WorldWideScience

Sample records for geostationary environment monitoring

  1. SEL monitoring of the earth's energetic particle radiation environment

    International Nuclear Information System (INIS)

    Sauer, H.H.

    1989-01-01

    The Space Environment Laboratory (SEL) of the National Oceanic and Atmospheric Administration (NOAA) maintains instruments on board the GOES series of geostationary satellites, and aboard the NOAA/TIROS series of low-altitude, polar-orbiting satellites, which provide monitoring of the energetic particle radiation environment as well as monitoring the geostationary magnetic field and the solar x-ray flux. The data are used by the SEL Space Environment Services Center (SESC) to help provide real-time monitoring and forecasting of the state of the near earth environment and its disturbances, and to maintain a source of reliable information to research and operational activities of a variety of users

  2. An Overview of Recent Geostationary Fire Monitoring Activities and Applications in the Western Hemisphere

    Science.gov (United States)

    McRae, D. J.; Conard, S. G.; Ivanova, G. A.; Sukhinin, A. I.; Hao, W. M.; Koutzenogii, K. P.; Prins, E. M.; Schmidt, C. C.; Feltz, J. M.

    2002-05-01

    Over the past twenty years the international scientific research and environmental monitoring communities have recognized the vital role environmental satellites can play in detecting and monitoring active fires both regionally and around the globe for hazards applications and to better understand the extent and impact of biomass burning on the global environment. Both groups have stressed the importance of utilizing operational satellites to produce routine fire products and to ensure long-term stable records of fire activity for applications such as land-use/land cover change analyses and global climate change research. The current NOAA GOES system provides the unique opportunity to detect fires throughout the Western Hemisphere every half-hour from a series of nearly identical satellites for a period of 15+ years. This presentation will provide an overview of the GOES biomass burning monitoring program at UW-Madison Cooperative Institute for Meteorological Satellite Studies (CIMSS) with an emphasis on recent applications of the new GOES Wildfire Automated Biomass Burning Algorithm (WF_ABBA). For the past 8 years, CIMSS has utilized the GOES-8 imager to monitor biomass burning trends in South America. Since September 2000, CIMSS has been producing half-hourly fire products in real-time for most of the Western Hemisphere. The WF_ABBA half-hourly fire product is providing new insights into diurnal, spatial, seasonal and interannual fire dynamics in North, Central, and South America. In North America these products are utilized to detect and monitor wildfires in northerly and remote locations. In South America the diurnal GOES fire product is being used as an indicator of land-use and land-cover change and carbon dynamics along the borders between Brazil, Peru, and Bolivia. The Navy is assimilating the Wildfire ABBA fire product into the Navy Aerosol Analysis and Prediction System (NAAPS) to analyze and predict aerosol loading and transport as part of the NASA

  3. Analysing the advantages of high temporal resolution geostationary MSG SEVIRI data compared to Polar operational environmental satellite data for land surface monitoring in Africa

    DEFF Research Database (Denmark)

    Fensholt, Rasmus; Anyamba, Assaf; Huber Gharib, Silvia

    2011-01-01

    Since 1972, satellite remote sensing of the environment has been dominated by polar-orbiting sensors providing useful data for monitoring the earth’s natural resources. However their observation and monitoring capacity are inhibited by daily to monthly looks for any given ground surface which often...... is obscured by frequent and persistent cloud cover creating large gaps in time series measurements. The launch of the Meteosat Second Generation (MSG) satellite into geostationary orbit has opened new opportunities for land surface monitoring. The Spinning Enhanced Visible and Infrared Imager (SEVIRI...... affected by droughts and floods in 2008 caused by periods of abnormally low and high rainfall, respectively. Based on the effectiveness of monitoring these events from Earth Observation (EO) data the current analyses show that the new generation of geostationary remote sensing data can provide higher...

  4. North American pollution measurements from geostationary orbit with Tropospheric Emissions: Monitoring of Pollution (TEMPO)

    Science.gov (United States)

    Chance, K.

    2017-12-01

    TEMPO is the first NASA Earth Venture Instrument. It launches between 2019 and 2021 to measure atmospheric pollution from Mexico City and Cuba to the Canadian oil sands, and from the Atlantic to the Pacific, hourly at high spatial resolution, 10 km2. Geostationary daytime measurements capture the variability in the diurnal cycle of emissions and chemistry at sub-urban scale to improve emission inventories, monitor population exposure, and enable emission-control strategies.TEMPO measures UV/visible Earth reflectance spectra to retrieve O3, NO2, SO2, H2CO, C2H2O2, H2O, BrO, OClO, IO, aerosols, cloud parameters, and UVB radiation. It tracks aerosol loading. It provides near-real-time air quality products. TEMPO is the North American component of the upcoming the global geostationary constellation for pollution monitoring, together with the European Sentinel-4 and the Korean Geostationary Environmental Monitoring Spectrometer (GEMS).TEMPO science studies include: Intercontinental pollution transport; Solar-induced fluorescence from chlorophyll over land and in the ocean to study tropical dynamics, primary productivity and carbon uptake, to detect red tides, and to study phytoplankton; measurements of stratospheric intrusions that cause air quality exceedances; measurements at peaks in vehicle travel to capture the variability in emissions from mobile sources; measurements of thunderstorm activity, including outflow regions to better quantify lightning NOx and O3 production; cropland measurements to follow the temporal evolution of emissions after fertilizer application and from rain-induced emissions from semi-arid soils; investigating the chemical processing of primary fire emissions and the secondary formation of VOCs and ozone; examining ocean halogen emissions and their impact on the oxidizing capacity of coastal environments; measuring spectra of nighttime lights as markers for human activity, energy conservation, and compliance with outdoor lighting standards

  5. Analysing the Advantages of High Temporal Resolution Geostationary MSG SEVIRI Data Compared to Polar Operational Environmental Satellite Data for Land Surface Monitoring in Africa

    Science.gov (United States)

    Fensholt, R.; Anyamba, A.; Huber, S.; Proud, S. R.; Tucker, C. J.; Small, J.; Pak, E.; Rasmussen, M. O.; Sandholt, I.; Shisanya, C.

    2011-01-01

    Since 1972, satellite remote sensing of the environment has been dominated by polar-orbiting sensors providing useful data for monitoring the earth s natural resources. However their observation and monitoring capacity are inhibited by daily to monthly looks for any given ground surface which often is obscured by frequent and persistent cloud cover creating large gaps in time series measurements. The launch of the Meteosat Second Generation (MSG) satellite into geostationary orbit has opened new opportunities for land surface monitoring. The Spinning Enhanced Visible and Infrared Imager (SEVIRI) instrument on-board MSG with an imaging capability every 15 minutes which is substantially greater than any temporal resolution that can be obtained from existing polar operational environmental satellites (POES) systems currently in use for environmental monitoring. Different areas of the African continent were affected by droughts and floods in 2008 caused by periods of abnormally low and high rainfall, respectively. Based on the effectiveness of monitoring these events from Earth Observation (EO) data the current analyses show that the new generation of geostationary remote sensing data can provide higher temporal resolution cloud-free (less than 5 days) measurements of the environment as compared to existing POES systems. SEVIRI MSG 5-day continental scale composites will enable rapid assessment of environmental conditions and improved early warning of disasters for the African continent such as flooding or droughts. The high temporal resolution geostationary data will complement existing higher spatial resolution polar-orbiting satellite data for various dynamic environmental and natural resource applications of terrestrial ecosystems.

  6. Geostationary Communications Satellites as Sensors for the Space Weather Environment: Telemetry Event Identification Algorithms

    Science.gov (United States)

    Carlton, A.; Cahoy, K.

    2015-12-01

    Reliability of geostationary communication satellites (GEO ComSats) is critical to many industries worldwide. The space radiation environment poses a significant threat and manufacturers and operators expend considerable effort to maintain reliability for users. Knowledge of the space radiation environment at the orbital location of a satellite is of critical importance for diagnosing and resolving issues resulting from space weather, for optimizing cost and reliability, and for space situational awareness. For decades, operators and manufacturers have collected large amounts of telemetry from geostationary (GEO) communications satellites to monitor system health and performance, yet this data is rarely mined for scientific purposes. The goal of this work is to acquire and analyze archived data from commercial operators using new algorithms that can detect when a space weather (or non-space weather) event of interest has occurred or is in progress. We have developed algorithms, collectively called SEER (System Event Evaluation Routine), to statistically analyze power amplifier current and temperature telemetry by identifying deviations from nominal operations or other events and trends of interest. This paper focuses on our work in progress, which currently includes methods for detection of jumps ("spikes", outliers) and step changes (changes in the local mean) in the telemetry. We then examine available space weather data from the NOAA GOES and the NOAA-computed Kp index and sunspot numbers to see what role, if any, it might have played. By combining the results of the algorithm for many components, the spacecraft can be used as a "sensor" for the space radiation environment. Similar events occurring at one time across many component telemetry streams may be indicative of a space radiation event or system-wide health and safety concern. Using SEER on representative datasets of telemetry from Inmarsat and Intelsat, we find events that occur across all or many of

  7. Applications of Geostationary Satellite Data to Aviation

    Science.gov (United States)

    Ellrod, Gary P.; Pryor, Kenneth

    2018-03-01

    Weather is by far the most important factor in air traffic delays in the United States' National Airspace System (NAS) according to the Federal Aviation Administration (FAA). Geostationary satellites have been an effective tool for the monitoring of meteorological conditions that affect aviation operations since the launch of the first Synchronous Meteorological Satellite (SMS) in the United States in 1974. This paper will review the global use of geostationary satellites in support of aviation weather since their inception, with an emphasis on the latest generation of satellites, such as Geostationary Operational Environmental Satellite (GOES)-R (16) with its Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM). Specific applications discussed in this paper include monitoring of convective storms and their associated hazards, fog and low stratus, turbulence, volcanic hazards, and aircraft icing.

  8. GEONEX: Land Monitoring From a New Generation of Geostationary Satellite Sensors

    Science.gov (United States)

    Nemani, Ramakrishna; Lyapustin, Alexei; Wang, Weile; Wang, Yujie; Hashimoto, Hirofumi; Li, Shuang; Ganguly, Sangram; Michaelis, Andrew; Higuchi, Atsushi; Takaneka, Hideaki; hide

    2017-01-01

    The latest generation of geostationary satellites carry sensors such as ABI (Advanced Baseline Imager on GOES-16) and the AHI (Advanced Himawari Imager on Himawari) that closely mimic the spatial and spectral characteristics of Earth Observing System flagship MODIS for monitoring land surface conditions. More importantly they provide observations at 5-15 minute intervals. Such high frequency data offer exciting possibilities for producing robust estimates of land surface conditions by overcoming cloud cover, enabling studies of diurnally varying local-to-regional biosphere-atmosphere interactions, and operational decision-making in agriculture, forestry and disaster management. But the data come with challenges that need special attention. For instance, geostationary data feature changing sun angle at constant view for each pixel, which is reciprocal to sun-synchronous observations, and thus require careful adaptation of EOS algorithms. Our goal is to produce a set of land surface products from geostationary sensors by leveraging NASA's investments in EOS algorithms and in the data/compute facility NEX. The land surface variables of interest include atmospherically corrected surface reflectances, snow cover, vegetation indices and leaf area index (LAI)/fraction of photosynthetically absorbed radiation (FPAR), as well as land surface temperature and fires. In order to get ready to produce operational products over the US from GOES-16 starting 2018, we have utilized 18 months of data from Himawari AHI over Australia to test the production pipeline and the performance of various algorithms for our initial tests. The end-to-end processing pipeline consists of a suite of modules to (a) perform calibration and automatic georeference correction of the AHI L1b data, (b) adopt the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm to produce surface spectral reflectances along with compositing schemes and QA, and (c) modify relevant EOS retrieval

  9. GEONEX: Land monitoring from a new generation of geostationary satellite sensors

    Science.gov (United States)

    Nemani, R. R.; Lyapustin, A.; Wang, W.; Ganguly, S.; Wang, Y.; Michaelis, A.; Hashimoto, H.; Li, S.; Higuchi, A.; Huete, A. R.; Yeom, J. M.; camacho De Coca, F.; Lee, T. J.; Takenaka, H.

    2017-12-01

    The latest generation of geostationary satellites carry sensors such as ABI (Advanced Baseline Imager on GOES-16) and the AHI (Advanced Himawari Imager on Himawari) that closely mimic the spatial and spectral characteristics of Earth Observing System flagship MODIS for monitoring land surface conditions. More importantly they provide observations at 5-15 minute intervals. Such high frequency data offer exciting possibilities for producing robust estimates of land surface conditions by overcoming cloud cover, enabling studies of diurnally varying local-to-regional biosphere-atmosphere interactions, and operational decision-making in agriculture, forestry and disaster management. But the data come with challenges that need special attention. For instance, geostationary data feature changing sun angle at constant view for each pixel, which is reciprocal to sun-synchronous observations, and thus require careful adaptation of EOS algorithms. Our goal is to produce a set of land surface products from geostationary sensors by leveraging NASA's investments in EOS algorithms and in the data/compute facility NEX. The land surface variables of interest include atmospherically corrected surface reflectances, snow cover, vegetation indices and leaf area index (LAI)/fraction of photosynthetically absorbed radiation (FPAR), as well as land surface temperature and fires. In order to get ready to produce operational products over the US from GOES-16 starting 2018, we have utilized 18 months of data from Himawari AHI over Australia to test the production pipeline and the performance of various algorithms for our initial tests. The end-to-end processing pipeline consists of a suite of modules to (a) perform calibration and automatic georeference correction of the AHI L1b data, (b) adopt the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm to produce surface spectral reflectances along with compositing schemes and QA, and (c) modify relevant EOS retrieval

  10. Monitoring of Siberian biomass burning smoke from AHI on board geostationary satellite Himawari-8

    Science.gov (United States)

    Sano, I.; Mukai, S.; Yoshida, A.; Nakata, M.; Minoura, H.; Holben, B. N.

    2016-12-01

    High frequency aerosol measurements are demanded for evaluation of the model simulations, monitoring the atmospheric qualities such as Particulate Matter (PM2.5), and so on. Geostationary satellite provides us with the high frequency information of the atmosphere. Japanese Meteorological Agency (JMA) launched the Himawari-8 geostationary satellite in 2014 and has prepared Himawari-9 for launching in 2016. Both satellites carry new generation imagers named Advanced Himawari Imager (AHI). They have 16 multi-channels from short visible to thermal infrared wavelengths with 1 km IFOV for visible and 2 km for infrared. Each observation is done within 10 minutes for the Earth full disk. Then high frequency Earth observations are realized. AHI has frequently observed biomass burning plume around East Siberia and its transportation according to weather system. This work retrieves aerosol properties due to the Siberian smoke plume and its movements based on the measurements with AHI. The results are compared with ground based measurements which have newly deployed at an AERONET/Niigata site in Japan. It is shown here that continuous measurements of aerosols from geostationary satellite combination with the polar orbiting satellite provide us with much detail information of aerosol.

  11. The Global Geostationary Wildfire ABBA: Current Implementation and Future Plans

    Science.gov (United States)

    Prins, E.; Schmidt, C. C.; Hoffman, J.; Brunner, J.; Hyer, E. J.; Reid, J. S.

    2012-12-01

    The Wild Fire Automated Biomass Burning Algorithm (WF_ABBA), developed at the Cooperative Institute for Meteorological Satellite Studies (CIMSS), has a long legacy of operational near real-time wildfire detection and characterization in the Western Hemisphere. The first phase of the global geostationary WF_ABBA was made operational at NOAA NESDIS in 2009 and currently includes diurnal active fire monitoring from GOES-East, GOES-South America, GOES-West, Meteosat-9 and MTSAT-1R/-2. This allows for near global active fire monitoring with coverage of Europe, Africa, Southeast Asia and the Western Pacific utilizing distinct geostationary sensors and a consistent algorithm. Version 6.5.006 of the WF_ABBA was specifically designed to address the capabilities and limitations of diverse geostationary sensors and requests from the global fire monitoring and user community. This presentation will provide an overview of version 6.5.006 of the global WF_ABBA fire product including the new fire and opaque cloud mask and associated metadata. We will demonstrate the WF_ABBA showing examples from around the globe with a focus on the capabilities and plans for integrating new geostationary platforms with coverage of Eastern Europe and Asia (INSAT-3D, Korean COMS, Russian GOMS Elektro-L MSU-GS). We are also preparing for future fire monitoring in the Western Hemisphere, Europe, and Africa utilizing the next generation GOES-R Imager and Meteosat Third Generation Flexible Combined Imager (MTG - FCI). The goal is to create a globally consistent long-term fire product utilizing the capabilities of each of these unique operational systems and a common fire detection algorithm. On an international level, development of a global geostationary fire monitoring system is supported by the IGOS GOFC/GOLD Fire Implementation Team. This work also generally supports Committee on Earth Observation Satellites (CEOS) activities and the Group on Earth Observations (GEO).

  12. A study of the effect of non-spherical dust particles on Geostationary Environment Monitoring Spectrometer (GEMS) aerosol optical properties retrievals

    Science.gov (United States)

    Go, S.; Kim, J.; KIM, M.; Choi, M.; Lim, H.

    2017-12-01

    Non-spherical assumption of particle shape has been used to replace the spherical assumption in the Geostationary Environment Monitoring Spectrometer (GEMS) aerosol optical properties retrievals for dust particles. GEMS aerosol retrieval algorithms are based on optimal estimation method to provide aerosol optical depth (AOD), single scattering albedo (SSA) at 443nm, and aerosol loading height (ALH) simultaneously as products. Considering computing time efficiency, the algorithm takes Look-Up Table (LUT) approach using Vector Linearized Discrete Ordinate Radiative Transfer code (VLIDORT), and aerosol optical properties for three aerosol types of absorbing fine aerosol (BC), dust and non-absorbing aerosol (NA) are integrated from AERONET inversion data, and fed into the LUT calculation. In this study, by applying the present algorithm to OMI top-of the atmosphere normalized radiance, retrieved AOD, SSA with both spherical and non-spherical assumptions have been compared to the surface AERONET observations at East Asia sites for 3 years from 2005 to 2007 to evaluate and quantify the effect of non-spherical dust particles on the satellite aerosol retrievals. The root-mean-square error (RMSE) in the satellite retrieved AOD have been slightly reduced as a result of adopting the non-spherical assumption in the GEMS aerosol retrieval algorithm. For SSA, algorithm tested with spheroid models on dust particle shows promising results for the improved SSA. In terms of ALH, the results are qualitatively compared with CALIOP products, and shows consistent variation. This result suggests the importance of taking into account the effects of non-sphericity in the retrieval of dust particles from GEMS measurements.

  13. Trace Gas Measurements from the GeoTASO and GCAS Airborne Instruments: An Instrument and Algorithm Test-Bed for Air Quality Observations from Geostationary Orbit

    Science.gov (United States)

    Nowlan, C. R.; Liu, X.; Janz, S. J.; Leitch, J. W.; Al-Saadi, J. A.; Chance, K.; Cole, J.; Delker, T.; Follette-Cook, M. B.; Gonzalez Abad, G.; Good, W. S.; Kowalewski, M. G.; Loughner, C.; Pickering, K. E.; Ruppert, L.; Soo, D.; Szykman, J.; Valin, L.; Zoogman, P.

    2016-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) and the GEO-CAPE Airborne Simulator (GCAS) instruments are pushbroom sensors capable of making remote sensing measurements of air quality and ocean color. Originally developed as test-bed instruments for the Geostationary Coastal and Air Pollution Events (GEO-CAPE) decadal survey, these instruments are now also part of risk reduction for the upcoming Tropospheric Emissions: Monitoring of Pollution (TEMPO) and Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite missions, and will provide validation capabilities after the satellite instruments are in orbit. GeoTASO and GCAS flew on two different aircraft in their first intensive air quality field campaigns during the DISCOVER-AQ missions over Texas in 2013 and Colorado in 2014. GeoTASO was also deployed in 2016 during the KORUS-AQ field campaign to make measurements of trace gases and aerosols over Korea. GeoTASO and GCAS collect spectra of backscattered solar radiation in the UV and visible that can be used to derive 2-D maps of trace gas columns below the aircraft at spatial resolutions on the order of 250 x 500 m. We present spatially resolved maps of trace gas retrievals of ozone, nitrogen dioxide, formaldehyde and sulfur dioxide over urban areas and power plants from flights during the field campaigns, and comparisons with data from ground-based spectrometers, in situ monitoring instruments, and satellites.

  14. Geostationary satellites collocation

    CERN Document Server

    Li, Hengnian

    2014-01-01

    Geostationary Satellites Collocation aims to find solutions for deploying a safe and reliable collocation control. Focusing on the orbital perturbation analysis, the mathematical foundations for orbit and control of the geostationary satellite are summarized. The mathematical and physical principle of orbital maneuver and collocation strategies for multi geostationary satellites sharing with the same dead band is also stressed. Moreover, the book presents some applications using the above algorithms and mathematical models to help readers master the corrective method for planning station keeping maneuvers. Engineers and scientists in the fields of aerospace technology and space science can benefit from this book. Hengnian Li is the Deputy Director of State Key Laboratory of Astronautic Dynamics, China.

  15. The Copernicus Sentinel 4 mission: a geostationary imaging UVN spectrometer for air quality monitoring

    Science.gov (United States)

    Bazalgette Courrèges-Lacoste, G.; Sallusti, M.; Bulsa, G.; Bagnasco, G.; Veihelmann, Ben; Riedl, S.; Smith, D. J.; Maurer, R.

    2017-09-01

    Sentinel-4 is an imaging UVN (UV-VIS-NIR) spectrometer, developed by Airbus Defence and Space under ESA contract in the frame of the joint EU/ESA COPERNICUS program. The mission objective is the operational monitoring of trace gas concentrations for atmospheric chemistry and climate applications - hence the motto of Sentinel-4 "Knowing what we breathe". Sentinel-4 will provide accurate measurements of key atmospheric constituents such as ozone, nitrogen dioxide, sulfur dioxide, methane, and aerosol properties over Europe and adjacent regions from a geostationary orbit (see Fig. 1). In the family of already flown UVN spectrometers (SCIAMACHY, OMI, GOME and GOME 2) and of those spectrometers currently under development (Sentinel-5p and Sentinel-5), Sentinel-4 is unique in being the first geostationary UVN mission. Furthermore, thanks to its 60-minutes repeat cycle measurements and high spatial resolution (8x8 km2), Sentinel-4 will increase the frequency of cloud-free observations, which is necessary to assess troposphere variability. Two identical Sentinel-4 instruments (PFM and FM-2) will be embarked, as Customer Furnished Item (CFI), fully verified, qualified and calibrated respectively onto two EUMETSAT satellites: Meteosat Third Generation-Sounder 1 and 2 (MTG-S1 and MTG-S2), whose Flight Acceptance Reviews are presently planned respectively in Q4 2021 and Q1 2030. This paper gives an overview of the Sentinel-4 system1 architecture, its design and development status, current performances and the key technological challenges.

  16. 47 CFR 25.278 - Additional coordination obligation for non-geostationary and geostationary satellite systems in...

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Additional coordination obligation for non-geostationary and geostationary satellite systems in frequencies allocated to the fixed-satellite service. 25.278 Section 25.278 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER...

  17. Detecting Canopy Water Status Using Shortwave Infrared Reflectance Data From Polar Orbiting and Geostationary Platforms

    DEFF Research Database (Denmark)

    Fensholt, Rasmus; Huber Gharib, Silvia; Proud, Simon Richard

    2010-01-01

    -based canopy water status detection from geostationary Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI) data as compared to polar orbiting environmental satellite (POES)-based moderate resolution imaging spectroradiometer (MODIS) data. The EO-based SWIR water stress index...... (SIWSI) is evaluated against in situ measured canopy water content indicators at a semi-arid grassland savanna site in Senegal 2008. Daily SIWSI from both MODIS and SEVIRI data show an overall inverse relation to Normalized Difference Vegetation Index (NDVI) throughout the growing season. SIWSI...... for SWIR-based canopy water status and stress monitoring in a semi-arid environment....

  18. Application of Geostationary GNSS and SBAS Satellites for Studying Ionospheric TEC Disturbances of Geomagnetic and Meteorological Origin

    Science.gov (United States)

    Padokhin, A. M.; Kurbatov, G. A.; Yasyukevich, Y.; Yasyukevich, A.

    2017-12-01

    With the development of GNSS and SBAS constellations, the coherent multi-frequency L band transmissions are now available from a number of geostationary satellites. These signals can be used for ionospheric TEC estimations in the same way as widely used GPS/GLONASS signals. In this work, we compare noise patterns in TEC estimations based on different geostationary satellites data: augmentation systems (Indian GAGAN, European EGNOS and American WAAS), and Chinese COMPASS/Beidou navigation system. We show that noise level in geostationary COMPASS/Beidou TEC estimations is times smaller than noise in SBAS TEC estimation and corresponds to those of GPS/GLONASS at the same elevation angles. We discuss the capabilities of geostationary TEC data for studying ionospheric variability driven by space weather and meteorological sources at different time scales. Analyzing data from IGS/MGEX receivers we present geostationary TEC response on X-class Solar flares of current cycle, moderate and strong geomagnetic storms, including G4 St. Patrick's day Storm 2015 and recent G3 storm of the end of May 2017. We also discuss geostationary TEC disturbances in near equatorial ionosphere caused by two SSW events (minor and major final warming of 2015-2016 winter season) as well as geostationary TEC response on typhoons activity near Taiwan in autumn 2016. Our results show large potential of geostationary TEC estimations with GNSS and SBAS signals for continuous ionospheric monitoring.

  19. Results of the Ongoing Monitoring of the Position of a Geostationary Telecommunication Satellite by the Method of Spatially Separated Basis Receiving of Digital Satellite Television Signals

    Directory of Open Access Journals (Sweden)

    Bushuev F.

    2016-10-01

    Full Text Available The results of the ongoing monitoring of the position of geostationary telecommunication satellite Eutelsat-13B (13° East are presented in the article. The results were obtained using a radio engineering complex (RC of four stations receiving digital satellite television and a data processing centre. The stations are located in Kyiv, Mukachevo, Kharkiv and Mykolaiv.

  20. Prospects for Geostationary Doppler Weather Radar

    Science.gov (United States)

    Tanelli, Simone; Fang, Houfei; Durden, Stephen L.; Im, Eastwood; Rhamat-Samii, Yahya

    2009-01-01

    A novel mission concept, namely NEXRAD in Space (NIS), was developed for detailed monitoring of hurricanes, cyclones, and severe storms from a geostationary orbit. This mission concept requires a space deployable 35-m diameter reflector that operates at 35-GHz with a surface figure accuracy requirement of 0.21 mm RMS. This reflector is well beyond the current state-of-the-art. To implement this mission concept, several potential technologies associated with large, lightweight, spaceborne reflectors have been investigated by this study. These spaceborne reflector technologies include mesh reflector technology, inflatable membrane reflector technology and Shape Memory Polymer reflector technology.

  1. Design challenges of a tunable laser interrogator for geo-stationary communication satellites

    Science.gov (United States)

    Ibrahim, Selwan K.; Honniball, Arthur; McCue, Raymond; Todd, Michael; O'Dowd, John A.; Sheils, David; Voudouris, Liberis; Farnan, Martin; Hurni, Andreas; Putzer, Philipp; Lemke, Norbert; Roner, Markus

    2017-09-01

    Recently optical sensing solutions based on fiber Bragg grating (FBG) technology have been proposed for temperature monitoring in telecommunication satellite platforms with an operational life time beyond 15 years in geo-stationary orbit. Developing radiation hardened optical interrogators designed to be used with FBG sensors inscribed in radiation tolerant fibers offer the capabilities of multiplexing multiple sensors on the same fiber and reducing the overall weight by removing the copper wiring harnesses associated with electrical sensors. Here we propose the use of a tunable laser based optical interrogator that uses a semiconductor MG-Y type laser that has no moving parts and sweeps across the C-band wavelength range providing optical power to FBG sensors and optical wavelength references such as athermal Etalons and Gas Cells to guarantee stable operation of the interrogator over its targeted life time in radiation exposed environments. The MG-Y laser was calibrated so it remains in a stable operation mode which ensures that no mode hops occur due to aging of the laser, and/or thermal or radiation effects. The key optical components including tunable laser, references and FBGs were tested for radiation tolerances by emulating the conditions on a geo-stationary satellite including a Total Ionizing Dose (TID) radiation level of up to 100 krad for interrogator components and 25 Mrad for FBGs. Different tunable laser control, and signal processing algorithms have been designed and developed to fit within specific available radiation hardened FPGAs to guarantee operation of a single interrogator module providing at least 1 sample per second measurement capability across engineering model system developed in the frame of an ESA-ARTES program and is planned to be deployed as a flight demonstrator on-board the German Heinrich Hertz geo-stationary satellite.

  2. Proposed satellite position determination systems and techniques for Geostationary Synthetic Aperture Radar

    OpenAIRE

    Martin Fuster, Roger; Fernández Usón, Marc; Casado Blanco, David; Broquetas Ibars, Antoni

    2016-01-01

    This paper proposes two different calibration techniques for Geostationary Synthetic Aperture Radar (GEOSAR) missions requiring a high precision positioning, based on Active Radar Calibrators and Ground Based Interferometry. The research is enclosed in the preparation studies of a future GEOSAR mission providing continuous monitoring at continental scale. Peer Reviewed

  3. A New Era of Air Quality Monitoring from Space in East Asia: Korea's Geostationary Environmental Monitoring Spectrometer (GEMS) and an Integrated Korea-US Air Quality (KORUS-AQ) Study

    Science.gov (United States)

    Hong, J.; Hong, Y.; Song, C. K.; Kim, S. K.; Chang, L. S.; Lim, J.; Ahn, J.; Park, J. H.; Kim, J. Y.; Han, Y. J.; Kim, J.; Park, R.; Lee, G.; Lefer, B. L.; Al-Saadi, J. A.; Crawford, J. H.

    2015-12-01

    Due to remarkable economic growth over the last two decades, East Asia has become a region experiencing some of the poorest air quality in the world. In addition to local sources of pollution, the Korea peninsula is downwind of the largest emission sources in East Asia, complicating the understanding of air quality over Korea. Thus, knowing the factors controlling changes in air pollution across urban-rural and marine-continental interfaces, in addition to the contributions from local emissions and transboundary transport, is important for building effective management strategies and improving air quality in East Asia. GEMS (Geostationary Environmental Monitoring Spectrometer) is a satellite instrument planned for launch in 2019 by the Republic of Korea. The instrument will observe East Asia and the western Pacific region, providing real-time monitoring of air quality (e.g. O3, NO2, SO2, HCHO, AOD, etc.) and enabling better scientific understanding of the transboundary transport of air pollutants. The KORUS-AQ (the Korea and U.S. Air Quality) field campaign will take place in May - June 2016 and will employ an integrated observing strategy including multiplatform observations (i.e. ground stations, aircraft, ships, and satellites) and chemical transport models. This mission aims to not only strengthen our knowledge of atmospheric chemistry but also provide important data sets for validating GEMS retrieval algorithms. In preparation for KORUS-AQ, a pre-campaign has been successfully conducted in Korea during early summer 2015 with observations from multiple ground sites and a small aircraft. A brief summary of pre-field campaign results will be presented. Moving forward, the GEMS mission and KORUS-AQ study will lead to a new era of air quality monitoring in East Asia. GEMS will also make critical contributions to the global air quality perspective working in concert with geostationary missions launched by the U.S. (TEMPO: Tropospheric Emissions: Monitoring of

  4. Minimizing Gaps of Daily Ndvi Map with Geostationary Satellite Remote Sensing Data

    Science.gov (United States)

    Lee, S.; Ryu, Y.; Jiang, C.

    2015-12-01

    Satellite based remote sensing has been used to monitor plant phenology. Numerous studies have generally utilized normalized difference vegetation index (NDVI) to quantify phenological patterns and changes in regional to the global scales. Obtaining the NDVI values during summer in East Asian Monsoon regions is important because most plants grow vigorously in this season. However, satellite derived NDVI data are error prone to clouds during most of the period. Various methods have attempted to reduce the effect of cloud in temporal and spatial NDVI monitoring; the fundamental solution is to have a large data pool that includes multiple images in short period and supplements NDVI values in same period. Multiple images of geostationary satellite in a day can be a method to expand the pool. In this study, we suggest an approach that minimizes data gaps in NDVI of the day through geostationary satellite derived NDVI composition. We acquired data from Geostationary Ocean Color Imager (GOCI) which is a satellite that was launched to monitor ocean around the Korean peninsula, China, Japan and Russia. The satellite observes eight times per day (09:00 - 16:00, every hour) at 500 x 500 m resolution from 2011 to 2015. GOCI red- and near infrared radiance was converted into surface reflectance by using 6S Radiative Transfer Model (6S). We calculated NDVI tiles for each of observed eight tiles per day and made one day NDVI through maximum-value composite method. We evaluated the composite GOCI derived NDVI by comparing with daily MODIS-derived NDVI (composited from MOD09GA and MYD09GA), 16-day Landsat 8-derived NDVI, and in-situ light emitting diode (LED) NDVI measurements at a homogeneous deciduous forest and rice paddy sites. We found that GOCI-derived NDVI maps revealed little data gaps compared to MODIS and Landsat, and GOCI derived NDVI time series were smoother than MODIS derived NDVI time series in summer. GOCI-derived NDVI agreed well with in-situ observations of NDVI

  5. Geostationary platform systems concepts definition study. Volume 2A: Appendixes, book 2

    Science.gov (United States)

    1980-01-01

    Various investigations and support data concerning geostationary platform feasibility are presented. Servicing flight analyses, platform cost model runs, and funding spread analyses are included. In addition, investigations of the radiation environment at synchronous altitude and its effects on satellite communication are reported.

  6. One year in orbit of the first Geostationary Ocean Colour Imager (GOCI)

    Science.gov (United States)

    Faure, François; Coste, Pierre; Benchetrit, Thierry; Kang, Gm Sil; Kim, Han-dol

    2017-11-01

    Geostationary Ocean Colour Imager (GOCI) is the first Ocean Colour Imager to operate from a Geostationary Orbit. It was developed by Astrium SAS under KARI contract in about 3 years between mid 2005 and October 2008 and integrated on-board COMS satellite end 2008 aside the COMS Meteo Imager (MI). COMS satellite was launched in June 2010 and the in-orbit commissioning tests were completed in beginning of 2011. The mission is designed to significantly improve ocean observation in complement with low orbit service by providing high frequency coverage. The GOCI is designed to provide multi-spectral data to detect, monitor, quantify, and predict short-term changes of coastal ocean environment for marine science research and application purpose. Target area for the GOCI observation in the COMS satellite covers a large 2500 x 2500 km2 sea area around the Korean Peninsula, with an average Ground sampling distance (GSD) of 500m, corresponding to a NADIR GSD of 360m. The presentation will shortly recall the mission objectives and major instrument requirements, and then present the results of inorbit testing and validations. All functions and in particular the CMOS detector matrix operate nominally. Performances evaluated in orbit (SNR, MTF, etc.) show results above the requirements. Finally, in-orbit calibrations using the sun diffuser provide very satisfactory consistency with the ground characterisation. GOCI is now delivering operational products and proving the interest of Geo observation in the Ocean Colour applications

  7. Los Alamos energetic particle sensor systems at geostationary orbit

    International Nuclear Information System (INIS)

    Baker, D.N.; Aiello, W.; Asbridge, J.R.; Belian, R.D.; Higbie, P.R.; Klebesadel, R.W.; Laros, J.G.; Tech, E.R.

    1985-01-01

    The Los Alamos National Laboratory has provided energetic particle sensors for a variety of spacecraft at the geostationary orbit (36,000 km altitude). The sensor system called the Charged Particle Analyzer (CPA) consists of four separate subsystems. The LoE and HiE subsystems measure electrons in the energy ranges 30 to 300 keV and 200 to 2000 keV, respectively. The LoP and HiP subsystems measure ions in the ranges 100 to 600 keV and 0.40 to 150 MeV, respectively. A separate sensor system called the spectrometer for energetic electrons (SEE) measures very high-energy electrons (2 to 15 MeV) using advanced scintillator design. In this paper we describe the relationship of operational anomalies and spacecraft upsets to the directly measured energetic particle environments at 6.6 R/sub E/. We also compare and contrast the CPA and SEE instrument design characteristics with the next generation of Los Alamos instruments to be flown at geostationary altitudes

  8. Geostationary Satellite (GOES) Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Visible and Infrared satellite imagery taken from radiometer instruments on SMS (ATS) and GOES satellites in geostationary orbit. These satellites produced...

  9. Review of surface particulate monitoring of dust events using geostationary satellite remote sensing

    Science.gov (United States)

    Sowden, M.; Mueller, U.; Blake, D.

    2018-06-01

    The accurate measurements of natural and anthropogenic aerosol particulate matter (PM) is important in managing both environmental and health risks; however, limited monitoring in regional areas hinders accurate quantification. This article provides an overview of the ability of recently launched geostationary earth orbit (GEO) satellites, such as GOES-R (North America) and HIMAWARI (Asia and Oceania), to provide near real-time ground-level PM concentrations (GLCs). The review examines the literature relating to the spatial and temporal resolution required by air quality studies, the removal of cloud and surface effects, the aerosol inversion problem, and the computation of ground-level concentrations rather than columnar aerosol optical depth (AOD). Determining surface PM concentrations using remote sensing is complicated by differentiating intrinsic aerosol properties (size, shape, composition, and quantity) from extrinsic signal intensities, particularly as the number of unknown intrinsic parameters exceeds the number of known extrinsic measurements. The review confirms that development of GEO satellite products has led to improvements in the use of coupled products such as GEOS-CHEM, aerosol types have consolidated on model species rather than prior descriptive classifications, and forward radiative transfer models have led to a better understanding of predictive spectra interdependencies across different aerosol types, despite fewer wavelength bands. However, it is apparent that the aerosol inversion problem remains challenging because there are limited wavelength bands for characterising localised mineralogy. The review finds that the frequency of GEO satellite data exceeds the temporal resolution required for air quality studies, but the spatial resolution is too coarse for localised air quality studies. Continual monitoring necessitates using the less sensitive thermal infra-red bands, which also reduce surface absorption effects. However, given the

  10. Global-scale Observations of the Limb and Disk (GOLD) Mission -Ultraviolet Remote Sensing of Earth's Space Environment from Geostationary Orbit

    Science.gov (United States)

    Burns, A. G.; Eastes, R.

    2017-12-01

    The GOLD mission of opportunity will fly a far ultraviolet imaging spectrograph in geostationary (GEO) orbit as a hosted payload. The mission is scheduled for launch in late January 2018 on SES-14, a commercial communications satellite that will be stationed over eastern South America at 47.5 degrees west longitude. GOLD is on schedule to be the first NASA science mission to fly as a hosted payload on a commercial communications satellite. The GOLD imager has two identical channels. Each channel can scan the full disk at a 30 minute cadence, making spectral images of Earth's UV emission from 132 to 162 nm, as well as make a measurement on the Earth's limb. Remote sensing techniques that have been proven on previous Low Earth Orbit (LEO) missions will be used to derive fundamental parameters for the neutral and ionized space environment. Parameters that will be derived include composition (O/N2 ratio) and temperature of the neutral atmosphere on the dayside disk. On the nightside, peak electron densities will be obtained in the low latitude ionosphere. Many of the algorithms developed for the mission are extensions of ones used on previous earth and planetary missions, with modifications for observations from geostationary orbit. All the algorithms have been tested using simulated observations based on the actual instrument performance. From geostationary orbit, GOLD can repeatedly image the same geographic locations over most of the hemisphere at a cadence comparable to that of the T-I system (order of an hour). Such time resolution and spatial coverage will allow the mission to track the changes due to geomagnetic storms, variations in solar extreme ultraviolet radiation, and forcing from the lower atmosphere. In addition to providing a new perspective by being able to repeatedly remotely sense the same hemisphere at a high cadence, GOLD's simultaneous measurements of not only composition but also temperatures across the disk will provide a valuable, new parameter

  11. Generating Land Surface Reflectance for the New Generation of Geostationary Satellite Sensors with the MAIAC Algorithm

    Science.gov (United States)

    Wang, W.; Wang, Y.; Hashimoto, H.; Li, S.; Takenaka, H.; Higuchi, A.; Lyapustin, A.; Nemani, R. R.

    2017-12-01

    The latest generation of geostationary satellite sensors, including the GOES-16/ABI and the Himawari 8/AHI, provide exciting capability to monitor land surface at very high temporal resolutions (5-15 minute intervals) and with spatial and spectral characteristics that mimic the Earth Observing System flagship MODIS. However, geostationary data feature changing sun angles at constant view geometry, which is almost reciprocal to sun-synchronous observations. Such a challenge needs to be carefully addressed before one can exploit the full potential of the new sources of data. Here we take on this challenge with Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm, recently developed for accurate and globally robust applications like the MODIS Collection 6 re-processing. MAIAC first grids the top-of-atmosphere measurements to a fixed grid so that the spectral and physical signatures of each grid cell are stacked ("remembered") over time and used to dramatically improve cloud/shadow/snow detection, which is by far the dominant error source in the remote sensing. It also exploits the changing sun-view geometry of the geostationary sensor to characterize surface BRDF with augmented angular resolution for accurate aerosol retrievals and atmospheric correction. The high temporal resolutions of the geostationary data indeed make the BRDF retrieval much simpler and more robust as compared with sun-synchronous sensors such as MODIS. As a prototype test for the geostationary-data processing pipeline on NASA Earth Exchange (GEONEX), we apply MAIAC to process 18 months of data from Himawari 8/AHI over Australia. We generate a suite of test results, including the input TOA reflectance and the output cloud mask, aerosol optical depth (AOD), and the atmospherically-corrected surface reflectance for a variety of geographic locations, terrain, and land cover types. Comparison with MODIS data indicates a general agreement between the retrieved surface reflectance

  12. Geo-oculus: high resolution multi-spectral earth imaging mission from geostationary orbit

    Science.gov (United States)

    Vaillon, L.; Schull, U.; Knigge, T.; Bevillon, C.

    2017-11-01

    Geo-Oculus is a GEO-based Earth observation mission studied by Astrium for ESA in 2008-2009 to complement the Sentinel missions, the space component of the GMES (Global Monitoring for Environment & Security). Indeed Earth imaging from geostationary orbit offers new functionalities not covered by existing LEO observation missions, like real-time monitoring and fast revisit capability of any location within the huge area in visibility of the satellite. This high revisit capability is exploited by the Meteosat meteorogical satellites, but with a spatial resolution (500 m nadir for the third generation) far from most of GMES needs (10 to 100 m). To reach such ground resolution from GEO orbit with adequate image quality, large aperture instruments (> 1 m) and high pointing stability (challenges of such missions. To address the requirements from the GMES user community, the Geo-Oculus mission is a combination of routine observations (daily systematic coverage of European coastal waters) with "on-demand" observation for event monitoring (e.g. disasters, fires and oil slicks). The instrument is a large aperture imaging telescope (1.5 m diameter) offering a nadir spatial sampling of 10.5 m (21 m worst case over Europe, below 52.5°N) in a PAN visible channel used for disaster monitoring. The 22 multi-spectral channels have resolutions over Europe ranging from 40 m in UV/VNIR (0.3 to 1 μm) to 750 m in TIR (10-12 μm).

  13. New Approach to Monitor Transboundary Particulate Pollution over Northeast Asia

    Science.gov (United States)

    Park, M. E.; Song, C. H.; Park, R. S.; Lee, Jaehwa; Kim, J.; Lee, S.; Woo, J. H.; Carmichael, G. R.; Eck, Thomas F.; Holben, Brent N.; hide

    2014-01-01

    A new approach to more accurately monitor and evaluate transboundary particulate matter (PM) pollution is introduced based on aerosol optical products from Korea's Geostationary Ocean Color Imager (GOCI). The area studied is Northeast Asia (including eastern parts of China, the Korean peninsula and Japan), where GOCI has been monitoring since June 2010. The hourly multi-spectral aerosol optical data that were retrieved from GOCI sensor onboard geostationary satellite COMS (Communication, Ocean, and Meteorology Satellite) through the Yonsei aerosol retrieval algorithm were first presented and used in this study. The GOCI-retrieved aerosol optical data are integrated with estimated aerosol distributions from US EPA Models-3/CMAQ (Community Multi-scale Air Quality) v4.5.1 model simulations via data assimilation technique, thereby making the aerosol data spatially continuous and available even for cloud contamination cells. The assimilated aerosol optical data are utilized to provide quantitative estimates of transboundary PM pollution from China to the Korean peninsula and Japan. For the period of 1 April to 31 May, 2011 this analysis yields estimates that AOD as a proxy for PM2.5 or PM10 during long-range transport events increased by 117-265% compared to background average AOD (aerosol optical depth) at the four AERONET sites in Korea, and average AOD increases of 121% were found when averaged over the entire Korean peninsula. This paper demonstrates that the use of multi-spectral AOD retrievals from geostationary satellites can improve estimates of transboundary PM pollution. Such data will become more widely available later this decade when new sensors such as the GEMS (Geostationary Environment Monitoring Spectrometer) and GOCI-2 are scheduled to be launched.

  14. On the feasibility of monitoring carbon monoxide in the lower troposphere from a constellation of Northern Hemisphere geostationary satellites. (Part 1)

    Science.gov (United States)

    Barré, Jérôme; Edwards, David; Worden, Helen; Da Silva, Arlindo; Lahoz, William

    2015-07-01

    By the end of the current decade, there are plans to deploy several geostationary Earth orbit (GEO) satellite missions for atmospheric composition over North America, East Asia and Europe with additional missions proposed. Together, these present the possibility of a constellation of geostationary platforms to achieve continuous time-resolved high-density observations over continental domains for mapping pollutant sources and variability at diurnal and local scales. In this paper, we use a novel approach to sample a very high global resolution model (GEOS-5 at 7 km horizontal resolution) to produce a dataset of synthetic carbon monoxide pollution observations representative of those potentially obtainable from a GEO satellite constellation with predicted measurement sensitivities based on current remote sensing capabilities. Part 1 of this study focuses on the production of simulated synthetic measurements for air quality OSSEs (Observing System Simulation Experiments). We simulate carbon monoxide nadir retrievals using a technique that provides realistic measurements with very low computational cost. We discuss the sampling methodology: the projection of footprints and areas of regard for geostationary geometries over each of the North America, East Asia and Europe regions; the regression method to simulate measurement sensitivity; and the measurement error simulation. A detailed analysis of the simulated observation sensitivity is performed, and limitations of the method are discussed. We also describe impacts from clouds, showing that the efficiency of an instrument making atmospheric composition measurements on a geostationary platform is dependent on the dominant weather regime over a given region and the pixel size resolution. These results demonstrate the viability of the ;instrument simulator; step for an OSSE to assess the performance of a constellation of geostationary satellites for air quality measurements. We describe the OSSE results in a follow up

  15. Results of the Ongoing Monitoring of the Position of a Geostationary Telecommunication Satellite by the Method of Spatially Separated Basis Receiving of Digital Satellite Television Signals

    Science.gov (United States)

    Bushuev, F.; Kaliuzhnyi, M.; Sybiryakova, Y.; Shulga, O.; Moskalenko, S.; Balagura, O.; Kulishenko, V.

    2016-10-01

    The results of the ongoing monitoring of the position of geostationary telecommunication satellite Eutelsat-13B (13° East) are presented in the article. The results were obtained using a radio engineering complex (RC) of four stations receiving digital satellite television and a data processing centre. The stations are located in Kyiv, Mukachevo, Kharkiv and Mykolaiv. The equipment of each station allows synchronous recording (by the GPS) of fragments of DVB-S signal from the quadrature detector output of the satellite television receiver. Samples of the complex signal are archived and sent to the data processing center through the Internet. Here three linearly independent slant range differences (Δr) for three pairs of the stations are determined as a result of correlation processing of received signals. Every second measured values of Δr are used to calculate Cartesian coordinates (XYZ) of the satellite in the coordinate system WGS84 by multilateration method. The time series of Δr, X, Y and Z obtained during continuous observations from March to May 2015 are presented in the article. Single-measurement errors of Δr, X, Y and Z are equal to 2.6 m, 3540 m, 705 m and 455 m, respectively. The complex is compared with known analogues. Ways of reduction of measurement errors of satellite coordinates are considered. The radio engineering complex could be considered a prototype of a system of independent ongoing monitoring of the position of geostationary telecommunication satellites.

  16. HIMAWARI-8 Geostationary Satellite Observation of the Internal Solitary Waves in the South China Sea

    Science.gov (United States)

    Gao, Q.; Dong, D.; Yang, X.; Husi, L.; Shang, H.

    2018-04-01

    The new generation geostationary meteorological satellite, Himawari-8 (H-8), was launched in 2015. Its main payload, the Advanced Himawari Imager (AHI), can observe the earth with 10-minute interval and as high as 500-m spatial resolution. This makes the H-8 satellite an ideal data source for marine and atmospheric phenomena monitoring. In this study, the propagation of internal solitary waves (ISWs) in the South China Sea is investigated using AHI imagery time series for the first time. Three ISWs cases were studied at 3:30-8:00 UTC on 30 May, 2016. In all, 28 ISWs were detected and tracked between the time series image pairs. The propagation direction and phase speeds of these ISWs are calculated and analyzed. The observation results show that the properties of ISW propagation not stable and maintains nonlinear during its lifetime. The resultant ISW speeds agree well with the theoretical values estimated from the Taylor-Goldstein equation using Argo dataset. This study has demonstrated that the new generation geostationary satellite can be a useful tool to monitor and investigate the oceanic internal waves.

  17. Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery

    Directory of Open Access Journals (Sweden)

    M. C. Anderson

    2011-01-01

    Full Text Available Thermal infrared (TIR remote sensing of land-surface temperature (LST provides valuable information about the sub-surface moisture status required for estimating evapotranspiration (ET and detecting the onset and severity of drought. While empirical indices measuring anomalies in LST and vegetation amount (e.g., as quantified by the Normalized Difference Vegetation Index; NDVI have demonstrated utility in monitoring ET and drought conditions over large areas, they may provide ambiguous results when other factors (e.g., air temperature, advection are affecting plant functioning. A more physically based interpretation of LST and NDVI and their relationship to sub-surface moisture conditions can be obtained with a surface energy balance model driven by TIR remote sensing. The Atmosphere-Land Exchange Inverse (ALEXI model is a multi-sensor TIR approach to ET mapping, coupling a two-source (soil + canopy land-surface model with an atmospheric boundary layer model in time-differencing mode to routinely and robustly map daily fluxes at continental scales and 5 to 10-km resolution using thermal band imagery and insolation estimates from geostationary satellites. A related algorithm (DisALEXI spatially disaggregates ALEXI fluxes down to finer spatial scales using moderate resolution TIR imagery from polar orbiting satellites. An overview of this modeling approach is presented, along with strategies for fusing information from multiple satellite platforms and wavebands to map daily ET down to resolutions on the order of 10 m. The ALEXI/DisALEXI model has potential for global applications by integrating data from multiple geostationary meteorological satellite systems, such as the US Geostationary Operational Environmental Satellites, the European Meteosat satellites, the Chinese Fen-yung 2B series, and the Japanese Geostationary Meteorological Satellites. Work is underway to further evaluate multi-scale ALEXI implementations over the US, Europe, Africa

  18. Surface currents in the Bohai Sea derived from the Korean Geostationary Ocean Color Imager (GOCI)

    Science.gov (United States)

    Jiang, L.; Wang, M.

    2016-02-01

    The first geostationary ocean color satellite sensor, the Geostationary Ocean Color Imager (GOCI) onboard the Korean Communication, Ocean, and Meteorological Satellite can monitor and measure ocean phenomena over an area of 2500 × 2500 km2 around the western Pacific region centered at 36°N and 130°E. Hourly measurements during the day around 9:00 to 16:00 local time are a unique capability of GOCI to monitor ocean features of higher temporal variability. In this presentation, we show some recent results of GOCI-derived ocean surface currents in the Bohai Sea using the Maximum Cross-Correlation (MCC) feature tracking method and compare the results with altimetry-inversed tidal current observations produced from Oregon State University (OSU) Tidal Inversion Software (OTIS). The performance of the GOCI-based MCC method is assessed and the discrepancies between the GOCI- and OTIS-derived currents are evaluated. A series of sensitivity studies are conducted with images from various satellite products and of various time differences, MCC adjustable parameters, and influence from other forcings such as wind, to find the best setups for optimal MCC performance. Our results demonstrate that GOCI can effectively provide real-time monitoring of not only water optical, biological, and biogeochemical variability, but also the physical dynamics in the region.

  19. Assessing Sahelian vegetation and stress from seasonal time series of polar orbiting and geostationary satellite imagery

    DEFF Research Database (Denmark)

    Olsen, Jørgen Lundegaard

    that short term variations in anomalies from seasonally detrended time series of indices could carry information on vegetation stress was examined and confirmed. However, it was not found sufficiently robust on pixel level to be implemented for monitoring vegetation water stress on a per-pixel basis...... provide good sensitivity to canopy water content, which can make vegetation stress detection possible. Furthermore, the high frequency observations in the optical spectrum now available from geostationary instruments have the potential for detection of changes in vegetation related surface properties...... on short timescales, which are challenging from polar orbiting instruments. Geostationary NDVI and the NIR and SWIR based Shortwave Infrared Water Stress Index (SIWSI) indices are compared with extensive field data from the Dahra site, supplemented by data from the Agoufou and Demokeya sites. The indices...

  20. INFRARED GLOBAL GEOSTATIONARY COMPOSITE V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The National Center for Environmental Prediction/Aviation Weather Center Infrared Global Geostationary Composite data set contains global composite images from the...

  1. Quasi-real-time monitoring of SW radiation budget using geostationary satellite for Climate study and Renewable energy. (Invited)

    Science.gov (United States)

    Takenaka, H.; Nakajima, T. Y.; Kuze, H.; Takamura, T.; Pinker, R. T.; Nakajima, T.

    2013-12-01

    Solar radiation is the only source of energy that drives the weather and climate of the Earth's surface. Earth is warmed by incoming solar radiation, and emitted energy to space by terrestrial radiation due to its temperature. It has been kept to the organisms viable environment by the effect of heating and cooling. Clouds can cool the Earth by reflecting solar radiation and also can keep the Earth warm by absorbing and emitting terrestrial radiation. They are important in the energy balance at the Earth surface and the Top of the Atmosphere (TOA) and are connected complicatedly into the Earth system as well as other climate feedback processes. Thus it is important to estimate Earth's radiation budget for better understanding of climate and environmental change. We have shared several topics related to climate change. Energy issues close to the climate change, it is an environmental problems. Photovoltaics is one of the power generation method to converts from solar radiation to electric power directly. It does not emit greenhouse gases during power generation. Similarly, drainage, exhaust, vibration does not emit. PV system can be distributed as a small power supply in urban areas and it can installed to near the power demand points. Also solar thermal is heat generator with high efficiency. Therefor it is an effective energy source that the solar power is expected as one of the mitigation of climate change (IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation). It is necessary to real-time-monitoring of the surface solar radiation for safety operation of electric power system. We introduce a fusion analysis of renewable energy and Quasi-real-time analysis of SW radiation budget. Sample of estimated PV power mapping using geostationary satellite.

  2. Focal plane subsystem design and performance for atmospheric chemistry from geostationary orbit tropospheric emissions monitoring of pollution

    Science.gov (United States)

    Gilmore, A. S.; Philbrick, R. H.; Funderburg, J.

    2017-09-01

    Remote sensing of pollutants are enabled from a satellite in a geostationary orbit containing an imaging spectrometer encompassing the wavelength ranges of 290 - 490 nm and 540 - 740 nm. As the first of NASA's Earth Venture Instrument Program, the Tropospheric Emissions: Monitoring of Pollution (TEMPO) program will utilize this instrument to measure hourly air quality over a large portion of North America. The focal plane subsystem (FPS) contains two custom designed and critically aligned full frame transfer charge coupled devices (active area: 1028 x 2048, 18 μm) within a focal plane array package designed for radiation tolerance and space charging rejection. In addition, the FPS contains custom distributed focal plane electronics that provide all necessary clocks and biases to the sensors, receives all analog data from the sensors and performs 14 bit analog to digital conversion for upstream processing. Finally, the FPS encompasses custom low noise cables connecting the focal plane array and associated electronics. This paper discusses the design and performance of this novel focal plane subsystem with particular emphasis on the optical performance achieved including alignment, quantum efficiency, and modulation transfer function.

  3. The Geostationary Fourier Transform Spectrometer

    Science.gov (United States)

    Key, Richard; Sander, Stanley; Eldering, Annmarie; Blavier, Jean-Francois; Bekker, Dmitriy; Manatt, Ken; Rider, David; Wu, Yen-Hung

    2012-01-01

    The Geostationary Fourier Transform Spectrometer (GeoFTS) is an imaging spectrometer designed for a geostationary orbit (GEO) earth science mission to measure key atmospheric trace gases and process tracers related to climate change and human activity. GEO allows GeoFTS to continuously stare at a region of the earth for frequent sampling to capture the variability of biogenic fluxes and anthropogenic emissions from city to continental spatial scales and temporal scales from diurnal, synoptic, seasonal to interannual. The measurement strategy provides a process based understanding of the carbon cycle from contiguous maps of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), and chlorophyll fluorescence (CF) collected many times per day at high spatial resolution (2.7kmx2.7km at nadir). The CO2/CH4/CO/CF measurement suite in the near infrared spectral region provides the information needed to disentangle natural and anthropogenic contributions to atmospheric carbon concentrations and to minimize uncertainties in the flow of carbon between the atmosphere and surface. The half meter cube size GeoFTS instrument is based on a Michelson interferometer design that uses all high TRL components in a modular configuration to reduce complexity and cost. It is self-contained and as independent of the spacecraft as possible with simple spacecraft interfaces, making it ideal to be a "hosted" payload on a commercial communications satellite mission. The hosted payload approach for measuring the major carbon-containing gases in the atmosphere from the geostationary vantage point will affordably advance the scientific understating of carbon cycle processes and climate change.

  4. Tropospheric Emissions: Monitoring of Pollution (TEMPO)

    Science.gov (United States)

    Zoogman, P.; Liu, X.; Suleiman, R. M.; Pennington, W. F.; Flittner, D. E.; Al-Saadi, J. A.; Hilton, B. B.; Nicks, D. K.; Newchurch, M. J.; Carr, J. L.; hide

    2016-01-01

    North American component of the global geostationary constellation of pollution monitoring together with the European Sentinel-4 (S4) and Korean Geostationary Environment Monitoring Spectrometer (GEMS) instruments.

  5. Global-scale Observations of the Limb and Disk (GOLD) Mission: Science from Geostationary Orbit on-board a Commercial Communications Satellite

    Science.gov (United States)

    Eastes, R.; Deaver, T.; Krywonos, A.; Lankton, M. R.; McClintock, W. E.; Pang, R.

    2011-12-01

    Geostationary orbits are ideal for many science investigations of the Earth system on global scales. These orbits allow continuous observations of the same geographic region, enabling spatial and temporal changes to be distinguished and eliminating the ambiguity inherent to observations from low Earth orbit (LEO). Just as observations from geostationary orbit have revolutionized our understanding of changes in the troposphere, they will dramatically improve our understanding of the space environment at higher altitudes. However, geostationary orbits are infrequently used for science missions because of high costs. Geostationary satellites are large, typically weighing tons. Consequently, devoting an entire satellite to a science mission requires a large financial commitment, both for the spacecraft itself and for sufficient science instrumentation to justify a dedicated spacecraft. Furthermore, the small number of geostationary satellites produced for scientific missions increases the costs of each satellite. For these reasons, it is attractive to consider flying scientific instruments on satellites operated by commercial companies, some of whom have fleets of ~40 satellites. However, scientists' lack of understanding of the capabilities of commercial spacecraft as well as commercial companies' concerns about risks to their primary mission have impeded the cooperation necessary for the shared use of a spacecraft. Working with a commercial partner, the GOLD mission has successfully overcome these issues. Our experience indicates that there are numerous benefits to flying on commercial communications satellites (e.g., it is possible to downlink large amounts of data) and the costs are low if the experimental requirements adequately match the capabilities and available resources of the host spacecraft. Consequently, affordable access to geostationary orbit aboard a communications satellite now appears possible for science payloads.

  6. Chapter 7. Monitoring of chemical contamination of the environment and analytical-chemical monitoring

    International Nuclear Information System (INIS)

    Sojak, L.

    2006-01-01

    This chapter deals with the monitoring of chemical contamination of the environment and analytical-chemical monitoring. There are presented: the concept o monitoring of the environment of the Slovak Republic; unified monitoring system and complex information about state and development of the environment; analytical methods determination of chemical contaminants in the environment

  7. Monitoring volcanic ash cloud top height through simultaneous retrieval of optical data from polar orbiting and geostationary satellites

    Directory of Open Access Journals (Sweden)

    K. Zakšek

    2013-03-01

    Full Text Available Volcanic ash cloud-top height (ACTH can be monitored on the global level using satellite remote sensing. Here we propose a photogrammetric method based on the parallax between data retrieved from geostationary and polar orbiting satellites to overcome some limitations of the existing methods of ACTH retrieval. SEVIRI HRV band and MODIS band 1 are a good choice because of their high resolution. The procedure works well if the data from both satellites are retrieved nearly simultaneously. MODIS does not retrieve the data at exactly the same time as SEVIRI. To compensate for advection we use two sequential SEVIRI images (one before and one after the MODIS retrieval and interpolate the cloud position from SEVIRI data to the time of MODIS retrieval. The proposed method was tested for the case of the Eyjafjallajökull eruption in April 2010. The parallax between MODIS and SEVIRI data can reach 30 km, which implies an ACTH of approximately 12 km at the beginning of the eruption. At the end of April eruption an ACTH of 3–4 km is observed. The accuracy of ACTH was estimated to be 0.6 km.

  8. Interferometric Imaging of Geostationary Satellites: Signal-to-Noise Considerations

    Science.gov (United States)

    Jorgensen, A.; Schmitt, H.; Mozurkewich, D.; Armstrong, J.; Restaino, S.; Hindsley, R.

    2011-09-01

    Geostationary satellites are generally too small to image at high resolution with conventional single-dish telescopes. Obtaining many resolution elements across a typical geostationary satellite body requires a single-dish telescope with a diameter of 10’s of m or more, with a good adaptive optics system. An alternative is to use an optical/infrared interferometer consisting of multiple smaller telescopes in an array configuration. In this paper and companion papers1, 2 we discuss the performance of a common-mount 30-element interferometer. The instrument design is presented by Mozurkewich et al.,1 and imaging performance is presented by Schmitt et al.2 In this paper we discuss signal-to-noise ratio for both fringe-tracking and imaging. We conclude that the common-mount interferometer is sufficiently sensitive to track fringes on the majority of geostationary satellites. We also find that high-fidelity images can be obtained after a short integration time of a few minutes to a few tens of minutes.

  9. Air Quality Science and Regulatory Efforts Require Geostationary Satellite Measurements

    Science.gov (United States)

    Pickering, Kenneth E.; Allen, D. J.; Stehr, J. W.

    2006-01-01

    Air quality scientists and regulatory agencies would benefit from the high spatial and temporal resolution trace gas and aerosol data that could be provided by instruments on a geostationary platform. More detailed time-resolved data from a geostationary platform could be used in tracking regional transport and in evaluating mesoscale air quality model performance in terms of photochemical evolution throughout the day. The diurnal cycle of photochemical pollutants is currently missing from the data provided by the current generation of atmospheric chemistry satellites which provide only one measurement per day. Often peak surface ozone mixing ratios are reached much earlier in the day during major regional pollution episodes than during local episodes due to downward mixing of ozone that had been transported above the boundary layer overnight. The regional air quality models often do not simulate this downward mixing well enough and underestimate surface ozone in regional episodes. Having high time-resolution geostationary data will make it possible to determine the magnitude of this lower-and mid-tropospheric transport that contributes to peak eight-hour average ozone and 24-hour average PM2.5 concentrations. We will show ozone and PM(sub 2.5) episodes from the CMAQ model and suggest ways in which geostationary satellite data would improve air quality forecasting. Current regulatory modeling is typically being performed at 12 km horizontal resolution. State and regional air quality regulators in regions with complex topography and/or land-sea breezes are anxious to move to 4-km or finer resolution simulations. Geostationary data at these or finer resolutions will be useful in evaluating such models.

  10. Tropospheric emissions: Monitoring of pollution (TEMPO)

    Science.gov (United States)

    Zoogman, P.; Liu, X.; Suleiman, R. M.; Pennington, W. F.; Flittner, D. E.; Al-Saadi, J. A.; Hilton, B. B.; Nicks, D. K.; Newchurch, M. J.; Carr, J. L.; Janz, S. J.; Andraschko, M. R.; Arola, A.; Baker, B. D.; Canova, B. P.; Chan Miller, C.; Cohen, R. C.; Davis, J. E.; Dussault, M. E.; Edwards, D. P.; Fishman, J.; Ghulam, A.; González Abad, G.; Grutter, M.; Herman, J. R.; Houck, J.; Jacob, D. J.; Joiner, J.; Kerridge, B. J.; Kim, J.; Krotkov, N. A.; Lamsal, L.; Li, C.; Lindfors, A.; Martin, R. V.; McElroy, C. T.; McLinden, C.; Natraj, V.; Neil, D. O.; Nowlan, C. R.; O`Sullivan, E. J.; Palmer, P. I.; Pierce, R. B.; Pippin, M. R.; Saiz-Lopez, A.; Spurr, R. J. D.; Szykman, J. J.; Torres, O.; Veefkind, J. P.; Veihelmann, B.; Wang, H.; Wang, J.; Chance, K.

    2017-01-01

    together with the European Sentinel-4 (S4) and Korean Geostationary Environment Monitoring Spectrometer (GEMS) instruments.

  11. Environment quality monitoring using ARM processor

    Science.gov (United States)

    Vinaya, C. H.; Krishna Thanikanti, Vamsi; Ramasamy, Sudha

    2017-11-01

    This paper of air quality monitoring system describes a model of sensors network to continuously monitoring the environment with low cost developed model. At present time all over the world turned into a great revolution in industrial domain and on the other hand environment get polluting in a dangerous value. There are so many technologies present to reduce the polluting contents but still there is no completely reduction of that pollution. Even there are different methods to monitor the pollution content; these are much costly that not everyone can adapt those methods or devices. Now we are proposing a sensors connected network to monitor the environment continuously and displaying the pollutant gases percentage in air surroundings and can transmit the results to our mobiles by message. The advantage of this system is easy to design, establish at area to monitor, maintenance and most cost effective as well.

  12. Geostationary Sensor Based Forest Fire Detection and Monitoring: An Improved Version of the SFIDE Algorithm

    Directory of Open Access Journals (Sweden)

    Valeria Di Biase

    2018-05-01

    Full Text Available The paper aims to present the results obtained in the development of a system allowing for the detection and monitoring of forest fires and the continuous comparison of their intensity when several events occur simultaneously—a common occurrence in European Mediterranean countries during the summer season. The system, called SFIDE (Satellite FIre DEtection, exploits a geostationary satellite sensor (SEVIRI, Spinning Enhanced Visible and InfraRed Imager, on board of MSG, Meteosat Second Generation, satellite series. The algorithm was developed several years ago in the framework of a project (SIGRI funded by the Italian Space Agency (ASI. This algorithm has been completely reviewed in order to enhance its efficiency by reducing false alarms rate preserving a high sensitivity. Due to the very low spatial resolution of SEVIRI images (4 × 4 km2 at Mediterranean latitude the sensitivity of the algorithm should be very high to detect even small fires. The improvement of the algorithm has been obtained by: introducing the sun elevation angle in the computation of the preliminary thresholds to identify potential thermal anomalies (hot spots, introducing a contextual analysis in the detection of clouds and in the detection of night-time fires. The results of the algorithm have been validated in the Sardinia region by using ground true data provided by the regional Corpo Forestale e di Vigilanza Ambientale (CFVA. A significant reduction of the commission error (less than 10% has been obtained with respect to the previous version of the algorithm and also with respect to fire-detection algorithms based on low earth orbit satellites.

  13. 47 CFR 25.135 - Licensing provisions for earth station networks in the non-voice, non-geostationary mobile...

    Science.gov (United States)

    2010-10-01

    ... in the non-voice, non-geostationary mobile-satellite service. 25.135 Section 25.135 Telecommunication...-voice, non-geostationary mobile-satellite service. (a) Each applicant for a blanket earth station license in the non-voice, non-geostationary mobile-satellite service shall demonstrate that transceiver...

  14. NOAA Geostationary Operational Environmental Satellite (GOES) Imager Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Geostationary Operational Environmental Satellite (GOES) series provides continuous measurements of the atmosphere and surface over the Western Hemisphere....

  15. Reliable retrieval of atmospheric and aquatic parameters in coastal and inland environments from polar-orbiting and geostationary platforms: challenges and opportunities

    Science.gov (United States)

    Stamnes, Knut; Li, Wei; Lin, Zhenyi; Fan, Yongzhen; Chen, Nan; Gatebe, Charles; Ahn, Jae-Hyun; Kim, Wonkook; Stamnes, Jakob J.

    2017-04-01

    Simultaneous retrieval of aerosol and surface properties by means of inverse techniques based on a coupled atmosphere-surface radiative transfer model, neural networks, and optimal estimation can yield considerable improvements in retrieval accuracy in complex aquatic environments compared with traditional methods. Remote sensing of such environments represent specific challenges due (i) the complexity of the atmosphere and water inherent optical properties, (ii) unique bidirectional dependencies of the water-leaving radiance, and (iii) the desire to do retrievals for large solar zenith and viewing angles. We will discuss (a) how challenges related to atmospheric gaseous absorption, absorbing aerosols, and turbid waters can be addressed by using a coupled atmosphere-surface radiative transfer (forward) model in the retrieval process, (b) how the need to correct for bidirectional effects can be accommodated in a systematic and reliable manner, (c) how polarization information can be utilized, (d) how the curvature of the atmosphere can be taken into account, and (e) how neural networks and optimal estimation can be used to obtain fast yet accurate retrievals. Special emphasis will be placed on how information from existing and future sensors deployed on polar-orbiting and geostationary platforms can be obtained in a reliable and accurate manner. The need to provide uncertainty assessments and error budgets will also be discussed.

