WorldWideScience

Sample records for geospatial technology

  1. Geospatial Technology in Geography Education

    NARCIS (Netherlands)

    Muniz Solari, Osvaldo; Demirci, A.; van der Schee, J.A.

    2015-01-01

    The book is presented as an important starting point for new research in Geography Education (GE) related to the use and application of geospatial technologies (GSTs). For this purpose, the selection of topics was based on central ideas to GE in its relationship with GSTs. The process of geospatial

  2. Incorporating Geospatial Technology into Teacher Professional Development

    Science.gov (United States)

    Sproles, E. A.; Songer, L.

    2009-12-01

    The need for students to think spatially and use geospatial technologies is becoming more critical as these tools and concepts are increasingly incorporated into a broad range of occupations and academic disciplines. Geospatial Teaching Across the Curriculum (Geo-STAC) is a collaborative program that provides high school teachers with mentored professional development workshops in geospatial thought and technology. The seminars, led by community college faculty, give high school teachers the ability to incorporate geospatial technology into coursework across the curriculum — in Science, Technology, Engineering, and Math (STEM) and non-STEM disciplines. Students participating in the hands-on lessons gain experience in web-based and desktop Geographic Information Systems (GIS). The goals of the workshop are for teachers to: (1) understand the importance of geospatial thinking; (2) learn how to employ geospatial thinking in each discipline; (3) learn about geospatial technologies; (4) develop a Web-based GIS lesson; and, (5) implement a Web-based GIS lesson. Additionally, Geo-STAC works with high school students so that they: (1) understand the importance of geospatial technologies and careers in future job markets; (2) learn how to use Web-based GIS to solve problems; and, (3) visit the community college GIS lab and experience using desktop GIS. Geo-STAC actively disseminates this collaborative model to colleges to community colleges and high schools across the country.

  3. Geospatial Technologies and Geography Education in a Changing World : Geospatial Practices and Lessons Learned

    NARCIS (Netherlands)

    2015-01-01

    Book published by IGU Commission on Geographical Education. It focuses particularly on what has been learned from geospatial projects and research from the past decades of implementing geospatial technologies in formal and informal education.

  4. Geospatial Technologies and Higher Education in Argentina

    Science.gov (United States)

    Leguizamon, Saturnino

    2010-01-01

    The term "geospatial technologies" encompasses a large area of fields involving cartography, spatial analysis, geographic information system, remote sensing, global positioning systems and many others. These technologies should be expected to be available (as "natural tools") for a country with a large surface and a variety of…

  5. Geospatial Technology in Geography Education

    Science.gov (United States)

    DeMers, Michael N.

    2016-01-01

    Depending on how you determine the starting point for the technology driving geographic information systems (GIS) and remote sensing, it is well over fifty years old now. During the first years of its existence in the early 1960s, the new technology benefited relatively few students who attended the handful of college programs that were actually…

  6. INTEGRATING GEOSPATIAL TECHNOLOGIES AND SECONDARY STUDENT PROJECTS: THE GEOSPATIAL SEMESTER

    Directory of Open Access Journals (Sweden)

    Bob Kolvoord

    2012-12-01

    Full Text Available Resumen:El Semestre Geoespacial es una actividad de educación geográfica centrada en que los estudiantes del último curso de secundaria en los institutos norteamericanos, adquieran competencias y habilidades específicas en sistemas de información geográfica, GPS y teledetección. A través de una metodología de aprendizaje basado en proyectos, los alumnos se motivan e implican en la realización de trabajos de investigación en los que analizan, e incluso proponen soluciones, diferentes procesos, problemas o cuestiones de naturaleza espacial. El proyecto está coordinado por la Universidad James Madison y lleva siete años implantándose en diferentes institutos del Estado de Virginia, implicando a más de 20 centros educativos y 1.500 alumnos. Los alumnos que superan esta asignatura de la enseñanza secundaria obtienen la convalidación de determinados créditos académicos de la Universidad de referencia.Palabras clave:Sistemas de información geográfica, enseñanza, didáctica de la geografía, semestre geoespacial.Abstract:The Geospatial Semester is a geographical education activity focused on students in their final year of secondary schools in the U.S., acquiring specific skills in GIS, GPS and remote sensing. Through a methodology for project-based learning, students are motivated and involved in conducting research using geographic information systems and analyze, and even propose solutions, different processes, problems or issues spatial in nature. The Geospatial Semester university management not only ensures proper coaching, guidance and GIS training for teachers of colleges, but has established a system whereby students who pass this course of secondary education gain the recognition of certain credits from the University.Key words:Geographic information system, teaching, geographic education, geospatial semester. Résumé:Le semestre géospatial est une activité axée sur l'éducation géographique des étudiants en derni

  7. The effects of geography lessons with geospatial technologies on the development of high school students' relational thinking

    NARCIS (Netherlands)

    Favier, Tim; van der Schee, Joop

    Geospatial technologies offer access to geospatial information via digital representations, such as digital maps, and tools for interaction with those representations. The question is whether geography lessons with geospatial technologies really contribute to the development of students' geospatial

  8. The effects of geography lessons with geospatial technologies on the development of high school students' relational thinking

    NARCIS (Netherlands)

    Favier, T.T.; van der Schee, J.A.

    2014-01-01

    Geospatial technologies offer access to geospatial information via digital representations, such as digital maps, and tools for interaction with those representations. The question is whether geography lessons with geospatial technologies really contribute to the development of students' geospatial

  9. Geospatial Technologies to Improve Urban Energy Efficiency

    Directory of Open Access Journals (Sweden)

    Bharanidharan Hemachandran

    2011-07-01

    Full Text Available The HEAT (Home Energy Assessment Technologies pilot project is a FREE Geoweb mapping service, designed to empower the urban energy efficiency movement by allowing residents to visualize the amount and location of waste heat leaving their homes and communities as easily as clicking on their house in Google Maps. HEAT incorporates Geospatial solutions for residential waste heat monitoring using Geographic Object-Based Image Analysis (GEOBIA and Canadian built Thermal Airborne Broadband Imager technology (TABI-320 to provide users with timely, in-depth, easy to use, location-specific waste-heat information; as well as opportunities to save their money and reduce their green-house-gas emissions. We first report on the HEAT Phase I pilot project which evaluates 368 residences in the Brentwood community of Calgary, Alberta, Canada, and describe the development and implementation of interactive waste heat maps, energy use models, a Hot Spot tool able to view the 6+ hottest locations on each home and a new HEAT Score for inter-city waste heat comparisons. We then describe current challenges, lessons learned and new solutions as we begin Phase II and scale from 368 to 300,000+ homes with the newly developed TABI-1800. Specifically, we introduce a new object-based mosaicing strategy, an adaptation of Emissivity Modulation to correct for emissivity differences, a new Thermal Urban Road Normalization (TURN technique to correct for scene-wide microclimatic variation. We also describe a new Carbon Score and opportunities to update city cadastral errors with automatically defined thermal house objects.

  10. Persistent Teaching Practices after Geospatial Technology Professional Development

    Science.gov (United States)

    Rubino-Hare, Lori A.; Whitworth, Brooke A.; Bloom, Nena E.; Claesgens, Jennifer M.; Fredrickson, Kristi M.; Sample, James C.

    2016-01-01

    This case study described teachers with varying technology skills who were implementing the use of geospatial technology (GST) within project-based instruction (PBI) at varying grade levels and contexts 1 to 2 years following professional development. The sample consisted of 10 fifth- to ninth-grade teachers. Data sources included artifacts,…

  11. Challenges of Broadening Participation in the Geospatial Technology Workforce

    Science.gov (United States)

    DiBiase, D.

    2015-12-01

    In this presentation I'll describe the geospatial technology industry and its workforce needs, in relation to the geosciences. The talk will consider the special challenge of recruiting and retaining women and under-represented minorities in high tech firms like Esri. Finally, I'll discuss what my company is doing to help realize the benefits of a diverse workforce.

  12. GeoSpatial Workforce Development: enhancing the traditional learning environment in geospatial information technology

    Science.gov (United States)

    Lawhead, Pamela B.; Aten, Michelle L.

    2003-04-01

    The Center for GeoSpatial Workforce Development is embarking on a new era in education by developing a repository of dynamic online courseware authored by the foremost industry experts within the remote sensing and GIS industries. Virtual classrooms equipped with the most advanced instructions, computations, communications, course evaluation, and management facilities amplify these courses to enhance the learning environment and provide rapid feedback between instructors and students. The launch of this program included the objective development of the Model Curriculum by an independent consortium of remote sensing industry leaders. The Center's research and development focus on recruiting additional industry experts to develop the technical content of the courseware and then utilize state-of-the-art technology to enhance their material with visually stimulating animations, compelling audio clips and entertaining, interactive exercises intended to reach the broadest audience possible by targeting various learning styles. The courseware will be delivered via various media: Internet, CD-ROM, DVD, and compressed video, that translates into anywhere, anytime delivery of GeoSpatial Information Technology education.

  13. Pairing Educational Robotics with Geospatial Technologies in Informal Learning Environments

    Directory of Open Access Journals (Sweden)

    Bradley S. Barker

    2010-06-01

    Full Text Available Educational robotics, when paired with geospatial technologies and taught in an informal educational environment, can be an innovative strategy to teach youth about science, technology, engineering, and mathematic (STEM concepts. However, little is known about the true effects on conceptual knowledge and associated attitudes. Therefore, this study was conducted to examine the short-term effects of a series of five-day summer robotics/geospatial camps held in Nebraska. The study was conducted at six diverse locations and consisted of a five-day 4-H camp experience. The study examined the experiences of 147 youth between the ages of 10 and 15. A pretest-posttest quasi-experimental design was used in the study. Instrumentation consisted of a 37-question multiple-choice assessment targeting various STEM topics and a 38-question attitude questionnaire assessing STEM interests and attitudes. Results suggest that the 4-H robotics and geospatial summer camp program is a promising approach for supporting STEM-related learning and enhancing attitudes towards STEM.

  14. Emerging Geospatial Sharing Technologies in Earth and Space Science Informatics

    Science.gov (United States)

    Singh, R.; Bermudez, L. E.

    2013-12-01

    Emerging Geospatial Sharing Technologies in Earth and Space Science Informatics The Open Geospatial Consortium (OGC) mission is to serve as a global forum for the collaboration of developers and users of spatial data products and services, and to advance the development of international standards for geospatial interoperability. The OGC coordinates with over 400 institutions in the development of geospatial standards. In the last years two main trends are making disruptions in geospatial applications: mobile and context sharing. People now have more and more mobile devices to support their work and personal life. Mobile devices are intermittently connected to the internet and have smaller computing capacity than a desktop computer. Based on this trend a new OGC file format standard called GeoPackage will enable greater geospatial data sharing on mobile devices. GeoPackage is perhaps best understood as the natural evolution of Shapefiles, which have been the predominant lightweight geodata sharing format for two decades. However the format is extremely limited. Four major shortcomings are that only vector points, lines, and polygons are supported; property names are constrained by the dBASE format; multiple files are required to encode a single data set; and multiple Shapefiles are required to encode multiple data sets. A more modern lingua franca for geospatial data is long overdue. GeoPackage fills this need with support for vector data, image tile matrices, and raster data. And it builds upon a database container - SQLite - that's self-contained, single-file, cross-platform, serverless, transactional, and open source. A GeoPackage, in essence, is a set of SQLite database tables whose content and layout is described in the candidate GeoPackage Implementation Specification available at https://portal.opengeospatial.org/files/?artifact_id=54838&version=1. The second trend is sharing client 'contexts'. When a user is looking into an article or a product on the web

  15. The Impact of Professional Development in Natural Resource Investigations Using Geospatial Technologies

    Science.gov (United States)

    Hanley, Carol D.; Davis, Hilarie B.; Davey, Bradford T.

    2012-01-01

    As use of geospatial technologies has increased in the workplace, so has interest in using these technologies in the K-12 classroom. Prior research has identified several reasons for using geospatial technologies in the classroom, such as developing spatial thinking, supporting local investigations, analyzing changes in the environment, and…

  16. Geospatial technology and the "exposome": new perspectives on addiction.

    Science.gov (United States)

    Stahler, Gerald J; Mennis, Jeremy; Baron, David A

    2013-08-01

    Addiction represents one of the greatest public health problems facing the United States. Advances in addiction research have focused on the neurobiology of this disease. We discuss potential new breakthroughs in understanding the other side of gene-environment interactions-the environmental context or "exposome" of addiction. Such research has recently been made possible by advances in geospatial technologies together with new mobile and sensor computing platforms. These advances have fostered interdisciplinary collaborations focusing on the intersection of environment and behavior in addiction research. Although issues of privacy protection for study participants remain, these advances could potentially improve our understanding of initiation of drug use and relapse and help develop innovative technology-based interventions to improve treatment and continuing care services.

  17. Large geospatial images discovery: metadata model and technological framework

    Directory of Open Access Journals (Sweden)

    Lukáš Brůha

    2015-12-01

    Full Text Available The advancements in geospatial web technology triggered efforts for disclosure of valuable resources of historical collections. This paper focuses on the role of spatial data infrastructures (SDI in such efforts. The work describes the interplay between SDI technologies and potential use cases in libraries such as cartographic heritage. The metadata model is introduced to link up the sources from these two distinct fields. To enhance the data search capabilities, the work focuses on the representation of the content-based metadata of raster images, which is the crucial prerequisite to target the search in a more effective way. The architecture of the prototype system for automatic raster data processing, storage, analysis and distribution is introduced. The architecture responds to the characteristics of input datasets, namely to the continuous flow of very large raster data and related metadata. Proposed solutions are illustrated on the case study of cartometric analysis of digitised early maps and related metadata encoding.

  18. GEOSPATIAL TECHNOLOGY: A MODERN APPROACH TO SUSTAINABLE DAIRY PRODUCTION SYSTEM

    Directory of Open Access Journals (Sweden)

    D. DUNEA

    2007-05-01

    Full Text Available This paper briefly presents several applications of the geospatial technology as a method to maximize the efficiency of the dairy farm management. The experiment was carried out at Negraşi dairy farm in Târgovişte Plain. A functional farm production and mapping program for detailed farm management information system with several modules: mapping, forage stock, feed forecaster, individual cattle database, fuel consume for field operations and farm inputs database was developed for handheld computers with GPS navigation. Such portable information tools might help the decision making process, the development of ideo-types or in the exploration of land use options to support the policy makers at eco-regional level, the management staff at farm level and various other applications in dairy farms.

  19. Geospatial technologies and digital geomorphological mapping: Concepts, issues and research

    Science.gov (United States)

    Bishop, Michael P.; James, L. Allan; Shroder, John F.; Walsh, Stephen J.

    2012-01-01

    Geomorphological mapping plays an essential role in understanding Earth surface processes, geochronology, natural resources, natural hazards and landscape evolution. It involves the partitioning of the terrain into conceptual spatial entities based upon criteria that include morphology (form), genetics (process), composition and structure, chronology, environmental system associations (land cover, soils, ecology), as well as spatial topological relationships of surface features (landforms). Historically, the power of human visualization was primarily relied upon for analysis, introducing subjectivity and biases with respect to selection of criteria for terrain segmentation and placement of boundaries. This paper reviews new spatio-temporal data and geocomputational approaches that now permit Earth scientists to go far beyond traditional mapping, permitting quantitative characterization of landscape morphology and the integration of varied landscape thematic information. Numerous conceptual, theoretical, and information-technology issues are at the heart of digital geomorphological mapping (DGM), and scientific progress has not kept pace with new and rapidly evolving geospatial technologies. Consequently, new capabilities exist but numerous issues have not been adequately addressed. Therefore, this paper discusses conceptual foundations and illustrates how geomorphometry and mapping approaches can be used to produce geomorphological information related to the land surface and landforms, process rates, process-form relationships, and geomorphic systems.

  20. Graduate Ethics Curricula for Future Geospatial Technology Professionals (Invited)

    Science.gov (United States)

    Wright, D. J.; Dibiase, D.; Harvey, F.; Solem, M.

    2009-12-01

    Professionalism in today's rapidly-growing, multidisciplinary geographic information science field (e.g., geographic information systems or GIS, remote sensing, cartography, quantitative spatial analysis), now involves a commitment to ethical practice as informed by a more sophisticated understanding of the ethical implications of geographic technologies. The lack of privacy introduced by mobile mapping devices, the use of GIS for military and surveillance purposes, the appropriate use of data collected using these technologies for policy decisions (especially for conservation and sustainability) and general consequences of inequities that arise through biased access to geospatial tools and derived data all continue to be challenging issues and topics of deep concern for many. Students and professionals working with GIS and related technologies should develop a sound grasp of these issues and a thorough comprehension of the concerns impacting their use and development in today's world. However, while most people agree that ethics matters for GIS, we often have difficulty putting ethical issues into practice. An ongoing project supported by NSF seeks to bridge this gap by providing a sound basis for future ethical consideration of a variety of issues. A model seminar curriculum is under development by a team of geographic information science and technology (GIS&T) researchers and professional ethicists, along with protocols for course evaluations. In the curricula students first investigate the nature of professions in general and the characteristics of a GIS&T profession in particular. They hone moral reasoning skills through methodical analyses of case studies in relation to various GIS Code of Ethics and Rules of Conduct. They learn to unveil the "moral ecologies" of a profession through actual interviews with real practitioners in the field. Assignments thus far include readings, class discussions, practitioner interviews, and preparations of original case

  1. Introduction to geospatial semantics and technology workshop handbook

    Science.gov (United States)

    Varanka, Dalia E.

    2012-01-01

    The workshop is a tutorial on introductory geospatial semantics with hands-on exercises using standard Web browsers. The workshop is divided into two sections, general semantics on the Web and specific examples of geospatial semantics using data from The National Map of the U.S. Geological Survey and the Open Ontology Repository. The general semantics section includes information and access to publicly available semantic archives. The specific session includes information on geospatial semantics with access to semantically enhanced data for hydrography, transportation, boundaries, and names. The Open Ontology Repository offers open-source ontologies for public use.

  2. Geospatial technologies for conservation planning: An approach to build more sustainable cropping systems

    Science.gov (United States)

    Current agricultural production systems must adapt to meet increasing demands for more economically and environmentally sustainable cropping systems. The application of precision agricultural technologies and geospatial and environmental modeling for conservation planning can aid in this transition....

  3. Business models for implementing geospatial technologies in transportation decision-making

    Science.gov (United States)

    2007-03-31

    This report describes six State DOTs business models for implementing geospatial technologies. It provides a comparison of the organizational factors influencing how Arizona DOT, Delaware DOT, Georgia DOT, Montana DOT, North Carolina DOT, and Okla...

  4. Geospatial Technology Applications and Infrastructure in the Biological Resources Division

    Science.gov (United States)

    D'Erchia, Frank; Getter, James; D'Erchia, Terry D.; Root, Ralph; Stitt, Susan; White, Barbara

    1998-01-01

    Executive Summary -- Automated spatial processing technology such as geographic information systems (GIS), telemetry, and satellite-based remote sensing are some of the more recent developments in the long history of geographic inquiry. For millennia, humankind has endeavored to map the Earth's surface and identify spatial relationships. But the precision with which we can locate geographic features has increased exponentially with satellite positioning systems. Remote sensing, GIS, thematic mapping, telemetry, and satellite positioning systems such as the Global Positioning System (GPS) are tools that greatly enhance the quality and rapidity of analysis of biological resources. These technologies allow researchers, planners, and managers to more quickly and accurately determine appropriate strategies and actions. Researchers and managers can view information from new and varying perspectives using GIS and remote sensing, and GPS receivers allow the researcher or manager to identify the exact location of interest. These geospatial technologies support the mission of the U.S. Geological Survey (USGS) Biological Resources Division (BRD) and the Strategic Science Plan (BRD 1996) by providing a cost-effective and efficient method for collection, analysis, and display of information. The BRD mission is 'to work with others to provide the scientific understanding and technologies needed to support the sound management and conservation of our Nation's biological resources.' A major responsibility of the BRD is to develop and employ advanced technologies needed to synthesize, analyze, and disseminate biological and ecological information. As the Strategic Science Plan (BRD 1996) states, 'fulfilling this mission depends on effectively balancing the immediate need for information to guide management of biological resources with the need for technical assistance and long-range, strategic information to understand and predict emerging patterns and trends in ecological systems

  5. Geo-spatial technologies in urban environments policy, practice, and pixels

    CERN Document Server

    Jensen, Ryan R; McLean, Daniel

    2004-01-01

    Using Geospatial Technologies in Urban Environments simultaneously fills two gaping vacuums in the scholarly literature on urban geography. The first is the clear and straightforward application of geospatial technologies to practical urban issues. By using remote sensing and statistical techniques (correlation-regression analysis, the expansion method, factor analysis, and analysis of variance), the - thors of these 12 chapters contribute significantly to our understanding of how geospatial methodologies enhance urban studies. For example, the GIS Specialty Group of the Association of American Geographers (AAG) has the largest m- bership of all the AAG specialty groups, followed by the Urban Geography S- cialty Group. Moreover, the Urban Geography Specialty Group has the largest number of cross-memberships with the GIS Specialty Group. This book advances this important geospatial and urban link. Second, the book fills a wide void in the urban-environment literature. Although the Annals of the Association of ...

  6. Technologies Connotation and Developing Characteristics of Open Geospatial Information Platform

    Directory of Open Access Journals (Sweden)

    GUO Renzhong

    2016-02-01

    Full Text Available Based on the background of developments of surveying,mapping and geoinformation,aimed at the demands of data fusion,real-time sharing,in-depth processing and personalization,this paper analyzes significant features of geo-spatial service in digital city,focuses on theory,method and key techniques of open environment of cloud computing,multi-path data updating,full-scale urban geocoding,multi-source spatial data integration,adaptive geo-processing and adaptive Web mapping.As the basis for it,the Open Geospatial information platform is developed,and successfully implicated in digital Shenzhen.

  7. Identification of phreatophytic groundwater dependent ecosystems using geospatial technologies

    Science.gov (United States)

    Perez Hoyos, Isabel Cristina

    The protection of groundwater dependent ecosystems (GDEs) is increasingly being recognized as an essential aspect for the sustainable management and allocation of water resources. Ecosystem services are crucial for human well-being and for a variety of flora and fauna. However, the conservation of GDEs is only possible if knowledge about their location and extent is available. Several studies have focused on the identification of GDEs at specific locations using ground-based measurements. However, recent progress in technologies such as remote sensing and their integration with geographic information systems (GIS) has provided alternative ways to map GDEs at much larger spatial extents. This study is concerned with the discovery of patterns in geospatial data sets using data mining techniques for mapping phreatophytic GDEs in the United States at 1 km spatial resolution. A methodology to identify the probability of an ecosystem to be groundwater dependent is developed. Probabilities are obtained by modeling the relationship between the known locations of GDEs and main factors influencing groundwater dependency, namely water table depth (WTD) and aridity index (AI). A methodology is proposed to predict WTD at 1 km spatial resolution using relevant geospatial data sets calibrated with WTD observations. An ensemble learning algorithm called random forest (RF) is used in order to model the distribution of groundwater in three study areas: Nevada, California, and Washington, as well as in the entire United States. RF regression performance is compared with a single regression tree (RT). The comparison is based on contrasting training error, true prediction error, and variable importance estimates of both methods. Additionally, remote sensing variables are omitted from the process of fitting the RF model to the data to evaluate the deterioration in the model performance when these variables are not used as an input. Research results suggest that although the prediction

  8. Geospatial semantic web

    CERN Document Server

    Zhang, Chuanrong; Li, Weidong

    2015-01-01

    This book covers key issues related to Geospatial Semantic Web, including geospatial web services for spatial data interoperability; geospatial ontology for semantic interoperability; ontology creation, sharing, and integration; querying knowledge and information from heterogeneous data source; interfaces for Geospatial Semantic Web, VGI (Volunteered Geographic Information) and Geospatial Semantic Web; challenges of Geospatial Semantic Web; and development of Geospatial Semantic Web applications. This book also describes state-of-the-art technologies that attempt to solve these problems such as WFS, WMS, RDF, OWL, and GeoSPARQL, and demonstrates how to use the Geospatial Semantic Web technologies to solve practical real-world problems such as spatial data interoperability.

  9. OpenSearch technology for geospatial resources discovery

    Science.gov (United States)

    Papeschi, Fabrizio; Enrico, Boldrini; Mazzetti, Paolo

    2010-05-01

    In 2005, the term Web 2.0 has been coined by Tim O'Reilly to describe a quickly growing set of Web-based applications that share a common philosophy of "mutually maximizing collective intelligence and added value for each participant by formalized and dynamic information sharing". Around this same period, OpenSearch a new Web 2.0 technology, was developed. More properly, OpenSearch is a collection of technologies that allow publishing of search results in a format suitable for syndication and aggregation. It is a way for websites and search engines to publish search results in a standard and accessible format. Due to its strong impact on the way the Web is perceived by users and also due its relevance for businesses, Web 2.0 has attracted the attention of both mass media and the scientific community. This explosive growth in popularity of Web 2.0 technologies like OpenSearch, and practical applications of Service Oriented Architecture (SOA) resulted in an increased interest in similarities, convergence, and a potential synergy of these two concepts. SOA is considered as the philosophy of encapsulating application logic in services with a uniformly defined interface and making these publicly available via discovery mechanisms. Service consumers may then retrieve these services, compose and use them according to their current needs. A great degree of similarity between SOA and Web 2.0 may be leading to a convergence between the two paradigms. They also expose divergent elements, such as the Web 2.0 support to the human interaction in opposition to the typical SOA machine-to-machine interaction. According to these considerations, the Geospatial Information (GI) domain, is also moving first steps towards a new approach of data publishing and discovering, in particular taking advantage of the OpenSearch technology. A specific GI niche is represented by the OGC Catalog Service for Web (CSW) that is part of the OGC Web Services (OWS) specifications suite, which provides a

  10. Flexibly Adaptive Professional Development in Support of Teaching Science with Geospatial Technology

    Science.gov (United States)

    Trautmann, Nancy M.; Makinster, James G.

    2010-04-01

    The flexibly adaptive model of professional development, developed in the GIT Ahead project, enables secondary science teachers to incorporate a variety of geospatial technology applications into wide-ranging classroom contexts. Teacher impacts were evaluated quantitatively and qualitatively. Post-questionnaire responses showed significant growth in teachers’ perceived technological expertise, interest, and ability to integrate geospatial technology into their science teaching. Application of the Technical Pedagogical Content Knowledge (TPACK) framework to three case studies illustrates such growth. Crucial aspects of professional development in support of teaching science with geospatial technology include intensive training, ongoing support, a supportive learning community, and flexibility in terms of support provided and implementation expectations. Implications are presented for design of professional development and use of TPACK in evaluating impacts.

  11. Reviews of Geospatial Information Technology and Collaborative Data Delivery for Disaster Risk Management

    Directory of Open Access Journals (Sweden)

    Hiroyuki Miyazaki

    2015-09-01

    Full Text Available Due to the fact that geospatial information technology is considered necessary for disaster risk management (DRM, the need for more effective collaborations between providers and end users in data delivery is increasing. This paper reviews the following: (i schemes of disaster risk management and collaborative data operation in DRM; (ii geospatial information technology in terms of applications to the schemes reviewed; and (iii ongoing practices of collaborative data delivery with the schemes reviewed. This paper concludes by discussing the future of collaborative data delivery and the progress of the technologies.

  12. The Impact of a Geospatial Technology-Supported Energy Curriculum on Middle School Students' Science Achievement

    Science.gov (United States)

    Kulo, Violet; Bodzin, Alec

    2013-02-01

    Geospatial technologies are increasingly being integrated in science classrooms to foster learning. This study examined whether a Web-enhanced science inquiry curriculum supported by geospatial technologies promoted urban middle school students' understanding of energy concepts. The participants included one science teacher and 108 eighth-grade students classified in three ability level tracks. Data were gathered through pre/posttest content knowledge assessments, daily classroom observations, and daily reflective meetings with the teacher. Findings indicated a significant increase in the energy content knowledge for all the students. Effect sizes were large for all three ability level tracks, with the middle and low track classes having larger effect sizes than the upper track class. Learners in all three tracks were highly engaged with the curriculum. Curriculum effectiveness and practical issues involved with using geospatial technologies to support science learning are discussed.

