WorldWideScience

Sample records for geostationary operational environmental satellite

  1. NOAA Geostationary Operational Environmental Satellite (GOES) Imager Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Geostationary Operational Environmental Satellite (GOES) series provides continuous measurements of the atmosphere and surface over the Western Hemisphere....

  2. Geostationary Operational Environmental Satellite (GOES) Gyro Temperature Model

    Science.gov (United States)

    Rowe, J. N.; Noonan, C. H.; Garrick, J.

    1996-01-01

    The geostationary Operational Environmental Satellite (GOES) 1/M series of spacecraft are geostationary weather satellites that use the latest in weather imaging technology. The inertial reference unit package onboard consists of three gyroscopes measuring angular velocity along each of the spacecraft's body axes. This digital integrating rate assembly (DIRA) is calibrated and used to maintain spacecraft attitude during orbital delta-V maneuvers. During the early orbit support of GOES-8 (April 1994), the gyro drift rate biases exhibited a large dependency on gyro temperature. This complicated the calibration and introduced errors into the attitude during delta-V maneuvers. Following GOES-8, a model of the DIRA temperature and drift rate bias variation was developed for GOES-9 (May 1995). This model was used to project a value of the DIRA bias to use during the orbital delta-V maneuvers based on the bias change observed as the DIRA warmed up during the calibration. The model also optimizes the yaw reorientation necessary to achieve the correct delta-V pointing attitude. As a result, a higher accuracy was achieved on GOES-9 leading to more efficient delta-V maneuvers and a propellant savings. This paper summarizes the: Data observed on GOES-8 and the complications it caused in calibration; DIRA temperature/drift rate model; Application and results of the model on GOES-9 support.

  3. Differential spacecraft charging on the geostationary operational environmental satellites

    Science.gov (United States)

    Farthing, W. H.; Brown, J. P.; Bryant, W. C.

    1982-01-01

    Subsystems aboard the Geostationary Operational Environmental Satellites 4 and 5 showed instances of anomalous changes in state corresponding to false commands. Evidence linking the anomalous changes to geomagnetic activity, and presumably static discharges generated by spacecraft differential charging induced by substorm particle injection events is presented. The anomalies are shown to be correlated with individual substorms as monitored by stations of the North American Magnetometer Chain. The relative frequency of the anomalies is shown to be a function of geomagnetic activity. Finally a least squares fit to the time delay between substorm initiation and spacecraft anomaly as a function of spacecraft local time is shown to be consistent with injected electron populations with energy in the range 10 keV to 15 keV, in agreement with present understanding of the spacecraft charging mechanism. The spacecraft elements responsible for the differential charging were not satisfactorily identified. That question is currently under investigation.

  4. Geostationary Operational Environmental Satellite (GOES)-8 mission flight experience

    Science.gov (United States)

    Noonan, C. H.; McIntosh, R. J.; Rowe, J. N.; Defazio, R. L.; Galal, K. F.

    1995-05-01

    The Geostationary Operational Environmental Satellite (GOES)-8 spacecraft was launched on April 13, 1994, at 06:04:02 coordinated universal time (UTC), with separation from the Atlas-Centaur launch vehicle occurring at 06:33:05 UTC. The launch was followed by a series of complex, intense operations to maneuver the spacecraft into its geosynchronous mission orbit. The Flight Dynamics Facility (FDF) of the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) was responsible for GOES-8 attitude, orbit maneuver, orbit determination, and station acquisition support during the ascent phase. This paper summarizes the efforts of the FDF support teams and highlights some of the unique challenges the launch team faced during critical GOES-8 mission support. FDF operations experience discussed includes: (1) The abort of apogee maneuver firing-1 (AMF-1), cancellation of AMF-3, and the subsequent replans of the maneuver profile; (2) The unexpectedly large temperature dependence of the digital integrating rate assembly (DIRA) and its effect on GOES-8 attitude targeting in support of perigee raising maneuvers; (3) The significant effect of attitude control thrusting on GOES-8 orbit determination solutions; (4) Adjustment of the trim tab to minimize torque due to solar radiation pressure; and (5) Postlaunch analysis performed to estimate the GOES-8 separation attitude. The paper also discusses some key FDF GOES-8 lessons learned to be considered for the GOES-J launch which is currently scheduled for May 19, 1995.

  5. GHRSST Level 2P Eastern Pacific Regional Skin Sea Surface Temperature from the Geostationary Operational Environmental Satellites (GOES) Imager on the GOES-11 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Geostationary Operational Environmental Satellites (GOES) operated by the United States National Oceanic and Atmospheric Administration (NOAA) support weather...

  6. GHRSST Level 2P West Atlantic Regional Skin Sea Surface Temperature from the Geostationary Operational Environmental Satellites (GOES) Imager on the GOES-12 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Geostationary Operational Environmental Satellites (GOES) operated by the United States National Oceanic and Atmospheric Administration (NOAA) support weather...

  7. GHRSST Level 2P Western Atlantic Regional Skin Sea Surface Temperature from the Geostationary Operational Environmental Satellites (GOES) Imager on the GOES-13 satellite (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Geostationary Operational Environmental Satellites (GOES) operated by the United States National Oceanic and Atmospheric Administration (NOAA) support weather...

  8. GHRSST Level 2P Central Pacific Regional Skin Sea Surface Temperature from the Geostationary Operational Environmental Satellites (GOES) Imager on the GOES-15 satellite (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Geostationary Operational Environmental Satellites (GOES) operated by the United States National Oceanic and Atmospheric Administration (NOAA) support weather...

  9. Derivation and evaluation of land surface temperature from the geostationary operational environmental satellite series

    Science.gov (United States)

    Fang, Li

    The Geostationary Operational Environmental Satellites (GOES) have been continuously monitoring the earth surface since 1970, providing valuable and intensive data from a very broad range of wavelengths, day and night. The National Oceanic and Atmospheric Administration's (NOAA's) National Environmental Satellite, Data, and Information Service (NESDIS) is currently operating GOES-15 and GOES-13. The design of the GOES series is now heading to the 4 th generation. GOES-R, as a representative of the new generation of the GOES series, is scheduled to be launched in 2015 with higher spatial and temporal resolution images and full-time soundings. These frequent observations provided by GOES Image make them attractive for deriving information on the diurnal land surface temperature (LST) cycle and diurnal temperature range (DTR). These parameters are of great value for research on the Earth's diurnal variability and climate change. Accurate derivation of satellite-based LSTs from thermal infrared data has long been an interesting and challenging research area. To better support the research on climate change, the generation of consistent GOES LST products for both GOES-East and GOES-West from operational dataset as well as historical archive is in great demand. The derivation of GOES LST products and the evaluation of proposed retrieval methods are two major objectives of this study. Literature relevant to satellite-based LST retrieval techniques was reviewed. Specifically, the evolution of two LST algorithm families and LST retrieval methods for geostationary satellites were summarized in this dissertation. Literature relevant to the evaluation of satellite-based LSTs was also reviewed. All the existing methods are a valuable reference to develop the GOES LST product. The primary objective of this dissertation is the development of models for deriving consistent GOES LSTs with high spatial and high temporal coverage. Proper LST retrieval algorithms were studied

  10. The Geostationary Lightning Mapper (GLM) for the GOES-R Series Next Generation Operational Environmental Satellite Constellation

    Science.gov (United States)

    Goodman, Steven J.; Blakeslee, Richard; Koshak, William; Petersen, Walter; Carey, Larry; Mach, Douglas; Buechler, Dennis; Bateman, Monte; McCaul, Eugene; Bruning, Eric; Albrecht, Rachel; MacGorman, Donald

    2010-01-01

    The next generation Geostationary Operational Environmental Satellite (GOES-R) series with a planned launch in 2015 is a follow on to the existing GOES system currently operating over the Western Hemisphere. The system will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. The system provides products including lightning, cloud properties, rainfall rate, volcanic ash, air quality, hurricane intensity, and fire/hot spot characterization. Advancements over current GOES include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved spectral, spatial, and temporal resolution for the 16-channel Advanced Baseline Imager (ABI). The Geostationary Lightning Mapper (GLM), an optical transient detector will map total (in-cloud and cloud-to-ground) lightning flashes continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions, from the west coast of Africa (GOES-E) to New Zealand (GOES-W) when the constellation is fully operational. In parallel with the instrument development, a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the higher level algorithms and applications using the GLM alone and decision aids incorporating information from the ABI, ground-based weather radar, and numerical models. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional lightning networks are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. Real time total lightning mapping data are also being provided in an experimental mode to selected National Weather Service (NWS) national centers and forecast offices via

  11. Analysing the Advantages of High Temporal Resolution Geostationary MSG SEVIRI Data Compared to Polar Operational Environmental Satellite Data for Land Surface Monitoring in Africa

    Science.gov (United States)

    Fensholt, R.; Anyamba, A.; Huber, S.; Proud, S. R.; Tucker, C. J.; Small, J.; Pak, E.; Rasmussen, M. O.; Sandholt, I.; Shisanya, C.

    2011-01-01

    Since 1972, satellite remote sensing of the environment has been dominated by polar-orbiting sensors providing useful data for monitoring the earth s natural resources. However their observation and monitoring capacity are inhibited by daily to monthly looks for any given ground surface which often is obscured by frequent and persistent cloud cover creating large gaps in time series measurements. The launch of the Meteosat Second Generation (MSG) satellite into geostationary orbit has opened new opportunities for land surface monitoring. The Spinning Enhanced Visible and Infrared Imager (SEVIRI) instrument on-board MSG with an imaging capability every 15 minutes which is substantially greater than any temporal resolution that can be obtained from existing polar operational environmental satellites (POES) systems currently in use for environmental monitoring. Different areas of the African continent were affected by droughts and floods in 2008 caused by periods of abnormally low and high rainfall, respectively. Based on the effectiveness of monitoring these events from Earth Observation (EO) data the current analyses show that the new generation of geostationary remote sensing data can provide higher temporal resolution cloud-free (less than 5 days) measurements of the environment as compared to existing POES systems. SEVIRI MSG 5-day continental scale composites will enable rapid assessment of environmental conditions and improved early warning of disasters for the African continent such as flooding or droughts. The high temporal resolution geostationary data will complement existing higher spatial resolution polar-orbiting satellite data for various dynamic environmental and natural resource applications of terrestrial ecosystems.

  12. Smaller Satellite Operations Near Geostationary Orbit

    Science.gov (United States)

    2007-09-01

    Hubble_Space_Telescope>. 29 Heiner Klinkrad . Space Debris: Models and Risk Analysis. Chichester, UK. Springer, 2006. 32. 31 threshold, the satellites would be...Heiner Klinkrad . Space Debris: Models and Risk Analysis. Chichester, UK. Springer, 2006. 32. 35 Appendix B. 39 throughout such a maneuver36, which...46 Heiner Klinkrad . Space Debris: Models and Risk Analysis. Chichester, UK. Springer, 2006. 32. 47 S. Kilston. Ikonos-2, Block-1

  13. A High Performance Remote Sensing Product Generation System Based on a Service Oriented Architecture for the Next Generation of Geostationary Operational Environmental Satellites

    Directory of Open Access Journals (Sweden)

    Satya Kalluri

    2015-08-01

    Full Text Available The Geostationary Operational Environmental Satellite (GOES series R, S, T, U (GOES-R will collect remote sensing data at several orders of magnitude compared to legacy missions, 24 × 7, over its 20-year operational lifecycle. A suite of 34 Earth and space weather products must be produced at low latency for timely delivery to forecasters. A ground system (GS has been developed to meet these challenging requirements, using High Performance Computing (HPC within a Service Oriented Architecture (SOA. This approach provides a robust, flexible architecture to support the operational GS as it generates remote sensing products by ingesting and combining data from multiple sources. Test results show that the system meets the key latency and availability requirements for all products.

  14. 47 CFR 25.146 - Licensing and operating authorization provisions for the non-geostationary satellite orbit fixed...

    Science.gov (United States)

    2010-10-01

    ... provisions for the non-geostationary satellite orbit fixed-satellite service (NGSO FSS) in the bands 10.7 GHz... Licensing and operating authorization provisions for the non-geostationary satellite orbit fixed-satellite... submitted for the proposed non-geostationary satellite orbit fixed-satellite service (NGSO FSS) system...

  15. Geostationary Satellite (GOES) Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Visible and Infrared satellite imagery taken from radiometer instruments on SMS (ATS) and GOES satellites in geostationary orbit. These satellites produced...

  16. McIDAS-V: A powerful visualization and data analysis tool for geostationary environmental satellites

    Science.gov (United States)

    Achtor, T. H.; Rink, T.; Straka, W.; Feltz, J.

    2012-12-01

    The University of Wisconsin's Space Science and Engineering Center (SSEC) has been at the forefront in developing data analysis and visualization tools for environmental satellite and other geophysical data. The fifth generation of the Man-computer Interactive Data Access System (McIDAS-V) is a java-based, open-source, freely available system for researchers and algorithm developers that is being adapted and expanded for use with advanced geostationary environmental satellite observations. A key attribute of analysis and visualization systems is access to and display of a large variety of geophysical data. Providing these capabilities for numerous data types provides users with powerful tools for merging information, comparison of products and evaluation. McIDAS-V provides unique capabilities that support creative techniques for developing and evaluating algorithms, visualizing data and products in 4 dimensions, and validating results. For geostationary applications, McIDAS-V provides visualization and analysis support for GOES, MSG, MTSAT and FY2 data. NOAA is supporting the McIDAS-V development program for ABI imagery and products for the GOES-R/S series, which will bring an advanced multi-spectral imager into geostationary orbit. Used together, the geostationary environmental satellites provide the user community with detailed global coverage with rapid update cycles. This poster and demonstration will provide an overview of McIDAS-V with demonstrations of the data acquisition, visualization and analysis tools to support the international geostationary environmental satellite programs. It will also present results from several research projects involving current and future environmental satellites, demonstrating how the McIDAS-V software can be used to acquire satellite and ancillary data, create multi--spectral products using both scripting and interactive data manipulation tools, and evaluate output through on-board validation techniques.;

  17. Geostationary satellites collocation

    CERN Document Server

    Li, Hengnian

    2014-01-01

    Geostationary Satellites Collocation aims to find solutions for deploying a safe and reliable collocation control. Focusing on the orbital perturbation analysis, the mathematical foundations for orbit and control of the geostationary satellite are summarized. The mathematical and physical principle of orbital maneuver and collocation strategies for multi geostationary satellites sharing with the same dead band is also stressed. Moreover, the book presents some applications using the above algorithms and mathematical models to help readers master the corrective method for planning station keeping maneuvers. Engineers and scientists in the fields of aerospace technology and space science can benefit from this book. Hengnian Li is the Deputy Director of State Key Laboratory of Astronautic Dynamics, China.

  18. 47 CFR 25.278 - Additional coordination obligation for non-geostationary and geostationary satellite systems in...

    Science.gov (United States)

    2010-10-01

    ... service for their feeder link operations shall coordinate their operations with licensees of geostationary...-geostationary satellite systems for feeder link operations shall coordinate their operations with the...

  19. Theory of geostationary satellites

    CERN Document Server

    Zee, Chong-Hung

    1989-01-01

    Geostationary or equatorial synchronous satellites are a daily reminder of our space efforts during the past two decades. The nightly television satellite weather picture, the intercontinental telecommunications of television transmissions and telephone conversations, and the establishrnent of educational programs in remote regions on Earth are constant reminders of the presence of these satellites. As used here, the term 'geo­ stationary' must be taken loosely because, in the long run, the satellites will not remain 'stationary' with respect to an Earth-fixed reference frame. This results from the fact that these satellites, as is true for all satellites, are incessantly subject to perturbations other than the central-body attraction of the Earth. Among the more predominant pertur­ bations are: the ellipticity of the Earth's equator, the Sun and Moon, and solar radiation pressure. Higher harmonics of the Earth's potential and tidal effects also influence satellite motion, but they are of second­ order whe...

  20. Analysing the advantages of high temporal resolution geostationary MSG SEVIRI data compared to Polar operational environmental satellite data for land surface monitoring in Africa

    DEFF Research Database (Denmark)

    Fensholt, Rasmus; Anyamba, Assaf; Huber Gharib, Silvia

    2011-01-01

    Since 1972, satellite remote sensing of the environment has been dominated by polar-orbiting sensors providing useful data for monitoring the earth’s natural resources. However their observation and monitoring capacity are inhibited by daily to monthly looks for any given ground surface which oft...

  1. Implementation and Test of the Automatic Flight Dynamics Operations for Geostationary Satellite Mission

    Science.gov (United States)

    Park, Sangwook; Lee, Young-Ran; Hwang, Yoola; Javier Santiago Noguero Galilea

    2009-12-01

    This paper describes the Flight Dynamics Automation (FDA) system for COMS Flight Dynamics System (FDS) and its test result in terms of the performance of the automation jobs. FDA controls the flight dynamics functions such as orbit determination, orbit prediction, event prediction, and fuel accounting. The designed FDA is independent from the specific characteristics which are defined by spacecraft manufacturer or specific satellite missions. Therefore, FDA could easily links its autonomous job control functions to any satellite mission control system with some interface modification. By adding autonomous system along with flight dynamics system, it decreases the operator’s tedious and repeated jobs but increase the usability and reliability of the system. Therefore, FDA is used to improve the completeness of whole mission control system’s quality. The FDA is applied to the real flight dynamics system of a geostationary satellite, COMS and the experimental test is performed. The experimental result shows the stability and reliability of the mission control operations through the automatic job control.

  2. Evaluation of Land Surface Temperature Operationally Retrieved from Korean Geostationary Satellite (COMS Data

    Directory of Open Access Journals (Sweden)

    A-Ra Cho

    2013-08-01

    Full Text Available We evaluated the precision of land surface temperature (LST operationally retrieved from the Korean multipurpose geostationary satellite, Communication, Ocean and Meteorological Satellite (COMS. The split-window (SW-type retrieval algorithm was developed through radiative transfer model simulations under various atmospheric profiles, satellite zenith angles, surface emissivity values and surface lapse rate conditions using Moderate Resolution Atmospheric Transmission version 4 (MODTRAN4. The estimation capabilities of the COMS SW (CSW LST algorithm were evaluated for various impacting factors, and the retrieval accuracy of COMS LST data was evaluated with collocated Moderate Resolution Imaging Spectroradiometer (MODIS LST data. The surface emissivity values for two SW channels were generated using a vegetation cover method. The CSW algorithm estimated the LST distribution reasonably well (averaged bias = 0.00 K, Root Mean Square Error (RMSE = 1.41 K, correlation coefficient = 0.99; however, the estimation capabilities of the CSW algorithm were significantly impacted by large brightness temperature differences and surface lapse rates. The CSW algorithm reproduced spatiotemporal variations of LST comparing well to MODIS LST data, irrespective of what month or time of day the data were collected from. The one-year evaluation results with MODIS LST data showed that the annual mean bias, RMSE and correlation coefficient for the CSW algorithm were −1.009 K, 2.613 K and 0.988, respectively.

  3. Downburst Prediction Applications of Meteorological Geostationary Satellites

    CERN Document Server

    Pryor, Kenneth L

    2014-01-01

    A suite of products has been developed and evaluated to assess hazards presented by convective storm downbursts derived from the current generation of Geostationary Operational Environmental Satellite (GOES) (13-15). The existing suite of GOES downburst prediction products employs the GOES sounder to calculate risk based on conceptual models of favorable environmental profiles for convective downburst generation. A diagnostic nowcasting product, the Microburst Windspeed Potential Index (MWPI), is designed to infer attributes of a favorable downburst environment: 1) the presence of large convective available potential energy (CAPE), and 2) the presence of a surface-based or elevated mixed layer with a steep temperature lapse rate and vertical relative humidity gradient. These conditions foster intense convective downdrafts upon the interaction of sub-saturated air in the elevated or sub-cloud mixed layer with the storm precipitation core. This paper provides an updated assessment of the MWPI algorithm, present...

  4. A preliminary study on dead geostationary satellite removal

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The collision between satellites IRIDIUM 33 and COSMOS 2251 indicated that the clash of two on-orbit satellites was becoming an inevitable reality. Our calculation with the two-line orbit element by NORAD showed that some two geostationary satellites had approached very close in July 2009. Therefore, more attention should be given to avoid such collisions. This paper analyzes the orbital long-term variation of a dead satellite drifting in the geostationary orbit. Also, the negative effects posed by dead satellites upon the on-orbit operational geostationary satellites are studied. Then the paper proposes a novel idea to launch a satellite sweeper whose purpose is to collect the on-orbit dead satellites and help them de-orbit to a "graveyard". The satellite sweeper consists of a parent satellite and a child satellite. The child satellite collects a dead satellite and transfers it to a higher orbit. The parent satellite stationed in the geostationary orbit is in charge of refueling the child satellite. The strategy of maneuver and rendezvous is presented and a series of formulas are derived. The analysis results show that our method to clean the geostationary orbital zone is practical and fuel-saving. With the help of just a few satellite sweepers, we can gain a clean environment of geostationary orbit environment again.

  5. Multi-day convective-environmental evolution prior to tropical cyclone formation from geostationary satellite measurements

    Science.gov (United States)

    Chang, Minhee; Ho, Chang-Hoi; Park, Myung-Sook

    2016-04-01

    Tropical cyclones (TCs) are developed through persistent latent heating taken from deep convective process. By analyzing aircraft and polar-orbit satellite observations, distinct upper-level warm-core induced by strong updraft was found in pre-TCs while vertically uniform temperature profile is found in non-developers. Precipitation is also broader and more frequent in developing disturbances than in nondeveloping ones. However, large uncertainties remain in determining which disturbance will develop into TC by using observation snap-shots. Here, five-day systematic evolution of deep convection and environments in developing (80) and non-developing (491) disturbances are examined over the western North Pacific for 20072009 by using geostationary satellite observation. Daily, positive tendencies in the hourly time series of the area of the MTSAT-1R infrared (IR) and water vapor (WV) brightness temperature difference intensification was driven only after from Day 3 with rapid increase in relative vorticity and abrupt convective burst. There also exist many non-developing cases with mCB (54 %), which appear to candidates of TC formation as gradually increasing their convective area from Day 1 to Day 4. Due to the initially weak large-scale vorticity, they eventually decay on Day 5. For nondeveloping disturbances without mCB (46%), initially weak large-scale vorticity as well as dry atmosphere resulted in one-time deep convection and decay. Thus, this study suggests that the multiple days of convective burst, which initially accompanies strong low- to mid-troposphere large-scale vorticity, is important in TC formation.

  6. Polar Operational Environmental Satellites: Looking at Earth

    Science.gov (United States)

    Aleman, Roberto M.

    2000-01-01

    A broad overview of the Polar Operational Environmental Satellites (POES) Project is presented at a very high level. A general description of the scientific instruments on the Television Infrared Observational Satellite (TIROS) spacecraft is presented with emphasis put on their mission and the products derived from the data. Actual pictures produced from POES instruments data are shown to help the audience relate our work to their everyday life, as affected by the weather systems.

  7. Polar Operational Environmental Satellites: Looking at Earth

    Science.gov (United States)

    Aleman, Roberto M.

    2000-01-01

    A broad overview of the Polar Operational Environmental Satellites (POES) Project is presented at a very high level. A general description of the scientific instruments on the Television Infrared Observational Satellite (TIROS) spacecraft is presented with emphasis put on their mission and the products derived from the data. Actual pictures produced from POES instruments data are shown to help the audience relate our work to their everyday life, as affected by the weather systems.

  8. Developing Geostationary Satellite Imaging at Lowell Observatory

    Science.gov (United States)

    van Belle, G.

    2016-09-01

    Lowell Observatory operates the Navy Precision Optical Interferometer (NPOI), and owns & operates the Discovery Channel Telescope (DCT). This unique & necessary combination of facilities positions Lowell to develop a robust program of observing geostationary, GPS-plane, and other high-altitude (&1000mi) satellites. NPOI is a six-beam long-baseline optical interferometer, located in Flagstaff, Arizona; the facility is supported by a partnership between Lowell Observatory, the US Naval Observatory, and the Naval Research Laboratory. NPOI operates year-round in the visible with baselines between 8 and 100 meters (up to 432m is available), conducting programs of astronomical research and imaging technology development. NPOI is the only such facility as yet to directly observe geostationary satellites, enabling milliarcsecond resolution of these objects. To enhance this capability towards true imaging of geosats, an ongoing program of facility upgrades will be outlined. These upgrades include AO-assisted 1.0-m apertures feeding each beam line, and new near-infrared instrumentation on the back end. The large apertures will enable `at-will' observations of objects brighter than mK = 8:3 in the near-IR, corresponding to brighter than mV = 11:3 in the visible. At its core, the system is enabled by a `wavelength-baseline bootstrapping' approach discussed herein. A complementary pilot imaging study of visible speckle and aperture masked imaging at Lowell's 4.3-m DCT, for constraining the low-spatial frequency imaging information, is also outlined.

  9. Monitoring Snow Using Geostationary Satellite Retrievals During the SAAWSO Project

    Science.gov (United States)

    Rabin, Robert M.; Gultepe, Ismail; Kuligowski, Robert J.; Heidinger, Andrew K.

    2016-09-01

    The SAAWSO (Satellite Applications for Arctic Weather and SAR (Search And Rescue) Operations) field programs were conducted by Environment Canada near St. Johns, NL and Goose Bay, NL in the winters of 2012-13 and 2013-14, respectively. The goals of these programs were to validate satellite-based nowcasting products, including snow amount, wind intensity, and cloud physical parameters (e.g., cloud cover), over northern latitudes with potential applications to Search And Rescue (SAR) operations. Ground-based in situ sensors and remote sensing platforms were used to measure microphysical properties of precipitation, clouds and fog, radiation, temperature, moisture and wind profiles. Multi-spectral infrared observations obtained from Geostationary Operational Environmental Satellite (GOES)-13 provided estimates of cloud top temperature and height, phase (water, ice), hydrometer size, extinction, optical depth, and horizontal wind patterns at 15 min intervals. In this work, a technique developed for identifying clouds capable of producing high snowfall rates and incorporating wind information from the satellite observations is described. The cloud top physical properties retrieved from operational satellite observations are validated using measurements obtained from the ground-based in situ and remote sensing platforms collected during two precipitation events: a blizzard heavy snow storm case and a moderate snow event. The retrieved snow precipitation rates are found to be comparable to those of ground-based platform measurements in the heavy snow event.

  10. Astrometry and Geostationary Satellites in Venezuela

    Science.gov (United States)

    Lacruz, E.; Abad, C.

    2015-10-01

    We present the current status and the first results of the astrometric project CIDA - ABAE for tracking geo-stationary satellites. This project aims to determine a preliminary orbit for the Venezuelan satellite VENESAT-1, using astrometric positions obtained from an optical telescope. The results presented here are based on observations from the Luepa space tracking ground station in Venezuela, which were processed using astrometric procedures.

  11. Operational retrieval of Asian sand and dust storm from FY-2C geostationary meteorological satellite and its application to real time forecast in Asia

    Directory of Open Access Journals (Sweden)

    T. Niu

    2008-03-01

    Full Text Available This paper describes an operational retrieval algorithm for the sand/dust storm (SDS from FY-2C/S-VISSR (Stretched-Visible and Infrared Spin-Scan Radiometer developed at the National Satellite Meteorological Center (NSMC of China. This algorithm, called Dust Retrieval Algorithm based on Geostationary Imager (DRAGI, is based on the optical and radiative physical properties of SDS in mid-infrared and thermal infrared spectral regions as well as the observation of all bands in the geostationary imager, which include the Brightness Temperature Difference (BTD in split window channels, Infrared Difference Dust Index (IDDI and the ratio of middle infrared reflectance to visible reflectance. It also combines the visible and water vapor bands observation of the geostationary imager to identify the dust clouds from the surface targets and meteorological clouds. The output product is validated by and related to other dust aerosol observations such as the synoptic weather reports, surface visibility, aerosol optical depth (AOD and ground-based PM10 observations. Using the SDS-IDD product and a data assimilation scheme, the dust forecast model CUACE/Dust achieved a substantial improvement to the SDS predictions in spring 2006.

  12. Frequent Rain Observation From Geostationary Satellite

    Science.gov (United States)

    Bizzarri, B.; Gomas Science Team

    The target 3-h observing cycle of GPM will meet requirements from Global NWP and, to a large extent, Regional NWP; and be supportive of VIS/IR-derived rain estimates from geostationary satellites for the purpose of Nowcasting. MW rain observation from geostationary orbit at, say, 15 min intervals, would fully meet Regional NWP requirements and have greatest impact on Nowcasting: but this implies either unprac- tically large antennas or unacceptably coarse resolution. Concepts to overcome this problem have been developed in the US within the study called GEM (Geostationary Microwave Observatory), and now there is in Europe a proposal for a demonstration satellite submitted to ESA as GOMAS (Geostationary Observatory for Microwave Atmospheric Sounding). To overcome the problem of resolution, use of Sub-mm fre- quencies is envisaged: e.g., at 425 GHz, a 10-km resolution at nadir would require a 3-m antenna. The observing principle is based on the use of absorption bands of oxygen (54, 118 and 425 GHz) and of water vapour (183 and 380 GHz). Narrow- bandwidths channels are implemented (for a total of about 40 in the five bands) so as to observe the full profile of temperature and water vapour. Profiles from different bands are differently affected by liquid and ice water of different drop size, and fi- nally by precipitation. Simultaneous retrieval of temperature/humidity profiles, cloud liquid/ice water (total-columns and gross profile) and precipitation rate is in principle possible, and partially demonstrated by several airborne MW/Sub-mm instruments. To transfer this demonstrations in the geostationary orbit, the problem of radiometric sensitivity (additional to that one of the antenna size) has to be solved. With current technology, it is feasible to get sufficient accuracy if scan is limited to about 1/12 of the Earth disk, which is sufficient to abundantly cover Europe, the Mediterranean and Eastern Atlantic. The imaged area can be moved everywhere within the disk

  13. 47 CFR 101.145 - Interference to geostationary-satellites.

    Science.gov (United States)

    2010-10-01

    ... in the bands 2655-2690 MHz, 5925-7075 MHz, and 12.7-13.25 GHz on board geostationary-space stations... in these bands on board geostationary space stations. (b) 2655 to 2690 MHz and 5925 to 7075 MHz. No... degrees of the geostationary-satellite orbit, taking into account atmospheric refraction....

  14. NOAA Polar-orbiting Operational Environmental Satellites (POES) Radiometer Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Polar-orbiting Operational Environmental Satellite (POES) series offers the advantage of daily global coverage, by making nearly polar orbits 14 times per day...

  15. 47 CFR 25.261 - Procedures for avoidance of in-line interference events for Non Geostationary Satellite Orbit...

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Procedures for avoidance of in-line interference events for Non Geostationary Satellite Orbit (NGSO) Satellite Network Operations in the Fixed... avoidance of in-line interference events for Non Geostationary Satellite Orbit (NGSO) Satellite...

  16. Analysis of Specular Reflections Off Geostationary Satellites

    Science.gov (United States)

    Jolley, A.

    2016-09-01

    Many photometric studies of artificial satellites have attempted to define procedures that minimise the size of datasets required to infer information about satellites. However, it is unclear whether deliberately limiting the size of datasets significantly reduces the potential for information to be derived from them. In 2013 an experiment was conducted using a 14 inch Celestron CG-14 telescope to gain multiple night-long, high temporal resolution datasets of six geostationary satellites [1]. This experiment produced evidence of complex variations in the spectral energy distribution (SED) of reflections off satellite surface materials, particularly during specular reflections. Importantly, specific features relating to the SED variations could only be detected with high temporal resolution data. An update is provided regarding the nature of SED and colour variations during specular reflections, including how some of the variables involved contribute to these variations. Results show that care must be taken when comparing observed spectra to a spectral library for the purpose of material identification; a spectral library that uses wavelength as the only variable will be unable to capture changes that occur to a material's reflected spectra with changing illumination and observation geometry. Conversely, colour variations with changing illumination and observation geometry might provide an alternative means of determining material types.

  17. Development of the European Small Geostationary Satellite SGEO

    Science.gov (United States)

    Lübberstedt, H.; Schneider, A.; Schuff, H.; Miesner, Th.; Winkler, A.

    2008-08-01

    The SGEO product portfolio, ranging from Satellite platform delivery up to in-orbit delivery of a turnkey system including satellite and ground control station, is designed for applications ranging from TV Broadcast to multimedia applications, Internet access, mobile or fixed services in a wide range of frequency bands. Furthermore, Data Relay missions such as the European Data Relay Satellite (EDRS) as well as other institutional missions are targeted. Key design features of the SGEO platform are high flexibility and modularity in order to accommodate a very wide range of future missions, a short development time below two years and the objective to build the system based on ITAR free subsystems and components. The system will provide a long lifetime of up to 15 years in orbit operations with high reliability. SGEO is the first European satellite to perform all orbit control tasks solely by electrical propulsion (EP). This design provides high mass efficiency and the capability for direct injection into geostationary orbit without chemical propulsion (CP). Optionally, an Apogee Engine Module based on CP will provide the perigee raising manoeuvres in case of a launch into geostationary transfer orbit (GTO). This approach allows an ideal choice out of a wide range of launcher candidates in dependence of the required payload capacity. SGEO will offer to the market a versatile and high performance satellite system with low investment risk for the customer and a short development time. This paper provides an overview of the SGEO system key features and the current status of the SGEO programme.

  18. Geostationary Atmospheric Observation Satellite Plan in Japan (Invited)

    Science.gov (United States)

    Akimoto, H.; Kasai, Y.; Kita, K.; Irie, H.; Sagi, K.; Hayashida, S.

    2009-12-01

    As emissions of air pollutants in Asia have increased in the past decades accompanying with rapid economic growth of developing countries, Asian regional air pollution has attracted concern from the view of inter-continental and intra-continental long-range transport as well as domestic air quality. Particularly in Japan, transboundary transport of ozone is of recent social concern as one of a cause of increasing trend of near surface ozone concentration. In order to elucidate the transport and chemical transformation processes of air pollution in East Asia, and to attain internationally common understanding on this issue, geostationary atmospheric observation satellite has been proposed in Japan. In 2006, the Japan Society of Atmospheric Chemistry (JSAC) formed Commission on the Atmospheric Environmental Observation Satellite to initiate the discussion. In 2009, Committee on Geostationary Atmospheric Observation Satellite has been formed within JAXA to promote the plan. The proposed satellite consists of a UV/VIS sensor for O3, NO2, HCHO and AOT, and a MIR sensor for O3, CO, HNO3, NO2, H2O and temperature. Targeted spatial and temporal resolutions are ca.10 km and 1-2 hrs, respectively, and focused observation area is northeast Asia potentially covering the southeast and south Asia. Sensitivity analysis and simulation have been made for both the UV/VIS and MIR sensors. Overview of user requirement and the sensitivity analysis for each species will be presented in this talk.

  19. Near-real-time global biomass burning emissions product from geostationary satellite constellation

    Science.gov (United States)

    Zhang, Xiaoyang; Kondragunta, Shobha; Ram, Jessica; Schmidt, Christopher; Huang, Ho-Chun

    2012-07-01

    Near-real-time estimates of biomass burning emissions are crucial for air quality monitoring and forecasting. We present here the first near-real-time global biomass burning emission product from geostationary satellites (GBBEP-Geo) produced from satellite-derived fire radiative power (FRP) for individual fire pixels. Specifically, the FRP is retrieved using WF_ABBA V65 (wildfire automated biomass burning algorithm) from a network of multiple geostationary satellites. The network consists of two Geostationary Operational Environmental Satellites (GOES) which are operated by the National Oceanic and Atmospheric Administration, the Meteosat second-generation satellites (Meteosat-09) operated by the European Organisation for the Exploitation of Meteorological Satellites, and the Multifunctional Transport Satellite (MTSAT) operated by the Japan Meteorological Agency. These satellites observe wildfires at an interval of 15-30 min. Because of the impacts from sensor saturation, cloud cover, and background surface, the FRP values are generally not continuously observed. The missing observations are simulated by combining the available instantaneous FRP observations within a day and a set of representative climatological diurnal patterns of FRP for various ecosystems. Finally, the simulated diurnal variation in FRP is applied to quantify biomass combustion and emissions in individual fire pixels with a latency of 1 day. By analyzing global patterns in hourly biomass burning emissions in 2010, we find that peak fire season varied greatly and that annual wildfires burned 1.33 × 1012 kg dry mass, released 1.27 × 1010 kg of PM2.5 (particulate mass for particles with diameter forest and savanna fires in Africa, South America, and North America. Evaluation of emission result reveals that the GBBEP-Geo estimates are comparable with other FRP-derived estimates in Africa, while the results are generally smaller than most of the other global products that were derived from burned

  20. Implications of outer-zone radiations on operations in the geostationary region utilizing the AE4 environmental model

    Science.gov (United States)

    Wilson, J. W.; Denn, F. M.

    1977-01-01

    The radiation exposure in the region of geostationary orbits is examined in search for means of optimizing human performance. It is found that the use of slightly inclined circular orbits is one means by which exposure and spacesuit thickness requirements can be reduced. Another effective technique is to limit the extravehicular activity to those days when the short term fluctuations result in low exposure. Space-suit shielding approaching 1/2 sq cm or less may be possible by utilizing work stoppages and inclined orbits. If aluminum and other low-atomic-number materials are used to construct the habitat, then excessive wall thicknesses are required. If special bremsstrahlung shielding is used, then the habitat shield may be reduced to as low as 2 g/sq cm. Numerous tables and graphs are presented for future analysis of dose in the geostationary region.

  1. Astrometric positioning and orbit determination of geostationary satellites

    Science.gov (United States)

    Montojo, F. J.; López Moratalla, T.; Abad, C.

    2011-03-01

    In the project titled “Astrometric Positioning of Geostationary Satellite” (PASAGE), carried out by the Real Instituto y Observatorio de la Armada (ROA), optical observation techniques were developed to allow satellites to be located in the geostationary ring with angular accuracies of up to a few tenths of an arcsec. These techniques do not necessarily require the use of large telescopes or especially dark areas, and furthermore, because optical observation is a passive method, they could be directly applicable to the detection and monitoring of passive objects such as space debris in the geostationary ring.By using single-station angular observations, geostationary satellite orbits with positional uncertainties below 350 m (2 sigma) were reconstructed using the Orbit Determination Tool Kit software, by Analytical Graphics, Inc. This software is used in collaboration with the Spanish Instituto Nacional de Técnica Aeroespacial.Orbit determination can be improved by taking into consideration the data from other stations, such as angular observations alone or together with ranging measurements to the satellite. Tests were carried out combining angular observations with the ranging measurements obtained from the Two-Way Satellite Time and Frequency Transfer technique that is used by ROA’s Time Section to carry out time transfer with other laboratories. Results show a reduction of the 2 sigma uncertainty to less than 100 m.

  2. The National Polar-orbiting Operational Environmental Satellite System

    Science.gov (United States)

    Bloom, H.

    The tri-agency Integrated Program Office (IPO) is responsible for managing the development of the National Polar-orbiting Operational Environmental Satellite System (NPOESS). NPOESS will replace the current military and civilian operational polar-orbiting ``weather'' satellites. The Northrop Grumman Space Technology - Raytheon team was competitively selected in 2002 as the Acquisition and Operations contractor team to develop, integrate, deploy, and operate NPOESS satellites to meet the tri-agency user requirements for NPOESS over the 10-year (2009-2018) operational life of the program. Beginning in 2009, NPOESS spacecraft will be launched into three orbital planes to provide significantly improved operational capabilities and benefits to satisfy critical civil and national security requirements for space-based, remotely sensed environmental data. With the development of NPOESS, we are evolving operational ``weather'' satellites into integrated environmental observing systems by expanding our capabilities to observe, assess, and predict the total Earth system - atmosphere, ocean, land, and the space environment. In recent years, the operational weather forecasting and climate science communities have levied more rigorous requirements on space-based observations of the Earth's system that have significantly increased demands on performance of the instruments, spacecraft, and ground systems required to deliver NPOESS data, products, and information to end users. The ``end-to-end'' system consists of: the spacecraft; instruments and sensors on the spacecraft; launch support capabilities; the command, control, communications, and data routing infrastructure; and data processing hardware and software. NPOESS will observe significantly more phenomena simultaneously from space than its operational predecessors. NPOESS is expected to deliver large volumes of more accurate measurements at higher spatial (horizontal and vertical) and temporal resolution at much higher data

  3. Laser experiments in light cloudiness with the geostationary satellite ARTEMIS

    Science.gov (United States)

    Kuzkov, V.; Kuzkov, S.; Sodnik, Z.

    2016-08-01

    The geostationary satellite ARTEMIS was launched in July 2001. The satellite is equipped with a laser communication terminal, which was used for the world's first inter-satellite laser communication link between ARTEMIS and the low earth orbit satellite SPOT-4. Ground-to-space laser communication experiments were also conducted under various atmospheric conditions involving ESA's optical ground station. With a rapidly increasing volume of information transferred by geostationary satellites, there is a rising demand for high-speed data links between ground stations and satellites. For ground-to-space laser communications there are a number of important design parameters that need to be addressed, among them, the influence of atmospheric turbulence in different atmospheric conditions and link geometries. The Main Astronomical Observatory of NAS of Ukraine developed a precise computer tracking system for its 0.7 m AZT-2 telescope and a compact laser communication package LACES (Laser Atmosphere and Communication experiments with Satellites) for laser communication experiments with geostationary satellites. The specially developed software allows computerized tracking of the satellites using their orbital data. A number of laser experiments between MAO and ARTEMIS were conducted in partial cloudiness with some amount of laser light observed through clouds. Such conditions caused high break-up (splitting) of images from the laser beacon of ARTEMIS. One possible explanation is Raman scattering of photons on molecules of a water vapor in the atmosphere. Raman scattering causes a shift in a wavelength of the photons.In addition, a different value for the refraction index appears in the direction of the meridian for the wavelength-shifted photons. This is similar to the anomalous atmospheric refraction that appears at low angular altitudes above the horizon. We have also estimated the atmospheric attenuation and the influence of atmospheric turbulence on observed results

  4. Photometrical research geostationary satellite "SBIRS GEO-2"

    Science.gov (United States)

    Sukhov, P. P.; Epishev, V. P; Sukhov, K. P; Kudak, V. I.

    The multicolor photometrical observations GSS "Sbirs Geo-2" were carried in B,V,R filters out during the autumn equinox 2014 and spring 2015 y. Periodic appearance of many light curves and dips of mirror reflections suggests that the GSS was not in orbit in a static position, predetermined three-axis orientation and in dynamic motion. On the basis of computer modeling suggests the following dynamics GSS "Sbirs Geo-2" in orbit. Helically scanning the visible Earth's surface infrared satellite sensors come with period P1 = 15.66 sec. and the rocking of the GSS about the direction of the motion vector of the satellite in orbit with P2 = 62.64 sec., most likely with the purpose to survey the greatest possible portion of the earth's surface.

  5. Post launch calibration and testing of the Geostationary Lightning Mapper on GOES-R satellite

    Science.gov (United States)

    Rafal, Marc; Clarke, Jared T.; Cholvibul, Ruth W.

    2016-05-01

    The Geostationary Operational Environmental Satellite R (GOES-R) series is the planned next generation of operational weather satellites for the United States National Oceanic and Atmospheric Administration (NOAA). The National Aeronautics and Space Administration (NASA) is procuring the GOES-R spacecraft and instruments with the first launch of the GOES-R series planned for October 2016. Included in the GOES-R Instrument suite is the Geostationary Lightning Mapper (GLM). GLM is a single-channel, near-infrared optical detector that can sense extremely brief (800 μs) transient changes in the atmosphere, indicating the presence of lightning. GLM will measure total lightning activity continuously over the Americas and adjacent ocean regions with near-uniform spatial resolution of approximately 10 km. Due to its large CCD (1372x1300 pixels), high frame rate, sensitivity and onboard event filtering, GLM will require extensive post launch characterization and calibration. Daytime and nighttime images will be used to characterize both image quality criteria inherent to GLM as a space-based optic system (focus, stray light, crosstalk, solar glint) and programmable image processing criteria (dark offsets, gain, noise, linearity, dynamic range). In addition ground data filtering will be adjusted based on lightning-specific phenomenology (coherence) to isolate real from false transients with their own characteristics. These parameters will be updated, as needed, on orbit in an iterative process guided by pre-launch testing. This paper discusses the planned tests to be performed on GLM over the six-month Post Launch Test period to optimize and demonstrate GLM performance.

  6. ARM Radiosondes for National Polar-Orbiting Operational Environmental Satellite System Preparatory Project Validation Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Borg, Lori [Univ. of Wisconsin, Madison, WI (United States); Tobin, David [Univ. of Wisconsin, Madison, WI (United States); Reale, Anthony [National Oceanic and Atmospheric Administration (NOAA), Washington, DC (United States); Knuteson, Robert [Univ. of Wisconsin, Madison, WI (United States); Feltz, Michelle [Univ. of Wisconsin, Madison, WI (United States); Liu, Mark [National Oceanic and Atmospheric Administration (NOAA), Washington, DC (United States); Holdridge, Donna J [Argonne National Lab. (ANL), Argonne, IL (United States); Mather, James [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-06-01

    This IOP has been a coordinated effort involving the U.S. Department of Energy (DOE) Atmospheric Radiation (ARM) Climate Research Facility, the University of Wisconsin (UW)-Madison, and the JPSS project to validate SNPP NOAA Unique Combined Atmospheric Processing System (NUCAPS) temperature and moisture sounding products from the Cross-track Infrared Sounder (CrIS) and the Advanced Technology Microwave Sounder (ATMS). In this arrangement, funding for radiosondes was provided by the JPSS project to ARM. These radiosondes were launched coincident with the SNPP satellite overpasses (OP) at four of the ARM field sites beginning in July 2012 and running through September 2017. Combined with other ARM data, an assessment of the radiosonde data quality was performed and post-processing corrections applied producing an ARM site Best Estimate (BE) product. The SNPP targeted radiosondes were integrated into the NOAA Products Validation System (NPROVS+) system, which collocated the radiosondes with satellite products (NOAA, National Aeronautics and Space Administration [NASA], European Organisation for the Exploitation of Meteorological Satellites [EUMETSAT], Geostationary Operational Environmental Satellite [GOES], Constellation Observing System for Meteorology, Ionosphere, and Climate [COSMIC]) and Numerical Weather Prediction (NWP forecasts for use in product assessment and algorithm development. This work was a fundamental, integral, and cost-effective part of the SNPP validation effort and provided critical accuracy assessments of the SNPP temperature and water vapor soundings.

  7. Efficient medium access control protocol for geostationary satellite systems

    Institute of Scientific and Technical Information of China (English)

    王丽娜; 顾学迈

    2004-01-01

    This paper proposes an efficient medium access control (MAC) protocol based on multifrequency-time division multiple access (MF-TDMA) for geostationary satellite systems deploying multiple spot-beams and onboard processing,which uses a method of random reservation access with movable boundaries to dynamically request the transmission slots and can transmit different types of traffic. The simulation results have shown that our designed MAC protocol can achieve a high bandwidth utilization, while providing the required quality of service (QoS) for each class of service.

  8. Effect of Ionosphere on Geostationary Communication Satellite Signals

    Science.gov (United States)

    Erdem, Esra; Arikan, Feza; Gulgonul, Senol

    2016-07-01

    Geostationary orbit (GEO) communications satellites allow radio, television, and telephone transmissions to be sent live anywhere in the world. They are extremely important in daily life and also for military applications. Since, satellite communication is an expensive technology addressing crowd of people, it is critical to improve the performance of this technology. GEO satellites are at 35,786 kilometres from Earth's surface situated directly over the equator. A satellite in a geostationary orbit (GEO) appears to stand still in the sky, in a fixed position with respect to an observer on the earth, because the satellite's orbital period is the same as the rotation rate of the Earth. The advantage of this orbit is that ground antennas can be fixed to point towards to satellite without their having to track the satellite's motion. Radio frequency ranges used in satellite communications are C, X, Ku, Ka and even EHG and V-band. Satellite signals are disturbed by atmospheric effects on the path between the satellite and the receiver antenna. These effects are mostly rain, cloud and gaseous attenuation. It is expected that ionosphere has a minor effect on the satellite signals when the ionosphere is quiet. But there are anomalies and perturbations on the structure of ionosphere with respect to geomagnetic field and solar activity and these conditions may cause further affects on the satellite signals. In this study IONOLAB-RAY algorithm is adopted to examine the effect of ionosphere on satellite signals. IONOLAB-RAY is developed to calculate propagation path and characteristics of high frequency signals. The algorithm does not have any frequency limitation and models the plasmasphere up to 20,200 km altitude, so that propagation between a GEO satellite and antenna on Earth can be simulated. The algorithm models inhomogeneous, anisotropic and time dependent structure of the ionosphere with a 3-D spherical grid geometry and calculates physical parameters of the

  9. Normalization and calibration of geostationary satellite radiances for the International Satellite Cloud Climatology Project

    Science.gov (United States)

    Desormeaux, Yves; Rossow, William B.; Brest, Christopher L.; Campbell, G. G.

    1993-01-01

    Procedures are described for normalizing the radiometric calibration of image radiances obtained from geostationary weather satellites that contributed data to the International Satellite Cloud Climatology Project. The key step is comparison of coincident and collocated measurements made by each satellite and the concurrent AVHRR on the 'afternoon' NOAA polar-orbiting weather satellite at the same viewing geometry. The results of this comparison allow transfer of the AVHRR absolute calibration, which has been established over the whole series, to the radiometers on the geostationary satellites. Results are given for Meteosat-2, 3, and 4, for GOES-5, 6, and 7, for GMS-2, 3, and 4 and for Insat-1B. The relative stability of the calibrations of these radiance data is estimated to be within +/- 3 percent; the uncertainty of the absolute calibrations is estimated to be less than 10 percent. The remaining uncertainties are at least two times smaller than for the original radiance data.

  10. Methods of rapid orbit forecasting after maneuvers for geostationary satellites

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A geostationary(GEO) satellite may serve as a navigation satellite,but there is a problem that maneuvers frequently occur and the forces are difficult to model.Based on the technique of determining satellite orbits by transfer,a predicted orbit with high accuracy may be achieved by the method of statis-tical orbit determination in case of no maneuver force.The predicted orbit will soon be invalid after the maneuver starts,and it takes a long time to get a valid orbit after the maneuver ends.In order to improve ephemeris usability,the method of rapid orbit forecasting after maneuvers is studied.First,GEO satellite movement is analyzed in case of maneuvers based on the observation from the orbit meas-urement system by transfer.Then when a GEO satellite is in the free status just after maneuvers,the short arc observation is used to forecast the orbit.It is assumed that the common system bias and biases of each station are constant,which can be obtained from orbit determination with long arc observations.In this way,only 6 orbit elements would be solved by the method of statistical orbit determination,and the ephemeris with high accuracy may be soon obtained.Actual orbit forecasting with short arc observation for SINOSAT-1 satellite shows that,with the tracking network available,the precision of the predicted orbit(RMS of O-C) can reach about 5 m with 15 min arc observation,and about 3 m with 30 min arc observation.

  11. 47 CFR 25.142 - Licensing provisions for the non-voice, non-geostationary mobile-satellite service.

    Science.gov (United States)

    2010-10-01

    ... more than thirty minutes and the cause(s) of such outages; (2) A detailed description of the... information publicly available at the Commission at the time of filing, that they will not cause unacceptable... operate. (2) Applicants for a non-voice, non-geostationary mobile-satellite must identify the power...

  12. Destination directed packet switch architecture for a 30/20 GHz FDMA/TDM geostationary communication satellite network

    Science.gov (United States)

    Ivancic, William D.; Shalkhauser, Mary JO

    1991-01-01

    Emphasis is on a destination directed packet switching architecture for a 30/20 GHz frequency division multiplex access/time division multiplex (FDMA/TDM) geostationary satellite communication network. Critical subsystems and problem areas are identified and addressed. Efforts have concentrated heavily on the space segment; however, the ground segment was considered concurrently to ensure cost efficiency and realistic operational constraints.

  13. Circuit-switch architecture for a 30/20-GHz FDMA/TDM geostationary satellite communications network

    Science.gov (United States)

    Ivancic, William D.

    1992-01-01

    A circuit switching architecture is described for a 30/20 GHz frequency division, multiple access uplink/time division multiplexed downlink (FDMA/TDM) geostationary satellite communications network. Critical subsystems and problem areas are identified and addressed. Work was concentrated primarily on the space segment; however, the ground segment was considered concurrently to ensure cost efficiency and realistic operational constraints.

  14. Destination-directed, packet-switching architecture for 30/20-GHz FDMA/TDM geostationary communications satellite network

    Science.gov (United States)

    Ivancic, William D.; Shalkhauser, Mary JO

    1992-01-01

    A destination-directed packet switching architecture for a 30/20-GHz frequency division multiple access/time division multiplexed (FDMA/TDM) geostationary satellite communications network is discussed. Critical subsystems and problem areas are identified and addressed. Efforts have concentrated heavily on the space segment; however, the ground segment has been considered concurrently to ensure cost efficiency and realistic operational constraints.

  15. Methods of rapid orbit forecasting after maneuvers for geostationary satellites

    Institute of Scientific and Technical Information of China (English)

    YANG XuHai; LI ZhiGang; FENG ChuGang; GUO Ji; SHI HuLi; AI GuoXiang; WU FengLei; QIAO RongChuan

    2009-01-01

    A geostationary (GEO) satellite may serve as a navigation satellite,but there is a problem that maneuvers frequently occur and the forces are difficult to model.Based on the technique of determining setellite orbits by transfer,a predicted orbit with high accuracy may be achieved by the method of statistical orbit determination in case of no maneuver force.The predicted orbit will soon be invalid after the maneuver starts,and it takes a long time to get a valid orbit after the maneuver ends.In order to improve ephemeris usability,the method of rapid orbit forecasting after maneuvers is studied.First,GEO satellite movement is analyzed in case of maneuvers based on the observation from the orbit measurement system by transfer.Then when a GEO satellite is in the free status just after maneuvers,the short arc observation is used to forecast the orbit.It is assumed that the common system bias and biases of each station are constant,which can be obtained from orbit determination with long arc observations.In this way,only 6 orbit elements would be solved by the method of statistical orbit determination,and the ephemeris with high accuracy may be soon obtained.Actual orbit forecasting with short arc observation for SlNOSAT-1 satellite shows that,with the tracking network available,the precision of the predicted orbit (RMS of O-C) can reach about 5 m with 15 min arc observation,and about 3 m with 30 min arc observation.

  16. Fuzzy logic techniques for rendezvous and docking of two geostationary satellites

    Science.gov (United States)

    Ortega, Guillermo

    1995-01-01

    Large assemblings in space require the ability to manage rendezvous and docking operations. In future these techniques will be required for the gradual build up of big telecommunication platforms in the geostationary orbit. The paper discusses the use of fuzzy logic to model and implement a control system for the docking/berthing of two satellites in geostationary orbit. The system mounted in a chaser vehicle determines the actual state of both satellites and generates torques to execute maneuvers to establish the structural latching. The paper describes the proximity operations to collocate the two satellites in the same orbital window, the fuzzy guidance and navigation of the chaser approaching the target and the final Fuzzy berthing. The fuzzy logic system represents a knowledge based controller that realizes the close loop operations autonomously replacing the conventional control algorithms. The goal is to produce smooth control actions in the proximity of the target and during the docking to avoid disturbance torques in the final assembly orbit. The knowledge of the fuzzy controller consists of a data base of rules and the definitions of the fuzzy sets. The knowledge of an experienced spacecraft controller is captured into a set of rules forming the Rules Data Base.

  17. 78 FR 14952 - Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service Geostationary-Orbit...

    Science.gov (United States)

    2013-03-08

    ... From the Federal Register Online via the Government Publishing Office FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 2 Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service Geostationary-Orbit Space Stations AGENCY: Federal Communications Commission. ACTION: Proposed rule....

  18. Technical and economical comparison between a modular geostationary space platform and a cluster of satellites

    Science.gov (United States)

    Molette, P.; Cougnet, C.; Saint-Aubert, Ph.; Young, R. W.; Helas, D.

    In recent years, the identification of a large number of telecommunication missions reflects a growing demand for the provision of a large variety of communications and data transmission services performed by a space segment. At present, communication space segment use a single operational satellite per orbit position. However, the expected increase of communication channels per space segment will lead to a corresponding increase of satellite mass and size which could exceed the capabilities of existing launch vehicles in terms of mass and volume requirements. Those considerations, coupled with the threatening saturation of the geostationary orbit, lead to the conclusion that an optimal space segment concept must be defined on a technical as well as economical point of view. Two main concepts may be envisaged: one is a large platform, which can be assembled either in geostationary orbit (resulting in several launches, rendez-vous and docking), or in low earth orbit by using the STS; the other concept is a cluster of satellites. These candidate concepts are designed to meet the requirements of a reference mission. They are characterized by the required number of modules to be launched, the type of launcher, the new subsystems or equipments to be developed. The concepts are evaluated following technical criteria such as adaptability to other missions, flexibility, growth potential. A cost/benefit evaluation of each solution is presented. A comparison between the different concepts is then made on the basis of the technical/economical attractiveness of each solution.

  19. CARTEL: A method to calibrate S-band ranges with geostationary satellites

    Science.gov (United States)

    Guitart, A.; Mesnard, R.; Nouel, F.

    1986-12-01

    An intersite tracking campaign was organized, with 4 S-band stations, for a period of 1 wk to show how the most precise orbit can be computed with the operational software. This precise orbit served as a reference in order to evaluate what can be achieved with one single station with range and angular measurements (a typical configuration used for stationkeeping of geostationary satellites). Orbit computation implied numerical integration with gravitational (Earth, Moon, and Sun) and solar radiation pressure as forces acting on the satellite. Arc lengths of 2 days gave initial state vectors which were compared every day. A precision of 10 m is achieved. However, an analysis of the influence of several parameters entering the orbit computations reveals that the absolute accuracy is of the order of 100 m, since modeling perturbations were neglected in the operational software (polar motion for example). This reference orbit allows estimation of systematic errors for other tracking antennas.

  20. Evaluation and modeling of autonomous attitude thrust control for the Geostation Operational Environmental Satellite (GOES)-8 orbit determination

    Science.gov (United States)

    Forcey, W.; Minnie, C. R.; Defazio, R. L.

    1995-01-01

    The Geostationary Operational Environmental Satellite (GOES)-8 experienced a series of orbital perturbations from autonomous attitude control thrusting before perigee raising maneuvers. These perturbations influenced differential correction orbital state solutions determined by the Goddard Space Flight Center (GSFC) Goddard Trajectory Determination System (GTDS). The maneuvers induced significant variations in the converged state vector for solutions using increasingly longer tracking data spans. These solutions were used for planning perigee maneuvers as well as initial estimates for orbit solutions used to evaluate the effectiveness of the perigee raising maneuvers. This paper discusses models for the incorporation of attitude thrust effects into the orbit determination process. Results from definitive attitude solutions are modeled as impulsive thrusts in orbit determination solutions created for GOES-8 mission support. Due to the attitude orientation of GOES-8, analysis results are presented that attempt to absorb the effects of attitude thrusting by including a solution for the coefficient of reflectivity, C(R). Models to represent the attitude maneuvers are tested against orbit determination solutions generated during real-time support of the GOES-8 mission. The modeling techniques discussed in this investigation offer benefits to the remaining missions in the GOES NEXT series. Similar missions with large autonomous attitude control thrusting, such as the Solar and Heliospheric Observatory (SOHO) spacecraft and the INTELSAT series, may also benefit from these results.

  1. Geography with the environmental satellites

    Directory of Open Access Journals (Sweden)

    J.P. Gastellu Etchegorry

    2013-07-01

    Full Text Available Coarse spatial resolution, high temporal frequency data from the earth polar orbiting (NOAA. HACMM, Nimbus, etc. satellites and from the geostationary (GOES. Meteosat, and GMS satellites are presented to demonstrate their utility for monitoring terrestrial and atmospheric processes. The main characteristics of these ,satellites and of the instruments on board are reviewed. In order to be useful for environmental assessments. the remotely sensed data must be processed (atmospheric and geometric corrections, etc.. The NOAA Center provides a wide range of already processed data. such as meteorological. oceanic, hydrologic and vegetation products; o rough description of these preprocessed data is given in this article. Finally, some examples of applicotions in Southeast Asia and especially in Indonesia, are described, i.e.: agroecosystem, drought and oceanic monitoring. The paper concludes that coarse resolution, high temporal frequency ,satellite data are very valuable for environmental studies. the emphasis being laid on the improve. ment of the crop and drought assessment programmes.

  2. ESA personal communications and digital audio broadcasting systems based on non-geostationary satellites

    Science.gov (United States)

    Logalbo, P.; Benedicto, J.; Viola, R.

    1993-01-01

    Personal Communications and Digital Audio Broadcasting are two new services that the European Space Agency (ESA) is investigating for future European and Global Mobile Satellite systems. ESA is active in promoting these services in their various mission options including non-geostationary and geostationary satellite systems. A Medium Altitude Global Satellite System (MAGSS) for global personal communications at L and S-band, and a Multiregional Highly inclined Elliptical Orbit (M-HEO) system for multiregional digital audio broadcasting at L-band are described. Both systems are being investigated by ESA in the context of future programs, such as Archimedes, which are intended to demonstrate the new services and to develop the technology for future non-geostationary mobile communication and broadcasting satellites.

  3. Model predictive control of attitude maneuver of a geostationary flexible satellite based on genetic algorithm

    Science.gov (United States)

    TayyebTaher, M.; Esmaeilzadeh, S. Majid

    2017-07-01

    This article presents an application of Model Predictive Controller (MPC) to the attitude control of a geostationary flexible satellite. SIMO model has been used for the geostationary satellite, using the Lagrange equations. Flexibility is also included in the modelling equations. The state space equations are expressed in order to simplify the controller. Naturally there is no specific tuning rule to find the best parameters of an MPC controller which fits the desired controller. Being an intelligence method for optimizing problem, Genetic Algorithm has been used for optimizing the performance of MPC controller by tuning the controller parameter due to minimum rise time, settling time, overshoot of the target point of the flexible structure and its mode shape amplitudes to make large attitude maneuvers possible. The model included geosynchronous orbit environment and geostationary satellite parameters. The simulation results of the flexible satellite with attitude maneuver shows the efficiency of proposed optimization method in comparison with LQR optimal controller.

  4. ESA personal communications and digital audio broadcasting systems based on non-geostationary satellites

    Science.gov (United States)

    Logalbo, P.; Benedicto, J.; Viola, R.

    Personal Communications and Digital Audio Broadcasting are two new services that the European Space Agency (ESA) is investigating for future European and Global Mobile Satellite systems. ESA is active in promoting these services in their various mission options including non-geostationary and geostationary satellite systems. A Medium Altitude Global Satellite System (MAGSS) for global personal communications at L and S-band, and a Multiregional Highly inclined Elliptical Orbit (M-HEO) system for multiregional digital audio broadcasting at L-band are described. Both systems are being investigated by ESA in the context of future programs, such as Archimedes, which are intended to demonstrate the new services and to develop the technology for future non-geostationary mobile communication and broadcasting satellites.

  5. CARTEL: A method to calibrate S-band ranges with geostationary satellites. Results of orbit determination

    Science.gov (United States)

    Guitart, A.; Mesnard, B.

    1986-05-01

    A satellite tracking campaign was organized, with 4 S-band stations, for 1 wk. The relative geometry of the network with respect to the satellites was an opportunity to show how the most precise orbit can be computed with the operational software. This precise orbit served as a reference to evaluate what can be achieved with one station with range and angular measurements, a typical configuration used for stationkeeping of geostationary satellites. Orbit computation implied numerical integration with gravitational (Earth, Moon, and Sun) and solar radiation pressure forces acting on the satellite. Arc lengths of 2 days gave initial state vectors which were compared every day. Precision of 10 m is achieved. However, an analysis of the influence of parameters in the orbit computations reveals that the absolute accuracy is of the order of 100 m, since modeling perturbations were neglected in the operational software (e.g., polar motion). In a relative sense, the reference orbit allows estimation of systematic errors for other tracking antennas.

  6. Propagation characteristics for millimeter and quasi-millimeter waves by using three Japanese geostationary satellites

    Science.gov (United States)

    Hayashi, R.; Furuhama, Y.; Fugono, N.; Otsu, Y.

    1980-11-01

    Propagation experiments using the following geostationary satellites, Engineering Test Satellite-II (ETS-II), Medium-Capacity Communication Satellite for Experimental Purposes (CS), Medium-Scale Broadcasting Satellite for Experimental Purposes (BSE) and Experimental Communication Satellite (ECS), are being conducted by Radio Research Laboratories (RRL) with the co-operation of National Space Development Agency of Japan (NASDA), Nippon Telegraph and Telephone Public Corporations (NNT) and Japan Broadcasting Corporations (NHK).The Experimental Communication Satellite (ECS) will be launched into the geostationary orbit in February 1980. This satellite will then be used for further propagation experiments.The various and numerous propagation data obtained by using these satellites is being collected from many places all over Japan.The summary of the propagation experiments conducted at the main station is as follows. (a) Experimental periods covered in this paper are about 1 year for ETS-II and CS, and six months for BSE.(b) The percentages of time in which measured attenuation exceed 5, 10 and 15 dB are 0.7, 0.3 and 0.15% respectively at 34.5 GHz (ETS-II), 0.08, 0.016 and 0.008% respectively at 19.45 GHz (CS), 0.025, 0.0025 and 0.0009% respectively at 11.7125 GHz (BSE), and 0.02, 0.0023 and 0.001% respectively at 11.5 GHz (ETS-II).(c) Duration of attenuation exceeding 30 dB at 34.5 GHz is less than 50 min with the occurrence probability of 0.013% for a one year period. Attenuation exceeding 6 dB at 11.5 GHz and the one exceeding 10 dB at 19.45 GHz are 0.0025% (8 min in a year) and 0.015% (10 min in three months).(d) In the cumulative distributions of XPD (Cross Polarization Discrimination), values of XPD exceeding the percentages of time, 0.3, 0.1, 0.03 and 0.01% are 25, 22, 19 and 17 dB respectively at 34.5 GHz, 28, 23, 20 and 16.5 dB respectively at 19.45 GHz and 33, 29, 26 and 24 dB respectively at 11.5 GHz.This paper presents an outline of the propagation

  7. A Geostationary Earth Orbit Satellite Model Using Easy Java Simulation

    Science.gov (United States)

    Wee, Loo Kang; Goh, Giam Hwee

    2013-01-01

    We develop an Easy Java Simulation (EJS) model for students to visualize geostationary orbits near Earth, modelled using a Java 3D implementation of the EJS 3D library. The simplified physics model is described and simulated using a simple constant angular velocity equation. We discuss four computer model design ideas: (1) a simple and realistic…

  8. A Geostationary Earth Orbit Satellite Model Using Easy Java Simulation

    Science.gov (United States)

    Wee, Loo Kang; Goh, Giam Hwee

    2013-01-01

    We develop an Easy Java Simulation (EJS) model for students to visualize geostationary orbits near Earth, modelled using a Java 3D implementation of the EJS 3D library. The simplified physics model is described and simulated using a simple constant angular velocity equation. We discuss four computer model design ideas: (1) a simple and realistic…

  9. Remote Synchronization Experiments for Quasi-Senith Satellite System Using Current Geostationary Satellites

    Directory of Open Access Journals (Sweden)

    Toshiaki Iwata

    2010-01-01

    Full Text Available The remote synchronization system for the onboard crystal oscillator (RESSOX realizes accurate synchronization between an atomic clock at a ground station and the QZSS onboard crystal oscillator, reduces overall cost and satellite power consumption, as well as onboard weight and volume, and is expected to have a longer lifetime than a system with onboard atomic clocks. Since a QZSS does not yet exist, we have been conducting synchronization experiments using geostationary earth orbit satellites (JCSAT-1B or Intelsat-4 to confirm that RESSOX is an excellent system for timing synchronization. JCSAT-1B, the elevation angle of which is 46.5 degrees at our institute, is little affected by tropospheric delay, whereas Intelsat-4, the elevation angle of which is 7.9 degrees, is significantly affected. The experimental setup and the results of uplink experiments and feedback experiments using mainly Intelsat-4 are presented. The results show that synchronization within 10 ns is realized.