  16. Static and kinematic positioning using WADGPS from geostationary satellites

    Science.gov (United States)

    Cefalo, R.; Gatti, M.

    2003-04-01

    STATIC AND KINEMATIC POSITIONING USING WADGPS CORRECTIONS FROM GEOSTATIONARY SATELLITES Cefalo R. (1), Gatti M (2) (1) Department of Civil Engineering, University of Trieste, P.le Europa 1, 34127 Trieste, Italy, cefalo@dic.univ.trieste.it, (2) Department of Engineering, University of Ferrara, via Saragat 1, 44100 Ferrara, Italy, mgatti@ing.unife.it ABSTRACT. Starting from February 2000, static and kinematic experiments have been performed at the Department of Civil Engineering of University of Trieste, Italy and the Department of Engineering of University of Ferrara, Italy, using the WADGPS (Wide Area Differential GPS) corrections up linked by Geostationary Satellites belonging to the American WAAS and European EGNOS. Recently, a prototypal service by ESA (European Space Agency) named SISNet (Signal In Space through Internet), has been introduced using Internet to diffuse the messages up linked through AOR-E and IOR Geostationary Satellites. This service will overcome the problems relative to the availability of the corrections in urban areas. This system is currently under tests by the authors in order to verify the latency of the message and the applicability and accuracies obtainable in particular in dynamic applications.

  17. The 2017 Hurricane Season: A Revolution in Geostationary Weather Satellite Imaging and Data Processing

    Science.gov (United States)

    Weiner, A. M.; Gundy, J.; Brown-Bertold, B.; Yates, H.; Dobler, J. T.

    2017-12-01

    Since their introduction, geostationary weather satellites have enabled us to track hurricane life-cycle movement from development to dissipation. During the 2017 hurricane season, the new GOES-16 geostationary satellite demonstrated just how far we have progressed technologically in geostationary satellite imaging, with hurricane imagery showing never-before-seen detail of the hurricane eye and eyewall structure and life cycle. In addition, new ground system technology, leveraging high-performance computing, delivered imagery and data to forecasters with unprecedented speed—and with updates as often as every 30 seconds. As additional satellites and new products become operational, forecasters will be able to track hurricanes with even greater accuracy and assist in aftermath evaluations. This presentation will present glimpses into the past, a look at the present, and a prediction for the future utilization of geostationary satellites with respect to all facets of hurricane support.

  18. Flower elliptical constellation of millimeter-wave radiometers for precipitating cloud monitoring at geostationary scale

    Science.gov (United States)

    Marzano, F. S.; Cimini, D.; Montopoli, M.; Rossi, T.; Mortari, D.; di Michele, S.; Bauer, P.

    2009-04-01

    Millimeter-wave observation of the atmospheric parameters is becoming an appealing goal within satellite radiometry applications. The major technological advantage of millimeter-wave (MMW) radiometers is the reduced size of the overall system, for given performances, with respect to microwave sensor. On the other hand, millimeter-wave sounding can exploit window frequencies and various gaseous absorption bands at 50/60 GHz, 118 GHz and 183 GHz. These bands can be used to estimate tropospheric temperature profiles, integrated water vapor and cloud liquid content and, using a differentia spectral mode, light rainfall and snowfall. Millimeter-wave radiometers, for given observation conditions, can also exhibit relatively small field-of-views (FOVs), of the order of some kilometers for low-Earth-orbit (LEO) satellites. However, the temporal resolution of LEO millimeter-wave system observations remains a major drawback with respect to the geostationary-Earth-orbit (GEO) satellites. An overpass every about 12 hours for a single LEO platform (conditioned to a sufficiently large swath of the scanning MMW radiometer) is usually too much when compared with the typical temporal scale variation of atmospheric fields. This feature cannot be improved by resorting to GEO platforms due to their high orbit altitude and consequent degradation of the MMW-sensor FOVs. A way to tackle this impasse is to draw our attention at the regional scale and to focus non-circular orbits over the area of interest, exploiting the concept of micro-satellite flower constellations. The Flower Constellations (FCs) is a general class of elliptical orbits which can be optimized, through genetic algorithms, in order to maximize the revisiting time and the orbital height, ensuring also a repeating ground-track. The constellation concept nicely matches the choice of mini-satellites as a baseline choice, due to their small size, weight (less than 500 kilograms) and relatively low cost (essential when

  19. ESA personal communications and digital audio broadcasting systems based on non-geostationary satellites

    Science.gov (United States)

    Logalbo, P.; Benedicto, J.; Viola, R.

    1993-01-01

    Personal Communications and Digital Audio Broadcasting are two new services that the European Space Agency (ESA) is investigating for future European and Global Mobile Satellite systems. ESA is active in promoting these services in their various mission options including non-geostationary and geostationary satellite systems. A Medium Altitude Global Satellite System (MAGSS) for global personal communications at L and S-band, and a Multiregional Highly inclined Elliptical Orbit (M-HEO) system for multiregional digital audio broadcasting at L-band are described. Both systems are being investigated by ESA in the context of future programs, such as Archimedes, which are intended to demonstrate the new services and to develop the technology for future non-geostationary mobile communication and broadcasting satellites.

  20. Geostationary Surface and Insolation Products (GSIP), Version 3

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Geostationary Surface and Insolation Products (GSIP) Version 3 contains upwelling and downwelling shortwave (0.2-4.0 um) and visible (0.4-0.7 um) radiative...

  1. Monitoring the Environments We Depend On

    International Nuclear Information System (INIS)

    Madsen, Michael

    2013-01-01

    Our overuse of natural resources, pollution and climate change are weakening natural systems’ ability to adapt to ever more sources of stress. The varied environments of our planet are interconnected and the pollution of one has ramifications across all. It is thus important to monitor the health of our environment to ensure a sustainable future. The IAEA, through its Environment Laboratories, Water Resource Programme, and technical cooperation programme, applies unique, versatile and cost-effective isotopic and nuclear techniques to understand many of the key environmental mechanisms needed to ensure a sustainable future. These monitoring systems help Member States make ecologically-responsible and scientifically-grounded development decisions

  2. Astrometry and Geostationary Satellites in Venezuela

    Science.gov (United States)

    Lacruz, E.; Abad, C.

    2015-10-01

    We present the current status and the first results of the astrometric project CIDA - ABAE for tracking geo-stationary satellites. This project aims to determine a preliminary orbit for the Venezuelan satellite VENESAT-1, using astrometric positions obtained from an optical telescope. The results presented here are based on observations from the Luepa space tracking ground station in Venezuela, which were processed using astrometric procedures.

  3. Savannah River Plant remote environmental monitoring system

    International Nuclear Information System (INIS)

    Schubert, J.F.

    1987-01-01

    The SRP remote environmental monitoring system consists of separations facilities stack monitors, production reactor stack monitors, twelve site perimeter monitors, river and stream monitors, a geostationary operational environmental satellite (GOES) data link, reactor cooling lake thermal monitors, meteorological tower system, Weather Information and Display (WIND) system computer, and the VANTAGE data base management system. The remote environmental monitoring system when fully implemented will provide automatic monitoring of key stack releases and automatic inclusion of these source terms in the emergency response codes

  4. Results of monitoring at Olkiluoto in 2007. Environment

    International Nuclear Information System (INIS)

    Haapanen, R.

    2008-06-01

    This Working Report presents the main results of Posiva Oy's environmental monitoring programme on Olkiluoto Island in 2007. These summary reports have been published since 2005 (target year 2004). The environmental monitoring system supervised by Posiva Oy produces input for biosphere modelling for long-term safety purposes as well as for monitoring the state of the environment during the construction (and later operation) of ONKALO underground characterization facility. Although some of the nuclear power production related monitoring studies by TVO (the power company) have been going on from the 1970s, the repository-related environmental monitoring of Olkiluoto Island has only recently been comprehensive. In the monitoring data, the ongoing construction work (OL3, ONKALO and related infrastructure) is seen for instance in raised noise levels and deposition of base cations and iron. The land-use continues to change, but where there is natural environment, it resembles other coastal locations. The nearby marine environment is affected by the cooling water from the nuclear power plant. (orig.)

  5. Radiation monitoring in the NPP environment, control of radioactivity in NPP-environment system

    International Nuclear Information System (INIS)

    Egorov, Yu.A.

    1987-01-01

    Problems of radiation monitoring and control of the NPP-environment system (NPPES) are considered. Radiation control system at the NPP and in the environment provides for the control of the NPP, considered as the source of radioactive releases in the environment and for the environmental radiation climate control. It is shown, that the radiation control of the NPP-environment system must be based on the ecological normalization principles of the NPP environmental impacts. Ecological normalization should be individual for the NPP region of each ecosystem. The necessity to organize and conduct radiation ecological monitoring in the NPP regions is pointed out. Radiation ecological monitoring will provide for both environmental current radiation control and information for mathematical models, used in the NPPES radiation control

  6. Comparison of the simultaneous measurement results of SCR fluxes received by geostationary satellites 'Electro-L' and 'GOES'

    International Nuclear Information System (INIS)

    Arakelov, A S; Burov, V A; Ochelkov, Y P

    2013-01-01

    In the present paper the comparison of the results of the simultaneous measurements of solar proton fluxes on board geostationary satellites 'GOES' and 'Electro' was made for the purpose of calibration of 'Electro-L' detectors and determination of the possibility to utilize 'Electro-L' data for space weather monitoring. It was shown that the solar proton observation data on board 'Electro-L' recalculated to energy thresholds of 'GOES' 10 and 30 MeV are in a good consistent with 'GOES' data and may be used for control of radiation conditions in near-earth space.

  7. Spectroscopic Observations of Geo-Stationary Satellites Over the Korean Peninsula

    Directory of Open Access Journals (Sweden)

    D. K. Lee

    2001-11-01

    Full Text Available Low resolution spectroscopic observations of geo-stationary satellites over the Korean peninsula have been carried out at the KyungHee Optical Satellite Observing Facility (KOSOF with a 40cm telescope. We have observed 9 telecommunication satellites and 1 weather satellite of 6 countries. The obtained spectral data showed that satellites could be classified and grouped with similar basic spectral feature. We divided the 10 satellites into 4 groups based on spectral slop and reflectance. It is suggested that the material types of the satellites can be determined through spectral comparisons with the ground laboratory data. We will continuously observe additional geo-stationary satellites for the accurate classification of spectral features.

  8. Guidelines for radiological monitoring of the environment

    International Nuclear Information System (INIS)

    1990-11-01

    This Standard provides criteria to be used in deciding whether an environmental monitoring program is required for a given nuclear facility. It also sets out a systematic approach to monitoring the environment, which is considered to be outside the facility boundary. It provides guidelines for establishing an environmental program covering sampling and analysis protocols, analytical techniques and sensitivity, statistical treatment of monitoring results, quality assurance, methods for expressing results, and record keeping. The standard applies to the environment of a nuclear facility operating mainly under normal conditions; in addition, certain of these requirements may also apply to situations involving abnormal releases

  9. Monitoring of environment

    Energy Technology Data Exchange (ETDEWEB)

    Mitsudera, M

    1974-09-01

    The amount of pollutants discharged has now exceeded the environment's natural ability to purify itself. The effect of urbanization is traced especially the degeneration of plants and animals in Tokyo. One of the methods of monitoring plants is remote sensing with multi-band photography and multi-spectroscanning. There is a correlation between the sulfur content of tree leaves and multi-band photograms on red pine trees with a correlation coefficient of -0.862.

  10. Partial monitoring system Radioactivity of the Environment, 2006

    International Nuclear Information System (INIS)

    Melicherova, T.

    2007-01-01

    In this report the Partial monitoring system 'Radioactivity of the Environment' for the year 2006 is presented. International co-operation of the Slovak Hydrometeorological Institute in the Partial monitoring system 'Radioactivity of the Environment' of the Slovak Republic, international co-operation as well as financial data are reviewed

  11. The Use of the Deep Convective Cloud Technique (DCCT) to Monitor On-Orbit Performance of the Geostationary Lightning Mapper (GLM): Use of Lightning Imaging Sensor (LIS) Data as Proxy

    Science.gov (United States)

    Buechler, Dennis E.; Christian, H. J.; Koshak, William J.; Goodman, Steve J.

    2013-01-01

    The Geostationary Lightning Mapper (GLM) on the next generation Geostationary Operational Environmental Satellite-R (GOES-R) will not have onboard calibration capability to monitor its performance. The Lightning Imaging Sensor (LIS) onboard the Tropical Rainfall Measuring Mission (TRMM) satellite has been providing observations of total lightning over the Earth's Tropics since 1997. The GLM design is based on LIS heritage, making it a good proxy dataset. This study examines the performance of LIS throughout its time in orbit. This was accomplished through application of the Deep Convective Cloud Technique (DCCT) (Doelling et al., 2004) to LIS background pixel radiance data. The DCCT identifies deep convective clouds by their cold Infrared (IR) brightness temperatures and using them as invariant targets in the solar reflective portion of the solar spectrum. The GLM and LIS operate in the near-IR at a wavelength of 777.4 nm. In the present study the IR data is obtained from the Visible Infrared Sensor (VIRS) which is collocated with LIS onboard the Tropical Rainfall Measuring Mission (TRMM) satellite. The DCCT is applied to LIS observations for July and August of each year from 1998-2010. The resulting distributions of LIS background DCC pixel radiance for each July August are very similar, indicating stable performance. The mean radiance of the DCCT analysis does not show a long term trend and the maximum deviation of the July August mean radiance for each year is within 0.7% of the overall mean. These results demonstrate that there has been no discernible change in LIS performance throughout its lifetime. A similar approach will used for monitoring the performance of GLM, with cold clouds identified using IR data from the Advanced Baseline Imager (ABI) which will also be located on GOES-R. Since GLM is based on LIS design heritage, the LIS results indicate that GLM should also experience stable performance over its lifetime.

  12. Geostationary satellite estimation of biomass burning in Amazonia during BASE-A

    International Nuclear Information System (INIS)

    Menzel, W.P.; Cutrim, E.C.; Prins, E.M.

    1991-01-01

    This chapter presents the results of using Geostationary Operational Environmental Satellite (GOES) Visible Infrared Spin Scan Radiometer Atmospheric Sounder (VAS) infrared window (3.9 and 11.2 microns) data to monitor biomass burning several times per day in Amazonia. The technique of Matson and Dozier using two window channels was adapted to GOES VAS infrared data to estimate the size and temperature of fires associated with deforestation in the vicinity of Alta Floresta, Brazil, during the Biomass Burning Airborne and Spaceborne Experiment - Amazonia (BASE-A). Although VAS data do not offer the spatial resolution available with AVHRR data 97 km versus 1 km, respectively, this decreased resolution does not seem to hinder the ability of the VAS instrument to detect fires; in some cases it proves to be advantageous in that saturation does not occur as often. VAS visible data are additionally helpful in verifying that the hot spots sensed in the infrared are actually related to fires. Furthermore, the fire plumes can be tracked in time to determine their motion and extent. In this way, the GOES satellite offers a unique ability to monitor diurnal variations in fire activity and transport of related aerosols

  13. Characterization of geostationary particle signatures based on the 'injection boundary' model

    International Nuclear Information System (INIS)

    Mauk, B.H.; Meng, C.

    1983-01-01

    To lend further support to the 'injection boundary' concept, this paper characterizes the details of geostationary particle signatures using a very simple-minded analysis procedure. The signatures are generated using the time of flight effects which evolve from an initial sharply defined, double-spiraled boundary configuration. By using only the most fundamental characteristics of standard convection configurations, the very complex and highly variable dispersion patterns frequently observed by geostationary satellites are successfully reproduced. In particular, seven distinctly different ion-electron paired dispersion patterns on energy versus time spectrograms (1 eV to 100 KeV) are predicted, and all seven of these are observed on a regular basis by both the SCATHA satellite (in the near geostationary orbit) and the ATS-6 satellite. Many of the details of the patterns have not been previously presented. It is concluded that most dynamical dispersion features (including energetic ion and electron echoes) can be mapped to the double-spiral boundary without further ad hoc assumptions. It is shown further that the predicted and observed dispersion patterns have symmetries which are distinct from the symmetries generally associated with the quasistationary particle convection patterns

  14. Comparison of Cloud Properties from CALIPSO-CloudSat and Geostationary Satellite Data

    Science.gov (United States)

    Nguyen, L.; Minnis, P.; Chang, F.; Winker, D.; Sun-Mack, S.; Spangenberg, D.; Austin, R.

    2007-01-01

    Cloud properties are being derived in near-real time from geostationary satellite imager data for a variety of weather and climate applications and research. Assessment of the uncertainties in each of the derived cloud parameters is essential for confident use of the products. Determination of cloud amount, cloud top height, and cloud layering is especially important for using these real -time products for applications such as aircraft icing condition diagnosis and numerical weather prediction model assimilation. Furthermore, the distribution of clouds as a function of altitude has become a central component of efforts to evaluate climate model cloud simulations. Validation of those parameters has been difficult except over limited areas where ground-based active sensors, such as cloud radars or lidars, have been available on a regular basis. Retrievals of cloud properties are sensitive to the surface background, time of day, and the clouds themselves. Thus, it is essential to assess the geostationary satellite retrievals over a variety of locations. The availability of cloud radar data from CloudSat and lidar data from CALIPSO make it possible to perform those assessments over each geostationary domain at 0130 and 1330 LT. In this paper, CloudSat and CALIPSO data are matched with contemporaneous Geostationary Operational Environmental Satellite (GOES), Multi-functional Transport Satellite (MTSAT), and Meteosat-8 data. Unlike comparisons with cloud products derived from A-Train imagers, this study considers comparisons of nadir active sensor data with off-nadir retrievals. These matched data are used to determine the uncertainties in cloud-top heights and cloud amounts derived from the geostationary satellite data using the Clouds and the Earth s Radiant Energy System (CERES) cloud retrieval algorithms. The CERES multi-layer cloud detection method is also evaluated to determine its accuracy and limitations in the off-nadir mode. The results will be useful for

  15. High Temporal and Spatial Resolution Coverage of Earth from Commercial AVSTAR Systems in Geostationary Orbit

    Science.gov (United States)

    Lecompte, M. A.; Heaps, J. F.; Williams, F. H.

    Imaging the earth from Geostationary Earth Orbit (GEO) allows frequent updates of environmental conditions within an observable hemisphere at time and spatial scales appropriate to the most transient observable terrestrial phenomena. Coverage provided by current GEO Meteorological Satellites (METSATS) fails to fully exploit this advantage due primarily to obsolescent technology and also institutional inertia. With the full benefit of GEO based imaging unrealized, rapidly evolving phenomena, occurring at the smallest spatial and temporal scales that frequently have significant environmental impact remain unobserved. These phenomena may be precursors for the most destructive natural processes that adversely effect society. Timely distribution of information derived from "real-time" observations thus may provide opportunities to mitigate much of the damage to life and property that would otherwise occur. AstroVision International's AVStar Earth monitoring system is designed to overcome the current limitations if GEO Earth coverage and to provide real time monitoring of changes to the Earth's complete atmospheric, land and marine surface environments including fires, volcanic events, lightning and meteoritic events on a "live," true color, and multispectral basis. The understanding of severe storm dynamics and its coupling to the earth's electro-sphere will be greatly enhanced by observations at unprecedented sampling frequencies and spatial resolution. Better understanding of these natural phenomena and AVStar operational real-time coverage may also benefit society through improvements in severe weather prediction and warning. AstroVision's AVStar system, designed to provide this capability with the first of a constellation of GEO- based commercial environmental monitoring satellites to be launched in late 2003 will be discussed, including spatial and temporal resolution, spectral coverage with applications and an inventory of the potential benefits to society

  16. Results of Monitoring at Olkiluoto in 2006. Environment

    International Nuclear Information System (INIS)

    Haapanen, R.

    2007-07-01

    This Working Report presents the main results of Posiva Oy's environmental monitoring programme on Olkiluoto Island in 2006. This is the third annual report. The environmental monitoring system supervised by Posiva Oy produces input for biosphere modelling for long-term safety purposes as well as for monitoring the state of the environment during the construction (and later operation) of ONKALO underground characterization facility. Although some of the nuclear power production related monitoring studies by TVO (the power company) have been going on from the 1970s, the repository-related environmental monitoring of Olkiluoto Island has only recently been comprehensive. Consequently, the first Biosphere Description Report was written in 2006. This work further produced some analyses belonging to the environmental monitoring programme, namely the estimates of biomass in terrestrial vegetation (forests) and a preliminary estimate of the biomass in terrestrial fauna (moose). In the monitoring data, the ongoing construction work (OL3, ONKALO and related infrastructure) is seen for instance in raised noise levels and deposition of base cations and iron. The land-use continues to change, but where there is natural environment, it resembles other coastal locations. The nearby marine environment is affected by the cooling water from the nuclear power plant. (orig.)

  17. Land Surface Temperature- Comparing Data from Polar Orbiting and Geostationary Satellites

    Science.gov (United States)

    Comyn-Platt, E.; Remedios, J. J.; Good, E. J.; Ghent, D.; Saunders, R.

    2012-04-01

    Land Surface Temperature (LST) is a vital parameter in Earth climate science, driving long-wave radiation exchanges that control the surface energy budget and carbon fluxes, which are important factors in Numerical Weather Prediction (NWP) and the monitoring of climate change. Satellites offer a convenient way to observe LST consistently and regularly over large areas. A comparison between LST retrieved from a Geostationary Instrument, the Spinning Enhanced Visible and InfraRed Imager (SEVIRI), and a Polar Orbiting Instrument, the Advanced Along Track Scanning Radiometer (AATSR) is presented. Both sensors offer differing benefits. AATSR offers superior precision and spatial resolution with global coverage but given its sun-synchronous platform only observes at two local times, ~10am and ~10pm. SEVIRI provides the high-temporal resolution (every 15 minutes) required for observing diurnal variability of surface temperatures but given its geostationary platform has a poorer resolution, 3km at nadir, which declines at higher latitudes. A number of retrieval methods are applied to the raw satellite data: First order coefficient based algorithms provided on an operational basis by the LandSAF (for SEVIRI) and the University of Leicester (for AATSR); Second order coefficient based algorithms put forward by the University of Valencia; and an optimal estimation method using the 1DVar software provided by the NWP SAF. Optimal estimation is an iterative technique based upon inverse theory, thus is very useful for expanding into data assimilation systems. The retrievals are assessed and compared on both a fine scale using in-situ data from recognised validation sites and on a broad scale using two 100x100 regions such that biases can be better understood. Overall, the importance of LST lies in monitoring daily temperature extremes, e.g. for estimating permafrost thawing depth or risk of crop damage due to frost, hence the ideal dataset would use a combination of observations

  18. The international environment UNISPACE '82 and the ITU: A relationship between orbit-spectrum resource allocation and orbital debris

    Science.gov (United States)

    Olmstead, D.

    1985-01-01

    The 1985 Space WARC will examine and potentially modify the current geostationary orbit spectrum resource allocation methodology. Discussions in this international political environment could likely associate the geostationary orbital debris issue with the politicized issue of orbit spectrum allocation.

  19. Applications of Wireless Sensor Networks in Marine Environment Monitoring: A Survey

    Science.gov (United States)

    Xu, Guobao; Shen, Weiming; Wang, Xianbin

    2014-01-01

    With the rapid development of society and the economy, an increasing number of human activities have gradually destroyed the marine environment. Marine environment monitoring is a vital problem and has increasingly attracted a great deal of research and development attention. During the past decade, various marine environment monitoring systems have been developed. The traditional marine environment monitoring system using an oceanographic research vessel is expensive and time-consuming and has a low resolution both in time and space. Wireless Sensor Networks (WSNs) have recently been considered as potentially promising alternatives for monitoring marine environments since they have a number of advantages such as unmanned operation, easy deployment, real-time monitoring, and relatively low cost. This paper provides a comprehensive review of the state-of-the-art technologies in the field of marine environment monitoring using wireless sensor networks. It first describes application areas, a common architecture of WSN-based oceanographic monitoring systems, a general architecture of an oceanographic sensor node, sensing parameters and sensors, and wireless communication technologies. Then, it presents a detailed review of some related projects, systems, techniques, approaches and algorithms. It also discusses challenges and opportunities in the research, development, and deployment of wireless sensor networks for marine environment monitoring. PMID:25215942

  20. Interpretation of Spectrometric Measurements of Active Geostationary Satellites

    Science.gov (United States)

    Bedard, D.; Wade, G.

    2014-09-01

    Over 5000 visible near-infrared (VNIR) spectrometric measurements of active geostationary satellites have been collected with the National Research Council (NRC) 1.8m Plaskett telescope located at the Dominion Astrophysical Observatory (DAO) in Victoria, Canada. The objective of this ongoing experiment is to study how reflectance spectroscopy can be used to reliably identify specific material types on the surface of artificial Earth-orbiting objects. Active geostationary satellites were selected as the main subjects for this experiment since their orientation is stable and can be estimated to a high-level of confidence throughout a night of observation. Furthermore, for most geostationary satellites, there is a wide variety of sources that can provide some level of information as to their external surface composition. Notwithstanding the high number of measurements that have been collected to date, it was assumed that the experimenters would have a much greater success rate in material identification given the choice experimental subjects. To date, only the presence of aluminum has been confidently identified in some of the reflectance spectra that have been collected. Two additional material types, namely photovoltaic cells and polyimide film, the first layer of multi-layer insulation (MLI), have also been possibly identified. However uncertainties in the reduced spectral measurements prevent any definitive conclusion with respect to these materials at this time. The surprising lack of results with respect to material identification have forced the experimenters to use other data interpretation methods to characterize the spectral scattering characteristics of the studied satellites. The results from this study have already led to improvements in the ways that reflectance spectra from spacecraft are collected and analysed. Equally important, the data interpretation techniques elaborated over the course of this experiment will also serve to increase the body of

  1. Prediction Model for Relativistic Electrons at Geostationary Orbit

    Science.gov (United States)

    Khazanov, George V.; Lyatsky, Wladislaw

    2008-01-01

    We developed a new prediction model for forecasting relativistic (greater than 2MeV) electrons, which provides a VERY HIGH correlation between predicted and actually measured electron fluxes at geostationary orbit. This model implies the multi-step particle acceleration and is based on numerical integrating two linked continuity equations for primarily accelerated particles and relativistic electrons. The model includes a source and losses, and used solar wind data as only input parameters. We used the coupling function which is a best-fit combination of solar wind/interplanetary magnetic field parameters, responsible for the generation of geomagnetic activity, as a source. The loss function was derived from experimental data. We tested the model for four year period 2004-2007. The correlation coefficient between predicted and actual values of the electron fluxes for whole four year period as well as for each of these years is stable and incredibly high (about 0.9). The high and stable correlation between the computed and actual electron fluxes shows that the reliable forecasting these electrons at geostationary orbit is possible.

  2. Electron Flux Models for Different Energies at Geostationary Orbit

    Science.gov (United States)

    Boynton, R. J.; Balikhin, M. A.; Sibeck, D. G.; Walker, S. N.; Billings, S. A.; Ganushkina, N.

    2016-01-01

    Forecast models were derived for energetic electrons at all energy ranges sampled by the third-generation Geostationary Operational Environmental Satellites (GOES). These models were based on Multi-Input Single-Output Nonlinear Autoregressive Moving Average with Exogenous inputs methodologies. The model inputs include the solar wind velocity, density and pressure, the fraction of time that the interplanetary magnetic field (IMF) was southward, the IMF contribution of a solar wind-magnetosphere coupling function proposed by Boynton et al. (2011b), and the Dst index. As such, this study has deduced five new 1 h resolution models for the low-energy electrons measured by GOES (30-50 keV, 50-100 keV, 100-200 keV, 200-350 keV, and 350-600 keV) and extended the existing >800 keV and >2 MeV Geostationary Earth Orbit electron fluxes models to forecast at a 1 h resolution. All of these models were shown to provide accurate forecasts, with prediction efficiencies ranging between 66.9% and 82.3%.

  3. The Geostationary Earth Radiation Budget Project.

    Science.gov (United States)

    Harries, J. E.; Russell, J. E.; Hanafin, J. A.; Brindley, H.; Futyan, J.; Rufus, J.; Kellock, S.; Matthews, G.; Wrigley, R.; Last, A.; Mueller, J.; Mossavati, R.; Ashmall, J.; Sawyer, E.; Parker, D.; Caldwell, M.; Allan, P. M.; Smith, A.; Bates, M. J.; Coan, B.; Stewart, B. C.; Lepine, D. R.; Cornwall, L. A.; Corney, D. R.; Ricketts, M. J.; Drummond, D.; Smart, D.; Cutler, R.; Dewitte, S.; Clerbaux, N.; Gonzalez, L.; Ipe, A.; Bertrand, C.; Joukoff, A.; Crommelynck, D.; Nelms, N.; Llewellyn-Jones, D. T.; Butcher, G.; Smith, G. L.; Szewczyk, Z. P.; Mlynczak, P. E.; Slingo, A.; Allan, R. P.; Ringer, M. A.

    2005-07-01

    This paper reports on a new satellite sensor, the Geostationary Earth Radiation Budget (GERB) experiment. GERB is designed to make the first measurements of the Earth's radiation budget from geostationary orbit. Measurements at high absolute accuracy of the reflected sunlight from the Earth, and the thermal radiation emitted by the Earth are made every 15 min, with a spatial resolution at the subsatellite point of 44.6 km (north south) by 39.3 km (east west). With knowledge of the incoming solar constant, this gives the primary forcing and response components of the top-of-atmosphere radiation. The first GERB instrument is an instrument of opportunity on Meteosat-8, a new spin-stabilized spacecraft platform also carrying the Spinning Enhanced Visible and Infrared (SEVIRI) sensor, which is currently positioned over the equator at 3.5°W. This overview of the project includes a description of the instrument design and its preflight and in-flight calibration. An evaluation of the instrument performance after its first year in orbit, including comparisons with data from the Clouds and the Earth's Radiant Energy System (CERES) satellite sensors and with output from numerical models, are also presented. After a brief summary of the data processing system and data products, some of the scientific studies that are being undertaken using these early data are described. This marks the beginning of a decade or more of observations from GERB, as subsequent models will fly on each of the four Meteosat Second Generation satellites.

  4. Near-real-time global biomass burning emissions product from geostationary satellite constellation

    Science.gov (United States)

    Zhang, Xiaoyang; Kondragunta, Shobha; Ram, Jessica; Schmidt, Christopher; Huang, Ho-Chun

    2012-07-01

    Near-real-time estimates of biomass burning emissions are crucial for air quality monitoring and forecasting. We present here the first near-real-time global biomass burning emission product from geostationary satellites (GBBEP-Geo) produced from satellite-derived fire radiative power (FRP) for individual fire pixels. Specifically, the FRP is retrieved using WF_ABBA V65 (wildfire automated biomass burning algorithm) from a network of multiple geostationary satellites. The network consists of two Geostationary Operational Environmental Satellites (GOES) which are operated by the National Oceanic and Atmospheric Administration, the Meteosat second-generation satellites (Meteosat-09) operated by the European Organisation for the Exploitation of Meteorological Satellites, and the Multifunctional Transport Satellite (MTSAT) operated by the Japan Meteorological Agency. These satellites observe wildfires at an interval of 15-30 min. Because of the impacts from sensor saturation, cloud cover, and background surface, the FRP values are generally not continuously observed. The missing observations are simulated by combining the available instantaneous FRP observations within a day and a set of representative climatological diurnal patterns of FRP for various ecosystems. Finally, the simulated diurnal variation in FRP is applied to quantify biomass combustion and emissions in individual fire pixels with a latency of 1 day. By analyzing global patterns in hourly biomass burning emissions in 2010, we find that peak fire season varied greatly and that annual wildfires burned 1.33 × 1012 kg dry mass, released 1.27 × 1010 kg of PM2.5 (particulate mass for particles with diameter forest and savanna fires in Africa, South America, and North America. Evaluation of emission result reveals that the GBBEP-Geo estimates are comparable with other FRP-derived estimates in Africa, while the results are generally smaller than most of the other global products that were derived from burned

  5. Tethered Contactless Mobile Nuclear Environment Monitoring Robot

    International Nuclear Information System (INIS)

    Choi, S. Y.; Lee, E. S.; Lee, Kun J.; Kim, Su H.; Rim, C. T.

    2013-01-01

    In fact, the nuclear environment monitoring is significantly crucial for early detection of NPP accident, radiological emergency, the estimation of radiation exposure to nearby residents as well as the long term radioactivity. In the UAE, the nuclear environment monitoring is, however, quite challenging because sampling locations are far from NPPs and the outdoor temperature and humidity are very high for NPP workers to collect soil, air, and water samples. Therefore, nuclear environment monitoring robots (Nubos) are strongly needed for the NPPs in the UAE. The Nubos can be remotely controlled to collect samples in extreme environment instead of NPP workers. Moreover, the Nubos can be unmanned ground vehicles (UGVs), unmanned aerial vehicles (UAVs) and unmanned marine vehicles (UMVs) to collect soil, air, and water samples, respectively. In this paper, the prototype development of UGV type Nubos using power cable for a long distance power delivery, called Tethered contactless mobile Nubo is introduced and validated by experiments. In this paper, the prototype development of Tethered Contactless Mobile (TeCoM) Nubo, which can be powered continuously within several km distance and avoid tangled cable, and the indoor test are finished. As further works, outdoor demonstration and a grand scale R and D proposal of practical Nubo will be proceeded

  6. Tethered Contactless Mobile Nuclear Environment Monitoring Robot

    Energy Technology Data Exchange (ETDEWEB)

    Choi, S. Y.; Lee, E. S.; Lee, Kun J.; Kim, Su H.; Rim, C. T. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-05-15

    In fact, the nuclear environment monitoring is significantly crucial for early detection of NPP accident, radiological emergency, the estimation of radiation exposure to nearby residents as well as the long term radioactivity. In the UAE, the nuclear environment monitoring is, however, quite challenging because sampling locations are far from NPPs and the outdoor temperature and humidity are very high for NPP workers to collect soil, air, and water samples. Therefore, nuclear environment monitoring robots (Nubos) are strongly needed for the NPPs in the UAE. The Nubos can be remotely controlled to collect samples in extreme environment instead of NPP workers. Moreover, the Nubos can be unmanned ground vehicles (UGVs), unmanned aerial vehicles (UAVs) and unmanned marine vehicles (UMVs) to collect soil, air, and water samples, respectively. In this paper, the prototype development of UGV type Nubos using power cable for a long distance power delivery, called Tethered contactless mobile Nubo is introduced and validated by experiments. In this paper, the prototype development of Tethered Contactless Mobile (TeCoM) Nubo, which can be powered continuously within several km distance and avoid tangled cable, and the indoor test are finished. As further works, outdoor demonstration and a grand scale R and D proposal of practical Nubo will be proceeded.

  7. Radioactive discharges and monitoring of the environment 1988

    International Nuclear Information System (INIS)

    1989-01-01

    This annual report on Radioactive Discharges and Monitoring the Environment, 1988, summarises the programmes of Sellafield, Drigg, Chapelcross, Springfields and Capenhurst for monitoring the discharges of radioactive materials to the sea and the environment. Critical groups and environmental exposure pathways are identified and collective doses to these groups estimated. The disposal of radioactive wastes at each site is discussed. Certificates of authorisation are presented. A summary of recommended doses of specific radionuclides is given. (Author)

  8. The effects of monitoring environment on problem-solving performance.

    Science.gov (United States)

    Laird, Brian K; Bailey, Charles D; Hester, Kim

    2018-01-01

    While effective and efficient solving of everyday problems is important in business domains, little is known about the effects of workplace monitoring on problem-solving performance. In a laboratory experiment, we explored the monitoring environment's effects on an individual's propensity to (1) establish pattern solutions to problems, (2) recognize when pattern solutions are no longer efficient, and (3) solve complex problems. Under three work monitoring regimes-no monitoring, human monitoring, and electronic monitoring-114 participants solved puzzles for monetary rewards. Based on research related to worker autonomy and theory of social facilitation, we hypothesized that monitored (versus non-monitored) participants would (1) have more difficulty finding a pattern solution, (2) more often fail to recognize when the pattern solution is no longer efficient, and (3) solve fewer complex problems. Our results support the first two hypotheses, but in complex problem solving, an interaction was found between self-assessed ability and the monitoring environment.

  9. The monitoring of radioactivity in the environment

    International Nuclear Information System (INIS)

    1986-01-01

    35 separately indexed lectures are discussed of this conference. The contents of the individual contributions cover the following areas: 1) Monitoring networks and guidelines; 2) Monitoring equipment and methods; 3) Development of models for radionuclide migration, and 4) Individual determination and analysis of radionuclides relevant to the environment. (PW) [de

  10. Small Aperture Telescope Observations of Co-located Geostationary Satellites

    Science.gov (United States)

    Scott, R.; Wallace, B.

    As geostationary orbit (GEO) continues to be populated, satellite operators are increasing usage of co-location techniques to maximize usage of fewer GEO longitude slots. Co-location is an orbital formation strategy where two or more geostationary satellites reside within one GEO stationkeeping box. The separation strategy used to prevent collision between the co-located satellites generally uses eccentricity (radial separation) and inclination (latitude separation) vector offsets. This causes the satellites to move in relative motion ellipses about each other as the relative longitude drift between the satellites is near zero. Typical separations between the satellites varies from 1 to 100 kilometers. When co-located satellites are observed by optical ground based space surveillance sensors the participants appear to be separated by a few minutes of arc or less in angular extent. Under certain viewing geometries, these satellites appear to visually conjunct even though the satellites are, in fact, well separated spatially. In situations where one of the co-located satellites is more optically reflective than the other, the reflected sunglint from the more reflective satellite can overwhelm the other. This less frequently encountered issue causes the less reflective satellite to be glint masked in the glare of the other. This paper focuses on space surveillance observations on co-located Canadian satellites using a small optical telescope operated by Defence R&D Canada - Ottawa. The two above mentioned problems (cross tagging and glint masking) are investigated and we quantify the results for Canadian operated geostationary satellites. The performance of two line element sets when making in-frame CCD image correlation between the co-located satellites is also examined. Relative visual magnitudes between the co-located members are also inspected and quantified to determine the susceptibility of automated telescopes to glint masking of co-located satellite members.

  11. Modification of GNPS environment radiation monitoring network system

    International Nuclear Information System (INIS)

    Jiang Lili; Cao Chunsheng

    1999-01-01

    GNPS Environment Radiation Continuous Monitoring System (KRS), the only real time on-line system of site radiation monitoring, was put into service in 1993 prior to the first loading the the plant. It is revealed through several years of operation that this system has some deficiencies such as inadequate real time monitoring means, no figure and diagram display function on the central computer, high failures, frequent failure warning signals, thus making the availability of the system at a low level. In recent years, with the rapid development of computer network technology and increasingly strict requirements on the NPP environment protection raised by the government and public, KRS modification had become necessary and urgent. In 1996, GNPS carried out modification work on the measuring geometry condition of γ radiation monitoring sub-station and lightening protection. To enhance the functions of real time monitoring and data auto-processing, further modification of the system was made in 1998, including the update of the software and hardware of KRS central processor, set-up of system computer local network and database. In this way, the system availability and monitoring quality are greatly improved and effective monitoring and analysis means are provided for gaseous release during normal operation and under accident condition

  12. Results of monitoring at Olkiluoto in 2008. Environment

    International Nuclear Information System (INIS)

    Haapanen, A.

    2009-09-01

    This Working Report presents the main results of Posiva Oy's environmental monitoring programme on Olkiluoto Island in 2008. These summary reports have been published since 2005 (target year 2004). The environmental monitoring system supervised by Posiva Oy produces input for biosphere modelling for long-term safety purposes as well as for monitoring the state of the environment during the construction (and later operation) of ONKALO underground characterization facility. Although some of the nuclear power production related monitoring studies by TVO (the power company) have been going on from the 1970s, the repository-related environmental monitoring of Olkiluoto Island has only recently been comprehensive. However, the monitoring programme evolves according to experiences from modelling work and increasing knowledge of most important site data. For example, in addition to the originally planned activities, in 2008 several studies on fauna were carried out, some soil and vegetation transects running from land to sea were established, a separate survey of water quality with automatic detectors was carried out and zooplankton and organic carbon studies were started in context of sea monitoring. In the monitoring data, the ongoing construction work (OL3, ONKALO and related infrastructure) is seen for instance in raised levels of noise and some deposited elements. The land-use continues to change, but where there is natural environment is affected by the cooling water from the nuclear power plant. (orig.)

  13. An Integrated Environment Monitoring System for Underground Coal Mines—Wireless Sensor Network Subsystem with Multi-Parameter Monitoring

    OpenAIRE

    Zhang, Yu; Yang, Wei; Han, Dongsheng; Kim, Young-Il

    2014-01-01

    Environment monitoring is important for the safety of underground coal mine production, and it is also an important application of Wireless Sensor Networks (WSNs). We put forward an integrated environment monitoring system for underground coal mine, which uses the existing Cable Monitoring System (CMS) as the main body and the WSN with multi-parameter monitoring as the supplementary technique. As CMS techniques are mature, this paper mainly focuses on the WSN and the interconnection between t...

  14. Asynchronous Processing of a Constellation of Geostationary and Polar-Orbiting Satellites for Fire Detection and Smoke Estimation

    Science.gov (United States)

    Hyer, E. J.; Peterson, D. A.; Curtis, C. A.; Schmidt, C. C.; Hoffman, J.; Prins, E. M.

    2014-12-01

    The Fire Locating and Monitoring of Burning Emissions (FLAMBE) system converts satellite observations of thermally anomalous pixels into spatially and temporally continuous estimates of smoke release from open biomass burning. This system currently processes data from a constellation of 5 geostationary and 2 polar-orbiting sensors. Additional sensors, including NPP VIIRS and the imager on the Korea COMS-1 geostationary satellite, will soon be added. This constellation experiences schedule changes and outages of various durations, making the set of available scenes for fire detection highly variable on an hourly and daily basis. Adding to the complexity, the latency of the satellite data is variable between and within sensors. FLAMBE shares with many fire detection systems the goal of detecting as many fires as possible as early as possible, but the FLAMBE system must also produce a consistent estimate of smoke production with minimal artifacts from the changing constellation. To achieve this, NRL has developed a system of asynchronous processing and cross-calibration that permits satellite data to be used as it arrives, while preserving the consistency of the smoke emission estimates. This talk describes the asynchronous data ingest methodology, including latency statistics for the constellation. We also provide an overview and show results from the system we have developed to normalize multi-sensor fire detection for consistency.

  15. Radioactivity Monitoring of the Irish Environment 2006

    International Nuclear Information System (INIS)

    Smith, V.; Dowdall, A; Fegan, M.; Hayden, E.; Kelleher, K.; Long, S.; McEvoy, I.; Somerville, S.; Wong, J.; Pollard, D.

    2007-10-01

    This report presents the results of the environmental radioactivity monitoring programme carried out by the Radiological Protection Institute of Ireland (RPII) in 2006. This programme aims to assess the exposure of the Irish population to artificial radioactivity in the environment, to review the temporal and geographical distribution of contaminating radionuclides and to maintain systems and procedures which would allow a rapid assessment of environmental contamination to be made in the event of a radiological emergency. Radioactivity is present in the environment due to natural processes, the testing of nuclear weapons in the atmosphere, past nuclear accidents such as that at Chernobyl in Ukraine and the routine discharge of radionuclides from nuclear installations. Liquid discharges from the British Nuclear Group reprocessing plant at Sellafield in Cumbria in the north-west of England, which are licensed by the UK Environment Agency, continue to be the dominant source of artificial radioactivity in the Irish marine environment. The key elements of the monitoring programme implemented by the RPII in 2006 included; assessment of ambient radioactivity based on measurements of radioactivity in air and of external gamma dose rate at permanent monitoring stations located throughout the country; assessment of levels of radioactivity in drinking water; assessment of levels of radioactivity in foodstuffs based on measurements of total diet, milk and various ingredients; assessment of levels of radioactivity in the Irish marine environment based on sampling and measurement of seawater, sediment, seaweed, fish and shellfish. The RPII monitored airborne radioactivity at ten stations located throughout the country. One of these stations is equipped with a high volume sampler, which allows concentrations of caesium-137 to be measured; another is equipped to detect the presence of the gas krypton-85. This gas is released into the environment primarily as a result of the

  16. The near coastal environment monitored from space

    International Nuclear Information System (INIS)

    Szekielda, K.H.

    1977-01-01

    The optical information required for monitoring the marine environment from space is discussed and applied for the near coastal area. By categorizing coastal features it is possible to recognize coastal regions to a high degree and to indentify water masses derived from land sources and sewage dumping sites. It is concluded that monitoring from space can be used as a tool in environmental planning. (orig.) [de

  17. Soil monitoring as a part of environment monitoring in Slovakia

    International Nuclear Information System (INIS)

    Kobza, J.

    1997-01-01

    In frame of Soil monitoring system it is going about a lot of methods in advance as follows: methods of soil monitoring sites selection and soil monitoring network construction, as well; methods of soil survey and soil sampling; analytical methods (indicating of chemical, agrochemical and physical properties); soil database and methods of evaluation and interpretation of measured results. The monitoring network was constructed on the base of ecological principles - including the monitoring of all soil types and subtypes, various climatic and emission regions as well as relatively clean regions, lowland and highland. Soil monitoring network in forest land is regular (8 x 8 km) with regard to International monitoring system in Forestry. The soil monitoring network in Slovakia consist of 650 monitoring sites (312 sites in farming land and 338 sites in forest land). In addition soil monitoring network includes also 21 monitoring sites. All monitoring sites are geodesically located and reported on the map at a scale of 1:5000. There are the methods concerning the important soil parameters indication with regard to main soil degradation processes a s follows: soil contamination (heavy metals and organic contaminants); soil acidification; soil salinity; soil erosion (deluometrically by the Cs-137 and remote sensing methods); soil compaction; soil fertility and protection. Analytical control system was elaborated according to Good Laboratory Practice. Evaluation of soil monitoring network results is not simple because it depends on various monitored parameters, on aim of evaluation as well as on the scale of landscape which is object for evaluation. There are used the modern statistical methods in monitoring system which can be: universal; disjunctive; simulated. Used statistical methods are significant for interpretation of measured results as follows: trends in landscape; anisotropy; comparison. The evaluation and interpretation way is very significant with regard not

  18. Results of monitoring at Olkiluoto in 2009. Environment

    Energy Technology Data Exchange (ETDEWEB)

    Haapanen, A. (ed.) (Haapanen Forest Consulting, Vanhakylae (Finland))

    2010-10-15

    This Working Report presents the main results of Posiva Oy's environmental monitoring programme on Olkiluoto Island in 2009. These summary reports have been published since 2005. The environmental monitoring system supervised by Posiva Oy produces input for biosphere modelling for long-term safety purposes as well as for monitoring the state of the environment during the construction (and later operation) of ONKALO underground characterization facility. Part of the monitoring is performed by the company running the nuclear power plants on the island, Teollisuuden Voima Oy (TVO). Monitoring has been carried out for varying periods of time depending on the sector: some monitoring activities performed by TVO originate from the 1970s and the repository-related environmental monitoring of Olkiluoto from the early 2000s. The monitoring programme evolves according to the experiences gained from the modelling work and an increased understanding of the site. Augmentations in 2009 include e.g. establishment of a new forest intensive monitoring plot (FIP14), continuation of studies on fine roots and on the species composition and abundances of small mammals. Line transect samplings of ants, terrestrial snails and earthworms were carried out and a systematic monitoring of island birds was started. In addition, a project was started where the sediment load and factors affecting the sediment transportation into Eurajoensalmi bay is examined. Dust produced during construction of the third nuclear power unit (OL3), ONKALO and related infrastructure can be seen in the soil solution and deposition results. Furthermore, the construction works and road traffic have a raising effect on the noise levels of the immediate surroundings. The land-use continues to change, but the remaining natural environment resembles other coastal locations. The young age of the soils and the closeness of the sea are reflected in the soil properties. Mammalian fauna on the island is typical of coastal

  19. Results of monitoring at Olkiluoto in 2009. Environment

    International Nuclear Information System (INIS)

    Haapanen, A.

    2010-10-01

    This Working Report presents the main results of Posiva Oy's environmental monitoring programme on Olkiluoto Island in 2009. These summary reports have been published since 2005. The environmental monitoring system supervised by Posiva Oy produces input for biosphere modelling for long-term safety purposes as well as for monitoring the state of the environment during the construction (and later operation) of ONKALO underground characterization facility. Part of the monitoring is performed by the company running the nuclear power plants on the island, Teollisuuden Voima Oy (TVO). Monitoring has been carried out for varying periods of time depending on the sector: some monitoring activities performed by TVO originate from the 1970s and the repository-related environmental monitoring of Olkiluoto from the early 2000s. The monitoring programme evolves according to the experiences gained from the modelling work and an increased understanding of the site. Augmentations in 2009 include e.g. establishment of a new forest intensive monitoring plot (FIP14), continuation of studies on fine roots and on the species composition and abundances of small mammals. Line transect samplings of ants, terrestrial snails and earthworms were carried out and a systematic monitoring of island birds was started. In addition, a project was started where the sediment load and factors affecting the sediment transportation into Eurajoensalmi bay is examined. Dust produced during construction of the third nuclear power unit (OL3), ONKALO and related infrastructure can be seen in the soil solution and deposition results. Furthermore, the construction works and road traffic have a raising effect on the noise levels of the immediate surroundings. The land-use continues to change, but the remaining natural environment resembles other coastal locations. The young age of the soils and the closeness of the sea are reflected in the soil properties. Mammalian fauna on the island is typical of coastal

  20. Monitoring radioactivity in the environment: context, objectives, challenges and prospects

    International Nuclear Information System (INIS)

    Collet, J.; Jaunet, P.

    2010-01-01

    The aims of environmental radioactivity monitoring are multiples: protection of human health and environment, knowledge of the radiological status of the environment, early detection of radiological events, public information. This monitoring is ensured by several stakeholders (licensees, IRSN, ASN, state and local authorities, associations...) and in all environment compartments (air, water, soil, fauna and flora...). Within a European regulatory context, the Nuclear Transparency and Security Act 2006-686 of 13 June 2006 (TSN Act) reinforces the importance attached to consideration of safety, radiation protection and the environment. Other developments in the scope of environmental radioactivity must be noted: new stakeholders, lower background radiation, deployment of the French National Network of Environmental Radioactivity Monitoring (RNM), evolution of the ICPR thoughts to take better account of environmental protection, post-accident management doctrine, new concerns about environmental behaviour of some radionuclides. In order to maintain a quality policy in the field of environmental radioactivity measurements and to ensure the transparency of information, ASN will make sure that the strategy of environmental radioactivity monitoring will take into account these concerns. (author)

  1. Specialized Finite Set Statistics (FISST)-Based Estimation Methods to Enhance Space Situational Awareness in Medium Earth Orbit (MEO) and Geostationary Earth Orbit (GEO)

    Science.gov (United States)

    2016-08-17

    Specialized Finite Set Statistics (FISST)-based Estimation Methods to Enhance Space Situational Awareness in Medium Earth Orbit (MEO) and Geostationary...terms of specialized Geostationary Earth Orbit (GEO) elements to estimate the state of resident space objects in the geostationary regime. Justification...AFRL-RV-PS- AFRL-RV-PS- TR-2016-0114 TR-2016-0114 SPECIALIZED FINITE SET STATISTICS (FISST)- BASED ESTIMATION METHODS TO ENHANCE SPACE SITUATIONAL

  2. Radioactivity Monitoring of the Irish Environment 2009

    International Nuclear Information System (INIS)

    McGinnity, P.; Currivan, L.; Dowdall, A.; Fegan, M.; Hanley, O.; Kelleher, K.; McKittrick, L.; Somerville, S.; Wong, J.; Pollard, D.

    2010-12-01

    This report presents the results of the environmental radioactivity monitoring programme carried out by the Radiological Protection Institute of Ireland (RPII) during 2009. The RPII has routinely monitored levels of radioactivity in the environment since 1982 and this is the latest in the RPII's series of environmental monitoring reports. The RPII reviews and updates its environmental programme annually so as to ensure it remains relevant and continues to focus on the most important sources of radioactivity in the environment. The principal aims of the RPII's monitoring programme are; to assess the level of radioactivity to which the Irish population is exposed as a result of radioactivity in the environment; to study trends and establish the geographical distribution of contaminating radionuclides so as to better understand the long term behaviour of artificial radioactivity in the food chain and the environment; to ensure that any increase in radiation levels resulting from an accidental release of radioactivity to the environment is detected and assessed rapidly. During 2009 radioactivity was measured in a wide range of foods and environmental materials including: air, water, milk, seafood, foodstuffs and complete meals. The most significant source of artificial radioactivity in the Irish marine environment is the discharge of low level liquid radioactive waste from the Sellafield Nuclear Fuel Reprocessing Plant on the north east coast of England. In order to assess the exposure arising from the source extensive sampling of fish and shellfish landed at ports along the north east coast of Ireland is undertaken. The most exposed group of individuals to discharges from Sellafield have been identified as commercial oyster and mussel farmers working along the north east coastline and their families. Manmade radioactivity is also present in the terrestrial environment due primarily to residual global fallout arising primarily from atmospheric testing of nuclear

  3. Radioactivity Monitoring of the Irish Environment 2008

    International Nuclear Information System (INIS)

    Fegan, M.; Currivan, L.; Dowdall, A.; Hanley, O.; Hayden, E.; Kelleher, K.; Long, S.; McKittrick, L.; Somerville, S.; Wong, J.; Pollard, D.

    2010-01-01

    This report presents the results of the environmental radioactivity monitoring programme carried out by the Radiological Protection Institute of Ireland (RPII) during 2008. The RPII has routinely monitored levels of radioactivity in the environment since 1982 and this is the latest in the RPII's series of environmental monitoring reports. The RPII reviews and updates its environmental programme annually so as to ensure it remains relevant and continues to focus on the most important sources of radioactivity in the environment. The principal aims of the RPII's monitoring programme are; to assess the level of radioactivity to which the Irish population is exposed as a result of radioactivity in the environment; to study trends and establish the geographical distribution of contaminating radionuclides so as to better understand the long term behaviour of artificial radioactivity in the food chain and the environment; to ensure that any increase in radiation levels resulting from an accidental release of radioactivity to the environment is detected and assessed rapidly. During 2008 radioactivity was measured in a wide range of foods and environmental materials including: air, water, milk, seafood, foodstuffs and complete meals. The most significant source of artificial radioactivity in the Irish marine environment is the discharge of low level liquid radioactive waste from the Sellafield Nuclear Fuel Reprocessing Plant on the north east coast of England. In order to assess the exposure arising from the source extensive sampling of fish and shellfish landed at ports along the north east coast of Ireland is undertaken. The most exposed group of individuals to discharges from Sellafield have been identified as commercial oyster and mussel farmers working along the north east coastline and their families. Manmade radioactivity is also present in the terrestrial environment due primarily to residual global fallout arising primarily from atmospheric testing of nuclear

  4. Geostationary satellite observations of the april 1979 soufriere eruptions.

    Science.gov (United States)

    Krueger, A F

    1982-06-04

    Infrared images from the geostationary satellite SMS-1 were used to study the growth of the eight major eruptions of Soufriere, St. Vincent, during April 1979. These eruptions differed considerably in growth and intensity, the most intense being that of 17 April which formed an ash cloud of 96,000 square kilometers in 4 hours. The weakest eruption formed a cloud of only 16,000 square kilometers.

  5. Theory of geostationary satellites

    CERN Document Server

    Zee, Chong-Hung

    1989-01-01

    Geostationary or equatorial synchronous satellites are a daily reminder of our space efforts during the past two decades. The nightly television satellite weather picture, the intercontinental telecommunications of television transmissions and telephone conversations, and the establishrnent of educational programs in remote regions on Earth are constant reminders of the presence of these satellites. As used here, the term 'geo­ stationary' must be taken loosely because, in the long run, the satellites will not remain 'stationary' with respect to an Earth-fixed reference frame. This results from the fact that these satellites, as is true for all satellites, are incessantly subject to perturbations other than the central-body attraction of the Earth. Among the more predominant pertur­ bations are: the ellipticity of the Earth's equator, the Sun and Moon, and solar radiation pressure. Higher harmonics of the Earth's potential and tidal effects also influence satellite motion, but they are of second­ order whe...

  6. Employee quality, monitoring environment and internal control

    OpenAIRE

    Chunli Liu; Bin Lin; Wei Shu

    2017-01-01

    We investigate the effect of internal control employees (ICEs) on internal control quality. Using special survey data from Chinese listed firms, we find that ICE quality has a significant positive influence on internal control quality. We examine the effect of monitoring on this result and find that the effect is more pronounced for firms with strict monitoring environments, especially when the firms implement the Chinese internal control regulation system (CSOX), have higher institutional ow...

  7. Laser experiments in light cloudiness with the geostationary satellite ARTEMIS

    Science.gov (United States)

    Kuzkov, V.; Kuzkov, S.; Sodnik, Z.

    2016-08-01

    The geostationary satellite ARTEMIS was launched in July 2001. The satellite is equipped with a laser communication terminal, which was used for the world's first inter-satellite laser communication link between ARTEMIS and the low earth orbit satellite SPOT-4. Ground-to-space laser communication experiments were also conducted under various atmospheric conditions involving ESA's optical ground station. With a rapidly increasing volume of information transferred by geostationary satellites, there is a rising demand for high-speed data links between ground stations and satellites. For ground-to-space laser communications there are a number of important design parameters that need to be addressed, among them, the influence of atmospheric turbulence in different atmospheric conditions and link geometries. The Main Astronomical Observatory of NAS of Ukraine developed a precise computer tracking system for its 0.7 m AZT-2 telescope and a compact laser communication package LACES (Laser Atmosphere and Communication experiments with Satellites) for laser communication experiments with geostationary satellites. The specially developed software allows computerized tracking of the satellites using their orbital data. A number of laser experiments between MAO and ARTEMIS were conducted in partial cloudiness with some amount of laser light observed through clouds. Such conditions caused high break-up (splitting) of images from the laser beacon of ARTEMIS. One possible explanation is Raman scattering of photons on molecules of a water vapor in the atmosphere. Raman scattering causes a shift in a wavelength of the photons.In addition, a different value for the refraction index appears in the direction of the meridian for the wavelength-shifted photons. This is similar to the anomalous atmospheric refraction that appears at low angular altitudes above the horizon. We have also estimated the atmospheric attenuation and the influence of atmospheric turbulence on observed results

  8. Monitoring of radioactivity in the environment 201

    International Nuclear Information System (INIS)

    Moeller, B.; Dyve, J.E.; Tazmini, K.

    2013-01-01

    The Report summarizes the data from Norwegian Radiation Protection Authority and The Norwegian Civil Defence monitoring programs for radioactivity in the environment in 2011. A short description of the systems is also presented.(Author)

  9. Optimal layout of radiological environment monitoring based on TOPSIS method

    International Nuclear Information System (INIS)

    Li Sufen; Zhou Chunlin

    2006-01-01

    TOPSIS is a method for multi-objective-decision-making, which can be applied to comprehensive assessment of environmental quality. This paper adopts it to get the optimal layout of radiological environment monitoring, it is proved that this method is a correct, simple and convenient, practical one, and beneficial to supervision departments to scientifically and reasonably layout Radiological Environment monitoring sites. (authors)

  10. The solar wind control of electron fluxes in geostationary orbit during magnetic storms

    International Nuclear Information System (INIS)

    Popov, G.V.; Degtyarev, V.I.; Sheshukov, S.S.; Chudnenko, S.E.

    1999-01-01

    The dynamics of electron fluxes (with energies from 30 to 1360 keV) in geostationary orbit during magnetic storms was investigated on the basis of LANL spacecraft 1976-059 and 1977-007 data. Thirty-seven magnetic storms with distinct onsets from the time interval July 1976-December 1978 were used in the analysis. A treatment of experimental data involved the moving averaging and the overlapping epoch method. The smoothed component of electron fluxes represents mainly trapped electrons and shows their strong dependence on the solar wind velocity. The time lag between a smoothed electron flux and the solar wind velocity increases with electron energy reflecting dynamics of the inner magnetosphere filling with trapped energetic electrons originating from substorm injection regions located not far outside geostationary orbit

  11. Geostationary Coastal and Air Pollution Events (GEO-CAPE) Sensitivity Analysis Experiment

    Science.gov (United States)

    Lee, Meemong; Bowman, Kevin

    2014-01-01

    Geostationary Coastal and Air pollution Events (GEO-CAPE) is a NASA decadal survey mission to be designed to provide surface reflectance at high spectral, spatial, and temporal resolutions from a geostationary orbit necessary for studying regional-scale air quality issues and their impact on global atmospheric composition processes. GEO-CAPE's Atmospheric Science Questions explore the influence of both gases and particles on air quality, atmospheric composition, and climate. The objective of the GEO-CAPE Observing System Simulation Experiment (OSSE) is to analyze the sensitivity of ozone to the global and regional NOx emissions and improve the science impact of GEO-CAPE with respect to the global air quality. The GEO-CAPE OSSE team at Jet propulsion Laboratory has developed a comprehensive OSSE framework that can perform adjoint-sensitivity analysis for a wide range of observation scenarios and measurement qualities. This report discusses the OSSE framework and presents the sensitivity analysis results obtained from the GEO-CAPE OSSE framework for seven observation scenarios and three instrument systems.

  12. A Geostationary Earth Orbit Satellite Model Using Easy Java Simulation

    Science.gov (United States)

    Wee, Loo Kang; Goh, Giam Hwee

    2013-01-01

    We develop an Easy Java Simulation (EJS) model for students to visualize geostationary orbits near Earth, modelled using a Java 3D implementation of the EJS 3D library. The simplified physics model is described and simulated using a simple constant angular velocity equation. We discuss four computer model design ideas: (1) a simple and realistic…

  13. Plasma propulsion for geostationary satellites for telecommunication and interplanetary missions

    International Nuclear Information System (INIS)

    Dudeck, M; Doveil, F; Arcis, N; Zurbach, S

    2012-01-01

    The advantages of electric propulsion for the orbit maintenance of geostationary satellites for telecommunications are described. Different types of plasma sources for space propulsion are presented. Due to its large performances, one of them, named Hall effect thruster is described in detail and two recent missions in space (Stentor and Smart1) using French Hall thrusters are briefly presented.

  14. Environment monitoring and residents health condition monitoring of nuclear power plant Bohunice region

    International Nuclear Information System (INIS)

    Letkovicova, M.; Rehak, R.; Stehlikova, B.; Celko, M.; Hraska, S.; Klocok, L.; Kostial, J.; Prikazsky, V.; Vidovic, J.; Zirko, M.; Beno, T.; Mitosinka, J.

    1998-01-01

    The report contents final environment evaluation and selected characteristic of residents health physics of nuclear power plant Bohunice region. Evaluated data were elaborated during analytical period 1993-1997.Task solving which results are documented in this final report was going on between 1996- 1998. The report deals in individual stages with the following: Information obtaining and completing which characterize demographic situation of the area for the 1993-1997 period; Datum obtaining and completing which contain selected health physics characteristics of the area residents; Database structures for individual data archiving from monitoring and collection; Brief description of geographic information system for graphic presentation of evaluation results based on topographic base; Digital mapping structure description; Results and evaluation of radionuclide monitoring in environment performed by Environmental radiation measurements laboratory by the nuclear power plant Bohunice for the 1993-1997 period. Demographic situation evaluation and selected health physics characteristics of the area of nuclear power plant residents for the 1993-1997 period are summarized in the final part of the document. Monitoring results and their evaluation is processed in graph, table, text description and map output forms. Map outputs are processed in the geographic information system Arc View GIS 3.0a environment

  15. Comparing different approaches for an effective monitoring of forest fires based on MSG/SEVIRI images

    Science.gov (United States)

    Laneve, Giovanni

    2010-05-01

    The remote sensing sensors on board of geostationary satellite, as consequence of the high frequency of the observations, allow, in principle, the monitoring of these phenomena characterized by a fast dynamics. The only condition for is that the events to be monitored should be enough strong to be recognizable notwithstanding the low spatial resolution of the present geostationary systems (MSG/SEVIRI, GOES Imager, MTSAT). Apart from meteorological phenomena other events, like those associated with forest fires and/or volcanic eruption, are characterized by a very fast dynamics. These events are also associated with a very strong signal that make them observable by geostationary satellite in a quasi-continuous way. However, in order to make possible the detection of small fires by using the low resolution multi-spectral imagery provided by geostationary sensor like SEVIRI (3x3 km2 at the equator) new algorithms, capable to exploit it high observation frequency, has been developed. This paper is devoted to show the results obtained by comparing some of these algorithms trying to highlight their advantages and limits. The algorithms herein considered are these developed by CRPSM (SFIDE®), UNIBAS/CNR (RST-FIRES) and ESA-ESRIN (MDIFRM). In general, the new approaches proposed by each one of them are capable to promptly detect small fires making possible an operational utilization of the satellite based fire detection system in the fire fighting phases. In fact, these algorithms are quite different from these introduced in the past and specifically devoted to fire detection using low resolution multi-spectral imagery on LEO (Low Earth Orbit) satellite. Thanks to these differences they are capable of detecting sub-hectare (0.2 ha) forest fires providing an useful instrument for monitoring quasi-continuously forest fires, estimating the FRP (Fire Radiative Power), evaluating the burned biomass, retrieving the emission in the atmosphere.

  16. Radioactivity monitoring of the Irish marine environment 1987

    International Nuclear Information System (INIS)

    O'Grady, J.; Currivan, L.

    1990-06-01

    This report represents the results of the Board's monitoring of radioactivity levels in the Irish marine environment during 1987. The principal objective of the monitoring programme is to obtain estimates of radiation doses to the Irish public arising from caesium-137 and caesium 134, the main contaminating radionuclides. Estimates are presented of the radiation doses to the Irish public arising from the consumption of fish and shellfish contaminated with radiocaesium

  17. The geostationary Earth radiation budget (GERB) instrument on EUMETSAT's MSG satellite

    Science.gov (United States)

    Sandford, M. C. W.; Allan, P. M.; Caldwell, M. E.; Delderfield, J.; Oliver, M. B.; Sawyer, E.; Harries, J. E.; Ashmall, J.; Brindley, H.; Kellock, S.; Mossavati, R.; Wrigley, R.; Llewellyn-Jones, D.; Blake, O.; Butcher, G.; Cole, R.; Nelms, N.; DeWitte, S.; Gloesener, P.; Fabbrizzi, F.

    2003-12-01

    Geostationary Earth radiation budget (GERB) is an Announcement of Opportunity Instrument for EUMETSAT's Meteosat Second Generation (MSG) satellite. GERB will make accurate measurements of the Earth Radiation Budget from geostationary orbit, provide an absolute reference calibration for LEO Earth radiation budget instruments and allow studies of the energetics of atmospheric processes. By operating from geostationary orbit, measurements may be made many times a day, thereby providing essentially perfect diurnal sampling of the radiation balance between reflected and emitted radiance for that area of the globe within the field of view. GERB will thus complement other instruments which operate in low orbit and give complete global coverage, but with poor and biased time resolution. GERB measures infrared radiation in two wavelength bands: 0.32-4.0 and 0.32- 30 μm, with a pixel element size of 44 km at sub-satellite point. This paper gives an overview of the project and concentrates on the design and development of the instrument and ground testing and calibration, and lessons learnt from a short time scale low-budget project. The instrument was delivered for integration on the MSG platform in April 1999 ready for the proposed launch in October 2000, which has now been delayed probably to early 2002. The ground segment is being undertaken by RAL and RMIB and produces near real-time data for meteorological applications in conjunction with the main MSG imager—SEVERI. Climate research and other applications which are being developed under a EU Framework IV pilot project will be served by fully processed data. Because of the relevance of the observations to climate change, it is planned to maintain an operating instrument in orbit for at least 3.5 years. Two further GERB instruments are being built for subsequent launches of MSG.

  18. Results of monitoring at Olkiluoto in 2010 - Environment

    Energy Technology Data Exchange (ETDEWEB)

    Haapanen, A. (ed.) [Haapanen Forest Consulting, Vanhakylae (Finland)

    2011-10-15

    This Working Report presents the main results of Posiva Oy's environmental monitoring programme on Olkiluoto Island in 2010. These summary reports have been published since 2005. The environmental monitoring system supervised by Posiva Oy produces input for biosphere modelling for long-term safety purposes as well as for monitoring the state of the environment during the construction (and later operation) of ONKALO underground rock characterization facility. Part of the monitoring is performed by the company running the nuclear power plants on the island, Teollisuuden Voima Oy (TVO). Monitoring has been carried out for varying periods of time depending on the sector: some monitoring activities performed by TVO originate from the 1970s and the repository-related environmental monitoring of Olkiluoto from the early 2000s. The monitoring programme evolves according to experiences gained from the modelling work and increased understanding of the site. Augmentations in 2010 include one previously unmonitored private drilled well, and sampling of crop plants, aquatic macrophytes, and bottom fauna, as well as soil and water in order to obtain more data on site-specific concentration ratios. In addition to Olkiluoto Island, two so called reference lakes have been included in the sampling. Studies have been going on on one reference mire, as well. Bottom fauna studies of River Eurajoki exist from late 1970s, but have not been presented here before. Dust produced during construction of the third nuclear power unit (OL3), ONKALO and related infrastructure can be seen in the analysis results of needle litter. The construction works and road traffic have a raising effect on the noise levels of the immediate surroundings. The land-use continues to change, but the remaining natural environment resembles other coastal locations. The young age of the soils and the closeness of the sea are reflected in the soil properties. Mammalian fauna on the island is typical of coastal

  19. Results of monitoring at Olkiluoto in 2010 - Environment

    International Nuclear Information System (INIS)

    Haapanen, A.