  13. Using Geo-Spatial Technologies for Field Applications in Higher Geography Education

    Science.gov (United States)

    Karatepe, Akif

    2012-01-01

    Today's important geo-spatial technologies, GIS (Geographic Information Systems), GPS (Global Positioning Systems) and Google Earth have been widely used in geography education. Transferring spatially oriented data taken by GPS to the GIS and Google Earth has provided great benefits in terms of showing the usage of spatial technologies for field…

  14. Improving pest risk assessment and management through the aid of geospatial information technology standards

    Directory of Open Access Journals (Sweden)

    Trond Rafoss

    2013-09-01

    Full Text Available Delivery of geospatial information over the Internet for the management of risks from invasive alien species is an increasingly important service. The evolution of information technology standards for geospatial data is a key factor to simplify network publishing and exchange of maps and data. The World Wide Web Consortium (W3C-geolocation specification is a recent addition that may prove useful for pest risk management. In this article we implement the W3C-geolocation specification and Open Geospatial Consortium (OGC mapping standards in a Web browser application for smartphones and tablet computers to improve field surveys for alien invasive species. We report our first season field experiences using this tool for online mapping of plant disease outbreaks and host plant occurrence. It is expected that the improved field data collection tools will result in increased data availability and thereby new opportunities for risk assessment, because data-needs and availability are crucial for species distribution modelling and model-based forecasts of pest establishment potential. Finally, we close with a comment on the future potential of geospatial information standards to enhance the translation from data to decisions regarding pest risks, which should enable earlier detection of emerging risks as well as more robust projections of pest risks in novel areas. The forthcoming standard for processing of geospatial information, the Web Processing Standard (WPS, should open new technological capabilities both for automatic initiation and updating of risk assessment models based on new incoming data, and subsequent early warning.

  15. Geospatial Technologies as a Vehicle for Enhancing Graduate Education and Promoting the Value of Geography

    Science.gov (United States)

    Oberle, Alex P.; Joseph, Sue A.; May, David W.

    2010-01-01

    Geospatial technologies (GSTs), such as geographic information systems, global positioning systems and remote sensing, present an avenue for expanding the already strong interdisciplinary nature of geography. This paper discusses how GSTs served as a common thread for a crosscutting faculty institute that was established to enhance graduate…

  16. Integrating Geospatial Technologies, Action Research, and Curriculum Theory to Promote Ecological Literacy

    Science.gov (United States)

    Agnello, Mary Frances; Carpenter, Penny

    2010-01-01

    Purpose: The purpose of this paper is to examine and report on the impact of integrating geospatial technology and ecological literacy into an educational leadership Master's class block comprised of action research and curriculum theory. Design/methodology/approach: Action and teacher research informed by environmental issues framed an action…

  17. Integrating Geospatial Technologies into Existing Teacher Education Coursework: Theoretical and Practical Notes from the Field

    Science.gov (United States)

    Kerr, Stacey

    2016-01-01

    Although instruction related to learning management systems and other educational applications in teacher education programs has increased, the potential of geospatial technologies has yet to be widely explored and considered in the teacher education literature, despite its ability to function as an engaging pedagogical tool with teacher…

  18. Evaluating Progression in Students' Relational Thinking While Working on Tasks with Geospatial Technologies

    NARCIS (Netherlands)

    Favier, Tim|info:eu-repo/dai/nl/33811534X; van der Schee, Joop|info:eu-repo/dai/nl/072719575

    2014-01-01

    One of the facets of geographic literacy is the ability to think in a structured way about geographic relationships. Geospatial technologies offer many opportunities to stimulate students’ geographic relational thinking. The question is: How can these opportunities be effectuated? This paper

  19. Evaluating Progression in Students' Relational Thinking While Working on Tasks with Geospatial Technologies

    Science.gov (United States)

    Favier, Tim; Van Der Schee, Joop

    2014-01-01

    One of the facets of geographic literacy is the ability to think in a structured way about geographic relationships. Geospatial technologies offer many opportunities to stimulate students' geographic relational thinking. The question is: How can these opportunities be effectuated? This paper discusses the results of a process-oriented experiment…

  20. Geospatial Technology: A Tool to Aid in the Elimination of Malaria in Bangladesh

    Directory of Open Access Journals (Sweden)

    Karen E. Kirk

    2014-12-01

    Full Text Available Bangladesh is a malaria endemic country. There are 13 districts in the country bordering India and Myanmar that are at risk of malaria. The majority of malaria morbidity and mortality cases are in the Chittagong Hill Tracts, the mountainous southeastern region of Bangladesh. In recent years, malaria burden has declined in the country. In this study, we reviewed and summarized published data (through 2014 on the use of geospatial technologies on malaria epidemiology in Bangladesh and outlined potential contributions of geospatial technologies for eliminating malaria in the country. We completed a literature review using “malaria, Bangladesh” search terms and found 218 articles published in peer-reviewed journals listed in PubMed. After a detailed review, 201 articles were excluded because they did not meet our inclusion criteria, 17 articles were selected for final evaluation. Published studies indicated geospatial technologies tools (Geographic Information System, Global Positioning System, and Remote Sensing were used to determine vector-breeding sites, land cover classification, accessibility to health facility, treatment seeking behaviors, and risk mapping at the household, regional, and national levels in Bangladesh. To achieve the goal of malaria elimination in Bangladesh, we concluded that further research using geospatial technologies should be integrated into the country’s ongoing surveillance system to identify and better assess progress towards malaria elimination.

  1. Remote Sensing Technologies and Geospatial Modelling Hierarchy for Smart City Support

    Science.gov (United States)

    Popov, M.; Fedorovsky, O.; Stankevich, S.; Filipovich, V.; Khyzhniak, A.; Piestova, I.; Lubskyi, M.; Svideniuk, M.

    2017-12-01

    The approach to implementing the remote sensing technologies and geospatial modelling for smart city support is presented. The hierarchical structure and basic components of the smart city information support subsystem are considered. Some of the already available useful practical developments are described. These include city land use planning, urban vegetation analysis, thermal condition forecasting, geohazard detection, flooding risk assessment. Remote sensing data fusion approach for comprehensive geospatial analysis is discussed. Long-term city development forecasting by Forrester - Graham system dynamics model is provided over Kiev urban area.

  2. WebGIS and Geospatial Technologies for Landscape Education on Personalized Learning Contexts

    Directory of Open Access Journals (Sweden)

    María Luisa de Lázaro Torres

    2017-11-01

    Full Text Available The value of landscape, as part of collective heritage, can be acquired by geographic information systems (GIS due to the multilayer approach of the spatial configuration. Proficiency in geospatial technologies to collect, process, analyze, interpret, visualize, and communicate geographic information is being increased by undergraduate and graduate students but, in particular, by those who are training to become geography teachers at the secondary education level. Some teaching experiences, using personalized learning, distance learning methodology, and GIS, focused on education aims to integrate students and enhance their understanding of the landscape are shown. Opportunities offered by WebGIS will be described, through quantitative tools and techniques that will allow this modality of learning and improve its effectiveness. Results of this research show that students, through geospatial technologies, learn the landscape as a diversity of elements, but also the complexity of physical and human factors involved. Several conclusions will be highlighted: (i the contribution of geospatial training to education on the landscape and for sustainable development; (ii spatial analysis as a means of skills acquisition regarding measures for landscape conservation; and (iii expanding and applying acquired knowledge to other geographic spaces.

  3. Advanced Uses of Open Geospatial Web Technologies for Planetary Data

    Science.gov (United States)

    Hare, T. M.; Plesea, L.; Dobinson, E.; Curkendall, D.

    2007-03-01

    This abstract outlines some of the advanced uses and innovative data sets that we have incorporated into the JPL planetary WMS servers OnMars and OnMoon, as well as some of the advanced WMS features. The specific technology used for this work is based on

  4. An interoperable spatial decision support system based on geospatial semantic web technologies

    Science.gov (United States)

    Zhang, Chuanrong; Zhao, Tian; Li, Weidong

    2008-10-01

    Many Spatial Decision Support Systems (SDSSs) have been developed for environmental and natural resources decision-making in recent years. However, an important limitation of the SDSS applications is that they are not interoperable. Several issues prevent the further development of SDSS applications such as the incapability of sharing and reusing existing heterogeneous data and geoprocessing. This paper proposed a framework of web services-based interoperable SDSSs using geospatial semantic technologies such as ontology, web services and service-oriented architecture for decision-making. The proposed interoperable SDSS enables decision-makers to reuse and integrate geospatial data and geoprocessing from heterogeneous sources across the Internet. Based on the proposed framework, a prototype to assist in protective boundary delimitation for Lunan Stone Forest Conservation has been implemented to demonstrate how ontology-based web services and the services-oriented architecture (SOA) contribute to the development of interoperable SDSSs.

  5. Interacting With A Near Real-Time Urban Digital Watershed Using Emerging Geospatial Web Technologies

    Science.gov (United States)

    Liu, Y.; Fazio, D. J.; Abdelzaher, T.; Minsker, B.

    2007-12-01

    The value of real-time hydrologic data dissemination including river stage, streamflow, and precipitation for operational stormwater management efforts is particularly high for communities where flash flooding is common and costly. Ideally, such data would be presented within a watershed-scale geospatial context to portray a holistic view of the watershed. Local hydrologic sensor networks usually lack comprehensive integration with sensor networks managed by other agencies sharing the same watershed due to administrative, political, but mostly technical barriers. Recent efforts on providing unified access to hydrological data have concentrated on creating new SOAP-based web services and common data format (e.g. WaterML and Observation Data Model) for users to access the data (e.g. HIS and HydroSeek). Geospatial Web technology including OGC sensor web enablement (SWE), GeoRSS, Geo tags, Geospatial browsers such as Google Earth and Microsoft Virtual Earth and other location-based service tools provides possibilities for us to interact with a digital watershed in near-real-time. OGC SWE proposes a revolutionary concept towards a web-connected/controllable sensor networks. However, these efforts have not provided the capability to allow dynamic data integration/fusion among heterogeneous sources, data filtering and support for workflows or domain specific applications where both push and pull mode of retrieving data may be needed. We propose a light weight integration framework by extending SWE with open source Enterprise Service Bus (e.g., mule) as a backbone component to dynamically transform, transport, and integrate both heterogeneous sensor data sources and simulation model outputs. We will report our progress on building such framework where multi-agencies" sensor data and hydro-model outputs (with map layers) will be integrated and disseminated in a geospatial browser (e.g. Microsoft Virtual Earth). This is a collaborative project among NCSA, USGS Illinois Water

  6. Collective Sensing: Integrating Geospatial Technologies to Understand Urban Systems—An Overview

    Directory of Open Access Journals (Sweden)

    Geoffrey J. Hay

    2011-08-01

    Full Text Available Cities are complex systems composed of numerous interacting components that evolve over multiple spatio-temporal scales. Consequently, no single data source is sufficient to satisfy the information needs required to map, monitor, model, and ultimately understand and manage our interaction within such urban systems. Remote sensing technology provides a key data source for mapping such environments, but is not sufficient for fully understanding them. In this article we provide a condensed urban perspective of critical geospatial technologies and techniques: (i Remote Sensing; (ii Geographic Information Systems; (iii object-based image analysis; and (iv sensor webs, and recommend a holistic integration of these technologies within the language of open geospatial consortium (OGC standards in-order to more fully understand urban systems. We then discuss the potential of this integration and conclude that this extends the monitoring and mapping options beyond “hard infrastructure” by addressing “humans as sensors”, mobility and human-environment interactions, and future improvements to quality of life and of social infrastructures.

  7. Advancing Geospatial Technologies in Science and Social Science: A Case Study in Collaborative Education

    Science.gov (United States)

    Williams, N. A.; Morris, J. N.; Simms, M. L.; Metoyer, S.

    2007-12-01

    The Advancing Geospatial Skills in Science and Social Sciences (AGSSS) program, funded by NSF, provides middle and high school teacher-partners with access to graduate student scientists for classroom collaboration and curriculum adaptation to incorporate and advance skills in spatial thinking. AGSSS Fellows aid in the delivery of geospatially-enhanced activities utilizing technology such as geographic information systems, remote sensing, and virtual globes. The partnership also provides advanced professional development for both participating teachers and fellows. The AGSSS program is mutually beneficial to all parties involved. This successful collaboration of scientists, teachers, and students results in greater understanding and enthusiasm for the use of spatial thinking strategies and geospatial technologies. In addition, the partnership produces measurable improvements in student efficacy and attitudes toward processes of spatial thinking. The teacher partner training and classroom resources provided by AGSSS will continue the integration of geospatial activities into the curriculum after the project concludes. Time and resources are the main costs in implementing this partnership. Graduate fellows invest considerable time and energy, outside of academic responsibilities, to develop materials for the classroom. Fellows are required to be available during K-12 school hours, which necessitates forethought in scheduling other graduate duties. However, the benefits far outweigh the costs. Graduate fellows gain experience in working in classrooms. In exchange, students gain exposure to working scientists and their research. This affords graduate fellows the opportunity to hone their communication skills, and specifically allows them to address the issue of translating technical information for a novice audience. Teacher-partners and students benefit by having scientific expertise readily available. In summation, these experiences result in changes in teacher

  8. Geospatial Technology in Disease Mapping, E- Surveillance and Health Care for Rural Population in South India

    Science.gov (United States)

    Praveenkumar, B. A.; Suresh, K.; Nikhil, A.; Rohan, M.; Nikhila, B. S.; Rohit, C. K.; Srinivas, A.

    2014-11-01

    Providing Healthcare to rural population has been a challenge to the medical service providers especially in developing countries. For this to be effective, scalable and sustainable, certain strategic decisions have to be taken during the planning phase. Also, there is a big gap between the services available and the availability of doctors and medical resources in rural areas. Use of Information Technology can aid this deficiency to a good extent. In this paper, a mobile application has been developed to gather data from the field. A cloud based interface has been developed to store the data in the cloud for effective usage and management of the data. A decision tree based solution developed in this paper helps in diagnosing a patient based on his health parameters. Interactive geospatial maps have been developed to provide effective data visualization facility. This will help both the user community as well as decision makers to carry out long term strategy planning.

  9. A Review of Advances in the Identification and Characterization of Groundwater Dependent Ecosystems Using Geospatial Technologies

    Directory of Open Access Journals (Sweden)

    Isabel C. Pérez Hoyos

    2016-03-01

    Full Text Available Groundwater Dependent Ecosystem (GDE protection is increasingly being recognized as essential for the sustainable management and allocation of water resources. GDE services are crucial for human well-being and for a variety of flora and fauna. However, the conservation of GDEs is only possible if knowledge about their location and extent is available. Several studies have focused on the identification of GDEs at specific locations using ground-based measurements. However, recent progress in remote sensing technologies and their integration with Geographic Information Systems (GIS has provided alternative ways to map GDEs at a much larger spatial extent. This paper presents a review of the geospatial methods that have been used to map and delineate GDEs at spatial different extents. Additionally, a summary of the satellite sensors useful for identification of GDEs and the integration of remote sensing data with ground-based measurements in the process of mapping GDEs is presented.

  10. Mapping and Analysis of Forest and Land Fire Potential Using Geospatial Technology and Mathematical Modeling

    Science.gov (United States)

    Suliman, M. D. H.; Mahmud, M.; Reba, M. N. M.; S, L. W.

    2014-02-01

    Forest and land fire can cause negative implications for forest ecosystems, biodiversity, air quality and soil structure. However, the implications involved can be minimized through effective disaster management system. Effective disaster management mechanisms can be developed through appropriate early warning system as well as an efficient delivery system. This study tried to focus on two aspects, namely by mapping the potential of forest fire and land as well as the delivery of information to users through WebGIS application. Geospatial technology and mathematical modeling used in this study for identifying, classifying and mapping the potential area for burning. Mathematical models used is the Analytical Hierarchy Process (AHP), while Geospatial technologies involved include remote sensing, Geographic Information System (GIS) and digital field data collection. The entire Selangor state was chosen as our study area based on a number of cases have been reported over the last two decades. AHP modeling to assess the comparison between the three main criteria of fuel, topography and human factors design. Contributions of experts directly involved in forest fire fighting operations and land comprising officials from the Fire and Rescue Department Malaysia also evaluated in this model. The study found that about 32.83 square kilometers of the total area of Selangor state are the extreme potential for fire. Extreme potential areas identified are in Bestari Jaya and Kuala Langat High Ulu. Continuity of information and terrestrial forest fire potential was displayed in WebGIS applications on the internet. Display information through WebGIS applications is a better approach to help the decision-making process at a high level of confidence and approximate real conditions. Agencies involved in disaster management such as Jawatankuasa Pengurusan Dan Bantuan Bencana (JPBB) of District, State and the National under the National Security Division and the Fire and Rescue

  11. Geospatial data collection policies, technology and open source in websites of academic libraries worldwide

    OpenAIRE

    Vardakosta, Ifigenia; Kapidakis, Sarantos

    2016-01-01

    The proliferation of geospatial data demands the engagement of information organizations, such as academic libraries, for their management and diffusion. The purpose of this paper is to reveal issues related to the development of geospatial collections and explore their efficient use as required by the current information environment. Thus, a research conducted on 363 websites of academic libraries worldwide and 136 websites maintaining geospatial collections were identified. The research...

  12. Remote Sensing and Geospatial Technological Applications for Site-specific Management of Fruit and Nut Crops: A Review

    OpenAIRE

    Joel O. Paz; Gerrit Hoogenboom; Sudhanshu Sekhar Panda

    2010-01-01

    Site-specific crop management (SSCM) is one facet of precision agriculture which is helping increase production with minimal input. It has enhanced the cost-benefit scenario in crop production. Even though the SSCM is very widely used in row crop agriculture like corn, wheat, rice, soybean, etc. it has very little application in cash crops like fruit and nut. The main goal of this review paper was to conduct a comprehensive review of advanced technologies, including geospatial technologies, u...

  13. Environmental consequences of Pollution and its Impact on climate Using Geospatial Technology

    Science.gov (United States)

    Kumar, Amit; Vandana, Vandana

    2016-07-01

    Modern transportation is an indispensable ingredient for development, allowing the pressure group of labor, supplies and goods, and enabling general public to access key resources and services. Climate change is a most important threat to sustainable development in any developing or developed country. Urban air pollution is on the rise, due to rapid economic and inhabitants growth and an increase in motorization. Modern transport is fundamental for improvement, allowing the movement of goods and enabling general public to access key resources and services. Travel today is relatively faster and people across the world are travelling more than ever before. Its stipulate regarding forecast is an indispensable part of transportation development in order to evaluate future needs of an urban area. Over increasing traffic concentration posed continued threat to ambient air quality and responsible for producing agents of physical condition hazards. Geospatial technology provides the smartest approach to resolve these inconvenience as it can cover a large area in a fraction of time. The research work focuses on the recognition of traffic intensities with increasing of SO2, NO2 and noise level considered at particular traffic sites in the Varanasi, Uttar Pradesh, India. SO2, NO2 and Noise levels recorded in the city, are much higher than the permissible level and are likely to causes associated health and psychological illnesses to nearby inhabitant. Keywords: Population growth; Traffic; Transportation

  14. Globalization and Mobilization of Earth Science Education with GeoBrain Geospatial Web Service Technology

    Science.gov (United States)

    Deng, M.; di, L.

    2005-12-01

    The needs for Earth science education to prepare students as globally-trained geoscience workforce increase tremendously with globalization of the economy. However, current academic programs often have difficulties in providing students world-view training or experiences with global context due to lack of resources and suitable teaching technology. This paper presents a NASA funded project with insights and solutions to this problem. The project aims to establish a geospatial data-rich learning and research environment that enable the students, faculty and researchers from institutes all over the world easily accessing, analyzing and modeling with the huge amount of NASA EOS data just like they possess those vast resources locally at their desktops. With the environment, classroom demonstration and training for students to deal with global climate and environment issues for any part of the world are possible in any classroom with Internet connection. Globalization and mobilization of Earth science education can be truly realized through the environment. This project, named as NASA EOS Higher Education Alliance: Mobilization of NASA EOS Data and Information through Web Services and Knowledge Management Technologies for Higher Education Teaching and Research, is built on profound technology and infrastructure foundations including web service technology, NASA EOS data resources, and open interoperability standards. An open, distributed, standard compliant, interoperable web-based system, called GeoBrain, is being developed by this project to provide a data-rich on-line learning and research environment. The system allows users to dynamically and collaboratively develop interoperable, web-executable geospatial process and analysis modules and models, and run them on-line against any part of the peta-byte archives for getting back the customized information products rather than raw data. The system makes a data-rich globally-capable Earth science learning and research

  15. Landslide Susceptibility Mapping Using Geospatial Technology in South Eastern Part of Nilgiri District, Tamilnadu, India

    Science.gov (United States)

    Thangasamy, N.; Varathan, R.

    2013-05-01

    Landslides are often destructive and periodically affect the Nilgiris district. Two method viz., Frequency ratio (FR) and Weights of evidence (WofE) were used to reclassify the sub-variables and the landslide susceptibility index (LSI) was calculated by weighted sum overlay analysis. The final LS Zonation map was prepared from the LSI and the area was classified into two zones. Validation of the LSM was the next step and was accomplished by excluding some landslide points in the GIS analyses and overlying the unused landslides points over the LSM. The LSMs prepared using the FR and WofE methods are reliable as more than 75% of the excluded slides fall in high and very high landslide susceptibility zones and the error of mismatch in the two maps is negligible.During the course of this study landslides devastated the Kethi, Coonoor, Barliyar and Kothagiri areas due to an extreme event with 374 to 1,171 mm rainfall received in these stations in just three days on 8th to 10th November, 2009. The rainfall event is unprecedented and such extreme rainfall has not occurred in the region since meteorological records are maintained. Over 100 landslides took place in the area of which 75 are major slides and more 43 people died and 200 houses were damaged. The event was documented and a data base containing the location, details of death, slide characteristics and photographs was prepared. Further, the probability of landslide occurrence may change over time due to changes in land use, unscientific massive developmental activities and establishing settlements without adopting proper safety measures. The study also highlights the need for maintenance of landslide database and installation of more rain gauge stations to update and improve the LSM so as to reduce the risk of landslide hazard faced by the Community. NaveenRaj.T INDIA LANDSLIDE SUSCEPTIBILITY MAPPING USING GEOSPATIAL TECHNOLOGY IN SOUTH EASTERN PART OF NILGIRI DISTRICT, TAMILNADU, INDIA.

  16. Geospatial Technologies and i-Tree Echo Inventory for Predicting Climate Change on Urban Environment

    Science.gov (United States)

    Sriharan, S.; Robinson, L.; Ghariban, N.; Comar, M.; Pope, B.; Frey, G.

    2015-12-01

    Urban forests can be useful both in mitigating climate change and in helping cities adapt to higher temperatures and other impacts of climate change. Understanding and managing the impacts of climate change on the urban forest trees and natural communities will help us maintain their environmental, cultural, and economic benefits. Tree Inventory can provide important information on tree species, height, crown width, overall condition, health and maintenance needs. This presentation will demonstrate that a trees database system is necessary for developing a sustainable urban tree program. Virginia State University (VSU) campus benefits from large number and diversity of trees that are helping us by cleaning the air, retaining water, and providing shade on the buildings to reduce energy cost. The objectives of this study were to develop campus inventory of the trees, identify the tree species, map the locations of the trees with user-friendly tools such as i-Tree Eco and geospatial technologies by assessing the cost/benefit of employing student labor for training and ground validation of the results, and help campus landscape managers implement adaptive responses to climate change impacts. Data was collected on the location, species, and size of trees by using i-Tree urban forestry analysis software. This data was transferred to i-Tree inventory system for demonstrating types of trees, diameter of the trees, height of the trees, and vintage of the trees. The study site was mapped by collecting waypoints with GPS (Global Positioning System) at the trees and uploading these waypoints in ArcMap. The results of this study showed that: (i) students make good field crews, (ii) if more trees were placed in the proper area, the heating and cooling costs will reduce, and (iii) trees database system is necessary for planning, designing, planting, and maintenance, and removal of campus trees Research sponsored by the NIFA Grant, "Urban Forestry Management" (2012-38821-20153).

  17. The Development of an Interoperable Open Source Geographic Information Technology Stack for Ingest, Management, and Delivery of Earth Observation and Geospatial Products

    Science.gov (United States)

    Benedict, K. K.; Sanchez-Silva, R.; Cavner, J. A.; Hudspeth, W. B.

    2009-12-01

    The rapid growth of geospatial data volume and number of sources has highlighted the need for, and spurred the growth and adoption of interoperable geospatial data services. For nearly a decade the Earth Data Analysis Center at The University of New Mexico has been developing standards-based geospatial data management systems based upon a core collection of Open Source technologies, with the collection of employed technologies contributing to a unified information architecture that is enabled by interoperability standards. These technologies include geodatabases (PostGIS), geospatial data access libraries and associated utility programs (GDAL and OGR), scripting languages that enable automated data processing and management (Python), online mapping servers (MapServer), online mapping (OpenLayers, MapFish, GeoEXT), and desktop GIS applications (uDig, QGIS, and GRASS). The interoperability standards upon which EDAC's geospatial information architectures are built include those coming out of the Open Geospatial Consortium (WMS, WFS, WCS, KML, GML), the World Wide Web Consortium (HTML, CSS, SOAP, XML), and ECMA (ECMAscript AKA Javascript). This paper outlines the complementary roles that these various Open Source applications play in the multi-tiered Services Oriented Architectures developed by EDAC in support of a variety of projects, and provides an illustration of how the capabilities enabled by these technologies are interconnected using well-defined open standards. These capabilities include data ingest and query services that support searching for data content based upon keywords and defined spatial extent. They also include data administration services that support data product ingest and registration, data product modification, and deletion from the data registry. Finally, the system supports dynamic generation of Open Geospatial Consortium services for each geospatial data product in the system, enabling integration of data from the system into a wide variety

  18. GEOGRAPHIC MEDICAL HISTORY: ADVANCES IN GEOSPATIAL TECHNOLOGY PRESENT NEW POTENTIALS IN MEDICAL PRACTICE

    Directory of Open Access Journals (Sweden)

    F. S. Faruque

    2016-06-01

    Full Text Available Genes, behaviour, and the environment are known to be the major risk factors for common diseases. When the patient visits a physician, typical questions include family history (genes and lifestyle of the patient (behaviour, but questions concerning environmental risk factors often remain unasked. It is ironic that 25 centuries ago Hippocrates, known as the father of medicine, noted the importance of environmental exposure in medical investigation as documented in his classic work, “Airs, Waters, Places”, yet the practice of routinely incorporating environmental risk factors is still not in place. Modern epigenetic studies have found that unhealthy lifestyle and environmental factors can cause changes to our genes that can increase disease risk factors. Therefore, attempting to solve the puzzle of diseases using heredity and lifestyle alone will be incomplete without accounting for the environmental exposures. The primary reason why environmental exposure has not yet been a routine part of the patient’s medical history is mostly due to our inability to provide clinicians useful measures of environmental exposures suitable for their clinical practices. This presentation will discuss advances in geospatial technology that show the potential to catalyse a paradigm shift in medical practice and health research by allowing environmental risk factors to be documented as the patient’s “Geographic Medical History”. In order to accomplish this we need information on: a relevant spatiotemporal environmental variables, and b location of the individual in that person’s dynamic environment. Common environmental agents that are known to interact with genetic make-up include air pollutants, mold spores, pesticides, etc. Until recently, the other component, location of an individual was limited to a static representation such as residential or workplace location. Now, with the development of mobile technology, changes in an individual’s location

  19. Geographic Medical History: Advances in Geospatial Technology Present New Potentials in Medical Practice

    Science.gov (United States)

    Faruque, F. S.; Finley, R. W.

