedule modules were developed for some recurring activities which are essentially common to all KGRAs. In the preparation of multiple plant schedules for a given KGRA, the interactive effects of power development on the ancillary resources of the area were considered so that interfaces and constraining situations would be identified. Within Imperial County, this process was taken one step further to include the influence that development at the several close-lying KGRAs would have upon one another. A set of recommendations for the accelerated development of geothermal energy resources was prepared and the potential implementors were suggested.

  16. Applied research opportunities in developed campgrounds

    Science.gov (United States)

    Carl P. Wiedemann

    2002-01-01

    Developed area camping is an important recreational activity in terms of both participation and as a source of revenue for public agencies. A major challenge for administrators in the public sector is how to increase revenues on limited budgets without sacrificing customer satisfaction. Applied research could make a valuable contribution to decision making, but not...

  17. Groundwater for sustainable development opportunities and constraints

    International Nuclear Information System (INIS)

    Abdel Rahman Attia, F.

    1999-01-01

    This paper discusses water resources availability and demand; concept and constraints of sustainable development; ground water protection. Water issues specific for arid zones and the network on ground water protection in the Arab region are discussed. Recommendations on ground water protection in arid zones are given

  18. Nanomedicine: Recent developments and opportunities in Africa

    CSIR Research Space (South Africa)

    Swai, HS

    2012-10-01

    Full Text Available DEVELOPMENTS www.csir.co.za Plasma Levels: tremendous prolonged half-life (Single Dose, 50 mg/m2) Hours After Infusion D o xoru b ic in ( ? g /m L ) 0 4 8 12 16 20 24 0 .2 2.5 25 .0 0 .1 1 .0 10.0 PLD (T?=50-80 hours) Doxorubicin (T...

  19. New antibiotic development: barriers and opportunities

    Directory of Open Access Journals (Sweden)

    Ercole Concia

    2016-12-01

    Full Text Available Antibiotic resistance represents a serious threat to public health worldwide, leading to increased healthcare costs, prolonged hospital stays, treatment failures and deaths. To address the emergency of multidrug-resistance, the major international societies of infectious diseases and public health have developed strategies and guidelines to reduce unnecessary antimicrobial use as well as to incite the development of new antibiotics targeting multidrug-resistant pathogens. Even though pharmaceutical companies have been developing new antibiotics since 2010, the global situation is still worrisome. Indeed, the currently available data regarding new antibiotics are limited to microbiological activity and pharmacokinetic profile and their use for the treatment of life-threatening infections (i.e., sepsis is often off-label. The aim of this article is to present the antibiotic molecules recently commercialized and with which clinicians will deal quite often in next years. We describe ceftolozane/tazobactam, ceftazidime/avibactam, eravacycline, plazomicin, dalbavancin, oritavancin and tedizolid in terms of mechanism of action, antimicrobial spectrum, trials behind the approval and possible indications for the future. In last few years, the US Food and Drug Administration (FDA and the European Medicines Agency (EMA approved many new antibiotic molecules but, unfortunately, they lack in biological innovation and in wide clinical indications. These agents show appealing properties for off-label use, as we propose in the article, but caution is still needed considering that high-quality clinical data are limited.

  20. Health impacts of geothermal energy

    International Nuclear Information System (INIS)

    Layton, D.W.; Anspaugh, L.R.

    1982-01-01

    Geothermal resources are used to produce electrical energy and to supply heat for non-electric applications like residential heating and crop drying. The utilization of geothermal energy consists of the extraction of hot water or steam from an underground reservoir followed by different methods of surface processing along with the disposal of liquid, gaseous, and even solid wastes. The focus of this paper is on electric power production using geothermal resources greater than 150 0 C because this form of geothermal energy utilization has the most serious health-related consequences. Based on measurements and experience at existing geothermal power plants, atmospheric emissions of non-condensing gases such as hydrogen sulphide and benzene pose the greatest hazards to public health. Surface and ground waters contaminated by discharges of spent geothermal fluids constitute another health hazard. In this paper it is shown that hydrogen sulphide emissions from most geothermal power plants are apt to cause odour annoyances among members of the exposed public -some of whom can detect this gas at concentrations as low as 0.002 ppmv. A risk-assessment model is used to estimate the lifetime risk of incurring leukaemia from atmospheric benzene caused by 2000 MW(e) of geothermal development in California's Imperial Valley. Also assessed is the risk of skin cancer due to the ingestion of river water in New Zealand that is contaminated by waste geothermal fluids containing arsenic. Finally, data on the occurrence of occupational disease in the geothermal industry is briefly summarized. (author)

  1. Professional Development Opportunities for Two-Year College Geoscience Faculty: Issues, Opportunities, and Successes

    Science.gov (United States)

    Baer, E. M.; Macdonald, H.; McDaris, J. R.; Granshaw, F. D.; Wenner, J. M.; Hodder, J.; van der Hoeven Kraft, K.; Filson, R. H.; Guertin, L. A.; Wiese, K.

    2011-12-01

    Two-year colleges (2YCs) play a critical role in geoscience education in the United States. Nearly half of the undergraduate students who take introductory geoscience do so at a 2YC. With awide reach and diverse student populations, 2YCs may be key to producing a well-trained, diverse and sufficiently large geoscience workforce. However, faculty at 2YCs often face many barriers to professional development including lack of financial resources, heavy and inflexible teaching loads, lack of awareness of opportunities, and few professional development resources/events targeted at their needs. As an example, at the 2009 GSA meeting in Portland, fewer than 80 of the 6500 attendees were from community colleges, although this was more than twice the 2YC faculty attendance the previous year. Other issues include the isolation described by many 2YC geoscience faculty who may be the only full time geoscientist on a campus and challenges faced by adjunct faculty who may have even fewer opportunities for professional development and networking with other geoscience faculty. Over the past three years we have convened several workshops and events for 2YC geoscience faculty including technical sessions and a workshop on funding opportunities for 2YC faculty at GSA annual meetings, a field trip and networking event at the fall AGU meeting, a planning workshop that examined the role of 2YCs in geoscience education and in broadening participation in the geosciences, two workshops supporting use of the 'Math You Need, When You Need It' educational materials that included a majority of 2YC faculty, and marine science summer institutes offered by COSEE-Pacific Partnerships for 2YC faculty. Our experience indicates that 2YC faculty desire professional development opportunities when the experience is tailored to the needs and character of their students, programs, and institutions. The content of the professional development opportunity must be useful to 2YC faculty -workshops and

  2. Utilization of geothermal energy for agribusiness development in southwestern New Mexico. Technical completion report, July 19, 1978-May 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Landsford, R.R.; Abernathy, G.H.; Gollehon, N.R.

    1981-01-01

    An evaluation is presented of the direct heat utilization from geothermal resources for agribusiness uses in the Animas Valley, Southwestern New Mexico. The analysis includes an evaluation of the groundwater and geothermal resources in the Animas Valley, monitoring of an existing geothermal greenhouse, and evaluation of two potential agribusiness applications of geothermal waters (greenhouses and meat precooking).

  3. Geothermal Energy Production With Innovative Methods Of Geothermal Heat Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Swenson, Allen [GeoTek Energy, LLC, Frisco, TX (United States); Darlow, Rick [GeoTek Energy, LLC, Frisco, TX (United States); Sanchez, Angel [GeoTek Energy, LLC, Frisco, TX (United States); Pierce, Michael [GeoTek Energy, LLC, Frisco, TX (United States); Sellers, Blake [GeoTek Energy, LLC, Frisco, TX (United States)

    2014-12-19

    The ThermalDrive™ Power System (“TDPS”) offers one of the most exciting technological advances in the geothermal power generation industry in the last 30 years. Using innovations in subsurface heat recovery methods, revolutionary advances in downhole pumping technology and a distributed approach to surface power production, GeoTek Energy, LLC’s TDPS offers an opportunity to change the geothermal power industry dynamics.

  4. Petroleum exploration and development opportunities in Mexico

    International Nuclear Information System (INIS)

    Jensen, R.; Daschle, R.

    2002-01-01

    This paper presents a historical overview of the energy sector in Mexico, an important player in the world energy market, whose trade and market policies support economic development and foreign investment. Trade, commerce and investment between Canada and Mexico has been increasing steadily ever since the North American Free Trade Agreement (NAFTA) came into effect in January 1994. TransAlta Corporation and Westcoast Energy Inc. are two very active investors in the energy sector. Westcoast has invested in increasing natural gas and oil production from the Cantarell field in the Gulf of Mexico through the Campeche Natural Gas Compression Service Project and the Cantarell Nitrogen Plant. TransAlta has invested in two natural gas fired power plants which are both expected to be in service for the second quarter of 2003. These include the 252 MW Campeche facility and the 259 MW Chihuahua facility. Mexico has proven crude oil reserves of 27 billion barrels, proven natural gas reserves of 30 tcf, and in 2000 had a crude oil production of 3.4 mmbl/d, of which half was exported. The energy sector in Mexico may need about $120 billion of investment by 2010, of which half will be used for crude oil exploration and production, transportation and refining and the other half for natural gas exploration and production, transportation and distribution and power generation. Recently, the Mexican government embarked on two initiatives. The first to increase the productivity and profitability of PEMEX, the largest corporation in Mexico and one of the largest in the world, and to allow a form of private investment in the development of non-associated natural gas fields. This paper discussed the significance of the Multiple Service Contracts (MSC) program which involves domestic and international petroleum exploration and development. It also discussed forms of business organizations, taxation and structuring, financial issues, employment and the North American Free Trade Agreement

  5. Recovery act. Characterizing structural controls of EGS-candidate and conventional geothermal reservoirs in the Great Basin. Developing successful exploration strategies in extended terranes

    Energy Technology Data Exchange (ETDEWEB)

    Faulds, James [Univ. of Nevada, Reno, NV (United States)

    2015-06-25

    We conducted a comprehensive analysis of the structural controls of geothermal systems within the Great Basin and adjacent regions. Our main objectives were to: 1) Produce a catalogue of favorable structural environments and models for geothermal systems. 2) Improve site-specific targeting of geothermal resources through detailed studies of representative sites, which included innovative techniques of slip tendency analysis of faults and 3D modeling. 3) Compare and contrast the structural controls and models in different tectonic settings. 4) Synthesize data and develop methodologies for enhancement of exploration strategies for conventional and EGS systems, reduction in the risk of drilling non-productive wells, and selecting the best EGS sites.

  6. Geothermal system 'Toplec' and geothermal potential of Dojran Region

    International Nuclear Information System (INIS)

    Karakashev, Deljo; Delipetrov, Marjan; Jovanov, Kosta

    2004-01-01

    The Toplec geothermal spring that expands into a wide geothermal net in the watershed of Lake Dojran along the geophysical exploration work carried out in the terrain, indicated the presence of a significant geothermal potential in the region. In the future it may become the major factor for the development of vegetable growing, the use of the medicinal properties of the mineral spas and tourism as well cis the prosperity of the region. Water temperature in Lake Dojran amounts from 15 to 28 o C during the year that is much higher compared with the temperatures of water lakes in neighbouring Greece. This indicates that beneath Lake Dojran there are other geothermal sources that replenish the lake with thermal water. Such manifestations of geothermal energy in the region along with other thermal phenomena speak for the presence of large reserves of geothermal energy in the Dojran depression. (Author)

  7. Report on the geothermal development promotion survey. No.B-7. Kuwanosawa area; Chinetsu kaihatsu sokushin chosa hokokusho. No. B-7 Kuwanosawa chiiki

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-03-01

    The paper summed up the results of the geothermal development promotion survey B 'Kuwanosawa area' which was carried out in Yuzawa city, Akita prefecture, from FY 1998 to FY 1999. In the survey, the following were conducted for the comprehensive analysis: geology/alteration zone survey, gravity exploration, electromagnetic exploration, environmental effect survey, well geology survey by drilling structural boreholes of N11-KN-1 and N12-KN-2, cuttings test, temperature log, temperature recovery test, electrical log, water injection test, etc. The geology in the Kuwanosawa area is composed of Pre-neogene period basement rocks, Neogene system and Quaternary system. In this area, there were recognized no gush of geothermal fluids such as hot spring and fumarolic gas and no obvious geothermal manifestation such as high-temperature places and new geothermal alteration zones. Around N12-KN-2, there exists the geothermal water with comparatively high-temperature/high-Cl concentration which is similar to that in the Wasabizawa area, but how it flows is unknown because there was no lost circulation in the depths of the borehole. Around N11-KN-1, there exists the low-temperature/low-Cl concentration geothermal water originating in meteoric water, and therefore, the area can be a rechargeable area. The Kuwanosawa area is regarded as the periphery of the Wasabizawa-Akinomiya geothermal area. (NEDO)

  8. Geothermal Energy.

    Science.gov (United States)

    Nemzer, Marilyn; Page, Deborah

    This curriculum unit describes geothermal energy in the context of the world's energy needs. It addresses renewable and nonrenewable energy sources with an in-depth study of geothermal energy--its geology, its history, and its many uses. Included are integrated activities involving science, as well as math, social studies, and language arts.…

  9. Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    Steele, B.C.; Pichiarella, L.S. [eds.; Kane, L.S.; Henline, D.M.

    1995-01-01

    Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

  10. Telephone Flat Geothermal Development Project Environmental Impact Statement Environmental Impact Report. Final: Comments and Responses to Comments

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-02-01

    This document is the Comments and Responses to Comments volume of the Final Environmental Impact Statement and Environmental Impact Report prepared for the proposed Telephone Flat Geothermal Development Project (Final EIS/EIR). This volume of the Final EIS/EIR provides copies of the written comments received on the Draft EIS/EIR and the leady agency responses to those comments in conformance with the requirements of the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA).

  11. Currently developing opportunities in food irradiation and modern irradiation facilities

    Energy Technology Data Exchange (ETDEWEB)

    Wanke, R. [Director Business Development. SteriGenics International Inc. 17901 East Warren Avenue No. 4, Detroit, Michigan 48224-1333 (United States)

    1997-12-31

    I. Factor currently influencing advancing opportunities for food irradiation include: heightened incidence and awareness of food borne illnesses and causes. Concerns about ensuring food safety in international as well as domestic trade. Regulatory actions regarding commonly used fumigants/pesticides e.g. Me Br. II. Modern irradiator design: the SteriGenics {sup M}ini Cell{sup .} A new design for new opportunities. Faster installation of facility. Operationally and space efficient. Provides local {sup o}nsite control{sup .} Red meat: a currently developing opportunity. (Author)

  12. The geothermal partnership: Industry, utilities, and government meeting the challenges of the 90's

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    Each year the Geothermal Division of the US Department of Energy conducts an in-depth review of its entire geothermal R D program. The conference serves several purposes: a status report on current R D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal community. This year's conference, Program Review IX, was held in San Francisco on March 19--21, 1991. The theme of this review was The Geothermal Partnership -- Industry, Utilities, and Government Meeting the Challenges of the 90's.'' The importance of this partnership has increased markedly as demands for improved technology must be balanced with available research resources. By working cooperatively, the geothermal community, including industry, utilities, DOE, and other state and federal agencies, can more effectively address common research needs. The challenge currently facing the geothermal partnership is to strengthen the bonds that ultimately will enhance opportunities for future development of geothermal resources. Program Review IX consisted of eight sessions including an opening session. The seven technical sessions included presentations by the relevant field researchers covering DOE-sponsored R D in hydrothermal, hot dry rock, and geopressured energy and the progress associated with the Long Valley Exploratory Well. Individual papers have been cataloged separately.

  13. Fiscal 1995 geothermal development promotion survey. Natural environment survey report; 1995 nendo chinetsu kaihatsu sokushin chosa. Shizen kankyo chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    In Candidate C area for the geothermal development survey, the natural environment was surveyed and `the secondary landscape assessment` was summed up in which places proposed for drilling of large-size wells and for construction of power generation facilities are extracted and a simulation of the landscape is conducted. The area for survey is the Shiramizu-gawa region in the south of Lake Akan, Akan-cho, Akan-gun, Hokkaido. The field survey was carried out about three items of landscape, plants and animals during the June-November period, 1995. As to the flora, diverse florae including vegetation unique to alpine areas, wetlands, and fumarole surrounding areas were found in the region, which is covered with summer-green broad-leaved forests or mixed forests of coniferous and broad-leaved trees. As to the fauna, faunae inhabitant of the highly natural forests were found including black woodpeckers and mountain hawk eagles. As a result of studying the places proposed for geothermal development from the above-mentioned survey, two places were picked up in the west of the survey area, where geothermal development is comparatively less influential in the natural environment and landscape and there is a high locational adaptability. 19 refs., 56 figs., 49 tabs.

  14. Geothermal progress monitor. Progress report No. 7

    Energy Technology Data Exchange (ETDEWEB)

    1983-04-01

    A state-by-state review of major geothermal-development activities during 1982 is presented. It also inlcudes a summary of recent drilling and exploration efforts and the results of the 1982 leasing program. Two complementary sections feature an update of geothermal direct-use applications and a site-by-site summary of US geothermal electric-power development.

  15. Fiscal 1997 New Sunshine Project achievement report. Development of power plant and the like utilizing geothermal water (Development of deep-seated geothermal energy collecting technology - Development of deep-seated geothermal resources drilling technology); 1997 nendo nessui riyo hatsuden plant nado kaihatsu seika hokokusho. Shinbu chinetsu shigen saishu gijutsu no kaihatsu / shinbu chinetsu shigen kussaku gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Efforts were made to develop deep-seated geothermal fluid collecting technologies, comprising drilling and producing technologies, indispensable for the exploitation of deep-seated geothermal resources anticipated to help enhance geothermal power generation. Items for development were 1) a master plan for development, 2) element technologies for drilling into hard and hot rock beds, and 3) high-accuracy steep-inclination drilling techniques. Under item 1), under the master plan, technical information was collected from overseas on bits, DHM (down hole motor), etc., put in order, and subjected to deliberation. A cost efficiency survey was also conducted. Bits were adjusted relative to mud in a real well. The real well used for this purpose was the 97N-31P well situated in the Oku-Aizu district. Under item 2), bits high in heat resistance and in durability were tested for use at 350 degrees C. A mud resistant system was developed, which comprised natural bentonite, synthetic mica, and polymer. A proper composition was determined for cement slurry, 1.35 in specific weight and usable at 350 degrees C in the ground. Under item 3), an high temperature DHM was fabricated. (NEDO)

  16. Environmental studies conducted at the Fenton Hill Hot Dry Rock geothermal development site

    Energy Technology Data Exchange (ETDEWEB)

    Miera, F.R. Jr.; Langhorst, G.; McEllin, S.; Montoya, C.

    1984-05-01

    An environmental investigation of Hot Dry Rock (HDR) geothermal development was conducted at Fenton Hill, New Mexico, during 1976-1979. Activities at the Fenton Hill Site included an evaluation of baseline data for biotic and abiotic ecosystem components. Identification of contaminants produced by HDR processes that had the potential for reaching the surrounding environment is also discussed. Three dominant vegetative communities were identified in the vicinity of the site. These included grass-forb, aspen, and mixed conifer communities. The grass-forb area was identified as having the highest number of species encountered, with Phleum pratense and Dactylis glomerata being the dominant grass species. Frequency of occurrence and mean coverage values are also given for other species in the three main vegetative complexes. Live trapping of small mammals was conducted to determine species composition, densities, population, and diversity estimates for this component of the ecosystem. The data indicate that Peromyscus maniculatus was the dominant species across all trapping sites during the study. Comparisons of relative density of small mammals among the various trapping sites show the grass-forb vegetative community to have had the highest overall density. Comparisons of small mammal diversity for the three main vegetative complexes indicate that the aspen habitat had the highest diversity and the grass-forb habitat had the lowest. Analyses of waste waters from the closed circulation loop indicate that several trace contaminants (e.g., arsenic, cadmium, fluoride, boron, and lithium) were present at concentrations greater than those reported for surface waters of the region.

  17. Wetlands may clean geothermal water

    Science.gov (United States)

    Development of geothermal resources may help to ease energy problems, but water quality problems could result from the disposal of spent geothermal brines. Research by EG&G Idaho shows that man-made wetlands may provide a more economic disposal system than do conventional treatment and disposal methods.Most geothermal water contains high concentrations of dissolved solids and trace elements, including fluoride and boron, which can be harmful to water quality and organisms. Because of these high concentrations, only a limited number of methods can be used to dispose of used geothermal water. These include injection wells, evaporation ponds, and disposal into surface waterways.

  18. Thermal modeling of the Clear Lake magmatic system, California: Implications for conventional and hot dry rock geothermal development

    Energy Technology Data Exchange (ETDEWEB)

    Stimac, J.; Goff, F.; Wohletz, K.