    2011-10-01

    This Working Report presents the main results of Posiva Oy's environmental monitoring programme on Olkiluoto Island in 2010. These summary reports have been published since 2005. The environmental monitoring system supervised by Posiva Oy produces input for biosphere modelling for long-term safety purposes as well as for monitoring the state of the environment during the construction (and later operation) of ONKALO underground rock characterization facility. Part of the monitoring is performed by the company running the nuclear power plants on the island, Teollisuuden Voima Oy (TVO). Monitoring has been carried out for varying periods of time depending on the sector: some monitoring activities performed by TVO originate from the 1970s and the repository-related environmental monitoring of Olkiluoto from the early 2000s. The monitoring programme evolves according to experiences gained from the modelling work and increased understanding of the site. Augmentations in 2010 include one previously unmonitored private drilled well, and sampling of crop plants, aquatic macrophytes, and bottom fauna, as well as soil and water in order to obtain more data on site-specific concentration ratios. In addition to Olkiluoto Island, two so called reference lakes have been included in the sampling. Studies have been going on on one reference mire, as well. Bottom fauna studies of River Eurajoki exist from late 1970s, but have not been presented here before. Dust produced during construction of the third nuclear power unit (OL3), ONKALO and related infrastructure can be seen in the analysis results of needle litter. The construction works and road traffic have a raising effect on the noise levels of the immediate surroundings. The land-use continues to change, but the remaining natural environment resembles other coastal locations. The young age of the soils and the closeness of the sea are reflected in the soil properties. Mammalian fauna on the island is typical of coastal areas in

  20. Annual report on radioactive discharges and monitoring of the environment 1992. V. 1

    International Nuclear Information System (INIS)

    1993-01-01

    This Annual Report supplements and updates the Company's Environment Annual Report by providing more detailed information on radioactive discharges, monitoring of the environment and critical group doses. BNFL has published Annual Reports on Radioactive Discharges and Monitoring of the Environment since 1977. This year the report is again sub-divided into two complementary volumes. Volume I consists of site papers, one for each of the Company's sites and includes annual data on radioactive discharges into the environment and the associated environmental monitoring programmes. Critical group doses for each site are presented in summary tables at the beginning of each Site paper. Volume II reproduces the Certificates of Authorisation regulating the Company's discharges and the statutory environmental monitoring programmes which relate to them. (Author)

  1. An integrated environment monitoring system for underground coal mines--Wireless Sensor Network subsystem with multi-parameter monitoring.

    Science.gov (United States)

    Zhang, Yu; Yang, Wei; Han, Dongsheng; Kim, Young-Il

    2014-07-21

    Environment monitoring is important for the safety of underground coal mine production, and it is also an important application of Wireless Sensor Networks (WSNs). We put forward an integrated environment monitoring system for underground coal mine, which uses the existing Cable Monitoring System (CMS) as the main body and the WSN with multi-parameter monitoring as the supplementary technique. As CMS techniques are mature, this paper mainly focuses on the WSN and the interconnection between the WSN and the CMS. In order to implement the WSN for underground coal mines, two work modes are designed: periodic inspection and interrupt service; the relevant supporting technologies, such as routing mechanism, collision avoidance, data aggregation, interconnection with the CMS, etc., are proposed and analyzed. As WSN nodes are limited in energy supply, calculation and processing power, an integrated network management scheme is designed in four aspects, i.e., topology management, location management, energy management and fault management. Experiments were carried out both in a laboratory and in a real underground coal mine. The test results indicate that the proposed integrated environment monitoring system for underground coal mines is feasible and all designs performed well as expected.

  2. An Integrated Environment Monitoring System for Underground Coal Mines—Wireless Sensor Network Subsystem with Multi-Parameter Monitoring

    Science.gov (United States)

    Zhang, Yu; Yang, Wei; Han, Dongsheng; Kim, Young-Il

    2014-01-01

    Environment monitoring is important for the safety of underground coal mine production, and it is also an important application of Wireless Sensor Networks (WSNs). We put forward an integrated environment monitoring system for underground coal mine, which uses the existing Cable Monitoring System (CMS) as the main body and the WSN with multi-parameter monitoring as the supplementary technique. As CMS techniques are mature, this paper mainly focuses on the WSN and the interconnection between the WSN and the CMS. In order to implement the WSN for underground coal mines, two work modes are designed: periodic inspection and interrupt service; the relevant supporting technologies, such as routing mechanism, collision avoidance, data aggregation, interconnection with the CMS, etc., are proposed and analyzed. As WSN nodes are limited in energy supply, calculation and processing power, an integrated network management scheme is designed in four aspects, i.e., topology management, location management, energy management and fault management. Experiments were carried out both in a laboratory and in a real underground coal mine. The test results indicate that the proposed integrated environment monitoring system for underground coal mines is feasible and all designs performed well as expected. PMID:25051037

  3. An Integrated Environment Monitoring System for Underground Coal Mines—Wireless Sensor Network Subsystem with Multi-Parameter Monitoring

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2014-07-01

    Full Text Available Environment monitoring is important for the safety of underground coal mine production, and it is also an important application of Wireless Sensor Networks (WSNs. We put forward an integrated environment monitoring system for underground coal mine, which uses the existing Cable Monitoring System (CMS as the main body and the WSN with multi-parameter monitoring as the supplementary technique. As CMS techniques are mature, this paper mainly focuses on the WSN and the interconnection between the WSN and the CMS. In order to implement the WSN for underground coal mines, two work modes are designed: periodic inspection and interrupt service; the relevant supporting technologies, such as routing mechanism, collision avoidance, data aggregation, interconnection with the CMS, etc., are proposed and analyzed. As WSN nodes are limited in energy supply, calculation and processing power, an integrated network management scheme is designed in four aspects, i.e., topology management, location management, energy management and fault management. Experiments were carried out both in a laboratory and in a real underground coal mine. The test results indicate that the proposed integrated environment monitoring system for underground coal mines is feasible and all designs performed well as expected.

  4. Ionic ring current during magnetic disturbances according to observations at a geostationary orbit

    International Nuclear Information System (INIS)

    Vlasova, N.A.; Kovtyuk, A.S.; Panasyuk, M.I.

    1987-01-01

    Experimental data on the measurements of H + and group (C, N, O) ion fluxes with different charges obtained using the ''Gorizont'' geostationary satellite (1985 - 07A) during three moderate magnetic disturbances with the amplitudes of D st -variations of several tens nT, have been analyzed. It is shown that during magnetic storms with clearly pronounced main phases a powerful injection of H + and (N, O) 2+ ion fluxes in the absence of noticeable increases in multicharge (C, N, O) ion fluxes with the energies of tens keV/e takes place. The resuts testify in favour of ionospheric plasma as the main source of ring current particles in the energy range. Indications that the filling of geostationary orbit with solar origin ions takes place at the recovery phase of a storm in nighttime hours are obtained

  5. Results of Monitoring at Olkiluoto in 2004. Environment

    International Nuclear Information System (INIS)

    Haapanen, R.

    2005-07-01

    This report presents the main results of the environmental monitoring programme connected with Posiva Oy's activities on Olkiluoto island. This is the first annual report and covers the years 2004 and partly 2003. Monitoring has been carried out for varying time periods depending on the sector: some monitoring activities performed by TVO originate from the 1970s, others connected with the construction of the final disposal repository for nuclear waste and the underground research facility ONKALO are about to start. The system supervised by Posiva Oy produces input for biosphere modelling for long-term safety purposes as well as for environmental impact analyses. No unexplainable deviations from reference data were seen in the results presented in this report. The vegetation, forests, soils and animal life are typical of a coastal region within the same vegetation zone. The nearby marine environment is affected by the cooling water from the nuclear power plant, to varying extents depending on the organism and the distance. Monitoring of marine environments as well as radionuclide analyses at the moment produce reference data for the future and create a basis for the construction of a model, as no input from Posiva's activities will influence these areas for a long time. (orig.)

  6. Crack Growth Monitoring in Harsh Environments by Electric Potential Measurements

    International Nuclear Information System (INIS)

    Lloyd, Wilson Randolph; Reuter, Walter Graham; Weinberg, David Michael

    1999-01-01

    Electric potential measurement (EPM) technology offers an attractive alternative to conventional nondestructive evaluation (NDE) for monitoring crack growth in harsh environments. Where conventional NDE methods typically require localized human interaction, the EPM technique developed at the Idaho National Engineering and Environmental Laboratory (INEEL) can be operated remotely and automatically. Once a crack-like defect is discovered via conventional means, EPM can be applied to monitor local crack size changes. This is of particular interest in situations where an identified structural defect is not immediately rejectable from a fitness-for-service viewpoint, but due to operational and environmental conditions may grow to an unsafe size with continuing operation. If the location is in a harsh environment where periodic monitoring by normal means is either too costly or not possible, a very expensive repair may be immediately mandated. However, the proposed EPM methodology may offer a unique monitoring capability that would allow for continuing service. INEEL has developed this methodology, supporting equipment, and calibration information to apply EPM in a field environment for just this purpose. Laboratory and pilot scale tests on full-size engineering structures (pressure vessels and piping) have been successfully performed. The technique applicable is many severe environments because the sensitive equipment (electronics, operators) can be situated in a remote location, with only current and voltage probe electrical leads entering into the harsh environment. Experimental results showing the utility of the methodology are presented, and unique application concepts that have been examined by multiple experiments are discussed

  7. System for ecological monitoring and assessment for NPP site environment

    International Nuclear Information System (INIS)

    Vorob'ev, E.I.; Olejnikov, N.F.; Reznichenko, V.Yu.

    1987-01-01

    On the basis of the Leningrad NPP named after V.I. Lenin the development of a system for ecological monitoring and assessment (EMA) of the environment state and health of personnel and population has started in the EMA program framework. The program of ecological monitoring and assessment coordinates the works on the study of NPP effect on the nature and people, effect of separate factors and their combination, methods and models for the description of the effects, forecasting and evaluation, selection of the optimal protection strategies. Scientific foundations, structure and content of the EMA program are given to coordinate the works carried out according to the program with other works carried out in the country in this direction. The paper deals with the composition of monitoring parameters of the standard system of ecological monitoring of the environment for NPP

  8. Annual report on radioactive discharges and monitoring of the environment 1991. V. 1

    International Nuclear Information System (INIS)

    1992-01-01

    This Annual Report supplements and updates British Nuclear Fuel plc's Health and Safety and the Environment Annual Report by providing more detailed information on radioactive discharges, monitoring of the environment and critical groups doses. BNFL has published Annual Reports on Radioactive Discharges and Monitoring of the Environment since 1977. This year the report is again sub-divided into two complementary volumes. Volume I includes, for each of the Company's sites, annual data on radioactive discharges into the environment and the associated environmental monitoring programmes. Critical groups doses for each site are presented in summary tables at the beginning of each chapter. (author)

  9. Metagenomic frameworks for monitoring antibiotic resistance in aquatic environments.

    Science.gov (United States)

    Port, Jesse A; Cullen, Alison C; Wallace, James C; Smith, Marissa N; Faustman, Elaine M

    2014-03-01

    High-throughput genomic technologies offer new approaches for environmental health monitoring, including metagenomic surveillance of antibiotic resistance determinants (ARDs). Although natural environments serve as reservoirs for antibiotic resistance genes that can be transferred to pathogenic and human commensal bacteria, monitoring of these determinants has been infrequent and incomplete. Furthermore, surveillance efforts have not been integrated into public health decision making. We used a metagenomic epidemiology-based approach to develop an ARD index that quantifies antibiotic resistance potential, and we analyzed this index for common modal patterns across environmental samples. We also explored how metagenomic data such as this index could be conceptually framed within an early risk management context. We analyzed 25 published data sets from shotgun pyrosequencing projects. The samples consisted of microbial community DNA collected from marine and freshwater environments across a gradient of human impact. We used principal component analysis to identify index patterns across samples. We observed significant differences in the overall index and index subcategory levels when comparing ecosystems more proximal versus distal to human impact. The selection of different sequence similarity thresholds strongly influenced the index measurements. Unique index subcategory modes distinguished the different metagenomes. Broad-scale screening of ARD potential using this index revealed utility for framing environmental health monitoring and surveillance. This approach holds promise as a screening tool for establishing baseline ARD levels that can be used to inform and prioritize decision making regarding management of ARD sources and human exposure routes. Port JA, Cullen AC, Wallace JC, Smith MN, Faustman EM. 2014. Metagenomic frameworks for monitoring antibiotic resistance in aquatic environments. Environ Health Perspect 122:222–228; http://dx.doi.org/10.1289/ehp

  10. An 'artificial mussel' for monitoring heavy metals in marine environments

    International Nuclear Information System (INIS)

    Wu, Rudolf S.S.; Lau, T.C.; Fung, Wendy K.M.; Ko, P.H.; Leung, Kenneth M.Y.

    2007-01-01

    A new chemical sampling device, artificial mussel (AM), has been developed for monitoring metals in marine environments. This device consists of a polymer ligand suspended in artificial seawater within a Perspex tubing, and enclosed with semi-permeable gel at both ends. Laboratory and field experiments were carried out to examine the uptake of five metals (Cd, Cr, Cu, Pb and Zn) by the AM. Uptake of metals by AM was proportional to the exposure metal concentrations, and the AM was able to accumulate the ASV labile fractions of metals. Uptake and release of the metals of AM are similar to those of the mussel Perna viridis, but less affected by salinity and temperature. Field studies demonstrated that the AM can not only provide a time-integrated estimate of metals concentrations, but also allows comparisons of metal levels in different environments and geographical areas beyond the natural distribution limits of biomonitors. - A new monitoring device to provide a time-integrated estimate for monitoring metals in marine environments

  11. Overview of the LHD central control room data monitoring environment

    International Nuclear Information System (INIS)

    Emoto, M.; Yoshinuma, M.; Yoshida, M.; Nakanishi, H.; Iwata, C.; Ohsuna, M.; Nonomura, M.; Imazu, S.; Yokota, M.; Aoyagi, M.; Ogawa, H.; Ida, K.; Watanabe, K.; Kaneko, O.

    2016-01-01

    Highlights: • In this paper, the data monitoring environments in the LHD central control room, for example, summary data graph and video monitoring tools are introduced. Also, the environments for the remote participants are introduced. - Abstract: During the Large Helical Device (LHD) experiments, many scientists and technical staff are working in the central control room to operate the experiment. They must manage the diagnostics and controlling devices referring to the results of the last plasma shot. Also, the experiment coordinator must decide the conditions for the subsequent experiments using the results. Furthermore, many scientists are participating in the experiment from remote sites. Therefore, it is important to share the information in the control room quickly, such as the results of the last plasma discharge, with the remote user as well as with the staff in the room. In this paper, the data monitoring environment in the LHD central control room is introduced.

  12. Overview of the LHD central control room data monitoring environment

    Energy Technology Data Exchange (ETDEWEB)

    Emoto, M., E-mail: emoto.masahiko@nifs.ac.jp; Yoshinuma, M.; Yoshida, M.; Nakanishi, H.; Iwata, C.; Ohsuna, M.; Nonomura, M.; Imazu, S.; Yokota, M.; Aoyagi, M.; Ogawa, H.; Ida, K.; Watanabe, K.; Kaneko, O.

    2016-11-15

    Highlights: • In this paper, the data monitoring environments in the LHD central control room, for example, summary data graph and video monitoring tools are introduced. Also, the environments for the remote participants are introduced. - Abstract: During the Large Helical Device (LHD) experiments, many scientists and technical staff are working in the central control room to operate the experiment. They must manage the diagnostics and controlling devices referring to the results of the last plasma shot. Also, the experiment coordinator must decide the conditions for the subsequent experiments using the results. Furthermore, many scientists are participating in the experiment from remote sites. Therefore, it is important to share the information in the control room quickly, such as the results of the last plasma discharge, with the remote user as well as with the staff in the room. In this paper, the data monitoring environment in the LHD central control room is introduced.

  13. Annual report on radioactive discharges and monitoring of the environment 1992. V. 1

    International Nuclear Information System (INIS)

    1993-01-01

    This Annual Report supplements the Company's Health and Safety Annual Report by providing more detailed information on radioactive discharges, monitoring of the environment and critical group doses. BNFL has published Annual Reports on Radioactive Discharges and Monitoring of the Environment, covering the period from 1977 to the present. For 1990 this report has been sub-divided into two complementary parts. Volume I includes annual data for each of the Company sites on radioactive discharges into the environment and the associated environmental monitoring programmes. Volume II reproduces the Certificates of Authorisation under which the Company operates and the statutory environmental monitoring programmes which relate to them. (author)

  14. Annual report on radioactive discharges and monitoring of the environment 1990. V. 1

    International Nuclear Information System (INIS)

    1991-01-01

    This Annual Report supplements the Company's Health and Safety Annual Report by providing more detailed information on radioactive discharges, monitoring of the environment and critical group doses. BNFL has published Annual Reports on Radioactive Discharges and Monitoring of the Environment, covering the period from 1977 to the present. For 1990 this report has been sub-divided into two complementary parts. Volume I includes annual data for each of the Company sites on radioactive discharges into the environment and the associated environmental monitoring programmes. Volume II reproduces the Certificates of Authorisation under which the Company operates and the statutory environmental monitoring programmes which relate to them. (author)

  15. Annual report on radioactive discharges and monitoring of the environment 1990. V. 2

    International Nuclear Information System (INIS)

    1991-01-01

    This Annual Report supplements the Company's Health and Safety Annual Report by providing more detailed information on radioactive discharges, monitoring of the environment and critical group doses. BNFL has published Annual Reports on Radioactive Discharges and Monitoring of the Environment, covering the period from 1977 to the present. For 1990 this report has been sub-divided into two complementary parts. Volume I includes annual data for each of the Company sites on radioactive discharges into the environment and the associated environmental monitoring programmes. Volume II reproduces the Certificates of Authorisation under which the Company operates and the statutory environmental monitoring programmes which relate to them. (author)

  16. Progress in the domain of emissions tracking and environment radioactivity monitoring - Proceedings of the technical days organised by the SFRP Environment Section

    International Nuclear Information System (INIS)

    Calmet, Dominique; Calvez, Marianne; Rivasseau, Corinne Cea; Monfort, Marguerite; Manificat, Guillaume; Pierrard, Olivier; Couvez, Celine; Masson, Olivier; Bruno, Valerie; Renaud, Philippe; Genova, Zhana; Reynal, Nathalie; Le Coz, Eric; Tchilian, Nathalie; Diana, Jean-Jacques; Beguinel, Philippe; Cortes, Pierre; Puydarrieux, Stephane; Brun, Thierry; Devin, Patrick; Clavel, Benoit; Hemidy, Pierre-Yves; Gontier, Gilles; Delloye, Thierry; Mailliat, Alain; Ferreri, Giovanni; LECLERC, Elisabeth

    2015-11-01

    The Environment Section of the French Society of Radiation Protection (SFRP) organized a technical meeting on the progress made in the domain of emissions tracking and environment radioactivity monitoring. This document brings together the abstracts and the presentations (slides) of the different talks given at the meeting: 1 - Environment monitoring at the global, national and local scale: historical overview (Dominique CALMET, CEA); 2 - Evolution of radioactivity monitoring in the environment from 1960 to the present day (Guillaume MANIFICAT, IRSN); 3 - Euratom's legal framework (Zhana GENOVA, CTE); 4 - Main regulatory changes during the last decade (Nathalie REYNAL, ASN); 5 - Progress of standardization works on radioactive effluent emissions control and environment monitoring (Philippe BEGUINEL, BNEN); 6 - From operators' self-monitoring to ASN's inspections: a many components control system (Eric LE COZ, ASN); 7 - Control of effluents and emissions management at CEA Centres (Marianne CALVEZ, CEA); 8 - Liquid and gaseous effluents of ITER experimental facility: description and impacts (Pierre CORTES, IO); 9 - Effluents and emissions management strategy at AREVA NC La Hague facility (Stephane PUYDARRIEUX, AREVA); 10 - Radioactive effluents from nuclear facilities ongoing deconstruction: from dimensioning to real effluents (Benoit CLAVEL, EDF); 11 - Radionuclides decontamination process for liquid effluents using micro-algae at the laboratory scale (Corinne RIVASSEAU, CEA); 12 - Radioactive effluents from nuclear medicine services: management, monitoring and impact measurement methods (Nathalie TCHILIAN, ASN); 13 - Evolution history of effluents management and environment monitoring at the Solvay La Rochelle site (Thierry DELLOYE, SOLVAY); 14 - Different international approaches in effluents management and monitoring: example of French and German gaseous effluents - regulation, analyses, accounting rules (Jean-Jacques DIANA, ASN); 15 - Environment

  17. Employee quality, monitoring environment and internal control

    Directory of Open Access Journals (Sweden)

    Chunli Liu

    2017-03-01

    Full Text Available We investigate the effect of internal control employees (ICEs on internal control quality. Using special survey data from Chinese listed firms, we find that ICE quality has a significant positive influence on internal control quality. We examine the effect of monitoring on this result and find that the effect is more pronounced for firms with strict monitoring environments, especially when the firms implement the Chinese internal control regulation system (CSOX, have higher institutional ownership or attach greater importance to internal control. Our findings suggest that ICEs play an important role in the design and implementation of internal control systems. Our study should be of interest to both top managers who wish to improve corporate internal control quality and regulators who wish to understand the mechanisms of internal control monitoring.

  18. Tritium monitoring for nuclear facilities and environment in China

    International Nuclear Information System (INIS)

    Yang Huaiyuan

    1995-12-01

    Reviews of achievement and great progress of tritium monitoring techniques for nuclear facility and environment in China over the past 30 years are made which including the development experiences of several important detectors and instruments for health physics monitoring on site and some sampling and measuring methods for environmental monitoring and assessment. Information on nation wide survey activities during 1970∼1980 years on natural environmental radioactivity level in China and the related tritium data are given. (28 refs., 6 tabs.)

  19. Development of the European Small Geostationary Satellite SGEO

    Science.gov (United States)

    Lübberstedt, H.; Schneider, A.; Schuff, H.; Miesner, Th.; Winkler, A.

    2008-08-01

    The SGEO product portfolio, ranging from Satellite platform delivery up to in-orbit delivery of a turnkey system including satellite and ground control station, is designed for applications ranging from TV Broadcast to multimedia applications, Internet access, mobile or fixed services in a wide range of frequency bands. Furthermore, Data Relay missions such as the European Data Relay Satellite (EDRS) as well as other institutional missions are targeted. Key design features of the SGEO platform are high flexibility and modularity in order to accommodate a very wide range of future missions, a short development time below two years and the objective to build the system based on ITAR free subsystems and components. The system will provide a long lifetime of up to 15 years in orbit operations with high reliability. SGEO is the first European satellite to perform all orbit control tasks solely by electrical propulsion (EP). This design provides high mass efficiency and the capability for direct injection into geostationary orbit without chemical propulsion (CP). Optionally, an Apogee Engine Module based on CP will provide the perigee raising manoeuvres in case of a launch into geostationary transfer orbit (GTO). This approach allows an ideal choice out of a wide range of launcher candidates in dependence of the required payload capacity. SGEO will offer to the market a versatile and high performance satellite system with low investment risk for the customer and a short development time. This paper provides an overview of the SGEO system key features and the current status of the SGEO programme.

  20. EGNOS Monitoring Prepared in Space Research Centre P.A.S. for SPMS Project

    Science.gov (United States)

    Swiatek, Anna; Jaworski, Leszek; Tomasik, Lukasz

    2017-12-01

    The European Geostationary Overlay Service (EGNOS) augments Global Positioning System (GPS) by providing correction data and integrity information for improving positioning over Europe. EGNOS Service Performance Monitoring Support (SPMS) project has assumed establishment, maintenance and implementation of an EGNOS performance monitoring network. The paper presents preliminary results of analyses prepared in Space Research Centre, Polish Academy of Sciences (Warsaw), as one of partners in SPMS project.

  1. Radioactivity Monitoring of the Irish Environment 2007

    International Nuclear Information System (INIS)

    Fegan, M.; Dowdall, A.; Hanley, O.; Hayden, E.; Kelleher, K.; Long, S.; Smith, V.; Somerville, S.; Wong, J.; Pollard, D.

    2008-10-01

    This report presents the results of the environmental radioactivity monitoring programme carried out by the Radiological Protection Institute of Ireland (RPII) in 2007. This programme aims to assess the exposure of the Irish population to artificial radioactivity in the envorinment, to review the temporal and geographical distribution of contaminating radionuclides and to maintain systems and procedures which would allow a rapid assessment of environmental contamination to be made in the event of a radiological emergency. In additiopn, some natural radioactivity exposure pathways are included in the programme including radioactivity in surface and ground drinking water. Radioactivity is present in the environment due to natural oprocesses, the testing of nuclear weapons in the atmosphere, past nuclear accidents such as that at Chernobyl in the Ukraine and the routine discharge of radionuclides from nuclear installations. Liquid discharges from the British Nuclear Group reprocessing plant at Sellafield in Cumbria in the north-west of England continue to be the dominant source of artificial radioactivity in the Irish marine environment. The key elements of the monitoring programme implemented by the RPII in 2007 included; assessment of ambient radioactivity based on measurements of radioactivity in air and of external gamma dose rate at permanent monitoring stations located throughout the country; assessment of levels of radioactivity in drinking water; assessment of levels of radioactivity in foodstuffs based on measurements of total diet, milk and various ingredients; assessment of levels of radioactivity in the Irish marine environment based on sampling and measurement of seawater, sediment, seaweed, fish and shellfish. The RPII monitored airborne radioactivity at twelve stations located throughout the country. One of these stations is equipped with a high volume sampler, which allows background concentrations of caesium-137 to be measured; another is equipped to

  2. IoT enabled aquatic drone for environment monitoring

    OpenAIRE

    Matos, João Ricardo Baptista de

    2016-01-01

    This thesis presents a platform that tackles environment monitoring by using air and water quality sensors to provide data for the user to know what is happening in that surveilled area. The hardware is incorporated in a sensing module in order to be used with an Unmanned Surface Vehicle (USV). It presents a monitoring system based on Raspberry Pi platform and a multichannel sensing module associated with water quality and air quality measurement parameters. Thus, the temper...

  3. Network monitoring module of BES III system environment

    International Nuclear Information System (INIS)

    Song Liwen; Zhao Jingwei; Zhang Bingyun

    2002-01-01

    In order to meet the needs of the complicated network architecture of BES III (Beijing Spectrometer III) and make sure normal online running in the future, it is necessary to develop a multi-platforms Network Monitoring Tool which can help system administrator monitor and manage BES III network. The author provides a module that can monitor not only the traffic of switch-router's ports but also the performance status of key devices in the network environment, meanwhile it can also give warning to manager and submit the related reports. the great sense, the theory basis, the implementing method and the graph in formation of this tool will be discussed

  4. Hourly changes in sea surface salinity in coastal waters recorded by Geostationary Ocean Color Imager

    Science.gov (United States)

    Liu, Rongjie; Zhang, Jie; Yao, Haiyan; Cui, Tingwei; Wang, Ning; Zhang, Yi; Wu, Lingjuan; An, Jubai

    2017-09-01

    In this study, we monitored hourly changes in sea surface salinity (SSS) in turbid coastal waters from geostationary satellite ocean color images for the first time, using the Bohai Sea as a case study. We developed a simple multi-linear statistical regression model to retrieve SSS data from Geostationary Ocean Color Imager (GOCI) based on an in situ satellite matched-up dataset (R2 = 0.795; N = 41; Range: 26.4 to 31.9 psμ). The model was then validated using independent continuous SSS measurements from buoys, with the average percentage difference of 0.65%. The model was applied to GOCI images from the dry season during an astronomical tide to characterize hourly changes in SSS in the Bohai Sea. We found that the model provided reasonable estimates of the hourly changes in SSS and that trends in the modeled and measured data were similar in magnitude and direction (0.43 vs 0.33 psμ, R2 = 0.51). There were clear diurnal variations in the SSS of the Bohai Sea, with a regional average of 0.455 ± 0.079 psμ (0.02-3.77 psμ). The magnitude of the diurnal variations in SSS varied spatially, with large diurnal variability in the nearshore, particularly in the estuary, and small variability in the offshore area. The model for the riverine area was based on the inverse correlation between SSS and CDOM absorption. In the offshore area, the water mass of the North Yellow Sea, characterized by high SSS and low CDOM concentrations, dominated. Analysis of the driving mechanisms showed that the tidal current was the main control on hourly changes in SSS in the Bohai Sea.

  5. Results of monitoring at Olkiluoto in 2012. Environment

    International Nuclear Information System (INIS)

    Haapanen, A.

    2014-04-01

    In 2003, Posiva Oy presented a programme for monitoring at Olkiluoto during construction and operation of ONKALO. In 2012 the monitoring programme was updated to concern the years 2012-2018. Part of the monitoring is performed by the company running the nuclear power plants on the island, Teollisuuden Voima Oy (TVO). This Working Report presents the main results of Posiva's environmental monitoring programme on Olkiluoto Island in 2012. Results are presented under five topics: 1. Evolution of geosphere, 2. Biosphere modelling input data, 3. Interaction between surface environment and groundwater in bedrock, 4. Environmental impact and 5. Baseline of monitoring of radioactive releases. Concerning the evolution of geosphere, LIDAR-scannings were done in the Olkiluoto area in 2012. The acquired data can be used for elevation and other modelling purposes. The soil solution quality in 2012 was quite comparable to that in earlier years. Proximity of the sea and the young age of soils are seen in soil solution results. Biosphere modelling input data in 2012 included e.g. continuous tree litterfall and transpiration data, as well as updated game statistics and population estimates of fauna, a fishery survey from the River Eurajoki (2011) and basic monitoring data from Olkiluoto offshore properties. Interaction between surface environment and groundwater in bedrock includes e.g. weather and surface water monitoring data. Environmental impact analyses included e.g. monitoring of noise, air quality, effluent waters and private drilled wells. Noise monitoring in the vicinity of ONKALO showed that in the case of raised noise levels the sources are mainly the traffic on Olkiluodontie road, the air conditioning of ONKALO and occasional sources such as springtime bird sounds. Construction activities in the area were seen in increased amount of NO 3 -N in the bulk deposition, and Al and Fe accumulating on needle surfaces in areas close to the rock piling and crushing area. Scots

  6. Results of monitoring at Olkiluoto in 2012. Environment

    Energy Technology Data Exchange (ETDEWEB)

    Haapanen, A. (ed.) [Haapanen Forest Consulting, Vanhakylae (Finland)

    2014-04-15

    In 2003, Posiva Oy presented a programme for monitoring at Olkiluoto during construction and operation of ONKALO. In 2012 the monitoring programme was updated to concern the years 2012-2018. Part of the monitoring is performed by the company running the nuclear power plants on the island, Teollisuuden Voima Oy (TVO). This Working Report presents the main results of Posiva's environmental monitoring programme on Olkiluoto Island in 2012. Results are presented under five topics: 1. Evolution of geosphere, 2. Biosphere modelling input data, 3. Interaction between surface environment and groundwater in bedrock, 4. Environmental impact and 5. Baseline of monitoring of radioactive releases. Concerning the evolution of geosphere, LIDAR-scannings were done in the Olkiluoto area in 2012. The acquired data can be used for elevation and other modelling purposes. The soil solution quality in 2012 was quite comparable to that in earlier years. Proximity of the sea and the young age of soils are seen in soil solution results. Biosphere modelling input data in 2012 included e.g. continuous tree litterfall and transpiration data, as well as updated game statistics and population estimates of fauna, a fishery survey from the River Eurajoki (2011) and basic monitoring data from Olkiluoto offshore properties. Interaction between surface environment and groundwater in bedrock includes e.g. weather and surface water monitoring data. Environmental impact analyses included e.g. monitoring of noise, air quality, effluent waters and private drilled wells. Noise monitoring in the vicinity of ONKALO showed that in the case of raised noise levels the sources are mainly the traffic on Olkiluodontie road, the air conditioning of ONKALO and occasional sources such as springtime bird sounds. Construction activities in the area were seen in increased amount of NO{sub 3}-N in the bulk deposition, and Al and Fe accumulating on needle surfaces in areas close to the rock piling and crushing area

  7. Trace Gas Retrievals from the GeoTASO Aircraft Instrument

    Science.gov (United States)

    Nowlan, C. R.; Liu, X.; Leitch, J. W.; Liu, C.; Gonzalez Abad, G.; Chance, K.; Cole, J.; Delker, T.; Good, W. S.; Murcray, F.; Ruppert, L.; Soo, D.; Loughner, C.; Follette-Cook, M. B.; Janz, S. J.; Kowalewski, M. G.; Pickering, K. E.; Zoogman, P.; Al-Saadi, J. A.

    2015-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) instrument is a passive remote sensing instrument capable of making 2-D measurements of trace gases and aerosols from aircraft. The instrument measures backscattered UV and visible radiation, allowing the retrieval of trace gas amounts below the aircraft at horizontal resolutions on the order of 250 m x 250 m. GeoTASO was originally developed under NASA's Instrument Incubator Program as a test-bed instrument for the Geostationary Coastal and Air Pollution Events (GEO-CAPE) decadal survey mission, and is now also part of risk reduction for the upcoming Tropospheric Emissions: Monitoring of Pollution (TEMPO) and Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite missions. We present spatially resolved observations of ozone, nitrogen dioxide, formaldehyde and sulfur dioxide over urban areas and power plants from flights during the DISCOVER-AQ field campaigns in Texas and Colorado, as well as comparisons with observations made by ground-based Pandora spectrometers, in situ monitoring instruments and other aircraft instruments deployed during these campaigns. These measurements at various times of day are providing a very useful data set for testing and improving TEMPO and GEMS retrieval algorithms, as well as demonstrating prototype validation strategies.

  8. Results of monitoring at Olkiluoto in 2005. Environment

    International Nuclear Information System (INIS)

    Haapanen, R.

    2006-08-01

    This Working Report presents the main results of Posiva Oy's environmental monitoring programme on Olkiluoto Island in 2005. This is the second annual report. Monitoring has been carried out for varying time periods depending on the sector: some monitoring activities performed by TVO originate from the 1970s, others connected with the construction of the final disposal repository for nuclear waste and the underground research facility ONKALO have just started. The system supervised by Posiva Oy produces input for biosphere modelling for long-term safety purposes as well as for environmental impact analyses. In 2005 the deposition collectors and nearby needles caught some dust from the rock piling and crushing activities and traffic. Noise was another clear effect, originating mostly from OL3 construction, rock piling and crushing area and the concrete station. The studies further confirmed that the vegetation, forests, soils and animal life are typical of a coastal region within the same vegetation zone. The nearby marine environment is affected by the cooling water from the nuclear power plant, to varying extents depending on the organism and the distance. Monitoring of marine environments as well as radionuclide analyses at the moment produce reference data for the future and create a basis for the construction of a model, as no input from Posiva's activities will influence these areas for a long time. (orig.)

  9. Efficient medium access control protocol for geostationary satellite systems

    Institute of Scientific and Technical Information of China (English)

    王丽娜; 顾学迈

    2004-01-01

    This paper proposes an efficient medium access control (MAC) protocol based on multifrequency-time division multiple access (MF-TDMA) for geostationary satellite systems deploying multiple spot-beams and onboard processing,which uses a method of random reservation access with movable boundaries to dynamically request the transmission slots and can transmit different types of traffic. The simulation results have shown that our designed MAC protocol can achieve a high bandwidth utilization, while providing the required quality of service (QoS) for each class of service.

  10. Radioactive monitoring of the marine environment

    International Nuclear Information System (INIS)

    Bologa, A. S.

    1991-01-01

    Radioactivity monitoring of marine environment was required by the development of nuclear power and the worldwide use of ionizing radiations in many different activities. Both natural and artificial radioactivity play an important role in marine ecology and human health. In respect of this, three major facts prevail, namely: the fallout, the proximity of Danube River and the future nuclear power production. Spatial and temporal monitoring of marine radioactivity along the Romanian Black Sea shore has been systematically performed in Romanian Marine Research Institute in close cooperation with Institute of Meteorology and Hydrology since 1981. Marine emerged and submerged sediments, coastal and offshore sea water, macroalgae, invertebrates and fish of Danube mouths and/or along the coast are monitored for natural and artificial radioactivity by means of gross beta measurements and gamma spectrometry. Concentrations of radionuclides such as: K-40, Cs-134 and Cs-137 in abiotic and biotic samples, environmental distribution coefficients and concentration factors (CFs) as well as experimentally derived CFs in marine biota as radioecological bioindicators are assessed and stored in a national data base. (author)

  11. The Integrated Design for Micro - environment Monitoring System of Showcase in Museum

    Directory of Open Access Journals (Sweden)

    Dong Chan

    2017-01-01

    Full Text Available In order to improve the current environment quality of cultural relics in museum and make them preserved for a long time, the paper proposes the integrated design for micro - environment monitoring system of showcase in museum, the system mainly monitors the micro-environment of heritage, such as ultraviolet, light, formaldehyde, CO2, TVOC, PM 2.5, choosing cotex-M3 ARM microcontroller STM32F103ZET6 as the control core. Based on the concept of integration, the system integrates the single air monitoring instruments. The design of circuit mainly includes the process of digital power supply and analog power supply, the acquisition and processing of 5 analog signals from sensors, and the design of reserved interface. In the aspect of interaction, the serial port lcd module was uesd for the display and control, which can get rid of the control of PC and achieve the functions of environmental monitoring, environmental warning, environmental assessment, historical data query. The integrated design for Micro-environment of Showcase in Museum achieves a monitoring platform successfully which is easy for users’ operation and access to display information conveniently. The advantages of the system are strong portability, low cost and short development cycle.

  12. Building of effluence and environment monitoring capability of uranium mining and metallurgy in China

    International Nuclear Information System (INIS)

    Li Xianjie; Hu Penghua; Duan Jianchen; Xue Jianxin

    2014-01-01

    The status of effluence and environmental monitoring capability of nine uranium mining and metallurgy corporations in operation in China was investigated and analyzed. The results show that there exist some problems in all corporations such as imperfect monitoring plan, ineligible analyst, aging equipment, insufficient analysis capacity, lack of good detection limit. In order to solve the problems, several steps have been taken by Department of Safety and Environment Protection and Department of Geology and Mining (CNNC) in three years, including establishing three-level monitoring sys- tem, equipping corresponding monitoring instrument, holding three training classes, enhancing the analyst capacity, publishing the model for effluence and environment monitoring capability of uranium mining and metallurgy and carrying out comparison on monitoring of U and Ra in water, which greatly improved effluence and environment monitoring capability of uranium mining and metallurgy. (authors)

  13. Modelling Angular Dependencies in Land Surface Temperatures From the SEVIRI Instrument onboard the Geostationary Meteosat Second Generation Satellites

    DEFF Research Database (Denmark)

    Rasmussen, Mads Olander; Pinheiro, AC; Proud, Simon Richard

    2010-01-01

    on vegetation structure and viewing and illumination geometry. Despite this, these effects are not considered in current operational LST products from neither polar-orbiting nor geostationary satellites. In this paper, we simulate the angular dependence that can be expected when estimating LST with the viewing...... geometry of the geostationary Meteosat Second Generation Spinning Enhanced Visible and Infrared Imager sensor across the African continent and compare it to a normalized view geometry. We use the modified geometric projection model that estimates the scene thermal infrared radiance from a surface covered...

  14. Feasibility study for Japanese Air Quality Mission from Geostationary Satellite: Infrared Imaging Spectrometer

    Science.gov (United States)

    Sagi, K.; Kasai, Y.; Philippe, B.; Suzuki, K.; Kita, K.; Hayashida, S.; Imasu, R.; Akimoto, H.

    2009-12-01

    A Geostationary Earth Orbit (GEO) satellite is potentially able to monitor the regional distribution of pollution with good spatial and temporal resolution. The Japan Society of Atmospheric Chemistry (JSAC) and the Japanese Space Exploration Agency (JAXA) initiated a concept study for air quality measurements from a GEO satellite targeting the Asian region [1]. This work presents the results of sensitivity studies for a Thermal Infrared (TIR) (650-2300cm-1) candidate instrument. We performed a simulation study and error analysis to optimize the instrumental operating frequencies and spectral resolution. The scientific requirements, in terms of minimum precision (or error) values, are 10% for tropospheric O3 and CO and total column of HN3 and nighttime HNO2 and 25% for O3 and CO with separating 2 or 3 column in troposphere. Two atmospheric scenarios, one is Asian background, second is polluted case, were assumed for this study. The forward calculations and the retrieval error analysis were performed with the AMATERASU model [2] developed within the NICT-THz remote sensing project. Retrieval error analysis employed the Optimal Estimation Method [3]. The geometry is off-nadir observation on Tokyo from the geostationary satellite at equator. Fine spectral resolution will allow to observe boundary layer O3 and CO. We estimate the observation precision in the spectral resolution from 0.1cm-1 to 1cm-1 for 0-2km, 2-6km, and 6-12km. A spectral resolution of 0.3 cm-1 gives good sensitivity for all target molecules (e.g. tropospheric O3 can be detected separated 2 column with error 30%). A resolution of 0.6 cm-1 is sufficient to detect tropospheric column amount of O3 and CO (in the Asian background scenario), which is within the required precision and with acceptable instrumental SNR values of 100 for O3 and 30 for CO. However, with this resolution, the boundary layer ozone will be difficult to detect in the background abundance. In addition, a spectral resolution of 0.6 cm

  15. Radiation Protection of the Public and the Environment. Overcoming Environmental Monitoring Inertia

    International Nuclear Information System (INIS)

    Parker, T.G.; Desmond, J.A.; Stevens, A.K.

    2006-01-01

    The first nuclear reactors at Sellafield went critical in 1951 and fuel reprocessing commenced shortly afterwards. As the nuclear programme expanded, reprocessing increased and there was an associated increase in discharges to the environment. An initial environmental monitoring programme was formulated on the basis of research and assessment of the likely behaviour of radionuclides. In addition to the routine process sources there were also incidents that gave rise to acute releases of radioactivity to the environment. Of key significance were: the Windscale fire, 1957; short-cooled fuel reprocessing, 1981; and discharge of contaminated solvent, 1983. All of these incidents added to the requirements for environments for environmental monitoring. The monitoring programme has evolved over a period of more than 50 years. (N.C.)

  16. Radiation Protection of the Public and the Environment. Overcoming Environmental Monitoring Inertia

    Energy Technology Data Exchange (ETDEWEB)

    Parker, T.G.; Desmond, J.A. [British Nuclear Group Sellafield Ltd. (United Kingdom); Stevens, A.K. [Westlakes Scientific Consulting (United Kingdom)

    2006-07-01

    The first nuclear reactors at Sellafield went critical in 1951 and fuel reprocessing commenced shortly afterwards. As the nuclear programme expanded, reprocessing increased and there was an associated increase in discharges to the environment. An initial environmental monitoring programme was formulated on the basis of research and assessment of the likely behaviour of radionuclides. In addition to the routine process sources there were also incidents that gave rise to acute releases of radioactivity to the environment. Of key significance were: the Windscale fire, 1957; short-cooled fuel reprocessing, 1981; and discharge of contaminated solvent, 1983. All of these incidents added to the requirements for environments for environmental monitoring. The monitoring programme has evolved over a period of more than 50 years. (N.C.)

  17. Radioactivity Monitoring of the Irish Environment 2003-2005

    International Nuclear Information System (INIS)

    Ryan, R.W.; Dowdall, A; Fegan, M.F.; Hayden, E.; Kelleher, K.; Long, S.; McEvoy, I.; McKittrick, L.; McMahon, C.A.; Murray, M.; Smith, K.; Sequeira, S.; Wong, J.; Pollard, D.

    2007-05-01

    This report presents the results of the environmental radioactivity monitoring programme carried out by the Radiological Protection Institute of Ireland (RPII) between 2003 and 2005. This programme aims to assess the exposure of the Irish population to anthropogenic radioactivity in the environment, to review the temporal and geographical distribution of contaminating radionuclides and to maintain systems and procedures which would allow a rapid assessment of environmental contamination to be made in the event of a radiological emergency. Radioactivity is present in the environment due to natural processes, the testing of nuclear weapons in the atmosphere, past nuclear accidents such as that at Chernobyl and the routine licensed discharge of radionuclides from nuclear installations. Liquid discharges from the British Nuclear Group reprocessing plant at Sellafield in Cumbria in the North-West of England continue to be the dominant source of anthropogenic radioactivity in the Irish marine environment. The key elements of the monitoring programme implemented by the RPII during the reporting period include; assessment of ambient radioactivity based on measurements of radioactivity in air and external gamma dose rate at permanent monitoring stations located throughout the country; assessment of levels of radioactivity in drinking water; assessment of levels of radioactivity in foodstuffs based on measurements of total diet, milk and miscellaneous ingredients; assessment of levels of radioactivity in the marine environment based on sampling and measurements of seawater, sediment, seaweed, fish and shellfish. The RPII monitored airborne radioactivity at eleven stations located throughout the country. One station is equipped with a high volume sampler, which allows global fallout concentrations to be measured, and one is equipped to detect the presence of the gas krypton-85. Krypton-85 is released into the environment primarily as a result of the reprocessing of nuclear

  18. Spectroscopic Observations of Geo-Stationary Satellites Over the Korean Peninsula

    OpenAIRE

    D. K. Lee; S. J. Kim; W. Y. Han; J. S. Park; S. W. Min

    2001-01-01

    Low resolution spectroscopic observations of geo-stationary satellites over the Korean peninsula have been carried out at the KyungHee Optical Satellite Observing Facility (KOSOF) with a 40cm telescope. We have observed 9 telecommunication satellites and 1 weather satellite of 6 countries. The obtained spectral data showed that satellites could be classified and grouped with similar basic spectral feature. We divided the 10 satellites into 4 groups based on spectral slop and reflectance. It i...

  19. Real time nanogravimetric monitoring of corrosion in radioactive environments

    OpenAIRE

    Tzagkaroulakis, Ioannis; Boxall, Colin

    2017-01-01

    Monitoring and understanding the mechanism of metal corrosion throughout the nuclear fuel cycle play a key role in the safe asset management of facilities. They also provide information essential for making an informed choice regarding the selection of decontamination methods for steel plant and equipment scheduled for decommissioning. Recent advances in Quartz Crystal Nanobalance (QCN) technology offer the means of monitoring corrosion in-situ, in radiologically harsh environments, in real t...

  20. Nitrogen dioxide observations from the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument: Retrieval algorithm and measurements during DISCOVER-AQ Texas 2013

    Science.gov (United States)

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA F...

  1. Monitoring the impacts of trade agreements on food environments.

    Science.gov (United States)

    Friel, S; Hattersley, L; Snowdon, W; Thow, A-M; Lobstein, T; Sanders, D; Barquera, S; Mohan, S; Hawkes, C; Kelly, B; Kumanyika, S; L'Abbe, M; Lee, A; Ma, J; Macmullan, J; Monteiro, C; Neal, B; Rayner, M; Sacks, G; Swinburn, B; Vandevijvere, S; Walker, C

    2013-10-01

    The liberalization of international trade and foreign direct investment through multilateral, regional and bilateral agreements has had profound implications for the structure and nature of food systems, and therefore, for the availability, nutritional quality, accessibility, price and promotion of foods in different locations. Public health attention has only relatively recently turned to the links between trade and investment agreements, diets and health, and there is currently no systematic monitoring of this area. This paper reviews the available evidence on the links between trade agreements, food environments and diets from an obesity and non-communicable disease (NCD) perspective. Based on the key issues identified through the review, the paper outlines an approach for monitoring the potential impact of trade agreements on food environments and obesity/NCD risks. The proposed monitoring approach encompasses a set of guiding principles, recommended procedures for data collection and analysis, and quantifiable 'minimal', 'expanded' and 'optimal' measurement indicators to be tailored to national priorities, capacity and resources. Formal risk assessment processes of existing and evolving trade and investment agreements, which focus on their impacts on food environments will help inform the development of healthy trade policy, strengthen domestic nutrition and health policy space and ultimately protect population nutrition. © 2013 The Authors. Obesity Reviews published by John Wiley & Sons Ltd on behalf of the International Association for the Study of Obesity.

  2. Monitoring of the aquatic environment by species accumulator of pollutants: a review

    Directory of Open Access Journals (Sweden)

    Oscar RAVERA

    2001-09-01

    Full Text Available This paper is a short review on the biomonitoring of aquatic environments by animal and plant species accumulators of toxic pollutants ("scavengers". This monitoring is based on the relationship between the pollutant concentration in the organism and that in its environment, and not on alterations produced by pollution on the biota. The latter is the basis of other types of biomonitoring, such as those based on the biotic and diversity indices and saprobic scale. The various aspects of monitoring by pollutant accumulators are illustrated; for example, the uptake and loss of pollutants, the "critical organs" and "tissues", the detoxification mechanisms and the most common factors (C.F., BAF, BSAF for establishing a connection between the pollutant concentration in the organism and that in its environment. Several examples of this monitoring on heavy metals, radioisotopes and organic micropollutants are reported. The advantages of this monitoring, the characteristics of the species to be used as bioaccumulators and some practical suggestions are listed. A close collaboration between the scientific teams working on the biomonitoring based on accumulator organisms and on the chemical monitoring is recommended from the scientific and economic point of view.

  3. Monitoring product safety in the postmarketing environment.

    Science.gov (United States)

    Sharrar, Robert G; Dieck, Gretchen S

    2013-10-01

    The safety profile of a medicinal product may change in the postmarketing environment. Safety issues not identified in clinical development may be seen and need to be evaluated. Methods of evaluating spontaneous adverse experience reports and identifying new safety risks include a review of individual reports, a review of a frequency distribution of a list of the adverse experiences, the development and analysis of a case series, and various ways of examining the database for signals of disproportionality, which may suggest a possible association. Regulatory agencies monitor product safety through a variety of mechanisms including signal detection of the adverse experience safety reports in databases and by requiring and monitoring risk management plans, periodic safety update reports and postauthorization safety studies. The United States Food and Drug Administration is working with public, academic and private entities to develop methods for using large electronic databases to actively monitor product safety. Important identified risks will have to be evaluated through observational studies and registries.

  4. A Numerical Testbed for Remote Sensing of Aerosols, and its Demonstration for Evaluating Retrieval Synergy from a Geostationary Satellite Constellation of GEO-CAPE and GOES-R

    Science.gov (United States)

    Wang, Jun; Xu, Xiaoguang; Ding, Shouguo; Zeng, Jing; Spurr, Robert; Liu, Xiong; Chance, Kelly; Mishchenko, Michael I.

    2014-01-01

    synergic use of two future geostationary satellites, GOES-R (Geostationary Operational Environmental Satellite R-series) and TEMPO (Tropospheric Emissions: Monitoring of Pollution). Strong synergy between GEOS-R and TEMPO are found especially in their characterization of surface bi-directional reflectance, and thereby, can potentially improve the AOD retrieval to the accuracy required by GEO-CAPE.

  5. Radioactivity Monitoring of the Irish Environment 2010-2011

    International Nuclear Information System (INIS)

    McGinnity, P.; Currivan, L.; Dowdall, A.; Hanley, O.; Kelleher, K.; McKittrick, L.; Pollard, D.; Somerville, S.; Wong, J.; McMahon, C.

    2012-11-01

    This report presents the results of the environmental radioactivity monitoring programme carried out by the Radiological Protection Institute of Ireland RPII during 2010 and 2011. The RPII has routinely monitored levels of radioactivity in the Irish environment since 1982 and this is the latest in the RPII's series of environmental monitoring reports. The RPII reviews and updates its environmental programme annually to ensure it remains relevant and continues to focus on the most important sources of radioactivity in the environment. The data presented in this report confirm that while the levels of artificial radioactivity in the Irish environment are detectable, they are low. They do not pose a significant risk to the human health of the Irish population. Trace amounts of radioactive isotopes consistent with the Fukushima nuclear accident were detected in air, rainwater and milk samples during the period March to May 2011. These increases in levels of radioactivity were not of concern from a public health point of view. For the remainder of the reporting period, activity concentrations of radionuclides in airborne particles were low and consistent with measurements made in recent years. Radioactivity levels in milk, mixed diet and a wide range of foodstuffs were low and, for the majority of samples, below the detection limits. All drinking waters tested were found to be in compliance with the total indicative dose defined in national and EU legislation. The doses incurred by the Irish public in 2010 and 2011 as a result of artificial radioactivity in the marine environment are small when compared to dose limits or to natural radiation doses received by the Irish public. The doses to the most exposed individuals, members of the oyster and mussel farmers critical group, were approximately 0.02 per cent and 0.05 per cent of the annual dose limit of 1000 microsieverts for members of the public from practices involving controllable sources of radiation in 2010 and

  6. Improved Satellite Techniques for Monitoring and Forecasting the Transition of Hurricanes to Extratropical Storms

    Science.gov (United States)

    Folmer, Michael; Halverson, Jeffrey; Berndt, Emily; Dunion, Jason; Goodman, Steve; Goldberg, Mitch

    2014-01-01

    The Geostationary Operational Environmental Satellites R-Series (GOES-R) and Joint Polar Satellite System (JPSS) Satellite Proving Grounds have introduced multiple proxy and operational products into operations over the last few years. Some of these products have proven to be useful in current operations at various National Weather Service (NWS) offices and national centers as a first look at future satellite capabilities. Forecasters at the National Hurricane Center (NHC), Ocean Prediction Center (OPC), NESDIS Satellite Analysis Branch (SAB) and the NASA Hurricane and Severe Storms Sentinel (HS3) field campaign have had access to a few of these products to assist in monitoring extratropical transitions of hurricanes. The red, green, blue (RGB) Air Mass product provides forecasters with an enhanced view of various air masses in one complete image to help differentiate between possible stratospheric/tropospheric interactions, moist tropical air masses, and cool, continental/maritime air masses. As a compliment to this product, a new Atmospheric Infrared Sounder (AIRS) and Cross-track Infrared Sounder (CrIS) Ozone product was introduced in the past year to assist in diagnosing the dry air intrusions seen in the RGB Air Mass product. Finally, a lightning density product was introduced to forecasters as a precursor to the new Geostationary Lightning Mapper (GLM) that will be housed on GOES-R, to monitor the most active regions of convection, which might indicate a disruption in the tropical environment and even signal the onset of extratropical transition. This presentation will focus on a few case studies that exhibit extratropical transition and point out the usefulness of these new satellite techniques in aiding forecasters forecast these challenging events.

  7. Software for marine ecological environment comprehensive monitoring system based on MCGS

    Science.gov (United States)

    Wang, X. H.; Ma, R.; Cao, X.; Cao, L.; Chu, D. Z.; Zhang, L.; Zhang, T. P.

    2017-08-01

    The automatic integrated monitoring software for marine ecological environment based on MCGS configuration software is designed and developed to realize real-time automatic monitoring of many marine ecological parameters. The DTU data transmission terminal performs network communication and transmits the data to the user data center in a timely manner. The software adopts the modular design and has the advantages of stable and flexible data structure, strong portability and scalability, clear interface, simple user operation and convenient maintenance. Continuous site comparison test of 6 months showed that, the relative error of the parameters monitored by the system such as temperature, salinity, turbidity, pH, dissolved oxygen was controlled within 5% with the standard method and the relative error of the nutrient parameters was within 15%. Meanwhile, the system had few maintenance times, low failure rate, stable and efficient continuous monitoring capabilities. The field application shows that the software is stable and the data communication is reliable, and it has a good application prospect in the field of marine ecological environment comprehensive monitoring.

  8. Process monitoring with optical fibers and harsh environment sensors

    International Nuclear Information System (INIS)

    Marcus, M.A.; Wang, A.

    1999-01-01

    This volume contains 35 papers presented at the symposium. Some of the topics covered are: sensors for the energy industry; sensors for materials evaluation and structural monitoring; sensors for engine industry; and other harsh environments sensors

  9. A simple and efficient algorithm to estimate daily global solar radiation from geostationary satellite data

    International Nuclear Information System (INIS)

    Lu, Ning; Qin, Jun; Yang, Kun; Sun, Jiulin

    2011-01-01

    Surface global solar radiation (GSR) is the primary renewable energy in nature. Geostationary satellite data are used to map GSR in many inversion algorithms in which ground GSR measurements merely serve to validate the satellite retrievals. In this study, a simple algorithm with artificial neural network (ANN) modeling is proposed to explore the non-linear physical relationship between ground daily GSR measurements and Multi-functional Transport Satellite (MTSAT) all-channel observations in an effort to fully exploit information contained in both data sets. Singular value decomposition is implemented to extract the principal signals from satellite data and a novel method is applied to enhance ANN performance at high altitude. A three-layer feed-forward ANN model is trained with one year of daily GSR measurements at ten ground sites. This trained ANN is then used to map continuous daily GSR for two years, and its performance is validated at all 83 ground sites in China. The evaluation result demonstrates that this algorithm can quickly and efficiently build the ANN model that estimates daily GSR from geostationary satellite data with good accuracy in both space and time. -- Highlights: → A simple and efficient algorithm to estimate GSR from geostationary satellite data. → ANN model fully exploits both the information from satellite and ground measurements. → Good performance of the ANN model is comparable to that of the classical models. → Surface elevation and infrared information enhance GSR inversion.

  10. 78 FR 19172 - Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service Geostationary-Orbit...

    Science.gov (United States)

    2013-03-29

    ... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Parts 2 and 25 [IB Docket No. 12-376; FCC 12-161] Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service Geostationary-Orbit Space Stations... the Federal Register of March 8, 2013. The document proposed rules for Earth Stations Aboard Aircraft...

  11. The Ocean State Report of the Copernicus Marine Environment Monitoring Service

    Science.gov (United States)

    von Schuckmann, Karina

    2017-04-01

    COPERNICUS is the European Earth observation and monitoring programme, which aims to give the European Union autonomous and operational capability in space-based observation facilities (see the Sentinel missions) and in situ (measurements in the atmosphere, in the ocean and on the ground), and to operate six interlinked environmental monitoring services for the oceans, the atmosphere, territorial development, emergency situations, security and climate change. In this context, the Copernicus Marine Environment Monitoring Service provides an open and free access to regular and systematic information about the physical state and dynamics of the ocean and marine ecosystems for the global ocean and six European regional seas. Mercator Ocean, the French center of global ocean analysis and forecast has been entrusted by the EU to implement and operate the Copernicus Marine Service. The first Ocean State Report Copernicus Marine Environment Monitoring Service has been prepared, and is planned to appear at an annual basis (fall each year) as a unique reference for ocean state reporting. This report contains a state-of-the-art value-added synthesis of the ocean state for the global ocean and the European regional seas from the Copernicus Marine Environment Monitoring Service data products and expert analysis. This activity is aiming to reach a wide audience -from the scientific community, over climate and environmental service and agencies, environmental reporting and bodies to the general public. We will give here an overview on the report, highlight main outcomes, and introduce future plans and developments.

  12. Normalization and calibration of geostationary satellite radiances for the International Satellite Cloud Climatology Project

    Science.gov (United States)

    Desormeaux, Yves; Rossow, William B.; Brest, Christopher L.; Campbell, G. G.

    1993-01-01

    Procedures are described for normalizing the radiometric calibration of image radiances obtained from geostationary weather satellites that contributed data to the International Satellite Cloud Climatology Project. The key step is comparison of coincident and collocated measurements made by each satellite and the concurrent AVHRR on the 'afternoon' NOAA polar-orbiting weather satellite at the same viewing geometry. The results of this comparison allow transfer of the AVHRR absolute calibration, which has been established over the whole series, to the radiometers on the geostationary satellites. Results are given for Meteosat-2, 3, and 4, for GOES-5, 6, and 7, for GMS-2, 3, and 4 and for Insat-1B. The relative stability of the calibrations of these radiance data is estimated to be within +/- 3 percent; the uncertainty of the absolute calibrations is estimated to be less than 10 percent. The remaining uncertainties are at least two times smaller than for the original radiance data.

  13. MAFF monitoring of the terrestrial environment

    International Nuclear Information System (INIS)

    Sherlock, J.C.

    1991-01-01

    This paper addresses the MAFF food surveillance programme, in particular our Terrestrial Radioactivity Monitoring Programme (TRAMP), and the estimation of dietary intake of radionuclides. The MAFF programme exists primarily to demonstrate that authorized discharges of radioactivity to the environment do not result in individuals receiving doses of radiation in excess of accepted limits. The estimation radionuclide intake ensures over estimation rather than underestimation of dose. Improvements in detection limits and absorption level research could lower the calculated dose to man from radionuclides in food without losing their validity. (author)

  14. 47 CFR 25.142 - Licensing provisions for the non-voice, non-geostationary mobile-satellite service.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Licensing provisions for the non-voice, non-geostationary mobile-satellite service. 25.142 Section 25.142 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space...

  15. Annual report on radioactive discharges from Winfrith and monitoring the environment 1987

    International Nuclear Information System (INIS)

    1988-04-01

    The 1987 Annual Report on radioactive discharges from Winfrith Atomic Energy Establishment and monitoring of the environment is given. The report covers waste discharges to the sea and the earth atmosphere and the associated environmental monitoring. (UK)

  16. Results of Monitoring at Olkiluoto in 2011. Environment

    Energy Technology Data Exchange (ETDEWEB)

    Haapanen, A. [Haapanen Forest Consulting, Vanhakylae (Finland)

    2012-11-15

    This Working Report presents the main results of Posiva Oy's environmental monitoring programme on Olkiluoto Island in 2011. These summary reports have been published since 2005. The environmental monitoring system supervised by Posiva Oy produces input for biosphere modelling for long-term safety purposes as well as for monitoring the state of the environment during the construction (and later operation) of ONKALO underground rock characterization facility. Part of the monitoring is performed by the company running the nuclear power plants on the island, Teollisuuden Voima Oy (TVO). Monitoring has been carried out for varying periods of time depending on the sector: some monitoring activities performed by TVO originate from the 1970s and the repository-related environmental monitoring of Olkiluoto from the early 2000s. The monitoring programme evolves according to experiences gained from the modelling work and increased understanding of the site. Monitoring activities in 2011 proceeded according to the plans. The land-use of the island continues to change due to the construction work of OL3, ONKALO and related infrastructure, but the remaining natural environment resembles other coastal locations. The amount of nitrogen in the bulk deposition increased in 2011, whereas that of sulphur decreased. Some litterfall fractions showed higher Al and Fe values than earlier, likely caused by soil dust. Proximity of the sea is seen in wet deposition and soil solution results. Soil solution also reflects the young age of soils. Undestorey vegetation has shown no essential changes during the monitoring period. Mammalian fauna on the island is typical of coastal areas in Southwestern Finland. Game catches vary according to hunting pressure and natural variation in populations. The condition of the nearby sea is affected by the continuous land uplift, the shallowness of the area, the weather conditions, the general condition of the Bothnian Sea, the nutrient and sediment loads

  17. Results of Monitoring at Olkiluoto in 2011. Environment

    International Nuclear Information System (INIS)

    Haapanen, A.

    2012-11-01

    This Working Report presents the main results of Posiva Oy's environmental monitoring programme on Olkiluoto Island in 2011. These summary reports have been published since 2005. The environmental monitoring system supervised by Posiva Oy produces input for biosphere modelling for long-term safety purposes as well as for monitoring the state of the environment during the construction (and later operation) of ONKALO underground rock characterization facility. Part of the monitoring is performed by the company running the nuclear power plants on the island, Teollisuuden Voima Oy (TVO). Monitoring has been carried out for varying periods of time depending on the sector: some monitoring activities performed by TVO originate from the 1970s and the repository-related environmental monitoring of Olkiluoto from the early 2000s. The monitoring programme evolves according to experiences gained from the modelling work and increased understanding of the site. Monitoring activities in 2011 proceeded according to the plans. The land-use of the island continues to change due to the construction work of OL3, ONKALO and related infrastructure, but the remaining natural environment resembles other coastal locations. The amount of nitrogen in the bulk deposition increased in 2011, whereas that of sulphur decreased. Some litterfall fractions showed higher Al and Fe values than earlier, likely caused by soil dust. Proximity of the sea is seen in wet deposition and soil solution results. Soil solution also reflects the young age of soils. Undestorey vegetation has shown no essential changes during the monitoring period. Mammalian fauna on the island is typical of coastal areas in Southwestern Finland. Game catches vary according to hunting pressure and natural variation in populations. The condition of the nearby sea is affected by the continuous land uplift, the shallowness of the area, the weather conditions, the general condition of the Bothnian Sea, the nutrient and sediment loads

  18. Results of Monitoring at Olkiluoto in 2011. Environment

    Energy Technology Data Exchange (ETDEWEB)

    Haapanen, A. (ed.) [Haapanen Forest Consulting, Vanhakylae (Finland)

    2012-11-15

    This Working Report presents the main results of Posiva Oy's environmental monitoring programme on Olkiluoto Island in 2011. These summary reports have been published since 2005. The environmental monitoring system supervised by Posiva Oy produces input for biosphere modelling for long-term safety purposes as well as for monitoring the state of the environment during the construction (and later operation) of ONKALO underground rock characterization facility. Part of the monitoring is performed by the company running the nuclear power plants on the island, Teollisuuden Voima Oy (TVO). Monitoring has been carried out for varying periods of time depending on the sector: some monitoring activities performed by TVO originate from the 1970s and the repository-related environmental monitoring of Olkiluoto from the early 2000s. The monitoring programme evolves according to experiences gained from the modelling work and increased understanding of the site. Monitoring activities in 2011 proceeded according to the plans. The land-use of the island continues to change due to the construction work of OL3, ONKALO and related infrastructure, but the remaining natural environment resembles other coastal locations. The amount of nitrogen in the bulk deposition increased in 2011, whereas that of sulphur decreased. Some litterfall fractions showed higher Al and Fe values than earlier, likely caused by soil dust. Proximity of the sea is seen in wet deposition and soil solution results. Soil solution also reflects the young age of soils. Undestorey vegetation has shown no essential changes during the monitoring period. Mammalian fauna on the island is typical of coastal areas in Southwestern Finland. Game catches vary according to hunting pressure and natural variation in populations. The condition of the nearby sea is affected by the continuous land uplift, the shallowness of the area, the weather conditions, the general condition of the Bothnian Sea, the nutrient and sediment

  19. A novel vision-based mold monitoring system in an environment of intense vibration

    International Nuclear Information System (INIS)

    Hu, Fen; He, Zaixing; Zhao, Xinyue; Zhang, Shuyou

    2017-01-01

    Mold monitoring has been more and more widely used in the modern manufacturing industry, especially when based on machine vision, but these systems cannot meet the detection speed and accuracy requirements for mold monitoring because they must operate in environments that exhibit intense vibration during production. To ensure that the system runs accurately and efficiently, we propose a new descriptor that combines the geometric relationship-based global context feature and the local scale-invariant feature transform for the image registration step of the mold monitoring system. The experimental results of four types of molds showed that the detection accuracy of the mold monitoring system is improved in the environment with intense vibration. (paper)

  20. A novel vision-based mold monitoring system in an environment of intense vibration

    Science.gov (United States)

    Hu, Fen; He, Zaixing; Zhao, Xinyue; Zhang, Shuyou

    2017-10-01

    Mold monitoring has been more and more widely used in the modern manufacturing industry, especially when based on machine vision, but these systems cannot meet the detection speed and accuracy requirements for mold monitoring because they must operate in environments that exhibit intense vibration during production. To ensure that the system runs accurately and efficiently, we propose a new descriptor that combines the geometric relationship-based global context feature and the local scale-invariant feature transform for the image registration step of the mold monitoring system. The experimental results of four types of molds showed that the detection accuracy of the mold monitoring system is improved in the environment with intense vibration.

  1. An interferometer for high-resolution optical surveillance from geostationary orbit

    Science.gov (United States)

    Bonino, L.; Bresciani, F.; Piasini, G.; Flebus, C.; Lecat, J.-H.; Roose, S.; Pisani, M.; Cabral, A.; Rebordão, J.; Proença, C.; Costal, J.; Lima, P. U.; Loix, N.; Musso, F.

    2017-11-01

    The activities described in this paper have been developed in the frame of the EUCLID CEPA 9 RTP 9.9 "High Resolution Optical Satellite Sensor" project of the WEAO Research Cell. They have been focused on the definition of an interferometric instrument optimised for the high-resolution optical surveillance from geostationary orbit (GEO) by means of the synthetic aperture technique, and on the definition and development of the related enabling technologies. In this paper we describe the industrial team, the selected mission specifications and overview of the whole design and manufacturing activities performed.

  2. Wireless sensor network and monitoring for environment

    OpenAIRE

    Han, Liang

    2011-01-01

    In recent years, wireless sensor network technology is developing at a surprisingly high speed. More and more fields have started to use the wireless sensor network technology and find the advantages of WSN, such as military applications, environmental observing and forecasting system, medical care, smart home, structure monitoring. The world Environmental Summit in Copenhagen on 2010 has just concluded that environment has become the world’s main concern. But regrettably the summit did no...

  3. Survey of environment related monitoring programmes of international organizations and their contribution to international monitoring programmes

    International Nuclear Information System (INIS)

    1986-12-01

    The report is a summary of environment-related monitoring programmes of international governmental organizations and their contribution to international monitoring programmes. it presents the situation as of November 1986: This survey has been prepared by a consultant for the Secretariat as a background document for the second meeting of the Environment Experts, Economic Summit in Munich, November 1986. It serves information purposes only. No claim for completeness is intended. This report may also prove to be helpful for administrators and the scientific community as regards gaining knowledge on present arrangements, approaches and environmental activities in the framework of international organizations. In this light, the present report could facilitate communication and progress in solving pressing environmental problems on the international level. (orig.)