    2016-06-01

    Genes, behaviour, and the environment are known to be the major risk factors for common diseases. When the patient visits a physician, typical questions include family history (genes) and lifestyle of the patient (behaviour), but questions concerning environmental risk factors often remain unasked. It is ironic that 25 centuries ago Hippocrates, known as the father of medicine, noted the importance of environmental exposure in medical investigation as documented in his classic work, "Airs, Waters, Places", yet the practice of routinely incorporating environmental risk factors is still not in place. Modern epigenetic studies have found that unhealthy lifestyle and environmental factors can cause changes to our genes that can increase disease risk factors. Therefore, attempting to solve the puzzle of diseases using heredity and lifestyle alone will be incomplete without accounting for the environmental exposures. The primary reason why environmental exposure has not yet been a routine part of the patient's medical history is mostly due to our inability to provide clinicians useful measures of environmental exposures suitable for their clinical practices. This presentation will discuss advances in geospatial technology that show the potential to catalyse a paradigm shift in medical practice and health research by allowing environmental risk factors to be documented as the patient's "Geographic Medical History". In order to accomplish this we need information on: a) relevant spatiotemporal environmental variables, and b) location of the individual in that person's dynamic environment. Common environmental agents that are known to interact with genetic make-up include air pollutants, mold spores, pesticides, etc. Until recently, the other component, location of an individual was limited to a static representation such as residential or workplace location. Now, with the development of mobile technology, changes in an individual's location can be tracked in real time if

  20. Geospatializing The Klang Gate Quartz Ridge in Malaysia: A Technological Perspective

    Science.gov (United States)

    Azahari Razak, Khamarrul; Mohamad, Zakaria; Zaki Ibrahim, Mohd; Azad Rosle, Qalam; Hattanajmie Abd Wahab, Mohd; Abu Bakar, Rabieahtul; Mohd Akib, Wan Abdul Aziz Wan

    2015-04-01

    Establishment of inventories on geological heritage, or geoheritage resources is a step forward for a comprehensive geoheritage management leading to a better conservation at national and global levels. Compiling and updating inventory of geoheritage is a tedious process and even so in a tropical environment. Malaysia has a tremendous list of geodiversity and generating its national database is a multi-institutional effort and worthwhile investment. However, producing accurate and reliable characteristics of such landform and spectacular geological features remained elusive. The advanced and modern mapping techniques have revolutionized the mapping, monitoring and modelling of the earth surface processes and landforms. Yet the methods for quantification of geodiversity physical features are not fully utilized in Malaysia for a better understanding its processes and activity. This study provides a better insight into the use of advanced active remote sensing technology for characterizing the forested Quartz Ridge in Malaysia. We have developed the novel method and tested in the Klang Gates Quartz Ridge, Selangor. The granitic country rock made up by quartz mineral is known as the longest quartz ridge in Malaysia and characterized by rugged topography, steep slopes, densely vegetated terrain and also rich-biodiversity area. This study presents an integrated field methodological framework and processing scheme by taking into account the climatic, topographic, geologic, and anthropogenic challenges in an equatorial region. Advanced terrestrial laser scanning system was used to accurately capture, map and model the ridge carried out within a relatively stringent time period. The high frequency Global Navigation Satellite System and modern Total Station coupled with the optical satellite and radar imageries and also advanced spatial analysis were fully utilized in the field campaign and data assessment performed during the recent monsoon season. As a result, the mapping

  1. Remote Sensing and Geospatial Technological Applications for Site-specific Management of Fruit and Nut Crops: A Review

    Directory of Open Access Journals (Sweden)

    Joel O. Paz

    2010-08-01

    Full Text Available Site-specific crop management (SSCM is one facet of precision agriculture which is helping increase production with minimal input. It has enhanced the cost-benefit scenario in crop production. Even though the SSCM is very widely used in row crop agriculture like corn, wheat, rice, soybean, etc. it has very little application in cash crops like fruit and nut. The main goal of this review paper was to conduct a comprehensive review of advanced technologies, including geospatial technologies, used in site-specific management of fruit and nut crops. The review explores various remote sensing data from different platforms like satellite, LIDAR, aerial, and field imaging. The study analyzes the use of satellite sensors, such as Quickbird, Landsat, SPOT, and IRS imagery as well as hyperspectral narrow-band remote sensing data in study of fruit and nut crops in blueberry, citrus, peach, apple, etc. The study also explores other geospatial technologies such as GPS, GIS spatial modeling, advanced image processing techniques, and information technology for suitability study, orchard delineation, and classification accuracy assessment. The study also provides an example of a geospatial model developed in ArcGIS ModelBuilder to automate the blueberry production suitability analysis. The GIS spatial model is developed using various crop characteristics such as chilling hours, soil permeability, drainage, and pH, and land cover to determine the best sites for growing blueberry in Georgia, U.S. The study also provides a list of spectral reflectance curves developed for some fruit and nut crops, blueberry, crowberry, redblush citrus, orange, prickly pear, and peach. The study also explains these curves in detail to help researchers choose the image platform, sensor, and spectrum wavelength for various fruit and nut crops SSCM.

  2. Assessment and monitoring of land degradation using geospatial technology in Bathinda district, Punjab, India

    Science.gov (United States)

    Ahmad, Naseer; Pandey, Puneeta

    2018-02-01

    Land degradation leads to alteration of ecological and economic functions due to a decrease in productivity and quality of the land. The aim of the present study was to assess land degradation with the help of geospatial technology - remote sensing (RS) and geographical information system (GIS) - in Bathinda district, Punjab. The severity of land degradation was estimated quantitatively by analyzing the physico-chemical parameters in the laboratory to determine saline or salt-free soils and calcareous or sodic soils and further correlating them with satellite-based studies. The pH varied between 7.37 and 8.59, electrical conductivity (EC) between 1.97 and 8.78 dS m-1 and the methyl orange or total alkalinity between 0.070 and 0.223 (HCO3-) g L-1 as CaCO3. The spatial variability in these soil parameters was depicted through soil maps generated in a GIS environment. The results revealed that the soil in the study area was exposed to salt intrusion, which could be mainly attributed to irrigation practices in the state of Punjab. Most of the soil samples of the study area were slightly or moderately saline with a few salt-free sites. Furthermore, the majority of the soil samples were calcareous and a few samples were alkaline or sodic in nature. A comparative analysis of temporal satellite datasets of Landsat 7 ETM+ and Landsat 8 OLI_TIRS of 2000 and 2014, respectively, revealed that the water body showed a slight decreasing trend from 2.46 km2 in 2000 to 1.87 km2 in 2014, while the human settlements and other built-up areas expanded from 586.25 to 891.09 km2 in a span of 14 years. The results also showed a decrease in area under barren land from 68.9847 km2 in 2000 to 15.26 km2 in 2014. A significant correlation was observed between the digital number (DN) of the near-infrared band and pH and EC. Therefore, it is suggested that the present study can be applied to projects with special relevance to soil scientists, environmental scientists and planning agencies that

  3. Collaboration Among Institutions to Bring Geospatial Technology to an Underserved Rural Region

    Science.gov (United States)

    Johnson, T.

    2012-12-01

    The University of Maine at Machias and Washington County Community College, the two smallest and most remote public institutions in Maine, provide important education and workforce development services in a rural and economically-challenged region. Through an innovative collaboration supported by the National Science Foundation, the two institutions have developed geospatial technology (GST) programs designed to meet the specific workforce needs of the region, affording students with the opportunity to pursue degrees, certificates and minors. Prior to this effort, neither school had the resources to maintain a GST laboratory or to offer courses consistently. The region had almost no GST capacity with which to manage critical environmental resources and grapple with economic, public safety, and public health challenges. Several statewide studies had shown a growing need for more GST technicians and training for incumbent workers. The new programs are designed to produce a small number of specialist technicians with associate's degrees and a large number of ancillary users with significant GST expertise from courses, certificates or minors. Course content is shaped by workforce research in Maine and elsewhere, and all courses are offered in either blended, online or short-term intensive formats to provide access to incumbent workers and extend the geographic reach of the programs. Through the university's Geographic Information Systems (GIS) Service Center, students from both institutions engage in real-world projects, and are linked with employers via internships. This has the added plus of providing low-cost and no-cost GIS services to area clients, generating demand. Many of these projects and internships lead to work for graduates, even through the economic downturn. By creating courses that serve multiple audiences, each contributing a small number to the total enrollment, the programs constitute a sustainable model that serves the growing needs of the region

  4. Trusting Crowdsourced Geospatial Semantics

    Science.gov (United States)

    Goodhue, P.; McNair, H.; Reitsma, F.

    2015-08-01

    The degree of trust one can place in information is one of the foremost limitations of crowdsourced geospatial information. As with the development of web technologies, the increased prevalence of semantics associated with geospatial information has increased accessibility and functionality. Semantics also provides an opportunity to extend indicators of trust for crowdsourced geospatial information that have largely focused on spatio-temporal and social aspects of that information. Comparing a feature's intrinsic and extrinsic properties to associated ontologies provides a means of semantically assessing the trustworthiness of crowdsourced geospatial information. The application of this approach to unconstrained semantic submissions then allows for a detailed assessment of the trust of these features whilst maintaining the descriptive thoroughness this mode of information submission affords. The resulting trust rating then becomes an attribute of the feature, providing not only an indication as to the trustworthiness of a specific feature but is able to be aggregated across multiple features to illustrate the overall trustworthiness of a dataset.

  5. Applying Geospatial Technologies for International Development and Public Health: The USAID/NASA SERVIR Program

    Science.gov (United States)

    Hemmings, Sarah; Limaye, Ashutosh; Irwin, Dan

    2011-01-01

    Background: SERVIR -- the Regional Visualization and Monitoring System -- helps people use Earth observations and predictive models based on data from orbiting satellites to make timely decisions that benefit society. SERVIR operates through a network of regional hubs in Mesoamerica, East Africa, and the Hindu Kush-Himalayas. USAID and NASA support SERVIR, with the long-term goal of transferring SERVIR capabilities to the host countries. Objective/Purpose: The purpose of this presentation is to describe how the SERVIR system helps the SERVIR regions cope with eight areas of societal benefit identified by the Group on Earth Observations (GEO): health, disasters, ecosystems, biodiversity, weather, water, climate, and agriculture. This presentation will describe environmental health applications of data in the SERVIR system, as well as ongoing and future efforts to incorporate additional health applications into the SERVIR system. Methods: This presentation will discuss how the SERVIR Program makes environmental data available for use in environmental health applications. SERVIR accomplishes its mission by providing member nations with access to geospatial data and predictive models, information visualization, training and capacity building, and partnership development. SERVIR conducts needs assessments in partner regions, develops custom applications of Earth observation data, and makes NASA and partner data available through an online geospatial data portal at SERVIRglobal.net. Results: Decision makers use SERVIR to improve their ability to monitor air quality, extreme weather, biodiversity, and changes in land cover. In past several years, the system has been used over 50 times to respond to environmental threats such as wildfires, floods, landslides, and harmful algal blooms. Given that the SERVIR regions are experiencing increased stress under larger climate variability than historic observations, SERVIR provides information to support the development of

  6. Some Key Technologies of Geospatial Information System for China Water Census

    Directory of Open Access Journals (Sweden)

    CAI Yang

    2015-05-01

    Full Text Available We have pioneered research on geospatial information system for national water census and its application. Aiming to the main issues such as information obtaining, data management, quality control, and project organization, the overall thought is given. It is based on taking fundamental data as supporting and data model as precursor, and viewing intelligent tool as protective role, and combing the management theory with technical methods. The key techniques developed include the digital basin extraction, data modeling orienting to the object of water resources, data acquisition and processing within certain rules and the application of multidimensional theme.

  7. Exploring the potential of Geospatial Technology for oil spill detection in shallow coastal areas in the Arabian Gulf

    Science.gov (United States)

    Katiyar, S.

    2016-02-01

    Geospatial Technology is helpful in several modes of oil spill control, including large area surveillance, site specific monitoring and tactical assistance in emergencies. Geospatial is able to provide indispensable in sequence to enhance strategic and strategic decision-making, potentially reducing incidence of spills by providing a deterrent factor, decreasing response costs by facilitating rapid oil recovery and ultimately minimizing impact. Remote sensing and GIS provides an effective tool for timely oil pollution response. This research paper includes the spectral signature in the optical and infrared domains of oil slicks observed in shallow coastal waters of the Arabian Gulf were investigated with Microwave data. Images estimates of sea currents from hydrodynamic models supported the multi-sensor oil tracking technique. Satellite images with and without sun glint were studied as the spectral signature of oil slicks in the optical sphere of influence depends upon the viewing geometry and the solar angle in addition to the type of oil and its thickness. Depending on the combination of those factors, oil slicks may exhibit bright contrasts with respect to oil-free waters. The oil slick with bright contrast observed by Microwave data showed lower temperature than oil-free areas. Ocean circulation and wind data were used to track oil slicks and forecast their potential landfall. The synergistic use of satellite observations and hydrodynamic modeling is recommended for establishing an early warning and decision support system for oil pollution response.

  8. Geospatial Authentication

    Science.gov (United States)

    Lyle, Stacey D.

    2009-01-01

    A software package that has been designed to allow authentication for determining if the rover(s) is/are within a set of boundaries or a specific area to access critical geospatial information by using GPS signal structures as a means to authenticate mobile devices into a network wirelessly and in real-time. The advantage lies in that the system only allows those with designated geospatial boundaries or areas into the server.

  9. Geospatial Engineering

    Science.gov (United States)

    2017-02-22

    that enable terrain visualization . Geospatial engineers manipulate the TGD to create the SSGF. The SSGF is the foundation for the Web map service that...decision aids, and visualization products that enable the commander and staff to visualize the operational environment. Geospatial engineers aid in the...data that provides a common framework for visualizing an area of interest (AOI) to enable mission command and the planning and execution of operational

  10. Geospatial health

    DEFF Research Database (Denmark)

    Utzinger, Jürg; Rinaldi, Laura; Malone, John B.

    2011-01-01

    Geospatial Health is an international, peer-reviewed scientific journal produced by the Global Network for Geospatial Health (GnosisGIS). This network was founded in 2000 and the inaugural issue of its official journal was published in November 2006 with the aim to cover all aspects of geographical...... information system (GIS) applications, remote sensing and other spatial analytic tools focusing on human and veterinary health. The University of Naples Federico II is the publisher, producing two issues per year, both as hard copy and an open-access online version. The journal is referenced in major...... databases, including CABI, ISI Web of Knowledge and PubMed. In 2008, it was assigned its first impact factor (1.47), which has now reached 1.71. Geospatial Health is managed by an editor-in-chief and two associate editors, supported by five regional editors and a 23-member strong editorial board...

  11. Identification of Optimal Mechanization Processes for Harvesting Hazelnuts Based on Geospatial Technologies in Sicily (Southern Italy

    Directory of Open Access Journals (Sweden)

    Ilaria Zambon

    2017-07-01

    Full Text Available Sicily is a region located in the southern Italy. Its typical Mediterranean landscape is appreciated due to its high biodiversity. Specifically, hazelnut plantations have adapted in a definite area in Sicily (the Nebroidi park due to specific morphological and climatic characteristics. However, many of these plantations are not used today due to adverse conditions, both to collect hazelnuts and to reach hazel groves. Though a geospatial analysis, the present paper aims to identify which hazelnut contexts can be actively used for agricultural, economic (e.g., introduction of a circular economy and energetic purposes (to establish a potential agro-energetic district. The examination revealed the most suitable areas giving several criteria (e.g., slope, road system, ensuring an effective cultivation and consequent harvesting of hazelnuts and (ii providing security for the operators since many of hazelnut plants are placed in very sloped contexts that are difficult to reach by traditional machines. In this sense, this paper also suggests optimal mechanization processes for harvesting hazelnuts in this part of Sicily.

  12. Real-Time Integrity Monitoring of Stored Geo-Spatial Data Using Forward-Looking Remote Sensing Technology

    Science.gov (United States)

    Young, Steven D.; Harrah, Steven D.; deHaag, Maarten Uijt

    2002-01-01

    Terrain Awareness and Warning Systems (TAWS) and Synthetic Vision Systems (SVS) provide pilots with displays of stored geo-spatial data (e.g. terrain, obstacles, and/or features). As comprehensive validation is impractical, these databases typically have no quantifiable level of integrity. This lack of a quantifiable integrity level is one of the constraints that has limited certification and operational approval of TAWS/SVS to "advisory-only" systems for civil aviation. Previous work demonstrated the feasibility of using a real-time monitor to bound database integrity by using downward-looking remote sensing technology (i.e. radar altimeters). This paper describes an extension of the integrity monitor concept to include a forward-looking sensor to cover additional classes of terrain database faults and to reduce the exposure time associated with integrity threats. An operational concept is presented that combines established feature extraction techniques with a statistical assessment of similarity measures between the sensed and stored features using principles from classical detection theory. Finally, an implementation is presented that uses existing commercial-off-the-shelf weather radar sensor technology.

  13. Using Geospatial Information Technology in Natural Resources Management: The Case of Urban Land Management In West Africa

    Directory of Open Access Journals (Sweden)

    Yaw A. Twumasi

    2008-02-01

    Full Text Available In the past several decades, Lagos Metropolis emerged as one of the fastesturbanizing cities in the West African Sub-region. In the absence of a regular use ofgeospatial information management systems, limited effort had been made to keep track ofchanges in the natural environment in the rapidly growing city for policy making in landadministration. The ubiquitous energy radiated by the rapid urbanization rate in the areanot only created unprecedented consequences by diminishing the quality of theenvironment and natural resources but it raises serious implications for land managementin the region. The factors fuelling the land crisis in the area which are not far fetchedconsists of socio-economic, ecological and policy elements. To tackle these issues in amega city, up-to-date knowledge would be required to capture and analyze landinformation trends. Such an effort will help manage the city’s expansion as well asinfrastructure development through the right choices in planning and (spatial designsusing the latest tools in geospatial technologies of Geographic Information Systems GISand remote sensing. This study investigates the spatial implications of the rapid expansionof metropolitan Lagos for land management using GIS and Remote sensing technology.The result of the research provides a valuable road map that can enable planners contributeto improved land administration necessary for effective management of natural resources.

  14. Landuse Changes Refer to Spatial Planning Regulations at Kelara Watershed Area: An Analysis Using Geospatial Information Technology

    Directory of Open Access Journals (Sweden)

    Andi Ramlan

    2015-08-01

    Full Text Available The purpose of this study is to analyze land use changes in the Kelara watershed and to assess the suitability of current land use changes with the spatial planning regulation of Jeneponto within Kelara basin. This study integrates various survey techniques, remote sensing, and geographic information system technology analysis. Geospatial information used in this study consists of Landsat ETM 7+ satellite imagery (2009 and Landsat 8 (2014 as well as a number of spatial data based on vector data which is compiled by the Jeneponto Government. Remote sensing data using two time series (2009 and 2014 are analyzed by means of supervised classification and visual classification.  The analysis indicated that land use type for the paddy fields and forests (including mangroves converted become a current land use which is inconsistent with the spatial planning regulation of Jeneponto.The use of land for settlement tends to increase through conversion of wetlands (rice fields. These conditions provide an insight that this condition will occur in the future, so that providing the direction of land use change can be better prepared and anticipated earlier.

  15. TRUSTING CROWDSOURCED GEOSPATIAL SEMANTICS

    Directory of Open Access Journals (Sweden)

    P. Goodhue

    2015-08-01

    Full Text Available The degree of trust one can place in information is one of the foremost limitations of crowdsourced geospatial information. As with the development of web technologies, the increased prevalence of semantics associated with geospatial information has increased accessibility and functionality. Semantics also provides an opportunity to extend indicators of trust for crowdsourced geospatial information that have largely focused on spatio-temporal and social aspects of that information. Comparing a feature’s intrinsic and extrinsic properties to associated ontologies provides a means of semantically assessing the trustworthiness of crowdsourced geospatial information. The application of this approach to unconstrained semantic submissions then allows for a detailed assessment of the trust of these features whilst maintaining the descriptive thoroughness this mode of information submission affords. The resulting trust rating then becomes an attribute of the feature, providing not only an indication as to the trustworthiness of a specific feature but is able to be aggregated across multiple features to illustrate the overall trustworthiness of a dataset.

  16. Methods and Tools to Align Curriculum to the Skills and Competencies Needed by the Workforce - an Example from Geospatial Science and Technology

    Science.gov (United States)

    Johnson, A. B.

    2012-12-01

    Geospatial science and technology (GST) including geographic information systems, remote sensing, global positioning systems and mobile applications, are valuable tools for geoscientists and students learning to become geoscientists. GST allows the user to analyze data spatially and temporarily and then visualize the data and outcomes in multiple formats (digital, web and paper). GST has evolved rapidly and it has been difficult to create effective curriculum as few guidelines existed to help educators. In 2010, the US Department of Labor (DoL), in collaboration with the National Geospatial Center of Excellence (GeoTech Center), a National Science Foundation supported grant, approved the Geospatial Technology Competency Mode (GTCM). The GTCM was developed and vetted with industry experts and provided the structure and example competencies needed across the industry. While the GTCM was helpful, a more detailed list of skills and competencies needed to be identified in order to build appropriate curriculum. The GeoTech Center carried out multiple DACUM events to identify the skills and competencies needed by entry-level workers. DACUM (Developing a Curriculum) is a job analysis process whereby expert workers are convened to describe what they do for a specific occupation. The outcomes from multiple DACUMs were combined into a MetaDACUM and reviewed by hundreds of GST professionals. This provided a list of more than 320 skills and competencies needed by the workforce. The GeoTech Center then held multiple workshops across the U.S. where more than 100 educators knowledgeable in teaching GST parsed the list into Model Courses and a Model Certificate Program. During this process, tools were developed that helped educators define which competency should be included in a specific course and the depth of instruction for that competency. This presentation will provide details about the process, methodology and tools used to create the Models and suggest how they can be used

  17. Injury surveillance in low-resource settings using Geospatial and Social Web technologies

    Directory of Open Access Journals (Sweden)

    Schuurman Nadine

    2010-05-01

    Full Text Available Abstract Background Extensive public health gains have benefited high-income countries in recent decades, however, citizens of low and middle-income countries (LMIC have largely not enjoyed the same advancements. This is in part due to the fact that public health data - the foundation for public health advances - are rarely collected in many LMIC. Injury data are particularly scarce in many low-resource settings, despite the huge associated burden of morbidity and mortality. Advances in freely-accessible and easy-to-use information and communication (ICT technology may provide the impetus for increased public health data collection in settings with limited financial and personnel resources. Methods and Results A pilot study was conducted at a hospital in Cape Town, South Africa to assess the utility and feasibility of using free (non-licensed, and easy-to-use Social Web and GeoWeb tools for injury surveillance in low-resource settings. Data entry, geocoding, data exploration, and data visualization were successfully conducted using these technologies, including Google Spreadsheet, Mapalist, BatchGeocode, and Google Earth. Conclusion This study examined the potential for Social Web and GeoWeb technologies to contribute to public health data collection and analysis in low-resource settings through an injury surveillance pilot study conducted in Cape Town, South Africa. The success of this study illustrates the great potential for these technologies to be leveraged for public health surveillance in resource-constrained environments, given their ease-of-use and low-cost, and the sharing and collaboration capabilities they afford. The possibilities and potential limitations of these technologies are discussed in relation to the study, and to the field of public health in general.

  18. Injury surveillance in low-resource settings using Geospatial and Social Web technologies.

    Science.gov (United States)

    Cinnamon, Jonathan; Schuurman, Nadine

    2010-05-24

    Extensive public health gains have benefited high-income countries in recent decades, however, citizens of low and middle-income countries (LMIC) have largely not enjoyed the same advancements. This is in part due to the fact that public health data - the foundation for public health advances - are rarely collected in many LMIC. Injury data are particularly scarce in many low-resource settings, despite the huge associated burden of morbidity and mortality. Advances in freely-accessible and easy-to-use information and communication (ICT) technology may provide the impetus for increased public health data collection in settings with limited financial and personnel resources. A pilot study was conducted at a hospital in Cape Town, South Africa to assess the utility and feasibility of using free (non-licensed), and easy-to-use Social Web and GeoWeb tools for injury surveillance in low-resource settings. Data entry, geocoding, data exploration, and data visualization were successfully conducted using these technologies, including Google Spreadsheet, Mapalist, BatchGeocode, and Google Earth. This study examined the potential for Social Web and GeoWeb technologies to contribute to public health data collection and analysis in low-resource settings through an injury surveillance pilot study conducted in Cape Town, South Africa. The success of this study illustrates the great potential for these technologies to be leveraged for public health surveillance in resource-constrained environments, given their ease-of-use and low-cost, and the sharing and collaboration capabilities they afford. The possibilities and potential limitations of these technologies are discussed in relation to the study, and to the field of public health in general.

  19. Geospatial Services Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: To process, store, and disseminate geospatial data to the Department of Defense and other Federal agencies.DESCRIPTION: The Geospatial Services Laboratory...

  20. Grid Enabled Geospatial Catalogue Web Service

    Science.gov (United States)

    Chen, Ai-Jun; Di, Li-Ping; Wei, Ya-Xing; Liu, Yang; Bui, Yu-Qi; Hu, Chau-Min; Mehrotra, Piyush

    2004-01-01

    Geospatial Catalogue Web Service is a vital service for sharing and interoperating volumes of distributed heterogeneous geospatial resources, such as data, services, applications, and their replicas over the web. Based on the Grid technology and the Open Geospatial Consortium (0GC) s Catalogue Service - Web Information Model, this paper proposes a new information model for Geospatial Catalogue Web Service, named as GCWS which can securely provides Grid-based publishing, managing and querying geospatial data and services, and the transparent access to the replica data and related services under the Grid environment. This information model integrates the information model of the Grid Replica Location Service (RLS)/Monitoring & Discovery Service (MDS) with the information model of OGC Catalogue Service (CSW), and refers to the geospatial data metadata standards from IS0 19115, FGDC and NASA EOS Core System and service metadata standards from IS0 191 19 to extend itself for expressing geospatial resources. Using GCWS, any valid geospatial user, who belongs to an authorized Virtual Organization (VO), can securely publish and manage geospatial resources, especially query on-demand data in the virtual community and get back it through the data-related services which provide functions such as subsetting, reformatting, reprojection etc. This work facilitates the geospatial resources sharing and interoperating under the Grid environment, and implements geospatial resources Grid enabled and Grid technologies geospatial enabled. It 2!so makes researcher to focus on science, 2nd not cn issues with computing ability, data locztic, processir,g and management. GCWS also is a key component for workflow-based virtual geospatial data producing.

  1. Application of geospatial technology for gap analysis in tourism planning for the Western Cape

    Directory of Open Access Journals (Sweden)

    Johannes H. van der Merwe

    2013-04-01

    Full Text Available We report on the use of modern spatial computing technology in the development of spatial tourism policy and planning in the context of a bounded resource base. We refer briefly to provincial tourism development policy, expand on the tourism marketing framework and use the express tourist preferences to determine suitability indicators or attraction features for a spatial tourism resource base, paying special attention to the conceptual foundations of attraction and the mapping of tourism potential variables. We applied the methodology to a combination of tourism products in the Western Cape Province of South Africa in an approach that involved applying the spatial multiple criteria evaluation through the weighted linear combination of spatial factor layers as images in a geographical information system. We performed an analysis of the gap between tourism potential and tourism resource provision at a spatial resolution of individual towns spheres of influence, as represented by Thiessen polygons. The outcome in map format demonstrates the applicability of the technique to the Western Cape. The fine-scale spatial result was analysed for its strategic planning implications. Our results are useful for entrepreneurial and regulatory planning and can be replicated in different spatial locations if the appropriate database can be constructed.

  2. Two Contrasting Approaches to Building High School Teacher Capacity to Teach About Local Climate Change Using Powerful Geospatial Data and Visualization Technology

    Science.gov (United States)

    Zalles, D. R.

    2011-12-01

    The presentation will compare and contrast two different place-based approaches to helping high school science teachers use geospatial data visualization technology to teach about climate change in their local regions. The approaches are being used in the development, piloting, and dissemination of two projects for high school science led by the author: the NASA-funded Data-enhanced Investigations for Climate Change Education (DICCE) and the NSF funded Studying Topography, Orographic Rainfall, and Ecosystems with Geospatial Information Technology (STORE). DICCE is bringing an extensive portal of Earth observation data, the Goddard Interactive Online Visualization and Analysis Infrastructure, to high school classrooms. STORE is making available data for viewing results of a particular IPCC-sanctioned climate change model in relation to recent data about average temperatures, precipitation, and land cover for study areas in central California and western New York State. Across the two projects, partner teachers of academically and ethnically diverse students from five states are participating in professional development and pilot testing. Powerful geospatial data representation technologies are difficult to implement in high school science because of challenges that teachers and students encounter navigating data access and making sense of data characteristics and nomenclature. Hence, on DICCE, the researchers are testing the theory that by providing a scaffolded technology-supported process for instructional design, starting from fundamental questions about the content domain, teachers will make better instructional decisions. Conversely, the STORE approach is rooted in the perspective that co-design of curricular materials among researchers and teacher partners that work off of "starter" lessons covering focal skills and understandings will lead to the most effective utilizations of the technology in the classroom. The projects' goals and strategies for student

  3. A transferable approach towards rapid inventory data capturing for seismic vulnerability assessment using open-source geospatial technologies

    Science.gov (United States)

    Wieland, M.; Pittore, M.; Parolai, S.; Zschau, J.