    1997-06-01

    The combination of recent volcanism, high heat flow ({ge} HFU or 167 mW/m{sup 2}), and high conductive geothermal gradient (up to 120{degree} C/km) makes the Clear Lake region of northern California one of the best prospects for hot dry rock (HDR) geothermal development in the US. The lack of permeability in exploration wells and lack of evidence for widespread geothermal reservoirs north of the Collayomi fault zone are not reassuring indications for conventional geothermal development. This report summarizes results of thermal modeling of the Clear Lake magmatic system, and discusses implications for HDR site selection in the region. The thermal models incorporate a wide range of constraints including the distribution and nature of volcanism in time and space, water and gas geochemistry, well data, and geophysical surveys. The nature of upper crustal magma bodies at Clear Lake is inferred from studying sequences of related silicic lavas, which tell a story of multistage mixing of silicic and mafic magma in clusters of small upper crustal chambers. Thermobarometry on metamorphic xenoliths yield temperature and pressure estimates of {approximately}780--900 C and 4--6 kb respectively, indicating that at least a portion of the deep magma system resided at depths from 14 to 21 km (9 to 12 mi). The results of thermal modeling support previous assessments of the high HDR potential of the area, and suggest the possibility that granitic bodies similar to The Geysers felsite may underlie much of the Clear Lake region at depths as little as 3--6 km. This is significant because future HDR reservoirs could potentially be sited in relatively shallow granitoid plutons rather than in structurally complex Franciscan basement rocks.

  19. A new assessment of combined geothermal electric generation and desalination in western Saudi Arabia: targeted hot spot development

    KAUST Repository

    Missimer, Thomas M.

    2014-07-17

    High heat flow associated with the tectonic spreading of the Red Sea make western Saudi Arabia a region with high potential for geothermal energy development. The hydraulic properties of the Precambrian-age rocks occurring in this region are not conducive to direct production of hot water for heat exchange, which will necessitate use of the hot dry rock (HDR) heat harvesting method. This would require the construction of coupled deep wells; one for water injection and the other for steam recovery. There are some technological challenges in the design, construction, and operation of HDR geothermal energy systems. Careful geotechnical evaluation of the heat reservoir must be conducted to ascertain the geothermal gradient at the chosen site to allow pre-design modeling of the system for assessment of operational heat flow maintenance. Also, naturally occurring fractures or faults must be carefully evaluated to make an assessment of the potential for induced seismicity. It is anticipated that the flow heat exchange capacity of the system will require enhancement by the use of horizontal drilling and hydraulic fracturing in the injection well with the production well drilled into the fracture zone to maximum water recovery efficiency and reduce operating pressure. The heated water must be maintained under pressure and flashed to steam at surface to produce to the most effective energy recovery. Most past evaluations of geothermal energy development in this region have been focused on the potential for solely electricity generation, but direct use of produced steam could be coupled with thermally driven desalination technologies such as multi-effect distillation, adsorption desalination, and/or membrane distillation to provide a continuous source of heat to allow very efficient operation of the plants. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

  20. Study deep geothermal energy; Studie dypgeotermisk energi

    Energy Technology Data Exchange (ETDEWEB)

    Havellen, Vidar; Eri, Lars Sigurd; Andersen, Andreas; Tuttle, Kevin J.; Ruden, Dorottya Bartucz; Ruden, Fridtjof; Rigler, Balazs; Pascal, Christophe; Larsen, Bjoern Tore

    2012-07-01

    The study aims to analyze the potential energy with current technology, challenges, issues and opportunities for deep geothermal energy using quantitative analysis. It should especially be made to identify and investigate critical connections between geothermal potential, the size of the heating requirements and technical solutions. Examples of critical relationships may be acceptable cost of technology in relation to heating, local geothermal gradient / drilling depth / temperature levels and profitability. (eb)

  1. NATIONAL GEOTHERMAL DATA SYSTEM (NGDS) GEOTHERMAL DATA DOMAIN: ASSESSMENT OF GEOTHERMAL COMMUNITY DATA NEEDS

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Arlene [United States Department of Energy; Blackwell, David [Southern Methodist University; Chickering, Cathy [Southern Methodist University; Boyd, Toni [Oregon Institute of Technology; Horne, Roland [Stanford University; MacKenzie, Matthew [Uberity Technology Corporation; Moore, Joseph [University of Utah; Nickull, Duane [Uberity Technology Corporation; Richard, Stephen [Arizona Geological survey; Shevenell, Lisa A. [University of Nevada, Reno

    2013-01-01

    To satisfy the critical need for geothermal data to ad- vance geothermal energy as a viable renewable ener- gy contender, the U.S. Department of Energy is in- vesting in the development of the National Geother- mal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to sup- ply cutting edge geo-informatics. NGDS geothermal data acquisition, delivery, and methodology are dis- cussed. In particular, this paper addresses the various types of data required to effectively assess geother- mal energy potential and why simple links to existing data are insufficient. To create a platform for ready access by all geothermal stakeholders, the NGDS in- cludes a work plan that addresses data assets and re- sources of interest to users, a survey of data provid- ers, data content models, and how data will be ex- changed and promoted, as well as lessons learned within the geothermal community.

  2. Geochemical and isotopic evidence on the recharge and circulation of geothermal water in the Tangshan Geothermal System near Nanjing, China: implications for sustainable development

    Science.gov (United States)

    Lu, Lianghua; Pang, Zhonghe; Kong, Yanlong; Guo, Qi; Wang, Yingchun; Xu, Chenghua; Gu, Wen; Zhou, Lingling; Yu, Dandan

    2018-01-01

    Geothermal resources are practical and competitive clean-energy alternatives to fossil fuels, and study on the recharge sources of geothermal water supports its sustainable exploitation. In order to provide evidence on the recharge source of water and circulation dynamics of the Tangshan Geothermal System (TGS) near Nanjing (China), a comprehensive investigation was carried out using multiple chemical and isotopic tracers (δ2H, δ18O, δ34S, 87Sr/86Sr, δ13C, 14C and 3H). The results confirm that a local (rather than regional) recharge source feeds the system from the exposed Cambrian and Ordovician carbonate rocks area on the upper part of Tangshan Mountain. The reservoir temperature up to 87 °C, obtained using empirical as well as theoretical chemical geothermometers, requires a groundwater circulation depth of around 2.5 km. The temperature of the geothermal water is lowered during upwelling as a consequence of mixing with shallow cold water up to a 63% dilution. The corrected 14C age shows that the geothermal water travels at a very slow pace (millennial scale) and has a low circulation rate, allowing sufficient time for the water to become heated in the system. This study has provided key information on the genesis of TGS and the results are instructive to the effective management of the geothermal resources. Further confirmation and even prediction associated with the sustainability of the system could be achieved through continuous monitoring and modeling of the responses of the karstic geothermal reservoir to hot-water mining.

  3. Characterization of mudstone, clayey rock and argillite towards stabilisation of boreholes by developing new drilling strategies for geothermal resources exploration

    Science.gov (United States)

    Witthaus, M.; Lempp, Ch.; Röckel, Th.; Hecht, Ch.; Herold, M.

    2009-04-01

    In this study, relating to the BMU Project „ borehole stabilisation as an important factor for the utilization of deep geothermal resources" (Project No. 0327594), sediment rocks with comparable lithology to the pelite beds of the Upper Rhine zone were investigated by a number of geomechanical tests. The investigation will provide detailed information on the geomechanical behaviour (brittle and ductile deformation) of clay stone formations in order to find out critical reasons for the instability of boreholes at a depth of about 2000 m. The main aspect of the study is to develop improved technical options in order to increase borehole stability. Many geothermal energy projects started near the Upper Rhine Rift in order to produce electricity, as the geothermal gradient rises there to about 150° C at 3 - 4 km depth. For these enhanced geothermal systems it is necessary to drill deep boreholes to install geothermal heat exchangers, so that the injected cold water conducts the high temperature of the rocks (Hot Dry Rock-Technology). The drillings have to be intersected through different rock layers that are influenced by varying regional stress fields respective to their depth. Between depths of 1500 to 2000 m within the Upper Rhine zone some of the drilled boreholes were in some parts very unstable, especially in formations where mud- and clay stones were dominant, as well as in interbedded strata with sandstones. As the maximum load capacity of these clays is very low and due to their ductile as well as brittle deformation behaviour, borehole convergence and borehole breakouts are detected. These changes were also caused by deep injection of drilling fluid into the rock formation, increasing the pore pressure there, so that hydraulic tension cracks were induced (hydraulic fracturing). This occurred mainly during drilling and it is the reason why there is an imminent risk of the stability of geothermal boreholes in geological formations composed of mudstones, clay

  4. The Role of Cost Shared R&D in the Development of Geothermal Resources

    Energy Technology Data Exchange (ETDEWEB)

    None

    1995-03-16

    This U.S. Department of Energy Geothermal Program Review starts with two interesting pieces on industries outlook about market conditions. Dr. Allan Jelacics introductory talk includes the statistics on the impacts of the Industry Coupled Drilling Program (late-1970's) on geothermal power projects in Nevada and Utah (about 140 MWe of power stimulated). Most of the papers in these Proceedings are in a technical report format, with results. Sessions included: Exploration, The Geysers, Reservoir Engineering, Drilling, Energy Conversion (including demonstration of a BiPhase Turbine Separator), Energy Partnerships (including the Lake County effluent pipeline to The Geysers), and Technology Transfer (Biochemical processing of brines, modeling of chemistry, HDR, the OIT low-temperature assessment of collocation of resources with population, and geothermal heat pumps). There were no industry reviews at this meeting.

  5. Political Opportunism, Corruption and Under development in Africa ...

    African Journals Online (AJOL)

    Barely fi fty years after many African colonies gained their independence from the Europeans, every effort to develop in the continent has been constrained by the political opportunism and corruption of African leaders. This is happening at a time when many developing nations such as China, Brazil and India are making a ...

  6. An economic prefeasibility study of geothermal energy development at Platanares, Honduras. Estudio economico de prefactibilidad del desarrollo de energia geotermica en Platanares, Honduras

    Energy Technology Data Exchange (ETDEWEB)

    Trocki, L.K.

    1989-09-01

    The expected economic benefits from development of a geothermal power plant at Platanares in the Department of Copan, Honduras are evaluated in this report. The economic benefits of geothermal plants ranging in size from a 10-MW plant in the shallow reservoir to a 20-, 30-, 55-, or 110-MW plant in the assumed deeper reservoir were measured by computing optimal expansion plans for each size of geothermal plant. Savings are computed as the difference in present value cost between a plan that contains no geothermal plant and one that does. Present value savings in millions of 1987 dollars range from $25 million for the 10-MW plant to $110 million for the 110-MW plant -- savings of 6% to 25% over the time period 1988 through 2008. 8 refs., 9 figs., 6 tabs.

  7. Geothermal energy

    International Nuclear Information System (INIS)

    Lemale, J.

    2009-01-01

    The geothermal energy, listed among the new and renewable energy sources, is characterized by a huge variety of techniques and applications. This book deals with the access to underground geothermal resources and with their energy valorization as well. After a presentation of the main geological, hydrogeological and thermal exploitation aspects of this resource, the book presents the different geothermal-related industries in detail, in particular the district heating systems, the aquifer-based heat pumps, the utilizations in the agriculture, fishery and balneology sectors, and the power generation. (J.S.)

  8. DEVELOPING THE NATIONAL GEOTHERMAL DATA SYSTEM ADOPTION OF CKAN FOR DOMESTIC & INTERNATIONAL DATA DEPLOYMENT

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Ryan J. [Arizona Geological Survey; Kuhmuench, Christoph [Siemens Corporation; Richard, Stephen M. [Arizona Geological Survey

    2013-03-01

    The National Geothermal Data System (NGDS) De- sign and Testing Team is developing NGDS software currently referred to as the “NGDS Node-In-A-Box”. The software targets organizations or individuals who wish to host at least one of the following: • an online repository containing resources for the NGDS; • an online site for creating metadata to register re- sources with the NGDS • NDGS-conformant Web APIs that enable access to NGDS data (e.g., WMS, WFS, WCS); • NDGS-conformant Web APIs that support dis- covery of NGDS resources via catalog service (e.g. CSW) • a web site that supports discovery and under- standing of NGDS resources A number of different frameworks for development of this online application were reviewed. The NGDS Design and Testing Team determined to use CKAN (http://ckan.org/), because it provides the closest match between out of the box functionality and NGDS node-in-a-box requirements. To achieve the NGDS vision and goals, this software development project has been inititated to provide NGDS data consumers with a highly functional inter- face to access the system, and to ease the burden on data providers who wish to publish data in the sys- tem. It is important to note that this software package constitutes a reference implementation. The NGDS software is based on open standards, which means other server software can make resources available, and other client applications can utilize NGDS data. A number of international organizations have ex- pressed interest in the NGDS approach to data access. The CKAN node implementation can provide a sim- ple path for deploying this technology in other set- tings.

  9. Mutnovo geothermal power complex at Kamchatka

    International Nuclear Information System (INIS)

    Britvin, O.V.; Povarov, O.A.; Klochkov, E.F.; Tomarov, G.V.; Koshkin, N.L.; Luzin, V.E.

    2001-01-01

    The data on geothermal resources at Kamchatka and experience in their application are presented. The description of the geothermal power complex objects at the Mutnovo deposit is given. The basic trends and stages of the prospective geothermal power development in this region are indicated. It is specified for unique huge geothermal heat reserves, which by different estimates may provide for the total electrical and thermal capacity, exceeding 2000 MW [ru

  10. Report on the geothermal development promotion survey. No.36. Mt. Amemasudake area; Chinetsu kaihatsu sokushin chosa hokokusho. No. 36 Amemasudake chiiki

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    The paper summed up the results of the geothermal development promotion survey 'Mt. Amemasudake area' which was carried out at Akaigawa village, Yoichi county, Hokkaido, from FY 1991 to FY 1994. In the survey, the following were conducted for the comprehensive analysis: surface survey such as geology/alteration zone survey, geochemical survey, gravity exploration, electromagnetic exploration and electric exploration, core test by drilling 5 boreholes, test to induce jetting of geothermal fluids, measurement of in-borehole temperature/pressure, survey of geochemical properties of geothermal water. As to the fracture system in this area, the Amemasudake fault and the Amemasuzawa fault are especially important, and it was assumed that these faults had relation to the present geothermal distribution. It is thought that structural conditions of geothermal reservoirs are fractures in basement rocks. As a result of the borehole survey, it was indicated that the center of the high-temperature part with a temperature of 250 degrees C or more was in the boundary zone southeast of this area at a level of 500m below sea level. The scale, which reached about 3km both in east/west and north/south, is almost the same scale as that of the neighboring Toyoha area where great potentiality of the geothermal development is expected. (NEDO)

  11. Development of Optical Technologies for Monitoring Moisture and Particulate in Geothermal Steam

    Energy Technology Data Exchange (ETDEWEB)

    J. K. Partin

    2006-08-01

    The results of an investigation directed at evaluating the feasibility of using optical measurements for the real-time monitoring moisture and particulate in geothermal steam is described. The measurements exploit new technologies that have been developed for the telecommunications industry and includes new solid state laser devices, large-bandwidth, high-sensitivity detectors and low loss optical fiber compo-nents. In particular, the design, fabrication, and in-plant testing of an optical steam monitor for the detection of moisture is presented. The measurement principle is based upon the selective absorption of infrared energy in response to the presence of moisture. Typically, two wavelengths are used in the measurements: a wavelength that is strongly absorbed by water and a reference wavelength that is minimally influenced by water and steam which serves as a reference to correct for particulate or droplet scattering. The two wavelengths are chosen to be as close as possible in order to more effectively correct for scattering effects. The basic instrumentation platform developed for the in-situ monitoring of steam moisture can be modified and used to perform other measurements of interest to plant operators. An upgrade that will allow the instrument to be used for the sensitive detection of particulate in process streams has been investigated. The new monitor design involves the use of laser diodes that are much less sensitive to water and water vapor and more sensitive to scattering phenomena, as well as new processing techniques to recover these signals. The design reduces the averaging time and sampling volume, while increasing the laser probe power, enhancing particulate detection sensitivity. The design concept and initial laboratory experiments with this system are also reported.

  12. Geothermal Energy: Prospects and Problems

    Science.gov (United States)

    Ritter, William W.

    1973-01-01

    An examination of geothermal energy as a means of increasing the United States power resources with minimal pollution problems. Developed and planned geothermal-electric power installations around the world, capacities, installation dates, etc., are reviewed. Environmental impact, problems, etc. are discussed. (LK)

  13. Compilation of geothermal information: exploration

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    The Database for Geothermal Energy Exploration and Evaluation is a printout of selected references to publications covering the development of geothermal resources from the identification of an area to the production of elecric power. This annotated bibliography contains four sections: references, author index, author affiliation index, and descriptor index.

  14. A History of Geothermal Energy Research and Development in the United States. Drilling 1976-2006

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-09-01

    This report, the second in a four-part series, summarizes significant research projects performed by the U.S. Department of Energy (DOE) over 30 years to overcome challenges in drilling and to make generation of electricity from geothermal resources more cost-competitive.

  15. A History of Geothermal Energy Research and Development in the United States. Exploration 1976-2006

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-09-01

    This report, the first in a four-part series, summarizes significant research projects performed by the U.S. Department of Energy (DOE) over 30 years to overcome challenges in exploration and to make generation of electricity from geothermal resources more cost-competitive.

  16. Locally sourced probiotics, the next opportunity for developing countries?

    NARCIS (Netherlands)

    Sybesma, W.; Kort, R.; Lee, Y.K.

    2015-01-01

    We describe factors promoting the exploration of locally sourced probiotics, targeting local populations to balance human needs and market opportunities. This would be particularly beneficial for people in developing countries, who generally lack access to affordable probiotics and are often exposed

  17. Consumer behaviour and opportunities for new product development

    DEFF Research Database (Denmark)

    Grunert, Klaus G

    and Q-PORKCHAINS and a Danish project, all dealing with new product development in the meat sector, it is shown how the use of consumer insight techniques can a) support the identification of market opportunities, b) make sure that technologies applied are acceptable to consumers, c) aid the selection...

  18. Opportunity and development of bio-based composites

    Science.gov (United States)

    Zhiyong Cai; Jerrold E. Winandy

    2005-01-01

    Our forests are a naturally renewable resource that has been used as a principal source of bio-energy and building materials for centuries. The rapid growth of world population has now resulted in substantial increases in demand and in consumption of all raw materials. This now provides a unique opportunity of developing new bio-based composites. The 100-year history...

  19. The privatization mosaic: International power development agendas and opportunities

    International Nuclear Information System (INIS)

    Pfeffer, J.L.

    1992-01-01

    This article examines the international trend toward private ownership of state-owned power production, transmission and distribution systems. The topics of the article include trends towards private investment in electric power systems, alternative opportunities for private sector investment, investor objectives in private power development and utility privatization, and potential investors in overseas projects

  20. Challenges and Opportunities in Developing Respiratory Syncytial Virus Therapeutics

    NARCIS (Netherlands)

    Simoes, Eric A. F.; DeVincenzo, John P.; Boeckh, Michael; Bont, LJ; Crowe, James E.; Griffiths, Paul; Hayden, Frederick G.; Hodinka, Richard L.; Smyth, Rosalind L.; Spencer, Keith; Thirstrup, Steffen; Walsh, Edward E.; Whitley, Richard J.

    2015-01-01

    Two meetings, one sponsored by the Wellcome Trust in 2012 and the other by the Global Virology Foundation in 2013, assembled academic, public health and pharmaceutical industry experts to assess the challenges and opportunities for developing antivirals for the treatment of respiratory syncytial

  1. Human Resource Development in Mauritius: Context, Challenges and Opportunities

    Science.gov (United States)

    Garavan, Thomas N.; Neeliah, Harris; Auckloo, Raj; Ragaven, Raj

    2016-01-01

    Purpose: The purpose of this paper is to explore human resource development (HRD) in Mauritius and the challenges and opportunities faced by organisations in different sectors in adopting HRD practices. Findings: This special issue presents four papers that explore dimensions of HRD in public sector, small- and medium-sized enterprises (SMEs) and…

  2. Opportunities provided in language textbooks to develop learners ...

    African Journals Online (AJOL)

    This article is a report on a study that investigated the opportunities provided in language textbooks to develop learners\\' full potential. Howard Gardner\\'s theory of multiple intelligences, which is used as a theoretical framework, claims that learners have different combinations of intelligences and that the various ...

  3. Threats and opportunities for post-closure development in dolomitic ...

    African Journals Online (AJOL)

    Based on an analysis of mining impacts and potential threats for post-mining developments provided in Part I, this 2nd paper in a 3-part series aims to stimulate thought, through the discussion of potential opportunities centred on the rich water resources of the area. This is in full recognition of a subsequent need to assess ...