  10. The zero gravity curve and surface and radii for geostationary and geosynchronous satellite orbits

    Directory of Open Access Journals (Sweden)

    Sjöberg L.E.

    2017-02-01

    Full Text Available A geosynchronous satellite orbits the Earth along a constant longitude. A special case is the geostationary satellite that is located at a constant position above the equator. The ideal position of a geostationary satellite is at the level of zero gravity, i.e. at the geocentric radius where the gravitational force of the Earth equals the centrifugal force. These forces must be compensated for several perturbing forces, in particular for the lunisolar tides. Considering that the gravity field of the Earth varies not only radially but also laterally, this study focuses on the variations of zero gravity not only on the equator (for geostationary satellites but also for various latitudes. It is found that the radius of a geostationary satellite deviates from its mean value of 42164.2 km only within ±2 m, mainly due to the spherical harmonic coefficient J22, which is related with the equatorial flattening of the Earth. Away from the equator the zero gravity surface deviates from the ideal radius of a geosynchronous satellite, and more so for higher latitudes. While the radius of the former surface increases towards infinity towards the poles, the latter decreases about 520 m from the equator to the pole. Tidal effects vary these radii within ±2.3 km.

  11. Global-scale Observations of the Limb and Disk (GOLD) Mission: Science from Geostationary Orbit on-board a Commercial Communications Satellite

    Science.gov (United States)

    Eastes, R.; Deaver, T.; Krywonos, A.; Lankton, M. R.; McClintock, W. E.; Pang, R.

    2011-12-01

    Geostationary orbits are ideal for many science investigations of the Earth system on global scales. These orbits allow continuous observations of the same geographic region, enabling spatial and temporal changes to be distinguished and eliminating the ambiguity inherent to observations from low Earth orbit (LEO). Just as observations from geostationary orbit have revolutionized our understanding of changes in the troposphere, they will dramatically improve our understanding of the space environment at higher altitudes. However, geostationary orbits are infrequently used for science missions because of high costs. Geostationary satellites are large, typically weighing tons. Consequently, devoting an entire satellite to a science mission requires a large financial commitment, both for the spacecraft itself and for sufficient science instrumentation to justify a dedicated spacecraft. Furthermore, the small number of geostationary satellites produced for scientific missions increases the costs of each satellite. For these reasons, it is attractive to consider flying scientific instruments on satellites operated by commercial companies, some of whom have fleets of ~40 satellites. However, scientists' lack of understanding of the capabilities of commercial spacecraft as well as commercial companies' concerns about risks to their primary mission have impeded the cooperation necessary for the shared use of a spacecraft. Working with a commercial partner, the GOLD mission has successfully overcome these issues. Our experience indicates that there are numerous benefits to flying on commercial communications satellites (e.g., it is possible to downlink large amounts of data) and the costs are low if the experimental requirements adequately match the capabilities and available resources of the host spacecraft. Consequently, affordable access to geostationary orbit aboard a communications satellite now appears possible for science payloads.

  12. Near-Real-Time Detection and Monitoring of Intense Pyroconvection from Geostationary Satellites

    Science.gov (United States)

    Peterson, D. A.; Fromm, M. D.; Hyer, E. J.; Surratt, M. L.; Solbrig, J. E.; Campbell, J. R.

    2016-12-01

    Intense fire-triggered thunderstorms, known as pyrocumulonimbus (or pyroCb), can alter fire behavior, influence smoke plume trajectories, and hinder fire suppression efforts. PyroCb are also known for injecting a significant quantity of aerosol mass into the upper-troposphere and lower-stratosphere (UTLS). Near-real-time (NRT) detection and monitoring of pyroCb is highly desirable for a variety of forecasting and research applications. The Naval Research Laboratory (NRL) recently developed the first automated NRT pyroCb detection algorithm for geostationary satellite sensors. The algorithm uses multispectral infrared observations to isolate deep convective clouds with the distinct microphysical signal of pyroCb. Application of this algorithm to 88 intense wildfires observed during the 2013 fire season in western North America resulted in detection of individual intense events, pyroCb embedded within traditional convection, and multiple, short-lived pulses of activity. Comparisons with a community inventory indicate that this algorithm captures the majority of pyroCb. The primary limitation of the current system is that pyroCb anvils can be small relative to satellite pixel size, especially in in regions with large viewing angles. The algorithm is also sensitive to some false positives from traditional convection that either ingests smoke or exhibits extreme updraft velocities. This algorithm has been automated using the GeoIPS processing system developed at NRL, which produces a variety of imagery products and statistical output for rapid analysis of potential pyroCb events. NRT application of this algorithm has been extended to the majority of regions worldwide known to have a high frequency of pyroCb occurrence. This involves a constellation comprised of GOES-East, GOES-West, and Himawari-8. Imagery is posted immediately to an NRL-maintained web page. Alerts are generated by the system and disseminated via email. This detection system also has potential to serve

  13. Geostationary Communications Satellites as Sensors for the Space Weather Environment: Telemetry Event Identification Algorithms

    Science.gov (United States)

    Carlton, A.; Cahoy, K.

    2015-12-01

    Reliability of geostationary communication satellites (GEO ComSats) is critical to many industries worldwide. The space radiation environment poses a significant threat and manufacturers and operators expend considerable effort to maintain reliability for users. Knowledge of the space radiation environment at the orbital location of a satellite is of critical importance for diagnosing and resolving issues resulting from space weather, for optimizing cost and reliability, and for space situational awareness. For decades, operators and manufacturers have collected large amounts of telemetry from geostationary (GEO) communications satellites to monitor system health and performance, yet this data is rarely mined for scientific purposes. The goal of this work is to acquire and analyze archived data from commercial operators using new algorithms that can detect when a space weather (or non-space weather) event of interest has occurred or is in progress. We have developed algorithms, collectively called SEER (System Event Evaluation Routine), to statistically analyze power amplifier current and temperature telemetry by identifying deviations from nominal operations or other events and trends of interest. This paper focuses on our work in progress, which currently includes methods for detection of jumps ("spikes", outliers) and step changes (changes in the local mean) in the telemetry. We then examine available space weather data from the NOAA GOES and the NOAA-computed Kp index and sunspot numbers to see what role, if any, it might have played. By combining the results of the algorithm for many components, the spacecraft can be used as a "sensor" for the space radiation environment. Similar events occurring at one time across many component telemetry streams may be indicative of a space radiation event or system-wide health and safety concern. Using SEER on representative datasets of telemetry from Inmarsat and Intelsat, we find events that occur across all or many of

  14. Ground guided CX-OLEV rendez-vous with uncooperative geostationary satellite

    Science.gov (United States)

    Tarabini, Lorenzo; Gil, Jesús; Gandia, Fernando; Molina, Miguel Ángel; Del Cura, Juan Manuel; Ortega, Guillermo

    2007-06-01

    CX-OLEV is a commercial mission aimed to extend the operational life of geostationary telecommunications satellites by supplying them propulsion, navigation and guidance services. Under SENER's contract and ESA's supervision, GMV designed the CX-OLEV ground guided rendez-vous (RV) approach. The starting point of the RV phase between CX-OLEV and the client is at 35 km distance with an uncertainty of 2 km. Dedicated ground tracking is performed to reduce the position uncertainty to 200 m and therefore to command the closing to 1 km distance. Fly around and final approach maneuvers complete the CX-OLEV RV approach along the client's zenith direction up to a relative distance of 7 m. Two redundant optical cameras working in the 5 m-2 km range are selected as RV sensors. The RV camera images are sent to ground and processed to determine the relative position of the spacecraft. The flight dynamics system calculates, validates and transmits in near real time the RV maneuvers commands. The relative spiral motion of CX-OLEV around the telecommunication satellite is synchronized with the Sun-client-CXOLEV angle to guarantee a good illumination of the client but without shadowing the client satellite's solar panels. The complete RV is simulated in a dedicated environment to assess its feasibility.

  15. Estimating Monthly Rainfall from Geostationary Satellite Imagery Over Amazonia, Brazil.

    Science.gov (United States)

    Cutrim, Elen Maria Camara

    The infrared regression and the grid-history satellite rainfall estimating techniques were utilized to estimate monthly rainfall in Amazonia during one month of the rainy season (March, 1980) and one month of the dry season (September, 1980). The estimates were based on 3-hourly SMS-II infrared and visible images. Three sets of coefficients for the grid history method (Marajo, Arabian Sea, and GATE) were used to estimate rainfall. The estimated rain was compared with gauge measurements over the region. The infrared regression technique overestimated by a factor of 1.5. The Marajo coefficients yielded the best estimate, especially for eastern Amazonia. In the wet month Marajo coefficients overestimated rain by 10% and in the dry month by 70%. The Arabian Sea coefficients overestimated rain and the GATE coefficients slightly underestimated rain for Amazonia. Two maps of monthly rainfall over Amazonia were constructed for March and September, 1980, combining the ground station and satellite inferred rainfall of the grid history method using the Marajo coefficients. The satellite observations and ground data were mutually compatible and were contourable on these final, composite maps. Monthly rainfall was found to be much more inhomogeneous than previously reported. In March there was a belt of high precipitation trending southwest, with higher values and sharpest gradients in the coastal area. The upper Amazon was also an area of high precipitation, both north and south of the equator. In Roraima rainfall decreased drastically to the north. In September, the area of highest precipitation was the northwestern part of Amazonas State (northern hemisphere). Rainfall elsewhere was very localized and in northeastern Amazonia varied from 0 to 150 mm. Even though the grid history method presented better results for estimating rainfall over Amazonia, the IR model could be utilized more efficiently and economically on an operational basis if the calibration were properly made

  16. 78 FR 19172 - Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service Geostationary-Orbit...

    Science.gov (United States)

    2013-03-29

    ... From the Federal Register Online via the Government Publishing Office FEDERAL COMMUNICATIONS COMMISSION 47 CFR Parts 2 and 25 Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service Geostationary-Orbit Space Stations AGENCY: Federal Communications Commission. ACTION: Proposed rule;...

  17. A Numerical Testbed for Remote Sensing of Aerosols, and its Demonstration for Evaluating Retrieval Synergy from a Geostationary Satellite Constellation of GEO-CAPE and GOES-R

    Science.gov (United States)

    Wang, Jun; Xu, Xiaoguang; Ding, Shouguo; Zeng, Jing; Spurr, Robert; Liu, Xiong; Chance, Kelly; Mishchenko, Michael I.

    2014-01-01

    synergic use of two future geostationary satellites, GOES-R (Geostationary Operational Environmental Satellite R-series) and TEMPO (Tropospheric Emissions: Monitoring of Pollution). Strong synergy between GEOS-R and TEMPO are found especially in their characterization of surface bi-directional reflectance, and thereby, can potentially improve the AOD retrieval to the accuracy required by GEO-CAPE.

  18. Ground mapping resolution accuracy of a scanning radiometer from a geostationary satellite.

    Science.gov (United States)

    Stremler, F G; Khalil, M A; Parent, R J

    1977-06-01

    Measures of the spatial and spatial rate (frequency) mapping of scanned visual imagery from an earth reference system to a spin-scan geostationary satellite are examined. Mapping distortions and coordinate inversions to correct for these distortions are formulated in terms of geometric transformations between earth and satellite frames of reference. Probabilistic methods are used to develop relations for obtainable mapping resolution when coordinate inversions are employed.

  19. Ionospheric TEC Estimations with the Signals of Various Geostationary Navigational Satellites

    Science.gov (United States)

    Kurbatov, G. A.; Padokhin, A. M.; Kunitsyn, V.; Yasyukevich, Y.

    2015-12-01

    The development of GNSS and SBAS systems provides the possibility to retrieve ionospheric TEC from the dual frequency observations from a number of geostationary satellites using the same approach as for dual frequency GPS/GLONASS observations. In this connection, the quality of geostationary data, first of all the level of noise in TEC estimations is of great interest and importance. In this work we present the results of the comparison of the noise patterns in TEC estimations using signals of geostationary satellites of augumentation systems - indian GAGAN, european EGNOS and american WAAS, as well as the signals of chinees COMPASS/Beidou navigational system. We show that among above mentioned systems geostationary COMPASS/Beidou satellites provide best noise level in TEC estimations (RMS~0.1TECU), which corresponds to those of GPS/GLONASS, while GAGAN and WAAS TEC RMS could reach up to 1.5 TECU with typical values of 0.25-0.5 TECU which is up to one order greater than for common GPS/GLONASS observations. EGNOS TEC estimations being even more noisy (TEC RMS up to 10TECU) than WAAS and GAGAN ones at present time are not suitable for ionospheric studies. We also present geostationary TEC response to increasing solar X-Ray and EUV ionizing radiation during several recent X-class flares. Good correlation was found between TEC and EUV flux for the stations at the sunlit hemisphere. We also present geostationary TEC response to geomagnetic field variations during strong and moderate geomagnetic storms (including G4 St. Patricks Day Storm of 2015) showing examples of both positive and negative TEC anomalies of order of tens of TECU during main storm phase. Our results show the capability of geostationary GNSS and SBAS observations for continuous monitoring of ionospheric TEC. Intensively growing networks of dedicated receivers (for example MGEX network) and increasing number of dual-frequency geostationary satellites in SBAS and GNSS constellations potentially make it a

  20. Direct measurements of laser light aberration from the ARTEMIS geostationary satellite through thin clouds

    CERN Document Server

    Kuzkov, Volodymyr; Sodnik, Zoran

    2015-01-01

    A precise ground based telescope system was developed for laser communication experiments with the geostationary satellite ARTEMIS of ESA. Precise tracking of the satellite was realized by using time resolved coordinates of the satellite. During the experiments, the time propagation of laser signal from the satellite and the point-ahead angle for the laser beam were calculated. Some laser experiments though thin clouds were performed. A splitting of some images of the laser beam from the satellite along declination and right ascension coordinates of telescope could be observed through thin clouds. The splitting along the declination coordinate may be interpreted as refraction in the atmosphere. The splitting along the right ascension coordinate is equivalent to the calculated point-ahead angle for the satellite. We find out that a small part of laser beam was observed ahead of the velocity vector in the point where the satellite would be after the laser light from the satellite reaches the telescope. These re...

  1. Global Assessment of Land Surface Temperature From Geostationary Satellites and Model Estimates

    Science.gov (United States)

    Reichle, Rolf H.; Liu, Q.; Minnis, P.; daSilva, A. M., Jr.; Palikonda, R.; Yost, C. R.

    2012-01-01

    Land surface (or 'skin') temperature (LST) lies at the heart of the surface energy balance and is a key variable in weather and climate models. In this research we compare two global and independent data sets: (i) LST retrievals from five geostationary satellites generated at the NASA Langley Research Center (LaRC) and (ii) LST estimates from the quasi-operational NASA GEOS-5 global modeling and assimilation system. The objective is to thoroughly understand both data sets and their systematic differences in preparation for the assimilation of the LaRC LST retrievals into GEOS-5. As expected, mean differences (MD) and root-mean-square differences (RMSD) between modeled and retrieved LST vary tremendously by region and time of day. Typical (absolute) MD values range from 1-3 K in Northern Hemisphere mid-latitude regions to near 10 K in regions where modeled clouds are unrealistic, for example in north-eastern Argentina, Uruguay, Paraguay, and southern Brazil. Typically, model estimates of LST are higher than satellite retrievals during the night and lower during the day. RMSD values range from 1-3 K during the night to 2-5 K during the day, but are larger over the 50-120 W longitude band where the LST retrievals are derived from the FY2E platform

  2. IPO operational algorithm teams throughout the life cycle of NPOESS environmental satellites

    Science.gov (United States)

    Duda, James L.; Emch, Pamela G.

    2004-09-01

    The tri-agency Integrated Program Office (IPO) created Operational Algorithm Teams (OATs) in 1997 to provide scientific advice for managing the development and operation of the National Polar-orbiting Operational Environmental Satellite System (NPOESS). The scientific advice focuses on (1) assuring sound science in instrument and systems design in addition to (2) assuring development and implementation of sound scientific algorithms. This paper outlines the role of IPO operational algorithm teams from mission conception, through instrument design and development, algorithm science code development and conversion to operational code, data processing system implementation, calibration, validation, and, finally, operational data and products distribution to a range of users for weather, national security, and climate science. The composition of the algorithm science teams changes substantially as the sensors and algorithms are developed, tested, integrated, launched, become operational, and age on-orbit. The concept of leveraging our heritage scientists has proven successful with many tangible benefits to the government, the contractor teams, and, ultimately, the nation's taxpayers.

  3. Direct Measurements of Laser Communication Point-Ahead Angles from the ARTEMIS Geostationary Satellite Through Clouds

    Science.gov (United States)

    Kuzkov, V.; Sodnik, Z.; Kuzkov, S.

    2017-01-01

    Laser experiments with ARTEMIS geostationary satellite have been performed in partly cloudy weather using the developed system for the telescope. It has been found that the part of the laser beam is observed simultaneously at the points in direction of the velocity vector where the satellite would arrive at when the laser light reaches the telescope. These results agree with the theory of relativity for light aberration in transition from fixed to moving coordinate system.Observation results open the way for research and development of systems to compensate atmospheric turbulence in laser communications between ground stations and satellites through the atmosphere.

  4. Direct Measurements of Laser Communication Point-Ahead Angles from the Artemis Geostationary Satellite Through Clouds

    Directory of Open Access Journals (Sweden)

    Kuzkov, V.P.

    2017-01-01

    Full Text Available Laser experiments with ARTEMIS geostationary satellite have been performed in partly cloudy weather using the developed system for the telescope. It has been found that the part of the laser beam is observed simultaneously at the points in direction of the velocity vector where the satellite would arrive at when the laser light reaches the telescope. These results agree with the theory of relativity for light aberration in transition from fixed to moving coordinate system. Observation results open the way for research and development of systems to compensate atmospheric turbulence in laser communications between ground stations and satellites through the atmosphere.

  5. First results of measurements of extreme ultraviolet radiation onboard a geostationary satellite "ELECTRO-L"

    Science.gov (United States)

    Nusinov, Anatoliy; Kazachevskaya, Tamara; Gonjukh, David

    Measurements of the intensity of EUV emission in the hydrogen Lyman-alpha line were conducted by a broadband photometer VUSS-E onboard geostationary Hydrometeorological satellite "Electro" since March 2011. The solar hydrogen Lyman-alpha line (lambda = 121.6 nm) was monitored. The photomultiplier with LiF window used as a detector insensitive to visible light. Long-wavelength limit of the spectral band sensitivity of the instrument is about 200 nm, so the signal of the device is defined as the flux of solar radiation in the region of 123-200 nm. Its exclusion was carried out by calculation. Since the satellite "Electro" designed for remote sensing of the Earth, its line of sight focused on Earth. Alignment of instrument in the Sun direction was achieved by installing it on the solar panel, periodically moved in the solar direction. Correction of instrument readings, reduced due to the deviation of its axis from the Sun direction, carried out by calculation. Measurements were carried out every second. The first results of the measurements are presented. The difference in absolute calibration Electro-L/VUSS-E is within 5% of corresponding values for measurements TIMED satellite in those days, that is in agreement with laboratory calibrations. It is useful to measure the temperature of the instrument, as its variation on a small interval of time makes change the value of the output signal about 1-2 %. During first year of operation, the sensitivity of the apparatus remained within ± 2% of measured value, significant degradation of sensitivity was not observed. Over time of observation there have been several large flares of X class. The increase of the signal in the ultraviolet range does not exceed a few percent during these flares.

  6. Use of geostationary meteorological satellite images in convective rain estimation for flash-flood forecasting

    Science.gov (United States)

    Wardah, T.; Abu Bakar, S. H.; Bardossy, A.; Maznorizan, M.

    2008-07-01

    SummaryFrequent flash-floods causing immense devastation in the Klang River Basin of Malaysia necessitate an improvement in the real-time forecasting systems being used. The use of meteorological satellite images in estimating rainfall has become an attractive option for improving the performance of flood forecasting-and-warning systems. In this study, a rainfall estimation algorithm using the infrared (IR) information from the Geostationary Meteorological Satellite-5 (GMS-5) is developed for potential input in a flood forecasting system. Data from the records of GMS-5 IR images have been retrieved for selected convective cells to be trained with the radar rain rate in a back-propagation neural network. The selected data as inputs to the neural network, are five parameters having a significant correlation with the radar rain rate: namely, the cloud-top brightness-temperature of the pixel of interest, the mean and the standard deviation of the temperatures of the surrounding five by five pixels, the rate of temperature change, and the sobel operator that indicates the temperature gradient. In addition, three numerical weather prediction (NWP) products, namely the precipitable water content, relative humidity, and vertical wind, are also included as inputs. The algorithm is applied for the areal rainfall estimation in the upper Klang River Basin and compared with another technique that uses power-law regression between the cloud-top brightness-temperature and radar rain rate. Results from both techniques are validated against previously recorded Thiessen areal-averaged rainfall values with coefficient correlation values of 0.77 and 0.91 for the power-law regression and the artificial neural network (ANN) technique, respectively. An extra lead time of around 2 h is gained when the satellite-based ANN rainfall estimation is coupled with a rainfall-runoff model to forecast a flash-flood event in the upper Klang River Basin.

  7. Destination directed packet switch architecture for a geostationary communication satellite network

    Science.gov (United States)

    Ivancic, W. D.; Shalkhauser, M. J.; Bobinsky, E. A.; Soni, N. J.; Quintana, J. A.; Kim, H.; Wagner, P.; Vanderaar, M.

    1992-01-01

    A major effort at NASA/Lewis is to identify and develop critical digital technologies and components that enable new commercial missions or significantly improve the performance, cost efficiency, and/or reliability of existing and planned space comunications systems. NASA envisions the need for low data rate, direct to the user communications services, for data, facsimile, voice, and video conferencing. A report that focuses on destination directed packet switching architectures for geostationary communication satellites is presented.

  8. Destination directed packet switch architecture for a geostationary communication satellite network

    Science.gov (United States)

    Ivancic, W. D.; Shalkhauser, M. J.; Bobinsky, E. A.; Soni, N. J.; Quintana, J. A.; Kim, H.; Wagner, P.; Vanderaar, M.

    1992-08-01

    A major effort at NASA/Lewis is to identify and develop critical digital technologies and components that enable new commercial missions or significantly improve the performance, cost efficiency, and/or reliability of existing and planned space comunications systems. NASA envisions the need for low data rate, direct to the user communications services, for data, facsimile, voice, and video conferencing. A report that focuses on destination directed packet switching architectures for geostationary communication satellites is presented.

  9. IMAGE ANALYSIS OF GEOSTATIONARY METEOROLOGICAL SATELLITE FOR MONITORING MOVEMENT OF MESOSCALE CONVECTIVE SYSTEMS OVER TIBETAN PLATEAU

    Institute of Scientific and Technical Information of China (English)

    GUO Zhong-yang; DAI Xiao-yan; WU Jian-ping; LIN Hui

    2005-01-01

    Disaster weather forecasting is becoming increasingly important. In this paper, the trajectories of Mesoscale Convective Systems (MCSs) were automatically tracked over the Chinese Tibetan Plateau using Geostationary Meteorological Satellite (GMS) brightness temperature (Tbb) from June to August 1998, and the MCSs are classified according to their movement direction. Based on these, spatial data mining methods are used to study the relationships between MCSs trajectories and their environmental physical field values. Results indicate that at 400hPa level,the trajectories of MCSs moving across the 105°E boundary are less influenced by water vapor flux divergence, vertical wind velocity, relative humidity and K index. In addition, ifthe gravity central longitude locations of MCSs are between 104°E and 105°E, then geopotential height and wind divergence are two main factors in movement causation.On the other hand, at 500hPa level, the trajectories of MCSs in a north-east direction are mainly influenced by K index and water vapor flux divergence when their central locations are less than 104°E. However, the MCSs moving in an east and south-east direction are influenced by a few correlation factors at this level.

  10. Environmental Satellites: Strategy Needed to Sustain Critical Climate and Space Weather Measurements

    Science.gov (United States)

    2010-04-01

    together. For example, climate measurements have allowed scientists to better understand the effect of deforestation on how the earth absorbs heat, retains...Geostationary Operational Environmental Satellites: Progress Has Been Made, but Improvements Are Needed to Effectively Manage Risks, GAO-08-18 (Washington...color; and atmospheric observations such as greenhouse gas levels (e.g., carbon dioxide), aerosol and dust particles, and moisture concentration. When

  11. Land Surface Temperature- Comparing Data from Polar Orbiting and Geostationary Satellites

    Science.gov (United States)

    Comyn-Platt, E.; Remedios, J. J.; Good, E. J.; Ghent, D.; Saunders, R.

    2012-04-01

    Land Surface Temperature (LST) is a vital parameter in Earth climate science, driving long-wave radiation exchanges that control the surface energy budget and carbon fluxes, which are important factors in Numerical Weather Prediction (NWP) and the monitoring of climate change. Satellites offer a convenient way to observe LST consistently and regularly over large areas. A comparison between LST retrieved from a Geostationary Instrument, the Spinning Enhanced Visible and InfraRed Imager (SEVIRI), and a Polar Orbiting Instrument, the Advanced Along Track Scanning Radiometer (AATSR) is presented. Both sensors offer differing benefits. AATSR offers superior precision and spatial resolution with global coverage but given its sun-synchronous platform only observes at two local times, ~10am and ~10pm. SEVIRI provides the high-temporal resolution (every 15 minutes) required for observing diurnal variability of surface temperatures but given its geostationary platform has a poorer resolution, 3km at nadir, which declines at higher latitudes. A number of retrieval methods are applied to the raw satellite data: First order coefficient based algorithms provided on an operational basis by the LandSAF (for SEVIRI) and the University of Leicester (for AATSR); Second order coefficient based algorithms put forward by the University of Valencia; and an optimal estimation method using the 1DVar software provided by the NWP SAF. Optimal estimation is an iterative technique based upon inverse theory, thus is very useful for expanding into data assimilation systems. The retrievals are assessed and compared on both a fine scale using in-situ data from recognised validation sites and on a broad scale using two 100x100 regions such that biases can be better understood. Overall, the importance of LST lies in monitoring daily temperature extremes, e.g. for estimating permafrost thawing depth or risk of crop damage due to frost, hence the ideal dataset would use a combination of observations

  12. Identification of geostationary satellites using polarization data from unresolved images

    Science.gov (United States)

    Speicher, Andy

    In order to protect critical military and commercial space assets, the United States Space Surveillance Network must have the ability to positively identify and characterize all space objects. Unfortunately, positive identification and characterization of space objects is a manual and labor intensive process today since even large telescopes cannot provide resolved images of most space objects. Since resolved images of geosynchronous satellites are not technically feasible with current technology, another method of distinguishing space objects was explored that exploits the polarization signature from unresolved images. The objective of this study was to collect and analyze visible-spectrum polarization data from unresolved images of geosynchronous satellites taken over various solar phase angles. Different collection geometries were used to evaluate the polarization contribution of solar arrays, thermal control materials, antennas, and the satellite bus as the solar phase angle changed. Since materials on space objects age due to the space environment, it was postulated that their polarization signature may change enough to allow discrimination of identical satellites launched at different times. The instrumentation used in this experiment was a United States Air Force Academy (USAFA) Department of Physics system that consists of a 20-inch Ritchey-Chretien telescope and a dual focal plane optical train fed with a polarizing beam splitter. A rigorous calibration of the system was performed that included corrections for pixel bias, dark current, and response. Additionally, the two channel polarimeter was calibrated by experimentally determining the Mueller matrix for the system and relating image intensity at the two cameras to Stokes parameters S0 and S1. After the system calibration, polarization data was collected during three nights on eight geosynchronous satellites built by various manufacturers and launched several years apart. Three pairs of the eight

  13. Rapid response flood detection using the MSG geostationary satellite

    DEFF Research Database (Denmark)

    Proud, Simon Richard; Fensholt, Rasmus; Rasmussen, Laura Vang;

    2011-01-01

    A novel technique for the detection of flooded land using satellite data is presented. This new method takes advantage of the high temporal resolution of the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) aboard the Meteosat Second Generation (MSG) series of satellites to derive several...... parameters that describe the sensitivity of land surface reflectivity to variation in solar position throughout the day. Examination of these parameters can then yield information describing the nature of the surface being viewed, including the presence of water due to flooding, on a 3-day basis. An analysis...... of data gathered during the 2009 flooding events in West Africa shows that the presented method can detect floods of comparable size to the SEVIRI pixel resolution on a short timescale, making it a valuable tool for large scale flood mapping....

  14. Interferometric Imaging of Geostationary Satellites: Signal-to-Noise Considerations

    Science.gov (United States)

    2011-09-01

    and the extent to which they cover the necessary portions of the UV plane . Once the photon counting noise becomes smaller than the UV coverage noise, ad...satellites,” in Proc. SPIE 4091, Imaging Technology and Telescopes, J. W. Bilbro, J. B. Breckinridge, R. A. Carreras , S. R. Czyzak, M. J. Eckart, R. D...SPIE 4091, Imaging Technology and Telescopes, J. W. Bilbro, J. B. Breckinridge, R. A. Carreras , S. R. Czyzak, M. J. Eckart, R. D. Fiete, and P. S

  15. An analysis of the wide area differential method of geostationary orbit satellites

    Institute of Scientific and Technical Information of China (English)

    CAI ChengLin; LI XiaoHui; WU HaiTao

    2009-01-01

    This work aims to obtain a wide area differential method for geostationary orbit (GEO) constellation. A comparison between the dilution of precision (DOP) of four-dimensional (4D) calculation including satellite clock errors and ephemeris errors and that of three-dimensional (3D) calculation only including ephemeris errors with the inverse positioning theory of GPS shows the conclusion that all the 3D PDOPs are greatly reduced. Based on this, a basic idea of correcting satellite clock errors and ephem-eris errors apart is put forward, and moreover, a specific method of separation is proposed. Satellite clock errors are separated in a master station with time synchronization, and all the remaining pseudo-range errors after the satellite clock errors have been deducted are used to work out ephemeris corrections of all GEO satellites. By a comparative analysis of user positioning accuracy before and after differential, the wide area differential method is verified to be quite valid for GEO constellation.

  16. The validation service of the hydrological SAF geostationary and polar satellite precipitation products

    Science.gov (United States)

    Puca, S.; Porcu, F.; Rinollo, A.; Vulpiani, G.; Baguis, P.; Balabanova, S.; Campione, E.; Ertürk, A.; Gabellani, S.; Iwanski, R.; Jurašek, M.; Kaňák, J.; Kerényi, J.; Koshinchanov, G.; Kozinarova, G.; Krahe, P.; Lapeta, B.; Lábó, E.; Milani, L.; Okon, L'.; Öztopal, A.; Pagliara, P.; Pignone, F.; Rachimow, C.; Rebora, N.; Roulin, E.; Sönmez, I.; Toniazzo, A.; Biron, D.; Casella, D.; Cattani, E.; Dietrich, S.; Di Paola, F.; Laviola, S.; Levizzani, V.; Melfi, D.; Mugnai, A.; Panegrossi, G.; Petracca, M.; Sanò, P.; Zauli, F.; Rosci, P.; De Leonibus, L.; Agosta, E.; Gattari, F.

    2014-04-01

    The development phase (DP) of the EUMETSAT Satellite Application Facility for Support to Operational Hydrology and Water Management (H-SAF) led to the design and implementation of several precipitation products, after 5 yr (2005-2010) of activity. Presently, five precipitation estimation algorithms based on data from passive microwave and infrared sensors, on board geostationary and sun-synchronous platforms, function in operational mode at the H-SAF hosting institute to provide near real-time precipitation products at different spatial and temporal resolutions. In order to evaluate the precipitation product accuracy, a validation activity has been established since the beginning of the project. A Precipitation Product Validation Group (PPVG) works in parallel with the development of the estimation algorithms with two aims: to provide the algorithm developers with indications to refine algorithms and products, and to evaluate the error structure to be associated with the operational products. In this paper, the framework of the PPVG is presented: (a) the characteristics of the ground reference data available to H-SAF (i.e. radar and rain gauge networks), (b) the agreed upon validation strategy settled among the eight European countries participating in the PPVG, and (c) the steps of the validation procedures. The quality of the reference data is discussed, and the efforts for its improvement are outlined, with special emphasis on the definition of a ground radar quality map and on the implementation of a suitable rain gauge interpolation algorithm. The work done during the H-SAF development phase has led the PPVG to converge into a common validation procedure among the members, taking advantage of the experience acquired by each one of them in the validation of H-SAF products. The methodology is presented here, indicating the main steps of the validation procedure (ground data quality control, spatial interpolation, up-scaling of radar data vs. satellite grid

  17. Analysis of Aerosol Distribution over North East Asia Using a Geostationary Satellite Measurement during Filed Campaigns of DRAGON-Asia 2012 and MAPS-Seoul 2015

    Science.gov (United States)

    KIM, M.; Kim, J.; Jeong, U.; Kim, W.; Choi, M.; Holben, B. N.; Eck, T. F.; Lim, J.; Ahn, J.

    2015-12-01

    Considering diverse source and high concentration of aerosol, numerous manners have been applied to detect aerosol properties in North East Asia (NEA). Above all, a geostationary orbit satellite, COMS has monitored atmosphere and ocean conditions over the NEA using two payloads of Meteorological Imager (MI) and Geostationary Ocean Color Imager (GOCI) since 2010. By using the MI measurements, an AOD retrieval algorithm was developed (Kim et al., 2014). Additionally, a number of ground-based network such as Aerosol Robotic Network (AERONET), Sky Radiometer Network (SKYNET), and Mie-scattering Light Detector and Ranging (LIDAR) Network have been in operation to capture aerosol variability. And, occasionally, field campaigns were conducted. In 2012 (March to May), the DRAGON-Asia campaign was performed by AERONET science team and NIER (National Institute of Environmental Research), and 40 sun/sky-radiometer was deployed. Subsequently, MAPS-Seoul campaign for detecting air quality was performed with 8 AERONET sites and 6 Pandora instruments in Korea. Those ground-based measurements provide validation dataset for satellite retrieval algorithm, as well as detect detail of aerosol characteristics at each local point. Thus, in this study, the AODs obtained from the aforementioned campaigns were applied to assess and improve the accuracy of MI AOD. For the DRAGON-Asia 2012, the comparison between MI AOD and AERONET AOD shows correlation coefficient of 0.85, regression slope of 1.00 and RMSE of 0.18. Furthermore, AOPs obtained from those field campaign results and the MI AOD were analyzed to understand temporal and spatial variance of aerosol in NEA during spring.

  18. Monitoring of the orbital position of a geostationary satellite by the spatially separated reception of signals of digital satellite television

    Science.gov (United States)

    Kaliuzny, M. P.; Bushuev, F. I.; Sibiriakova, Ye. S.; Shulga, O. V.; Shakun, L. S.; Bezrukovs, V.; Kulishenko, V. F.; Moskalenko, S. S.; Malynovsky, Ye. V.; Balagura, O. A.

    2017-02-01

    The results of the determination of the geostationary satellite "Eutelsat-13B" orbital position obtained during 2015-2016 years using European stations' network for reception of DVB-S signals from the satellite are presented. The network consists of five stations located in Ukraine and Latvia. The stations are equipped with a radio engineering complex developed by the RI "MAO". The measured parameter is a time difference of arrival (TDOA) of the DVB-S signals to the stations of the network. The errors of TDOA determination and satellite coordinates, obtained using a numerical model of satellite motion, are equal ±2.6 m and ±35 m respectively. Software implementation of the numerical model is taken from the free space dynamics library OREKIT.

  19. Spacecraft flight control system design selection process for a geostationary communication satellite

    Science.gov (United States)

    Barret, C.

    1992-01-01

    The Earth's first artificial satellite, Sputnik 1, slowly tumbled in orbit. The first U.S. satellite, Explorer 1, also tumbled out of control. Now, as we launch the Mars observer and the Cassini spacecraft, stability and control have become higher priorities. The flight control system design selection process is reviewed using as an example a geostationary communication satellite which is to have a life expectancy of 10 to 14 years. Disturbance torques including aerodynamic, magnetic, gravity gradient, solar, micrometeorite, debris, collision, and internal torques are assessed to quantify the disturbance environment so that the required compensating torque can be determined. Then control torque options, including passive versus active, momentum control, bias momentum, spin stabilization, dual spin, gravity gradient, magnetic, reaction wheels, control moment gyros, nutation dampers, inertia augmentation techniques, three-axis control, reactions control system (RCS), and RCS sizing, are considered. A flight control system design is then selected and preliminary stability criteria are met by the control gains selection.

  20. The microwave noise environment at a geostationary satellite caused by the brightness of the earth

    Science.gov (United States)

    Smith, E. K.; Njoku, E. G.

    1985-01-01

    The microwave antenna temperature due to the earth in the satellite antenna beam has been computed for a series of longitudes for a satellite in geostationary orbit and for frequencies of 1 to 50 GHz. An earth-coverage beam is assumed for simplicity, but the technique is applicable to arbitrary beam shapes. Detailed calculations have been performed to account for varying land-ocean fractions within the field of view. Emission characteristics of the earth's atmosphere and surface are used with an accurate radiation transfer program to compute observed brightness temperatures. The value of 290 K commonly used for antenna temperature in satellite communication noise calculations is overly conservative, with more realistic values lying in the 60 to 240 K range.

  1. The provision of spectrum for feeder links of non-geostationary mobile satellites

    Science.gov (United States)

    Bowen, Robert R.

    1993-01-01

    The possibility of sharing spectrum in the 30/20 GHz band between geostationary fixed-satellite systems and feeder-links of low-earth orbit (LEO) mobile-satellite systems is addressed, taking into account that International Telecommunications Union (ITU) Radio Regulation 2613 would be a factor in such sharing. Interference into each network in both the uplink at 30 GHz and the downlink at 20 GHz is considered. It is determined that if sharing were to take place the mobile-satellite may have to cease transmission often for intervals up to 10 seconds, may have to use high-gain tracking antennas on its spacecraft, and may find it an advantage to use code-division multiple access. An alternate solution suggested is to designate a band 50 to 100 MHz wide at 28 and 18 GHz to be used primarily for feeder links to LEO systems.

  2. Quantum-limited measurements of optical signals from a geostationary satellite

    CERN Document Server

    Günthner, Kevin; Elser, Dominique; Stiller, Birgit; Bayraktar, Ömer; Müller, Christian R; Saucke, Karen; Tröndle, Daniel; Heine, Frank; Seel, Stefan; Greulich, Peter; Zech, Herwig; Gütlich, Björn; Richter, Ines; Lutzer, Michael; Philipp-May, Sabine; Meyer, Rolf; Marquardt, Christoph; Leuchs, Gerd

    2016-01-01

    The measurement of quantum signals that traveled through long distances is of fundamental and technical interest. We present quantum-limited coherent measurements of optical signals, sent from a satellite in geostationary Earth orbit to an optical ground station. We bound the excess noise that the quantum states could have acquired after having propagated 38600 km through Earth's gravitational potential as well as its turbulent atmosphere. Our results indicate that quantum communication is feasible in principle in such a scenario, highlighting the possibility of a global quantum key distribution network for secure communication.

  3. Attitude determination for three-axis stabilized geostationary meteorological satellite image navigation

    Science.gov (United States)

    Wu, Yaguang; Wang, Zhigang

    2005-11-01

    To achieve the high accuracy of attitude determination for three-axis stabilized geostationary meteorological satellite image navigation, a new approach combined gyro with star trackers is proposed, and a real-time algorithm for attitude estimation is designed. This algorithm begins with a prediction for angular rate model errors induced by gyro drifting error, and ends with the extended Kalman filtering (EKF) for attitude estimation of three-axis. A Matlab-based time domain simulation model is developed to evaluate the attitude determination performance. Simulation results demonstrate that the proposed algorithm has characteristics of high accuracy, rapid convergence and strong robustness.

  4. Estimate of Solar Maximum Using the 1-8 Angstrom Geostationary Operational Environmental Satellites X-Ray Measurements

    Science.gov (United States)

    2014-12-12

    TYPE Journal Article 3. DATES COVERED (From - To) 01 Oct 2014 – 30 Nov 2014 4. TITLE AND SUBTITLE Estimate of Solar Maximum Using the 1–8 Å...predict the intensity and date of the solar maximum of the current solar cycle. The solar cycle 24 prediction panel3 (Biesecker & Prediction Panel 2007...statement of the solar cycle 24 prediction panel is available at http://www.swpc.noaa.gov/SolarCycle/SC24/. 2. DETERMINATION OF THE SOLAR CYCLE

  5. Passive correlation ranging of a geostationary satellite using DVB-S payload signals.

    Science.gov (United States)

    Shakun, Leonid; Shulga, Alexandr; Sybiryakova, Yevgeniya; Bushuev, Felix; Kaliuzhnyi, Mykola; Bezrukovs, Vladislavs; Moskalenko, Sergiy; Kulishenko, Vladislav; Balagura, Oleg

    2016-07-01

    Passive correlation ranging (PaCoRa) for geostationary satellites is now considered as an alternate to tone-ranging (https://artes.esa.int/search/node/PaCoRa). The PaCoRa method has been employed in the Research Institute "Nikolaev astronomical observatory" since the first experiment in August 2011 with two stations spatially separated on 150 km. The PaCoRa has been considered as an independent method for tracking the future Ukrainian geostationary satellite "Lybid'. Now a radio engineering complex (RC) for passive ranging consists of five spatially separated stations of receiving digital satellite television and a data processing center located in Mykolaiv. The stations are located in Kyiv, Kharkiv, Mukacheve, Mykolaiv (Ukraine) and in Ventspils (Latvia). Each station has identical equipment. The equipment allows making synchronous recording of fragments of the DVB-S signal from the quadrature detector output of a satellite television receiver. The fragments are recorded every second. Synchronization of the stations is performed using GPS receivers. Samples of the complex signal obtained in this way are archived and are sent to the data processing center over the Internet. Here the time differences of arrival (TDOA) for pairs of the stations are determined as a result of correlation processing of received signals. The values of the TDOA that measured every second are used for orbit determination (OD) of the satellite. The results of orbit determination of the geostationary telecommunication satellite "Eutelsat-13B" (13º East) obtained during about four months of observations in 2015 are presented in the report. The TDOA and OD accuracies are also given. Single-measurement error (1 sigma) of the TDOA is equal about 8.7 ns for all pairs of the stations. Standard deviations and average values of the residuals between the observed TDOA and the TDOA computed using the orbit elements obtained from optical measurements are estimated for the pairs Kharkiv-Mykolaiv and

  6. Land surface thermal characterization of Asian-pacific region with Japanese geostationary satellite

    Science.gov (United States)

    Oyoshi, K.; Tamura, M.

    2010-12-01

    Land Surface Temperature (LST) is a significant indicator of energy balance at the Earth's surface. It is required for a wide variety of climate, hydrological, ecological, and biogeochemical studies. Although LST is highly variable both temporally and spatially, it is impossible for polar-orbiting satellite to detect hourly changes in LST, because the satellite is able to only collect data of the same area at most twice a day. On the other hand, geostationary satellite is able to collect hourly data and has a possibility to monitor hourly changes in LST, therefore hourly measurements of geostationary satellite enables us to characterize detailed thermal conditions of the Earth's surface and improve our understanding of the surface energy balance. Multi-functional Transport Satellite (MTSAT) is a Japanese geostationary satellite launched in 2005 and covers Asia-Pacific region. MTSAT provides hourly data with 5 bands including two thermal infrared (TIR) bands in the 10.5-12.5 micron region. In this research, we have developed a methodology to retrieve hourly LST from thermal infrared data of MTSAT. We applied Generalized Split-window (GSW) equation to estimate LST from TIR data. First, the brightness temperatures measured at sensor on MTSAT was simulated by radiative transfer code (MODTRAN), and the numerical coefficients of GSW equation were optimized based on the simulation results with non-linear minimization algorithm. The standard deviation of derived GSW equation was less than or equal to 1.09K in the case of viewing zenith angle lower than 40 degree and 1.73K in 60 degree. Then, spatial distributions of LST have been mapped optimized GSW equation with brightness temperatures of MTSAT IR1 and IR2 and emissivity map from MODIS product. Finally, these maps were validated with MODIS LST product (MOD11A1) over four Asian-pacific regions such as Bangkok, Tokyo, UlanBator and Jakarta , It is found that RMSE of these regions were 4.57K, 2.22K, 2.71K and 3.92K

  7. Time series modeling and large scale global solar radiation forecasting from geostationary satellites data

    CERN Document Server

    Voyant, Cyril; Muselli, Marc; Paoli, Christophe; Nivet, Marie Laure

    2014-01-01

    When a territory is poorly instrumented, geostationary satellites data can be useful to predict global solar radiation. In this paper, we use geostationary satellites data to generate 2-D time series of solar radiation for the next hour. The results presented in this paper relate to a particular territory, the Corsica Island, but as data used are available for the entire surface of the globe, our method can be easily exploited to another place. Indeed 2-D hourly time series are extracted from the HelioClim-3 surface solar irradiation database treated by the Heliosat-2 model. Each point of the map have been used as training data and inputs of artificial neural networks (ANN) and as inputs for two persistence models (scaled or not). Comparisons between these models and clear sky estimations were proceeded to evaluate the performances. We found a normalized root mean square error (nRMSE) close to 16.5% for the two best predictors (scaled persistence and ANN) equivalent to 35-45% related to ground measurements. F...

  8. Coarse Initial Orbit Determination for a Geostationary Satellite Using Single-Epoch GPS Measurements

    Directory of Open Access Journals (Sweden)

    Ghangho Kim

    2015-04-01

    Full Text Available A practical algorithm is proposed for determining the orbit of a geostationary orbit (GEO satellite using single-epoch measurements from a Global Positioning System (GPS receiver under the sparse visibility of the GPS satellites. The algorithm uses three components of a state vector to determine the satellite’s state, even when it is impossible to apply the classical single-point solutions (SPS. Through consideration of the characteristics of the GEO orbital elements and GPS measurements, the components of the state vector are reduced to three. However, the algorithm remains sufficiently accurate for a GEO satellite. The developed algorithm was tested on simulated measurements from two or three GPS satellites, and the calculated maximum position error was found to be less than approximately 40 km or even several kilometers within the geometric range, even when the classical SPS solution was unattainable. In addition, extended Kalman filter (EKF tests of a GEO satellite with the estimated initial state were performed to validate the algorithm. In the EKF, a reliable dynamic model was adapted to reduce the probability of divergence that can be caused by large errors in the initial state.

  9. Diurnal Variability of Turbidity Fronts Observed by Geostationary Satellite Ocean Color Remote Sensing

    Directory of Open Access Journals (Sweden)

    Zifeng Hu

    2016-02-01

    Full Text Available Monitoring front dynamics is essential for studying the ocean’s physical and biogeochemical processes. However, the diurnal displacement of fronts remains unclear because of limited in situ observations. Using the hourly satellite imageries from the Geostationary Ocean Color Imager (GOCI with a spatial resolution of 500 m, we investigated the diurnal displacement of turbidity fronts in both the northern Jiangsu shoal water (NJSW and the southwestern Korean coastal water (SKCW in the Yellow Sea (YS. The hourly turbidity fronts were retrieved from the GOCI-derived total suspended matter using the entropy-based algorithm. The results showed that the entropy-based algorithm could provide fine structure and clearly temporal evolution of turbidity fronts. Moreover, the diurnal displacement of turbidity fronts in NJSW can be up to 10.3 km in response to the onshore-offshore movements of tidal currents, much larger than it is in SKCW (around 4.7 km. The discrepancy between NJSW and SKCW are mainly caused by tidal current direction relative to the coastlines. Our results revealed the significant diurnal displacement of turbidity fronts, and highlighted the feasibility of using geostationary ocean color remote sensing technique to monitor the short-term frontal variability, which may contribute to understanding of the sediment dynamics and the coupling physical-biogeochemical processes.

  10. Minimum-fuel station-change for geostationary satellites using low-thrust considering perturbations

    Science.gov (United States)

    Zhao, ShuGe; Zhang, JingRui

    2016-10-01

    The objective of this paper is to find the minimum-fuel station change for geostationary satellites with low-thrust while considering significant perturbation forces for geostationary Earth orbit (GEO). The effect of Earth's triaxiality, lunisolar perturbations, and solar radiation pressure on the terminal conditions of a long duration GEO transfer is derived and used for establishing the station change model with consideration of significant perturbation forces. A method is presented for analytically evaluating the effect of Earth's triaxiality on the semimajor axis and longitude during a station change. The minimum-fuel problem is solved by the indirect optimization method. The easier and related minimum-energy problem is first addressed and then the energy-to-fuel homotopy is employed to finally obtain the solution of the minimum-fuel problem. Several effective techniques are employed in solving the two-point boundary-value problem with a shooting method to overcome the problem of the small convergence radius and the sensitivity of the initial costate variables. These methods include normalization of the initial costate vector, computation of the analytic Jacobians matrix, and switching detection. The simulation results show that the solution of the minimum-fuel station change with low-thrust considering significant perturbation forces can be obtained by applying these preceding techniques.

  11. An analysis of the wide area differential method of geostationary orbit satellites

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This work aims to obtain a wide area differential method for geostationary orbit (GEO) constellation. A comparison between the dilution of precision (DOP) of four-dimensional (4D) calculation including sa- tellite clock errors and ephemeris errors and that of three-dimensional (3D) calculation only including ephemeris errors with the inverse positioning theory of GPS shows the conclusion that all the 3D PDOPs are greatly reduced. Based on this, a basic idea of correcting satellite clock errors and ephem- eris errors apart is put forward, and moreover, a specific method of separation is proposed. Satellite clock errors are separated in a master station with time synchronization, and all the remaining pseu- do-range errors after the satellite clock errors have been deducted are used to work out ephemeris corrections of all GEO satellites. By a comparative analysis of user positioning accuracy before and after differential, the wide area differential method is verified to be quite valid for GEO constellation.

  12. Retrieval of fire radiative power and biomass combustion using the Korean geostationary meteorological satellite

    Science.gov (United States)

    Kim, D. S.; Lee, Y. W.

    2013-10-01

    Global warming induced by greenhouse gases is increasing wildfire frequencies and scale. Since wildfire again releases greenhouse gases(GHGs) into the air, the vicious cycle is repeated. Satellite remote sensing is a useful tool for detecting wildfire. However, estimating the GHGs emission from wildfire has not been challenged yet. Wildfires are estimated to be responsible for, on average, around 30% of global total CO emissions, 10% of methane emissions, 38% of tropospheric ozone, and over 86% of black carbon. So we need to quantify the emitted gases by biomass combustions, which can be measured by the FRP (fire radiative power) derived from the spectral characteristics of satellite sensors. This paper described the algorithm for retrieval of FRP using COMS(Communication, Ocean and Meteorological Satellite), the Korean geostationary meteorological satellite. The FRP of wildfire is retrieved by single waveband methods suitable to COMS channels. The retrieval of FRP is dependent on the emissivity of each bandwidth. So, we used MODIS NDVI through a spatio-temporal calibration for the emissivity calculations. We made sure that the FRP in wildfire pixel is much higher than its spatially and temporally neighboring pixels. For future work, we should quantify the relationships between FRP and the biomass combustion according to fuel types.

  13. Modelling Angular Dependencies in Land Surface Temperatures From the SEVIRI Instrument onboard the Geostationary Meteosat Second Generation Satellites

    DEFF Research Database (Denmark)

    Rasmussen, Mads Olander; Pinheiro, AC; Proud, Simon Richard

    2010-01-01

    Satellite-based estimates of land surface temperature (LST) are widely applied as an input to models. A model output is often very sensitive to error in the input data, and high-quality inputs are therefore essential. One of the main sources of errors in LST estimates is the dependence on vegetat......Satellite-based estimates of land surface temperature (LST) are widely applied as an input to models. A model output is often very sensitive to error in the input data, and high-quality inputs are therefore essential. One of the main sources of errors in LST estimates is the dependence...... on vegetation structure and viewing and illumination geometry. Despite this, these effects are not considered in current operational LST products from neither polar-orbiting nor geostationary satellites. In this paper, we simulate the angular dependence that can be expected when estimating LST with the viewing...... by different land covers. The results show that the sun-target-sensor geometry plays a significant role in the estimated temperature, with variations strictly due to the angular configuration of more than ±3°C in some cases. On the continental scale, the average error is small except in hot-spot conditions...

  14. A geostationary longitude acquisition planning algorithm. [for maneuver planning of geosynchronous satellites

    Science.gov (United States)

    Petruzzo, C. J.; Bryant, W. C., Jr.; Nickerson, K. G.

    1977-01-01

    The paper is concerned with the phase of the geosynchronous mission termed station acquisition, which involves the maneuvering of a spacecraft to its geostationary longitude by means of the spacecraft propulsion system. An algorithm which assists in maneuver planning is described, and examples of its use are presented. The algorithm can be applied when sequences of more than three maneuvers are to be expected. While, in general, three maneuvers are sufficient to achieve the desired end conditions when orbital mechanics are the only consideration, operational considerations may add constraints resulting in an increased number of maneuvers required.

  15. Low-Thrust Transfer Design of Low-Observable Geostationary Earth Orbit Satellite

    Directory of Open Access Journals (Sweden)

    Bing Hua

    2015-01-01

    Full Text Available With radar and surface-to-air missiles posing an increasing threat to on-orbit spacecraft, low-observable satellites play an important role in low-thrust transfers. This paper presents the design for a low-thrust geostationary earth orbit (GEO transfer control strategy which takes into consideration the low-observable constraint and discusses Earth shadow and perturbation. A control parameter optimization addresses the orbit transfer problem, and five thrust modes are used. Simulation results show that the method outlined in this paper is simple and feasible and results in reduced transfer time with a small amount of calculation. The method therefore offers a useful reference for low-thrust GEO transfer design.

  16. Satellite radiometric remote sensing of rainfall fields: multi-sensor retrieval techniques at geostationary scale

    Directory of Open Access Journals (Sweden)

    F. S. Marzano

    2005-01-01

    Full Text Available The Microwave Infrared Combined Rainfall Algorithm (MICRA consists in a statistical integration method using the satellite microwave-based rain-rate estimates, assumed to be accurate enough, to calibrate spaceborne infrared measurements on limited sub-regions and time windows. Rainfall retrieval is pursued at the space-time scale of typical geostationary observations, that is at a spatial resolution of few kilometers and a repetition period of few tens of minutes. The actual implementation is explained, although the basic concepts of MICRA are very general and the method is easy to be extended for considering innovative statistical techniques or measurements from additional space-borne platforms. In order to demonstrate the potentiality of MICRA, case studies over central Italy are also discussed. Finally, preliminary results of MICRA validation by ground based remote and in situ measurements are shown and a comparison with a Neural Network (NN based technique is briefly illustrated.

  17. True Color Images of the Earth created with the Geostationary Satellite Instrument MSG SEVIRI

    Science.gov (United States)

    Reuter, Maximilian

    2013-04-01

    One of the most famous pictures ever taken was by the crew of Apollo 17 in 1972, showing our Earth from a distance of about 45000km. This picture was named 'Blue Marble' and it reminds us of the beauty and uniqueness of our home planet. With geostationary satellites, such views of the Earth are possible without the need to have a photographer in space. However, up to the present, the production of such Blue Marble type images from geostationary satellite data has been impaired by the lack of channels in the visible spectral region. A method for the generation of full disk MSG (METEOSAT Second Generation) SEVIRI (Scanning-Enhanced Visible and Infrared Imager) true colour composite images will be presented. The algorithm mainly uses the SEVIRI channels VIS006 (0.6μm), NIR008 (0.8μm) and NIR016 (1.6μm). The lack of information in the blue and green parts of the visible spectrum is compensated by using data from NASA's (National Aeronautics and Space Administration's) Blue Marble next generation (BMNG) project to fill a look-up table (LUT) transforming RGB (red/green/blue) false colour composite images of VIS006/NIR008/NIR016 into true colour images. Tabulated radiative transfer calculations of a pure Rayleigh atmosphere are used to add an impression of Rayleigh scattering towards the sunlit horizon. The resulting images satisfy naive expectations: clouds are white or transparent, vegetated surfaces are greenish, deserts are sandy-coloured, the ocean is dark blue to black and a narrow halo due to Rayleigh scattering is visible at the sunlit horizon. Therefore, such images are easily interpretable also for inexperienced users not familiar with the characteristics of typical MSG false colour composite images. The images can be used for scientific applications to illustrate specific meteorological conditions or for non-scientific purposes, for example, for raising awareness in the public of the Earth's worthiness of protection.

  18. Rainfall estimation for real time flood monitoring using geostationary meteorological satellite data

    Science.gov (United States)

    Veerakachen, Watcharee; Raksapatcharawong, Mongkol

    2015-09-01

    Rainfall estimation by geostationary meteorological satellite data provides good spatial and temporal resolutions. This is advantageous for real time flood monitoring and warning systems. However, a rainfall estimation algorithm developed in one region needs to be adjusted for another climatic region. This work proposes computationally-efficient rainfall estimation algorithms based on an Infrared Threshold Rainfall (ITR) method calibrated with regional ground truth. Hourly rain gauge data collected from 70 stations around the Chao-Phraya river basin were used for calibration and validation of the algorithms. The algorithm inputs were derived from FY-2E satellite observations consisting of infrared and water vapor imagery. The results were compared with the Global Satellite Mapping of Precipitation (GSMaP) near real time product (GSMaP_NRT) using the probability of detection (POD), root mean square error (RMSE) and linear correlation coefficient (CC) as performance indices. Comparison with the GSMaP_NRT product for real time monitoring purpose shows that hourly rain estimates from the proposed algorithm with the error adjustment technique (ITR_EA) offers higher POD and approximately the same RMSE and CC with less data latency.

  19. Combined Use of Polar and Geostationary Satellite Sensors For Aerosol Characterization Over The Ocean

    Science.gov (United States)

    Costa, M. J.; Cervino, M.; Levizzani, V.; Silva, A. M.

    Aerosol particles play an important role in the Earth's climate due to their direct and indirect interaction with the atmosphere. Monitoring of the optical properties of atmospheric aerosol is thus crucial for a radiative forcing quantification at the lo- cal, regional and global scales. Ground-based measurements provide accurate aerosol properties. However, given the strong spatial and temporal variability of tropospheric aerosols ground measurements cannot cover the global scale. On the other hand, satellite-based algorithms for aerosol retrievals presently do not match the accuracy of ground-based results. Most satellite algorithms are based on a single sensor, thus often suffering from specific limitations (poor spatial or spectral resolution, long re- visitation time, poor cloud mask). A method to exploit the synergy between the polar orbiting Global Ozone Monitoring Experiment (GOME) onboard ERS-2 and the METEOSAT geostationary system was proposed (Costa et al., 2001), aiming at increasing the accuracy of the aerosol charac- terization and monitoring of the optical thickness. A validation of the algorithm is done by comparing satellite retrievals with results obtained via independent space-time co- located ground-based measurements from AERONET (Aerosol Robotic NETwork) and from other state of the art algorithms that make use of satellite measurements such as the MODIS official aerosol product. Results of the ongoing validation are pre- sented for relevant transport events of desert dust and biomass burning aerosol over the Atlantic and Indian Oceans during year 2000. References: Costa,M.J., M.Cervino, E.Cattani, F.Torricella, V.Levizzani, and A.M.Silva, 2001: "Aerosol characterization and optical thickness retrievals using GOME and METEOSAT satellite data". Meteor. Atmos. Phys., (in press). Acknowledgements: METEOSAT imagery was kindly made available by EUMET- SAT. We thank the AERONET investigators and their staff for establishing and main- taining the

  20. Retrieving Clear-Sky Surface Skin Temperature for Numerical Weather Prediction Applications from Geostationary Satellite Data

    Directory of Open Access Journals (Sweden)

    Baojuan Shan

    2013-01-01

    Full Text Available Atmospheric models rely on high-accuracy, high-resolution initial radiometric and surface conditions for better short-term meteorological forecasts, as well as improved evaluation of global climate models. Remote sensing of the Earth’s energy budget, particularly with instruments flown on geostationary satellites, allows for near-real-time evaluation of cloud and surface radiation properties. The persistence and coverage of geostationary remote sensing instruments grant the frequent retrieval of near-instantaneous quasi-global skin temperature. Among other cloud and clear-sky retrieval parameters, NASA Langley provides a non-polar, high-resolution land and ocean skin temperature dataset for atmospheric modelers by applying an inverted correlated k-distribution method to clear-pixel values of top-of-atmosphere infrared temperature. The present paper shows that this method yields clear-sky skin temperature values that are, for the most part, within 2 K of measurements from ground-site instruments, like the Southern Great Plains Atmospheric Radiation Measurement (ARM Infrared Thermometer and the National Climatic Data Center Apogee Precision Infrared Thermocouple Sensor. The level of accuracy relative to the ARM site is comparable to that of the Moderate-resolution Imaging Spectroradiometer (MODIS with the benefit of an increased number of daily measurements without added bias or increased error. Additionally, matched comparisons of the high-resolution skin temperature product with MODIS land surface temperature reveal a level of accuracy well within 1 K for both day and night. This confidence will help in characterizing the diurnal and seasonal biases and root-mean-square differences between the retrievals and modeled values from the NASA Goddard Earth Observing System Version 5 (GEOS-5 in preparation for assimilation of the retrievals into GEOS-5. Modelers should find the immediate availability and broad coverage of these skin temperature

  1. Time-resolved visible/near-infrared spectrometric observations of the Galaxy 11 geostationary satellite

    Science.gov (United States)

    Bédard, Donald; Wade, Gregg A.

    2017-01-01

    Time-resolved spectrometric measurements of the Galaxy 11 geostationary satellite were collected on three consecutive nights in July 2014 with the 1.6-m telescope at the Observatoire du Mont-Mégantic in Québec, Canada. Approximately 300 low-resolution spectra (R ≈ 700 , where R = λ / Δλ) of the satellite were collected each night, covering a spectral range between 425 and 850 nm. The two objectives of the experiment were to conduct material-type identification from the spectra and to study how the spectral energy distribution inferred from these measurements varied as the illumination and observation geometry changed on nightly timescales. We present results that indicate the presence of a highly reflective aluminized surface corresponding to the solar concentrator arrays of the Galaxy 11 spacecraft. Although other material types could not be identified using the spectra, the results showed that the spectral energy distribution of the reflected sunlight from the Galaxy 11 spacecraft varied significantly, in a systematic manner, over each night of observation. The variations were quantified using colour indices calculated from the time-resolved spectrometric measurements.

  2. Single-event and total-dose effects in geo-stationary transfer orbit during solar-activity maximum period measured by the Tsubasa satellite

    Science.gov (United States)

    Koshiishi, H.; Kimoto, Y.; Matsumoto, H.; Goka, T.

    The Tsubasa satellite developed by the Japan Aerospace Exploration Agency was launched in Feb 2002 into Geo-stationary Transfer Orbit GTO Perigee 500km Apogee 36000km and had been operated well until Sep 2003 The objective of this satellite was to verify the function of commercial parts and new technologies of bus-system components in space Thus the on-board experiments were conducted in the more severe radiation environment of GTO rather than in Geo-stationary Earth Orbit GEO or Low Earth Orbit LEO The Space Environment Data Acquisition equipment SEDA on board the Tsubasa satellite had the Single-event Upset Monitor SUM and the DOSimeter DOS to evaluate influences on electronic devices caused by radiation environment that was also measured by the particle detectors of the SEDA the Standard DOse Monitor SDOM for measurements of light particles and the Heavy Ion Telescope HIT for measurements of heavy ions The SUM monitored single-event upsets and single-event latch-ups occurred in the test sample of two 64-Mbit DRAMs The DOS measured accumulated radiation dose at fifty-six locations in the body of the Tsubasa satellite Using the data obtained by these instruments single-event and total-dose effects in GTO during solar-activity maximum period especially their rapid changes due to solar flares and CMEs in the region from L 1 1 through L 11 is discussed in this paper

  3. Should Non Department of Defense Meteorological Satellites Be Used to Meet Department of Defense Environmental Requirements?

    Science.gov (United States)

    2003-06-06

    Information Support laboratory, Geostationary Operational Meteorological Satellite. (Moscow, RU: SMIS IKI RAN and SRC PLANETA , January 2003); Internet...Operational Meteorological Satellite. Moscow, RU: SMIS IKI RAN and SRC PLANETA , January 2003. Squitieri, Tom. “In Bosnia, Weather is primary Foe”. USA Today

  4. Coastal water quality estimation from Geostationary Ocean Color Imager (GOCI) satellite data using machine learning approaches

    Science.gov (United States)

    Im, Jungho; Ha, Sunghyun; Kim, Yong Hoon; Ha, Hokyung; Choi, Jongkuk; Kim, Miae

    2014-05-01

    It is important to monitor coastal water quality using key parameters such as chlorophyll-a concentration and suspended sediment to better manage coastal areas as well as to better understand the nature of biophysical processes in coastal seawater. Remote sensing technology has been commonly used to monitor coastal water quality due to its ability of covering vast areas at high temporal resolution. While it is relatively straightforward to estimate water quality in open ocean (i.e., Case I water) using remote sensing, coastal water quality estimation is still challenging as many factors can influence water quality, including various materials coming from inland water systems and tidal circulation. There are continued efforts to accurately estimate water quality parameters in coastal seawater from remote sensing data in a timely manner. In this study, two major water quality indicators, chlorophyll-a concentration and the amount of suspended sediment, were estimated using Geostationary Ocean Color Imager (GOCI) satellite data. GOCI, launched in June 2010, is the first geostationary ocean color observation satellite in the world. GOCI collects data hourly for 8 hours a day at 6 visible and 2 near-infrared bands at a 500 m resolution with 2,500 x 2,500 km square around Korean peninsula. Along with conventional statistical methods (i.e., various linear and non-linear regression), three machine learning approaches such as random forest, Cubist, and support vector regression were evaluated for coastal water quality estimation. In situ measurements (63 samples; including location, two water quality parameters, and the spectra of surface water using a hand-held spectroradiometer) collected during four days between 2011 and 2012 were used as reference data. Due to the small sample size, leave-one-out cross validation was used to assess the performance of the water quality estimation models. Atmospherically corrected radiance data and selected band-ratioed images were used

  5. The Evolution of Operational Satellite Based Remote Sensing in Support of Weather Analysis, Nowcasting, and Hazard Mitigation

    Science.gov (United States)

    Hughes, B. K.