    2012-04-01

    Geospatial technologies are increasingly being used in pre-disaster vulnerability assessment and post-disaster impact assessment for different types of hazards. Especially the use of remote sensing data has been strongly promoted in recent years due to its capabilities of providing up-to-date information over large areas at a comparatively low cost with increasingly high spatial, temporal and spectral resolution. Despite its clear potentials, a purely remote sensing based approach has its limitations in that it is only capable of providing information about the birds-eye view of the objects of interest. The use of omnidirectional imaging in addition can provide the necessary street-view that furthermore allows for a rapid visual screening of a buildings façade. In this context, we propose an integrated approach to rapid inventory data capturing for the assessment of structural vulnerability of buildings in case of an earthquake. Globally available low-cost data sources are preferred and the tools are developed on an open-source basis to allow for a high degree of transferability and usability. On a neighbourhood scale medium spatial but high temporal and spectral resolution satellite images are analysed to outline areas of homogeneous urban structure. Following a proportional allocation scheme, for each urban structure type representative sample areas are selected for a more detailed analysis of the building stock with high resolution image data. On a building-by-building scale a ground-based, rapid visual survey is performed using an omnidirectional imaging system driven around with a car inside the identified sample areas. Processing of the acquired images allows for an extraction of vulnerability-related features of single buildings (e.g. building height, detection of soft-storeys). An analysis of high resolution satellite images provides with further inventory features (e.g. footprint area, shape irregularity). Since we are dealing with information coming from

  4. Modeling and formal representation of geospatial knowledge for the Geospatial Semantic Web

    Science.gov (United States)

    Huang, Hong; Gong, Jianya

    2008-12-01

    GML can only achieve geospatial interoperation at syntactic level. However, it is necessary to resolve difference of spatial cognition in the first place in most occasions, so ontology was introduced to describe geospatial information and services. But it is obviously difficult and improper to let users to find, match and compose services, especially in some occasions there are complicated business logics. Currently, with the gradual introduction of Semantic Web technology (e.g., OWL, SWRL), the focus of the interoperation of geospatial information has shifted from syntactic level to Semantic and even automatic, intelligent level. In this way, Geospatial Semantic Web (GSM) can be put forward as an augmentation to the Semantic Web that additionally includes geospatial abstractions as well as related reasoning, representation and query mechanisms. To advance the implementation of GSM, we first attempt to construct the mechanism of modeling and formal representation of geospatial knowledge, which are also two mostly foundational phases in knowledge engineering (KE). Our attitude in this paper is quite pragmatical: we argue that geospatial context is a formal model of the discriminate environment characters of geospatial knowledge, and the derivation, understanding and using of geospatial knowledge are located in geospatial context. Therefore, first, we put forward a primitive hierarchy of geospatial knowledge referencing first order logic, formal ontologies, rules and GML. Second, a metamodel of geospatial context is proposed and we use the modeling methods and representation languages of formal ontologies to process geospatial context. Thirdly, we extend Web Process Service (WPS) to be compatible with local DLL for geoprocessing and possess inference capability based on OWL.

  5. Tecnologias geoespaciais no gerenciamento da cultura da maçã Geospatial technologies on apple orchards management

    Directory of Open Access Journals (Sweden)

    Bernardo Friedrich Theodor Rudorff

    2003-04-01

    Full Text Available No presente trabalho, foram utilizadas tecnologias geoespaciais visando a auxiliar o gerenciamento e o manejo da cultura da maçã. Um GPS de navegação foi utilizado para delimitar 201 quadras de maçã na Fazenda Rio Verde situada no município de Fraiburgo-SC. As coordenadas dos pontos (waypoints foram introduzidas num sistema de informações geográficas (SIG, obtendo-se um mapa com a distribuição dos limites das quadras de maçã. Estes limites foram associados a um banco de dados contendo informações cadastrais, tais como: variedade, data de plantio e área. Imagens do sensor ETM+ do satélite Landsat-7, adquiridas em 07 de janeiro de 2000 e 05 de agosto de 2001, foram utilizadas para mapear o uso e ocupação do solo nas áreas restantes da fazenda. O tamanho das quadras de maçã variou entre 0,14 e 5,32 ha. Uma comparação entre a área das quadras estimada pelo GPS de navegação e a área estimada a partir do número de plantas, multiplicado pela área ocupada por planta, apresentou um coeficiente de correlação r=0,97. As classes de uso e ocupação do solo foram: açude, banhado, mato, capoeira, lavoura e reflorestamento. De acordo com os resultados alcançados nesta pesquisa, pode-se chegar às seguintes conclusões: a o uso do GPS de navegação mostrou-se viável para a obtenção do mapa com o limite das quadras de maçã; b as imagens do Landsat permitiram identificar as diferentes classes de uso e ocupação do solo; c o SIG associado a um banco de dados é uma importante ferramenta de gerenciamento das atividades da fruticultura em quadras.Geospatial technologies were used in the present work in order to assist apple orchards management. A navigation GPS was used to obtain waypoints for 201 apple fields in Rio Verde farm, located in the municipality of Fraiburgo, Santa Catarina State. These waypoints were introduced in the Geographical Information System (GIS to obtain a map with the geographic limits of apple fields

  6. Automatic search of geospatial features for disaster and emergency management

    Science.gov (United States)

    Zhang, Chuanrong; Zhao, Tian; Li, Weidong

    2010-12-01

    Although the fast development of OGC (Open Geospatial Consortium) WFS (Web Feature Service) technologies has undoubtedly improved the sharing and synchronization of feature-level geospatial information across diverse resources, literature shows that there are still apparent limitations in the current implementation of OGC WFSs. Currently, the implementation of OGC WFSs only emphasizes syntactic data interoperability via standard interfaces and cannot resolve semantic heterogeneity problems in geospatial data sharing. To help emergency responders and disaster managers find new ways of efficiently searching for needed geospatial information at the feature level, this paper aims to propose a framework for automatic search of geospatial features using Geospatial Semantic Web technologies and natural language interfaces. We focus on two major tasks: (1) intelligent geospatial feature retrieval using Geospatial Semantic Web technologies; (2) a natural language interface to a geospatial knowledge base and web feature services over the Semantic Web. Based on the proposed framework we implemented a prototype. Results show that it is practical to directly discover desirable geospatial features from multiple semantically heterogeneous sources using Geospatial Semantic Web technologies and natural language interfaces.

  7. EPA Geospatial Applications

    Science.gov (United States)

    EPA has developed many applications that allow users to explore and interact with geospatial data. This page highlights some of the flagship geospatial web applications but these represent only a fraction of the total.

  8. A geospatial search engine for discovering multi-format geospatial data across the web

    Science.gov (United States)

    Christopher Bone; Alan Ager; Ken Bunzel; Lauren Tierney

    2014-01-01

    The volume of publically available geospatial data on the web is rapidly increasing due to advances in server-based technologies and the ease at which data can now be created. However, challenges remain with connecting individuals searching for geospatial data with servers and websites where such data exist. The objective of this paper is to present a publically...

  9. Semantic web-based intelligent geospatial web services

    CERN Document Server

    Yue, Peng

    2013-01-01

    By introducing Semantic Web technologies into geospatial Web services, this book addresses the semantic description of geospatial data and standards-based Web services, discovery of geospatial data and services, and generation of composite services. Semantic descriptions for geospatial data, services, and geoprocessing service chains are structured, organized, and registered in geospatial catalogue services. The ontology-based approach helps to improve the recall and precision of data and services discovery. Semantics-enabled metadata tracking and satisfaction allows analysts to focus on the g

  10. BORDERLESS GEOSPATIAL WEB (BOLEGWEB)

    OpenAIRE

    V. Cetl; Kliment, T.; Kliment, M.

    2016-01-01

    The effective access and use of geospatial information (GI) resources acquires a critical value of importance in modern knowledge based society. Standard web services defined by Open Geospatial Consortium (OGC) are frequently used within the implementations of spatial data infrastructures (SDIs) to facilitate discovery and use of geospatial data. This data is stored in databases located in a layer, called the invisible web, thus are ignored by search engines. SDI uses a catalogue (discovery) ...

  11. Multi-sensor Evolution Analysis system: how WCS/WCPS technology supports real time exploitation of geospatial data

    Science.gov (United States)

    Natali, Stefano; Mantovani, Simone; Folegani, Marco; Barboni, Damiano

    2014-05-01

    EarthServer is a European Framework Program project that aims at developing and demonstrating the usability of open standards (OGC and W3C) in the management of multi-source, any-size, multi-dimensional spatio-temporal data - in short: "Big Earth Data Analytics". In the third and last year of EarthServer project, the Climate Data Service lighthouse application has been released in its full / consolidated mode. The Multi-sensor Evolution Analysis (MEA) system, the geospatial data analysis tool empowered with OGC standard, has been adopted to handle data manipulation and visualization; Web Coverage Service (WCS) and Web Coverage Processing Service (WCPS) are used to access and process ESA, NASA and third party products. Tenth of Terabytes of full-mission, multi-sensor, multi-resolution, multi-projection and cross-domain coverages are already available to user interest groups belonging Land, Ocean and Atmosphere products. The MEA system is available at https://mea.eo.esa.int. During the live demo, typical test cases implemented by User interest Groups within EarthServer and ESA Image Information Mining projects will be showed with special emphasis on the comparison of MACC Reanalysis and ESA CCI products.

  12. Geospatial Data Analysis Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Geospatial application development, location-based services, spatial modeling, and spatial analysis are examples of the many research applications that this facility...

  13. UASs for geospatial data

    Science.gov (United States)

    Increasingly, consumer organizations, businesses, and academic researchers are using UAS to gather geospatial, environmental data on natural and man-made phenomena. These data may be either remotely sensed or measured directly (e. g., sampling of atmospheric constituents). The term geospatial data r...

  14. Leveraging geospatial data, technology, and methods for improving the health of communities: priorities and strategies from an expert panel convened by the CDC.

    Science.gov (United States)

    Elmore, Kim; Flanagan, Barry; Jones, Nicholas F; Heitgerd, Janet L

    2010-04-01

    In 2008, CDC convened an expert panel to gather input on the use of geospatial science in surveillance, research and program activities focused on CDC's Healthy Communities Goal. The panel suggested six priorities: spatially enable and strengthen public health surveillance infrastructure; develop metrics for geospatial categorization of community health and health inequity; evaluate the feasibility and validity of standard metrics of community health and health inequities; support and develop GIScience and geospatial analysis; provide geospatial capacity building, training and education; and, engage non-traditional partners. Following the meeting, the strategies and action items suggested by the expert panel were reviewed by a CDC subcommittee to determine priorities relative to ongoing CDC geospatial activities, recognizing that many activities may need to occur either in parallel, or occur multiple times across phases. Phase A of the action items centers on developing leadership support. Phase B focuses on developing internal and external capacity in both physical (e.g., software and hardware) and intellectual infrastructure. Phase C of the action items plan concerns the development and integration of geospatial methods. In summary, the panel members provided critical input to the development of CDC's strategic thinking on integrating geospatial methods and research issues across program efforts in support of its Healthy Communities Goal.

  15. The Value of Information and Geospatial Technologies for the analysis of tidal current patterns in the Guanabara Bay (Rio de Janeiro)

    Science.gov (United States)

    Isotta Cristofori, Elena; Demarchi, Alessandro; Facello, Anna; Cámaro, Walther; Hermosilla, Fernando; López, Jaime

    2016-04-01

    The study and validation of tidal current patterns relies on the combination of several data sources such as numerical weather prediction models, hydrodynamic models, weather stations, current drifters and remote sensing observations. The assessment of the accuracy and the reliability of produced patterns and the communication of results, including an easy to understand visualization of data, is crucial for a variety of stakeholders including decision-makers. The large diffusion of geospatial equipment such as GPS, current drifters, aerial photogrammetry, allows to collect data in the field using mobile and portable devices with a relative limited effort in terms of time and economic resources. Theses real-time measurements are essential in order to validate the models and specifically to assess the skill of the model during critical environmental conditions. Moreover, the considerable development in remote sensing technologies, cartographic services and GPS applications have enabled the creation of Geographic Information Systems (GIS) capable to store, analyze, manage and integrate spatial or geographical information with hydro-meteorological data. This valuable contribution of Information and geospatial technologies can benefit manifold decision-makers including high level sport athletes. While the numerical approach, commonly used to validate models with in-situ data, is more familiar for scientific users, high level sport users are not familiar with a numerical representations of data. Therefore the integration of data collected in the field into a GIS allows an immediate visualization of performed analysis into geographic maps. This visualization represents a particularly effective way to communicate current patterns assessment results and uncertainty in information, leading to an increase of confidence level about the forecast. The aim of this paper is to present the methodology set-up in collaboration with the Austrian Sailing Federation, for the study of

  16. Capacity Building through Geospatial Education in Planning and School Curricula

    Science.gov (United States)

    Kumar, P.; Siddiqui, A.; Gupta, K.; Jain, S.; Krishna Murthy, Y. V. N.

    2014-11-01

    Geospatial technology has widespread usage in development planning and resource management. It offers pragmatic tools to help urban and regional planners to realize their goals. On the request of Ministry of Urban Development, Govt. of India, the Indian Institute of Remote Sensing (IIRS), Dehradun has taken an initiative to study the model syllabi of All India Council for Technical Education for planning curricula of Bachelor and Master (five disciplines) programmes. It is inferred that geospatial content across the semesters in various planning fields needs revision. It is also realized that students pursuing planning curricula are invariably exposed to spatial mapping tools but the popular digital drafting software have limitations on geospatial analysis of planning phenomena. Therefore, students need exposure on geospatial technologies to understand various real world phenomena. Inputs were given to seamlessly merge and incorporate geospatial components throughout the semesters wherever seems relevant. Another initiative by IIRS was taken to enhance the understanding and essence of space and geospatial technologies amongst the young minds at 10+2 level. The content was proposed in a manner such that youngsters start realizing the innumerable contributions made by space and geospatial technologies in their day-to-day life. This effort both at school and college level would help in not only enhancing job opportunities for young generation but also utilizing the untapped human resource potential. In the era of smart cities, higher economic growth and aspirations for a better tomorrow, integration of Geospatial technologies with conventional wisdom can no longer be ignored.

  17. Marketing the Surveying and Geospatial Profession

    Science.gov (United States)

    Trinder, J.

    2014-04-01

    Many universities around the world are experiencing a decline in the number of students entering programs in surveying and geospatial engineering, including some institutions with prestigious pasts. For Australia, this raises the question of whether there will be adequate graduates in the future to replace the current cohort of surveying and geospatial professionals when they retire. It is not clear why it has not been possible to attract more school leavers into the surveying and geospatial programs, but it may be because the community at large is unaware of the many career opportunities. Several surveys have been carried out in Australia to determine the status of graduates entering the profession and the impact that shortages of graduates in the surveying and geospatial professions in the future. These shortages could seriously limit the development of infrastructure and housing if they are not overcome. Another issue is whether the demand for graduates is changing due to developments in technology that allow surveying and mapping to be undertaken more quickly and efficiently than in the past. Marketing of education programs into schools and the general population is essential. A solution maybe for a concerted global effort to encourage more school leavers to enrol in surveying and geospatial engineering programs and hence improve the viability of the profession for the future. The paper will review the impacts of shortages in graduates entering the profession and approaches to improve the marketing of the surveying and geospatial professions.

  18. Python geospatial development

    CERN Document Server

    Westra, Erik

    2013-01-01

    This is a tutorial style book that will teach usage of Python tools for GIS using simple practical examples and then show you how to build a complete mapping application from scratch. The book assumes basic knowledge of Python. No knowledge of Open Source GIS is required.Experienced Python developers who want to learn about geospatial concepts, work with geospatial data, solve spatial problems, and build mapbased applications.This book will be useful those who want to get up to speed with Open Source GIS in order to build GIS applications or integrate GeoSpatial features into their existing ap

  19. Examining the Effect of Enactment of a Geospatial Curriculum on Students' Geospatial Thinking and Reasoning

    Science.gov (United States)

    Bodzin, Alec M.; Fu, Qiong; Kulo, Violet; Peffer, Tamara

    2014-08-01

    A potential method for teaching geospatial thinking and reasoning (GTR) is through geospatially enabled learning technologies. We developed an energy resources geospatial curriculum that included learning activities with geographic information systems and virtual globes. This study investigated how 13 urban middle school teachers implemented and varied the enactment of the curriculum with their students and investigated which teacher- and student-level factors accounted for students' GTR posttest achievement. Data included biweekly implementation surveys from teachers and energy resources content and GTR pre- and posttest achievement measures from 1,049 students. Students significantly increased both their energy resources content knowledge and their GTR skills related to energy resources at the end of the curriculum enactment. Both multiple regression and hierarchical linear modeling found that students' initial GTR abilities and gain in energy content knowledge were significantly explanatory variables for their geospatial achievement at the end of curriculum enactment, p < .001. Teacher enactment factors, including adherence to implementing the critical components of the curriculum or the number of years the teachers had taught the curriculum, did not have significant effects on students' geospatial posttest achievement. The findings from this study provide support that learning with geospatially enabled learning technologies can support GTR with urban middle-level learners.

  20. The Utilization of Historical Data and Geospatial Technology Advances at the Jornada Experimental Range to Support Western America Ranching Culture

    Directory of Open Access Journals (Sweden)

    Kris Havstad

    2011-09-01

    Full Text Available By the early 1900s, concerns were expressed by ranchers, academicians, and federal scientists that widespread overgrazing and invasion of native grassland by woody shrubs were having severe negative impacts upon normal grazing practices in Western America. Ranchers wanted to reverse these trends and continue their way of life and were willing to work with scientists to achieve these goals. One response to this desire was establishment of the USDA Jornada Experimental Range (783 km2 in south central New Mexico by a Presidential Executive Order in 1912 for conducting rangeland investigations. This cooperative effort involved experiments to understand principles of proper management and the processes causing the woody shrub invasion as well as to identify treatments to eradicate shrubs. By the late 1940s, it was apparent that combining the historical ground-based data accumulated at Jornada Experimental Range with rapidly expanding post World War II technologies would yield a better understanding of the driving processes in these arid and semiarid ecosystems which could then lead to improved rangeland management practices. One specific technology was the use of aerial photography to interpret landscape resource conditions. The assembly and utilization of long-term historical aerial photography data sets has occurred over the last half century. More recently, Global Positioning System (GPS techniques have been used in a myriad of scientific endeavors including efforts to accurately locate historical and contemporary treatment plots and to track research animals including livestock and wildlife. As an incredible amount of both spatial and temporal data became available, Geographic Information Systems have been exploited to display various layers of data over the same locations. Subsequent analyses of these data layers have begun to yield new insights. The most recent technological development has been the deployment of Unmanned Aerial Vehicles (UAVs

  1. LEARNERS: Interdisciplinary Learning Technology Projects Provide Visualizations and Simulations for Use of Geospatial Data in the Classroom

    Science.gov (United States)

    Farrell, N.; Hoban, S.

    2001-05-01

    The NASA Leading Educators to Applications, Research and NASA-related Educational Resources in Science (LEARNERS) initiative supports seven projects for enhancing kindergarten-to-high school science, geography, technology and mathematics education through Internet-based products derived from content on NASA's mission. Topics incorporated in LEARNERS projects include remote sensing of the Earth for agriculture and weather/climate studies, virtual exploration of remote worlds using robotics and digital imagery. Learners are engaged in inquiry or problem-based learning, often assuming the role of an expert scientist as part of an interdisciplinary science team, to study and explain practical problems using real-time NASA data. The presentation/poster will demonstrate novel uses of remote sensing data for K-12 and Post-Secondary students. This will include the use of visualizations, tools for educators, datasets, and classroom scenarios.

  2. Transforming the History Curriculum with Geospatial Tools

    Science.gov (United States)

    Hammond, Thomas

    2014-01-01

    Martorella's "sleeping giant" is awakening via geospatial tools. As this technology is adopted, it will transform the history curriculum in three ways: deepening curricular content, making conceptual frameworks more prominent, and increasing connections to local history. These changes may not be profound and they may not be sudden,…

  3. The African Geospatial Sciences Institute (agsi): a New Approach to Geospatial Training in North Africa

    Science.gov (United States)

    Oeldenberger, S.; Khaled, K. B.

    2012-07-01

    The African Geospatial Sciences Institute (AGSI) is currently being established in Tunisia as a non-profit, non-governmental organization (NGO). Its objective is to accelerate the geospatial capacity development in North-Africa, providing the facilities for geospatial project and management training to regional government employees, university graduates, private individuals and companies. With typical course durations between one and six months, including part-time programs and long-term mentoring, its focus is on practical training, providing actual project execution experience. The AGSI will complement formal university education and will work closely with geospatial certification organizations and the geospatial industry. In the context of closer cooperation between neighboring North Africa and the European Community, the AGSI will be embedded in a network of several participating European and African universities, e. g. the ITC, and international organizations, such as the ISPRS, the ICA and the OGC. Through a close cooperation with African organizations, such as the AARSE, the RCMRD and RECTAS, the network and exchange of ideas, experiences, technology and capabilities will be extended to Saharan and sub-Saharan Africa. A board of trustees will be steering the AGSI operations and will ensure that practical training concepts and contents are certifiable and can be applied within a credit system to graduate and post-graduate education at European and African universities. The geospatial training activities of the AGSI are centered on a facility with approximately 30 part- and full-time general staff and lecturers in Tunis during the first year. The AGSI will operate a small aircraft with a medium-format aerial camera and compact LIDAR instrument for local, community-scale data capture. Surveying training, the photogrammetric processing of aerial images, GIS data capture and remote sensing training will be the main components of the practical training courses

  4. Borderless Geospatial Web (bolegweb)

    Science.gov (United States)

    Cetl, V.; Kliment, T.; Kliment, M.

    2016-06-01

    The effective access and use of geospatial information (GI) resources acquires a critical value of importance in modern knowledge based society. Standard web services defined by Open Geospatial Consortium (OGC) are frequently used within the implementations of spatial data infrastructures (SDIs) to facilitate discovery and use of geospatial data. This data is stored in databases located in a layer, called the invisible web, thus are ignored by search engines. SDI uses a catalogue (discovery) service for the web as a gateway to the GI world through the metadata defined by ISO standards, which are structurally diverse to OGC metadata. Therefore, a crosswalk needs to be implemented to bridge the OGC resources discovered on mainstream web with those documented by metadata in an SDI to enrich its information extent. A public global wide and user friendly portal of OGC resources available on the web ensures and enhances the use of GI within a multidisciplinary context and bridges the geospatial web from the end-user perspective, thus opens its borders to everybody. Project "Crosswalking the layers of geospatial information resources to enable a borderless geospatial web" with the acronym BOLEGWEB is ongoing as a postdoctoral research project at the Faculty of Geodesy, University of Zagreb in Croatia (http://bolegweb.geof.unizg.hr/). The research leading to the results of the project has received funding from the European Union Seventh Framework Programme (FP7 2007-2013) under Marie Curie FP7-PEOPLE-2011-COFUND. The project started in the November 2014 and is planned to be finished by the end of 2016. This paper provides an overview of the project, research questions and methodology, so far achieved results and future steps.

  5. BORDERLESS GEOSPATIAL WEB (BOLEGWEB

    Directory of Open Access Journals (Sweden)

    V. Cetl

    2016-06-01

    Full Text Available The effective access and use of geospatial information (GI resources acquires a critical value of importance in modern knowledge based society. Standard web services defined by Open Geospatial Consortium (OGC are frequently used within the implementations of spatial data infrastructures (SDIs to facilitate discovery and use of geospatial data. This data is stored in databases located in a layer, called the invisible web, thus are ignored by search engines. SDI uses a catalogue (discovery service for the web as a gateway to the GI world through the metadata defined by ISO standards, which are structurally diverse to OGC metadata. Therefore, a crosswalk needs to be implemented to bridge the OGC resources discovered on mainstream web with those documented by metadata in an SDI to enrich its information extent. A public global wide and user friendly portal of OGC resources available on the web ensures and enhances the use of GI within a multidisciplinary context and bridges the geospatial web from the end-user perspective, thus opens its borders to everybody. Project “Crosswalking the layers of geospatial information resources to enable a borderless geospatial web” with the acronym BOLEGWEB is ongoing as a postdoctoral research project at the Faculty of Geodesy, University of Zagreb in Croatia (http://bolegweb.geof.unizg.hr/. The research leading to the results of the project has received funding from the European Union Seventh Framework Programme (FP7 2007-2013 under Marie Curie FP7-PEOPLE-2011-COFUND. The project started in the November 2014 and is planned to be finished by the end of 2016. This paper provides an overview of the project, research questions and methodology, so far achieved results and future steps.

  6. Geospatial Information Response Team

    Science.gov (United States)

    Witt, Emitt C.

    2010-01-01

    Extreme emergency events of national significance that include manmade and natural disasters seem to have become more frequent during the past two decades. The Nation is becoming more resilient to these emergencies through better preparedness, reduced duplication, and establishing better communications so every response and recovery effort saves lives and mitigates the long-term social and economic impacts on the Nation. The National Response Framework (NRF) (http://www.fema.gov/NRF) was developed to provide the guiding principles that enable all response partners to prepare for and provide a unified national response to disasters and emergencies. The NRF provides five key principles for better preparation, coordination, and response: 1) engaged partnerships, 2) a tiered response, 3) scalable, flexible, and adaptable operations, 4) unity of effort, and 5) readiness to act. The NRF also describes how communities, tribes, States, Federal Government, privatesector, and non-governmental partners apply these principles for a coordinated, effective national response. The U.S. Geological Survey (USGS) has adopted the NRF doctrine by establishing several earth-sciences, discipline-level teams to ensure that USGS science, data, and individual expertise are readily available during emergencies. The Geospatial Information Response Team (GIRT) is one of these teams. The USGS established the GIRT to facilitate the effective collection, storage, and dissemination of geospatial data information and products during an emergency. The GIRT ensures that timely geospatial data are available for use by emergency responders, land and resource managers, and for scientific analysis. In an emergency and response capacity, the GIRT is responsible for establishing procedures for geospatial data acquisition, processing, and archiving; discovery, access, and delivery of data; anticipating geospatial needs; and providing coordinated products and services utilizing the USGS' exceptional pool of

  7. Geospatial Thinking of Information Professionals

    Science.gov (United States)

    Bishop, Bradley Wade; Johnston, Melissa P.

    2013-01-01

    Geospatial thinking skills inform a host of library decisions including planning and managing facilities, analyzing service area populations, facility site location, library outlet and service point closures, as well as assisting users with their own geospatial needs. Geospatial thinking includes spatial cognition, spatial reasoning, and knowledge…

  8. Grid computing enhances standards-compatible geospatial catalogue service

    Science.gov (United States)

    Chen, Aijun; Di, Liping; Bai, Yuqi; Wei, Yaxing; Liu, Yang

    2010-04-01

    interoperate geospatial resources by using Grid technology and extends Grid technology into the geoscience communities.

  9. Leveraging the geospatial advantage

    Science.gov (United States)

    Ben Butler; Andrew Bailey

    2013-01-01

    The Wildland Fire Decision Support System (WFDSS) web-based application leverages geospatial data to inform strategic decisions on wildland fires. A specialized data team, working within the Wildland Fire Management Research Development and Application group (WFM RD&A), assembles authoritative national-level data sets defining values to be protected. The use of...

  10. Mapping a Difference: The Power of Geospatial Visualization

    Science.gov (United States)

    Kolvoord, B.

    2015-12-01

    Geospatial Technologies (GST), such as GIS, GPS and remote sensing, offer students and teachers the opportunity to study the "why" of where. By making maps and collecting location-based data, students can pursue authentic problems using sophisticated tools. The proliferation of web- and cloud-based tools has made these technologies broadly accessible to schools. In addition, strong spatial thinking skills have been shown to be a key factor in supporting students that want to study science, technology, engineering, and mathematics (STEM) disciplines (Wai, Lubinski and Benbow) and pursue STEM careers. Geospatial technologies strongly scaffold the development of these spatial thinking skills. For the last ten years, the Geospatial Semester, a unique dual-enrollment partnership between James Madison University and Virginia high schools, has provided students with the opportunity to use GST's to hone their spatial thinking skills and to do extended projects of local interest, including environmental, geological and ecological studies. Along with strong spatial thinking skills, these students have also shown strong problem solving skills, often beyond those of fellow students in AP classes. Programs like the Geospatial Semester are scalable and within the reach of many college and university departments, allowing strong engagement with K-12 schools. In this presentation, we'll share details of the Geospatial Semester and research results on the impact of the use of these technologies on students' spatial thinking skills, and discuss the success and challenges of developing K-12 partnerships centered on geospatial visualization.

  11. Global polar geospatial information service retrieval based on search engine and ontology reasoning

    Science.gov (United States)

    Chen, Nengcheng; E, Dongcheng; Di, Liping; Gong, Jianya; Chen, Zeqiang

    2007-01-01

    In order to improve the access precision of polar geospatial information service on web, a new methodology for retrieving global spatial information services based on geospatial service search and ontology reasoning is proposed, the geospatial service search is implemented to find the coarse service from web, the ontology reasoning is designed to find the refined service from the coarse service. The proposed framework includes standardized distributed geospatial web services, a geospatial service search engine, an extended UDDI registry, and a multi-protocol geospatial information service client. Some key technologies addressed include service discovery based on search engine and service ontology modeling and reasoning in the Antarctic geospatial context. Finally, an Antarctica multi protocol OWS portal prototype based on the proposed methodology is introduced.