  4. 78 FR 14920 - Earth Stations Aboard Aircraft Communicating With Fixed-Satellite Service Geostationary-Orbit...

    Science.gov (United States)

    2013-03-08

    ... Consumer and Governmental Affairs Bureau, Reference Information Center shall send a copy of this Report and... ground, ESAAs shall not be authorized for transmission at angles less than 5[deg] measured from the plane..., in the plane of the geostationary satellite orbit (GSO) as it appears at the particular earth station...

  5. North/south Station Keeping of Geostationary Satellite Using Mft

    Directory of Open Access Journals (Sweden)

    Woong-Young Ahn

    1997-06-01

    Full Text Available A precise determination of the fuel efficiency is important because North/South station keeping ,which controls the inclination of the geostationary orbit, consumes most of the satellite fuel. We estimate the amount of fuel required during the lifetime of the KOREASAT when MFT(Minimum Fuel Target technique is adopted, and the result is compared to those when MCT(Maximum Compensation Target and TBCT(Track-Back Chord Target technique are applied. From this computation, we find that if MFT technique is adopted, the lifetime of the satellite can be extended at least 45 and 15 days, respectively, compared to those consumed with MCT and TBCT technique.

  6. UARS Particle Environment Monitor (PEM) Level 3TP V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The Particle Environment Monitor (PEM) Level 3TP data product consists of daily, 65.536 second and 2.048 interval time-ordered, vertical profiles of electron and...

  7. SPACE RADIATION ENVIRONMENT MONITORED BY KITSAT-1 AND KITSAT-2

    Directory of Open Access Journals (Sweden)

    Y. H. Shin

    1996-06-01

    Full Text Available The results of space radiation experiments carried out on board the first two Korean technology demonstration microsatellites are presented in this paper. The first satellite, KITSAT-1, launched in August 1992, carries a radiation monitoring payload called cosmic ray experiment(CRE for characterizing the low-earth orbit(LEO radiation environment. The CRE consists of two sub-systems: the cosmic particle experiment (CPE and the total dose experiment(TDE. In addition, single event upset(SEUrates of the program memory and the RAM disk are also monitored. The second satellite, KITSAT-2, launched in September 1993, carries a newly developed 32-bit on-board computer(OBC, KASCOM(KAIST satellite computer in addition to OBC186. SEUs ocurred in the KASCOM, as well as in the program memory and RAM disk memory, have been monitored since the beginning of the satellite operation. These two satellites, which are very similar in structures but different in orbits, provide a unique opportunity to study the effects of the radiation environment characterized by the orbit.

  8. STUDY ON HIGH RESOLUTION MEMBRANE-BASED DIFFRACTIVE OPTICAL IMAGING ON GEOSTATIONARY ORBIT

    Directory of Open Access Journals (Sweden)

    J. Jiao

    2017-05-01

    Full Text Available Diffractive optical imaging technology provides a new way to realize high resolution earth observation on geostationary orbit. There are a lot of benefits to use the membrane-based diffractive optical element in ultra-large aperture optical imaging system, including loose tolerance, light weight, easy folding and unfolding, which make it easy to realize high resolution earth observation on geostationary orbit. The implementation of this technology also faces some challenges, including the configuration of the diffractive primary lens, the development of high diffraction efficiency membrane-based diffractive optical elements, and the correction of the chromatic aberration of the diffractive optical elements. Aiming at the configuration of the diffractive primary lens, the “6+1” petal-type unfold scheme is proposed, which consider the compression ratio, the blocking rate and the development complexity. For high diffraction efficiency membrane-based diffractive optical element, a self-collimating method is proposed. The diffraction efficiency is more than 90 % of the theoretical value. For the chromatic aberration correction problem, an optimization method based on schupmann is proposed to make the imaging spectral bandwidth in visible light band reach 100 nm. The above conclusions have reference significance for the development of ultra-large aperture diffractive optical imaging system.

  9. Study on High Resolution Membrane-Based Diffractive Optical Imaging on Geostationary Orbit

    Science.gov (United States)

    Jiao, J.; Wang, B.; Wang, C.; Zhang, Y.; Jin, J.; Liu, Z.; Su, Y.; Ruan, N.

    2017-05-01

    Diffractive optical imaging technology provides a new way to realize high resolution earth observation on geostationary orbit. There are a lot of benefits to use the membrane-based diffractive optical element in ultra-large aperture optical imaging system, including loose tolerance, light weight, easy folding and unfolding, which make it easy to realize high resolution earth observation on geostationary orbit. The implementation of this technology also faces some challenges, including the configuration of the diffractive primary lens, the development of high diffraction efficiency membrane-based diffractive optical elements, and the correction of the chromatic aberration of the diffractive optical elements. Aiming at the configuration of the diffractive primary lens, the "6+1" petal-type unfold scheme is proposed, which consider the compression ratio, the blocking rate and the development complexity. For high diffraction efficiency membrane-based diffractive optical element, a self-collimating method is proposed. The diffraction efficiency is more than 90 % of the theoretical value. For the chromatic aberration correction problem, an optimization method based on schupmann is proposed to make the imaging spectral bandwidth in visible light band reach 100 nm. The above conclusions have reference significance for the development of ultra-large aperture diffractive optical imaging system.

  10. Design of the Resources and Environment Monitoring Website in Kashgar

    International Nuclear Information System (INIS)

    Huang, Z; Lin, Q Z; Wang, Q J

    2014-01-01

    Despite the development of the web geographical information system (web GIS), many useful spatial analysis functions are ignored in the system implementation. As Kashgar is rich in natural resources, it is of great significance to monitor the ample natural resource and environment situation in the region. Therefore, with multiple uses of spatial analysis, resources and environment monitoring website of Kashgar was built. Functions of water, vegetation, ice and snow extraction, task management, change assessment as well as thematic mapping and reports based on TM remote sensing images were implemented in the website. The design of the website was presented based on database management tier, the business logic tier and the top-level presentation tier. The vital operations of the website were introduced and the general performance was evaluated

  11. NOVANA - National Monitoring and Assessment Programme for the Aquatic and Terrestrial Environment

    DEFF Research Database (Denmark)

    Svendsen, L. M.

    This report is Part 1 of the Programme Description of NOVANA - the Nationwide Monitoring and Assessment Programme for the Aquatic and Terrestrial Environments. Part 1 comprises a general description of the background for the programme, including the international obliga-tions and requirements...... for monitoring of nature and the environment. The overall objective and the scientific and strategic background for the priorities upon which NOVANA pro-gramme is based are described, as are the organization of the programme, the overall economy and the technical assumptions made. Finally the scientific content...

  12. POPs monitoring and related activities by the Ministry of the Environment, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Yoshitoku; Enomoto, Yasutaka; Kazuko, Kazuko [Ministry of the Environment, Goverment of Japan (Japan)

    2004-09-15

    In Article 16 of Stockholm Convention for the global elimination of Persistent Organic Pollutants (POPs), it is written that ''comparable monitoring data'' reported by the Parties will be used for the ''effectiveness evaluation of the Convention''. A detailed evaluation scheme will be decided by the Conference of the Parties, but various technical aspects of this POPs monitoring were discussed by the international experts at UNEP Chemical's workshop on the development of Global POPs Monitoring held in Geneva in March 2003, and the guidance documents for the monitoring are now being prepared based on the results of the workshop. The Ministry of the Environment (MoE), Japan, has been conducting environmental monitoring of various pollutants including major POPs in Japan for more than two decades, and reported the results every year in a report ''Chemicals in the Environment'' (or KUROHON, meaning ''black book'' in Japanese). Originally a conventional GC/ECD method had been employed for the analysis of organochlorine chemicals (OCs) in biological samples. Then a GC/MS (low resolution) was introduced for OCs analysis in sediments and water, and GC/high resolution(HR)-MS method was introduced for dioxins analysis from around 1990. Due to general decline of POPs levels in the environment, the number of ND (not detected = less than detection limits) data had been increasing in recent years, and consequently it became difficult to extract temporal trends from the monitoring data. In 2002, MoE decided to reorganize the environmental monitoring framework in order to respond to the request of POPs convention, and re-started POPs monitoring by using more sensitive GC/HR-MS method for the analysis of nine POPs chemicals (dioxins and furans have already been monitored by the method; toxaphene is analyzed by GC/negative ionization-MS). The primary purpose of this reorganization is to reveal

  13. A Study on Fuel Estimation Algorithms for a Geostationary Communication & Broadcasting Satellite

    OpenAIRE

    Jong Won Eun

    2000-01-01

    It has been developed to calculate fuel budget for a geostationary communication and broadcasting satellite. It is quite essential that the pre-launch fuel budget estimation must account for the deterministic transfer and drift orbit maneuver requirements. After on-station, the calculation of satellite lifetime should be based on the estimation of remaining fuel and assessment of actual performance. These estimations step from the proper algorithms to produce the prediction of satellite lifet...

  14. Energy harvesting schemes for building interior environment monitoring

    Science.gov (United States)

    Zylka, Pawel; Pociecha, Dominik

    2016-11-01

    A vision to supply microelectronic devices without batteries making them perpetual or extending time of service in battery-oriented mobile supply schemes is the driving force of the research related to ambient energy harvesting. Energy harnessing aims thus at extracting energy from various ambient energy "pools", which generally are cost- or powerineffective to be scaled up for full-size, power-plant energy generation schemes supplying energy in electric form. These include - but are not limited to - waste heat, electromagnetic hum, vibrations, or human-generated power in addition to traditional renewable energy resources like water flow, tidal and wind energy or sun radiation which can also be exploited at the miniature scale by energy scavengers. However, in case of taking advantage of energy harvesting strategies to power up sensors monitoring environment inside buildings adaptable energy sources are restrained to only some which additionally are limited in spatial and temporal accessibility as well as available power. The paper explores experimentally an energy harvesting scheme exploiting human kinesis applicable in indoor environment for supplying a wireless indoor micro-system, monitoring ambient air properties (pressure, humidity and temperature).

  15. Monitoring of radioactivity in the marine environment

    International Nuclear Information System (INIS)

    Bologa, A.S.

    1992-01-01

    The necessity of radioactivity monitoring in the marine environment was imposed by the increasing development of nuclear power and its world-wide use in many different segments of economic and social life. Both natural and artificial radioactivity play an important role in marine ecology and human health. In this respect three major facts continue to prevail in Romania. The fallout, the presence of the Danube river and the expectations for future energy production. Spatial and temporal monitoring of marine radioactivity along the Romanian Black Sea shore has been systematically performed in the Romanian Marine Research Institute in close co-operation with the Institute of Meteorology and Hydrology since 1981. Marine emerged and submerged sediments, coastal and offshore sea water, macroalgae, in vertebrates and fish off the Danube mouths and/or along the coast are monitored for natural and artificial radioactivity by means of beta gross measurements and gamma spectrometry. Concentrations of radionuclides as K-40, Cs-134, Cs-137 in abiotic and biotic samples, environmental distributions coefficients and concentrations factors (CF), as well as experimentally-derived CFs in marine biota as radioecological bioindicators are assessed and stored for a national data base. (author) 3 tabs., 18 refs

  16. Solar power satellite - A geostationary channel tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Bulloch, C

    1981-12-01

    The concept-development status of solar power satellite (SPS) systems is considered, with attention to Heavy-Lift Launch Vehicles (HLLVs), the construction methods to be used in either geostationary or low earth orbit, and the configuration of the solar array. By comparison with the 30-ton payload of the Space Shuttle, HLLV designs under consideration have payloads of 114 to 425 tons. The unit cost for 5-GW satellites, in 1977 dollars, is estimated at five billion dollars. Consideration is given to the possible deleterious environmental effects of both the 400 or more launches required for each SPS and such results of radio frequency energy transfer beam operation as the suppression of blood platelet production in human beings and ionospheric heating. The uncertainty that still surrounds the relative advantages of competing designs and the need for long-range, billion-dollar funding appear to be insuperable obstacles to the construction of SPSs.

  17. A Design of Ginseng Planting Environment Monitoring System Based on WSN

    Directory of Open Access Journals (Sweden)

    Xin Ding

    2014-03-01

    Full Text Available Through the analysis of ginseng products industry chain, this paper designs and implements ginseng planting environment monitoring system. The system realized data collection and detection of ginseng planting environment in real time by using wireless sensor, transmission of environmental parameters in real time by using GPRS wireless transmission module, and video monitor and alarm of ginseng land by using unattended machine. It is the foundation of information transformation of ginseng products industry chain based on the Internet of Things. The experiment of ginseng planting base in Fusong indicates the system can offer support of original data for scientific cultivation of ginseng, comprehensive analysis of ginseng products and propaganda of ginseng brand.

  18. Review of passive accumulation devices for monitoring organic micropollutants in the aquatic environment

    International Nuclear Information System (INIS)

    Stuer-Lauridsen, Frank

    2005-01-01

    Over the past 15 years passive sampling devices have been developed that accumulate organic micropollutants and allow detection at ambient sub ng/l concentrations. Most passive accumulation devices (PADs) are designed for 1-4 weeks field deployment, where uptake is governed by linear first order kinetics providing a time weighted average of the exposure concentration. Semipermeable membrane devices (SPMDs) are the most comprehensively studied PADs, but other samplers may also be considered for aquatic monitoring purposes. The applicability of the PADs is reviewed with respect to commonly monitored aqueous matrices and compounds, the detection limits, and for use in quantitative monitoring related to requirements embedded in the EU Water Framework Directive, the US and EU Water Quality Criteria, and the Danish monitoring aquatic programme. The PADs may monitor >75% of the organic micropollutants of the programmes. Research is warranted regarding the uptake in PADs in low flow environments and for the development of samplers for polar organic compounds. - Major developments in the passive sampling of organic contaminants in aquatic environments will support future monitoring, compliance and research

  19. Development on high precision monitoring technique of radon and thoron in environment

    International Nuclear Information System (INIS)

    Imaizumi, Masayuki; Hamada, Hiromasa; Goto, Masahiro; Nakazato, Hiroomi; Mori, Mitsuhiro

    1999-01-01

    In a field of the environmental management, many technical research and developments such as monitoring on drainage section and flowing speed change of groundwater, analysis on alternating flow phenomenon between surface water and groundwater, analysis on water leakage at a dam, forecasting of landslide, safety evaluation on ground due to detection of faults, have conducted. And, an application to analysis on gas flowing phenomenon from underground to atmosphere as a part of study on evaluation of effect of gas emitted from earth surface on the earth environment was investigated. This study aimed to elucidate behaviors of radon and thoron at environment and to develop a high precision monitoring technique on radon and thoron required to conduct an advanced application to a tracer in hydrology, applied geology, and environment engineering. (G.K.)

  20. Web based remote monitoring and controlling system for vulnerable environments

    Science.gov (United States)

    Thomas, Aparna; George, Minu

    2016-03-01

    The two major areas of concern in industrial establishments are monitoring and security. The remote monitoring and controlling can be established with the help of Web technology. Managers can monitor and control the equipment in the remote area through a web browser. The targeted area includes all type of susceptible environment like gas filling station, research and development laboratories. The environmental parameters like temperature, light intensity, gas etc. can be monitored. Security is a very important factor in an industrial setup. So motion detection feature is added to the system to ensure the security. The remote monitoring and controlling system makes use of the latest, less power consumptive and fast working microcontroller like S3C2440. This system is based on ARM9 and Linux operating system. The ARM9 will collect the sensor data and establish real time video monitoring along with motion detection feature. These captured video data as well as environmental data is transmitted over internet using embedded web server which is integrated within the ARM9 board.

  1. Data Quality Monitoring : Automatic MOnitoRing Environment (AMORE ) Web Administration Tool in ALICE Experiment

    CERN Document Server

    Nagi, Imre

    2013-01-01

    ALICE (A Large Ion Collider Experiment) is the heavy-ion detector designed to study the physics of strongly interacting matter and the quark-gluon plasma at the CERN Large Hadron Collider (LHC). The quality of the acquired data evolves over time depending on the status of the detectors, its components and the operating environment. To get an excellent performance of detector, all detector configurations have to be set perfectly so that the data-taking can be done in an optimal way. This report describes a new implementation of the administration tools of the ALICE’s DQM framework called AMORE (Automatic MonitoRing Environment) with web technologies.

  2. Integration of wireless sensor networks into cyberinfrastructure for monitoring Hawaiian "mountain-to-sea" environments.

    Science.gov (United States)

    Kido, Michael H; Mundt, Carsten W; Montgomery, Kevin N; Asquith, Adam; Goodale, David W; Kaneshiro, Kenneth Y

    2008-10-01

    Monitoring the complex environmental relationships and feedbacks of ecosystems on catchment (or mountain)-to-sea scales is essential for social systems to effectively deal with the escalating impacts of expanding human populations globally on watersheds. However, synthesis of emerging technologies into a robust observing platform for the monitoring of coupled human-natural environments on extended spatial scales has been slow to develop. For this purpose, the authors produced a new cyberinfrastructure for environmental monitoring which successfully merged the use of wireless sensor technologies, grid computing with three-dimensional (3D) geospatial data visualization/exploration, and a secured internet portal user interface, into a working prototype for monitoring mountain-to-sea environments in the high Hawaiian Islands. A use-case example is described in which native Hawaiian residents of Waipa Valley (Kauai) utilized the technology to monitor the effects of regional weather variation on surface water quality/quantity response, to better understand their local hydrologic cycle, monitor agricultural water use, and mitigate the effects of lowland flooding.

  3. Harnessing monitoring measurements in urban environments for decision making after nuclear accidents

    International Nuclear Information System (INIS)

    Kaiser, J.C.; Proehl, G.

    2007-01-01

    This article gives an overview on the conceptual design of the Inhabited Areas Monitoring Module IA MM which will be introduced into European decision support systems for nuclear emergencies. It will improve the use of monitoring data of radioactive contamination in urban environments for decision making. IAMM converts the dated gamma dose rate (GDR) measurements from geo-referenced locations into maps of surface contamination with an enhanced spatial resolution. Depending on the availability of the monitoring data, IAMM relies on two modes of operation. If there are only a few measurements, these are taken to improve the maps from a deposition model using data assimilation. If the number of measurements is sufficient to apply spatial interpolation IAMM will rely entirely on monitoring data. Suitable geo-referenced data points will be interpreted by IAMM with respect to their detector environment using the concept of location factors. The endpoints of IAMM can be used directly for decision making or dose calculations with either simple dose models or the more refined EuRopean Model for INhabited areas (ERMIN). (orig.)

  4. Radiation protection instrumentation. Monitoring equipment. Atmospheric radioactive iodine in the environment

    International Nuclear Information System (INIS)

    1995-01-01

    This international standard applies to portable or installed equipment for the monitoring of radioactive iodine (such as I-131 or I-125) in air in the environment of nuclear installations during normal operation, during design basis events, and in emergency situations. The monitoring involves continuous sample trapping and, where adequate, automatic start of sampling. The document deals with radioactive iodine monitor design, testing procedures, and documentation. Appended tables refer to the reference and normal testing conditions, tests in normal testing conditions, tests during changes of the affecting quantities, and tests of changes in the air circuit. (P.A.)

  5. Radioactivity monitoring of the Irish marine environment 1991 and 1992

    International Nuclear Information System (INIS)

    McGarry, A.; Lyons, S.; McEnri, C.; Ryan, T.; O'Colmain, M.; Cunningham, J.D.

    1994-05-01

    This report presents the results of the Radiological Protection Institute's programme of monitoring of radioactivity in the seas around Ireland during 1991 and 1992. The principal objective of the monitoring programme is to review the risks to human health arising from the Sellafield discharges. Secondary objectives include studies of the distribution of the significant contaminating radionuclides in the marie environment and the identification of trends with a view to assessing possible future effects. Estimates of the radiation doses to the Irish public are also presented in this report. 23 refs. 24 tabs. 9 figs

  6. Retrieving SW fluxes from geostationary narrowband radiances for the NASA-CERES SYN1deg product

    Science.gov (United States)

    Wrenn, F. J., IV; Doelling, D. R.; Liang, L.

    2017-12-01

    The CERES mission was designed to measure the natural variability of the net TOA flux over long time scales relevant to climate monitoring. To achieve this goal, CERES provides the level-3 SSF1deg, SYN1deg, and EBAF monthly 1° by 1° regional TOA flux. The single satellite (Terra or Aqua) SSF1deg 24-hour shortwave flux is based on one daytime measurements and assumes constant meteorology to model the diurnal change in albedo. To accurately describe regions with a prominent diurnal signal, the SYN1deg Edition4 dataset employs hourly geostationary (GEO) measurements. This improves upon Edition3, which used 3-hourly GEO measurements and with temporal interpolation. The EBAF product combines the temporal stability of the SSF1deg product with the diurnal information from SYN1deg and removes the CERES instrument calibration bias by constraining the net flux balance to the ocean heat storage term. The SYN-1deg product retrieves hourly SW fluxes from GEO measurements. Over regions with large diurnal cycles, such as maritime stratus and land afternoon convective locations, the GEO derived SW fluxes will capture the diurnal flux not observed with Terra or Aqua sun-synchronous satellites. Obtaining fluxes from geostationary satellite radiance is a multistep process. First, most GEO visible imagers lack calibration and must be calibrated to MODIS and VIIRS. Second, the GEO imager visible channel radiances are converted to broadband radiances using empirical and theoretical models. The lack of coincident, collocated, and co-angled GEO and CERES measurements makes building an empirical model difficult. The narrowband to broadband models are a function of surface and cloud conditions, which are difficult to identify due to the inconsistent cloud retrievals between the 16 GEO imagers used in the CERES record. Third, the GEO derived broadband radiances are passed through the CERES angular distribution model (ADM) to convert the radiances to fluxes. Lastly, the GEO derived

  7. Passive correlation ranging of a geostationary satellite using DVB-S payload signals.

    Science.gov (United States)

    Shakun, Leonid; Shulga, Alexandr; Sybiryakova, Yevgeniya; Bushuev, Felix; Kaliuzhnyi, Mykola; Bezrukovs, Vladislavs; Moskalenko, Sergiy; Kulishenko, Vladislav; Balagura, Oleg

    2016-07-01

    Passive correlation ranging (PaCoRa) for geostationary satellites is now considered as an alternate to tone-ranging (https://artes.esa.int/search/node/PaCoRa). The PaCoRa method has been employed in the Research Institute "Nikolaev astronomical observatory" since the first experiment in August 2011 with two stations spatially separated on 150 km. The PaCoRa has been considered as an independent method for tracking the future Ukrainian geostationary satellite "Lybid'. Now a radio engineering complex (RC) for passive ranging consists of five spatially separated stations of receiving digital satellite television and a data processing center located in Mykolaiv. The stations are located in Kyiv, Kharkiv, Mukacheve, Mykolaiv (Ukraine) and in Ventspils (Latvia). Each station has identical equipment. The equipment allows making synchronous recording of fragments of the DVB-S signal from the quadrature detector output of a satellite television receiver. The fragments are recorded every second. Synchronization of the stations is performed using GPS receivers. Samples of the complex signal obtained in this way are archived and are sent to the data processing center over the Internet. Here the time differences of arrival (TDOA) for pairs of the stations are determined as a result of correlation processing of received signals. The values of the TDOA that measured every second are used for orbit determination (OD) of the satellite. The results of orbit determination of the geostationary telecommunication satellite "Eutelsat-13B" (13º East) obtained during about four months of observations in 2015 are presented in the report. The TDOA and OD accuracies are also given. Single-measurement error (1 sigma) of the TDOA is equal about 8.7 ns for all pairs of the stations. Standard deviations and average values of the residuals between the observed TDOA and the TDOA computed using the orbit elements obtained from optical measurements are estimated for the pairs Kharkiv-Mykolaiv and

  8. 47 CFR 25.261 - Procedures for avoidance of in-line interference events for Non Geostationary Satellite Orbit...

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Procedures for avoidance of in-line interference events for Non Geostationary Satellite Orbit (NGSO) Satellite Network Operations in the Fixed Satellite Service (FSS) Bands. 25.261 Section 25.261 Telecommunication FEDERAL COMMUNICATIONS COMMISSION...

  9. Understanding the Spectrum Environment: Data and Monitoring to Improve Spectrum Utilization

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — The Wireless Spectrum Research and Development Senior Steering Group (WSRD SSG) Workshop V titled: Understanding the Spectrum Environment: Data and Monitoring to...

  10. Democracy in the Digital Communication Environment: A Typology Proposal of Political Monitoring Processes

    OpenAIRE

    Feenstra, Ramón A.; Casero Ripollés, Andreu

    2014-01-01

    The digital environment creates new opportunities for citizen political participation. Among these, the monitoring of political and economic power centers stands out. This includes public scrutiny of the management of public funds and the activities of the public and economic systems, thus denouncing dysfunctional features. This article aims to describe, differentiate, and classify the various forms that monitoring can take in current democracies. The results indicate that three major monitor...

  11. Annual report on radioactive discharges and monitoring of the environment 1990. V. 2

    International Nuclear Information System (INIS)

    1991-01-01

    This Annual Report supplements the Health and Safety Annual Report of British Nuclear Fuels plc by providing more detailed information on radioactive discharges, monitoring of the environment and critical group doses. This report has been sub-divided into two complementary parts. Volume I includes annual data for each of the Company sites on radioactive discharges into the environment and the associated environmental monitoring programmes. The sites involved are: Sellafield where the main activities are irradiated nuclear fuel reprocessing and the Calder Hall nuclear station; the Drigg radioactive waste storage and disposal site; the Chapelcross nuclear power station; Springfields Works which manufactures nuclear fuels; Capenhurst Works where uranium isotopic enrichment plants are operated. Volume II reproduces the Certificates of Authorisation under which the Company operates and the statutory environmental monitoring programmes which relate to them. (author)

  12. Annual report on radioactive discharges and monitoring of the environment 1990. V. 1

    International Nuclear Information System (INIS)

    1991-01-01

    This Annual Report supplements the Health and Safety Annual Report of British Nuclear Fuels plc by providing more detailed information on radioactive discharges, monitoring of the environment and critical group doses. This report has been sub-divided into two complementary parts. Volume I includes annual data for each of the Company sites on radioactive discharges into the environment and the associated environmental monitoring programmes. The sites involved are: Sellafield where the main activities are irradiated nuclear fuel reprocessing and the Calder Hall nuclear station; the Drigg radioactive waste storage and disposal site; the Chapelcross nuclear power station; Springfields Works which manufactures nuclear fuels; Capenhurst Works where uranium isotopic enrichment plants are operated. Volume II reproduces the Certificates of Authorisation under which the Company operates and the statutory environmental monitoring programmes which relate to them. (author)

  13. 47 CFR 25.260 - Time sharing between DoD meteorological satellite systems and non-voice, non-geostationary...

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Time sharing between DoD meteorological satellite systems and non-voice, non-geostationary satellite systems in the 400.15-401 MHz band. 25.260 Section 25.260 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES...

  14. Annual report on radioactive discharges and monitoring of the environment 1993. V. 2: Certificates of authorisation and environmental monitoring programmes

    International Nuclear Information System (INIS)

    1994-01-01

    British Nuclear Fuels plc's Certificates of Authorisation, under which it operates, are reproduced in the second volume of the 1993 Annual Report on Radioactive Discharges and Monitoring of the Environment. The report also includes environmental monitoring programmes relating to discharge authorisation for each of the Sellafield, Drigg, Chapelcross, Springfields and Capenhurst sites. (UK)

  15. Monitoring of contamination of atmospheric environment by radiation

    International Nuclear Information System (INIS)

    Ise, Hiroaki

    1995-01-01

    Atmospheric pollution has become a worldwide problem regardless of developed industrial nations and developing countries. In particular, the pollution due to automobile exhaust gas, the carcinogenic particles in diesel exhaust and their relation to various respiratory diseases are the problems. Nitrogen oxides and sulfur oxides in exhaust gas become the cause of acid rain. Radiation began to be utilized for the measurement of the concentration of floating particles and the amount of fallout dust, the forecast of the generation and diffusion of pollutants, the elucidation of the contribution of generation sources in wide areas and so on. In this report, the circumstances that radiation became to be utilized for monitoring atmospheric environment and the present status and the perspective of the radiation utilization in the field of the preservation of atmospheric environment are described. The progress of the method of measuring floating particles in Japan is explained. The automatic measurement of floating particles by β-ray absorption method and the application of β-ray absorption method to the measurement of the amount of fallout dust, generation source particles and the exposure to floating particles of individuals for health control are described. The utilization of radiation for real time monitoring, the investigation of the generation of blown-up dust, atmospheric diffusion experiment and the elucidation of the contribution of generation sources by PIXE radioactivation analysis are reported. (K.I.)

  16. Image navigation and registration for the geostationary lightning mapper (GLM)

    Science.gov (United States)

    van Bezooijen, Roel W. H.; Demroff, Howard; Burton, Gregory; Chu, Donald; Yang, Shu S.

    2016-10-01

    The Geostationary Lightning Mappers (GLM) for the Geostationary Operational Environmental Satellite (GOES) GOES-R series will, for the first time, provide hemispherical lightning information 24 hours a day from longitudes of 75 and 137 degrees west. The first GLM of a series of four is planned for launch in November, 2016. Observation of lightning patterns by GLM holds promise to improve tornado warning lead times to greater than 20 minutes while halving the present false alarm rates. In addition, GLM will improve airline traffic flow management, and provide climatology data allowing us to understand the Earth's evolving climate. The paper describes the method used for translating the pixel position of a lightning event to its corresponding geodetic longitude and latitude, using the J2000 attitude of the GLM mount frame reported by the spacecraft, the position of the spacecraft, and the alignment of the GLM coordinate frame relative to its mount frame. Because the latter alignment will experience seasonal variation, this alignment is determined daily using GLM background images collected over the previous 7 days. The process involves identification of coastlines in the background images and determination of the alignment change necessary to match the detected coastline with the coastline predicted using the GSHHS database. Registration is achieved using a variation of the Lucas-Kanade algorithm where we added a dither and average technique to improve performance significantly. An innovative water mask technique was conceived to enable self-contained detection of clear coastline sections usable for registration. Extensive simulations using accurate visible images from GOES13 and GOES15 have been used to demonstrate the performance of the coastline registration method, the results of which are presented in the paper.

  17. A numerical testbed for remote sensing of aerosols, and its demonstration for evaluating retrieval synergy from a geostationary satellite constellation of GEO-CAPE and GOES-R

    International Nuclear Information System (INIS)

    Wang, Jun; Xu, Xiaoguang; Ding, Shouguo; Zeng, Jing; Spurr, Robert; Liu, Xiong; Chance, Kelly; Mishchenko, Michael

    2014-01-01

    synergic use of two future geostationary satellites, GOES-R (Geostationary Operational Environmental Satellite R-series) and TEMPO (Tropospheric Emissions: Monitoring of Pollution). Strong synergy between GEOS-R and TEMPO are found especially in their characterization of surface bi-directional reflectance, and thereby, can potentially improve the AOD retrieval to the accuracy required by GEO-CAPE. - Highlights: • A numerical testbed for remote sensing of aerosols for any satellite/algorithm design. • Linearly and coupled scattering and radative transfer codes, optimization code included. • Hyperspectral study of gas absorption effect on retrievals of aerosol height. • Strong synergy between geo-satellites (GOES and TEMPO/GEO-CAPE) for aerosol retrieval. • Polarization in O 2 A band is sensitive to aerosol height over visibly bright surface

  18. Novel biospectroscopy sensor technologies towards environmental health monitoring in urban environments

    International Nuclear Information System (INIS)

    Obinaju, Blessing E.; Martin, Francis L.

    2013-01-01

    Biospectroscopy is an emerging inter-disciplinary field that exploits the application of sensor technologies [e.g., Fourier-transform infrared spectroscopy, Raman spectroscopy] to lend novel insights into biological questions. Methods involved are relatively non-destructive so samples can subsequently be analysed by more conventional approaches, facilitating deeper mechanistic insights. Fingerprint spectra are derived and these consist of wavenumber–absorbance intensities; within a typical biological experiment, a complex dataset is quickly generated. Biological samples range from biofluids to cytology to tissues derived from human or sentinel sources, and analyses can be carried out ex vivo or in situ in living tissue. A reference range of a designated normal state can be derived; anything outside this is potentially atypical and discriminating chemical entities identified. Computational approaches allow one to minimize within-category confounding factors. Because of ease of sample preparation, low-cost and high-throughput capability, biospectroscopy approaches herald a new greener means of environmental health monitoring in urban environments. -- Highlights: ► Biospectroscopy is an emerging inter-disciplinary field. ► Physical sciences sensors with computational tools lend novel insights into biology. ► Analyse in a non-destructive manner; correlate with conventional methodologies. ► Low-cost, high-throughput and label-free (i.e., a green) technology. ► Can be applied to environmental health monitoring in urban environments. -- Biospectroscopy techniques allow the fingerprinting of biological material in a wide range of contexts that could relate to environmental health monitoring in urban environments

  19. Remote physiological monitoring in an austere environment: a future for battlefield care provision?

    Science.gov (United States)

    Smyth, Matthew J; Round, J A; Mellor, A J

    2018-05-14

    Wearable technologies are making considerable advances into the mainstream as they become smaller and more user friendly. The global market for such devices is forecasted to be worth over US$5 billion in 2018, with one in six people owning a device. Many professional sporting teams use self-monitoring to assess physiological parameters and work rate on the pitch, highlighting the potential utility for military command chains. As size of device reduces and sensitivity improves, coupled with remote connectivity technology, integration into the military environment could be relatively seamless. Remote monitoring of personnel on the ground, giving live updates on their physiological status, would allow commanders or medical officers the ability to manage their soldiers appropriately and improve combat effectiveness. This paper explores a proof of concept for the use of a self-monitoring system in the austere high altitude environment of the Nepalese Himalayas, akin to those experienced by modern militaries fighting in remote locations. It also reviews, in part, the historical development of remote monitoring technologies. The system allowed for physiological recordings, plotted against GPS position, to be remotely monitored in Italy. Examples of the data recorded are given and the performance of the system is discussed, including limitations, potential areas of development and how systems like this one could be integrated into the military environment. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  20. On the Relevance of Using OpenWireless Sensor Networks in Environment Monitoring

    Directory of Open Access Journals (Sweden)

    Antoine B. Bagula

    2009-06-01

    Full Text Available This paper revisits the problem of the readiness for field deployments of wireless- sensor networks by assessing the relevance of using Open Hardware and Software motes for environment monitoring. We propose a new prototype wireless sensor network that finetunes SquidBee motes to improve the life-time and sensing performance of an environment monitoring system that measures temperature, humidity and luminosity. Building upon two outdoor sensing scenarios, we evaluate the performance of the newly proposed energy-aware prototype solution in terms of link quality when expressed by the Received Signal Strength, Packet Loss and the battery lifetime. The experimental results reveal the relevance of using the Open Hardware and Software motes when setting up outdoor wireless sensor networks.

  1. Radioactivity in the environment. A summary and radiological assessment of the Environment Agency's monitoring programmes; report for 1997

    International Nuclear Information System (INIS)

    1997-01-01

    The Radioactive Substances Act 1993 provides for controls to be exercised over the keeping and use of radioactive materials and, in particular, on the accumulation and disposal of radioactive wastes. The Environment Agency is responsible for administration and enforcement of the Act in England and Wales. In support of these regulatory functions and as part of the UK Government's arrangements for providing information to the European Commission under the Euratom Treaty, the Agency commissions independent monitoring of radioactive waste disposals and their impact on the environment, and monitoring of radioactivity in air, rainwater and drinking water sources. This report presents the data from these monitoring programmes and provides a commentary on their radiological significance. It includes assessments of radiation exposure of members of the public for compliance with the annual dose limit recommended by the International Commission on Radiological Protection. Concentrations of radioactivity in water are also assessed in relation to the guidelines on drinking water quality recommended by the World Health Organisation. This report for 1997 is one of an annual series published by the Agency. It is being distributed to local authorities as part of the arrangements under the Radioactive Substances Act 1993 for provision of access to environmental information. The monitoring programmes and preparation of this report are managed by the Agency's National Compliance Assessment Service. (author)

  2. A Miniaturized Sensor for Microbial Monitoring of Spacecraft Water Environment, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Accurate real-time microbial monitoring of water environment is of paramount importance to crew health as well as to ensure proper functioning and control of the...

  3. VLBI Observations of Geostationary Satellites

    Science.gov (United States)

    Artz, T.; Nothnagel, A.; La Porta, L.

    2013-08-01

    For a consistent realization of a Global Geodetic Observing System (GGOS), a proper tie between the individual global reference systems used in the analysis of space-geodetic observations is a prerequisite. For instance, the link between the terrestrial, the celestial and the dynamic reference system of artificial Earth orbiters may be realized by Very Long O Baseline Interferometry (VLBI) observations of one or several satellites. In the preparation phase for a dedicated satellite mission, one option to realize this is using a geostationary (GEO) satellite emitting a radio signal in X-Band and/or S-Band and, thus, imitating a quasar. In this way, the GEO satellite can be observed by VLBI together with nearby quasars and the GEO orbit can, thus, be determined in a celestial reference frame. If the GEO satellite is, e.g., also equipped with a GNSS-type transmitter, a further tie between GNSS and VLBI may be realized. In this paper, a concept for the generation of a radio signal is shown. Furthermore, simulation studies for estimating the GEO position are presented with a GEO satellite included in the VLBI schedule. VLBI group delay observations are then simulated for the quasars as well as for the GEO satellite. The analysis of the simulated observations shows that constant orbit changes are adequately absorbed by estimated orbit parameters. Furthermore, the post-fit residuals are comparable to those from real VLBI sessions.

  4. Process monitoring in high volume semiconductor production environment with in-fab TXRF

    International Nuclear Information System (INIS)

    Ghatak-Roy, A.R.; Hossain, T.Z.

    2000-01-01

    After its introduction in the 80's, TXRF has become an important tool for surface contamination analysis. This is particularly true for the semiconductor industries, where monitoring trace level contamination in ultra clean environment is absolutely necessary for successful device production with reasonable yield. In FAB 25 of the Advanced Micro Devices in Austin, we have installed two TXRF tools, which are model TXRF3750 manufactured by Rigaku. They contain rotating tungsten anodes with three beam capability for wide selection of elements. One of the beams (WM) is used for monitoring of low Z elements such as Na, Mg and Al. The standard output is 9 kW with 300 mA at 30 kV. The tool runs 24 hours a day, 7 days a week, except for maintenance and breakdowns. We have been using TXRF for in-fab monitoring of various tools and processes for trace contamination and some quantification of materials. This in-fab operation is important because it gives real time monitoring without the necessity of bringing the wafers out of the fab. Secondly, being in ultra clean fab environment, the risk of background contamination is minimized. Since TXRF measurement is fast and does not need any sample preparation, this works very well as production support tool. Several wafer fab technicians have been trained to use the tool for round the clock operation. We have successfully monitored tools and processes in our fab. One example is the monitoring of numerous sinks used in the cleaning of production wafers after various processes. Monitor wafers are run after sink cleaning and solvent changes and they are then analyzed for any contamination. Another example is the monitoring of tools that use Ferrofluidic seals so as to prevent any contamination from Fe and Cr. Other tools using TXRF include diffusion furnaces, etchers and plasma cleaning tools. We have also been monitoring processes such as ion implantation, metal deposition and rapid thermal annealing. In this presentation, we will

  5. Real-time on-line space research laboratory environment monitoring with off-line trend and prediction analysis

    Science.gov (United States)

    Jules, Kenol; Lin, Paul P.

    2007-06-01

    With the International Space Station currently operational, a significant amount of acceleration data is being down-linked, processed and analyzed daily on the ground on a continuous basis for the space station reduced gravity environment characterization, the vehicle design requirements verification and science data collection. To help understand the impact of the unique spacecraft environment on the science data, an artificial intelligence monitoring system was developed, which detects in near real time any change in the reduced gravity environment susceptible to affect the on-going experiments. Using a dynamic graphical display, the monitoring system allows science teams, at any time and any location, to see the active vibration disturbances, such as pumps, fans, compressor, crew exercise, re-boost and extra-vehicular activities that might impact the reduced gravity environment the experiments are exposed to. The monitoring system can detect both known and unknown vibratory disturbance activities. It can also perform trend analysis and prediction by analyzing past data over many increments (an increment usually lasts 6 months) collected onboard the station for selected disturbances. This feature can be used to monitor the health of onboard mechanical systems to detect and prevent potential systems failures. The monitoring system has two operating modes: online and offline. Both near real-time on-line vibratory disturbance detection and off-line detection and trend analysis are discussed in this paper.

  6. The attitude inversion method of geostationary satellites based on unscented particle filter

    Science.gov (United States)

    Du, Xiaoping; Wang, Yang; Hu, Heng; Gou, Ruixin; Liu, Hao

    2018-04-01

    The attitude information of geostationary satellites is difficult to be obtained since they are presented in non-resolved images on the ground observation equipment in space object surveillance. In this paper, an attitude inversion method for geostationary satellite based on Unscented Particle Filter (UPF) and ground photometric data is presented. The inversion algorithm based on UPF is proposed aiming at the strong non-linear feature in the photometric data inversion for satellite attitude, which combines the advantage of Unscented Kalman Filter (UKF) and Particle Filter (PF). This update method improves the particle selection based on the idea of UKF to redesign the importance density function. Moreover, it uses the RMS-UKF to partially correct the prediction covariance matrix, which improves the applicability of the attitude inversion method in view of UKF and the particle degradation and dilution of the attitude inversion method based on PF. This paper describes the main principles and steps of algorithm in detail, correctness, accuracy, stability and applicability of the method are verified by simulation experiment and scaling experiment in the end. The results show that the proposed method can effectively solve the problem of particle degradation and depletion in the attitude inversion method on account of PF, and the problem that UKF is not suitable for the strong non-linear attitude inversion. However, the inversion accuracy is obviously superior to UKF and PF, in addition, in the case of the inversion with large attitude error that can inverse the attitude with small particles and high precision.

  7. Radiation protection instrumentation. Monitoring equipment. Radioactive aerosols in the environment

    International Nuclear Information System (INIS)

    1996-01-01

    This international standard applies to portable or installed equipment for continuous monitoring of radioactive aerosols in the environment in normal and emergency conditions. Monitoring involves continuous sampling and, where desirable, automatic start of sampling. The document applies particularly to the following assignments: (i) determination of the volume activity of radionuclides in the form of aerosols, either per time unit, along with its time changes, or in the integral form over a longer time period such as 24 h, and measurement of the volume sampled; (ii) triggering a warning alarm signal if the preset volume activity or time integral of the volume activity of aerosols has been exceeded. The document deals with radioactive aerosol monitor design, testing procedures, and documentation. Appended tables refer to the reference and normal testing conditions, tests in normal testing conditions, tests during changes of the affecting quantities, and tests of the air circuit. (P.A.)

  8. Annual report on radioactive discharges and monitoring of the environment 1992. V. 2

    International Nuclear Information System (INIS)

    1993-01-01

    This Annual Report supplements British Nuclear Fuel plc's Health and Safety Annual Report by providing more detailed information on radioactive discharges, monitoring of the environmental and critical group doses. BNFL has published Annual Reports on Radioactive Discharges and Monitoring of the Environment, covering the period from 1977 to the present. For 1991 this report has been sub-divided into two complementary parts. Volume II reproduces the Certificates of Authorisation under which the Company operates and the statutory environmental monitoring programmes which relate to them. (author)

  9. Annual report on radioactive discharges and monitoring of the environment 1991. V. 2

    International Nuclear Information System (INIS)

    1992-01-01

    This Annual Report supplements British Nuclear Fuel plc's Health and Safety Annual Report by providing more detailed information on radioactive discharges, monitoring of the environmental and critical group doses. BNFL has published Annual Reports on Radioactive Discharges and Monitoring of the Environment, covering the period from 1977 to the present. For 1991 this report has been sub-divided into two complementary parts. Volume II reproduces the Certificates of Authorisation under which the Company operates and the statutory environmental monitoring programmes which relate to them. (author)

  10. AVHRR-based drought-observing system for monitoring the environment and socioeconomic activities

    Science.gov (United States)

    Kogan, F.

    From all natural disaster, drought is the least understandable and the most damaging environmental phenomenon. Although in pre-satellite era, climate data were used for drought monitoring, drought specifics created problems in early drought detection start/end, monitoring its expansion/contraction, intensity and area coverage and the most important, timely estimation of the impacts on the environment and socioeconomic activities. The latest prevented to take prompt measures in mitigating negative consequences of drought for the society. Advances in remote sensing of the past ten years, contributed to the development of comprehensive drought monitoring system and numerous applications, which helped to make decisions for monitoring the environment and predicting sustainable socioeconomic activities. This paper discusses satellite-based land-surface observing system, which provides wells of information used for monitoring such unusual natural disaster as drought. This system was developed from the observations of the Advanced Very High Resolution Radiometer (AVHRR) flown on NOAA operational polar-orbiting satellites. The AVHRR data were packed into the Global Vegetation Index (GVI) product, which have served the global community since 1981. The GVI provided reflectances and indices (4 km spacial resolution) every seven days for each 16 km map cell between 75EN and 55ES covering all land ecosystems. The data includes raw and calibrated radiances in the visible, near infrared and infrared spectral bands, processed (with eliminated high frequency noise) radiances, normalized difference vegetation index (NDVI), 20-year climatology, vegetation condition indices and also products, such as vegetation health, drought, vegetation fraction, fire risk etc. In the past ten years, users around the world used this information addressing different issues of drought impacts on socioeconomic activities and responded positively to real time drought information place regularly on the

  11. Monitoring of radioactivity in the UK environment. An annotated bibliography of current programmes

    International Nuclear Information System (INIS)

    2001-01-01

    With the continuing use of radioactive materials in industry, research and medicine, the public's awareness about the potential impact on human health and safety of any enhanced levels of radiation in the environment has heightened. All those involved recognise this concern and there has developed over the years a network of comprehensive monitoring systems designed to determine the levels of radiation to which members of the public are exposed. In the UK, many organisations carry out regular radioactivity monitoring programmes, and summaries of these programmes have been published in 1983, 1988 and 1992. The number of organisations carrying out monitoring, particularly in the local authority sector, increased rapidly following the Chernobyl incident in 1986 and later levelled off. This report updates those previous summaries, giving synopses of regular UK programmes whose results are published in report form, and of which the Department of the Environment, Transport and the Regions is currently aware

  12. Embedded Active Fiber Optic Sensing Network for Structural Health Monitoring in Harsh Environments

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Anbo [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2016-09-30

    This report summarizes technical progress on the program “Embedded Active Fiber Optic Sensing Network for Structural Health Monitoring in Harsh Environments” funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Center for Photonics Technology at Virginia Tech. The objective of this project is to develop a first-of-a-kind technology for remote fiber optic generation and detection of acoustic waves for structural health monitoring in harsh environments. During the project period, which is from April 1, 2013 to Septemeber 30, 2016, three different acoustic generation mechanisms were studied in detail for their applications in building a fiber optic acoustic generation unit (AGU), including laser induced plasma breakdown (LIP), Erbium-doped fiber laser absorption, and metal laser absorption. By comparing the performance of the AGUs designed based on these three mechanisms and analyzing the experimental results with simulations, the metal laser absorption method was selected to build a complete fiber optic structure health monitoring (FO-SHM) system for the proposed high temperature multi-parameter structure health monitoring application. Based on the simulation of elastic wave propagation and fiber Bragg grating acoustic pulse detection, an FO-SHM element together with a completed interrogation system were designed and built. This system was first tested on an aluminum piece in the low-temperature range and successfully demonstrated its capability of multi-parameter monitoring and multi-point sensing. In the later stages of the project, the research was focused on improving the surface attachment design and preparing the FO-SHM element for high temperature environment tests. After several upgrades to the surface attachment methods, the FO-SHM element was able to work reliably up to 600oC when attached to P91 pipes, which are the target material of this project. In the final stage of this project, this FO

  13. Waste heat discharges in the aquatic environment -- impact and monitoring 2

    International Nuclear Information System (INIS)

    Kamath, P.R.

    1980-01-01

    Studies on ecological impacts, on fishes in particular, of waste heat discharges in the aquatic environment are briefly reviewed. These studies cover the susceptibility of fishes to disease and predation, population biology, parasite proliferation and its impact on fishes, synergistic effects due to heat and other stresses such as chemicals, pollutant, lowering of saturation limit of dissolved oxygen at elevated temperature and radioactivity. Experiences of monitoring waste heat discharges at the Rajasthan Atomic Power Station (RAPS) and the Tarapur Atomic Power Station (TAPS) are presented. Entrainment losses and impingement losses are also reviewed. Requirements for thermal monitoring are mentioned. (M.G.B.)

  14. Unmanned Aerial Vehicle Based Wireless Sensor Network for Marine-Coastal Environment Monitoring.

    Science.gov (United States)

    Trasviña-Moreno, Carlos A; Blasco, Rubén; Marco, Álvaro; Casas, Roberto; Trasviña-Castro, Armando

    2017-02-24

    Marine environments are delicate ecosystems which directly influence local climates, flora, fauna, and human activities. Their monitorization plays a key role in their preservation, which is most commonly done through the use of environmental sensing buoy networks. These devices transmit data by means of satellite communications or close-range base stations, which present several limitations and elevated infrastructure costs. Unmanned Aerial Vehicles (UAV) are another alternative for remote environmental monitoring which provide new types of data and ease of use. These aircraft are mainly used in video capture related applications, in its various light spectrums, and do not provide the same data as sensing buoys, nor can they be used for such extended periods of time. The aim of this research is to provide a flexible, easy to deploy and cost-effective Wireless Sensor Network (WSN) for monitoring marine environments. This proposal uses a UAV as a mobile data collector, low-power long-range communications and sensing buoys as part of a single WSN. A complete description of the design, development, and implementation of the various parts of this system is presented, as well as its validation in a real-world scenario.

  15. Monitoring of radioactivity in the environs of Finnish nuclear power stations in 1986

    International Nuclear Information System (INIS)

    Ilus, E.; Sjoeblom, K.L.; Aaltonen, H.; Klemola, S.; Arvela, H.

    1987-06-01

    Results of the environmental programmes monitoring radioactivity around the Finnish nuclear power stations in 1986 are reported. After the end of April the fallout nuclides from the Chernobyl accident predominated in all samples taken from the environs of the two power stations Loviisa and Olkiluoto. Radionuclides originating from the Finnish power stations were detected mainly in samples taken from the aquatic environment. The concentrations of the locally discharged nuclides were very low in comparison with the fallout nuclides and their impact on the radiation doses of the population was insignificant. Both nuclear power stations are situated in the main fallout area in Finland. The results of these large monitoring programmes give a good picture of the behaviour of the Chernobyl fallout in the specific areas in Finland

  16. Monitoring the sedimentary carbon in an artificially disturbed deep-sea sedimentary environment

    Digital Repository Service at National Institute of Oceanography (India)

    Nath, B.N.; Khadge, N.H.; Nabar, S.; Raghukumar, C.; Ingole, B.S.; Valsangkar, A.B.; Sharma, R.; Srinivas, K.

    1 Author version: Environ. Monit. Assess., vol.184; 2012; 2829-2844 Monitoring the sedimentary carbon in an artificially disturbed deep-sea sedimentary environment B. Nagender Nath * , N.H. Khadge, Sapana Nabar, C. Raghu Kumar, B.S. Ingole... community two years after an artificial rapid deposition event. Publication of Seto Marine Biological Laboratory, 39(1), 17-27. Gage, J.D. (1978). Animals in deep-sea sediments. Proceedings of Royal Society of Edinburgh, 768, 77-93. Gage, J.D., & Tyler...

  17. Airborne mapping of Seoul's atmosphere: Trace gas measurements from GeoTASO during KORUS-AQ

    Science.gov (United States)

    Nowlan, C. R.; Al-Saadi, J. A.; Castellanos, P.; Chance, K.; Gonzalez Abad, G.; Janz, S. J.; Judd, L.; Kowalewski, M. G.; Liu, X.

    2017-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) instrument is a pushbroom airborne remote sensing instrument capable of making measurements of air quality and ocean color using backscattered UV and visible light. GeoTASO is an airborne test-bed for the upcoming Tropospheric Emissions: Monitoring of Pollution (TEMPO) and Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite missions, which will measure air quality over North America and Asia, respectively. GeoTASO also acts as a satellite analogue during field campaigns. GeoTASO flew on the NASA Langley Research Center UC-12 aircraft during the Korea-United States Air Quality Study in May-June 2016, collecting spectra over South Korea during 30 flights over 19 flight days. These observations can be used to derive 2-D maps of tropospheric trace gases including ozone, nitrogen dioxide, sulfur dioxide, formaldehyde, nitrous acid and glyoxal below the aircraft at spatial resolutions between 250 m x 250 m and 1 km x 1 km, depending on the gas. We present spatially resolved trace gas retrievals over Seoul and its surrounding industrial regions, and comparisons with correlative satellite and campaign data.

  18. Radioactivity in the environment. A summary and radiological assessment of the Environment Ageny's monitoring programmes. Report for 1996

    International Nuclear Information System (INIS)

    1996-01-01

    This report presents the results from the Environment Agency's monitoring of radioactivity in the environment during 1996. Monitoring programmes were carried out in support of the Agency's regulatory functions under the Radioactive Substances Act 1993 and as part of the UK Government's obligations under the Euratom Treaty. The programmes included: effluent monitoring; the quality checking of solid waste disposals; environmental monitoring; the monitoring of radioactivity in air and rainwater; the monitoring of radioactivity in drinking water sources. A total of 160 effluent samples were analysed for nearly 900 determinants, two consignments of solid radioactive waste destined for disposal at British Nuclear Fuels' site at Drigg were checked, direct instrumental monitoring was carried out at ISO locations within the vicinity of nuclear sites, and 532 environmental samples were analysed for over 2,000 determinants. Effluent monitoring: The Agency requires operators of certain sites to provide samples of their liquid effluents for independent analysis. The results are compared with reports submitted by site operators. The majority of results showed satisfactory agreement; operators' values were frequently higher than the Agency's measurements indicating that they were not under-reporting. However, some discrepancies were found and are being investigated. Quality checking of solid waste disposals: Consignments of solid low level radioactive waste are seized by inspectors for examination at the Agency's Waste Quality Checking Laboratory. Sophisticated non-destructive and destructive analytical techniques are used at the laboratory to check the radioactive content and description of the wastes. Consignments of waste from the Atomic Weapons Establishment at Aldermaston and Amersham International at Amersham were examined. In both cases the operators reported higher activity than the Agency's laboratory. The consignments also conformed with the operators' disposal

  19. A Study on Fuel Estimation Algorithms for a Geostationary Communication & Broadcasting Satellite

    Directory of Open Access Journals (Sweden)

    Jong Won Eun

    2000-12-01

    Full Text Available It has been developed to calculate fuel budget for a geostationary communication and broadcasting satellite. It is quite essential that the pre-launch fuel budget estimation must account for the deterministic transfer and drift orbit maneuver requirements. After on-station, the calculation of satellite lifetime should be based on the estimation of remaining fuel and assessment of actual performance. These estimations step from the proper algorithms to produce the prediction of satellite lifetime. This paper concentrates on the fuel estimation method that was studied for calculation of the propellant budget by using the given algorithms. Applications of this method are discussed for a communication and broadcasting satellite.

  20. Development of Mission and Spacecraft Dynamics Analysis System for Geostationary Communication Satellite

    Directory of Open Access Journals (Sweden)

    Hyeon Cheol Gong

    1998-06-01

    Full Text Available We consider the motion of the subsystems as separate bodies as well as the entire satellite for the attitude and orbit control of a communication satellite by multi-body modeling technique. Thus, the system can be applied to a general communication satellite as well as a specific communication satellite, i.e. Koreasat I, II. The simulation results can be viewed by two-dimensional graphics and three-dimensional animation. The graphical user interface (GUI makes its usage much simpler. We have simulated a couple of scenarios for Koreasat I, II which are being operated as geostationary communication satellites to verify the system performance.

  1. TIROS-N/NOAA A-J space environment monitor subsystem. Technical memo

    International Nuclear Information System (INIS)

    Seale, R.A.; Bushnell, R.H.

    1987-04-01

    The Space Environment Monitor (SEM), which is incorporated as a subsystem in the TIROS-N and NOAA A-J satellites, is described. The SEM consists of a Total Energy Detector (TED), a Medium Energy Proton and Electron Detector (MEPED), a High Energy Proton and Alpha Detector (HEPAD) and a Data Processing Unit (DPU). The detectors are intended to provide near-real-time particle data for use in the Space Environment Service Center of National Oceanic and Atmospheric Administration (NOAA) and to provide a long-term scientific data base. Telemeter codes, data reduction, and test instructions are given

  2. Monitoring of radiation in the environment in the Netherlands. Results in 2001

    Energy Technology Data Exchange (ETDEWEB)

    Knetsch, G.J. (ed.)

    2002-07-01

    This report presents the results of radioactivity measurements in the Dutch environment in 2001. The measurements were carried out by RIVM, RIZA, RIKZ and Inspectorate for Health Protection and Veterinary Public Health. Radioactivity measurements were carried out on airborne particles, deposition, surface water, seawater, drinking water and food (honey, powdered milk, game, poultry, blueberry and chanterelle). Results for ambient dose equivalent rates were obtained from the National Radioactivity Monitoring Network. The levels of radioactivity in the Dutch environment were not elevated in 2001.

  3. Monitoring of radiation in the environment in the Netherlands. Results in 2001

    CERN Document Server

    Knetsch, G J

    2002-01-01

    This report presents the results of radioactivity measurements in the Dutch environment in 2001. The measurements were carried out by RIVM, RIZA, RIKZ and Inspectorate for Health Protection and Veterinary Public Health. Radioactivity measurements were carried out on airborne particles, deposition, surface water, seawater, drinking water and food (honey, powdered milk, game, poultry, blueberry and chanterelle). Results for ambient dose equivalent rates were obtained from the National Radioactivity Monitoring Network. The levels of radioactivity in the Dutch environment were not elevated in 2001

  4. Annual report on radioactive discharges and monitoring of the environment, 1996. V. 1

    International Nuclear Information System (INIS)

    1997-01-01

    British Nuclear Fuels Limited (BNFL)'s 1996 report on radioactive discharges from its various sites and monitoring of the surrounding environments are described. For each of the Sellafield, Drigg, Chapelcross, Springfields and Capenhurst sites, details are given on normal operations, radioactive discharges in gaseous, liquid or solid forms, environmental monitoring routines and collective dose and critical group estimates. The second, linked, volume of this report covers certificates of authorisation issued to the company. (UK)

  5. Final annual report of the Partial monitoring system 'Radioactivity of the environment' 2015

    International Nuclear Information System (INIS)

    Melicherova, T.; Cabanekova, H.; Bodorova, J.

    2016-05-01

    The present report evaluates activities of radiation monitoring of Slovak Hydrometeorological Institute (SHMI) in 2015. Analytical part focuses on detailed statistical analysis of monitored data. Detailed knowledge of the course of time series during uneventful period enables early detect and analyze potential increase of radioactivity levels in the environment originating from domestic or foreign sources. SHMI is responsible for international data exchange with the European Commission and with partners in Austria and Hungary.

  6. Final annual report of the Partial monitoring system 'Radioactivity of the environment' 2016

    International Nuclear Information System (INIS)

    Melicherova, T.; Cabanekova, H.; Bodorova, J.

    2017-05-01

    The present report evaluates activities of radiation monitoring of Slovak Hydrometeorological Institute (SHMI) in 2016. Analytical part focuses on detailed statistical analysis of monitored data. Detailed knowledge of the course of time series during uneventful period enables early detect and analyze potential increase of radioactivity levels in the environment originating from domestic or foreign sources. SHMI is responsible for international data exchange with the European Commission and with partners in Austria and Hungary.

  7. A Novel Location-Awareness Method Using CubeSats for Locating the Spot Beam Emitters of Geostationary Communications Satellites

    Directory of Open Access Journals (Sweden)

    Weicai Yang

    2018-01-01

    Full Text Available As more spacecraft are launched into the Geostationary Earth Orbit (GEO belt, the possibility of fatal collisions or unnecessary interference between spacecraft increases. In this paper, a new location-awareness method that uses CubeSats is proposed to assist with radiofrequency (RF domain verification by means of awareness and identification of the positions of the spot beam emitters of communications satellites in geostationary orbit. By flying a CubeSat (or a constellation of CubeSats through the coverage area of a spot beam, the spot beam emitter’s position is identified and the spot beam’s pattern knowledge is characterized. The geometry, the equations of motion of the spacecraft, the measurement process, and the filtering equations in a location system are addressed with respect to the location methods investigated in this study. A realistic scenario in which a CubeSat receives signals from GEO communications satellites is simulated using the Systems Tool Kit (STK. The results of the simulation and the analysis presented in this study provide a thorough verification of the performance of the location-awareness method.

  8. Locating center of mass of earth and geostationary satellites

    International Nuclear Information System (INIS)

    Qureshi, A.; Marvi, M.

    2014-01-01

    CoM (Center of Mass) of earth is a very important factor which can play a major role in satellite communication and related earth sciences. The CoM of earth is assumed to be around equator due to geometrical shape of earth. However, no technical method is available in the literature which can justify the presence of CoM of earth around equator. Therefore, in this research work the CoM of earth has been located theoretically with the help of mathematical relations. It also presents the mathematical justification against the assumption that equator is the CoM of earth. The effect of calculated CoM of earth on geostationary satellites has also been discussed. The CoM of earth has been found mathematically by using land to ocean ratios and the data is collected from the Google earth software. The final results are accurate with an approximate error of 1%. (author)

  9. Monitoring of radionuclides in the environs of the Finnish nuclear power stations in 1988

    International Nuclear Information System (INIS)

    Klemola, S.; Ilus, E.; Sjoeblom, K.L.; Arvela, H.; Blomqvist, L.

    1991-03-01

    Monitoring of radionuclides around Finnish nuclear power plants continued in 1988 with the regular programmes. About 1000 samples were analysed from both terrestrial and aquatic environments.The dominant artificial radioactive substances in the vicinity of power plants were still the fallout nuclides from the Chernobyl accident, but the concentrations in all the objects monitored are lower than in the previous year. Trace amounts of activation products originating from the airborne releases of local power plants were detected in some air and deposition samples. Discharged nuclides were more abundant in the aquatic environment, especially in samples of indicator organisms. However, their contribution to the radiation doses received by the the public was very small. (orig.)

  10. The Node Monitoring Component of a Scalable Systems Software Environment

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Samuel James [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    This research describes Fountain, a suite of programs used to monitor the resources of a cluster. A cluster is a collection of individual computers that are connected via a high speed communication network. They are traditionally used by users who desire more resources, such as processing power and memory, than any single computer can provide. A common drawback to effectively utilizing such a large-scale system is the management infrastructure, which often does not often scale well as the system grows. Large-scale parallel systems provide new research challenges in the area of systems software, the programs or tools that manage the system from boot-up to running a parallel job. The approach presented in this thesis utilizes a collection of separate components that communicate with each other to achieve a common goal. While systems software comprises a broad array of components, this thesis focuses on the design choices for a node monitoring component. We will describe Fountain, an implementation of the Scalable Systems Software (SSS) node monitor specification. It is targeted at aggregate node monitoring for clusters, focusing on both scalability and fault tolerance as its design goals. It leverages widely used technologies such as XML and HTTP to present an interface to other components in the SSS environment.

  11. Information system of partial monitoring system 'Radioactivity of the environment'

    International Nuclear Information System (INIS)

    Melicherova, T.

    2007-01-01

    Slovak Hydrometeorological Institute (SHMI) is operator of radiation monitoring from 1963. At present SHMI operates in its monitoring network 23 detectors GammaTracer fy Genitron, one mobile detector and one standby detector. Radiation data (dose rate in the unit nSv/h) from detectors in the automated meteorological stations are transmitted by data-logger and private institute network to National Telecommunication Centre in Bratislava. The data from MSS (message switch system) are inserted into the database. The 1 hours and 24 hours averages are computed on the server automatically. Delay between time of measurements and time of inserting data to database is only 10 min. Radiation files from SHMI network are on-line transmitted to information system of Nuclear Regulatory Authority of the Slovak Republic and to information system of Slovak Army. Transmission to to Crisis Centre of Civil Protection is under reconstruction at present. Database contains one table for radiation data and several tables for configurations, catalogues of stations and additional tables. Database works in environment client-server. On client PC runs the user front-end application. This application provides to display the data using many filters, to display tables with configurations concerning technical equipment, to display maps, graphs, etc. There is the possibility to store data into the archives, to make reports and to analyse data in the environment of professional statistical software. Precipitations values from meteorological stations were integrated do the information system of radiation monitoring for better interpretation of gamma dose rate values. SHMI cooperates in the radiation data exchange with European Commission Joint Research Centre in Ispra, Radiation Warning Centre in Vienna and Meteoservice Budapest. (author)

  12. External radiation monitoring in TAPS and RAPS environs (1980-81) using TLD

    International Nuclear Information System (INIS)

    Basu, A.S.; Nambi, K.S.V.; Sunta, C.M.

    1983-01-01

    Results of environmental external radiation monitoring using quarterly integrated TLD measurements are presented for environments of the Tarapur Atomic Power Station (TAPS) and the Rajasthan Atomic Power Station (RAPS) for the two year monitoring period (1980-81). The data fit into the unimodal log-normal distribution except for locations where gaseous radioactivity escaping from the plant makes a significant contribution. The average natural radiation background in TAPS and RAPS environment is estimated to be 59.6 +- 4.7 mR yr -1 and 65.1 +- 9.8 mR yr -1 respectively. Contribution from the plant superimposed over the natural level leads frequently to bi-normal distribution. The effect of stack-released gaseous radioactivity is seen in locations within 1.6 km of TAPS: for example Ghivoli village registered an excess of 9.3 mR yr -1 over the natural background. The quarterly background values indicate minor temporal and spatial variations which can be attributed to changes in natural as well as stack released radioactivity. (author)

  13. An IoT-Based Computational Framework for Healthcare Monitoring in Mobile Environments.

    Science.gov (United States)

    Mora, Higinio; Gil, David; Terol, Rafael Muñoz; Azorín, Jorge; Szymanski, Julian

    2017-10-10

    The new Internet of Things paradigm allows for small devices with sensing, processing and communication capabilities to be designed, which enable the development of sensors, embedded devices and other 'things' ready to understand the environment. In this paper, a distributed framework based on the internet of things paradigm is proposed for monitoring human biomedical signals in activities involving physical exertion. The main advantages and novelties of the proposed system is the flexibility in computing the health application by using resources from available devices inside the body area network of the user. This proposed framework can be applied to other mobile environments, especially those where intensive data acquisition and high processing needs take place. Finally, we present a case study in order to validate our proposal that consists in monitoring footballers' heart rates during a football match. The real-time data acquired by these devices presents a clear social objective of being able to predict not only situations of sudden death but also possible injuries.

  14. Real-time continuous glucose monitoring systems in the classroom/school environment.

    Science.gov (United States)

    Benassi, Kari; Drobny, Jessica; Aye, Tandy

    2013-05-01

    Children with type 1 diabetes (T1D) spend 4-7 h/day in school with very little supervision of their diabetes management. Therefore, families have become more dependent on technology, such as use of real-time continuous glucose monitoring (RT-CGM), to provide increased supervision of their diabetes management. We sought to assess the impact of RT-CGM use in the classroom/school environment. Children with T1D using RT-CGM, their parents, and teachers completed a questionnaire about RT-CGM in the classroom/school environment. The RT-CGM was tolerated well in the classroom/school environment. Seventy percent of parents, 75% of students, and 51% of teachers found RT-CGM useful in the classroom/school environment. The students found the device to be more disruptive than did their parents and teachers. However, all three groups agreed that RT-CGM increased their comfort with diabetes management at school. Our study suggests that RT-CGM is useful and not disruptive in the classroom/school environment. The development of education materials for teachers could further increase its acceptance in the classroom/school environment.

  15. Cable condition monitoring in a pressurized water reactor environment

    International Nuclear Information System (INIS)

    Al-Hussaini, T.J.

    1988-01-01

    Oconee Nuclear Station is the first nuclear plant designed, engineered and constructed by Duke Power Company. Even though the accelerated aging method was available to determine the life expectancy of the cable used in the reactor building, no natural aging data was available at that time. In order to be able to verify the condition of the reactor building cable over the life of the plant, an on-going cable monitoring plan was instituted. Various types of cable were selected to be monitored, and they were installed in cable life evaluation circuits in the reactor building. At five year intervals over the life of the plant, cable samples would be removed from these cable life evaluation circuits and tested to determine the effects of the reactor building environment on the integrity of the cable. A review of the cable life evaluation circuits and the results of the evaluation program to date is presented

  16. DeepSAT's CloudCNN: A Deep Neural Network for Rapid Cloud Detection from Geostationary Satellites

    Science.gov (United States)

    Kalia, S.; Li, S.; Ganguly, S.; Nemani, R. R.

    2017-12-01

    Cloud and cloud shadow detection has important applications in weather and climate studies. It is even more crucial when we introduce geostationary satellites into the field of terrestrial remotesensing. With the challenges associated with data acquired in very high frequency (10-15 mins per scan), the ability to derive an accurate cloud/shadow mask from geostationary satellite data iscritical. The key to the success for most of the existing algorithms depends on spatially and temporally varying thresholds, which better capture local atmospheric and surface effects.However, the selection of proper threshold is difficult and may lead to erroneous results. In this work, we propose a deep neural network based approach called CloudCNN to classifycloud/shadow from Himawari-8 AHI and GOES-16 ABI multispectral data. DeepSAT's CloudCNN consists of an encoder-decoder based architecture for binary-class pixel wise segmentation. We train CloudCNN on multi-GPU Nvidia Devbox cluster, and deploy the prediction pipeline on NASA Earth Exchange (NEX) Pleiades supercomputer. We achieved an overall accuracy of 93.29% on test samples. Since, the predictions take only a few seconds to segment a full multi-spectral GOES-16 or Himawari-8 Full Disk image, the developed framework can be used for real-time cloud detection, cyclone detection, or extreme weather event predictions.