  4. Clinical leadership development and education for nurses: prospects and opportunities

    Directory of Open Access Journals (Sweden)

    Joseph ML

    2015-07-01

    Full Text Available M Lindell Joseph, Diane L Huber College of Nursing, The University of Iowa, Iowa City, IA, USA Abstract: With the implementation of the Affordable Care Act, elevated roles for nurses of care coordinator, clinical nurse leader, and advanced practice registered nurse have come to the forefront. Because change occurs so fast, matching development and education to job requirements is a challenging forecasting endeavor. The purpose of this article is to envision clinical leadership development and education opportunities for three emerging roles. The adoption of a common framework for intentional leadership development is proposed for clinical leadership development across the continuum of care. Solutions of innovation and interdependency are framed as core concepts that serve as an opportunity to better inform clinical leadership development and education. Additionally, strategies are proposed to advance knowledge, skills, and abilities for crucial implementation of improvements and new solutions at the point of care. Keywords: clinical leadership, nursing leadership, CNL, care coordination, innovation, interdependency

  5. Energy Savings Potential and Research & Development Opportunities for Commercial Refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-09-01

    This study documents the energy consumption of commercial refrigeration equipment (CRE) in the U.S. and evaluated the energy savings potential of various technologies and energy efficiency measures that could be applied to such equipment. The study provided an overview of CRE applications, assessed the energy-savings potential of CRE in the U.S., outline key barriers to adoption of energy-savings technologies, and recommended opportunities for advanced energy saving technology research. The study was modeled after an earlier 1996 report by Arthur D. Little, Inc., and updated key information, examined more equipment types, and outlined long-term research and development opportunities.

  6. Research status of geothermal resources in China

    Science.gov (United States)

    Zhang, Lincheng; Li, Guang

    2017-08-01

    As the representative of the new green energy, geothermal resources are characterized by large reserve, wide distribution, cleanness and environmental protection, good stability, high utilization factor and other advantages. According to the characteristics of exploitation and utilization, they can be divided into high-temperature, medium-temperature and low-temperature geothermal resources. The abundant and widely distributed geothermal resources in China have a broad prospect for development. The medium and low temperature geothermal resources are broadly distributed in the continental crustal uplift and subsidence areas inside the plate, represented by the geothermal belt on the southeast coast, while the high temperature geothermal resources concentrate on Southern Tibet-Western Sichuan-Western Yunnan Geothermal Belt and Taiwan Geothermal Belt. Currently, the geothermal resources in China are mainly used for bathing, recuperation, heating and power generation. It is a country that directly makes maximum use of geothermal energy in the world. However, China’s geothermal power generation, including installed generating capacity and power generation capacity, are far behind those of Western European countries and the USA. Studies on exploitation and development of geothermal resources are still weak.

  7. New Mexico geothermal commercialization planning. Semi-annual progress report, January 1, 1979-June 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, P.; Scudella, G.; Fedor, D.

    1979-06-01

    The market potential for geothermal energy development in New Mexico is estimated. Barriers to market penetration and geothermal development initiatives were identified. Statutes and regulations affecting geothermal development are appended.

  8. Geopressured geothermal bibliography (Geopressure Thesaurus)

    Energy Technology Data Exchange (ETDEWEB)

    Hill, T.R.; Sepehrnoori, K.

    1981-08-01

    This thesaurus of terminology associated with the geopressured geothermal energy field has been developed as a part of the Geopressured Geothermal Information System data base. A thesaurus is a compilation of terms displaying synonymous, hierarchical, and other relationships between terms. These terms, which are called descriptors, constitute the special language of the information retrieval system, the system vocabulary. The Thesaurus' role in the Geopressured Geothermal Information System is to provide a controlled vocabulary of sufficient specificity for subject indexing and retrieval of documents in the geopressured geothermal energy field. The thesauri most closely related to the Geopressure Thesaurus in coverage are the DOE Energy Information Data Base Subject Thesaurus and the Geothermal Thesaurus being developed at the Lawrence Berkeley Laboratory (LBL). The Geopressure Thesaurus differs from these thesauri in two respects: (1) specificity of the vocabulary or subject scope and (2) display format.

  9. 2008 Geothermal Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Jonathan Cross

    2009-07-01

    This report describes market-wide trends for the geothermal industry throughout 2008 and the beginning of 2009. It begins with an overview of the GTP’s involvement with the geothermal industry and recent investment trends for electric generation technologies. The report next describes the current state of geothermal power generation and activity within the United States, costs associated with development, financing trends, an analysis of the levelized cost of energy (LCOE), and a look at the current policy environment. The report also highlights trends regarding direct use of geothermal energy, including GHPs.† The final sections of the report focus on international perspectives, employment and economic benefits from geothermal energy development, and potential incentives in pending national legislation.

  10. Development of a geothermal resource in a fractured volcanic formation: Case study of the Sumikawa Geothermal Field, Japan. Final report, May 1, 1995--November 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Garg, S.K.; Combs, J.; Pritchett, J.W. [and others

    1997-07-01

    The principal purpose of this case study of the Sumikawa Geothermal Field is to document and to evaluate the use of drilling logs, surface and downhole geophysical measurements, chemical analyses and pressure transient data for the assessment of a high temperature volcanic geothermal field. This comprehensive report describes the work accomplished during FY 1993-1996. A brief review of the geological and geophysical surveys at the Sumikawa Geothermal Field is presented (Section 2). Chemical data, consisting of analyses of steam and water from Sumikawa wells, are described and interpreted to indicate compositions and temperatures of reservoir fluids (Section 3). The drilling information and downhole pressure, temperature and spinner surveys are used to determine feedzone locations, pressures and temperatures (Section 4). Available injection and production data from both slim holes and large-diameter wells are analyzed to evaluate injectivity/productivity indices and to investigate the variation of discharge rate with borehole diameter (Section 5). New interpretations of pressure transient data from several wells are discussed (Section 6). The available data have been synthesized to formulate a conceptual model for the Sumikawa Geothermal Field (Section 7).

  11. Opportunities and challenges within urban health and sustainable development

    DEFF Research Database (Denmark)

    Fisher, Jack E.; Andersen, Zorana J.; Loft, Steffen

    2017-01-01

    The United Nations’ Sustainable Development Goals mark aunique window of opportunity for both human and planetaryhealth. With rising life expectancy and rapidly expanding urbanpopulations exposed to pollution and sedentary lifestyles, thereis a greater focus on reducing the gap between life...... expectancyand number of healthy years lived, whilst limiting anthropogenicactivities contributing to pollution and climate change. Thus,urban development and policies, which can create win–winsituations for our planet and human health, falls into the realmand expertise of public health. However, some...

  12. Geothermal energy program summary

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The Geothermal Technology Division (GTD) of the US Department of Energy (DOE) is charged with the lead federal role in the research and development (R D) of technologies that will assist industry in economically exploiting the nation's vast geothermal resources. The GTD R D Program represents a comprehensive, balanced approach to establishing all forms of geothermal energy as significant contributors to the nation's energy supply. It is structured both to maintain momentum in the growth of the existing hydrothermal industry and to develop long-term options offering the greatest promise for practical applications. This volume, Volume 2, contains a detailed compilation of each GTD-funded R D activity performed by national laboratories or under contract to industrial, academic, and nonprofit research institutions.

  13. Geothermally Coupled Well-Based Compressed Air Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Casie L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bearden, Mark D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Horner, Jacob A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cabe, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Appriou, Delphine [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McGrail, B. Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-20

    Previous work by McGrail et al. (2013, 2015) has evaluated the possibility of pairing compressed air energy storage with geothermal resources in lieu of a fossil-fired power generation component, and suggests that such applications may be cost competitive where geology is favorable to siting both the geothermal and CAES components of such a system. Those studies also note that the collocation of subsurface resources that meet both sets of requirements are difficult to find in areas that also offer infrastructure and near- to mid-term market demand for energy storage. This study examines a novel application for the compressed air storage portion of the project by evaluating the potential to store compressed air in disused wells by amending well casings to serve as subsurface pressure vessels. Because the wells themselves would function in lieu of a geologic storage reservoir for the CAES element of the project, siting could focus on locations with suitable geothermal resources, as long as there was also existing wellfield infrastructure that could be repurposed for air storage. Existing wellfields abound in the United States, and with current low energy prices, many recently productive fields are now shut in. Should energy prices remain stagnant, these idle fields will be prime candidates for decommissioning unless they can be transitioned to other uses, such as redevelopment for energy storage. In addition to the nation’s ubiquitous oil and gas fields, geothermal fields, because of their phased production lifetimes, also may offer many abandoned wellbores that could be used for other purposes, often near currently productive geothermal resources. These existing fields offer an opportunity to decrease exploration and development uncertainty by leveraging data developed during prior field characterization, drilling, and production. They may also offer lower-cost deployment options for hybrid geothermal systems via redevelopment of existing well-field infrastructure

  14. Geothermally Coupled Well-Based Compressed Air Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, C L [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bearden, Mark D [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Horner, Jacob A [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Appriou, Delphine [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McGrail, B Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Previous work by McGrail et al. (2013, 2015) has evaluated the possibility of pairing compressed air energy storage with geothermal resources in lieu of a fossil-fired power generation component, and suggests that such applications may be cost competitive where geology is favorable to siting both the geothermal and CAES components of such a system. Those studies also note that the collocation of subsurface resources that meet both sets of requirements are difficult to find in areas that also offer infrastructure and near- to mid-term market demand for energy storage. This study examines a novel application for the compressed air storage portion of the project by evaluating the potential to store compressed air in disused wells by amending well casings to serve as subsurface pressure vessels. Because the wells themselves would function in lieu of a geologic storage reservoir for the CAES element of the project, siting could focus on locations with suitable geothermal resources, as long as there was also existing wellfield infrastructure that could be repurposed for air storage. Existing wellfields abound in the United States, and with current low energy prices, many recently productive fields are now shut in. Should energy prices remain stagnant, these idle fields will be prime candidates for decommissioning unless they can be transitioned to other uses, such as redevelopment for energy storage. In addition to the nation’s ubiquitous oil and gas fields, geothermal fields, because of their phased production lifetimes, also may offer many abandoned wellbores that could be used for other purposes, often near currently productive geothermal resources. These existing fields offer an opportunity to decrease exploration and development uncertainty by leveraging data developed during prior field characterization, drilling, and production. They may also offer lower-cost deployment options for hybrid geothermal systems via redevelopment of existing well-field infrastructure

  15. World Geothermal Congress WGC-2015

    Science.gov (United States)

    Tomarov, G. V.; Shipkov, A. A.

    2016-08-01

    This article discusses materials and results of the World Geothermal Congress that was held in Melbourne (Australia) from April 19 to April 25, 2015. Information on the extent and technological features of utilization of geothermal resources for heat supply and power production, as well as in other economic areas, is given. A stable growth in the capacity and number of geothermal power systems that is determined by ecological cleanliness, economic efficiency, and the highest (among renewable energy sources) indicators of installed capacity utilization is shown. It was noted that combined schemes of geothermal power plants (GPPs), such as turbine units of different type (binary units, units with one or two separation pressures, etc.), have become more frequently used to increase the efficiency of utilization of geothermal heat carrier. Actual data determining room heating systems with the total worldwide capacity of nearly 50000 MW thermal (MWt) as the most currently significant segment of consumption of geothermal waters are given. In addition, geothermal resources are also utilized in soil pumps, balneological and sports basins, greenhouse complexes, and other manufactures. It was noted that geological studies were carried out in more than 40 countries, with the development of methods of simulation of tanks for the existing and new geothermal fields. Trends of development and the role of geothermal power engineering in the energy supply of many countries are shown. It was shown that prospects for the development of geothermal power generation are significantly associated with utilization of low-temperature geothermal sources in binary power generating units, as well as with the increase in installed capacity of operating geothermal power plants (GPPs) without drilling additional wells, i.e., by using waste geothermal heat carrier in binary-cycle or combined-cycle power plants. The article provides data on a pilot binary power unit at Pauzhetka GPP and on a

  16. 2013 Geothermal Technologies Office Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-02-01

    For the Geothermal Technologies Office (GTO), 2013 was a year of major achievements and repositioning to introduce major initiatives. Read all about our progress and successes this year, and as we look ahead, our new opportunities and initiatives.

  17. Development of Metric for Measuring the Impact of RD&D Funding on GTO's Geothermal Exploration Goals (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Jenne, S.; Young, K. R.; Thorsteinsson, H.

    2013-04-01

    The Department of Energy's Geothermal Technologies Office (GTO) provides RD&D funding for geothermal exploration technologies with the goal of lowering the risks and costs of geothermal development and exploration. In 2012, NREL was tasked with developing a metric to measure the impacts of this RD&D funding on the cost and time required for exploration activities. The development of this metric included collecting cost and time data for exploration techniques, creating a baseline suite of exploration techniques to which future exploration and cost and time improvements could be compared, and developing an online tool for graphically showing potential project impacts (all available at Geothermal">http://en.openei.org/wiki/Gateway:Geothermal). The conference paper describes the methodology used to define the baseline exploration suite of techniques (baseline), as well as the approach that was used to create the cost and time data set that populates the baseline. The resulting product, an online tool for measuring impact, and the aggregated cost and time data are available on the Open EI website for public access (http://en.openei.org).

  18. Job enrichment: creating meaningful career development opportunities for nurses.

    Science.gov (United States)

    Duffield, Christine; Baldwin, Richard; Roche, Michael; Wise, Sarah

    2014-09-01

    This paper presents an evaluation of a career development policy in South Australia which increased the number of senior staff nurse positions and provided senior registered nurses with time away from clinical duties to undertake agreed projects. We use Kanter's model of structural power and commitment theory to understand the dimensions of this policy. Development strategies for experienced staff who wish to remain at the bedside are needed, especially in smaller health services with limited opportunities for horizontal or vertical mobility. Face-to-face semistructured interviews were conducted with 54 senior staff nurses who participated in the career structure arrangements. The policy enhanced the structure of opportunity in three ways: by increasing the number of senior staff nurse positions, the ladder steps were improved; undertaking strategic projects developed new skills; and the job enrichment approach facilitated time out from the immediate pressures of ward work and challenged nurses in a different way. Through job enrichment, South Australia has found a novel way of providing meaningful career development opportunities for experienced nurses. Methods of job enrichment need to be considered as part of career development policy, especially where movement between clinical facilities is limited and staff wish to remain at the bedside. © 2013 John Wiley & Sons Ltd.

  19. A Proposal for Research and Development of an Explosive Drilling Technique for Geothermal Wells

    Energy Technology Data Exchange (ETDEWEB)

    None

    1975-10-01

    In order to make large scale use of the geothermal energy available it will be necessary to drill many thousands of holes deep into the earth. The objective of the proposed research is to greatly decrease drilling time and cost. Studies made of a new explosive drilling technique indicate that savings in time of from 70 to 80 percent. The research plan is to utilize explosive in the form of multiple-faced shaped charge capsules. [DJE-2005

  20. Geothermal progress monitor report No. 6

    Energy Technology Data Exchange (ETDEWEB)

    1982-06-01

    Geothermal Progress Monitor Report No. 6 presents a state-by-state summary of the status of geothermal leasing, exploration, and development in major physiographic regions where geothermal resource potential has been identified. Recent state-specific activities are reported at the end of each state status report, while recent activities of a more general nature are summarized briefly in Part II of the report. A list of recent publications of potential interest to the geothermal community and a directory of contributors to the geothermal progress monitoring system are also included.

  1. Report on the geothermal development promotion survey. No.C-2. Wasabizawa area; Chinetsu kaihatsu sokushin chosa hokokusho. No.C-2 Wasabizawa chiiki

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper summed up the results of the survey of the geothermal development promotion survey - Wasabizawa area which was carried out in Yuzawa City and Ogachi Town, Akita Prefecture, from FY 1993 to FY 1996. In the survey, the following were conducted: surface survey such as geological alteration zone survey, fluid geochemical survey, gravity survey and electromagnetic exploration, temperature log by drilling 9 exploration wells, short-term/long-term jetting test, etc. Further, using the data obtained from these, analysis was made of geology/reservoir structure, thermal structure, geothermal water/hydraulic structure, geothermal system models, etc. As a result, a high-temperature (about 300 degrees C) zone promising as the geothermal development area was picked out, and the existence was confirmed of a dominant geothermal reservoir around the fault. In the jetting test, a total steam amount of 111.6 t/h was confirmed, and from the reservoir simulation, the result was obtained that there was a high possibility of 30-year power generation of 30MW/y. As a result of studying 'a power generation system by small-scale unit serial development' considering regional characteristics in the Wasabizawa area, the power generation cost (sending end, 15-year average) was estimated at approximately 9-10 yen/kWh. (NEDO)

  2. INTEGRATED EXPLORATION OF GEOTHERMAL RESOURCES

    Directory of Open Access Journals (Sweden)

    A. B. Alkhasov

    2016-01-01

    Full Text Available The aim. The aim is to develop the energy efficient technologies to explore hydro geothermal resources of different energy potential.Methods. Evaluation of the effectiveness of the proposed technologies has been carried out with the use of physical and mathematical, thermodynamic and optimization methods of calculation and the physical and chemical experimental research.Results. We propose the technology of integrated exploration of low-grade geothermal resources with the application of heat and water resource potential on various purposes. We also argue for the possibility of effective exploration of geothermal resources by building a binary geothermal power plant using idle oil and gas wells. We prove the prospect of geothermal steam and gas technologies enabling highly efficient use of thermal water of low energy potential (80 - 100 ° C degrees to generate electricity; the prospects of complex processing of high-temperature geothermal brine of Tarumovsky field. Thermal energy is utilized in a binary geothermal power plant in the supercritical Rankine cycle operating with a low-boiling agent. The low temperature spent brine from the geothermal power plant with is supplied to the chemical plant, where the main chemical components are extracted - lithium carbonate, magnesium burning, calcium carbonate and sodium chloride. Next, the waste water is used for various water management objectives. Electricity generated in the binary geothermal power plant is used for the extraction of chemical components.Conclusions. Implementation of the proposed technologies will facilitate the most efficient development of hydro geothermal resources of the North Caucasus region. Integrated exploration of the Tarumovsky field resources will fully meet Russian demand for lithium carbonate and sodium chloride.

  3. Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Hardage, Bob A. [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; DeAngelo, Michael V. [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Ermolaeva, Elena [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Hardage, Bob A. [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Remington, Randy [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Sava, Diana [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Wagner, Donald [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Wei, Shuijion [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology

    2013-02-01

    The objective of our research was to develop and demonstrate seismic data-acquisition and data-processing technologies that allow geothermal prospects below high-velocity rock outcrops to be evaluated. To do this, we acquired a 3-component seismic test line across an area of exposed high-velocity rocks in Brewster County, Texas, where there is high heat flow and surface conditions mimic those found at numerous geothermal prospects. Seismic contractors have not succeeded in creating good-quality seismic data in this area for companies who have acquired data for oil and gas exploitation purposes. Our test profile traversed an area where high-velocity rocks and low-velocity sediment were exposed on the surface in alternating patterns that repeated along the test line. We verified that these surface conditions cause non-ending reverberations of Love waves, Rayleigh waves, and shallow critical refractions to travel across the earth surface between the boundaries of the fast-velocity and slow-velocity material exposed on the surface. These reverberating surface waves form the high level of noise in this area that does not allow reflections from deep interfaces to be seen and utilized. Our data-acquisition method of deploying a box array of closely spaced geophones allowed us to recognize and evaluate these surface-wave noise modes regardless of the azimuth direction to the surface anomaly that backscattered the waves and caused them to return to the test-line profile. With this knowledge of the surface-wave noise, we were able to process these test-line data to create P-P and SH-SH images that were superior to those produced by a skilled seismic data-processing contractor. Compared to the P-P data acquired along the test line, the SH-SH data provided a better detection of faults and could be used to trace these faults upward to the boundaries of exposed surface rocks. We expanded our comparison of the relative value of S-wave and P-wave seismic data for geothermal

  4. A Resource Assessment Of Geothermal Energy Resources For Converting Deep Gas Wells In Carbonate Strata Into Geothermal Extraction Wells: A Permian Basin Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Erdlac, Richard J., Jr.