  12. A flexible integration framework for a Semantic Geospatial Web application

    Science.gov (United States)

    Yuan, Ying; Mei, Kun; Bian, Fuling

    2008-10-01

    With the growth of the World Wide Web technologies, the access to and use of geospatial information changed in the past decade radically. Previously, the data processed by a GIS as well as its methods had resided locally and contained information that was sufficiently unambiguous in the respective information community. Now, both data and methods may be retrieved and combined from anywhere in the world, escaping their local contexts. The last few years have seen a growing interest in the field of semantic geospatial web. With the development of semantic web technologies, we have seen the possibility of solving the heterogeneity/interoperation problem in the GIS community. The semantic geospatial web application can support a wide variety of tasks including data integration, interoperability, knowledge reuse, spatial reasoning and many others. This paper proposes a flexible framework called GeoSWF (short for Geospatial Semantic Web Framework), which supports the semantic integration of the distributed and heterogeneous geospatial information resources and also supports the semantic query and spatial relationship reasoning. We design the architecture of GeoSWF by extending the MVC Pattern. The GeoSWF use the geo-2007.owl proposed by W3C as the reference ontology of the geospatial information and design different application ontologies according to the situation of heterogeneous geospatial information resources. A Geospatial Ontology Creating Algorithm (GOCA) is designed for convert the geospatial information to the ontology instances represented by RDF/OWL. On the top of these ontology instances, the GeoSWF carry out the semantic reasoning by the rule set stored in the knowledge base to generate new system query. The query result will be ranking by ordering the Euclidean distance of each ontology instances. At last, the paper gives the conclusion and future work.

  13. Gamification and geospatial health management

    Science.gov (United States)

    Wortley, David

    2014-06-01

    Sensor and Measurement technologies are rapidly developing for many consumer applications which have the potential to make a major impact on business and society. One of the most important areas for building a sustainable future is in health management. This opportunity arises because of the growing popularity of lifestyle monitoring devices such as the Jawbone UP bracelet, Nike Fuelband and Samsung Galaxy GEAR. These devices measure physical activity and calorie consumption and, when visualised on mobile and portable devices, enable users to take more responsibility for their personal health. This presentation looks at how the process of gamification can be applied to develop important geospatial health management applications that could not only improve the health of nations but also significantly address some of the issues in global health such as the ageing society and obesity.

  14. Big Data analytics in the Geo-Spatial Domain

    OpenAIRE

    Romulo Goncalves; Milena Ivanova

    2015-01-01

    Big data collections in many Scientific domains have inherently rich spatial and geospatial features. Spatial location is among the core aspects of data in Earth observation sciences,astronomy,and seismology to name a few. The NLeSC project aims at developing software technology and tools for building of generic geo-spatial analysis systems with focus on three dimensional (3D) city models. The project has three major partners, VU Geographic Information Systems (GIS) group / Geodan represented...

  15. Research and Practical Trends in Geospatial Sciences

    Science.gov (United States)

    Karpik, A. P.; Musikhin, I. A.

    2016-06-01

    In recent years professional societies have been undergoing fundamental restructuring brought on by extensive technological change and rapid evolution of geospatial science. Almost all professional communities have been affected. Communities are embracing digital techniques, modern equipment, software and new technological solutions at a staggering pace. In this situation, when planning financial investments and intellectual resource management, it is crucial to have a clear understanding of those trends that will be in great demand in 3-7 years. This paper reviews current scientific and practical activities of such non-governmental international organizations as International Federation of Surveyors, International Cartographic Association, and International Society for Photogrammetry and Remote Sensing, analyzes and groups most relevant topics brought up at their scientific events, forecasts most probable research and practical trends in geospatial sciences, outlines topmost leading countries and emerging markets for further detailed analysis of their activities, types of scientific cooperation and joint implementation projects.

  16. RESEARCH AND PRACTICAL TRENDS IN GEOSPATIAL SCIENCES

    Directory of Open Access Journals (Sweden)

    A. P. Karpik

    2016-06-01

    Full Text Available In recent years professional societies have been undergoing fundamental restructuring brought on by extensive technological change and rapid evolution of geospatial science. Almost all professional communities have been affected. Communities are embracing digital techniques, modern equipment, software and new technological solutions at a staggering pace. In this situation, when planning financial investments and intellectual resource management, it is crucial to have a clear understanding of those trends that will be in great demand in 3-7 years. This paper reviews current scientific and practical activities of such non-governmental international organizations as International Federation of Surveyors, International Cartographic Association, and International Society for Photogrammetry and Remote Sensing, analyzes and groups most relevant topics brought up at their scientific events, forecasts most probable research and practical trends in geospatial sciences, outlines topmost leading countries and emerging markets for further detailed analysis of their activities, types of scientific cooperation and joint implementation projects.

  17. Broadening Access to Geospatial Capabilities

    OpenAIRE

    Song, Carol

    2014-01-01

    Responding to the need for geospatial tool and data capabilities in HUBzero from various communities, a Purdue team is developing and integrating geospatial capabilities into the HUBzero software. Funded by the National Science Foundation’s Data Infrastructure Building Blocks (DIBBs) initiative, the follow-on program to the DataNet program, the GABBs project is a four-year software development effort aiming at enabling researchers, students and citizens to share geospatial data and tools onli...

  18. Considerations on Geospatial Big Data

    Science.gov (United States)

    LIU, Zhen; GUO, Huadong; WANG, Changlin

    2016-11-01

    Geospatial data, as a significant portion of big data, has recently gained the full attention of researchers. However, few researchers focus on the evolution of geospatial data and its scientific research methodologies. When entering into the big data era, fully understanding the changing research paradigm associated with geospatial data will definitely benefit future research on big data. In this paper, we look deep into these issues by examining the components and features of geospatial big data, reviewing relevant scientific research methodologies, and examining the evolving pattern of geospatial data in the scope of the four ‘science paradigms’. This paper proposes that geospatial big data has significantly shifted the scientific research methodology from ‘hypothesis to data’ to ‘data to questions’ and it is important to explore the generality of growing geospatial data ‘from bottom to top’. Particularly, four research areas that mostly reflect data-driven geospatial research are proposed: spatial correlation, spatial analytics, spatial visualization, and scientific knowledge discovery. It is also pointed out that privacy and quality issues of geospatial data may require more attention in the future. Also, some challenges and thoughts are raised for future discussion.

  19. The Future of Geospatial Standards

    Science.gov (United States)

    Bermudez, L. E.; Simonis, I.

    2016-12-01

    The OGC is an international not-for-profit standards development organization (SDO) committed to making quality standards for the geospatial community. A community of more than 500 member organizations with more than 6,000 people registered at the OGC communication platform drives the development of standards that are freely available for anyone to use and to improve sharing of the world's geospatial data. OGC standards are applied in a variety of application domains including Environment, Defense and Intelligence, Smart Cities, Aviation, Disaster Management, Agriculture, Business Development and Decision Support, and Meteorology. Profiles help to apply information models to different communities, thus adapting to particular needs of that community while ensuring interoperability by using common base models and appropriate support services. Other standards address orthogonal aspects such as handling of Big Data, Crowd-sourced information, Geosemantics, or container for offline data usage. Like most SDOs, the OGC develops and maintains standards through a formal consensus process under the OGC Standards Program (OGC-SP) wherein requirements and use cases are discussed in forums generally open to the public (Domain Working Groups, or DWGs), and Standards Working Groups (SWGs) are established to create standards. However, OGC is unique among SDOs in that it also operates the OGC Interoperability Program (OGC-IP) to provide real-world testing of existing and proposed standards. The OGC-IP is considered the experimental playground, where new technologies are researched and developed in a user-driven process. Its goal is to prototype, test, demonstrate, and promote OGC Standards in a structured environment. Results from the OGC-IP often become requirements for new OGC standards or identify deficiencies in existing OGC standards that can be addressed. This presentation will provide an analysis of the work advanced in the OGC consortium including standards and testbeds

  20. GISpark: A Geospatial Distributed Computing Platform for Spatiotemporal Big Data

    Science.gov (United States)

    Wang, S.; Zhong, E.; Wang, E.; Zhong, Y.; Cai, W.; Li, S.; Gao, S.

    2016-12-01

    Geospatial data are growing exponentially because of the proliferation of cost effective and ubiquitous positioning technologies such as global remote-sensing satellites and location-based devices. Analyzing large amounts of geospatial data can provide great value for both industrial and scientific applications. Data- and compute- intensive characteristics inherent in geospatial big data increasingly pose great challenges to technologies of data storing, computing and analyzing. Such challenges require a scalable and efficient architecture that can store, query, analyze, and visualize large-scale spatiotemporal data. Therefore, we developed GISpark - a geospatial distributed computing platform for processing large-scale vector, raster and stream data. GISpark is constructed based on the latest virtualized computing infrastructures and distributed computing architecture. OpenStack and Docker are used to build multi-user hosting cloud computing infrastructure for GISpark. The virtual storage systems such as HDFS, Ceph, MongoDB are combined and adopted for spatiotemporal data storage management. Spark-based algorithm framework is developed for efficient parallel computing. Within this framework, SuperMap GIScript and various open-source GIS libraries can be integrated into GISpark. GISpark can also integrated with scientific computing environment (e.g., Anaconda), interactive computing web applications (e.g., Jupyter notebook), and machine learning tools (e.g., TensorFlow/Orange). The associated geospatial facilities of GISpark in conjunction with the scientific computing environment, exploratory spatial data analysis tools, temporal data management and analysis systems make up a powerful geospatial computing tool. GISpark not only provides spatiotemporal big data processing capacity in the geospatial field, but also provides spatiotemporal computational model and advanced geospatial visualization tools that deals with other domains related with spatial property. We

  1. GEOSPATIAL INFORMATION FROM SATELLITE IMAGERY FOR GEOVISUALISATION OF SMART CITIES IN INDIA

    Directory of Open Access Journals (Sweden)

    M. Mohan

    2016-06-01

    Full Text Available In the recent past, there have been large emphasis on extraction of geospatial information from satellite imagery. The Geospatial information are being processed through geospatial technologies which are playing important roles in developing of smart cities, particularly in developing countries of the world like India. The study is based on the latest geospatial satellite imagery available for the multi-date, multi-stage, multi-sensor, and multi-resolution. In addition to this, the latest geospatial technologies have been used for digital image processing of remote sensing satellite imagery and the latest geographic information systems as 3-D GeoVisualisation, geospatial digital mapping and geospatial analysis for developing of smart cities in India. The Geospatial information obtained from RS and GPS systems have complex structure involving space, time and presentation. Such information helps in 3-Dimensional digital modelling for smart cities which involves of spatial and non-spatial information integration for geographic visualisation of smart cites in context to the real world. In other words, the geospatial database provides platform for the information visualisation which is also known as geovisualisation. So, as a result there have been an increasing research interest which are being directed to geospatial analysis, digital mapping, geovisualisation, monitoring and developing of smart cities using geospatial technologies. However, the present research has made an attempt for development of cities in real world scenario particulary to help local, regional and state level planners and policy makers to better understand and address issues attributed to cities using the geospatial information from satellite imagery for geovisualisation of Smart Cities in emerging and developing country, India.

  2. Geospatial Information from Satellite Imagery for Geovisualisation of Smart Cities in India

    Science.gov (United States)

    Mohan, M.

    2016-06-01

    In the recent past, there have been large emphasis on extraction of geospatial information from satellite imagery. The Geospatial information are being processed through geospatial technologies which are playing important roles in developing of smart cities, particularly in developing countries of the world like India. The study is based on the latest geospatial satellite imagery available for the multi-date, multi-stage, multi-sensor, and multi-resolution. In addition to this, the latest geospatial technologies have been used for digital image processing of remote sensing satellite imagery and the latest geographic information systems as 3-D GeoVisualisation, geospatial digital mapping and geospatial analysis for developing of smart cities in India. The Geospatial information obtained from RS and GPS systems have complex structure involving space, time and presentation. Such information helps in 3-Dimensional digital modelling for smart cities which involves of spatial and non-spatial information integration for geographic visualisation of smart cites in context to the real world. In other words, the geospatial database provides platform for the information visualisation which is also known as geovisualisation. So, as a result there have been an increasing research interest which are being directed to geospatial analysis, digital mapping, geovisualisation, monitoring and developing of smart cities using geospatial technologies. However, the present research has made an attempt for development of cities in real world scenario particulary to help local, regional and state level planners and policy makers to better understand and address issues attributed to cities using the geospatial information from satellite imagery for geovisualisation of Smart Cities in emerging and developing country, India.

  3. a Framework for AN Open Source Geospatial Certification Model

    Science.gov (United States)

    Khan, T. U. R.; Davis, P.; Behr, F.-J.

    2016-06-01

    The geospatial industry is forecasted to have an enormous growth in the forthcoming years and an extended need for well-educated workforce. Hence ongoing education and training play an important role in the professional life. Parallel, in the geospatial and IT arena as well in the political discussion and legislation Open Source solutions, open data proliferation, and the use of open standards have an increasing significance. Based on the Memorandum of Understanding between International Cartographic Association, OSGeo Foundation, and ISPRS this development led to the implementation of the ICA-OSGeo-Lab imitative with its mission "Making geospatial education and opportunities accessible to all". Discussions in this initiative and the growth and maturity of geospatial Open Source software initiated the idea to develop a framework for a worldwide applicable Open Source certification approach. Generic and geospatial certification approaches are already offered by numerous organisations, i.e., GIS Certification Institute, GeoAcademy, ASPRS, and software vendors, i. e., Esri, Oracle, and RedHat. They focus different fields of expertise and have different levels and ways of examination which are offered for a wide range of fees. The development of the certification framework presented here is based on the analysis of diverse bodies of knowledge concepts, i.e., NCGIA Core Curriculum, URISA Body Of Knowledge, USGIF Essential Body Of Knowledge, the "Geographic Information: Need to Know", currently under development, and the Geospatial Technology Competency Model (GTCM). The latter provides a US American oriented list of the knowledge, skills, and abilities required of workers in the geospatial technology industry and influenced essentially the framework of certification. In addition to the theoretical analysis of existing resources the geospatial community was integrated twofold. An online survey about the relevance of Open Source was performed and evaluated with 105

  4. A FRAMEWORK FOR AN OPEN SOURCE GEOSPATIAL CERTIFICATION MODEL

    Directory of Open Access Journals (Sweden)

    T. U. R. Khan

    2016-06-01

    Full Text Available The geospatial industry is forecasted to have an enormous growth in the forthcoming years and an extended need for well-educated workforce. Hence ongoing education and training play an important role in the professional life. Parallel, in the geospatial and IT arena as well in the political discussion and legislation Open Source solutions, open data proliferation, and the use of open standards have an increasing significance. Based on the Memorandum of Understanding between International Cartographic Association, OSGeo Foundation, and ISPRS this development led to the implementation of the ICA-OSGeo-Lab imitative with its mission “Making geospatial education and opportunities accessible to all”. Discussions in this initiative and the growth and maturity of geospatial Open Source software initiated the idea to develop a framework for a worldwide applicable Open Source certification approach. Generic and geospatial certification approaches are already offered by numerous organisations, i.e., GIS Certification Institute, GeoAcademy, ASPRS, and software vendors, i. e., Esri, Oracle, and RedHat. They focus different fields of expertise and have different levels and ways of examination which are offered for a wide range of fees. The development of the certification framework presented here is based on the analysis of diverse bodies of knowledge concepts, i.e., NCGIA Core Curriculum, URISA Body Of Knowledge, USGIF Essential Body Of Knowledge, the “Geographic Information: Need to Know", currently under development, and the Geospatial Technology Competency Model (GTCM. The latter provides a US American oriented list of the knowledge, skills, and abilities required of workers in the geospatial technology industry and influenced essentially the framework of certification. In addition to the theoretical analysis of existing resources the geospatial community was integrated twofold. An online survey about the relevance of Open Source was performed and

  5. Bim and Gis: when Parametric Modeling Meets Geospatial Data

    Science.gov (United States)

    Barazzetti, L.; Banfi, F.

    2017-12-01

    Geospatial data have a crucial role in several projects related to infrastructures and land management. GIS software are able to perform advanced geospatial analyses, but they lack several instruments and tools for parametric modelling typically available in BIM. At the same time, BIM software designed for buildings have limited tools to handle geospatial data. As things stand at the moment, BIM and GIS could appear as complementary solutions, notwithstanding research work is currently under development to ensure a better level of interoperability, especially at the scale of the building. On the other hand, the transition from the local (building) scale to the infrastructure (where geospatial data cannot be neglected) has already demonstrated that parametric modelling integrated with geoinformation is a powerful tool to simplify and speed up some phases of the design workflow. This paper reviews such mixed approaches with both simulated and real examples, demonstrating that integration is already a reality at specific scales, which are not dominated by "pure" GIS or BIM. The paper will also demonstrate that some traditional operations carried out with GIS software are also available in parametric modelling software for BIM, such as transformation between reference systems, DEM generation, feature extraction, and geospatial queries. A real case study is illustrated and discussed to show the advantage of a combined use of both technologies. BIM and GIS integration can generate greater usage of geospatial data in the AECOO (Architecture, Engineering, Construction, Owner and Operator) industry, as well as new solutions for parametric modelling with additional geoinformation.

  6. BIM AND GIS: WHEN PARAMETRIC MODELING MEETS GEOSPATIAL DATA

    Directory of Open Access Journals (Sweden)

    L. Barazzetti

    2017-12-01

    Full Text Available Geospatial data have a crucial role in several projects related to infrastructures and land management. GIS software are able to perform advanced geospatial analyses, but they lack several instruments and tools for parametric modelling typically available in BIM. At the same time, BIM software designed for buildings have limited tools to handle geospatial data. As things stand at the moment, BIM and GIS could appear as complementary solutions, notwithstanding research work is currently under development to ensure a better level of interoperability, especially at the scale of the building. On the other hand, the transition from the local (building scale to the infrastructure (where geospatial data cannot be neglected has already demonstrated that parametric modelling integrated with geoinformation is a powerful tool to simplify and speed up some phases of the design workflow. This paper reviews such mixed approaches with both simulated and real examples, demonstrating that integration is already a reality at specific scales, which are not dominated by “pure” GIS or BIM. The paper will also demonstrate that some traditional operations carried out with GIS software are also available in parametric modelling software for BIM, such as transformation between reference systems, DEM generation, feature extraction, and geospatial queries. A real case study is illustrated and discussed to show the advantage of a combined use of both technologies. BIM and GIS integration can generate greater usage of geospatial data in the AECOO (Architecture, Engineering, Construction, Owner and Operator industry, as well as new solutions for parametric modelling with additional geoinformation.

  7. Economic Assessment of the Use Value of Geospatial Information

    Directory of Open Access Journals (Sweden)

    Richard Bernknopf

    2015-07-01

    Full Text Available Geospatial data inform decision makers. An economic model that involves application of spatial and temporal scientific, technical, and economic data in decision making is described. The value of information (VOI contained in geospatial data is the difference between the net benefits (in present value terms of a decision with and without the information. A range of technologies is used to collect and distribute geospatial data. These technical activities are linked to examples that show how the data can be applied in decision making, which is a cultural activity. The economic model for assessing the VOI in geospatial data for decision making is applied to three examples: (1 a retrospective model about environmental regulation of agrochemicals; (2 a prospective model about the impact and mitigation of earthquakes in urban areas; and (3 a prospective model about developing private–public geospatial information for an ecosystem services market. Each example demonstrates the potential value of geospatial information in a decision with uncertain information.

  8. A study on state of Geospatial courses in Indian Universities

    Science.gov (United States)

    Shekhar, S.

    2014-12-01

    Today the world is dominated by three technologies such as Nano technology, Bio technology and Geospatial technology. This increases the huge demand for experts in the respective field for disseminating the knowledge as well as for an innovative research. Therefore, the prime need is to train the existing fraternity to gain progressive knowledge in these technologies and impart the same to student community. The geospatial technology faces some peculiar problem than other two technologies because of its interdisciplinary, multi-disciplinary nature. It attracts students and mid career professionals from various disciplines including Physics, Computer science, Engineering, Geography, Geology, Agriculture, Forestry, Town Planning and so on. Hence there is always competition to crab and stabilize their position. The students of Master's degree in Geospatial science are facing two types of problem. The first one is no unique identity in the academic field. Neither they are exempted for National eligibility Test for Lecturer ship nor given an opportunity to have the exam in geospatial science. The second one is differential treatment by the industrial world. The students are either given low grade jobs or poorly paid for their job. Thus, it is a serious issue about the future of this course in the Universities and its recognition in the academic and industrial world. The universities should make this course towards more job oriented in consultation with the Industries and Industries should come forward to share their demands and requirements to the Universities, so that necessary changes in the curriculum can be made to meet the industrial requirements.

  9. The Efficacy of Educative Curriculum Materials to Support Geospatial Science Pedagogical Content Knowledge

    Science.gov (United States)

    Bodzin, Alec; Peffer, Tamara; Kulo, Violet

    2012-01-01

    Teaching and learning about geospatial aspects of energy resource issues requires that science teachers apply effective science pedagogical approaches to implement geospatial technologies into classroom instruction. To address this need, we designed educative curriculum materials as an integral part of a comprehensive middle school energy…

  10. Examining the Enactment of Web GIS on Students' Geospatial Thinking and Reasoning and Tectonics Understandings

    Science.gov (United States)

    Bodzin, Alec M.; Fu, Qiong; Bressler, Denise; Vallera, Farah L.

    2015-01-01

    Geospatially enabled learning technologies may enhance Earth science learning by placing emphasis on geographic space, visualization, scale, representation, and geospatial thinking and reasoning (GTR) skills. This study examined if and how a series of Web geographic information system investigations that the researchers developed improved urban…

  11. Assessing the socioeconomic impact and value of open geospatial information

    Science.gov (United States)

    Pearlman, Francoise; Pearlman, Jay; Bernknopf, Richard; Coote, Andrew; Craglia, Massimo; Friedl, Lawrence; Gallo, Jason; Hertzfeld, Henry; Jolly, Claire; Macauley, Molly; Shapiro, Carl; Smart, Alan

    2016-03-10

    The production and accessibility of geospatial information including Earth observation is changing greatly both technically and in terms of human participation. Advances in technology have changed the way that geospatial data are produced and accessed, resulting in more efficient processes and greater accessibility than ever before. Improved technology has also created opportunities for increased participation in the gathering and interpretation of data through crowdsourcing and citizen science efforts. Increased accessibility has resulted in greater participation in the use of data as prices for Government-produced data have fallen and barriers to access have been reduced.

  12. Geospatial Semantics and the Semantic Web

    CERN Document Server

    Ashish, Naveen

    2011-01-01

    The availability of geographic and geospatial information and services, especially on the open Web has become abundant in the last several years with the proliferation of online maps, geo-coding services, geospatial Web services and geospatially enabled applications. The need for geospatial reasoning has significantly increased in many everyday applications including personal digital assistants, Web search applications, local aware mobile services, specialized systems for emergency response, medical triaging, intelligence analysis and more. Geospatial Semantics and the Semantic Web: Foundation

  13. FRS Geospatial Return File Format

    Science.gov (United States)

    The Geospatial Return File Format describes format that needs to be used to submit latitude and longitude coordinates for use in Envirofacts mapping applications. These coordinates are stored in the Geospatail Reference Tables.

  14. An Ontology-supported Approach for Automatic Chaining of Web Services in Geospatial Knowledge Discovery

    Science.gov (United States)

    di, L.; Yue, P.; Yang, W.; Yu, G.

    2006-12-01

    Recent developments in geospatial semantic Web have shown promise for automatic discovery, access, and use of geospatial Web services to quickly and efficiently solve particular application problems. With the semantic Web technology, it is highly feasible to construct intelligent geospatial knowledge systems that can provide answers to many geospatial application questions. A key challenge in constructing such intelligent knowledge system is to automate the creation of a chain or process workflow that involves multiple services and highly diversified data and can generate the answer to a specific question of users. This presentation discusses an approach for automating composition of geospatial Web service chains by employing geospatial semantics described by geospatial ontologies. It shows how ontology-based geospatial semantics are used for enabling the automatic discovery, mediation, and chaining of geospatial Web services. OWL-S is used to represent the geospatial semantics of individual Web services and the type of the services it belongs to and the type of the data it can handle. The hierarchy and classification of service types are described in the service ontology. The hierarchy and classification of data types are presented in the data ontology. For answering users' geospatial questions, an Artificial Intelligent (AI) planning algorithm is used to construct the service chain by using the service and data logics expressed in the ontologies. The chain can be expressed as a graph with nodes representing services and connection weights representing degrees of semantic matching between nodes. The graph is a visual representation of logical geo-processing path for answering users' questions. The graph can be instantiated to a physical service workflow for execution to generate the answer to a user's question. A prototype system, which includes real world geospatial applications, is implemented to demonstrate the concept and approach.

  15. Use of geospatial technology for delineating groundwater potential zones with an emphasis on water-table analysis in Dwarka River basin, Birbhum, India

    Science.gov (United States)

    Thapa, Raju; Gupta, Srimanta; Gupta, Arindam; Reddy, D. V.; Kaur, Harjeet

    2017-12-01

    Dwarka River basin in Birbhum, West Bengal (India), is an agriculture-dominated area where groundwater plays a crucial role. The basin experiences seasonal water stress conditions with a scarcity of surface water. In the presented study, delineation of groundwater potential zones (GWPZs) is carried out using a geospatial multi-influencing factor technique. Geology, geomorphology, soil type, land use/land cover, rainfall, lineament and fault density, drainage density, slope, and elevation of the study area were considered for the delineation of GWPZs in the study area. About 9.3, 71.9 and 18.8% of the study area falls within good, moderate and poor groundwater potential zones, respectively. The potential groundwater yield data corroborate the outcome of the model, with maximum yield in the older floodplain and minimum yield in the hard-rock terrains in the western and south-western regions. Validation of the GWPZs using the yield of 148 wells shows very high accuracy of the model prediction, i.e., 89.1% on superimposition and 85.1 and 81.3% on success and prediction rates, respectively. Measurement of the seasonal water-table fluctuation with a multiplicative model of time series for predicting the short-term trend of the water table, followed by chi-square analysis between the predicted and observed water-table depth, indicates a trend of falling groundwater levels, with a 5% level of significance and a p-value of 0.233. The rainfall pattern for the last 3 years of the study shows a moderately positive correlation (R 2 = 0.308) with the average water-table depth in the study area.

  16. AUTOMATED GEOSPATIAL WATERSHED ASSESSMENT ...

    Science.gov (United States)

    The Automated Geospatial Watershed Assessment tool (AGWA) is a GIS interface jointly developed by the USDA Agricultural Research Service, the U.S. Environmental Protection Agency, the University of Arizona, and the University of Wyoming to automate the parameterization and execution of the Soil Water Assessment Tool (SWAT) and KINEmatic Runoff and EROSion (KINEROS2) hydrologic models. The application of these two models allows AGWA to conduct hydrologic modeling and watershed assessments at multiple temporal and spatial scales. AGWA’s current outputs are runoff (volumes and peaks) and sediment yield, plus nitrogen and phosphorus with the SWAT model. AGWA uses commonly available GIS data layers to fully parameterize, execute, and visualize results from both models. Through an intuitive interface the user selects an outlet from which AGWA delineates and discretizes the watershed using a Digital Elevation Model (DEM) based on the individual model requirements. The watershed model elements are then intersected with soils and land cover data layers to derive the requisite model input parameters. The chosen model is then executed, and the results are imported back into AGWA for visualization. This allows managers to identify potential problem areas where additional monitoring can be undertaken or mitigation activities can be focused. AGWA also has tools to apply an array of best management practices. There are currently two versions of AGWA available; AGWA 1.5 for

  17. Real Time Semantic Interoperability in AD HOC Networks of Geospatial Data Sources: Challenges, Achievements and Perspectives

    Science.gov (United States)

    Mostafavi, M. A.; Bakillah, M.

    2012-07-01

    Recent advances in geospatial technologies have made available large amount of geospatial data. Meanwhile, new developments in Internet and communication technologies created a shift from isolated geospatial databases to ad hoc networks of geospatial data sources, where data sources can join or leave the network, and form groups to share data and services. However, effective integration and sharing of geospatial data among these data sources and their users are hampered by semantic heterogeneities. These heterogeneities affect the spatial, temporal and thematic aspects of geospatial concepts. There have been many efforts to address semantic interoperability issues in the geospatial domain. These efforts were mainly focused on resolving heterogeneities caused by different and implicit representations of the concepts. However, many approaches have focused on the thematic aspects, leaving aside the explicit representation of spatial and temporal aspects. Also, most semantic interoperability approaches for networks have focused on automating the semantic mapping process. However, the ad hoc network structure is continuously modified by source addition or removal, formation of groups, etc. This dynamic aspect is often neglected in those approaches. This paper proposes a conceptual framework for real time semantic interoperability in ad hoc networks of geospatial data sources. The conceptual framework presents the fundamental elements of real time semantic interoperability through a hierarchy of interrelated semantic states and processes. Then, we use the conceptual framework to set the discussion on the achievements that have already been made, the challenges that remain to be addressed and perspectives with respect to these challenges.