  17. A TEMPORAL MAP IN GEOSTATIONARY ORBIT: THE COVER ETCHING ON THE EchoStar XVI ARTIFACT

    Energy Technology Data Exchange (ETDEWEB)

    Weisberg, Joel M., E-mail: jweisber@carleton.edu [Department of Physics and Astronomy, Carleton College, Northfield, MN 55057 (United States); Paglen, Trevor, E-mail: trevor@paglen.com

    2012-10-01

    Geostationary satellites are unique among orbital spacecraft in that they experience no appreciable atmospheric drag. After concluding their respective missions, geostationary spacecraft remain in orbit virtually in perpetuity. As such, they represent some of human civilization's longest lasting artifacts. With this in mind, the EchoStar XVI satellite, to be launched in fall 2012, will play host to a time capsule intended as a message for the deep future. Inspired in part by the Pioneer Plaque and Voyager Golden Records, the EchoStar XVI Artifact is a pair of gold-plated aluminum jackets housing a small silicon disk containing 100 photographs. The Cover Etching, the subject of this paper, is etched onto one of the two jackets. It is a temporal map consisting of a star chart, pulsar timings, and other information describing the epoch from which EchoStar XVI came. The pulsar sample consists of 13 rapidly rotating objects, 5 of which are especially stable, having spin periods <10 ms and extremely small spin-down rates. In this paper, we discuss our approach to the time map etched onto the cover and the scientific data shown on it, and we speculate on the uses that future scientists may have for its data. The other portions of the EchoStar XVI Artifact will be discussed elsewhere.

  18. A TEMPORAL MAP IN GEOSTATIONARY ORBIT: THE COVER ETCHING ON THE EchoStar XVI ARTIFACT

    International Nuclear Information System (INIS)

    Weisberg, Joel M.; Paglen, Trevor

    2012-01-01

    Geostationary satellites are unique among orbital spacecraft in that they experience no appreciable atmospheric drag. After concluding their respective missions, geostationary spacecraft remain in orbit virtually in perpetuity. As such, they represent some of human civilization's longest lasting artifacts. With this in mind, the EchoStar XVI satellite, to be launched in fall 2012, will play host to a time capsule intended as a message for the deep future. Inspired in part by the Pioneer Plaque and Voyager Golden Records, the EchoStar XVI Artifact is a pair of gold-plated aluminum jackets housing a small silicon disk containing 100 photographs. The Cover Etching, the subject of this paper, is etched onto one of the two jackets. It is a temporal map consisting of a star chart, pulsar timings, and other information describing the epoch from which EchoStar XVI came. The pulsar sample consists of 13 rapidly rotating objects, 5 of which are especially stable, having spin periods <10 ms and extremely small spin-down rates. In this paper, we discuss our approach to the time map etched onto the cover and the scientific data shown on it, and we speculate on the uses that future scientists may have for its data. The other portions of the EchoStar XVI Artifact will be discussed elsewhere.

  19. The application of entropy weight TOPSIS method to optimal points in monitoring the Xinjiang radiation environment

    International Nuclear Information System (INIS)

    Feng Guangwen; Hu Youhua; Liu Qian

    2009-01-01

    In this paper, the application of the entropy weight TOPSIS method to optimal layout points in monitoring the Xinjiang radiation environment has been indroduced. With the help of SAS software, It has been found that the method is more ideal and feasible. The method can provide a reference for us to monitor radiation environment in the same regions further. As the method could bring great convenience and greatly reduce the inspecting work, it is very simple, flexible and effective for a comprehensive evaluation. (authors)

  20. Analysis of Specular Reflections Off Geostationary Satellites

    Science.gov (United States)

    Jolley, A.

    2016-09-01

    Many photometric studies of artificial satellites have attempted to define procedures that minimise the size of datasets required to infer information about satellites. However, it is unclear whether deliberately limiting the size of datasets significantly reduces the potential for information to be derived from them. In 2013 an experiment was conducted using a 14 inch Celestron CG-14 telescope to gain multiple night-long, high temporal resolution datasets of six geostationary satellites [1]. This experiment produced evidence of complex variations in the spectral energy distribution (SED) of reflections off satellite surface materials, particularly during specular reflections. Importantly, specific features relating to the SED variations could only be detected with high temporal resolution data. An update is provided regarding the nature of SED and colour variations during specular reflections, including how some of the variables involved contribute to these variations. Results show that care must be taken when comparing observed spectra to a spectral library for the purpose of material identification; a spectral library that uses wavelength as the only variable will be unable to capture changes that occur to a material's reflected spectra with changing illumination and observation geometry. Conversely, colour variations with changing illumination and observation geometry might provide an alternative means of determining material types.

  1. A geostationary satellite system for mobile multimedia applications using portable, aeronautical and mobile terminals

    Science.gov (United States)

    Losquadro, G.; Luglio, M.; Vatalaro, F.

    1997-01-01

    A geostationary satellite system for mobile multimedia services via portable, aeronautical and mobile terminals was developed within the framework of the Advanced Communications Technology Service (ACTS) programs. The architecture of the system developed under the 'satellite extremely high frequency communications for multimedia mobile services (SECOMS)/ACTS broadband aeronautical terminal experiment' (ABATE) project is presented. The system will be composed of a Ka band system component, and an extremely high frequency band component. The major characteristics of the space segment, the ground control station and the portable, aeronautical and mobile user terminals are outlined.

  2. Sentinel-1 provides ice drift observations for Copernicus Marine Environment Monitoring Service (CMEMS)

    DEFF Research Database (Denmark)

    Toudal Pedersen, Leif; Saldo, Roberto

    are matched every month in the processing system.The quality of the ice drift vectors are routinely verified against GPS locations of drift buoys and the RMS difference between the baseline product available through the Copernicus Marine Environment Monitoring Service data portal and GPS drifters is ~500......Sea ice drift information with an accuracy that allows also ice deformation (divergence, shear, vorticity) to be derived is being operationally generated in the Copernicus Marine Environment Monitoring Service (CMEMS).The method is based on 2-dimensional digital cross correlation where subsections......View project in 2007 when large volumes of ENVISAT ASAR images of the Polar regions became available during the International Polar Year. A dataset of daily ice drift vectors of the Polar Regions (North and South) is now available covering the time period from 2007 to the present time.In 2009 the processing...

  3. Monitoring of radiation in the environment in the Netherlands. Results in 2000

    Energy Technology Data Exchange (ETDEWEB)

    Knetsch, G.J. (ed.)

    2002-07-01

    This report presents the results of radioactivity measurements in the environment in the Netherlands carried out by RIVM, RIZA, RIKZ and Inspectorate for Health Protection and Veterinary Public Health in 2000. Measurements of radioactivity have been carried out in airborne particulates, deposition, surface water, seawater, drinking water and food (honey, game, blueberry and mushrooms). Results for ambient dose equivalent rates have been obtained from the National Radioactivity Monitoring Network. No measurements were done in milk. In 2000 no elevated levels of radioactivity were found in the Dutch environment.

  4. Monitoring of radiation in the environment in the Netherlands. Results in 2000

    CERN Document Server

    Knetsch, G J

    2002-01-01

    This report presents the results of radioactivity measurements in the environment in the Netherlands carried out by RIVM, RIZA, RIKZ and Inspectorate for Health Protection and Veterinary Public Health in 2000. Measurements of radioactivity have been carried out in airborne particulates, deposition, surface water, seawater, drinking water and food (honey, game, blueberry and mushrooms). Results for ambient dose equivalent rates have been obtained from the National Radioactivity Monitoring Network. No measurements were done in milk. In 2000 no elevated levels of radioactivity were found in the Dutch environment

  5. A Cost Effective Solution for Development Environment for Data Acquisition, Monitoring and Simulation of PLC Controlled Applications

    Directory of Open Access Journals (Sweden)

    O. Bjelica

    2014-06-01

    Full Text Available It is very important to test and monitor the operation of Programmable Logic Controller (PLC in real time (online. Nowadays, conventional, but expensive monitoring systems for PLCs, such as Supervisory Control and Data Acquisition (SCADA systems, software and hardware simulators (or debuggers, are widely used. This paper proposes a user friendly and cost-effective development environment for monitoring, data acquisition and online simulation of applications with PLC. The purpose of this solution is to simulate the process which is controlled by the PLC. The performances of the proposed development environment are presented on the examples of washing machine and dishwasher simulators.

  6. Initiation of environment protection monitoring system in energetic sector of Sartid Iron and Steel Factory

    International Nuclear Information System (INIS)

    Janjic, Jovan; Ivanovic, Jovan

    2003-01-01

    Energetic sector in SARTID Iron and Steel factory includes complex systems for production, transformation and distribution of all kinds of energy and fluids, supplying all other production divisions. As that, energetic sector has large influence in environment. Incorporating quality system ISO 14001 in SARTID factory, with special care we are working on environment protection monitoring system. Having started with this, as first we are working on implementation of monitoring system for air pollution from our emitters of exhausted gases issued from incineration of blast furnace (BF) gas, natural gas and crude oil. Constant recording of air pollutant emissions from our boilers have became standard procedure now. This monitoring system is based on software package, where input data are permanently measured flow of fuels, fuel composition and quality of combustion. As a result, in each time we know quantity of emitted exhausted components - CO 2 , CO, SO 2 , (NO) x . Another monitoring system that we are implementing right now is some simpler, being used for a lot of smaller BF or natural gas consumers. (Original)

  7. Grey Incidence analyze of Environment Monitoring Data and Research on the Disease Prevention Measures of Longmen Grottoes

    Science.gov (United States)

    LeiLei, Zheng; XueZhi, Fu; Fei, Chu

    2018-05-01

    Longmen Grottoes was afflicted with many diseases for a long period such as weathering, seepage water and organism growth. Those adverse factors were threatening to preserve cultural relic. Longmen Grottoes conservation and restoration project being put into effect by UNESCO in 2002. The Longmen Grottoes area environmental monitoring system was built in order to comprehensively master the distribution law of environmental factors over the Longmen Grottoes. The monitoring items contains temperature, humidity, wind direction, wind speed, precipitation, light intensity,water content in soil, the rock surface temperature and so on. At the same time, monitoring three experiment caves, monitoring the inside temperature, humidity, seepage water and the wall face temperature etc. So as to analyze the relationship between cave environment and regional environment. We statistical and arrange the data using Excel software, Kgraph software and DPS software. Through the grey incidence analyze, the incidence matrix and the correlation degree of the environmental factors was obtained[1]. The main environment factors for the formation of the disease had been researched. Based on the existing environmental monitor data, the relevance of seepage water and fracture displacement with other environmental factors had been studied, and the relational order was obtained. Corresponding preventive measures were put forward by the formation mechanism analyze of the disease.

  8. Integrity mechanism for eHealth tele-monitoring system in smart home environment.

    Science.gov (United States)

    Mantas, Georgios; Lymberopoulos, Dimitrios; Komninos, Nikos

    2009-01-01

    During the past few years, a lot of effort has been invested in research and development of eHealth tele-monitoring systems that will provide many benefits for healthcare delivery from the healthcare provider to the patient's home. However, there is a plethora of security requirements in eHealth tele-monitoring systems. Data integrity of the transferred medical data is one of the most important security requirements that should be satisfied in these systems, since medical information is extremely sensitive information, and even sometimes life threatening information. In this paper, we present a data integrity mechanism for eHealth tele-monitoring system that operates in a smart home environment. Agent technology is applied to achieve data integrity with the use of cryptographic smart cards. Furthermore, the overall security infrastructure and its various components are described.

  9. Physical and chemical monitoring of environment components at Rirang and Eko Remaja West Kalimantan

    International Nuclear Information System (INIS)

    Sorot S, Achmad; Deddi, Eep; Wismawati, Titi; Widarti, Sri

    2002-01-01

    The aim of the environmental monitoring is to know the possibility change environmental component quality at Kalan area West Kalimantan. This monitoring activity has done parallel to the exploration and mining research on radioactive ore at Kalan area. The monitoring consist the activities such as river water sampling, stream sediments, soil, and pH. Water and sediment samples were taken from the same location as what been carried out at the previously research sampling. COD and BOD parameters of the water were been analyzed in field, while the other parameters were analyzed at Jakarta using spectrophotometer and Eberline alpha counter SACR5. Data obtained on BOD, COD, and heavy metal constant such as Ca, As, Mg, Fe, Ni, Zn, Cu, Pb, Mn, Mc, U, Th nad Ra lesser than that in 1997/1998 monitoring. Base on the criteria of EQAM, AMDAL the Rirang water quality (4.62 scales) and Eko Remaja water quality (4.76) are fairly good. Result of stream sediment and soil samples analysis are relatively close to 1997/1998 monitoring, except U and Th content were increase 1-5 %. Result of soil analysis on the parameters Ca, Ni, Zn, Cu, Pb, Mn, Mo, U, Th, and fe relatively same with the 1997/1998 monitoring, except the uranium content is lesser than that monitoring. The maximal radioactivity values were accepted is 0.4 Bq/l. Based on the physical and chemical assay of the river water, stream sediments, and soils samples shown that the quality of the environment was not deteriorating, that mean the exploration and mining research on radioactive ores are do not disturb the environment

  10. The environment, international standards, asset health management and condition monitoring: An integrated strategy

    Energy Technology Data Exchange (ETDEWEB)

    Roe, S. [CSD, British Institute of Non-Destructive Testing (BINDT) (United Kingdom); Mba, D. [School of Engineering, Cranfield University, MK43 0AL, Bedfordshire (United Kingdom)], E-mail: d.mba@cranfield.ac.uk

    2009-02-15

    Asset Health Management (AHM), supported by condition monitoring (CM) and performance measuring technologies, together with trending, modelling and diagnostic frameworks, is not only critical to the reliability of high-value machines, but also to a companies Overall Equipment Efficiency (OEE), system safety and profitability. In addition these protocols are also critical to the global concern of the environment. Industries involved with monitoring key performances indicators (KPI) to improve OEE would benefit from a standardised qualification and certification scheme for their personnel, particularly if it is based on internationally accepted procedures for the various CM technologies that also share the same objectives as AH and CM. Furthermore, the development of 'models' for implementation of a Carbon tax is intrinsically dependent on the integrity and accuracy of measurements contributing to these indicators. This paper reviews the global picture of condition monitoring, the environment and related international standards and then considers their relationship and equivalent global objectives. In addition, it presents the methods behind the development of such standards for certification of competence in personnel involved with data collection, modelling and measurements of KPIs. Two case studies are presented that highlight the integrated strategy in practise.

  11. The environment, international standards, asset health management and condition monitoring: An integrated strategy

    International Nuclear Information System (INIS)

    Roe, S.; Mba, D.

    2009-01-01

    Asset Health Management (AHM), supported by condition monitoring (CM) and performance measuring technologies, together with trending, modelling and diagnostic frameworks, is not only critical to the reliability of high-value machines, but also to a companies Overall Equipment Efficiency (OEE), system safety and profitability. In addition these protocols are also critical to the global concern of the environment. Industries involved with monitoring key performances indicators (KPI) to improve OEE would benefit from a standardised qualification and certification scheme for their personnel, particularly if it is based on internationally accepted procedures for the various CM technologies that also share the same objectives as AH and CM. Furthermore, the development of 'models' for implementation of a Carbon tax is intrinsically dependent on the integrity and accuracy of measurements contributing to these indicators. This paper reviews the global picture of condition monitoring, the environment and related international standards and then considers their relationship and equivalent global objectives. In addition, it presents the methods behind the development of such standards for certification of competence in personnel involved with data collection, modelling and measurements of KPIs. Two case studies are presented that highlight the integrated strategy in practise

  12. Food and beverage environment analysis and monitoring system: a reliability study in the school food and beverage environment.

    Science.gov (United States)

    Bullock, Sally Lawrence; Craypo, Lisa; Clark, Sarah E; Barry, Jason; Samuels, Sarah E

    2010-07-01

    States and school districts around the country are developing policies that set nutrition standards for competitive foods and beverages sold outside of the US Department of Agriculture's reimbursable school lunch program. However, few tools exist for monitoring the implementation of these new policies. The objective of this research was to develop a computerized assessment tool, the Food and Beverage Environment Analysis and Monitoring System (FoodBEAMS), to collect data on the competitive school food environment and to test the inter-rater reliability of the tool among research and nonresearch professionals. FoodBEAMS was used to collect data in spring 2007 on the competitive foods and beverages sold in 21 California high schools. Adherence of the foods and beverages to California's competitive food and beverage nutrition policies for schools (Senate Bills 12 and 965) was determined using the data collected by both research and nonresearch professionals. The inter-rater reliability between the data collectors was assessed using the intraclass correlation coefficient. Researcher vs researcher and researcher vs nonresearcher inter-rater reliability was high for both foods and beverages, with intraclass correlation coefficients ranging from .972 to .987. Results of this study provide evidence that FoodBEAMS is a promising tool for assessing and monitoring adherence to nutrition standards for competitive foods sold on school campuses and can be used reliably by both research and nonresearch professionals. Copyright 2010 American Dietetic Association. Published by Elsevier Inc. All rights reserved.

  13. Performance of an alpha air monitor in a dusty environment

    International Nuclear Information System (INIS)

    Hoover, M.D.; Newton, G.J.; Yeh, H.C.; Seiler, F.A.; Boecker, B.B.

    1988-01-01

    The Eberline Alpha-6 Continuous Air Monitor (CAM) was evaluated for use in detecting alpha radiation from 238 Pu and 239 Pu in the presence of background aerosols of salt dust and radon progeny. The Alpha-6 method uses an embedded, multichannel analyzer and real-time computer to correct for the presence of alpha-emitting radon progeny and to accurately report plutonium air concentration in dust-free environments. However, accumulation of mg/cm 2 salt dust on the sample collection filter was found to be equivalent to an infinitely thick layer. Dust loading raises the limit of detection in proportion to the concentration of airborne salt. Proper detection of 239 Pu is impaired by airborne concentrations of salt greater than 2 mg/m 3 . Alpha spectral analysis at a central monitoring computer is recommended to avoid detection errors at higher salt concentrations. (author)

  14. Review of passive accumulation devices for monitoring organic micropollutants in the aquatic environment.

    Science.gov (United States)

    Stuer-Lauridsen, Frank

    2005-08-01

    Over the past 15 years passive sampling devices have been developed that accumulate organic micropollutants and allow detection at ambient sub ng/l concentrations. Most passive accumulation devices (PADs) are designed for 1-4 weeks field deployment, where uptake is governed by linear first order kinetics providing a time weighted average of the exposure concentration. Semipermeable membrane devices (SPMDs) are the most comprehensively studied PADs, but other samplers may also be considered for aquatic monitoring purposes. The applicability of the PADs is reviewed with respect to commonly monitored aqueous matrices and compounds, the detection limits, and for use in quantitative monitoring related to requirements embedded in the EU Water Framework Directive, the US and EU Water Quality Criteria, and the Danish monitoring aquatic programme. The PADs may monitor >75% of the organic micropollutants of the programmes. Research is warranted regarding the uptake in PADs in low flow environments and for the development of samplers for polar organic compounds.

  15. Complex monitoring of aerospace and mountain environment at Beo Mussala

    International Nuclear Information System (INIS)

    Angelov, I.; Angelov, C.; Barnekov, L. and others

    2006-01-01

    The mission of BEO Moussala is the observing, complex monitoring and studies of global change processes, aerospace and mountain environment, natural hazards and technological risks. BEO Moussala is the focal point of the BEO Centre of Excellence established and promoted in the framework of FP5 project HIMONTONET essentially improving its research capacities in frame of the FP6 project BEOBAL. The basic fields of current and future activities and studies at BEO Moussala are: global change, aerospace and mountain environment, natural hazards and technological risks and not at least development, design and enhancement of measurement devices and systems. The basic parameters and characteristics of the new measuring facilities are given and discussed from the point of view of the requirements of Global Atmospheric Watch (GAW) and Global Change Programs

  16. Icing Detection over East Asia from Geostationary Satellite Data Using Machine Learning Approaches

    Directory of Open Access Journals (Sweden)

    Seongmun Sim

    2018-04-01

    Full Text Available Even though deicing or airframe coating technologies continue to develop, aircraft icing is still one of the critical threats to aviation. While the detection of potential icing clouds has been conducted using geostationary satellite data in the US and Europe, there is not yet a robust model that detects potential icing areas in East Asia. In this study, we proposed machine-learning-based icing detection models using data from two geostationary satellites—the Communication, Ocean, and Meteorological Satellite (COMS Meteorological Imager (MI and the Himawari-8 Advanced Himawari Imager (AHI—over Northeast Asia. Two machine learning techniques—random forest (RF and multinomial log-linear (MLL models—were evaluated with quality-controlled pilot reports (PIREPs as the reference data. The machine-learning-based models were compared to the existing models through five-fold cross-validation. The RF model for COMS MI produced the best performance, resulting in a mean probability of detection (POD of 81.8%, a mean overall accuracy (OA of 82.1%, and mean true skill statistics (TSS of 64.0%. One of the existing models, flight icing threat (FIT, produced relatively poor performance, providing a mean POD of 36.4%, a mean OA of 61.0, and a mean TSS of 9.7%. The Himawari-8 based models also produced performance comparable to the COMS models. However, it should be noted that very limited PIREP reference data were available especially for the Himawari-8 models, which requires further evaluation in the future with more reference data. The spatio-temporal patterns of the icing areas detected using the developed models were also visually examined using time-series satellite data.

  17. The United States' Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA's Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission

    Science.gov (United States)

    Fishman, J.; Iraci, Laura T.; Al-Saddi, J.; Chance, K.; Chavez, F.; Chin, M.; Coble, P.; Davis, C.; DiGiacomo, P. M.; Edwards, D.; hide

    2012-01-01

    The Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission was recommended by the National Research Council's (NRC's) Earth Science Decadal Survey to measure tropospheric trace gases and aerosols and coastal ocean phytoplankton, water quality, and biogeochemistry from geostationary orbit, providing continuous observations within the field of view. To fulfill the mandate and address the challenge put forth by the NRC, two GEO-CAPE Science Working Groups (SWGs), representing the atmospheric composition and ocean color disciplines, have developed realistic science objectives using input drawn from several community workshops. The GEO-CAPE mission will take advantage of this revolutionary advance in temporal frequency for both of these disciplines. Multiple observations per day are required to explore the physical, chemical, and dynamical processes that determine tropospheric composition and air quality over spatial scales ranging from urban to continental, and over temporal scales ranging from diurnal to seasonal. Likewise, high-frequency satellite observations are critical to studying and quantifying biological, chemical, and physical processes within the coastal ocean. These observations are to be achieved from a vantage point near 95deg-100degW, providing a complete view of North America as well as the adjacent oceans. The SWGs have also endorsed the concept of phased implementation using commercial satellites to reduce mission risk and cost. GEO-CAPE will join the global constellation of geostationary atmospheric chemistry and coastal ocean color sensors planned to be in orbit in the 2020 time frame.

  18. Developing the remote sensing-based water environmental model for monitoring alpine river water environment over Plateau cold zone

    Science.gov (United States)

    You, Y.; Wang, S.; Yang, Q.; Shen, M.; Chen, G.

    2017-12-01

    Alpine river water environment on the Plateau (such as Tibetan Plateau, China) is a key indicator for water security and environmental security in China. Due to the complex terrain and various surface eco-environment, it is a very difficult to monitor the water environment over the complex land surface of the plateau. The increasing availability of remote sensing techniques with appropriate spatiotemporal resolutions, broad coverage and low costs allows for effective monitoring river water environment on the Plateau, particularly in remote and inaccessible areas where are lack of in situ observations. In this study, we propose a remote sense-based monitoring model by using multi-platform remote sensing data for monitoring alpine river environment. In this study some parameterization methodologies based on satellite remote sensing data and field observations have been proposed for monitoring the water environmental parameters (including chlorophyll-a concentration (Chl-a), water turbidity (WT) or water clarity (SD), total nitrogen (TN), total phosphorus (TP), and total organic carbon (TOC)) over the china's southwest highland rivers, such as the Brahmaputra. First, because most sensors do not collect multiple observations of a target in a single pass, data from multiple orbits or acquisition times may be used, and varying atmospheric and irradiance effects must be reconciled. So based on various types of satellite data, at first we developed the techniques of multi-sensor data correction, atmospheric correction. Second, we also built the inversion spectral database derived from long-term remote sensing data and field sampling data. Then we have studied and developed a high-precision inversion model over the southwest highland river backed by inversion spectral database through using the techniques of multi-sensor remote sensing information optimization and collaboration. Third, take the middle reaches of the Brahmaputra river as the study area, we validated the key

  19. The monitoring of radioactive contamination and radiation exposure in the environment in Germany- tasks, techniques, realizations

    International Nuclear Information System (INIS)

    Bayer, A.

    1998-01-01

    A brief historical account of the development of the monitoring of radioactivity in the environment in Germany is given. The aims of monitoring and the tasks, classified according to the possible sources of release, are presented and the methods required are described. The monitoring systems, set up on the basis of different legal principles, are presented and the technical realization of these including their current state of development, is described. Finally, an account is given of the coordination of the national monitoring systems which is at present in progress, as well as of the integration of these monitoring systems into international monitoring and information networks. (author)

  20. Design of environment monitoring system to evaluate radionuclide release from subsystem on PWR nuclear power accident

    International Nuclear Information System (INIS)

    Sri Kuntjoro; Sugiyanto; Pande Made Udiyani; Jupiter Sitorus Pane

    2012-01-01

    Nuclear Power Plan (NPP) as a renewable energy source is selected as an alternative, because it has many advantages that is environmentally friendly, fuel supply which is independent of the season, and the price that can compete with other power plants. However, the existence of some public skepticism about nuclear radiation safety, the government must be convinced about the operation of nuclear power plants are safe and secure. Research on the design of environment monitoring system for evaluation of radionuclide release from the reactor subsystems and the environment due to accidents at power reactors has been done. The study was conducted by calculating the distribution of radionuclide release into the reactor subsystem and the environment and also to build the environment radiation monitoring system. Environmental monitoring system consists of a radiation counter, early warning systems, meteorological measurement systems, GPS systems and GIS. Radiation monitoring system used to record the data of radiation, meteorological measurement system used to record data of wind and speed direction, while the GPS system is used to determine position of data measurements. The data is then transmitted to a data acquisition system and then to be transmitted to the control center. Collection and transmission of data is done via SMS formatting using a modem device that is placed in the control center. The control center receives measurement data from various places. In this case the control center has a function as an SMS Gateway. This system can visualize for different measurement locations. Furthermore, radiation data and position data to be integrated with digital maps. System integration is then visualized in a personal computer. To position of measurements directly visualized on the map and also look for the data displayed on a monitor as a red or green circle colour. That colour indicated as a safe limit of radiation monitor. When the cycle colour is red, the system will

  1. [The marine coastal water monitoring program of the Italian Ministry of the Environment].

    Science.gov (United States)

    Di Girolamo, Irene

    2003-01-01

    The Ministry of the Environment carries out marine and coastal monitoring programs with the collaboration of the coastal Regions. The program in progress (2001-2003), on the basis of results of the previous one, has identified 73 particulary significant areas (57 critical areas and 16 control areas). The program investigates several parameters on water, plancton, sediments, mollusks and benthos with analyses fortnightly, six-monthly and annual. The main aim of these three year monitoring programs is to assess the quality of national marine ecosystem.

  2. Post launch calibration and testing of the Geostationary Lightning Mapper on GOES-R satellite

    Science.gov (United States)

    Rafal, Marc; Clarke, Jared T.; Cholvibul, Ruth W.

    2016-05-01

    The Geostationary Operational Environmental Satellite R (GOES-R) series is the planned next generation of operational weather satellites for the United States National Oceanic and Atmospheric Administration (NOAA). The National Aeronautics and Space Administration (NASA) is procuring the GOES-R spacecraft and instruments with the first launch of the GOES-R series planned for October 2016. Included in the GOES-R Instrument suite is the Geostationary Lightning Mapper (GLM). GLM is a single-channel, near-infrared optical detector that can sense extremely brief (800 μs) transient changes in the atmosphere, indicating the presence of lightning. GLM will measure total lightning activity continuously over the Americas and adjacent ocean regions with near-uniform spatial resolution of approximately 10 km. Due to its large CCD (1372x1300 pixels), high frame rate, sensitivity and onboard event filtering, GLM will require extensive post launch characterization and calibration. Daytime and nighttime images will be used to characterize both image quality criteria inherent to GLM as a space-based optic system (focus, stray light, crosstalk, solar glint) and programmable image processing criteria (dark offsets, gain, noise, linearity, dynamic range). In addition ground data filtering will be adjusted based on lightning-specific phenomenology (coherence) to isolate real from false transients with their own characteristics. These parameters will be updated, as needed, on orbit in an iterative process guided by pre-launch testing. This paper discusses the planned tests to be performed on GLM over the six-month Post Launch Test period to optimize and demonstrate GLM performance.

  3. LYSIMETER - A UNIQUE TOOL FOR MONITORING THE INTERACTIONS AMONG THE COMPONENTS OF ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Ivan Matušek

    2016-06-01

    Full Text Available Modern lysimeter facilities in connection with meteorological stations allow monitoring and evaluation of mutual basic components of the environment, such as water, air, soil and vegetation. Water is the most important component of the ecosystem and the component which connects all the other components. Therefore, we need to know the basic distribution and water balance in the different components of the environment to be able to interpret some processes in nature. Rainfall, which is the primary source of vital processes in the soil, is formed in the air. The amount of precipitation that gets into the soil and into the groundwater is affected by weather conditions. Primary distribution of rainwater is divided between infiltration, surface runoff, transpiration and evapotranspiration. The amount of water infiltrated into the soil and then evaporated by solar activity or activities of plants can be identified primarily by monitoring changes in weight. For this monitoring we use weighable lysimeter. This equipment with the monolith size of surface area 1 m2 and the depth of 1.5 m is able to follow online updates of weight of the 2 ton body with an accuracy of 100 g. When we add to quantification of leakages through the bottom layer, we obtain a comprehensive record of rainfall at the time in the natural environment of the individual components. The obtained data can be further interpreted in terms of the needs of hydrology, agriculture, and environmental studies, and according to the purpose and objectives for which we want to use them.

  4. An IoT-Based Computational Framework for Healthcare Monitoring in Mobile Environments

    Directory of Open Access Journals (Sweden)

    Higinio Mora

    2017-10-01

    Full Text Available The new Internet of Things paradigm allows for small devices with sensing, processing and communication capabilities to be designed, which enable the development of sensors, embedded devices and other ‘things’ ready to understand the environment. In this paper, a distributed framework based on the internet of things paradigm is proposed for monitoring human biomedical signals in activities involving physical exertion. The main advantages and novelties of the proposed system is the flexibility in computing the health application by using resources from available devices inside the body area network of the user. This proposed framework can be applied to other mobile environments, especially those where intensive data acquisition and high processing needs take place. Finally, we present a case study in order to validate our proposal that consists in monitoring footballers’ heart rates during a football match. The real-time data acquired by these devices presents a clear social objective of being able to predict not only situations of sudden death but also possible injuries.

  5. The Global Environment Radiation Monitoring Network (GERMON)

    International Nuclear Information System (INIS)

    Zakheim, B.J.; Goellner, D.A.

    1994-01-01

    Following the Chernobyl accident in 1986, a group of experts from the World Health Organization (WHO) and the United Nations Environment Program (UNEP) met in France to discuss and develop the basic principles of a global environmental radiation monitoring network (GERMON). The basic functions of this network were to provide regular reports on environmental radiation levels and to be in a position to provide reliable and accurate radiation measurements on a quick and accurate radiation measurements on a quick turnaround basis in the event of a major radiation release. By 1992, although 58 countries had indicated an interest in becoming a part of the GERMON system, only 16 were providing data on a regular basis. This paper traces the history of GERMON from its inception in 1987 through its activities during 1993-4. It details the objectives of the network, describes functions, lists its participants, and presents obstacles in the current network. The paper examines the data requirements for radiological emergency preparedness and offers suggestions for the current system. The paper also describes the growing need for such a network. To add a domestic perspective, the authors present a summary of the environmental monitoring information system that was used by the NRC in 1986 in its analyses of the Chernobyl incident. Then we will use this 1986 experience to propose a method for the use of GERMON should a similar occasion arise in the future

  6. A Novel Method To On-Line Monitor Reactor Nuclear Power And In-Core Thermal Environments

    International Nuclear Information System (INIS)

    Liu, Hanying; Miller, Don W.; Li, Dongxu; Radcliff, Thomas D.

    2002-01-01

    For current nuclear power plants, nuclear power can not be directly measured and in-core fuel thermal environments can not be monitored due to the unavailability of an appropriate measurement technology and the inaccessibility of the fuel. If the nuclear deposited power and the in-core thermal conditions (i.e. fuel or coolant temperature and heat transfer coefficient) can be monitored in-situ, then it would play a valuable and critical role in increasing nuclear power, predicting abnormal reactor operation, improving core physical models and reducing core thermal margin so as to implement higher fuel burn-up. Furthermore, the management of core thermal margin and fuel operation may be easier during reactor operation, post-accident or spent fuel storage. On the other hand, for some advanced Generation IV reactors, the sealed and long-lived reactor core design challenges traditional measurement techniques while conventional ex-core detectors and current in-core detectors can not monitor details of the in-core fuel conditions. A method is introduced in this paper that responds to the challenge to measure nuclear power and to monitor the in-core thermal environments, for example, local fuel pin or coolant heat convection coefficient and temperature. In summary, the method, which has been designed for online in-core measurement and surveillance, will be beneficial to advanced plant safety, efficiency and economics by decreasing thermal margin or increasing nuclear power. The method was originally developed for a constant temperature power sensor (CTPS). The CTPS is undergoing design and development for an advanced reactor core to measure in-core nuclear power in measurement mode and to monitor thermal environments in compensation mode. The sensor dynamics was analyzed in compensation mode to determine the environmental temperature and the heat transfer coefficient. Previous research demonstrated that a first order dynamic model is not sufficient to simulate sensor

  7. High frequency monitoring of the coastal marine environment using the MAREL buoy.

    Science.gov (United States)

    Blain, S; Guillou, J; Tréguer, P; Woerther, P; Delauney, L; Follenfant, E; Gontier, O; Hamon, M; Leilde, B; Masson, A; Tartu, C; Vuillemin, R

    2004-06-01

    The MAREL Iroise data buoy provides physico-chemical measurements acquired in surface marine water in continuous and autonomous mode. The water is pumped 1.5 m from below the surface through a sampling pipe and flows through the measuring cell located in the floating structure. Technological innovations implemented inside the measuring cell atop the buoy allow a continuous cleaning of the sensor, while injection of chloride ions into the circuit prevents biological fouling. Specific sensors for temperature, salinity, oxygen and fluorescence investigated in this paper have been evaluated to guarantee measurement precision over a 3 month period. A bi-directional link under Internet TCP-IP protocols is used for data, alarms and remote-control transmissions with the land-based data centre. Herein, we present a 29 month record for 4 parameters measured using a MAREL buoy moored in a coastal environment (Iroise Sea, Brest, France). The accuracy of the data provided by the buoy is assessed by comparison with measurements of sea water weekly sampled at the same site as part of SOMLIT (Service d'Observation du Milieu LIToral), the French network for monitoring of the coastal environment. Some particular events (impact of intensive fresh water discharges, dynamics of a fast phytoplankton bloom) are also presented, demonstrating the worth of monitoring a highly variable environment with a high frequency continuous reliable system.

  8. Construct mine environment monitoring system based on wireless mesh network

    Science.gov (United States)

    Chen, Xin; Ge, Gengyu; Liu, Yinmei; Cheng, Aimin; Wu, Jun; Fu, Jun

    2018-04-01

    The system uses wireless Mesh network as a network transmission medium, and strive to establish an effective and reliable underground environment monitoring system. The system combines wireless network technology and embedded technology to monitor the internal data collected in the mine and send it to the processing center for analysis and environmental assessment. The system can be divided into two parts: the main control network module and the data acquisition terminal, and the SPI bus technology is used for mutual communication between them. Multi-channel acquisition and control interface design Data acquisition and control terminal in the analog signal acquisition module, digital signal acquisition module, and digital signal output module. The main control network module running Linux operating system, in which the transplant SPI driver, USB card driver and AODV routing protocol. As a result, the internal data collection and reporting of the mine are realized.

  9. Continuous Distributed Top-k Monitoring over High-Speed Rail Data Stream in Cloud Computing Environment

    Directory of Open Access Journals (Sweden)

    Hanning Wang

    2013-01-01

    Full Text Available In the environment of cloud computing, real-time mass data about high-speed rail which is based on the intense monitoring of large scale perceived equipment provides strong support for the safety and maintenance of high-speed rail. In this paper, we focus on the Top-k algorithm of continuous distribution based on Multisource distributed data stream for high-speed rail monitoring. Specifically, we formalized Top-k monitoring model of high-speed rail and proposed DTMR that is the Top-k monitoring algorithm with random, continuous, or strictly monotone aggregation functions. The DTMR was proved to be valid by lots of experiments.

  10. A Movement-Assisted Deployment of Collaborating Autonomous Sensors for Indoor and Outdoor Environment Monitoring.

    Science.gov (United States)

    Niewiadomska-Szynkiewicz, Ewa; Sikora, Andrzej; Marks, Michał

    2016-09-14

    Using mobile robots or unmanned vehicles to assist optimal wireless sensors deployment in a working space can significantly enhance the capability to investigate unknown environments. This paper addresses the issues of the application of numerical optimization and computer simulation techniques to on-line calculation of a wireless sensor network topology for monitoring and tracking purposes. We focus on the design of a self-organizing and collaborative mobile network that enables a continuous data transmission to the data sink (base station) and automatically adapts its behavior to changes in the environment to achieve a common goal. The pre-defined and self-configuring approaches to the mobile-based deployment of sensors are compared and discussed. A family of novel algorithms for the optimal placement of mobile wireless devices for permanent monitoring of indoor and outdoor dynamic environments is described. They employ a network connectivity-maintaining mobility model utilizing the concept of the virtual potential function for calculating the motion trajectories of platforms carrying sensors. Their quality and utility have been justified through simulation experiments and are discussed in the final part of the paper.

  11. SCIENTIFIC AND INNOVATIVE APPROACH TO PROBLEM PERTAINING TO EVALUATION AND MONITORING OF ENVIRONMENT QUALITY IN REPUBLIC OF BELARUS

    Directory of Open Access Journals (Sweden)

    I. V. Voytov

    2009-01-01

    Full Text Available The paper proposes a scientific and innovative approach to solution of an important problem in the field of rational nature management and ecology which presupposes realization of evaluation, analysis and monitoring of environment  quality  (EQ in Belarus.  This  approach is based on methods and  facilities  of  administrative-command  and  partially  automatic-control  management.   The  main components of the innovative approach are an automatic  system for  evaluation and monitoring of EQ including estimation and formation of nature-resource potential within 11 cadaster and other data base, general principles on evaluation and monitoring of EQ, structural and algorithmic schemes for evaluation of ecological state of administrative territories, calculation of generalized indices of nature-territorial complexes and solution of nature protection problems in respect of EQ monitoring. A system of equation calculation for the analysis and evaluation of technogenic load on main nature components of the environment (free air, water objects, soil cover, realization of monitoring function in respect of EQ and ecological state of local and urban territories, nature resources  and enterprises, pollution and state of some recipients and also data resources for execution of analytical calculations and functions directed on monitoring quality of nature components of the environment is advanced in the paper.

  12. IMAGE information monitoring and applied graphics software environment. Volume 2. Software description

    International Nuclear Information System (INIS)

    Hallam, J.W.; Ng, K.B.; Upham, G.L.

    1986-09-01

    The EPRI Information Monitoring and Applied Graphics Environment (IMAGE) system is designed for 'fast proto-typing' of advanced concepts for computer-aided plant operations tools. It is a flexible software system which can be used for rapidly creating, dynamically driving and evaluating advanced operator aid displays. The software is written to be both host computer and graphic device independent

  13. Comparative analysis of long-time variations of multicomponent ion ring current according to data of geostationary Gorizont satellite

    International Nuclear Information System (INIS)

    Kovtyukh, A.S.; Panasyuk, M.I.; Vlasova, N.A.; Sosnovets, Eh.N.

    1990-01-01

    Long-time variations of the fluxes of the H + , [N,O] 2+ and [C,N,O] 6 6 + ions with energy E/Q∼60-120 keV/e measured by the GORIZONT (1985-07A) satellite in the geostationary orbit at noon time are analyzed. The results are dsicussed and are compared with current models of the formation of the Earth's ion ring current

  14. Advancing UAS methods for monitoring coastal environments

    Science.gov (United States)

    Ridge, J.; Seymour, A.; Rodriguez, A. B.; Dale, J.; Newton, E.; Johnston, D. W.

    2017-12-01

    Utilizing fixed-wing Unmanned Aircraft Systems (UAS), we are working to improve coastal monitoring by increasing the accuracy, precision, temporal resolution, and spatial coverage of habitat distribution maps. Generally, multirotor aircraft are preferred for precision imaging, but recent advances in fixed-wing technology have greatly increased their capabilities and application for fine-scale (decimeter-centimeter) measurements. Present mapping methods employed by North Carolina coastal managers involve expensive, time consuming and localized observation of coastal environments, which often lack the necessary frequency to make timely management decisions. For example, it has taken several decades to fully map oyster reefs along the NC coast, making it nearly impossible to track trends in oyster reef populations responding to harvesting pressure and water quality degradation. It is difficult for the state to employ manned flights for collecting aerial imagery to monitor intertidal oyster reefs, because flights are usually conducted after seasonal increases in turbidity. In addition, post-storm monitoring of coastal erosion from manned platforms is often conducted days after the event and collects oblique aerial photographs which are difficult to use for accurately measuring change. Here, we describe how fixed wing UAS and standard RGB sensors can be used to rapidly quantify and assess critical coastal habitats (e.g., barrier islands, oyster reefs, etc.), providing for increased temporal frequency to isolate long-term and event-driven (storms, harvesting) impacts. Furthermore, drone-based approaches can accurately image intertidal habitats as well as resolve information such as vegetation density and bathymetry from shallow submerged areas. We obtain UAS imagery of a barrier island and oyster reefs under ideal conditions (low tide, turbidity, and sun angle) to create high resolution (cm scale) maps and digital elevation models to assess habitat condition

  15. Tritium monitoring in environment at ICIT Tritium Separation Facility

    International Nuclear Information System (INIS)

    Varlam, Carmen; Stefanescu, I.; Vagner, Irina; Faurescu, I.; Toma, A.; Dulama, C.; Dobrin, R.

    2008-01-01

    Full text: The Cryogenic Pilot is an experimental project developed within the national nuclear energy research program, which is designed to develop the required technologies for tritium and deuterium separation by cryogenic distillation of heavy water. The process used in this installation is based on a combination between liquid-phase catalytic exchange (LPCE) and cryogenic distillation. Basically, there are two ways that the Cryogenic Pilot could interact with the environment: by direct atmospheric release and through the sewage system. This experimental installation is located 15 km near the region biggest city and in the vicinity - about 1 km, of Olt River. It must be specified that in the investigated area there is an increased chemical activity; almost the entire Experimental Cryogenic Pilot's neighborhood is full of active chemical installations. This aspect is really essential for our study because the sewerage system is connected with the other three chemical plants from the neighborhood. For that reason we progressively established elements of an environmental monitoring program well in advance of tritium operation in order to determine baseline levels. The first step was the tritium level monitoring in environmental water and wastewater of industrial activity from neighborhood. In order to establish the base level of tritium concentration in the environment around the nuclear facilities, we investigated the sample preparation treatment for different types of samples: onion, green beams, grass, apple, garden lettuce, tomato, cabbage, strawberry and grapes. We used azeotropic distillation of all types of samples, the carrier solvent being toluene from different Romanian providers. All measurements for the determination of environmental tritium concentration were performed using liquid scintillation counting (LSC), with the Quantulus 1220 spectrometer. (authors)

  16. Computer simulation of spacecraft/environment interaction

    International Nuclear Information System (INIS)

    Krupnikov, K.K.; Makletsov, A.A.; Mileev, V.N.; Novikov, L.S.; Sinolits, V.V.

    1999-01-01

    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991-1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language

  17. Computer simulation of spacecraft/environment interaction

    CERN Document Server

    Krupnikov, K K; Mileev, V N; Novikov, L S; Sinolits, V V

    1999-01-01

    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991-1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language.

  18. Relations Between Self-Reported and Linguistic Monitoring Assessments of Affective Experience in an Extreme Environment.

    Science.gov (United States)

    Smith, Nathan

    2018-03-01

    Approaches for monitoring psychosocial health in challenging environments are needed to maintain the performance and safety of personnel. The purpose of the present research was to examine the relationship between 2 candidate methods (self-reported and linguistics) for monitoring affective experience during extreme environment activities. A single-subject repeated-measures design was used in the present work. The participant was a 46-year-old individual scheduled to complete a self-supported ski expedition across Arctic Greenland. The expedition lasted 28 days, and conditions included severe cold, low stimulation, whiteouts, limited habitability, and threats to life and limb. During the expedition, the participant completed a daily self-report log including assessment of psychological health (perceptions of control and affect) and a video diary (emotion). Video diary entries were subjected to linguistic inquiry and word count analyses before the links between self-report and linguistic data across the expedition period were tested. Similarities in the pattern of self-reported and linguistic assessments emerged across the expedition period. A number of predictable correlations were identified between self-reported and linguistic assessments of affective/emotional experience. Overall, there was better agreement between self-reports and linguistic analytics for indicators of negative affect/emotion. Future research should build on this initial study to further test the links between self-reported affect and emotional states monitored via linguistics. This could help develop methods for monitoring psychological health in extreme environments and support organizational decision making. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  19. A Java based environment to control and monitor distributed processing systems

    International Nuclear Information System (INIS)

    Legrand, I.C.

    1997-01-01

    Distributed processing systems are considered to solve the challenging requirements of triggering and data acquisition systems for future HEP experiments. The aim of this work is to present a software environment to control and monitor large scale parallel processing systems based on a distributed client-server approach developed in Java. One server task may control several processing nodes, switching elements or controllers for different sub-systems. Servers are designed as multi-thread applications for efficient communications with other objects. Servers communicate between themselves by using Remote Method Invocation (RMI) in a peer-to-peer mechanism. This distributed server layer has to provide a dynamic and transparent access from any client to all the resources in the system. The graphical user interface programs, which are platform independent, may be transferred to any client via the http protocol. In this scheme the control and monitor tasks are distributed among servers and network controls the flow of information among servers and clients providing a flexible mechanism for monitoring and controlling large heterogenous distributed systems. (author)

  20. Real-Time Molecular Monitoring of Chemical Environment in ObligateAnaerobes during Oxygen Adaptive Response

    Energy Technology Data Exchange (ETDEWEB)

    Holman, Hoi-Ying N.; Wozei, Eleanor; Lin, Zhang; Comolli, Luis R.; Ball, David. A.; Borglin, Sharon; Fields, Matthew W.; Hazen, Terry C.; Downing, Kenneth H.

    2009-02-25

    Determining the transient chemical properties of the intracellular environment canelucidate the paths through which a biological system adapts to changes in its environment, for example, the mechanisms which enable some obligate anaerobic bacteria to survive a sudden exposure to oxygen. Here we used high-resolution Fourier Transform Infrared (FTIR) spectromicroscopy to continuously follow cellular chemistry within living obligate anaerobes by monitoring hydrogen bonding in their cellular water. We observed a sequence of wellorchestrated molecular events that correspond to changes in cellular processes in those cells that survive, but only accumulation of radicals in those that do not. We thereby can interpret the adaptive response in terms of transient intracellular chemistry and link it to oxygen stress and survival. This ability to monitor chemical changes at the molecular level can yield important insights into a wide range of adaptive responses.

  1. APPLICATION OF KATG::LUX GENE CONSTRUCT FOR CYTOTOXICITY AND GENOTOXICITY MONITORING OF METOPROLOL IN ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Eliza Hawrylik

    2017-06-01

    Full Text Available The aim of the study was the evaluation of usefulness of Escherichia coli K-12 RFM 443 katG::lux for cytotoxicity and genotoxicity monitoring of metoprolol in the environment. Metoprolol is one of the most popular cardiac drug which belongs to the group of β – blockers. The drug was applied at concentrations ranging from 10-1 mg/cm3 to 10-5 mg/cm3. Obtained data indicated the influence of metoprolol on lux gene expression and katG promotor activity in E.coli K-12. The results indicato the possibility of using of Escherichia coli K-12 RFM 443 strain with katG::lux gene construct in the monitoring of cytotoxicity and genotoxicity cardiac drug residues in the environment.

  2. Glacial and periglacial environment monitoring in Aosta Valley - Northwestern Italian Alps

    Science.gov (United States)

    Motta, Elena; Cremonese, Edoardo; Morra di Cella, Umberto; Pogliotti, Paolo; Vagliasindi, Marco

    2010-05-01

    Aosta Valley is a small alpine region of about 3.300 km2 located in the NW Italy, on the southern side of the Alps and surrounded by the highest Alpine peaks such as Mont Blanc (4810m), Mont Rose (4634m) and Cervino (4478m), More than 50% of the territory has an elevation above 2000 metres asl. High mountain, glacial and periglacial environments cover a significant part of the territory. As the cryosphere is strongly sensitive to climate change, global warming effects are particularly evident in this alpine region, and they often affect environment and social and economic life, thus representing a key issue for politicians and people working and living in the valley. Among these effects, some of the most important are the decrease of water storage due to glaciers retreat and the increasing natural hazards as a consequence of rapid environmental dynamics. Hence the importance of monitoring glacial and periglacial environment, in order to quantify effects of climate change, to detect new dynamics and to manage consequences on the environment and the social life. In Aosta Valley the understanding of these phenomena is carried out by means of several actions, both at a regional scale and on specific representative sites. A multi-temporal analysis of aerial photographs, orthophotos and satellite imagery allows to detect glaciers evolution trend at a regional scale. All this information is collected in a Regional Glacier inventory, according to the World Glaciers Inventory standard and recommendations. Analysis of the information collected in the Inventory show that the total area presently covered by glaciers is about 135 km2; area changes occurred in the past has been about -44.3 km2, and -17 km2. between 1975 and 2005. Glacier inventory also gathers - for each of the about 200 glaciers - morphological data, information about events and photos both historical and present. Glacier mass balance (the difference resulting from the mass gained by the glacier through the

  3. Diurnal remote sensing of coastal/oceanic waters: a radiometric analysis for Geostationary Coastal and Air Pollution Events.

    Science.gov (United States)

    Pahlevan, Nima; Lee, Zhongping; Hu, Chuanmin; Schott, John R

    2014-02-01

    Optical remote sensing systems aboard geostationary platforms can provide high-frequency observations of bio-optical properties in dynamical coastal/oceanic waters. From the end-user standpoint, it is recognized that the fidelity of daily science products relies heavily on the radiometric sensitivity/performance of the imaging system. This study aims to determine the theoretical detection limits for bio-optical properties observed diurnally from a geostationary orbit. The analysis is based upon coupled radiative transfer simulations and the minimum radiometric requirements defined for the GEOstationary Coastal and Air Pollution Events (GEO-CAPE) mission. The diurnal detection limits are found for the optically active constituents of water, including near-surface concentrations of chlorophyll-a (CHL) and total suspended solids (TSS), and the absorption of colored dissolved organic matter (aCDOM). The diurnal top-of-atmosphere radiance (Lt) is modeled for several locations across the field of regard (FOR) to investigate the radiometric sensitivity at different imaging geometries. It is found that, in oceanic waters (CHL=0.07  mg/m3), detecting changes smaller than 0.01  mg/m3 in CHL is feasible for all locations and hours except for late afternoon observations on the edge of the FOR. For more trophic/turbid waters (0.6

  4. Robot Vision to Monitor Structures in Invisible Fog Environments Using Active Imaging Technology

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seungkyu; Park, Nakkyu; Baik, Sunghoon; Choi, Youngsoo; Jeong, Kyungmin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Active vision is a direct visualization technique using a highly sensitive image sensor and a high intensity illuminant. Range-gated imaging (RGI) technique providing 2D and 3D images is one of emerging active vision technologies. The RGI technique extracts vision information by summing time sliced vision images. In the RGI system, objects are illuminated for ultra-short time by a high intensity illuminant and then the light reflected from objects is captured by a highly sensitive image sensor with the exposure of ultra-short time. The RGI system provides 2D and 3D image data from several images and it moreover provides clear images from invisible fog and smoke environment by using summing of time-sliced images. Nowadays, the Range-gated (RG) imaging is an emerging technology in the field of surveillance for security applications, especially in the visualization of invisible night and fog environment. Although RGI viewing was discovered in the 1960's, this technology is, nowadays, more and more applicable by virtue of the rapid development of optical and sensor technologies, such as highly sensitive imaging sensor and ultra-short pulse laser light. In contrast to passive vision systems, this technology enables operation even in harsh environments like fog and smoke. During the past decades, several applications of this technology have been applied in target recognition and in harsh environments, such as fog, underwater vision. Also, this technology has been demonstrated 3D imaging based on range-gated imaging. In this paper, a robot system to monitor structures in invisible fog environment is developed using an active range-gated imaging technique. The system consists of an ultra-short pulse laser device and a highly sensitive imaging sensor. The developed vision system is carried out to monitor objects in invisible fog environment. The experimental result of this newly approach vision system is described in this paper. To see invisible objects in fog

  5. Robot Vision to Monitor Structures in Invisible Fog Environments Using Active Imaging Technology

    International Nuclear Information System (INIS)

    Park, Seungkyu; Park, Nakkyu; Baik, Sunghoon; Choi, Youngsoo; Jeong, Kyungmin

    2014-01-01

    Active vision is a direct visualization technique using a highly sensitive image sensor and a high intensity illuminant. Range-gated imaging (RGI) technique providing 2D and 3D images is one of emerging active vision technologies. The RGI technique extracts vision information by summing time sliced vision images. In the RGI system, objects are illuminated for ultra-short time by a high intensity illuminant and then the light reflected from objects is captured by a highly sensitive image sensor with the exposure of ultra-short time. The RGI system provides 2D and 3D image data from several images and it moreover provides clear images from invisible fog and smoke environment by using summing of time-sliced images. Nowadays, the Range-gated (RG) imaging is an emerging technology in the field of surveillance for security applications, especially in the visualization of invisible night and fog environment. Although RGI viewing was discovered in the 1960's, this technology is, nowadays, more and more applicable by virtue of the rapid development of optical and sensor technologies, such as highly sensitive imaging sensor and ultra-short pulse laser light. In contrast to passive vision systems, this technology enables operation even in harsh environments like fog and smoke. During the past decades, several applications of this technology have been applied in target recognition and in harsh environments, such as fog, underwater vision. Also, this technology has been demonstrated 3D imaging based on range-gated imaging. In this paper, a robot system to monitor structures in invisible fog environment is developed using an active range-gated imaging technique. The system consists of an ultra-short pulse laser device and a highly sensitive imaging sensor. The developed vision system is carried out to monitor objects in invisible fog environment. The experimental result of this newly approach vision system is described in this paper. To see invisible objects in fog

  6. Neutron-activation method of monitoring of the environment

    International Nuclear Information System (INIS)

    Sattarov, G.S.; Muzafarov, A.M.; Komilov, J.M.; Kadirov, F.; Kist, A.A.

    2004-01-01

    Full text: Estimation of technogenic influences of the industrial enterprises on an environment, in particular, on ground and underground waters, was carried out by the fragmentary analysis of their element structure. In the report application of neutron-activation analysis (NAA) for monitoring an environment is considered. The total contents of elements was determined by NAA method with use of a reactor such as WWR-SM. Values of factors of correlation (K) are calculated with use of the computer, by special algorithm and reception of numerical values between 30 elements in the samples selected by a traditional technique from more than 600 points in area of activity GMZ-2. The developed technique has allowed to reveal elements indicators of technogenic (As, Ag, Sb, W, Au), mixed (Mo, Ba, Hg) and natural (Sc, Fe, Co, Ni, Rb, Cs, REE, Hf, Th, U) origins. Change of the total contents of elements in underground waters which were selected from observant chinks quarterly within three years is investigated. The technique of definition of forms of a presence of elements in underground and the sewage, based on electrodialysis division of ions with use nuclear (on a basis polyethyleneterephtalate film) filters with a diameter of pores of 0,16x0,2 micrometres is developed

  7. Trends in monitoring pharmaceuticals and personal-care products in the aquatic environment by use of passive sampling devices

    Science.gov (United States)

    Mills, G.A.; Vrana, B.; Allan, I.; Alvarez, D.A.; Huckins, J.N.; Greenwood, R.

    2007-01-01

    The use of passive sampling in monitoring pharmaceuticals and personal-care products (PPCPs) in the aquatic environment is discussed. The utility of passive sampling methods for monitoring the fraction of heavy metals and the biologically available fraction of non-polar organic priority pollutants is recognized and these technologies are being used in surveys of water quality. These devices are used to measure the dissolved fraction and they can yield information that can be used in the development of risk assessments models. These devices can also be used to locate illegal dumping and to monitor specific sources of input of PPCPs into the environment, or to monitor the effectiveness of water treatment processes in the removal of these compounds from wastewater. These devices can provide representative information at low cost which necessitate a combination of laboratory calibration and field studies for emerging pollutants.

  8. Environmental survey near a decommissioning nuclear facility: example of tritium monitoring in the terrestrial environment of Creys-Malville - Environmental survey near a nuclear facility undergoing decommissioning: example of tritium monitoring in the terrestrial environment of Creys-Malville

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, C.; Gontier, G.; Chauveau, J.L. [EDF CIDEN, Division Environnement, 154 Avenue Thiers, 69458 Lyon (France); Pourcelot, L.; Roussel-Debet, S.; Cossonnet, P.C. [IRSN, LERCM Cadarache and LMRE Orsay (France); Jean-Baptiste, P. [LSCE, UMR 1572-CEA/CNRS/UVQS, 91198 Gif sur Yvette (France)

    2014-07-01

    As part of the regulatory environmental monitoring around its nuclear power plants (NPP) in France, EDF carries out more than 40.000 measurements of radionuclides in the environment every year. In addition, EDF performs more detailed radioecological surveys on all of its sites. The purposes of these surveys are: 1/ to control that radioactive discharge limits prescribed by the regulatory authority are respected, 2/ to monitor the environment of the NPPs to verify normal plant operation and to detect all possible failures in power station operation at an early stage and 3/ to establish if there is any increase of radionuclides of anthropogenic origin in the environment and to determine whether this build-up can be attributed to plant operations. Radioecological surveys are conducted in the environment surrounding each of EDF's NPPs. Samples are collected in surrounding ecosystems (terrestrial and aquatic) where the radioactive releases are discharged (liquid and gaseous discharges). These surveys results enable the examination of the spatial distribution and temporal variability of radionuclide activity in the environment throughout the reactors life, from the first fuel load to the decommissioning of the plant. The results from this monitoring have shown that EDF's nuclear power plants have only a minor effect on radionuclide levels in the environment. These results highlight the efficiency of EDF's efforts to minimise its impacts on the environment via an efficient waste management system and high operating standards of its plants. In particular, tritium is subject to special monitoring for more than 30 years; concentrations of free tritium and organically bound tritium in major environmental compartments are therefore well-known in the vicinity of French NPPs. At the end of a reactor's life, EDF has collected a large amount of reference data before decommissioning operations start. During these operations, EDF pursue the radioecological survey

  9. Comparison Study of Lightning observations from VHF interferometer and Geostationary Lightning Mapper

    Science.gov (United States)

    Kudo, A.; Stock, M.; Ushio, T.

    2017-12-01

    We compared the optical observation from Geostationary Lightning Mapper (GLM) which is mounted on the geostationary meteorological satellite GOES-16 launched last year, and the radio observations from the ground-based VHF broad band interferometer. GLM detects 777.4 nm wavelength infrared optical signals from thunderstorm cells which are illuminated by the heated path during lightning discharge, and was developed mainly for the purpose of increasing the lead time for warning of severe weather and clarifying the discharge mechanism. Its detection has 2 ms frame rate, and 8 km square of space resolution at nadir. The VHF broad band interferometer is able to capture the electromagnetic waves from 20 MHz to 75 MHz and estimate the direction of arrival of the radiation sources using the interferometry technique. This system also has capability of observing the fast discharge process which cannot be captured by other systems, so it is expected to able to make detailed comparison. The recording duration of the system is 1 second. We installed the VHF broad band interferometer which consists of three VHF antenna and one fast antenna at Huntsville, Alabama from April 22nd to May 15th and in this total observation period, 720 triggers of data were observed by the interferometer. For comparison, we adopted the data from April 27th , April 30th. Most April 27th data has GLM "event" detection which is coincident time period. In time-elevation plot comparison, we found GLM detection timing was well coincide with interferometer during K-changes or return strokes and few detection during breakdown process. On the other hand, no GLM detection near the site for all data in April 30th and we are triyng to figure out the reason. We would like to thank University of Alabama Huntsville, New Mexico Institute of Mining and Technology, and RAIRAN Pte. Ltd for the help during the campaign.

  10. InSAR atmospheric correction using Himawari-8 Geostationary Meteorological Satellite

    Science.gov (United States)

    Kinoshita, Y.; Nimura, T.; Furuta, R.

    2017-12-01

    The atmospheric delay effect is one of the limitations for the accurate surface displacement detection by Synthetic Aperture Radar Interferometry (InSAR). Many previous studies have attempted to mitigate the neutral atmospheric delay in InSAR (e.g. Jolivet et al. 2014; Foster et al. 2006; Kinoshita et al. 2013). Hanssen et al. (2001) investigated the relationship between the 27 hourly observations of GNSS precipitable water vapor (PWV) and the infrared brightness temperature derived from visible satellite imagery, and showed a good correlation. Here we showed a preliminary result of the newly developed method for the neutral atmospheric delay correction using the Himawari-8 Japanese geostationary meteorological satellite data. The Himawari-8 satellite is the Japanese state-of-the-art geostationary meteorological satellite that has 16 observation channels and has spatial resolutions of 0.5 km (visible) and 2.0 km (near-infrared and infrared) with an time interval of 2.5 minutes around Japan. To estimate the relationship between the satellite brightness temperature and the atmospheric delay amount. Since the InSAR atmospheric delay is principally the same as that in GNSS, we at first compared the Himawari-8 data with the GNSS zenith tropospheric delay data derived from the Japanese dense GNSS network. The comparison of them showed that the band with the wavelength of 6.9 μm had the highest correlation to the GNSS observation. Based on this result, we developed an InSAR atmospheric delay model that uses the Himawari-8 6.9 μm band data. For the model validation, we generated InSAR images from the ESA's C-band Sentinel-1 SLC data with the GAMMA SAR software. We selected two regions around Tokyo and Sapporo (both in Japan) as the test sites because of the less temporal decorrelation. The validation result showed that the delay model reasonably estimate large scale phase variation whose spatial scale was on the order of over 20 km. On the other hand, phase variations of

  11. Summary 1998. Releases control and environment monitoring for the CEA Centers

    International Nuclear Information System (INIS)

    1998-01-01

    In the framework of its environmental policy, the CEA aims at reduce as weak as possible, in regards to the technological and economic needs, its activities impacts on the people and the environment. This paper contributes to the public information on the radioactive gaseous and liquid releases during the year 1998. It presents data on the releases and the radioactivity levels around the CEA sites and gathers the associated regulation and monitoring methods. (A.L.B.)

  12. Ionic ring current during magnetic disturbances according to observations at geostationary orbit

    International Nuclear Information System (INIS)

    Vlasova, N.A.; Kovtyukh, A.S.; Panasyuk, M.I.; Sosnovets, Eh.N.; Grafodanskij, O.S.; Islyaev, Sh.N.; Kozlov, A.G.

    1988-01-01

    Experimental data on variations of H + , (N,O) 2+ and (C,N,O) 4+ flows acquired at communication geostationary satellite GORIZONT (1985-07A) during and after weak magnetic disturbances (with amplitudes of D st -variations which are less than a few tens of nT) are analyzed. Dynamics of ion relative content is investigated. Change of ring current ionic composition within ∼ 50-120 keV/c energy range characterized by the increase of relative content of heavy ions of both solar and ionospheric origin was observed after two weak geomagnetic disturbances on 19-20.02 and 07.03.1985. Examples of disturbances where H + ions and (N,O) 2+ ionospheric ions are the main components of the injected ring current are presented along with the disturbances of such type

  13. Passive sampling in regulatory chemical monitoring of nonpolar organic compounds in the aquatic environment

    NARCIS (Netherlands)

    Booij, K.; Robinson, C.D.; Burgess, R.M.; Mayer, P.; Roberts, C.A.; Ahrens, L.; Allan, I.J.; Brant, J.; Jones, L.; Kraus, U.R.; Larsen, M.M.; Lepom, P.; Petersen, J.; Pröfrock, D.; Roose, P.; Schäfer, S.; Smedes, F.; Tixier, C.; Vorkamp, K.; Whitehouse, P.

    2016-01-01

    We reviewed compliance monitoring requirements in the EuropeanUnion, the United States, and the Oslo-Paris Convention for the protection of themarine environment of the North-East Atlantic, and evaluated if these are met bypassive sampling methods for nonpolar compounds. The strengths

  14. A Movement-Assisted Deployment of Collaborating Autonomous Sensors for Indoor and Outdoor Environment Monitoring

    Directory of Open Access Journals (Sweden)

    Ewa Niewiadomska-Szynkiewicz

    2016-09-01

    Full Text Available Using mobile robots or unmanned vehicles to assist optimal wireless sensors deployment in a working space can significantly enhance the capability to investigate unknown environments. This paper addresses the issues of the application of numerical optimization and computer simulation techniques to on-line calculation of a wireless sensor network topology for monitoring and tracking purposes. We focus on the design of a self-organizing and collaborative mobile network that enables a continuous data transmission to the data sink (base station and automatically adapts its behavior to changes in the environment to achieve a common goal. The pre-defined and self-configuring approaches to the mobile-based deployment of sensors are compared and discussed. A family of novel algorithms for the optimal placement of mobile wireless devices for permanent monitoring of indoor and outdoor dynamic environments is described. They employ a network connectivity-maintaining mobility model utilizing the concept of the virtual potential function for calculating the motion trajectories of platforms carrying sensors. Their quality and utility have been justified through simulation experiments and are discussed in the final part of the paper.

  15. Final annual report of the Partial monitoring system 'Radioactivity of the environment' 2014

    International Nuclear Information System (INIS)

    Melicherova, T.; Cabanekova, H.; Bodorova, J.

    2015-01-01

    The present report evaluates activities of radiation monitoring of Slovak Hydrometeorological Institute (SHMI) in 2014. Analytical part focuses on detailed statistical analysis of monitored data. Detailed knowledge of the course of time series during uneventful period enables early detect and analyze potential increase of radioactivity levels in the environment originating from domestic or foreign sources. SHMI is responsible for international data exchange with the European Commission and with partners in Austria and Hungary.

  16. METHODS OF STATISTICAL MONITORING OF PROFESSIONAL ORIENTATION WORK OF SOCIAL EDUCATORS IN PERSONAL LEARNING ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    Oleksandr M. Korniiets

    2012-12-01

    Full Text Available The article deals with the application of social services WEB 2.0 for personal learning environment creation that is used for professional orientation work of social educator. The feedback is must be in personal learning environment for the effective professional orientation work. This feedback can be organized through statistical monitoring. The typical solution for organizing personal learning environment with built-in statistical surveys and statistical data processing is considered in the article. The possibilities of the statistical data collection and processing services on the example of Google Analytics are investigated.

  17. Combined high and low-thrust geostationary orbit insertion with radiation constraint

    Science.gov (United States)

    Macdonald, Malcolm; Owens, Steven Robert

    2018-01-01

    The sequential use of an electric propulsion system is considered in combination with a high-thrust propulsion system for application to the propellant-optimal Geostationary Orbit insertion problem, whilst considering both temporal and radiation flux constraints. Such usage is found to offer a combined propellant mass saving when compared with an equivalent high-thrust only transfer. This propellant mass saving is seen to increase as the allowable transfer duration is increased, and as the thrust from the low-thrust system is increased, assuming constant specific impulse. It was found that the required plane change maneuver is most propellant-efficiently performed by the high-thrust system. The propellant optimal trajectory incurs a significantly increased electron flux when compared to an equivalent high-thrust only transfer. However, the electron flux can be reduced to a similar order of magnitude by increasing the high-thrust propellant consumption, whilst still delivering an improved mass fraction.

  18. Monitoring aquatic environment pollution: a major component of environment management systems

    International Nuclear Information System (INIS)

    Khan, I.H.; Khan, M.H.; Sheikh, I.M.