    2006-10-12

    Previously conducted preliminary investigations within the deep Delaware and Val Verde sub-basins of the Permian Basin complex documented bottom hole temperatures from oil and gas wells that reach the 120-180C temperature range, and occasionally beyond. With large abundances of subsurface brine water, and known porosity and permeability, the deep carbonate strata of the region possess a good potential for future geothermal power development. This work was designed as a 3-year project to investigate a new, undeveloped geographic region for establishing geothermal energy production focused on electric power generation. Identifying optimum geologic and geographic sites for converting depleted deep gas wells and fields within a carbonate environment into geothermal energy extraction wells was part of the project goals. The importance of this work was to affect the three factors limiting the expansion of geothermal development: distribution, field size and accompanying resource availability, and cost. Historically, power production from geothermal energy has been relegated to shallow heat plumes near active volcanic or geyser activity, or in areas where volcanic rocks still retain heat from their formation. Thus geothermal development is spatially variable and site specific. Additionally, existing geothermal fields are only a few 10’s of square km in size, controlled by the extent of the heat plume and the availability of water for heat movement. This plume radiates heat both vertically as well as laterally into the enclosing country rock. Heat withdrawal at too rapid a rate eventually results in a decrease in electrical power generation as the thermal energy is “mined”. The depletion rate of subsurface heat directly controls the lifetime of geothermal energy production. Finally, the cost of developing deep (greater than 4 km) reservoirs of geothermal energy is perceived as being too costly to justify corporate investment. Thus further development opportunities

  5. "Assistance to States on Geothermal Energy"

    Energy Technology Data Exchange (ETDEWEB)

    Linda Sikkema; Jennifer DeCesaro

    2006-07-10

    This final report summarizes work carried out under agreement with the U.S. Department of Energy, related to geothermal energy policy issues. This project has involved a combination of outreach and publications on geothermal energy—Contract Number DE-FG03-01SF22367—with a specific focus on educating state-level policymakers. Education of state policymakers is vitally important because state policy (in the form of incentives or regulation) is a crucial part of the success of geothermal energy. State policymakers wield a significant influence over all of these policies. They are also in need of high quality, non-biased educational resources which this project provided. This project provided outreach to legislatures, in the form of responses to information requests on geothermal energy and publications. The publications addressed: geothermal leasing, geothermal policy, constitutional and statutory authority for the development of geothermal district energy systems, and state regulation of geothermal district energy systems. These publications were distributed to legislative energy committee members, and chairs, legislative staff, legislative libraries, and other related state officials. The effect of this effort has been to provide an extensive resource of information about geothermal energy for state policymakers in a form that is useful to them. This non-partisan information has been used as state policymakers attempt to develop their own policy proposals related to geothermal energy in the states. Coordination with the National Geothermal Collaborative: NCSL worked and coordinated with the National Geothermal Collaborative (NGC) to ensure that state legislatures were represented in all aspects of the NGC's efforts. NCSL participated in NGC steering committee conference calls, attended and participated in NGC business meetings and reviewed publications for the NGC. Additionally, NCSL and WSUEP staff drafted a series of eight issue briefs published by the

  6. Geothermal projects funded under the NER 300 programme - current state of development and knowledge gained

    Science.gov (United States)

    Shortall, Ruth; Uihlein, Andreas

    2017-04-01

    Introduction The NER 300 programme, managed by the European Commission is one of the largest funding programmes for innovative low-carbon energy demonstration projects. NER 300 is so called because it is funded from the sale of 300 million emission allowances from the new entrants' reserve (NER) set up for the third phase of the EU emissions trading system (ETS). The programme aims to successfully demonstrate environmentally safe carbon capture and storage (CCS) and innovative renewable energy (RES) technologies on a commercial scale with a view to scaling up production of low-carbon technologies in the EU. Consequently, it supports a wide range of CCS and RES technologies (bioenergy, concentrated solar power, photovoltaics, geothermal, wind, ocean, hydropower, and smart grids). Funded projects and the role of geothermal projects for the programme In total, about EUR 2.1 billion have been awarded through the programme's 2 calls for proposals (the first awarded in December 2012, the second in July 2014). The programme has awarded around EUR 70 million funding to 3 geothermal projects in Hungary, Croatia and France. The Croatian geothermal project will enter into operation during 2017 the Hungarian in 2018, and the French in 2020. Knowledge Sharing Knowledge sharing requirements are built into the legal basis of the programme as a critical tool to lower risks in bridging the transition to large-scale production of innovative renewable energy and CCS deployment. Projects have to submit annually to the European Commission relevant knowledge gained during that year in the implementation of their project. The relevant knowledge is aggregated and disseminated by the European Commission to industry, research, government, NGO and other interest groups and associations in order to provide a better understanding of the practical challenges that arise in the important step of scaling up technologies and operating them at commercial scale. The knowledge sharing of the NER 300

  7. Opportunities & Challenges in Starting Software Company in Developing Countries

    OpenAIRE

    Sreeramana Aithal; Padmanabha Shenoy; Priyanka Neelam

    2015-01-01

    Starting an own software company is the dream of many entrepreneurs and information technology professionals due to high anticipated profit and low investment requirements. Due to increased new entrants and enhanced competition between many players, sustaining in software company business is more challenging than ever before. In this paper, we have discussed opportunities and challenges in starting a new software company in developing countries, and strategies to be adopted for...

  8. OPPORTUNITIES FOR DEVELOPMENT OF EFFECTIVE MANAGEMENT IN SOCIAL PROGRAMMING

    Directory of Open Access Journals (Sweden)

    Evgeniy Stoyanov

    2015-09-01

    Full Text Available The report presents a conceptually committed to developing proposal based on a popular and successful management model to improve the process of social development. The author's point of view is an attempt to consolidate the various sides of established concepts, and the model is just an appropriate for the proposal tool. The purpose of the study is to examine a rational idea creating an opportunity for effective management in the social sphere. The tasks as they are set for analysis and solution in the development of content are associated with finding enough common grounds between theory and practice in order the shared objective's idea to become a working model.

  9. Financing Opportunities for Renewable Energy Development in Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Ardani, K.; Hillman, D.; Busche, S.

    2013-04-01

    This technical report provides an overview of existing and potential financing structures for renewable energy project development in Alaska with a focus on four primary sources of project funding: government financed or supported (the most commonly used structure in Alaska today), developer equity capital, commercial debt, and third-party tax-equity investment. While privately funded options currently have limited application in Alaska, their implementation is theoretically possible based on successful execution in similar circumstances elsewhere. This report concludes that while tax status is a key consideration in determining appropriate financing structure, there are opportunities for both taxable and tax-exempt entities to participate in renewable energy project development.

  10. GEOTHERMAL ENERGY DEVELOPMENT STRATEGY IN REPUBLIC OF CROATIA DUE TO PROMOTION OF RENEWABLE ENERGY IN EUROPEAN UNION

    Directory of Open Access Journals (Sweden)

    Miroslav Golub

    2007-12-01

    Full Text Available According to European Strategy for sustainable, competitive and secure energy, which guidelines are described in two documents: ‘’Green Paper: a European Strategy for Sustainable, Competitive and Secure Energy’’ and ‘’White Paper: Energy for the Future: Renewable Sources of Energy’’, it is predicted that share of renewable energy resources in total energy balance will raise from present 6% up to 15% until 2015. Croatia, as candidate country for EU admittance, with growing dependency upon imported energy because of continuous depletion of own energy resources, prior oil and gas, needs to follow EU strategic aims to achieve diversification of energy sources and implement and promote renewable energy resources. This paper presents strategy of geothermal resources development in Republic of Croatia for the period of 2007-2030 in cascade and cogeneration principle of energy utilization. These projections of geothermal energy development are part of comprehensive Strategy of Mineral Resources Development which is made by Faculty of Mining, Geology and Petroleum Engineering for Ministry of Economy, Labour and Entrepreneurship.

  11. Industry participation in DOE-sponsored geopressured geothermal resource development. Final report, 1 September 1977-30 April 1979

    Energy Technology Data Exchange (ETDEWEB)

    Coffer, H.F.

    1979-01-01

    A series of DOE/Industry forums were carried out to keep industry advised of the DOE program to develop the geopressured geothermal resources of the Gulf Coast. A total of eighteen meetings were held with registered attendance of 621 representing a good cross section of industry, state, and federal agencies. An Overview Group and four working subgroups - site selection, drilling and testing, environmental/laboratory research, and legal institutional were established to subdivide the DOE programs into areas of interest and expertise. During the contract period three overview, four site selection, three drilling and testing, five environmental/laboratory research and three legal/institutional meetings have been conducted. Interest in and attendance at the meetings continue to grow reflecting increased industry contact with the DOE Geopressured Geothermal Resource Development Program. Two other studies were carried out for DOE under this contract; a Salt Water Disposal Study and an Industry Survey to evaluate the DOE Resource Development Program. The Salt Water Disposal Study reviewed subsurface salt water disposal experience on the Texas and Louisiana Gulf Coast. This preliminary study concluded that subsurface brine disposal should be possible in the areas of interest with adequate evaluation of the geology of each area and a well designed and constructed surface and subsurface facility. The industry survey indicated general satisfaction with the technical design of the resource evaluation program but felt the program should be moving faster.

  12. Report on the geothermal development promotion survey. No.34. Kaminoyu/Santai area; Chinetsu kaihatsu sokushin chosa hokokusho. No. 34 Kaminoyu Santai chiiki

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    The paper summed up the results of the geothermal development promotion survey 'Kaminoyu/Santai area' which was carried out at Yakumo town, Yamakoshi county, and Mori town, Kayabe county, Hokkaido, from FY 1990 to FY 1992. In the survey, the following were conducted for the comprehensive analysis: surface survey such as geology/alteration zone survey, geochemical survey and gravity exploration, test to induce jetting of geothermal fluids by drilling 7 boreholes, temperature/pressure log, etc. The geological structure of this area is featured by the uplift structure/caldera structure and the anticline structure. In the wide-area geothermal system, it is thought that the low-temperature seawater permeates underground by mixture with meteoric water, is heated, and forms the deep geothermal water. It is thought that the hot spring water in this area is stored in the hot spring reservoir by mixture with the surface water, and it is gushing. In the area, the region which is regarded as favorable as passage/storage place of geothermal fluid is a region of 1.5km width extending linearly in the E-W direction from the Nigorikawa basin to Kaminoyu. Further, it is thought that fractures were unfavorably developed in the Santai/Kaminoyu area. (NEDO)

  13. Utilization of geothermal energy in the mining and processing of tungsten ore. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, M.V.; Lacy, S.B.; Lowe, G.D.; Nussbaum, A.M.; Walter, K.M.; Willens, C.A.

    1981-01-01

    The engineering, economic, and environmental feasibility of the use of low and moderate temperature geothermal heat in the mining and processing of tungsten ore is explored. The following are covered: general engineering evaluation, design of a geothermal energy system, economics, the geothermal resource, the institutional barriers assessment, environmental factors, an alternate geothermal energy source, and alternates to geothermal development. (MHR)

  14. Geothermal Information Dissemination and Outreach

    Energy Technology Data Exchange (ETDEWEB)

    Clutter, Ted J. [Geothermal Resources Council (United States)

    2005-02-18

    Project Purpose. To enhance technological and topical information transfer in support of industry and government efforts to increase geothermal energy use in the United States (power production, direct use, and geothermal groundsource heat pumps). Project Work. GRC 2003 Annual Meeting. The GRC convened the meeting on Oct. 12-15, 2003, at Morelia's Centro de Convenciones y ExpoCentro in Mexico under the theme, International Collaboration for Geothermal Energy in the Americas. The event was also sponsored by the Comision Federal de Electricidad. ~600 participants from more than 20 countries attended the event. The GRC convened a Development of Geothermal Projects Workshop and Geothermal Exploration Techniques Workshop. GRC Field Trips included Los Azufres and Paricutin Volcano on Oct. 11. The Geothermal Energy Association (Washington, DC) staged its Geothermal Energy Trade Show. The Annual Meeting Opening Session was convened on Oct. 13, and included the governor of Michoacan, the Mexico Assistant Secretary of Energy, CFE Geothermal Division Director, DOE Geothermal Program Manager, and private sector representatives. The 2003 Annual Meeting attracted 160 papers for oral and poster presentations. GRC 2004. Under the theme, Geothermal - The Reliable Renewable, the GRC 2004 Annual Meeting convened on Aug. 29-Sept. 1, 2004, at the Hyatt Grand Champions Resort at Indian Wells, CA. Estimated total attendance (including Trade Show personnel, guests and accompanying persons) was ~700. The event included a workshop, Geothermal Production Well Pump Installation, Operation and Maintenance. Field trips went to Coso/Mammoth and Imperial Valley/Salton Sea geothermal fields. The event Opening Session featured speakers from the U.S. Department of Energy, U.S. Department of the Interior, and the private sector. The Geothermal Energy Association staged its Geothermal Energy Trade Show. The Geothermal Education Office staged its Geothermal Energy Workshop. Several local radio and

  15. National Geothermal Data System (NGDS) Geothermal Data: Community Requirements and Information Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Arlene [United States Department of Energy; Blackwell, David [Southern Methodist University; Chickering, Cathy [Southern Methodist University; Boyd, Toni [Oregon Institute of Technology; Horne, Roland [Stanford University; MacKenzie, Matthew [Uberity Technology Corporation; Moore, Joseph [University of Utah; Nickull, Duane [Uberity Technology Corporation; Richard, Stephen [Arizona Geological survey; Shevenell, Lisa A. [University of Nevada, Reno

    2013-10-01

    To satisfy the critical need for geothermal data to advance geothermal energy as a viable renewable energy contender, the U.S. Department of Energy is investing in the development of the National Geothermal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to supply cutting edge geo-informatics. NGDS geothermal data acquisition, delivery, and methodology are discussed. In particular, this paper addresses the various types of data required to effectively assess geothermal energy potential and why simple links to existing data are insufficient. To create a platform for ready access by all geothermal stakeholders, the NGDS includes a work plan that addresses data assets and resources of interest to users, a survey of data providers, data content models, and how data will be exchanged and promoted, as well as lessons learned within the geothermal community.

  16. The Distributed Geothermal Market Demand Model (dGeo): Documentation

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, Kevin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mooney, Meghan E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sigrin, Benjamin O [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gleason, Michael [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Liu, Xiaobing [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-11-06

    The National Renewable Energy Laboratory (NREL) developed the Distributed Geothermal Market Demand Model (dGeo) as a tool to explore the potential role of geothermal distributed energy resources (DERs) in meeting thermal energy demands in the United States. The dGeo model simulates the potential for deployment of geothermal DERs in the residential and commercial sectors of the continental United States for two specific technologies: ground-source heat pumps (GHP) and geothermal direct use (DU) for district heating. To quantify the opportunity space for these technologies, dGeo leverages a highly resolved geospatial database and robust bottom-up, agent-based modeling framework. This design is consistent with others in the family of Distributed Generation Market Demand models (dGen; Sigrin et al. 2016), including the Distributed Solar Market Demand (dSolar) and Distributed Wind Market Demand (dWind) models. dGeo is intended to serve as a long-term scenario-modeling tool. It has the capability to simulate the technical potential, economic potential, market potential, and technology deployment of GHP and DU through the year 2050 under a variety of user-defined input scenarios. Through these capabilities, dGeo can provide substantial analytical value to various stakeholders interested in exploring the effects of various techno-economic, macroeconomic, financial, and policy factors related to the opportunity for GHP and DU in the United States. This report documents the dGeo modeling design, methodology, assumptions, and capabilities.

  17. DE-FOA-EE0005502 Advanced Percussive Drilling Technology for Geothermal Exploration and Development Phase II Report.

    Energy Technology Data Exchange (ETDEWEB)

    Su, Jiann-Cherng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Raymond, David W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Prasad, Somuri V. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wolfer, Dale R. [Atlas-Copco Secoroc, LLC, Fagersta (Sweden)

    2017-05-01

    Percussive hammers are a promising advance in drilling technology for geothermal since they rely upon rock reduction mechanisms that are well-suited for use in the hard, brittle rock characteristic of geothermal formations. The project research approach and work plan includes a critical path to development of a high-temperature (HT) percussive hammer using a two- phase approach. The work completed in Phase I of the project demonstrated the viability of percussive hammers and that solutions to technical challenges in design, material technology, and performance are likely to be resolved. Work completed in Phase II focused on testing the findings from Phase I and evaluating performance of the materials and designs at high- operating temperatures. A high-operating temperature (HOT) drilling facility was designed, built, and used to test the performance of the DTH under extreme conditions. Results from the testing indicate that a high-temperature capable hammer can be developed and is a viable alternative for user in the driller's toolbox.

  18. Geothermal Greenhouse Information Package

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, K. [P.E.; Boyd, T. [ed.

    1997-01-01

    This package of information is intended to provide a foundation of background information for developers of geothermal greenhouses. The material is divided into seven sections covering such issues as crop culture and prices, operating costs for greenhouses, heating system design, vendors and a list of other sources of information.

  19. Urban Big Data and Sustainable Development Goals: Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Ali Kharrazi

    2016-12-01

    Full Text Available Cities are perhaps one of the most challenging and yet enabling arenas for sustainable development goals. The Sustainable Development Goals (SDGs emphasize the need to monitor each goal through objective targets and indicators based on common denominators in the ability of countries to collect and maintain relevant standardized data. While this approach is aimed at harmonizing the SDGs at the national level, it presents unique challenges and opportunities for the development of innovative urban-level metrics through big data innovations. In this article, we make the case for advancing more innovative targets and indicators relevant to the SDGs through the emergence of urban big data. We believe that urban policy-makers are faced with unique opportunities to develop, experiment, and advance big data practices relevant to sustainable development. This can be achieved by situating the application of big data innovations through developing mayoral institutions for the governance of urban big data, advancing the culture and common skill sets for applying urban big data, and investing in specialized research and education programs.

  20. Deep geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The hot-dry-rocks located at 3-4 km of depth correspond to low permeable rocks carrying a large amount of heat. The extraction of this heat usually requires artificial hydraulic fracturing of the rock to increase its permeability before water injection. Hot-dry-rocks geothermics or deep geothermics is not today a commercial channel but only a scientific and technological research field. The Soultz-sous-Forets site (Northern Alsace, France) is characterized by a 6 degrees per meter geothermal gradient and is used as a natural laboratory for deep geothermal and geological studies in the framework of a European research program. Two boreholes have been drilled up to 3600 m of depth in the highly-fractured granite massif beneath the site. The aim is to create a deep heat exchanger using only the natural fracturing for water transfer. A consortium of german, french and italian industrial companies (Pfalzwerke, Badenwerk, EdF and Enel) has been created for a more active participation to the pilot phase. (J.S.). 1 fig., 2 photos

  1. Proceedings of NEDO International Geothermal Symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-11

    This is a proceedings of the NEDO International Geothermal Symposium held in Sendai in 1997. The worldwide geothermal energy power generation capacity exceeds 7000 MW. Geothermal energy is widely used also for heating, snow melting, greenhouse cultivation as well as electric power generation. Geothermal energy generates far less CO2 causing the global warming than fossil fuels. The geothermal energy is clean and renewable. Considering the environmental issue and energy supply/demand of the world, we have to exert further efforts for the geothermal development. In this conference, discussions were made on each country`s experiences of the geothermal development, and future prediction and strategies for geothermal utilization in the Asia/Pacific region, in particular. Further, in the technical session, conducted were the IEA study and technical presentation/discussion for technical cooperation. The proceedings includes research reports of more than 30, which are clarified into three fields: impacts of the geothermal development on the environment, technical development of the hot dry rock power generation system, and development of technology for collecting deep-seated geothermal resource

  2. Regional operations research program for development of geothermal energy in the southwest United States. Final technical report, June 1977-August 1978

    Energy Technology Data Exchange (ETDEWEB)

    Marlin, J.M.; Christ, R.; McDevitt, P.; Nowotny, K.; O' Dea, P.; Rao, C.R.; Swanberg, C.

    1979-01-01

    The efforts by the Core and State Teams in data acquisition, electric and non-electric economic studies, development of computer support functions and operations, and preparation of geothermal development scenarios are described. Team reports for the states of Arizona, Colorado, Nevada, New Mexico, and Utah are included in the appendices along with a summary of the state scenarios. (MHR)

  3. Regional operation research program for development of geothermal energy in the southwest United States. Final technical report, June 1977--August 1978

    Energy Technology Data Exchange (ETDEWEB)

    Marlin, J.M; Christ, R.; McDevitt, P.; Nowotny, K.; O' Dea, P.; Rao, C.R.; Swanberg, C.

    1979-01-01

    This report describes the work accomplished from June 1977 to August 1978. The efforts by the Core and State Teams in data acquisition, electric and non-electric economic studies, development of computer support functions and operations, and preparation of geothermal development scenarios are described.

  4. Geothermal Resource Area 5, Churchill, Douglas, Lyon and Storey Counties area development plan

    Energy Technology Data Exchange (ETDEWEB)

    Pugsley, M.

    1981-01-01

    Within this four county area there are many known geothermal resources ranging in temperature from 70 to over 350{sup 0}F. Thirteen of these resources are considered major and have been selected for evaluation. Various potential uses of the energy found were determined after evaluating the study area's physical characteristics, land ownership and land use patterns, existing population and projected growth rates, and transportation facilities. These factors were then compared with the site specific resource characteristics. The uses considered were divided into five main categories: electrical generation; space heating; recreation; industrial process heat; and agriculture.

  5. Development of a new family of cemented carbides for geothermal drilling. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rowcliff, D.J.

    1983-10-01

    The contractor fabricated samples of cemented carbides based on tantalum carbide and niobium carbide with cobalt and nickel binders. These materials were evaluated for use as rock-bit inserts in geothermal drilling. Carbon content in the niobium carbide (NbC/sub x/) and the tantalum carbide (TaC/sub x/) was varied (x is 0.83 to 1.0) and the effect of these changes on the carbides' mechanical properties was examined. Hardness, toughness, and abrasive wear resistance of the new materials were measured and compared to properties of tungsten carbide grades used in rock-bit inserts.