  18. application of geospatial tools for landslide hazard assessment

    African Journals Online (AJOL)

    immax

    technologies to develop tools to support landslide disaster prediction have been limited by the problem of spatial ... incorporate the use of geospatial tools in Uganda's disaster management strategies. 1 Introduction ... Risk hazard and vulnerability assessments have been carried out in more than 58 districts predominantly ...

  19. A Geospatial Semantic Enrichment and Query Service for Geotagged Photographs.

    Science.gov (United States)

    Ennis, Andrew; Nugent, Chris; Morrow, Philip; Chen, Liming; Ioannidis, George; Stan, Alexandru; Rachev, Preslav

    2015-07-20

    With the increasing abundance of technologies and smart devices, equipped with a multitude of sensors for sensing the environment around them, information creation and consumption has now become effortless. This, in particular, is the case for photographs with vast amounts being created and shared every day. For example, at the time of this writing, Instagram users upload 70 million photographs a day. Nevertheless, it still remains a challenge to discover the "right" information for the appropriate purpose. This paper describes an approach to create semantic geospatial metadata for photographs, which can facilitate photograph search and discovery. To achieve this we have developed and implemented a semantic geospatial data model by which a photograph can be enrich with geospatial metadata extracted from several geospatial data sources based on the raw low-level geo-metadata from a smartphone photograph. We present the details of our method and implementation for searching and querying the semantic geospatial metadata repository to enable a user or third party system to find the information they are looking for.

  20. A Geospatial Semantic Enrichment and Query Service for Geotagged Photographs

    Science.gov (United States)

    Ennis, Andrew; Nugent, Chris; Morrow, Philip; Chen, Liming; Ioannidis, George; Stan, Alexandru; Rachev, Preslav

    2015-01-01

    With the increasing abundance of technologies and smart devices, equipped with a multitude of sensors for sensing the environment around them, information creation and consumption has now become effortless. This, in particular, is the case for photographs with vast amounts being created and shared every day. For example, at the time of this writing, Instagram users upload 70 million photographs a day. Nevertheless, it still remains a challenge to discover the “right” information for the appropriate purpose. This paper describes an approach to create semantic geospatial metadata for photographs, which can facilitate photograph search and discovery. To achieve this we have developed and implemented a semantic geospatial data model by which a photograph can be enrich with geospatial metadata extracted from several geospatial data sources based on the raw low-level geo-metadata from a smartphone photograph. We present the details of our method and implementation for searching and querying the semantic geospatial metadata repository to enable a user or third party system to find the information they are looking for. PMID:26205265

  1. A Geospatial Semantic Enrichment and Query Service for Geotagged Photographs

    Directory of Open Access Journals (Sweden)

    Andrew Ennis

    2015-07-01

    Full Text Available With the increasing abundance of technologies and smart devices, equipped with a multitude of sensors for sensing the environment around them, information creation and consumption has now become effortless. This, in particular, is the case for photographs with vast amounts being created and shared every day. For example, at the time of this writing, Instagram users upload 70 million photographs a day. Nevertheless, it still remains a challenge to discover the “right” information for the appropriate purpose. This paper describes an approach to create semantic geospatial metadata for photographs, which can facilitate photograph search and discovery. To achieve this we have developed and implemented a semantic geospatial data model by which a photograph can be enrich with geospatial metadata extracted from several geospatial data sources based on the raw low-level geo-metadata from a smartphone photograph. We present the details of our method and implementation for searching and querying the semantic geospatial metadata repository to enable a user or third party system to find the information they are looking for.

  2. Geospatial services in the Cloud

    Science.gov (United States)

    Evangelidis, Konstantinos; Ntouros, Konstantinos; Makridis, Stathis; Papatheodorou, Constantine

    2014-02-01

    Data semantics play an extremely significant role in spatial data infrastructures by providing semantic specifications to geospatial data and enabling in this way data sharing and interoperability. By applying, on the fly, composite geospatial processes on the above data it is possible to produce valuable geoinformation over the web directly available and applicable to a wide range of geo-activities of significant importance for the research and industry community. Cloud computing may enable geospatial processing since it refers to, among other things, efficient computing resources providing on demand processing services. In this context, we attempt to provide a design and architectural framework for web applications based on open geospatial standards. Our approach includes, in addition to geospatial processing, data acquisition services that are essential especially when dealing with satellite images and applications in the area of remote sensing and similar fields. As a result, by putting in a common framework all data and geoprocesses available in the Cloud, it is possible to combine the appropriate services in order to produce a solution for a specific need.

  3. Towards a geospatial wikipedia

    Science.gov (United States)

    Fritz, S.; McCallum, I.; Schill, C.; Perger, C.; Kraxner, F.; Obersteiner, M.

    2009-04-01

    Based on the Google Earth (http://earth.google.com) platform we have developed a geospatial Wikipedia (geo-wiki.org). The tool allows everybody in the world to contribute to spatial validation and is made available to the internet community interested in that task. We illustrate how this tool can be used for different applications. In our first application we combine uncertainty hotspot information from three global land cover datasets (GLC, MODIS, GlobCover). With an ever increasing amount of high resolution images available on Google Earth, it is becoming increasingly possible to distinguish land cover features with a high degree of accuracy. We first direct the land cover validation community to certain hotspots of land cover uncertainty and then ask them to fill in a small popup menu on type of land cover, possibly a picture at that location with the different cardinal points as well as date and what type of validation was chosen (google earth imagery/panoramio or if the person has ground truth data). We have implemented the tool via a land cover validation community at FACEBOOK which is based on a snowball system which allows the tracking of individuals and the possibility to ignore users which misuse the system. In a second application we illustrate how the tool could possibly be used for mapping malaria occurrence and small water bodies as well as overall malaria risk. For this application we have implemented a polygon as well as attribute function using Google maps as along with virtual earth using openlayers. The third application deals with illegal logging and how an alert system for illegal logging detection within a certain land tenure system could be implemented. Here we show how the tool can be used to document illegal logging via a YouTube video.

  4. Indigenous knowledges driving technological innovation

    Science.gov (United States)

    Lilian Alessa; Carlos Andrade; Phil Cash Cash; Christian P. Giardina; Matt Hamabata; Craig Hammer; Kai Henifin; Lee Joachim; Jay T. Johnson; Kekuhi Kealiikanakaoleohaililani; Deanna Kingston; Andrew Kliskey; Renee Pualani Louis; Amanda Lynch; Daryn McKenny; Chels Marshall; Mere Roberts; Taupouri Tangaro; Jyl Wheaton-Abraham; Everett. Wingert

    2011-01-01

    This policy brief explores the use and expands the conversation on the ability of geospatial technologies to represent Indigenous cultural knowledge. Indigenous peoples' use of geospatial technologies has already proven to be a critical step for protecting tribal self-determination. However, the ontological frameworks and techniques of Western geospatial...

  5. Design and implementation of a geospatial portal

    Science.gov (United States)

    Liu, Laixing; Li, Deren; Shao, Zhenfeng

    2008-10-01

    Geospatial portals use Web Services to publish available geospatial data and processing services, help applications find them and invoke services or retrieve data. OGC has developed Geospatial Portal Reference Architecture to assist to implement a standards-based geospatially enabled portal application. The Geospatial Portal Reference Architecture is a major for E-Government, National Spatial Data Infrastructures, enterprises and Information Communities. It enables geoprocessing interoperability that makes it possible to exchange heterogeneous geographic information content and share a wide variety of geospatial services over the World Wide Web. In this article, we study the Geospatial Portal Reference Architecture. On the basis of this reference, we design and implement a geospatial portal. This article describes the architecture of this portal, development and deployment of this portal.

  6. Geospatial Absorption and Regional Effects

    Directory of Open Access Journals (Sweden)

    IOAN MAC

    2009-01-01

    Full Text Available The geospatial absorptions are characterized by a specific complexity both in content and in their phenomenological and spatial manifestation fields. Such processes are differentiated according to their specificity to pre-absorption, absorption or post-absorption. The mechanisms that contribute to absorption are extremely numerous: aggregation, extension, diffusion, substitution, resistivity (resilience, stratification, borrowings, etc. Between these mechanisms frequent relations are established determining an amplification of the process and of its regional effects. The installation of the geographic osmosis phenomenon in a given territory (a place for example leads to a homogenization of the geospatial state and to the installation of the regional homogeneity.

  7. The Geospatial Web and Local Geographical Education

    Science.gov (United States)

    Harris, Trevor M.; Rouse, L. Jesse; Bergeron, Susan J.

    2010-01-01

    Recent innovations in the Geospatial Web represent a paradigm shift in Web mapping by enabling educators to explore geography in the classroom by dynamically using a rapidly growing suite of impressive online geospatial tools. Coupled with access to spatial data repositories and User-Generated Content, the Geospatial Web provides a powerful…

  8. FOG COMPUTING PERSPECTIVES IN CONNECTION WITH THE CURRENT GEOSPATIAL STANDARDS

    Directory of Open Access Journals (Sweden)

    E. Panidi

    2017-11-01

    Full Text Available Cloud Computing technologies and cloud-based Geographic Information Systems have became widely used in recent decades. However, the complexity and size of geospatial datasets remains growing and sometimes become going out of the cloud infrastructure paradigm. Additionally, many of currently used client devices have sufficient computational resources to store and process some amounts of data directly. Consequently, multilevel management techniques are demanded that support capabilities of horizontal (client-to-client data flows in addition to vertical (cloud-to-client data flows. These tendencies in information technologies (in general have led to the appearance of Fog Computing paradigm that extends a cloud infrastructure with the computational resources of client devices and implements client-side data storage, management and interchange. This position paper summarizes and discusses mentioned tendencies in connection with a number of available Open Geospatial Consortium standards. The paper highlights the standards, which can be recognized as the platform for the Fog Computing implementation into geospatial domain, and analyzing their strong and weak features from the Fog Computing point of view. The analysis is built upon author’s experience in implementation of the client-side geospatial Web services.

  9. Geospatial Brokering - Challenges and Future Directions

    Science.gov (United States)

    White, C. E.

    2012-12-01

    An important feature of many brokers is to facilitate straightforward human access to scientific data while maintaining programmatic access to it for system solutions. Standards-based protocols are critical for this, and there are a number of protocols to choose from. In this discussion, we will present a web application solution that leverages certain protocols - e.g., OGC CSW, REST, and OpenSearch - to provide programmatic as well as human access to geospatial resources. We will also discuss managing resources to reduce duplication yet increase discoverability, federated search solutions, and architectures that combine human-friendly interfaces with powerful underlying data management. The changing requirements witnessed in brokering solutions over time, our recent experience participating in the EarthCube brokering hack-a-thon, and evolving interoperability standards provide insight to future technological and philosophical directions planned for geospatial broker solutions. There has been much change over the past decade, but with the unprecedented data collaboration of recent years, in many ways the challenges and opportunities are just beginning.

  10. TOWARDS COMPATIBILITY OF CONTEMPORARY GEOSPATIAL STANDARDS WITH THE FOG COMPUTING CONCEPT

    Directory of Open Access Journals (Sweden)

    E. A. Panidi

    2017-01-01

    Full Text Available This position paper considers the possibility of implementation of the Fog Computing paradigm into the contemporary Geographic Information Systems (GISs and into the geospatial Web services that provide data access. In particular, the paper is focused on the issue of compatibility of the existing geospatial standards developed by the Open Geospatial Consortium (OGC with the principles of Fog information systems. The WMS, WMTS, WFS, WCS, WPS and CS standards are highlighted. The conclusion is made that the OGC standards can be extended by new request types to ensure the implementation of Fog Computing functionality and the inverse compatibility with currently used Cloud-based Web services. Two fundamental problems are highlighted that arise when designing geospatial Fog Web services. The first one is the need to provide processing and management operations on spatial data at client devices (particularly on mobile devices when the geospatial Fog Web service is deployed on such a device. The second problem is the necessity to insure the geospatial data transmission using the HyperText Transfer Protocol, which is used in contemporary geospatial Web services. The JavaScript programming language and the WebRTC technology (Web Real-Time Communication are mentioned as examples of basic technologies that can be applied to geospatial Fog Web services. It is concluded that contemporary technologies used in GISs and Web services ensure in general the implementation of Fog Computing into geospatial data management tasks. However, the known examples of such implementation do not exist today, and further research and development are required in this direction.

  11. Problems from Hell, Solution in the Heavens?: Identifying Obstacles and Opportunities for Employing Geospatial Technologies to Document and Mitigate Mass Atrocities

    Directory of Open Access Journals (Sweden)

    Ben Yunmo Wang

    2013-10-01

    Full Text Available At the evolving frontier of modern humanitarianism, non-governmental organizations are using satellite technology to monitor mass atrocities. As a documentation tool, satellites have the potential to collect important real-time evidence for alleged war crimes and crimes against humanity. However, the field remains experimental and ill-defined, while useful court evidence cannot be produced without a standard methodology and code of ethics. Members of the groundbreaking Satellite Sentinel Project review the historical development of satellite documentation and some of its landmark projects, and propose necessary measures to advance the field forward.

  12. Adversarial Geospatial Abduction Problems

    Science.gov (United States)

    2011-01-01

    4302. Respondents should be aware that notwithstanding any other provision of law , no person shall be subject to a penalty for failing to comply with a...Technology, Vol. , No. , 20. 38 · Paulo Shakarian et al. Rossmo, D. K. and Rombouts, S. 2008. Geographic Profiling. In Enviromental Criminology and Crime

  13. Towards Geo-spatial Information Science in Big Data Era

    Directory of Open Access Journals (Sweden)

    LI Deren

    2016-04-01

    Full Text Available Since the 1990s, with the advent of worldwide information revolution and the development of internet, geospatial information science have also come of age, which pushed forward the building of digital Earth and cyber city. As we entered the 21st century, with the development and integration of global information technology and industrialization, internet of things and cloud computing came into being, human society enters into the big data era. This article covers the key features (ubiquitous, multi-dimension and dynamics, internet+networking, full automation and real-time, from sensing to recognition, crowdsourcing and VGI, and service-oriented of geospatial information science in the big data era and addresses the key technical issues (non-linear four dimensional Earth reference frame system, space based enhanced GNSS, space-air and land unified network communication techniques, on board processing techniques for multi-sources image data, smart interface service techniques for space-borne information, space based resource scheduling and network security, design and developing of a payloads based multi-functional satellite platform. That needs to be resolved to provide a new definition of geospatial information science in big data era. Based on the discussion in this paper, the author finally proposes a new definition of geospatial information science (geomatics, i.e. Geomatics is a multiple discipline science and technology which, using a systematic approach, integrates all the means for spatio-temporal data acquisition, information extraction, networked management, knowledge discovering, spatial sensing and recognition, as well as intelligent location based services of any physical objects and human activities around the earth and its environment. Starting from this new definition, geospatial information science will get much more chances and find much more tasks in big data era for generation of smart earth and smart city . Our profession

  14. LSIVIEWER 2.0 – A CLIENT-ORIENTED ONLINE VISUALIZATION TOOL FOR GEOSPATIAL VECTOR DATA

    OpenAIRE

    K. Manikanta; K S Rajan

    2017-01-01

    Geospatial data visualization systems have been predominantly through applications that are installed and run in a desktop environment. Over the last decade, with the advent of web technologies and its adoption by Geospatial community, the server-client model for data handling, data rendering and visualization respectively has been the most prevalent approach in Web-GIS. While the client devices have become functionally more powerful over the recent years, the above model has largely...

  15. NCI's Distributed Geospatial Data Server

    Science.gov (United States)

    Larraondo, P. R.; Evans, B. J. K.; Antony, J.

    2016-12-01

    Earth systems, environmental and geophysics datasets are an extremely valuable source of information about the state and evolution of the Earth. However, different disciplines and applications require this data to be post-processed in different ways before it can be used. For researchers experimenting with algorithms across large datasets or combining multiple data sets, the traditional approach to batch data processing and storing all the output for later analysis rapidly becomes unfeasible, and often requires additional work to publish for others to use. Recent developments on distributed computing using interactive access to significant cloud infrastructure opens the door for new ways of processing data on demand, hence alleviating the need for storage space for each individual copy of each product. The Australian National Computational Infrastructure (NCI) has developed a highly distributed geospatial data server which supports interactive processing of large geospatial data products, including satellite Earth Observation data and global model data, using flexible user-defined functions. This system dynamically and efficiently distributes the required computations among cloud nodes and thus provides a scalable analysis capability. In many cases this completely alleviates the need to preprocess and store the data as products. This system presents a standards-compliant interface, allowing ready accessibility for users of the data. Typical data wrangling problems such as handling different file formats and data types, or harmonising the coordinate projections or temporal and spatial resolutions, can now be handled automatically by this service. The geospatial data server exposes functionality for specifying how the data should be aggregated and transformed. The resulting products can be served using several standards such as the Open Geospatial Consortium's (OGC) Web Map Service (WMS) or Web Feature Service (WFS), Open Street Map tiles, or raw binary arrays under

  16. GeoWeb Crawler: An Extensible and Scalable Web Crawling Framework for Discovering Geospatial Web Resources

    Directory of Open Access Journals (Sweden)

    Chih-Yuan Huang

    2016-08-01

    Full Text Available With the advance of the World-Wide Web (WWW technology, people can easily share content on the Web, including geospatial data and web services. Thus, the “big geospatial data management” issues start attracting attention. Among the big geospatial data issues, this research focuses on discovering distributed geospatial resources. As resources are scattered on the WWW, users cannot find resources of their interests efficiently. While the WWW has Web search engines addressing web resource discovery issues, we envision that the geospatial Web (i.e., GeoWeb also requires GeoWeb search engines. To realize a GeoWeb search engine, one of the first steps is to proactively discover GeoWeb resources on the WWW. Hence, in this study, we propose the GeoWeb Crawler, an extensible Web crawling framework that can find various types of GeoWeb resources, such as Open Geospatial Consortium (OGC web services, Keyhole Markup Language (KML and Environmental Systems Research Institute, Inc (ESRI Shapefiles. In addition, we apply the distributed computing concept to promote the performance of the GeoWeb Crawler. The result shows that for 10 targeted resources types, the GeoWeb Crawler discovered 7351 geospatial services and 194,003 datasets. As a result, the proposed GeoWeb Crawler framework is proven to be extensible and scalable to provide a comprehensive index of GeoWeb.

  17. SWOT analysis on National Common Geospatial Information Service Platform of China

    Science.gov (United States)

    Zheng, Xinyan; He, Biao

    2010-11-01

    Currently, the trend of International Surveying and Mapping is shifting from map production to integrated service of geospatial information, such as GOS of U.S. etc. Under this circumstance, the Surveying and Mapping of China is inevitably shifting from 4D product service to NCGISPC (National Common Geospatial Information Service Platform of China)-centered service. Although State Bureau of Surveying and Mapping of China has already provided a great quantity of geospatial information service to various lines of business, such as emergency and disaster management, transportation, water resource, agriculture etc. The shortcomings of the traditional service mode are more and more obvious, due to the highly emerging requirement of e-government construction, the remarkable development of IT technology and emerging online geospatial service demands of various lines of business. NCGISPC, which aimed to provide multiple authoritative online one-stop geospatial information service and API for further development to government, business and public, is now the strategic core of SBSM (State Bureau of Surveying and Mapping of China). This paper focuses on the paradigm shift that NCGISPC brings up by using SWOT (Strength, Weakness, Opportunity and Threat) analysis, compared to the service mode that based on 4D product. Though NCGISPC is still at its early stage, it represents the future service mode of geospatial information of China, and surely will have great impact not only on the construction of digital China, but also on the way that everyone uses geospatial information service.

  18. GeoBrainArc: Enabling Geospatial Interoperability in ArcGIS

    Science.gov (United States)

    Zhao, P.; di, L.; Zhang, B.

    2008-12-01

    In recent years, a growing number of geospatial Web services designed to deal with distributed geospatial information over network have emerged as the maturation of web service technologies. The Open Geospatial Consortium (OGC) has published a series of specifications that address geospatial interoperability requirement, standards and implementations to enhance the discovery, retrieval and handling of geospatial information and geospatial processing service. More and more government agencies, such as NASA, FGDC and EPA, publish their data using OGC protocols. ESRI is a leading global GIS software provider, and its flagship product ArcGIS Desktop has significant market share in commercial desktop solutions. To provide worldwide ArcGIS users an interoperable way of accessing OGC Web services for integrating and analyzing distributed heterogeneous geospatial data, we design and implement an extension of ArcGIS: GeoBrainArc. It can be easily installed as a component tool of ArcGIS. With the GeoBrainArc, ArcGIS users now is able to dynamically discover data and services over network using OGC Catalo Service for Web (CS/W), interactively access to and display remote sensing data from distributed OGC Web Coverage Service (WCS) and OGC Web Map Service (WMS), and visualize and analyze vector data from different OGC Web Feature Service (WFS). Thus, all those data from OGC Web services, just like other local data, is seamlessly integrated into the ArcGIS environment regardless of their locations, formats and projections.

  19. The geospatial web how geobrowsers, social software and the web 2 0 are shaping the network society

    CERN Document Server

    Scharl, Arno; Tochtermann, Klaus

    2007-01-01

    The Geospatial Web will have a profound impact on managing knowledge, structuring work flows within and across organizations, and communicating with like-minded individuals in virtual communities. The enabling technologies for the Geospatial Web are geo-browsers such as NASA World Wind, Google Earth and Microsoft Live Local 3D. These three-dimensional platforms revolutionize the production and consumption of media products. They not only reveal the geographic distribution of Web resources and services, but also bring together people of similar interests, browsing behavior, or geographic location. This book summarizes the latest research on the Geospatial Web's technical foundations, describes information services and collaborative tools built on top of geo-browsers, and investigates the environmental, social and economic impacts of geospatial applications. The role of contextual knowledge in shaping the emerging network society deserves particular attention. By integrating geospatial and semantic technology, ...

  20. Geospatial Analysis Framework

    Directory of Open Access Journals (Sweden)

    Elisabeta Antonia Haller

    2010-04-01

    Full Text Available In a computerized society, the volume of data grows unexpectedly, making their processing time a very difficult task. A priority has become the processing of data in useful information and knowledge. Thus we can say that data mining is a result of technological developments. Interpretation of spatial data has made the subject of research over time, reaching now to have a large variety of instruments and software products for representation and interpretation. What we need to understand beyond the facilities offered by one system or another, proprietary or open source solution, is how they work and interact with spatial data.

  1. Creating 3D models of historical buildings using geospatial data

    Science.gov (United States)

    Alionescu, Adrian; Bǎlǎ, Alina Corina; Brebu, Floarea Maria; Moscovici, Anca-Maria

    2017-07-01

    Recently, a lot of interest has been shown to understand a real world object by acquiring its 3D images of using laser scanning technology and panoramic images. A realistic impression of geometric 3D data can be generated by draping real colour textures simultaneously captured by a colour camera images. In this context, a new concept of geospatial data acquisition has rapidly revolutionized the method of determining the spatial position of objects, which is based on panoramic images. This article describes an approach that comprises inusing terrestrial laser scanning and panoramic images captured with Trimble V10 Imaging Rover technology to enlarge the details and realism of the geospatial data set, in order to obtain 3D urban plans and virtual reality applications.

  2. A resource-oriented architecture for a Geospatial Web

    Science.gov (United States)

    Mazzetti, Paolo; Nativi, Stefano

    2010-05-01

    In this presentation we discuss some architectural issues on the design of an architecture for a Geospatial Web, that is an information system for sharing geospatial resources according to the Web paradigm. The success of the Web in building a multi-purpose information space, has raised questions about the possibility of adopting the same approach for systems dedicated to the sharing of more specific resources, such as the geospatial information, that is information characterized by spatial/temporal reference. To this aim an investigation on the nature of the Web and on the validity of its paradigm for geospatial resources is required. The Web was born in the early 90's to provide "a shared information space through which people and machines could communicate" [Berners-Lee 1996]. It was originally built around a small set of specifications (e.g. URI, HTTP, HTML, etc.); however, in the last two decades several other technologies and specifications have been introduced in order to extend its capabilities. Most of them (e.g. the SOAP family) actually aimed to transform the Web in a generic Distributed Computing Infrastructure. While these efforts were definitely successful enabling the adoption of service-oriented approaches for machine-to-machine interactions supporting complex business processes (e.g. for e-Government and e-Business applications), they do not fit in the original concept of the Web. In the year 2000, R. T. Fielding, one of the designers of the original Web specifications, proposes a new architectural style for distributed systems, called REST (Representational State Transfer), aiming to capture the fundamental characteristics of the Web as it was originally conceived [Fielding 2000]. In this view, the nature of the Web lies not so much in the technologies, as in the way they are used. Maintaining the Web architecture conform to the REST style would then assure the scalability, extensibility and low entry barrier of the original Web. On the contrary

  3. 75 FR 71141 - Announcement of National Geospatial Advisory Committee Meeting

    Science.gov (United States)

    2010-11-22

    ... established to advise the Federal Geographic Data Committee on management of Federal geospatial programs, the... --Geospatial Workforce --The National Map --FGDC Update --Geospatial Program Updates --NGAC Subcommittee... Geographic Data Committee. BILLING CODE 4311-AM-P ...

  4. GPU based framework for geospatial analyses

    Science.gov (United States)

    Cosmin Sandric, Ionut; Ionita, Cristian; Dardala, Marian; Furtuna, Titus

    2017-04-01

    Parallel processing on multiple CPU cores is already used at large scale in geocomputing, but parallel processing on graphics cards is just at the beginning. Being able to use an simple laptop with a dedicated graphics card for advanced and very fast geocomputation is an advantage that each scientist wants to have. The necessity to have high speed computation in geosciences has increased in the last 10 years, mostly due to the increase in the available datasets. These datasets are becoming more and more detailed and hence they require more space to store and more time to process. Distributed computation on multicore CPU's and GPU's plays an important role by processing one by one small parts from these big datasets. These way of computations allows to speed up the process, because instead of using just one process for each dataset, the user can use all the cores from a CPU or up to hundreds of cores from GPU The framework provide to the end user a standalone tools for morphometry analyses at multiscale level. An important part of the framework is dedicated to uncertainty propagation in geospatial analyses. The uncertainty may come from the data collection or may be induced by the model or may have an infinite sources. These uncertainties plays important roles when a spatial delineation of the phenomena is modelled. Uncertainty propagation is implemented inside the GPU framework using Monte Carlo simulations. The GPU framework with the standalone tools proved to be a reliable tool for modelling complex natural phenomena The framework is based on NVidia Cuda technology and is written in C++ programming language. The code source will be available on github at https://github.com/sandricionut/GeoRsGPU Acknowledgement: GPU framework for geospatial analysis, Young Researchers Grant (ICUB-University of Bucharest) 2016, director Ionut Sandric

  5. Nebhydro: Sharing Geospatial Data to Supportwater Management in Nebraska

    Science.gov (United States)

    Kamble, B.; Irmak, A.; Hubbard, K.; Deogun, J.; Dvorak, B.

    2012-12-01

    Recent advances in web-enabled geographical technologies have the potential to make a dramatic impact on development of highly interactive spatial applications on the web for visualization of large-scale geospatial data by water resources and irrigation scientists. Spatial and point scale water resources data visualization are an emerging and challenging application domain. Query based visual explorations of geospatial hydrological data can play an important role in stimulating scientific hypotheses and seeking causal relationships among hydro variables. The Nebraska Hydrological Information System (NebHydro) utilizes ESRI's ArcGIS server technology to increase technological awareness among farmers, irrigation managers and policy makers. Web-based geospatial applications are an effective way to expose scientific hydrological datasets to the research community and the public. NebHydro uses Adobe Flex technology to offer an online visualization and data analysis system for presentation of social and economic data. Internet mapping services is an integrated product of GIS and Internet technologies; it is a favored solution to achieve the interoperability of GIS. The development of Internet based GIS services in the state of Nebraska showcases the benefits of sharing geospatial hydrological data among agencies, resource managers and policy makers. Geospatial hydrological Information (Evapotranspiration from Remote Sensing, vegetation indices (NDVI), USGS Stream gauge data, Climatic data etc.) is generally generated through model simulation (METRIC, SWAP, Linux, Python based scripting etc). Information is compiled into and stored within object oriented relational spatial databases using a geodatabase information model that supports the key data types needed by applications including features, relationships, networks, imagery, terrains, maps and layers. The system provides online access, querying, visualization, and analysis of the hydrological data from several sources

  6. Adoption of Geospatial Systems towards evolving Sustainable Himalayan Mountain Development

    Science.gov (United States)

    Murthy, M. S. R.; Bajracharya, B.; Pradhan, S.; Shestra, B.; Bajracharya, R.; Shakya, K.; Wesselmann, S.; Ali, M.; Bajracharya, S.; Pradhan, S.