    2010-12-01

    The mission of the National Oceanic and Atmospheric Administration (NOAA) National Environmental Data Information Service (NESDIS) is to provide timely access to global environmental data from satellites and other sources to promote, protect, and enhance America’s economy, security, environment, and quality of life. To fulfill its responsibilities, NESDIS acquires and manages America’s operational environmental satellites, operates the NOAA National Data Centers, provides data and information services including Earth system monitoring, performs official assessments of the environment, and conducts related research. The Nation’s fleet of operational environmental satellites has proven to be very critical in the detection, analysis, and forecast of natural or man-made phenomena. These assets have provided for the protection of people and property while safeguarding the Nation’s commerce and enabling safe and effective military operations. This presentation will take the audience through the evolution of operational satellite based remote sensing in support of weather forecasting, nowcasting, warning operations, hazard detection and mitigation. From the very first experiments involving radiation budget to today’s fleet of Geostationary and Polar Orbiting satellites to tomorrow’s constellation of high resolution imagers and hyperspectral sounders, environmental satellites sustain key observations for current and future generations.

  6. Toward the Estimation of Surface Soil Moisture Content Using Geostationary Satellite Data over Sparsely Vegetated Area

    Directory of Open Access Journals (Sweden)

    Pei Leng

    2015-04-01

    Full Text Available Based on a novel bare surface soil moisture (SSM retrieval model developed from the synergistic use of the diurnal cycles of land surface temperature (LST and net surface shortwave radiation (NSSR (Leng et al. 2014. “Bare Surface Soil Moisture Retrieval from the Synergistic Use of Optical and Thermal Infrared Data”. International Journal of Remote Sensing 35: 988–1003., this paper mainly investigated the model’s capability to estimate SSM using geostationary satellite observations over vegetated area. Results from the simulated data primarily indicated that the previous bare SSM retrieval model is capable of estimating SSM in the low vegetation cover condition with fractional vegetation cover (FVC ranging from 0 to 0.3. In total, the simulated data from the Common Land Model (CoLM on 151 cloud-free days at three FLUXNET sites that with different climate patterns were used to describe SSM estimates with different underlying surfaces. The results showed a strong correlation between the estimated SSM and the simulated values, with a mean Root Mean Square Error (RMSE of 0.028 m3·m−3 and a coefficient of determination (R2 of 0.869. Moreover, diurnal cycles of LST and NSSR derived from the Meteosat Second Generation (MSG satellite data on 59 cloud-free days were utilized to estimate SSM in the REMEDHUS soil moisture network (Spain. In particular, determination of the model coefficients synchronously using satellite observations and SSM measurements was explored in detail in the cases where meteorological data were not available. A preliminary validation was implemented to verify the MSG pixel average SSM in the REMEDHUS area with the average SSM calculated from the site measurements. The results revealed a significant R2 of 0.595 and an RMSE of 0.021 m3·m−3.

  7. Coastal Geostationary Sea Surface Temperature (SST) Products from NOAA GOES and Japanese MTSAT-1R satellites, coastal United States, 2000 - present (NCEI Accession 0108128)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA's Office of Satellite and Data Distribution (OSDPD) generates geostationary sea surface temperature (SST) products. These products are derived from NOAA's...

  8. A versatile system for processing geostationary satellite data with run-time visualization capability

    Science.gov (United States)

    Landsfeld, M.; Gautier, C.; Figel, T.

    1995-01-01

    To better predict global climate change, scientists are developing climate models that require interdisciplinary and collaborative efforts in their building. We are currently involved in several such projects but will briefly discuss activities in support of two such complementary projects: the Atmospheric Radiation Measurement (ARM) program of the Department of Energy and Sequoia 2000, a joint venture of the University of California, the private sector, and government agencies. Our contribution to the ARM program is to investigate the role of clouds on the top of the atmosphere and on surface radiance fields through the data analysis of surface and satellite observations and complex modeling of the interaction of radiation with clouds. One of our first ARM research activities involves the computation of the broadband shortwave surface irradiance from satellite observations. Geostationary satellite images centered over the first ARM observation site are received hourly over the Internet network and processed in real time to compute hourly and daily composite shortwave irradiance fields. The images and the results are transferred via a high-speed network to the Sequoia 2000 storage facility in Berkeley, where they are archived These satellite-derived results are compared with the surface observations to evaluate the accuracy of the satellite estimate and the spatial representation of the surface observations. In developing the software involved in calculating the surface shortwave irradiance, we have produced an environment whereby we can easily modify and monitor the data processing as required. Through the principles of modular programming, we have developed software that is easily modified as new algorithms for computation are developed or input data availability changes. In addition, the software was designed so that it could be run from an interactive, icon-driven, graphical interface, TCL-TK, developed by Sequoia 2000 participants. In this way, the data flow

  9. Estimation of net surface shortwave radiation over the tropical Indian Ocean using geostationary satellite observations: Algorithm and validation

    Science.gov (United States)

    Shahi, Naveen R.; Thapliyal, Pradeep K.; Sharma, Rashmi; Pal, Pradip K.; Sarkar, Abhijit

    2011-09-01

    This paper presents the development of a methodology to estimate the net surface shortwave radiation (SWR) over tropical oceans using half-hourly geostationary satellite estimates of outgoing longwave radiation (OLR). The collocated data set of SWR measured at 13 buoy locations over the Indian Ocean and a Meteosat-derived OLR for the period of 2002-2009 have been used to derive an empirical relationship. The information from the solar zenith angle that determines the amount of solar radiation received at a particular location is used to normalize the SWR to nadir observation in order to make the empirical relationship location independent. As the relationship between SWR and OLR is valid mostly over the warm-pool regions, the present study restricts SWR estimation in the tropical Indian Ocean domain (30°E-110°E, 30°S-30°N). The SWR estimates are validated with an independent collocated data set and subsequently compared with the SWR estimates from the Global Energy and Water Cycle Experiment-Surface Radiation Budget V3.0 (GEWEX-SRB), International Satellite Cloud Climatology Project-Flux Data (ISCCP-FD), and National Centers for Environmental Prediction (NCEP) reanalysis for the year 2007. The present algorithm provides significantly better accuracy of SWR estimates, with a root-mean-square error of 27.3 W m-2 as compared with the values of 32.7, 37.5, and 59.6 W m-2 obtained from GEWEX-SRB, ISCCP-FD, and NCEP, respectively. The present algorithm also provides consistently better SWR compared with other available products under different sky conditions and seasons over Indian Ocean warm-pool regions.

  10. Economic benefits of the Space Station to commercial communication satellite operators

    Science.gov (United States)

    Price, Kent M.; Dixson, John E.; Weyandt, Charles J.

    1987-01-01

    The economic and financial aspects of newly defined space-based activities, procedures, and operations (APOs) and associated satellite system designs are presented that have the potential to improve economic performance of future geostationary communications satellites. Launch insurance, launch costs, and the economics of APOs are examined. Retrieval missions and various Space Station scenarios are addressed. The potential benefits of the new APOs to the commercial communications satellite system operator are quantified.

  11. The geo-control system for station keeping and colocation of geostationary satellites

    Science.gov (United States)

    Montenbruck, O.; Eckstein, M. C.; Gonner, J.

    1993-01-01

    GeoControl is a compact but powerful and accurate software system for station keeping of single and colocated satellites, which has been developed at the German Space Operations Center. It includes four core modules for orbit determination (including maneuver estimation), maneuver planning, monitoring of proximities between colocated satellites, and interference and event prediction. A simple database containing state vector and maneuver information at selected epochs is maintained as a central interface between the modules. A menu driven shell utilizing form screens for data input serves as the central user interface. The software is written in Ada and FORTRAN and may be used on VAX workstations or mainframes under the VMS operating system.

  12. Online Visualization and Analysis of Merged Global Geostationary Satellite Infrared Dataset

    Science.gov (United States)

    Liu, Z.; Ostrenga, D.; Leptoukh, G.; Mehta, A.

    2008-12-01

    The NASA Goddard Earth Sciences Data Information Services Center (GES DISC) is home of Tropical Rainfall Measuring Mission (TRMM) data archive. The global merged IR product, also known as, the NCEP/CPC 4-km Global (60°N - 60°S) IR Dataset, is one of TRMM ancillary datasets. They are globally-merged (60°N-60°S) pixel-resolution (4 km) IR brightness temperature data (equivalent blackbody temperatures), merged from all available geostationary satellites (GOES-8/10, METEOSAT-7/5 & GMS). The availability of data from METEOSAT-5, which is located at 63E at the present time, yields a unique opportunity for total global (60°N-60°S) coverage. The GES DISC has collected over 8 years of the data beginning from February of 2000. This high temporal resolution dataset can not only provide additional background information to TRMM and other satellite missions, but also allow observing a wide range of meteorological phenomena from space, such as, mesoscale convection system, tropical cyclones, hurricanes, etc. The dataset can also be used to verify model simulations. Despite that the data can be downloaded via ftp, however, its large volume poses a challenge for many users. A single file occupies about 70 MB disk space and there is a total of ~73,000 files (~4.5 TB) for the past 8 years. Because there is a lack of data subsetting service, one has to download the entire file, which could be time consuming and require a lot of disk space. In order to facilitate data access, we have developed a web prototype, the Global Image ViewER (GIVER), to allow users to conduct online visualization and analysis of this dataset. With a web browser and few mouse clicks, users can have a full access to over 8 year and over 4.5 TB data and generate black and white IR imagery and animation without downloading any software and data. Basic functions include selection of area of interest, single imagery or animation, a time skip capability for different temporal resolution and image size. Users

  13. Evaluation of ISCCP multisatellite radiance calibration for geostationary imager visible channels using the moon

    Science.gov (United States)

    Stone, Thomas C.; William B. Rossow,; Joseph Ferrier,; Laura M. Hinkelman,

    2013-01-01

    Since 1983, the International Satellite Cloud Climatology Project (ISCCP) has collected Earth radiance data from the succession of geostationary and polar-orbiting meteorological satellites operated by weather agencies worldwide. Meeting the ISCCP goals of global coverage and decade-length time scales requires consistent and stable calibration of the participating satellites. For the geostationary imager visible channels, ISCCP calibration provides regular periodic updates from regressions of radiances measured from coincident and collocated observations taken by Advanced Very High Resolution Radiometer instruments. As an independent check of the temporal stability and intersatellite consistency of ISCCP calibrations, we have applied lunar calibration techniques to geostationary imager visible channels using images of the Moon found in the ISCCP data archive. Lunar calibration enables using the reflected light from the Moon as a stable and consistent radiometric reference. Although the technique has general applicability, limitations of the archived image data have restricted the current study to Geostationary Operational Environmental Satellite and Geostationary Meteorological Satellite series. The results of this lunar analysis confirm that ISCCP calibration exhibits negligible temporal trends in sensor response but have revealed apparent relative biases between the satellites at various levels. However, these biases amount to differences of only a few percent in measured absolute reflectances. Since the lunar analysis examines only the lower end of the radiance range, the results suggest that the ISCCP calibration regression approach does not precisely determine the intercept or the zero-radiance response level. We discuss the impact of these findings on the development of consistent calibration for multisatellite global data sets.

  14. NASA's geostationary communications platform program

    Science.gov (United States)

    Ramler, J.; Durrett, R.

    1984-01-01

    This paper reviews recent trends in communications satellites and explains NASA's current interest in geostationary communications platforms. Large communications platforms capable of supporting multiple payloads with common utilities have been examined in a number of studies since 1974 and appear to offer a number of potential advantages. In 1981, an Industry Briefing and Workshop sponsord by NASA focused on the institutional, operational and technical issues that will influence the implementation of geostationary platforms. The workshop identified numerous issues and problem areas that needed more detailed study. To address the issues/problems identified, a NASA geostationary communications platform program has been developed. This program is described, focusing on the initial studies to be performed.

  15. Use of Earth Observing Satellites for Operational Hazard Support

    Science.gov (United States)

    Wood, H. M.; Lauritson, L.

    The National Oceanic and Atmospheric Administration (NOAA) relies on Earth observing satellite data to carry out its operational mission to monitor, predict, and assess changes in the Earth's atmosphere, land, and oceans. NOAA's National Environmental Satellite, Data, and Information Service (NESDIS) uses satellite data to help lessen the impacts of natural and man-made disasters due to tropical cyclones, flash floods, heavy snowstorms, volcanic ash clouds (for aviation safety), sea ice (for shipping safety), and harmful algal blooms. Communications systems on NOAA satellites are used to support search and rescue and to relay data from data collection platforms to a variety of users. NOAA's Geostationary (GOES) and Polar (POES) Operational Environmental Satellites are used in conjunction with other satellites to support NOAA's operational mission. While NOAA's National Hurricane Center is responsible for predicting tropical cyclones affecting the U.S. mainland, NESDIS continuously monitors the tropics world wide, relaying valuable satellite interpretations of tropical systems strength and position to users throughout the world. Text messages are sent every six hours for tropical cyclones in the Western Pacific, South Pacific, and Indian Oceans. To support the monitoring, prediction, and assessment of flash floods and winter storms, NESDIS sends out text messages alerting U.S. weather forecast offices whenever NOAA satellite imagery indicates the occurrence of heavy rain or snow. NESDIS also produces a 24-hour rainfall composite graphic image covering those areas affected by heavy precipitation. The International Civil Aviation Organization (ICAO) and other aviation concerns recognized the need to keep aviators informed of volcanic hazards. To that end, nine Volcanic Ash Advisory Centers (VAAC's) were created to monitor volcanic ash plumes within their assigned airspace. NESDIS hosts one of the VAAC's. Although the NESDIS VAAC's primary responsibility is the

  16. Results of the Ongoing Monitoring of the Position of a Geostationary Telecommunication Satellite by the Method of Spatially Separated Basis Receiving of Digital Satellite Television Signals

    Science.gov (United States)

    Bushuev, F.; Kaliuzhnyi, M.; Sybiryakova, Y.; Shulga, O.; Moskalenko, S.; Balagura, O.; Kulishenko, V.

    2016-10-01

    The results of the ongoing monitoring of the position of geostationary telecommunication satellite Eutelsat-13B (13° East) are presented in the article. The results were obtained using a radio engineering complex (RC) of four stations receiving digital satellite television and a data processing centre. The stations are located in Kyiv, Mukachevo, Kharkiv and Mykolaiv. The equipment of each station allows synchronous recording (by the GPS) of fragments of DVB-S signal from the quadrature detector output of the satellite television receiver. Samples of the complex signal are archived and sent to the data processing center through the Internet. Here three linearly independent slant range differences (Δr) for three pairs of the stations are determined as a result of correlation processing of received signals. Every second measured values of Δr are used to calculate Cartesian coordinates (XYZ) of the satellite in the coordinate system WGS84 by multilateration method. The time series of Δr, X, Y and Z obtained during continuous observations from March to May 2015 are presented in the article. Single-measurement errors of Δr, X, Y and Z are equal to 2.6 m, 3540 m, 705 m and 455 m, respectively. The complex is compared with known analogues. Ways of reduction of measurement errors of satellite coordinates are considered. The radio engineering complex could be considered a prototype of a system of independent ongoing monitoring of the position of geostationary telecommunication satellites.

  17. Assessing Sahelian vegetation and stress from seasonal time series of polar orbiting and geostationary satellite imagery

    DEFF Research Database (Denmark)

    Olsen, Jørgen Lundegaard

    on short timescales, which are challenging from polar orbiting instruments. Geostationary NDVI and the NIR and SWIR based Shortwave Infrared Water Stress Index (SIWSI) indices are compared with extensive field data from the Dahra site, supplemented by data from the Agoufou and Demokeya sites. The indices...

  18. Nexrad-In-Space - A Geostationary Satellite Doppler Weather Radar for Hurricane Studies

    Science.gov (United States)

    Im, E.; Chandrasekar, V.; Chen, S. S.; Holland, G. J.; Kakar, R.; Lewis, W. E.; Marks, F. D.; Smith, E. A.; Tanelli, S.; Tripoli, G. J.

    2007-12-01

    The Nexrad-In-Space (NIS) is a revolutionary atmospheric radar observation concept from the geostationary orbiting platform. It was developed over the last 4 years under the auspices of NASA's Earth Science Instrument Incubator Program (IIP). The NIS radar would provide Ka-band (35 GHz) reflectivity and line-of-sight Doppler velocity profiles over a circular Earth region of approximately 5200 km in diameter with a 12-km horizontal resolution, and a minimum detectable signal of 5 dBZ. The NIS radar achieves its superb sampling capabilities by use of a 35-m diameter, deployable antenna made from lightweight membrane material. The antenna has two transmit-receive array pairs that create a dual-beam, spiral-feed combined profile image of both reflectivity and Doppler velocity approximately every 60 minutes. This sampling time can be shortened even further by increasing the number of transmit-receive array pairs. It is generally recognized that the processes important in governing hurricane intensity and structure span a wide range of spatial and temporal scales. The environmental forcing considerations require a large domain. The vortex response to the environmental forcing ultimately involves convection on small horizontal scales in the eyewall and rainband regions. Resolving this environment-vortex-convection feedback in a numerical model requires observations on the space and time scales necessary to unambiguously define these structures within and surrounding the tropical cyclone. Because the time and space scales of these processes are small, continuous 3-dimensional independent observations of the 3-dimensional wind and precipitation structures will be needed to initialize numerical models critical for this purpose. The proposed NIS Doppler radar would be the first instrument capable of accomplishing this feat at time scales less than hours, and would create the opportunity for hurricane science to enter a new era of understanding and improved prediction. This

  19. 78 FR 14920 - Earth Stations Aboard Aircraft Communicating With Fixed-Satellite Service Geostationary-Orbit...

    Science.gov (United States)

    2013-03-08

    ... forwarding and receiving communications signals via a system of satellites or reselling satellite... specialized telecommunications services, such as satellite tracking, communications telemetry, and radar... of Subjects in 47 CFR Parts 2 and 25 Frequency allocations, Satellites. Federal Communications...

  20. Communications payloads for geostationary platforms

    Science.gov (United States)

    Fordyce, S. W.

    1978-01-01

    Trends in communication satellites show increasing reuse of the frequency spectrum through multiple spot beams and orthogonal polarization, as well as consortia operation. Current reliance on orbital arc separation for frequency reuse may be inadequate for the projected traffic growth and the orbital slotting proposals before the ITU. This paper notes that cost advantages can accrue through common use of spacecraft subsystems and multiple users' platforms aboard a common geostationary platform. The rationale for such platforms is described and potential payloads are suggested.

  1. 静止轨道气象卫星观测系统发展设想%Development Plan of Geostationary Meteorological Satellite Observation System

    Institute of Scientific and Technical Information of China (English)

    张如意; 李卿; 董瑶海; 陆国平; 肖小刚

    2012-01-01

    The present sate of geostationary meteorological satellite development was introduced in this paper. The platform ability and observation instrument performance of geostationary meteorological satellite in domestic were benchmarking and analyzed. The requirement of new remote sensing instrument was given out according to the application of the geostationary meteorological satellite in China. The development trend of the geostationary meteorological satellite was discussed. The development plans of the geostationary meteorological satellite, such as the application of optical imaging satellite, detecting satellite (optic and microwave), and precipitation measurement satellite with combined deployment, and the plan of the appositive or ectopic observation in geostationary orbit. And the function and performance of advanced visible and infrared imager, lightning imager, hyperspectral sounding, earth's radiation balance of payments instrument, solar X-EUV imager, advanced microwave sounder, and geostationary orbit and geostationary precipitation measurement radar which were needed were presented.%介绍了静止轨道气象卫星发展的现状。对国内外静止气象卫星的平台能力和探测仪器性能进行了对标与分析。根据我国静止气象卫星应用需求,给出了所需的新型遥感仪器的需求。讨论了静止气象卫星的发展趋势。介绍了静止气象卫星采用光学成像星、探测星(光学、微波)、降水测量星组合配置,在同步轨道上同位或异位进行观测的发展设想,以及需配置的先进可见光红外成像仪、闪电成像仪、高光谱垂直探测仪、地球辐射收支仪、太阳X-EUV成像仪、地球静止轨道先进微波探测仪、地球静止轨道降水测量雷达等的主要功能与性能。

  2. The long-term effects of space weather on satellite operations

    Directory of Open Access Journals (Sweden)

    D. T. Welling

    2010-06-01

    Full Text Available Integrated lifetime radiation damage may cause spacecraft to become more susceptible to operational anomalies by changing material characteristics of electronic components. This study demonstrates and quantifies the impact of these effects by examining the National Oceanic and Atmospheric Administration (NOAA National Geophysical Data Center (NGDC satellite anomaly database. Energetic particle data from the Geostationary Operational Environmental Satellites (GOES is used to construct the total lifetime particle exposure a satellite has received at the epoch of an anomaly. These values are compared to the satellite's chronological age and the average exposure per year (calculated over two solar cycles. The results show that many anomalies occur on satellites that have received a total lifetime high-energy particle exposure that is disproportionate to their age. In particular, 10.8% of all events occurred on satellites that received over two times more 20 to 40 MeV proton lifetime particle exposure than predicted using an average annual mean. This number inflates to 35.2% for 40 to 80 MeV protons and 33.7% for ≥2 MeV electrons. Overall, 73.5% of all anomalies occurred on a spacecraft that had experienced greater than two times the expected particle exposure for one of the eight particle populations used in this study. Simplistically, this means that the long term radiation background exposure matters, and that if the background radiation is elevated during the satellite's lifetime, the satellite is likely to experience more anomalies than satellites that have not been exposed to the elevated environment.

  3. Reference crop evapotranspiration derived from geo-stationary satellite imagery: a case study for the Fogera flood plain, NW-Ethiopia and the Jordan Valley, Jordan

    NARCIS (Netherlands)

    Bruin, de H.A.R.; Trigo, I.F.; Jitan, M.A.; Enku, N.T.; Tol, van der C.; Gieske, A.S.M.

    2010-01-01

    First results are shown of a project aiming to estimate daily values of reference crop evapotranspiration ET0 from geo-stationary satellite imagery. In particular, for Woreta, a site in the Ethiopian highland at an elevation of about 1800 m, we tested a radiation-temperature based approximate formul

  4. Reference crop evapotranspiration derived from geo-stationary satellite imagery: a case study for the Fogera flood plain, NW-Ethiopia and the Jordan Valley, Jordan

    NARCIS (Netherlands)

    Bruin, de H.A.R.; Trigo, I.F.; Jitan, M.A.; Enku, N.T.; Tol, van der C.; Gieske, A.S.M.

    2010-01-01

    First results are shown of a project aiming to estimate daily values of reference crop evapotranspiration ET0 from geo-stationary satellite imagery. In particular, for Woreta, a site in the Ethiopian highland at an elevation of about 1800 m, we tested a radiation-temperature based approximate

  5. Geostationary Satellite Observation of Precipitable Water Vapor Using an Empirical Orthogonal Function (EOF based Reconstruction Technique over Eastern China

    Directory of Open Access Journals (Sweden)

    Man Sing Wong

    2015-05-01

    Full Text Available Water vapor, as one of the most important greenhouse gases, is crucial for both climate and atmospheric studies. Considering the high spatial and temporal variations of water vapor, a timely and accurate retrieval of precipitable water vapor (PWV is urgently needed, but has long been constrained by data availability. Our study derived the vertically integrated precipitable water vapor over eastern China using Multi-functional Transport Satellite (MTSAT data, which is in geostationary orbit with high temporal resolution. The missing pixels caused by cloud contamination were reconstructed using an Empirical Orthogonal Function (EOF decomposition method over both spatial and temporal dimensions. GPS meteorology data were used to validate the retrieval and the reconstructed results. The diurnal variation of PWV over eastern China was analyzed using harmonic analysis, which indicates that the reconstructed PWV data can depict the diurnal cycle of PWV caused by evapotranspiration and local thermal circulation.

  6. Solar radiation estimation using images form geostationary satellites; Estimacao de radiacao solar usando imagens de satelites geoestacionarios

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Cicero Barbosa dos [Centro Federal de Educacao Tecnologica do Parana, PR (Brazil); Zuern, Hans Helmut [Santa Catarina Univ., Florianopolis, SC (Brazil). LABSPOT

    1996-12-31

    The opportunity of potential measurement Photovoltaic through of studies of solar radiation maximum incidence, aimed the generation of electrical energy, contained in either radial systems or stand-alone or even grid-connected to conventional system, preceded by a study of solar radiation estimation technique, which is the main fuel the Photovoltaic generation. This work presents a technique of solar radiation estimation, using images from satellite geo-stationary in a visible field. The city of Curitiba was an implementation and the results are compared to the estimation made by researches from INPE - National Institute Space Research, whose observations were based on the solar shine duration, obtained in a network of 187 meteorological station for period of 10 years (1961-1970). (author) 24 refs., 2 figs., 2 tabs.; e-mail: cicero at labspot.ufsc.br; eellhh at ibm.ufsc.br

  7. Satellite Observations of Coastal Processes from a Geostationary Orbit: Application to estuarine, coastal, and ocean resource management

    Science.gov (United States)

    Tzortziou, M.; Mannino, A.; Schaeffer, B. A.

    2016-12-01

    Coastal areas are among the most vulnerable yet economically valuable ecosystems on Earth. Estuaries and coastal oceans are critically important as essential habitat for marine life, as highly productive ecosystems and a rich source of food for human consumption, as a strong economic driver for coastal communities, and as a highly dynamic interface between land and ocean carbon and nutrient cycles. Still, our present capabilities to remotely observe coastal ocean processes from space are limited in their temporal, spatial, and spectral resolution. These limitations, in turn, constrain our ability to observe and understand biogeochemical processes in highly dynamic coastal ecosystems, or predict their response and resilience to current and future pressures including sea level rise, coastal urbanization, and anthropogenic pollution.On a geostationary orbit, and with high spatial resolution and hyper-spectral capabilities, NASA's Decadal Survey mission GEO-CAPE (GEO-stationary for Coastal and Air Pollution Events) will provide, for the first time, a satellite view of the short-term changes and evolution of processes along the economically invaluable but, simultaneously, particularly vulnerable near-shore waters of the United States. GEO-CAPE will observe U.S. lakes, estuaries, and coastal regions at sufficient temporal and spatial scales to resolve near-shore processes, tides, coastal fronts, and eddies, track sediments and pollutants, capture diurnal biogeochemical processes and rates of transformation, monitor harmful algal blooms and large oil spills, observe episodic events and coastal hazards. Here we discuss the GEO-CAPE applications program and the new capabilities afforded by this future satellite mission, to identify potential user communities, incorporate end-user needs into future mission planning, and allow integration of science and management at the coastal interface.

  8. Mass Deposition Fluxes of Asian Dust to the Bohai Sea and Yellow Sea from Geostationary Satellite MTSAT: A Case Study

    Directory of Open Access Journals (Sweden)

    Qianguang Tu

    2015-11-01

    Full Text Available Windblown dust aerosol plays an important role in marine ecosystems once they are deposited and dissolved. At present, methods for estimating the deposition flux are mainly limited to direct measurements or model outputs. Additionally, satellite remote sensing was often used to estimate the integral dust column concentration (DCC. In this paper, an algorithm is developed to estimate the mass deposition fluxes of Asian dust by satellite. The dust aerosol is identified firstly and then the DCC is derived based on the relationships between the pre-calculated lookup table (LUT and observations from Japanese geostationary Multi-functional Transport Satellites (MTSAT. The LUT is built on the dust cloud and surface parameters by a radiation transfer model Streamer. The average change rate of deposition is derived, which shows an exponential decay dependence on transport time along the pathway. Thus, the deposition flux is acquired via integrating the hourly deposition. This simple algorithm is applied to a dust storm that occurred in the Bohai Sea and Yellow Sea from 1 to 3 March 2008. Results indicate that the properties of the dust cloud over the study area changed rapidly and the mass deposition flux is estimated to be 2.59 Mt.

  9. Operational evapotranspiration based on Earth observation satellites

    Science.gov (United States)

    Gellens-Meulenberghs, Françoise; Ghilain, Nicolas; Arboleda, Alirio; Barrios, Jose-Miguel

    2016-04-01

    Geostationary satellites have the potential to follow fast evolving atmospheric and Earth surface phenomena such those related to cloud cover evolution and diurnal cycle. Since about 15 years, EUMETSAT has set up a network named 'Satellite Application Facility' (SAF, http://www.eumetsat.int/website/home/Satellites/GroundSegment/Safs/index.html) to complement its ground segment. The Land Surface Analysis (LSA) SAF (http://landsaf.meteo.pt/) is devoted to the development of operational products derived from the European meteorological satellites. In particular, an evapotranspiration (ET) product has been developed by the Royal Meteorological Institute of Belgium. Instantaneous and daily integrated results are produced in near real time and are freely available respectively since the end of 2009 and 2010. The products cover Europe, Africa and the Eastern part of South America with the spatial resolution of the SEVIRI sensor on-board Meteosat Second Generation (MSG) satellites. The ET product algorithm (Ghilain et al., 2011) is based on a simplified Soil-Vegetation-Atmosphere transfer (SVAT) scheme, forced with MSG derived radiative products (LSA SAF short and longwave surface fluxes, albedo). It has been extensively validated against in-situ validation data, mainly FLUXNET observations, demonstrating its good performances except in some arid or semi-arid areas. Research has then been pursued to develop an improved version for those areas. Solutions have been found in reviewing some of the model parameterizations and in assimilating additional satellite products (mainly vegetation indices and land surface temperature) into the model. The ET products will be complemented with related latent and sensible heat fluxes, to allow the monitoring of land surface energy partitioning. The new algorithm version should be tested in the LSA-SAF operational computer system in 2016 and results should become accessible to beta-users/regular users by the end of 2016/early 2017. In

  10. Validation of Cloud Parameters Derived from Geostationary Satellites, AVHRR, MODIS, and VIIRS Using SatCORPS Algorithms

    Science.gov (United States)

    Minnis, P.; Sun-Mack, S.; Bedka, K. M.; Yost, C. R.; Trepte, Q. Z.; Smith, W. L., Jr.; Painemal, D.; Chen, Y.; Palikonda, R.; Dong, X.; Xi, B.

    2016-01-01

    Validation is a key component of remote sensing that can take many different forms. The NASA LaRC Satellite ClOud and Radiative Property retrieval System (SatCORPS) is applied to many different imager datasets including those from the geostationary satellites, Meteosat, Himiwari-8, INSAT-3D, GOES, and MTSAT, as well as from the low-Earth orbiting satellite imagers, MODIS, AVHRR, and VIIRS. While each of these imagers have similar sets of channels with wavelengths near 0.65, 3.7, 11, and 12 micrometers, many differences among them can lead to discrepancies in the retrievals. These differences include spatial resolution, spectral response functions, viewing conditions, and calibrations, among others. Even when analyzed with nearly identical algorithms, it is necessary, because of those discrepancies, to validate the results from each imager separately in order to assess the uncertainties in the individual parameters. This paper presents comparisons of various SatCORPS-retrieved cloud parameters with independent measurements and retrievals from a variety of instruments. These include surface and space-based lidar and radar data from CALIPSO and CloudSat, respectively, to assess the cloud fraction, height, base, optical depth, and ice water path; satellite and surface microwave radiometers to evaluate cloud liquid water path; surface-based radiometers to evaluate optical depth and effective particle size; and airborne in-situ data to evaluate ice water content, effective particle size, and other parameters. The results of comparisons are compared and contrasted and the factors influencing the differences are discussed.

  11. Entrainment rate diurnal cycle in marine stratiform clouds estimated from geostationary satellite retrievals and a meteorological forecast model

    Science.gov (United States)

    Painemal, David; Xu, Kuan-Man; Palikonda, Rabindra; Minnis, Patrick

    2017-07-01

    The mean diurnal cycle of cloud entrainment rate (we) over the northeast Pacific region is for the first time computed by combining, in a mixed-layer model framework, the hourly composited GOES-15 satellite-based cloud top height (HT) tendency, advection, and large-scale vertical velocity (w) during May to September 2013, with horizontal winds and w taken from the European Centre for Medium-Range Weather Forecasts (ECMWF) model. The tendency term dominates the magnitude and phase of the we diurnal cycle, with a secondary role of w, and a modest advective contribution. The peak and minimum in we occur between 20:00-22:00 LT and 9:00-11:00 LT, respectively, in close agreement with the diurnal cycle of turbulence driven by cloud top longwave cooling. Uncertainties in HT and ECMWF fields are assessed with in situ observations and three meteorological reanalysis data sets. This study provides the basis for constructing nearly global climatologies of we by combining a suite of well-calibrated geostationary satellites.

  12. Effects of the Forecasting Methods, Precipitation Character, and Satellite Resolution on the Predictability of Short-Term Quantitative Precipitation Nowcasting (QPN from a Geostationary Satellite.

    Directory of Open Access Journals (Sweden)

    Yu Liu

    Full Text Available The prediction of the short-term quantitative precipitation nowcasting (QPN from consecutive gestational satellite images has important implications for hydro-meteorological modeling and forecasting. However, the systematic analysis of the predictability of QPN is limited. The objective of this study is to evaluate effects of the forecasting model, precipitation character, and satellite resolution on the predictability of QPN using images of a Chinese geostationary meteorological satellite Fengyun-2F (FY-2F which covered all intensive observation since its launch despite of only a total of approximately 10 days. In the first step, three methods were compared to evaluate the performance of the QPN methods: a pixel-based QPN using the maximum correlation method (PMC; the Horn-Schunck optical-flow scheme (PHS; and the Pyramid Lucas-Kanade Optical Flow method (PPLK, which is newly proposed here. Subsequently, the effect of the precipitation systems was indicated by 2338 imageries of 8 precipitation periods. Then, the resolution dependence was demonstrated by analyzing the QPN with six spatial resolutions (0.1atial, 0.3a, 0.4atial rand 0.6. The results show that the PPLK improves the predictability of QPN with better performance than the other comparison methods. The predictability of the QPN is significantly determined by the precipitation system, and a coarse spatial resolution of the satellite reduces the predictability of QPN.

  13. Effects of the Forecasting Methods, Precipitation Character, and Satellite Resolution on the Predictability of Short-Term Quantitative Precipitation Nowcasting (QPN) from a Geostationary Satellite.

    Science.gov (United States)

    Liu, Yu; Xi, Du-Gang; Li, Zhao-Liang; Ji, Wei

    2015-01-01

    The prediction of the short-term quantitative precipitation nowcasting (QPN) from consecutive gestational satellite images has important implications for hydro-meteorological modeling and forecasting. However, the systematic analysis of the predictability of QPN is limited. The objective of this study is to evaluate effects of the forecasting model, precipitation character, and satellite resolution on the predictability of QPN using images of a Chinese geostationary meteorological satellite Fengyun-2F (FY-2F) which covered all intensive observation since its launch despite of only a total of approximately 10 days. In the first step, three methods were compared to evaluate the performance of the QPN methods: a pixel-based QPN using the maximum correlation method (PMC); the Horn-Schunck optical-flow scheme (PHS); and the Pyramid Lucas-Kanade Optical Flow method (PPLK), which is newly proposed here. Subsequently, the effect of the precipitation systems was indicated by 2338 imageries of 8 precipitation periods. Then, the resolution dependence was demonstrated by analyzing the QPN with six spatial resolutions (0.1atial, 0.3a, 0.4atial rand 0.6). The results show that the PPLK improves the predictability of QPN with better performance than the other comparison methods. The predictability of the QPN is significantly determined by the precipitation system, and a coarse spatial resolution of the satellite reduces the predictability of QPN.

  14. Characterization of urban heat island effects over Asian megacities with hourly LST maps derived from Japanese geostationary satellite data

    Science.gov (United States)

    Oyoshi, K.; Tamura, M.

    2009-12-01

    Asian countries are expected to continue economic growth with high rate and urban structure can be transformed dramatically. Urbanization and increase in anthropogenic energy consumption cause urban heat island effect. And, Heat island effect increases cooling cost in summer and induces health problem such as heat stroke. Remotely sensed data can be powerful tool to characterize urban area and measure urban thermal conditions, because it is able to capture spatio-temporal variations in urban environments. Japanese geostationary meteorological satellite, MTSAT which covers east Asia and the western Pacific region from 140 degrees East above the equator was launched in February 2005. MTSAT provides hourly visible and thermal infrared image, and hourly Land Surface Temperature (LST) can be retrieved. Therefore, compared to polar orbiting satellites such as MODIS or AVHRR, MTSAT is expected to characterize urban thermal conditions in much detailed temporal scale. In this study, in order to evaluate thermal conditions over Asian megacities with MTSAT data, we investigated methodology for monitoring urban LST with satellite data and characterize thermal conditions by using hourly LST data. Firstly, LST were retrieved from MTSAT thermal infrared data with split-window algorithm, and it was confirmed that MTSAT is able to capture hourly spatio-temporal changes and detect urban heat island effects. Then, we constructed LST database of Asian megacities and the database was open to public on the WWW (http://eiserv.uee.kyoto-u.ac.jp/MTSAT/LST/index_e.php). Finally, by using developed LST database, characteristics of hourly temperature changes of Asian megacities were compared and categorized. And it is found that these characteristics were depend on urban structure of each city. Near-real time land surface temperature (LST) monitoring system on the WWW. Latest LST images of Asian megacities are displayed on the top page.

  15. Attitude motion compensation for imager on Fengyun-4 geostationary meteorological satellite

    Science.gov (United States)

    Lyu, Wang; Dai, Shoulun; Dong, Yaohai; Shen, Yili; Song, Xiaozheng; Wang, Tianshu

    2017-09-01

    A compensation method is used in Chinese Fengyun-4 satellite to counteracting the line-of-sight influence by attitude motion during imaging. The method is acted on-board by adding the compensation amount to the instrument scanning control circuit. The mathematics simulation and the three-axis air-bearing test results show that the method works effectively.

  16. Development of a numerical system to improve particulate matter forecasts in South Korea using geostationary satellite-retrieved aerosol optical data over Northeast Asia

    Directory of Open Access Journals (Sweden)

    S. Lee

    2015-07-01

    Full Text Available To improve short-term particulate matter (PM forecasts in South Korea, the initial distribution of PM composition, particularly over the upwind regions, is primarily important. To prepare the initial PM composition, the aerosol optical depth (AOD data retrieved from a geostationary equatorial orbit (GEO satellite sensor, GOCI (Geostationary Ocean Color Imager which covers Northeast Asia (113–146° E; 25–47° N, were used. Although GOCI can provide a higher number of AOD data in a semi-continuous manner than low Earth orbit (LEO satellite sensors, it still has a serious limitation in that the AOD data are not available at cloud pixels and over high-reflectance areas, such as desert and snow-covered regions. To overcome this limitation, a spatio-temporal (ST kriging method was used to better prepare the initial AOD distributions that were converted into the PM composition over Northeast Asia. One of the largest advantages to using the ST-kriging method in this study is that more observed AOD data can be used to prepare the best initial AOD fields. It is demonstrated in this study that the short-term PM forecast system developed with the application of the ST-kriging method can greatly improve PM10 predictions in Seoul Metropolitan Area (SMA, when evaluated with ground-based observations. For example, errors and biases of PM10 predictions decreased by ~ 60 and ~ 70 %, respectively, during the first 6 h of short-term PM forecasting, compared with those without the initial PM composition. In addition, the influences of several factors (such as choices of observation operators and control variables on the performances of the short-term PM forecast were explored in this study. The influences of the choices of the control variables on the PM chemical composition were also investigated with the composition data measured via PILS-IC and low air-volume sample instruments at a site near Seoul. To improve the overall performances of the short-term PM

  17. Developing the science product algorithm testbed for Chinese next-generation geostationary meteorological satellites: Fengyun-4 series

    Science.gov (United States)

    Min, Min; Wu, Chunqiang; Li, Chuan; Liu, Hui; Xu, Na; Wu, Xiao; Chen, Lin; Wang, Fu; Sun, Fenglin; Qin, Danyu; Wang, Xi; Li, Bo; Zheng, Zhaojun; Cao, Guangzhen; Dong, Lixin

    2017-08-01

    Fengyun-4A (FY-4A), the first of the Chinese next-generation geostationary meteorological satellites, launched in 2016, offers several advances over the FY-2: more spectral bands, faster imaging, and infrared hyperspectral measurements. To support the major objective of developing the prototypes of FY-4 science algorithms, two science product algorithm testbeds for imagers and sounders have been developed by the scientists in the FY-4 Algorithm Working Group (AWG). Both testbeds, written in FORTRAN and C programming languages for Linux or UNIX systems, have been tested successfully by using Intel/g compilers. Some important FY-4 science products, including cloud mask, cloud properties, and temperature profiles, have been retrieved successfully through using a proxy imager, Himawari-8/Advanced Himawari Imager (AHI), and sounder data, obtained from the Atmospheric InfraRed Sounder, thus demonstrating their robustness. In addition, in early 2016, the FY-4 AWG was developed based on the imager testbed—a near real-time processing system for Himawari-8/AHI data for use by Chinese weather forecasters. Consequently, robust and flexible science product algorithm testbeds have provided essential and productive tools for popularizing FY-4 data and developing substantial improvements in FY-4 products.

  18. Geostationary satellite-based 6.7 μm band best water vapor information layer analysis over the Tibetan Plateau

    Science.gov (United States)

    Di, Di; Ai, Yufei; Li, Jun; Shi, Wenjing; Lu, Naimeng

    2016-05-01

    The best water vapor information layer (BWIL) of the 6.7 μm water vapor absorption infrared (IR) band for the FengYun-2E is investigated over the Tibetan Plateau with standard atmospheric profile and European Centre for Medium-Range Weather Forecasts (ECMWF) operational model analysis data. The sensitivity tests show that surface characteristics over the Tibetan Plateau have a significant influence on the BWIL. To be specific, topographic elevation, colder skin temperature, and lower emissivity tend to lift the altitude of the BWIL, decrease its magnitude, and narrow the half-width range. The results from statistical analysis indicate that the altitude of the BWIL reaches the highest in summer and the lowest in winter. Meanwhile, the altitude of the BWIL is highly correlated with the water vapor amount above 500 hPa over the Tibetan Plateau and above 300 hPa over the East China Plain, respectively. The diurnal variation in the BWIL is synchronous with the diurnal variation in the surface skin temperature. It can be concluded from the study that surface characteristics over high terrain in dry and cold atmospheres have more significant impacts on the BWIL. With multiple water vapor absorption IR bands, the imagers on board the new generation of geostationary satellites will provide crucial improvement in water vapor remote sensing over the current single water vapor band on board the FY-2 series according to the analysis in this study.

  19. Digital Meteorological Radar Data Compared with Digital Infrared Data from a Geostationary Meteorological Satellite.

    Science.gov (United States)

    1979-05-01

    datai uwere tab~ulaited for compariso;cn with the infrared satellite data) j 20 CIIA1iLTR Ml GEOSTAT] ONAPY ME LW)L- C , TIL LF K Meteorolccj isa I sate...8217):U S f 3 ’ 1 t ’ Iv . e , :]~L ’ bI 1 T-4 THY:-, L,’AClvT!P 3 AND IMVIC]l C t101 KRV~;It Tb 3 ( ji~u>:2;cat L ii 2 ’GD ~Of the L~r [2 u : ~~ I~ rtu ~j

  20. On-orbit geometric calibration and geometric quality assessment for the high-resolution geostationary optical satellite GaoFen4

    Science.gov (United States)

    Wang, Mi; Cheng, Yufeng; Chang, Xueli; Jin, Shuying; Zhu, Ying

    2017-03-01

    The Chinese GaoFen4 (GF4) remote sensing satellite, launched at the end of December 2015, is China's first civilian high-resolution geostationary optical satellite and has the world's highest resolution from geostationary orbit. High accuracy geometric calibration is the key factor in the geometrical quality of satellite imagery. This paper proposes an on-orbit geometric calibration approach for the high-resolution geostationary optical satellite GF4 in which a stepwise calibration is performed, external parameters are estimated, and internal parameters are then estimated in a generalized camera frame determined by external parameters. First, the correlation of the imaging error sources and the rigorous imaging model of GF4 are introduced. Second, the geometric calibration model based on the two-dimensional detector directional angle and the parameters estimation method for the planar array camera are presented. LandSat 8 digital orthophoto maps (DOM) and GDEM2 digital elevation models (DEM) are used to validate the efficiency of the proposed method and to make a geometric quality assessment of GF4. The results indicate that changing imaging time and imaging area will dramatically affect the absolute positioning accuracy because of the change of the camera's installation angles caused by thermal environment changes around the satellite in a high orbit. After calibration, the internal distortion is well-compensated, and the positioning accuracy with relatively few ground control points (GCPs) is demonstrated to be better than 1.0 pixels for both the panchromatic and near-infrared sensor and the intermediate infrared sensor.

  1. Modeling directional effects in land surface temperature derived from geostationary satellite data

    DEFF Research Database (Denmark)

    Rasmussen, Mads Olander

    This PhD-thesis investigates the directional effects in land surface temperature (LST) estimates from the SEVIRI sensor onboard the Meteosat Second Generation (MSG) satellites. The directional effects are caused by the land surface structure (i.e. tree size and shape) interacting with the changing...... sun-target-sensor geometry. The directional effects occur because the different surface components, e.g. tree canopies and bare soil surfaces, will in many cases have significantly different temperatures. Depending on the viewing angle, different fractions of each of the components will be viewed......; shaded and sunlit canopy and background, respectively. Given data on vegetation structure and density, the model estimates the fractions of the four components as well as the directional composite temperature in the view of a sensor, given the illumination and viewing geometry. The modeling results show...

  2. Characterization of an In-Situ Ground Terminal via a Geostationary Satellite

    Science.gov (United States)

    Piasecki, Marie; Welch, Bryan; Mueller, Carl

    2015-01-01

    In 2015, the Space Communications and Navigation (SCaN) Testbed project completed an S-Band ground station located at the NASA Glenn Research Center in Cleveland, Ohio. This S-Band ground station was developed to create a fully characterized and controllable dynamic link environment when testing novel communication techniques for Software Defined Radios and Cognitive Communication Systems. In order to provide a useful environment for potential experimenters, it was necessary to characterize various RF devices at both the component level in the laboratory and at the system level after integration. This paper will discuss some of the laboratory testing of the ground station components, with a particular focus emphasis on the near-field measurements of the antenna. It will then describe the methodology for characterizing the installed ground station at the system level via a Tracking and Data Relay Satellite (TDRS), with specific focus given to the characterization of the ground station antenna pattern, where the max TDRS transmit power limited the validity of the non-noise floor received power data to the antenna main lobe region. Finally, the paper compares the results of each test as well as provides lessons learned from this type of testing methodology.

  3. Photometric Database of the geostationary satellites Astronomical Observatory of I. Mechnikov Odessa national university (in Russian)

    Science.gov (United States)

    Sukhov, P., P.

    In many cases role not coordinate information (photometrical, polarization, spectral) can be key when determining a class spacecraft, its functional purpose. At each class GSS can be design and dynamic features which are shown on a form light curve also have a characteristic appearance (signature). What features help to classify GSS on light curve. The light curves GSS can determine the operating mode on the device orbit reveal signs of an emergency operation, the transition from the GSS conserved active state. In recent years, for the identification of the GSS, many experts make photometric database (DB) comprising a set of characteristics, with sufficient probability characterizing a particular class of spacecraft. Database AO ONU contains more than 800 light curves in B, V, R filters 120 GSS. Showing light curves several GSS with distinctive structural and dynamic features, peculiar to the respective classes of spacecraft.

  4. High Impact Weather Forecasts and Warnings with the GOES-R Geostationary Lightning Mapper (GLM)

    Science.gov (United States)

    Goodman, Steven; Blakeslee, Richard; Koshak, William; Mach, Douglas

    2011-01-01

    The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. A major advancement over the current GOES include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM). The GLM will operate continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development, a GOES-R Risk Reduction Science Team and Algorithm Working Group Lightning Applications Team have begun to develop cal/val performance monitoring tools and new applications using the GLM alone, in conjunction with other instruments, and merged or blended integrated observing system products combining satellite, radar, in-situ and numerical models. Proxy total lightning data from the NASA Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional ground-based lightning networks are being used to develop the pre-launch algorithms, test data sets, and applications, as well as improve our knowledge of thunderstorm initiation and evolution. In this presentation we review the planned implementation of the instrument and suite of operational algorithms.

  5. Eccentricity-inclination Vector Separation Strategy for Collocation of Geostationary Satellites%基于偏心率和倾角矢量的共位隔离策略

    Institute of Scientific and Technical Information of China (English)

    李建成; 安锦文

    2009-01-01

    Nowadays, locating several satellites in a narrow station-keeping window is a good way to take advantage of the geostationary orbit source, a method of multi-satellite collocation using eccentricity vector and inclination vector is discussed in this paper. The principles and constraint equation of combined separation are investigated, which can be used to avoid collision, close ap-proach and mutual interferences. The initial qualification, the eccentricity and inclination control strategy in E/W maneuver and N/S maneuver are given. Simulation results show that the mini-mum distance between the satellites is more than 10 km, and two Chinese geostationary satellites are allowed to work in orbit with secure operation for several years with this separation strategy.%在同一个标准的位置保持窗口内并置多颗卫星,并且避免相互之间的碰撞、干扰和遮蔽,是充分利用地球静止轨道资源的一种比较好的办法.针对我国卫星共位隔离的工程需要,文章提出了一种基于偏心率矢量和倾角矢量实现共位隔离的方法,给出了基于偏心率矢量和倾角矢量联合隔离的基本方法、约束方程,以及工程实现时的位置保持策略.通过仿真计算和工程实际应用,验证了该方法的正确性.

  6. The ESRC: A Web-based Environmental Satellite Resource Center

    Science.gov (United States)

    Abshire, W. E.; Guarente, B.; Dills, P. N.

    2009-12-01

    The COMET® Program has developed an Environmental Satellite Resource Center (known as the ESRC), a searchable, database-driven Website that provides easy access to a wide range of useful information training materials on polar-orbiting and geostationary satellites. Primarily sponsored by the NPOESS Program and NOAA, the ESRC is a tool for users seeking reliable sources of satellite information, training, and data. First published in September 2008, and upgraded in April 2009, the site is freely available at: http://www.meted.ucar.edu/esrc. Additional contributions to the ESRC are sought and made on an ongoing basis. The ESRC was created in response to a broad community request first made in May 2006. The COMET Program was asked to develop the site to consolidate and simplify access to reliable, current, and diverse information, training materials, and data associated with environmental satellites. The ESRC currently includes over 400 significant resources from NRL, CIMSS, CIRA, NASA, VISIT, NESDIS, and EUMETSAT, and improves access to the numerous satellite resources available from COMET’s MetEd Website. The ESRC is designed as a community site where organizations and individuals around the globe can easily submit their resources via online forms by providing a small set of metadata. The ESRC supports languages other than English and multi-lingual character sets have been tested. COMET’s role is threefold: 1) maintain the site, 2) populate it with our own materials, including smaller, focused learning objects derived from our larger training modules, and 3) provide the necessary quality assurance and monitoring to ensure that all resources are appropriate and well described before being made available. Our presentation will demonstrate many of the features and functionality of searching for resources using the ESRC, and will outline the steps for users to make their own submissions. For the site to reach its full potential, submissions representing diverse

  7. A combined deficit index for regional agricultural drought assessment over semi-arid tract of India using geostationary meteorological satellite data

    Science.gov (United States)

    Vyas, Swapnil S.; Bhattacharya, Bimal K.; Nigam, Rahul; Guhathakurta, Pulak; Ghosh, Kripan; Chattopadhyay, N.; Gairola, R. M.

    2015-07-01

    The untimely onset and uneven distribution of south-west monsoon rainfall lead to agricultural drought causing reduction in food-grain production with high vulnerability over semi-arid tract (SAT) of India. A combined deficit index (CDI) has been developed from tri-monthly sum of deficit in antecedent rainfall and deficit in monthly vegetation vigor with a lag period of one month between the two. The formulation of CDI used a core biophysical (e.g., NDVI) and a hydro-meteorological (e.g., rainfall) variables derived using observation from Indian geostationary satellites. The CDI was tested and evaluated in two drought years (2009 and 2012) within a span of five years (2009-2013) over SAT. The index was found to have good correlation (0.49-0.68) with standardized precipitation index (SPI) computed from rain-gauge measurements but showed lower correlation with anomaly in monthly land surface temperature (LST). Significant correlations were found between CDI and reduction in agricultural carbon productivity (0.67-0.83), evapotranspiration (0.64-0.73), agricultural grain yield (0.70-0.85). Inconsistent correlation between CDI and ET reduction was noticed in 2012 in contrast to consistent correlation between CDI and reduction in carbon productivity both in 2009 and 2012. The comparison of CDI-based drought-affected area with those from existing operational approach showed 75% overlapping regions though class-to-class matching was only 40-45%. The results demonstrated that CDI is a potential indicator for assessment of late-season regional agricultural drought based on lag-response between water supply and crop vigor.

  8. Towards high temporal and moderate spatial resolutions in the remote sensing retrieval of evapotranspiration by combining geostationary and polar orbit satellite data

    Science.gov (United States)

    Barrios, José Miguel; Ghilain, Nicolas; Arboleda, Alirio; Gellens-Meulenberghs, Françoise

    2014-05-01

    Evapotranspiration (ET) is the water flux going from the surface into the atmosphere as result of soil and surface water evaporation and plant transpiration. It constitutes a key component of the water cycle and its quantification is of crucial importance for a number of applications like water management, climatic modelling, agriculture monitoring and planning, etc. Estimating ET is not an easy task; specially if large areas are envisaged and various spatio-temporal patterns of ET are present as result of heterogeneity in land cover, land use and climatic conditions. In this respect, spaceborne remote sensing (RS) provides the only alternative to continuously measure surface parameters related to ET over large areas. The Royal Meteorological Institute (RMI) of Belgium, in the framework of EUMETSAT's "Land Surface Analysis-Satellite Application Facility" (LSA-SAF), has developed a model for the estimation of ET. The model is forced by RS data, numerical weather predictions and land cover information. The RS forcing is derived from measurements by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the Meteosat Second Generation (MSG) satellite. This ET model is operational and delivers ET estimations over the whole field of view of the MSG satellite (Europe, Africa and Eastern South America) (http://landsaf.meteo.pt) every 30 minutes. The spatial resolution of MSG is 3 x 3 km at subsatellite point and about 4 x 5 km in continental Europe. The spatial resolution of this product may constrain its full exploitation as the interest of potential users (farmers and natural resources scientists) may lie on smaller spatial units. This study aimed at testing methodological alternatives to combine RS imagery (geostationary and polar orbit satellites) for the estimation of ET such that the spatial resolution of the final product is improved. In particular, the study consisted in the implementation of two approaches for combining the current ET estimations with

  9. Operational Area Environmental Evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Bailey-White, Brenda Eileen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nagy, Michael David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wagner, Katrina Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Goodman, Thomas Richard [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Herring, Allen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Catechis, Christopher S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kinghorn, Aubrianna Nicole [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Johnson, Ellie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Barthel, Michael David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Casaus, Benito [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-08-01

    The Operational Area Environmental Evaluation update provides a description of activities that have the potential to adversely affect natural and cultural resources, including soil, air, water, biological, ecological, and historical resources. The environmental sensitivity of an area is evaluated and summarized, which may facilitate informed management decisions as to where development may be prohibited, restricted, or subject to additional requirements.

  10. Real Time Meteorological Applications Of The Geostationary Satellite Sounder On Goes-6: Battling The Computer, Code And Clock

    Science.gov (United States)

    Hayden, C. M.; Schreiner, J. S.

    1984-08-01

    From the beginning of December 1983 through mid-February 1984 the Cooperative Institute for Meteorological Satellite Studies (CIMSS) carried out an exercise to deliver temperature and moisture profiles, derived from the GOES-6 VISSR Atmospheric Sounder (VAS), to the National Meteorological Center (NMC) in time for input to the operational forecast at 1330 GMT. The purpose was to provide meteorological data coverage over the data sparse eastern Pacific (FPAC) where timely polar orbiting satellite data are not available. Although a product was delivered only 40 percent of the time, the experiment successfully demonstrated the feasibility of a totally automated VAS retrieval procedure. Data reliability achieved at the EPAC scale appears to be good, though lack of independent verification data requires that forecast impact studies delineate their ultimate value.

  11. Cloud cover typing from environmental satellite imagery. Discriminating cloud structure with Fast Fourier Transforms (FFT)

    Science.gov (United States)

    Logan, T. L.; Huning, J. R.; Glackin, D. L.

    1983-01-01

    The use of two dimensional Fast Fourier Transforms (FFTs) subjected to pattern recognition technology for the identification and classification of low altitude stratus cloud structure from Geostationary Operational Environmental Satellite (GOES) imagery was examined. The development of a scene independent pattern recognition methodology, unconstrained by conventional cloud morphological classifications was emphasized. A technique for extracting cloud shape, direction, and size attributes from GOES visual imagery was developed. These attributes were combined with two statistical attributes (cloud mean brightness, cloud standard deviation), and interrogated using unsupervised clustering amd maximum likelihood classification techniques. Results indicate that: (1) the key cloud discrimination attributes are mean brightness, direction, shape, and minimum size; (2) cloud structure can be differentiated at given pixel scales; (3) cloud type may be identifiable at coarser scales; (4) there are positive indications of scene independence which would permit development of a cloud signature bank; (5) edge enhancement of GOES imagery does not appreciably improve cloud classification over the use of raw data; and (6) the GOES imagery must be apodized before generation of FFTs.

  12. Evaluation of Aerosol Optical Thickness algorithm for Geostationary Environmental Monitoring Spectrometer (GEMS) Using the OMI Instrument over East Asia

    Science.gov (United States)

    Go, S.; Kim, J.; KIM, M.; Choi, M.; Lim, H.; Torres, O.; Chang, L.; Hong, J.

    2016-12-01

    The Geostationary Environment Monitoring Spectrometer (GEMS), ultraviolet (UV) and visible channel spectrometer onboard the Geostationary Korea Multi-Purpose Satellite called GEO-KOMPSAT2B, is planned to be launched in 2018. GEMS will provide hourly images based on eight observations in a day spatially covering whole East Asia region (70°E-145°E, 0°N-50°N) centered at 120°E and 17°N with 7 km x 8 km spatial resolution. We have developed and updated GEMS aerosol retrieval algorithm, which will utilize hyper-spectral imaging in UV and visible channels from 300 nm to 500 nm with 0.6 nm resolution. GEMS aerosol products from our retrieval algorithm consist of aerosol optical depth (AOD) and single scattering albedo (SSA) at 443 nm, Aerosol Index, and aerosol effective height. In this study, we test the GEMS algorithm for AOD retrieval using OMI level-1B data for GEMS measurement, and evaluate the results using ground-based AERONET level 2.0 products obtained from 24 sites located in East Asia. We perform this verification for 2 years from January 2005 to December 2006. Preliminary comparison results for total 24 sites show that a correlation coefficient between GEMS and AERONET AODs at 440 nm channel is 0.776, and root-mean-square error (RMSE) is 0.285 with regression line slope 0.681 and offset 0.188. The correlation coefficient between GEMS and AERONET AOD shows higher value than the correlation coefficient between OMI and AERONET AOD, but GEMS AOD slightly underestimate AERONET AOD especially over large cities. There could be several reasons causing underestimation over large cities including aerosol model selection problem, and surface reflectance problem. We analyzed the difference between GEMS and the AERONET AOD related to the variation of fine mode fraction, spectral surface reflectance. Validation results show large underestimation of AOD with respect to high fine mode fraction, but show weak dependence on spectral surface reflectance. In terms of

  13. An Overview Of Operational Satellites Built By China:Communications Satellites (Part 2)

    Institute of Scientific and Technical Information of China (English)

    Zong He

    2009-01-01

    @@ INNOVATIVE GENERATION: THE DFH-4 PLATFORM AND SATELLITES The DFH-4 platform is the third generation of China-built large geostationary satellite platform with large output power,payload capacity and long service lifetime.Its overall performance ranks with other international advanced satellite platforms.This platform can be used for many services such as high capacity broadcast communication,direct TV broadcasting,digital audio broadcasting and broadband multimedia,which are badly needed for national economic construction and markets both at home and abroad.The platform also has effective technologies that can ensure the security of information transmission.

  14. The Integration of Small Satellites in Maritime Interdiction Operations (MIO)

    Science.gov (United States)

    2012-09-01

    BLANK xiii LIST OF ACRONYMS AND ABBREVIATIONS AIS Automatic Identification system BER Bit Error Rate BGAN Broadband Global Area Network bps...was the Broadband Global Area Network ( BGAN ), a global-coverage network that uses three satellites in geostationary orbits and is provided by...NOCTW WR BGAN Mutualink station Target Ship Interdiction Boat Interdiction Boat GPS Tracking Nuc/Rad Sensor Collaboration Station Nuc/Rad Sensor IP

  15. Mapping total suspended matter from geostationary satellites: a feasibility study with SEVIRI in the Southern North Sea.

    Science.gov (United States)

    Neukermans, Griet; Ruddick, Kevin; Bernard, Emilien; Ramon, Didier; Nechad, Bouchra; Deschamps, Pierre-Yves

    2009-08-03

    Geostationary ocean colour sensors have not yet been launched into space, but are under consideration by a number of space agencies. This study provides a proof of concept for mapping of Total Suspended Matter (TSM) in turbid coastal waters from geostationary platforms with the existing SEVIRI (Spinning Enhanced Visible and InfraRed Imager) meteorological sensor on the METEOSAT Second Generation platform. Data are available in near real time every 15 minutes. SEVIRI lacks sufficient bands for chlorophyll remote sensing but its spectral resolution is sufficient for quantification of Total Suspended Matter (TSM) in turbid waters, using a single broad red band, combined with a suitable near infrared band. A test data set for mapping of TSM in the Southern North Sea was obtained covering 35 consecutive days from June 28 until July 31 2006. Atmospheric correction of SEVIRI images includes corrections for Rayleigh and aerosol scattering, absorption by atmospheric gases and atmospheric transmittances. The aerosol correction uses assumptions on the ratio of marine reflectances and aerosol reflectances in the red and near-infrared bands. A single band TSM retrieval algorithm, calibrated by non-linear regression of seaborne measurements of TSM and marine reflectance was applied. The effect of the above assumptions on the uncertainty of the marine reflectance and TSM products was analysed. Results show that (1) mapping of TSM in the Southern North Sea is feasible with SEVIRI for turbid waters, though with considerable uncertainties in clearer waters, (2) TSM maps are well correlated with TSM maps obtained from MODIS AQUA and (3) during cloud-free days, high frequency dynamics of TSM are detected.

  16. Improvement of Aerosol Optical Depth Retrieval over Hong Kong from a Geostationary Meteorological Satellite Using Critical Reflectance with Background Optical Depth Correction

    Science.gov (United States)

    Kim, Mijin; Kim, Jhoon; Wong, Man Sing; Yoon, Jongmin; Lee, Jaehwa; Wu, Dong L.; Chan, P.W.; Nichol, Janet E.; Chung, Chu-Yong; Ou, Mi-Lim

    2014-01-01

    Despite continuous efforts to retrieve aerosol optical depth (AOD) using a conventional 5-channelmeteorological imager in geostationary orbit, the accuracy in urban areas has been poorer than other areas primarily due to complex urban surface properties and mixed aerosol types from different emission sources. The two largest error sources in aerosol retrieval have been aerosol type selection and surface reflectance. In selecting the aerosol type from a single visible channel, the season-dependent aerosol optical properties were adopted from longterm measurements of Aerosol Robotic Network (AERONET) sun-photometers. With the aerosol optical properties obtained fromthe AERONET inversion data, look-up tableswere calculated by using a radiative transfer code: the Second Simulation of the Satellite Signal in the Solar Spectrum (6S). Surface reflectance was estimated using the clear sky composite method, awidely used technique for geostationary retrievals. Over East Asia, the AOD retrieved from the Meteorological Imager showed good agreement, although the values were affected by cloud contamination errors. However, the conventional retrieval of the AOD over Hong Kong was largely underestimated due to the lack of information on the aerosol type and surface properties. To detect spatial and temporal variation of aerosol type over the area, the critical reflectance method, a technique to retrieve single scattering albedo (SSA), was applied. Additionally, the background aerosol effect was corrected to improve the accuracy of the surface reflectance over Hong Kong. The AOD retrieved froma modified algorithmwas compared to the collocated data measured by AERONET in Hong Kong. The comparison showed that the new aerosol type selection using the critical reflectance and the corrected surface reflectance significantly improved the accuracy of AODs in Hong Kong areas,with a correlation coefficient increase from0.65 to 0.76 and a regression line change from tMI [basic algorithm] = 0

  17. A retrospective analysis of the Shinmoedake (Japan) eruption of 26-27 January 2011 by means of Japanese geostationary satellite data

    Science.gov (United States)

    Marchese, F.; Falconieri, A.; Pergola, N.; Tramutoli, V.