    1999-01-01

    The paper is based on the international experiences mostly of the UK (United Kingdom) and Europe on monitoring aquatic pollution and controlling water pollution which have a long history of the legislation involved. The U.K. control of water pollution and regulatory laws are very effective as in shown by the fact that 96 percent of rivers in England and Wales are suitable for potable supplies with conventional water treatment. Current British legislation is basically contained n the 1951, 1960 and 1974 acts of parliament in the U.K. A common feature of all this environment legislation is the high level of consultation which has taken place between government and all concerned and al those concerned in the development of legislation and drawing up regulations etc. and involved in implementation of them. Similarly considerable discussion takes place with the controlling authorities by dischargers over the detailed implementation of legislation in the U.K. Consequently these harmonious attitudes have been responsible for the effectiveness of the U.K. legislation. In the U.K. control of discharges of industrial effluents to sewers and to all natural waters including underground water is vested in the regional water authorities, which on application, issue consent permitting discharges of industrial effluents to sewers and to all natural waters including underground waters in vested in the regional water authorities, which on application, issue consent permitting discharges to be made subject to conditions and limitations in the consent/authorisation/approval. The paper critically reviews major aspects of the philosophy of aquatic pollution control and monitoring, as statistics reveal deadly state of liquid effluent contamination water bodies in Pakistan. Without prompt installation of treatment plants we may face a tragedy of catastrophic magnitude. (author)

  19. Macrobrachium amazonicum: an alternative for microbiological monitoring of aquatic environments in Brazil

    Directory of Open Access Journals (Sweden)

    Raimunda Sâmia Nogueira Brilhante

    2014-11-01

    Full Text Available This study aimed to evaluate the role of the Amazon River prawn, Macrobrachium amazonicum, as carrier of Candida spp., by analyzing the correlation between Candida spp. from these prawns and their environment (surface water and sediment, through M13-PCR fingerprinting and RAPD-PCR. For this purpose, 27 strains of Candida spp. were evaluated. These strains were recovered from the gastrointestinal tract of adult M. amazonicum (7/27 from Catú Lake, Ceará State, Brazil and from the aquatic environment (surface water and sediment of this lake (20/27. Molecular comparison between the strains from prawns and the aquatic environment was conducted by M13-PCR fingerprinting and RAPD-PCR, utilizing the primers M13 and OPQ16, respectively. The molecular analysis revealed similarities between the band patterns of eight Candida isolates with the primer M13 and 11 isolates with the primer OPQ16, indicating that the same strains are present in the digestive tract of M. amazonicum and in the aquatic environment where these prawns inhabit. Therefore, these prawns can be used as sentinels for environmental monitoring through the recovery of Candida spp. from the aquatic environment in their gastrointestinal tract

  20. Radioactivity monitoring of the Irish marine environment 1993 to 1995

    International Nuclear Information System (INIS)

    Pollard, D.; Long, S.; Hayden, E.; Smith, V.; Ryan, T.P.; Dowdall, A.; McGarry, A.; Cunningham, J.D.

    1996-10-01

    This report presents the results of the marine radioactivity monitoring programme carried out by the Radiological Protection Institute of Ireland during the period 1993 to 1995. The principal objective of this programme is to assess the exposure to the Irish population arising from radioactive contamination in the Irish marine environment and to estimate the risks to human health arising from such exposure. In addition, the programme aims to assess the distribution of the significant contaminating radionuclides in the marine environment and to identify tends with a view to assessing possible future effects. The results show that by 1995 the mean concentration of caesium-137 in fish landed at north-east ports had fallen to 1.6 Bq/kg, from a figure of 68 Bq/kg in 1979-82 and 3.0 Bq/kg in 1993. A similar decline is evident for seawater, sediment and seaweed. In addition, the Irish Sea data show the progressive dilution of artificial radioactivity with increasing distance from Sellafield

  1. Inter-comparison of personal monitors for nanoparticles exposure at workplaces and in the environment

    NARCIS (Netherlands)

    Todea, A.M.; Beckmann, S.; Kaminski, H.; Bard, D.; Bau, S.; Clavaguera, S.; Dahmann, D.; Dozol, H.; Dziurowitz, N.; Elihn, K.; Fierz, M.; Lidén, G.; Meyer-Plath, A.; Monz, C.; Neumann, V.; Pelzer, J.; Simonow, B.K.; Thali, P.; Tuinman, I.; Vleuten, A. van der; Vroomen, H.; Asbach, C.

    2017-01-01

    Personal monitors based on unipolar diffusion charging (miniDiSC/DiSCmini, NanoTracer, Partector) can be used to assess the individual exposure to nanoparticles in different environments. The charge acquired by the aerosol particles is nearly proportional to the particle diameter and, by

  2. Configuration Management and Infrastructure Monitoring Using CFEngine and Icinga for Real-time Heterogeneous Data Taking Environment

    Science.gov (United States)

    Poat, M. D.; Lauret, J.; Betts, W.

    2015-12-01

    The STAR online computing environment is an intensive ever-growing system used for real-time data collection and analysis. Composed of heterogeneous and sometimes groups of custom-tuned machines, the computing infrastructure was previously managed by manual configurations and inconsistently monitored by a combination of tools. This situation led to configuration inconsistency and an overload of repetitive tasks along with lackluster communication between personnel and machines. Globally securing this heterogeneous cyberinfrastructure was tedious at best and an agile, policy-driven system ensuring consistency, was pursued. Three configuration management tools, Chef, Puppet, and CFEngine have been compared in reliability, versatility and performance along with a comparison of infrastructure monitoring tools Nagios and Icinga. STAR has selected the CFEngine configuration management tool and the Icinga infrastructure monitoring system leading to a versatile and sustainable solution. By leveraging these two tools STAR can now swiftly upgrade and modify the environment to its needs with ease as well as promptly react to cyber-security requests. By creating a sustainable long term monitoring solution, the detection of failures was reduced from days to minutes, allowing rapid actions before the issues become dire problems, potentially causing loss of precious experimental data or uptime.

  3. The monitoring of the terrestrial environment around Almirante Alvaro Alberto nuclear power station

    International Nuclear Information System (INIS)

    Tavares, P.G.; Souza, R.F.; Cardoso, S.N.M.

    2011-01-01

    The goal of this paper is to evaluate the environmental monitoring around Almirante Alvaro Alberto Nuclear Power Station after the beginning the operation of Unit II, in July 2000. The Environmental Monitoring Laboratory (EML) has, for purpose, to monitor the environment around the station to verify if there is a potential impact caused by the operation of the units. The EML collects several environmental samples and analyses radiometrically to determine the presence of artificial radionuclides. The types of the samples are marine samples (sea water, fish, algae, beach sand and sediments), terrestrial (milk, banana, soil, grass, superficial and underground water and river water and sediment) and aerial samples (rain water, airborne for iodine and particulate). This paper only describes the monitoring of terrestrial samples. At the EML, the samples are prepared and analysed following international procedures. The samples of milk, banana, soil, grass, surface and underground water, river water and river sediment are analysed by gamma spectrometry in a multi-channel analyser GENIE-2000 System with High-purity Germanium (HpGe) detectors to determine the activities of the detectable radionuclides. The EML also analyses tritium in surface water by liquid scintillation counting. In addition, analysis of 89 Sr/ 9 0 Sr, by beta counting and 131 I by gamma spectrometry are performed in the processed milk. The results are, then, compared with those obtained in pre-operational time of Angra 1 (1978 - 1982) and those obtained in operational time of the units until 2010. The results show us that, from 1982 until now, there is no impact in terrestrial environment caused by the operation neither of Angra 1 nor both Angra 1 and Angra 2. (author)

  4. The monitoring of the terrestrial environment around Almirante Alvaro Alberto nuclear power station

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, P.G.; Souza, R.F.; Cardoso, S.N.M., E-mail: pgtares@eletronuclear.gov.b, E-mail: rfsouza@eletronuclear.gov.b, E-mail: sergion@eletronuclear.gov.b [ELETROBRAS Eletronuclear S.A., Paraty, RJ (Brazil). Lab. de Monitoracao Ambiental

    2011-07-01

    The goal of this paper is to evaluate the environmental monitoring around Almirante Alvaro Alberto Nuclear Power Station after the beginning the operation of Unit II, in July 2000. The Environmental Monitoring Laboratory (EML) has, for purpose, to monitor the environment around the station to verify if there is a potential impact caused by the operation of the units. The EML collects several environmental samples and analyses radiometrically to determine the presence of artificial radionuclides. The types of the samples are marine samples (sea water, fish, algae, beach sand and sediments), terrestrial (milk, banana, soil, grass, superficial and underground water and river water and sediment) and aerial samples (rain water, airborne for iodine and particulate). This paper only describes the monitoring of terrestrial samples. At the EML, the samples are prepared and analysed following international procedures. The samples of milk, banana, soil, grass, surface and underground water, river water and river sediment are analysed by gamma spectrometry in a multi-channel analyser GENIE-2000 System with High-purity Germanium (HpGe) detectors to determine the activities of the detectable radionuclides. The EML also analyses tritium in surface water by liquid scintillation counting. In addition, analysis of {sup 89}Sr/{sup 90}Sr, by beta counting and {sup 131}I by gamma spectrometry are performed in the processed milk. The results are, then, compared with those obtained in pre-operational time of Angra 1 (1978 - 1982) and those obtained in operational time of the units until 2010. The results show us that, from 1982 until now, there is no impact in terrestrial environment caused by the operation neither of Angra 1 nor both Angra 1 and Angra 2. (author)

  5. GHRSST Level 2P West Atlantic Regional Skin Sea Surface Temperature from the Geostationary Operational Environmental Satellites (GOES) Imager on the GOES-12 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Geostationary Operational Environmental Satellites (GOES) operated by the United States National Oceanic and Atmospheric Administration (NOAA) support weather...

  6. GHRSST Level 2P Eastern Pacific Regional Skin Sea Surface Temperature from the Geostationary Operational Environmental Satellites (GOES) Imager on the GOES-11 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Geostationary Operational Environmental Satellites (GOES) operated by the United States National Oceanic and Atmospheric Administration (NOAA) support weather...

  7. Derivation and evaluation of land surface temperature from the geostationary operational environmental satellite series

    Science.gov (United States)

    Fang, Li

    The Geostationary Operational Environmental Satellites (GOES) have been continuously monitoring the earth surface since 1970, providing valuable and intensive data from a very broad range of wavelengths, day and night. The National Oceanic and Atmospheric Administration's (NOAA's) National Environmental Satellite, Data, and Information Service (NESDIS) is currently operating GOES-15 and GOES-13. The design of the GOES series is now heading to the 4 th generation. GOES-R, as a representative of the new generation of the GOES series, is scheduled to be launched in 2015 with higher spatial and temporal resolution images and full-time soundings. These frequent observations provided by GOES Image make them attractive for deriving information on the diurnal land surface temperature (LST) cycle and diurnal temperature range (DTR). These parameters are of great value for research on the Earth's diurnal variability and climate change. Accurate derivation of satellite-based LSTs from thermal infrared data has long been an interesting and challenging research area. To better support the research on climate change, the generation of consistent GOES LST products for both GOES-East and GOES-West from operational dataset as well as historical archive is in great demand. The derivation of GOES LST products and the evaluation of proposed retrieval methods are two major objectives of this study. Literature relevant to satellite-based LST retrieval techniques was reviewed. Specifically, the evolution of two LST algorithm families and LST retrieval methods for geostationary satellites were summarized in this dissertation. Literature relevant to the evaluation of satellite-based LSTs was also reviewed. All the existing methods are a valuable reference to develop the GOES LST product. The primary objective of this dissertation is the development of models for deriving consistent GOES LSTs with high spatial and high temporal coverage. Proper LST retrieval algorithms were studied

  8. Correlated observations of intensified whistler waves and electron acceleration around the geostationary orbit

    International Nuclear Information System (INIS)

    Xiao Fuliang; He Zhaoguo; Tang Lijun; Zong Qiugang; Wang Chengrui; Su Zhenpeng

    2012-01-01

    We report correlated observations of enhanced whistler waves and energetic electron acceleration collected by multiple satellites specifically near the geostationary orbit during the 7–10 November 2004 superstorms, together with multi-site observations of ULF wave power measured on the ground. Energetic (>0.6 MeV) electron fluxes are found to increase significantly during the recovery phase, reaching a peak value by ∼100 higher than the prestorm level. In particular, such high electron flux corresponds to intensified whistler wave activities but to the weak ULF wave power. This result suggests that wave–particle interaction appears to be more important than inward radial diffusion in acceleration of outer radiation belt energetic electrons in this event, assisting to better understand the acceleration mechanism. (paper)

  9. Distributed computing environment monitoring and user expectations

    International Nuclear Information System (INIS)

    Cottrell, R.L.A.; Logg, C.A.

    1996-01-01

    This paper discusses the growing needs for distributed system monitoring and compares it to current practices. It then goes to identify the components of distributed system monitoring and shows how they are implemented and successfully used at one site today to address the Local area Network (WAN), and host monitoring. It shows how this monitoring can be used to develop realistic service level expectations and also identifies the costs. Finally, the paper briefly discusses the future challenges in network monitoring. (author)

  10. Modeling directional effects in land surface temperature derived from geostationary satellite data

    DEFF Research Database (Denmark)

    Rasmussen, Mads Olander

    This PhD-thesis investigates the directional effects in land surface temperature (LST) estimates from the SEVIRI sensor onboard the Meteosat Second Generation (MSG) satellites. The directional effects are caused by the land surface structure (i.e. tree size and shape) interacting with the changing...... sun-target-sensor geometry. The directional effects occur because the different surface components, e.g. tree canopies and bare soil surfaces, will in many cases have significantly different temperatures. Depending on the viewing angle, different fractions of each of the components will be viewed...... by the sensor. This is further complicated by temperature differences between the sunlit and shaded parts of each of the components, controlled by the exposure of the components to direct sunlight. As the SEVIRI sensor is onboard a geostationary platform, the viewing geometry is fixed (for each pixel), while...

  11. Quality assurance for the measurements and monitoring of radioactivity in the environment

    International Nuclear Information System (INIS)

    Betti, Maria; Aldave de las Heras, Laura

    2004-01-01

    During the Fifth Framework Programme (FP5) of the European Commission--according to an institutional programme in support to the policy of the European Commission for the implementation of Art. 35 and 36 of the Euratom Treaty as well as in the framework of the OSPAR Convention for the protection of marine environment of the north-east Atlantic--at the Institute for Transuranium Elements (ITU-General Directorate Joint Research Centre-European Commission), a reference laboratory for the measurement of radioactivity in the environment (MaRE laboratory) has been set up. In this paper, the principles and philosophy in order to improve the quality and reliability of analytical data for the measurement and monitoring of radioactivity in the environment under a quality assurance (QA) programme are presented. Examples of how a QA programme at the MaRE laboratory is developed and applied are given. Internal and external quality control (QC) programmes are also discussed

  12. Radioactivity monitoring of the Irish marine environment 1985-86

    International Nuclear Information System (INIS)

    Cunningham, J.D.; O'Grady, J.; Rush, T.

    1988-01-01

    This report presents the results of the monitoring programme for the two-year period from January 1985 to December 1986. Information on the radioactive contamination of the marine environment is obtained from the analysis of environmental samples taken at a number of locations along the coastline and various sampling stations in the western Irish Sea. These usually include samples of surface seawater, sediment, seaweed, fish and shellfish. Estimates are presented of the individual and collective doses received by the Irish public from the consumption of fish and shellfish during the period 1985-1986. These doses are assessed in terms of the system of dose limitation recommended by the International Commission on Radiological Protection and embodied in the Basic Safety Standards Directive of the European Community

  13. Monitoring the Microgravity Environment Quality On-Board the International Space Station Using Soft Computing Techniques

    Science.gov (United States)

    Jules, Kenol; Lin, Paul P.

    2001-01-01

    This paper presents an artificial intelligence monitoring system developed by the NASA Glenn Principal Investigator Microgravity Services project to help the principal investigator teams identify the primary vibratory disturbance sources that are active, at any moment in time, on-board the International Space Station, which might impact the microgravity environment their experiments are exposed to. From the Principal Investigator Microgravity Services' web site, the principal investigator teams can monitor via a graphical display, in near real time, which event(s) is/are on, such as crew activities, pumps, fans, centrifuges, compressor, crew exercise, platform structural modes, etc., and decide whether or not to run their experiments based on the acceleration environment associated with a specific event. This monitoring system is focused primarily on detecting the vibratory disturbance sources, but could be used as well to detect some of the transient disturbance sources, depending on the events duration. The system has built-in capability to detect both known and unknown vibratory disturbance sources. Several soft computing techniques such as Kohonen's Self-Organizing Feature Map, Learning Vector Quantization, Back-Propagation Neural Networks, and Fuzzy Logic were used to design the system.

  14. Distributed computing environment monitoring and user expectations

    International Nuclear Information System (INIS)

    Cottrell, R.L.A.; Logg, C.A.

    1995-11-01

    This paper discusses the growing needs for distributed system monitoring and compares it to current practices. It then goes on to identify the components of distributed system monitoring and shows how they are implemented and successfully used at one site today to address the Local Area Network (LAN), network services and applications, the Wide Area Network (WAN), and host monitoring. It shows how this monitoring can be used to develop realistic service level expectations and also identifies the costs. Finally, the paper briefly discusses the future challenges in network monitoring

  15. Monitoring for radioactive materials releasing to environment in M310 reformatived nuclear power plant

    International Nuclear Information System (INIS)

    Yin Zhenyu; Yang Guangli; Xu Guang

    2012-01-01

    Airborne radioactive materials of nuclear power plant (NPP) releases to the environment from the stack of NPP. Radioactive liquid waste releases of the ocean, the fluvial and the lake through the liquid waste letdyke of NPP. Further more, a few radioactive waste may be taken out of the NPP by vehicle or personnel. For the purpose of strict management and control above-mentioned waste, we use detect equipment monitoring radioactive waste of NPP. Management and control for the releasing of radioactive material to the environment in M310 reformatived NPP is strict and safety. (authors)

  16. Radioactivity in the environment. Report for 2001 : a summary and radiological assessment of the Environment Agency's monitoring programmes

    International Nuclear Information System (INIS)

    2003-01-01

    RSA 93 authorisations. Radiological monitoring programmes are carried out in support of the Agency's regulatory functions under RSA 93 and as part of the UK Government's obligations under the Euratom Treaty. This report presents the results of the Agency's regular monitoring of radioactivity in the environment during 2001 and an assessment of the radiological impact. The main findings of the regular monitoring programme during 2001 were as follows: The majority of operator declarations of the radioactive content of waste discharges and disposals had been assessed accurately or were over-estimate; Radiation dose rates above sediments and concentrations of radionuclides in water, sediment, soil and grass were generally consistent with those reported in previous years. Enhanced levels of artificial radionuclides continue to be found in coastal sediments in the vicinity of Sellafield, which decline with increasing distance from the site. Radioactivity levels around other major sites were mostly low or not detectable; As in previous years, concentrations of radionuclides in samples of airborne dust and rainwater from seven locations in the UK were very low or undetectable; Water from all 31 monitored sources of drinking water in England and Wales, except one in Derbyshire, were consistently below the World Health Organisation (WHO) drinking water screening levels. The enhanced level of uranium in the Derbyshire water is due to the natural levels of uranium in the local geology, and is insignificant from a radiological point of view. Assessments of doses that might be received by members of the public from drinking water and occupation of beaches, inter-tidal areas and river banks around nuclear and major non-nuclear sites were made. In all cases, doses were less than the annual dose limit for members of the public of 1000 microsieverts (1000 μSv). Houseboat dwellers on the Ribble Estuary in Lancashire received the highest total annual dose of 142 μSv. This is due to

  17. Supervision monitoring for radiation environment around Daya Bay and Lingao nuclear power stations

    International Nuclear Information System (INIS)

    Huang Naiming; Chen Zhidong; Song Haiqing; Deng Fei; Lin Qing; Huang Nairong; Zhou Ruidong; Mo Guanghua; Li Lingjuan; Liu Ying; Li Qiaoqin; Lai Liming; Zhou Xue

    2004-01-01

    This paper systematically introduces the supervision monitoring for radiation environment around the Guangdong Daya Bay and Ling Ao nuclear power station by the Guangdong Environmental Radiation Research and Monitoring Center. It includes the monitoring plan, methods, quality assurance, main results and conclusions. The results show that: (1) The gas discharge have not caused any detectable impacts to the terrestrial and atmospheric environment since their operation; (2) 110m Ag could only be detected in seawater in the West Daya Bay in 1995 and 1997 and in sediments in 1997. The maximum annual average in seawater was 3.1 Bq/m 3 , annual average of 110m Ag in sediments was 1.0 Bq/kg(dry). But it was always detectable in pearl oyster, gulfweed and cuttlefish in the West Daya Bay. The 110m Ag concentrations in halobios were relatively higher in 1994, 1996 and 1997. The maximum concentrations in pearl oyster, gulfweed and cuttlefish were 2.2, 1.7 and 5.8 Bq/kg (fresh) respectively. It has significantly decreased with decreasing discharge from the stations since 1997. (3) 137 Cs could be detected in almost all seawater samples in the West Daya Bay and the concentration were relatively higher from 1994-1998. The maximum annual average was laid in 1995 and it was 4.6 Bq/m 3 . After 1999, its concentration ranged in the background level. The concentrations in other marine samples were extremely low and changed in the range of the background. (4) 3 H in seawater in the West Daya Bay would go up as a pulse soon after 3 H discharge from the station and would go down to the background after 3-5 days. The annual average of monitoring results were between 0.8-3.4 Bq/L

  18. Development of an Indoor Airflow Energy Harvesting System for Building Environment Monitoring

    OpenAIRE

    Fei Fei; Shengli Zhou; John D. Mai; Wen Jung Li

    2014-01-01

    Wireless sensor networks (WSNs) have been widely used for intelligent building management applications. Typically, indoor environment parameters such as illumination, temperature, humidity and air quality are monitored and adjusted by an intelligent building management system. However, owing to the short life-span of the batteries used at the sensor nodes, the maintenance of such systems has been labor-intensive and time-consuming. This paper discusses a battery-less self-powering system that...

  19. Monitoring the availability of healthy and unhealthy foods and non-alcoholic beverages in community and consumer retail food environments globally.

    Science.gov (United States)

    Ni Mhurchu, C; Vandevijvere, S; Waterlander, W; Thornton, L E; Kelly, B; Cameron, A J; Snowdon, W; Swinburn, B

    2013-10-01

    Retail food environments are increasingly considered influential in determining dietary behaviours and health outcomes. We reviewed the available evidence on associations between community (type, availability and accessibility of food outlets) and consumer (product availability, prices, promotions and nutritional quality within stores) food environments and dietary outcomes in order to develop an evidence-based framework for monitoring the availability of healthy and unhealthy foods and non-alcoholic beverages in retail food environments. Current evidence is suggestive of an association between community and consumer food environments and dietary outcomes; however, substantial heterogeneity in study designs, methods and measurement tools makes it difficult to draw firm conclusions. The use of standardized tools to monitor local food environments within and across countries may help to validate this relationship. We propose a step-wise framework to monitor and benchmark community and consumer retail food environments that can be used to assess density of healthy and unhealthy food outlets; measure proximity of healthy and unhealthy food outlets to homes/schools; evaluate availability of healthy and unhealthy foods in-store; compare food environments over time and between regions and countries; evaluate compliance with local policies, guidelines or voluntary codes of practice; and determine the impact of changes to retail food environments on health outcomes, such as obesity. © 2013 The Authors. Obesity Reviews published by John Wiley & Sons Ltd on behalf of the International Association for the Study of Obesity.

  20. Effective radiological contamination control and monitoring techniques in high alpha environments.

    Science.gov (United States)

    Funke, Kevin C

    2003-02-01

    In the decommissioning of a highly contaminated alpha environment, such as the one at Hanford's 233-S Plutonium Concentration Facility, one of the key elements of a successful radiological control program is an integrated safety approach. This approach begins with the job-planning phase where the scope of the work is described. This is followed by a brainstorming session involving engineering and craft to identify how to perform the work in a logical sequence of events. Once the brainstorming session is over, a Job Hazard Analysis is performed to identify any potential problems. Mockups are utilized to enable the craft to get hands on experience and provide feedback and ideas to make the job run smoother. Ideas and experience gained during mockups are incorporated into the task instruction. To assure appropriate data are used in planning and executing the job, our principal evaluation tools included lapel and workplace air sampling, plus continuous air monitors and frequent surveys to effectively monitor job progress. In this highly contaminated alpha environment, with contamination levels ranging from 0.3 Bq cm-2 to approximately 100,000 Bq cm-2 (2,000 dpm per 100 cm2 to approximately 600 million dpm per 100 cm2), with average working levels of 1,600-3,200 Bq cm-2 (10-20 million dpm per 100 cm2) without concomitant ambient radiation levels, control of the spread of contamination is key to keeping airborne levels As Low As Reasonably Achievable.

  1. Distributed intelligent urban environment monitoring system

    Science.gov (United States)

    Du, Jinsong; Wang, Wei; Gao, Jie; Cong, Rigang

    2018-02-01

    The current environmental pollution and destruction have developed into a world-wide major social problem that threatens human survival and development. Environmental monitoring is the prerequisite and basis of environmental governance, but overall, the current environmental monitoring system is facing a series of problems. Based on the electrochemical sensor, this paper designs a small, low-cost, easy to layout urban environmental quality monitoring terminal, and multi-terminal constitutes a distributed network. The system has been small-scale demonstration applications and has confirmed that the system is suitable for large-scale promotion

  2. WildSense: Monitoring Interactions among Wild Deer in Harsh Outdoor Environments Using a Delay-Tolerant WSN

    Directory of Open Access Journals (Sweden)

    Junho Ahn

    2016-01-01

    Full Text Available Biologists and ecologists often monitor the spread of disease among deer in the wild by using tracking systems that record their movement patterns, locations, and interaction behavior. The existing commercial systems for monitoring wild deer utilize collars with GPS sensors, deployed on captured and rereleased deer. The GPS sensors record location data every few hours, enabling researchers to approximate the interaction behavior of tracked deer with their GPS locations. However, the coarse granularity of periodically recorded GPS location data provides only limited precision for determining deer interaction behavior. We have designed a novel system to monitor wild deer interaction behavior more precisely in harsh wilderness environments. Our system combines the functionalities of both GPS and RF-radio sensors with low-cost and minimal-resource motes. We designed and built our system to be able to operate robustly for a period of up to several months for continual tracking and monitoring of the locations and interaction behaviors of wild deer in harsh environments. We successfully deployed six deer collars on six wild deer that were captured and rereleased in the Soapstone Prairie Natural Area of northern Colorado over a one-month period. In this paper, we describe how we designed and built this system and evaluate its successful operation in a wilderness area.

  3. Knowing what we breathe: Sentinel 4: a geostationary imaging UVN spectrometer for air quality monitoring

    Science.gov (United States)

    Bazalgette Courrèges-Lacoste, G.; Sallusti, M.; Bulsa, G.; Bagnasco, G.; Gulde, S.; Kolm, M. G.; Smith, D. J.; Maurer, R.

    2017-09-01

    Sentinel-4 is an imaging UVN (UV-VIS-NIR) spectrometer, developed by Airbus DS under ESA contract in the frame of the joint EU/ESA COPERNICUS program. The mission objective is the operational monitoring of trace gas concentrations for atmospheric chemistry and climate applications - hence the motto of Sentinel-4 "Knowing what we breathe".

  4. Norwegian monitoring (1990-2015) of the marine environment around the sunken nuclear submarine Komsomolets.

    Science.gov (United States)

    Gwynn, Justin P; Heldal, Hilde Elise; Flo, Janita K; Sværen, Ingrid; Gäfvert, Torbjörn; Haanes, Hallvard; Føyn, Lars; Rudjord, Anne Liv

    2018-02-01

    Norway has monitored the marine environment around the sunken Russian nuclear submarine Komsomolets since 1990. This study presents an overview of 25 years of Norwegian monitoring data (1990-2015). Komsomolets sank in 1989 at a depth of 1680 m in the Norwegian Sea while carrying two nuclear torpedoes in its armament. Subsequent Soviet and Russian expeditions to Komsomolets have shown that releases from the reactor have occurred and that the submarine has suffered considerable damage to its hulls. Norwegian monitoring detected 134 Cs in surface sediments around Komsomolets in 1993 and 1994 and elevated activity concentrations of 137 Cs in bottom seawater between 1991 and 1993. Since then and up to 2015, no increased activity concentrations of radionuclides above values typical for the Norwegian Sea have been observed in any environmental sample collected by Norwegian monitoring. In 2013 and 2015, Norwegian monitoring was carried out using an acoustic transponder on the sampling gear that allowed samples to be collected at precise locations, ∼20 m from the hull of Komsomolets. The observed 238 Pu/ 239,240 Pu activity ratios and 240 Pu/ 239 Pu atom ratios in surface sediments sampled close to Komsomolets in 2013 did not indicate any releases of Pu isotopes from reactor or the torpedo warheads. Rather, these values probably reflect the overprinting of global fallout ratios with fluxes of these Pu isotopes from long-range transport of authorised discharges from nuclear reprocessing facilities in Northern Europe. However, due to the depth at which Komsomolets lies, the collection of seawater and sediment samples in the immediate area around the submarine using traditional sampling techniques from surface vessels is not possible, even with the use of acoustic transponders. Further monitoring is required in order to have a clear understanding of the current status of Komsomolets as a potential source of radioactive contamination to the Norwegian marine environment

  5. Construction and application of an intelligent air quality monitoring system for healthcare environment.

    Science.gov (United States)

    Yang, Chao-Tung; Liao, Chi-Jui; Liu, Jung-Chun; Den, Walter; Chou, Ying-Chyi; Tsai, Jaw-Ji

    2014-02-01

    Indoor air quality monitoring in healthcare environment has become a critical part of hospital management and policy. Manual air sampling and analysis are cost-inhibitive and do not provide real-time air quality data and response measures. In this month-long study over 14 sampling locations in a public hospital in Taiwan, we observed a positive correlation between CO(2) concentration and population, total bacteria, and particulate matter concentrations, thus monitoring CO(2) concentration as a general indicator for air quality could be a viable option. Consequently, an intelligent environmental monitoring system consisting of a CO(2)/temperature/humidity sensor, a digital plug, and a ZigBee Router and Coordinator was developed and tested. The system also included a backend server that received and analyzed data, as well as activating ventilation and air purifiers when CO(2) concentration exceeded a pre-set value. Alert messages can also be delivered to offsite users through mobile devices.

  6. Demonstration of intradyne BPSK optical free-space transmission in representative atmospheric turbulence conditions for geostationary uplink channel.

    Science.gov (United States)

    Surof, Janis; Poliak, Juraj; Calvo, Ramon Mata

    2017-06-01

    Binary phase-shift keying optical transmission in the C-band with coherent intradyne reception is demonstrated over a long-range (10.45 km) link through the atmosphere. The link emulates representative channel conditions for geostationary optical feeder uplinks in satellite communications. The digital signal processing used in recovering the transmitted data and the performed measurements are described. Finally, the bit error rate results for 10 Gbit/s, 20 Gbit/s, and 30 Gbit/s of the outdoor experiments are presented and compared with back-to-back measurements and theory.

  7. Monitoring User-Based Accessibility Assessment in Urban Environments and in Public Buildings

    Directory of Open Access Journals (Sweden)

    Gintaras Stauskis

    2018-04-01

    Full Text Available The research features analysis of user-experience-based accessibility assessment and progress monitoring of buildings and public spaces; this analysis is used as a tool for facilitating the development of humane, socially sustainable and an inclusive urban environment. A group of users representing people with different kinds of disabilities, the elderly and families with children was created to assess the quality of access to various buildings with different functions and locations across Vilnius and in Singapore. A school, two hospitals, a rehab centre and two offices were selected for access monitoring in Vilnius City, while a hotel, a café and two metro stations with public squares were chosen for access assessment in Singapore. As the same method was principally applied to assess accessibility of selected buildings in Vilnius City in 2000 and 2017 and in Singapore in 2012, the article draws a comparative analysis of access levels in these two cities located in different global regions. The results show a definite improvement of access quality over time and also identify the critical aspects in this process. The segment of plot planning represents the lowest quality of access for all assessed building types as compared to the building segment and the external–internal element segments. The paper also draws conclusions that access improvement is a continuous process of implementing advanced urban policy instruments, and city planners can contribute to it by constantly analysing and presenting to public the monitoring data about the progress in access improvement. Comparing the assessment results between Vilnius City and Singapore – cities that are located in different global regions and in different socio-economic environments – provides a practical tool for benchmarking and setting the priorities for this process.

  8. GHRSST Level 2P Western Atlantic Regional Skin Sea Surface Temperature from the Geostationary Operational Environmental Satellites (GOES) Imager on the GOES-13 satellite (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Geostationary Operational Environmental Satellites (GOES) operated by the United States National Oceanic and Atmospheric Administration (NOAA) support weather...

  9. GHRSST Level 2P Central Pacific Regional Skin Sea Surface Temperature from the Geostationary Operational Environmental Satellites (GOES) Imager on the GOES-15 satellite (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Geostationary Operational Environmental Satellites (GOES) operated by the United States National Oceanic and Atmospheric Administration (NOAA) support weather...

  10. NATO Advanced Research Workshop, 19-22 May 1997: Rapid Method for Monitoring the Environment for Biological Hazards

    National Research Council Canada - National Science Library

    1997-01-01

    The NATO Advanced Research Workshop met for the purpose of bringing to light rapid methods for monitoring the environment for biological hazards such as biological warfare agents, naturally occurring...

  11. A Wearable Wireless Sensor Network for Indoor Smart Environment Monitoring in Safety Applications.

    Science.gov (United States)

    Antolín, Diego; Medrano, Nicolás; Calvo, Belén; Pérez, Francisco

    2017-02-14

    This paper presents the implementation of a wearable wireless sensor network aimed at monitoring harmful gases in industrial environments. The proposed solution is based on a customized wearable sensor node using a low-power low-rate wireless personal area network (LR-WPAN) communications protocol, which as a first approach measures CO₂ concentration, and employs different low power strategies for appropriate energy handling which is essential to achieving long battery life. These wearables nodes are connected to a deployed static network and a web-based application allows data storage, remote control and monitoring of the complete network. Therefore, a complete and versatile remote web application with a locally implemented decision-making system is accomplished, which allows early detection of hazardous situations for exposed workers.

  12. A Wearable Wireless Sensor Network for Indoor Smart Environment Monitoring in Safety Applications

    Directory of Open Access Journals (Sweden)

    Diego Antolín

    2017-02-01

    Full Text Available This paper presents the implementation of a wearable wireless sensor network aimed at monitoring harmful gases in industrial environments. The proposed solution is based on a customized wearable sensor node using a low-power low-rate wireless personal area network (LR-WPAN communications protocol, which as a first approach measures CO2 concentration, and employs different low power strategies for appropriate energy handling which is essential to achieving long battery life. These wearables nodes are connected to a deployed static network and a web-based application allows data storage, remote control and monitoring of the complete network. Therefore, a complete and versatile remote web application with a locally implemented decision-making system is accomplished, which allows early detection of hazardous situations for exposed workers.

  13. Multi-terminal remote monitoring and warning system using Micro Air Vehicle for dangerous environment

    Science.gov (United States)

    Yu, Yanan; Wang, Xiaoxun; He, Chengcheng; Lai, Chenlong; Liu, Yuanchao

    2015-11-01

    For overcoming the problems such as remote operation and dangerous tasks, multi-terminal remote monitoring and warning system based on STC89C52 Micro Control Unit and wireless communication technique was proposed. The system with MCU as its core adopted multiple sets of sensor device to monitor environment parameters of different locations, such as temperature, humidity, smoke other harmful gas concentration. Data information collected was transmitted remotely by wireless transceiver module, and then multi-channel data parameter was processed and displayed through serial communication protocol between the module and PC. The results of system could be checked in the form of web pages within a local network which plays a wireless monitoring and warning role. In a remote operation, four-rotor micro air vehicle which fixed airborne data acquisition device was utilized as a middleware between collecting terminal and PC to increase monitoring scope. Whole test system has characteristics of simple construction, convenience, real time ability and high reliability, which could meet the requirements of actual use.

  14. Fiber Bragg grating sensors in harsh environments: considerations and industrial monitoring applications

    Science.gov (United States)

    Méndez, Alexis

    2017-06-01

    Over the last few years, fiber optic sensors (FOS) have seen an increased acceptance and widespread use in industrial sensing and in structural monitoring in civil, aerospace, marine, oil & gas, composites and other applications. One of the most prevalent types in use today are fiber Bragg grating (FBG) sensors. Historically, FOS have been an attractive solution because of their EM immunity and suitability for use in harsh environments and rugged applications with extreme temperatures, radiation exposure, EM fields, high voltages, water contact, flammable atmospheres, or other hazards. FBG sensors have demonstrated that can operate reliably in many different harsh environment applications but proper type and fabrication process are needed, along with suitable packaging and installation procedure. In this paper, we review the impact that external factors and environmental conditions play on FBG's performance and reliability, and describe the appropriate sensor types and protection requirements suitable for a variety of harsh environment applications in industrial furnaces, cryogenic coolers, nuclear plants, maritime vessels, oil & gas wells, aerospace crafts, automobiles, and others.

  15. Impact of local and non-local sources of pollution on background US Ozone: synergy of a low-earth orbiting and geostationary sounder constellation

    Science.gov (United States)

    Bowman, K. W.; Lee, M.

    2015-12-01

    Dramatic changes in the global distribution of emissions over the last decade have fundamentally altered source-receptor pollution impacts. A new generation of low-earth orbiting (LEO) sounders complimented by geostationary sounders over North America, Europe, and Asia providing a unique opportunity to quantify the current and future trajectory of emissions and their impact on global pollution. We examine the potential of this constellation of air quality sounders to quantify the role of local and non-local sources of pollution on background ozone in the US. Based upon an adjoint sensitivity method, we quantify the role synoptic scale transport of non-US pollution on US background ozone over months representative of different source-receptor relationships. This analysis allows us distinguish emission trajectories from megacities, e.g. Beijing, or regions, e.g., western China, from natural trends on downwind ozone. We subsequently explore how a combination of LEO and GEO observations could help quantify the balance of local emissions against changes in distant sources . These results show how this unprecedented new international ozone observing system can monitor the changing structure of emissions and their impact on global pollution.

  16. Development of a Compact Range-gated Vision System to Monitor Structures in Low-visibility Environments

    International Nuclear Information System (INIS)

    Ahn, Yong-Jin; Park, Seung-Kyu; Baik, Sung-Hoon; Kim, Dong-Lyul; Choi, Young-Soo; Jeong, Kyung-Min

    2015-01-01

    Image acquisition in disaster area or radiation area of nuclear industry is an important function for safety inspection and preparing appropriate damage control plans. So, automatic vision system to monitor structures and facilities in blurred smoking environments such as the places of a fire and detonation is essential. Vision systems can't acquire an image when the illumination light is blocked by disturbance materials, such as smoke, fog and dust. To overcome the imaging distortion caused by obstacle materials, robust vision systems should have extra-functions, such as active illumination through disturbance materials. One of active vision system is a range-gated imaging system. The vision system based on the range-gated imaging system can acquire image data from the blurred and darken light environments. Range-gated imaging (RGI) is a direct active visualization technique using a highly sensitive image sensor and a high intensity illuminant. Currently, the range-gated imaging technique providing 2D and range image data is one of emerging active vision technologies. The range-gated imaging system gets vision information by summing time sliced vision images. In the RGI system, a high intensity illuminant illuminates for ultra-short time and a highly sensitive image sensor is gated by ultra-short exposure time to only get the illumination light. Here, the illuminant illuminates objects by flashing strong light through disturbance materials, such as smoke particles and dust particles. In contrast to passive conventional vision systems, the RGI active vision technology enables operation even in harsh environments like low-visibility smoky environment. In this paper, a compact range-gated vision system is developed to monitor structures in low-visibility environment. The system consists of illumination light, a range-gating camera and a control computer. Visualization experiments are carried out in low-visibility foggy environment to see imaging capability

  17. Development of a Compact Range-gated Vision System to Monitor Structures in Low-visibility Environments

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Yong-Jin; Park, Seung-Kyu; Baik, Sung-Hoon; Kim, Dong-Lyul; Choi, Young-Soo; Jeong, Kyung-Min [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    Image acquisition in disaster area or radiation area of nuclear industry is an important function for safety inspection and preparing appropriate damage control plans. So, automatic vision system to monitor structures and facilities in blurred smoking environments such as the places of a fire and detonation is essential. Vision systems can't acquire an image when the illumination light is blocked by disturbance materials, such as smoke, fog and dust. To overcome the imaging distortion caused by obstacle materials, robust vision systems should have extra-functions, such as active illumination through disturbance materials. One of active vision system is a range-gated imaging system. The vision system based on the range-gated imaging system can acquire image data from the blurred and darken light environments. Range-gated imaging (RGI) is a direct active visualization technique using a highly sensitive image sensor and a high intensity illuminant. Currently, the range-gated imaging technique providing 2D and range image data is one of emerging active vision technologies. The range-gated imaging system gets vision information by summing time sliced vision images. In the RGI system, a high intensity illuminant illuminates for ultra-short time and a highly sensitive image sensor is gated by ultra-short exposure time to only get the illumination light. Here, the illuminant illuminates objects by flashing strong light through disturbance materials, such as smoke particles and dust particles. In contrast to passive conventional vision systems, the RGI active vision technology enables operation even in harsh environments like low-visibility smoky environment. In this paper, a compact range-gated vision system is developed to monitor structures in low-visibility environment. The system consists of illumination light, a range-gating camera and a control computer. Visualization experiments are carried out in low-visibility foggy environment to see imaging capability.

  18. Matchmaking: the influence of monitoring environments on the effectiveness of performance pay systems

    OpenAIRE

    Richard Belfield; David Marsden

    2002-01-01

    This study uses cross-section and panel data from the 1998 Workplace Employee Relations Survey to explore contextual influences on the relationship between performance-related pay (PRP) and organizational performance. While it finds strong evidence that the use of PRP can enhance performance outcomes, it also determines that this relationship is qualified by the structure of workplace monitoring environments. In addition, it presents evidence that managers learn about optimum combinations of ...

  19. Persistent Monitoring of Urban Infrasound Phenomenology-Report 2: Investigation of Structural Infrasound Signals in an Urban Environment

    Science.gov (United States)

    2016-11-01

    rural environments where anthropological noise sources are limited. As interest in monitoring sources at local distances grows in the infrasound...TASK NUMBER 5f. WORK UNIT NUMBER J62BH4 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER U.S...where anthropological noise sources are limited. As interest in monitoring sources at local distances grows in the infrasound community, it is vital to

  20. Development of metallic system multi-composite materials for compound environment and corrosion monitoring technology

    International Nuclear Information System (INIS)

    Kiuchi, Kiyoshi

    1996-01-01

    For the structural materials used for the pressure boundary of nuclear power plants and others, the long term durability over several decades under the compound environment, in which the action of radiation and the corrosion and erosion in the environment of use are superposed, is demanded. To its controlling factors, the secular change of materials due to irradiation ageing and the chemical and physical properties of extreme compound environment are related complicatedly. In the first period of this research, the development of the corrosion-resistant alloys with the most excellent adaptability to environments was carried out by the combination of new alloy design and alloy manufacturing technology. In the second period, in order to heighten the adaptability as the pressure boundary materials between different compound environments, the creation of metallic system multi-composite materials has been advanced. Also corrosion monitoring technique is being developed. The stainless steel for water-cooled reactors, the wear and corrosion-resistant superalloy for reactor core, the corrosion-resistant alloy and the metallic refractory material for reprocessing nitric acid reaction vessels are reported. (K.I.)

  1. H31G-1596: DeepSAT's CloudCNN: A Deep Neural Network for Rapid Cloud Detection from Geostationary Satellites

    Science.gov (United States)

    Kalia, Subodh; Ganguly, Sangram; Li, Shuang; Nemani, Ramakrishna R.

    2017-01-01

    Cloud and cloud shadow detection has important applications in weather and climate studies. It is even more crucial when we introduce geostationary satellites into the field of terrestrial remote sensing. With the challenges associated with data acquired in very high frequency (10-15 mins per scan), the ability to derive an accurate cloud shadow mask from geostationary satellite data is critical. The key to the success for most of the existing algorithms depends on spatially and temporally varying thresholds,which better capture local atmospheric and surface effects.However, the selection of proper threshold is difficult and may lead to erroneous results. In this work, we propose a deep neural network based approach called CloudCNN to classify cloudshadow from Himawari-8 AHI and GOES-16 ABI multispectral data. DeepSAT's CloudCNN consists of an encoderdecoder based architecture for binary-class pixel wise segmentation. We train CloudCNN on multi-GPU Nvidia Devbox cluster, and deploy the prediction pipeline on NASA Earth Exchange (NEX) Pleiades supercomputer. We achieved an overall accuracy of 93.29% on test samples. Since, the predictions take only a few seconds to segment a full multispectral GOES-16 or Himawari-8 Full Disk image, the developed framework can be used for real-time cloud detection, cyclone detection, or extreme weather event predictions.

  2. Observation of The Top of The Atmosphere Outgoing Longwave Radiation Using The Geostationary Earth Radiation Budget Sensor

    Science.gov (United States)

    Spencer, G.; Llewellyn-Jones, D.

    In the summer of 2002 the Meteosat Second Generation (MSG) satellite is due to be launched. On board the MSG satellite is the Geostationary Earth Radiation Budget (GERB) sensor. This is a new radiometer that will be able to observe and measure the outgoing longwave radiation from the top of the atmosphere for the whole ob- served Earth disc, due to its unique position in geostationary orbit. Every 15 minutes the GERB sensor will make a full Earth disc observation, centred on the Greenwich meridian. Thus, the GERB sensor will provide unprecedented coupled temporal and spatial resolution of the outgoing longwave radiation (4.0 to 30.0 microns), by first measuring the broadband radiation (0.32 to 30.0 microns) and then subtracting the measured reflected shortwave solar radiation (0.32 to 4.0 microns), from the earth- atmosphere system. The GERB sensor is able to make measurements to within an accuracy of 1 W/sq. m. A forward model is being developed at Leicester to simulate the data from the GERB sensor for representative geophysical scenes and to investigate key parameters and processes that will affect the top of the atmosphere signal. At the heart of this model is a line-by-line radiative transfer model, the Oxford Reference Forward Model (RFM) that is to be used with model atmospheres generated from ECMWF analysis data. When MSG is launched, cloud data from the Spinning Enhanced Visible and Infrared Imager (SEVIRI), also on board, is to be used in conjunction with GERB data.

  3. Independent regulatory control and monitoring of the environment at the uranium legacy sites under reclamation

    International Nuclear Information System (INIS)

    Shandala, N.K.; Titov, A.V.; Kiselev, S.M.; Isaev, D.V.; Aladova, R.A.

    2012-01-01

    Full text: Radiation safety at areas affected by the natural uranium mining and milling facilities is very important for the environment protection and human health. For this purpose the close operator-regulator contact is required during remedial operations. One of the key mechanisms of the operating regulatory supervision of radiation safety at uranium legacy sites is organization of independent radiation control and monitoring in the course of reclamation and after its completion. The main stages of this strategy include: detailed radiation survey at the area and in the vicinity of the former uranium mining sites; threat assessment in order to identify the regulatory priorities; environmental radiation control and monitoring. Tailings and shallow disposal sites of the uranium mining wastes are the most critical areas in terms of potential hazard for the environment. Tailings are the source of contamination of the near-land air due to the radionuclide dust resuspension from the tailing surface; surface and ground water due to washing out from by precipitation and surface streams of toxic and radioactive elements. Frequently, contamination of surface and ground waters results in some problems, especially when using the leaching fluids for the solution mining and draining hydraulic fluids. Radiation risk for the residents of areas near not operating uranium mining and milling facilities depends on the following factors: radon exhalation from the surface of dumps and tailing; radioactive dust transfer; using radioactive material in building; contamination of surface water streams and aquifers used for drinking water supply; contamination of open ponds used for fish breeding and catching; contamination of foodstuffs grown in the nuclear legacy areas. Radiation monitoring is necessary for the up-to-date response to changing radiation situation during reclamation and arrangement of adequate countermeasures. We mean here comprehensive dynamic surveillance including long

  4. Performance of a geostationary mission, geoCARB, to measure CO2, CH4 and CO column-averaged concentrations

    Directory of Open Access Journals (Sweden)

    I. N. Polonsky

    2014-04-01

    Full Text Available GeoCARB is a proposed instrument to measure column averaged concentrations of CO2, CH4 and CO from geostationary orbit using reflected sunlight in near-infrared absorption bands of the gases. The scanning options, spectral channels and noise characteristics of geoCARB and two descope options are described. The accuracy of concentrations from geoCARB data is investigated using end-to-end retrievals; spectra at the top of the atmosphere in the geoCARB bands are simulated with realistic trace gas profiles, meteorology, aerosol, cloud and surface properties, and then the concentrations of CO2, CH4 and CO are estimated from the spectra after addition of noise characteristic of geoCARB. The sensitivity of the algorithm to aerosol, the prior distributions assumed for the gases and the meteorology are investigated. The contiguous spatial sampling and fine temporal resolution of geoCARB open the possibility of monitoring localised sources such as power plants. Simulations of emissions from a power plant with a Gaussian plume are conducted to assess the accuracy with which the emission strength may be recovered from geoCARB spectra. Scenarios for "clean" and "dirty" power plants are examined. It is found that a reliable estimate of the emission rate is possible, especially for power plants that have particulate filters, by averaging emission rates estimated from multiple snapshots of the CO2 field surrounding the plant. The result holds even in the presence of partial cloud cover.

  5. Preliminary Assessment of Detection Efficiency for the Geostationary Lightning Mapper Using Intercomparisons with Ground-Based Systems

    Science.gov (United States)

    Bateman, Monte; Mach, Douglas; Blakeslee, Richard J.; Koshak, William

    2018-01-01

    As part of the calibration/validation (cal/val) effort for the Geostationary Lightning Mapper (GLM) on GOES-16, we need to assess instrument performance (detection efficiency and accuracy). One major effort is to calculate the detection efficiency of GLM by comparing to multiple ground-based systems. These comparisons will be done pair-wise between GLM and each other source. A complication in this process is that the ground-based systems sense different properties of the lightning signal than does GLM (e.g., RF vs. optical). Also, each system has a different time and space resolution and accuracy. Preliminary results indicate that GLM is performing at or above its specification.

  6. Wireless microwave acoustic sensor system for condition monitoring in power plant environments

    Energy Technology Data Exchange (ETDEWEB)

    Pereira da Cunha, Mauricio [Univ. of Maine, Orno, ME (United States)

    2017-03-30

    This project successfully demonstrated novel wireless microwave acoustic temperature and pressure sensors that can be embedded into equipment and structures located in fossil fuel power plant environments to monitor the condition of components such as steam headers, re-heat lines, water walls, burner tubes, and power turbines. The wireless microwave acoustic sensor technology researched and developed through a collaborative partnership between the University of Maine and Environetix Technologies Corporation can provide a revolutionary impact in the power industry since it is anticipated that the wireless sensors will deliver reliable real-time sensing information in harsh power plant conditions that involve temperatures up to 1100oC and pressures up to 750 psi. The work involved the research and development of novel high temperature harsh environment thin film electrodes, piezoelectric smart microwave acoustic sensing elements, sensor encapsulation materials that were engineered to function over long times up to 1100oC, and a radio-frequency (RF) wireless interrogation electronics unit that are located both inside and outside the high temperature harsh environment. The UMaine / Environetix team have interacted with diverse power plant facilities, and identified as a testbed a local power generation facility, which burns municipal solid waste (MSW), the Penobscot Energy Recovery Company (PERC), Orrington, Maine. In this facility Environetix / UMaine successfully implemented and tested multiple wireless temperature sensor systems within the harsh-environment of the economizer chamber and at the boiler tubes, transferring the developed technology to the power plant environment to perform real-time sensor monitoring experiments under typical operating conditions, as initially targeted in the project. The wireless microwave acoustic sensor technology developed under this project for power plant applications offers several significant advantages including wireless

  7. Passive Sampling in Regulatory Chemical Monitoring of Nonpolar Organic Compounds in the Aquatic Environment

    DEFF Research Database (Denmark)

    Booij, Kees; Robinson, Craig D; Burgess, Robert M

    2016-01-01

    We reviewed compliance monitoring requirements in the European Union, the United States, and the Oslo-Paris Convention for the protection of the marine environment of the North-East Atlantic, and evaluated if these are met by passive sampling methods for nonpolar compounds. The strengths...... is the best available technology for chemical monitoring of nonpolar organic compounds. Key issues to be addressed by scientists and environmental managers are outlined....... and shortcomings of passive sampling are assessed for water, sediments, and biota. Passive water sampling is a suitable technique for measuring concentrations of freely dissolved compounds. This method yields results that are incompatible with the EU's quality standard definition in terms of total concentrations...

  8. Application of thin layer activation technique for monitoring corrosion of carbon steel in hydrocarbon processing environment.

    Science.gov (United States)

    Saxena, R C; Biswal, Jayashree; Pant, H J; Samantray, J S; Sharma, S C; Gupta, A K; Ray, S S

    2018-05-01

    Acidic crude oil transportation and processing in petroleum refining and petrochemical operations cause corrosion in the pipelines and associated components. Corrosion monitoring is invariably required to test and prove operational reliability. Thin Layer Activation (TLA) technique is a nuclear technique used for measurement of corrosion and erosion of materials. The technique involves irradiation of material with high energy ion beam from an accelerator and measurement of loss of radioactivity after the material is subjected to corrosive environment. In the present study, TLA technique has been used to monitor corrosion of carbon steel (CS) in crude oil environment at high temperature. Different CS coupons were irradiated with a 13 MeV proton beam to produce Cobalt-56 radioisotope on the surface of the coupons. The corrosion studies were carried out by subjecting the irradiated coupons to a corrosive environment, i.e, uninhibited straight run gas oil (SRGO) containing known amount of naphthenic acid (NA) at high temperature. The effects of different parameters, such as, concentration of NA, temperature and fluid velocity (rpm) on corrosion behaviour of CS were studied. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Effect of Ionosphere on Geostationary Communication Satellite Signals

    Science.gov (United States)

    Erdem, Esra; Arikan, Feza; Gulgonul, Senol

    2016-07-01

    Geostationary orbit (GEO) communications satellites allow radio, television, and telephone transmissions to be sent live anywhere in the world. They are extremely important in daily life and also for military applications. Since, satellite communication is an expensive technology addressing crowd of people, it is critical to improve the performance of this technology. GEO satellites are at 35,786 kilometres from Earth's surface situated directly over the equator. A satellite in a geostationary orbit (GEO) appears to stand still in the sky, in a fixed position with respect to an observer on the earth, because the satellite's orbital period is the same as the rotation rate of the Earth. The advantage of this orbit is that ground antennas can be fixed to point towards to satellite without their having to track the satellite's motion. Radio frequency ranges used in satellite communications are C, X, Ku, Ka and even EHG and V-band. Satellite signals are disturbed by atmospheric effects on the path between the satellite and the receiver antenna. These effects are mostly rain, cloud and gaseous attenuation. It is expected that ionosphere has a minor effect on the satellite signals when the ionosphere is quiet. But there are anomalies and perturbations on the structure of ionosphere with respect to geomagnetic field and solar activity and these conditions may cause further affects on the satellite signals. In this study IONOLAB-RAY algorithm is adopted to examine the effect of ionosphere on satellite signals. IONOLAB-RAY is developed to calculate propagation path and characteristics of high frequency signals. The algorithm does not have any frequency limitation and models the plasmasphere up to 20,200 km altitude, so that propagation between a GEO satellite and antenna on Earth can be simulated. The algorithm models inhomogeneous, anisotropic and time dependent structure of the ionosphere with a 3-D spherical grid geometry and calculates physical parameters of the

  10. Monitoring of radionuclides in the environment - is chemistry still needed?

    International Nuclear Information System (INIS)

    Cooper, E.L.

    1989-01-01

    Improvements in gamma spectrometry have led to a decline in the use of radiochemical methods by environmental laboratories. Radiochemical methods are still required for radioisotopes which do not emit gamma rays (e.g. 89,90 Sr, 239,240 Pu, etc.); however, as the levels of these radioisotopes from weapons fallout declined in the 1970's and 1980's, the interest in them also declined. The changes which had occurred in analytical methodology became apparent after the Chernobyl accident when all the early measurements were obtained by gamma spectrometry and information on Sr isotopes and actinides only began to emerge some weeks later. The role of chemistry in monitoring begins with sampling because of speciation and matrix effects and extends through the radiochemical analysis. In some cases it may be necessary to determine speciation because of differences in dose conversion factors or environmental behavior. There is a need to improve radiochemical procedures and the IAEA has established in dose conversion factors or environmental behavior. There is a need to improve radiochemical procedures and the IAEA has established a new coordinated research program on rapid methods. Clearly, there still are chemical aspects to monitoring radionuclides in the environment, and these are discussed

  11. IMAGE information monitoring and applied graphics software environment. Volume 4. Applications description

    International Nuclear Information System (INIS)

    Hallam, J.W.; Ng, K.B.; Upham, G.L.

    1986-09-01

    The EPRI Information Monitoring and Applied Graphics Environment (IMAGE) system is designed for 'fast proto-typing' of advanced concepts for computer-aided plant operations tools. It is a flexible software system which can be used for rapidly creating, dynamically driving and evaluating advanced operator aid displays. The software is written to be both host computer and graphic device independent. This four volume report includes an Executive Overview of the IMAGE package (Volume 1), followed by Software Description (Volume II), User's Guide (Volume III), and Description of Example Applications (Volume IV)

  12. Acoustical monitoring of diesel engines in reverberant environment

    International Nuclear Information System (INIS)

    Mein, M.

    1995-10-01

    The feed-back knowledge of emergency diesel generators in nuclear power plants shows that some malfunctions, mainly affecting fuel-injection or distribution system of the engine can be heard and detected by experienced maintenance agents. This study consists in the feasibility,v of acoustical monitoring of those diesel engines, taking into account the reverberant environment of the machine. The operating cycle of the diesel is composed of transient events (injection, combustion, valve closure...) which generate highly non stationary acoustical signals. The detection of a malfunction appearing on such transients requires the use of adapted signal processing techniques. Visual analysis of the phenomena is first proceeded using time-frequency and time-scale representations. The second step will be parametric modeling of acoustical signatures for the extraction of characteristic parameters, in order to characterize the fault and to use an automatic classification system. The lest part of the study will concern the evaluation of the robustness of the detection methods in regard to acoustical reverberation. (author). 10 refs., 6 figs

  13. Optimisation (sampling strategies and analytical procedures) for site specific environment monitoring at the areas of uranium production legacy sites in Ukraine - 59045

    International Nuclear Information System (INIS)

    Voitsekhovych, Oleg V.; Lavrova, Tatiana V.; Kostezh, Alexander B.

    2012-01-01

    There are many sites in the world, where Environment are still under influence of the contamination related to the Uranium production carried out in past. Author's experience shows that lack of site characterization data, incomplete or unreliable environment monitoring studies can significantly limit quality of Safety Assessment procedures and Priority actions analyses needed for Remediation Planning. During recent decades the analytical laboratories of the many enterprises, currently being responsible for establishing the site specific environment monitoring program have been significantly improved their technical sampling and analytical capacities. However, lack of experience in the optimal site specific sampling strategy planning and also not enough experience in application of the required analytical techniques, such as modern alpha-beta radiometers, gamma and alpha spectrometry and liquid-scintillation analytical methods application for determination of U-Th series radionuclides in the environment, does not allow to these laboratories to develop and conduct efficiently the monitoring programs as a basis for further Safety Assessment in decision making procedures. This paper gives some conclusions, which were gained from the experience establishing monitoring programs in Ukraine and also propose some practical steps on optimization in sampling strategy planning and analytical procedures to be applied for the area required Safety assessment and justification for its potential remediation and safe management. (authors)

  14. Digital optical feeder links system for broadband geostationary satellite

    Science.gov (United States)

    Poulenard, Sylvain; Mège, Alexandre; Fuchs, Christian; Perlot, Nicolas; Riedi, Jerome; Perdigues, Josep

    2017-02-01

    An optical link based on a multiplex of wavelengths at 1.55μm is foreseen to be a valuable solution for the feeder link of the next generation of high-throughput geostationary satellite. The main satellite operator specifications for such link are an availability of 99.9% over the year, a capacity around 500Gbit/s and to be bent-pipe. Optical ground station networks connected to Terabit/s terrestrial fibers are proposed. The availability of the optical feeder link is simulated over 5 years based on a state-of-the-art cloud mask data bank and an atmospheric turbulence strength model. Yearly and seasonal optical feeder link availabilities are derived and discussed. On-ground and on-board terminals are designed to be compliant with 10Gbit/s per optical channel data rate taking into account adaptive optic systems to mitigate the impact of atmospheric turbulences on single-mode optical fiber receivers. The forward and return transmission chains, concept and implementation, are described. These are based on a digital transparent on-off keying optical link with digitalization of the DVB-S2 and DVB-RCS signals prior to the transmission, and a forward error correcting code. In addition, the satellite architecture is described taking into account optical and radiofrequency payloads as well as their interfaces.

  15. NRPA. Radioactivity in the marine environment 2008 and 2009. Results from the Norwegian national monitoring programme (RAME)

    International Nuclear Information System (INIS)

    Gaefvert, T.; Heldal, H. E.; Brungot, A. L.; Gwynn, J.; Svaeren, I.; Kolstad, A. K.; Moeller, B.; Straalberg, E.; Christensen, G. C.; Drefvelin, J.; Dowdall, M.; Lind, B.; Rudjord, A. L.

    2011-04-01

    The issue of present and potential radioactive contamination in the marine environment has received considerable attention in Norway. In the late 1980s several accidents and incidents involving nuclear-powered submarines,demonstrated that the risk of the release of radionuclides into the Barents Sea should be considered more carefully. In particular, it became evident that better documentation concerning the radioactivity levels in fish and other seafood was important for the seafood export industries. Furthermore, in the early 1990s, information concerning the dumping of nuclear waste emerged through bilateral environmental cooperation between Norway and Russia. In the years that followed, concern grew regarding the safety of military and civil nuclear installations in the northwest of Russia. This concern was associated not only with possible reactor accidents, but also with the prolonged or sudden release of radio-nuclides from radioactive waste facilities.In addition to the potential threats outlined above, radionuclides originating from nuclear weapons fallout, the Chernobyl accident and waste discharged from European reprocessing facilities have been detected in the Norwegian marine environment. In 1994 and 1995, the discharge of 99Tc from the reprocessing facility at Sellafield in the UK increased sharply, and although this discharge has been reduced, it continued at a high level up to 2003. There has been much public concern about the consequences of such kinds of release, as the radionuclides discharged to the Irish Sea are transported by ocean currents via the North Sea into the Norwegian coastal current and to the Barents Sea. In response to this concern, programmes for the monitoring of radioactivity in the marine environment have been established. Due to the economic importance of the fishing industry and its vulnerability to contamination, as well as any rumours of radioactive contamination, one of the main objectives of these programmes is to

  16. System and operations concept for the Geostationary Earth Observatory data and information system

    International Nuclear Information System (INIS)

    Weinstein, F.C.; Messing, F.; Armstead, A.

    1992-03-01

    The Geostationary Earth Observatory (GEO) Data and Information System (GEODIS) is a critical element in achieving GEO program goals. GEODIS must collect, process, and disseminate scientific data to meet the challenges of NASA's Mission to Planet Earth. The system and operations concept for GEODIS described here summarizes its principal functional elements and external interfaces. GEODIS operations include mission support (of the GEO platform and instruments), data production (of multiple levels of products derived from GEO sensor data), user support (in accessing this data both from archives and directly via satellite rebroadcast links), and institutional support (for communications, management, development, and testing). This concept is part of a baseline generated for Marshall Space Flight Center to define the preliminary architecture of GEODIS. After validation by scientists, managers, operators, and developers, these concepts may be used to guide future work in defining detailed requirements and designs for GEODIS. 6 refs

  17. Escherichia Coli-Lux Biosensor Used to Monitor the Cytotoxicity and Genotoxicity of Pharmacological Residues in Environment

    Directory of Open Access Journals (Sweden)

    Eliza Hawrylik

    2018-05-01

    Full Text Available The aim of the study was to evaluate the usefulness of Escherichia coli K-12 RFM 443 recA::lux for cytotoxicity and genotoxicity monitoring of metoprolol in the environment. Metoprolol is one of the most popular cardiac drug which belongs to the group of β–blockers. The drug was applied at concentrations ranging from 0.01 µg/cm3 to 100 µg/cm3. The conducted studies are preliminary studies aimed at validation of the recA::lux gene construct in the direction of determining its sensitivity to metoprolol. The drug concentrations were selected experimentally to obtain a positive luminescence response. Obtained data indicated the influence of metoprolol on lux gene expression and recA promoter activity based on the use of laboratory samples using PBS buffer. Results indicate a potential possibility of using a bacterial biosensor Escherichia coli K - 12 RFM 443 with recA::lux gene fusion in cytotoxicity and genotoxicity monitoring of the cardiac drugs residue in the environment.

  18. Tunable Diode Laser Sensor for Monitoring and Control of Harsh Combustion Environments

    Energy Technology Data Exchange (ETDEWEB)

    VonDrasek, William; Melsio-Pubill, Anna

    2006-05-30

    This work represents the collaborative effort between American Air Liquide and Physical Sciences, Inc. for developing a sensor based on near-IR tunable diode lasers (TDL). The multi-species capability of the sensor for simultaneous monitoring of CO, O2, and H2O concentration as well as gas temperature is ideal for in-situ monitoring on industrial furnaces. The chemical species targeted are fundamental for controlling the combustion space for improved energy efficiency, reduced pollutants, and improved product quality, when coupling the measurement to a combustion control system. Several add-on modules developed provide flexibility in the system configuration for handling different process monitoring applications. For example, the on-Demand Power Control system for the 1.5 ?m laser is used for high particle density exhaust streams where laser transmission is problematic. For long-distance signal collection a fiber optic communication system is used to reduce noise pick-up. Finally, hardened modules to withstand high ambient temperatures, immune to EMF interference, protection from flying debris, and interfaced with pathlength control laser beam shielding probes were developed specifically for EAF process monitoring. Demonstration of these different system configurations was conducted on Charter Steel's reheat furnace, Imco Recycling, Inc. (now Aleris International, Inc.) aluminum reverberatory furnace, and Gerdau Ameristeel's EAF. Measurements on the reheat furnace demonstrated zone monitoring with the measurement performed close to the steel billet. Results from the aluminum furnace showed the benefit of measuring in-situ near the bath. In this case, low-level furnace optimization was performed and demonstrated 5% fuel savings. Monitoring tests on the EAF off-gas demonstrated the level of industrialization of the sensor to survive the harsh EAF environment. Long-term testing on the EAF has been on-going for over 6 months with essentially zero maintenance

  19. Radiometric modeling and calibration of the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) ground based measurement experiment

    Science.gov (United States)

    Tian, Jialin; Smith, William L.; Gazarik, Michael J.

    2008-12-01

    The ultimate remote sensing benefits of the high resolution Infrared radiance spectrometers will be realized with their geostationary satellite implementation in the form of imaging spectrometers. This will enable dynamic features of the atmosphere's thermodynamic fields and pollutant and greenhouse gas constituents to be observed for revolutionary improvements in weather forecasts and more accurate air quality and climate predictions. As an important step toward realizing this application objective, the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) Engineering Demonstration Unit (EDU) was successfully developed under the NASA New Millennium Program, 2000-2006. The GIFTS-EDU instrument employs three focal plane arrays (FPAs), which gather measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The GIFTS calibration is achieved using internal blackbody calibration references at ambient (260 K) and hot (286 K) temperatures. In this paper, we introduce a refined calibration technique that utilizes Principle Component (PC) analysis to compensate for instrument distortions and artifacts, therefore, enhancing the absolute calibration accuracy. This method is applied to data collected during the GIFTS Ground Based Measurement (GBM) experiment, together with simultaneous observations by the accurately calibrated AERI (Atmospheric Emitted Radiance Interferometer), both simultaneously zenith viewing the sky through the same external scene mirror at ten-minute intervals throughout a cloudless day at Logan Utah on September 13, 2006. The accurately calibrated GIFTS radiances are produced using the first four PC scores in the GIFTS-AERI regression model. Temperature and moisture profiles retrieved from the PC-calibrated GIFTS radiances are verified against radiosonde measurements collected throughout the GIFTS sky measurement period. Using the GIFTS GBM calibration model, we compute the calibrated radiances from data

  20. ERATOSTHENES: excellence research Centre for Earth surveillance and space-based monitoring of the environment, the EXCELSIOR Horizon 2020 teaming project

    Science.gov (United States)

    Hadjimitsis, Diofantos G.; Kontoes, Haris; Schreier, Gunter; Ansmann, Albert; Komodromos, George; Themistocleous, Kyriacos; Mamouri, Rodanthi; Michaelides, Silas; Nisantzi, Argyro; Papoutsa, Christiana; Neocleous, Kyriacos; Mettas, Christodoulos; Tzouvaras, Marios; Evagorou, Evagoras; Christofe, Andreas; Melillos, George; Papoutsis, Ioannis

    2017-10-01

    The aim of this paper is to present the strategy and vision to upgrade the existing ERATOSTHENES Research Centre (ERC) established within the Cyprus University of Technology (CUT) into a sustainable, viable and autonomous Centre of Excellence (CoE) for Earth Surveillance and Space-Based Monitoring of the Environment, which will provide the highest quality of related services on the National, European and International levels. EXCELSIOR is a Horizon 2020 Teaming project which addresses a specific challenge defined by the work program, namely, the reduction of substantial disparities in the European Union by supporting research and innovation activities and systems in low performing countries. It also aims at establishing long-term and strategic partnerships between the Teaming partners, thus reducing internal research and innovation disparities within European Research and Innovation landscape. The proposed CoE envisions the upgrading of the existing ERC into an inspiring environment for conducting basic and applied research and innovation in the areas of the integrated use of remote sensing and space-based techniques for monitoring the environment. Environment has been recognized by the Smart Specialization Strategy of Cyprus as the first horizontal priority for future growth of the island. The foreseen upgrade will regard the expansion of this vision to systematic monitoring of the environment using Earth Observation, space and ground based integrated technologies. Such an approach will lead to the systematic monitoring of all three domains of the Environment (Air, Land, Water). Five partners have united to upgrade the existing ERC into a CoE, with the common vision to become a world-class innovation, research and education centre, actively contributing to the European Research Area (ERA). More specifically, the Teaming project is a team effort between the Cyprus University of Technology (CUT, acting as the coordinator), the German Aerospace Centre (DLR), the

  1. Monitoring of radionuclides in the environs of Finnish nuclear power plants in 1989-1990

    International Nuclear Information System (INIS)

    Ilus, E.; Sjoeblom, K-L.; Klemola, S.; Arvela, H.