    2014-11-01

    Natural resources dependence of mountain communities, rapid social and developmental changes, disaster proneness and climate change are conceived as the critical factors regulating sustainable Himalayan mountain development. The Himalayan region posed by typical geographic settings, diverse physical and cultural diversity present a formidable challenge to collect and manage data, information and understands varied socio-ecological settings. Recent advances in earth observation, near real-time data, in-situ measurements and in combination of information and communication technology have transformed the way we collect, process, and generate information and how we use such information for societal benefits. Glacier dynamics, land cover changes, disaster risk reduction systems, food security and ecosystem conservation are a few thematic areas where geospatial information and knowledge have significantly contributed to informed decision making systems over the region. The emergence and adoption of near-real time systems, unmanned aerial vehicles (UAV), board-scale citizen science (crowd-sourcing), mobile services and mapping, and cloud computing have paved the way towards developing automated environmental monitoring systems, enhanced scientific understanding of geophysical and biophysical processes, coupled management of socio-ecological systems and community based adaptation models tailored to mountain specific environment. There are differentiated capacities among the ICIMOD regional member countries with regard to utilization of earth observation and geospatial technologies. The region can greatly benefit from a coordinated and collaborative approach to capture the opportunities offered by earth observation and geospatial technologies. The regional level data sharing, knowledge exchange, and Himalayan GEO supporting geospatial platforms, spatial data infrastructure, unique region specific satellite systems to address trans-boundary challenges would go a long way in

  7. Sugnificances of Geospatial Technologies in Natural Resources ...

    African Journals Online (AJOL)

    Natural resources management is a worldwide phenomenon characterized with sensitive equilibrium between its components as a result of human and other natural activities. Nigeria is a country endowed with abundant natural resources that are waiting to be tap and the data updated. Geomatics is a field of activities which ...

  8. Comparing proportional compositions of geospatial technology ...

    African Journals Online (AJOL)

    Today, graduates seek employment in a global marketplace, regardless of the country in which they studied. Comparing academic programs helps students, academics and employers to make informed decisions about study options, program offerings and the employment of recent graduates. In this study, we juxtapose ...

  9. Integrating Geospatial Technologies in an Energy Unit

    Science.gov (United States)

    Kulo, Violet A.; Bodzin, Alec M.

    2011-01-01

    This article presents a design-based research study of the implementation of an energy unit developed for middle school students. The unit utilized Google Earth and a geographic information system (GIS) to support student understanding of the world's energy resources and foster their spatial thinking skills. Findings from the prototype study…

  10. Geospatial technology applications in forest hydrology

    Science.gov (United States)

    S.S. Panda; E. Masson; S. Sen; H.W. Kim; Devendra Amatya

    2016-01-01

    Two separate disciplines, hydrology and forestry, together constitute forest hydrology. It is obvious that forestry and forest hydrology disciplines are spatial entities. Forestry is the science that seeks to understand the nature of forests throygh their life cycle and interactions with the surrounding environment. Forest hydrology includes forest soil water, streams...

  11. Learning R for geospatial analysis

    CERN Document Server

    Dorman, Michael

    2014-01-01

    This book is intended for anyone who wants to learn how to efficiently analyze geospatial data with R, including GIS analysts, researchers, educators, and students who work with spatial data and who are interested in expanding their capabilities through programming. The book assumes familiarity with the basic geographic information concepts (such as spatial coordinates), but no prior experience with R and/or programming is required. By focusing on R exclusively, you will not need to depend on any external software-a working installation of R is all that is necessary to begin.

  12. Best Practices for Preparing Interoperable Geospatial Data

    Science.gov (United States)

    Wei, Y.; Santhana Vannan, S.; Cook, R. B.; Wilson, B. E.; Beaty, T. W.

    2010-12-01

    Geospatial data is critically important for a wide scope of research and applications: carbon cycle and ecosystem, climate change, land use and urban planning, environmental protecting, etc. Geospatial data is created by different organizations using different methods, from remote sensing observations, field surveys, model simulations, etc., and stored in various formats. So geospatial data is diverse and heterogeneous, which brings a huge barrier for the sharing and using of geospatial data, especially when targeting a broad user community. Many efforts have been taken to address different aspects of using geospatial data by improving its interoperability. For example, the specification for Open Geospatial Consortium (OGC) catalog services defines a standard way for geospatial information discovery; OGC Web Coverage Services (WCS) and OPeNDAP define interoperable protocols for geospatial data access, respectively. But the reality is that only having the standard mechanisms for data discovery and access is not enough. The geospatial data content itself has to be organized in standard, easily understandable, and readily usable formats. The Oak Ridge National Lab Distributed Archived Data Center (ORNL DAAC) archives data and information relevant to biogeochemical dynamics, ecological data, and environmental processes. The Modeling and Synthesis Thematic Data Center (MAST-DC) prepares and distributes both input data and output data of carbon cycle models and provides data support for synthesis and terrestrial model inter-comparison in multi-scales. Both of these NASA-funded data centers compile and distribute a large amount of diverse geospatial data and have broad user communities, including GIS users, Earth science researchers, and ecosystem modeling teams. The ORNL DAAC and MAST-DC address this geospatial data interoperability issue by standardizing the data content and feeding them into a well-designed Spatial Data Infrastructure (SDI) which provides interoperable

  13. Geospatial Service Platform for Education and Research

    Science.gov (United States)

    Gong, J.; Wu, H.; Jiang, W.; Guo, W.; Zhai, X.; Yue, P.

    2014-04-01

    We propose to advance the scientific understanding through applications of geospatial service platforms, which can help students and researchers investigate various scientific problems in a Web-based environment with online tools and services. The platform also offers capabilities for sharing data, algorithm, and problem-solving knowledge. To fulfil this goal, the paper introduces a new course, named "Geospatial Service Platform for Education and Research", to be held in the ISPRS summer school in May 2014 at Wuhan University, China. The course will share cutting-edge achievements of a geospatial service platform with students from different countries, and train them with online tools from the platform for geospatial data processing and scientific research. The content of the course includes the basic concepts of geospatial Web services, service-oriented architecture, geoprocessing modelling and chaining, and problem-solving using geospatial services. In particular, the course will offer a geospatial service platform for handson practice. There will be three kinds of exercises in the course: geoprocessing algorithm sharing through service development, geoprocessing modelling through service chaining, and online geospatial analysis using geospatial services. Students can choose one of them, depending on their interests and background. Existing geoprocessing services from OpenRS and GeoPW will be introduced. The summer course offers two service chaining tools, GeoChaining and GeoJModelBuilder, as instances to explain specifically the method for building service chains in view of different demands. After this course, students can learn how to use online service platforms for geospatial resource sharing and problem-solving.

  14. Arc4nix: A cross-platform geospatial analytical library for cluster and cloud computing

    Science.gov (United States)

    Tang, Jingyin; Matyas, Corene J.

    2018-02-01

    Big Data in geospatial technology is a grand challenge for processing capacity. The ability to use a GIS for geospatial analysis on Cloud Computing and High Performance Computing (HPC) clusters has emerged as a new approach to provide feasible solutions. However, users lack the ability to migrate existing research tools to a Cloud Computing or HPC-based environment because of the incompatibility of the market-dominating ArcGIS software stack and Linux operating system. This manuscript details a cross-platform geospatial library "arc4nix" to bridge this gap. Arc4nix provides an application programming interface compatible with ArcGIS and its Python library "arcpy". Arc4nix uses a decoupled client-server architecture that permits geospatial analytical functions to run on the remote server and other functions to run on the native Python environment. It uses functional programming and meta-programming language to dynamically construct Python codes containing actual geospatial calculations, send them to a server and retrieve results. Arc4nix allows users to employ their arcpy-based script in a Cloud Computing and HPC environment with minimal or no modification. It also supports parallelizing tasks using multiple CPU cores and nodes for large-scale analyses. A case study of geospatial processing of a numerical weather model's output shows that arcpy scales linearly in a distributed environment. Arc4nix is open-source software.

  15. A "Neogeographical Education"? The Geospatial Web, GIS and Digital Art in Adult Education

    Science.gov (United States)

    Papadimitriou, Fivos

    2010-01-01

    Neogeography provides a link between the science of geography and digital art. The carriers of this link are geospatial technologies (global navigational satellite systems such as the global positioning system, Geographical Information System [GIS] and satellite imagery) along with ubiquitous information and communication technologies (such as…

  16. Geospatial Approaches to Cancer Control and Population Sciences.

    Science.gov (United States)

    Schootman, Mario; Gomez, Scarlett Lin; Henry, Kevin A; Paskett, Electra D; Ellison, Gary L; Oh, April; Taplin, Stephen H; Tatalovich, Zaria; Berrigan, David A

    2017-04-01

    Cancer incidence and mortality display strong geographic patterns worldwide and in the United States (1, 2). The environment where individuals live, work, and play is increasingly being recognized as important across the cancer control continuum, including the risk of cancer development, detection, diagnosis, treatment, mortality, and survivorship (3-5). At the same time, emergent technological capacity in geographic information systems (GIS) and mapping, along with increasing sophistication in applied spatial methods, has resulted in a growing research community developing and applying geospatial approaches in health research (5). Through collaborative, transdisciplinary efforts, and continued data collection efforts, there is great potential to apply these emerging geospatial approaches to various aspects of cancer prevention and control to inform etiology and target interventions and implementation of efficacious risk-reducing strategies. Cancer Epidemiol Biomarkers Prev; 26(4); 472-5. ©2017 AACRSee all the articles in this CEBP Focus section, "Geospatial Approaches to Cancer Control and Population Sciences." ©2017 American Association for Cancer Research.

  17. Wetland assessment, monitoring and management in India using geospatial techniques.

    Science.gov (United States)

    Garg, J K

    2015-01-15

    Satellite remote sensing and GIS have emerged as the most powerful tools for inventorying, monitoring and management of natural resources and environment. In the special context of wetland ecosystems, remotely sensed data from orbital platforms have been extensively used in India for the inventory, monitoring and preparation of action plans for conservation and management. First scientific inventory of wetlands in India was carried out in 1998 by Space Applications Centre (ISRO), Ahmedabad using indigenous IRS (Indian Remote Sensing Satellite) data of 1992-93 timeframe, which stimulated extensive use of geospatial techniques for wetland conservation and management. Subsequently, with advances in GIS, studies were carried out for development of Wetland Information System for a state (West Bengal) and for Loktak lake wetland (a Ramsar site) as a prelude to National Wetland Information System. Research has also been carried out for preparation of action plans especially for Ramsar sites in the country. In a novel research, use of the geospatial technology has also been demonstrated for biodiversity conservation using landscape ecological metrics. A country-wide estimate of emission of methane, a Green House Gas, from wetlands has also been made using MODIS data. Present article critically reviews the work carried out in India for wetland conservation and management using geospatial techniques. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Disaster Risk Reduction in Agriculture through Geospatial (Big Data Processing

    Directory of Open Access Journals (Sweden)

    Tomáš Řezník

    2017-08-01

    Full Text Available Intensive farming on land represents an increased burden on the environment due to, among other reasons, the usage of agrochemicals. Precision farming can reduce the environmental burden by employing site specific crop management practices which implement advanced geospatial technologies for respecting soil heterogeneity. The objectives of this paper are to present the frontier approaches of geospatial (Big data processing based on satellite and sensor data which both aim at the prevention and mitigation phases of disaster risk reduction in agriculture. Three techniques are presented in order to demonstrate the possibilities of geospatial (Big data collection in agriculture: (1 farm machinery telemetry for providing data about machinery operations on fields through the developed MapLogAgri application; (2 agrometeorological observation in the form of a wireless sensor network together with the SensLog solution for storing, analysing, and publishing sensor data; and (3 remote sensing for monitoring field spatial variability and crop status by means of freely-available high resolution satellite imagery. The benefits of re-using the techniques in disaster risk reduction processes are discussed. The conducted tests demonstrated the transferability of agricultural techniques to crisis/emergency management domains.

  19. NativeView: A Geospatial Curriculum for Native Nation Building

    Science.gov (United States)

    Rattling Leaf, J.

    2007-12-01

    In the spirit of collaboration and reciprocity, James Rattling Leaf of Sinte Gleska University on the Rosebud Reservation of South Dakota will present recent developments, experiences, insights and a vision for education in Indian Country. As a thirty-year young institution, Sinte Gleska University is founded by a strong vision of ancestral leadership and the values of the Lakota Way of Life. Sinte Gleska University (SGU) has initiated the development of a Geospatial Education Curriculum project. NativeView: A Geospatial Curriculum for Native Nation Building is a two-year project that entails a disciplined approach towards the development of a relevant Geospatial academic curriculum. This project is designed to meet the educational and land management needs of the Rosebud Lakota Tribe through the utilization of Geographic Information Systems (GIS), Remote Sensing (RS) and Global Positioning Systems (GPS). In conjunction with the strategy and progress of this academic project, a formal presentation and demonstration of the SGU based Geospatial software RezMapper software will exemplify an innovative example of state of the art information technology. RezMapper is an interactive CD software package focused toward the 21 Lakota communities on the Rosebud Reservation that utilizes an ingenious concept of multimedia mapping and state of the art data compression and presentation. This ongoing development utilizes geographic data, imagery from space, historical aerial photography and cultural features such as historic Lakota documents, language, song, video and historical photographs in a multimedia fashion. As a tangible product, RezMapper will be a project deliverable tool for use in the classroom and to a broad range of learners.

  20. A Geospatial Decision Support System Toolkit Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design a working prototype Geospatial Decision Support Toolkit (GeoKit) that will enable scientists, agencies, and stakeholders to configure and deploy...

  1. GIBS Geospatial Data Abstraction Library (GDAL)

    Data.gov (United States)

    National Aeronautics and Space Administration — GDAL is an open source translator library for raster geospatial data formats that presents a single abstract data model to the calling application for all supported...

  2. Geospatial Information System Capability Maturity Models

    Science.gov (United States)

    2017-06-01

    To explore how State departments of transportation (DOTs) evaluate geospatial tool applications and services within their own agencies, particularly their experiences using capability maturity models (CMMs) such as the Urban and Regional Information ...

  3. Fire alerts on the geospatial semantic web

    CSIR Research Space (South Africa)

    Mcferren, GA

    2006-01-01

    Full Text Available conceptbased queries of data and knowledge repositories. Future AFIS versions would supply highly tuned, meaningful and customised fire alerts to users based on an open framework of geospatial Web services, ontologies and software agents. Other Webbased...

  4. Geo-spatial Service and Application based on National E-government Network Platform and Cloud

    Science.gov (United States)

    Meng, X.; Deng, Y.; Li, H.; Yao, L.; Shi, J.

    2014-04-01

    With the acceleration of China's informatization process, our party and government take a substantive stride in advancing development and application of digital technology, which promotes the evolution of e-government and its informatization. Meanwhile, as a service mode based on innovative resources, cloud computing may connect huge pools together to provide a variety of IT services, and has become one relatively mature technical pattern with further studies and massive practical applications. Based on cloud computing technology and national e-government network platform, "National Natural Resources and Geospatial Database (NRGD)" project integrated and transformed natural resources and geospatial information dispersed in various sectors and regions, established logically unified and physically dispersed fundamental database and developed national integrated information database system supporting main e-government applications. Cross-sector e-government applications and services are realized to provide long-term, stable and standardized natural resources and geospatial fundamental information products and services for national egovernment and public users.

  5. With Geospatial in Path of Smart City

    Science.gov (United States)

    Homainejad, A. S.

    2015-04-01

    With growth of urbanisation, there is a requirement for using the leverage of smart city in city management. The core of smart city is Information and Communication Technologies (ICT), and one of its elements is smart transport which includes sustainable transport and Intelligent Transport Systems (ITS). Cities and especially megacities are facing urgent transport challenge in traffic management. Geospatial can provide reliable tools for monitoring and coordinating traffic. In this paper a method for monitoring and managing the ongoing traffic in roads using aerial images and CCTV will be addressed. In this method, the road network was initially extracted and geo-referenced and captured in a 3D model. The aim is to detect and geo-referenced any vehicles on the road from images in order to assess the density and the volume of vehicles on the roads. If a traffic jam was recognised from the images, an alternative route would be suggested for easing the traffic jam. In a separate test, a road network was replicated in the computer and a simulated traffic was implemented in order to assess the traffic management during a pick time using this method.

  6. TOWARDS IMPLEMENTATION OF THE FOG COMPUTING CONCEPT INTO THE GEOSPATIAL DATA INFRASTRUCTURES

    OpenAIRE

    E. A. Panidi

    2016-01-01

    The information technologies and Global Network technologies in particular are developing very quickly. According to this, the problem remains actual that incorporates implementation issues for the general-purpose technologies into the information systems which operate with geospatial data. The paper discusses the implementation feasibility for a number of new approaches and concepts that solve the problems of spatial data publish and management on the Global Network. A brief review describes...

  7. Geospatial approach to spatio-temporal pattern of urban growth in ...

    African Journals Online (AJOL)

    While this study demonstrates the importance of using geospatial technology in the acquisition of data for urban planning and management, the results highlight the influence of infrastructure development on urban growth pattern. Key words: Urban growth, spatial analysis, monocentric, remote sensing, geographic ...

  8. Geospatial-temporal semantic graph representations of trajectories from remote sensing and geolocation data

    Science.gov (United States)

    Perkins, David Nikolaus; Brost, Randolph; Ray, Lawrence P.

    2017-08-08

    Various technologies for facilitating analysis of large remote sensing and geolocation datasets to identify features of interest are described herein. A search query can be submitted to a computing system that executes searches over a geospatial temporal semantic (GTS) graph to identify features of interest. The GTS graph comprises nodes corresponding to objects described in the remote sensing and geolocation datasets, and edges that indicate geospatial or temporal relationships between pairs of nodes in the nodes. Trajectory information is encoded in the GTS graph by the inclusion of movable nodes to facilitate searches for features of interest in the datasets relative to moving objects such as vehicles.

  9. Geospatial Information Service System Based on GeoSOT Grid & Encoding

    Directory of Open Access Journals (Sweden)

    LI Shizhong

    2016-12-01

    Full Text Available With the rapid development of the space and earth observation technology, it is important to establish a multi-source, multi-scale and unified cross-platform reference for global data. In practice, the production and maintenance of geospatial data are scattered in different units, and the standard of the data grid varies between departments and systems. All these bring out the disunity of standards among different historical periods or orgnizations. Aiming at geospatial information security library for the national high resolution earth observation, there are some demands for global display, associated retrieval and template applications and other integrated services for geospatial data. Based on GeoSOT grid and encoding theory system, "geospatial information security library information of globally unified grid encoding management" data subdivision organization solutions have been proposed; system-level analyses, researches and designs have been carried out. The experimental results show that the data organization and management method based on GeoSOT can significantly improve the overall efficiency of the geospatial information security service system.

  10. Promising Practices in Building Geospatial Academic Pathways and Educator Capacity: Findings from a Multiyear Evaluation Study.

    Science.gov (United States)

    Peery, B.; Wilkerson, S.

    2015-12-01

    Geospatial technology, including geographical information systems, global positioning systems, remote sensing and the analysis and interpretation of spatial data, is a rapidly growing industry in the United States and touches almost every discipline from business to the environment to health and sciences. The demand for a larger and more qualified geospatial workforce is simultaneously increasing. The GeoTEd project aims to meet this demand in Virginia and the surrounding region by 1) developing academic-to-workforce pathways, 2) providing professional development for educators, and 3) increasing student participation and impact. Since 2009, Magnolia Consulting has been evaluating the GeoTEd project, particularly its professional development work through the GeoTEd Institute. This presentation will provide a look into the challenges and successes of GeoTEd, and examine its impact on the geospatial academic pathways in the Virginia region. The presentation will highlight promising elements of this project that could serve as models for other endeavors.

  11. From Geomatics to Geospatial Intelligent Service Science

    Directory of Open Access Journals (Sweden)

    LI Deren

    2017-10-01

    Full Text Available The paper reviews the 60 years of development from traditional surveying and mapping to today's geospatial intelligent service science.The three important stages of surveying and mapping, namely analogue,analytical and digital stage are summarized.The author introduces the integration of GNSS,RS and GIS(3S,which forms the rise of geospatial informatics(Geomatics.The development of geo-spatial information science in digital earth era is analyzed,and the latest progress of geo-spatial information science towards real-time intelligent service in smart earth era is discussed.This paper focuses on the three development levels of "Internet plus" spatial information intelligent service.In the era of big data,the traditional geomatics will surely take advantage of the integration of communication,navigation,remote sensing,artificial intelligence,virtual reality and brain cognition science,and become geospatial intelligent service science,thereby making contributions to national economy,defense and people's livelihood.

  12. Citing geospatial feature inventories with XML manifests

    Science.gov (United States)

    Bose, R.; McGarva, G.

    2006-12-01

    Today published scientific papers include a growing number of citations for online information sources that either complement or replace printed journals and books. We anticipate this same trend for cartographic citations used in the geosciences, following advances in web mapping and geographic feature-based services. Instead of using traditional libraries to resolve citations for print material, the geospatial citation life cycle will include requesting inventories of objects or geographic features from distributed geospatial data repositories. Using a case study from the UK Ordnance Survey MasterMap database, which is illustrative of geographic object-based products in general, we propose citing inventories of geographic objects using XML feature manifests. These manifests: (1) serve as a portable listing of sets of versioned features; (2) could be used as citations within the identification portion of an international geospatial metadata standard; (3) could be incorporated into geospatial data transfer formats such as GML; but (4) can be resolved only with comprehensive, curated repositories of current and historic data. This work has implications for any researcher who foresees the need to make or resolve references to online geospatial databases.

  13. Open Source Geospatial Tools: Applications in Earth Observation

    National Research Council Canada - National Science Library

    McInerney, Daniel; Kempeneers, Pieter

    2015-01-01

    This book focuses on the use of open source software for geospatial analysis. It demonstrates the effectiveness of the command line interface for handling both vector, raster and 3D geospatial data...

  14. GAGES-II: Geospatial Attributes of Gages for Evaluating Streamflow

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset, termed "GAGES II", an acronym for Geospatial Attributes of Gages for Evaluating Streamflow, version II, provides geospatial data and classifications...

  15. U.S. EPAs Public Geospatial Metadata Service

    Data.gov (United States)

    U.S. Environmental Protection Agency — EPAs public geospatial metadata service provides external parties (Data.gov, GeoPlatform.gov, and the general public) with access to EPA's geospatial metadata...

  16. A Method for Automating Geospatial Dataset Metadata

    Directory of Open Access Journals (Sweden)

    Robert I. Dunfey

    2009-11-01

    Full Text Available Metadata have long been recognised as crucial to geospatial asset management and discovery, and yet undertaking their creation remains an unenviable task often to be avoided. This paper proposes a practical approach designed to address such concerns, decomposing various data creation, management, update and documentation process steps that are subsequently leveraged to contribute towards metadata record completion. Using a customised utility embedded within a common GIS application, metadata elements are computationally derived from an imposed feature metadata standard, dataset geometry, an integrated storage protocol and pre-prepared content, and instantiated within a common geospatial discovery convention. Yielding 27 out of a 32 total metadata elements (or 15 out of 17 mandatory elements the approach demonstrably lessens the burden of metadata authorship. It also encourages improved geospatial asset management whilst outlining core requisites for developing a more open metadata strategy not bound to any particular application domain.

  17. A Geospatial Data Infrastructure Deploying an Information and Knowledge Platform for the Agriculture Sector

    Directory of Open Access Journals (Sweden)

    Tomáš Kliment

    2016-03-01

    Full Text Available The paper reports a case study on the design and development of an Information and Knowledge-based Platform (IKP, whose core is a Geospatial Data Infrastructure (GDI. The IKP aims to support the agriculture sector in the Lombardy region of Italy. The main novelty of the present work is related primarily to the management of geospatial data sets and time series from heterogeneous data sources. Authoritative bodies provide access to databases of agricultural declarations, agronomic cadastral maps, and real-time meteorological data. Research institutions produce geospatial data sets and time series by processing and analysing remote sensing images, both multispectral optical and SAR (Synthetic Aperture Radar images. Finally, citizens and volunteers, such as farmers, or on-field operators belonging to agricultural associations, report in situ observations using smart technologies. The technological framework presents a novel approach related both to the workflow management of geospatial data sets and time series of heterogeneous sources, and the integrated processing of Volunteered Geographic Information (VGI within a GDI. The paper describes a prototype IKP, which provides a feasible solution that can be used for technology transfer in the real implementation of the IKP in regional and national agriculture sectors.

  18. Geospatial Data Curation at the University of Idaho

    Science.gov (United States)

    Kenyon, Jeremy; Godfrey, Bruce; Eckwright, Gail Z.

    2012-01-01

    The management and curation of digital geospatial data has become a central concern for many academic libraries. Geospatial data is a complex type of data critical to many different disciplines, and its use has become more expansive in the past decade. The University of Idaho Library maintains a geospatial data repository called the Interactive…

  19. Student Focused Geospatial Curriculum Initiatives: Internships and Certificate Programs at NCCU

    Science.gov (United States)

    Vlahovic, G.; Malhotra, R.

    2009-12-01

    This paper reports recent efforts by the Department of Environmental, Earth and Geospatial Sciences faculty at North Carolina Central University (NCCU) to develop a leading geospatial sciences program that will be considered a model for other Historically Black College/University (HBCU) peers nationally. NCCU was established in 1909 and is the nation’s first state supported public liberal arts college funded for African Americans. In the most recent annual ranking of America’s best black colleges by the US News and World Report (Best Colleges 2010), NCCU was ranked 10th in the nation. As one of only two HBCUs in the southeast offering an undergraduate degree in Geography (McKee, J.O. and C. V. Dixon. Geography in Historically Black Colleges/ Universities in the Southeast, in The Role of the South in Making of American Geography: Centennial of the AAG, 2004), NCCU is uniquely positioned to positively affect talent and diversity of the geospatial discipline in the future. Therefore, successful creation of research and internship pathways for NCCU students has national implications because it will increase the number of minority students joining the workforce and applying to PhD programs. Several related efforts will be described, including research and internship projects with Fugro EarthData Inc., Center for Remote Sensing and Mapping Science at the University of Georgia, Center for Earthquake Research and Information at the University of Memphis and the City of Durham. The authors will also outline requirements and recent successes of ASPRS Provisional Certification Program, developed and pioneered as collaborative effort between ASPRS and NCCU. This certificate program allows graduating students majoring in geospatial technologies and allied fields to become provisionally certified by passing peer-review and taking the certification exam. At NCCU, projects and certification are conducted under the aegis of the Geospatial Research, Innovative Teaching and

  20. Impacts of Geospatial Information for Decision Making

    Science.gov (United States)

    Pearlman, F.; Coote, A.; Friedl, L.; Stewart, M.

    2012-12-01

    Geospatial information contributes to decisions by both societal and individual decision-makers. More effective use of this information is essential as issues are increasingly complex and consequences can be critical for future economic and social development. To address this, a workshop brought together analysts, communicators, officials, and researchers from academia, government, non-governmental organizations, and the private sector. A range of policy issues, management needs, and resource requirements were discussed and a wide array of analyses, geospatial data, methods of analysis, and metrics were presented for assessing and communicating the value of geospatial information. It is clear that there are many opportunities for integrating science and engineering disciplines with the social sciences for addressing societal issues that would benefit from using geospatial information and earth observations. However, these collaborations must have outcomes that can be easily communicated to decision makers. This generally requires either succinct quantitative statements of value based on rigorous models and/or user testimonials of actual applications that save real money. An outcome of the workshop is to pursue the development of a community of practice or society that encompasses a wide range of scientific, social, management, and communication disciplines and fosters collaboration across specialties, helping to build trust across social and science aspects. A resource base is also necessary. This presentation will address approaches for creating a shared knowledge database, containing a glossary of terms, reference materials and examples of case studies and the potential applications for benefit analyses.

  1. Automated Geospatial Watershed Assessment Tool (AGWA)

    Science.gov (United States)

    The Automated Geospatial Watershed Assessment tool (AGWA, see: www.tucson.ars.ag.gov/agwa or http://www.epa.gov/esd/land-sci/agwa/) is a GIS interface jointly developed by the USDA Agricultural Research Service, the U.S. Environmental Protection Agency, the University of Arizona, and the University ...