  6. FY 2000 report on the results of the data processing in the geothermal development promotion survey. Tertiary. No.B-7 Kuwanosawa area; 2000 nendo chinetsu kaihatsu sokushin chosa data shori hokokusho. No. B-7 Kuwanosawa chiiki (Dai 3 ji)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-01-01

    The comprehensive analysis was conducted of various data obtained in the geothermal development promotion survey conducted in the Kuwanosawa area, Yuzawa city, Akita prefecture, from FY 1998 to FY 2000. The geology of the Kuwanosawa area consists of the Pretertiary system and Quarternary system, through which intrusive rocks are recognized. Basement rocks are composed of the Paleozoic-origin crystalline schist and the Cretaceous-period granites which intruded into the schist. In the Kuwanosawa area, there were recognized no clear geothermal signs such as the discharge of geothermal fluids like hot spring, fumarolic gas, etc., places of high temperature and new geothermal alteration zones. The geothermal water of borehole N11-KN-1 is a low temperature/low CL concentration geothermal water which was stored in basement rocks, which is supposed to be the one conductively heated in the process of the meteoric water penetrating deep-underground. The geothermal system heat source in the Kuwanosawa area and the periphery is regarded as the relic magma which spewed out the volcanic rocks of Mt. Takamatsu-dake in the Quaternary period. However, the geothermal fluid included no components originating in high temperature volcanic emissions, and therefore, it is considered that the geothermal fluid was formed by the meteoric water conductively heated by volcanic heat source. (NEDO)

  7. Green space development in shrinking cities – opportunities and constraints

    Directory of Open Access Journals (Sweden)

    Stefanie Rößler

    2008-01-01

    Full Text Available Green space development means both a strategy and a need to cope with the spatial transformation of cities as a consequence of socio-demographic change. This paper focuses on the opportunities and challenges of planning and implementing green spaces in shrinking cities. Based on a doctoral thesis, empirical results regarding the relevance of green spaces and strategies in the process of urban restructuring will be discussed. Concerned cities develop specific framework concepts to face spatial transformation. It is assumed that in shrinking cities the influence of green spaces and as well as their significance for urban form will change. Results of case studies in shrinking cities of Eastern Germany will be discussed with regard to their strategies and the instruments facing the challenges of green space development. The presented findings might be also relevant for urban development in (partially growing cities, enhancing green space development as a part of sustainable cities.

  8. Low-Temperature Projects of the Department of Energy's Geothermal Technologies Program: Evaluation and Lessons Learned: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Tom; Snyder, Neil; Gosnold, Will

    2016-12-01

    This paper discusses opportunities and challenges related to the technical and economic feasibility of developing power generation from geothermal resources at temperatures of 150 degrees C and lower. Insights from projects funded by the U.S. Department of Energy (DOE), Geothermal Technologies Office inform these discussions and provide the basis for some lessons learned to help guide decisions by DOE and the industry in further developing this resource. The technical basis for low-temperature geothermal energy is well established and the systems can be economic today in certain situations. However, these applications are far from a 'plug and play' product; successful development today requires a good knowledge of geothermal system design and operation.

  9. Low-Temperature Projects of the Department of Energy's Geothermal Technologies Program: Evaluation and Lessons Learned

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Tom; Snyder, Neil; Gosnold, Will

    2016-10-23

    This paper discusses opportunities and challenges related to the technical and economic feasibility of developing power generation from geothermal resources at temperatures of 150 degrees C and lower. Insights from projects funded by the U.S. Department of Energy (DOE), Geothermal Technologies Office inform these discussions and provide the basis for some lessons learned to help guide decisions by DOE and the industry in further developing this resource. The technical basis for low-temperature geothermal energy is well established and the systems can be economic today in certain situations. However, these applications are far from a 'plug and play' product; successful development today requires a good knowledge of geothermal system design and operation.

  10. Geothermal Program Review IV: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    The research and development program of DOE's Geothermal Technology Division is reviewed in separate presentations according to program area. Separate abstracts have been prepared for the individual papers. (ACR)

  11. Digital divide and digital opportunity: Comparison, analysis and strategies for sustainable development in developing nations

    International Nuclear Information System (INIS)

    Bhunia, C.T.; Onime, C.

    2007-07-01

    The world is witnessing a new digital economic order which may be quantified by the diffusion of information technology and globalization process. The current information technology gap (digital divide) between developed countries and developing countries is huge. Improvements in information technology (measured by the digital opportunity index) usually open up an opportunity for national/regional growth and development. There is a need for scientific investigation on the digital divide, digital opportunity index and their consequences. This paper presents a critical analysis of existing digital divide and its trends, it also investigates the relationship between the digital divide and the digital opportunity index. A mathematical model based on analysis of the growing digital divide is presented as a possible tool for combating and eradicate the digital divide gap which is only possible if developing and poor nations take advantage of the digital opportunities that can transform them into global competitive partners in digital knowledge economy. (author)

  12. MeProRisk - a toolbox for evaluating risks in exploration, development, and operation of geothermal reservoirs

    Science.gov (United States)

    Clauser, C.

    2009-04-01

    When developing geothermal resources, the risk of failure is still high when compared to hydrocarbon exploration. The MeProRisk projects aims at the improvement of strategies in all phases of the reservoir life cycle. It is a joint enterprise of five university institutes at RWTH Aachen University, Free University Berlin, and Kiel University. Two partners, namely Geophysica Beratunggesellschaft mbH, (Aachen), and RWE Dea AG (Hamburg) present the industrial side. It is funded by the German Ministry of Education and Science (BMBF). The key idea followed in this project is that the development of the understanding of a given reservoir is an iterative process. Starting from geological base knowledge and geophysical exploration one or more conceptual models will emerge, which will be incorporated in first numerical models. The use of inverse techniques in a broad sense will not only lead to an optimal model, but will produce uncertainty and resolution estimates for this model. This information may be used for further setup of optimal experiments, including the choice of exploration well locations. In later stages of reservoir development, the numerical models will be continuously updated based on the most recent models. Once wells have been drilled, the character of experiments shifts from static methods to dynamic interaction with the reservoir, e.g. by injection experiments and their monitoring. The use of all the methods with one simulation tool poses large challenges. Inverse problems require orders of magnitude larger computer resources, and the development of appropriate theoretical and numerical methods for this is on of the primary aims of this project. Due to the less obvious signatures of geothermally relevant targets, it is also necessary to improve the experimental base for model setup and update by developing new and better methods for some of the key problems in the case of geothermal targets. Among these are the development of methods to estimate

  13. Collaborative Opportunities for Icts Development in a Challenged African Environment

    Directory of Open Access Journals (Sweden)

    Gabriel Kabanda

    2008-10-01

    Full Text Available The emergence and convergence of information and communication technologies (ICTs has remained at the centre of global socio-economic transformations. The required ICT revolutionary technological change or productivity levels in Southern Africa is a function of both skilled labour (high technical competence and capital for investment. Technological progress in Southern Africa can be measured as an index composed of measures of personal computers, Internet hosts, fax machine, mobile phones and television, etc., across the various member countries. The paper presents a synopsis of the ICTs indicators for Southern Africa and the opportunities therein, together with an analysis of technological progress and opportunities for ICTs development in Southern Africa. A regional ICT collaboration strategy is proposed, underpinned by best practice elements. The proposed Regional ICT Collaboration strategy largely depends on human resource development, information sharing platforms, and the degree of development of the ICTs industry and support services in the individual member countries. The design of virtual collaborative systems is a useful paradigm for the development and sustainability of virtual collaboration for Southern African countries, so that higher levels of collaboration may be achieved among geographically dispersed work groups. Knowledge may be shared between people through face-to-face or through technology, either asynchronously or synchronously, commonly known as virtual collaboration.

  14. Developing a framework for assessing the impact of geothermal development phases on ecosystem services

    NARCIS (Netherlands)

    Semedi, Jarot M.; Willemen, L.; Nurlambang, Triarko; Van Der Meer, F.D.; Koestoer, Raldi H.

    2018-01-01

    The 2014 Indonesian National Energy Policy has set a target to provide national primary energy usage reached 2.500 kWh per capita in the year 2025 and reached 7.000 kWh in the year 2050. The National Energy Policy state that the development of energy should consider the balance of energy economic

  15. PROGEOTHERM - National program for the development of geothermal energy in Switzerland - Final report; PROGEOTHERM - Programme national de developpement de la geothermie en Suisse - Rapport final

    Energy Technology Data Exchange (ETDEWEB)

    Vuataz, F.-D.

    2007-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) reviews the current situation with respect to the use of geothermal energy in Switzerland and the problems faced. Action to be taken is examined. The report proposes that specialised further education, including the setting up of a Master of Advanced Studies course at the University of Neuchatel and support for courses at Universities of Applied Sciences. Research and development in the geothermal area and support for pilot and demonstration installations, new machinery and exploration methods are proposed. Also, political, organisational and financial aspects of the support programme are discussed.

  16. Proceedings of the second United Nations symposium on the development and use of geothermal resources held at San Francisco, California, May 20--29, 1975. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    The 299 papers in the Proceedings are presented in three volumes and are divided into twelve sections, each section dealing with a different aspect of geothermal energy. Rapporturs' summaries of the contents of each section are grouped together in Vol. 1 of the Proceedings; a separate abstract was prepared for each summary. Volume 1 also contains ninety-eight papers under the following section headings: present status of resources development; geology, hydrology, and geothermal systems; and geochemical techniques in exploration. Separate abstracts were prepared for ninety-seven papers. One paper was previously abstracted for ERA and appeared as CONF-750525--17. (LBS)

  17. Very low energy geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Very low energy geothermics correspond to temperatures below 30 C and has been developed to cover heating and cooling needs of recent individual houses or tertiary industries using heat pumps and low depth aquifers (<100 m). Geothermal heat pumps industry has made great strides in European Northern countries, China, Japan and the United States of America. Geothermal heat pumps are less energy consuming than air heat pumps and require less cooling fluid and maintenance. The Aquapac procedure has been developed in France in 1983 by the AFME (French Energy Control Agency), EdF and the BRGM (Geologic and Mining Research Office) to encourage the use of geothermal heat pump for domestic and sanitary water heating and to make a survey of low-depth aquifers in the whole french territory. The decay of energy costs that started in 1986 has led to a loss of interest for the Aquapac procedure, even in the tertiary industries for which the air-conditioning demand is growing up. (J.S.). 1 tab

  18. An Analysis of the Geothermal Energy Extraction and Utilization Technology R&D Program

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Van Thanh; Dhillon, Harpal S.

    1979-05-01

    The Division of Geothermal Energy (DGE) in the Department of Energy is currently reviewing its RD&D programs to evaluate their relevance to the national goals for the development of geothermal energy during the next 22 years. This report presents the results of an analysis of the RD&D program for geothermal energy extraction and conversion technology. A review of the state-of-the-art was conducted to identify opportunities for improvement. The current RDBD program was checked against the opportunities for improvement to determine if any potential improvements are being ignored, Finally, a benefit/cost analysis was conducted by estimating the benefits expected to result from successful completion of various projects.

  19. Colorado Geothermal Commercialization Program

    Energy Technology Data Exchange (ETDEWEB)

    Healy, F.C.

    1980-04-01

    Chaffee County, located in central Colorado, has immense potential for geothermal development. This report has been prepared to assist residents and developers in and outside the area to develop the hydrothermal resources of the county. Data has been collected and interpreted from numerous sources in order to introduce a general description of the area, estimate energy requirements, describe the resources and postulate a development plan. Electric power generation and direct heat application potential for the region are described.

  20. Opportunities and challenges in developing gas markets in South America

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, Cristiano Boaventura [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The article has the objective of identifying and analyzing the key market levers and drivers, emerging issues and challenges in developing the gas markets in South America. In section 1, the paper provides an overview of the most relevant indicators in the natural gas markets of the region. Data such as natural gas proven reserves; production; consumption; trade movements (by pipeline and LNG) and main aspects of regulatory framework are shown. In section 2, some of the key challenges and opportunities in developing gas markets in the region are identified, including those relating to market integration, political aspects and the main players' investments. In section 3, possible strategies from governments and enterprises to overcome those challenges, and seize the potential opportunities of the region are examined. In section 4, the conclusions point to the potential of developing the gas markets as a means to diversify the energy sources in the region, fostering a successful process of economic growth and political integration in the area. (author)

  1. Development of transnational corporations in the world: opportunities and threats

    Directory of Open Access Journals (Sweden)

    Alexandra NICULA

    2015-06-01

    Full Text Available Transnational corporations (TNCs are incorporated or unincorporated enterprises comprising parent enterprises and their foreign affiliates. Transnational Corporations exert a great deal of power in the globalized world economy. Many corporations are richer and more powerful than the states that seek to regulate them. Through mergers and acquisitions corporations have been growing very rapidly and some of the largest TNCs now have annual profits exceeding the GDPs of many low and medium income countries. TNCs dominate the global economy and exert their influence over global policymaking. Worldwide companies start the trend in many domains having a big range of competitors. Trade is an important development tool. Trade between developing and industrialized countries has expanded and borrowing from rich countries to the poor areas of this world increased. The links between these differing groups of economies intensified subsequently and made these two groups increasingly dependent from each other. TNCs based their activity around this idea. In this paper, we try to emphasize the role of the TNCs in the worldwide economy, the advantages and disadvantages these corporations bring to the countries they activate in and even to the entire world and what effect they have on globalization. Some opportunities and threats of TNS activity are presented, exemplifying through some well known corporations which succeded in this competitive world. The authors wanted in this way to show the positive and negative aspects of their performance and give the reader the opportunity to develop the own opinion.

  2. Geothermal probabilistic cost study

    Energy Technology Data Exchange (ETDEWEB)

    Orren, L.H.; Ziman, G.M.; Jones, S.C.; Lee, T.K.; Noll, R.; Wilde, L.; Sadanand, V.

    1981-08-01

    A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model is used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents are analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance are examined. (MHR)

  3. Federal Geothermal Research Program Update Fiscal Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    2004-02-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal and Wind Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The following mission and goal statements guide the overall activities of the Office of Geothermal and Wind Technologies. This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 1999. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal and Wind Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy.

  4. Semiannual progress report for the Idaho Geothermal Program, April 1 to September 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Ihrig, R.R. (ed.)

    1981-03-01

    The completion of the 5-MW Pilot Power Plant at the Raft River Geothermal Test Site, modification of the similar, binary cycle Prototype Power Plant, and the water treatment program that studies environmentally safe ways to inhibit corrosion and scaling in geothermal power plants and investigates corrosion resistant materials are summarized. Studies of binary geothermal cycles using mixed hydrocarbon working fluids are described as part of the continuing search for ways to produce low-cost electricity from moderate-temperature geothermal fluids. Progress is reported on studies of direct contact heat exchanger concepts, heat rejection systems, and primary heat exchangers with augmentation. As part of the now-ended series of aquaculture experiments, an unsuccessful attempt to incubate common carp embryos in geothermal waters is reported. An experiment in revegetating disturbed land at Raft River is mentioned and progress on DOE's new User Coupled Confirmation Drilling Program is described. An estimate is presented of the amount of hydrothermal energy that could be produced by the year 2000, with and without Federal assistance, for electric generation and direct applications such as industrial process heat. Progress is reported on the Marketing Assistance Program, through which technical information and assistance is provided potential users and developers of geothermal resources. Also reported is progress in DOE's Program Opportunity Notice (PON) Program demonstration projects and Program Research and Development Announcement (PRDA) Program study projects.

  5. STUDY REGARDING THE ROMANIAN RURAL TOURISM FINANCING AND DEVELOPMENT OPPORTUNITIES

    Directory of Open Access Journals (Sweden)

    Nicolae BALTEŞ

    2009-06-01

    Full Text Available Rural tourism and agricultural tourism are activities, which generate alternative incomes, a fact that offers development possibilities to the rural space, due to the unique landscapes, large semi-natural areas, the inhabitants' born hospitality in the rural surroundings. From this perspective, a modernization, development and innovation process for the Romanian rural tourism is required. All these aspects, however, require financing. Therefore, a pre-accession financing source of the rural tourism was the SAPARD programme, a programme which "offered the opportunity" to many business people to start their business in this field. The paper shows the evolution of the rural boarding houses between 2003-2007, with analyses on the number, type of financing, development region.

  6. Opportunity parameters in the development of Product/Service-Systems

    DEFF Research Database (Denmark)

    Matzen, Detlef; Andreasen, Mogens Myrup

    2006-01-01

    are generally applicable for guiding companies in the formulation of strategies and objectives in the process of shifting from product to product/service- orientation. The presented parameters are mainly extracted from analysis of existing PSS cases from industry and concept work conducted in study projects......In the light of the current focus on innovative business development throughout industry and society, the concept of product/service-systems (PSS) is a promising approach to product development, which may yield product offers that benefit the company, customer and society alike. Only recently...... researchers have made attempts to formulate requirements and procedures for the integration of product and service development [Steinbach 2005]. In the field of environmental studies, the concept of PSS has been investigated for some time, especially for the opportunities of lowering environmental impact...

  7. Development of hot water utilizing power plants in fiscal 1999. Development of technology to collect geothermal resources in great depths (Development of technology to produce geothermal resources in great depths); 1999 nendo nessui riyo hatsuden plant nado kaihatsu seika hokokusho. Shinbu chinetsu shigen saishu gijutsu no kaihatsu / shinbu chinetsu shigen seisan gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    With an objective to develop geothermal resources, research and development has been performed on the production technologies for the deep-seated geothermal resources, such as pressure, temperature, flow speed and density (PTSD) logging technologies. This paper summarizes the achievements in fiscal 1999. In the actual well test on the developed D-probe, it was verified that the probe operates normally under high temperature environment (342 degrees C) which exceeds the measurement limit of conductive cables (315 degrees C). In developing the PTC monitoring technology, the downhole sampler was improved, and a test was performed in the actual hole in the Hijiori area in Yamagata Prefecture. As a result, collection of hot water of about 900 mL has become possible. In developing the high-temperature tracer monitoring technology, simulation was performed keeping in mind charging the tracer into the Hijiori geothermal area, whereas specifications for charging and collecting the tracer were determined. In developing the scale monitoring technology, experiments were carried out on the fluid systems under deep geothermal conditions by using scale forming devices, by which it was indicated that silica is the important scale constituent. (NEDO)

  8. Federal Geothermal Research Program Update - Fiscal Year 2004

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Laney

    2005-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermal electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently possible or

  9. Federal Geothermal Research Program Update Fiscal Year 2004

    Energy Technology Data Exchange (ETDEWEB)

    2005-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermal electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently

  10. The impact of large-scale renewable energy development on the poor: environmental and socio-economic impact of a geothermal power plant on a poor rural community in Kenya

    Energy Technology Data Exchange (ETDEWEB)

    Mariita, N.O. [Kenya Electricity Generating Company Ltd., Naivasha (Kenya)

    2002-09-01

    The article assesses the local environmental and socio-economic impact of geothermal power plant on poor rural community in Kenya. The country's geothermal resources are located in the Rift Valley region - an environmentally and culturally fragile part of the country. Kenya's main geothermal plants are located in the middle of one of Rift Valley's major wildlife parks - a major tourist attraction. Over the last two decades, the surrounding area has also become a major centre for Kenya's flourishing commercial flower farming, which is now partially powered by geothermal energy. This article examines environmental and socio-economic impacts on the nomadic low-income rural Maasai community of the simultaneous development of geothermal energy, flower farming and wildlife/tourism industry. While the near-term environmental impacts have been minimal, the article warns of significant adverse impacts in the future if the competing demands of the fast growing geothermal energy, flower farming as well as wildlife/tourism sector are not adequately addressed. In the short-term, however, the socio-economic impact of geothermal energy development is likely to be the main source of conflict. The article ends by proposing policy and institutional measures that would ensure that the local Maasai community enjoys a wider range of socio-economic benefits as well as mitigate long-term adverse environmental impacts associated with geothermal energy development. (author)

  11. 1978 annual report, INEL geothermal environmental program

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, S.G.; Sullivan, J.F.; Stanley, N.E.

    1979-04-01

    The objective of the Raft River Geothermal Environmental Program, in its fifth year, is to characterize the beneficial and detrimental impacts resulting from the development of moderate-temperature geothermal resources in the valley. This report summarizes the monitoring and research efforts conducted as part of this program in 1978. The results of these monitoring programs will be used to determine the mitigation efforts required to reduce long-term impacts resulting from geothermal development.

  12. Geothermal Permeability Enhancement - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Joe Beall; Mark Walters

    2009-06-30

    The overall objective is to apply known permeability enhancement techniques to reduce the number of wells needed and demonstrate the applicability of the techniques to other undeveloped or under-developed fields. The Enhanced Geothermal System (EGS) concept presented in this project enhances energy extraction from reduced permeability zones in the super-heated, vapor-dominated Aidlin Field of the The Geysers geothermal reservoir. Numerous geothermal reservoirs worldwide, over a wide temperature range, contain zones of low permeability which limit the development potential and the efficient recovery of heat from these reservoirs. Low permeability results from poorly connected fractures or the lack of fractures. The Enhanced Geothermal System concept presented here expands these technologies by applying and evaluating them in a systematic, integrated program.