    2014-01-01

    During the sub-plinian eruptions of Mt. Shinmoedake (Japan) on 26-27 January 2011 a significant amount of ash was emitted into the atmosphere, destroying thousands of hectares of farm land, causing air traffic disruption, and forcing the closure of four railroad lines located around the volcano. In this work, a retrospective analysis of these eruptive events is presented, exploiting the high temporal resolution of the Japanese Multi-functional Transport Satellites (MTSAT) data to study thermal volcanic activity, to identify and track volcanic ash, and to determine the cloud-top height, inferring information about eruption features and space-time evolution. We show that a strong and sudden increase in the thermal signal occurred at Mt. Shinmoedake as a consequence of above mentioned eruptive events, generating hot spots timely detected by the RSTVOLC algorithm for the first time implemented here on data provided by geostationary satellites. This study also shows that the emitted ash plume, identified by means of the RSTASH algorithm, strongly fluctuated in altitude, reaching a maximum height around 7.4 km above sea level, in agreement with information provided by the Tokyo VAAC. The plume heights derived in this work, by implementing the widely accepted cloud-top temperature method, appear also compatible with the values provided by independent weather radar measurements, with the main differences characterizing the third sub-plinian event that occurred in the afternoon of 27 January. The estimates of discharge rate, the temporal trend of ash affected areas, and the results of thermal monitoring reported in this work seem to indicate that the third sub-plinian event was the least intense. In spite of some limitations, this study confirms the potential of Japanese geostationary satellites in effectively monitoring volcanoes located in the West Pacific region, providing continuous information also about such critical parameters of ash clouds as the plume height. Such

  18. Using Equinoctial Orbital Elements and Quasi-average Element Method to Construct Analytical Solutions for Geostationary Satellite

    Science.gov (United States)

    Liu, Bin; Tang, Jingshi; Hou, Xiyun; Liu, Lin

    2016-07-01

    methodology based on equinoctial orbital elements. Also, considering the perturbation of J2 J3 J4 and J2,2 terms of Earth's non-spherical gravitational field, the lunar gravitational field and solar gravitational field, we try to derive a general perturbation solution, which can be applied in different conditions. Thus "zero mistake" in application can be realized to improve the security of the satellite operation. Also, this method can be extended to solve the problems of singularity caused by other perturbations.

  19. Spatially resolving methane emissions in California: constraints from the CalNex aircraft campaign and from present (GOSAT, TES and future (TROPOMI, geostationary satellite observations

    Directory of Open Access Journals (Sweden)

    K. J. Wecht

    2014-02-01

    Full Text Available We apply a continental-scale inverse modeling system for North America based on the GEOS-Chem model to optimize California methane emissions at 1/2° × 2/3° horizontal resolution using atmospheric observations from the CalNex aircraft campaign (May–June 2010 and from satellites. Inversion of the CalNex data yields a best estimate for total California methane emissions of 2.86 ± 0.21 Tg yr−1, compared with 1.92 Tg yr−1 in the EDGAR v4.2 emission inventory used as a priori and 1.51 Tg yr−1 in the California Air Resources Board (CARB inventory used for state regulations of greenhouse gas emissions. These results are consistent with a previous Lagrangian inversion of the CalNex data. Our inversion provides 12 independent pieces of information to constrain the geographical distribution of emissions within California. Attribution to individual source types indicates dominant contributions to emissions from landfills/wastewater (1.1 Tg yr−1, livestock (0.87 Tg yr−1, and gas/oil (0.64 Tg yr−1. EDGAR v4.2 underestimates emissions from livestock while CARB underestimates emissions from landfills/wastewater and gas/oil. Current satellite observations from GOSAT can constrain methane emissions in the Los Angeles Basin but are too sparse to constrain emissions quantitatively elsewhere in California (they can still be qualitatively useful to diagnose inventory biases. Los Angeles Basin emissions derived from CalNex and GOSAT inversions are 0.42 ± 0.08 and 0.31 ± 0.08, respectively. An observation system simulation experiment (OSSE shows that the future TROPOMI satellite instrument (2015 launch will be able to constrain California methane emissions at a detail comparable to the CalNex aircraft campaign. Geostationary satellite observations offer even greater potential for constraining methane emissions in the future.

  20. Geostationary multipurpose platforms

    Science.gov (United States)

    Bekey, I.; Bowman, R. M.

    1981-01-01

    In addition to the advantages generally associated with orbital platforms, such as improved reliability, economies of scale, simple connectivity of elements, reduced tracking demands and the restraint of orbital object population growth, geostationary platforms yield: (1) continuous access by fixed ground antennas for communications services; (2) continuous monitoring of phenomena over chosen regions of the earth's surface; (3) a preferred location for many solar-terrestrial physics experiments. The geostationary platform also offers a low-risk and economical solution to the impending saturation of the orbital arc/frequency spectrum, maximizing the capacity of individual slots and increasing the utility of the entire arc. It also allows the use of many small, simple and inexpensive earth stations through complexity inversion and high power per beam. Block diagram and operational flowcharts are provided.

  1. An operational satellite remote sensing system for ocean fishery

    Institute of Scientific and Technical Information of China (English)

    MAOZhihua; ZHUQiankun; PANDelu

    2004-01-01

    Ocean environmental information is very important to supporting the fishermen in fishing and satellite remote sensing technology can provide it in large scale and in near real-time. Ocean fishery locations are always far away beyond the coverage of the satellite data received by a land-based satellite receiving station. A nice idea is to install the satellite ground station on a fishing boat. When the boat moves to a fishery location, the station can receive the satellite data to cover the fishery areas. One satellite remote sensing system was once installed in a fishing boat and served fishing in the North Pacific fishery areas when the boat stayed there. The system can provide some oceanic environmental charts such as sea surface temperature (SST) and relevant derived products which are in most popular use in fishery industry. The accuracy of SST is the most important and affects the performance of the operational system, which is found to be dissatisfactory. Many factors affect the accuracy of SST and it is difficult to increase the accuracy by SST retrieval algorithms and clouds detection technology. A new technology of temperature error control is developed to detect the abnormity of satellite-measured SST. The performance of the technology is evaluated to change the temperature bias from-3.04 to 0.05 ℃ and the root mean square (RMS) from 5.71 to 1.75 ℃. It is suitable for employing in an operational satellite-measured SST system and improves the performance of the system in fishery applications. The system has been running for 3 a and proved to be very useful in fishing. It can help to locate the candidates of the fishery areas and monitor the typhoon which is very dangerous to the safety of fishing boats.

  2. Extrapolating Satellite Winds to Turbine Operating Heights

    DEFF Research Database (Denmark)

    Badger, Merete; Pena Diaz, Alfredo; Hahmann, Andrea N.;

    2016-01-01

    Ocean wind retrievals from satellite sensors are typically performed for the standard level of 10 m. This restricts their full exploitation for wind energy planning, which requires wind information at much higher levels where wind turbines operate. A new method is presented for the vertical extra...

  3. Implementing an operating room pharmacy satellite.

    Science.gov (United States)

    Powell, P J; Maland, L; Bair, J N; McCall, J D; Wong, K C

    1983-07-01

    Implementation of an operating room (OR) pharmacy satellite is described, and its impact on cost-effectiveness and efficiency of drug distribution is analyzed. The OR satellite provided pharmacy coverage for 30-35 patients per day in 10 centralized surgical suites, 2 obstetric suites, and 1 burn-unit suite in a 401-bed teaching hospital. Objectives of the satellite were to consolidate accountability for drug distribution and control, reduce controlled substance loss and waste, reduce inventory costs, and improve recording of patient charges. Stock on the OR supply cart was reduced, controlled substances were dispensed to anesthesiologists from the satellite, and a system of standardized anesthesiology exchange trays was developed. A new billing form served as both the charging document and replacement list. Reduction in the medication cart stock resulted in smaller discrepancies in patient charges. For the five most commonly used controlled substances, accounting discrepancies were reduced. Inventory turnover increased and inventory dollar value and cost per patient were reduced. The percent of nurses who believed that a pharmacist should work in the area increased from 31% before implementation of the satellite to 95% after. The pilot OR pharmacy satellite was a financial success. Efficiency and effectiveness in drug distribution and control were improved, and communication between pharmacists and other medical personnel working in the OR areas was enhanced.

  4. Global satellite composites - 20 years of evolution

    Science.gov (United States)

    Kohrs, Richard A.; Lazzara, Matthew A.; Robaidek, Jerrold O.; Santek, David A.; Knuth, Shelley L.

    2014-01-01

    For two decades, the University of Wisconsin Space Science and Engineering Center (SSEC) and the Antarctic Meteorological Research Center (AMRC) have been creating global, regional and hemispheric satellite composites. These composites have proven useful in research, operational forecasting, commercial applications and educational outreach. Using the Man computer Interactive Data System (McIDAS) software developed at SSEC, infrared window composites were created by combining Geostationary Operational Environmental Satellite (GOES), and polar orbiting data from the SSEC Data Center and polar data acquired at McMurdo and Palmer stations, Antarctica. Increased computer processing speed has allowed for more advanced algorithms to address the decision making process for co-located pixels. The algorithms have evolved from a simplistic maximum brightness temperature to those that account for distance from the sub-satellite point, parallax displacement, pixel time and resolution. The composites are the state-of-the-art means for merging/mosaicking satellite imagery.

  5. Ocean colour products from geostationary platforms, opportunities with Meteosat Second and Third Generation

    Directory of Open Access Journals (Sweden)

    E. J. Kwiatkowska

    2015-12-01

    Full Text Available Ocean colour applications from medium-resolution polar-orbiting satellite sensors have now matured and evolved into operational services. The examples include the Sentinel-3 OLCI missions of the European Earth Observation Copernicus programme and the VIIRS missions of the US Joint Polar Satellite System programme. Key drivers for Copernicus ocean colour services are the national obligations of the EU member states to report on the quality of marine, coastal and inland waters for the EU Water Framework Directive and Marine Strategy Framework Directive. Further applications include CO2 sequestration, carbon cycle and climate, fisheries and aquaculture management, near-real-time alerting to harmful algae blooms, environmental monitoring and forecasting, and assessment of sediment transport in coastal waters. Ocean colour data from polar-orbiting satellite platforms, however, suffer from fractional coverage, primarily due to clouds, and inadequate resolution of quickly varying processes. Ocean colour remote sensing from geostationary platforms can provide significant improvements in coverage and sampling frequency and support new applications and services. EUMETSAT's SEVIRI instrument on the geostationary Meteosat Second Generation platforms (MSG is not designed to meet ocean colour mission requirements, however, it has been demonstrated to provide valuable contribution, particularly in combination with dedicated ocean colour polar observations. This paper describes the ongoing effort to develop operational ocean colour water turbidity and related products and user services from SEVIRI. A survey of user requirements and a study of technical capabilities and limitations of the SEVIRI instruments are the basis for this development and are described in this paper. The products will support monitoring of sediment transport, water clarity, and tidal dynamics. Further products and services are anticipated from EUMETSAT's FCI instruments on Meteosat Third

  6. Ocean colour opportunities from Meteosat Second and Third Generation geostationary platforms

    Science.gov (United States)

    Kwiatkowska, Ewa J.; Ruddick, Kevin; Ramon, Didier; Vanhellemont, Quinten; Brockmann, Carsten; Lebreton, Carole; Bonekamp, Hans G.

    2016-05-01

    Ocean colour applications from medium-resolution polar-orbiting satellite sensors have now matured and evolved into operational services. These applications are enabled by the Sentinel-3 OLCI space sensors of the European Earth Observation Copernicus programme and the VIIRS sensors of the US Joint Polar Satellite System programme. Key drivers for the Copernicus ocean colour services are the national obligations of the EU member states to report on the quality of marine, coastal and inland waters for the EU Water Framework Directive and Marine Strategy Framework Directive. Further applications include CO2 sequestration, carbon cycle and climate, fisheries and aquaculture management, near-real-time alerting to harmful algae blooms, environmental monitoring and forecasting, and assessment of sediment transport in coastal waters. Ocean colour data from polar-orbiting satellite platforms, however, suffer from fractional coverage, primarily due to clouds, and inadequate resolution of quickly varying processes. Ocean colour remote sensing from geostationary platforms can provide significant improvements in coverage and sampling frequency and support new applications and services. EUMETSAT's SEVIRI instrument on the geostationary Meteosat Second Generation platforms (MSG) is not designed to meet ocean colour mission requirements, however, it has been demonstrated to provide valuable contribution, particularly in combination with dedicated ocean colour polar observations. This paper describes the ongoing effort to develop operational ocean colour water turbidity and related products and user services from SEVIRI. SEVIRI's multi-temporal capabilities can benefit users requiring improved local-area coverage and frequent diurnal observations. A survey of user requirements and a study of technical capabilities and limitations of the SEVIRI instruments are the basis for this development and are described in this paper. The products will support monitoring of sediment transport

  7. Alternative packet switch architectures for a 30/20 GHz FDMA/TDMA geostationary communication satellite network

    Science.gov (United States)

    Stehle, Roy; Ogier, Richard G.

    1995-01-01

    This study has investigated alternatives for realizing a packet-based network switch for deployment on a communication satellite. The emphasis was on the avoidance of contention problems that can occur due to the simultaneous arrival of an excessive number of packets destined for the same downlink dwell. The study was to look ahead, beyond the current Advanced Communications Technology Satellite (ACTS) capability, to the next generation of satellites. The study has not been limited by currently available technology, but has used university and commercial research efforts as a basis for designs that can be readily constructed and launched within the next five years. Tradeoffs in memory requirement, power requirement, and architecture have been considered as a part of our study.

  8. 47 CFR 25.259 - Time sharing between NOAA meteorological satellite systems and non-voice, non-geostationary...

    Science.gov (United States)

    2010-10-01

    ... Atmospheric Administration (“NOAA”) satellite systems. When calculating the protection areas for a NOAA... contact person and telephone number so that claims of harmful interference into NOAA earth station users... Administration (“NTIA”) notifies the Commission that NOAA is receiving unacceptable interference from a...

  9. Modeling water and heat balance components of large territory for vegetation season using information from polar-orbital and geostationary meteorological satellites

    Science.gov (United States)

    Muzylev, Eugene; Startseva, Zoya; Uspensky, Alexander; Volkova, Elena; Kukharsky, Alexander; Uspensky, Sergey

    2015-04-01

    To date, physical-mathematical modeling processes of land surface-atmosphere interaction is considered to be the most appropriate tool for obtaining reliable estimates of water and heat balance components of large territories. The model of these processes (Land Surface Model, LSM) developed for vegetation period is destined for simulating soil water content W, evapotranspiration Ev, vertical latent LE and heat fluxes from land surface as well as vertically distributed soil temperature and moisture, soil surface Tg and foliage Tf temperatures, and land surface skin temperature (LST) Ts. The model is suitable for utilizing remote sensing data on land surface and meteorological conditions. In the study these data have been obtained from measurements by scanning radiometers AVHRR/NOAA, MODIS/EOS Terra and Aqua, SEVIRI/geostationary satellites Meteosat-9, -10 (MSG-2, -3). The heterogeneity of the land surface and meteorological conditions has been taken into account in the model by using soil and vegetation characteristics as parameters and meteorological characteristics as input variables. Values of these characteristics have been determined from ground observations and remote sensing information. So, AVHRR data have been used to build the estimates of effective land surface temperature (LST) Ts.eff and emissivity E, vegetation-air temperature (temperature at the vegetation level) Ta, normalized vegetation index NDVI, vegetation cover fraction B, the leaf area index LAI, and precipitation. From MODIS data the values of LST Tls, Å, NDVI, LAI have been derived. From SEVIRI data there have been retrieved Tls, E, Ta, NDVI, LAI and precipitation. All named retrievals covered the vast territory of the part of the agricultural Central Black Earth Region located in the steppe-forest zone of European Russia. This territory with coordinates 49°30'-54°N, 31°-43°E and a total area of 227,300 km2 has been chosen for investigation. It has been carried out for years 2009

  10. Reactor operation environmental information document

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, L.R.; Hayes, D.W.; Hunter, C.H.; Marter, W.L.; Moyer, R.A.

    1989-12-01

    This volume is a reactor operation environmental information document for the Savannah River Plant. Topics include meteorology, surface hydrology, transport, environmental impacts, and radiation effects. 48 figs., 56 tabs. (KD)

  11. Estimation of ocean surface currents from maximum cross correlation applied to GOCI geostationary satellite remote sensing data over the Tsushima (Korea) Straits

    Science.gov (United States)

    Warren, M. A.; Quartly, G. D.; Shutler, J. D.; Miller, P. I.; Yoshikawa, Y.

    2016-09-01

    Attempts to automatically estimate surface current velocities from satellite-derived thermal or visible imagery face the limitations of data occlusion due to cloud cover, the complex evolution of features and the degradation of their surface signature. The Geostationary Ocean Color Imager (GOCI) provides a chance to reappraise such techniques due to its multiyear record of hourly high-resolution visible spectrum data. Here we present the results of applying a Maximum Cross Correlation (MCC) technique to GOCI data. Using a combination of simulated and real data we derive suitable processing parameters and examine the robustness of different satellite products, those being water-leaving radiance and chlorophyll concentration. These estimates of surface currents are evaluated using High Frequency (HF) radar systems located in the Tsushima (Korea) Strait. We show the performance of the MCC approach varies depending on the amount of missing data and the presence of strong optical contrasts. Using simulated data it was found that patchy cloud cover occupying 25% of the image pair reduces the number of vectors by 20% compared to using perfect images. Root mean square errors between the MCC and HF radar velocities are of the order of 20 cm s-1. Performance varies depending on the wavelength of the data with the blue-green products out-performing the red and near infra-red products. Application of MCC to GOCI chlorophyll data results in similar performance to radiances in the blue-green bands. The technique has been demonstrated using specific examples of an eddy feature and tidal induced features in the region.

  12. On the feasibility of monitoring carbon monoxide in the lower troposphere from a constellation of northern hemisphere geostationary satellites: Global scale assimilation experiments (Part II)

    Science.gov (United States)

    Barré, Jérôme; Edwards, David; Worden, Helen; Arellano, Avelino; Gaubert, Benjamin; Da Silva, Arlindo; Lahoz, William; Anderson, Jeffrey

    2016-09-01

    This paper describes the second phase of an Observing System Simulation Experiment (OSSE) that utilizes the synthetic measurements from a constellation of satellites measuring atmospheric composition from geostationary (GEO) Earth orbit presented in part I of the study. Our OSSE is focused on carbon monoxide observations over North America, East Asia and Europe where most of the anthropogenic sources are located. Here we assess the impact of a potential GEO constellation on constraining northern hemisphere (NH) carbon monoxide (CO) using data assimilation. We show how cloud cover affects the GEO constellation data density with the largest cloud cover (i.e., lowest data density) occurring during Asian summer. We compare the modeled state of the atmosphere (Control Run), before CO data assimilation, with the known "true" state of the atmosphere (Nature Run) and show that our setup provides realistic atmospheric CO fields and emission budgets. Overall, the Control Run underestimates CO concentrations in the northern hemisphere, especially in areas close to CO sources. Assimilation experiments show that constraining CO close to the main anthropogenic sources significantly reduces errors in NH CO compared to the Control Run. We assess the changes in error reduction when only single satellite instruments are available as compared to the full constellation. We find large differences in how measurements for each continental scale observation system affect the hemispherical improvement in long-range transport patterns, especially due to seasonal cloud cover. A GEO constellation will provide the most efficient constraint on NH CO during winter when CO lifetime is longer and increments from data assimilation associated with source regions are advected further around the globe.

  13. GHRSST Level 2P Western Pacific Regional Skin Sea Surface Temperature from the Multifunctional Transport Satellite 1R (MTSAT-1R) (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Multi-functional Transport Satellites (MTSAT) are a series of geostationary weather satellites operated by the Japan Meteorological Agency (JMA). MTSAT carries an...

  14. GHRSST Level 2P Western Pacific Regional Skin Sea Surface Temperature from the Multifunctional Transport Satellite 2 (MTSAT-2) (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Multi-functional Transport Satellites (MTSAT) are a series of geostationary weather satellites operated by the Japan Meteorological Agency (JMA). MTSAT carries an...

  15. Google Earth as a Vehicle to Integrating Multiple Layers of Environmental Satellite Data for Weather and Science Applications

    Science.gov (United States)

    Turk, F. J.; Miller, S. D.

    2007-12-01

    One of the main challenges facing current and future environmental satellite systems (e.g, the future National Polar Orbiting Environmental Satellite System (NPOESS)) is reaching and entraining the diverse user community via communication of how these systems address their particular needs. A necessary element to meeting this challenge is effective data visualization: facilitating the display, animation and layering of multiple satellite imaging and sounding sensors (providing complementary information) in a user-friendly and intuitive fashion. In light of the fact that these data are rapidly making their way into the classroom owing to efficient and timely data archival systems and dissemination over the Internet, there is a golden opportunity to leverage existing technology to introduce environmental science to wide spectrum of users. Google Earth's simplified interface and underlying markup language enables access to detailed global geographic information, and contains features which are both desirable and advantageous for geo-referencing and combining a wide range of environmental satellite data types. Since these satellite data are available with a variety of horizontal spatial resolutions (tens of km down to hundreds of meters), the imagery can be sub-setted (tiled) at a very small size. This allows low-bandwidth users to efficiently view and animate a sequence of imagery while zoomed out from the surface, whereas high-bandwidth users can efficiently zoom into the finest image resolution when viewing fine-scale phenomena such as fires, volcanic activity, as well as the details of meteorological phenomena such as hurricanes, rainfall, lightning, winds, etc. Dynamically updated network links allow for near real-time updates such that these data can be integrated with other Earth-hosted applications and exploited not only in the teaching environment, but also for operational users in the government and private industry sectors. To conceptualize how environmental

  16. The geostationary orbit and developing countries

    Science.gov (United States)

    Medina, E. R.

    1982-01-01

    The geostationary orbit is becoming congested due to use by several countries throughout the world, and the request for use of this orbit is increasing. There are 188 geostationary stations in operation. An equitable distribution of stations on this orbit is requested.

  17. Image navigation and registration for the geostationary lightning mapper (GLM)

    Science.gov (United States)

    van Bezooijen, Roel W. H.; Demroff, Howard; Burton, Gregory; Chu, Donald; Yang, Shu S.

    2016-10-01

    The Geostationary Lightning Mappers (GLM) for the Geostationary Operational Environmental Satellite (GOES) GOES-R series will, for the first time, provide hemispherical lightning information 24 hours a day from longitudes of 75 and 137 degrees west. The first GLM of a series of four is planned for launch in November, 2016. Observation of lightning patterns by GLM holds promise to improve tornado warning lead times to greater than 20 minutes while halving the present false alarm rates. In addition, GLM will improve airline traffic flow management, and provide climatology data allowing us to understand the Earth's evolving climate. The paper describes the method used for translating the pixel position of a lightning event to its corresponding geodetic longitude and latitude, using the J2000 attitude of the GLM mount frame reported by the spacecraft, the position of the spacecraft, and the alignment of the GLM coordinate frame relative to its mount frame. Because the latter alignment will experience seasonal variation, this alignment is determined daily using GLM background images collected over the previous 7 days. The process involves identification of coastlines in the background images and determination of the alignment change necessary to match the detected coastline with the coastline predicted using the GSHHS database. Registration is achieved using a variation of the Lucas-Kanade algorithm where we added a dither and average technique to improve performance significantly. An innovative water mask technique was conceived to enable self-contained detection of clear coastline sections usable for registration. Extensive simulations using accurate visible images from GOES13 and GOES15 have been used to demonstrate the performance of the coastline registration method, the results of which are presented in the paper.

  18. Development, Validation, and Potential Enhancements to the Second-Generation Operational Aerosol Product at the National Environmental Satellite, Data, and Information Service of the National Oceanic and Atmospheric Administration

    Science.gov (United States)

    Stowe, Larry L.; Ignatov, Alexander M.; Singh, Ramdas R.

    1997-01-01

    A revised (phase 2) single-channel algorithm for aerosol optical thickness, tau(sup A)(sub SAT), retrieval over oceans from radiances in channel 1 (0.63 microns) of the Advanced Very High Resolution Radiometer (AVHRR) has been implemented at the National Oceanic and Atmospheric Administration's National Environmental Satellite Data and Information Service for the NOAA 14 satellite launched December 30, 1994. It is based on careful validation of its operational predecessor (phase 1 algorithm), implemented for NOAA 14 in 1989. Both algorithms scale the upward satellite radiances in cloud-free conditions to aerosol optical thickness using an updated radiative transfer model of the ocean and atmosphere. Application of the phase 2 algorithm to three matchup Sun-photometer and satellite data sets, one with NOAA 9 in 1988 and two with NOAA 11 in 1989 and 1991, respectively, show systematic error is less than 10%, with a random error of sigma(sub tau) approx. equal 0.04. First results of tau(sup A)(sub SAT) retrievals from NOAA 14 using the phase 2 algorithm, and from checking its internal consistency, are presented. The potential two-channel (phase 3) algorithm for the retrieval of an aerosol size parameter, such as the Junge size distribution exponent, by adding either channel 2 (0.83 microns) from the current AVHRR instrument, or a 1.6-microns channel to be available on the Tropical Rainfall Measurement Mission and the NOAA-KLM satellites by 1997 is under investigation. The possibility of using this additional information in the retrieval of a more accurate estimate of aerosol optical thickness is being explored.

  19. SatBałtyk - A Baltic environmental satellite remote sensing system - an ongoing project in Poland. Part 1: Assumptions, scope and operating range

    Directory of Open Access Journals (Sweden)

    Bogdan Woźniak

    2011-11-01

    Full Text Available This paper is the second part of the description of the first stage of the SatBałtyk project's implementation. Part 1 (Woźniak et al. 2011, in this issue presents the assumptions and objectives of SatBałtyk and describes the most important stages in the history of our research, which is the foundation of this project. It also discusses the operation and general structure of the SatBałtyk system. Part 2 addresses various aspects of the practical applicability of the SatBałtyk Operational System to Baltic ecosystem monitoring. Examples are given of the Baltic's characteristics estimated using the preliminary versions of the algorithms in this Operational System. At the current stage of research, these algorithms apply mainly to the characteristics of the solar energy influx and the distribution of this energy among the various processes taking place in the atmosphere-sea system, and also to the radiation balance of the sea surface, the irradiance conditions for photosynthesis and the condition of plant communities in the water, sea surface temperature distributions and some other marine phenomena correlated with this temperature. Monitoring results obtained with these preliminary algorithms are exemplified in the form of distribution maps of selected abiotic parameters of the Baltic, as well as structural and functional characteristics of this ecosystem governed by these parameters in the Baltic's many basins. The maps cover practically the whole area of the Baltic Sea. Also given are results of preliminary inspections of the accuracy of the magnitudes shown on the maps. In actual fact, the errors of these estimates are relatively small. The further practical application of this set of algorithms (to be gradually made more specific is therefore entirely justified as the basis of the SatBałtyk system for the effective operational monitoring of the state and functioning of Baltic ecosystems. This article also outlines the plans for extending

  20. Constraints on Anthropogenic NOx Emissions from Geostationary Satellite Observations in a Regional Chemical Data Assimilation System: Evaluation Using Observing System Simulation Experiments

    Science.gov (United States)

    Liu, X.; Mizzi, A. P.; Anderson, J. L.; Fung, I. Y.; Cohen, R. C.

    2015-12-01

    Nitrogen oxides (NOx=NO+NO2) control the tropospheric ozone (O3) budget, the abundance of the hydroxyl radical (OH), the formation of organic and inorganic nitrate aerosol, and therefore affect air quality and climate. There remain significant uncertainties in the processes responsible for NOx emissions and subsequent mixing and chemical removal. NOx has a short lifetime and its emissions show high spatiotemporal variability at urban scale. Future geostationary satellite instruments including TEMPO, GEMS and Sentinel-4 will provide hourly time resolution and high spatial resolution observations providing maps of NO2 on diurnal and local scales. Here we determine the extent to which a TEMPO like instrument can quantify urban-scale NOx emissions using a regional data assimilation (DA) system comprising of a chemical transport model, WRF-Chem, a TEMPO simulator and the DART Ensemble Adjustment Kalman Filter. We generate synthetic TEMPO observations by sampling from a nature run on an urban scale domain. We consider the effect of albedo, surface pressure, solar and viewing angles and a priori NO2 profiles on the TEMPO NO2 averaging kernel to achieve scene-dependent instrument sensitivity. We estimate NOx emissions using DART in a state augmentation approach by including NOx emissions in the state vector being analyzed. The ensemble-based statistical estimation of error correlations between concentrations and emissions are critical as they determine the impact of assimilated observations. We describe observing system simulation experiments to explore the optimal approach in the ensemble-based DA system to estimate hourly-resolved NOx emissions from TEMPO NO2 observations. Several case studies will be presented examining the role of covariance localization length and chemical perturbations on the success of the approach.

  1. Development of environmental monitoring satellite systems in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    With the increase in global environmental problems,the necessity and urgency of remote sensing technology being applied to environmental monitoring has been widely recognized around the world.China has launched the environment and disaster monitoring and forecasting small satellite constellation HJ-1A/B and the FY3 atmosphere and environmental satellite,but they still cannot fully satisfy requirements for environmental monitoring.This paper summarizes the current status of satellite environmental monitoring in China and the existing problems of inadequate load design and low data utilization efficiency,and discusses the demand for environmental monitoring satellites.Based on the development of foreign satellite systems for environmental monitoring,the future development and key tasks of the environmental monitoring satellite system in China is discussed,as are some related initiatives.

  2. GHRSST Level 2P Atlantic Regional Skin Sea Surface Temperature from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) on the Meteosat Second Generation (MSG-1) satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Meteosat Second Generation (MSG) satellites are spin stabilized geostationary satellites operated by the European Organization for the Exploitation of...

  3. GHRSST Level 2P Atlantic Regional Skin Sea Surface Temperature from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) on the Meteosat Second Generation (MSG-2) satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Meteosat Second Generation (MSG) satellites are spin stabilized geostationary satellites operated by the European Organization for the Exploitation of...

  4. GHRSST Level 2P Atlantic Regional Skin Sea Surface Temperature from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) on the Meteosat Second Generation (MSG-3) satellite (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Meteosat Second Generation (MSG-3) satellites are spin stabilized geostationary satellites operated by the European Organization for the Exploitation of...

  5. GHRSST Level 3C sub-skin Sea Surface Temperature from the Geostationary Operational Environmental Satellites (GOES 13) Imager in East position (GDS V2) produced by OSI SAF (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A regional Group for High Resolution Sea Surface Temperature (GHRSST) Level 3 Collated (L3C) dataset for the America Region (AMERICAS) based on retrievals from the...

  6. Operational climate monitoring from space: the EUMETSAT satellite application facility on climate monitoring (CM-SAF

    Directory of Open Access Journals (Sweden)

    J. Schulz

    2008-05-01

    Full Text Available The Satellite Application Facility on Climate Monitoring (CM-SAF aims at the provision of satellite-derived geophysical parameter data sets suitable for climate monitoring. CM-SAF provides climatologies for Essential Climate Variables (ECV, as required by the Global Climate Observing System implementation plan in support of the UNFCCC. Several cloud parameters, surface albedo, radiation fluxes at the top of the atmosphere and at the surface as well as atmospheric temperature and humidity products form a sound basis for climate monitoring of the atmosphere. The products are categorized in monitoring data sets obtained in near real time and data sets based on carefully intercalibrated radiances. The CM-SAF products are derived from several instruments on-board operational satellites in geostationary and polar orbit, i.e., the Meteosat and NOAA satellites, respectively. The existing data sets will be continued using data from the instruments on-board the new EUMETSAT Meteorological Operational satellite (MetOP. The products have mostly been validated against several ground-based data sets both in situ and remotely sensed. The accomplished accuracy for products derived in near real time is sufficient to monitor variability on diurnal and seasonal scales. Products based on intercalibrated radiance data can also be used for climate variability analysis up to inter-annual scale. A central goal of the recently started Continuous Development and Operations Phase of the CM-SAF (2007–2012 is to further improve all CM-SAF data sets to a quality level that allows for studies of inter-annual variability.

  7. Precise Orbit Determination of BeiDou Satellites with Contributions from Chinese National Continuous Operating Reference Stations

    Directory of Open Access Journals (Sweden)

    Ming Chen

    2017-08-01

    Full Text Available The precise orbit determination (POD for BeiDou satellites is usually limited by the insufficient quantity and poor distribution of ground tracking stations. To cope with this problem, this study used the GPS and BeiDou joint POD method based on Chinese national continuous operating reference stations (CNCORS and IGS/MGEX stations. The results show that the 3D RMS of the differences of overlapping arcs is better than 22 cm for geostationary orbit (GEO satellites and better than 10 cm for inclined geosynchronous orbit (IGSO and medium earth orbit (MEO satellites. The radial RMS is better than 2 cm for all three types of BeiDou satellites. The results of satellite laser ranging (SLR residuals show that the RMS of the IGSO and MEO satellites is better than 5 cm, whereas the GEO satellite has a systematic bias. This study investigates the contributions of CNCORS to the POD of BeiDou satellites. The results show that after the incorporation of CNCORS, the precision of overlapping arcs of the GEO, IGSO, and MEO satellites is improved by 15.5%, 57.5%, and 5.3%, respectively. In accordance with the improvement in the precision of overlapping arcs, the accuracy of the IGSO and MEO satellites assessed by the SLR is improved by 30.1% and 4.8%, respectively. The computation results and analysis demonstrate that the inclusion of CNCORS yields the biggest contribution in the improvement of orbit accuracy for IGSO satellites, when compared to GEO satellites, while the orbit improvement for MEO satellites is the lowest due to their global coverage.

  8. Short-Term Prediction Research and Transition (SPoRT) Center: Transitioning Satellite Data to Operations

    Science.gov (United States)

    Zavodsky, Bradley

    2012-01-01

    The Short-term Prediction Research and Transition (SPoRT) Center located at NASA Marshall Space Flight Center has been conducting testbed activities aimed at transitioning satellite products to National Weather Service operational end users for the last 10 years. SPoRT is a NASA/NOAA funded project that has set the bar for transition of products to operational end users through a paradigm of understanding forecast challenges and forecaster needs, displaying products in end users decision support systems, actively assessing the operational impact of these products, and improving products based on forecaster feedback. Aiming for quality partnerships rather than a large quantity of data users, SPoRT has become a community leader in training operational forecasters on the use of up-and-coming satellite data through the use of legacy instruments and proxy data. Traditionally, SPoRT has supplied satellite imagery and products from NASA instruments such as the Moderate-resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS). However, recently, SPoRT has been funded by the GOES-R and Joint Polar Satellite System (JPSS) Proving Grounds to accelerate the transition of selected imagery and products to help improve forecaster awareness of upcoming operational data from the Visible Infrared Imager Radiometer Suite (VIIRS), Cross-track Infrared Sounder (CrIS), Advanced Baseline Imager (ABI), and Geostationary Lightning Mapper (GLM). This presentation provides background on the SPoRT Center, the SPoRT paradigm, and some example products that SPoRT is excited to work with forecasters to evaluate.

  9. Application of the Strong Scatter Theory to the Interpretation of Ionospheric Scintillation Measurements along Geostationary Satellite Links at VHF and L-band

    Science.gov (United States)

    Carrano, C. S.; Groves, K. M.; Basu, S.; Mackenzie, E.; Sheehan, R. E.

    2013-12-01

    In a previous work, we demonstrated that ionospheric turbulence parameters may be inferred from amplitude scintillations well into in the strong scatter regime [Carrano et al., International Journal of Geophysics, 2012]. This technique, called Iterative Parameter Estimation (IPE), uses the strong scatter theory and numerical inversion to estimate the parameters of an ionospheric phase screen (turbulent intensity, phase spectral index, and irregularity zonal drift) consistent with the observed scintillations. The optimal screen parameters are determined such that the theoretical intensity spectrum on the ground best matches the measured intensity spectrum in a least squares sense. We use this technique to interpret scintillation measurements collected during a campaign at Ascension Island (7.96°S, 14.41°W) in March 2000, led by Santimay Basu and his collaborators from Air Force Research Laboratory. Geostationary satellites broadcasting radio signals at VHF and L-band were monitored along nearly co-linear links, enabling a multi-frequency analysis of scintillations with the same propagation geometry. The VHF data were acquired using antennas spaced in the magnetic east-west direction, which enabled direct measurement of the zonal irregularity drift. We show that IPE analysis of the VHF and L-Band scintillations, which exhibited very different statistics due to the wide frequency separation, yields similar estimates of the phase screen parameters that specify the disturbed ionospheric medium. This agreement provides confidence in our phase screen parameter estimates. It also suggests a technique for extrapolating scintillation measurements to frequencies other than those observed that is valid in the case of strong scatter. We find that IPE estimates of the zonal irregularity drift, made using scintillation observations along single space-to-ground link, are consistent with those measured independently using the spaced antenna technique. This encouraging result

  10. Satellite Meteorology Education Resources Freely Available from COMET°

    Science.gov (United States)

    Abshire, W. E.; Dills, P. N.

    2011-12-01

    The COMET° Program (www.comet.ucar.edu) receives funding from NOAA NESDIS, EUMETSAT, and the Meteorological Service of Canada to support education and training efforts in satellite meteorology. These partnerships enable COMET to create educational materials of global interest on the application of products from geostationary and polar-orbiting remote sensing platforms. Recently, COMET's satellite education programs have focused on both current and next generation satellites and their relevance to operational forecasters and other communities. By partnering with experts from the Naval Research Laboratory, NOAA-NESDIS and its Cooperative Institutes, MSC, and other user communities, COMET stimulates greater utilization of satellite data and products. COMET also continues to broaden the scope of its training to include materials on the EUMETSAT Polar-orbiting System (EPS) and Meteosat geostationary satellites. EPS represents an important contribution to the Initial Joint Polar System between NOAA and EUMETSAT, while Meteosat Second Generation imaging capabilities provide an authentic proving ground for the next-generation GOES-R imager. This presentation provides an overview of COMET's recent satellite education efforts including courses and publications that focus on topics like multispectral RGB products, detecting atmospheric dust, and climate monitoring from satellites. Over 50 satellite-focused self-paced online materials are freely available via the Satellite Topic area of the MetEd Web site (www.meted.ucar.edu/topics/modules/satellite) and COMET's Environmental Satellite Resource Center (ESRC)(www.meted.ucar.edu/esrc). The ESRC, another important resource developed for use by the geosciences and education communities, is a searchable, database driven Web site that provides easy access to a wide range of useful information and training materials on Earth-observing satellites. Simple free online registration is required to access all training materials and the

  11. Thinking on Standardization of Satellite Meteorology and Space Weather Monitoring Early Waming

    Institute of Scientific and Technical Information of China (English)

    Sun Anlai; Zhang Jiashen; Le Guiming

    2011-01-01

    Introduction After 40 years of development,China's satellite meteorological service has made remarkable achievements.Fengyun satellites have realized the transformation from trial operation to full operational service and achieved a coordinated space-based earth cbservation system with polar and geostationary meteorological satellites.

  12. The Status and Prospects of Atmospheric Microwave Sounding by Geostationary Meteorological Satellite%静止轨道微波大气探测的技术现状与发展展望

    Institute of Scientific and Technical Information of China (English)

    卢乃锰; 谷松岩

    2016-01-01

    分析了静止轨道微波大气探测的重要性,介绍了发展静止轨道微波大气探测的国内外技术现状和所面临的技术挑战。在论述新型干涉式综合孔径技术体制优势的基础上,提出将传统真实孔径与新型干涉式综合孔径技术体制相结合,发展我国静止轨道微波大气探测的设想。%The importance of atmospheric microwave sounding onboard the geostationary meteorological satellite is analyzed, and the technical challenge being faced with the development of the microwave instrument is introduced. After discussing the advantage of a new type of microwave interference synthesis aperture radiometer, a hybrid system, combing the traditional real aperture and the synthesis aperture together, is proposed. This hybrid system could be valuable to the development of Fengyun geostationary microwave satellite.

  13. Improving the Transition of Earth Satellite Observations from Research to Operations

    Science.gov (United States)

    Goodman, Steven J.; Lapenta, William M.; Jedlovec, Gary J.

    2004-01-01

    There are significant gaps between the observations, models, and decision support tools that make use of new data. These challenges include: 1) Decreasing the time to incorporate new satellite data into operational forecast assimilation systems, 2) Blending in-situ and satellite observing systems to produce the most accurate and comprehensive data products and assessments, 3) Accelerating the transition from research to applications through national test beds, field campaigns, and pilot demonstrations, and 4) Developing the partnerships and organizational structures to effectively transition new technology into operations. At the Short-term Prediction Research and Transition (SPORT) Center in Huntsville, Alabama, a NASA-NOAA-University collaboration has been developed to accelerate the infusion of NASA Earth science observations, data assimilation and modeling research into NWS forecast operations and decision-making. The SPoRT Center research focus is to improve forecasts through new observation capability and the regional prediction objectives of the US Weather Research Program dealing with 0-1 day forecast issues such as convective initiation and 24-hr quantitative precipitation forecasting. The near real-time availability of high-resolution experimental products of the atmosphere, land, and ocean from the Moderate Resolution Imaging Spectroradiometer (MODIS), the Advanced Infrared Spectroradiometer (AIRS), and lightning mapping systems provide an opportunity for science and algorithm risk reduction, and for application assessment prior to planned observations from the next generation of operational low Earth orbiting and geostationary Earth orbiting satellites. This paper describes the process for the transition of experimental products into forecast operations, current products undergoing assessment by forecasters, and plans for the future. The SPoRT Web page is at (http://www.ghcc.msfc.nasa.gov/sport).

  14. Monitoring and tracking the trans-Pacific transport of aerosols using multi-satellite aerosol optical depth retrievals

    Directory of Open Access Journals (Sweden)

    A. R. Naeger

    2015-10-01

    Full Text Available The primary goal of this study was to generate a near-real time (NRT aerosol optical depth (AOD product capable of providing a comprehensive understanding of the aerosol spatial distribution over the Pacific Ocean in order to better monitor and track the trans-Pacific transport of aerosols. Therefore, we developed a NRT product that takes advantage of observations from both low-earth orbiting and geostationary satellites. In particular, we utilize AOD products from the Moderate Resolution Imaging Spectroradiometer (MODIS and Suomi National Polar-orbiting Partnership (NPP Visible Infrared Imaging Radiometer Suite (VIIRS satellites. Then, we combine these AOD products with our own retrieval algorithms developed for the NOAA Geostationary Operational Environmental Satellite (GOES-15 and Japan Meteorological Agency (JMA Multi-functional Transport Satellite (MTSAT-2 to generate a NRT daily AOD composite product. We present examples of the daily AOD composite product for a case study of trans-Pacific transport of Asian pollution and dust aerosols in mid-March 2014. Overall, the new product successfully tracks this aerosol plume during its trans-Pacific transport to the west coast of North America. However, we identify several areas across the domain of interest from Asia to North America where the new product can encounter significant uncertainties due to the inclusion of the geostationary AOD retrievals. The uncertainties associated with geostationary AOD retrievals are expected to be minimized after the successful launch of the next-generation advanced NOAA GOES-R and recently launched JMA Himawari satellites. Observations from these advanced satellites will ultimately provide an enhanced understanding of the spatial and temporal distribution of aerosols over the Pacific.

  15. Communication Satellites: Experimental & Operational, Commercial & Public Service.

    Science.gov (United States)

    Development Communication Report, 1979

    1979-01-01

    The title reflects the first and major article in an issue of this newsletter devoted entirely to communication satellites. This series of articles on the potential and applications of communication satellites in development projects is concerned with their development for commercial and public service, development in the Pacific region, SPACECOM…

  16. Preliminary environmental assessment for the satellite power system (SPS)

    Energy Technology Data Exchange (ETDEWEB)

    1978-10-01

    A preliminary assessment of the impact of the Satellite Power System (SPS) on the environment is presented. Information that has appeared in documents referenced herein is integrated and assimilated. The state-of-knowledge as perceived from recently completed DOE-sponsored studies is disclosed, and prospective research and study programs that can advance the state-of-knowledge and provide an expanded data base for use in an assessment planned for 1980 are defined. Alternatives for research that may be implemented in order to achieve this advancement are also discussed in order that a plan can be selected which will be consistent with the fiscal and time constraints on the SPS Environmental Assessment Program. Health and ecological effects of microwave radiation, nonmicrowave effects on health and the environment (terrestrial operations and space operations), effects on the atmosphere, and effects on communications systems are examined in detail. (WHK)

  17. Structural design and analysis of a solar array substrate for a GEO satellite

    OpenAIRE

    Safak, Omer

    2013-01-01

    The aim of this thesis is the design of solar array substrate for a geostationary satellite. The design of deployable solar array substrate is realized based on the requirements which are provided by BILUZAY (Bilkent University Space Technologies Research Centre). This array is going to empower a telecommunication satellite which will be operating in a geostationary orbit during 15 years. The main work presented in this thesis consists of two principal directions: solar cell array area dimens...

  18. Structural design and analysis of a solar array substrate for a GEO satellite

    OpenAIRE

    Safak, Omer

    2013-01-01

    The aim of this thesis is the design of solar array substrate for a geostationary satellite. The design of deployable solar array substrate is realized based on the requirements which are provided by BILUZAY (Bilkent University Space Technologies Research Centre). This array is going to empower a telecommunication satellite which will be operating in a geostationary orbit during 15 years. The main work presented in this thesis consists of two principal directions: solar cell array area dimens...

  19. Reactor operation environmental information document

    Energy Technology Data Exchange (ETDEWEB)

    Haselow, J.S.; Price, V.; Stephenson, D.E.; Bledsoe, H.W.; Looney, B.B.

    1989-12-01

    The Savannah River Site (SRS) produces nuclear materials, primarily plutonium and tritium, to meet the requirements of the Department of Defense. These products have been formed in nuclear reactors that were built during 1950--1955 at the SRS. K, L, and P reactors are three of five reactors that have been used in the past to produce the nuclear materials. All three of these reactors discontinued operation in 1988. Currently, intense efforts are being extended to prepare these three reactors for restart in a manner that protects human health and the environment. To document that restarting the reactors will have minimal impacts to human health and the environment, a three-volume Reactor Operations Environmental Impact Document has been prepared. The document focuses on the impacts of restarting the K, L, and P reactors on both the SRS and surrounding areas. This volume discusses the geology, seismology, and subsurface hydrology. 195 refs., 101 figs., 16 tabs.

  20. The Geostationary Fourier Transform Spectrometer

    Science.gov (United States)

    Key, Richard; Sander, Stanley; Eldering, Annmarie; Blavier, Jean-Francois; Bekker, Dmitriy; Manatt, Ken; Rider, David; Wu, Yen-Hung

    2012-01-01

    The Geostationary Fourier Transform Spectrometer (GeoFTS) is an imaging spectrometer designed for a geostationary orbit (GEO) earth science mission to measure key atmospheric trace gases and process tracers related to climate change and human activity. GEO allows GeoFTS to continuously stare at a region of the earth for frequent sampling to capture the variability of biogenic fluxes and anthropogenic emissions from city to continental spatial scales and temporal scales from diurnal, synoptic, seasonal to interannual. The measurement strategy provides a process based understanding of the carbon cycle from contiguous maps of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), and chlorophyll fluorescence (CF) collected many times per day at high spatial resolution (2.7kmx2.7km at nadir). The CO2/CH4/CO/CF measurement suite in the near infrared spectral region provides the information needed to disentangle natural and anthropogenic contributions to atmospheric carbon concentrations and to minimize uncertainties in the flow of carbon between the atmosphere and surface. The half meter cube size GeoFTS instrument is based on a Michelson interferometer design that uses all high TRL components in a modular configuration to reduce complexity and cost. It is self-contained and as independent of the spacecraft as possible with simple spacecraft interfaces, making it ideal to be a "hosted" payload on a commercial communications satellite mission. The hosted payload approach for measuring the major carbon-containing gases in the atmosphere from the geostationary vantage point will affordably advance the scientific understating of carbon cycle processes and climate change.

  1. Models for estimation of land remote sensing satellites operational efficiency

    Science.gov (United States)

    Kurenkov, Vladimir I.; Kucherov, Alexander S.

    2017-01-01

    The paper deals with the problem of estimation of land remote sensing satellites operational efficiency. Appropriate mathematical models have been developed. Some results obtained with the help of the software worked out in Delphi programming support environment are presented.

  2. Effective management strategy for establishing an operating room satellite pharmacy.

    Science.gov (United States)

    Brakebill, J I; Schoeneman, P F; Buchanan, B

    1988-11-01

    The steps involved in justifying and implementing an operating room (OR) pharmacy satellite are described. A hospital administrator's viewpoint on the project is included. Objectives of the satellite were to reduce inventory costs, improve control of distribution, reduce loss of revenue and improve patient charging, improve IV compounding and labeling, and significantly improve narcotic control and accountability. The satellite provides comprehensive services 12 hours a day, five days a week. Effective after-hours procedures have been developed to provide efficient drug distribution when the pharmacy is closed. Achieved benefits of the satellite include decreased drug inventory, improved patient charging, accurate labeling, improved IV compounding, and improved pharmacy/surgery relations. The OR pharmacy satellite is a successful cost-effective operation.

  3. Radio interferometry and satellite tracking

    CERN Document Server

    Kawase, Seiichiro

    2012-01-01

    Worldwide growth of space communications has caused a rapid increase in the number of satellites operating in geostationary orbits, causing overcrowded orbits. This practical resource is designed to help professionals overcome this problem. This timely book provides a solid understanding of the use of radio interferometers for tracking and monitoring satellites in overcrowded environments. Practitioners learn the fundamentals of radio interferometer hardware, including antennas, receiving equipment, signal processing and phase detection, and measurement accuracies. This in-depth volume describ

  4. Utilization of Precipitation and Moisture Products Derived from Satellites to Support NOAA Operational Precipitation Forecasts

    Science.gov (United States)

    Ferraro, R.; Zhao, L.; Kuligowski, R. J.; Kusselson, S.; Ma, L.; Kidder, S. Q.; Forsythe, J. M.; Jones, A. S.; Ebert, E. E.; Valenti, E.

    2012-12-01

    NOAA/NESDIS operates a constellation of polar and geostationary orbiting satellites to support weather forecasts and to monitor the climate. Additionally, NOAA utilizes satellite assets from other U.S. agencies like NASA and the Department of Defense, as well as those from other nations with similar weather and climate responsibilities (i.e., EUMETSAT and JMA). Over the past two decades, through joint efforts between U.S. and international government researchers, academic partners, and private sector corporations, a series of "value added" products have been developed to better serve the needs of weather forecasters and to exploit the full potential of precipitation and moisture products generated from these satellites. In this presentation, we will focus on two of these products - Ensemble Tropical Rainfall Potential (eTRaP) and Blended Total Precipitable Water (bTPW) - and provide examples on how they contribute to hydrometeorological forecasts. In terms of passive microwave satellite products, TPW perhaps is most widely used to support real-time forecasting applications, as it accurately depicts tropospheric water vapor and its movement. In particular, it has proven to be extremely useful in determining the location, timing, and duration of "atmospheric rivers" which contribute to and sustain flooding events. A multi-sensor approach has been developed and implemented at NESDIS in which passive microwave estimates from multiple satellites and sensors are merged to create a seamless, bTPW product that is more efficient for forecasters to use. Additionally, this product is being enhanced for utilization for television weather forecasters. Examples will be shown to illustrate the roll of atmospheric rivers and contribution to flooding events, and how the bTPW product was used to improve the forecast of these events. Heavy rains associated with land falling tropical cyclones (TC) frequently trigger floods that cause millions of dollars of damage and tremendous loss

  5. Snowline retrievals using operational satellite data

    Science.gov (United States)

    Becker, R.

    2010-09-01

    Making use of atmosphere and surface parameters derived from satellite remote sensing is of increasing importance to describe appropriately status and changes of weather and climate. Even in regions with poor coverage concerning ground based measurements and/or heterogenous terrain satellite products contribute to fill temporal and spatial gaps. Imaging radiometers provide information on surface snow and ice based on multispectral algorithms with a spatial resolution from 250 m to about 3000 m. Observations by passive imaging spectro-/radiometers like SEVIRI onboard Meteosat second generation, Noaa/MetOp AVHRR and Terra/Aqua MODIS have the potential to provide snow products on a daily basis with spatial resolution comparable or better than grid increment of the hydrological models. For the evaluation of MODIS imagery a dedicated algorithm was set up utilising multispectral thresholding of calibrated radiances to separate clear land and sea from cloudy and snow-covered scenes. The scheme works independently of a-priori atmospheric data like numerical model forecasts. It outputs a combined snow/cloudmask that is finally convoluted with background topography information (GIS), allowing for the calculation of snowlines. The core snow and ice detection is based on a NDSI module (normalised difference snow index, Hall et.al. 2001). A well established algorithm developed within the framework of the Satellite Application Facility for Nowcasting (NWCSAF, Dybbroe et.al. 2005), is used to detect snowy pixels in the AVHRR imagery. MODIS and AVHRR results were compared to each other. It shows a good agreement by means of correlation (.94) but systematic deviations are considered. A verification study was carried out by taking into account all European synoptical and climatological snow measurements with snow depths of at least 1 cm. The scores show a clear seasonal cycle with PODs of .2 in summer (both) and .86 (AVHRR) and .82 (MODIS) in winter months. The evaluation data

  6. 47 CFR 25.260 - Time sharing between DoD meteorological satellite systems and non-voice, non-geostationary...

    Science.gov (United States)

    2010-10-01

    ... NVNG licensee shall use an earth station elevation angle of five degrees towards the DoD satellite and... of zero degrees towards the NVNG licensee's satellite, overlapping the DoD protection area. A NVNG... and its directors, officers, employees, affiliates, agents and subcontractors may incur or suffer in...

  7. Uses of communication satellites in water utility operations

    Science.gov (United States)

    Tighe, W. S.

    This paper proposes a system to serve the communications needs of the operating side of a water utility and estimates the requirements and capabilities of the equipment needed. The system requires the shared use of a satellite transponder with 100% backup. Messages consist of data packets containing data and control information, plus voice transmission. Satellite communication may have a price advantage in some instances over wire line or VHF radio and have greater survivability in case of a natural disaster. Water and other utilities represent a significant market for low cost mass produced satellite earth terminals.

  8. Integration of operational research and environmental management

    NARCIS (Netherlands)

    Bloemhof - Ruwaard, J.M.

    1996-01-01


    The subject of this thesis is the integration of Operational Research and Environmental Management. Both sciences play an important role in the research of environmental issues. Part I describes a framework for the interactions between Operational Research and Environmental Management.

  9. Integration of operational research and environmental management.

    NARCIS (Netherlands)

    Bloemhof-Ruwaard, J.M.

    1996-01-01

    The subject of this thesis is the integration of Operational Research and Environmental Management. Both sciences play an important role in the research of environmental issues. Part I describes a framework for the interactions between Operational Research and Environmental Management. The framework

  10. On the potential of sub-mm passive MW observations from geostationary satellites to retrieve heavy precipitation over the Mediterranean Area

    Directory of Open Access Journals (Sweden)

    S. Pinori

    2006-01-01

    Full Text Available The general interest in the potential use of the mm and sub-mm frequencies up to 425 GHz resolution from geostationary orbit is increasing due to the fact that the frequent time sampling and the comparable spatial resolution relative to the "classical" (≤89 GHz microwave frequencies would allow the monitoring of precipitating intense events for the assimilation of rain in now-casting weather prediction models. In this paper, we use the simulation of a heavy precipitating event in front of the coast of Crete island (Greece performed by the University of Wisconsin - Non-hydrostatic Modeling System (UW-NMS cloud resolving model in conjunction with a 3D-adjusted plane parallel radiative transfer model to simulate the upwelling brightness temperatures (TB's at mm and sub-mm frequencies. To study the potential use of high frequencies, we first analyze the relationships of the simulated TB's with the microphysical properties of the UW-NMS simulated precipitating clouds, and then explore the capability of a Bayesian algorithm for the retrieval of surface rain rate, rain and ice water paths at such frequencies.

  11. GOES-R: Satellite Insight

    Science.gov (United States)

    Fitzpatrick, Austin J.; Leon, Nancy J.; Novati, Alexander; Lincoln, Laura K.; Fisher, Diane K.

    2012-01-01

    GOES-R: Satellite Insight seeks to bring awareness of the GOES-R (Geostationary Operational Environmental Satellite -- R Series) satellite currently in development to an audience of all ages on the emerging medium of mobile games. The iPhone app (Satellite Insight) was created for the GOES-R Program. The app describes in simple terms the types of data products that can be produced from GOES-R measurements. The game is easy to learn, yet challenging for all audiences. It includes educational content and a path to further information about GOESR, its technology, and the benefits of the data it collects. The game features action-puzzle game play in which the player must prevent an overflow of data by matching falling blocks that represent different types of GOES-R data. The game adds more different types of data blocks over time, as long as the player can prevent a data overflow condition. Points are awarded for matches, and players can compete with themselves to beat their highest score.

  12. Silicon avalanche photodiode operation and lifetime analysis for small satellites.

    Science.gov (United States)

    Tan, Yue Chuan; Chandrasekara, Rakhitha; Cheng, Cliff; Ling, Alexander

    2013-07-15

    Silicon avalanche photodiodes (APDs) are sensitive to operating temperature fluctuations and are also susceptible to radiation flux expected in satellite-based quantum experiments. We introduce a low power voltage adjusting mechanism to overcome the effects of in-orbit temperature fluctuations. We also present data on the performance of Si APDs after irradiation (γ-ray and proton beam). Combined with an analysis of expected orbital irradiation, we propose that a Si APD in a 400 km equatorial orbit may operate beyond the lifetime of the satellite.

  13. Silicon avalanche photodiode operation and lifetime analysis for small satellites

    CERN Document Server

    Tan, Yue Chuan; Cheng, Cliff; Ling, Alexander

    2013-01-01

    Silicon avalanche photodiodes (APDs) are sensitive to operating temperature fluctuations and are also susceptible to radiation flux expected in satellite-based quantum experiments. We introduce a low power voltage adjusting mechanism to overcome the effects of in-orbit temperature fluctuations. We also present data on the performance of Si APDs after irradiation (gamma-ray and proton beam). Combined with an analysis of expected orbital irradiation, we propose that a Si APD in a 400 km equatorial orbit may operate beyond the lifetime of the satellite.

  14. Summary of the CTS Transient Event Counter data after one year of operation. [Communication Technology Satellite

    Science.gov (United States)

    Stevens, N. J.; Klinect, V. W.; Gore, J. V.

    1977-01-01

    The environmental charging of satellite surfaces during geomagnetic substorms is the apparent cause of a significant number of anomalous events occurring on geosynchronous satellites since the early 1970's. Electromagnetic pulses produced in connection with the differential charging of insulators can couple into the spacecraft harness and cause electronic switching anomalies. An investigation conducted to determine the response of the spacecraft surfaces to substorm particle fluxes makes use of a harness transient detector. The harness transient detector, called the Transient Event Counter (TEC) was built and integrated into the Canadian-American Communications Technology Satellite (CTS). A description of the TEC and its operational characteristics is given and the obtained data are discussed. The data show that the satellite surfaces appear to be charged to the point that discharges occur and that the discharge-induced transients couple into the wire harnesses.

  15. Generalized Split-Window Algorithm for Estimate of Land Surface Temperature from Chinese Geostationary FengYun Meteorological Satellite (FY-2C Data

    Directory of Open Access Journals (Sweden)

    Jun Xia

    2008-02-01

    Full Text Available On the basis of the radiative transfer theory, this paper addressed the estimate ofLand Surface Temperature (LST from the Chinese first operational geostationarymeteorological satellite-FengYun-2C (FY-2C data in two thermal infrared channels (IR1,10.3-11.3 μ m and IR2, 11.5-12.5 μ m , using the Generalized Split-Window (GSWalgorithm proposed by Wan and Dozier (1996. The coefficients in the GSW algorithmcorresponding to a series of overlapping ranging of the mean emissivity, the atmosphericWater Vapor Content (WVC, and the LST were derived using a statistical regressionmethod from the numerical values simulated with an accurate atmospheric radiativetransfer model MODTRAN 4 over a wide range of atmospheric and surface conditions.The simulation analysis showed that the LST could be estimated by the GSW algorithmwith the Root Mean Square Error (RMSE less than 1 K for the sub-ranges with theViewing Zenith Angle (VZA less than 30° or for the sub-rangs with VZA less than 60°and the atmospheric WVC less than 3.5 g/cm2 provided that the Land Surface Emissivities(LSEs are known. In order to determine the range for the optimum coefficients of theGSW algorithm, the LSEs could be derived from the data in MODIS channels 31 and 32 provided by MODIS/Terra LST product MOD11B1, or be estimated either according tothe land surface classification or using the method proposed by Jiang et al. (2006; and theWVC could be obtained from MODIS total precipitable water product MOD05, or beretrieved using Li et al.’ method (2003. The sensitivity and error analyses in term of theuncertainty of the LSE and WVC as well as the instrumental noise were performed. Inaddition, in order to compare the different formulations of the split-window algorithms,several recently proposed split-window algorithms were used to estimate the LST with thesame simulated FY-2C data. The result of the intercomparsion showed that most of thealgorithms give

  16. Satellite image time series simulation for environmental monitoring

    Science.gov (United States)

    Guo, Tao

    2014-11-01

    The performance of environmental monitoring heavily depends on the availability of consecutive observation data and it turns out an increasing demand in remote sensing community for satellite image data in the sufficient resolution with respect to both spatial and temporal requirements, which appear to be conflictive and hard to tune tradeoffs. Multiple constellations could be a solution if without concerning cost, and thus it is so far interesting but very challenging to develop a method which can simultaneously improve both spatial and temporal details. There are some research efforts to deal with the problem from various aspects, a type of approaches is to enhance the spatial resolution using techniques of super resolution, pan-sharpen etc. which can produce good visual effects, but mostly cannot preserve spectral signatures and result in losing analytical value. Another type is to fill temporal frequency gaps by adopting time interpolation, which actually doesn't increase informative context at all. In this paper we presented a novel method to generate satellite images in higher spatial and temporal details, which further enables satellite image time series simulation. Our method starts with a pair of high-low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and the temporal change is then projected onto high resolution data plane and assigned to each high resolution pixel referring the predefined temporal change patterns of each type of ground objects to generate a simulated high resolution data. A preliminary experiment shows that our method can simulate a high resolution data with a good accuracy. We consider the contribution of our method is to enable timely monitoring of temporal changes through analysis of low resolution images time series only, and usage of

  17. Assessment of breakup severity on operational satellites

    Science.gov (United States)

    Letizia, Francesca; Colombo, Camilla; Lewis, Hugh G.; Krag, Holger

    2016-10-01

    In the past years, several methods have been proposed to rank spacecraft and space debris objects depending on their effect on the space environment. The interest in this kind of indices is primarily motivated by the need of prioritising potential candidates of active debris removal missions and to decide on the required reliability for disposal actions during the design phase. The index proposed in this work measures the effect of the catastrophic fragmentation of the analysed spacecraft in terms of the resulting collision probability for operational spacecraft. The propagation of the debris cloud generated by the fragmentation and the estimation of the collision probability are obtained by applying an analytical approach based on the study of the density of the fragment cloud. The dependence of the proposed severity index on the mass of the spacecraft and on its semi-major axis and inclination is investigated. The index was computed for the objects in the DISCOS database and its results were compared to other formulations proposed in literature. A discussion on the results and on the comparison is presented.

  18. The Principle of Navigation Constellation Composed of SIGSO Communication Satellites

    CERN Document Server

    Ji, Hai-Fu; Ai, Guo-Xiang; Shi, Hu-Li

    2012-01-01

    The Chinese Area Positioning System (CAPS), a navigation system based on GEO communication satellites, was developed in 2002 by astronomers at Chinese Academy of Sciences. Extensive positioning experiments of CAPS have been performed since 2005. On the basis of CAPS, this paper studies the principle of navigation constellation composed of Slightly Inclined Geostationary Orbit (SIGSO) communication satellites. SIGSO satellites are derived from end-of-life Geostationary Orbit (GEO) satellites under inclined orbit operation. Considering the abundant frequency resources of SIGSO satellites, multi-frequency observations could be conducted to enhance the precision of pseudorange measurements and ameliorate the positioning performence. The constellation composed of two GEO satellites and four SIGSO satellites with inclination of 5 degrees can provide the most territory of China with 24-hour maximum PDOP less than 42. With synthetic utilization of the truncated precise (TP) code and physical augmentation factor in fo...

  19. JPSS Preparations at the Satellite Proving Ground for Marine, Precipitation, and Satellite Analysis

    Science.gov (United States)

    Folmer, M. J.; Berndt, E.; Clark, J.; Orrison, A.; Kibler, J.; Sienkiewicz, J. M.; Nelson, J. A., Jr.; Goldberg, M.

    2016-12-01

    The National Oceanic and Atmospheric Administration (NOAA) Satellite Proving Ground (PG) for Marine, Precipitation, and Satellite Analysis (MPS) has been demonstrating and evaluating Suomi National Polar-orbiting Partnership (S-NPP) products along with other polar-orbiting satellite platforms in preparation for the Joint Polar Satellite System - 1 (JPSS-1) launch in March 2017. The first S-NPP imagery was made available to the MPS PG during the evolution of Hurricane Sandy in October 2012 and has since been popular in operations. Since this event the MPS PG Satellite Liaison has been working with forecasters on ways to integrate single-channel and multispectral imagery from the Visible Infrared Imaging Radiometer Suite (VIIRS), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Advanced Very High Resolution Radiometer (AVHRR)into operations to complement numerical weather prediction and geostationary satellite savvy National Weather Service (NWS) National Centers. Additional unique products have been introduced to operations to address specific forecast challenges, including the Cooperative Institute for Research in the Atmosphere (CIRA) Layered Precipitable Water, the National Environmental Satellite, Data, and Information Service (NESDIS) Snowfall Rate product, NOAA Unique Combined Atmospheric Processing System (NUCAPS) Soundings, ozone products from the Atmospheric Infrared Sounder (AIRS), Cross-track Infrared Sounder/Advanced Technology Microwave Sounder (CrIS/ATMS), and Infrared Atmospheric Sounding Interferometer (IASI). In addition, new satellite domains have been created to provide forecasters at the NWS Ocean Prediction Center and Weather Prediction Center with better quality imagery at high latitudes. This has led to research projects that are addressing forecast challenges such as tropical to extratropical transition and explosive cyclogenesis. This presentation will provide examples of how the MPS PG has been introducing and integrating

  20. Introducing you to satellite operated data collection platforms (DCP).

    CSIR Research Space (South Africa)

    Stavropoulos, CC

    1977-09-01

    Full Text Available using this form of repeater. However, satellites able to handle reports from data collection platform (DCP's) have hitherto only been experimental. Within the next two years the operational phase for this type of activity will have been reached...

  1. Tropical convective systems life cycle characteristics from geostationary satellite and precipitating estimates derived from TRMM and ground weather radar observations for the West African and South American regions

    Science.gov (United States)

    Fiolleau, T.; Roca, R.; Angelis, F. C.; Viltard, N.