    1992-01-01

    Surveillance of radioactive substances around Finnish nuclear power plants continued in 1989-1990 according to the regular monitoring programmes. About 1000 samples were analysed annually from both terrestrial and aquatic environments. The dominant artificial radionuclides in the vicinity of the power plants were still the cesium isotopes, 137 Cs and 134 Cs, originating from the Chernobyl accident. Owing to radioactive decay, other fallout nuclides with shorter half-lives disappeared from the environmental samples during the period in question. Trace amounts of activation products originating from the airborne releases of the local power plants were detected in some air and deposition samples. Discharged nuclides were more abundant in the aquatic environment, especially in samples of indicator organisms and sinking matter collected from the Olkiluoto area in 1990. However, the concentrations were so low that they did not markedly raise the radiation burden in the environment. (orig.)

  2. Monitoring of health and environment by National Uranium Company (NUC)

    International Nuclear Information System (INIS)

    Georgescu, D.P.; Banciu, O

    1998-01-01

    Among the activities of geological survey, exploitation and processing of radioactive ore performed by National Uranium Company (NUC) a major attention is paid to personnel medical monitoring, to influences on the public health in the affected zones and also to the impact on environment, based on specific criteria and accomplished by medical and technical institutions having an adequate profile, in conformity with the enforced laws and with recommendations of international authorities on this field. Health monitoring of the active and retired personnel and of population from the affected sites by the NUC activities is done on the basis of a program established in co-operation with the Work Protection Department and the management of the company's subunits. The methodology used at present has the following three stages: 1. Periodical medical examination of the personnel including all the compulsory investigations requested by the Ministry of Health; 2. Annual epidemiology descriptive studies concerning the analysis of the personnel health state; 3. Analytical epidemiologic studies (retrospective and prospective) having the aim of surveying the radiation effects on the human target organs of the exposed personnel and also the impact on the public health in the influenced zones. At present the incidence of professional diseases liked to uranium is no longer a problem. Attention has to be focused to the diseases due to microclimate, noise, intensive physical effort and stress (non-specific chronic breathing diseases, arterial high blood pressure, heart diseases, digestive diseases and neuroses). The paper presents also the environmental factors investigated in connection with the importance which they have in radioactive contamination: air, water, soil, sediments, vegetation, and agricultural products. There are given the results of the tests performed on 25,000 samples and from more then 20,000 radiometric measurements performed between 1975 - 1997 in each subunit of

  3. Environment monitoring from space

    International Nuclear Information System (INIS)

    Takagi, M.

    1994-01-01

    Environmental problems such as acid rain, ozone depletion, deforestation, erosion, and the greenhouse effect are of increasing concern, and continuous earth observation from artificial satellites has been contributing significant information on the environment since the 1960s. Earth observation from space has the advantages of wide area coverage at potentially high resolutions, periodic and long-term observation capability, data acquisition with uniform quality and repeatability, and ability to observe using different types of sensors. Problems to be solved in earth observation include the need for preprocessing of satellite data, understanding the relationship between observed physical parameters and objects, and the high volume of data for processing. In Japan, a research project on the higher-order utilization of remote sensing data from space was organized in 1985, and the results led to recognition of the importance of satellite observation. It was then decided to undertake a program to improve the understanding of the earth environment by satellite. Five research plans were selected: a basic study on earth observation by microwaves; global change analysis of the biosphere; a study of the physical process of the water cycle over land; a study of air-sea interaction; and higher-order processing of earth observation information. In recognition of the international nature of satellite data, as well as the capabilities of Canada and Japan in computer, communication, and multimedia technologies, bilateral cooperation is proposed in the area of earth environment information systems based on satellite observation

  4. An artificial reality environment for remote factory control and monitoring

    Science.gov (United States)

    Kosta, Charles Paul; Krolak, Patrick D.

    1993-01-01

    Work has begun on the merger of two well known systems, VEOS (HITLab) and CLIPS (NASA). In the recent past, the University of Massachusetts Lowell developed a parallel version of NASA CLIPS, called P-CLIPS. This modification allows users to create smaller expert systems which are able to communicate with each other to jointly solve problems. With the merger of a VEOS message system, PCLIPS-V can now act as a group of entities working within VEOS. To display the 3D virtual world we have been using a graphics package called HOOPS, from Ithaca Software. The artificial reality environment we have set up contains actors and objects as found in our Lincoln Logs Factory of the Future project. The environment allows us to view and control the objects within the virtual world. All communication between the separate CLIPS expert systems is done through VEOS. A graphical renderer generates camera views on X-Windows devices; Head Mounted Devices are not required. This allows more people to make use of this technology. We are experimenting with different types of virtual vehicles to give the user a sense that he or she is actually moving around inside the factory looking ahead through windows and virtual monitors.

  5. Geostationary Coastal Ecosystem Dynamics Imager (GEO CEDI) for the GEO Coastal and Air Pollution Events (GEO CAPE) Mission. Concept Presentation

    Science.gov (United States)

    Janz, Scott; Smith, James C.; Mannino, Antonio

    2010-01-01

    This slide presentation reviews the concepts of the Geostationary Coastal Ecosystem Dynamics Imager (GEO CEDI) which will be used on the GEO Coastal and Air Pollution Events (GEO CAPE) Mission. The primary science requirements require scans of the U.S. Coastal waters 3 times per day during the daylight hours. Included in the overview are presentations about the systems, the optics, the detectors, the mechanical systems, the electromechanical systems, the electrical design, the flight software, the thermal systems, and the contamination prevention requirements.

  6. Monitoring of Trichloroethene and Tetrachloroethene Content in Soil-Water Environment in Third Phase of Ecological Audit of Land

    Directory of Open Access Journals (Sweden)

    Pusz Agnieszka

    2014-07-01

    Full Text Available Trichloroethene (TCE and tetrachloroethene (PCE are chemical compounds which pose a serious threat for human health. Their specific properties make it possible that these substances may linger in soil and water for many years. These are the reasons why wells with water designed for drinking purposes have been subject of monitoring since 2006. This paper presents the results of monitoring research conducted in the soil-water environment within the framework in third phase of an ecological audit of land. The ecological audit of land made it possible to identify the cause and degree of the degradation, and helped formulate rationale for remedy decisions pertaining to the land (remediation/reclamation. The objective of the paper was to determine the pollution status of the soil-water environment and, subsequently, monitor (in years 2008-2010 the contents of the hazardous substances, namely trichloroethene and tetrachloroethene, within the area of the potential impact of metallurgical plant located in borders of the Main Underground Water Reservoir Wierzbica-Ostrowiec (GZWP 420 in in voivodeship Świętokrzyskie.

  7. A monitor for the laboratory evaluation of control integrity in digital control systems operating in harsh electromagnetic environments

    Science.gov (United States)

    Belcastro, Celeste M.; Fischl, Robert; Kam, Moshe

    1992-01-01

    This paper presents a strategy for dynamically monitoring digital controllers in the laboratory for susceptibility to electromagnetic disturbances that compromise control integrity. The integrity of digital control systems operating in harsh electromagnetic environments can be compromised by upsets caused by induced transient electrical signals. Digital system upset is a functional error mode that involves no component damage, can occur simultaneously in all channels of a redundant control computer, and is software dependent. The motivation for this work is the need to develop tools and techniques that can be used in the laboratory to validate and/or certify critical aircraft controllers operating in electromagnetically adverse environments that result from lightning, high-intensity radiated fields (HIRF), and nuclear electromagnetic pulses (NEMP). The detection strategy presented in this paper provides dynamic monitoring of a given control computer for degraded functional integrity resulting from redundancy management errors, control calculation errors, and control correctness/effectiveness errors. In particular, this paper discusses the use of Kalman filtering, data fusion, and statistical decision theory in monitoring a given digital controller for control calculation errors.

  8. Monitoring of radioactive contamination in food and the environment 1986-1998

    International Nuclear Information System (INIS)

    Liland, Astrid; Skuterud, Lavrans; Bergan, Tone; Forseth, Torbjoern; Gaare, Eldar; Hellstroem, Turid

    2001-01-01

    The results from the national monitoring of radioactive contamination in food and the environment 1986-1998 are presented. The average 137Cs concentration is decreasing in cow's and goat's milk, sheep, reindeer and fresh water fish. Pasture and fungi are, on the contrary, not showing a general decreasing trend. The radioactivity in food and humans has been decreasing since 1987. The effective dose from intake is estimated to 0.02 mSv for an average Norwegian in 1998. Vulnerable groups may have received doses up to 0.4 mSv. One cannot rule out the possibility that some individuals in these groups have received doses superior to 1 mSv/year. (Author)

  9. Using long-term ground-based HSRL and geostationary observations in combination with model re-analysis to help disentangle local and long-range transported aerosols in Seoul, South Korea

    Science.gov (United States)

    Phillips, C.; Holz, R.; Eloranta, E. W.; Reid, J. S.; Kim, S. W.; Kuehn, R.; Marais, W.

    2017-12-01

    The University of Wisconsin High Spectral Resolution Lidar (HSRL) has been continuously operating at Seoul National University as part of the Korea-United States Air Quality Study (KORUS-AQ). The instrument was installed in March of 2016 and continues to operate as of August 2017, providing a truly unique data set to monitor aerosol and cloud properties. With its capability to separate the molecular and particulate scattering, the HSRL is able to detect extremely thin aerosol layers with sub-molecular scattering sensitivity. The system deployed in Seoul has depolarization measurements at 532 nm as well as a near IR channel at 1064 nm providing discrimination between dust, smoke, pollution, water clouds, and ice clouds. As will be presented, these capabilities can be used to produce three channel combined RGB images that provide visualization of small changes in the aerosol properties. A primary motivation of KORUS-AQ was to determine the relative effects of transported pollution and local pollution on air quality in Seoul. We hypothesize that HSRL-based image analysis algorithms combined with satellite and model re-analysis has the potential to identify cases when remote sources of aerosols and pollution are advected into the boundary layer with impacts to the surface air quality. To facilitate this research we have developed the capability to combine ten-minute geostationary imagery from Himawari-8, nearby radiosondes, model output, surface PM measurements, and AERONET data over the HSRL site. On a case-by-case basis, it is possible to separate layers of aerosols with different scattering properties using these tools. Additionally, a preliminary year-long aerosol climatology with integrated geo-stationary retrievals and modeling data will be presented. The focus is on investigating correlations between the HSRL aerosol measurements (depolarization, color ratio, extinction, and lidar ratio) with the model output and aerosol sources. This analysis will use recently

  10. Radioactivity in the environment. Report for 1999. A summary and radiological assessment of the Environment Ageny's monitoring programmes

    International Nuclear Information System (INIS)

    1999-01-01

    The Environment Agency has wide-ranging responsibilities and powers to protect and, where necessary, improve the environment in England and Wales. The Agency also has a duty to protect the environment in a way that works towards sustainable development. In 1998, the Oslo and Paris Commission (OSPAR) strategy for radioactive substances was agreed by Ministers at Sintra, Portugal, to prevent pollution of the North East Atlantic maritime area through progressive and substantial reductions in discharges, emissions and losses of radioactive substances. In June 2000, the UK Government published for consultation the draft UK Strategy for Radioactive Discharges 2001-2020 which sets out the UK's plans to implement the OSPAR strategy. The Government will be issuing statutory guidance to the Environment Agency which will provide the vehicle through which the UK Strategy will be implemented. Radiological monitoring programmes are carried out in support of the Agency's regulatory functions under RSA 93 and as part of the UK Government's obligations under the Euratom Treaty. This report presents the results of the Agency's regular monitoring of radioactivity in the environment during 1999 and an assessment of the radiological impact. The main findings of the regular monitoring programme during 1999 were as follows: (i) The majority of operator declarations of the radioactive content of wastes discharges and disposals had been assessed accurately or were over estimated. (ii) Radiation dose-rates above sediments and concentrations of radionuclides in water, sediment, soil and grass were generally consistent with those reported in previous years, with no clear trend over the last 10 years. Enhanced levels of artificial radionuclides continue to be found in coastal sediments in the vicinity of Sellafield, which decline with increasing distance from the site. Radioactivity levels around other major sites were mostly low or not detectable. (iii) As in previous years, concentrations of

  11. A proposed approach to monitor private-sector policies and practices related to food environments, obesity and non-communicable disease prevention.

    Science.gov (United States)

    Sacks, G; Swinburn, B; Kraak, V; Downs, S; Walker, C; Barquera, S; Friel, S; Hawkes, C; Kelly, B; Kumanyika, S; L'Abbé, M; Lee, A; Lobstein, T; Ma, J; Macmullan, J; Mohan, S; Monteiro, C; Neal, B; Rayner, M; Sanders, D; Snowdon, W; Vandevijvere, S

    2013-10-01

    Private-sector organizations play a critical role in shaping the food environments of individuals and populations. However, there is currently very limited independent monitoring of private-sector actions related to food environments. This paper reviews previous efforts to monitor the private sector in this area, and outlines a proposed approach to monitor private-sector policies and practices related to food environments, and their influence on obesity and non-communicable disease (NCD) prevention. A step-wise approach to data collection is recommended, in which the first ('minimal') step is the collation of publicly available food and nutrition-related policies of selected private-sector organizations. The second ('expanded') step assesses the nutritional composition of each organization's products, their promotions to children, their labelling practices, and the accessibility, availability and affordability of their products. The third ('optimal') step includes data on other commercial activities that may influence food environments, such as political lobbying and corporate philanthropy. The proposed approach will be further developed and piloted in countries of varying size and income levels. There is potential for this approach to enable national and international benchmarking of private-sector policies and practices, and to inform efforts to hold the private sector to account for their role in obesity and NCD prevention. © 2013 The Authors. Obesity Reviews published by John Wiley & Sons Ltd on behalf of the International Association for the Study of Obesity.

  12. Tritium monitoring in the environment of the French territory

    Energy Technology Data Exchange (ETDEWEB)

    Leprieur, F.; Roussel-Debet, S.; Pierrard, O.; Tournieux, D.; Boissieux, T.; Caldera-Ideias, P. [Institut de radioprotection et de surete nucleaire (France)

    2014-07-01

    Introduction: Radioactive releases in the environment from civilian and military nuclear facilities have significantly decreased over the last few decades, except for discharges of tritium which are forecast to increase due to changes in the fuel management in power plants and in the longer term by new tritium-emitting units (fusion reactors). In the aim to perform its radiological monitoring mission throughout the French territory, IRSN uses and develops advanced technology equipment to sample and to analyze tritium in the different environmental compartments. Methodology: IRSN uses bubblers to collect both tritium vapour (HTO) and gaseous tritium (mainly HT) in the air. Another method, developed by IRSN, consists in directly sampling the water vapour in the air by condensing in a cold trap and more recently with passive sampler. In continental and marine surface water, samples are usually collected by automatic water samplers. Instantaneous surface water samples are also collected by grab sample devices. In addition, IRSN conducts animal and plant samples near French nuclear facilities. Natural origin and tritium remaining from testing of nuclear weapons In the atmosphere, the background levels of tritium of 1 to 2 Bq/L measured in water vapour, equivalent to an activity of 0.01 to 0.02 Bq/m{sup 3} of air. In fresh waters, the tritium activity currently ranges between 1 and 3 Bq/L of water. In the marine environment, tritium emitted during nuclear weapon tests has been totally 'diluted' in cosmogenic tritium and concentration levels at the surface have remained around 0.1 to 0.2 Bq/L. In biological matrices, total tritium concentration range from 1 to 3 Bq/kg f.w. with a variable proportion of free and organically bounded forms. Tritium around nuclear facilities: Close to facilities releasing more than 2x10{sup 13} Bq/year of gaseous tritium, higher activity levels, ranging from a few tens to a few hundred Bq/L, are observed in the atmospheric and

  13. Diurnal cycle and seasonal variation of cloud cover over the Tibetan Plateau as determined from Himawari-8 new-generation geostationary satellite data.

    Science.gov (United States)

    Shang, Huazhe; Letu, Husi; Nakajima, Takashi Y; Wang, Ziming; Ma, Run; Wang, Tianxing; Lei, Yonghui; Ji, Dabin; Li, Shenshen; Shi, Jiancheng

    2018-01-18

    Analysis of cloud cover and its diurnal variation over the Tibetan Plateau (TP) is highly reliant on satellite data; however, the accuracy of cloud detection from both polar-orbiting and geostationary satellites over this area remains unclear. The new-generation geostationary Himawari-8 satellites provide high-resolution spatial and temporal information about clouds over the Tibetan Plateau. In this study, the cloud detection of MODIS and AHI is investigated and validated against CALIPSO measurements. For AHI and MODIS, the false alarm rate of AHI and MODIS in cloud identification over the TP was 7.51% and 1.94%, respectively, and the cloud hit rate was 73.55% and 80.15%, respectively. Using hourly cloud-cover data from the Himawari-8 satellites, we found that at the monthly scale, the diurnal cycle in cloud cover over the TP tends to increase throughout the day, with the minimum and maximum cloud fractions occurring at 10:00 a.m. and 18:00 p.m. local time. Due to the limited time resolution of polar-orbiting satellites, the underestimation of MODIS daytime average cloud cover is approximately 4.00% at the annual scale, with larger biases during the spring (5.40%) and winter (5.90%).

  14. A Lookup-Table-Based Approach to Estimating Surface Solar Irradiance from Geostationary and Polar-Orbiting Satellite Data

    Directory of Open Access Journals (Sweden)

    Hailong Zhang

    2018-03-01

    Full Text Available Incoming surface solar irradiance (SSI is essential for calculating Earth’s surface radiation budget and is a key parameter for terrestrial ecological modeling and climate change research. Remote sensing images from geostationary and polar-orbiting satellites provide an opportunity for SSI estimation through directly retrieving atmospheric and land-surface parameters. This paper presents a new scheme for estimating SSI from the visible and infrared channels of geostationary meteorological and polar-orbiting satellite data. Aerosol optical thickness and cloud microphysical parameters were retrieved from Geostationary Operational Environmental Satellite (GOES system images by interpolating lookup tables of clear and cloudy skies, respectively. SSI was estimated using pre-calculated offline lookup tables with different atmospheric input data of clear and cloudy skies. The lookup tables were created via the comprehensive radiative transfer model, Santa Barbara Discrete Ordinate Radiative Transfer (SBDART, to balance computational efficiency and accuracy. The atmospheric attenuation effects considered in our approach were water vapor absorption and aerosol extinction for clear skies, while cloud parameters were the only atmospheric input for cloudy-sky SSI estimation. The approach was validated using one-year pyranometer measurements from seven stations in the SURFRAD (SURFace RADiation budget network. The results of the comparison for 2012 showed that the estimated SSI agreed with ground measurements with correlation coefficients of 0.94, 0.69, and 0.89 with a bias of 26.4 W/m2, −5.9 W/m2, and 14.9 W/m2 for clear-sky, cloudy-sky, and all-sky conditions, respectively. The overall root mean square error (RMSE of instantaneous SSI was 80.0 W/m2 (16.8%, 127.6 W/m2 (55.1%, and 99.5 W/m2 (25.5% for clear-sky, cloudy-sky (overcast sky and partly cloudy sky, and all-sky (clear-sky and cloudy-sky conditions, respectively. A comparison with other state

  15. Wireless sensor network-based greenhouse environment monitoring and automatic control system for dew condensation prevention.

    Science.gov (United States)

    Park, Dae-Heon; Park, Jang-Woo

    2011-01-01

    Dew condensation on the leaf surface of greenhouse crops can promote diseases caused by fungus and bacteria, affecting the growth of the crops. In this paper, we present a WSN (Wireless Sensor Network)-based automatic monitoring system to prevent dew condensation in a greenhouse environment. The system is composed of sensor nodes for collecting data, base nodes for processing collected data, relay nodes for driving devices for adjusting the environment inside greenhouse and an environment server for data storage and processing. Using the Barenbrug formula for calculating the dew point on the leaves, this system is realized to prevent dew condensation phenomena on the crop's surface acting as an important element for prevention of diseases infections. We also constructed a physical model resembling the typical greenhouse in order to verify the performance of our system with regard to dew condensation control.

  16. Monitoring system for OpenPBS environment

    Energy Technology Data Exchange (ETDEWEB)

    Kolosov, V. [ITEP, Moscow (Russian Federation)]. E-mail: victor.kolosov@itep.ru; Lublev, Y. [ITEP, Moscow (Russian Federation); Makarychev, S. [ITEP, Moscow (Russian Federation)

    2004-11-21

    The OpenPBS batch system is widely used in the HEP community. The Open PBS package has a set of tools to check the current status of the system. This information is useful, but it is not sufficient enough for resource accounting and planning. As a solution for this problem, we developed a monitoring system which parses the logfiles from OpenPBS and stores the information into a SQL database (PostgreSQL). This allows us to analyze the data in many different ways using SQL queries. The system was used in ITEP during the last two years for batch farm monitoring.

  17. Monitoring the impact of trade agreements on national food environments: trade imports and population nutrition risks in Fiji.

    Science.gov (United States)

    Ravuvu, Amerita; Friel, Sharon; Thow, Anne-Marie; Snowdon, Wendy; Wate, Jillian

    2017-06-13

    Trade agreements are increasingly recognised as playing an influential role in shaping national food environments and the availability and nutritional quality of the food supply. Global monitoring of food environments and trade policies can strengthen the evidence base for the impact of trade policy on nutrition, and support improved policy coherence. Using the INFORMAS trade monitoring protocol, we reviewed available food supply data to understand associations between Fiji's commitments under WTO trade agreements and food import volume trends. First, a desk review was conducted to map and record in one place Fiji's commitments to relevant existing trade agreements that have implications for Fiji's national food environment under the domains of the INFORMAS trade monitoring protocol. An excel database was developed to document the agreements and their provisions. The second aspect of the research focused on data extraction. We began with identifying food import volumes into Fiji by country of origin, with a particular focus on a select number of 'healthy and unhealthy' foods. We also developed a detailed listing of transnational food corporations currently operating in Fiji. The study suggests that Fiji's WTO membership, in conjunction with associated economic and agricultural policy changes have contributed to increased availability of both healthy and less healthy imported foods. In systematically monitoring the import volume trends of these two categories of food, the study highlights an increase in healthy foods such as fresh fruits and vegetables and whole-grain refined cereals. The study also shows that there has been an increase in less healthy foods including fats and oils; meat; processed dairy products; energy-dense beverages; and processed and packaged foods. By monitoring the trends of imported foods at country level from the perspective of trade agreements, we are able to develop appropriate and targeted interventions to improve diets and health. This

  18. Taimyr Reindeer and Environmental Change: Monitoring Wild Reindeer Migration in Changing Natural and Social Environments

    Science.gov (United States)

    Petrov, A. N.

    2016-12-01

    The Taimyr Reindeer Herd (TRH) is both the largest and the longest monitored wild reindeer herd in Eurasia. An important part of Arctic ecosystems and Indigenous livelihood, wild reindeer have been continuously monitored for almost 50 years. During this time, herds have exhibited large changes in size and these changes have been recorded in almost all herds across the animal's range. An increasing number of wild reindeer in the Soviet times was followed by a significant population loss in the last decade. In addition, recent monitoring revealed substantial shifts in the distribution of wild populations. The decline in wild reindeer is likely related to natural cycles and changes in the Arctic environment caused by climate variability and anthropogenic activity. This study investigates patterns and possible drives of reindeer population dynamics in space and time. We identify key climatic factors, possible relationships with biomass dynamics, as well as with hunting practices and other human impacts.

  19. Cosmic radiation monitoring equipment for the Ministry of Posts and Telecommunications; Yuseisho muke uchu denpa kanshi shisetsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The equipment analyzes radio waves transmitted by a geostationary satellite toward the earth and collates the received waves to the registered satellite data for the exposure of illegality or unlawfulness, if any. A feature of the equipment is that it operates only one antenna to catch waves belonging in three different frequency bands, that is, L, Ku, and Ka. Another feature is that it follows a procedure which is automatically executed by computers, the procedure including the analysis of the spectrum of the continuously arriving waves for the isolation of the carrier wave for the determination of the position where the satellite rests and for the extraction of wave data. Cosmic radiation monitoring is manually performed in Germany, Britain, etc., and the equipment introduced here is the first computer-aided automatic cosmic radiation monitoring system in the world. (translated by NEDO)

  20. Proceedings (slides) of the ANCCLI-IRSN seminar: 'environment - health: what monitoring in territories by the different actors'

    International Nuclear Information System (INIS)

    2012-01-01

    Relations between the operation of nuclear facilities and the health of populations are recurrent topics. For this reason, the national association of information committees and local commissions (ANCCLI), and the radiation protection and nuclear safety institute (IRSN) have jointly organized this seminar devoted to the monitoring of environment and public health. Its aim was to share the experience of the different actors in order to help the local commissions of information (CLI) in carrying out their own actions on these topics. The first day, the Golfech, Gravelines, Cadarache and Saint-Laurent-Des-Eaux CLIs presented their local environmental monitoring actions and their impact studies for facilities effluents. IRSN presented its methodology for the elaboration of its annual radiological status of the French environment. A round table permitted the different intervening parties to exchange about their monitoring goals. The second day, the Tricastin and Gravelines CLI, as well as the health care supervision institute InVS), presented different studies and attempts of answers to the health-impact questions coming from the surrounding communities. The contributions and limitations of public health studies were discussed through a presentation of the joint ANCCLI/IRSN/InVS methodological guidebook 'public health in the vicinity of nuclear facilities: how to approach the questions asked'. This document gathers the slides of the available presentations: 1 - Environmental monitoring by the Tarn-et-Garonne departmental laboratory in partnership with the Golfech's CLI (A. Calafat); 2 - Environmental monitoring by the Tarn-et-Garonne veterinary laboratory (V. Rossetto); 3 - Independent environmental monitoring by the Tarn-et-Garonne and occasional expertises around the Gravelines site (F. Cazier); 4 - Study of the impact on Durance river of the liquid radiological effluents of CEA-Cadarache site (C. Fourcaud); 5 - Study of the impact on Loire river of the chemical

  1. Negotiation and Monitoring in Open Environments

    NARCIS (Netherlands)

    Clark, K.P.

    2014-01-01

    Large scale, distributed, digital environments offer vast potential. Within these environments, software systems will provide unprecedented support for daily life. Offering access to vast amounts of knowledge and resources, these systems will enable wider participation of society, at large. An

  2. Remote Monitoring of Post-eruption Volcano Environment Based-On Wireless Sensor Network (WSN): The Mount Sinabung Case

    Science.gov (United States)

    Soeharwinto; Sinulingga, Emerson; Siregar, Baihaqi

    2017-01-01

    An accurate information can be useful for authorities to make good policies for preventive and mitigation after volcano eruption disaster. Monitoring of environmental parameters of post-eruption volcano provides an important information for authorities. Such monitoring system can be develop using the Wireless Network Sensor technology. Many application has been developed using the Wireless Sensor Network technology, such as floods early warning system, sun radiation mapping, and watershed monitoring. This paper describes the implementation of a remote environment monitoring system of mount Sinabung post-eruption. The system monitor three environmental parameters: soil condition, water quality and air quality (outdoor). Motes equipped with proper sensors, as components of the monitoring system placed in sample locations. The measured value from the sensors periodically sends to data server using 3G/GPRS communication module. The data can be downloaded by the user for further analysis.The measurement and data analysis results generally indicate that the environmental parameters in the range of normal/standard condition. The sample locations are safe for living and suitable for cultivation, but awareness is strictly required due to the uncertainty of Sinabung status.

  3. Application of γ field theory based calculation method to the monitoring of mine nuclear radiation environment

    International Nuclear Information System (INIS)

    Du Yanjun; Liu Qingcheng; Liu Hongzhang; Qin Guoxiu

    2009-01-01

    In order to find the feasibility of calculating mine radiation dose based on γ field theory, this paper calculates the γ radiation dose of a mine by means of γ field theory based calculation method. The results show that the calculated radiation dose is of small error and can be used to monitor mine environment of nuclear radiation. (authors)

  4. Cyber-physical security of Wide-Area Monitoring, Protection and Control in a smart grid environment.

    Science.gov (United States)

    Ashok, Aditya; Hahn, Adam; Govindarasu, Manimaran

    2014-07-01

    Smart grid initiatives will produce a grid that is increasingly dependent on its cyber infrastructure in order to support the numerous power applications necessary to provide improved grid monitoring and control capabilities. However, recent findings documented in government reports and other literature, indicate the growing threat of cyber-based attacks in numbers and sophistication targeting the nation's electric grid and other critical infrastructures. Specifically, this paper discusses cyber-physical security of Wide-Area Monitoring, Protection and Control (WAMPAC) from a coordinated cyber attack perspective and introduces a game-theoretic approach to address the issue. Finally, the paper briefly describes how cyber-physical testbeds can be used to evaluate the security research and perform realistic attack-defense studies for smart grid type environments.

  5. Cyber-physical security of Wide-Area Monitoring, Protection and Control in a smart grid environment

    Science.gov (United States)

    Ashok, Aditya; Hahn, Adam; Govindarasu, Manimaran

    2013-01-01

    Smart grid initiatives will produce a grid that is increasingly dependent on its cyber infrastructure in order to support the numerous power applications necessary to provide improved grid monitoring and control capabilities. However, recent findings documented in government reports and other literature, indicate the growing threat of cyber-based attacks in numbers and sophistication targeting the nation’s electric grid and other critical infrastructures. Specifically, this paper discusses cyber-physical security of Wide-Area Monitoring, Protection and Control (WAMPAC) from a coordinated cyber attack perspective and introduces a game-theoretic approach to address the issue. Finally, the paper briefly describes how cyber-physical testbeds can be used to evaluate the security research and perform realistic attack-defense studies for smart grid type environments. PMID:25685516

  6. Wireless Sensor Network-Based Greenhouse Environment Monitoring and Automatic Control System for Dew Condensation Prevention

    Science.gov (United States)

    Park, Dae-Heon; Park, Jang-Woo

    2011-01-01

    Dew condensation on the leaf surface of greenhouse crops can promote diseases caused by fungus and bacteria, affecting the growth of the crops. In this paper, we present a WSN (Wireless Sensor Network)-based automatic monitoring system to prevent dew condensation in a greenhouse environment. The system is composed of sensor nodes for collecting data, base nodes for processing collected data, relay nodes for driving devices for adjusting the environment inside greenhouse and an environment server for data storage and processing. Using the Barenbrug formula for calculating the dew point on the leaves, this system is realized to prevent dew condensation phenomena on the crop’s surface acting as an important element for prevention of diseases infections. We also constructed a physical model resembling the typical greenhouse in order to verify the performance of our system with regard to dew condensation control. PMID:22163813

  7. A Proposal for Geologic Radioactive Waste Disposal Environmental Zero-State and Subsequent Monitoring Definition - First Lessons Learned from the French Environment Observatory - 13188

    International Nuclear Information System (INIS)

    Landais, Patrick; Leclerc, Elisabeth; Mariotti, Andre

    2013-01-01

    Obtaining a reference state of the environment before the beginning of construction work for a geological repository is essential as it will be useful for further monitoring during operations and beyond, thus keeping a memory of the original environmental state. The area and the compartments of the biosphere to be observed and monitored as well as the choice of the markers (e.g. bio-markers, biodiversity, quality of the environment, etc.) to be followed must be carefully selected. In parallel, the choice and selection of the environmental monitoring systems (i.e. scientific and technical criteria, social requirements) will be of paramount importance for the evaluation of the perturbations that could be induced during the operational phase of the repository exploitation. This paper presents learning points of the French environment observatory located in the Meuse/Haute-Marne that has been selected for studying the feasibility of the underground disposal of high level wastes in France. (authors)

  8. A Proposal for Geologic Radioactive Waste Disposal Environmental Zero-State and Subsequent Monitoring Definition - First Lessons Learned from the French Environment Observatory - 13188

    Energy Technology Data Exchange (ETDEWEB)

    Landais, Patrick; Leclerc, Elisabeth; Mariotti, Andre [Andra, 1-7 rue Jean Monnet, 92298 Chatenay Malabry (France)

    2013-07-01

    Obtaining a reference state of the environment before the beginning of construction work for a geological repository is essential as it will be useful for further monitoring during operations and beyond, thus keeping a memory of the original environmental state. The area and the compartments of the biosphere to be observed and monitored as well as the choice of the markers (e.g. bio-markers, biodiversity, quality of the environment, etc.) to be followed must be carefully selected. In parallel, the choice and selection of the environmental monitoring systems (i.e. scientific and technical criteria, social requirements) will be of paramount importance for the evaluation of the perturbations that could be induced during the operational phase of the repository exploitation. This paper presents learning points of the French environment observatory located in the Meuse/Haute-Marne that has been selected for studying the feasibility of the underground disposal of high level wastes in France. (authors)

  9. LSA SAF Meteosat FRP products - Part 2: Evaluation and demonstration for use in the Copernicus Atmosphere Monitoring Service (CAMS)

    Science.gov (United States)

    Roberts, G.; Wooster, M. J.; Xu, W.; Freeborn, P. H.; Morcrette, J.-J.; Jones, L.; Benedetti, A.; Jiangping, H.; Fisher, D.; Kaiser, J. W.

    2015-11-01

    data, ranging from 35 % over the Northern Africa region to 89 % over the European region. High errors of active fire omission and FRP underestimation are found over Europe and South America and result from SEVIRI's larger pixel area over these regions. An advantage of using FRP for characterising wildfire emissions is the ability to do so very frequently and in near-real time (NRT). To illustrate the potential of this approach, wildfire fuel consumption rates derived from the SEVIRI FRP-PIXEL product are used to characterise smoke emissions of the 2007 "mega-fire" event focused on Peloponnese (Greece) and used within the European Centre for Medium-Range Weather Forecasting (ECMWF) Integrated Forecasting System (IFS) as a demonstration of what can be achieved when using geostationary active fire data within the Copernicus Atmosphere Monitoring Service (CAMS). Qualitative comparison of the modelled smoke plumes with MODIS optical imagery illustrates that the model captures the temporal and spatial dynamics of the plume very well, and that high temporal resolution emissions estimates such as those available from a geostationary orbit are important for capturing the sub-daily variability in smoke plume parameters such as aerosol optical depth (AOD), which are increasingly less well resolved using daily or coarser temporal resolution emissions data sets. Quantitative comparison of modelled AOD with coincident MODIS and AERONET (Aerosol Robotic Network) AOD indicates that the former is overestimated by ~ 20-30 %, but captures the observed AOD dynamics with a high degree of fidelity. The case study highlights the potential of using geostationary FRP data to drive fire emissions estimates for use within atmospheric transport models such as those implemented in the Monitoring Atmospheric Composition and Climate (MACC) series of projects for the CAMS.

  10. LSA SAF Meteosat FRP Products: Part 2 - Evaluation and demonstration of use in the Copernicus Atmosphere Monitoring Service (CAMS)

    Science.gov (United States)

    Roberts, G.; Wooster, M. J.; Xu, W.; Freeborn, P. H.; Morcrette, J.-J.; Jones, L.; Benedetti, A.; Kaiser, J.

    2015-06-01

    data, ranging from 35% over the Northern Africa region to 89% over the European region. High errors of active fire omission and FRP underestimation are found over Europe and South America, and result from SEVIRI's larger pixel area over these regions. An advantage of using FRP for characterising wildfire emissions is the ability to do so very frequently and in near real time (NRT). To illustrate the potential of this approach, wildfire fuel consumption rates derived from the SEVIRI FRP-PIXEL product are used to characterise smoke emissions of the 2007 Peloponnese wildfires within the European Centre for Medium-Range Weather Forecasting (ECMWF) Integrated Forecasting System (IFS), as a demonstration of what can be achieved when using geostationary active fire data within the Copernicus Atmosphere Monitoring System (CAMS). Qualitative comparison of the modelled smoke plumes with MODIS optical imagery illustrates that the model captures the temporal and spatial dynamics of the plume very well, and that high temporal resolution emissions estimates such as those available from geostationary orbit are important for capturing the sub-daily variability in smoke plume parameters such as aerosol optical depth (AOD), which are increasingly less well resolved using daily or coarser temporal resolution emissions datasets. Quantitative comparison of modelled AOD with coincident MODIS and AERONET AOD indicates that the former is overestimated by ∼ 20-30%, but captures the observed AOD dynamics with a high degree of fidelity. The case study highlights the potential of using geostationary FRP data to drive fire emissions estimates for use within atmospheric transport models such as those currently implemented as part of the Monitoring Atmospheric Composition and Climate (MACC) programme within the CAMS.

  11. Image Navigation and Registration Performance Assessment Tool Set for the GOES-R Advanced Baseline Imager and Geostationary Lightning Mapper

    Science.gov (United States)

    De Luccia, Frank J.; Houchin, Scott; Porter, Brian C.; Graybill, Justin; Haas, Evan; Johnson, Patrick D.; Isaacson, Peter J.; Reth, Alan D.

    2016-01-01

    The GOES-R Flight Project has developed an Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for measuring Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM) INR performance metrics in the post-launch period for performance evaluation and long term monitoring. For ABI, these metrics are the 3-sigma errors in navigation (NAV), channel-to-channel registration (CCR), frame-to-frame registration (FFR), swath-to-swath registration (SSR), and within frame registration (WIFR) for the Level 1B image products. For GLM, the single metric of interest is the 3-sigma error in the navigation of background images (GLM NAV) used by the system to navigate lightning strikes. 3-sigma errors are estimates of the 99.73rd percentile of the errors accumulated over a 24-hour data collection period. IPATS utilizes a modular algorithmic design to allow user selection of data processing sequences optimized for generation of each INR metric. This novel modular approach minimizes duplication of common processing elements, thereby maximizing code efficiency and speed. Fast processing is essential given the large number of sub-image registrations required to generate INR metrics for the many images produced over a 24-hour evaluation period. Another aspect of the IPATS design that vastly reduces execution time is the off-line propagation of Landsat based truth images to the fixed grid coordinates system for each of the three GOES-R satellite locations, operational East and West and initial checkout locations. This paper describes the algorithmic design and implementation of IPATS and provides preliminary test results.

  12. Quantification of differences between occupancy and total monitoring periods for better assessment of exposure to particles in indoor environments

    Science.gov (United States)

    Wierzbicka, A.; Bohgard, M.; Pagels, J. H.; Dahl, A.; Löndahl, J.; Hussein, T.; Swietlicki, E.; Gudmundsson, A.

    2015-04-01

    For the assessment of personal exposure, information about the concentration of pollutants when people are in given indoor environments (occupancy time) are of prime importance. However this kind of data frequently is not reported. The aim of this study was to assess differences in particle characteristics between occupancy time and the total monitoring period, with the latter being the most frequently used averaging time in the published data. Seven indoor environments were selected in Sweden and Finland: an apartment, two houses, two schools, a supermarket, and a restaurant. They were assessed for particle number and mass concentrations and number size distributions. The measurements using a Scanning Mobility Particle Sizer and two photometers were conducted for seven consecutive days during winter in each location. Particle concentrations in residences and schools were, as expected, the highest during occupancy time. In the apartment average and median PM2.5 mass concentrations during the occupancy time were 29% and 17% higher, respectively compared to total monitoring period. In both schools, the average and medium values of the PM2.5 mass concentrations were on average higher during teaching hours compared to the total monitoring period by 16% and 32%, respectively. When it comes to particle number concentrations (PNC), in the apartment during occupancy, the average and median values were 33% and 58% higher, respectively than during the total monitoring period. In both houses and schools the average and median PNC were similar for the occupancy and total monitoring periods. General conclusions on the basis of measurements in the limited number of indoor environments cannot be drawn. However the results confirm a strong dependence on type and frequency of indoor activities that generate particles and site specificity. The results also indicate that the exclusion of data series during non-occupancy periods can improve the estimates of particle concentrations and

  13. Effect-directed analysis supporting monitoring of aquatic environments--An in-depth overview.

    Science.gov (United States)

    Brack, Werner; Ait-Aissa, Selim; Burgess, Robert M; Busch, Wibke; Creusot, Nicolas; Di Paolo, Carolina; Escher, Beate I; Mark Hewitt, L; Hilscherova, Klara; Hollender, Juliane; Hollert, Henner; Jonker, Willem; Kool, Jeroen; Lamoree, Marja; Muschket, Matthias; Neumann, Steffen; Rostkowski, Pawel; Ruttkies, Christoph; Schollee, Jennifer; Schymanski, Emma L; Schulze, Tobias; Seiler, Thomas-Benjamin; Tindall, Andrew J; De Aragão Umbuzeiro, Gisela; Vrana, Branislav; Krauss, Martin

    2016-02-15

    Aquatic environments are often contaminated with complex mixtures of chemicals that may pose a risk to ecosystems and human health. This contamination cannot be addressed with target analysis alone but tools are required to reduce this complexity and identify those chemicals that might cause adverse effects. Effect-directed analysis (EDA) is designed to meet this challenge and faces increasing interest in water and sediment quality monitoring. Thus, the present paper summarizes current experience with the EDA approach and the tools required, and provides practical advice on their application. The paper highlights the need for proper problem formulation and gives general advice for study design. As the EDA approach is directed by toxicity, basic principles for the selection of bioassays are given as well as a comprehensive compilation of appropriate assays, including their strengths and weaknesses. A specific focus is given to strategies for sampling, extraction and bioassay dosing since they strongly impact prioritization of toxicants in EDA. Reduction of sample complexity mainly relies on fractionation procedures, which are discussed in this paper, including quality assurance and quality control. Automated combinations of fractionation, biotesting and chemical analysis using so-called hyphenated tools can enhance the throughput and might reduce the risk of artifacts in laboratory work. The key to determining the chemical structures causing effects is analytical toxicant identification. The latest approaches, tools, software and databases for target-, suspect and non-target screening as well as unknown identification are discussed together with analytical and toxicological confirmation approaches. A better understanding of optimal use and combination of EDA tools will help to design efficient and successful toxicant identification studies in the context of quality monitoring in multiply stressed environments. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Space Weather Operation at KASI With Van Allen Probes Beacon Signals

    Science.gov (United States)

    Lee, Jongkil; Kim, Kyung-Chan; Giuseppe, Romeo; Ukhorskiy, Sasha; Sibeck, David; Kessel, Ramona; Mauk, Barry; Giles, Barbara; Gu, Bon-Jun; Lee, Hyesook; Park, Young-Deuk; Lee, Jaejin

    2018-02-01

    The Van Allen Probes (VAPs) are the only modern National Aeronautics and Space Administration (NASA) spacecraft broadcasting real-time data on the Earth's radiation belts for space weather operations. Since 2012, the Korea Astronomy and Space Science Institute (KASI) has contributed to the receipt of these data via a 7 m satellite-tracking antenna and used these beacon data for space weather operations. An approximately 15 min period is required from measurement to acquisition of Level-1 data. In this paper, we demonstrate the use of VAP data for monitoring space weather conditions at geostationary orbit (GEO) by highlighting the Saint Patrick's Day storm of 2015. During that storm, Probe-A observed a significant increase in the relativistic electron flux at 3 RE. Those electrons diffused outward resulting in a large increase of the electron flux >2 MeV at GEO, which potentially threatened satellite operations. Based on this study, we conclude that the combination of VAP data and National Oceanic and Atmospheric Administration-Geostationary Operational Environmental Satellite (NOAA-GOES) data can provide improved space environment information to geostationary satellite operators. In addition, the findings obtained indicate that more data-receiving sites would be necessary and data connections improved if this or a similar system were to be used as an operational data service.

  15. Radioactivity monitoring in Romania

    International Nuclear Information System (INIS)

    Alexandrescu, M.; Milu, C.

    1996-01-01

    Radioactivity monitoring in Romania is based on National Regulations for Radiation Protection enforced in 1976, on other environment protection laws enforced in the last years and on the recommendations of IAEA. Accordingly two systems of radioactive monitoring are to date operational in this field: the first one is the self-control of the radioactive emissions in the environment generated by the own nuclear activities (of nuclear units like the Cernavoda NPP, the Institute of Atomic Physics at Magurele-Bucharest, the Institute for Nuclear Research at Pitesti, the R Plant at Feldioara, Uranium mining units, etc.), while the other is based on two national agencies (the National Network of Environment Radiation Monitoring of the Ministry of Waters, Forests and Environment Protection and the Network of Radiation Hygiene Laboratories of the Health Ministry). The authors review and discuss the radiation protection legislation, the structure and the organizational operations of the national monitoring systems and the co-operation of the national monitoring systems with international authorities or programmes. 3 Figs., 1 tab., 11 refs

  16. Development of Advanced In-Situ Techniques for Chemistry Monitoring and Corrosion Mitigation in SCWO Environments

    International Nuclear Information System (INIS)

    Macdonald, D.D.

    2000-01-01

    Super Critical Water Oxidation (SCWO) is a promising technology for destroying highly toxic organic waste (including physiological agents) and for reducing the volume of DOE's low-level nuclear waste. The major problem inhibiting the wide implementation of SCWO is the lack of fundamental knowledge about various physico-chemical and corrosion processes that occur in SCW environments. In particular, the lack of experimental techniques for accurately monitoring important parameters, such as pH, corrosion potential and corrosion rate, has severely hampered the development of a quantitative understanding of the degradation of materials in this extraordinarily aggressive environment. Accordingly, the principal objective of the present program has been to develop new, innovative methods for accurately measuring parameters that characterize corrosion processes under super critical conditions

  17. Recent developments and future directions in the monitoring of terrestrial sun-induced chlorophyll fluorescence from space

    Science.gov (United States)

    Guanter, L.

    2017-12-01

    Sun-induced chlorophyll fluorescence (SIF) is an electromagnetic signal emitted by the chlorophyll-a of assimilating plants in the 650-850 nm spectral range. The SIF emission has a mechanistic link to photosynthesis and responds instantaneously to perturbations in environmental conditions such as light and water stress, which makes it a powerful proxy for plants' photosynthetic activity. Global measurements of SIF from space have been available since late 2011 from four different atmospheric satellite missions (chronologically, GOSAT, SCIAMACHY, GOME-2 and OCO-2). The potential of the derived SIF data sets to represent the photosynthetic activity of different ecosystems, including large crop belts worldwide, the Amazon rainforest and boreal evergreen forests has been demonstrated in the relatively short life-time of global SIF data. Despite the demonstrated potential of SIF data as a proxy for global terrestrial gross primary production, current observations are partly hampered by a coarse spatial resolution or the lack of spatial coverage. For this reason, great expectations are put on the upcoming TROPOMI instrument onboard the Copernicus' Sentinel 5-Precursor mission to be launched by mid-end of 2017. TROPOMI will provide daily global coverage with a spatial resolution between 3 and 7 km and continuous spectral coverage of the visible and near-infrared part of the spectrum. The recent selection of FLEX as the ESA Earth Explorer 8 to be launched around 2022 and several upcoming geostationary missions (TEMPO, Sentinel-4 and GeoCARB, covering Europe and the Americas) with potential for SIF retrievals complete an exciting near-future scenario for the monitoring of SIF from space. In this contribution, we will provide an overview of recent developments in the global monitoring of SIF and will introduce the near-future observational scenario with especial emphasis on TROPOMI and the geostationary missions to be launched in the coming years.

  18. Implementation and Test of the Automatic Flight Dynamics Operations for Geostationary Satellite Mission

    Directory of Open Access Journals (Sweden)

    Sangwook Park

    2009-12-01

    Full Text Available This paper describes the Flight Dynamics Automation (FDA system for COMS Flight Dynamics System (FDS and its test result in terms of the performance of the automation jobs. FDA controls the flight dynamics functions such as orbit determination, orbit prediction, event prediction, and fuel accounting. The designed FDA is independent from the specific characteristics which are defined by spacecraft manufacturer or specific satellite missions. Therefore, FDA could easily links its autonomous job control functions to any satellite mission control system with some interface modification. By adding autonomous system along with flight dynamics system, it decreases the operator’s tedious and repeated jobs but increase the usability and reliability of the system. Therefore, FDA is used to improve the completeness of whole mission control system’s quality. The FDA is applied to the real flight dynamics system of a geostationary satellite, COMS and the experimental test is performed. The experimental result shows the stability and reliability of the mission control operations through the automatic job control.

  19. Coal conversion and aquatic environments: overview of impacts and strategies for monitoring. Environmental Sciences Division publication No. 1112

    Energy Technology Data Exchange (ETDEWEB)

    Roop, R. D.; Sanders, F. S.; Barnthouse, L. W.

    1977-01-01

    Impact assessment and environmental monitoring are difficult but crucial steps needed to ensure the environmentally safe development of coal conversion technologies. This paper summarizes strategies for impact assessment and monitoring developed at Oak Ridge National Laboratory for DOE's program to build demonstration facilities. Impacts on aquatic environments depend heavily on the abiotic and biotic characteristics of the site and details of facility design. Key issues include availability of water, use of ''zero-discharge'' designs, and methods of handling solid wastes. In monitoring programs emphasis is placed on (1) thorough use of existing data, (2) use of a synoptic reconnaissance survey, criteria for choosing parameters to be measured, and the search for ecologically meaningful, cost-effective methods.

  20. Combining remote sensing and on-site monitoring methods to investigate footpath erosion within a popular recreational heathland environment.

    Science.gov (United States)

    Rodway-Dyer, Sue; Ellis, Nicola

    2018-06-01

    Footpaths are a prominent consequence of natural area tourism and reflect damage caused to valuable, sensitive habitats by people pressure. Degradation impacts on vegetation, wildlife, on and off-site soil movement and loss, creation of additional informal off-path footpaths (desire lines), and visual destruction of landscapes. Impacts need to be measured and monitored on a large temporal and spatial scale to aid in land management to maintain access and preserve natural environments. This study combined remote sensing (Light Detection and Ranging [LiDAR] and aerial photography) with on-site measurement of footpaths within a sensitive heathland habitat (Land's End, Cornwall, UK). Soil loss, slope angle change, vegetation damage and a hydrology model were combined to comprehensively study the site. Results showed 0.09 m mean soil loss over five years, footpath widening, increasing grass cover into heathland, and water channelling on the footpaths exacerbating erosion. The environments surrounding the footpaths were affected with visitors walking off path, requiring further management and monitoring. Multiple remote sensing techniques were highly successful in comprehensively assessing the area, particularly the hydrology model, demonstrating the potential of providing a valuable objective and quantitative monitoring and management tool. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Advanced Oil Spill Detection Algorithms For Satellite Based Maritime Environment Monitoring

    Science.gov (United States)

    Radius, Andrea; Azevedo, Rui; Sapage, Tania; Carmo, Paulo

    2013-12-01

    During the last years, the increasing pollution occurrence and the alarming deterioration of the environmental health conditions of the sea, lead to the need of global monitoring capabilities, namely for marine environment management in terms of oil spill detection and indication of the suspected polluter. The sensitivity of Synthetic Aperture Radar (SAR) to the different phenomena on the sea, especially for oil spill and vessel detection, makes it a key instrument for global pollution monitoring. The SAR performances in maritime pollution monitoring are being operationally explored by a set of service providers on behalf of the European Maritime Safety Agency (EMSA), which has launched in 2007 the CleanSeaNet (CSN) project - a pan-European satellite based oil monitoring service. EDISOFT, which is from the beginning a service provider for CSN, is continuously investing in R&D activities that will ultimately lead to better algorithms and better performance on oil spill detection from SAR imagery. This strategy is being pursued through EDISOFT participation in the FP7 EC Sea-U project and in the Automatic Oil Spill Detection (AOSD) ESA project. The Sea-U project has the aim to improve the current state of oil spill detection algorithms, through the informative content maximization obtained with data fusion, the exploitation of different type of data/ sensors and the development of advanced image processing, segmentation and classification techniques. The AOSD project is closely related to the operational segment, because it is focused on the automation of the oil spill detection processing chain, integrating auxiliary data, like wind information, together with image and geometry analysis techniques. The synergy between these different objectives (R&D versus operational) allowed EDISOFT to develop oil spill detection software, that combines the operational automatic aspect, obtained through dedicated integration of the processing chain in the existing open source NEST

  2. Monitoring Assumptions in Assume-Guarantee Contracts

    Directory of Open Access Journals (Sweden)

    Oleg Sokolsky

    2016-05-01

    Full Text Available Pre-deployment verification of software components with respect to behavioral specifications in the assume-guarantee form does not, in general, guarantee absence of errors at run time. This is because assumptions about the environment cannot be discharged until the environment is fixed. An intuitive approach is to complement pre-deployment verification of guarantees, up to the assumptions, with post-deployment monitoring of environment behavior to check that the assumptions are satisfied at run time. Such a monitor is typically implemented by instrumenting the application code of the component. An additional challenge for the monitoring step is that environment behaviors are typically obtained through an I/O library, which may alter the component's view of the input format. This transformation requires us to introduce a second pre-deployment verification step to ensure that alarms raised by the monitor would indeed correspond to violations of the environment assumptions. In this paper, we describe an approach for constructing monitors and verifying them against the component assumption. We also discuss limitations of instrumentation-based monitoring and potential ways to overcome it.

  3. Long term pipeline monitoring in geomechanically sensitive environments

    Energy Technology Data Exchange (ETDEWEB)

    Weir-Jones, I.; Sun, M. [Weir-Jones Engineering Consultants Ltd. (Canada)

    2011-07-01

    In the oil industry, monitoring pipeline structural integrity is necessary for both regulatory and environmental purposes. Weir-Jones Engineering Consultants developed an automated structural integrity monitoring (SIM) system, data on strain, displacement and temperature are continuously acquired and automatically transmitted to the monitoring personnel. The aim of this paper is to present this technology and its implementation on one of Inter Pipeline Fund's lines as well. The automated SIM equipment was installed on a new 42'' line at the crossing of the Clearwater River close to Fort McMurray. Results showed that this technology is a good way to monitor pipelines in remote locations, environmentally sensitive areas, river and embankment crossings and in locations where external forces can put the pipeline at risk; but it should not be used otherwise as that would not be cost effective. This paper described the developed automated SIM and showed that it should only be used in specific locations to be cost effective.

  4. Research-Based Monitoring, Prediction, and Analysis Tools of the Spacecraft Charging Environment for Spacecraft Users

    Science.gov (United States)

    Zheng, Yihua; Kuznetsova, Maria M.; Pulkkinen, Antti A.; Maddox, Marlo M.; Mays, Mona Leila

    2015-01-01

    The Space Weather Research Center (http://swrc. gsfc.nasa.gov) at NASA Goddard, part of the Community Coordinated Modeling Center (http://ccmc.gsfc.nasa.gov), is committed to providing research-based forecasts and notifications to address NASA's space weather needs, in addition to its critical role in space weather education. It provides a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, tailored space weather alerts and products, and weekly summaries and reports. In this paper, we focus on how (near) real-time data (both in space and on ground), in combination with modeling capabilities and an innovative dissemination system called the integrated Space Weather Analysis system (http://iswa.gsfc.nasa.gov), enable monitoring, analyzing, and predicting the spacecraft charging environment for spacecraft users. Relevant tools and resources are discussed.

  5. Stimulating innovation for global monitoring of agriculture and its impact on the environment in support of GEOGLAM

    Science.gov (United States)

    Bydekerke, Lieven; Gilliams, Sven; Gobin, Anne

    2015-04-01

    There is an urgent need to ensure food supply for a growing global population. To enable a sustainable growth of agricultural production, effective and timely information is required to support decision making and to improve management of agricultural resources. This requires innovative ways and monitoring methods that will not only improve short-term crop production forecasts, but also allow to assess changes in cultivation practices, agricultural areas, agriculture in general and, its impact on the environment. The G20 launched in June 2011 the "GEO Global Agricultural Monitoring initiative (GEOGLAM), requesting the GEO (Group on Earth Observations) Agricultural Community of Practice to implement GEOGLAM with the main objective to improve crop yield forecasts as an input to the Agricultural Market Information System (AMIS), in order to foster stabilisation of markets and increase transparency on agricultural production. In response to this need, the European Commission decided in 2013 to fund an international partnership to contribute to GEOGLAM and its research agenda. The resulting SIGMA project (Stimulating Innovation for Global Monitoring of Agriculture), a partnership of 23 globally distributed expert organisations, focusses on developing datasets and innovative techniques in support of agricultural monitoring and its impact on the environment in support of GEOGLAM. SIGMA has 3 generic objectives which are: (i) develop and test methods to characterise cropland and assess its changes at various scales; (ii) develop and test methods to assess changes in agricultural production levels; and; (iii) study environmental impacts of agriculture. Firstly, multi-scale remote sensing data sets, in combination with field and other ancillary data, will be used to generate an improved (global) agro-ecological zoning map and crop mask. Secondly, a combination of agro-meteorological models, satellite-based information and long-term time series will be explored to assess crop

  6. Radioactivity monitoring within the environment of the Loire basin. A partnership between the IRSN and the Dampierre-en-Burly and Saint-Laurent CLIs at the service of citizen vigilance

    International Nuclear Information System (INIS)

    2008-01-01

    The first part of this report presents the Loire basin and its environment, discusses the physical-chemical quality control of its waters and the main usages of the Loire waters. It also presents the nuclear installations present in the Loire basin (electricity production nuclear power stations and other installations), the actors involved in radioactivity measurement in the Loire basin environment (IRSN, EDF, AREVA, associations for the monitoring of water quality, public services), and the national network for radioactivity measurement in the environment. The second part describes and reports the radioactivity monitoring of the environment in the Loire basin, i.e. in the atmosphere, in rain waters and in continental waters, and in the food chain. Addressing this monitoring activity, a last part discusses the evolution of measurements, the importance of the plurality of actors involved in sampling and measurement (in order to guarantee the monitoring system transparency), the variety of sources, the assessment of health impact

  7. Marine outfalls monitoring at the CSIR: Evaluating the impact of wastewater discharge on our marine environment

    CSIR Research Space (South Africa)

    Arabi, S

    2012-10-01

    Full Text Available is used in coastal cities throughout the world and, if correctly managed, is recognised as an acceptable disposal option from multiple perspectives, including human and environmental health, social acceptability, and economic prudence. However..., wastewater contains contaminants that can affect the ecological functioning of the marine environment and compromise human health. The impact of wastewater discharge therefore requires careful monitoring. The CSIR uses a wide suite of indicators...

  8. An Environment for Guideline-based Decision Support Systems for Outpatients Monitoring.

    Science.gov (United States)

    Zini, Elisa M; Lanzola, Giordano; Bossi, Paolo; Quaglini, Silvana

    2017-08-11

    We propose an architecture for monitoring outpatients that relies on mobile technologies for acquiring data. The goal is to better control the onset of possible side effects between the scheduled visits at the clinic. We analyze the architectural components required to ensure a high level of abstraction from data. Clinical practice guidelines were formalized with Alium, an authoring tool based on the PROforma language, using SNOMED-CT as a terminology standard. The Alium engine is accessible through a set of APIs that may be leveraged for implementing an application based on standard web technologies to be used by doctors at the clinic. Data sent by patients using mobile devices need to be complemented with those already available in the Electronic Health Record to generate personalized recommendations. Thus a middleware pursuing data abstraction is required. To comply with current standards, we adopted the HL7 Virtual Medical Record for Clinical Decision Support Logical Model, Release 2. The developed architecture for monitoring outpatients includes: (1) a guideline-based Decision Support System accessible through a web application that helps the doctors with prevention, diagnosis and treatment of therapy side effects; (2) an application for mobile devices, which allows patients to regularly send data to the clinic. In order to tailor the monitoring procedures to the specific patient, the Decision Support System also helps physicians with the configuration of the mobile application, suggesting the data to be collected and the associated collection frequency that may change over time, according to the individual patient's conditions. A proof of concept has been developed with a system for monitoring the side effects of chemo-radiotherapy in head and neck cancer patients. Our environment introduces two main innovation elements with respect to similar works available in the literature. First, in order to meet the specific patients' needs, in our work the Decision

  9. Introduction to monitoring dynamic environmental phenomena of the world using satellite data collection systems, 1978

    Science.gov (United States)

    Carter, William Douglas; Paulson, Richard W.

    1979-01-01

    The rapid development of satellite technology, especially in the area of radio transmission and imaging systems, makes it possible to monitor dynamic surface phenomena of the Earth in considerable detail. The monitoring systems that have been developed are compatible with standard monitoring systems such as snow, stream, and rain gages; wind, temperature and humidity measuring instruments; tiltmeters and seismic event counters. Supported by appropriate power, radios and antennae, remote stations can be left unattended for at least 1 year and consistently relay local information via polar orbiting or geostationary satellites. These data, in conjunction with timely Landsat images, can provide a basis for more accurate estimates on snowfall, water runoff, reservoir level changes, flooding, drought effects, and vegetation trends and may be of help in forecasting volcanic eruptions. These types of information are critical for resource inventory and development, especially in developing countries where remote regions are commonly difficult to access. This paper introduces the reader to the systems available, describes their features and limitations, and provides suggestions on how to employ them. An extensive bibliography is provided for those who wish more information.

  10. Sentinel 4: a geostationary imaging UVN spectrometer for air quality monitoring: status of design, performance and development

    Science.gov (United States)

    Gulde, S. T.; Kolm, M. G.; Smith, D. J.; Maurer, R.; Bazalgette Courrèges-Lacoste, G.; Sallusti, M.; Bagnasco, G.

    2017-11-01

    SENTINEL 4 is an imaging UVN (UV-VIS-NIR) spectrometer, developed by Airbus Defence and Space under ESA contract in the frame of the joint European Union (EU)/ESA COPERNICUS program. The mission objective is the operational monitoring of trace gas concentrations for atmospheric chemistry and climate applications. To this end SENTINEL 4 will provide accurate measurements of key atmospheric constituents such as ozone, nitrogen dioxide, sulfur dioxide, formaldehyde, as well as aerosol and cloud properties.

  11. Monitoring the ecology and environment using remote sensing in the Jinta area/Middle Reaches of Heihe River Basin

    Science.gov (United States)

    Lu, Anxin; Wang, Lihong; Chen, Xianzhang

    2003-07-01

    A major monitoring area, a part of the middle reaches of Heihe basin, was selected. The Landsat TM data in summer of 1990 and 2000 were used with interpretation on the computer screen, classification and setting up environmental investigation database (1:100000) combined with DEM, land cover/land use, land type data and etc., according to the environmental classification system. Then towards to the main problems of environment, the spatial statistical analysis and dynamic comparisons were carried out using the database. The dynamic monitoring results of 1999 and 2000 show that the changing percentage with the area of 6 ground objects are as follows: land use and agriculture land use increased by 34.17% and 19.47% respectively, wet land and water-body also increased by 6.29% and 8.03% respectively; unused land increased by 1.73% and the biggest change is natural/semi-natural vegetation area, decreased by 42.78%, the main results above meat with the requirements of precise and practical conditions by the precise exam and spot check. With the combinations of using TM remote sensing data and rich un-remote sensing data, the investigations of ecology and environment and the dynamic monitoring would be carried out efficiently in the arid area. It is a dangerous signal of large area desertification if the area of natural/semi-natural vegetation is reduced continuously and obviously.

  12. Chemical data assimilation of geostationary aerosol optical depth and PM surface observations on regional aerosol modeling over the Korean Peninsula during KORUS-AQ campaign

    Science.gov (United States)

    Jung, J.; Choi, Y.; Souri, A.; Jeon, W.

    2017-12-01

    Particle matter(PM) has played a significantly deleterious role in affecting human health and climate. Recently, continuous high concentrations of PM in Korea attracted public attention to this critical issue, and the Korea-United States Air Quality Study(KORUS-AQ) campaign in 2016 was conducted to investigate the causes. For this study, we adjusted the initial conditions in the chemical transport model(CTM) to improve its performance over Korean Peninsula during KORUS-AQ period, using the campaign data to evaluate our model performance. We used the Optimal Interpolation(OI) approach and used hourly surface air quality measurement data from the Air Quality Monitoring Station(AQMS) by NIER and the aerosol optical depth(AOD) measured by a GOCI sensor from the geostationary orbit onboard the Communication Ocean and Meteorological Satellite(COMS). The AOD at 550nm has a 6km spatial resolution and broad coverage over East Asia. After assimilating the surface air quality observation data, the model accuracy significantly improved compared to base model result (without assimilation). It reported very high correlation value (0.98) and considerably decreased mean bias. Especially, it well captured some high peaks which was underpredicted by the base model. To assimilate satellite data, we applied AOD scaling factors to quantify each specie's contribution to total PM concentration and find-mode fraction(FMF) to define vertical distribution. Finally, the improvement showed fairly good agreement.

  13. Overview of the Copernicus Marine Environment Monitoring Service Products Available for the Arctic Region

    Directory of Open Access Journals (Sweden)

    A.L. Kholod

    2017-04-01

    Full Text Available The Copernicus Marine Environment Monitoring Service is one of six services (ocean, atmosphere, land, emergency situations, security and climate changes launched by the European Union within the EU Earth observation program. The data in the monitoring system covers both the entire World Ocean and individual European basins. The paper reviews the products of the Copernicus Marine Service operational system available in the Arctic. At the present time this region is of the increased interest both in Russia and in the world community. The system products include information on the thermodynamic, biogeochemical and bio-optical state of the marine environment. The system products are accessed through the electronic catalog of products. Selection criteria and possibilities for searching interesting information through the interactive web-portal are given in the paper. The system products containing the data of model calculations, satellite and in situ measurement results are considered. Spatial and temporal characteristics of the products are given, information on by whom, how the product was obtained and what is its accuracy is represented. The results of the system products visualization by the integrated tools (they allow one to construct and analyze time series, profiles, horizontal and vertical sections are shown. All the system data is publicly available to the registered users. Regular changes and updates of the system products as well as the mechanisms for accessing them take place. This information is sent to users by e-mail and is available on the news flash of the web-portal.

  14. Biodiversity Monitoring Using NGS Approaches on Unusual Substrates (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, Tom

    2013-03-01

    Tom Gilbert of the Natural History Museum of Denmark on "Biodiversity monitoring using NGS approaches on unusual substrates" at the 8th Annual Genomics of Energy & Environment Meeting in Walnut Creek, Calif.

  15. External gamma radiation monitoring in the environs of Kaiga Generating Station (KGS), using thermoluminescent dosimeters, during the period 1989-2003

    International Nuclear Information System (INIS)

    Basu, A.S.; Chougaonkar, M.P.; Mayya, Y.S.; Puranik, V.D.; Reji, T.K.; Ravi, P.M.; Hegde, A.G.

    2005-05-01

    This publication reports the results of external gamma radiation monitoring using Thermoluminescent Dosimeters (TLDs), in the environs of Kaiga Generating Station (KGS) during its preoperational survey between October 1989 and June 1998. The report also presents quarterly and annual values of air dose during the operational phase of the station between July 1998 and Dec. 2003 around the environmcnt of KGS. The results of TLD analysis, during the period October 1989-June 1998, indicate that the average annual air dose for the locations monitored, was 502± 91 μGy/a. The general background of the environs around Kaiga during the operational period, i.e. July 1998 and Dec. 2003, between 2.3 km. to 32km. has been found to be 509±74 μGy/a. The report discusses the methodology and different analyses carried out. (author)

  16. Modeling and Monitoring Terrestrial Primary Production in a Changing Global Environment: Toward a Multiscale Synthesis of Observation and Simulation

    Directory of Open Access Journals (Sweden)

    Shufen Pan

    2014-01-01

    Full Text Available There is a critical need to monitor and predict terrestrial primary production, the key indicator of ecosystem functioning, in a changing global environment. Here we provide a brief review of three major approaches to monitoring and predicting terrestrial primary production: (1 ground-based field measurements, (2 satellite-based observations, and (3 process-based ecosystem modelling. Much uncertainty exists in the multi-approach estimations of terrestrial gross primary production (GPP and net primary production (NPP. To improve the capacity of model simulation and prediction, it is essential to evaluate ecosystem models against ground and satellite-based measurements and observations. As a case, we have shown the performance of the dynamic land ecosystem model (DLEM at various scales from site to region to global. We also discuss how terrestrial primary production might respond to climate change and increasing atmospheric CO2 and uncertainties associated with model and data. Further progress in monitoring and predicting terrestrial primary production requires a multiscale synthesis of observations and model simulations. In the Anthropocene era in which human activity has indeed changed the Earth’s biosphere, therefore, it is essential to incorporate the socioeconomic component into terrestrial ecosystem models for accurately estimating and predicting terrestrial primary production in a changing global environment.

  17. Microplastics Monitoring in Marine Environment

    Directory of Open Access Journals (Sweden)

    Agung Dhamar Syakti

    2017-11-01

    Full Text Available This review summarizes the need for future spatiotemporal comparisons of microplastic abundance across marine environment, through standardized methods for microplastic sampling and analysis in sea water, beach and seabed sediment and marine organism. Pretreatment of the sample prior to the elimination of organic matter should be done using appropriate reagents was also described. Extraction of microplastics from environmental matrices is based on the different density of targeted microplastics with saturated salt solutions (NaCl, NaI, CaCl2, ZnCl2 and lithium metatungstate. Quantification can be achieved by microscopic techniques (binocular, stereomicroscope, fluorescence microscope and scanning electron microscope and discussion on identification methods including FTIR, Pyr-GC/MS and Raman spectroscopy will be provided. This review also endorses the importance of further study regarding the fate and impact of microplastics on marine biota and human health, especially when we acknowledge that co-pollution may occur during the transport on microplastic in marine environment.