  13. The Oregon Geothermal Planning Conference

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-02

    Oregon's geothermal resources represent a large portion of the nation's total geothermal potential. The State's resources are substantial in size, widespread in location, and presently in various stages of discovery and utilization. The exploration for, and development of, geothermal is presently dependent upon a mixture of engineering, economic, environmental, and legal factors. In response to the State's significant geothermal energy potential, and the emerging impediments and incentives for its development, the State of Oregon has begun a planning program intended to accelerate the environmentally prudent utilization of geothermal, while conserving the resource's long-term productivity. The program, which is based upon preliminary work performed by the Oregon Institute of Technology's Geo-Heat Center, will be managed by the Oregon Department of Energy, with the assistance of the Departments of Economic Development, Geology and Mineral Industries, and Water Resources. Funding support for the program is being provided by the US Department of Energy. The first six-month phase of the program, beginning in July 1980, will include the following five primary tasks: (1) coordination of state and local agency projects and information, in order to keep geothermal personnel abreast of the rapidly expanding resource literature, resource discoveries, technological advances, and each agency's projects. (2) Analysis of resource commercialization impediments and recommendations of incentives for accelerating resource utilization. (3) Compilation and dissemination of Oregon geothermal information, in order to create public and potential user awareness, and to publicize technical assistance programs and financial incentives. (4) Resource planning assistance for local governments in order to create local expertise and action; including a statewide workshop for local officials, and the formulation of two specific community resource development

  14. Geothermal energy

    CERN Document Server

    Mangor, Jodie

    2016-01-01

    Vast amounts of heat exist below the planet's surface. Geothermal Energy shows how scientists are tapping into this source of energy to heat homes and generate electricity. Easy-to-read text, vivid images, and helpful back matter give readers a clear look at this subject. Features include a table of contents, infographics, a glossary, additional resources, and an index. Aligned to Common Core Standards and correlated to state standards. Core Library is an imprint of Abdo Publishing, a division of ABDO.

  15. Geothermal Energy

    Science.gov (United States)

    1975-11-15

    important from the geothermal point of view. These are known as La Tacita, Hacienda de Agua Fria, Banos del Chino, Laguna Verde, El Nopal...Institute for the Electrical Industry has begun to study surface geo- logy, photointerpretation, and gas and water sampling. La Primavera . - La ... Primavera is situated close to and west of the city of Guadalajara, capital of the State of Jalisco . It is described as a volcanic caldera, and the

  16. Geothermal resources of the UK

    International Nuclear Information System (INIS)

    Batchelor, A.S.

    1990-01-01

    This paper reports that geothermal energy applications and research are being actively pursued in the United Kingdom despite the relatively normal heat flow regime. The cumulative expenditure on geothermal activity from 1975 to 1989 has been approximately Brit-pounds 46 million of 32% of the Renewable Energy Research Budget to date. The first practical application is a 2 MWt scheme at Southampton as part of a district heating scheme. Commercial operation started in February 1988 and further expansion is planned. The UK's enthusiasm for Hot Dry Rock has dimmed slightly as the entire program is reappraised and the long heralded deep exploration hole has yet to materialize. Future activity looks likely to focus on geothermal opportunities that have multiple uses or applications for the fluids in small scale schemes and Hot Dry Rock research will probably be linked to a pan-European program based in France

  17. Assessment of Needs for Further Research to Understand the Role of Governments in Supporting Geothermal Exploration

    Energy Technology Data Exchange (ETDEWEB)

    Speer, Bethany; Young, Kate

    2017-05-01

    This paper looks at financing barriers to geothermal resource exploration in the United States (U.S.) for electricity generation projects and analyzes why the market is not developing as quickly as foreign geothermal markets or as quickly as other renewable energy technologies in the U.S. Research opportunities and approaches to understanding these discrepancies are discussed, particularly whether government policies and programs are spurring development activities. Further analysis to understand policies, programmatic cost efficiencies, potential project revenues, and other economic impacts are recommended together with the preliminary conclusions.

  18. Molecular target in oncology. Opportunity for radiopharmaceuticals development

    International Nuclear Information System (INIS)

    Navarro Marques, Fabio Luiz

    2016-01-01

    Cancer is a cellular multifactorial disease, regulated by changes in phenotype characteristics, such as adhesion, invasion, migration, and tumorigenesis; genotypic status of commonly altered genes (KRAS and p53); microenvironmental conditions, such pH, oxygen and nutrient supply. All these features provide opportunities for radiopharmaceuticals development, both for diagnostic and therapy. For both applications, radiopharmaceuticals molecules can be divided in small synthetic molecules, small peptides (natural or modified), large molecules such as antibody or nanoparticles. The characteristics of those molecules and use will guide the choice of the radionuclide to be used for labeling it. In the presentation, data from literature and research ongoing in the Faculty of Medicine of the University of São Paulo/Brazil will be used for demonstrate the potential for radiopharmaceuticals development. (author)

  19. Development And Application Of A Hydrothermal Model For The Salton Sea Geothermal Field, California

    Energy Technology Data Exchange (ETDEWEB)

    Kasameyer, P.; Younker, L.; Hanson, J.

    1984-01-01

    A simple lateral flow model adequately explains many of the features associated with the Salton Sea Geothermal Field. Earthquake swarms, a magnetic anomaly, and aspects of the gravity anomaly are all indirect evidence for the igneous activity which is the ultimate source of heat for the system. Heat is transferred from this area of intrusion by lateral spreading of hot water in a reservoir beneath an impermeable cap rock. A two dimensional analytic model encompassing this transport mechanism matches general features of the thermal anomaly and has been used to estimate the age of the presently observed thermal system. The age is calculated by minimizing the variance between the observed surface heat-flow data and the model. Estimates of the system age for this model range from 3,000 to 20,000 years.

  20. Telephone Flat Geothermal Development Project Environmental Impact Statement Environmental Impact Report. Final

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-02-01

    This Final Environmental Impact Statement and Environmental Impact Report (Final EIS/EIR) has been prepared to meet the requirements of the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA). The Proposed Action includes the construction, operation, and decommissioning of a 48 megawatt (gross) geothermal power plant with ancillary facilities (10-12 production well pads and 3-5 injection well pads, production and injection pipelines), access roads, and a 230-kilovolt (kV) transmission line in the Modoc National Forest in Siskiyou County, California. Alternative locations for the power plant site within a reasonable distance of the middle of the wellfield were determined to be technically feasible. Three power plant site alternatives are evaluated in the Final EIS/EIR.

  1. Results of the supplementary work to the fiscal 1994 New Sunshine Project. Development of geothermal power plants, etc. (development of production, technology for deep-seated geothermal resources); 1994 nendo new sunshine keikaku hojo jigyo seika hokokusho. Nessui riyo hatsuden plant to kaihatsu (shinbu chinetsu shigen saishu gijutsu no kaihatsu shinbu chinetsu shigen seisan gijutsu no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    The paper reports on the fiscal 1994 results of the study of the development of a technology for collecting deep-seated geothermal resources, which has been made for increasing the capacity of the geothermal power generation as a part of the New Sunshine Project. As a plan for the development, a development is made of logging equipment and its auxiliary system and then characteristics of the deep-seated geothermal well are clarified. The logging equipment is a PTSD (pressure/temperature/spinner flow-meter/fluid density) logger which stands the use at deep-seated geothermal wells of 400{degree}C and 490 kgf/cm{sup 2} and measures pressure, temperature, flow rate and fluid density under static and dynamic conditions. In this fiscal year, metal seals were developed for preventing geothermal fluids from penetrating into the PT probe. Qualities and inner/outer diameters of various kinds of structural materials used in the S probe were determined, and output necessary enough to detect the rotation number is obtained. Measuring precision of D logging by {gamma} rays was evaluated. The study was made of the monitoring technology including the borehole and ground measuring system, the borehole fluid sampling and the scale formation. Relating to the tracer widely used in monitoring of hydrothermal reservoirs, investigated was the trend of the technology from abroad. 8 refs., 60 figs., 26 tabs.

  2. Geothermal Program Review XII: proceedings. Geothermal Energy and the President's Climate Change Action Plan

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-31

    Geothermal Program Review XII, sponsored by the Geothermal Division of US Department of Energy, was held April 25--28, 1994, in San Francisco, California. This annual conference is designed to promote effective technology transfer by bringing together DOE-sponsored researchers; utility representatives; geothermal energy developers; suppliers of geothermal goods and services; representatives from federal, state, and local agencies; and others with an interest in geothermal energy. In-depth reviews of the latest technological advancements and research results are presented during the conference with emphasis on those topics considered to have the greatest potential to impact the near-term commercial development of geothermal energy.

  3. The process of developing audiovisual patient information: challenges and opportunities.

    Science.gov (United States)

    Hutchison, Catherine; McCreaddie, May

    2007-11-01

    The aim of this project was to produce audiovisual patient information, which was user friendly and fit for purpose. The purpose of the audiovisual patient information is to inform patients about randomized controlled trials, as a supplement to their trial-specific written information sheet. Audiovisual patient information is known to be an effective way of informing patients about treatment. User involvement is also recognized as being important in the development of service provision. The aim of this paper is (i) to describe and discuss the process of developing the audiovisual patient information and (ii) to highlight the challenges and opportunities, thereby identifying implications for practice. A future study will test the effectiveness of the audiovisual patient information in the cancer clinical trial setting. An advisory group was set up to oversee the project and provide guidance in relation to information content, level and delivery. An expert panel of two patients provided additional guidance and a dedicated operational team dealt with the logistics of the project including: ethics; finance; scriptwriting; filming; editing and intellectual property rights. Challenges included the limitations of filming in a busy clinical environment, restricted technical and financial resources, ethical needs and issues around copyright. There were, however, substantial opportunities that included utilizing creative skills, meaningfully involving patients, teamworking and mutual appreciation of clinical, multidisciplinary and technical expertise. Developing audiovisual patient information is an important area for nurses to be involved with. However, this must be performed within the context of the multiprofessional team. Teamworking, including patient involvement, is crucial as a wide variety of expertise is required. Many aspects of the process are transferable and will provide information and guidance for nurses, regardless of specialty, considering developing this

  4. Space development and space science together, an historic opportunity

    Science.gov (United States)

    Metzger, P. T.

    2016-11-01

    The national space programs have an historic opportunity to help solve the global-scale economic and environmental problems of Earth while becoming more effective at science through the use of space resources. Space programs will be more cost-effective when they work to establish a supply chain in space, mining and manufacturing then replicating the assets of the supply chain so it grows to larger capacity. This has become achievable because of advances in robotics and artificial intelligence. It is roughly estimated that developing a lunar outpost that relies upon and also develops the supply chain will cost about 1/3 or less of the existing annual budgets of the national space programs. It will require a sustained commitment of several decades to complete, during which time science and exploration become increasingly effective. At the end, this space industry will capable of addressing global-scale challenges including limited resources, clean energy, economic development, and preservation of the environment. Other potential solutions, including nuclear fusion and terrestrial renewable energy sources, do not address the root problem of our limited globe and there are real questions whether they will be inadequate or too late. While industry in space likewise cannot provide perfect assurance, it is uniquely able to solve the root problem, and it gives us an important chance that we should grasp. What makes this such an historic opportunity is that the space-based solution is obtainable as a side-benefit of doing space science and exploration within their existing budgets. Thinking pragmatically, it may take some time for policymakers to agree that setting up a complete supply chain is an achievable goal, so this paper describes a strategy of incremental progress. The most crucial part of this strategy is establishing a water economy by mining on the Moon and asteroids to manufacture rocket propellant. Technologies that support a water economy will play an

  5. GEODAT. Development of thermodynamic data for the thermodynamic equilibrium modeling of processes in deep geothermal formations. Combined report

    International Nuclear Information System (INIS)

    Moog, Helge C.; Regenspurg, Simona; Voigt, Wolfgang

    2015-02-01

    The concept for geothermal energy application for electricity generation can be differentiated into three compartments: In the geologic compartment cooled fluid is pressed into a porous or fractured rock formation, in the borehole compartment a hot fluid is pumped to the surface and back into the geothermal reservoir, in the aboveground facility the energy is extracted from the geothermal fluid by heat exchangers. Pressure and temperature changes influence the thermodynamic equilibrium of a system. The modeling of a geothermal system has therefore to consider besides the mass transport the heat transport and consequently changing solution compositions and the pressure/temperature effected chemical equilibrium. The GEODAT project is aimed to simulate the reactive mass transport in a geothermal reservoir in the North German basin (Gross Schoenebeck). The project was performed by the cooperation of three partners: Geoforschungsinstitut Potsdam, Bergakademie Freiberg and GRS.

  6. The decree of the 8 January 2015 related to geothermal industry: a determining step for the development of this sector

    International Nuclear Information System (INIS)

    Lormeteau, Blanche

    2015-01-01

    In order to favour the use of small-scale geothermal energy, this decree has simplified the regulatory framework by substituting an on-line work declaration to the previous authorization-based regime. This article analyses and discusses the content of this decree which makes the distinction between small-scale geothermal energy, low temperature geothermal energy, and high temperature geothermal energy. The decree modifies the mining title regime, simplifies procedures of exploitation of small scale geothermal sites. The author outlines that this new regime will be more precisely defined by other decrees which are to be published during the summer 2015, and will be completed by arrangements which are part of the bill on energy transition

  7. Investigation of deep permeable strata in the permian basin for future geothermal energy reserves

    Energy Technology Data Exchange (ETDEWEB)

    Erdlac, Richard J., Jr.; Swift, Douglas B.

    1999-09-23

    This project will investigate a previously unidentified geothermal energy resource, opening broad new frontiers to geothermal development. Data collected by industry during oil and gas development demonstrate deep permeable strata with temperatures {ge} 150 C, within the optimum window for binary power plant operation. The project will delineate Deep Permeable Strata Geothermal Energy (DPSGE) assets in the Permian Basin of western Texas and southeastern New Mexico. Presently, geothermal electrical power generation is limited to proximity to shallow, high-temperature igneous heat sources. This geographically restricts geothermal development. Delineation of a new, less geographically constrained geothermal energy source will stimulate geothermal development, increasing available clean, renewable world energy reserves. This proposal will stimulate geothermal reservoir exploration by identifying untapped and unrealized reservoirs of geothermal energy. DPSGE is present in many regions of the United States not presently considered as geothermally prospective. Development of this new energy source will promote geothermal use throughout the nation.

  8. 2012 geothermal energy congress. Proceedings

    International Nuclear Information System (INIS)

    2012-01-01

    ); (15) GEOGRUND*: Transfer of the TCS process into the borehole (David Sauer); (16) 'Heat-in-place-density' - An example for the evaluation of the geothermal potential in Saarland (Hagen Deckert); (17) Experiences of the acidity stimulation of geothermal aquifers and plants (Markus Wolfgramm); (18) Geothermal Atlas for the depiction of possible utilization competitions between CCS and deep geothermy - Methodology and results (E. Suchi); (19) Development of a cooling system for geothermal bore hole probes (Benedict Holbein); (20) Geothermal energy in the context of international radiation protection recommendations (Sebastian Feige); (21) Innovative treatment of groundwater as a condition of an efficient air conditioning in buildings by utilization of near-surface geothermal energy (C. Meyer); (22) Preparation of planning maps for the utilization of near-surface geothermal energy with geo-physical methods (Reinhard Kirsch); (23) Deep geothermal probe Heubach - Progress of the project and facility planning by using an application example (David Kuntz); (24) Realistic numeric models for the simulation of potential geothermal reservoirs in the north-west German basin (Dorothea Reyer); (25) Monobore tracer test sensitivity compared with crack parameters and rock parameter: Lection Horstberg (Iulia Ghergut); (26) Infrastructure of fault zones in red sandstone of the Upper Rhine basin - Digestion analogue studies (Johanna F. Bauer); (27) Characterization of fault zones in shell limestone of the Upper Rhine basin - Digestion analogue studies (Silke Meier).

  9. Engineered Geothermal System Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Petty, Susan

    2014-06-19

    In June 2009, AltaRock Energy began field work on a project supported by the U.S. Department of Energy entitled “Use of Multiple Stimulations to Improve Economics of Engineered Geothermal Systems in Shallow High Temperature Intrusives.” The goal of the project was to develop an Engineered Geothermal System (EGS) in the portion of The Geysers geothermal field operated by the Northern California Power Agency (NCPA). The project encountered several problems while deepening Well E-7 which culminated in the suspension of field activities in September 2009. Some of the problems encountered are particular to The Geysers area, while others might be encountered in any geothermal field, and they might be avoided in future operations.

  10. Geothermal energy for American Samoa

    Energy Technology Data Exchange (ETDEWEB)

    1980-03-01

    The geothermal commercialization potential in American Samoa was investigated. With geothermal energy harnessed in American Samoa, a myriad of possibilities would arise. Existing residential and business consumers would benefit from reduced electricity costs. The tuna canneries, demanding about 76% of the island's process heat requirements, may be able to use process heat from a geothermal source. Potential new industries include health spas, aquaculture, wood products, large domestic and transhipment refrigerated warehouses, electric cars, ocean nodule processing, and a hydrogen economy. There are no territorial statutory laws of American Samoa claiming or reserving any special rights (including mineral rights) to the territorial government, or other interests adverse to a land owner, for subsurface content of real property. Technically, an investigation has revealed that American Samoa does possess a geological environment conducive to geothermal energy development. Further studies and test holes are warranted.

  11. Geothermal energy - availability - economy - prospects

    International Nuclear Information System (INIS)

    Kappelmeyer, O.

    1992-01-01

    The heat contained in the earth's crust represents an inexhaustible reservoir of energy on the technical scale, which is available at all times of day and at all seasons. In the volcanically active zones, the earth's heat is used industrially: Worldwide, the electrical power of geothermal powerstations is about 5000 MW; in addition, about 10,000 MW are used for direct thermal applications (heating) in regions with normal geothermal conditions. The geothermal power plants have been expanded at an annual rate of 12.2% since 1970. In many developing countries, the geothermal energy is the most important home source of energy for electricity generation. In Europe, in the Paris Basin, hot groundwater is pumped from a depth of about 2 km and is used for heating blocks of flats. In France as a whole, about 170,000 flats have been supplied with heat and hot water from underground for more than a decade. (orig./DG) [de

  12. THE OPPORTUNITY TO ADDRESS THE SUSTAINABLE INDUSTRIAL DEVELOPMENT IN ROMANIA

    Directory of Open Access Journals (Sweden)

    Duduială Popescu Lorena

    2015-06-01

    legislation; • raising awareness to protect the environment. The following are considered priority themes: control climate change; protecting the ozone layer; acid rain control, improving air quality; water resource management; waste management; protection against noise; nature protection and biodiversity. The privatization of industrial enterprises is also an opportunity to assess damage to these facilities, the environment and solutions to remedy such damage. Existing law requires, these actions pave the ground for a sustainable approach to development industry. The works market organic products or opportunities for are: agricultural and food products labeled organic; technologies and processes used to "clean" manufacturing; Products with low pollutant potential (low sulfur fuels, unleaded petrol cars with catalytic emission control, etc.; use of renewable energy and raw materials to form the corresponding markets.

  13. THE CONCEPT OF COMPETITIVE OPPORTUNITIES DEVELOPMENT OF TRADE ORGANIZATION

    Directory of Open Access Journals (Sweden)

    S. V. Semenenko

    2014-01-01

    Full Text Available Summary. The article gives the author’s vision of the concept of competitive opportunities development of the trade organization. To date, the theory of Applied Economics developed a wide array of concepts, which are the subject of a variety of economic phenomena and processes that accompany the operation of the organization, in accordance with the purpose of improving their prospects for the development of strategic development. Given that development of concepts accompanied by sufficiently convincing theoretical justification, not each of them is acceptable for use in economic practice. Many of the developers are limited staging concepts studied problems and arguments of its essential provisions, without bringing up the concept of applied instruments for its implementation. Furthermore, as shown by the results of acquaintance with the concepts of content close to the subject of our study, they overwhelmingly are not structured, presented logically interrelated provisions, but often not the logic of their development appears obvious. This, in our view, creates additional difficulties for the theoretical knowledge of the essence of new concepts and establishing differences of their content from existing, previously developed, and for the implementation of the concepts in economic practice. Therefore, the solution development concept of competitive potential trade organization, we consider it appropriate to precede the definition of the concept of structure, i.e. release of its structural units and the establishment of linkages between The author determines the necessity of its developing and structurizations of constituent blocks (target, methodological, criteria estimating, informative-analytical, tool-realizable and gives their content

  14. Freshwater Assessments in Developing Country Contexts: Innovations and Opportunities

    Science.gov (United States)

    Abell, R.; Bryer, M.