    2012-12-01

    In the tropics most of the rainfall comes in the form of individual storm events embedded in the synoptic circulations (e.g., monsoons). Understanding the rainfall and its variability hence requires to document these highly contributing tropical convective systems (MCS). Our knowledge of the MCS life cycle, from a physical point of view mainly arises from individual observational campaigns heavily based on ground radar observations. While this large part of observations enabled the creation of conceptual models of MCS life cycle, it nevertheless does not reach any statistically significant integrated perspective yet. To overcome this limitation, a composite technique, that will serve as a Day-1 algorithm for the Megha-Tropiques mission, is considered in this study. this method is based on a collocation in space and time of the level-2 rainfall estimates (BRAIN) derived from the TMI radiometer onboard TRMM with the cloud systems identified by a new MCS tracking algorithm called TOOCAN and based on a 3-dimensional segmentation (image + time) of the geostationary IR imagery. To complete this study, a similar method is also developed collocating the cloud systems with the precipitating features derived from the ground weather radar which has been deployed during the CHUVA campaign over several Brazilian regions from 2010 up to now. A comparison of the MCSs life cycle is then performed for the 2010-2012 summer seasons over the West African, and South American regions. On the whole region of study, the results show that the temporal evolution of the cold cloud shield associated to MCSs describes a symmetry between the growth and the decay phases. It is also shown that the parameters of the conceptual model of MCSs are strongly correlated, reducing thereby the problem to a single degree of freedom. At the system scale, over both land and oceanic regions, rainfall is described by an increase at the beginning (the first third) of the life cycle and then smoothly decreases

  2. Improved Satellite Techniques for Monitoring and Forecasting the Transition of Hurricanes to Extratropical Storms

    Science.gov (United States)

    Folmer, Michael; Halverson, Jeffrey; Berndt, Emily; Dunion, Jason; Goodman, Steve; Goldberg, Mitch

    2014-01-01

    The Geostationary Operational Environmental Satellites R-Series (GOES-R) and Joint Polar Satellite System (JPSS) Satellite Proving Grounds have introduced multiple proxy and operational products into operations over the last few years. Some of these products have proven to be useful in current operations at various National Weather Service (NWS) offices and national centers as a first look at future satellite capabilities. Forecasters at the National Hurricane Center (NHC), Ocean Prediction Center (OPC), NESDIS Satellite Analysis Branch (SAB) and the NASA Hurricane and Severe Storms Sentinel (HS3) field campaign have had access to a few of these products to assist in monitoring extratropical transitions of hurricanes. The red, green, blue (RGB) Air Mass product provides forecasters with an enhanced view of various air masses in one complete image to help differentiate between possible stratospheric/tropospheric interactions, moist tropical air masses, and cool, continental/maritime air masses. As a compliment to this product, a new Atmospheric Infrared Sounder (AIRS) and Cross-track Infrared Sounder (CrIS) Ozone product was introduced in the past year to assist in diagnosing the dry air intrusions seen in the RGB Air Mass product. Finally, a lightning density product was introduced to forecasters as a precursor to the new Geostationary Lightning Mapper (GLM) that will be housed on GOES-R, to monitor the most active regions of convection, which might indicate a disruption in the tropical environment and even signal the onset of extratropical transition. This presentation will focus on a few case studies that exhibit extratropical transition and point out the usefulness of these new satellite techniques in aiding forecasters forecast these challenging events.

  3. Lease Operations Environmental Guidance Document

    Energy Technology Data Exchange (ETDEWEB)

    Bureau of Land Management

    2001-02-14

    This report contains discussions in nine different areas as follows: (1) Good Lease Operating Practices; (2) Site Assessment and Sampling; (3) Spills/Accidents; (4) Containment and Disposal of Produced Waters; (5) Restoration of Hydrocarbon Impacted Soils; (6) Restoration of Salt Impacted Soils; (7) Pit Closures; (8) Identification, Removal and Disposal of Naturally Occurring Radioactive Materials (NORM); and (9) Site Closure and Construction Methods for Abandonment Wells/Locations. This report is primary directed towards the operation of oil and gas producing wells.

  4. Orbit analysis of a geostationary gravitational wave interferometer detector array

    CERN Document Server

    Tinto, Massimo; Kuga, Helio K; Alves, Marcio E S; Aguiar, Odylio D

    2014-01-01

    We analyze the trajectories of three geostationary satellites forming the GEOstationary GRAvitational Wave Interferometer (GEOGRAWI)~\\cite{tinto}, a space-based laser interferometer mission aiming to detect and study gravitational radiation in the ($10^{-4} - 10$) Hz band. The combined effects of the gravity fields of the Earth, the Sun and the Moon make the three satellites deviate from their nominally stationary, equatorial and equilateral configuration. Since changes in the satellites relative distances and orientations could negatively affect the precision of the laser heterodyne measurements, we have derived the time-dependence of the inter-satellite distances and velocities, the variations of the polar angles made by the constellation's three arms with respect to a chosen reference frame, and the time changes of the triangle's enclosed angles. We find that, during the time between two consecutive station-keeping maneuvers (about two weeks), the relative variations of the inter-satellite distances do not...

  5. Autonomous robotic operations for on-orbit satellite servicing

    Science.gov (United States)

    Ogilvie, Andrew; Allport, Justin; Hannah, Michael; Lymer, John

    2008-04-01

    The Orbital Express Demonstration System (OEDS) flight test successfully demonstrated technologies required to autonomously service satellites on-orbit. The mission's integrated robotics solution, the Orbital Express Demonstration Manipulator System (OEDMS) developed by MDA, performed critical flight test operations. The OEDMS comprised a six-jointed robotic manipulator arm and its avionics, non-proprietary servicing and ORU (Orbital Replacement Unit) interfaces, a vision and arm control system for autonomous satellite capture, and a suite of Ground Segment and Flight Segment software allowing script generation and execution under supervised or full autonomy. The arm was mounted on ASTRO, the servicer spacecraft developed by Boeing. The NextSat, developed by Ball Aerospace, served as the client satellite. The OEDMS demonstrated two key goals of the OEDS flight test: autonomous free-flyer capture and berthing of a client satellite, and autonomous transfer of ORUs from servicer to client and back. The paper provides a description of the OEDMS and the key operations it performed.

  6. Monitoring and tracking the trans-Pacific transport of aerosols using multi-satellite aerosol optical depth composites

    Science.gov (United States)

    Naeger, Aaron R.; Gupta, Pawan; Zavodsky, Bradley T.; McGrath, Kevin M.

    2016-06-01

    The primary goal of this study was to generate a near-real time (NRT) aerosol optical depth (AOD) product capable of providing a comprehensive understanding of the aerosol spatial distribution over the Pacific Ocean, in order to better monitor and track the trans-Pacific transport of aerosols. Therefore, we developed a NRT product that takes advantage of observations from both low-earth orbiting and geostationary satellites. In particular, we utilize AOD products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Suomi National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) satellites. Then, we combine these AOD products with our own retrieval algorithms developed for the NOAA Geostationary Operational Environmental Satellite (GOES-15) and Japan Meteorological Agency (JMA) Multi-functional Transport Satellite (MTSAT-2) to generate a NRT daily AOD composite product. We present examples of the daily AOD composite product for a case study of trans-Pacific transport of Asian pollution and dust aerosols in mid-March 2014. Overall, the new product successfully tracks this aerosol plume during its trans-Pacific transport to the west coast of North America as the frequent geostationary observations lead to a greater coverage of cloud-free AOD retrievals equatorward of about 35° N, while the polar-orbiting satellites provide a greater coverage of AOD poleward of 35° N. However, we note several areas across the domain of interest from Asia to North America where the GOES-15 and MTSAT-2 retrieval algorithms can introduce significant uncertainties into the new product.

  7. Operational high latitude surface irradiance products from polar orbiting satellites

    Science.gov (United States)

    Godøy, Øystein

    2016-12-01

    It remains a challenge to find an adequate approach for operational estimation of surface incoming short- and longwave irradiance at high latitudes using polar orbiting meteorological satellite data. In this presentation validation results at a number of North Atlantic and Arctic Ocean high latitude stations are presented and discussed. The validation results have revealed that although the method works well and normally fulfil the operational requirements, there is room for improvement. A number of issues that can improve the estimates at high latitudes have been identified. These improvements are partly related to improved cloud classification using satellite data and partly related to improved handling of multiple reflections over bright surfaces (snow and sea ice), especially in broken cloud conditions. Furthermore, the availability of validation sites over open ocean and sea ice is a challenge.

  8. Operational monitoring of turbidity in rivers: how satellites can contribute

    Science.gov (United States)

    Hucke, Dorothee; Hillebrand, Gudrun; Winterscheid, Axel; Kranz, Susanne; Baschek, Björn

    2016-10-01

    The applications of remote sensing in hydrology are diverse and offer significant benefits for water monitoring. Up to now, operational river monitoring and sediment management in Germany mainly rely on in-situ measurements and on results obtained from numerical modelling. Remote sensing by satellites has a great potential to supplement existing data with two-dimensional information on near-surface turbidity distributions at greater spatial scales than in-situ measurements can offer. Within the project WasMon-CT (WaterMonitoring-Chlorophyll/Turbidity), the Federal Institute of Hydrology (BfG) aims at the implementation of an operational monitoring of turbidity distributions based on satellite images (esp. Sentinel-2, Landsat7 and 8). Initially, selected federal inland and estuarine waterways will be addressed: Rhine, Elbe, Ems, Weser. WasMon-CT is funded within the German Copernicus activities. Within the project, a database of atmospherically corrected, geo-referenced turbidity data will be assembled. The collected corresponding meta-data will include aspects of satellite data as well as hydrological data, e.g. cloud cover and river run-off. Based on this catalogue of spatially linked meta-data, the satellite data will be selected by e.g. cloud cover or run-off. The permanently updated database will include past as well as recent satellite images. It is designed with a long-term perspective to optimize the existing in-situ measurement network, which will serve partly for calibration and partly as validation data set. The aim is to extend, but not to substitute, the existing frequent point measurements with spatially extensive, satellite-derived data from the near surface part of the water column. Here, turbidity is used as proxy for corresponding suspended sediment concentrations. For this, the relationship between turbidity and suspended sediment concentrations will be investigated. Products as e.g. longitudinal profiles or virtual measurement stations will be

  9. Environmental Assessment for the Advanced Extremely High Frequency Satellite Beddown and Deployment Program

    Science.gov (United States)

    2010-07-01

    Fish and Wildlife Service Advanced Extremely High Frequency Satellite Final Environmental Assessment v VIF Vehicle Integration Facility WMO World...Vehicle Mate Operations Upon arrival on CCAFS, the transporter would take the encapsulated payload to the Vehicle Integration Facility ( VIF ), which...is located just south of LC-41 (Figure 2-2). At the VIF , the encapsulated payload would be mated to the Atlas V Launch Vehicle (LV) using a mobile

  10. Community-Operated Environmental Surveillance Program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the environmental surveillance activities with which citizens living near the Hanford Site have been participating. Local teachers have been managing and operating three special radiological air sampling stations located in Richland, Basin City, and Franklin County, Washington. Other expansion efforts of this program are also described.

  11. NASA Perspectives on Earth Observations from Satellite or 50 Years of Meteorological Satellite Experiments-The NASA Perspective

    Science.gov (United States)

    Einaudi, Franco

    2010-01-01

    The NASA was established in 1959. From those very eady days to the present NASA has been intimately involved with NOAA and the scientific community in the development and operation of satellite and sensor experiments. The early efforts included experiments on the TIROS and geostationary Applications Technology Satellites (ATS) series. In the latter case the spin-scan cameras conceived by Verner Suomi, along with the TIROS cameras, opened new vistas at what could be done in meteorological studies with the daily, nearly global, synoptic views from space-borne sensors As the years passed and the Nimbus series of satellites came into being in the 1960's, more quantitative observations with longer-lifetime, increasingly capable, better calibrated instruments came into being. NASA, in collaboration with and in support of NOAA, implemented operational systems that we now know as the Polar Operational Environmental Satellite (POES) series and the Geostationary Operational Environmental Satellite (GOES) series that provided dependable, continuous, dedicated satellite observations for use by the weather and atmospheric science communities. Through the 1970's, 1980's, and 1990's improved, well-calibrated instruments with more spectral bands extending into the thermal and the microwave portions of the electromagnetic spectrum were provided to obtain accurate soundings of the atmosphere, atmospheric chemistry constituents such as ozone, global sea surface temperature, snow and ice extent, vegetation dynamics, etc. In the 1990's and up to the present the NASA/Earth Observing System (EOS) has been developed, implemented, and operated over many years to provide a very comprehensive suite of observations of the atmosphere, as well as land and ocean parameters. The future looks bright wherein the development of new systems, broadly described by the National Academy of Science Decadal Study, is now underway. NASA, along with collaborations with NOAA, other agencies, and the

  12. Science operations management. [with Infrared Astronomy Satellite project

    Science.gov (United States)

    Squibb, G. F.

    1984-01-01

    The operation teams engaged in the IR Astronomical Satellite (IRAS) project included scientists from the IRAS International Science Team. The detailed involvement of these scientists in the design, testing, validation, and operations phases of the IRAS mission contributed to the success of this project. The Project Management Group spent a substantial amount of time discussing science-related issues, because science team coleaders were members from the outset. A single scientific point-of-contact for the Management Group enhanced the depth and continuity of agreement reached in decision-making.

  13. Simulation of the water regime for a vast agricultural region territory utilizing measurements from polar-orbital and geostationary meteorological satellites

    Science.gov (United States)

    Muzylev, Eugene; Uspensky, Alexander; Startseva, Zoya; Volkova, Elena; Kukharsky, Alexander; Uspensky, Sergey

    2013-04-01

    The model of land surface-atmosphere interaction has been developed to calculate the water and heat balance components for vast vegetation covered areas during the growing season. The model is adjusted to utilize estimates of the land surface and meteorological characteristics derived from satellite-based measurements of radiometers AVHRR/NOAA, MODIS/EOS Terra, Aqua, and SEVIRI/Meteosat-9. The studies have been conducted for the territory of the European Russia Central Black Earth Region (CCR) with area of 227,300 km2 comprising seven regions of the Russian Federation for years 2009-2012 vegetation seasons. The technologies of AVHRR and MODIS data thematic processing have been refined and adapted to the study region providing the retrieval of land surface temperature Tls and emissivity E, land-air temperature (temperature at vegetation cover level) Ta, normalized difference vegetation index NDVI, vegetation cover fraction B, as well as the leaf area index LAI. The updated linear regression estimators for Tls, Ta and LAI have been built using more representative training samples compiled for the above vegetation seasons. The updated software package has been applied for AVHRR data processing to generate named remote sensing products for various dates of the mentioned vegetation periods. On the base of special technology and Internet resources the remote sounding products (Tls, E, NDVI, LAI), derived from MODIS data and covering the CCR, have been downloaded from LP DAAC web-site for the same vegetation seasons. The new method and technology have been developed and adopted for the retrieval of Tls and E from SEVIRI data. The retrievals cover the region of interest and are produced at daylight and nighttime. Method provides the derivation of Tls and E from SEVIRI measurements carried out at three successive times (for example, at 11.00, 12.00, 13.00 UTC), classified as 100% cloud-free for the study region without accurate a priori knowledge of E. The validation of

  14. Reactor operation environmental information document

    Energy Technology Data Exchange (ETDEWEB)

    Wike, L.D.; Specht, W.L.; Mackey, H.E.; Paller, M.H.; Wilde, E.W.; Dicks, A.S.

    1989-12-01

    The Savannah River Site (SRS) is a large United States Department of Energy installation on the upper Atlantic Coastal Plain of South Carolina. The SRS contains diverse habitats, flora, and fauna. Habitats include upland terrestrial areas, varied wetlands including Carolina Bays, the Savannah River swamp system, and impoundment related and riparian wetlands, and the aquatic habitats of several stream systems, two large cooling reservoirs, and the Savannah River. These diverse habitats support a large variety of plants and animals including many commercially or recreational valuable species and several rare, threatened or endangered species. This volume describes the major habitats and their biota found on the SRS, and discuss the impacts of continued operation of the K, L, and P production reactors.

  15. Study on In-Orbit Test Methods for Antenna Coverage of Geostationary Communication Satellites%同步轨道通信卫星天线覆盖图在轨测试方法

    Institute of Scientific and Technical Information of China (English)

    许国庆; 毛新宏; 贺中人; 杨丽

    2013-01-01

    The purpose of in-orbit tests on the antenna pattern of geostationary communication satellites is to verify consistency of the stationed satellite footprint with the designed coverage area,and to analyze the influence of antenna thermal deformation caused by solar radiation on the coverage characteristics.This paper describes relevant in-orbit test methods,e.g.maneuvering satellite attitude method,moving antenna platform method and using movable earth station method,for three types of antennas used on satellites,fixed shaped antenna,zone beam antenna and movable spot beam antenna.A solution by using transponder telemetry parameters and multiple stations in maneuvering satellite attitude is studied and a challenge of saving precious fuel and measuring as much pattern cuts as possible is effectively resolved.In-orbit tests are performed on a fixed shaped antenna and a movable spot beam antenna of a real satellite.The test results show good agreement with theoretical characteristics,proving feasibility of the methods.Finally,the measurement uncertainty of the solution is analyzed.%同步轨道通信卫星天线覆盖图在轨测试的目的是检验卫星入轨后上下行覆盖图与设计覆盖区域的一致性,以及太阳照射产生的天线热变形等因素对覆盖特性的影响.针对卫星上常用的固定赋形波束天线、区域波束天线和可移动点波束天线等类型的星载天线在轨测试问题,分析了几种在轨测试方法的原理,包括偏置卫星姿态法、转动天线平台法以及使用移动测量站的方法,提出了偏置卫星姿态法中融合转发器遥测参数判决和多站联合在轨测试的解决方案,有效解决了既要节省宝贵的燃料又要尽可能测量多条切线方向图的工程难题.对真星的固定赋形波束天线和可移动点波束天线进行了在轨测试,测试结果与实际特性吻合很好,验证了方法的可行性.最后,针对融合遥测参数判决的多站联合偏置

  16. Operational Estimation of Accumulated Precipitation using Satellite Observation, by Eumetsat Satellite Application facility in Support to Hydrology (H-SAF Consortium).

    Science.gov (United States)

    di Diodato, A.; de Leonibus, L.; Zauli, F.; Biron, D.; Melfi, D.

    2009-04-01

    Operational Estimation of Accumulated Precipitation using Satellite Observation, by Eumetsat Satellite Application facility in Support to Hydrology (H-SAF Consortium). Cap. Attilio DI DIODATO(*), T.Col. Luigi DE LEONIBUS(*), T.Col Francesco ZAULI(*), Cap. Daniele BIRON(*), Ten. Davide Melfi(*) Satellite Application Facilities (SAFs) are specialised development and processing centres of the EUMETSAT Distributed Ground Segment. SAFs process level 1b data from meteorological satellites (geostationary and polar ones) in conjunction with all other relevant sources of data and appropriate models to generate services and level 2 products. Each SAF is a consortium of EUMETSAT European partners lead by a host institute responsible for the management of the complete SAF project. The Meteorological Service of Italian Air Force is the host Institute for the Satellite Application Facility on Support to Operational Hydrology and Water Management (H-SAF). HSAF has the commitment to develop and to provide, operationally after 2010, products regarding precipitation, soil moisture and snow. HSAF is going to provide information on error structure of its products and validation of the products via their impacts into Hydrological models. To that purpose it has been structured a specific subgroups. Accumulated precipitation is computed by temporal integration of the instantaneous rain rate achieved by the blended LEO/MW and GEO/IR precipitation rate products generated by Rapid Update method available every 15 minutes. The algorithm provides four outputs, consisting in accumulated precipitation in 3, 6, 12 and 24 hours, delivered every 3 hours at the synoptic hours. These outputs are our precipitation background fields. Satellite estimates can cover most of the globe, however, they suffer from errors due to lack of a direct relationship between observation parameters and precipitation, the poor sampling and algorithm imperfections. For this reason the 3 hours accumulated precipitation is

  17. Present status and future plans of the Japanese earth observation satellite program

    Science.gov (United States)

    Tsuchiya, Kiyoshi; Arai, Kohei; Igarashi, Tamotsu

    Japan is now operating 3 earth observation satellites, i. e. MOS-1 (Marine Observation Satellite-1, Momo-1 in Japanese), EGS (Experimental Geodetic Satellite, Ajisai in Japanese) and GMS (Geostationary Meteorological Satellite, Himawari in Japanese). MOS-1 has 3 different sensors, MESSR (Multispectral Electronic Self Scanning Radiometer), VTIR (Visible and Thermal Infrared Radiometer) and MSR (Microwave Scanning Radiometer) in addition to DCS (Data Collection System). GMS has two sensors, VISSR (Visible and IR Spin Scan Radiometer) and SEM (Solar Environmental Monitor). EGS is equipped with reflecting mirrors of the sun light and laser reflecters. For the future earth observation satellites, ERS-1 (Earth Resources Satellite-1), MOS-1b, ADEOS (Advanced Earth Observing Satellite) are under development. Two sensors, AMSR (Advanced Microwave Scanning Radiometer) and ITIR (Intermediate Thermal IR Radiometer) for NASA's polar platform are initial stage of development. Study and planning are made for future earth observation satellites including Japanese polor platform, TRMM, etc.). The study for the second generation GMS has been made by the Committee on the Function of Future GMS under the request of Japan Meteorological Agency in FY 1987.

  18. A new algorithm for agile satellite-based acquisition operations

    Science.gov (United States)

    Bunkheila, Federico; Ortore, Emiliano; Circi, Christian

    2016-06-01

    Taking advantage of the high manoeuvrability and the accurate pointing of the so-called agile satellites, an algorithm which allows efficient management of the operations concerning optical acquisitions is described. Fundamentally, this algorithm can be subdivided into two parts: in the first one the algorithm operates a geometric classification of the areas of interest and a partitioning of these areas into stripes which develop along the optimal scan directions; in the second one it computes the succession of the time windows in which the acquisition operations of the areas of interest are feasible, taking into consideration the potential restrictions associated with these operations and with the geometric and stereoscopic constraints. The results and the performances of the proposed algorithm have been determined and discussed considering the case of the Periodic Sun-Synchronous Orbits.

  19. Tethered Satellites as an Enabling Platform for Operational Space Weather Monitoring Systems

    Science.gov (United States)

    Gilchrist, Brian E.; Krause, Linda Habash; Gallagher, Dennis Lee; Bilen, Sven Gunnar; Fuhrhop, Keith; Hoegy, Walt R.; Inderesan, Rohini; Johnson, Charles; Owens, Jerry Keith; Powers, Joseph; Voronka, Nestor; Williams, Scott

    2013-01-01

    Tethered satellites offer the potential to be an important enabling technology to support operational space weather monitoring systems. Space weather "nowcasting" and forecasting models rely on assimilation of near-real-time (NRT) space environment data to provide warnings for storm events and deleterious effects on the global societal infrastructure. Typically, these models are initialized by a climatological model to provide "most probable distributions" of environmental parameters as a function of time and space. The process of NRT data assimilation gently pulls the climate model closer toward the observed state (e.g., via Kalman smoothing) for nowcasting, and forecasting is achieved through a set of iterative semi-empirical physics-based forward-prediction calculations. Many challenges are associated with the development of an operational system, from the top-level architecture (e.g., the required space weather observatories to meet the spatial and temporal requirements of these models) down to the individual instruments capable of making the NRT measurements. This study focuses on the latter challenge: we present some examples of how tethered satellites (from 100s of m to 20 km) are uniquely suited to address certain shortfalls in our ability to measure critical environmental parameters necessary to drive these space weather models. Examples include long baseline electric field measurements, magnetized ionospheric conductivity measurements, and the ability to separate temporal from spatial irregularities in environmental parameters. Tethered satellite functional requirements are presented for two examples of space environment observables.

  20. Satellite Anomalies: Benefits of a Centralized Anomaly Database and Methods for Securely Sharing Information Among Satellite Operators

    Science.gov (United States)

    2014-01-01

    a hardware defect, accidental interference, purposeful attack , or a space weather event. However, there are obstacles that inhibit satellite owners...operator error in commanding the satellite, electromagnetic interference (“jamming”— be it unintentional or intentional), and targeted attack by an...Russian Cosmos 2251 satellite accidentally collided with the operational Iridium -33 spacecraft at a LEO altitude of 790 km (e.g., Iannotta and Malik

  1. Preliminary environmental assessment for the Satellite Power System (SPS). Revision 1. Volume 2. Detailed assessment

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The Department of Energy (DOE) is considering several options for generating electrical power to meet future energy needs. The satellite power system (SPS), one of these options, would collect solar energy through a system of satellites in space and transfer this energy to earth. A reference system has been described that would convert the energy to microwaves and transmit the microwave energy via directive antennas to large receiving/rectifying antennas (rectennas) located on the earth. At the rectennas, the microwave energy would be converted into electricity. The potential environmental impacts of constructing and operating the satellite power system are being assessed as a part of the Department of Energy's SPS Concept Development and Evaluation Program. This report is Revision I of the Preliminary Environmental Assessment for the Satellite Power System published in October 1978. It refines and extends the 1978 assessment and provides a basis for a 1980 revision that will guide and support DOE recommendations regarding future SPS development. This is Volume 2 of two volumes. It contains the technical detail suitable for peer review and integrates information appearing in documents referenced herein. The key environmental issues associated with the SPS concern human health and safety, ecosystems, climate, and electromagnetic systems interactions. In order to address these issues in an organized manner, five tasks are reported: (I) microwave-radiation health and ecological effects; (II) nonmicrowave health and ecological effectss; (III) atmospheric effects; (IV) effects on communication systems due to ionospheric disturbance; and (V) electromagnetic compatibility. (WHK)

  2. Using Information From Prior Satellite Scans to Improve Cloud Detection Near the Day-Night Terminator

    Science.gov (United States)

    Yost, Christopher R.; Minnis, Patrick; Trepte, Qing Z.; Palikonda, Rabindra; Ayers, Jeffrey K.; Spangenberg, Doulas A.

    2012-01-01

    With geostationary satellite data it is possible to have a continuous record of diurnal cycles of cloud properties for a large portion of the globe. Daytime cloud property retrieval algorithms are typically superior to nighttime algorithms because daytime methods utilize measurements of reflected solar radiation. However, reflected solar radiation is difficult to accurately model for high solar zenith angles where the amount of incident radiation is small. Clear and cloudy scenes can exhibit very small differences in reflected radiation and threshold-based cloud detection methods have more difficulty setting the proper thresholds for accurate cloud detection. Because top-of-atmosphere radiances are typically more accurately modeled outside the terminator region, information from previous scans can help guide cloud detection near the terminator. This paper presents an algorithm that uses cloud fraction and clear and cloudy infrared brightness temperatures from previous satellite scan times to improve the performance of a threshold-based cloud mask near the terminator. Comparisons of daytime, nighttime, and terminator cloud fraction derived from Geostationary Operational Environmental Satellite (GOES) radiance measurements show that the algorithm greatly reduces the number of false cloud detections and smoothes the transition from the daytime to the nighttime clod detection algorithm. Comparisons with the Geoscience Laser Altimeter System (GLAS) data show that using this algorithm decreases the number of false detections by approximately 20 percentage points.

  3. Satellite Meteorology Education & Training Resources from COMET

    Science.gov (United States)

    Abshire, W. E.; Dills, P. N.; Weingroff, M.; Lee, T. F.

    2012-12-01

    The COMET® Program (www.comet.ucar.edu) receives funding from NOAA NESDIS as well as EUMETSAT and the Meteorological Service of Canada to support education and training in satellite meteorology. These partnerships enable COMET to create educational materials of global interest on geostationary and polar-orbiting remote sensing platforms. These materials focus on the capabilities and applications of current and next-generation satellites and their relevance to operational forecasters and other user communities. By partnering with experts from the Naval Research Laboratory, NOAA-NESDIS and its Cooperative Institutes, Meteorological Service of Canada, EUMETSAT, and other user communities, COMET stimulates greater use of satellite data observations and products. This presentation provides an overview of COMET's recent satellite education efforts in the area of polar orbiting satellites. COMET has a new module on Suomi NPP, which describes the satellite system and discusses the improvements that it is bringing to forecasting, numerical weather prediction, and environmental monitoring. COMET has also published an updated version of its module on the VIIRS instrument. "Imaging with VIIRS: A Convergence of Technologies and Experience, 2nd Edition" covers the instrument's enhanced capabilities by examining the systems that contributed to its development. Special attention is paid to the Day/Night Visible channel as VIIRS is the first instrument on a civilian satellite to image atmospheric and terrestrial features with and without moonlight. An upcoming module will exclusively focus on nighttime imaging with the VIIRS Day/Night Band (DNB). "Applications of the VIIRS Day-Night Band" will introduce the capabilities of DNB imagery to a wide audience ranging from forecasters and emergency managers to wildfire fighters and oceanographers. DNB products will be compared to traditional satellite products made from infrared data, including the "fog" product. Users will learn how DNB

  4. 78 FR 78257 - Verification of Statements of Account Submitted by Cable Operators and Satellite Carriers

    Science.gov (United States)

    2013-12-26

    ... Satellite Carriers AGENCY: U.S. Copyright Office, Library of Congress. ACTION: Interim rule. SUMMARY: The U... Satellite Television Extension and Localism Act of 2010 (``STELA''). Cable operators and satellite carriers... regulations to allow copyright owners to audit the SOAs and royalty fees that cable operators and...

  5. 77 FR 55783 - Verification of Statements of Account Submitted by Cable Operators and Satellite Carriers

    Science.gov (United States)

    2012-09-11

    ... Satellite Carriers AGENCY: Copyright Office, Library of Congress. ACTION: Notice of proposed rulemaking... Account and royalty payments that are deposited with the Office by cable operators and satellite carriers... to audit the Statements of Account and royalty fees that cable operators and satellite...

  6. Environmental assessment for the satellite power system concept development and evaluation program: atmospheric effects

    Energy Technology Data Exchange (ETDEWEB)

    Rote, D.M.; Brubaker, K.L.; Lee, J.L.

    1980-11-01

    The US Department of Energy (DOE) has undertaken a preliminary, three-year program to investigate the impacts of the construction and operation of a satellite power system, of unprecedented scale. The Department of Energy's program, titled The Concept Development and Evaluation Program, focused its investigations on a Reference System description that calls for the use of either silicon (Si) or gallium aluminum-arsenide (GaAlAs) photovoltaic cells on 60 satellites to be constructed in GEO over a 30-yr period. Rectennas would be constructed on the ground to receive microwave energy from the satellites. Each satellite-rectenna pair is designed to produce 5 GW of power on an essentially continuous basis for use as a baseload power source for an electric power distribution system. The environmental assessment part of the program was divided into five interdependent task areas. The present document constitutes the final technical report on one of the five task areas, the Assessment of the Atmospheric Effects, and as such presents an in-depth summary of work performed during the assessment program. The issues associated with SPS activities in the troposphere are examined. These include tropospheric weather modification related to rectenna operations and rocket launches, and air quality impacts related to rocketlaunch ground clouds. Then progressing upward through the various levels of the atmosphere, the principal middle and upper atmospheric effects associated with rocket effluents are analyzed. Finally, all of the potential SPS atmospheric effects are summarized.

  7. On-orbit control of the Communications Technology Satellite (CTS)/HERMES

    Science.gov (United States)

    Raine, H. R.

    1980-01-01

    A variety of control functions for the CIS HERMES satellite are reviewed. Its mission, to demonstrate high power SHF (12 GHz) transmission is discussed. The satellite was controlled in geostationary orbit for nearly four years from the satellite control center in Ottawa, Canada. Highlights of these operations are outlined. The interactions between many of the automatic onboard control functions and control from the ground are described. Special emphasis is placed on the characteristics and performance of the three axis attitude control system.

  8. East–West GEO Satellite Station-Keeping with Degraded Thruster Response

    OpenAIRE

    Stoian Borissov; Yunhe Wu; Daniele Mortari

    2015-01-01

    The higher harmonic terms of Earth’s gravitational potential slowly modify the nominal longitude of geostationary Earth orbit (GEO) satellites, while the third-body presence (Moon and Sun) mainly affects their latitude. For this reason, GEO satellites periodically need to perform station-keeping maneuvers, namely, east–west and north–south maneuvers to compensate for longitudinal and latitudinal variations, respectively. During the operational lifetime of GEO satellites, the thrusters’ respon...

  9. 静止气象卫星资料在白天海雾动态监测中的应用%Dynamic Detection of Daytime Sea Fog Using Geostationary Meteorological Satellite Data

    Institute of Scientific and Technical Information of China (English)

    邓玉娇; 田永杰; 王捷纯

    2016-01-01

    利用国产静止气象卫星FY2E数据建立白天海雾监测算法,利用VIS通道反射率实现海面与云雾区分离,利用IR1通道估算云高实现中高云与低层云雾的分离,利用VIS、IR1、IR4波段构建雾判识指数初步实现海雾与低云的分离,利用平滑稳定度指数进一步实现海雾与低云的分离,最终得到的海雾监测小时产品。根据2014年1~5月份广东沿海13个海雾监站点的实测数据,对本算法所得海雾产品进行精度检验,计算得到检测率POD为92.7%,漏检率FAR为29.4%,总体精度为64.7%。个例分析可知,静止卫星资料因其具备较高的时间分辨率,可较好实现对海雾过程的连续、动态监测。%Using Channel VIS, IR1 and IR4 of the domestic geostationary meteorological satellite FY2E/VISSR data, the multichannel method was proposed to detect the daytime sea fog. Firstly, the existing dynamic threshold method was revised in the paper in order to improve the accuracy of distinguishing sea surface from cloud and fog. The thresholds were based on the histogram statistics of the reflectance of Channel VIS, and ad-justed dynamically in different regions or different seasons. Secondly, cloud height estimated from the bright temperature of Channel IR1 was used to separate middle-and high-level cloud from low-level cloud and fog. When the height was greater than 2 000 m, the object was middle- and high-level cloud. Thirdly, fog index computed from Channel IR1,IR4 and VIS was used to divide low-level cloud from fog preliminarily. If the fog index was greater than 20, the object was possibly fog. Finally, smoothness and stability index were used to tell fog from low-level cloud further, and it was greater than 0.9 for fog. Ground-based fog observation data from thirteen sites on the coast of Guangdong were used to do the verification of the FY-2E fog detection prod-ucts, which were Zhanjiang, Wuchuan, Leizhou, Yangjiang, Shangchuandao, Zhuhai

  10. Progress in developing a geostationary AMSU

    Science.gov (United States)

    Lambrigtsen, Bjorn

    2009-09-01

    The "Precipitation and All-weather Temperature and Humidity" (PATH) mission is one of the 15 NASA "decadalsurvey" missions recommended by the U.S. National Research Council in 2007 and will implement the first microwave sounder in geostationary orbit. This is possible with a new sensor being developed at the Jet Propulsion Laboratory, the Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR). Adequate spatial resolution is achieved by using aperture synthesis instead of a large parabolic reflector as is used in conventional systems. A proof-of-concept prototype was developed at JPL in 2005 under the NASA Instrument Incubator Program and used to demonstrate that this new concept works well at sounding frequencies. Another IIP effort is now under way to advance key technology required for a full space system. The maturity of the concept and technology is now such that mission development could be initiated in 2010-11. The possibility of flying GeoSTAR as an "instrument of opportunity" on NOAA's new series of "GOES-R" geostationary weather satellites is being actively pursued. Other low-cost options are under study as well. PATH/GeoSTAR will provide a number of measurements that are key in monitoring and predicting hurricanes and severe storms - including hemispheric 3-dimensional temperature, humidity and cloud liquid water fields, rain rates and rain totals, tropospheric wind vectors, sea surface temperature, and parameters associated with deep convection and atmospheric instability - everywhere and all the time, even in the presence of clouds - and will also provide key measurements related to climate research.

  11. Astrometric Positioning of Geostationary Satellites (PASAGE)

    OpenAIRE

    T. López Moratalla; C. Abad; F. Belizón; J. C. Coma; F. J. Montojo; J. L. Muiños; Palacio, J.; Vallejo, M.

    2006-01-01

    Se describen las líneas básicas del proyecto PASAGE del Real Instituto y Observatorio de la Armada (España), cuyo objetivo es obtener efemérides precisas de satélites geoestacionarios mediante observaciones visuales astrometrías desde tierra. A priori, se trata de una técnica más precisa que las utilizadas habitualmente y supondría una nueva e importante aplicación de la astronomía basada en tierra.

  12. An Overview Of Operational Satellites Built By China: Communications Satellites (Part1)

    Institute of Scientific and Technical Information of China (English)

    Guang Bo

    2008-01-01

    @@ Communications satellite technology has seen great advances since Decemher 1958 when the Americans launched the first experimental communications satellite.Currently, satellite communications account for over 80 percent of the intercontinental communications traffic and 100 percent of international live TV broadcast, while taking part in domestic and regional services. Moreover, the satellite communication service is showing a favorable continuous growth tendency.

  13. Handbook on satellite communications and broadcasting

    Science.gov (United States)

    Askinazi, G. B.; Bykov, V. L.; Vodopianov, G. V.; D'Iachkova, M. N.; Kantor, L. Ia.; Model, A. M.; Pokras, A. M.; Timofeev, V. V.; Tsirlin, V. M.; Tsirlin, I. S.

    Principles underlying the design and operation of satellite communications systems (SCSs) are reviewed with emphasis on multiple-access techniques. Particular consideration is given to the quality characteristics of CSCs, the frequency ranges assigned to SCSs, an energy analysis of satellite lines, EMC aspects, and the effective utilization of the geostationary orbit. Also examined are the design of earth-station equipment, waveguides and multiplexing equipment, satellite antennas, reliability issues, the Ekran receiving installation, and Gradient-N and Gruppa multiple-access equipment.

  14. Icing detection from Communication, Ocean and Meteorological Satellite and Himawari-8 data using machine learning approaches

    Science.gov (United States)

    Sim, S.; Park, H.; Im, J.; Park, S.

    2016-12-01

    Aircraft icing is a hazardous phenomenon which has potential to cause fatalities and socioeconomic losses. It is caused by super-cooled droplets (SCDs) colliding on the surface of aircraft frame when an aircraft flies through SCD rich clouds. When icing occurs, the aerodynamic balance of the aircraft is disturbed, resulting in a potential problem in aircraft operation. Thus, identification of potential icing clouds is crucial for aviation. Satellite remote sensing data such as Geostationary Operational Environmental Satellite (GOES) series have been widely used to detect potential icing clouds. An icing detection algorithm, operationally used in the US, consists of several thresholds of cloud optical depth, effective radius, and liquid water path based on the physical properties of icing. On the other hand, there is no operational icing detection algorithm in Asia, although there are several geostationary meteorological satellite sensors. In this study, we proposed machine learning-based models to detect icing over East Asia focusing on the Korean Peninsula using two geostationary satellite sensors—Meteorological Imager (MI) onboard Communication, Ocean and Meteorological Satellite (COMS) and Advanced Himawari Imager (AHI) onboard Himawari-8. While COMS MI provides data at 5 channels, Himawari-8 AHI has advanced capability of data collection, providing data at 16 channels. Instead of simple thresholding approaches used in the literature, we adopted two machine learning algorithms—decision trees (DT) and random forest (RF) to develop icing detection models based on Pilot REPorts (PIREPs) as reference data. Results show that the COMS icing detection model by RF produced a detection rate of 88.67% and a false alarm rate of 14.42%, which were improved when compared with the result of the direct application of the GOES algorithm to the COMS MI data (a detection rate of 20.83% and a false alarm rate of 25.44%). Although much higher accuracy (a detection rate > 95

  15. Umatilla Hatchery Satellite Facilities Operation and Maintenance; 1996 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rowan, Gerald D.

    1997-06-01

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and Oregon Department of Fish and Wildlife (ODFW) are cooperating in a joint effort to enhance steelhead and re-establish salmon runs in the Umatilla River Basin. As an integral part of this program, Bonifer Pond, Minthorn Springs, Imeques C-mem-ini-kem and Thornhollow satellite facilities are operated for acclimation and release of juvenile summer steelhead (Oncorhynchus mykiss), fall and spring chinook salmon (O. tshawytscha) and coho salmon (O. kisutch). Minthorn is also used for holding and spawning adult summer steelhead and Three Mile Dam is used for holding and spawning adult fall chinook and coho salmon. Bonifer, Minthorn, Imeques and Thornhollow facilities are operated for acclimation and release of juvenile salmon and summer steelhead. The main goal of acclimation is to reduce stress from trucking prior to release and improve imprinting of juvenile salmonids in the Umatilla River Basin. Juveniles are transported to the acclimation facilities primarily from Umatilla and Bonneville Hatcheries. This report details activities associated with operation and maintenance of the Bonifer, Minthorn, Imeques, Thornhollow and Three Mile Dam facilities in 1996.

  16. Xichang Satellite Launch Center

    Institute of Scientific and Technical Information of China (English)

    LiuJie

    2004-01-01

    Xichang Satellite Launch Center(XSLC) is mainly for geosynchronous orbit launches. The main purpose of XSLC is to launch spacecraft, such as broadcasting,communications and meteorological satellites, into geo-stationary orbit.Most of the commercial satellite launches of Long March vehicles have been from Xichang Satellite Launch Center. With 20 years' development,XSLC can launch 5 kinds of launch vehicles and send satellites into geostationary orbit and polar orbit. In the future, moon exploration satellites will also be launched from XSLC.

  17. Prospects for Geostationary Doppler Weather Radar

    Science.gov (United States)

    Tanelli, Simone; Fang, Houfei; Durden, Stephen L.; Im, Eastwood; Rhamat-Samii, Yahya

    2009-01-01

    A novel mission concept, namely NEXRAD in Space (NIS), was developed for detailed monitoring of hurricanes, cyclones, and severe storms from a geostationary orbit. This mission concept requires a space deployable 35-m diameter reflector that operates at 35-GHz with a surface figure accuracy requirement of 0.21 mm RMS. This reflector is well beyond the current state-of-the-art. To implement this mission concept, several potential technologies associated with large, lightweight, spaceborne reflectors have been investigated by this study. These spaceborne reflector technologies include mesh reflector technology, inflatable membrane reflector technology and Shape Memory Polymer reflector technology.

  18. Convective cloud identification and classification in daytime satellite imagery using standard deviation limited adaptive clustering

    Science.gov (United States)

    Berendes, Todd A.; Mecikalski, John R.; MacKenzie, Wayne M.; Bedka, Kristopher M.; Nair, U. S.

    2008-10-01

    This paper describes a statistical clustering approach toward the classification of cloud types within meteorological satellite imagery, specifically, visible and infrared data. The method is based on the Standard Deviation Limited Adaptive Clustering (SDLAC) procedure, which has been used to classify a variety of features within both polar orbiting and geostationary imagery, including land cover, volcanic ash, dust, and clouds of various types. In this study, the focus is on classifying cumulus clouds of various types (e.g., "fair weather, "towering, and newly glaciated cumulus, in addition to cumulonimbus). The SDLAC algorithm is demonstrated by showing examples using Geostationary Operational Environmental Satellite (GOES) 12, Meteosat Second Generation's (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI), and the Moderate Resolution Infrared Spectrometer (MODIS). Results indicate that the method performs well, classifying cumulus similarly between MODIS, SEVIRI, and GOES, despite the obvious channel and resolution differences between these three sensors. The SDLAC methodology has been used in several research activities related to convective weather forecasting, which offers some proof of concept for its value.

  19. 77 FR 60333 - Verification of Statements of Account Submitted by Cable Operators and Satellite Carriers

    Science.gov (United States)

    2012-10-03

    ... Satellite Carriers AGENCY: Copyright Office, Library of Congress. ACTION: Notice of proposed rulemaking... satellite carriers. DATES: Reply comments on the proposed rule published at 77 FR 35643, June 14, 2012, must... of Account and royalty fees that cable operators and satellite carriers deposit with the...

  20. 77 FR 77001 - Comprehensive Review of Licensing and Operating Rules for Satellite Services

    Science.gov (United States)

    2012-12-31

    ... COMMISSION 47 CFR Part 25 Comprehensive Review of Licensing and Operating Rules for Satellite Services AGENCY... this document. FOR FURTHER INFORMATION CONTACT: William Bell (202) 418-0741, Satellite Division... Satellite Services, adopted and released on December 19, 2012. The full text of this document is...

  1. Tethered Satellites as Enabling Platforms for an Operational Space Weather Monitoring System

    Science.gov (United States)

    Krause, L. Habash; Gilchrist, B. E.; Bilen, S.; Owens, J.; Voronka, N.; Furhop, K.

    2013-01-01

    Space weather nowcasting and forecasting models require assimilation of near-real time (NRT) space environment data to improve the precision and accuracy of operational products. Typically, these models begin with a climatological model to provide "most probable distributions" of environmental parameters as a function of time and space. The process of NRT data assimilation gently pulls the climate model closer toward the observed state (e.g. via Kalman smoothing) for nowcasting, and forecasting is achieved through a set of iterative physics-based forward-prediction calculations. The issue of required space weather observatories to meet the spatial and temporal requirements of these models is a complex one, and we do not address that with this poster. Instead, we present some examples of how tethered satellites can be used to address the shortfalls in our ability to measure critical environmental parameters necessary to drive these space weather models. Examples include very long baseline electric field measurements, magnetized ionospheric conductivity measurements, and the ability to separate temporal from spatial irregularities in environmental parameters. Tethered satellite functional requirements will be presented for each space weather parameter considered in this study.

  2. Steerable K/Ka-Band Antenna For Land-Mobile Satellite Applications

    Science.gov (United States)

    Densmore, Arthur; Jamnejad, Vahraz; Woo, Kenneth

    1994-01-01

    Prototype steerable microwave antenna tracks and communicates with geostationary satellite. Designed to mount on roof of vehicle and only 10 cm tall. K/Ka-band antenna rugged and compact to suit rooftop mobile operating environment. More-delicate signal-processing and control equipment located inside vehicle.

  3. Space in environmental diplomacy: Exploring the role of earth observing satellites for monitoring international environmental agreements

    Science.gov (United States)

    Johnston, Shaida Sahami

    This research determines under what conditions, and for what types of environmental treaties, Earth observation (EO) is useful for monitoring international environmental agreements. The research extracts specific monitoring requirements from nine multilateral environmental agreements (MEAs) and explores how satellite EO data can be used to support them. The technical characteristics of the sensor systems and science data products associated with current and planned EO satellites were analyzed and mapped to the MEA requirements, providing a significant step toward linking the EO community with the international treaty community implementing these environmental agreements. The research results include a listing and analysis of the positive and negative factors that influence whether EO data are useful for monitoring and verifying MEAs, analysis of existing international EO institutions, and a set of key findings describing the conditions under which EO data are most useful to the treaties. The use of EO data in various treaty phases is also analyzed, drawing the conclusion that EO data are most useful for monitoring and treaty refinement and not very useful for compliance verification or enforcement. MEAs manage compliance using governance structures that offer expertise and resources to assist states that are reported to be in non-compliance, rather than enforce compliance with sanctions or other punishments. In addition, the temporal and spatial resolution of the current and planned fleet of satellites does not provide the required detail needed for MEA verification. Identifying specific treaty implementation deficiencies requires additional information that cannot be gathered from EO data; on-site economic, social, and environmental conditions are critical elements in assessing compliance verification. But for environmental monitoring and assessments, MEA effectiveness reviews, and national reporting required for each MEA, EO data are very useful. They provide

  4. Development and validation of satellite based estimates of surface visibility

    Science.gov (United States)

    Brunner, J.; Pierce, R. B.; Lenzen, A.

    2015-10-01

    A satellite based surface visibility retrieval has been developed using Moderate Resolution Imaging Spectroradiometer (MODIS) measurements as a proxy for Advanced Baseline Imager (ABI) data from the next generation of Geostationary Operational Environmental Satellites (GOES-R). The retrieval uses a multiple linear regression approach to relate satellite aerosol optical depth, fog/low cloud probability and thickness retrievals, and meteorological variables from numerical weather prediction forecasts to National Weather Service Automated Surface Observing System (ASOS) surface visibility measurements. Validation using independent ASOS measurements shows that the GOES-R ABI surface visibility retrieval (V) has an overall success rate of 64.5% for classifying Clear (V ≥ 30 km), Moderate (10 km ≤ V skill during June through September, when Heidke skill scores are between 0.2 and 0.4. We demonstrate that the aerosol (clear sky) component of the GOES-R ABI visibility retrieval can be used to augment measurements from the United States Environmental Protection Agency (EPA) and National Park Service (NPS) Interagency Monitoring of Protected Visual Environments (IMPROVE) network, and provide useful information to the regional planning offices responsible for developing mitigation strategies required under the EPA's Regional Haze Rule, particularly during regional haze events associated with smoke from wildfires.

  5. Environmental effects of DFDF normal operation

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. J.; Lee, H. H.; Shin, J. M.; Kim, J. H.; Yang, M. S. [KAERI, Taejon (Korea, Republic of)

    2003-07-01

    A DUPIC nuclear fuel is a newly developed fuel for CANDU reactors based on the concept of refabrication of spent PWR fuel by a dry process. Because a spent PWR fuel, a highly radioactive material, is used as a starting material, the experimental verification of DUPIC nuclear fuel fabrication requires an appropriate facility which should satisfy engineering requirements and guarantees safe operation. DUPIC nuclear fuel development team modified M6 hot-cell in IMEF to construct the dedicated facility(DFDF) for the experiment. The experiment with spent PWR fuel have been conducted since January of 2000. Environmental effects of DFDF normal operation have been investigated when DUPIC nuclear fuel is fabricated with the maximum capacity of 50 kg U/yr. The analysis results of the radiological safety of DFDF facility have shown that both national regulation limit and IMEF design criteria are satisfied.

  6. The EMC impact of SPS operations on low Earth orbit satellites

    Science.gov (United States)

    Grant, W. B.; Morrison, E. L., Jr.; Davis, K. C.

    1980-01-01

    The susceptibility of various operational and planned low Earth orbit satellites to solar power satellite (SPS) operations was examined. Functional degradation for the electronic systems on LANDSAT, the global positioning system, and the space telescope is described in relation to the amplitude of the SPS illumination components. Analyses include the modes of coupling to devices and subsystems, and performance effects in relation to satellite mission.

  7. Restoring Environmental Flows by Modifying Dam Operations

    Directory of Open Access Journals (Sweden)

    Gregory A. Thomas

    2007-06-01

    Full Text Available The construction of new dams has become one of the most controversial issues in global efforts to alleviate poverty, improve human health, and strengthen regional economies. Unfortunately, this controversy has overshadowed the tremendous opportunity that exists for modifying the operations of existing dams to recover many of the environmental and social benefits of healthy ecosystems that have been compromised by present modes of dam operation. The potential benefits of dam "re-operation" include recovery of fish, shellfish, and other wildlife populations valued both commercially and recreationally, including estuarine species; reactivation of the flood storage and water purification benefits that occur when floods are allowed to flow into floodplain forests and wetlands; regaining some semblance of the naturally dynamic balance between river erosion and sedimentation that shapes physical habitat complexity, and arresting problems associated with geomorphic imbalances; cultural and spiritual uses of rivers; and many other socially valued products and services. This paper describes an assessment framework that can be used to evaluate the benefits that might be restored through dam re-operation. Assessing the potential benefits of dam re-operation begins by characterizing the dam's effects on the river flow regime, and formulating hypotheses about the ecological and social benefits that might be restored by releasing water from the dam in a manner that more closely resembles natural flow patterns. These hypotheses can be tested by implementing a re-operation plan, tracking the response of the ecosystem, and continually refining dam operations through adaptive management. The paper highlights a number of land and water management strategies useful in implementing a dam re-operation plan, with reference to a variety of management contexts ranging from individual dams to cascades of dams along a river to regional energy grids. Because many of the

  8. NASA Operational Simulator for Small Satellites (NOS3)

    Science.gov (United States)

    Zemerick, Scott

    2015-01-01

    The Simulation-to-Flight 1 (STF-1) CubeSat mission aims to demonstrate how legacy simulation technologies may be adapted for flexible and effective use on missions using the CubeSat platform. These technologies, named NASA Operational Simulator (NOS), have demonstrated significant value on several missions such as James Webb Space Telescope, Global Precipitation Measurement, Juno, and Deep Space Climate Observatory in the areas of software development, mission operationstraining, verification and validation (VV), test procedure development and software systems check-out. STF-1 will demonstrate a highly portable simulation and test platform that allows seamless transition of mission development artifacts to flight products. This environment will decrease development time of future CubeSat missions by lessening the dependency on hardware resources. In addition, through a partnership between NASA GSFC, the West Virginia Space Grant Consortium and West Virginia University, the STF-1 CubeSat will hosts payloads for three secondary objectives that aim to advance engineering and physical-science research in the areas of navigation systems of small satellites, provide useful data for understanding magnetosphere-ionosphere coupling and space weather, and verify the performance and durability of III-V Nitride-based materials.

  9. Operational Testing of Satellite based Hydrological Model (SHM)

    Science.gov (United States)

    Gaur, Srishti; Paul, Pranesh Kumar; Singh, Rajendra; Mishra, Ashok; Gupta, Praveen Kumar; Singh, Raghavendra P.

    2017-04-01

    Incorporation of the concept of transposability in model testing is one of the prominent ways to check the credibility of a hydrological model. Successful testing ensures ability of hydrological models to deal with changing conditions, along with its extrapolation capacity. For a newly developed model, a number of contradictions arises regarding its applicability, therefore testing of credibility of model is essential to proficiently assess its strength and limitations. This concept emphasizes to perform 'Hierarchical Operational Testing' of Satellite based Hydrological Model (SHM), a newly developed surface water-groundwater coupled model, under PRACRITI-2 program initiated by Space Application Centre (SAC), Ahmedabad. SHM aims at sustainable water resources management using remote sensing data from Indian satellites. It consists of grid cells of 5km x 5km resolution and comprises of five modules namely: Surface Water (SW), Forest (F), Snow (S), Groundwater (GW) and Routing (ROU). SW module (functions in the grid cells with land cover other than forest and snow) deals with estimation of surface runoff, soil moisture and evapotranspiration by using NRCS-CN method, water balance and Hragreaves method, respectively. The hydrology of F module is dependent entirely on sub-surface processes and water balance is calculated based on it. GW module generates baseflow (depending on water table variation with the level of water in streams) using Boussinesq equation. ROU module is grounded on a cell-to-cell routing technique based on the principle of Time Variant Spatially Distributed Direct Runoff Hydrograph (SDDH) to route the generated runoff and baseflow by different modules up to the outlet. For this study Subarnarekha river basin, flood prone zone of eastern India, has been chosen for hierarchical operational testing scheme which includes tests under stationary as well as transitory conditions. For this the basin has been divided into three sub-basins using three flow

  10. Detecting Canopy Water Status Using Shortwave Infrared Reflectance Data From Polar Orbiting and Geostationary Platforms

    DEFF Research Database (Denmark)

    Fensholt, Rasmus; Huber Gharib, Silvia; Proud, Simon Richard;

    2010-01-01

    Various canopy water status estimates have been developed from recent advances in Earth Observation (EO) technology. A promising methodology is based on the sensitivity of shortwave infrared (SWIR) reflectance to variations in leaf water content. This study explores the potential of SWIR-based ca......Various canopy water status estimates have been developed from recent advances in Earth Observation (EO) technology. A promising methodology is based on the sensitivity of shortwave infrared (SWIR) reflectance to variations in leaf water content. This study explores the potential of SWIR......-based canopy water status detection from geostationary Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI) data as compared to polar orbiting environmental satellite (POES)-based moderate resolution imaging spectroradiometer (MODIS) data. The EO-based SWIR water stress index...

  11. Mitigating Aviation Communication and Satellite Orbit Operations Surprises from Adverse Space Weather

    Science.gov (United States)

    Tobiska, W. Kent

    2008-01-01

    Adverse space weather affects operational activities in aviation and satellite systems. For example, large solar flares create highly variable enhanced neutral atmosphere and ionosphere electron density regions. These regions impact aviation communication frequencies as well as precision orbit determination. The natural space environment, with its dynamic space weather variability, is additionally changed by human activity. The increase in orbital debris in low Earth orbit (LEO), combined with lower atmosphere CO2 that rises into the lower thermosphere and causes increased cooling that results in increased debris lifetime, adds to the environmental hazards of navigating in near-Earth space. This is at a time when commercial space endeavors are posed to begin more missions to LEO during the rise of the solar activity cycle toward the next maximum (2012). For satellite and aviation operators, adverse space weather results in greater expenses for orbit management, more communication outages or aviation and ground-based high frequency radio used, and an inability to effectively plan missions or service customers with space-based communication, imagery, and data transferal during time-critical activities. Examples of some revenue-impacting conditions and solutions for mitigating adverse space weather are offered.

  12. Environmental assessment for the satellite power system concept development and evaluation program: nonmicrowave health and ecological effects

    Energy Technology Data Exchange (ETDEWEB)

    White, M R

    1980-11-01

    A Concept Development and Evaluation Program is being carried out for a proposed Satellite Power System (SPS). For purposes of this evaluation, a preliminary reference system has been developed. SPS, as described in the reference system, would collect solar energy on satellites in geosychronous orbit in space. The energy would be converted to microwaves and beamed to an earth-receiving antenna (rectenna). One task in the environmental part of the program is the assessment of the nonmicrowave effects on health and the environment. These effects would result from all phases of SPS development and operation. This report covers the current knowledge regarding these effects, and is based on the reference system. The assessment is summarized as to scope, methodology, impacts of terrestrial development, launch and recovery of spacecraft, space activities (including health effects of the space environment, ionizing radiation, electromagnetic exposure, spacecraft charging and environmental interactions, occupational hazards, etc.) and construction and operation of rectenna (ground receiving station).

  13. Web-Based Satellite Products Database for Meteorological and Climate Applications

    Science.gov (United States)

    Phan, Dung; Spangenberg, Douglas A.; Palikonda, Rabindra; Khaiyer, Mandana M.; Nordeen, Michele L.; Nguyen, Louis; Minnis, Patrick

    2004-01-01

    The need for ready access to satellite data and associated physical parameters such as cloud properties has been steadily growing. Air traffic management, weather forecasters, energy producers, and weather and climate researchers among others can utilize more satellite information than in the past. Thus, it is essential that such data are made available in near real-time and as archival products in an easy-access and user friendly environment. A host of Internet web sites currently provide a variety of satellite products for various applications. Each site has a unique contribution with appeal to a particular segment of the public and scientific community. This is no less true for the NASA Langley's Clouds and Radiation (NLCR) website (http://www-pm.larc.nasa.gov) that has been evolving over the past 10 years to support a variety of research projects This website was originally developed to display cloud products derived from the Geostationary Operational Environmental Satellite (GOES) over the Southern Great Plains for the Atmospheric Radiation Measurement (ARM) Program. It has evolved into a site providing a comprehensive database of near real-time and historical satellite products used for meteorological, aviation, and climate studies. To encourage the user community to take advantage of the site, this paper summarizes the various products and projects supported by the website and discusses future options for new datasets.

  14. Nitrogen dioxide observations from the Geostationary Trace ...

    Science.gov (United States)

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA Falcon aircraft in its first intensive field measurement campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Earth Venture Mission over Houston, Texas, in September 2013. Measurements of backscattered solar radiation between 420 and 465 nm collected on 4 days during the campaign are used to determine slant column amounts of NO2 at 250 m  ×  250 m spatial resolution with a fitting precision of 2.2 × 1015 moleculescm−2. These slant columns are converted to tropospheric NO2 vertical columns using a radiative transfer model and trace gas profiles from the Community Multiscale Air Quality (CMAQ) model. Total column NO2 from GeoTASO is well correlated with ground-based Pandora observations (r = 0.90 on the most polluted and cloud-free day of measurements and r = 0.74 overall), with GeoTASO NO2 slightly higher for the most polluted observations. Surface NO2 mixing ratios inferred from GeoTASO using the CMAQ model show good correlation with NO2 measured in situ at the surface during the campaign (r = 0.85). NO2 slant columns from GeoTASO also agree well with prelim

  15. Potential Use of a Bayesian Network for Discriminating Flash Type from Future GOES-R Geostationary Lightning Mapper (GLM) data

    Science.gov (United States)

    Solakiewiz, Richard; Koshak, William

    2008-01-01

    Continuous monitoring of the ratio of cloud flashes to ground flashes may provide a better understanding of thunderstorm dynamics, intensification, and evolution, and it may be useful in severe weather warning. The National Lighting Detection Network TM (NLDN) senses ground flashes with exceptional detection efficiency and accuracy over most of the continental United States. A proposed Geostationary Lightning Mapper (GLM) aboard the Geostationary Operational Environmental Satellite (GOES-R) will look at the western hemisphere, and among the lightning data products to be made available will be the fundamental optical flash parameters for both cloud and ground flashes: radiance, area, duration, number of optical groups, and number of optical events. Previous studies have demonstrated that the optical flash parameter statistics of ground and cloud lightning, which are observable from space, are significantly different. This study investigates a Bayesian network methodology for discriminating lightning flash type (ground or cloud) using the lightning optical data and ancillary GOES-R data. A Directed Acyclic Graph (DAG) is set up with lightning as a "root" and data observed by GLM as the "leaves." This allows for a direct calculation of the joint probability distribution function for the lighting type and radiance, area, etc. Initially, the conditional probabilities that will be required can be estimated from the Lightning Imaging Sensor (LIS) and the Optical Transient Detector (OTD) together with NLDN data. Directly manipulating the joint distribution will yield the conditional probability that a lightning flash is a ground flash given the evidence, which consists of the observed lightning optical data [and possibly cloud data retrieved from the GOES-R Advanced Baseline Imager (ABI) in a more mature Bayesian network configuration]. Later, actual GLM and NLDN data can be used to refine the estimates of the conditional probabilities used in the model; i.e., the Bayesian

  16. Surface Emissivity Derived From Multispectral Satellite Data

    Science.gov (United States)

    Minnis, P.; Smith, W. L., Jr.; Young, D. F.

    1998-01-01

    Surface emissivity is critical for remote sensing of surface skin temperature and infrared cloud properties when the observed radiance is influenced by the surface radiation. It is also necessary to correctly compute the longwave flux from a surface at a given skin temperature. Surface emissivity is difficult to determine because skin temperature is an ill-defined parameter. The surface-emitted radiation may arise from a range of surface depths depending on many factors including soil moisture, vegetation, surface porosity, and heat capacity. Emissivity can be measured in the laboratory for pure surfaces. Transfer of laboratory measurements to actual Earth surfaces, however, is fraught with uncertainties because of their complex nature. This paper describes a new empirical approach for estimating surface skin temperature from a combination of brightness temperatures measured at different infrared wavelengths with satellite imagers. The method uses data from the new Geostationary Operational Environmental Satellite (GOES) imager to determine multispectral emissivities from the skin temperatures derived over the ARM Southern Great Plains domain.

  17. A satellite-based digital data system for low-frequency geophysical data

    Science.gov (United States)

    Silverman, S.; Mortensen, C.; Johnston, M.

    1989-01-01

    A reliable method for collection, display, and analysis of low-frequency geophysical data from isolated sites, which can be throughout North and South America and the Pacific Rim, has been developed for use with the Geostationary Operational Environmental Satellite (GEOS) system. This system provides real-time monitoring of crustal deformation parameters such as tilt, strain, fault displacement, local magnetic field, crustal geochemistry, and water levels, as well as meteorological and other parameters, along faults in California and Alsaka, and in volcanic regions in the western United States, Rabaul, and other locations in the New Britain region of the South pacific. Various mathematical, statistical, and graphical algorithms process the incoming data to detect changes in crustal deformation and fault slip that may indicate the first stages of catastrophic fault failure. -from Authors

  18. A Constraint Based Approach for Building Operationally Responsive Satellites

    Science.gov (United States)

    2008-09-01

    discipline specific software codes into a common environment. LLB team also uses MATLAB R© to integrate CAD tools such as Catia , Pro/Engineer with FE...satellite configuration through a Catia CAD tool. The LLB approach is similar to the approach discussed in this research because it provides a method

  19. Accuracy of surface heat fluxes from observations of operational satellites

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Sugimori, Y.

    with uncertainties for same flux values resulting from climatological ship observations. For net satellite derived heat flux varying from 0 to 300 w/m sup(2) the uncertainties were found to be of the order of 50-90 w/m sup(2). For the same range of flux values...

  20. Nitrogen dioxide observations from the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument: Retrieval algorithm and measurements during DISCOVER-AQ Texas 2013

    Science.gov (United States)

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA F...

  1. Nitrogen dioxide observations from the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument: Retrieval algorithm and measurements during DISCOVER-AQ Texas 2013

    Science.gov (United States)

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA F...

  2. Measurement of Atmospheric Composition from Geostationary Platforms

    Science.gov (United States)

    Bhartia, P. K.; Kawa, S. R.; Janz, S.; Herman, J. R.; Gleason, J. F.

    2008-01-01

    Satellite instruments flown since 1970 have had great success in elucidating the processes that control stratospheric ozone. In contrast, space-based data for tropospheric constituents that affect air quality and climate have only recently become available. While these datasets highlight the rapidly advancing capabilities of spacebased tropospheric sensors, they are also pointing to the limitations of sun-synchronous, low-earth orbiting (SSO/LEO) satellite platforms for making such measurements. In our talk we will highlight the science requirements for new missions and the technological and algorithmic approaches that we are developing to meet these requirements. From these studies a clear need for advanced atmospheric composition sensors has emerged that can be put on geostationary (GEO) platforms to provide 5 km horizontal resolution with 15-60 minutes repeat cycle. Such measurements have been high priority in the recently released Decadal Survey report by the US National Research Council. The need for GEO is driven not only by the science requirements to track rapidly changing pollution events but also by the need to provide altitude-resolved information about tropospheric constituents. Currently, with the exception of aerosols, it is not possible to derive profile information about lower tropospheric constituents from satellite measurements. New algorithmic approaches are being developed to obtain this information by combining UV and IR data, by monitoring the spatial and temporal structures of the constituents, and by using low-level clouds to separate boundary layer constituents from free troposphere. All these approaches require better spatial and temporal resolution than that provided by LEO sensors.

  3. Simultaneous Radar and Satellite Data Storm-Scale Assimilation Using an Ensemble Kalman Filter Approach for 24 May 2011

    Science.gov (United States)

    Jones, Thomas A.; Stensrud, David; Wicker, Louis; Minnis, Patrick; Palikonda, Rabindra

    2015-01-01

    Assimilating high-resolution radar reflectivity and radial velocity into convection-permitting numerical weather prediction models has proven to be an important tool for improving forecast skill of convection. The use of satellite data for the application is much less well understood, only recently receiving significant attention. Since both radar and satellite data provide independent information, combing these two sources of data in a robust manner potentially represents the future of high-resolution data assimilation. This research combines Geostationary Operational Environmental Satellite 13 (GOES-13) cloud water path (CWP) retrievals with Weather Surveillance Radar-1988 Doppler (WSR-88D) reflectivity and radial velocity to examine the impacts of assimilating each for a severe weather event occurring in Oklahoma on 24 May 2011. Data are assimilated into a 3-km model using an ensemble adjustment Kalman filter approach with 36 members over a 2-h assimilation window between 1800 and 2000 UTC. Forecasts are then generated for 90 min at 5-min intervals starting at 1930 and 2000 UTC. Results show that both satellite and radar data are able to initiate convection, but that assimilating both spins up a storm much faster. Assimilating CWP also performs well at suppressing spurious precipitation and cloud cover in the model as well as capturing the anvil characteristics of developed storms. Radar data are most effective at resolving the 3D characteristics of the core convection. Assimilating both satellite and radar data generally resulted in the best model analysis and most skillful forecast for this event.