  18. EMon: Embodied Monitorization

    Science.gov (United States)

    Carneiro, Davide; Novais, Paulo; Costa, Ricardo; Gomes, Pedro; Neves, José

    The amount of seniors in need of constant care is rapidly rising: an evident consequence of population ageing. There are already some monitorization environments which aim to monitor these persons while they remain at home. This, however, although better than delocalizing the elder to some kind of institution, may not still be the ideal solution, as it forces them to stay inside the home more than they wished, as going out means lack of accompaniment and a consequent sensation of fear. In this paper we propose EMon: a monitorization device small enough to be worn by its users, although powerful enough to provide the higher level monitorization systems with vital information about the user and the environment around him. We hope to allow the representation of an intelligent environment to move with its users, instead of being static, mandatorily associated to a single physical location. The first prototype of EMon, as presented in this paper, provides environmental data as well as GPS coordinates and pictures that are useful to describe the context of its user.

  19. Azimuthal propagation and frequency characteristic of compressional Pc 5 waves observed at geostationary orbit

    International Nuclear Information System (INIS)

    Takahashi, K.; Higbie, P.R.; Baker, D.N.

    1985-01-01

    Energetic particle data from the 1977-007 and 1979-053 satellites and magnetic field data from the GOES 2 and 3 satellites have been used to study eight compressional Pc 5 wave events observed at geostationary orbit during 1979. All the events occurred on the dayside, and most of them were observed during the recovery phase of a geomagnetic storm. By using the data from two of the satellites which were close to each other, we measured the azimuthal phase velocity V/sub phi/ and azimuthal wave number m for selected intervals. For all these intervals the waves propagated westward in the spacecraft frame, and we obtained Vertical Bar V/sub phi/ Vertical Bar = 4--14 km/s and Vertical Bar m Vertical Bar = 40--120. In addition, harmonics of a local standing Alfven wave were often present simultaneously with a compressional Pc 5 wave. The frequency of the compressional wave was typically 25% of that of the second harmonic of the Alfven wave. These observed features are discussed in the light of existing theories of instabilities in the ring current plasma

  20. Improved Marine Waters Monitoring

    Science.gov (United States)

    Palazov, Atanas; Yakushev, Evgeniy; Milkova, Tanya; Slabakova, Violeta; Hristova, Ognyana

    2017-04-01

    IMAMO - Improved Marine Waters Monitoring is a project under the Programme BG02: Improved monitoring of marine waters, managed by Bulgarian Ministry of environment and waters and co-financed by the Financial Mechanism of the European Economic Area (EEA FM) 2009 - 2014. Project Beneficiary is the Institute of oceanology - Bulgarian Academy of Sciences with two partners: Norwegian Institute for Water Research and Bulgarian Black Sea Basin Directorate. The Project aims to improve the monitoring capacity and expertise of the organizations responsible for marine waters monitoring in Bulgaria to meet the requirements of EU and national legislation. The main outcomes are to fill the gaps in information from the Initial assessment of the marine environment and to collect data to assess the current ecological status of marine waters including information as a base for revision of ecological targets established by the monitoring programme prepared in 2014 under Art. 11 of MSFD. Project activities are targeted to ensure data for Descriptors 5, 8 and 9. IMAMO aims to increase the institutional capacity of the Bulgarian partners related to the monitoring and assessment of the Black Sea environment. The main outputs are: establishment of real time monitoring and set up of accredited laboratory facilities for marine waters and sediments chemical analysis to ensure the ability of Bulgarian partners to monitor progress of subsequent measures undertaken.

  1. Coarse Initial Orbit Determination for a Geostationary Satellite Using Single-Epoch GPS Measurements

    Directory of Open Access Journals (Sweden)

    Ghangho Kim

    2015-04-01

    Full Text Available A practical algorithm is proposed for determining the orbit of a geostationary orbit (GEO satellite using single-epoch measurements from a Global Positioning System (GPS receiver under the sparse visibility of the GPS satellites. The algorithm uses three components of a state vector to determine the satellite’s state, even when it is impossible to apply the classical single-point solutions (SPS. Through consideration of the characteristics of the GEO orbital elements and GPS measurements, the components of the state vector are reduced to three. However, the algorithm remains sufficiently accurate for a GEO satellite. The developed algorithm was tested on simulated measurements from two or three GPS satellites, and the calculated maximum position error was found to be less than approximately 40 km or even several kilometers within the geometric range, even when the classical SPS solution was unattainable. In addition, extended Kalman filter (EKF tests of a GEO satellite with the estimated initial state were performed to validate the algorithm. In the EKF, a reliable dynamic model was adapted to reduce the probability of divergence that can be caused by large errors in the initial state.

  2. Los Alamos geostationary orbit synoptic data set: a compilation of energetic particle data

    International Nuclear Information System (INIS)

    Baker, D.N.; Higbie, P.R.; Belian, R.D.; Aiello, W.P.; Hones, E.W. Jr.; Tech, E.R.; Halbig, M.F.; Payne, J.B.; Robinson, R.; Kedge, S.

    1981-08-01

    Energetic electron (30 to 2000 keV) and proton (145 keV to 150 MeV) measurements made by Los Alamos National Laboratory sensors at geostationary orbit 6.6 R/sub E/ are summarized. The data are plotted in terms of daily average spectra, 3-h local time averages, and in a variety of statistical formats. The data summarize conditions from mid-1976 through 1978 (S/C 1976-059) and from early 1977 through 1978 (S/C 1977-007). The compilations correspond to measurements at 35 0 W, 70 0 W, and 135 0 W geographic longitude and, thus, are indicative of conditions at 9 0 , 11 0 , and 4.8 0 geomagnetic latitude, respectively. Most of this report is comprised of data plots that are organized according to Carrington solar rotations so that the data can be easily compared to solar rotation-dependent interplanetary data. As shown in prior studies, variations in solar wind conditions modulate particle intensity within the terrestrial magnetosphere. The effects of these variations are demonstrated and discussed. Potential uses of the Synoptic Data Set by the scientific and applications-oriented communities are also discussed

  3. Coarse Initial Orbit Determination for a Geostationary Satellite Using Single-Epoch GPS Measurements

    Science.gov (United States)

    Kim, Ghangho; Kim, Chongwon; Kee, Changdon

    2015-01-01

    A practical algorithm is proposed for determining the orbit of a geostationary orbit (GEO) satellite using single-epoch measurements from a Global Positioning System (GPS) receiver under the sparse visibility of the GPS satellites. The algorithm uses three components of a state vector to determine the satellite’s state, even when it is impossible to apply the classical single-point solutions (SPS). Through consideration of the characteristics of the GEO orbital elements and GPS measurements, the components of the state vector are reduced to three. However, the algorithm remains sufficiently accurate for a GEO satellite. The developed algorithm was tested on simulated measurements from two or three GPS satellites, and the calculated maximum position error was found to be less than approximately 40 km or even several kilometers within the geometric range, even when the classical SPS solution was unattainable. In addition, extended Kalman filter (EKF) tests of a GEO satellite with the estimated initial state were performed to validate the algorithm. In the EKF, a reliable dynamic model was adapted to reduce the probability of divergence that can be caused by large errors in the initial state. PMID:25835299

  4. Monitoring of radioactivity in the environs of Finnish nuclear power stations in 1987

    International Nuclear Information System (INIS)

    Sjoeblom, K.-L.; Klemola, S.; Ilus, E.; Arvela, H.; Blomqvist, L.

    1989-06-01

    Results of the environmental programmes for monitoring radioactive contamination around Finnish nuclear power plants in 1987 are reported. Fallout from the Chernobyl accident, which took place in April 1986, was still dominating the artificial radiation situation in Finland. Thus, large amounts of 137 Cs and other long-lived fallout nuclides predominated in the environmental samples taken in the vicinity of nuclear power plants. The extremely small airborne releases from Finnish nuclear power plants were almost totally covered by fallout nuclides. The somewhat higher aquatic releases were easier to distinguish, and it was possible to follow their spread in the marine environment. The contribution of locally discharged nuclides to radiation doses of the population was insignificant

  5. The marine environment monitoring in Saco Piraquara de Fora after the beginning of the Angra 2 nuclear power plant operation

    International Nuclear Information System (INIS)

    Tavares, P.G.; Souza, R.F.; Cardoso, S.N.M.

    2009-01-01

    The goal of this paper is to evaluate the environmental monitoring around the Almirante Alvaro Alberto Nuclear Power Station after the beginning the operation of Unit II, in July 2000. The Environmental Monitoring Laboratory collects several environmental samples and analyses them radiometrically to determine the presence of artificial radionuclides. In the Environmental Monitoring Laboratory, the samples are prepared and analysed following international procedures and the activities of the detectable radionuclides are obtained by gamma spectrometry. The Environmental Monitoring Laboratory analyses tritium in sea water as well. This paper will describe only the monitoring of the marine samples and the results of the measurements are compared with those obtained in pre-operational time of Angra 1 (1978 - 1982), Angra 2 (1996 - 2000) and those obtained in operational time of the units until 2008. The results show that, since 1982 until now, there is no impact on marine environment caused by the operation of Angra 1 and Angra 2. (author)

  6. A Panchromatic Imaging Fourier Transform Spectrometer for the NASA Geostationary Coastal and Air Pollution Events Mission

    Science.gov (United States)

    Wu, Yen-Hung; Key, Richard; Sander, Stanley; Blavier, Jean-Francois; Rider, David

    2011-01-01

    This paper summarizes the design and development of the Panchromatic Imaging Fourier Transform Spectrometer (PanFTS) for the NASA Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission. The PanFTS instrument will advance the understanding of the global climate and atmospheric chemistry by measuring spectrally resolved outgoing thermal and reflected solar radiation. With continuous spectral coverage from the near-ultraviolet through the thermal infrared, this instrument is designed to measure pollutants, greenhouse gases, and aerosols as called for by the U.S. National Research Council Decadal Survey; Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond1. The PanFTS instrument is a hybrid instrument based on spectrometers like the Tropospheric Emissions Spectrometer (TES) that measures thermal emission, and those like the Orbiting Carbon Observatory (OCO), and the Ozone Monitoring Instrument (OMI) that measure scattered solar radiation. Simultaneous measurements over the broad spectral range from IR to UV is accomplished by a two sided interferometer with separate optical trains and detectors for the ultraviolet-visible and infrared spectral domains. This allows each side of the instrument to be independently optimized for its respective spectral domain. The overall interferometer design is compact because the two sides share a single high precision cryogenic optical path difference mechanism (OPDM) and metrology laser as well as a number of other instrument systems including the line-of-sight pointing mirror, the data management system, thermal control system, electrical system, and the mechanical structure. The PanFTS breadboard instrument has been tested in the laboratory and demonstrated the basic functionality for simultaneous measurements in the visible and infrared. It is set to begin operations in the field at the California Laboratory for Atmospheric Remote Sensing (CLARS) observatory on Mt. Wilson

  7. Corrosion potential monitoring in nuclear power environments

    International Nuclear Information System (INIS)

    Molander, A.

    2004-01-01

    Full text of publication follows: corrosion monitoring. The corrosion potential is usually an important parameter or even the prime parameter for many types of corrosion processes. One typical example of the strong influence of the corrosion potential on corrosion performance is stress corrosion of sensitized stainless steel in pure high temperature water corresponding to boiling water conditions. The use of in-plant monitoring to follow the effect of hydrogen addition to mitigate stress corrosion in boiling water reactors is now a well-established technique. However, different relations between the corrosion potential of stainless steel and the oxidant concentration have been published and only recently an improved understanding of the electrochemical reactions and other conditions that determine the corrosion potential in BWR systems have been reached. This improved knowledge will be reviewed in this paper. Electrochemical measurements has also been performed in PWR systems and mainly the feedwater system on the secondary side of PWRs. The measurements performed so far have shown that electrochemical measurements are a very sensitive tool to detect and follow oxygen transients in the feedwater system. Also determinations of the minimum hydrazine dosage to the feedwater have been performed. However, PWR secondary side monitoring has not yet been utilized to the same level as BWR hydrogen water chemistry surveillance. The future potential of corrosion potential monitoring will be discussed. Electrochemical measurements are also performed in other reactor systems and in other types of reactors. Experiences will be briefly reviewed. In a BWR on hydrogen water chemistry and in the PWR secondary system the corrosion potentials show a large variation between different system parts. To postulate the material behavior at different locations the local chemical and electrochemical conditions must be known. Thus, modeling of chemical and electrochemical conditions along

  8. Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for the GOES-R Advanced Baseline Imager and Geostationary Lightning Mapper

    Science.gov (United States)

    DeLuccia, Frank J.; Houchin, Scott; Porter, Brian C.; Graybill, Justin; Haas, Evan; Johnson, Patrick D.; Isaacson, Peter J.; Reth, Alan D.

    2016-01-01

    The GOES-R Flight Project has developed an Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for measuring Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM) INR performance metrics in the post-launch period for performance evaluation and long term monitoring. For ABI, these metrics are the 3-sigma errors in navigation (NAV), channel-to-channel registration (CCR), frame-to-frame registration (FFR), swath-to-swath registration (SSR), and within frame registration (WIFR) for the Level 1B image products. For GLM, the single metric of interest is the 3-sigma error in the navigation of background images (GLM NAV) used by the system to navigate lightning strikes. 3-sigma errors are estimates of the 99.73rd percentile of the errors accumulated over a 24 hour data collection period. IPATS utilizes a modular algorithmic design to allow user selection of data processing sequences optimized for generation of each INR metric. This novel modular approach minimizes duplication of common processing elements, thereby maximizing code efficiency and speed. Fast processing is essential given the large number of sub-image registrations required to generate INR metrics for the many images produced over a 24 hour evaluation period. Another aspect of the IPATS design that vastly reduces execution time is the off-line propagation of Landsat based truth images to the fixed grid coordinates system for each of the three GOES-R satellite locations, operational East and West and initial checkout locations. This paper describes the algorithmic design and implementation of IPATS and provides preliminary test results.

  9. Micro Penning Trap for Continuous Magnetic Field Monitoring in High Radiation Environments

    Science.gov (United States)

    Latorre, Javiera; Bollen, Georg; Gulyuz, Kerim; Ringle, Ryan; Bado, Philippe; Dugan, Mark; Lebit Team; Translume Collaboration

    2016-09-01

    As new facilities for rare isotope beams, like FRIB at MSU, are constructed, there is a need for new instrumentation to monitor magnetic fields in beam magnets that can withstand the higher radiation level. Currently NMR probes, the instruments used extensively to monitor magnetic fields, do not have a long lifespans in radiation-high environments. Therefore, a radiation-hard replacement is needed. We propose to use Penning trap mass spectrometry techniques to make high precision magnetic field measurements. Our Penning microtrap will be radiation resistant as all of the vital electronics will be at a safe distance from the radiation. The trap itself is made from materials not subject to radiation damage. Penning trap mass spectrometers can determine the magnetic field by measuring the cyclotron frequency of an ion with a known mass and charge. This principle is used on the Low Energy Beam Ion Trap (LEBIT) minitrap at NSCL which is the foundation for the microtrap. We have partnered with Translume, who specialize in glass micro-fabrication, to develop a microtrap in fused-silica glass. A microtrap is finished and ready for testing at NSCL with all of the electronic and hardware components setup. DOE Phase II SBIR Award No. DE-SC0011313, NSF Award Number 1062410 REU in Physics, NSF under Grant No. PHY-1102511.

  10. Integrated site investigation and groundwater monitoring in an urban environment

    Science.gov (United States)

    Weatherl, R. K.

    2017-12-01

    Understanding groundwater dynamics around cities and other areas of human influence is of crucial importance for water resource management and protection, especially in a time of environmental and societal change. The human environment presents a unique challenge in terms of hydrological characterization, as the water cycle is generally artificialized and emissions of treated waste and chemical products into the surface- and groundwater system tend to disrupt the natural aqueous signature in significant ways. This project presents an integrated approach for robust characterization and monitoring of an urban aquifer which is actively exploited for municipal water supply. The study is carried out in the town of Fehraltorf, in the canton of Zürich, Switzerland. This particular town encompasses industrial and agricultural zones in addition to its standard urban setting. A minimal amount of data exist at this site, and the data that do exist are spatially and temporally sparse. Making use of traditional hydrogeological methods alongside evolving and emerging technologies, we aim to identify sources of contamination and to define groundwater flow and solute transport through space and time. Chemical and physical indicator parameters are identified for tracing contaminations including micropollutants and plant nutrients. Wireless sensors are installed for continuous on-line monitoring of essential parameters (electrical conductivity, temperature, water level). A wireless sensor network has previously been installed in the sewer system of the study site, facilitating investigation into interactions between sewer water and groundwater. Our approach illustrates the relations between land use, climate, rainfall dynamics, and the groundwater signature through time. At its conclusion, insights gained from this study will be used by municipal authorities to refine protective zones around pumping wells and to direct resources towards updating practices and replacing

  11. Dynamics of the outer radiation belts and their links with the polar substorms and the injection of hot plasma at the geostationary orbit

    International Nuclear Information System (INIS)

    Sauvaud, J.A.; Winckler, J.R.

    1981-01-01

    The aim of this paper is to analyse the results obtained aboard geostationary satellites and on the ground, in the auroral zone, on the dynamic changes in the outer radiation belts and their link with the time development of auroral forms during magnetospheric substorms. The measurements of high-energy particles, plasma, and magnetic induction at 6.6 Rsub(E) in the local midnight sector indicate the existence of a pre-expansion phase in substorms during which the outer belts move toward the Earth under the effect of the modification in the topology of the local magnetic induction. The pre-expansion phase coincides with an increase in the AE index, suggesting a direct link between the electrojet and the currents flowing across the tail of the magnetosphere. It also coincides in the auroral zone with the intensification and movement of the quiet arc system toward the equator. The phase is invariably terminated at the beginning of the expansion of the substorm by the break-up of the auroral arcs and the injection of hot plasma at the geostationary orbit near local midnight under the action of the induced electric field associated with the collapse of the geomagnetic field force lines. The study of the data, event by event, shows the complexity of phenomena which may be involved during the pre-expansion phase particularly with the possible presence of pseudo-substorms or aborted (minor) substorms which do not modify the general evolution described above [fr

  12. Qualification, monitoring, and integration into a production environment of the world's first fully programmable illuminator

    Science.gov (United States)

    McIntyre, Gregory; Corliss, Daniel; Groenendijk, Remco; Carpaij, Rene; van Niftrik, Ton; Landie, Guillaume; Tamura, Takao; Pepin, Thomas; Waddell, James; Woods, Jerry; Robinson, Chris; Tian, Kehan; Johnson, Richard; Halle, Scott; Kim, Ryoung-Han; Mclellan, Erin; Kato, Hirokazu; Scaduto, Anthony; Maier, Carl; Colburn, Matt

    2011-04-01

    This paper will describe the development, qualification, monitoring, and integration into a production environment of the world's first fully programmable illuminator for optical lithography. FlexRay TM, a programmable illuminator based on a MEMs multi-mirror array that was developed for TWINSCAN XT:19x0i and TWINSCAN NXT series ASML immersion scanners, was first installed in January 2010 at Albany Nanotech, with subsequent tools installed in IBM's East Fishkill Manufacturing facility. After a brief overview of the concept and benefits of FlexRay, this paper will provide a comprehensive assessment of its reliability and imaging performance. A CD-based pupil qualification (CDPQ) procedure will be introduced and shown to be an efficient and effective way to monitor pupil performance. Various CDPQ and in-resist measurement results will be described, offering convincing evidence that FlexRay reliably generates high-quality pupils and is well suited for high volume manufacturing at lithography's leading edge.

  13. 40 CFR 65.86 - Monitoring.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Monitoring. 65.86 Section 65.86 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONSOLIDATED FEDERAL AIR RULE Transfer Racks § 65.86 Monitoring. The owner or operator of a transfer rack equipped with...

  14. Smart Sensor Network System For Environment Monitoring

    Directory of Open Access Journals (Sweden)

    Javed Ali Baloch

    2012-07-01

    Full Text Available SSN (Smart Sensor Network systems could be used to monitor buildings with modern infrastructure, plant sites with chemical pollution, horticulture, natural habitat, wastewater management and modern transport system. To sense attributes of phenomena and make decisions on the basis of the sensed value is the primary goal of such systems. In this paper a Smart Spatially aware sensor system is presented. A smart system, which could continuously monitor the network to observe the functionality and trigger, alerts to the base station if a change in the system occurs and provide feedback periodically, on demand or even continuously depending on the nature of the application. The results of the simulation trials presented in this paper exhibit the performance of a Smart Spatially Aware Sensor Networks.

  15. Arctic Terrestrial Biodiversity Monitoring Plan

    DEFF Research Database (Denmark)

    Christensen, Tom; Payne, J.; Doyle, M.

    The Conservation of Arctic Flora and Fauna (CAFF), the biodiversity working group of the Arctic Council, established the Circumpolar Biodiversity Monitoring Program (CBMP) to address the need for coordinated and standardized monitoring of Arctic environments. The CBMP includes an international...... on developing and implementing long-term plans for monitoring the integrity of Arctic biomes: terrestrial, marine, freshwater, and coastal (under development) environments. The CBMP Terrestrial Expert Monitoring Group (CBMP-TEMG) has developed the Arctic Terrestrial Biodiversity Monitoring Plan (CBMP......-Terrestrial Plan/the Plan) as the framework for coordinated, long-term Arctic terrestrial biodiversity monitoring. The goal of the CBMP-Terrestrial Plan is to improve the collective ability of Arctic traditional knowledge (TK) holders, northern communities, and scientists to detect, understand and report on long...

  16. 40 CFR 65.65 - Monitoring.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Monitoring. 65.65 Section 65.65 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONSOLIDATED FEDERAL AIR RULE Process Vents § 65.65 Monitoring. (a) An owner or operator of a Group 2A process vent...

  17. The Development and Validation of an Instrument to Monitor the Implementation of Social Constructivist Learning Environments in Grade 9 Science Classrooms in South Africa

    Science.gov (United States)

    Luckay, Melanie B.; Laugksch, Rudiger C.

    2015-01-01

    This article describes the development and validation of an instrument that can be used to assess students' perceptions of their learning environment as a means of monitoring and guiding changes toward social constructivist learning environments. The study used a mixed-method approach with priority given to the quantitative data collection. During…

  18. On-line monitoring of base current and forward emitter current gain of the voltage regulator's serial pnp transistor in a radiation environment

    Directory of Open Access Journals (Sweden)

    Vukić Vladimir Đ.

    2012-01-01

    Full Text Available A method of on-line monitoring of the low-dropout voltage regulator's operation in a radiation environment is developed in this paper. The method had to enable detection of the circuit's degradation during exploitation, without terminating its operation in an ionizing radiation field. Moreover, it had to enable automatic measurement and data collection, as well as the detection of any considerable degradation, well before the monitored voltage regulator's malfunction. The principal parameters of the voltage regulator's operation that were monitored were the serial pnp transistor's base current and the forward emitter current gain. These parameters were procured indirectly, from the data on the voltage regulator's load and quiescent currents. Since the internal consumption current in moderately and heavily loaded devices was used, the quiescent current of a negligibly loaded voltage regulator of the same type served as a reference. Results acquired by on-line monitoring demonstrated marked agreement with the results acquired from examinations of the voltage regulator's maximum output current and minimum dropout voltage in a radiation environment. The results were particularly consistent in tests with heavily loaded devices. Results obtained for moderately loaded voltage regulators and the risks accompanying the application of the presented method, were also analyzed.

  19. Guidelines for environmental monitoring after acute oil spill in the marine environment; Retningslinjer for miljoeundersoekelser i marint miljoe etter akutt oljeforurensning

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, N.M.; Camus, L.-H.; Larsen, B.; Voegele, G.M.; Spikkerud, C.; Anker-Nilsen, T.; Dijk, J van; Lorentsen, S.-H.; Stabbetorp, O.; Bjoerge, A.; Boitsov, S.; Klungsoeyr, J.

    2012-07-01

    Contents of environmental damage assessments and monitoring of acute oil spills in the marine environment are outlined. The guideline provides general advice on timing, contents and scope of post spill surveys for documenting biological recovery and food safety.(Author)

  20. Demonstration of TEG-powered wireless autonomous transducer solution for condition monitoring in industrial environment

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ziyang; Patrascu, Mihai; Su, Jiale; Vullers, Ruud J.M. [imec the Netherlands, Eindhoven (Netherlands)

    2011-07-01

    Imec/Holst Centre focuses on the development of wireless autonomous transducer solution, which is poised to bring about huge impact in the sectors of health care, machinery, transportation and energy, etc. In this paper, we first showcase a TEG-powered demonstration for condition monitoring in industrial environment. Composing of sensor-actuator, front-end interface, digital signal processing unit and radio, the developed wireless sensor node can monitor the changing operating condition, i.e. the loading on a rolling-element bearing, on a rotating shaft. The use of a specially designed TEG, working in tandem with an energy storage device, can significantly improve the energy autonomy of the condition monitoring system as a whole. The different components in the demonstration are presented. Subsequently, the experimental results of vibration signature analysis are exhibited. On one hand, the presented demonstration sheds light on the huge potential of thermoelectric energy harvesting to achieve energy autonomy. On the other hand, it also points to the aspects that are in need of further development, namely miniaturization and cost reduction of energy harvesters. Aimed at the delivery of cost-effective miniaturized thermoelectric harvesting devices, imec/Holst Centre has been tackling with the relevant challenges by resorting to, but not limited to, its expertise in micromachining. An update on the latest research results is subsequently given with regard to various micromachined thermoelectric devices, fully fledged wearable TEGs with custom designed package and thermoelectric material property optimization. (orig.)

  1. Real-Time and Seamless Monitoring of Ground-Level PM2.5 Using Satellite Remote Sensing

    Science.gov (United States)

    Li, Tongwen; Zhang, Chengyue; Shen, Huanfeng; Yuan, Qiangqiang; Zhang, Liangpei

    2018-04-01

    Satellite remote sensing has been reported to be a promising approach for the monitoring of atmospheric PM2.5. However, the satellite-based monitoring of ground-level PM2.5 is still challenging. First, the previously used polar-orbiting satellite observations, which can be usually acquired only once per day, are hard to monitor PM2.5 in real time. Second, many data gaps exist in satellitederived PM2.5 due to the cloud contamination. In this paper, the hourly geostationary satellite (i.e., Harawari-8) observations were adopted for the real-time monitoring of PM2.5 in a deep learning architecture. On this basis, the satellite-derived PM2.5 in conjunction with ground PM2.5 measurements are incorporated into a spatio-temporal fusion model to fill the data gaps. Using Wuhan Urban Agglomeration as an example, we have successfully derived the real-time and seamless PM2.5 distributions. The results demonstrate that Harawari-8 satellite-based deep learning model achieves a satisfactory performance (out-of-sample cross-validation R2 = 0.80, RMSE = 17.49 μg/m3) for the estimation of PM2.5. The missing data in satellite-derive PM2.5 are accurately recovered, with R2 between recoveries and ground measurements of 0.75. Overall, this study has inherently provided an effective strategy for the realtime and seamless monitoring of ground-level PM2.5.

  2. Development of system decision support tools for behavioral trends monitoring of machinery maintenance in a competitive environment

    Science.gov (United States)

    Adeyeri, Michael Kanisuru; Mpofu, Khumbulani

    2017-06-01

    The article is centred on software system development for manufacturing company that produces polyethylene bags using mostly conventional machines in a competitive world where each business enterprise desires to stand tall. This is meant to assist in gaining market shares, taking maintenance and production decisions by the dynamism and flexibilities embedded in the package as customers' demand varies under the duress of meeting the set goals. The production and machine condition monitoring software (PMCMS) is programmed in C# and designed in such a way to support hardware integration, real-time machine conditions monitoring, which is based on condition maintenance approach, maintenance decision suggestions and suitable production strategies as the demand for products keeps changing in a highly competitive environment. PMCMS works with an embedded device which feeds it with data from the various machines being monitored at the workstation, and the data are read at the base station through transmission via a wireless transceiver and stored in a database. A case study was used in the implementation of the developed system, and the results show that it can monitor the machine's health condition effectively by displaying machines' health status, gives repair suggestions to probable faults, decides strategy for both production methods and maintenance, and, thus, can enhance maintenance performance obviously.

  3. Monitoring coastal wetlands in a highly dynamic tropical environment

    International Nuclear Information System (INIS)

    Saynor, M.J.; Finlayson, C.M.; Spiers, A.; Eliot, I.

    2001-01-01

    The Alligator Rivers Region in the wet-dry tropics of northern Australia has been selected by government and collaborating agencies as a key study area for the monitoring of natural and human-induced coastal change. The Region contains the floodplain wetlands of Kakadu National Park which have been recognised internationally for their natural and cultural heritage value. A coastal monitoring program for assessing and monitoring environmental change in the Alligator Rivers Region has been established at the Environmental Research Institute of the Supervising Scientist. This program has developed a regional capacity to measure and assess change on the wetlands, floodplains and coastline within the region. Field assessment and monitoring procedures have been developed for the program. The assessment procedures require use of georeferencing and data handling techniques to facilitate comparison and relational overlay of a wide variety of information. Monitoring includes regular survey of biophysical and cultural processes on the floodplains; such as the extension of tidal creeks and mangroves, shoreline movement, dieback in Melaleuca wetlands, and weed invasion of freshwater wetlands. A differential Global Positioning System is used to accurately georeference spatial data and a Geographic Information System is then used to store and assess information. The assessment and monitoring procedures can be applied to the wet-dry tropics in general. These studies are all particularly pertinent with the possibility of greenhouse gases causing global warming and potential sea-level rise, a major possible threat to the valued wetlands of Kakadu National Park, and across the wet-dry tropics in general

  4. 40 CFR 429.12 - Monitoring requirements. [Reserved

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Monitoring requirements. [Reserved] 429.12 Section 429.12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT... Monitoring requirements. [Reserved] ...

  5. Radiation Environment at LEO in the frame of Space Monitoring Data Center at Moscow State University - recent, current and future missions

    Science.gov (United States)

    Myagkova, Irina; Kalegaev, Vladimir; Panasyuk, Mikhail; Svertilov, Sergey; Bogomolov, Vitaly; Bogomolov, Andrey; Barinova, Vera; Barinov, Oleg; Bobrovnikov, Sergey; Dolenko, Sergey; Mukhametdinova, Ludmila; Shiroky, Vladimir; Shugay, Julia

    2016-04-01

    Radiation Environment of Near-Earth space is one of the most important factors of space weather. Space Monitoring Data Center of Moscow State University provides operational control of radiation conditions at Low Earth's Orbits (LEO) of the near-Earth space using data of recent (Vernov, CORONAS series), current (Meteor-M, Electro-L series) and future (Lomonosov) space missions. Internet portal of Space Monitoring Data Center of Skobeltsyn Institute of Nuclear Physics of Lomonosov Moscow State University (SINP MSU) http://swx.sinp.msu.ru/ provides possibilities to control and analyze the space radiation conditions in the real time mode together with the geomagnetic and solar activity including hard X-ray and gamma- emission of solar flares. Operational data obtained from space missions at L1, GEO and LEO and from the Earth's magnetic stations are used to represent radiation and geomagnetic state of near-Earth environment. The models of space environment that use space measurements from different orbits were created. Interactive analysis and operational neural network forecast services are based on these models. These systems can automatically generate alerts on particle fluxes enhancements above the threshold values, both for SEP and relativistic electrons of outer Earth's radiation belt using data from GEO and LEO as input. As an example of LEO data we consider data from Vernov mission, which was launched into solar-synchronous orbit (altitude 640 - 83 0 km, inclination 98.4°, orbital period about 100 min) on July 8, 2014 and began to receive scientific information since July 20, 2014. Vernov mission have provided studies of the Earth's radiation belt relativistic electron precipitation and its possible connection with atmosphere transient luminous events, as well as the solar hard X-ray and gamma-emission measurements. Radiation and electromagnetic environment monitoring in the near-Earth Space, which is very important for space weather study, was also realised

  6. Prediction of daily fine particulate matter concentrations using aerosol optical depth retrievals from the Geostationary Operational Environmental Satellite (GOES).

    Science.gov (United States)

    Chudnovsky, Alexandra A; Lee, Hyung Joo; Kostinski, Alex; Kotlov, Tanya; Koutrakis, Petros

    2012-09-01

    Although ground-level PM2.5 (particulate matter with aerodynamic diameter < 2.5 microm) monitoring sites provide accurate measurements, their spatial coverage within a given region is limited and thus often insufficient for exposure and epidemiological studies. Satellite data expand spatial coverage, enhancing our ability to estimate location- and/or subject-specific exposures to PM2.5. In this study, the authors apply a mixed-effects model approach to aerosol optical depth (AOD) retrievals from the Geostationary Operational Environmental Satellite (GOES) to predict PM2.5 concentrations within the New England area of the United States. With this approach, it is possible to control for the inherent day-to-day variability in the AOD-PM2.5 relationship, which depends on time-varying parameters such as particle optical properties, vertical and diurnal concentration profiles, and ground surface reflectance. The model-predicted PM2.5 mass concentration are highly correlated with the actual observations, R2 = 0.92. Therefore, adjustment for the daily variability in AOD-PM2.5 relationship allows obtaining spatially resolved PM2.5 concentration data that can be of great value to future exposure assessment and epidemiological studies. The authors demonstrated how AOD can be used reliably to predict daily PM2.5 mass concentrations, providing determination of their spatial and temporal variability. Promising results are found by adjusting for daily variability in the AOD-PM2.5 relationship, without the need to account for a wide variety of individual additional parameters. This approach is of a great potential to investigate the associations between subject-specific exposures to PM2.5 and their health effects. Higher 4 x 4-km resolution GOES AOD retrievals comparing with the conventional MODerate resolution Imaging Spectroradiometer (MODIS) 10-km product has the potential to capture PM2.5 variability within the urban domain.

  7. Remote sensing of gene expression in Planta: transgenic plants as monitors of exogenous stress perception in extraterrestrial environments

    Science.gov (United States)

    Manak, Michael S.; Paul, Anna-Lisa; Sehnke, Paul C.; Ferl, Robert J.

    2002-01-01

    Transgenic arabidopsis plants containing the alcohol dehydrogenase (Adh) gene promoter fused to the green fluorescent protein (GFP) reporter gene were developed as biological sensors for monitoring physiological responses to unique environments. Plants were monitored in vivo during exposure to hypoxia, high salt, cold, and abcissic acid in experiments designed to characterize the utility and responses of the Adh/GFP biosensors. Plants in the presence of environmental stimuli that induced the Adh promoter responded by expressing GFP, which in turn generated a detectable fluorescent signal. The GFP signal degraded when the inducing stimulus was removed. Digital imaging of the Adh/GFP plants exposed to each of the exogenous stresses demonstrated that the stress-induced gene expression could be followed in real time. The experimental results established the feasibility of using a digital monitoring system for collecting gene expression data in real time from Transgenic Arabidopsis Gene Expression System (TAGES) biosensor plants during space exploration experiments.

  8. Virtual Environments for Visualizing Structural Health Monitoring Sensor Networks, Data, and Metadata.

    Science.gov (United States)

    Napolitano, Rebecca; Blyth, Anna; Glisic, Branko

    2018-01-16

    Visualization of sensor networks, data, and metadata is becoming one of the most pivotal aspects of the structural health monitoring (SHM) process. Without the ability to communicate efficiently and effectively between disparate groups working on a project, an SHM system can be underused, misunderstood, or even abandoned. For this reason, this work seeks to evaluate visualization techniques in the field, identify flaws in current practices, and devise a new method for visualizing and accessing SHM data and metadata in 3D. More precisely, the work presented here reflects a method and digital workflow for integrating SHM sensor networks, data, and metadata into a virtual reality environment by combining spherical imaging and informational modeling. Both intuitive and interactive, this method fosters communication on a project enabling diverse practitioners of SHM to efficiently consult and use the sensor networks, data, and metadata. The method is presented through its implementation on a case study, Streicker Bridge at Princeton University campus. To illustrate the efficiency of the new method, the time and data file size were compared to other potential methods used for visualizing and accessing SHM sensor networks, data, and metadata in 3D. Additionally, feedback from civil engineering students familiar with SHM is used for validation. Recommendations on how different groups working together on an SHM project can create SHM virtual environment and convey data to proper audiences, are also included.

  9. Star tracker and vision systems performance in a high radiation environment

    DEFF Research Database (Denmark)

    Jørgensen, John Leif; Riis, Troels; Betto, Maurizio

    1999-01-01

    A part of the payload of the second Ariane 5 prototype vehicle to be launched by Arianespace, was a small technology demonstration satellite. On October 30th, 1997, this test satellite, dubbed Teamsat, was launched into Geostationary Transfer Orbit and would as such pass the Van Allen radiation...... belts twice per orbit. One of the experiments onboard Teamsat was the so-called Autonomous Vision System (AVS). The AVS instrument is a fully autonomous star tracker with several advanced features for non-stellar object detection and tracking, real-time image compression and transmission. The objectives...... for the AVS in Teamsat were to test these functions, to validate their autonomous operation in space, and to assess the operational constraints of a high radiation environment on such processes. This paper describes the AVS experiment, and the radiation flux experienced onboard TEAMSAT. This overview...

  10. Perennial Environment Observatory

    International Nuclear Information System (INIS)

    Plas, Frederic

    2014-07-01

    The Perennial Environment Observatory [Observatoire Perenne de l'Environnement - OPE] is a unique approach and infrastructure developed and implemented by ANDRA, the French National Radioactive Waste Management Agency, as part of its overall project of deep geological disposal for radioactive waste. Its current mission is to assess the initial state of the rural (forest, pasture, open-field and aquatic) environment, prior to repository construction. This will be followed in 2017 (pending construction authorizations) and for a period exceeding a century, by monitoring of any impact the repository may have on the environment. In addition to serving its own industrial purpose of environmental monitoring, ANDRA also opens the OPE approach, infrastructure and acquired knowledge (database...) to the scientific community to support further research on long term evolution of the environment subjected to natural and anthropogenic stresses, and to contribute to a better understanding of the interaction between the various compartments of the environment

  11. Annual report on radioactive discharges from Winfrith and monitoring the environment 1991

    International Nuclear Information System (INIS)

    1992-05-01

    This annual report, the seventh, aims to provide full information on our discharges and environmental monitoring. The report is mainly graphical, comparing past and current levels with authorised limits, derived limits or the recommended limits of the International Commission on Radiological Protection (ICRP). Discharges from Winfrith are subject to Authorisations issued jointly by the Department of the Environment (DOE) and the Ministry of Agriculture, Fisheries and Food (MAFF). These Authorisations, one for discharges to the sea and one for discharges to the atmosphere, require that Winfrith establish a need to discharge; that we apply Best Practicable Means (BPM) to reduce our discharges; that our discharges are below set Authorised Limits; and that schedules of effluent and environmental monitoring are established. As a 'back stop', discharges at the limits must not result in doses to the most potentially exposed part of the local population - the critical group -exceeding 0.5 mSv per year. The limit recommended by the International Commission on Radiological Protection (ICRP) for dose to a member of the general public is 1.0 mSv per year. In September 1990 Winfrith's Steam Generating Heavy Water Reactor (SGHWR) was shut down therefore the pattern of discharges for 1991 differs from previous years. Discharges are generally reduced resulting in an even lower dose to the critical group, well below 1% of the ICRP limit and much less than 1% of the UK average natural background dose. (author)

  12. Tropospheric Emissions: Monitoring of Pollution (TEMPO)

    Science.gov (United States)

    Chance, Kelly; Liu, Xiong; Suleiman, Raid M.; Flittner, David E.; Al-Saadi, Jassim; Janz, Scott J.

    2014-06-01

    TEMPO, selected by NASA as the first Earth Venture Instrument, will measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO measures from Mexico City to the Canadian oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution. TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry. Measurements are from geostationary (GEO) orbit, to capture the inherent high variability in the diurnal cycle of emissions and chemistry. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies. TEMPO takes advantage of a GEO host spacecraft to provide a modest-cost mission that measures the spectra required to retrieve O3, NO2, SO2, H2CO, C2H2O2, H2O, aerosols, cloud parameters, and UVB radiation. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, reducing uncertainty in air quality predictions by 50 %. TEMPO quantifies and tracks the evolution of aerosol loading. It provides near-real-time air quality products that will be made widely, publicly available. TEMPO makes the first tropospheric trace gas measurements from GEO, by building on the heritage of five spectrometers flown in low-earth-orbit (LEO). These LEO instruments measure the needed spectra, although at coarse spatial and temporal resolutions, to the precisions required for TEMPO and use retrieval algorithms developed for them by TEMPO Science Team members and currently running in operational environments. This makes TEMPO an innovative use of a well-proven technique, able to produce a revolutionary data set. TEMPO provides much of the atmospheric measurement

  13. Power Balance AODV Routing Algorithm of WSN in Precision Agriculture Environment Monitoring

    Directory of Open Access Journals (Sweden)

    Xiaoqin Qin

    2013-11-01

    Full Text Available As one of important technologies of IOT (Internet of Things, WSN (Wireless Sensor Networks has been widely used in precision agriculture environment monitoring. WSN is a kind of energy-constrained network, but power balance is not taken into account in traditional routing protocols. A novel routing algorithm, named Power Balance Ad hoc On-Demand Distance Vector (PB-AODV, is proposed on cross-layer design. In the route discovery process of PB-AODV, routing path is established by the Received Signal Strength Indication (RSSI value. The optimal transmitting power, which is computed according to RSSI value, power threshold and node’s surplus energy, is encapsulated into Route Reply Packet. Hence, the sender node can adjust its transmission power to save energy according to the Route Reply Packet. Simulation results show that the proposed algorithm is effective for load balancing, and increases the WSN’s lifetime 14.3% consequently.

  14. Implementing a combined polar-geostationary algorithm for smoke emissions estimation in near real time

    Science.gov (United States)

    Hyer, E. J.; Schmidt, C. C.; Hoffman, J.; Giglio, L.; Peterson, D. A.

    2013-12-01

    Polar and geostationary satellites are used operationally for fire detection and smoke source estimation by many near-real-time operational users, including operational forecast centers around the globe. The input satellite radiance data are processed by data providers to produce Level-2 and Level -3 fire detection products, but processing these data into spatially and temporally consistent estimates of fire activity requires a substantial amount of additional processing. The most significant processing steps are correction for variable coverage of the satellite observations, and correction for conditions that affect the detection efficiency of the satellite sensors. We describe a system developed by the Naval Research Laboratory (NRL) that uses the full raster information from the entire constellation to diagnose detection opportunities, calculate corrections for factors such as angular dependence of detection efficiency, and generate global estimates of fire activity at spatial and temporal scales suitable for atmospheric modeling. By incorporating these improved fire observations, smoke emissions products, such as NRL's FLAMBE, are able to produce improved estimates of global emissions. This talk provides an overview of the system, demonstrates the achievable improvement over older methods, and describes challenges for near-real-time implementation.

  15. Nuclear plant's virtual simulation for on-line radioactive environment monitoring and dose assessment for personnel

    International Nuclear Information System (INIS)

    Mol, Antonio Carlos A.; Jorge, Carlos Alexandre F.; Lapa, Celso Marcelo F.

    2009-01-01

    This paper reports the use of nuclear plant's simulation for online dose rate monitoring and dose assessment for personnel, using virtual reality technology. The platform used for virtual simulation was adapted from a low cost game engine, taking advantage of all its image rendering capabilities, as well as the physics for movement and collision, and networking capabilities for multi-user interactive navigation. A real nuclear plant was virtually modeled and simulated, so that a number of users can navigate simultaneously in this virtual environment in first or third person view, each one receiving visual information about both the radiation dose rate in each actual position, and the radiation dose received. Currently, this research and development activity has been extended to consider also on-line measurements collected from radiation monitors installed in the real plant that feed the simulation platform with dose rate data, through a TCP/IP network. Results are shown and commented, and other improvements are discussed, as the execution of a more detailed dose rate mapping campaign.

  16. Use of geostationary satellite imagery in optical and thermal bands for the estimation of soil moisture status and land evapotranspiration

    Science.gov (United States)

    Ghilain, N.; Arboleda, A.; Gellens-Meulenberghs, F.

    2009-04-01

    For water and agricultural management, there is an increasing demand to monitor the soil water status and the land evapotranspiration. In the framework of the LSA-SAF project (http://landsaf.meteo.pt), we are developing an energy balance model forced by remote sensing products, i.e. radiation components and vegetation parameters, to monitor in quasi real-time the evapotranspiration rate over land (Gellens-Meulenberghs et al, 2007; Ghilain et al, 2008). The model is applied over the full MSG disk, i.e. including Europe and Africa. Meteorological forcing, as well as the soil moisture status, is provided by the forecasts of the ECMWF model. Since soil moisture is computed by a forecast model not dedicated to the monitoring of the soil water status, inadequate soil moisture input can occur, and can cause large effects on evapotranspiration rates, especially over semi-arid or arid regions. In these regions, a remotely sensed-based method for the soil moisture retrieval can therefore be preferable, to avoid too strong dependency in ECMWF model estimates. Among different strategies, remote sensing offers the advantage of monitoring large areas. Empirical methods of soil moisture assessment exist using remotely sensed derived variables either from the microwave bands or from the thermal bands. Mainly polar orbiters are used for this purpose, and little attention has been paid to the new possibilities offered by geosynchronous satellites. In this contribution, images of the SEVIRI instrument on board of MSG geosynchronous satellites are used. Dedicated operational algorithms were developed for the LSA-SAF project and now deliver images of land surface temperature (LST) every 15-minutes (Trigo et al, 2008) and vegetations indices (leaf area index, LAI; fraction of vegetation cover, FVC; fraction of absorbed photosynthetically active radiation, FAPAR) every day (Garcia-Haro et al, 2005) over Africa and Europe. One advantage of using products derived from geostationary

  17. Comparison of passive sampling and biota for monitoring of tonalide in aquatic environment.

    Science.gov (United States)

    Tumova, Jitka; Grabicova, Katerina; Golovko, Oksana; Koba, Olga; Kodes, Vit; Fedorova, Ganna; Grabic, Roman; Kroupova, Hana Kocour

    2017-10-01

    Synthetic musk compounds are extensively used in personal care and cosmetic products all over the world. Afterwards, they are discharged into the environment mainly because they are not completely removed in wastewater treatment plants. The aim of this study was to investigate if a passive sampler is applicable for the monitoring of tonalide, a polycyclic musk compound, in the aquatic environment and to compare the levels of tonalide in pesticide-polar organic chemical integrative sampler (POCIS) and biota. For this purpose, four sampling localities on the three biggest rivers in the Czech Republic were selected. Tonalide was determined in POCIS at all sampling sites in the concentration ranging from 9 ng/POCIS (Labe River, Hradec Králové) to 25 ng/POCIS (Morava River, Blatec). The locality with the most frequent occurrence of tonalide in biota samples was the Morava River which well corresponded with the highest tonalide concentration in POCIS among sampling sites. The highest number of positive tonalide detections among all studied biota samples was found in fish plasma. To the best of our knowledge, this is the first evidence that tonalide bioaccumulates in fish blood. Tonalide levels were below the limit of quantification in benthos samples at all sampling sites.

  18. 40 CFR 143.4 - Monitoring.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Monitoring. 143.4 Section 143.4... SECONDARY DRINKING WATER REGULATIONS § 143.4 Monitoring. (a) It is recommended that the parameters in these regulations should be monitored at intervals no less frequent than the monitoring performed for inorganic...

  19. The Geostationary Lightning Mapper: Its Performance and Calibration

    Science.gov (United States)

    Christian, H. J., Jr.

    2015-12-01

    The Geostationary Lightning Mapper (GLM) has been developed to be an operational instrument on the GOES-R series of spacecraft. The GLM is a unique instrument, unlike other meteorological instruments, both in how it operates and in the information content that it provides. Instrumentally, it is an event detector, rather than an imager. While processing almost a billion pixels per second with 14 bits of resolution, the event detection process reduces the required telemetry bandwidth by almost 105, thus keeping the telemetry requirements modest and enabling efficient ground processing that leads to rapid data distribution to operational users. The GLM was designed to detect about 90 percent of the total lightning flashes within its almost hemispherical field of view. Based on laboratory calibration, we expect the on-orbit detection efficiency to be closer to 85%, making it the highest performing, large area coverage total lightning detector. It has a number of unique design features that will enable it have near uniform special resolution over most of its field of view and to operate with minimal impact on performance during solar eclipses. The GLM has no dedicated on-orbit calibration system, thus the ground-based calibration provides the bases for the predicted radiometric performance. A number of problems were encountered during the calibration of Flight Model 1. The issues arouse from GLM design features including its wide field of view, fast lens, the narrow-band interference filters located in both object and collimated space and the fact that the GLM is inherently a event detector yet the calibration procedures required both calibration of images and events. The GLM calibration techniques were based on those developed for the Lightning Imaging Sensor calibration, but there are enough differences between the sensors that the initial GLM calibration suggested that it is significantly more sensitive than its design parameters. The calibration discrepancies have

  20. MAFF monitoring of the terrestrial environment

    International Nuclear Information System (INIS)

    Sherlock, J.C.

    1993-01-01

    This paper addresses the food surveillance programme of the Ministry of Agriculture, Fisheries and Food (MAFF), in particular the Terrestrial Radioactivity Monitoring Programme (TRAMP) and the estimation of dietary intake of radionuclides. To define the surveillance programme the following issues need to be decided upon: 1) the type of food which should be analysed; 2) the nature of the contaminants which should be analysed; and 3) the geographical location from which the food samples should be taken. (author)

  1. Natural disaster reduction applications of the Chinese small satellite constellation for environment and disaster monitoring and forecasting

    Science.gov (United States)

    Liu, Sanchao; Fan, Yida; Gao, Maofang

    2013-10-01

    The Small Satellite Constellation for Environment and Disaster Monitoring and Forecasting (SSCEDMF) is an important component of Chinese satellites earth observation system. The first stage of SSCEDMF is composed by "2+1" satellites. The 2 optical satellites (HJ-1-A and HJ-1-B) and 1 S band microwave satellite (HJ-1-C) were successful launched on September 6, 2008 and November 19, 2012 respectively. This article introduced SSCEDMF characteristic and the disaster reduction application system and satellites on-orbit test works, and also analyzed the application capacity in natural disasters included flood, ice flooding, wild fire, severely drought, snow disasters, large area landslide and debris flow, sea ice, earthquake recovering, desertification and plant diseases and insect pests. Furthermore, we show some cases of China's and other countries' new natural disasters forecasting, monitoring, assessment and recovery construction.

  2. Radiometric and spectral calibrations of the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) using principle component analysis

    Science.gov (United States)

    Tian, Jialin; Smith, William L.; Gazarik, Michael J.

    2008-10-01

    The ultimate remote sensing benefits of the high resolution Infrared radiance spectrometers will be realized with their geostationary satellite implementation in the form of imaging spectrometers. This will enable dynamic features of the atmosphere's thermodynamic fields and pollutant and greenhouse gas constituents to be observed for revolutionary improvements in weather forecasts and more accurate air quality and climate predictions. As an important step toward realizing this application objective, the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) Engineering Demonstration Unit (EDU) was successfully developed under the NASA New Millennium Program, 2000-2006. The GIFTS-EDU instrument employs three focal plane arrays (FPAs), which gather measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The raw GIFTS interferogram measurements are radiometrically and spectrally calibrated to produce radiance spectra, which are further processed to obtain atmospheric profiles via retrieval algorithms. The radiometric calibration is achieved using internal blackbody calibration references at ambient (260 K) and hot (286 K) temperatures. The absolute radiometric performance of the instrument is affected by several factors including the FPA off-axis effect, detector/readout electronics induced nonlinearity distortions, and fore-optics offsets. The GIFTS-EDU, being the very first imaging spectrometer to use ultra-high speed electronics to readout its large area format focal plane array detectors, operating at wavelengths as large as 15 microns, possessed non-linearity's not easily removable in the initial calibration process. In this paper, we introduce a refined calibration technique that utilizes Principle Component (PC) analysis to compensate for instrument distortions and artifacts remaining after the initial radiometric calibration process, thus, further enhance the absolute calibration accuracy. This method is

  3. Patient monitoring using infrastructure-oriented wireless LANs.

    Science.gov (United States)

    Varshney, Upkar

    2006-01-01

    There is considerable interest in using wireless and mobile technologies in patient monitoring in diverse environments including hospitals and nursing homes. However, there has not been much work in determining the requirements of patient monitoring and satisfying these requirements using infrastructure-oriented wireless networks. In this paper, we derive several requirements of patient monitoring and show how infrastructure-oriented wireless LANs, such as versions of IEEE 802.11, can be used to support patient monitoring in diverse environments.

  4. Environmental monitoring in Finland 2006-2008

    International Nuclear Information System (INIS)

    Niemi, J.

    2006-01-01

    This publication presents environmental monitoring carried out in Finland in 2006-2008. It is a summary of the environmental monitoring activities of the following national institutes: Geological Survey of Finland, Finnish Meteorological Institute, National Public Health Institute, Plant Production Inspection Centre, Finnish Museum of Natural History, Agrifood Research Finland, Finnish Institute of Marine Research, Finnish Forest Research Institute, Information Centre of the Ministry of Agriculture and Forestry, Finnish Game and Fisheries Research Institute, Radiation and Nuclear Safety Authority, Ministry of Social Affairs and Health, Statistics Finland, Finnish Environment Institute, and Regional Environment Centres. Monitoring of natural resources, environmental pressures, state of the environment, water and health, land use and environmental policy are presented. The objective was to compile the information on national environmental monitoring and to activate information exchange and cooperation in this field. (orig.)

  5. 40 CFR 141.621 - Routine monitoring.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Routine monitoring. 141.621 Section....621 Routine monitoring. (a) Monitoring. (1) If you submitted an IDSE report, you must begin monitoring..., you must monitor at the location(s) and dates identified in your monitoring plan in § 141.132(f...

  6. 40 CFR 74.61 - Monitoring plan.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Monitoring plan. 74.61 Section 74.61... OPT-INS Monitoring Emissions: Combustion Sources § 74.61 Monitoring plan. (a) Monitoring plan. The... monitoring plan that includes the information required in a monitoring plan under § 75.53 of this chapter...

  7. Estimation of land-atmosphere energy transfer over the Tibetan Plateau by a combination use of geostationary and polar-orbiting satellite data

    Science.gov (United States)

    Zhong, L.; Ma, Y.

    2017-12-01

    Land-atmosphere energy transfer is of great importance in land-atmosphere interactions and atmospheric boundary layer processes over the Tibetan Plateau (TP). The energy fluxes have high temporal variability, especially in their diurnal cycle, which cannot be acquired by polar-orbiting satellites alone because of their low temporal resolution. Therefore, it's of great practical significance to retrieve land surface heat fluxes by a combination use of geostationary and polar orbiting satellites. In this study, a time series of the hourly LST was estimated from thermal infrared data acquired by the Chinese geostationary satellite FengYun 2C (FY-2C) over the TP. The split window algorithm (SWA) was optimized using a regression method based on the observations from the Enhanced Observing Period (CEOP) of the Asia-Australia Monsoon Project (CAMP) on the Tibetan Plateau (CAMP/Tibet) and Tibetan observation and research platform (TORP), the land surface emissivity (LSE) from the Moderate Resolution Imaging Spectroradiometer (MODIS), and the water vapor content from the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) project. The 10-day composite hourly LST data were generated via the maximum value composite (MVC) method to reduce the cloud effects. The derived LST was validated by the field observations of CAMP/Tibet and TORP. The results show that the retrieved LST and in situ data have a very good correlation (with root mean square error (RMSE), mean bias (MB), mean absolute error (MAE) and correlation coefficient (R) values of 1.99 K, 0.83 K, 1.71 K, and 0.991, respectively). Together with other characteristic parameters derived from polar-orbiting satellites and meteorological forcing data, the energy balance budgets have been retrieved finally. The validation results showed there was a good consistency between estimation results and in-situ measurements over the TP, which prove the robustness of the proposed estimation

  8. CMEMS (Copernicus Marine Environment Monitoring Service) In Situ Thematic Assembly Centre: A service for operational Oceanography

    Science.gov (United States)

    Manzano Muñoz, Fernando; Pouliquen, Sylvie; Petit de la Villeon, Loic; Carval, Thierry; Loubrieu, Thomas; Wedhe, Henning; Sjur Ringheim, Lid; Hammarklint, Thomas; Tamm, Susanne; De Alfonso, Marta; Perivoliotis, Leonidas; Chalkiopoulos, Antonis; Marinova, Veselka; Tintore, Joaquin; Troupin, Charles

    2016-04-01

    Copernicus, previously known as GMES (Global Monitoring for Environment and Security), is the European Programme for the establishment of a European capacity for Earth Observation and Monitoring. Copernicus aims to provide a sustainable service for Ocean Monitoring and Forecasting validated and commissioned by users. From May 2015, the Copernicus Marine Environment Monitoring Service (CMEMS) is working on an operational mode through a contract with services engagement (result is regular data provision). Within CMEMS, the In Situ Thematic Assembly Centre (INSTAC) distributed service integrates in situ data from different sources for operational oceanography needs. CMEMS INSTAC is collecting and carrying out quality control in a homogeneous manner on data from providers outside Copernicus (national and international networks), to fit the needs of internal and external users. CMEMS INSTAC has been organized in 7 regional Dissemination Units (DUs) to rely on the EuroGOOS ROOSes. Each DU aggregates data and metadata provided by a series of Production Units (PUs) acting as an interface for providers. Homogeneity and standardization are key features to ensure coherent and efficient service. All DUs provide data in the OceanSITES NetCDF format 1.2 (based on NetCDF 3.6), which is CF compliant, relies on SeaDataNet vocabularies and is able to handle profile and time-series measurements. All the products, both near real-time (NRT) and multi-year (REP), are available online for every CMEMS registered user through an FTP service. On top of the FTP service, INSTAC products are available through Oceanotron, an open-source data server dedicated to marine observations dissemination. It provides services such as aggregation on spatio-temporal coordinates and observed parameters, and subsetting on observed parameters and metadata. The accuracy of the data is checked on various levels. Quality control procedures are applied for the validity of the data and correctness tests for the

  9. Online monitoring of dynamic tip clearance of turbine blades in high temperature environments

    Science.gov (United States)

    Han, Yu; Zhong, Chong; Zhu, Xiaoliang; Zhe, Jiang

    2018-04-01

    Minimized tip clearance reduces the gas leakage over turbine blade tips and improves the thrust and efficiency of turbomachinery. An accurate tip clearance sensor, measuring the dynamic clearances between blade tips and the turbine case, is a critical component for tip clearance control. This paper presents a robust inductive tip clearance sensor capable of monitoring dynamic tip clearances of turbine machines in high-temperature environments and at high rotational speeds. The sensor can also self-sense the temperature at a blade tip in situ such that temperature effect on tip clearance measurement can be estimated and compensated. To evaluate the sensor’s performance, the sensor was tested for measuring the tip clearances of turbine blades under various working temperatures ranging from 700 K to 1300 K and at turbine rotational speeds ranging from 3000 to 10 000 rpm. The blade tip clearance was varied from 50 to 2000 µm. The experiment results proved that the sensor can accurately measure the blade tip clearances with a temporal resolution of 10 µm. The capability of accurately measuring the tip clearances at high temperatures (~1300 K) and high turbine rotation speeds (~30 000 rpm), along with its compact size, makes it promising for online monitoring and active control of blade tip clearances of high-temperature turbomachinery.

  10. Monitoring the organizational environment in small businesses: case studies in the metalworking sector and technology-based companies in the central region of the state of São Paulo

    Directory of Open Access Journals (Sweden)

    Tiago Fernando Musetti

    2016-06-01

    Full Text Available This study aims to describe how small businesses monitor competitive environments as an initial step toward the formulation of business strategies. In today’s increasingly volatile and uncertain competitive climate, it is essential to know and monitor the competitive environment in which an organization operates, as a way to reduce uncertainty and ensure long-term survival. Do small enterprises known for their lack of financial resources and qualified personnel fail to monitor their environment? Do they not use the “best practices” used by big enterprises and widely disseminated through academic studies? Such issues led the research. In this article the research method used case studies, in which four owner-managers were interviewed. The data was collected through semi-structured interviews and analyzed using the Content Analyze Method. The results show that the main General Environment variables are Economic and Legal-political, and the main Specific Environment variables are competitors, costumers and substitute products.

  11. 40 CFR 141.601 - Standard monitoring.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Standard monitoring. 141.601 Section... Standard monitoring. (a) Standard monitoring plan. Your standard monitoring plan must comply with paragraphs (a)(1) through (a)(4) of this section. You must prepare and submit your standard monitoring plan...

  12. Monitoring the abundance of plastic debris in the marine environment.

    Science.gov (United States)

    Ryan, Peter G; Moore, Charles J; van Franeker, Jan A; Moloney, Coleen L

    2009-07-27

    Plastic debris has significant environmental and economic impacts in marine systems. Monitoring is crucial to assess the efficacy of measures implemented to reduce the abundance of plastic debris, but it is complicated by large spatial and temporal heterogeneity in the amounts of plastic debris and by our limited understanding of the pathways followed by plastic debris and its long-term fate. To date, most monitoring has focused on beach surveys of stranded plastics and other litter. Infrequent surveys of the standing stock of litter on beaches provide crude estimates of debris types and abundance, but are biased by differential removal of litter items by beachcombing, cleanups and beach dynamics. Monitoring the accumulation of stranded debris provides an index of debris trends in adjacent waters, but is costly to undertake. At-sea sampling requires large sample sizes for statistical power to detect changes in abundance, given the high spatial and temporal heterogeneity. Another approach is to monitor the impacts of plastics. Seabirds and other marine organisms that accumulate plastics in their stomachs offer a cost-effective way to monitor the abundance and composition of small plastic litter. Changes in entanglement rates are harder to interpret, as they are sensitive to changes in population sizes of affected species. Monitoring waste disposal on ships and plastic debris levels in rivers and storm-water runoff is useful because it identifies the main sources of plastic debris entering the sea and can direct mitigation efforts. Different monitoring approaches are required to answer different questions, but attempts should be made to standardize approaches internationally.

  13. Monitoring airborne biotic contaminants in the indoor environment of pig and poultry confinement buildings.

    Science.gov (United States)

    Hong, Pei-Ying; Li, Xiangzhen; Yang, Xufei; Shinkai, Takumi; Zhang, Yuanhui; Wang, Xinlei; Mackie, Roderick I

    2012-06-01

    Given the growing concerns over human and animal health issues related to confined animal feeding operations, an in-depth examination is required to monitor for airborne bacteria and associated antibiotic resistance genes. Our 16S rRNA-based pyrosequencing revealed that the airborne microbial community skewed towards a higher abundance of Firmicutes (> 59.2%) and Bacteroidetes (4.2-31.4%) within the confinement buildings, while the office environment was predominated by Proteobacteria (55.2%). Furthermore, bioaerosols in the confinement buildings were sporadically associated with genera of potential pathogens, and these genera were more frequently observed in the bioaerosols of pig and layer hen confinement than the turkey confinement buildings and office environment. High abundances of tetracycline resistance genes (9.55 × 10(2) to 1.69 × 10(6) copies ng(-1) DNA) were also detected in the bioaerosols sampled from confinement buildings. Bacterial lineages present in the poultry bioaerosols clustered apart from those present in the pig bioaerosols and among the different phases of pig production, suggesting that different livestock as well as production phase were associated with a distinct airborne microbial community. By understanding the diversity of biotic contaminants associated with the different confinement buildings, this study facilitates the implementation of better management strategies to minimize potential health impacts on both livestock and humans working in this environment. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  14. Programmes and Systems for Source and Environmental Radiation Monitoring

    International Nuclear Information System (INIS)

    2010-01-01

    The discharge of radionuclides to the atmosphere and aquatic environments is a legitimate practice in the nuclear and other industries, hospitals and research. Where appropriate, monitoring of the discharges and of relevant environmental media is an essential regulatory requirement in order to ensure appropriate radiation protection of the public. Such monitoring provides information on the actual amounts of radioactive material discharged and the radionuclide concentrations in the environment, and is needed to demonstrate compliance with authorized limits, to assess the radiation exposure of members of the public and to provide data to aid in the optimization of radiation protection. Uncontrolled releases of radionuclides to the atmosphere and aquatic environments may occur as a result of a nuclear or radiological accident. Again, monitoring at the source of the release and of the environment is necessary. In this case, monitoring is used both to assess the radiation exposure of members of the public and to determine the actions necessary for public protection, including longer term countermeasures. Source and environmental monitoring associated with the release of radionuclides to the environment is the subject of a number of IAEA Safety Standards, particularly IAEA Safety Standard RS-G-1.8 (Environmental and Source Monitoring for Purposes of Radiation Protection). This publication is intended to complement this Safety Guide and, by so doing, replaces Safety Series No. 41 (Objectives and Design of Environmental Monitoring Programmes for Radioactive Contaminants) and Safety Series No. 46 (Monitoring of Airborne and Liquid Radioactive Releases from Nuclear Facilities to the Environment). Like Safety Standard RS-G-1.8, this Safety Report deals with monitoring at the source and in the environment associated with authorized releases of radionuclides to the environment. It also deals with the general issues of emergency monitoring during and in the aftermath of an

  15. Development of an Indoor Airflow Energy Harvesting System for Building Environment Monitoring

    Directory of Open Access Journals (Sweden)

    Fei Fei

    2014-05-01

    Full Text Available Wireless sensor networks (WSNs have been widely used for intelligent building management applications. Typically, indoor environment parameters such as illumination, temperature, humidity and air quality are monitored and adjusted by an intelligent building management system. However, owing to the short life-span of the batteries used at the sensor nodes, the maintenance of such systems has been labor-intensive and time-consuming. This paper discusses a battery-less self-powering system that converts the mechanical energy from the airflow in ventilation ducts into electrical energy. The system uses a flutter energy conversion device (FECD capable of working at low airflow speeds while installed on the ventilation ducts inside of buildings. A power management strategy implemented with a circuit system ensures sufficient power for driving commercial electronic devices. For instance, the power management circuit is capable of charging a 1 F super capacitor to 2 V under ventilation duct airflow speeds of less than 3 m/s.

  16. Environment monitoring using LabVIEW

    International Nuclear Information System (INIS)

    Hawtree, J.

    1995-01-01

    A system has been developed for electronically recording and monitoring temperature, humidity, and other environmental variables at the Silicon Detector Facility located in Lab D. The data is collected by LabVIEW software, which runs in the background on an Apple Macintosh. The software is completely portable between Macintosh, MS Windows, and Sun platforms. The hardware includes a Macintosh with 8 MB of RAM; an external ADC-1 analog-to-digital converter that uses a serial port; LabVIEW software; temperature sensors; humidity sensors; and other voltage/current sensing devices. ADC values are converted to ASCII strings and entered into files which are read over Ethernet. Advantages include automatic logging, automatic recovery after power interruptions, and the availability of stand-alone applications for other locations with inexpensive software and hardware

  17. Cesium-137 monitoring of aquatic and terrestrial environment in Goiania

    International Nuclear Information System (INIS)

    Godoy, J.N.O.; Guimaraes, J.R.D.; Gouvea, V.A.; Rochedo, E.R.R.

    1988-01-01

    During the Goiania radiological accident, aprox. 1200 Ci of Cs - 137 were inadvertently manipulated and an unknown fraction of this total was available for environmental dispertion during at least 6 weeks, before efficient remedial action could be undertaken. The main dispersion pathways were rainwater run-off and soil ressuspension and further deposition. Cs-137 monitoring in the local environment started in the first week of October, including to date aprox. 1300 measurements of soil, vegetable (fruits and kitchen-gardens), ground and drinking water, sediments and fish, aerosol, precipitation and external dose measurement with TL dosimeters, in the surroundings of the main contamination spots. Until the conclusion of de-contamination activities in late December, the ranges of Cs-137 in a 50m radius of evacuated areas were as follows: 10 2 -10 4 Bq/Kg for surface soils and edible vegetables, 10 0 -10 1 mBq/m 3 in air and 10 Bq/l in all water types. River sediment and fish 5-10 Km downstream the accident are ranged respectively 10 2 -10 3 and 10 2 /Kg. These data indicated the pathways and locations for intervention for further reduction of radiation exposure. This intervention consisted mainly in tree-tipping and surface soil removal. (author) [pt

  18. Environmental γ radiation monitor

    International Nuclear Information System (INIS)

    Qu Xiaopeng

    1993-01-01

    The environmental γ radiation monitor is a kind of dose or dose rate measuring devices, which can be used for monitoring environmental γ radiation around a nuclear site when normal or even abnormal events occur. The monitor is controlled by a single-chip microcomputer so that it can acquire synchronously the data from four detectors and transfer the data to a central computer. The monitor has good temperature property due to the technique of temperature correction. The monitor has been used in the environment monitoring vehicle for Qinshan Nuclear Power Plant

  19. 40 CFR 52.140 - Monitoring transportation trends.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Monitoring transportation trends. 52.140 Section 52.140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Arizona § 52.140 Monitoring transportation...

  20. Stigmergy-based Long-Term Monitoring of Indoor Users Mobility in Ambient Assisted Living Environments: the DOREMI Project Approach

    OpenAIRE

    Palumbo, Filippo; La Rosa, Davide; Ferro, Erina

    2016-01-01

    Aging trends in Europe motivate the need for technological solutions aimed at preventing the main causes of morbidity and premature mortality. In this framework, the DOREMI project addresses three important causes of morbidity and mortality in the elderly by devising an ICT-based home care services for aging people to contrast cognitive decline, sedentariness and unhealthy dietary habits. In DOREMI, the house itself is transformed in an unobtrusive monitoring environment able to keep track of...