    2005-05-01

    The world's developed nations have hosted the lion's share of freshwater conservation assessments, yet developing nations are home to a disproportionately large fraction of global freshwater biodiversity. With less `hard-path' infrastructure in place, opportunities for proactive freshwater conservation abound, but economic growth pressures do as well. The need for freshwater assessments is urgent in these environments, but assessment approaches and outcomes can exhibit important differences from those in developed country contexts. First, the need to balance biodiversity conservation with economic development interests is a common and strong undercurrent and translates to an elevated focus on freshwater ecosystem goods and services over pure existence values. Second, data gaps about species, habitats, and processes can be so extensive as to nearly engender paralysis. Assessment methodologies created for data-rich situations often transfer imperfectly to these environments, and planners must find creative ways of circumventing data gaps without sacrificing scientific robustness. In some cases, this need has catalyzed technological `leapfrogging,' with advanced tools developed expressly to address these gaps. Here we present examples of these innovations as applied in South America, with a focus on the use of habitat classifications and threat analyses based on models and geospatial data.

  15. Geothermal progress monitor: Report Number 19

    International Nuclear Information System (INIS)

    1997-12-01

    Short articles are presented related to activities in the federal government and the geothermal industry, international developments, state and local government activities, technology development, and technology transfer. Power plant tables and a directory of organizations involved in geothermal resource development are included

  16. Geothermal progress monitor: Report Number 19

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    Short articles are presented related to activities in the federal government and the geothermal industry, international developments, state and local government activities, technology development, and technology transfer. Power plant tables and a directory of organizations involved in geothermal resource development are included.

  17. Deep-Heat-Mining project in Basel - First findings concerning the development of an enhanced geothermal system; Deep-Heat-Mining-Projekt Basel - Erste Erkenntnisse bei der Entwicklung eines Enhanced Geothermal System (EGS)

    Energy Technology Data Exchange (ETDEWEB)

    Ladner, F.; Schanz, U.; Haering, M.O.

    2008-07-01

    This paper summarises the latest findings on the Deep Heat Mining Project in Basel, Switzerland. The complete well profile is presented as well as the petrological, structural and hydro-geological aspects of the crystalline geological basement. The rock-stress regime to be found in the crystalline rock near the Basel 1 well is characterised. In combination with fault-plane data obtained from a range of induced seismic events, a reservoir model is presented which describes the development of the Basel 1 geothermal reservoir. The project and the geology of the region are briefly described and the new geological and hydro-geological knowledge gained is presented and discussed.

  18. OPPORTUNITIES FOR HUMAN RESOURCES DEVELOPMENT BY PROFESSIONAL INTEGRATION / REINTEGRATION

    Directory of Open Access Journals (Sweden)

    LAVINIA ELISABETA POPP

    2012-01-01

    Full Text Available The present paper presents some opportunities for the development of human resources by means of professional insertion / reinsertion. It is about an intervention project, more precisely the establishment of a Centre for Career Counselling and Professional Requalification (CORP within the University “Eftimie Murgu” of Reşita. The objective was the promotion of an inclusive society able to facilitate the access and integration on the labour market of the young unemployed. By its activities, the project forwards an inclusive model of social inclusion of the professionally inactive young people through individualised programmes of qualification - requalification, support and professional counselling. By its results the project contributed to the stimulation of the participation of young unemployed persons to the social, economic and educational life, the consideration of the importance of the role played by education and professional training among the youth.

  19. Biofuel chain development in Germany: Organisation, opportunities, and challenges

    International Nuclear Information System (INIS)

    Dautzenberg, Kirsti; Hanf, Jon

    2008-01-01

    Increasing production activities have been observed in many EU member states since the EU Commission sent a clear signal establishing and supporting the bioenergy industry. This article discusses current sector developments and therewith evolving biofuel value chain activities and management requirements by means of two German biofuel processing firms. Usually, the processing company can be regarded as the initiator of the regional value chains. In order to safeguard the high initial investments and secure efficient supply, the processing company relies on contract farming or profit participation rights rather than spot market interactions. In addition to discussing that point, this paper also explores opportunities and threats for the suppliers of raw materials as well as for the processors. (author)

  20. Technological Advances and Opportunities for the Development of Sustainable Biorefineries

    DEFF Research Database (Denmark)

    Mussatto, Solange I.

    Moving to a more sustainable economy, where renewable biomass is used to produce fuels, chemicals, energy and materials, is one of the main challenges faced by the society nowadays in order to ensure a sustainable low-carbon economy for the future. In addition, a bio-based economy has the potential...... to generate new jobs and new opportunities for entrepreneurship, with further benefits to the global economy and the society. Biomass can be used to replace fossil feedstocks for the production of different products, among of which, chemicals are particularly very attractive due to their high market value...... have been taken in recent years into the transition towards a bio-based economy, there are still significant technological challenges to overcome in order to develop more efficient, advanced and sustainable bio-based processes, able to compete with the optimized petrochemical production chains...

  1. Optimizing Sustainable Geothermal Heat Extraction

    Science.gov (United States)

    Patel, Iti; Bielicki, Jeffrey; Buscheck, Thomas

    2016-04-01

    Geothermal heat, though renewable, can be depleted over time if the rate of heat extraction exceeds the natural rate of renewal. As such, the sustainability of a geothermal resource is typically viewed as preserving the energy of the reservoir by weighing heat extraction against renewability. But heat that is extracted from a geothermal reservoir is used to provide a service to society and an economic gain to the provider of that service. For heat extraction used for market commodities, sustainability entails balancing the rate at which the reservoir temperature renews with the rate at which heat is extracted and converted into economic profit. We present a model for managing geothermal resources that combines simulations of geothermal reservoir performance with natural resource economics in order to develop optimal heat mining strategies. Similar optimal control approaches have been developed for managing other renewable resources, like fisheries and forests. We used the Non-isothermal Unsaturated-saturated Flow and Transport (NUFT) model to simulate the performance of a sedimentary geothermal reservoir under a variety of geologic and operational situations. The results of NUFT are integrated into the optimization model to determine the extraction path over time that maximizes the net present profit given the performance of the geothermal resource. Results suggest that the discount rate that is used to calculate the net present value of economic gain is a major determinant of the optimal extraction path, particularly for shallower and cooler reservoirs, where the regeneration of energy due to the natural geothermal heat flux is a smaller percentage of the amount of energy that is extracted from the reservoir.

  2. Direct utilization of geothermal energy: a technical handbook

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.N; Lund, J.W. (eds.)

    1979-01-01

    This technical handbook includes comprehensive discussions on nature and occurrence of the geothermal resource, its development, utilization, economics, financing, and regulation. Information on pricing parameters for the direct use of geothermal energy is included as an appendix. (MRH)

  3. 2014 Low-Temperature and Coproduced Geothermal Resources Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Tim Reinhardt, Program Manager

    2014-09-01

    As a growing sector of geothermal energy development, the Low-Temperature Program supports innovative technologies that enable electricity production and cascaded uses from geothermal resources below 300° Fahrenheit.

  4. Geothermal policy project. Quarterly report, August 1-October 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Sacarto, D.M.

    1979-11-01

    The NCSL geothermal policy project continued with initiating geothermal studies in new project states and furthering policy development in existing states. Activities of the project staff are reviewed. (MHR)

  5. Geothermal in transition

    International Nuclear Information System (INIS)

    Anderson, J.L.

    1991-01-01

    This article examines the current market for geothermal projects in the US and overseas. The topics of the article include future capacity needs, upgrading the Coso Geothermal project, the productivity of the Geysers area of Northern California, the future of geothermal, and new projects at Soda Lake, Carson Basin, Unalaska Island, and the Puna Geothermal Venture in Hilo, Hawaii

  6. Alaska geothermal bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Liss, S.A.; Motyka, R.J.; Nye, C.J. (comps.)

    1987-05-01

    The Alaska geothermal bibliography lists all publications, through 1986, that discuss any facet of geothermal energy in Alaska. In addition, selected publications about geology, geophysics, hydrology, volcanology, etc., which discuss areas where geothermal resources are located are included, though the geothermal resource itself may not be mentioned. The bibliography contains 748 entries.

  7. The National Geothermal Energy Research Program

    Science.gov (United States)

    Green, R. J.

    1974-01-01

    The continuous demand for energy and the concern for shortages of conventional energy resources have spurred the nation to consider alternate energy resources, such as geothermal. Although significant growth in the one natural steam field located in the United States has occurred, a major effort is now needed if geothermal energy, in its several forms, is to contribute to the nation's energy supplies. From the early informal efforts of an Interagency Panel for Geothermal Energy Research, a 5-year Federal program has evolved whose objective is the rapid development of a commercial industry for the utilization of geothermal resources for electric power production and other products. The Federal program seeks to evaluate the realistic potential of geothermal energy, to support the necessary research and technology needed to demonstrate the economic and environmental feasibility of the several types of geothermal resources, and to address the legal and institutional problems concerned in the stimulation and regulation of this new industry.

  8. Geothermal development promotion survey report. No. 29. Upper reach region of Oita river; 1988-1990 chinetsu kaihatsu sokushin chosa hokokusho. No. 29 Oitagawa joryu chiiki

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-01

    The results of surveys conducted in the Oita river region, Oita Prefecture, in fiscal 1988-1989 are compiled in this report. Conducted were a geological/alteration zone survey, geochemical survey, electric prospecting (Schlumberger method), electromagnetic surveillance (simplified magnetotelluric method), electromagnetic surveillance (EMAP - Environmental Monitoring and Assessment Program method), heat flow rate survey, test boring, environmental impact survey, and so forth. Conclusions are mentioned below. It is inferred that the geothermal fluid results from groundwater originating in meteoric water, that the meteoric water takes many years to flow from the mountainous region into the ground where it is stored mainly in the Shonai stratum, that the stored water is warmed by heat from rocks in the neighborhood for development into a geothermal fluid, and that the geothermal fluid finally forms a hot spring water reservoir. Hot spring water reservoirs are found widely distributed in the basin of the Oita river. In view of the ground temperature distribution and the hot spring water geochemical temperature determined by structure boring, it is concluded that possibilities are quite low that there exists a high-temperature geothermal fluid usable for power generation. (NEDO)

  9. Agribusiness enterprises-cum geothermal energy generation in Naujan, Mindoro: A pre-feasibility analysis

    International Nuclear Information System (INIS)

    Cabanilla, Liborio S.; Corro, Rudy Jr.; Andog, Gerard

    2015-01-01

    A 40MW Geothermal power plant will soon rise in Naujan, Oriental Mindoro. To be managed by the Emerging Power, Inc. (EPI), it covers the political jurisdiction of three villages where 4,219 individuals or 1,021 households reside. Agriculture and fishing are the predominant sources of income of local residents with average daily per capita income of Php50. This is almost 20 percent below the poverty thresholds. Agriculture is coconut-based, intercropped predominantly with banana, and a few fruit trees (e.g. Coffee, cacao). Farming is primarily mountain eco-system and ecologically fragile, as cultivation has now encroached in areas serving sources of potable water for the communities. Sustainability of agricultural production is in jeopardy in view of the need to expand economic opportunities among residents. It is critical that new value-adding activities consistent with the resource endowments of the locality to be developed. The introduction of agri-based social enterprises could pave the way for weaving together the economic requirements of residents and environmental stability. This study provides an analysis of the feasibility of undertaking non-power applications in agriculture and fishery, of geothermal resources in Naujan, Oriental Mindoro. It identifies agribusiness enterprises that will address socio-economic demands of the communities covered by the Geothermal project, at the same time promoting agriculture sustainability. Using both secondary and primary data, it employs simple economic analysis in assessing the effects of directly using geothermal resources in the agribusiness enterprises. Based on available information there is evidence that there are substantial economic benefits from non-power application of geothermal resources in the project site. Copra drying using geothermal heat in place of the traditional “tapahan” system ensures higher product quality and more favorable farm gate prices. New value-adding activities from agro

  10. Geothermal Ultrasonic Fracture Imager

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, Doug [Baker-Hughes Oilfield Operation Inc., Houston, TX (United States); Leggett, Jim [Baker-Hughes Oilfield Operation Inc., Houston, TX (United States)

    2013-07-29

    The Geothermal Ultrasonic Fracture Imager project has a goal to develop a wireline ultrasonic imager that is capable of operating in temperatures up to 300°C (572°F) and depths up to 10 km (32,808 ft). This will address one of the critical needs in any EGS development of understanding the hydraulic flow paths in the reservoir. The ultrasonic imaging is well known in the oil and gas industry as one of the best methods for fracture evaluation; providing both high resolution and complete azimuthal coverage of the borehole. This enables fracture detection and characterization, both natural and induced, providing information as to their location, dip direction and dip magnitude. All of these factors are critical to fully understand the fracture system to enable the optimization of the thermal drainage through injectors and producers in a geothermal resource.

  11. Department of Energy--Office of Energy Efficiency and Renewable Energy Geothermal Program: Geothermal Risk Mitigation Strategies Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2008-02-15

    An overview of general financial issues for renewable energy investments; geothermal energy investment barriers and risks; and recommendations for incentives and instruments to be considered to stimulate investment in geothermal energy development.

  12. Challenges and opportunities in developing respiratory syncytial virus therapeutics.

    Science.gov (United States)

    Simões, Eric A F; DeVincenzo, John P; Boeckh, Michael; Bont, Louis; Crowe, James E; Griffiths, Paul; Hayden, Frederick G; Hodinka, Richard L; Smyth, Rosalind L; Spencer, Keith; Thirstrup, Steffen; Walsh, Edward E; Whitley, Richard J

    2015-03-15

    Two meetings, one sponsored by the Wellcome Trust in 2012 and the other by the Global Virology Foundation in 2013, assembled academic, public health and pharmaceutical industry experts to assess the challenges and opportunities for developing antivirals for the treatment of respiratory syncytial virus (RSV) infections. The practicalities of clinical trials and establishing reliable outcome measures in different target groups were discussed in the context of the regulatory pathways that could accelerate the translation of promising compounds into licensed agents. RSV drug development is hampered by the perceptions of a relatively small and fragmented market that may discourage major pharmaceutical company investment. Conversely, the public health need is far too large for RSV to be designated an orphan or neglected disease. Recent advances in understanding RSV epidemiology, improved point-of-care diagnostics, and identification of candidate antiviral drugs argue that the major obstacles to drug development can and will be overcome. Further progress will depend on studies of disease pathogenesis and knowledge provided from controlled clinical trials of these new therapeutic agents. The use of combinations of inhibitors that have different mechanisms of action may be necessary to increase antiviral potency and reduce the risk of resistance emergence. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.

  13. Challenges and Opportunities for Sustainable Tourism Development in Ulithi Atoll

    Directory of Open Access Journals (Sweden)

    Anna Ongaro

    2016-07-01

    Full Text Available This article aims to analyze the tourism potential of Ulithi Atoll, in the Federated States of Micronesia. It identifies possibilities for sustainable tourism development, while taking into account the major issues that threaten the environment, the cultural integrity and the future of the local community. Through a review of existing research and an assessment of the web presence, the study develops a diagnosis of the current situation of the tourism sector in the destination. The tourism potential of Ulithi mainly relies on its beautiful physical environment and authentic cultural heritage, but it is still largely untapped due to limited development. Tourism represents a strategic tool for the economic growth and empowerment of Ulithi community. Presently, however, the atoll’s biggest problem is the recovery from the recent disastrous Typhoon Maysak. Other pressing challenges are climate change and the erosion of traditional knowledge. The study identifies ecotourism and voluntourism as key niche market opportunities for the destination. Encouraging greater participation among the stakeholders and a concrete commitment to sustainability within the strategic plans are some of the recommendations that aim to build the tourism industry in a way that supports the local culture, the natural resources and the way of life.

  14. YOUTH LABOUR MARKET. MOBILITY, CAREER DEVELOPMENT, INCOMES. CHALLENGES AND OPPORTUNITIES

    Directory of Open Access Journals (Sweden)

    Vasile Liviu

    2011-07-01

    Full Text Available This paper presents the main characteristics of the youth labour market, with a special view on mobility, career development and incomes. The paper is substantiated by and continues the researches of the authors on the topic of labour force mobility and on the one of adaptability, respectively on youths' beahviour on labour market (with particular consideration of young graduates highlighting the factors that adjust choices regarding taking up a job, career advancement, labour motivation, professional and personal satisfaction opportunities which are provided by the labour market at local level, in country and abroad. Quantitative and qualitative indicators are presented about Romanian youths' labour market within the European context during the transition period. The impact of the crisis on youths' labour market is analysed, highlighting the challenges and opportunities, the particularities of the newly created jobs and especially the knowledge, skills and competencies requirements (KSC. The authors propose both the improvement of the systems of indicators for defining the potential and presence of youth on the labour market, the economic and social impact of external mobility of young graduates and an integrated scheme of policy measures for promoting adaptability and performance integration on Romanian labour market of youth. Particular attention is paid to presenting policy instruments for halting/diminishing the brain drain and brain shopping phenomena by promoting an attractive (professionally and monetary supply for employment in Romania's local economy. The authors succeed in highlighting the functional links between the education market (labour force supply and labour market (employment demand of the business environment underpinning the requirement of integrated management of labour potential in the years preceding studies' finalization and up to the post-insertion years by multi-criteria analysis models and graduate career tracking

  15. Corrosion reference for geothermal downhole materials selection

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, P.F. II, Smith, C.C.; Keeney, R.C.; Kirk, D.K.; Conover, M.F.

    1983-03-01

    Geothermal downhole conditions that may affect the performance and reliability of selected materials and components used in the drilling, completion, logging, and production of geothermal wells are reviewed. The results of specific research and development efforts aimed at improvement of materials and components for downhole contact with the hostile physicochemical conditions of the geothermal reservoir are discussed. Materials and components covered are tubular goods, stainless steels and non-ferrous metals for high-temperature downhole service, cements for high-temperature geothermal wells, high-temperature elastomers, drilling and completion tools, logging tools, and downhole pumps. (MHR)

  16. Federal Interagency Geothermal Activities

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Arlene [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Prencipe, Loretta [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Todaro, Richard M. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Cuyler, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Eide, Elizabeth [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2011-06-01

    This collaborative document describes the roles and responsibilities of key Federal agencies in the development of geothermal technologies including the U.S. Department of Energy (DOE); the U.S. Department of Agriculture (USDA), including the U.S. Forest Service; the U.S. Department of Interior (DOI), including the United States Geological Survey (USGS) and Bureau of Land Management (BLM); the Environmental Protection Agency (EPA); and the Department of Defense (DOD).

  17. Selecting ground-motion models developed for induced seismicity in geothermal areas

    Science.gov (United States)

    Edwards, Benjamin; Douglas, John

    2013-11-01

    We present a case study of the ranking and weighting of ground-motion prediction equations (GMPEs) for seismic hazard assessment of enhanced geothermal systems (EGSs). The study region is Cooper Basin (Australia), where a hot-fractured-rock project was established in 2002. We test the applicability of 36 GMPEs based on stochastic simulations previously proposed for use at EGSs. Each GMPE has a set of corresponding model parameters describing stress drop, regional and local (near-surface) attenuation. To select suitable GMPEs for Cooper Basin from the full set, we applied two methods. In the first, seismograms recorded on the local monitoring network were spectrally analysed to determine characteristic stress and attenuation parameters. In a second approach, residual analysis using the log-likelihood (LLH) method was used to directly compare recorded and predicted short-period response spectral accelerations. The resulting ranking was consistent with the models selected based on spectral analysis, with the advantage that a transparent weighting approach was available using the LLH method. Region-specific estimates of variability were computed, with significantly lower values observed compared to previous studies of small earthquakes. This was consistent with the limited range of stress drops and attenuation observed from the spectral analysis.

  18. Recovery act. Development of design and simulation tool for hybrid geothermal heat pump system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shaojie [ClimateMaster, Inc., Oklahoma City, OK (United States); Ellis, Dan [ClimateMaster, Inc., Oklahoma City, OK (United States)

    2014-05-29

    The ground source heat pump (GSHP) system is one of the most energy efficient HVAC technologies in the current market. However, the heat imbalance may degrade the ability of the ground loop heat exchanger (GLHX) to absorb or reject heat. The hybrid GSHP system, which combines a geothermal well field with a supplemental boiler or cooling tower, can balance the loads imposed on the ground loop heat exchangers to minimize its size while retaining superior energy efficiency. This paper presents a recent simulation-based study with an intention to compare multiple common control strategies used in hybrid GSHP systems, including fixed setpoint, outside air reset, load reset, and wetbulb reset. A small office in Oklahoma City conditioned by a hybrid GSHP system was simulated with the latest version of eQUEST 3.7[1]. The simulation results reveal that the hybrid GSHP system has the excellent capability to meet the cooling and heating setpoints during the occupied hours, balance thermal loads on the ground loop, as well as improve the thermal comfort of the occupants with the undersized well field.