  4. Simultaneous Radar and Satellite Data Storm-Scale Assimilation Using an Ensemble Kalman Filter Approach for 24 May 2011

    Science.gov (United States)

    Jones, Thomas A.; Stensrud, David; Wicker, Louis; Minnis, Patrick; Palikonda, Rabindra

    2015-01-01

    Assimilating high-resolution radar reflectivity and radial velocity into convection-permitting numerical weather prediction models has proven to be an important tool for improving forecast skill of convection. The use of satellite data for the application is much less well understood, only recently receiving significant attention. Since both radar and satellite data provide independent information, combing these two sources of data in a robust manner potentially represents the future of high-resolution data assimilation. This research combines Geostationary Operational Environmental Satellite 13 (GOES-13) cloud water path (CWP) retrievals with Weather Surveillance Radar-1988 Doppler (WSR-88D) reflectivity and radial velocity to examine the impacts of assimilating each for a severe weather event occurring in Oklahoma on 24 May 2011. Data are assimilated into a 3-km model using an ensemble adjustment Kalman filter approach with 36 members over a 2-h assimilation window between 1800 and 2000 UTC. Forecasts are then generated for 90 min at 5-min intervals starting at 1930 and 2000 UTC. Results show that both satellite and radar data are able to initiate convection, but that assimilating both spins up a storm much faster. Assimilating CWP also performs well at suppressing spurious precipitation and cloud cover in the model as well as capturing the anvil characteristics of developed storms. Radar data are most effective at resolving the 3D characteristics of the core convection. Assimilating both satellite and radar data generally resulted in the best model analysis and most skillful forecast for this event.

  5. Umatilla Hatchery Satellite Facilities; Operations and Maintenance, Annual Report 2001.

    Energy Technology Data Exchange (ETDEWEB)

    Rowan, Gerald

    2003-05-01

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and Oregon Department of Fish and Wildlife (ODFW) are cooperating in a joint effort to enhance steelhead and re-establish salmon runs in the Umatilla River Basin. As an integral part of this program, Bonifer Pond, Minthorn Springs, Imeques C-mem-ini-kem, Thornhollow and Pendleton satellite facilities are operated for acclimation and release of juvenile summer steelhead (Oncorhynchus mykiss), fall and spring chinook salmon (O. tshawytscha) and coho salmon (O. kisutch). Minthorn is also used for holding and spawning adult summer steelhead and Three Mile Dam and South Fork Walla Walla facilities are used for holding and spawning chinook salmon. In some years, Three Mile Dam may also be used for holding and spawning coho salmon. In the spring of 2002, summer steelhead were acclimated and released at Bonifer Pond (54,917), Minthorn Springs (47,521), and Pendleton (54,366). Yearling coho (1,621,857) were also acclimated and released at Pendleton. Yearling spring chinook salmon (876,121) were acclimated and released at Imeques C-mem-ini-kem. At Thornhollow, 520,564 yearling fall chinook and 307,194 subyearling fall chinook were acclimated. In addition, 104,908 spring chinook were transported to Imeques C-mem-ini-kem in November for release in the spring of 2003. CTUIR and ODFW personnel monitored the progress of outmigration for juvenile releases at the Westland Canal juvenile facility. Nearly all juveniles released in the spring migrated downstream prior to the trap being opened in early July. A total of 100 unmarked and 10 marked summer steelhead were collected for broodstock at Three Mile Dam from September 21, 2001, through April 2, 2002. An estimated 180,955 green eggs were taken from 36 females and were transferred to Umatilla Hatchery for incubation and rearing. A total of 560 adult and 26 jack spring chinook salmon were collected for broodstock at Three Mile Dam from April 22 through June 12, 2002

  6. Spaceborne observations of a changing Earth - Contribution from ESÁ s operating and approved satellite missions.

    Science.gov (United States)

    Johannessen, J. A.

    2009-04-01

    , managerial and regulatory activities (i.e. weather forecasting, deforestation, flooding, etc.) essential to the safe exploitation of global resources, conservation of sustainable ecosystems, and the compliance with numerous international treaties and conventions, depend absolutely on continuity of satellite missions to maximise socio-economic and environmental benefits. This presentation will highlight some of the multidisciplinary Earth science achievements and operational applications using ESA satellite missions. It will also address some of the key scientific challenges and need for operational monitoring services in the years to come. It capitalizes on the knowledge and awareness outlined in "The Changing Earth - New scientific challenges for ESÁs Living Planet Programme" issued in 2006 together with updated views and approved plans expressed during ESÁs Earth Sciences Advisory Committee (ESAC) meetings and agreed at the recent User Consultation meeting in January 2009.

  7. Operational environmental satellite archives in the 21st Century

    Science.gov (United States)

    Barkstrom, Bruce R.; Bates, John J.; Privette, Jeff; Vizbulis, Rick

    2007-09-01

    NASA, NOAA, and USGS collections of Earth science data are large, federated, and have active user communities and collections. Our experience raises five categories of issues for long-term archival: *Organization of the data in the collections is not well-described by text-based categorization principles *Metadata organization for these data is not well-described by Dublin Core and needs attention to data access and data use patterns *Long-term archival requires risk management approaches to dealing with the unique threats to knowledge preservation specific to digital information *Long-term archival requires careful attention to archival cost management *Professional data stewards for these collections may require special training. This paper suggests three mechanisms for improving the quality of long-term archival: *Using a maturity model to assess the readiness of data for accession, for preservation, and for future data usefulness *Developing a risk management strategy for systematically dealing with threats of data loss *Developing a life-cycle cost model for continuously evolving the collections and the data centers that house them.

  8. COMS normal operation for Earth Observation mission

    Science.gov (United States)

    Cho, Young-Min

    2012-09-01

    Communication Ocean Meteorological Satellite (COMS) for the hybrid mission of meteorological observation, ocean monitoring, and telecommunication service was launched onto Geostationary Earth Orbit on June 27, 2010 and it is currently under normal operation service since April 2011. The COMS is located on 128.2° East of the geostationary orbit. In order to perform the three missions, the COMS has 3 separate payloads, the meteorological imager (MI), the Geostationary Ocean Color Imager (GOCI), and the Ka-band antenna. Each payload is dedicated to one of the three missions, respectively. The MI and GOCI perform the Earth observation mission of meteorological observation and ocean monitoring, respectively. For this Earth observation mission the COMS requires daily mission commands from the satellite control ground station and daily mission is affected by the satellite control activities. For this reason daily mission planning is required. The Earth observation mission operation of COMS is described in aspects of mission operation characteristics and mission planning for the normal operation services of meteorological observation and ocean monitoring. And the first year normal operation results after the In-Orbit-Test (IOT) are investigated through statistical approach to provide the achieved COMS normal operation status for the Earth observation mission.

  9. Cosmic rays and other space weather effects influenced on satellite operation, technologies, biosphere and people health

    Science.gov (United States)

    Lev, Dorman

    2016-07-01

    Satellite anomalies (or malfunctions), including total distortion of electronics and loose of some satellites cost for Insurance Companies billions dollars per year. During especially active periods the probability of big satellite anomalies and their loosing increased very much. Now, when a great number of civil and military satellites are continuously worked for our practice life, the problem of satellite anomalies became very important. Many years ago about half of satellite anomalies were caused by technical reasons (for example, for Russian satellites Kosmos), but with time with increasing of production quality, this part became smaller and smaller. The other part, which now is dominated, caused by different space weather effects (energetic particles of CR and generated/trapped in the magnetosphere, and so on). We consider only satellite anomalies not caused by technical reasons: the total number of such anomalies about 6000 events, and separately for high and low altitude orbit satellites (5000 and about 800 events, correspondingly for high and low altitude satellites). No relation was found between low and high altitude satellite anomalies. Daily numbers of satellite anomalies, averaged by a superposed epoch method around sudden storm commencements and solar proton event onsets for high (>1500 km) and low (account under developing of the anomaly frequency models and forecasting. We consider also influence of CR on frequency of gene mutations and evolution of biosphere (we show that if it will be no CR, the Earth's civilization will be start only after milliards years later, what will be too late), CR role in thunderstorm phenomena and discharges, space weather effects on space technologies and radiation effects from solar and galactic CR in dependence of cutoff rigidities and altitude, influence magnetic storms accompanied by CR Forbush-effects on people health (increasing frequency of infarct myocardial and brain strokes), increasing frequency of car

  10. Development and validation of satellite-based estimates of surface visibility

    Science.gov (United States)

    Brunner, J.; Pierce, R. B.; Lenzen, A.

    2016-02-01

    A satellite-based surface visibility retrieval has been developed using Moderate Resolution Imaging Spectroradiometer (MODIS) measurements as a proxy for Advanced Baseline Imager (ABI) data from the next generation of Geostationary Operational Environmental Satellites (GOES-R). The retrieval uses a multiple linear regression approach to relate satellite aerosol optical depth, fog/low cloud probability and thickness retrievals, and meteorological variables from numerical weather prediction forecasts to National Weather Service Automated Surface Observing System (ASOS) surface visibility measurements. Validation using independent ASOS measurements shows that the GOES-R ABI surface visibility retrieval (V) has an overall success rate of 64.5 % for classifying clear (V ≥ 30 km), moderate (10 km ≤ V skill during June through September, when Heidke skill scores are between 0.2 and 0.4. We demonstrate that the aerosol (clear-sky) component of the GOES-R ABI visibility retrieval can be used to augment measurements from the United States Environmental Protection Agency (EPA) and National Park Service (NPS) Interagency Monitoring of Protected Visual Environments (IMPROVE) network and provide useful information to the regional planning offices responsible for developing mitigation strategies required under the EPA's Regional Haze Rule, particularly during regional haze events associated with smoke from wildfires.

  11. Satellite Observed Environmental Changes over the Qinghai-Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Kuo-Hsin Tseng

    2011-01-01

    Full Text Available We use satellite observed and model atmospheric variables, including land surface temperature, snowfall, snow extent, precipitation, and water vapor contents to study the feasibility of quantifying anthropogenic climate change over high elevation areas such as the Qinghai-Tibetan Plateau. Five types of satellite data and outputs from Atmospheric General Circulation Model (AGCMs are used to study these climate change indicators: (1 AIRS/AMSU/HSB atmospheric sounding system onboard the Aqua platform, 2003 ~ 2009, (2 Moderate Resolution Imaging Spectroradiometer (MODIS onboard Terra, 2001 ~ 2009, (3 The Tropical Rainfall Measuring Mission (TRMM precipitation measurements, 1999 ~ 2009, (4 the ERA-interim (ECMWF Interim Reanalysis, 1989 ~ 2009, and (5 the Japanese 25-year Reanalysis Project (JRA-25 AGCM data, 1979 ~ 2009. We find that biases exist between temperature observations and model data 0.29 ~ _ AIRS and JRA-25, respectively. The trends for each of the atmospheric variables at best have a qualitative agreement, presumably because the data spans of satellite observations are too short (7 ~ 10 years. The temperature trends for 4000 ~ 5000 m over the Plateau are estimated to be 0.01 ~ _ yr-1, qualitatively agreeing with the published rate of _ decade-1 over the last three decades using in situ data.

  12. Global Environmental Micro Sensors Test Operations in the Natural Environment

    Science.gov (United States)

    Adams, Mark L.; Buza, Matthew; Manobianco, John; Merceret, Francis J.

    2007-01-01

    ENSCO, Inc. is developing an innovative atmospheric observing system known as Global Environmental Micro Sensors (GEMS). The GEMS concept features an integrated system of miniaturized in situ, airborne probes measuring temperature, relative humidity, pressure, and vector wind velocity. In order for the probes to remain airborne for long periods of time, their design is based on a helium-filled super-pressure balloon. The GEMS probes are neutrally buoyant and carried passively by the wind at predetermined levels. Each probe contains onboard satellite communication, power generation, processing, and geolocation capabilities. ENSCO has partnered with the National Aeronautics and Space Administration's Kennedy Space Center (KSC) for a project called GEMS Test Operations in the Natural Environment (GEMSTONE) that will culminate with limited prototype flights of the system in spring 2007. By leveraging current advances in micro and nanotechnology, the probe mass, size, cost, and complexity can be reduced substantially so that large numbers of probes could be deployed routinely to support ground, launch, and landing operations at KSC and other locations. A full-scale system will improve the data density for the local initialization of high-resolution numerical weather prediction systems by at least an order of magnitude and provide a significantly expanded in situ data base to evaluate launch commit criteria and flight rules. When applied to launch or landing sites, this capability will reduce both weather hazards and weather-related scrubs, thus enhancing both safety and cost-avoidance for vehicles processed by the Shuttle, Launch Services Program, and Constellation Directorates. The GEMSTONE project will conclude with a field experiment in which 10 to 15 probes are released over KSC in east central Florida. The probes will be neutrally buoyant at different altitudes from 500 to 3000 meters and will report their position, speed, heading, temperature, humidity, and

  13. Integrating Balloon and Satellite Operation Data Centers for Technology Readiness Assessment

    Science.gov (United States)

    Mattiello-Francisco, Fátima; Fernandes, Jose Oscar

    2016-07-01

    Stratospheric balloon-borne experiments have been one of the most effective ways to validate innovative space technology, taking the advantage of reduced development cycles and low cost in launching and operation. In Brazil, the National Institute for Space Research (INPE) has balloon and satellite ground infrastructures since the 1970´s and the 1990´s, respectively. In the recent past, a strategic approach was adopted on the modernization of balloon ground operation facilities for supporting the protoMIRAX experiment, an X-ray imaging telescope under development at INPE as a pathfinder for the MIRAX (Monitor e Imageador de Raios X) satellite mission. The strategic target was to reuse the SATellite Control System (SATCS), a software framework developed to control and monitor INPÉs satellites, for balloon operation. This paper presents the results of that effort and the new ongoing project, a computer-based framework named I2Bso, which strategic target is to Integrate INPÉs Balloon and Satellite Operation data centers. The I2Bso major purpose is to support the continuous assessment of an innovative technology after different qualification flights either on board balloons or satellites in order to acquire growing evidence for the technology maturity.

  14. Preliminary environmental assessment for the satellite power system (SPS). Revision 1. Volume 1. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    A preliminary assessment of the environmental impacts of the proposed satellite power system (SPS) is summarized here. In this system, satellites would collect solar energy in space, convert it to microwaves, and transmit the microwaves to receiving antennas (rectennas) on earth. At the rectennas, the microwaves would be converted to electricity. The assessment considers microwave and nonmicrowave effects on the terrestrial environment and human health, atmospheric effects, and disruption of communications and other electromagnetic systems.

  15. Cibola flight experiment satellite

    Science.gov (United States)

    Davies, P.; Liddle, Doug; Paffett, John; Sweeting, Martin; Curiel, A.; Sun, Wei; Eves, Stuart

    2004-11-01

    In order to achieve an "economy of scale" with respect to payload capacity the major trend in telecommunications satellites is for larger and larger platforms. With these large platforms the level of integration between platform and payload is increasing leading to longer delivery schedules. The typical lifecycle for procurement of these large telecommunications satellites is now 3-6 years depending on the level of non-recurring engineering needed. Surrey Satellite Technology Ltd (SSTL) has designed a low-cost platform aimed at telecommunications and navigation applications. SSTL's Geostationary Minisatellite Platform (GMP) is a new entrant addressing the lower end of the market with payloads up to 250kg requiring less than 1.5 kW power. The British National Space Centre through the MOSAIC Small Satellite Initiative supported the development of GMP. The main design goals for GMP are low-cost for the complete mission including launch and operations and a platform allowing flexible payload accommodation. GMP is specifically designed to allow rapid development and deployment with schedules typically between 1 and 2 years from contract signature to flight readiness. GMP achieves these aims by a modular design where the level of integration between the platform and payload is low. The modular design decomposes the satellite into three major components - the propulsion bay, the avionics bay and the payload module. Both the propulsion and avionics bays are reusable, largely unchanged, and independent of the payload configuration. Such a design means that SSTL or a 3rd party manufacturer can manufacture the payload in parallel to the platform with integration taking place quite late in the schedule. In July 2003 SSTL signed a contract for ESA's first Galileo navigation satellite known as GSTBV2/A. The satellite is based on GMP and ESA plan to launch it into a MEO orbit late in 2005. The second flight of GMP is likely to be in 2006 carrying a geostationary payload

  16. Post launch calibration and testing of the Advanced Baseline Imager on the GOES-R satellite

    Science.gov (United States)

    Lebair, William; Rollins, C.; Kline, John; Todirita, M.; Kronenwetter, J.

    2016-05-01

    The Geostationary Operational Environmental Satellite R (GOES-R) series is the planned next generation of operational weather satellites for the United State's National Oceanic and Atmospheric Administration. The first launch of the GOES-R series is planned for October 2016. The GOES-R series satellites and instruments are being developed by the National Aeronautics and Space Administration (NASA). One of the key instruments on the GOES-R series is the Advance Baseline Imager (ABI). The ABI is a multi-channel, visible through infrared, passive imaging radiometer. The ABI will provide moderate spatial and spectral resolution at high temporal and radiometric resolution to accurately monitor rapidly changing weather. Initial on-orbit calibration and performance characterization is crucial to establishing baseline used to maintain performance throughout mission life. A series of tests has been planned to establish the post launch performance and establish the parameters needed to process the data in the Ground Processing Algorithm. The large number of detectors for each channel required to provide the needed temporal coverage presents unique challenges for accurately calibrating ABI and minimizing striping. This paper discusses the planned tests to be performed on ABI over the six-month Post Launch Test period and the expected performance as it relates to ground tests.

  17. SPOT satellite family: Past, present, and future of the operations in the mission and control center

    Science.gov (United States)

    Philippe, Pacholczyk

    1993-01-01

    SPOT sun-synchronous remote sensing satellites are operated by CNES since February 1986. Today, the SPOT mission and control center (CCM) operates SPOT1, SPOT2, and is ready to operate SPOT3. During these seven years, the way to operate changed and the CCM, initially designed for the control of one satellite, has been modified and upgraded to support these new operating modes. All these events have shown the performances and the limits of the system. A new generation of satellite (SPOT4) will continue the remote sensing mission during the second half of the 90's. Its design takes into account the experience of the first generation and supports several improvements. A new generation of control center (CMP) has been developed and improves the efficiency, quality, and reliability of the operations. The CMP is designed for operating two satellites at the same time during launching, in-orbit testing, and operating phases. It supports several automatic procedures and improves data retrieval and reporting.

  18. Optimizing operational water management with soil moisture data from Sentinel-1 satellites

    Science.gov (United States)

    Pezij, Michiel; Augustijn, Denie; Hendriks, Dimmie; Hulscher, Suzanne

    2016-04-01

    operational water management in cooperation with users. As a first step, the current simulation of soil moisture processes within the NHI will be reviewed. We want to present the findings of this assessment as well as the research methodology. This PhD-research is part of the Optimizing Water Availability with Sentinel-1 Satellites (OWAS1S)-project in which two other PhD-students are participating. They are focussing on the translation of raw Sentinel-1 satellite data to surface soil moisture data and the application of the remotely sensed soil moisture data on crop water availability and trafficability on field scale. References: De Lange, W. J., Prinsen, G. F., Hoogewoud, J. C., Veldhuizen, A. A., Verkaik, J., Oude Essink, G. H. P., van Walsum, P. E. V., Delsman, J. R., Hunink, J. C., Massop, H. T. L., & Kroon, T. (2014). An operational, multi-scale, multi-model system for consensus-based, integrated water management and policy analysis: The Netherlands Hydrological Instrument. Environmental Modelling & Software, 59, 98-108. doi: 10.1016/j.envsoft.2014.05.009 Wanders, N., Karssenberg, D., de Roo, A., de Jong, S. M., & Bierkens, M. F. P. (2014). The suitability of remotely sensed soil moisture for improving operational flood forecasting. Hydrology and Earth System Sciences, 18(6), 2343-2357. doi: 10.5194/hess-18-2343-2014

  19. SCAILET: An intelligent assistant for satellite ground terminal operations

    Science.gov (United States)

    Shahidi, A. K.; Crapo, J. A.; Schlegelmilch, R. F.; Reinhart, R. C.; Petrik, E. J.; Walters, J. L.; Jones, R. E.

    1993-05-01

    NASA Lewis Research Center has applied artificial intelligence to an advanced ground terminal. This software application is being deployed as an experimenter interface to the link evaluation terminal (LET) and was named Space Communication Artificial Intelligence for the Link Evaluation Terminal (SCAILET). The high-burst-rate (HBR) LET provides 30-GHz-transmitting and 20-GHz-receiving, 220-Mbps capability for wide band communications technology experiments with the Advanced Communication Technology Satellite (ACTS). The HBR-LET terminal consists of seven major subsystems. A minicomputer controls and monitors these subsystems through an IEEE-488 or RS-232 protocol interface. Programming scripts (test procedures defined by design engineers) configure the HBR-LET and permit data acquisition. However, the scripts are difficult to use, require a steep learning curve, are cryptic, and are hard to maintain. This discourages experimenters from utilizing the full capabilities of the HBR-LET system. An intelligent assistant module was developed as part of the SCAILET software. The intelligent assistant addresses critical experimenter needs by solving and resolving problems that are encountered during the configuring of the HBR-LET system. The intelligent assistant is a graphical user interface with an expert system running in the background. In order to further assist and familiarize an experimenter, an on-line hypertext documentation module was developed and included in the SCAILET software.

  20. Research and Development initiative of Satellite Technology Application for Environmental Issues in Asia Region

    Science.gov (United States)

    Hamamoto, K.; Kaneko, Y.; Sobue, S.; Oyoshi, K.

    2016-12-01

    Climate change and human activities are directly or indirectly influence the acceleration of environmental problems and natural hazards such as forest fires, drought and floods in the Asia-Pacific countries. Satellite technology has become one of the key information sources in assessment, monitoring and mitigation of these hazards and related phenomenon. However, there are still gaps between science and application of space technology in practical usage. Asia-Pacific Regional Space Agency Forum (APRSAF) recommended to initiate the Space Applications for Environment (SAFE) proposal providing opportunity to potential user agencies in the Asia Pacific region to develop prototype applications of space technology for number of key issues including forest resources management, coastal monitoring and management, agriculture and food security, water resource management and development user-friendly tools for application of space technology. The main activity of SAFE is SAFE prototyping. SAFE prototyping is a demonstration for end users and decision makers to apply space technology applications for solving environmental issues in Asia-Pacific region. By utilizing space technology and getting technical support by experts, prototype executers can develop the application system, which could support decision making activities. SAFE holds a workshop once a year. In the workshop, new prototypes are approved and the progress of on-going prototypes are confirmed. Every prototype is limited for two years period and all activities are operated by volunteer manner. As of 2016, 20 prototypes are completed and 6 prototypes are on-going. Some of the completed prototypes, for example drought monitoring in Indonesia were applied to operational use by a local official organization.

  1. Networked Operations of Hybrid Radio Optical Communications Satellites

    Science.gov (United States)

    Hylton, Alan; Raible, Daniel

    2014-01-01

    In order to address the increasing communications needs of modern equipment in space, and to address the increasing number of objects in space, NASA is demonstrating the potential capability of optical communications for both deep space and near-Earth applications. The Integrated Radio Optical Communications (iROC) is a hybrid communications system that capitalizes on the best of both the optical and RF domains while using each technology to compensate for the other's shortcomings. Specifically, the data rates of the optical links can be higher than their RF counterparts, whereas the RF links have greater link availability. The focus of this paper is twofold: to consider the operations of one or more iROC nodes from a networking point of view, and to suggest specific areas of research to further the field. We consider the utility of Disruption Tolerant Networking (DTN) and the Virtual Mission Operation Center (VMOC) model.

  2. Satellite abundances around bright isolated galaxies II: radial distribution and environmental effects

    CERN Document Server

    Wang, Wenting; Henriques, Bruno M B; White, Simon D M

    2014-01-01

    We use the SDSS/DR8 galaxy sample to study the radial distribution of satellite galaxies around isolated primaries, comparing to semi-analytic models of galaxy formation based on the Millennium and Millennium-II simulations. SDSS satellites behave differently around high- and low-mass primaries: those orbiting objects with $M_*>10^{11}M_\\odot$ are mostly red and are less concentrated towards their host than the inferred dark matter halo, an effect that is very pronounced for the few blue satellites. On the other hand, less massive primaries have steeper satellite profiles that agree quite well with the expected dark matter distribution and are dominated by blue satellites, even in the inner regions where strong environmental effects are expected. In fact, such effects appear to be strong only for primaries with $M_* > 10^{11}M_\\odot$. This behaviour is not reproduced by current semi-analytic simulations, where satellite profiles always parallel those of the dark matter and satellite populations are predominan...

  3. The environmental dependence of gas accretion onto galaxies: quenching satellites through starvation

    CERN Document Server

    van de Voort, Freeke; Bower, Richard G; Correa, Camila A; Crain, Robert A; Schaye, Joop; Theuns, Tom

    2016-01-01

    Galaxies that have fallen into massive haloes may no longer be able to accrete gas from their surroundings, a process referred to as 'starvation' or 'strangulation' of satellites. We study the environmental dependence of gas accretion onto galaxies using the cosmological, hydrodynamical EAGLE simulation. We quantify the dependence of gas accretion on stellar mass, redshift, and environment, using halo mass and galaxy overdensity as environmental indicators. We find a strong suppression, by many orders of magnitude, of the gas accretion rate in dense environments, primarily for satellite galaxies. This suppression becomes stronger at lower redshift. However, the scatter in accretion rates is very large for satellites. This is (at least in part) due to the variation in halocentric radius, since gas accretion is more suppressed at smaller radii. Central galaxies are influenced less strongly by their environment and exhibit less scatter in their gas accretion rates. The star formation rates of both centrals and s...

  4. Environmental evaluation of the forest of Mt. Fuji, based on multiple satellite data

    Energy Technology Data Exchange (ETDEWEB)

    Shiosaka, K.; Konta, F.; Nishikawa, H. (The Inst. of Regional Environ. Planning, Shizuoka (Japan) Shizuoka Univ., Shizuoka (Japan) Nippon Univ., Narashino (Japan))

    1994-03-01

    Evaluation of environmental roles of the forest of Mt. Fuji and estimation of deposition of sulfur dioxide on the leaves of Japanese cypress (Chamaecyparis obtusa) were done based on satellite data. The evaluation suggests that artificial Japanese cypress forests, which occupy the largest area among vegetations of Mt. Fuji, have problems concerning environmental role of storing of soil water, and that the result of the estimation indicates an uneven distribution of sulfur dioxide deposition.

  5. Environmental evaluation of the forest of MT Fuji, based on multiple satellite data

    Science.gov (United States)

    Shiosaka, K.; Konta, F.; Nishikawa, H.

    1994-03-01

    Evaluation of environmental roles of the forest of Mt. Fuji and estimation of deposition of sulfur dioxide on the leaves of Japanese cypress (Chamaecyparis obtusa) weere done based on satellite data. The evaluation suggests that artificial Japanese cypress forests, which occupy the largest area among vegetations of Mt. Fuji have problems concerning environmental role of storing of soil water, and that the result of the estimation indicates an uneven distribution of sulfur dioxide deposition.

  6. Validation of Satellite-Based Objective Overshooting Cloud-Top Detection Methods Using CloudSat Cloud Profiling Radar Observations

    Science.gov (United States)

    Bedka, Kristopher M.; Dworak, Richard; Brunner, Jason; Feltz, Wayne

    2012-01-01

    Two satellite infrared-based overshooting convective cloud-top (OT) detection methods have recently been described in the literature: 1) the 11-mm infrared window channel texture (IRW texture) method, which uses IRW channel brightness temperature (BT) spatial gradients and thresholds, and 2) the water vapor minus IRW BT difference (WV-IRW BTD). While both methods show good performance in published case study examples, it is important to quantitatively validate these methods relative to overshooting top events across the globe. Unfortunately, no overshooting top database currently exists that could be used in such study. This study examines National Aeronautics and Space Administration CloudSat Cloud Profiling Radar data to develop an OT detection validation database that is used to evaluate the IRW-texture and WV-IRW BTD OT detection methods. CloudSat data were manually examined over a 1.5-yr period to identify cases in which the cloud top penetrates above the tropopause height defined by a numerical weather prediction model and the surrounding cirrus anvil cloud top, producing 111 confirmed overshooting top events. When applied to Moderate Resolution Imaging Spectroradiometer (MODIS)-based Geostationary Operational Environmental Satellite-R Series (GOES-R) Advanced Baseline Imager proxy data, the IRW-texture (WV-IRW BTD) method offered a 76% (96%) probability of OT detection (POD) and 16% (81%) false-alarm ratio. Case study examples show that WV-IRW BTD.0 K identifies much of the deep convective cloud top, while the IRW-texture method focuses only on regions with a spatial scale near that of commonly observed OTs. The POD decreases by 20% when IRW-texture is applied to current geostationary imager data, highlighting the importance of imager spatial resolution for observing and detecting OT regions.

  7. The Sentinel satellites revolutionise environmental observation; Los satelites Sentinel revolucionan la observacion medioambiental

    Energy Technology Data Exchange (ETDEWEB)

    River, A.

    2016-08-01

    Europe has in orbit three Sentinel satellites that are the backbone of the ambitious Copernicus system. Aimed at revolutionising environmental observation from both the scientific and commercial points of view, their objective is to capture massive volumes of data on the Earth with a view to ensuring progress in research into climate change, the oceans and the evolution of ice formations. (Author)

  8. Satellite-aided mobile communications limited operational test in the trucking industry

    Science.gov (United States)

    Anderson, R. E.; Frey, R. L.; Lewis, J. R.

    1980-01-01

    An experiment with NASA's ATS-6 satellite, that demonstrates the practicality of satellite-aided land mobile communications is described. Satellite communications equipment for the experiment was designed so that it would be no more expensive, when mass produced, than conventional two-way mobile radio equipment. It embodied the operational features and convenience of present day mobile radios. Vehicle antennas 75 cm tall and 2 cm in diameter provided good commercial quality signals to and from trucks and jeeps. Operational applicability and usage data were gathered by installing the radio equipment in five long-haul tractor-trailer trucks and two Air Force search and rescue jeeps. Channel occupancy rates are reported. Air Force personnel found the satellite radio system extremely valuable in their search and rescue mission during maneuvers and actual rescue operations. Propagation data is subjectively analyzed and over 4 hours of random data is categorized and graded as to signal quality on a second by second basis. Trends in different topographic regions are reported. An overall communications reliability of 93% was observed despite low satellite elevation angles ranging from 9 to 24 degrees.

  9. Nighttime mesospheric hydroxyl enhancements during SEP events and accompanying geomagnetic storms: Ionization rate modeling and Aura satellite observations

    Science.gov (United States)

    Verkhoglyadova, O. P.; Wissing, J. M.; Wang, S.; Kallenrode, M.-B.; Zank, G. P.

    2016-07-01

    We quantify the effects of combined precipitating solar protons and magnetospheric electrons on nighttime odd hydrogen density enhancements during two solar energetic particle (SEP) events accompanied by strong geomagnetic storms. We perform detailed modeling of ionization rates for 7-17 November 2004 and 20-30 August 2005 intervals with improved version 1.6 of the Atmospheric Ionization Module Osnabrück model. Particle measurements from Geostationary Operational Environmental Satellites and Polar Orbiting Environmental Satellites are sorted and combined in 2 h intervals to create realistic particle precipitation maps that are used as the modeling input. We show that modeled atmospheric ionization rates and estimated peak odd hydrogen (primarily hydroxyl) production from 0.001 hPa to 0.1 hPa atmospheric pressure levels during these intervals are consistent with enhancements in nighttime averaged zonal odd hydrogen densities derived from newly reprocessed and improved data set of Microwave Limb Sounder instrument on board Aura satellite. We show that both precipitating SEPs and magnetospheric electrons contribute to mesospheric ionization and their relative contributions change throughout the intervals. Our event-based modeling results underline the importance of the combined ionization sources for odd hydrogen chemistry in the middle atmosphere.

  10. China's Meteorological Satellite Application System

    Institute of Scientific and Technical Information of China (English)

    Zhang Jiashen

    2008-01-01

    @@ China's meteorological satellite program consists of five systems,namely the satellite system,the launch vehicle system,the launch center system,TT&C and the ground application system.The satellite system consists of FengYun (FY) polar orbiting series and FY geostationary series,which are launched by LM launch vehicles from Taiyan Satellite Launch Center (TSLC) and Xichang Satellite Launch Center (XSLC) respectively.

  11. Umatilla Hatchery Satellite Facilities Operation and Maintenance; 1995 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rowan, Gerald D.

    1996-05-01

    The Confederated Tribes of the Umatilla Indian Reservoir (CTUIR) and Oregon Department of Fish and Wildlife (ODFW) are cooperating in a joint effort to enhance steelhead and re-establish salmon runs in the Umatilla River Basin. As an integral part of this program, Bonifer Pond, Minthorn Springs, Imeques C-mem-ini-kem and Thornhollow facilities are operated for acclimation and release of juvenile summer steelhead (Oncorhynchus mykiss), fall and spring chinook salmon (O. tshawytscha) and coho salmon (O. kisutch). Minthorn is also used for holding and spawning adult summer steelhead, fall chinook and coho salmon. Personnel from the ODFW Eastern Oregon Fish Pathology Laboratory in La Grande took samples of tissues and reproductive fluids from Umatilla River summer steelhead and coho salmon broodstock for monitoring and evaluation purposes. Coded-wire tag recovery information was accessed to determine the contribution of Umatilla river releases to ocean, Columbia River and Umatilla River fisheries.

  12. Acquisition of Operational Environmental Literacy in Social Studies Course

    Science.gov (United States)

    Fidan, Nuray Kurtdede; Ay, Tugba Selanik

    2016-01-01

    Environmental literacy can be defined as having necessary perceptions and competency of health and environmental systems and as being active in developing necessary acts about them. Individuals are expected to use their knowledge and concepts in daily life. The aim of this study is to determine students' views about operational environmental…

  13. Satellite Altimetry And Radiometry for Inland Hydrology, Coastal Sea-Level And Environmental Studies

    Science.gov (United States)

    Tseng, Kuo-Hsin

    In this study, we demonstrate three environmental-related applications employing altimetry and remote sensing satellites, and exemplify the prospective usage underlying the current progressivity in mechanical and data analyzing technologies. Our discussion starts from the improved waveform retracking techniques in need for altimetry measurements over coastal and inland water regions. We developed two novel auxiliary procedures, namely the Subwaveform Filtering (SF) method and the Track Offset Correction (TOC), for waveform retracking algorithms to operationally detect altimetry waveform anomalies and further reduce possible errors in determination of the track offset. After that, we present two demonstrative studies related to the ionospheric and tropospheric compositions, respectively, as their variations are the important error sources for satellite electromagnetic signals. We firstly compare the total electron content (TEC) measured by multiple altimetry and GNSS sensors. We conclude that the ionosphere delay measured by Jason-2 is about 6-10 mm shorter than the GPS models. On the other hand, we use several atmospheric variables to study the climate change over high elevation areas. Five types of satellite data and reanalysis models were used to study climate change indicators. We conclude that the spatial distribution of temperature trend among data products is quite different, which is probably due to the choice of various time spans. Following discussions about the measuring techniques and relative bias between data products, we applied our improved altimetry techniques to three environmental science applications with helps of remote sensing imagery. We first manifest the detectability of hydrological events by satellite altimetry and radiometry. The characterization of one-dimensional (along-track) water boundary using former Backscattering Coefficient (BC) method is assisted by the two-dimensional (horizontal) estimate of water extent using the Moderate

  14. A Challenging Trio in Space 'Routine' Operations of the Swarm Satellite Constellation

    Science.gov (United States)

    Diekmann, Frank-Jurgen; Clerigo, Ignacio; Albini, Giuseppe; Maleville, Laurent; Neto, Alessandro; Patterson, David; Nino, Ana Piris; Sieg, Detlef

    2016-08-01

    Swarm is the first ESA Earth Observation Mission with three satellites flying in a semi-controlled constellation. The trio is operated from ESA's satellite control centre ESOC in Darmstadt, Germany. The Swarm Flight Operations Segment consists of the typical elements of a satellite control system at ESOC, but had to be carefully tailored for this innovative mission. The main challenge was the multi-satellite system of Swarm, which necessitated the development of a Mission Control System with a multi-domain functionality, both in hardware and software and covering real-time and backup domains. This was driven by the need for extreme flexibility for constellation operations and parallel activities.The three months of commissioning in 2014 were characterized by a very tight and dynamically changing schedule of activities. All operational issues could be solved during that time, including the challenging orbit acquisition phase to achieve the final constellation.Although the formal spacecraft commissioning phase was concluded in spring 2014, the investigations for some payload instruments continue even today. The Electrical Field Instruments are for instance still being tested in order to characterize and improve science data quality. Various test phases also became necessary for the Accelerometers on the Swarm satellites. In order to improve the performance of the GPS Receivers for better scientific exploitation and to minimize the failures due to loss of synchronization, a number of parameter changes were commanded via on-board patches.Finally, to minimize the impact on operations, a new strategy had to be implemented to handle single/multi bit errors in the on-board mass Memories, defining when to ignore and when to restore the memory via a re-initialisation.The poster presentation summarizes the Swarm specific ground segment elements of the FOS and explains some of the extended payload commissioning operations, turning Swarm into a most demanding and challenging

  15. Classification of Clouds and Deep Convection from GEOS-5 Using Satellite Observations

    Science.gov (United States)

    Putman, William; Suarez, Max

    2010-01-01

    With the increased resolution of global atmospheric models and the push toward global cloud resolving models, the resemblance of model output to satellite observations has become strikingly similar. As we progress with our adaptation of the Goddard Earth Observing System Model, Version 5 (GEOS-5) as a high resolution cloud system resolving model, evaluation of cloud properties and deep convection require in-depth analysis beyond a visual comparison. Outgoing long-wave radiation (OLR) provides a sufficient comparison with infrared (IR) satellite imagery to isolate areas of deep convection. We have adopted a binning technique to generate a series of histograms for OLR which classify the presence and fraction of clear sky versus deep convection in the tropics that can be compared with a similar analyses of IR imagery from composite Geostationary Operational Environmental Satellite (GOES) observations. We will present initial results that have been used to evaluate the amount of deep convective parameterization required within the model as we move toward cloud system resolving resolutions of 10- to 1-km globally.

  16. The Arctic Regional Communications Small SATellite (ARCSAT)

    Science.gov (United States)

    Casas, Joseph; Kress, Martin; Sims, William; Spehn, Stephen; Jaeger, Talbot; Sanders, Devon

    2013-01-01

    Traditional satellite missions are extremely complex and expensive to design, build, test, launch and operate. Consequently many complementary operational, exploration and research satellite missions are being formulated as a growing part of the future space community capabilities using formations of small, distributed, simple to launch and inexpensive highly capable small scale satellites. The Arctic Regional Communications small SATellite (ARCSAT) initiative would launch a Mini-Satellite "Mothership" into Polar or Sun Sync low-earth-orbit (LEO). Once on orbit, the Mothership would perform orbital insertion of four internally stored independently maneuverable nanosatellites, each containing electronically steerable antennas and reconfigurable software-defined radios. Unlike the traditional geostationary larger complex satellite communication systems, this LEO communications system will be comprised of initially a five small satellite formation that can be later incrementally increased in the total number of satellites for additional data coverage. ARCSAT will provide significant enabling capabilities in the Arctic for autonomous voice and data communications relay, Maritime Domain Awareness (MDA), data-extraction from unattended sensors, and terrestrial Search & Rescue (SAR) beacon detection missions throughout the "data starved desert" of the Arctic Region.

  17. Operation and maintenance of Fermilab`s satellite refrigerator expansion engines

    Energy Technology Data Exchange (ETDEWEB)

    Soyars, W.M.

    1996-09-01

    Fermilab`s superconducting Tevatron accelerator is cooled to liquid helium temperatures by 24 satellite refrigerators, each of which uses for normal operations a reciprocating `wet` expansion engine. These expanders are basically Process System (formerly Koch) Model 1400 expanders installed in standalone cryostats designed by Fermilab. This paper will summarize recent experience with operations and maintenance of these expansion engines. Some of the statistics presented will include total engine hours, mean time between major and minor maintenance, and frequent causes of major maintenance.

  18. A Space Based Solar Power Satellite System

    Science.gov (United States)

    Engel, J. M.; Polling, D.; Ustamujic, F.; Yaldiz, R.; et al.

    2002-01-01

    (SPoTS) supplying other satellites with energy. SPoTS is due to be commercially viable and operative in 2020. of Technology designed the SPoTS during a full-time design period of six weeks as a third year final project. The team, organized according to the principles of systems engineering, first conducted a literature study on space wireless energy transfer to select the most suitable candidates for use on the SPoTS. After that, several different system concepts have been generated and evaluated, the most promising concept being worked out in greater detail. km altitude. Each SPoTS satellite has a 50m diameter inflatable solar collector that focuses all received sunlight. Then, the received sunlight is further redirected by means of four pointing mirrors toward four individual customer satellites. A market-analysis study showed, that providing power to geo-stationary communication satellites during their eclipse would be most beneficial. At arrival at geo-stationary orbit, the focused beam has expended to such an extent that its density equals one solar flux. This means that customer satellites can continue to use their regular solar arrays during their eclipse for power generation, resulting in a satellite battery mass reduction. the customer satellites in geo-stationary orbit, the transmitted energy beams needs to be pointed with very high accuracy. Computations showed that for this degree of accuracy, sensors are needed, which are not mainstream nowadays. Therefore further research must be conducted in this area in order to make these high-accuracy-pointing systems commercially attractive for use on the SPoTS satellites around 2020. Total 20-year system lifetime cost for 18 SPoT satellites are estimated at approximately USD 6 billion [FY2001]. In order to compete with traditional battery-based satellite power systems or possible ground based wireless power transfer systems the price per kWh for the customer must be significantly lower than the present one

  19. The environmental dependence of gas accretion on to galaxies: quenching satellites through starvation

    Science.gov (United States)

    van de Voort, Freeke; Bahé, Yannick M.; Bower, Richard G.; Correa, Camila A.; Crain, Robert A.; Schaye, Joop; Theuns, Tom

    2017-04-01

    Galaxies that have fallen into massive haloes may no longer be able to accrete gas from their surroundings: a process referred to as 'starvation' or 'strangulation' of satellites. We study the environmental dependence of gas accretion on to galaxies using the cosmological, hydrodynamical EAGLE simulation. We quantify the dependence of gas accretion on stellar mass, redshift, and environment, using halo mass and galaxy overdensity as environmental indicators. We find a strong suppression, of many orders of magnitude, of the gas accretion rate in dense environments, primarily for satellite galaxies. This suppression becomes stronger at lower redshift. However, the scatter in accretion rates is very large for satellites. This is (at least in part) due to the variation in the halocentric radius, since gas accretion is more suppressed at smaller radii. Central galaxies are influenced less strongly by their environment and exhibit less scatter in their gas accretion rates. The star formation rates of both centrals and satellites show similar behaviour to their gas accretion rates. The relatively small differences between gas accretion and star formation rates demonstrate that galaxies generally exhaust their gas reservoir somewhat faster at higher stellar mass, lower redshift, and in denser environments. We conclude that the environmental suppression of gas accretion could directly result in the quenching of star formation.

  20. Reducing the environmental impact of a gas operated cogeneration installation

    Directory of Open Access Journals (Sweden)

    Irimie Sabin Ioan

    2017-01-01

    The amount of energy saved yearly, the specific fuel consumption and the environmental impact were determined by the comparative study. The diagrams representing the variation of the performance indicators according to the operation period were also created. The usefulness of the paper consists in the creation of the yearly optimum installation operation time chart.

  1. Comparison of Satellite-Derived Wind Measurements with Other Wind Measurement Sensors

    Science.gov (United States)

    Susko, Michael; Herman, Leroy

    1995-01-01

    The purpose of this paper is to compare the good data from the Jimsphere launches with the data from the satellite system. By comparing the wind speeds from the Fixed Pedestal System 16 (FPS-16) Radar/Jimsphere Wind System and NASA's 50-MHz Radar Wind Profiler, the validation of winds from Geostationary Operational Environmental Satellite 7 (GOES-7) is performed. This study provides an in situ data quality check for the GOES-7 satellite winds. Comparison was made of the flowfields in the troposphere and the lower stratosphere of case studies of pairs of Jimsphere balloon releases and Radar Wind Profiler winds during Space Shuttle launches. The mean and standard deviation of the zonal component statistics, the meridional component statistics, and the power spectral density curves show good agreement between the two wind sensors. The standard deviation of the u and v components for the STS-37 launch (consisting of five Jimsphere/Radar Wind Profiler data sets) was 1.92 and 1.67 m/s, respectively; for the STS-43 launch (there were six Jimsphere/Wind Profiler data sets) it was 1.39 and 1.44 m/s, respectively. The overall standard deviation was 1.66 m/s for the u component and 1.55 m/s tor the v component, and a standard deviation of 2.27 m/s tor the vector wind difference. The global comparison of satellite with Jimsphere balloon vector winds shows a standard deviation of 3.15 m/s for STS-43 and 4.37 m/s for STS-37. The overall standard deviation of the vector wind was 3.76 m/s, with a root-mean-square vector difference of 4.43 m/s. These data have demonstrated that this unique comparison of the Jimsphere and satellite winds provides excellent ground truth and a frame of reference during testing and validation of satellite data

  2. Sao Paulo Lightning Mapping Array (SP-LMA): Deployment, Operation and Initial Data Analysis

    Science.gov (United States)

    Blakeslee, R.; Bailey, J. C.; Carey, L. D.; Rudlosky, S.; Goodman, S. J.; Albrecht, R.; Morales, C. A.; Anseimo, E. M.; Pinto, O.

    2012-01-01

    An 8-10 station Lightning Mapping Array (LMA) network is being deployed in the vicinity of Sao Paulo to create the SP-LMA for total lightning measurements in association with the international CHUVA [Cloud processes of the main precipitation systems in Brazil: A contribution to cloud resolving modeling and to the GPM (Global Precipitation Measurement)] field campaign. Besides supporting CHUVA science/mission objectives and the Sao Luiz do Paraitinga intensive operation period (IOP) in November-December 2011, the SP-LMA will support the generation of unique proxy data for the Geostationary Lightning Mapper (GLM) and Advanced Baseline Imager (ABI), both sensors on the NOAA Geostationary Operational Environmental Satellite-R (GOES-R), presently under development and scheduled for a 2015 launch. The proxy data will be used to develop and validate operational algorithms so that they will be ready for use on "day1" following the launch of GOES-R. A preliminary survey of potential sites in the vicinity of Sao Paulo was conducted in December 2009 and January 2010, followed up by a detailed survey in July 2010, with initial network deployment scheduled for October 2010. However, due to a delay in the Sao Luiz do Paraitinga IOP, the SP-LMA will now be installed in July 2011 and operated for one year. Spacing between stations is on the order of 15-30 km, with the network "diameter" being on the order of 30-40 km, which provides good 3-D lightning mapping 150 km from the network center. Optionally, 1-3 additional stations may be deployed in the vicinity of Sao Jos dos Campos.

  3. Operational System-Impact Products for the Space Situational Awareness Environmental Effects Fusion System (SEEFS)

    Science.gov (United States)

    Quigley, S.; Scro, K.

    2006-12-01

    The Space Vehicles Directorate of the Air Force Research Laboratory (AFRL/VSBX) and the Technology Applications Division of the Space and Missile Systems Center (SMC/WXT) have combined efforts under the Rapid Prototyping Center (RPC) to design, develop, test, implement, and validate numerical and graphical products for the Air Force Space Command (AFSPC) Space Situational Awareness Environmental Effects Fusion System (SEEFS). These products are generated to analyze, specify, and forecast the effects of the near-earth space environment on Department of Defense weapons, navigation, communications, and surveillance systems. Jointly developed projects that have been completed as prototypes and are undergoing development for real-time operations include a SEEFS architecture and database, five system-impact products, and a high-level decision aid product. This first round of SEEFS products includes Solar Radio Burst Effects (SoRBE) on radar and satellite communications, Radar Auroral Clutter (RAC), Scintillation Effects on radar and satellite communications (RadScint and SatScint), and Satellite Surface and Deep Charge/Discharge (Char/D). The SEEFS architecture and database enable modular use and execution of SEEFS products, and the high-level Decision Aid shows the combined effects of all SEEFS product output on a given asset and on multi-asset missions. This presentation provides a general overview of the SEEFS program, along with details of the first round of products expected to be operational for use in exercises and/or real-time operations in 2007-2008.

  4. Monitoring Polar Environmental Change Using FORMOSAT-2 Satellite

    Science.gov (United States)

    Huang, C.; Liu, C.; Chang, L.; Wang, S.; Yan, K.; Wu, F.; Wu, A.

    2007-12-01

    Polar ice loss to the sea currently account for virtually all of the sea-level rise that is not attributable to ocean warming. Huge section of the Ayles Ice Shelf broke off into the Arctic Ocean. Permafrost soil is losing its permanence across the Northern Hemisphere, altering ecosystems and damaging roads and buildings across Alaska, Canada, and Russia. Global warming change the polar environment significantly, especially in recent year. The National Space Organization (NSPO) of Taiwan successfully launched FORMOSAT-2 on 20 May 2004. The orbit is designed to be high-altitude,. Sun-synchronous, and daily-revisit. With high agility in attitude control, FORMOSAT-2 can cover the polar areas up to +/- 90 deg latitude. More than 72 Area of interests in Alaska, Canada, Greenland area and Ice land have imaged periodically in 2006 and 2007. The images have 2m resolution in panchromatic band and 8m in multispectral bands, with size of about 24 x 100 km or large. The ability of FORMOSAT-2 daily revisit has been extended to monitor the change of topography for the glacier and ice shelf daily, weekly and monthly. By using the FORMOSAT-2 stereo pair, we can determine the elevation profile (DEM) across the glacier surface. In this paper, we will present the mapping and topography of Greenland glaciers and ice land including Kangerdlugssuaq Glacier, Greenland, Belcher Glacier, Canada and Ayles ice island. We will demonstrate the DEM extract ability from FORMOSAT-2 polar stereo images( up to 82 deg latitude), and compared with the DEM of the popular SRTM, ASTER which can be acquired to 79 deg latitude. It is expected that FORMOSAT-2 polar images will be continuously collected for years and contribute to the research of global environmental change.

  5. An Image-Based Sensor System for Autonomous Rendez-Vous with Uncooperative Satellites

    CERN Document Server

    Miravet, Carlos; Krouch, Eloise; del Cura, Juan Manuel

    2008-01-01

    In this paper are described the image processing algorithms developed by SENER, Ingenieria y Sistemas to cope with the problem of image-based, autonomous rendez-vous (RV) with an orbiting satellite. The methods developed have a direct application in the OLEV (Orbital Life Extension Extension Vehicle) mission. OLEV is a commercial mission under development by a consortium formed by Swedish Space Corporation, Kayser-Threde and SENER, aimed to extend the operational life of geostationary telecommunication satellites by supplying them control, navigation and guidance services. OLEV is planned to use a set of cameras to determine the angular position and distance to the client satellite during the complete phases of rendez-vous and docking, thus enabling the operation with satellites not equipped with any specific navigational aid to provide support during the approach. The ability to operate with un-equipped client satellites significantly expands the range of applicability of the system under development, compar...

  6. SILEX ground segment control facilities and flight operations

    Science.gov (United States)

    Demelenne, Benoit; Tolker-Nielsen, Toni; Guillen, Jean-Claude

    1999-04-01

    The European Space Agency is going to conduct an inter orbit link experiment which will connect a low Earth orbiting satellite and a Geostationary satellite via optical terminals. This experiment has been called SILEX (Semiconductor Inter satellite Link Experiment). Two payloads have been built. One called PASTEL (PASsager de TELecommunication) has been embarked on the French Earth observation satellite SPOT4 which has been launched successfully in March 1998. The future European experimental data relay satellite ARTEMIS (Advanced Relay and TEchnology MISsion), which will route the data to ground, will carry the OPALE terminal (Optical Payload Experiment). The European Space Agency is responsible for the operation of both terminals. Due to the complexity and experimental character of this new optical technology, the development, preparation and validation of the ground segment control facilities required a long series of technical and operational qualification tests. This paper is presenting the operations concept and the early results of the PASTEL in orbit operations.

  7. Environmental Quality Information Analysis Center (EQIAC) operating procedures handbook

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, T.E. (Florida Univ., Gainesville, FL (United States)); Das, S. (Oak Ridge National Lab., TN (United States))

    1992-08-01

    The Operating Procedures Handbook of the Environmental Quality Information Analysis Center (EQIAC) is intended to be kept current as EQIAC develops and evolves. Its purpose is to provide a comprehensive guide to the mission, infrastructure, functions, and operational procedures of EQIAC. The handbook is a training tool for new personnel and a reference manual for existing personnel. The handbook will be distributed throughout EQIAC and maintained in binders containing current dated editions of the individual sections. The handbook will be revised at least annually to reflect the current structure and operational procedures of EQIAC. The EQIAC provides information on environmental issues such as compliance, restoration, and environmental monitoring do the Air Force and DOD contractors.

  8. Environmental Impacts from the Operation of Cooling Towers at SRP

    Energy Technology Data Exchange (ETDEWEB)

    Smith, F.G. III

    2001-06-26

    An assessment has been made of the environmental effects that would occur from the operation of cooling towers at the SRP reactors. A more realistic numerical model of the cooling tower plume has been used to reassess the environmental impacts. The following effects were considered: (1) the occurrence of fog and ice and their impact on nearby structures, (2) drift and salt deposition from the plume, (3) the length and height of the visible plume, and (4) the possible dose from tritium.

  9. The principle of a navigation constellation composed of SIGSO communication satellites

    Institute of Scientific and Technical Information of China (English)

    Hai-Fu Ji; Li-Hua Ma; Guo-Xiang Ai; Hu-Li Shi

    2013-01-01

    The Chinese Area Positioning System (CAPS),a navigation system based on geostationary orbit (GEO) communication satellites,was developed in 2002 by astronomers at Chinese Academy of Sciences.Extensive positioning experiments of CAPS have been performed since 2005.On the basis of CAPS,this paper studies the principle of a navigation constellation composed of slightly inclined geostationary orbit (SIGSO) communication satellites.SIGSO satellites are derived from GEO satellites which are near the end of their operational life by inclined orbit operation.Considering the abundant frequency resources of SIGSO satellites,multi-frequency observations could be conducted to enhance the precision of pseudorange measurements and ameliorate the positioning performance.A constellation composed of two GEO satellites and four SIGSO satellites with an inclination of 5° can provide service to most of the territory of China with a maximum position dilution of precision (PDOP) over 24 h of less than 42.With synthetic utilization of the truncated precise code and a physical augmentation factor in four frequencies,the navigation system with this constellation is expected to obtain comparable positioning performance to that of the coarse acquisition code of the Global Positioning System (GPS).When the new method of code-carrier phase combinations is adopted,the system has the potential to possess commensurate accuracy with the precise code in GPS.Additionally,the copious frequency resources can also be used to develop new anti-interference techniques and integrate navigation and communication.

  10. A university-based distributed satellite mission control network for operating professional space missions

    Science.gov (United States)

    Kitts, Christopher; Rasay, Mike

    2016-03-01

    For more than a decade, Santa Clara University's Robotic Systems Laboratory has operated a unique, distributed, internet-based command and control network for providing professional satellite mission control services for a variety of government and industry space missions. The system has been developed and is operated by students who become critical members of the mission teams throughout the development, test, and on-orbit phases of these missions. The mission control system also supports research in satellite control technology and hands-on student aerospace education. This system serves as a benchmark for its comprehensive nature, its student-centric nature, its ability to support NASA and industry space missions, and its longevity in providing a consistent level of professional services. This paper highlights the unique features of this program, reviews the network's design and the supported spacecraft missions, and describes the critical programmatic features of the program that support the control of professional space missions.

  11. The search and rescue satellite mission - A basis for international cooperation. [in aircraft crash and marine distress

    Science.gov (United States)

    Redisch, W. N.; Trudell, B. J.

    1978-01-01

    The use of geostationary and polar-orbiting satellites to monitor and locate signals of the Emergency Locator Transmitter (ELT) and Emergency Position Indicating Radio Beacon (EPIB) of general aviation aircraft and inspected marine vessels respectively is described. The joint U.S. Canada/France SARSAT demonstration program will require a minimum of four minutes of mutual visibility of distress transmitter, local user terminal and satellite to obtain a location by Doppler tracking. The program consisting of placing instrumentation on-board three of the Tiros-N series of NOAA operational satellites is attracting interest also from other countries including the USSR, Norway, Australia, and Japan.

  12. Model of environmental life cycle assessment for coal mining operations.

    Science.gov (United States)

    Burchart-Korol, Dorota; Fugiel, Agata; Czaplicka-Kolarz, Krystyna; Turek, Marian

    2016-08-15

    This paper presents a novel approach to environmental assessment of coal mining operations, which enables assessment of the factors that are both directly and indirectly affecting the environment and are associated with the production of raw materials and energy used in processes. The primary novelty of the paper is the development of a computational environmental life cycle assessment (LCA) model for coal mining operations and the application of the model for coal mining operations in Poland. The LCA model enables the assessment of environmental indicators for all identified unit processes in hard coal mines with the life cycle approach. The proposed model enables the assessment of greenhouse gas emissions (GHGs) based on the IPCC method and the assessment of damage categories, such as human health, ecosystems and resources based on the ReCiPe method. The model enables the assessment of GHGs for hard coal mining operations in three time frames: 20, 100 and 500years. The model was used to evaluate the coal mines in Poland. It was demonstrated that the largest environmental impacts in damage categories were associated with the use of fossil fuels, methane emissions and the use of electricity, processing of wastes, heat, and steel supports. It was concluded that an environmental assessment of coal mining operations, apart from direct influence from processing waste, methane emissions and drainage water, should include the use of electricity, heat and steel, particularly for steel supports. Because the model allows the comparison of environmental impact assessment for various unit processes, it can be used for all hard coal mines, not only in Poland but also in the world. This development is an important step forward in the study of the impacts of fossil fuels on the environment with the potential to mitigate the impact of the coal industry on the environment.

  13. Developing a sustainable satellite-based environmental monitoring system In Nigeria

    Science.gov (United States)

    Akinyede, J. O.; Adepoju, K. A.; Akinluyi, F. O.; Anifowose, A. Y. B.

    2015-10-01

    Increased anthropogenic activities over the year have remained a major factor of the Earth changing environment. This phenomenon has given rise to a number of environmental degraded sites that characterize the Nigeria's landscape. The human-induced elements include gully erosion, mangrove ecosystems degradation, desertification and deforestation, particularly in the south east, Niger Delta, north east and south west of Nigeria respectively, as well as river flooding/flood plain inundation and land degradation around Kainji lake area. Because of little or no effective management measures, the attendant environmental hazards have been extremely damaging to the infrastructures and socio-economic development of the affected area. Hence, a concerted effort, through integrated and space-based research, is being intensified to manage and monitor the environment in order to restore the stability, goods and services of the environment. This has justified Nigeria's investment in its space programme, especially the launch of NigeriaSat-1, an Earth observation micro-satellite in constellation with five (5) other similar satellites, Alsat-1, China DMC, Bilsat-1, DEMOS and UK DMC belonging to Algeria, China, Turkey, Spain and United Kingdom respectively. The use of data from these satellites, particularly NigeriaSat-1, in conjunction with associated technologies has proved to be very useful in understanding the influence of both natural and human activities on the Nigeria's ecosystems and environment. The results of some researches on specific applications of Nigerian satellites are presented in this paper. Appropriate sustainable land and water resources management in the affected areas, based on Nigeria's satellite data capture and integration, are also discussed.

  14. Model of environmental life cycle assessment for coal mining operations

    Energy Technology Data Exchange (ETDEWEB)

    Burchart-Korol, Dorota, E-mail: dburchart@gig.eu; Fugiel, Agata, E-mail: afugiel@gig.eu; Czaplicka-Kolarz, Krystyna, E-mail: kczaplicka@gig.eu; Turek, Marian, E-mail: mturek@gig.eu

    2016-08-15

    This paper presents a novel approach to environmental assessment of coal mining operations, which enables assessment of the factors that are both directly and indirectly affecting the environment and are associated with the production of raw materials and energy used in processes. The primary novelty of the paper is the development of a computational environmental life cycle assessment (LCA) model for coal mining operations and the application of the model for coal mining operations in Poland. The LCA model enables the assessment of environmental indicators for all identified unit processes in hard coal mines with the life cycle approach. The proposed model enables the assessment of greenhouse gas emissions (GHGs) based on the IPCC method and the assessment of damage categories, such as human health, ecosystems and resources based on the ReCiPe method. The model enables the assessment of GHGs for hard coal mining operations in three time frames: 20, 100 and 500 years. The model was used to evaluate the coal mines in Poland. It was demonstrated that the largest environmental impacts in damage categories were associated with the use of fossil fuels, methane emissions and the use of electricity, processing of wastes, heat, and steel supports. It was concluded that an environmental assessment of coal mining operations, apart from direct influence from processing waste, methane emissions and drainage water, should include the use of electricity, heat and steel, particularly for steel supports. Because the model allows the comparison of environmental impact assessment for various unit processes, it can be used for all hard coal mines, not only in Poland but also in the world. This development is an important step forward in the study of the impacts of fossil fuels on the environment with the potential to mitigate the impact of the coal industry on the environment. - Highlights: • A computational LCA model for assessment of coal mining operations • Identification of

  15. Final Environmental Assessment for Aircraft Maintenance Operations Center

    Science.gov (United States)

    2014-06-01

    Historic Preservation Act AIRFA American Indian Religious Freedom Act AMC Aircraft Maintenance Contractor AMOC Aircraft Maintenance Operations...this document. Table 1-1 Applicable Environmental Laws and Regulations Federal Statutes and Policies American Indian Religious Freedom Act (AIRFA...Larks (Eremophila alpestris), Common Grackle (Quiscula quiscala), American Crow (Corvus brachyrhynchos), Turkey Vulture (Cathartes aura), Black Vulture

  16. An Object Model for Integrating Diverse Remote Sensing Satellite Sensors: A Case Study of Union Operation

    Directory of Open Access Journals (Sweden)

    Chuli Hu

    2014-01-01

    Full Text Available In the Earth Observation sensor web environment, the rapid, accurate, and unified discovery of diverse remote sensing satellite sensors, and their association to yield an integrated solution for a comprehensive response to specific emergency tasks pose considerable challenges. In this study, we propose a remote sensing satellite sensor object model, based on the object-oriented paradigm and the Open Geospatial Consortium Sensor Model Language. The proposed model comprises a set of sensor resource objects. Each object consists of identification, state of resource attribute, and resource method. We implement the proposed attribute state description by applying it to different remote sensors. A real application, involving the observation of floods at the Yangtze River in China, is undertaken. Results indicate that the sensor inquirer can accurately discover qualified satellite sensors in an accurate and unified manner. By implementing the proposed union operation among the retrieved sensors, the inquirer can further determine how the selected sensors can collaboratively complete a specific observation requirement. Therefore, the proposed model provides a reliable foundation for sharing and integrating multiple remote sensing satellite sensors and their observations.

  17. Environmental monitoring of El Hierro Island submarine volcano, by combining low and high resolution satellite imagery

    Science.gov (United States)

    Eugenio, F.; Martin, J.; Marcello, J.; Fraile-Nuez, E.

    2014-06-01

    El Hierro Island, located at the Canary Islands Archipelago in the Atlantic coast of North Africa, has been rocked by thousands of tremors and earthquakes since July 2011. Finally, an underwater volcanic eruption started 300 m below sea level on October 10, 2011. Since then, regular multidisciplinary monitoring has been carried out in order to quantify the environmental impacts caused by the submarine eruption. Thanks to this natural tracer release, multisensorial satellite imagery obtained from MODIS and MERIS sensors have been processed to monitor the volcano activity and to provide information on the concentration of biological, chemical and physical marine parameters. Specifically, low resolution satellite estimations of optimal diffuse attenuation coefficient (Kd) and chlorophyll-a (Chl-a) concentration under these abnormal conditions have been assessed. These remote sensing data have played a fundamental role during field campaigns guiding the oceanographic vessel to the appropriate sampling areas. In addition, to analyze El Hierro submarine volcano area, WorldView-2 high resolution satellite spectral bands were atmospherically and deglinted processed prior to obtain a high-resolution optimal diffuse attenuation coefficient model. This novel algorithm was developed using a matchup data set with MERIS and MODIS data, in situ transmittances measurements and a seawater radiative transfer model. Multisensor and multitemporal imagery processed from satellite remote sensing sensors have demonstrated to be a powerful tool for monitoring the submarine volcanic activities, such as discolored seawater, floating material and volcanic plume, having shown the capabilities to improve the understanding of submarine volcanic processes.

  18. Assessment for Operator Confidence in Automated Space Situational Awareness and Satellite Control Systems

    Science.gov (United States)

    Gorman, J.; Voshell, M.; Sliva, A.

    2016-09-01

    The United States is highly dependent on space resources to support military, government, commercial, and research activities. Satellites operate at great distances, observation capacity is limited, and operator actions and observations can be significantly delayed. Safe operations require support systems that provide situational understanding, enhance decision making, and facilitate collaboration between human operators and system automation both in-the-loop, and on-the-loop. Joint cognitive systems engineering (JCSE) provides a rich set of methods for analyzing and informing the design of complex systems that include both human decision-makers and autonomous elements as coordinating teammates. While, JCSE-based systems can enhance a system analysts' understanding of both existing and new system processes, JCSE activities typically occur outside of traditional systems engineering (SE) methods, providing sparse guidance about how systems should be implemented. In contrast, the Joint Director's Laboratory (JDL) information fusion model and extensions, such as the Dual Node Network (DNN) technical architecture, provide the means to divide and conquer such engineering and implementation complexity, but are loosely coupled to specialized organizational contexts and needs. We previously describe how Dual Node Decision Wheels (DNDW) extend the DNN to integrate JCSE analysis and design with the practicalities of system engineering and implementation using the DNN. Insights from Rasmussen's JCSE Decision Ladders align system implementation with organizational structures and processes. In the current work, we present a novel approach to assessing system performance based on patterns occurring in operational decisions that are documented by JCSE processes as traces in a decision ladder. In this way, system assessment is closely tied not just to system design, but the design of the joint cognitive system that includes human operators, decision-makers, information systems, and

  19. 75 FR 17055 - Coordination Between the Non-Geostationary and Geostationary Satellite Orbit

    Science.gov (United States)

    2010-04-05

    ..., about 10,840 (95%) of 11,410 commercial radio stations had revenues of $6 million or less. Therefore... commercial television stations to be 1,379.\\37\\ In addition, according to Commission staff review of the BIA... ] estimated 1,374 commercial television stations (or approximately 72 percent) had revenues of $13 million...

  20. Satellite Microwave Remote Sensing for Environmental Modeling of Mosquito Population Dynamics

    Science.gov (United States)

    Chuang, Ting-Wu; Henebry, Geoffrey M.; Kimball, John S.; VanRoekel-Patton, Denise L.; Hildreth, Michael B.; Wimberly, Michael C.

    2012-01-01

    Environmental variability has important influences on mosquito life cycles and understanding the spatial and temporal patterns of mosquito populations is critical for mosquito control and vector-borne disease prevention. Meteorological data used for model-based predictions of mosquito abundance and life cycle dynamics are typically acquired from ground-based weather stations; however, data availability and completeness are often limited by sparse networks and resource availability. In contrast, environmental measurements from satellite remote sensing are more spatially continuous and can be retrieved automatically. This study compared environmental measurements from the NASA Advanced Microwave Scanning Radiometer on EOS (AMSR-E) and in situ weather station data to examine their ability to predict the abundance of two important mosquito species (Aedes vexans and Culex tarsalis) in Sioux Falls, South Dakota, USA from 2005 to 2010. The AMSR-E land parameters included daily surface water inundation fraction, surface air temperature, soil moisture, and microwave vegetation opacity. The AMSR-E derived models had better fits and higher forecasting accuracy than models based on weather station data despite the relatively coarse (25-km) spatial resolution of the satellite data. In the AMSR-E models, air temperature and surface water fraction were the best predictors of Aedes vexans, whereas air temperature and vegetation opacity were the best predictors of Cx. tarsalis abundance. The models were used to extrapolate spatial, seasonal, and interannual patterns of climatic suitability for mosquitoes across eastern South Dakota. Our findings demonstrate that environmental metrics derived from satellite passive microwave radiometry are suitable for predicting mosquito population dynamics and can potentially improve the effectiveness of mosquito-borne disease early warning systems. PMID:23049143

  1. SPS microwave subsystem potential impacts and benefits. [environmental and societal effects of Solar Power System construction and operation

    Science.gov (United States)

    Dickinson, R. M.

    1978-01-01

    The paper examines the possible environmental and societal effects of the construction, installation, and operation of the space end and earth end of the microwave power transmission subsystem that delivers satellite power system (SPS) energy (at about 5 GW per beam) to the power grid on earth. The intervening propagation medium near the earth is also considered. Separate consideration is given to the spacecraft transmitting array, propagation in the ionosphere, and the ground-based rectenna. Radio frequency interference aspects are also discussed.

  2. The Development of Geostationary Microwave Observation in China

    Science.gov (United States)

    LU, Naimeng; GUO, Yang; GU, Songyan; WU, Xuebao; LI, Xiaoqing

    2015-04-01

    Great achievements have been made in the regime of microwave observation from polar orbiting meteorological satellites and their microwave data have been successfully used in the retrieval of precipitation and temperature/humidity profile, as well as data assimilation. But right now, there is no microwave observation in GEO due to its technical difficulty even through some plans such as GEM, GOMAS were proposed. The plan to develop microwave instruments for geostationary meteorological satellites have been approved by Chinese government and this presentation will introduce the status of its development, including the requirement consideration, microwave forward model simulation, the retrieval of precipitation, instrument specification, potential data application.. The followings are concluded in this presentation, •Microwave observation on GEO will greatly improve the capacity of current meteorological satellites •The 54GHz and 183GHz bands are on the top of the priority for temperature and humidity profiling, followed by 118, 425 and 325,380 GHz respectively. •Combined the 54 and 183 band together, better precipitation retrieval results could be expected •Regarding the strong convective precipitation retrieval, the 54GHz and 183GHz bands can provide basic information for precipitation retrieval and the improvement with additional window channels is not very significant. •The satisfied resolution for precipitation estimation is 5 to 10 Km and the tolerant value is 50km.

  3. Monitoring Animal Behaviour and Environmental Interactions Using Wireless Sensor Networks, GPS Collars and Satellite Remote Sensing

    Directory of Open Access Journals (Sweden)

    Peter Corke

    2009-05-01

    Full Text Available Remote monitoring of animal behaviour in the environment can assist in managing both the animal and its environmental impact. GPS collars which record animal locations with high temporal frequency allow researchers to monitor both animal behaviour and interactions with the environment. These ground-based sensors can be combined with remotely-sensed satellite images to understand animal-landscape interactions. The key to combining these technologies is communication methods such as wireless sensor networks (WSNs. We explore this concept using a case-study from an extensive cattle enterprise in northern Australia and demonstrate the potential for combining GPS collars and satellite images in a WSN to monitor behavioural preferences and social behaviour of cattle.

  4. Review and Development on the Studies of Chinese Meteorological Satellite and Satellite Meteorology

    Institute of Scientific and Technical Information of China (English)

    FANG Zongyi; XU Jianmin; ZHAO Fengsheng

    2006-01-01

    Meteorological satellite and satellite meteorology are the fastest developing new branches in the atmospheric sciences. Today the meteorological satellite has become a key element in the global atmospheric sounding system while the satellite meteorology is covering the main components of earth's system science.This article describes the major achievements that China has made in these fields in the past 30 years.The following contents are involved: (1) History and present status of China's meteorological satellites. It covers the development, launch, operation, technical parameters of China's polar and geostationary meteorological satellites. (2) Major achievements on remote sensing principle and method. It describes the retrieval of atmospheric temperature and humidity profiles, cloud character retrieval, aerosol character retrieval, precipitation retrieval as well as the generation of cloud wind. (3) Achievement on the studies of meteorological satellite data application. This part covers the applications of meteorological satellite data to weather analysis and forecast, numerical forecast, climate monitoring, and prediction of short-term climate change. Besides, the new results on data assimilation, climate monitoring, and forecast are also included.

  5. Monitoring of environmental change in Dzungar basin by the analysis of multi temporal satellite data sets

    Science.gov (United States)

    Nakayama, Y.; Yanagi, T.; Nishimura, J.

    In recent 40-50 years, rapid environmental changes are shown in the arid and semi-arid regions of the inland areas in each continent. The environment change situation is especially remarkable at closed lakes and their vicinity of the Asian continent inland. This study aimed to investigate the environmental change and its cause in Dzungar basin of the central Asia through the analysis of multi-temporal satellite data sets. The multi temporal and multi stage satellite data sets were firstly created by using high spatial resolution satellite data such as LANDSAT/MSS TM, Terra/ASTER, and JERS-1/OPS, and wide observation satellite data such as NOAA/AVHRR and Terra/MODIS. Next, the fluctuations of the past about 50 years in water area of lakes were investigated in detail by analyzing the data sets, and also changes in the irrigated agricultural lands along the inflow rivers, and the snow and glacier covering the mountainous district were investigated. Finally, hydrological change situation and its cause in the object area were examined by comparing the analyzed results with meteorological data and auxiliary sources. The results of this study are summarized as follows; Most of closed lakes in Dzungar basin have shown the rapid shrinkages in the past about 50 years. However, it changed into the remarkable expansion of the water area since 2001. According to the analysis results of changes in the irrigated agricultural lands, snow and glacier extents, it was shown that the influence of human activities such as development of irrigation lands was bigger than the influence of the nature fluctuation based on the global warming as a cause of the change in closed lakes.

  6. Engineering Test Satellite VI (ETS-VI)

    Science.gov (United States)

    Horii, M.; Funakawa, K.

    1991-01-01

    The Engineering Test Satellite-VI (ETS-VI) is being developed as the third Japanese three-axis stabilized engineering test satellite to establish the 2-ton geostationary operational satellite bus system and to demonstrate the high performance satellite communication technology for future operational satellites. The satellite is expected to be stationed at 154 deg east latitude. It will be launched from the Tanegashima Space Center in Japan by a type H-II launch vehicle. The Deep Space Network (DSN) will support the prelaunch compatibility test, data interface verification testing, and launch rehersals. The DSN primary support period is from launch through the final AEF plus 1 hour. Contingency support is from final AEF plus 1 hour until launch plus 1 month. The coverage will consist of all the 26-m antennas as prime and the 34-m antennas at Madrid and Canberra as backup. Maximum support will consist of two 8-hour tracks per station for a 7-day period, plus the contingency support, if required. Information is given in tabular form for DSN support, telemetry, command, and tracking support responsibility.

  7. Evaluation of SCaMPR Satellite QPEs for Operational Hydrologic Prediction

    Science.gov (United States)

    LEE, H.; Zhang, Y.; Seo, D.; Kitzmiller, D. H.; Kuligowski, R. J.; Corby, R.

    2011-12-01

    National Weather Service (NWS) River Forecast Centers (RFCs) use rain gauge or radar-gauge multi-sensor quantitative precipitation estimates (QPEs) as the primary rainfall input to their operational hydrologic models. In areas with poor radar and rain gauge coverage, satellite-based QPEs are a potential alternative. In this work, we evaluated the utility of satellite-based QPEs produced via the Self-Calibrating Multivariate Precipitation Retrieval (SCaMPR) algorithm for operational hydrologic modeling for a set of basins in Texas and Louisiana for the period of 2000-7. First, we assessed the relative accuracy of two sets of SCaMPR QPEs versus gauge-only QPE, with operational multi-sensor QPEs as the reference. One set used only operational polar orbiting satellite microwave input as the predictors, the other included Tropical Rainfall Measuring Mission (TRMM) rain rates in the calibration process. We then performed hydrologic simulations using these QPEs and evaluated the simulations. Results indicated that a) SCaMPR QPEs showed better/worse skill than the gauge-only QPEs in resolving heavy precipitation at 1-h/24-h time intervals in terms of Critical Success Index (CSI); b) SCaMPR QPEs underperformed gauge-only QPEs in simulating flood events; and c) ingesting TRMM rainfall rates helped enhance the hydrologic utility of SCaMPR QPE, by mitigating the positive bias of SCaMPR QPEs, elevating the detection rates of heavy rainfall, and improving the simulation of flood discharge. Our findings suggest that the superior performance of gauge-only QPEs versus SCaMPR in hydrologic simulations is tied to its better accuracy at 24-h scale. The implication of the scale dependence in the relative performance of SCaMPR QPEs to their potential hydrologic utility is discussed.

  8. Energy Dependence of Near-relativistic Electron Spectrum at Geostationary Orbit during the SEP Events of 2005

    Indian Academy of Sciences (India)

    A. Chandrasekhar Reddy; Jatin Rathod; Girija Rajaram; Radharani Alyana; D. S. Misra; C. G. Patil; M. Y. S. Prasad; A. G. Ananth

    2008-03-01

    In view of the renewed interest in the study of energetic particles in the outer radiation belt of the earth, we feel it will be helpful in looking for the energy dependence of the electron energy spectrum at geostationary orbit. This may give us some insight into how we can safeguard geostationary satellites from functional anomalies of the deep dielectric charging type, which are caused by charge accumulation and subsequent discharge of relativistic electrons. In this study we examine whether there is any energy dependence in relativistic electron enhancements at geosynchronous altitudes during solar energetic proton events of 2005.

  9. A calibrated, high-resolution goes satellite solar insolation product for a climatology of Florida evapotranspiration

    Science.gov (United States)

    Paech, S.J.; Mecikalski, J.R.; Sumner, D.M.; Pathak, C.S.; Wu, Q.; Islam, S.; Sangoyomi, T.

    2009-01-01

    Estimates of incoming solar radiation (insolation) from Geostationary Operational Environmental Satellite observations have been produced for the state of Florida over a 10-year period (1995-2004). These insolation estimates were developed into well-calibrated half-hourly and daily integrated solar insolation fields over the state at 2 km resolution, in addition to a 2-week running minimum surface albedo product. Model results of the daily integrated insolation were compared with ground-based pyranometers, and as a result, the entire dataset was calibrated. This calibration was accomplished through a three-step process: (1) comparison with ground-based pyranometer measurements on clear (noncloudy) reference days, (2) correcting for a bias related to cloudiness, and (3) deriving a monthly bias correction factor. Precalibration results indicated good model performance, with a station-averaged model error of 2.2 MJ m-2/day (13%). Calibration reduced errors to 1.7 MJ m -2/day (10%), and also removed temporal-related, seasonal-related, and satellite sensor-related biases. The calibrated insolation dataset will subsequently be used by state of Florida Water Management Districts to produce statewide, 2-km resolution maps of estimated daily reference and potential evapotranspiration for water management-related activities. ?? 2009 American Water Resources Association.

  10. Satellite observations of surface temperature during the March 2015 total solar eclipse.

    Science.gov (United States)

    Good, Elizabeth

    2016-09-28

    The behaviour of remotely sensed land surface temperatures (LSTs) from the spinning-enhanced visible and infrared imager (SEVIRI) during the total solar eclipse of 20 March 2015 is analysed over Europe. LST is found to drop by up to several degrees Celcius during the eclipse, with the minimum LST occurring just after the eclipse mid-point (median=+1.5 min). The drop in LST is typically larger than the drop in near-surface air temperatures reported elsewhere, and correlates with solar obscuration (r=-0.47; larger obscuration = larger LST drop), eclipse duration (r=-0.62; longer duration = larger LST drop) and time (r=+0.37; earlier eclipse = larger LST drop). Locally, the LST drop is also correlated with vegetation (up to r=+0.6), with smaller LST drops occurring over more vegetated surfaces. The LSTs at locations near the coast and at higher elevation are also less affected by the eclipse. This study covers the largest area and uses the most observations of eclipse-induced surface temperature drops to date, and is the first full characterization of satellite LST during an eclipse (known to the author). The methods described could be applied to Geostationary Operational Environmental Satellite (GOES) LST data over North America during the August 2017 total solar eclipse.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'.

  11. 4-D Cloud Water Content Fields Derived from Operational Satellite Data

    Science.gov (United States)

    Smith, William L., Jr.; Minnis, Patrick

    2010-01-01

    In order to improve operational safety and efficiency, the transportation industry, including aviation, has an urgent need for accurate diagnoses and predictions of clouds and associated weather conditions. Adverse weather accounts for 70% of all air traffic delays within the U.S. National Airspace System. The Federal Aviation Administration has determined that as much as two thirds of weather-related delays are potentially avoidable with better weather information and roughly 20% of all aviation accidents are weather related. Thus, it is recognized that an important factor in meeting the goals of the Next Generation Transportation System (NexGen) vision is the improved integration of weather information. The concept of a 4-D weather cube is being developed to address that need by integrating observed and forecasted weather information into a shared 4-D database, providing an integrated and nationally consistent weather picture for a variety of users and to support operational decision support systems. Weather analyses and forecasts derived using Numerical Weather Prediction (NWP) models are a critical tool that forecasters rely on for guidance and also an important element in current and future decision support systems. For example, the Rapid Update Cycle (RUC) and the recently implemented Rapid Refresh (RR) Weather Research and Forecast (WRF) models provide high frequency forecasts and are key elements of the FAA Aviation Weather Research Program. Because clouds play a crucial role in the dynamics and thermodynamics of the atmosphere, they must be adequately accounted for in NWP models. The RUC, for example, cycles at full resolution five cloud microphysical species (cloud water, cloud ice, rain, snow, and graupel) and has the capability of updating these fields from observations. In order to improve the models initial state and subsequent forecasts, cloud top altitude (or temperature, T(sub c)) derived from operational satellite data, surface observations of

  12. Federal Environmental Regulations Impacting Hydrocarbon Exploration, Drilling, and Production Operations

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, Herbert B.; Johnson, William I.

    1999-04-27

    Waste handling and disposal from hydrocarbon exploration, drilling, and production are regulated by the US Environmental Protection Agency (EPA) through federal and state regulations and/or through implementation of federal regulations. Some wastes generated in these operations are exempt under the Resource Conservation and Recovery Act (RCRA) but are not exempt under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), Superfund Amendments and Reauthorization Act (SARA), and other federal environmental laws. Exempt wastes remain exempt only if they are not mixed with hazardous wastes or hazardous substances. Once mixture occurs, the waste must be disposed as a hazardous material in an approved hazardous waste disposal facility. Before the Clean Air Act as amended in 1990, air emissions from production, storage, steam generation, and compression facilities associated with hydrocarbon exploration, drilling, and production industry were not regulated. A critical proposed regulatory change which will significantly effect Class II injection wells for disposal of produced brine and injection for enhanced oil recovery is imminent. Federal regulations affecting hydrocarbon exploration, drilling and production, proposed EPA regulatory changes, and a recent significant US Court of Appeals decision are covered in this report. It appears that this industry will, in the future, fall under more stringent environmental regulations leading to increased costs for operators.

  13. Sentinel-1A - Launching the first satellite and launching the operational Copernicus programme

    Science.gov (United States)

    Aschbacher, Josef; Milagro Perez, Maria Pilar

    2014-05-01

    The first Copernicus satellite, Sentinel-1A, is prepared for launch in April 2014. It will provide continuous, systematic and highly reliable radar images of the Earth. Sentinel-1B will follow around 18 months later to increase observation frequency and establish an operational system. Sentinel-1 is designed to work in a pre-programmed conflict-free operation mode ensuring the reliability required by operational services and creating a consistent long-term data archive for applications based on long time series. This mission will ensure the continuation and improvement of SAR operational services and applications addressing primarily medium- to high-resolution applications through a main mode of operation that features both a wide swath (250 km) and high geometric (5 × 20 m) and radiometric resolution, allowing imaging of global landmasses, coastal zones, sea ice, polar areas, and shipping routes at high resolution. The Sentinel-1 main operational mode (Interferometric Wide Swath) will allow to have a complete coverage of the Earth in 6 days in the operational configuration when the two Sentinel-1 spacecraft will be in orbit simultaneously. High priority areas like Europe, Canada and some shipping routes will be covered almost daily. This high global observation frequency is unprecedented and cannot be reached with any other current radar mission. Envisat, for example, which was the 'workhorse' in this domain up to April 2012, reached global coverage every 35 days. Sentinel-1 data products will be made available systematically and free of charge to all users including institutional users, the general public, scientific and commercial users. The transition of the Copernicus programme from the development to operational phase will take place at about the same time when the first Sentinel-1 satellite will be launched. During the operational phase, funding of the programme will come from the European Union Multiannual Financial Framework (MFF) for the years 2014

  14. Structural Health Monitoring under Nonlinear Environmental or Operational Influences

    Directory of Open Access Journals (Sweden)

    Jyrki Kullaa

    2014-01-01

    Full Text Available Vibration-based structural health monitoring is based on detecting changes in the dynamic characteristics of the structure. It is well known that environmental or operational variations can also have an influence on the vibration properties. If these effects are not taken into account, they can result in false indications of damage. If the environmental or operational variations cause nonlinear effects, they can be compensated using a Gaussian mixture model (GMM without the measurement of the underlying variables. The number of Gaussian components can also be estimated. For the local linear components, minimum mean square error (MMSE estimation is applied to eliminate the environmental or operational influences. Damage is detected from the residuals after applying principal component analysis (PCA. Control charts are used for novelty detection. The proposed approach is validated using simulated data and the identified lowest natural frequencies of the Z24 Bridge under temperature variation. Nonlinear models are most effective if the data dimensionality is low. On the other hand, linear models often outperform nonlinear models for high-dimensional data.

  15. TELE-X and its role in a future operational Nordic satellite system

    Science.gov (United States)

    Anderson, Lars

    In the middle of 1987 it is planned to launch TELE-X, the first Nordic telecommunications satellite. The Swedish-Norwegian company NOTELSAT (Nordic Telecommunications Satellite Corporation) will be responsible for the operation of the TELE-X system. Via the experimental TELE-X satellite the Nordic countries will get access to direct broadcasting of two TV-programs and at least four digital sound programs in stereo by use of two transponders in the 12.2 to 12.5 GHz band. The programs are planned to be composed of nationally produced programs in Norway. Sweden and Finland. By means of distributing these programs via satellite they will reach up to 4 times as many viewers and listernes as presently in the terrestrial national systems. The basic motivations for exchanging programs are to strengthen the cultural ties between the Nordic countries and to give the individuals more freedom in the choice of programs. Another goal is to give the public a better sound and picture quality than can be achieved today. These quality improvements shall be met by using small receiver parabolas of less than 1 m in diameter. Contributing to the improved quality is the choice of the C-MAC (Multiplexed Analoque Components) modulation system. TELE-X is a multipurpose satellite which besides the two TV-transponders will have two transponders for data/video communication in the frequency band 12.5 to 12.75 GHz. The choice of system for data and video is based on the philosophy of thin-route traffic between small and low cost earth stations (1.8 to 2.5 m) placed directly at the subscribers premises. The system includes an advanced Data/Video Control Station which automatically connects the traffic stations with standarized transmission speeds up to 2 Mbps. The system which is based on the SCPC/DAMA method can be expanded up to 5000 traffic stations. Numerous data/video applications will be investigated in the initial experimental phase of the project which also will be used for market

  16. Closed-Loop Acoustic Control of Reverberant Room for Satellite Environmental Testing

    Science.gov (United States)

    Janssens, Karl; Bianciardi, Fabio; Sabbatini, Danilo; Debille, Jan; Carrella, Alex

    2012-07-01

    The full satellite acoustic test is an important milestone in a satellite launch survivability verification campaign. This test is required to verify the satellite’s mechanical design against the high-level acoustic loads induced by the launch vehicle during the atmospheric flight. During the test, the satellite is subjected to a broadband diffuse acoustic field, reproducing the pressure levels observed during launch. The excitation is in most cases provided by a combination of horns for the low frequencies and noise generators for the higher frequencies. Acoustic control tests are commonly performed in reverberant rooms, controlling the sound pressure levels in third octave bands over the specified target spectrum. This paper discusses an automatic feedback control system for acoustic control of large reverberation rooms for satellite environmental testing. The acoustic control system consists of parallel third octave PI (Proportional Integral) feedback controllers that take the reverberation characteristics of the room into consideration. The drive output of the control system is shaped at every control step based on the comparison of the average third octave noise spectrum, measured from a number of microphones in the test room, with the target spectrum. Cross-over filters split the output drive into band- limited signals to feed each of the horns. The control system is realized in several steps. In the first phase, a dynamic process model is developed, including the non-linear characteristics of the horns and the reverberant properties of the room. The model is identified from dynamic experiments using system identification techniques. In the next phase, an adequate control strategy is designed which is capable of reaching the target spectrum in the required time period without overshoots. This control strategy is obtained from model-in-the-loop (MIL) simulations, evaluating the performance of various potential strategies. Finally, the proposed strategy is

  17. Hanford Environmental Information System (HEIS) Operator`s Manual. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, R.I.

    1991-10-01

    The Hanford Environmental Information System (HEIS) is a consolidated set of automated resources that effectively manage the data gathered during environmental monitoring and restoration of the Hanford Site. The HEIS includes an integrated database that provides consistent and current data to all users and promotes sharing of data by the entire user community. This manual describes the facilities available to the operational user who is responsible for data entry, processing, scheduling, reporting, and quality assurance. A companion manual, the HEIS User`s Manual, describes the facilities available-to the scientist, engineer, or manager who uses the system for environmental monitoring, assessment, and restoration planning; and to the regulator who is responsible for reviewing Hanford Site operations against regulatory requirements and guidelines.

  18. MITRA Virtual laboratory for operative application of satellite time series for land degradation risk estimation

    Science.gov (United States)

    Nole, Gabriele; Scorza, Francesco; Lanorte, Antonio; Manzi, Teresa; Lasaponara, Rosa

    2015-04-01

    This paper aims to present the development of a tool to integrate time series from active and passive satellite sensors (such as of MODIS, Vegetation, Landsat, ASTER, COSMO, Sentinel) into a virtual laboratory to support studies on landscape and archaeological landscape, investigation on environmental changes, estimation and monitoring of natural and anthropogenic risks. The virtual laboratory is composed by both data and open source tools specifically developed for the above mentioned applications. Results obtained for investigations carried out using the implemented tools for monitoring land degradation issues and subtle changes ongoing on forestry and natural areas are herein presented. In detail MODIS, SPOT Vegetation and Landsat time series were analyzed comparing results of different statistical analyses and the results integrated with ancillary data and evaluated with field survey. The comparison of the outputs we obtained for the Basilicata Region from satellite data analyses and independent data sets clearly pointed out the reliability for the diverse change analyses we performed, at the pixel level, using MODIS, SPOT Vegetation and Landsat TM data. Next steps are going to be implemented to further advance the current Virtual Laboratory tools, by extending current facilities adding new computational algorithms and applying to other geographic regions. Acknowledgement This research was performed within the framework of the project PO FESR Basilicata 2007/2013 - Progetto di cooperazione internazionale MITRA "Remote Sensing tecnologies for Natural and Cultural heritage Degradation Monitoring for Preservation and valorization" funded by Basilicata Region Reference 1. A. Lanorte, R Lasaponara, M Lovallo, L Telesca 2014 Fisher-Shannon information plane analysis of SPOT/VEGETATION Normalized Difference Vegetation Index (NDVI) time series to characterize vegetation recovery after fire disturbance International Journal of Applied Earth Observation and

  19. Quantifying winter wheat residue biomass with a spectral angle index derived from China Environmental Satellite data

    Science.gov (United States)

    Zhang, Miao; Wu, Bingfang; Meng, Jihua

    2014-10-01

    Quantification of crop residue biomass on cultivated lands is essential for studies of carbon cycling of agroecosystems, soil-atmospheric carbon exchange and Earth systems modeling. Previous studies focus on estimating crop residue cover (CRC) while limited research exists on quantifying crop residue biomass. This study takes advantage of the high temporal resolution of the China Environmental Satellite (HJ-1) data and utilizes the band configuration features of HJ-1B data to establish spectral angle indices to estimate crop residue biomass. Angles formed at the NIRIRS vertex by the three vertices at R, NIRIRS, and SWIR (ANIRIRS) of HJ-1B can effectively indicate winter wheat residue biomass. A coefficient of determination (R2) of 0.811 was obtained between measured winter wheat residue biomass and ANIRIRS derived from simulated HJ-1B reflectance data. The ability of ANIRIRS for quantifying winter wheat residue biomass using HJ-1B satellite data was also validated and evaluated. Results indicate that ANIRIRS performed well in estimating winter wheat residue biomass with different residue treatments; the root mean square error (RMSE) between measured and estimated residue biomass was 0.038 kg/m2. ANIRIRS is a potential method for quantifying winter wheat residue biomass at a large scale due to wide swath width (350 km) and four-day revisit rate of the HJ-1 satellite. While ANIRIRS can adequately estimate winter wheat residue biomass at different residue moisture conditions, the feasibility of ANIRIRS for winter wheat residue biomass estimation at different fractional coverage of green vegetation and different environmental conditions (soil type, soil moisture content, and crop residue type) needs to be further explored.

  20. Rocketdyne Propulsion and Power DOE operations annual site environmental report 1996

    Energy Technology Data Exchange (ETDEWEB)

    Tuttle, R.J. [ed.

    1997-11-10

    Rocketdyne currently operates several facilities in the San Fernando Valley/Simi Valley area, for manufacturing, testing, and research and development (R and D). These operations include manufacturing liquid-fueled rocket engines, such as the Space Shuttle Main Engine (SSME) and engines used for expendable launch vehicles used to place artificial satellites into orbit. This work includes fabrication and testing of rocket engines, lasers, and heat-transfer systems; and R and D in a wide range of high-technology fields, such as the electrical power system for the Space Station. Previously, this work also included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials, under the Atomics International Division (AI). AI was merged into Rocketdyne in 1984 and many of the AI functions were transferred to existing Rocketdyne departments. This nuclear work was terminated in 1988, and subsequently, all radiological work has been directed toward decontamination and decommissioning (D and D) of the previously used nuclear facilities and associated site areas. The majority of this work is done for the Department of Energy (DOE). This Annual Site Environmental Report for 1996 concentrates on the environmental conditions related to DOE operations at Area IV of SSFL and at De Soto.

  1. Satellite-Based Derivation of High-Resolution Forest Information Layers for Operational Forest Management

    Directory of Open Access Journals (Sweden)

    Johannes Stoffels

    2015-06-01

    Full Text Available A key factor for operational forest management and forest monitoring is the availability of up-to-date spatial information on the state of forest resources. Earth observation can provide valuable contributions to these information needs. The German federal state of Rhineland-Palatinate transferred its inherited forest information system to a new architecture that is better able to serve the needs of centralized inventory and planning services, down to the level of forest districts. During this process, a spatially adaptive classification approach was developed to derive high-resolution forest information layers (e.g., forest type, tree species distribution, development stages based on multi-temporal satellite data. This study covers the application of the developed approach to a regional scale (federal state level and the further adaptation of the design to meet the information needs of the state forest service. The results confirm that the operational requirements for mapping accuracy can, in principle, be fulfilled. However, the state-wide mapping experiment also revealed that the ability to meet the required level of accuracy is largely dependent on the availability of satellite observations within the optimum phenological time-windows.

  2. Current and Future Impact Risks from Small Debris to Operational Satellites

    Science.gov (United States)

    Liou, Jer-Chyi; Kessler, Don

    2011-01-01

    The collision between Iridium 33 and Cosmos 2251 in 2009 signaled the potential onset of the collision cascade effect, commonly known as the "Kessler Syndrome", in the low Earth orbit (LEO) region. Recent numerical simulations have shown that the 10 cm and larger debris population in LEO will continue to increase even with a good implementation of the commonly-adopted mitigation measures. This increase is driven by collisions involving large and massive intacts, i.e., rocket bodies and spacecraft. Therefore, active debris removal (ADR) of large and massive intacts with high collision probabilities has been argued as a direct and effective means to remediate the environment in LEO. The major risk for operational satellites in the environment, however, comes from impacts with debris just above the threshold of the protection shields. In general, these are debris in the millimeter to centimeter size regime. Although impacts by these objects are insufficient to lead to catastrophic breakup of the entire vehicle, the damage is certainly severe enough to cause critical failure of the key instruments or the entire payload. The focus of this paper is to estimate the impact risks from 5 mm and 1 cm debris to active payloads in LEO (1) in the current environment and (2) in the future environment based on different projection scenarios, including ADR. The goal of the study is to quantify the benefits of ADR in reducing debris impact risks to operational satellites.

  3. Geostationary Microwave Sounders: Science, Applications and the Geostar Instrument Concept

    Science.gov (United States)

    Lambrigtsen, Bjorn; Gaier, Todd; Kangaslahti, Pekka; Lim, Boon; Tanner, Alan

    2011-01-01

    Microwave atmospheric sounders have long provided some of the most imporant data for use in numerical weather prediction (NWP) and have played an important role in atmospheric weather and climate research. With 7 US satellites now carrying such sensors, we are in a 'golden age' of microwave remote sensing of the atmosphere. However, as this fleet ages and is replaced by a smaller number of new sensors in the coming yars, the main shortcoming of sensors in low Earth orbit -i.e. poor spacial and temporal converage and sampling - will become more apparent. Placing such sensors on geostationary satellites, enabling time-continuous views of large portions of the Earth disc, would solve this problem. but the GEO orbit is approximately 40 times higher than a typical LEO orbit, which requires antenna apertures also about 40 times larger than for LEO systems to maintain spatial resolution, and it has not been feasible to develop such systems. Recently, a solution to this problem has appeared in the form of aperture synthesis.

  4. Study on validation method of visible imagery spatial resolution of imager on geostationary platform

    Institute of Scientific and Technical Information of China (English)

    Qiang Guo

    2006-01-01

    @@ Based on the analysis for the main elements of the total modulation transfer function (MTF) of imager on geostationary platform, the precise evaluation for its low spatial frequency spectrum has been achieved.Meanwhile, it is pointed out that the main cause of imagery spatial resolution lower than the designed value is the "slight defocus" of imager focal plane array (FPA). The validation method for visible imagery spatial resolution is proposed based on the analysis of defocused optical system model and edge-spread-function (ESF), the relative error is less than 7% after alleviating stray light effects. This method has been applied in the in-orbit ground testing of FY-2C geostationary meteorological satellite successfully.

  5. Sentinel Convoy: Synergetic Earth Observation with Satellites Flying in Formation with European Operational Missions

    Science.gov (United States)

    Regan, Amanda; Silvestrin, Pierluigi; Fernandez, Diego

    2016-08-01

    The successful launch of Sentinel-1A, Sentinel-1B, Sentinel-2A and Sentinel-3A signify the beginning of the dedicated space segment for the Copernicus Programme, which is the result of the partnership between the European Commission (EC) and the European Space Agency (ESA). These Sentinels are the first of a long-term operational series of Earth Observation (EO) satellites to be launched by Europe that will complement the already well-established series of meteorological missions.For the first time, these missions will provide a continuous and long term European capability for systematic observations of the Earth surface, its oceans and atmosphere to unprecedented accuracies, resolutions, and temporal coverage. If additional cost- effective missions could be flown together with these operational missions (including operational meteorological satellite series such as MetOp (Second Generation - SG) then the possibilities for meeting new Earth science and application objectives could be far- reaching e.g. fulfilling observational gaps, synergistic measurements of Earth system processes, etc. To explore this potential, the ESA initiated three exploratory paper studies (known as the EO-Convoy studies). The aim of these studies is two fold: Firstly, to identify scientific and operational objectives and needs that would benefit from additional in-orbit support. Secondly, to identify and develop a number of cost- effective mission concepts that would meet these objectives and needs. Each EO Convoy study is dedicated to a specific theme, namely: Study 1 - Ocean and Ice Applications, Study 2 - Land Applications and Study 3 - Atmospheric Applications.This paper will present the results of the EO-Convoy studies including an overview of the user needs and derived convoy concept descriptions. This paper shall focus on the resulting science benefits. Example convoy concepts to be presented include a passive C-band SAR flying with Sentinel-1 and possible free flying thermal

  6. Environmental impact classification with fuzzy sets for urban land cover from satellite remote sensing data

    Science.gov (United States)

    Zoran, Maria A.; Nicolae, Doina N.; Talianu, Camelia

    2004-10-01

    Urban area is a mosaic of complex, interacting ecosystems, rich natural resources and socio-economic activity. Dramatic changes in urban's land cover are due to natural and anthropogenic causes. A scientific management system for protection, conservation and restoration must be based on reliable information on bio-geophysical and geomorphologic, dynamics processes, and climatic change effects. Synergetic use of quasi-simultaneously acquired multi-sensor data may therefore allow for a better approach of change detection and environmental impact classification and assessment in urban area. It is difficult to quantify the environmental impacts of human and industrial activities in urban areas. There are often many different indicators than can conflict with each other, frequently important observations are lacking, and potentially valuable information may non-quantitative in nature. Fuzzy set theory offers a modern methodology for dealing with these problems and provides useful approach to difficult classification problems for satellite remote sensing data. This paper describes how fuzzy logic can be applied to analysis of environmental impacts for urban land cover. Based on classified Landsat TM, SPOT images and SAR ERS-1 for Bucharest area, Romania, it was performed a land cover classification and subsequent environmental impact analysis.

  7. Analysis of Galileo Style Geostationary Satellite Imaging: Image Reconstruction

    Science.gov (United States)

    2012-09-01

    obtained using only baselines longer than 8 m does not sample the short spacial frequencies, and the image reconstruction is not able to recover the...the long spacial frequencies sampled in a shorter baseline overlap the short spacial frequencies sampled in a longer baseline. This technique will

  8. Generation of high resolution sea surface temperature using multi-satellite data for operational oceanography

    Institute of Scientific and Technical Information of China (English)

    YANG Chan-Su; KIM Sun-Hwa; OUCHI Kazuo; BACK Ji-Hun

    2015-01-01

    In the present article, we introduce a high resolution sea surface temperature (SST) product generated daily by Korea Institute of Ocean Science and Technology (KIOST). The SST product is comprised of four sets of data including eight-hour and daily average SST data of 1 km resolution, and is based on the four infrared (IR) satellite SST data acquired by advanced very high resolution radiometer (AVHRR), Moderate Resolution Imaging Spectroradiometer (MODIS), Multifunctional Transport Satellites-2 (MTSAT-2) Imager and Meteorological Imager (MI), two microwave radiometer SSTs acquired by Advanced Microwave Scanning Radiometer 2 (AMSR2), and WindSAT within-situ temperature data. These input satellite andin-situ SST data are merged by using the optimal interpolation (OI) algorithm. The root-mean-square-errors (RMSEs) of satellite andin-situ data are used as a weighting value in the OI algorithm. As a pilot product, four SST data sets were generated daily from January to December 2013. In the comparison between the SSTs measured by moored buoys and the daily mean KIOST SSTs, the estimated RMSE was 0.71°C and the bias value was –0.08°C. The largest RMSE and bias were 0.86 and –0.26°C respectively, observed at a buoy site in the boundary region of warm and cold waters with increased physical variability in the Sea of Japan/East Sea. Other site near the coasts shows a lower RMSE value of 0.60°C than those at the open waters. To investigate the spatial distributions of SST, the Group for High Resolution Sea Surface Temperature (GHRSST) product was used in the comparison of temperature gradients, and it was shown that the KIOST SST product represents well the water mass structures around the Korean Peninsula. The KIOST SST product generated from both satellite and buoy data is expected to make substantial contribution to the Korea Operational Oceanographic System (KOOS) as an input parameter for data assimilation.

  9. Assessing satellite AOD based and WRF/CMAQ output PM2.5 estimators

    Science.gov (United States)

    Cordero, Lina; Wu, Yonghua; Gross, Barry M.; Moshary, Fred

    2013-05-01

    Fine particulate matter measurements (PM2.5) are essential for air quality monitoring and related public health; however, the shortage of reliable measurmennts constrains researchers to use other means for obtaining reliable estimates over large scales. In particular, model forecasters and satellite community use their respective products to develop ground particulate matter estimations but few experiments have explored how the remote sensing approaches compare to the high resolution models. . In this paper we focus on studying the performance of the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Geostationary Operational Environmental Satellites (GOES) regression based estimates in comparison to more direct bias corrected outputs from the Community Multiscale Air Quality (CMAQ) model, We use a two-year dataset (2005-2006) and apply urban, season and hour filters to illustrate the agreement between estimated and in-situ measured fine particulate matter from the New York State Department of Environmental Conservation (NYSDEC). We first begin by analyzing the correspondence between ground aerosol optical depth (AOD) measurements from an AERONET (AErosol RObotic NETwork) Cimel sun/sky radiometer with both satellite and model products in one urban location; we show that satellite readings perform better than model outputs, especially during the summer (RMODIS>=0.65, RCMAQ>=0.37). This is a clear symptom of the difficulty in the models to properly model realistic optical properties. We then turn to a direct assessment of PM2.5 presenting individual comparisons between ground PM2.5 measurements with satellite/model predictions and demonstrate the higher accuracy from model estimations (RurbanMODIS >= 0.74, RurbanCMAQ >= 0.77; Rnon-urbanMODIS >= 0.48, Rnon-urbanCMAQ >= 0.78). In general, we find that the bias corrected CMAQ estimates are superior to satellite based estimators except at very high resolution. Finally, we show that when using both model and

  10. Modeling the Environmental Impact of Air Traffic Operations

    Science.gov (United States)

    Chen, Neil

    2011-01-01

    There is increased interest to understand and mitigate the impacts of air traffic on the climate, since greenhouse gases, nitrogen oxides, and contrails generated by air traffic can have adverse impacts on the climate. The models described in this presentation are useful for quantifying these impacts and for studying alternative environmentally aware operational concepts. These models have been developed by leveraging and building upon existing simulation and optimization techniques developed for the design of efficient traffic flow management strategies. Specific enhancements to the existing simulation and optimization techniques include new models that simulate aircraft fuel flow, emissions and contrails. To ensure that these new models are beneficial to the larger climate research community, the outputs of these new models are compatible with existing global climate modeling tools like the FAA's Aviation Environmental Design Tool.

  11. Radiometric and spectral calibrations of the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) using principle component analysis

    Science.gov (United States)

    Tian, Jialin; Smith, William L.; Gazarik, Michael J.

    2008-10-01

    The ultimate remote sensing benefits of the high resolution Infrared radiance spectrometers will be realized with their geostationary satellite implementation in the form of imaging spectrometers. This will enable dynamic features of the atmosphere's thermodynamic fields and pollutant and greenhouse gas constituents to be observed for revolutionary improvements in weather forecasts and more accurate air quality and climate predictions. As an important step toward realizing this application objective, the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) Engineering Demonstration Unit (EDU) was successfully developed under the NASA New Millennium Program, 2000-2006. The GIFTS-EDU instrument employs three focal plane arrays (FPAs), which gather measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The raw GIFTS interferogram measurements are radiometrically and spectrally calibrated to produce radiance spectra, which are further processed to obtain atmospheric profiles via retrieval algorithms. The radiometric calibration is achieved using internal blackbody calibration references at ambient (260 K) and hot (286 K) temperatures. The absolute radiometric performance of the instrument is affected by several factors including the FPA off-axis effect, detector/readout electronics induced nonlinearity distortions, and fore-optics offsets. The GIFTS-EDU, being the very first imaging spectrometer to use ultra-high speed electronics to readout its large area format focal plane array detectors, operating at wavelengths as large as 15 microns, possessed non-linearity's not easily removable in the initial calibration process. In this paper, we introduce a refined calibration technique that utilizes Principle Component (PC) analysis to compensate for instrument distortions and artifacts remaining after the initial radiometric calibration process, thus, further enhance the absolute calibration accuracy. This method is

  12. An Orbiting Standards Platform for communication satellite system RF measurements

    Science.gov (United States)

    Wallace, R. G.; Woodruff, J. J.

    1978-01-01

    The Orbiting Standards Platform (OSP) is a proposed satellite dedicated to performing RF measurements on space communications systems. It would consist of a quasi-geostationary spacecraft containing an ensemble of calibrated RF sources and field strength meters operating in several microwave bands, and would be capable of accurately and conveniently measuring critical earth station and satellite RF performance parameters, such as EIRP, gain, figure of merit (G/T), crosspolarization, beamwidth, and sidelobe levels. The feasibility and utility of the OSP concept has been under joint study by NASA, NBS, Comsat and NTIA. A survey of potential OSP users was conducted by NTIA as part of this effort. The response to this survey, along with certain trends in satellite communications system design, indicates a growing need for such a measurement service.

  13. Longview District Operations and Maintenance Headquarters: Environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    Bonneville Power Administration (BPA) operations and maintenance staff are presently based at a headquarters next to the Longview Substation. These headquarters buildings, however, were built in 1941 and have deteriorated to the point of needing extensive repair. They also lack sufficient inside storage space. New buildings cannot be constructed on the site because of surrounding development. In addition, the site is within an area exposed to industrial fallout (coal tar pitch and metallic particles) that may be damaging buildings, equipment, and vehicles. BPA is concerned about the potential health risk to headquarters staff from the fallout. In light of these problems, BPA proposes to construct a new operations and maintenance headquarters at a different location, and to demolish the existing headquarters. This paper discusses the environmental impacts of the proposed action and alternatives.

  14. Longview District Operations and Maintenance Headquarters : Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1992-03-01

    Bonneville Power Administration (BPA) operations and maintenance staff are presently based at a headquarters next to the Longview Substation. These headquarters buildings, however, were built in 1941 and have deteriorated to the point of needing extensive repair. They also lack sufficient inside storage space. New buildings cannot be constructed on the site because of surrounding development. In addition, the site is within an area exposed to industrial fallout (coal tar pitch and metallic particles) that may be damaging buildings, equipment, and vehicles. BPA is concerned about the potential health risk to headquarters staff from the fallout. In light of these problems, BPA proposes to construct a new operations and maintenance headquarters at a different location, and to demolish the existing headquarters. This paper discusses the environmental impacts of the proposed action and alternatives.

  15. Development of a WebGIS-based monitoring and environmental protection and preservation system for the Black Sea: The ECO-Satellite project

    Science.gov (United States)

    Tziavos, Ilias N.

    2013-04-01

    The ECO-Satellite project has been approved in the frame of the Joint Operational Program "Black Sea Basin 2007-2013" and it is co-financed by the European Union through the European Neighborhood and Partnership Instrument and the Instrument for Pre-Accession Assistance and National Funds. The overall objective of the project is to contribute to the protection and preservation of the water system of the Black Sea, with its main emphasis given to river deltas and protected coastal regions at the seaside. More specifically, it focuses on the creation of an environmental monitoring system targeting the marine, coastal and wetland ecosystems of the Black Sea, thus strengthening the development of common research among the involved partners and increasing the intraregional knowledge for the corresponding coastal zones. This integrated multi-level system is based on the technological assets provided by satellite Earth observation data and Geo-Informatics innovative tools and facilities, as well as on the development of a unified, easy to update geodatabase including a wide range of appropriately selected environmental parameters. Furthermore, a Web-GIS system is under development aiming in principle to support environmental decision and policy making by monitoring the state of marine, coastal and wetland ecosystems of the Black Sea and managing all the aforementioned data sources and derived research results. The system is designed in a way that is easily expandable and adaptable for environmental management in local, regional national and trans-national level and as such it will increase the capacity of decision makers who are related to Black Sea environmental policy. Therefore, it is expected that administrative authorities, scientifically related institutes and environmental protection bodies in all eligible areas will show interest in the results and applications of the information system, since the ECO-Satellite project could serve as a support tool for the

  16. TDMA demand assignment operation in Telecom 1 business services network

    Science.gov (United States)

    Lombard, D.; Rancy, F.

    Telecom 1 is a French domestic satellite whose main function is the establishment of an intracompany network carrying a wide range of digital services, including digital data, voice, and images, among a large number of earth stations located on the subscriber's premises. This satellite system is to begin operations in 1983 from a geostationary orbit, using five 6-MHz bandwidth transponders in the 14/12 GHz band. TDMA with Demand Assignment will be employed, and the system is designed to provide additional, link-by-link cryptographic or error correction encoding facilities when a high degree of privacy or transmission quality are desired.

  17. Hybrid Global Communication Architecture with Balloons and Satellites

    Science.gov (United States)

    Pignolet, G.; Celeste, A.; Erb, B.

    2002-01-01

    Global space communication systems have been developed now for more than three decades, based mainly on geostationary satellites or almost equivalent systems such as the Molnya orbit concepts. The last decade of the twentieth century has seen the emergence of satellite constellations in low or medium Earth orbit, in order to improve accessibility in terms of visibility at higher latitudes and limited size or power requirement for ground equipment. However such systems are complex to operate, there are still many situations where connection may remain difficult to achieve, and commercial benefits are still to be proven. A new concept, using a network combination of geostationary relay satellites and high altitude stratospheric platforms may well overcome the inconveniences of both geostationary systems and satellite constellations to improve greatly global communication in the future. The emergence of enabling technologies developed in Japan and in several other countries will soon make it possible to fly helium balloons in the upper layers of the atmosphere, at altitudes of 20 km or more. At such an altitude, well above the meteorological disturbances and the jet-streams, the stratosphere enjoys a regular wind at moderate speeds ranging between 10 m/s and 30 m/s, depending on latitude and also on season. It is possible for balloons powered by electric engines to fly non- stop upstream of the wind in order to remain stationary above a particular location. Large balloons, with sizes up to 300 m in length, would be able to carry sub-satellite communication payloads, as well as observation apparatus and scientific equipment. The range of visibility for easy both-way communication between the balloon and operators or customers on the ground could be as large as 200 km in radius. Most current studies consider a combination of solar cells and storage batteries to power the balloons, but microwave beam wireless power transportation from the ground could be a very

  18. A new international geostationary electron model: IGE-2006, from 1 keV to 5.2 MeV

    Science.gov (United States)

    Sicard-Piet, A.; Bourdarie, S.; Boscher, D.; Friedel, R. H. W.; Thomsen, M.; Goka, T.; Matsumoto, H.; Koshiishi, H.

    2008-07-01

    Département Environnement Spatial, Office National d'Etudes et de Recherches Aérospatiales (ONERA) has been developing a model for the geostationary electron environment since 2003. Until now, this model was called Particle ONERA-LANL Environment (POLE), and it is valid from 30 keV up to 5.2 MeV. POLE is based on the full complement of Los Alamos National Laboratory geostationary satellites, covers the period 1976-2005, and takes into account the solar cycle variation. Over the period 1976 to present, four different detectors were flown: charged particle analyzer (CPA), synchronous orbit particle analyzer (SOPA), energetic spectra for particles (ESP), and magnetospheric plasma analyzer (MPA). Only the first three were used to develop the POLE model. Here we extend the energy coverage of the model to low energies using MPA measurements. We further include the data from the Japanese geostationary spacecraft, Data Relay Test Satellite (DRTS). These data are now combined into an extended geostationary electron model which we call IGE-2006.

  19. Romanian-Danish Environmental Co-operation. Co-operation development 1993-1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    The Danish Ministry of Environment and Energy has, since 1991, through the Danish Environmental Support Fund, contributed towards protecting the environment and nature in Central and Eastern European countries and has helped to limit regional as well as global pollution. The Romanian Ministry of Waters, Forests and Environmental Protection and the Danish Ministry of Environment and Energy initiated the co-operation in 1993 and an official Agreement was signed in 1994. This publication describes the co-operation between the two countries in the field of the environment in the hope that this will give both the general public of Romania and the international community a better understanding of the work being accomplished. It also gives an overview of the 19 projects developed within this framework, which has a total Danish grant of DKK 77.9 million. (au)

  20. Using Satellite Data for Environmental Impact Analysis in Economic Growth: the Case of Mongolia

    Science.gov (United States)

    Tungalag, A.; Tsolmon, R.; Ochirkhuyag, L.; Oyunjargal, J.

    2016-06-01

    The Mongolian economy is based on the primary and secondary economic sectors of agriculture and industry. In addition, minerals and mining become a key sector of its economy. The main mining resources are gold, copper, coal, fluorspar and steel. However, the environment and green economy is one of the big problems among most of the countries and especially for countries like Mongolia where the mining is major part of economy; it is a number one problem. The research of the work tested how environmental elements effect to current Mongolian economic growth, which is growing economy because of mining sector. The study of economic growth but the starting point for any study of economic growth is the neoclassical growth model emphasizing the role of capital accumulation. The growth is analysed either in terms of models with exogenous saving rates (the Solow-Swan model), or models where consumption and hence savings are determined by optimizing individuals. These are the so-called optimal growth or Ramsey-Cass-Koopmans. The study extends the Solow model and the Ramsey-Cass-Koopmans model, including environmental elements which are satellite data determine to degraded land and vegetation value from 1995 to 2013. In contrast, we can see the degraded land area increases from 1995 (4856 m2) to 2013 (10478 m2) and vegetation value decrease at same time. A description of the methodology of the study conducted follows together with the data collected and econometric estimations and calibration with environmental elements.

  1. Teachers guide for building and operating weather satellite ground stations for high school science

    Science.gov (United States)

    Summers, R. J.; Gotwald, T.

    1981-01-01

    A number of colleges and universities are operating APT direct readout stations. However, high school science teachers have often failed to realize the potential of meteorological satellites and their products as unique instructional tools. The ability to receive daily pictures from these satellites offers exciting opportunities for secondary school teachers and students to assemble the electronic hardware and to view real time pictures of Earth from outer space. The station and pictures can be used in the classroom to develop an approach to science teaching that could span many scientific disciplines and offer many opportunities for student research and participation in scientific processes. This can be accomplished with relatively small expenditures of funds for equipment. In most schools some of the equipment may already be available. Others can be constructed by teachers and/or students. Yet another source might be the purchase of used equipment from industry or through the government surplus channels. The information necessary for individuals unfamiliar with these systems to construct a direct readout for receiving real time APT photographs on a daily basis in the classroom is presented.

  2. Testing of Environmental Satellite Bus-Instrument Interfaces Using Engineering Models

    Science.gov (United States)

    Gagnier, Donald; Hayner, Rick; Nosek, Thomas; Roza, Michael; Hendershot, James E.; Razzaghi, Andrea I.

    2004-01-01

    This paper discusses the formulation and execution of a laboratory test of the electrical interfaces between multiple atmospheric scientific instruments and the spacecraft bus that carries them. The testing, performed in 2002, used engineering models of the instruments and the Aura spacecraft bus electronics. Aura is one of NASA s Earth Observatory System missions. The test was designed to evaluate the complex interfaces in the command and data handling subsystems prior to integration of the complete flight instruments on the spacecraft. A problem discovered during the flight integration phase of the observatory can cause significant cost and schedule impacts. The tests successfully revealed problems and led to their resolution before the full-up integration phase, saving significant cost and schedule. This approach could be beneficial for future environmental satellite programs involving the integration of multiple, complex scientific instruments onto a spacecraft bus.

  3. BeiDou inter-satellite-type bias evaluation and calibration for mixed receiver attitude determination

    NARCIS (Netherlands)

    Nadarajah, N.; Teunissen, P.J.G.; Raziq, N.

    2013-01-01

    The Chinese BeiDou system (BDS), having different types of satellites, is an important addition to the ever growing system of Global Navigation Satellite Systems (GNSS). It consists of Geostationary Earth Orbit (GEO) satellites, Inclined Geosynchronous Satellite Orbit (IGSO) satellites and Medium

  4. BeiDou inter-satellite-type bias evaluation and calibration for mixed receiver attitude determination

    NARCIS (Netherlands)

    Nadarajah, N.; Teunissen, P.J.G.; Raziq, N.

    2013-01-01

    The Chinese BeiDou system (BDS), having different types of satellites, is an important addition to the ever growing system of Global Navigation Satellite Systems (GNSS). It consists of Geostationary Earth Orbit (GEO) satellites, Inclined Geosynchronous Satellite Orbit (IGSO) satellites and Medium Ea

  5. Environmental Restoration Operations: Consolidated Quarterly Report January -March 2017

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, John R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    This Environmental Restoration Operations (ER) Consolidated Quarterly Report (ER Quarterly Report) provides the status of ongoing corrective action activities being implemented at Sandia National Laboratories, New Mexico (SNL/NM) during the January, February, and March 2017 quarterly reporting period. Table I-1 lists the Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) identified for corrective action at SNL/NM. Sections I.2.1 and I.2.2 summarize the work completed during this quarter. Section I.2.1 summarizes the quarterly activities at sites undergoing corrective action field activities. Field activities are conducted at the three groundwater AOCs (Burn Site Groundwater [BSG AOC], Technical Area [TA]-V Groundwater [TAVG AOC], and Tijeras Arroyo Groundwater [TAG AOC]). Section I.2.2 summarizes quarterly activities at sites where the New Mexico Environment Department (NMED) Hazardous Waste Bureau (HWB) issued a certificate of completion and the sites are in the corrective action complete (CAC) regulatory process. Currently, SWMUs 8 and 58, 68, 149, 154, and 502 are in the CAC regulatory process. Corrective action activities are deferred at the Long Sled Track (SWMU 83), the Gun Facilities (SWMU 84), and the Short Sled Track (SWMU 240) because these three sites are active mission facilities. These three active mission sites are located in TA-III. This Sandia National Laboratories, New Mexico Environmental Restoration Operations (ER) Consolidated Quarterly Report (ER Quarterly Report) fulfills all quarterly reporting requirements set forth in the Resource Conservation and Recovery Act Facility Operating Permit and the Compliance Order on Consent.

  6. Satellite Communication and Development: A Reassessment.

    Science.gov (United States)

    Hudson, Heather E.

    The potential benefits of satellite communications development have been recognized since the notion of a geostationary "space platform" was proposed by Arthur C. Clarke in 1945. Although there have been examples of developmental applications of satellite technology, the promise has been slow in being fulfilled. The history of the…

  7. Integration of environmental simulation models with satellite remote sensing and geographic information systems technologies: case studies

    Science.gov (United States)

    Steyaert, Louis T.; Loveland, Thomas R.; Brown, Jesslyn F.; Reed, Bradley C.

    1993-01-01

    Environmental modelers are testing and evaluating a prototype land cover characteristics database for the conterminous United States developed by the EROS Data Center of the U.S. Geological Survey and the University of Nebraska Center for Advanced Land Management Information Technologies. This database was developed from multi temporal, 1-kilometer advanced very high resolution radiometer (AVHRR) data for 1990 and various ancillary data sets such as elevation, ecological regions, and selected climatic normals. Several case studies using this database were analyzed to illustrate the integration of satellite remote sensing and geographic information systems technologies with land-atmosphere interactions models at a variety of spatial and temporal scales. The case studies are representative of contemporary environmental simulation modeling at local to regional levels in global change research, land and water resource management, and environmental simulation modeling at local to regional levels in global change research, land and water resource management and environmental risk assessment. The case studies feature land surface parameterizations for atmospheric mesoscale and global climate models; biogenic-hydrocarbons emissions models; distributed parameter watershed and other hydrological models; and various ecological models such as ecosystem, dynamics, biogeochemical cycles, ecotone variability, and equilibrium vegetation models. The case studies demonstrate the important of multi temporal AVHRR data to develop to develop and maintain a flexible, near-realtime land cover characteristics database. Moreover, such a flexible database is needed to derive various vegetation classification schemes, to aggregate data for nested models, to develop remote sensing algorithms, and to provide data on dynamic landscape characteristics. The case studies illustrate how such a database supports research on spatial heterogeneity, land use, sensitivity analysis, and scaling issues

  8. An experimental analysis for the impact of 3D variation assi- milation of satellite data on typhoon track simulation

    Institute of Scientific and Technical Information of China (English)

    XIE Hongqin; WU Zengmao; GAO Shanhong

    2004-01-01

    A series of test simulations are performed to evaluate the impact of satellite-derived meteorological data on numerical typhoon track prediction. Geostationary meteorological satellite (GMS-5) and NOAA's TIROS operational vertical sounder (TOVS) observations are used in the experiments. A three-dimensional variational (3D-Var) assimilation scheme is developed to assimilate the satellite data directly into the Penn State-NCAR nonhydrostatic meteorological model (MM5). Three-dimensional objective analysis fields based on the T213 results and conventional observations are employed as the background fields of the initialization. The comparisons of the simulated typhoon tracks are carried out, which correspond respectively to assimilate different kinds of satellite data. It is found that, compared with the experiment without satellite data assimilation, the 3D-Var assimilation schemes lead to significant improvements on typhoon track prediction. Track errors reduce from approximately 25% at 24 h to approximately 30% at 48 h for 3D-Var assimilation experiments.

  9. Fusion of multispectral and multitemporal satellite data for urban environmental changes analysis

    Science.gov (United States)

    Zoran, Maria

    2010-05-01

    Environmental urban changes assessment is providing information on environmental quality for identifying the major issues, priority areas of the policy making, planning and management. Effective planning is based on the completely and precisely understanding of the environmental parameters in urban area. Remote sensing is a key application in global-change science, being very useful for urban climatology and landuse-landcover dynamics and morphology analysis. Multi-spectral and multi-temporal satellite imagery (LANDSAT TM and ETM, MODIS and IKONOS) for Bucharest urban area over 1988 - 2008 period provides the most reliable technique of monitoring of different urban structures regarding the net radiation and heat fluxes associated with urbanization at the regional scale. The main objectives of this investigation aimed :to develop and validate new techniques for mapping and monitoring land cover and land use within and around Bucharest urban area using satellite sensor images and new digital framework data ; to analyze the spatial pattern of land cover and the detailed morphology of urban land use across the study area, and hence quantify the degree of order and structure that underlies the apparently irregular geometry of land use parcels; to devise a methodology for automatic updating of digital urban land-use maps; to develop an improved information base on urban land-use and land-use change for land-use/transportation models, urban development planning, urban ecology and local plans. Bucharest town, the biggest industrial, commercial center in Romania has experienced a rapid urban expansion during the last decades. A large amount of forest and agricultural land has been converted into housing, infrastructure and industrial estates. The resultant impervious urban surface alters the surface energy balance and surface runoff, which in turn could pose serious environmental problems for its inhabitants (e.g., urban waterlogged and thermal pollution). The changes over

  10. Odyssey, an optimized personal communications satellite system

    Science.gov (United States)

    Rusch, Roger J.

    . Deployment of the satellites permits phased introduction of service. After only three launches, in which two satellites are launched into each plane, continuous service can be provided to most of the world. After three more launches for a total of 12 satellites, service can be expanded to all populated regions of the Earth with path diversity to most regions. The Odyssey system is superior to both geostationary satellites and low earth orbiting satellites. Odyssey provides many benefits to the end user which are described in the paper. These include: low cost, convenience, high availability, reliability, and acceptable time delay. Odyssey exhibits benefits for telecommunications operators: simple operations, incremental, phased startup, long space segment life-time, high profitability, dynamic flexibility for adjustment and short time to market. Since submission of an FCC application in 1991, TRW has continued to explore ways to further improve the Odyssey approach by expanding coverage to the entire world and reducing the initial investment while maintaining high quality service.

  11. Earth observation mission operation of COMS during in-orbit test

    Science.gov (United States)

    Cho, Young-Min

    2011-11-01

    Communication Ocean Meteorological Satellite (COMS) for the hybrid mission of meteorological observation, ocean monitoring, and telecommunication service was launched onto Geostationary Earth Orbit on June 27, 2010 and it is currently under normal operation service after the In-Orbit Test (IOT) phase. The COMS is located on 128.2° East of the geostationary orbit. In order to perform the three missions, the COMS has 3 separate payloads, the meteorological imager (MI), the Geostationary Ocean Color Imager (GOCI), and the Ka-band antenna. Each payload is dedicated to one of the three missions, respectively. The MI and GOCI perform the Earth observation mission of meteorological observation and ocean monitoring, respectively. During the IOT phase the functionality and the performance of many aspects of the COMS satellite and ground station have been checked through the Earth observation mission operation for the observation of the meteorological phenomenon over several areas of the Earth and the monitoring of marine environments around the Korean peninsula. The Earth observation mission operation of COMS during the IOT phase is introduced in terms of mission operation characteristics, mission planning, and mission operation results for the missions of meteorological observation and ocean monitoring, respectively.

  12. Westinghouse Hanford Company operational environmental monitoring annual report, CY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, J.W.; Johnson, A.R.; McKinney, S.M.; Perkins, C.J.

    1993-07-01

    This document presents the results of the Westinghouse Hanford Company near-facility operational environmental monitoring for 1992 in the 100, 200/600, and 300/400 Areas of the Hanford Site, in south-central Washington State in 1992. Surveillance activities included sampling and analyses of ambient air, surface water, groundwater, sediments, soil, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and to control the impacts of nuclear facilities and waste sites on the workers and the local environment. Additionally, diffuse sources were monitored to determine compliance with Federal, State, and/or local regulations. In general, although impacts from nuclear facilities are still seen on the Hanford Site and are slightly elevated when compared to offsite, these impacts are less than in previous years.

  13. Environmental management and operational performance in automotive companies in Brazil

    DEFF Research Database (Denmark)

    Jabbour, C.J.C.; De Sousa Jabbour, A.B.L.; Govindan, Kannan

    2013-01-01

    The main objective of this study is to verify the influence of Environmental Management (EM) on Operational Performance (OP) in Brazilian automotive companies, analyzing whether Lean Manufacturing (LM) and Human Resources (HR) interfere in the greening of these companies. Therefore, a conceptual...... from 75 companies, were analyzed using structural equation modeling. The main results are as follows: (a) the model tested revealed an adequate goodness of fit, showing that overall, the relations proposed between EM and OP and between HR, LM and EM tend to be statistically valid; (b) EM tends....... The originality of this paper lies in its gathering the concepts of EM, LM, HR and OP in a single study, as they generally tend not to be treated jointly. This paper also provided valid empirical evidence for a littlestudied context: the Brazilian automotive sector....

  14. Development of the atmospheric correction algorithm for the next generation geostationary ocean color sensor data

    Science.gov (United States)

    Lee, Kwon-Ho; Kim, Wonkook

    2017-04-01

    The geostationary ocean color imager-II (GOCI-II), designed to be focused on the ocean environmental monitoring with better spatial (250m for local and 1km for full disk) and spectral resolution (13 bands) then the current operational mission of the GOCI-I. GOCI-II will be launched in 2018. This study presents currently developing algorithm for atmospheric correction and retrieval of surface reflectance over land to be optimized with the sensor's characteristics. We first derived the top-of-atmosphere radiances as the proxy data derived from the parameterized radiative transfer code in the 13 bands of GOCI-II. Based on the proxy data, the algorithm has been made with cloud masking, gas absorption correction, aerosol inversion, computation of aerosol extinction correction. The retrieved surface reflectances are evaluated by the MODIS level 2 surface reflectance products (MOD09). For the initial test period, the algorithm gave error of within 0.05 compared to MOD09. Further work will be progressed to fully implement the GOCI-II Ground Segment system (G2GS) algorithm development environment. These atmospherically corrected surface reflectance product will be the standard GOCI-II product after launch.

  15. Environmental Sciences Division Toxicology Laboratory standard operating procedures

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A.; Stewart, A.J.; Wicker, L.F.; Logsdon, G.M.

    1989-09-01

    This document was developed to provide the personnel working in the Environmental Sciences Division's Toxicology Laboratory with documented methods for conducting toxicity tests. The document consists of two parts. The first part includes the standard operating procedures (SOPs) that are used by the laboratory in conducting toxicity tests. The second part includes reference procedures from the US Environmental Protection Agency document entitled Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, upon which the Toxicology Laboratory's SOPs are based. Five of the SOPs include procedures for preparing Ceriodaphnia survival and reproduction test. These SOPs include procedures for preparing Ceriodaphnia food (SOP-3), maintaining Ceriodaphnia cultures (SOP-4), conducting the toxicity test (SOP-13), analyzing the test data (SOP-13), and conducting a Ceriodaphnia reference test (SOP-15). Five additional SOPs relate specifically to the fathead minnow (Pimephales promelas) larval survival and growth test: methods for preparing fathead minnow larvae food (SOP-5), maintaining fathead minnow cultures (SOP-6), conducting the toxicity test (SOP-9), analyzing the test data (SOP-12), and conducting a fathead minnow reference test (DOP-14). The six remaining SOPs describe methods that are used with either or both tests: preparation of control/dilution water (SOP-1), washing of glassware (SOP-2), collection and handling of samples (SOP-7), preparation of samples (SOP-8), performance of chemical analyses (SOP-11), and data logging and care of technical notebooks (SOP-16).

  16. From satellite altimetry to Argo and operational oceanography: three revolutions in oceanography

    Science.gov (United States)

    Le Traon, P. Y.