  19. Report on Geothermal Power Plant Cost and Comparative Cost of Geothermal and Coal Fired Steam Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-07-01

    This report is to be used by Utah Power and Light Company (UP and L) in making studies of geothermal power plants. The dollars per kilowatt comparison between a geothermal plant and a UP and L coal-fired plant is to be developed. Geothermal gathering system costs and return to owner are to be developed for information.

  20. What Opportunities, When?: A Framework for Student Career Development

    Science.gov (United States)

    MacDonald, H.

    2007-12-01

    Geoscience faculty and departments have an important role to play in the professional development of their students for careers in the geosciences or other fields. We can promote career development of students at different career stages (e.g., first year students, geoscience majors, and graduate students) and in various ways by 1) providing information about jobs and careers, 2) encouraging exploration of options, 3) providing experiences throughout their program that develop skills, knowledge, and attitudes, and 4) supporting students in their job search. For example, in teaching general education classes, we can provide information about jobs and careers in the geosciences, showing images of specific geoscientists and discussing what they do, providing examples of practical applications of course content, and describing job prospects and potential salaries. For majors, this type of information could be presented by seminar speakers, through career panels, and via alumni newsletters. Exploration of options could include research and/or teaching experiences, internships, informational interviews, and involvement with a campus career services center. Courses throughout the curriculum as well as co-curricular experiences serve to provide experiences that develop skills, knowledge, and attitudes that will be useful for a range of jobs. Departments can support the job search by providing networking opportunities for students and alumni, widely distributing job announcements and encouraging individual students, offering departmental sessions on graduate school, different career options, and /or the job search process, conducting mock interviews and resume review sessions, and fostering connections between students and alumni. In all of this, we need to be supportive of student choices. Overall, faculty can help students make more informed career decisions and develop skills that will be of value in their career through a variety of strategies, work with students as an

  1. UWC geothermal resource exploration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    A program was developed to explore the strength of the geothermal and hot dry rock (HDR) resource at the Montezuma Hot Springs at the United World College (UWC). The purpose of the UWC {number_sign}1 well is to obtain hydrologic, geologic, and temperature information for ongoing geothermal evaluation of the Montezuma Hot Springs area. If sufficient fluids are encountered, the hole will be cased with a 4 1/2 inch production casing and re-permitted as a geothermal low-temperature well. If no fluid is encountered, the well will be abandoned per Oil Conservation Division regulation. The objectives of the exploration are to evaluate the resource potential to provide space heating for the entire campus of the United World College, determine the effect of a well on the Hot Springs outflow, accurately measure the UWC heating loads versus time, evaluate the potential to support local thermal industry development, assess the feasibility of HDR development, and create an educational program from the collection of data derived from the research effort.

  2. Uncertainty analysis of geothermal energy economics

    Science.gov (United States)

    Sener, Adil Caner

    This dissertation research endeavors to explore geothermal energy economics by assessing and quantifying the uncertainties associated with the nature of geothermal energy and energy investments overall. The study introduces a stochastic geothermal cost model and a valuation approach for different geothermal power plant development scenarios. The Monte Carlo simulation technique is employed to obtain probability distributions of geothermal energy development costs and project net present values. In the study a stochastic cost model with incorporated dependence structure is defined and compared with the model where random variables are modeled as independent inputs. One of the goals of the study is to attempt to shed light on the long-standing modeling problem of dependence modeling between random input variables. The dependence between random input variables will be modeled by employing the method of copulas. The study focuses on four main types of geothermal power generation technologies and introduces a stochastic levelized cost model for each technology. Moreover, we also compare the levelized costs of natural gas combined cycle and coal-fired power plants with geothermal power plants. The input data used in the model relies on the cost data recently reported by government agencies and non-profit organizations, such as the Department of Energy, National Laboratories, California Energy Commission and Geothermal Energy Association. The second part of the study introduces the stochastic discounted cash flow valuation model for the geothermal technologies analyzed in the first phase. In this phase of the study, the Integrated Planning Model (IPM) software was used to forecast the revenue streams of geothermal assets under different price and regulation scenarios. These results are then combined to create a stochastic revenue forecast of the power plants. The uncertainties in gas prices and environmental regulations will be modeled and their potential impacts will be

  3. Geothermal Money Book [Geothermal Outreach and Project Financing

    Energy Technology Data Exchange (ETDEWEB)

    Elizabeth Battocletti

    2004-02-01

    Small business lending is big business and growing. Loans under $1 million totaled $460 billion in June 2001, up $23 billion from 2000. The number of loans under $100,000 continued to grow at a rapid rate, growing by 10.1%. The dollar value of loans under $100,000 increased 4.4%; those of $100,000-$250,000 by 4.1%; and those between $250,000 and $1 million by 6.4%. But getting a loan can be difficult if a business owner does not know how to find small business-friendly lenders, how to best approach them, and the specific criteria they use to evaluate a loan application. This is where the Geothermal Money Book comes in. Once a business and financing plan and financial proposal are written, the Geothermal Money Book takes the next step, helping small geothermal businesses locate and obtain financing. The Geothermal Money Book will: Explain the specific criteria potential financing sources use to evaluate a proposal for debt financing; Describe the Small Business Administration's (SBA) programs to promote lending to small businesses; List specific small-business friendly lenders for small geothermal businesses, including those which participate in SBA programs; Identify federal and state incentives which are relevant to direct use and small-scale (< 1 megawatt) power generation geothermal projects; and Provide an extensive state directory of financing sources and state financial incentives for the 19 states involved in the GeoPowering the West (GPW). GPW is a U.S. Department of Energy-sponsored activity to dramatically increase the use of geothermal energy in the western United States by promoting environmentally compatible heat and power, along with industrial growth and economic development. The Geothermal Money Book will not: Substitute for financial advice; Overcome the high exploration, development, and financing costs associated with smaller geothermal projects; Remedy the lack of financing for the exploration stage of a geothermal project; or Solve

  4. A landscape ecology approach to assessing development impacts in the tropics: A geothermal energy example in Hawaii

    Science.gov (United States)

    Griffith, J.A.; Trettin, C.C.; O'Neill, R. V.

    2002-01-01

    Geographic information systems (GIS) are increasingly being used in environmental impact assessments (EIA) because GIS is useful for analysing spatial impacts of various development scenarios. Spatially representing these impacts provides another tool for landscape ecology in environmental and geographical investigations by facilitating analysis of the effects of landscape patterns on ecological processes and examining change over time. Landscape ecological principles are applied in this study to a hypothetical geothermal development project on the Island of Hawaii. Some common landscape pattern metrics were used to analyse dispersed versus condensed development scenarios and their effect on landscape pattern. Indices of fragmentation and patch shape did not appreciably change with additional development. The amount of forest to open edge, however, greatly increased with the dispersed development scenario. In addition, landscape metrics showed that a human disturbance had a greater simplifying effect on patch shape and also increased fragmentation than a natural disturbance. The use of these landscape pattern metrics can advance the methodology of applying GIS to EIA.

  5. RURAL AREA – AN UNTAPPED OPPORTUNITY FOR ENTREPRENEURSHIP DEVELOPMENT ?

    Directory of Open Access Journals (Sweden)

    Alexandru Costin CÎRSTEA

    2013-01-01

    Full Text Available Romanian rural area faces a violent lack of entrepreneurship initiatives, which can generate negative economic and social phenomena, with medium and long-term effects, such as: the decreased living standards of people in rural areas, the migration of young people from rural areas, which generates psychosocial problems among children who have to stay with their grandparents, the sharp decrease of interest for agriculture and, thus, the decrease of GDP ratio from agricultural activities, the lack of education among rural people etc. Under these circumstances, thepaper tries, through documentation, analysis and processing statistical data, to quantify the development level of entrepreneurship in rural areas in Romania, compared with developed EU countries (such as: Germany, Great Britain, France etc., in order to reveal the gaps in this sector. To increase the relevance of the analysis, the paper also analyzes the possible causes that can stimulate or repress the expression of entrepreneurship and its implementation in Romanian and European rural areas, such as: different levels of fiscal pressure, the existence, effectiveness and efficiency of programs implementation for stimulating and supporting entrepreneurship in general and in rural areas, in particular, the different business culture etc. These results generated from the research will finally create a set of premises for adopting international best practices and develop pragmatic solutions and programs to increase entrepreneurship, which can leads to new business initiatives in the Romanian rural area.In conclusion, for a quality of life growth and a decrease of negative social and economic phenomena with medium and long-term impact, it is necessary an increase of the living standards, done by increasing the opportunities for entrepreneurship in agriculture and rural areas. Specifically, there are needed investments in the development of human resources in rural areas and in supporting its

  6. Geothermal Progress Monitor 12

    Energy Technology Data Exchange (ETDEWEB)

    None

    1990-12-01

    Some of the more interesting articles in this GPM are: DOE supporting research on problems at The Geysers; Long-term flow test of Hot Dry Rock system (at Fenton Hill, NM) to begin in Fiscal Year 1992; Significant milestones reached in prediction of behavior of injected fluids; Geopressured power generation experiment yields good results. A number of industry-oriented events and successes are reported, and in that regard it is noteworthy that this report comes near the end of the most active decade of geothermal power development in the U.S. There is a table of all operating U.S. geothermal power projects. The bibliography of research reports at the end of this GPM is useful. (DJE 2005)

  7. Valorization of geothermal drilling of Thonex 1. Opportunity study - final report; Valorisation du forage geothermique de Thonex 1. Etude d'opportunite - Rapport final

    Energy Technology Data Exchange (ETDEWEB)

    Jenny, J.; Frautschi, J.-M. [Geo2X, Oulens (Switzerland); Sidler, D.; Nawratil de Bono, C. [SIG Pole Energies - Production, Geneve (Switzerland); Vuataz, F.-D. [Centre de Recherche en Geothermie (CREGE), Neuchatel (Switzerland)

    2009-05-15

    The Thonex geothermal well was drilled in 1993 up to 2690 m. The flow rate was only 20 m{sup 3}/h, consequently the project was abandoned. The bottom hole temperature was 88 {sup o}C. For years, the idea of using this abandoned drilling has been debated. The MICA real estate project in this area revived the idea of exploiting the heat in the borehole using a heat probe. The first step was to verify the condition of the drilling in depth. The DMT Company based in Essen (Germany) recorded in January 2008 a caliper and an acoustic scanner (AB140) up to 1160 meter in depth. At this depth the diameter was less than 150 mm (instead 244 mm). June 2008, BRG Brunnenpruefdienst GMBH descends a camera into the hole. The upper part shows a clean well, from 900 meter, black iron flags are visible; the camera was stuck at 1100 m. These crusts are related by bacteria of the iron and sulfur. The next step, in early February 2009, was to clean the borehole using a Coiled Tubing. This equipment allowed cleaning the well up to 1810 m. The cleaning of the open hole section was not possible. Finally in May 2009, a caliper and thermal probe reached the depth of 1850 m, where the temperature was 66 {sup o}C.

  8. Deformation study of Kamojang geothermal field

    Science.gov (United States)

    Ramdhani, B. D.; Meilano, I.; Sarsito, D. A.

    2017-07-01

    GPS has proven to be an indispensable tool in the effort to understand crust deformation before, during, and after the big earthquake events through data analysis and numerical simulation. The development of GPS technology has been able to prove as a method for the detection of geothermal activity that related to deformation. Furthermore, the correlation of deformation and geothermal activity are related to the analysis of potential hazards in the geothermal field itself. But unfortunately, only few GPS observations established to see the relationship of tectonic and geothermal activity around geothermal energy area in Indonesia. This research will observe the interaction between deformation and geothermal sources around the geothermal field Kamojang using geodetic GPS. There are 4 campaign observed points displacement direction to north-east, and 2 others heading to south-east. The displacement of the observed points may have not able proven cause by deformation of geothermal activity due to duration of observation. Since our research considered as pioneer for such investigation in Indonesia, we expect our methodology and our findings could become a starter for other geothermal field cases in Indonesia.

  9. Industry participation in DOE-sponsored geopressured geothermal research development. Final report, May 1, 1979-April 30, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Coffer, H.F.

    1982-07-01

    Nine DOE/Industry Forum meetings where the progress of DOE's resource development program was outlined and discussed were planned, organized, conducted, and reported. These nine forum meetings included three meetings of the Drilling and Testing group, two Site Selection meetings, one meeting each of the Legal and Environmental groups and two Overview meetings where the entire DOE program was discussed. Summaries of each of these meetings are included and the progress of DOE's geopressured geothermal resource evaluation program from its early beginnings to demonstration of the tremendous size and widespread availability of this supplementary energy resource are shown. Attendees at the meetings represented a broad cross section of state and federal agencies and potential users and developers of this large energy source. Attendance at meetings averages 50 to 80 with the most interest shown at meetings where reservoir testing results were discussed. In addition to the forums 16 newsletters were prepared and distributed to all participants. These were instituted to keep industry apprised of the latest developments in this DOE resource evaluation program. Three additional studies were carried out for DOE under this contract: a reservoir continuity study, a survey of gas stripping operations, and the development of a lease agreement for design well prospects.

  10. Montana geothermal commercialization planning. Semi-annual progress report, January 1, 1979-June 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Birkby, J.; Brown, K.; Chapman, M.

    1979-06-01

    Area development plans were prepared which describe geothermal resources and their potential use on a county or multicounty basis. Development plans for two areas are presented. Cost analyses show that the proximity of the geothermal resource to the end user is the most important criterion in geothermal energy development. Thirteen tentative site-specific plans are being revised. The analysis of institutional factors affecting geothermal development, the outreach, and the state geothermal are discussed briefly. (MHR)

  11. Building Opportunities for Environmental Education Through Student Development of Cyberinfrastructure

    Science.gov (United States)

    Moysey, S. M.; Boyer, D. M.; Mobley, C.; Byrd, V. L.

    2014-12-01

    It is increasingly common to utilize simulations and games in the classroom, but learning opportunities can also be created by having students construct these cyberinfrastructure resources themselves. We outline two examples of such projects completed during the summer of 2014 within the NSF ACI sponsored REU Site: Research Experiences for Undergraduates in Collaborative Data Visualization Applications at Clemson University (Award 1359223). The first project focuses on the development of immersive virtual reality field trips of geologic sites using the Oculus Rift headset. This project developed a platform which will allow users to navigate virtual terrains derived from real-world data obtained from the US Geological Survey and Google Earth. The system provides users with the ability to partake in an interactive first-person exploration of a region, such as the Grand Canyon, and thus makes an important educational contribution for students without access to these environmental assets in the real world. The second project focused on providing players visual feedback about the sustainability of their practices within the web-based, multiplayer watershed management game Naranpur Online. Identifying sustainability indicators that communicate meaningful information to players and finding an effective way to visualize these data were a primary challenge faced by the student researcher working on this project. To solve this problem the student translated findings from the literature to the context of the game to develop a hierarchical set of relative sustainability criteria to be accessed by players within a sustainability dashboard. Though the REU focused on visualization, both projects forced the students to transform their thinking to address higher-level questions regarding the utilization and communication of environmental data or concepts, thus enhancing the educational experience for themselves and future students.

  12. Development of Knowledge Management Model for Developing the Internal Quality Assurance in Educational Opportunity Expansion Schools

    Science.gov (United States)

    Pradabpech, Pipat; Chantarasombat, Chalard; Sriampai, Anan

    2015-01-01

    This research for: 1) to study the current situation and problem in KM, 2) to develop the KM Model, and 3) to evaluate the finding usage of the KM Model for developing the Internal Quality Assurance of Educational Opportunity Expansion Schools. There were 3 Phases of research implementation. Phase 1: the current situation and problem in KM, was…

  13. Geothermal program overview: Fiscal years 1993--1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The DOE Geothermal Energy Program is involved in three main areas of research: finding and tapping the resource; power generation; and direct use of geothermal energy. This publication summarizes research accomplishments for FY 1993 and 1994 for the following: geophysical and geochemical technologies; slimhole drilling for exploration; resource assessment; lost circulation control; rock penetration mechanics; instrumentation; Geothermal Drilling Organization; reservoir analysis; brine injection; hot dry rock; The Geysers; Geothermal Technology Organization; heat cycle research; advanced heat rejection; materials development; and advanced brine chemistry.

  14. NASA funding opportunities for optical fabrication and testing technology development

    Science.gov (United States)

    Stahl, H. Philip

    2013-09-01

    NASA requires technologies to fabricate and test optical components to accomplish its highest priority science missions. The NRC ASTRO2010 Decadal Survey states that an advanced large-aperture UVOIR telescope is required to enable the next generation of compelling astrophysics and exo-planet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. The NRC 2012 NASA Space Technology Roadmaps and Priorities Report states that the highest priority technology in which NASA should invest to `Expand our understanding of Earth and the universe' is next generation X-ray and UVOIR telescopes. Each of the Astrophysics division Program Office Annual Technology Reports (PATR) identifies specific technology needs. NASA has a variety of programs to fund enabling technology development: SBIR (Small Business Innovative Research); the ROSES APRA and SAT programs (Research Opportunities in Space and Earth Science; Astrophysics Research and Analysis program; Strategic Astrophysics Technology program); and several Office of the Chief Technologist (OCT) programs.

  15. Geothermal Progress Monitor report No. 11

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-01

    This issue of the Geothermal Progress Monitor (GPM) is the 11th since the inception of the publication in 1980. It continues to synthesize information on all aspects of geothermal development in this country and abroad to permit identification and quantification of trends in the use of this energy technology. In addition, the GPM is a mechanism for transferring current information on geothermal technology development to the private sector, and, over time, provides a historical record for those interested in the development pathway of the resource. In sum, the Department of Energy makes the GPM available to the many diverse interests that make up the geothermal community for the multiple uses it may serve. This issue of the GPM points up very clearly how closely knit many of those diverse interests have become. It might well be called an international issue'' since many of its pages are devoted to news of geothermal development abroad, to the efforts of the US industry to participate in overseas development, to the support given those efforts by federal and state agencies, and to the formation of the International Geothermal Association (IGA). All of these events indicate that the geothermal community has become truly international in character, an occurrence that can only enhance the future of geothermal energy as a major source of energy supply worldwide. 15 figs.

  16. Innovation versus monopoly: geothermal energy in the West. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bierman, S.L.; Stover, D.F.; Nelson, P.A.; Lamont, W.J.

    1977-07-01

    The following subjects are covered: geothermal energy and its use, electric utilities and the climate for geothermal development, the raw fuels industry and geothermal energy, and government and energy. The role of large petroleum companies and large public utilities is emphasized. (MHR)

  17. Market Analysis of Geothermal Energy for California and Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-10-01

    This is one of the earlier market analyses for geothermal electric power and direct heat. The market for geothermal power was found to be large enough to absorb anticipated developments in California. For direct use, geothermal resources and urban markets in CA and HI are not well collocated.

  18. Near-surface groundwater responses to injection of geothermal wastes

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, S.C.

    1984-06-01

    This report assesses the feasibility of injection as an alternative for geothermal wastewater disposal and analyzes hydrologic controls governing the upward migration of injected fluids. Injection experiences at several geothermal developments are presented including the following: Raft River Valley, Salton Sea, East Mesa, Otake, Hatchobaru, and Ahuachapan geothermal fields.

  19. Mataloko Geothermal Power Plant Development Strategy in order to Maintain the Sustainability of Supply and Demand Electric Energy in Kupang, East Nusa Tenggara (A System Dynamics Framework

    Directory of Open Access Journals (Sweden)

    Addin Aditya

    2017-09-01

    Full Text Available One of Indonesia’s problem as an archipelagic country is unequally electrification ratio, especially in Indonesia eastern region. In 2015, the electrification ratio in Kupang is 58.67%. This figure is far below from Indonesia electrification ratio, which is 88.3%. At present, people of Kupang get their electricity supply from fuel energy power system, which is costly and has a bad impact for environment. Furthermore, Indonesia has many renewable resource that has not been fully utilized and this condition in line with acceleration program of electricity infrastructure development in Indonesia, considering that Kupang has a geothermal potential in Mataloko. This research aims to develop a dynamical model of Mataloko geothermal power plant 1 x 2.5 mw development strategy in Kupang, East Nusa Tenggara from technical and economical aspect. We used system dynamics to modelling the existing electricity condition in Kupang as a base model to develop scenarios. We hope this scenario can be taken as consideration to develop a renewable resource power plant in order to fulfill the electricity demand. The result shows that geothermal potential in Mataloko is feasible to generate an electricity

  20. Geothermal country report of Hungary

    International Nuclear Information System (INIS)

    Ottlik, P.

    1990-01-01

    There is a slow but steady increase in the number of geothermal wells in Hungary. The rate of increase is 3-5 new wells/year. In the last years technical development and the raising of efficiency came to the front in utilization of geothermal energy. Technical development is supported by the state. This paper reports that the main directions were: developing a pump suitable for Hungarian conditions, working out the model of sandy and karstic aquifers for simulation and prediction, and developing new chemicals and methods for treating thermal water