    2013-10-01

    The launch of the French/US mission Topex/Poseidon (T/P) (CNES/NASA) in August 1992 was the start of a revolution in oceanography. For the first time, a very precise altimeter system optimized for large-scale sea level and ocean circulation observations was flying. T/P alone could not observe the mesoscale circulation. In the 1990s, the ESA satellites ERS-1/2 were flying simultaneously with T/P. Together with my CLS colleagues, we demonstrated that we could use T/P as a reference mission for ERS-1/2 and bring the ERS-1/2 data to an accuracy level comparable to T/P. Near-real-time high-resolution global sea level anomaly maps were then derived. These maps have been operationally produced as part of the SSALTO/DUACS system for the last 15 yr. They are now widely used by the oceanographic community and have contributed to a much better understanding and recognition of the role and importance of mesoscale dynamics. Altimetry needs to be complemented with global in situ observations. At the end of the 90s, a major international initiative was launched to develop Argo, the global array of profiling floats. This has been an outstanding success. Argo floats now provide the most important in situ observations to monitor and understand the role of the ocean on the earth climate and for operational oceanography. This is a second revolution in oceanography. The unique capability of satellite altimetry to observe the global ocean in near-real-time at high resolution and the development of Argo were essential for the development of global operational oceanography, the third revolution in oceanography. The Global Ocean Data Assimilation Experiment (GODAE) was instrumental in the development of the required capabilities. This paper provides an historical perspective on the development of these three revolutions in oceanography which are very much interlinked. This is not an exhaustive review and I will mainly focus on the contributions we made together with many colleagues and

  17. From satellite altimetry to Argo and operational oceanography: three revolutions in oceanography

    Directory of Open Access Journals (Sweden)

    P. Y. Le Traon

    2013-10-01

    Full Text Available The launch of the French/US mission Topex/Poseidon (T/P (CNES/NASA in August 1992 was the start of a revolution in oceanography. For the first time, a very precise altimeter system optimized for large-scale sea level and ocean circulation observations was flying. T/P alone could not observe the mesoscale circulation. In the 1990s, the ESA satellites ERS-1/2 were flying simultaneously with T/P. Together with my CLS colleagues, we demonstrated that we could use T/P as a reference mission for ERS-1/2 and bring the ERS-1/2 data to an accuracy level comparable to T/P. Near-real-time high-resolution global sea level anomaly maps were then derived. These maps have been operationally produced as part of the SSALTO/DUACS system for the last 15 yr. They are now widely used by the oceanographic community and have contributed to a much better understanding and recognition of the role and importance of mesoscale dynamics. Altimetry needs to be complemented with global in situ observations. At the end of the 90s, a major international initiative was launched to develop Argo, the global array of profiling floats. This has been an outstanding success. Argo floats now provide the most important in situ observations to monitor and understand the role of the ocean on the earth climate and for operational oceanography. This is a second revolution in oceanography. The unique capability of satellite altimetry to observe the global ocean in near-real-time at high resolution and the development of Argo were essential for the development of global operational oceanography, the third revolution in oceanography. The Global Ocean Data Assimilation Experiment (GODAE was instrumental in the development of the required capabilities. This paper provides an historical perspective on the development of these three revolutions in oceanography which are very much interlinked. This is not an exhaustive review and I will mainly focus on the contributions we made together with many

  18. Applications of Geostationary Ocean Color Imager (GOCI) observations

    Science.gov (United States)

    Park, Y. J.

    2016-02-01

    Ocean color remote-sensing technique opened a new era for biological oceanography by providing the global distribution of phytoplankton biomass every a few days. It has been proved useful for a variety of applications in coastal waters as well as oceanic waters. However, most ocean color sensors deliver less than one image per day for low and middle latitude areas, and this once a day image is insufficient to resolve transient or high frequency processes. Korean Geostationary Ocean Color Imager (GOCI), the first ever ocean color instrument operated on geostationary orbit, is collecting ocean color radiometry (OCR) data (multi-band radiances at the visible to NIR spectral wavelengths) since July, 2010. GOCI has an unprecedented capability to provide eight OCR images a day with a 500m resolution for the North East Asian seas Monitoring the spatial and temporal variability is important to understand many processes occurring in open ocean and coastal environments. With a series of images consecutively acquired by GOCI, we are now able to look into (sub-)diurnal variabilities of coastal ocean color products such as phytoplankton biomass, suspended particles concentrations, and primary production. The eight images taken a day provide another way to derive maps of ocean current velocity. Compared to polar orbiters, GOCI delivers more frequent images with constant viewing angle, which enables to better monitor and thus respond to coastal water issues such as harmful algal blooms, floating green and brown algae. The frequent observation capability for local area allows us to respond timely to natural disasters and hazards. GOCI images are often useful to identify sea fog, sea ice, wild fires, volcanic eruptions, transport of dust aerosols, snow covered area, etc.

  19. The COASTALT Project: Towards an Operational Use of Satellite Altimetry in the Coastal Zone

    Science.gov (United States)

    Vignudelli, S.; Cipollini, P.; Gommenginger, C.; Snaith, H. M.; Coelho, E.; Fernandes, J.; Gomez-Henri, J.; Martin-Puig, C.; Woodworth, P. L.; Dinardo, S.; Benveniste, J. J.

    2009-12-01

    The coastal zone is the unique part of the Earth where land, sea, air and people meet. By its nature it is a complex system where all the processes that influence its functioning, whether physical, biological, chemical, social, climatological or geological, are interconnected. It requires an integrated approach benefiting from a synergy of modeling tools and multiple datasets created from space, air, land and ocean-based earth observing systems. An important property monitored from space using radar altimetry is the sea level, an index of variability of the ocean circulation. Since 1991, satellite altimetry has had exceptional success over the open ocean. However, the processing strategy used in the open ocean has not been of much success in getting sea level in the coastal zone. The advantage of current radar altimetry for coastal studies is that it can fill gaps in the vast areas around tide gauges which are running continu¬ously, but in only a few places. The coastal domain represents a challenging target for processing of satellite data in general; for satellite altimetry, the data retrieval is required to address some problems including: (1) re-tracking (important for the last 10 km next to the coast), (2) a more accurate wet troposphere path delay correction, (3) better modeling of tidal and atmospheric effects. A global record of length 17 years of raw data from a series of altimetry missions is presently available and represents a unique resource for retrospective analysis in the coastal zone. A great impetus has been given to the field by the recent launch of two major projects devoted to the development of coastal altimetry products for specific missions: PISTACH, by CNES focused on Jason-2 and COASTALT, by ESA for Envisat. In parallel, NASA is sustaining coastal altimetry research through specific R&D projects in response to the last OSTST call. This new “coastal altimetry” community, inherently interdisciplinary, has already had two well

  20. Observation operator for the assimilation of aerosol type resolving satellite measurements into a chemical transport model

    Directory of Open Access Journals (Sweden)

    M. Schroedter-Homscheidt

    2010-11-01

    Full Text Available Modelling of aerosol particles with chemical transport models is still based mainly on static emission databases while episodic emissions cannot be treated sufficiently. To overcome this situation, a coupling of chemical mass concentration modelling with satellite-based measurements relying on physical and optical principles has been developed. This study deals with the observation operator for a component-wise assimilation of satellite measurements. It treats aerosol particles classified into water soluble, water insoluble, soot, sea salt and mineral dust containing aerosol particles in the atmospheric boundary layer as separately assimilated aerosol components. It builds on a mapping of aerosol classes used both in observation and model space taking their optical and chemical properties into account. Refractive indices for primary organic carbon particles, anthropogenic particles, and secondary organic species have been defined based on a literature review. Together with a treatment of different size distributions in observations and model state, this allows transforming the background from mass concentrations into aerosol optical depths. A two-dimensional, variational assimilation is applied for component-wise aerosol optical depths. Error covariance matrices are defined based on a validation against AERONET sun photometer measurements. Analysis fields are assessed threefold: (1 through validation against AERONET especially in Saharan dust outbreak situations, (2 through comparison with the British Black Smoke and Sulphur Dioxide Network for soot-containing particles, and (3 through comparison with measurements of the water soluble components SO4, NH4, and NO3 conducted by the EMEP (European Monitoring and Evaluation Programme network. Separately, for the water soluble, the soot and the mineral dust aerosol components a bias reduction and subsequent a root mean square error reduction is observed in the

  1. Indoor environmental quality in Hellenic hospital operating rooms

    Energy Technology Data Exchange (ETDEWEB)

    Dascalaki, Elena G.; Gaglia, Athina G.; Balaras, Constantinos A. [Group Energy Conservation, Institute for Environmental Research and Sustainable Development, National Observatory of Athens, I. Metaxa and Vas. Pavlou, GR 152 36 P. Penteli (Greece); Lagoudi, Argyro [Terra Nova Ltd., Environmental Engineering Consultancy, Athens, Kaisareias 39, GR 115 27 Athens (Greece)

    2009-05-15

    Indoor environmental quality (IEQ) in hospital operating rooms (ORs) constitutes a major challenge for the proper design and operation of an energy efficient hospital. A subjective assessment of the indoor environment along with a short monitoring campaign was performed during the audits of 18 ORs at nine major Hellenic hospitals. A total of 557 medical personnel participated in an occupational survey, providing data for a subjective assessment of IEQ in the audited ORs. The OR personnel reported work related health symptoms and an assessment of indoor conditions (thermal, visual and acoustical comfort, and air quality). Overall, personnel reported an average of 2.24 work-related symptoms each, and 67.2% of respondents reported at least one. Women suffer more health symptoms than men. Special dispositions, such as smoking and allergies, increase the number of reported symptoms for male and female personnel. Personnel that perceive satisfactory indoor comfort conditions (temperature, humidity, ventilation, light, and noise) average 1.18 symptoms per person, while for satisfactory indoor air quality the average complaints are 0.99. The perception of satisfactory IEQ (satisfactory comfort conditions and air quality) reduces the average number of health complaints to 0.64 symptoms per person and improves working conditions, even in a demanding OR environment. (author)

  2. Real-time, Near Global, Low Earth Orbit Communications using Geostationary Inmarsat BGAN System as a Relay

    OpenAIRE

    Lenz, Christian; McCormick, Chris; Goldsmith, Rob; Trachtman, Eyal

    2010-01-01

    This paper describes a new service and related communications hardware that provides continuous, near global access to and from Leo Spacecraft utilizing the existing geostationary INMARSAT BGAN Satellite System as a data relay. This new communications link for LEO platforms will provide full duplex data rates from as low as 100kbps up to 475kbps with near-real time latencies and near global coverage. A team of Broad Reach Engineering (US), COM DEV Europe (UK), and INMARSAT (UK) is developing ...

  3. The added value of a visible channel to a geostationary thermal infrared instrument to monitor ozone for air quality

    OpenAIRE

    Hache, E.; Attié, J.-L.; Tourneur, C.; Ricaud, P.; L. Coret; W. A. Lahoz; El Amraoui, L.; Josse, B.; Hamer, P.; Warner, J.; Liu, X.; K. Chance; M. Höpfner; R. Spurr; V. Natraj

    2014-01-01

    Ozone is a tropospheric pollutant and plays a key role in determining the air quality that affects human wellbeing. In this study, we compare the capability of two hypothetical grating spectrometers onboard a geostationary (GEO) satellite to sense ozone in the lowermost troposphere (surface and the 0–1 km column). We consider 1 week during the Northern Hemisphere summer simulated by a chemical transport model, and use the two GEO instrument configurations to...

  4. Research-to-operations (R2O) for the Space Environmental Effects Fusion System (SEEFS) system-impact products

    Science.gov (United States)

    Quigley, Stephen

    The Space Vehicles Directorate of the Air Force Research Laboratory (AFRL/RVBX) and the Space Environment Branch of the Space and Missile Systems Center (SMC SLG/WMLE) have combined efforts to design, develop, test, implement, and validate numerical and graphical products for Air Force Space Command's (AFSPC) Space Environmental Effects Fusion System (SEEFS). These products are generated to analyze, specify, and forecast the effects of the near-earth space environment on Department of Defense weapons, navigation, communications, and surveillance systems. Jointly developed projects that have been completed as prototypes and are undergoing development for real-time operations include a SEEFS architecture and database, five system-impact products, and a high-level decision aid product. This first round of SEEFS products includes the Solar Radio Burst Effects (SoRBE) on radar and satellite communications, Radar Auroral Clutter (RAC), Scintillation Effects on radar and satellite communications (RadScint and SatScint), and Satellite Surface and Deep Charge/Discharge (Char/D) products. This presentation will provide overviews of the current system impact products, along with plans and potentials for future products expected for the SEEFS program. The overviews will include information on applicable research-to-operations (R2O) issues, to include input data coverage and quality control, output confidence levels, modeling standards, and validation efforts.

  5. Lessons Learned from the Deployment and Integration of a Microwave Sounder Based Tropical Cyclone Intensity and Surface Wind Estimation Algorithm into NOAA/NESDIS Satellite Product Operations

    Science.gov (United States)

    Longmore, S. P.; Knaff, J. A.; Schumacher, A.; Dostalek, J.; DeMaria, R.; Chirokova, G.; Demaria, M.; Powell, D. C.; Sigmund, A.; Yu, W.

    2014-12-01

    The Colorado State University (CSU) Cooperative Institute for Research in the Atmosphere (CIRA) has recently deployed a tropical cyclone (TC) intensity and surface wind radii estimation algorithm that utilizes Suomi National Polar-orbiting Partnership (S-NPP) satellite Advanced Technology Microwave Sounder (ATMS) and Advanced Microwave Sounding Unit (AMSU) from the NOAA18, NOAA19 and METOPA polar orbiting satellites for testing, integration and operations for the Product System Development and Implementation (PSDI) projects at NOAA's National Environmental Satellite, Data, and Information Service (NESDIS). This presentation discusses the evolution of the CIRA NPP/AMSU TC algorithms internally at CIRA and its migration and integration into the NOAA Data Exploitation (NDE) development and testing frameworks. The discussion will focus on 1) the development cycle of internal NPP/AMSU TC algorithms components by scientists and software engineers, 2) the exchange of these components into the NPP/AMSU TC software systems using the subversion version control system and other exchange methods, 3) testing, debugging and integration of the NPP/AMSU TC systems both at CIRA/NESDIS and 4) the update cycle of new releases through continuous integration. Lastly, a discussion of the methods that were effective and those that need revision will be detailed for the next iteration of the NPP/AMSU TC system.

  6. A Weekly Indicator of Surface Moisture Status from Satellite Data for Operational Monitoring of Crop Conditions

    Directory of Open Access Journals (Sweden)

    Francesco Nutini

    2017-06-01

    Full Text Available The triangle method has been applied to derive a weekly indicator of evaporative fraction on vegetated areas in a temperate region in Northern Italy. Daily MODIS Aqua Land Surface Temperature (MYD11A1 data has been combined with air temperature maps and 8-day composite MODIS NDVI (MOD13Q1/MYD13Q1 data to estimate the Evaporative Fraction (EF at 1 km resolution, on a daily basis. Measurements at two eddy covariance towers located within the study area have been exploited to assess the reliability of satellite based EF estimations as well as the robustness of input data. Weekly syntheses of the daily EF indicator (EFw were then derived at regional scale for the years 2010, 2011 and 2012 as a proxy of overall surface moisture condition. EFw showed a temporal behavior consistent with growing cycles and agro-practices of the main crops cultivated in the study area (rice, forages and corn. Comparison with official regional corn yield data showed that variations in EFw cumulated over summer are related with crop production shortages induced by water scarcity. These results suggest that weekly-averaged EF estimated from MODIS data is sensible to water stress conditions and can be used as an indicator of crops’ moisture conditions at agronomical district level. Advantages and disadvantages of the proposed approach to provide information useful to issue operational near real time bulletins on crop conditions at regional scale are discussed.

  7. Modelling and prediction of crop losses from NOAA polar-orbiting operational satellites

    Directory of Open Access Journals (Sweden)

    Felix Kogan

    2016-05-01

    Full Text Available Weather-related crop losses have always been a concern for farmers, governments, traders, and policy-makers for the purpose of balanced food supply/demands, trade, and distribution of aid to the nations in need. Among weather disasters, drought plays a major role in large-scale crop losses. This paper discusses utility of operational satellite-based vegetation health (VH indices for modelling cereal yield and for early warning of drought-related crop losses. The indices were tested in Saratov oblast (SO, one of the principal grain growing regions of Russia. Correlation and regression analysis were applied to model cereal yield from VH indices during 1982–2001. A strong correlation between mean SO's cereal yield and VH indices were found during the critical period of cereals, which starts two–three weeks before and ends two–three weeks after the heading stage. Several models were constructed where VH indices served as independent variables (predictors. The models were validated independently based on SO cereal yield during 1982–2012. Drought-related cereal yield losses can be predicted three months in advance of harvest and six–eight months in advance of official grain production statistic is released. The error of production losses prediction is 7%–10%. The error of prediction drops to 3%–5% in the years of intensive droughts.

  8. Program on stimulating operational private sector use of Earth observation satellite information

    Science.gov (United States)

    Eastwood, L. F., Jr.; Foshage, J.; Gomez, G.; Kirkpatrick, B.; Konig, B.; Stein, R. (Principal Investigator)

    1981-01-01

    Ideas for new businesses specializing in using remote sensing and computerized spatial data systems were developd. Each such business serves as an 'information middleman', buying raw satellite or aircraft imagery, processing these data, combining them in a computer system with customer-specific information, and marketing the resulting information products. Examples of the businesses the project designed are: (1) an agricultural facility site evaluation firm; (2) a mass media grocery price and supply analyst and forecaster; (3) a management service for privately held woodlots; (4) a brokerage for insulation and roofing contractors, based on infrared imagery; (5) an expanded real estate information service. In addition, more than twenty-five other commercially attractive ideas in agribusiness, forestry, mining, real estate, urban planning and redevelopment, and consumer information were created. The commercial feasibility of the five business was assessed. This assessment included market surveys, revenue projections, cost analyses, and profitability studies. The results show that there are large and enthusiastic markets willing to pay for the services these businesses offer, and that the businesses could operate profitably.

  9. From satellite altimetry to operational oceanography and Argo: three revolutions in oceanography (Fridtjof Nansen Medal Lecture)

    Science.gov (United States)

    Le Traon, P. Y.

    2012-04-01

    The launch of the US/French mission Topex/Poseidon (T/P) (CNES/NASA) in August 1992 was the start of a revolution in oceanography. For the first time, a very precise altimeter system optimized for large scale sea level and ocean circulation observations was flying. Topex/Poseidon revolutionized our vision and understanding of the ocean. It provided new views of the large scale seasonal and interannual sea level and ocean circulation variations. T/P alone could not observe the mesoscale circulation. In the 1990s, the ESA satellites ERS-1/2 were flying simultaneously with T/P. The ERS-1/2 orbit was well adapted for mesoscale circulation sampling but the orbit determination and altimeter performance were much less precise than for T/P. We demonstrated that we could use T/P as a reference mission for ERS-1/2 and bring the ERS-1/2 data to an accuracy level comparable to T/P. This was an essential first step for the merging of T/P and ERS-1/2. The second step required the development of a global optimal interpolation method. Near real time high resolution global sea level anomaly maps were then derived. These maps have been operationally produced as part of the SSALTO/DUACS system for the last 15 years. They are now widely used by the oceanographic community and have contributed to a much better understanding and recognition of the role and importance of mesoscale dynamics. The unique capability of satellite altimetry to observe the global ocean in near real time at high resolution was essential to the development of global ocean forecasting, a second revolution in oceanography. The Global Ocean Data Assimilation Experiment (GODAE) (1998-2008) was phased with the T/P and ERS-1/2 successors (Jason-1 and ENVISAT) and was instrumental in the development of global operational oceanography capabilities. Europe played a leading role in GODAE. In 1998, the global in-situ observing system was inadequate for the global scope of GODAE. This led to the development of Argo, an

  10. Satellite broadcasting experiments and in-orbit performance of BSE

    Science.gov (United States)

    Shimoseko, S.; Yamamoto, M.; Kajikawa, M.; Arai, K.

    1981-09-01

    The Japanese medium-scale Broadcasting Satellite for Experimental Purposes (BSE) was launched in April 1978 and placed in a geostationary orbit at 110 deg E longitude. Two transmitters with bandwidths of 50 MHz and 80 MHz were mounted on the BSE transponder to conduct experiments on various television signals; no significant variation in transmission characteristics was observed during the two-year period. Rain attenuation characteristics in the 12 GHz band were studied and a value of 6.6 dB was registered in Owase, one of the most rainy areas in Japan. The strength of the rain scatter wave of the BSE uplink signal was measured to investigate the characteristics between broadcasting satellite uplink and a terrestrial link in the 14 GHz band. Uplink power control, important for the efficient operation of satellite communications systems, was shown to compensate the variations in receiving power due to fluctuations in the beam pointing of the satellite antenna. Routine operations were performed to check the three-axis attitude control, stationkeeping, housekeeping, and the bus equipment. The electrical power, secondary propulsion, thermal control, and communication subsystems were also evaluated. The first operations 1 broadcasting satellite is scheduled to be launched early in 1984.

  11. Environmental Restoration Operations Consolidated Quarterly Report: July-September 2016

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, John R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-01

    This Environmental Restoration Operations (ER) Consolidated Quarterly Report (ER Quarterly Report) provides the status of ongoing corrective action activities being implemented at Sandia National Laboratories, New Mexico (SNL/NM) during the July, August, and September 2016 quarterly reporting period. The Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) identified for corrective action at SNL/NM are listed in Table I-1. Sections I.2.1 and I.2.2 summarize the work completed during this quarter. Section I.2.1 summarizes the quarterly activities at sites undergoing corrective action field activities. Field activities are conducted at the three groundwater AOCs (Burn Site Groundwater [BSG AOC], Technical Area [TA]-V Groundwater [TAVG AOC], and Tijeras Arroyo Groundwater [TAG AOC]). Section I.2.2 summarizes quarterly activities at sites where the New Mexico Environment Department (NMED) issued a certificate of completion and the sites are in the corrective action complete (CAC) regulatory process. Currently, SWMUs 8 and 58, 68, 149, 154, and 502 are in the CAC regulatory process. Corrective action activities are deferred at the Long Sled Track (SWMU 83), the Gun Facilities (SWMU 84), and the Short Sled Track (SWMU 240) because these three sites are active mission facilities. These three active sites are located in TA-III.

  12. Consideration of environmental and operational variability for damage diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, H. (Hoon); Worden, K.; Farrar, C. R. (Charles R.)

    2002-01-01

    Damage diagnosis is a problem that can be addressed at many levels. Stated in its most basic form, the objective is to ascertain simply if damage is present or not. In a statistical pattern recognition paradigm of this problem, the philosophy is to collect baseline signatures from a system to be monitored and to compare subsequent data to see if the new 'pattern' deviates significantly from the baseline data. Unfortunately, matters are seldom as simple as this. In reality, structures will be subjected to changing environmental and operational conditions that will affect measured signals. In this case, there may be a wide range of normal conditions, and it is clearly undesirable to signal damage simply because of a change in the environment. In this paper, a unique combination of time series analysis, neural networks, and statistical inference techniques is developed for damage classification explicitly taking into account these natural variations of the system in order to minimize false positive indication of true system changes.

  13. Mastering operational limitations of LEO satellites - the GomX-3 approach

    NARCIS (Netherlands)

    Nies, Gilles; Stenger, Marvin; Krčál, Jan; Hermanns, Holger; Bisgaard, Morten; Gerhardt, David; Haverkort, Boudewijn; Jongerden, Marijn; Larsen, Kim G.; Wognsen, Erik R.

    2016-01-01

    When working with space systems the keyword is resources. For a satellite in orbit all resources are sparse and the most critical resource of all is power. It is therefore crucial to have detailed knowledge on how much power is available for an energy harvesting satellite in orbit at every time – es

  14. Geostationary orbit Earth science platform concepts for global change monitoring

    Science.gov (United States)

    Farmer, Jeffery T.; Campbell, Thomas G.; Davis, William T.; Garn, Paul A.; King, Charles B.; Jackson, Cheryl C.

    1991-01-01

    Functionality of a geostationary spacecraft to support Earth science regional process research is identified. Most regional process studies require high spatial and temporal resolution. These high temporal resolutions are on the order of 30 minutes and may be achievable with instruments positioned in a geostationary orbit. A complement of typical existing or near term instruments are identified to take advantage of this altitude. This set of instruments is listed, and the requirements these instruments impose on a spacecraft are discussed. A brief description of the geostationary spacecraft concepts which support these instruments is presented.

  15. Lightning climatology over Jakarta, Indonesia, based on long-term surface operational, satellite, and campaign observations

    Science.gov (United States)

    Mori, Shuichi; Wu, Peiming; Yamanaka, Manabu D.; Hattori, Miki; Hamada, Jun-Ichi; Arbain, Ardhi A.; Lestari, Sopia; Sulistyowati, Reni; Syamsudin, Fadli

    2016-04-01

    Lightning frequency over Indonesian Maritime Continent (MC) is quite high (Petersen and Rutledge 2001, Christian et al. 2003, Takayabu 2006, etc). In particular, Bogor (south of Jakarta, west Jawa) had 322 days of lightning in one year (Guinness Book in 1988). Lightning causes serious damage on nature and society over the MC; forest fore, power outage, inrush/surge currents on many kinds of electronics. Lightning climatology and meso-scale characteristics of thunderstorm over the MC, in particular over Jakarta, where social damage is quite serious, were examined. We made Statistical analysis of lightning and thunderstorm based on TRMM Lightning Image Sensor (LIS) and Global Satellite Mapping of Precipitation (GSMaP) together with long-term operational surface observation data (SYNOP) in terms of diurnal, intraseasonal, monsoonal, and interannual variations. In addition, we carried out a campaign observation in February 2015 in Bogor to obtain meso-scale structure and dynamics of thunderstorm over Jakarta to focus on graupel and other ice phase particles inside by using an X-band dual-polarimetric (DP) radar. Recently, Virts et al. (2013a, b) showed comprehensive lightning climatology based on the World Wide Lightning Location Network (WWLLN). However, they also reported problems with its detection efficiency (< 10%) and small sampling frequency (< 0.1% of the time fly over tropics) by satellites. Therefore, we firstly examine in situ lightning data based on SYNOP observed by the Indonesian Agency for Meteorology, Climatology, and Geophysics (BMKG) because lightning is quite local and sporadic phenomena. We've started to analyze lightning characteristics over Jakarta region based on SYNOP as the ground truth data and GSMaP. Variability of lightning frequency around Jakarta was affected much by local conditions, e.g., topography (elevation) and proximity to the coastline. We confirmed the lightning frequency and its diurnal variation around Jakarta were much

  16. A Proposed Student Built and Operated Satellite: The Gamma Ray Burst Polarization Observer (PolOSat)

    Science.gov (United States)

    Malphrus, Benjamin K.; Jernigan, J. G.; Bloom, J. S.; Boggs, S.; Butler, N. R.; Cominsky, L. R.; Doering, T. J.; Doty, J. P.; Erb, D. M.; Figer, D. F.; Hurley, K. C.; Kimel, K. W.; Lumpp, J. E.; Labov, S.

    2009-01-01

    The Polarization Observer (PolOSat) is small satellite mission whose goal is to measure the polarization of bright gamma-ray bursts (GRBs). A precise measurement of the polarization of GRBs will constrain the models of radiative mechanisms associated with GRBs as supermassive stars undergo collapse into black holes. The primary goal of PolOSat is the detection of strongly linearly polarized GRBs (≥20; %) and/or to set upper limits on polarization for a few GRBs (≤30; %). PolOSat is designed to have a sensitivity to polarization that exceeds all prior experiments. The primary scientific instrument, the Gamma-ray Polarization Monitor (GPM) is based on a CMOS hybrid array that is optimized for performance in the low energy gamma-ray band (20-200 keV). The GPM has two passive Beryllium (Be) scattering elements which provide signal gamma-rays within a large field of view (two 45 degree radius cones). Gamma-rays impinge on the Be scatterers and are then Compton scattered into the CZT arrays and detected. A bright GRB (occurring 5 times a year) will produce 100,000s of direct gamma-rays and 1000s of Compton scattered gamma-rays detected by the CZT array. The PolOSat satellite with the GPM is rotated ( 1 Hz) inducing a strong temporal component at twice the spin frequency that is proportional to the linear polarization in the GRB signal. The team includes the University of California, Berkeley, the Kentucky Space Program including the Kentucky Science and Technology Corporation, the University of Kentucky, Morehead State University, Sonoma State University, the Rochester Institute of Technology, the University of Rochester and the Lawrence Livermore National Laboratory. PolOSat features significant participation by undergraduate and graduate students in all phases of development and operation of the spacecraft and instruments and in data analysis. PolOSat was initially proposed as a small complete NASA Mission of Opportunity and is currently seeking funding.

  17. Strategic Stakeholder Communication and Co-operation in Environmental Management

    DEFF Research Database (Denmark)

    Madsen, Henning; Ulhøi, John Parm

    2002-01-01

    Ever since the introduction of the first major Danish environmental protection law in 1974, environmental regulation has been instrumental in pushing industry towards adopting environmentally less harmful behaviour. However, since the early 1990s, pressure from a growing number of other...

  18. NOAA Climate Data Record (CDR) of Gridded Satellite Data from ISCCP B1 (GridSat-B1) Infrared Channel Brightness Temperature, Version 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Gridded Satellite (GridSat-B1) data provides a uniform set of quality controlled geostationary satellite observations for the visible, infrared window and...

  19. Post-Launch Calibration and Testing of Space Weather Instruments on GOES-R Satellite

    Science.gov (United States)

    Tadikonda, Sivakumara S. K.; Merrow, Cynthia S.; Kronenwetter, Jeffrey A.; Comeyne, Gustave J.; Flanagan, Daniel G.; Todirita, Monica

    2016-01-01

    The Geostationary Operational Environmental Satellite - R (GOES-R) is the first of a series of satellites to be launched, with the first launch scheduled for October 2016. The three instruments - Solar Ultra Violet Imager (SUVI), Extreme ultraviolet and X-ray Irradiance Sensor (EXIS), and Space Environment In-Situ Suite (SEISS) provide the data needed as inputs for the product updates National Oceanic and Atmospheric Administration (NOAA) provides to the public. SUVI is a full-disk extreme ultraviolet imager enabling Active Region characterization, filament eruption, and flare detection. EXIS provides inputs to solar backgrounds/events impacting climate models. SEISS provides particle measurements over a wide energy-and-flux range that varies by several orders of magnitude and these data enable updates to spacecraft charge models for electrostatic discharge. EXIS and SEISS have been tested and calibrated end-to-end in ground test facilities around the United States. Due to the complexity of the SUVI design, data from component tests were used in a model to predict on-orbit performance. The ground tests and model updates provided inputs for designing the on-orbit calibration tests. A series of such tests have been planned for the Post-Launch Testing (PLT) of each of these instruments, and specific parameters have been identified that will be updated in the Ground Processing Algorithms, on-orbit parameter tables, or both. Some of SUVI and EXIS calibrations require slewing them off the Sun, while no such maneuvers are needed for SEISS. After a six-month PLT period the GOES-R is expected to be operational. The calibration details are presented in this paper.

  20. Post-Launch Calibration and Testing of Space Weather Instruments on GOES-R Satellite

    Science.gov (United States)

    Tadikonda, S. K.; Merrow, Cynthia S.; Kronenwetter, Jeffrey A.; Comeyne, Gustave J.; Flanagan, Daniel G.; Todrita, Monica

    2016-01-01

    The Geostationary Operational Environmental Satellite - R (GOES-R) is the first of a series of satellites to be launched, with the first launch scheduled for October 2016. The three instruments Solar UltraViolet Imager (SUVI), Extreme ultraviolet and X-ray Irradiance Sensor (EXIS), and Space Environment In-Situ Suite (SEISS) provide the data needed as inputs for the product updates National Oceanic and Atmospheric Administration (NOAA) provides to the public. SUVI is a full-disk extreme ultraviolet imager enabling Active Region characterization, filament eruption, and flare detection. EXIS provides inputs to solar back-ground-sevents impacting climate models. SEISS provides particle measurements over a wide energy-and-flux range that varies by several orders of magnitude and these data enable updates to spacecraft charge models for electrostatic discharge. EXIS and SEISS have been tested and calibrated end-to-end in ground test facilities around the United States. Due to the complexity of the SUVI design, data from component tests were used in a model to predict on-orbit performance. The ground tests and model updates provided inputs for designing the on-orbit calibration tests. A series of such tests have been planned for the Post-Launch Testing (PLT) of each of these instruments, and specific parameters have been identified that will be updated in the Ground Processing Algorithms, on-orbit parameter tables, or both. Some of SUVI and EXIS calibrations require slewing them off the Sun, while no such maneuvers are needed for SEISS. After a six-month PLT period the GOES-R is expected to be operational. The calibration details are presented in this paper.

  1. Post-launch calibration and testing of space weather instruments on GOES-R satellite

    Science.gov (United States)

    Tadikonda, Sivakumara S. K.; Merrow, Cynthia S.; Kronenwetter, Jeffrey A.; Comeyne, Gustave J.; Flanagan, Daniel G.; Todirita, Monica

    2016-05-01

    The Geostationary Operational Environmental Satellite - R (GOES-R) is the first of a series of satellites to be launched, with the first launch scheduled for October 2016. The three instruments -- Solar UltraViolet Imager (SUVI), Extreme ultraviolet and X-ray Irradiance Sensor (EXIS), and Space Environment In-Situ Suite (SEISS) provide the data needed as inputs for the product updates National Oceanic and Atmospheric Administration (NOAA) provides to the public. SUVI is a full-disk extreme ultraviolet imager enabling Active Region characterization, filament eruption, and flare detection. EXIS provides inputs to solar backgrounds/events impacting climate models. SEISS provides particle measurements over a wide energy-and-flux range that varies by several orders of magnitude and these data enable updates to spacecraft charge models for electrostatic discharge. EXIS and SEISS have been tested and calibrated end-to-end in ground test facilities around the United States. Due to the complexity of the SUVI design, data from component tests were used in a model to predict on-orbit performance. The ground tests and model updates provided inputs for designing the on-orbit calibration tests. A series of such tests have been planned for the Post-Launch Testing (PLT) of each of these instruments, and specific parameters have been identified that will be updated in the Ground Processing Algorithms, on-orbit parameter tables, or both. Some of SUVI and EXIS calibrations require slewing them off the Sun, while no such maneuvers are needed for SEISS. After a six-month PLT period the GOES-R is expected to be operational. The calibration details are presented in this paper.

  2. Broadcast satellite service: The international dimension

    Science.gov (United States)

    Samara, Noah

    1991-09-01

    The dawn of the 1990's has witnessed the birth of a new satellite service - satellite sound broadcasting. This new service is characterized by digital transmission at data rates up to 256 kb/s from satellites in geostationary orbit to small, low-cost, mobile and portable receivers. The satellite sound broadcasting service is a logical step beyond navigation satellite service, such as that provided by the GPS Navstar system. The mass market appeal of satellite sound broadcasting in the area of lightsat technology and low-cost digital radios has greatly facilitated the financing of this type of space service.

  3. Operational experience from the satellite fields Statfjord Nord and East; Driftserfaringer fra satellittfeltene Statfjord Nord og Oest

    Energy Technology Data Exchange (ETDEWEB)

    Retterdal, Atle; Hansen, Hans Birger [Statoil, Stavanger (Norway)

    1999-07-01

    Since production started on the satellite fields Statfjord Nord and East in 1995 and 1994, respectively, some opportunities for improvement have been discovered and realized both with respect to the subsea systems and the operational routines and philosophy. This presentation discusses the improvement projects. It is known from experience that creative ideas usually originate at the interfaces between supplier/customer, engineers with different backgrounds, or between different technologies. The interface between supplier and operator is very important for discovering creative solutions. The interface between Statoil and the suppliers of underwater equipment is not sufficiently well developed on the operational side.

  4. Trace Gas Measurements from the GeoTASO and GCAS Airborne Instruments: An Instrument and Algorithm Test-Bed for Air Quality Observations from Geostationary Orbit

    Science.gov (United States)

    Nowlan, C. R.; Liu, X.; Janz, S. J.; Leitch, J. W.; Al-Saadi, J. A.; Chance, K.; Cole, J.; Delker, T.; Follette-Cook, M. B.; Gonzalez Abad, G.; Good, W. S.; Kowalewski, M. G.; Loughner, C.; Pickering, K. E.; Ruppert, L.; Soo, D.; Szykman, J.; Valin, L.; Zoogman, P.

    2016-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) and the GEO-CAPE Airborne Simulator (GCAS) instruments are pushbroom sensors capable of making remote sensing measurements of air quality and ocean color. Originally developed as test-bed instruments for the Geostationary Coastal and Air Pollution Events (GEO-CAPE) decadal survey, these instruments are now also part of risk reduction for the upcoming Tropospheric Emissions: Monitoring of Pollution (TEMPO) and Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite missions, and will provide validation capabilities after the satellite instruments are in orbit. GeoTASO and GCAS flew on two different aircraft in their first intensive air quality field campaigns during the DISCOVER-AQ missions over Texas in 2013 and Colorado in 2014. GeoTASO was also deployed in 2016 during the KORUS-AQ field campaign to make measurements of trace gases and aerosols over Korea. GeoTASO and GCAS collect spectra of backscattered solar radiation in the UV and visible that can be used to derive 2-D maps of trace gas columns below the aircraft at spatial resolutions on the order of 250 x 500 m. We present spatially resolved maps of trace gas retrievals of ozone, nitrogen dioxide, formaldehyde and sulfur dioxide over urban areas and power plants from flights during the field campaigns, and comparisons with data from ground-based spectrometers, in situ monitoring instruments, and satellites.

  5. A Temporal Map in Geostationary Orbit: The Cover Etching on the EchoStar XVI Artifact

    CERN Document Server

    Weisberg, J M

    2012-01-01

    Geostationary satellites are unique among orbital spacecraft in that they experience no appreciable atmospheric drag. After concluding their respective missions, geostationary spacecraft remain in orbit virtually in perpetuity. As such, they represent some of human civilization's longest lasting artifacts. With this in mind, the EchoStar XVI satellite, to be launched in fall 2012, will play host to a time capsule intended as a message for the deep future. Inspired in part by the Pioneer Plaque and Voyager Golden Records, the EchoStar XVI Artifact is a pair of gold-plated aluminum jackets housing a small silicon disc containing one hundred photographs. The Cover Etching, the subject of this paper, is etched onto one of the two jackets. It is a temporal map consisting of a star chart, pulsar timings, and other information describing the epoch from which EchoStar XVI came. The pulsar sample consists of 13 rapidly rotating objects, 5 of which are especially stable, having spin periods < 10 ms and extremely sma...

  6. Geostationary Collocation: Case Studies for Optimal Maneuvers

    Science.gov (United States)

    2016-03-01

    Microcosm Inc., 1994, pp. 123. Soop [13] adds that larger satellites, with large solar panels , will have bigger probabilities of a collision...satellite; Ss: is the sidereal angle of the Sun. To find this position in STK, we used a Calculation Object called Local Apparent Solar Longitude...10 2. The Solar and Lunar Perturbations ................................................ 13 3. The Solar Radiation Perturbation

  7. Orbit computation of the TELECOM-2D satellite with a Genetic Algorithm

    Science.gov (United States)

    Deleflie, Florent; Coulot, David; Vienne, Alain; Decosta, Romain; Richard, Pascal; Lasri, Mohammed Amjad

    2014-07-01

    In order to test a preliminary orbit determination method, we fit an orbit of the geostationary satellite TELECOM-2D, as if we did not know any a priori information on its trajectory. The method is based on a genetic algorithm coupled to an analytical propagator of the trajectory, that is used over a couple of days, and that uses a whole set of altazimutal data that are acquired by the tracking network made up of the two TAROT telescopes. The adjusted orbit is then compared to a numerical reference. The method is described, and the results are analyzed, as a step towards an operational method of preliminary orbit determination for uncatalogued objects.

  8. CTS /Hermes/ - United States experiments and operations summary. [Communications Technology Satellite

    Science.gov (United States)

    Donoughe, P. L.; Hunczak, H. R.

    1977-01-01

    The U.S. experiments conducted with the Communications Technology Satellite, a joint Canadian-U.S. venture launched in 1976, are discussed. The 14/12 GHz frequencies employed by the 200-W transmitter on board the satellite provide two-way television and voice communications. Applications of the satellite in the categories of health care, community services and education are considered; experiments have also made use of the special properties of the super-high frequency band (e.g. link characterization and digital communications). Time-sharing of the 14/12 GHz communication between the U.S. and Canada has functioned well.

  9. Geostationary Surface and Insolation Products (GSIP), Version 3

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Geostationary Surface and Insolation Products (GSIP) Version 3 contains upwelling and downwelling shortwave (0.2-4.0 um) and visible (0.4-0.7 um) radiative...

  10. Initial Operation of the Nuclear Thermal Rocket Element Environmental Simulator

    Science.gov (United States)

    Emrich, William J., Jr.; Pearson, J. Boise; Schoenfeld, Michael P.

    2015-01-01

    The Nuclear Thermal Rocket Element Environmental Simulator (NTREES) facility is designed to perform realistic non-nuclear testing of nuclear thermal rocket (NTR) fuel elements and fuel materials. Although the NTREES facility cannot mimic the neutron and gamma environment of an operating NTR, it can simulate the thermal hydraulic environment within an NTR fuel element to provide critical information on material performance and compatibility. The NTREES facility has recently been upgraded such that the power capabilities of the facility have been increased significantly. At its present 1.2 MW power level, more prototypical fuel element temperatures nay now be reached. The new 1.2 MW induction heater consists of three physical units consisting of a transformer, rectifier, and inverter. This multiunit arrangement facilitated increasing the flexibility of the induction heater by more easily allowing variable frequency operation. Frequency ranges between 20 and 60 kHz can accommodated in the new induction heater allowing more representative power distributions to be generated within the test elements. The water cooling system was also upgraded to so as to be capable of removing 100% of the heat generated during testing In this new higher power configuration, NTREES will be capable of testing fuel elements and fuel materials at near-prototypic power densities. As checkout testing progressed and as higher power levels were achieved, several design deficiencies were discovered and fixed. Most of these design deficiencies were related to stray RF energy causing various components to encounter unexpected heating. Copper shielding around these components largely eliminated these problems. Other problems encountered involved unexpected movement in the coil due to electromagnetic forces and electrical arcing between the coil and a dummy test article. The coil movement and arcing which were encountered during the checkout testing effectively destroyed the induction coil in use at

  11. Quest for learning: A study of teachers' perceptions of the Satellite Education and Environmental Research Program

    Science.gov (United States)

    Ahern, Kathryn A.

    The purpose of this study was to examine the perceptions of teachers who participated in the Satellite Education and Environmental Research (SEER) Program Water Project, a curriculum design course developed at the University of Nebraska-Lincoln. The distance education course was a complex intervention which used the Nebraska Mathematics and Science Initiative's Model Program criteria for inquiry-based curriculum. Teachers formed communities of inquiry, experienced scientific inquiry processes, integrated different disciplines to create new thematic science curricula, and were encouraged to employ innovative pedagogical practices. National Science Education Standards and Nebraska Mathematics and Science Frameworks were consulted to develop important science process skills and concepts. Multicultural science education was addressed through investigation of local water issues. Teachers were encouraged to form community partnerships, supported with testing materials for conducting scientific research, and expected to use computer technology. Grounded theory was used to examine interviews of 26 participants for their perceptions of the effects of the intervention on their teaching strategies. The self-reports were triangulated through the external evaluation report, classroom artifacts, and a limited number of observations of classroom and field activities. Open coding was used to categorize the interview responses and to propose relationships among them. The central phenomenon that emerged from the axial and select coding was the changed focus: teaching science more thematically. Three theoretical propositions were posed to guide further inquiry: (1) teachers need opportunities and resources to experience science as an authentic, tenable, and realistic process if they are to develop curriculum and focus classroom activities on scientific inquiry; (2) autonomous learning communities must be fostered at downlink sites if distance learning experiences are to affect

  12. Developing a Global, Short-Term Fire Weather Forecasting Tool Using NWP Input Meteorology and Satellite Fire Data

    Science.gov (United States)

    Peterson, D. A.; Hyer, E. J.; Wang, J.

    2011-12-01

    In order to meet the emerging need for better estimates of biomass burning emissions in air quality and climate models, a statistical model is developed to characterize the effect of a given set of meteorological conditions on the following day's fire activity, including ignition and spread potential. Preliminary tests are conducted within several spatial domains of the North American boreal forest by investigating a wide range of meteorological information, including operational fire weather forecasting indices, such as the Canadian Forest Fire Danger Rating System (CFFDRS). However, rather than using local noon surface station data, the six components of the CFFDRS are modified to use inputs from the North America Regional Reanalysis (NARR) and the Navy's Operational Global Atmospheric Prediction System Model (NOGAPS). The Initial Spread Index (ISI) and the Fire Weather Index (FWI) are shown to be the most relevant components of the CFFDRS for short-term changes in fire activity. However, both components are found to be highly sensitive to variations in relative humidity and wind speed input data. Several variables related to fire ignition from dry lighting, such as instability and the synoptic pattern, are also incorporated. Cases of fire ignition, growth, decay, and extinction are stratified using satellite fire observations from the Geostationary Operational Environmental Satellites (GOES) and the MODerate Resolution Imaging Spectroradiometer (MODIS) and compared to the available suite of meteorological information. These comparisons reveal that combinations of meteorological variables, such as the FWI, ISI, and additional indices developed for this study, produce the greatest separability between major fire growth and decay cases, which are defined by the observed change in fire counts and fire radiative power. This information is used to derive statistical relationships affecting the short-term changes in fire activity and subsequently applied to other

  13. Use and Assessment of Multi-Spectral Satellite Imagery in NWS Operational Forecasting Environments

    Science.gov (United States)

    Molthan, Andrew; Fuell, Kevin; Stano, Geoffrey; McGrath, Kevin; Schultz, Lori; LeRoy, Anita

    2015-01-01

    NOAA's Satellite Proving Grounds have established partnerships between product developers and NWS WFOs for the evaluation of new capabilities from the GOES-R and JPSS satellite systems. SPoRT has partnered with various WFOs to evaluate multispectral (RGB) products from MODIS, VIIRS and Himawari/AHI to prepare for GOES-R/ABI. Assisted through partnerships with GINA, UW/CIMSS, NOAA, and NASA Direct Broadcast capabilities.

  14. Global Environmental Micro Sensors Test Operations in the Natural Environment (GEMSTONE

    Directory of Open Access Journals (Sweden)

    Mark ADAMS

    2007-10-01

    Full Text Available ENSCO, Inc. is developing an innovative atmospheric observing system known as Global Environmental Micro Sensors (GEMS. The GEMS concept features an integrated system of miniaturized in situ, airborne probes measuring temperature, relative humidity, pressure, and vector wind velocity. In order for the probes to remain airborne for long periods of time, their design is based on a helium-filled super-pressure balloon. The GEMS probes are neutrally buoyant and carried passively by the wind at predetermined levels. Each probe contains on-board satellite communication, power generation, processing, and geolocation capabilities. ENSCO has partnered with the National Aeronautics and Space Administration’s Kennedy Space Center (KSC Weather Office for a project called GEMS Test Operations in the Natural Environment (GEMSTONE. The goal of the GEMSTONE project was to build and field-test a small system of prototype probes in the Earth’s atmosphere. This paper summarizes the 9-month GEMSTONE project (Sep 2006 – May 2007 including probe and system engineering as well as experiment design and data analysis from laboratory and field tests. These tests revealed issues with reliability, sensor accuracy, electronics miniaturization, and sub-system optimization. Nevertheless, the success of the third and final free flight test provides a solid foundation to move forward in follow on projects addressing these issues as highlighted in the technology roadmap for future GEMS development.

  15. Satellite Cloud Assimilation in the Weather Research & Forecasting (WRF) Model and its Impact on Air Quality Simulations

    Science.gov (United States)

    Pour Biazar, Arastoo; White, Andrew; McNider, Richard; Khan, Maudood; Dornblaser, Bright; Wu, Yuling

    2017-04-01

    Clouds have a significant role in air quality simulations as they modulate biogenic hydrocarbon emissions and photolysis rates, impact boundary-layer development, lead to deep vertical mixing of pollutants and precursors, and induce aqueous phase chemistry. Unfortunately, numerical meteorological models still have difficulty in creating clouds in the right place and time compared to observed clouds. This is especially the case when synoptic-scale forcing is weak, as often is the case during air pollution episodes in the Southeast United States. Thus, poor representation of clouds impacts the photochemical model's ability in simulating the air quality. However, since satellites provide the best observational platform for defining the formation and location of clouds, satellite observations can be of great value in retrospective simulations. Here, we present results from a recent activity in which the Geostationary Operational Environmental Satellite (GOES) derived cloud fields are assimilated within Weather Research and Forecasting (WRF) model to improve simulated clouds. The assimilation technique dynamically support cloud formation/dissipation within WRF based on GOES observations. The technique uses observations to identify model cloud errors, estimates a target vertical velocity and moisture to create/remove clouds, and adjust the flow field accordingly. The technique was implemented and tested in WRF for a month-long simulation during August 2006, and was tested in an air quality simulation over the period of August-September 2013 (NASA's Discover-AQ field campaign). The cloud assimilation on the average improved model cloud simulation by 15%. The cloud correction not only improved the spatial and temporal distribution of clouds, it also improved boundary layer temperature, humidity, and wind speed. These improvements in meteorological fields directly impacted the air quality simulations and altered trace gas concentrations. For air quality simulations, WRF

  16. Mass density at geostationary orbit and apparent mass refilling

    Science.gov (United States)

    Denton, R. E.; Takahashi, Kazue; Amoh, Justice; Singer, H. J.

    2016-04-01

    We used the inferred equatorial mass density ρm,eq based on measurements of Alfvén wave frequencies measured by the GOES satellites during 1980-1991 in order to construct a number of different models of varying complexity for the equatorial mass density at geostationary orbit. The most complicated models are able to account for 66% of the variance with a typical variation from actual values of a factor of 1.56. The factors that influenced ρm,eq in the models were, in order of decreasing importance, the F10.7 EUV index, magnetic local time, the solar wind dynamic pressure Pdyn, the phase of the year, and the solar wind BZ (GSM Z direction). During some intervals, some of which were especially geomagnetically quiet, ρm,eq rose to values that were significantly higher than those predicted by our models. For 10 especially quiet intervals, we examined long-term (>1 day) apparent refilling, the increase in ρm,eq at a fixed location. We found that the behavior of ρm,eq varies for different events. In some cases, there is significant apparent refilling, whereas in other cases ρm,eq stays the same or even decreases slightly. Nevertheless, we showed that on average, ρm,eq increases exponentially during quiet intervals. There is variation of apparent refilling with respect to the phase of the solar cycle. On the third day of apparent refilling, ρm,eq has on average a similar value at solar maximum or solar minimum, but at solar maximum, ρm,eq begins with a larger value and rises relatively less than at solar minimum.

  17. Initial Design and Concept of Operations for a Clandestine Data Relay UUV To Circumvent Jungle Canopy Effects on Satellite Communications

    Science.gov (United States)

    2011-09-01

    18 Grant Ehrlich, "Lithium-Ion Batteries ," In Handbook of Batteries (Third Edition), ed. D. Linden and T. Reddy, (New York: McGraw...Ehrlich, Grant. "Lithium-Ion Batteries ." In Handbook of Batteries (Third Edition), edited by D. Linden and T. Reddy, 35.1–35.94, New York...Concept of Operations for a Clandestine Data Relay UUV To Circumvent Jungle Canopy Effects on Satellite Communications 6. AUTHOR( S ) Michael G.Tyree

  18. The Use of Satellite Data in the Operational 3D Coupled Ecosystem Model of the Baltic Sea (3D Cembs

    Directory of Open Access Journals (Sweden)

    Nowicki Artur

    2016-01-01

    Full Text Available The objective of this paper is to present an automatic monitoring system for the 3D CEMBS model in the operational version. This predictive, eco hydrodynamic model is used as a tool to control the conditions and bio productivity of the Baltic sea environment and to forecast physical and ecological changes in the studied basin. Satellite-measured data assimilation is used to constrain the model and achieve higher accuracy of its results.

  19. Multi-Objective Reinforcement Learning for Cognitive Radio-Based Satellite Communications

    Science.gov (United States)

    Ferreira, Paulo Victor R.; Paffenroth, Randy; Wyglinski, Alexander M.; Hackett, Timothy M.; Bilen, Sven G.; Reinhart, Richard C.; Mortensen, Dale J.

    2016-01-01

    Previous research on cognitive radios has addressed the performance of various machine-learning and optimization techniques for decision making of terrestrial link properties. In this paper, we present our recent investigations with respect to reinforcement learning that potentially can be employed by future cognitive radios installed onboard satellite communications systems specifically tasked with radio resource management. This work analyzes the performance of learning, reasoning, and decision making while considering multiple objectives for time-varying communications channels, as well as different cross-layer requirements. Based on the urgent demand for increased bandwidth, which is being addressed by the next generation of high-throughput satellites, the performance of cognitive radio is assessed considering links between a geostationary satellite and a fixed ground station operating at Ka-band (26 GHz). Simulation results show multiple objective performance improvements of more than 3.5 times for clear sky conditions and 6.8 times for rain conditions.

  20. 75 FR 14638 - FirstEnergy Nuclear Operating Company; Perry Nuclear Power Plant; Environmental Assessment and...

    Science.gov (United States)

    2010-03-26

    ... COMMISSION FirstEnergy Nuclear Operating Company; Perry Nuclear Power Plant; Environmental Assessment and...Energy Nuclear Operating Company (FENOC, the licensee), for operation of the Perry Nuclear Power Plant... Manager, Plant Licensing Branch III-2, Division of Operating Reactor Licensing, Office of Nuclear...

  1. Exploiting Satellite Remote-Sensing Data in Fine Particulate Matter Characterization for Serving the Environmental Public Health Tracking Network (EPHTN): The HELIX-Atlanta Experience and NPOESS Implications

    Science.gov (United States)

    Al-Hamdan, Mohammad Z.; Crosson, William L.; Limaye, Ashutosh S.; Rickman, Douglas L.; Quattrochi, Dale A.; Estes, Maurice G.; Qualters, Judith R.; Sinclair, Amber H.; Tolsma, Dennis D.; Adeniyi, Kafayat A.

    2008-01-01

    As part of the U.S. National Environmental Public Health Tracking Network (EPHTN), the National Center for Environmental Health (NCEH) at the U.S. Centers for Disease Control and Prevention (CDC) led a project in collaboration with the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center (MSFC) called Health and Environment Linked for Information Exchange (HELIX-Atlanta). Under HELIX-Atlanta, pilot projects were conducted to develop methods to better characterize exposure; link health and environmental datasets; and analyze spatial/temporal relationships. This paper describes and demonstrates different techniques for surfacing daily environmental hazards data of particulate matter with aerodynamic diameter less than or equal to 2.5 micrometers (PM(sub 2.5) for the purpose of integrating respiratory health and environmental data for the CDC's pilot study of HELIX-Atlanta. It describes a methodology for estimating ground-level continuous PM(sub 2.5) concentrations using spatial surfacing techniques and leveraging NASA Moderate Resolution Imaging Spectrometer (MODIS) data to complement the U.S. Environmental Protection Agency (EPA) ground observation data. The study used measurements of ambient PM(sub 2.5) from the EPA database for the year 2003 as well as PM(sub 2.5) estimates derived from NASA's MODIS data. Hazard data have been processed to derive the surrogate exposure PM(sub 2.5) estimates. The paper has shown that merging MODIS remote sensing data with surface observations of PM(sub 2.5), may provide a more complete daily representation of PM(sub 2.5), than either data set alone would allow, and can reduce the errors in the PM(sub 2.5) estimated surfaces. Future work in this area should focus on combining MODIS column measurements with profile information provided by satellites like the National Polar-orbiting Operational Environmental Satellite System (NPOESS). The Visible Infrared Imager/Radiometer Suite (VIIRS) and the Aerosol

  2. Environmental Management Model for Road Maintenance Operation Involving Community Participation

    Science.gov (United States)

    Triyono, A. R. H.; Setyawan, A.; Sobriyah; Setiono, P.

    2017-07-01

    Public expectations of Central Java, which is very high on demand fulfillment, especially road infrastructure as outlined in the number of complaints and community expectations tweeter, Short Mail Massage (SMS), e-mail and public reports from various media, Highways Department of Central Java province requires development model of environmental management in the implementation of a routine way by involving the community in order to fulfill the conditions of a representative, may serve road users safely and comfortably. This study used survey method with SEM analysis and SWOT with Latent Independent Variable (X), namely; Public Participation in the regulation, development, construction and supervision of road (PSM); Public behavior in the utilization of the road (PMJ) Provincial Road Service (PJP); Safety in the Provincial Road (KJP); Integrated Management System (SMT) and latent dependent variable (Y) routine maintenance of the provincial road that is integrated with the environmental management system and involve the participation of the community (MML). The result showed the implementation of routine maintenance of road conditions in Central Java province has yet to implement an environmental management by involving the community; Therefore developed environmental management model with the results of H1: Community Participation (PSM) has positive influence on the Model of Environmental Management (MML); H2: Behavior Society in Jalan Utilization (PMJ) positive effect on Model Environmental Management (MML); H3: Provincial Road Service (PJP) positive effect on Model Environmental Management (MML); H4: Safety in the Provincial Road (KJP) positive effect on Model Environmental Management (MML); H5: Integrated Management System (SMT) has positive influence on the Model of Environmental Management (MML). From the analysis obtained formulation model describing the relationship / influence of the independent variables PSM, PMJ, PJP, KJP, and SMT on the dependent variable

  3. Satellite Ocean Heat Content Suite from 2015-07-01 to 2015-07-31 (NCEI Accession 0139408)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains an operational Satellite Ocean Heat Content Suite (SOHCS) product generated by NOAA National Environmental Satellite, Data, and...

  4. Satellite Ocean Heat Content Suite from 2015-10-01 to 2015-10-31 (NCEI Accession 0139415)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains an operational Satellite Ocean Heat Content Suite (SOHCS) product generated by NOAA National Environmental Satellite, Data, and...

  5. Satellite Ocean Heat Content Suite from 2013-05-01 to 2013-05-31 (NCEI Accession 0139509)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains an operational Satellite Ocean Heat Content Suite (SOHCS) product generated by NOAA National Environmental Satellite, Data, and...

  6. Satellite Ocean Heat Content Suite from 2014-01-01 to 2014-01-31 (NCEI Accession 0139519)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains an operational Satellite Ocean Heat Content Suite (SOHCS) product generated by NOAA National Environmental Satellite, Data, and...

  7. Satellite Ocean Heat Content Suite from 2014-09-01 to 2014-09-30 (NCEI Accession 0139314)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains an operational Satellite Ocean Heat Content Suite (SOHCS) product generated by NOAA National Environmental Satellite, Data, and...

  8. Satellite Ocean Heat Content Suite from 2013-10-01 to 2013-10-31 (NCEI Accession 0139513)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains an operational Satellite Ocean Heat Content Suite (SOHCS) product generated by NOAA National Environmental Satellite, Data, and...

  9. Satellite Ocean Heat Content Suite from 2013-07-01 to 2013-07-31 (NCEI Accession 0139511)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains an operational Satellite Ocean Heat Content Suite (SOHCS) product generated by NOAA National Environmental Satellite, Data, and...

  10. Satellite Ocean Heat Content Suite from 2016-02-01 to 2016-02-29 (NCEI Accession 0144930)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains an operational Satellite Ocean Heat Content Suite (SOHCS) product generated by NOAA National Environmental Satellite, Data, and...

  11. Satellite Ocean Heat Content Suite from 2013-12-01 to 2013-12-31 (NCEI Accession 0139518)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains an operational Satellite Ocean Heat Content Suite (SOHCS) product generated by NOAA National Environmental Satellite, Data, and...

  12. Satellite Ocean Heat Content Suite from 2014-07-01 to 2014-07-31 (NCEI Accession 0139262)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains an operational Satellite Ocean Heat Content Suite (SOHCS) product generated by NOAA National Environmental Satellite, Data, and...

  13. Satellite Ocean Heat Content Suite from 2016-08-01 to 2016-08-31 (NCEI Accession 0156473)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains an operational Satellite Ocean Heat Content Suite (SOHCS) product generated by NOAA National Environmental Satellite, Data, and...

  14. Satellite Ocean Heat Content Suite from 2016-01-01 to 2016-01-31 (NCEI Accession 0141305)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains an operational Satellite Ocean Heat Content Suite (SOHCS) product generated by NOAA National Environmental Satellite, Data, and...

  15. Satellite Ocean Heat Content Suite from 2013-02-01 to 2013-02-28 (NCEI Accession 0139506)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains an operational Satellite Ocean Heat Content Suite (SOHCS) product generated by NOAA National Environmental Satellite, Data, and...

  16. Satellite Ocean Heat Content Suite from 2015-11-01 to 2015-11-30 (NCEI Accession 0139416)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains an operational Satellite Ocean Heat Content Suite (SOHCS) product generated by NOAA National Environmental Satellite, Data, and...

  17. Satellite Ocean Heat Content Suite from 2013-01-01 to 2013-01-31 (NCEI Accession 0139505)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains an operational Satellite Ocean Heat Content Suite (SOHCS) product generated by NOAA National Environmental Satellite, Data, and...

  18. Satellite Ocean Heat Content Suite from 2016-04-01 to 2016-04-30 (NCEI Accession 0149717)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains an operational Satellite Ocean Heat Content Suite (SOHCS) product generated by NOAA National Environmental Satellite, Data, and...

  19. Satellite Ocean Heat Content Suite from 2012-09-01 to 2012-09-30 (NCEI Accession 0139501)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains an operational Satellite Ocean Heat Content Suite (SOHCS) product generated by NOAA National Environmental Satellite, Data, and...

  20. Satellite Ocean Heat Content Suite from 2014-10-01 to 2014-10-31 (NCEI Accession 0139388)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains an operational Satellite Ocean Heat Content Suite (SOHCS) product generated by NOAA National Environmental Satellite, Data, and...

  1. Satellite Ocean Heat Content Suite from 2014-03-01 to 2014-03-31 (NCEI Accession 0139520)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains an operational Satellite Ocean Heat Content Suite (SOHCS) product generated by NOAA National Environmental Satellite, Data, and...

  2. Satellite Ocean Heat Content Suite from 2016-06-01 to 2016-06-30 (NCEI Accession 0155212)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains an operational Satellite Ocean Heat Content Suite (SOHCS) product generated by NOAA National Environmental Satellite, Data, and...

  3. Satellite Ocean Heat Content Suite from 2012-12-01 to 2012-12-30 (NCEI Accession 0139504)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains an operational Satellite Ocean Heat Content Suite (SOHCS) product generated by NOAA National Environmental Satellite, Data, and...

  4. Satellite Ocean Heat Content Suite from 2014-12-01 to 2014-12-31 (NCEI Accession 0139390)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains an operational Satellite Ocean Heat Content Suite (SOHCS) product generated by NOAA National Environmental Satellite, Data, and...

  5. Satellite Ocean Heat Content Suite from 2015-03-01 to 2015-03-31 (NCEI Accession 0139404)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains an operational Satellite Ocean Heat Content Suite (SOHCS) product generated by NOAA National Environmental Satellite, Data, and...

  6. Satellite Ocean Heat Content Suite from 2014-05-01 to 2014-05-31 (NCEI Accession 0139522)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains an operational Satellite Ocean Heat Content Suite (SOHCS) product generated by NOAA National Environmental Satellite, Data, and...

  7. Satellite Ocean Heat Content Suite from 2015-06-01 to 2015-06-30 (NCEI Accession 0139407)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains an operational Satellite Ocean Heat Content Suite (SOHCS) product generated by NOAA National Environmental Satellite, Data, and...

  8. Satellite Ocean Heat Content Suite from 2015-12-01 to 2015-12-31 (NCEI Accession 0140097)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains an operational Satellite Ocean Heat Content Suite (SOHCS) product generated by NOAA National Environmental Satellite, Data, and...

  9. Satellite Ocean Heat Content Suite from 2013-08-01 to 2013-08-31 (NCEI Accession 0139512)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains an operational Satellite Ocean Heat Content Suite (SOHCS) product generated by NOAA National Environmental Satellite, Data, and...

  10. Satellite Ocean Heat Content Suite from 2012-11-01 to 2012-11-30 (NCEI Accession 0139503)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains an operational Satellite Ocean Heat Content Suite (SOHCS) product generated by NOAA National Environmental Satellite, Data, and...

  11. Satellite Ocean Heat Content Suite from 2013-04-01 to 2013-04-30 (NCEI Accession 0139508)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains an operational Satellite Ocean Heat Content Suite (SOHCS) product generated by NOAA National Environmental Satellite, Data, and...

  12. Satellite Ocean Heat Content Suite from 2016-07-01 to 2016-07-31 (NCEI Accession 0156208)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains an operational Satellite Ocean Heat Content Suite (SOHCS) product generated by NOAA National Environmental Satellite, Data, and...

  13. Satellite Ocean Heat Content Suite from 2015-04-01 to 2015-04-30 (NCEI Accession 0139405)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains an operational Satellite Ocean Heat Content Suite (SOHCS) product generated by NOAA National Environmental Satellite, Data, and...

  14. Satellite Ocean Heat Content Suite from 2016-05-01 to 2016-05-31 (NCEI Accession 0152451)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains an operational Satellite Ocean Heat Content Suite (SOHCS) product generated by NOAA National Environmental Satellite, Data, and...

  15. Satellite Ocean Heat Content Suite from 2013-03-01 to 2013-03-31 (NCEI Accession 0139507)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains an operational Satellite Ocean Heat Content Suite (SOHCS) product generated by NOAA National Environmental Satellite, Data, and...

  16. Satellite Ocean Heat Content Suite from 2015-08-01 to 2015-08-31 (NCEI Accession 0139409)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains an operational Satellite Ocean Heat Content Suite (SOHCS) product generated by NOAA National Environmental Satellite, Data, and...

  17. Satellite Ocean Heat Content Suite from 2013-09-01 to 2013-09-27 (NCEI Accession 0139523)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains an operational Satellite Ocean Heat Content Suite (SOHCS) product generated by NOAA National Environmental Satellite, Data, and...

  18. Satellite Ocean Heat Content Suite from 2014-06-01 to 2014-06-30 (NCEI Accession 0139525)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains an operational Satellite Ocean Heat Content Suite (SOHCS) product generated by NOAA National Environmental Satellite, Data, and...

  19. Satellite Ocean Heat Content Suite from 2016-03-01 to 2016-03-30 (NCEI Accession 0145951)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains an operational Satellite Ocean Heat Content Suite (SOHCS) product generated by NOAA National Environmental Satellite, Data, and...

  20. Satellite Ocean Heat Content Suite from 2012-08-27 to 2012-08-31 (NCEI Accession 0139500)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains an operational Satellite Ocean Heat Content Suite (SOHCS) product generated by NOAA National Environmental Satellite, Data, and...