  2. Machine learning on geospatial big data

    CSIR Research Space (South Africa)

    Van Zyl, T

    2014-02-01

    Full Text Available of the underpinnings of machine learning are statistical in nature. When considering statistics, the main intent of statistics is in gaining an understanding of the underlying system, in this case geospatial system, through an analysis of observations or data about...

  3. Lsiviewer 2.0 - a Client-Oriented Online Visualization Tool for Geospatial Vector Data

    Science.gov (United States)

    Manikanta, K.; Rajan, K. S.

    2017-09-01

    Geospatial data visualization systems have been predominantly through applications that are installed and run in a desktop environment. Over the last decade, with the advent of web technologies and its adoption by Geospatial community, the server-client model for data handling, data rendering and visualization respectively has been the most prevalent approach in Web-GIS. While the client devices have become functionally more powerful over the recent years, the above model has largely ignored it and is still in a mode of serverdominant computing paradigm. In this paper, an attempt has been made to develop and demonstrate LSIViewer - a simple, easy-to-use and robust online geospatial data visualisation system for the user's own data that harness the client's capabilities for data rendering and user-interactive styling, with a reduced load on the server. The developed system can support multiple geospatial vector formats and can be integrated with other web-based systems like WMS, WFS, etc. The technology stack used to build this system is Node.js on the server side and HTML5 Canvas and JavaScript on the client side. Various tests run on a range of vector datasets, upto 35 MB, showed that the time taken to render the vector data using LSIViewer is comparable to a desktop GIS application, QGIS, over an identical system.

  4. LSIVIEWER 2.0 – A CLIENT-ORIENTED ONLINE VISUALIZATION TOOL FOR GEOSPATIAL VECTOR DATA

    Directory of Open Access Journals (Sweden)

    K. Manikanta

    2017-09-01

    Full Text Available Geospatial data visualization systems have been predominantly through applications that are installed and run in a desktop environment. Over the last decade, with the advent of web technologies and its adoption by Geospatial community, the server-client model for data handling, data rendering and visualization respectively has been the most prevalent approach in Web-GIS. While the client devices have become functionally more powerful over the recent years, the above model has largely ignored it and is still in a mode of serverdominant computing paradigm. In this paper, an attempt has been made to develop and demonstrate LSIViewer – a simple, easy-to-use and robust online geospatial data visualisation system for the user’s own data that harness the client’s capabilities for data rendering and user-interactive styling, with a reduced load on the server. The developed system can support multiple geospatial vector formats and can be integrated with other web-based systems like WMS, WFS, etc. The technology stack used to build this system is Node.js on the server side and HTML5 Canvas and JavaScript on the client side. Various tests run on a range of vector datasets, upto 35 MB, showed that the time taken to render the vector data using LSIViewer is comparable to a desktop GIS application, QGIS, over an identical system.

  5. Geospatial Image Mining For Nuclear Proliferation Detection: Challenges and New Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Vatsavai, Raju [ORNL; Bhaduri, Budhendra L [ORNL; Cheriyadat, Anil M [ORNL; Arrowood, Lloyd [Y-12 National Security Complex; Bright, Eddie A [ORNL; Gleason, Shaun Scott [ORNL; Diegert, Carl [Sandia National Laboratories (SNL); Katsaggelos, Aggelos K [ORNL; Pappas, Thrasos N [ORNL; Porter, Reid [Los Alamos National Laboratory (LANL); Bollinger, Jim [Savannah River National Laboratory (SRNL); Chen, Barry [Lawrence Livermore National Laboratory (LLNL); Hohimer, Ryan [Pacific Northwest National Laboratory (PNNL)

    2010-01-01

    With increasing understanding and availability of nuclear technologies, and increasing persuasion of nuclear technologies by several new countries, it is increasingly becoming important to monitor the nuclear proliferation activities. There is a great need for developing technologies to automatically or semi-automatically detect nuclear proliferation activities using remote sensing. Images acquired from earth observation satellites is an important source of information in detecting proliferation activities. High-resolution remote sensing images are highly useful in verifying the correctness, as well as completeness of any nuclear program. DOE national laboratories are interested in detecting nuclear proliferation by developing advanced geospatial image mining algorithms. In this paper we describe the current understanding of geospatial image mining techniques and enumerate key gaps and identify future research needs in the context of nuclear proliferation.

  6. An Effective Framework for Distributed Geospatial Query Processing in Grids

    Directory of Open Access Journals (Sweden)

    CHEN, B.

    2010-08-01

    Full Text Available The emergence of Internet has greatly revolutionized the way that geospatial information is collected, managed, processed and integrated. There are several important research issues to be addressed for distributed geospatial applications. First, the performance of geospatial applications is needed to be considered in the Internet environment. In this regard, the Grid as an effective distributed computing paradigm is a good choice. The Grid uses a series of middleware to interconnect and merge various distributed resources into a super-computer with capability of high performance computation. Secondly, it is necessary to ensure the secure use of independent geospatial applications in the Internet environment. The Grid just provides the utility of secure access to distributed geospatial resources. Additionally, it makes good sense to overcome the heterogeneity between individual geospatial information systems in Internet. The Open Geospatial Consortium (OGC proposes a number of generalized geospatial standards e.g. OGC Web Services (OWS to achieve interoperable access to geospatial applications. The OWS solution is feasible and widely adopted by both the academic community and the industry community. Therefore, we propose an integrated framework by incorporating OWS standards into Grids. Upon the framework distributed geospatial queries can be performed in an interoperable, high-performance and secure Grid environment.

  7. GeoSearch: A lightweight broking middleware for geospatial resources discovery

    Science.gov (United States)

    Gui, Z.; Yang, C.; Liu, K.; Xia, J.

    2012-12-01

    With petabytes of geodata, thousands of geospatial web services available over the Internet, it is critical to support geoscience research and applications by finding the best-fit geospatial resources from the massive and heterogeneous resources. Past decades' developments witnessed the operation of many service components to facilitate geospatial resource management and discovery. However, efficient and accurate geospatial resource discovery is still a big challenge due to the following reasons: 1)The entry barriers (also called "learning curves") hinder the usability of discovery services to end users. Different portals and catalogues always adopt various access protocols, metadata formats and GUI styles to organize, present and publish metadata. It is hard for end users to learn all these technical details and differences. 2)The cost for federating heterogeneous services is high. To provide sufficient resources and facilitate data discovery, many registries adopt periodic harvesting mechanism to retrieve metadata from other federated catalogues. These time-consuming processes lead to network and storage burdens, data redundancy, and also the overhead of maintaining data consistency. 3)The heterogeneous semantics issues in data discovery. Since the keyword matching is still the primary search method in many operational discovery services, the search accuracy (precision and recall) is hard to guarantee. Semantic technologies (such as semantic reasoning and similarity evaluation) offer a solution to solve these issues. However, integrating semantic technologies with existing service is challenging due to the expandability limitations on the service frameworks and metadata templates. 4)The capabilities to help users make final selection are inadequate. Most of the existing search portals lack intuitive and diverse information visualization methods and functions (sort, filter) to present, explore and analyze search results. Furthermore, the presentation of the value

  8. A Semantic Approach to Describe Geospatial Resources

    Science.gov (United States)

    de Sousa, Sidney Roberto

    Geographic information systems (GIS) are increasingly using geospatial data from the Web to produce geographic information. One big challenge is to find the relevant data, which often is based on keywords or even file names. However, these approaches lack semantics. Thus, it is necessary to provide mechanisms to prepare data to help retrieval of semantically relevant data. This paper proposes an approach to attack this problem. This approach is based on semantic annotations that use geographic metadata and ontologies to describe heterogeneous geospatial data. Semantic annotations are RDF/XML files that rely on a FGDC metadata schema, filled with appropriate ontology terms, and stored in a XML database. The proposal is illustrated by a case study of semantic annotations of agricultural resources, using domain ontologies.

  9. Geospatial Resource Access Analysis In Hedaru, Tanzania

    Science.gov (United States)

    Clark, Dylan G.; Premkumar, Deepak; Mazur, Robert; Kisimbo, Elibariki

    2013-12-01

    Populations around the world are facing increased impacts of anthropogenic-induced environmental changes and rapid population movements. These environmental and social shifts are having an elevated impact on the livelihoods of agriculturalists and pastoralists in developing countries. This appraisal integrates various tools—usually used independently— to gain a comprehensive understanding of the regional livelihood constraints in the rural Hedaru Valley of northeastern Tanzania. Conducted in three villages with different natural resources, using three primary methods: 1) participatory mapping of infrastructures; 2) administration of quantitative, spatially-tied surveys (n=80) and focus groups (n=14) that examined land use, household health, education, and demographics; 3) conducting quantitative time series analysis of Landsat- based Normalized Difference Vegetation Index images. Through various geospatial and multivariate linear regression analyses, significant geospatial trends emerged. This research added to the academic understanding of the region while establishing pathways for climate change adaptation strategies.

  10. Establishment of the Northeast Coastal Watershed Geospatial Data Network (NECWGDN)

    Energy Technology Data Exchange (ETDEWEB)

    Hannigan, Robyn [University of Massachusetts Boston

    2014-02-17

    The goals of NECWGDN were to establish integrated geospatial databases that interfaced with existing open-source (water.html) environmental data server technologies (e.g., HydroDesktop) and included ecological and human data to enable evaluation, prediction, and adaptation in coastal environments to climate- and human-induced threats to the coastal marine resources within the Gulf of Maine. We have completed the development and testing of a "test bed" architecture that is compatible with HydroDesktop and have identified key metadata structures that will enable seamless integration and delivery of environmental, ecological, and human data as well as models to predict threats to end-users. Uniquely this database integrates point as well as model data and so offers capacities to end-users that are unique among databases. Future efforts will focus on the development of integrated environmental-human dimension models that can serve, in near real time, visualizations of threats to coastal resources and habitats.

  11. Integration of a city GIS data with Google Map API and Google Earth API for a web based 3D Geospatial Application

    OpenAIRE

    Akanbi, Adeyinka K.; Agunbiade, Olusanya Y.

    2013-01-01

    International audience; Geospatial applications are becoming indispensable part of information systems, they provides detailed information’s regarding the attribute data of spatial objects in real world. Due to the rapid technological developments in web based geographical information systems, the uses of web based geospatial application varies from Geotagging to Geolocation capabilities. Therefore, effective utilization of web based information system can only be realized by representing the...

  12. Geospatial data collection development policies’ characteristics

    OpenAIRE

    Vardakosta, Ifigeneia; Kapidakis, Sarantos

    2012-01-01

    In days of global economic distress, libraries implementing a GIS service, must ensure that users will be able to make the greatest possible use of its capabilities and functions. Based on the above framework, the goal of this study is to broadly explore the collection development policies of libraries with geographical collections and GIS services worldwide, outlining the main characteristics of the geospatial collection policies and providing some examples of how these characteristics are r...

  13. Identification of the condition of crops based on geospatial data embedded in graph databases

    Science.gov (United States)

    Idziaszek, P.; Mueller, W.; Górna, K.; Okoń, P.; Boniecki, P.; Koszela, K.; Fojud, A.

    2017-07-01

    The Web application presented here supports plant production and works with the graph database Neo4j shell to support the assessment of the condition of crops on the basis of geospatial data, including raster and vector data. The adoption of a graph database as a tool to store and manage the data, including geospatial data, is completely justified in the case of those agricultural holdings that have a wide range of types and sizes of crops. In addition, the authors tested the option of using the technology of Microsoft Cognitive Services at the level of produced application that enables an image analysis using the services provided. The presented application was designed using ASP.NET MVC technology and a wide range of leading IT tools.

  14. Bridging IMO e-Navigation Policy and Offshore Oil and Gas Operations through Geospatial Standards

    Directory of Open Access Journals (Sweden)

    Filipe Modesto Da Rocha

    2016-04-01

    Full Text Available In offshore industry activities, the suitable onboard provision of assets location and geospatial marine information during operations is essential. Currently, most companies use its own data structures, resulting in incompatibility between processes. In order to promote the data exchange, oil and gas industry associations have pursued initiatives to standardize spatial information. In turn, the IMO - International Maritime Organization - started the implementation of e-Navigation policy, which is the standardization of technologies and protocols applied to maritime information and navigation. This paper shows relationship and integration points between maritime activities of oil and gas industry and e-Navigation technologies and processes, highlighting geospatial information. This paper also preludes out an initiative for a suitable product specification for the offshore oil and gas industry, compliant with e-Navigation and IHO S-100 international standards.

  15. GEOSPATIAL ANALYSIS OF ENVIRONMENT POLLUTION

    Directory of Open Access Journals (Sweden)

    Medjon Hysenaj

    2016-01-01

    Full Text Available The paper goal is to develop a spatial analyses of the most critical environmental issues in the country and how the population concerns could be addressed with the use of spatial technologies. Population perception of environment management relies on its minimum levels. In the recent past, static, fixed scale, multi use, highly accurate, permanent, paper maps compiled over a short period of time was the norm, meanwhile today’s world uses a dynamic, single use, variable accuracy, variable scale, digital product made from data possibly retrieved from database derived from multiple sources. The opportunity to combine spatial technology associated with numerical data leading to a structured and genuine analyzes of the country issues turns to be an optimal strategy. We structure a set of digital maps encouraging decision-makers to rely their performance on spatial tools. Coastline pollution stands as a top priority. For the purpose of the analysis, the entire coastline was divided into sectors. Hence, further investigations could be addressed toward space-time relationship to cover the environmental evolution process, which may serve as an input for future predictions.

  16. Challenges for drought mitigation in Africa: The potential use of geospatial data and drought information systems

    OpenAIRE

    Vicente-Serrano, Sergio M.; Beguería, Santiago; Gimeno, Luis; Eklundh, Lars; Giuliani, Gregory; Weston, Derek; El Kenawy, Ahmed; López-Moreno, Juan I.; Nieto, Raquel; Ayenew, Tenalem; Konte, Diawoye; Ardö, Jonas; Pegram, Geoffrey G.S.

    2012-01-01

    Understanding, monitoring and mitigating drought is a very difficult task as a consequence of the intrinsic nature of the phenomenon. In addition, assessing the impact of drought on ecosystems and societies is also a complex task, because the same drought severity may have different consequences in different regions and systems due to the underlying vulnerabilities. New technologies based on geospatial information are available to determine the risk and vulnerability of a system to a drought ...

  17. 78 FR 49288 - Agency Information Collection Activities: Proposed Collection; Comments Requested: Geospatial...

    Science.gov (United States)

    2013-08-13

    ... Information Collection Activities: Proposed Collection; Comments Requested: Geospatial Capabilities Survey... Collection: Establishment survey and initial approval of collection. (2) Title of Form/Collection: Geospatial... effort that provides an ability to determine, in detail, the geospatial tools, techniques, and practices...

  18. 78 FR 64013 - Agency Information Collection Activities; Proposed Collection; Comments Requested: Geospatial...

    Science.gov (United States)

    2013-10-25

    ... Information Collection Activities; Proposed Collection; Comments Requested: Geospatial Capabilities Survey...: Establishment survey and initial approval of collection. (2) Title of Form/Collection: Geospatial Capabilities... effort that provides an ability to determine, in detail, the geospatial tools, techniques, and practices...

  19. Geospatial Data Presentation and GIS in the GLOBE Program

    Science.gov (United States)

    Brown, D. H.; Brummer, R.; Gallagher, S.; Henderson, S.; Milberger, K.

    2004-12-01

    The GLOBE Program is a worldwide science and education endeavor designed to increase scientific understanding of the Earth as a system, support improved student achievement in science and math, and enhance environmental awareness through inquiry-based learning activities. Since its inception in 1995, over 15,000 schools around the world have taken part in the GLOBE Program. GLOBE students make local environmental measurements and enter them into a publicly available distributed relational database. As of September 2004, this database contains over 11 million measurements and associated metadata records, collected and submitted by students in 86 countries around the world. GLOBE provides tools that help teachers and students use inquiry-based strategies to better understand the Earth as a system. Using these tools and GLOBE data, teachers can provide rich, technology-based learning activities for students that align with national education standards. The GLOBE Program Web site (http://www.globe.gov/) provides a browser-based system for visualizing geo-referenced student-collected data, as well as satellite and sensor data from a variety of other sources. The visualization tool overlays student data on top of base layers that include coastlines, national boundaries, state/province boundaries, cities, rivers, and transportation networks. The interface supports many standard GIS functions, including zooming, panning, scrolling, selectable layer visibility, and geospatial querying. Students can also visualize data from Earth observing satellites, ground stations, and weather models and compare these to their local measurements. All geospatial products are also available through an Open Geospatial Consortium Web Map Service interface. Data can also be downloaded as delimited ASCII text files or as .shape files that users can import into client-side GIS or other visualization or analysis software. This presentation will provide an overview and demonstration of some of the

  20. Spatially enabling the Global Framework for Climate Services: Reviewing geospatial solutions to efficiently share and integrate climate data & information

    Directory of Open Access Journals (Sweden)

    Gregory Giuliani

    2017-12-01

    Considering that climate data is part of the broader Earth observation and geospatial data domain, the aim of this paper is to review the state-of-the-art geospatial technologies that can support the delivery of efficient and effective climate services, and enhancing the value chain of climate data in support of the objectives of the Global Framework for Climate Services. The major benefit of spatially-enabling climate services is that it brings interoperability along the entire climate data value chain. It facilitates storing, visualizing, accessing, processing/analyzing, and integrating climate data and information and enables users to create value-added products and services.

  1. Development of Geospatial Map Based Election Portal

    Science.gov (United States)

    Gupta, A. Kumar Chandra; Kumar, P.; Vasanth Kumar, N.

    2014-11-01

    The Geospatial Delhi Limited (GSDL), a Govt. of NCT of Delhi Company formed in order to provide the geospatial information of National Capital Territory of Delhi (NCTD) to the Government of National Capital Territory of Delhi (GNCTD) and its organs such as DDA, MCD, DJB, State Election Department, DMRC etc., for the benefit of all citizens of Government of National Capital Territory of Delhi (GNCTD). This paper describes the development of Geospatial Map based Election portal (GMEP) of NCT of Delhi. The portal has been developed as a map based spatial decision support system (SDSS) for pertain to planning and management of Department of Chief Electoral Officer, and as an election related information searching tools (Polling Station, Assembly and parliamentary constituency etc.,) for the citizens of NCTD. The GMEP is based on Client-Server architecture model. It has been developed using ArcGIS Server 10.0 with J2EE front-end on Microsoft Windows environment. The GMEP is scalable to enterprise SDSS with enterprise Geo Database & Virtual Private Network (VPN) connectivity. Spatial data to GMEP includes delimited precinct area boundaries of Voters Area of Polling stations, Assembly Constituency, Parliamentary Constituency, Election District, Landmark locations of Polling Stations & basic amenities (Police Stations, Hospitals, Schools and Fire Stations etc.). GMEP could help achieve not only the desired transparency and easiness in planning process but also facilitates through efficient & effective tools for management of elections. It enables a faster response to the changing ground realities in the development planning, owing to its in-built scientific approach and open-ended design.

  2. Streamlining geospatial metadata in the Semantic Web

    Science.gov (United States)

    Fugazza, Cristiano; Pepe, Monica; Oggioni, Alessandro; Tagliolato, Paolo; Carrara, Paola

    2016-04-01

    In the geospatial realm, data annotation and discovery rely on a number of ad-hoc formats and protocols. These have been created to enable domain-specific use cases generalized search is not feasible for. Metadata are at the heart of the discovery process and nevertheless they are often neglected or encoded in formats that either are not aimed at efficient retrieval of resources or are plainly outdated. Particularly, the quantum leap represented by the Linked Open Data (LOD) movement did not induce so far a consistent, interlinked baseline in the geospatial domain. In a nutshell, datasets, scientific literature related to them, and ultimately the researchers behind these products are only loosely connected; the corresponding metadata intelligible only to humans, duplicated on different systems, seldom consistently. Instead, our workflow for metadata management envisages i) editing via customizable web- based forms, ii) encoding of records in any XML application profile, iii) translation into RDF (involving the semantic lift of metadata records), and finally iv) storage of the metadata as RDF and back-translation into the original XML format with added semantics-aware features. Phase iii) hinges on relating resource metadata to RDF data structures that represent keywords from code lists and controlled vocabularies, toponyms, researchers, institutes, and virtually any description one can retrieve (or directly publish) in the LOD Cloud. In the context of a distributed Spatial Data Infrastructure (SDI) built on free and open-source software, we detail phases iii) and iv) of our workflow for the semantics-aware management of geospatial metadata.

  3. Geospatial processing of registered H.264 data

    Science.gov (United States)

    Maleh, Ray; Boyle, Frank A.; Deignan, Paul B.

    2012-06-01

    The H.264 protocol for high resolution video offers several enhancements which can be leveraged for the selective tracking and focused resolution of disjoint macro-blocks of the frame sequence such that a smooth degradation of context is achieved at significant compression rates. We demonstrate the near real time temporal and spatial foveation of the video stream. Tracking results produced by spatial statistics of the georegistered motion vectors of the H.264 frames are useful for change detection and background discrimination as well as temporal foveation. Finally, we discuss the online analytical processing of the spatial database of full motion video through use of the automatically generated geospatial statistical descriptor metadata.

  4. HydroQGIS: Hydrological Geospatial Data Manipulation

    Science.gov (United States)

    Frazier, N.

    2015-12-01

    Many aspects of hydrology are tightly coupled with geospatial data. For this reason, geospatial information systems (GIS) are often incorporated into work flows for analyzing hydrological data. These disjoint work flows, however, often require many steps and different applications to achieve the desired results. Simplifying the workflow involved in regional flood peak scaling studies motivated the creation of the HydroQGIS plugin. Flood frequency analysis presents one of the largest hurdles in studying regional flood peak scaling. HydroQGIS aids these studies with a set of tools that reduce the time to perform flood frequency analsyis on USGS gauging stations. HydroQGIS is a framework for hydrological geospatial plugin development for Quantum GIS (QGIS). It uses the cross-platform nature of QGIS, QT, and Python to create a set of tools to help simplify the work flow of hydrological data searching, gathering, and analysis into a single application that can be used by users on any platform. HydroQGIS combines the Quantum GIS plugin framework with various web-services to couple data and analysis in a uniform environment. QGIS provides a fully functioning GIS application on top of which plugins can be developed. The HydroQGIS plugin focuses on data acquisition and analysis from the geospatial domain. The design of HydroQGIS facilitates quick development of additional tools, used independently or in conjunction with other developed utilities, to streamline data acquisition and analysis. HydroQGIS currently implements an Environmental Protection Agency (EPA) Watershed Delineation tool using the EPA Waters web service, as well as a United States Geological Survey (USGS) gauging station search using the USGS Instantaneous Values web service. These tools provide a unified GIS interface that allows users to locate and map gauging stations and watersheds using any base map of their choice. These tools, while useful by themselves, also support a flood frequency analysis (FFA

  5. Open Geospatial Analytics with PySAL

    Directory of Open Access Journals (Sweden)

    Sergio J. Rey

    2015-05-01

    Full Text Available This article reviews the range of delivery platforms that have been developed for the PySAL open source Python library for spatial analysis. This includes traditional desktop software (with a graphical user interface, command line or embedded in a computational notebook, open spatial analytics middleware, and web, cloud and distributed open geospatial analytics for decision support. A common thread throughout the discussion is the emphasis on openness, interoperability, and provenance management in a scientific workflow. The code base of the PySAL library provides the common computing framework underlying all delivery mechanisms.

  6. Online Resources to Support Professional Development for Managing and Preserving Geospatial Data

    Science.gov (United States)

    Downs, R. R.; Chen, R. S.

    2013-12-01

    Improved capabilities of information and communication technologies (ICT) enable the development of new systems and applications for collecting, managing, disseminating, and using scientific data. New knowledge, skills, and techniques are also being developed to leverage these new ICT capabilities and improve scientific data management practices throughout the entire data lifecycle. In light of these developments and in response to increasing recognition of the wider value of scientific data for society, government agencies are requiring plans for the management, stewardship, and public dissemination of data and research products that are created by government-funded studies. Recognizing that data management and dissemination have not been part of traditional science education programs, new educational programs and learning resources are being developed to prepare new and practicing scientists, data scientists, data managers, and other data professionals with skills in data science and data management. Professional development and training programs also are being developed to address the need for scientists and professionals to improve their expertise in using the tools and techniques for managing and preserving scientific data. The Geospatial Data Preservation Resource Center offers an online catalog of various open access publications, open source tools, and freely available information for the management and stewardship of geospatial data and related resources, such as maps, GIS, and remote sensing data. Containing over 500 resources that can be found by type, topic, or search query, the geopreservation.org website enables discovery of various types of resources to improve capabilities for managing and preserving geospatial data. Applications and software tools can be found for use online or for download. Online journal articles, presentations, reports, blogs, and forums are also available through the website. Available education and training materials include

  7. Geospatial Services in Special Libraries: A Needs Assessment Perspective

    Science.gov (United States)

    Barnes, Ilana

    2013-01-01

    Once limited to geographers and mapmakers, Geographic Information Systems (GIS) has taken a growing central role in information management and visualization. Geospatial services run a gamut of different products and services from Google maps to ArcGIS servers to Mobile development. Geospatial services are not new. Libraries have been writing about…

  8. 78 FR 30328 - Announcement of National Geospatial Advisory Committee Meeting

    Science.gov (United States)

    2013-05-22

    ... NSDI Strategic Plan Geospatial Platform OMB Circular A-16 Portfolio Management Landsat Advisory Group... composed of representatives from governmental, private sector, non-profit, and academic organizations, was established to advise the Federal Geographic Data Committee on management of Federal geospatial programs, the...

  9. 77 FR 52053 - Announcement of National Geospatial Advisory Committee Meeting

    Science.gov (United States)

    2012-08-28

    ... established to advise the Federal Geographic Data Committee on management of Federal geospatial programs, the development of the National Spatial Data Infrastructure, and the implementation of Office of Management and Budget (OMB) Circular A-16. Topics to be addressed at the meeting include: Leadership Dialogue Geospatial...

  10. Biosecurity and geospatial analysis of mycoplasma infections in ...

    African Journals Online (AJOL)

    Geospatial database of farm locations and biosecurity measures are essential to control disease outbreaks. A study was conducted to establish geospatial database on poultry farms in Al-Jabal Al-Gharbi region of Libya, to evaluate the biosecurity level of each farm and to determine the seroprevalence of mycoplasma and ...

  11. Investigating Climate Change Issues With Web-Based Geospatial Inquiry Activities

    Science.gov (United States)

    Dempsey, C.; Bodzin, A. M.; Sahagian, D. L.; Anastasio, D. J.; Peffer, T.; Cirucci, L.

    2011-12-01

    In the Environmental Literacy and Inquiry middle school Climate Change curriculum we focus on essential climate literacy principles with an emphasis on weather and climate, Earth system energy balance, greenhouse gases, paleoclimatology, and how human activities influence climate change (http://www.ei.lehigh.edu/eli/cc/). It incorporates a related set of a framework and design principles to provide guidance for the development of the geospatial technology-integrated Earth and environmental science curriculum materials. Students use virtual globes, Web-based tools including an interactive carbon calculator and geologic timeline, and inquiry-based lab activities to investigate climate change topics. The curriculum includes educative curriculum materials that are designed to promote and support teachers' learning of important climate change content and issues, geospatial pedagogical content knowledge, and geographic spatial thinking. The curriculum includes baseline instructional guidance for teachers and provides implementation and adaptation guidance for teaching with diverse learners including low-level readers, English language learners and students with disabilities. In the curriculum, students use geospatial technology tools including Google Earth with embedded spatial data to investigate global temperature changes, areas affected by climate change, evidence of climate change, and the effects of sea level rise on the existing landscape. We conducted a designed-based research implementation study with urban middle school students. Findings showed that the use of the Climate Change curriculum showed significant improvement in urban middle school students' understanding of climate change concepts.

  12. The geospatial data quality REST API for primary biodiversity data.

    Science.gov (United States)

    Otegui, Javier; Guralnick, Robert P

    2016-06-01

    We present a REST web service to assess the geospatial quality of primary biodiversity data. It enables access to basic and advanced functions to detect completeness and consistency issues as well as general errors in the provided record or set of records. The API uses JSON for data interchange and efficient parallelization techniques for fast assessments of large datasets. The Geospatial Data Quality API is part of the VertNet set of APIs. It can be accessed at http://api-geospatial.vertnet-portal.appspot.com/geospatial and is already implemented in the VertNet data portal for quality reporting. Source code is freely available under GPL license from http://www.github.com/vertnet/api-geospatial javier.otegui@gmail.com or rguralnick@flmnh.ufl.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  13. A web service for service composition to aid geospatial modelers

    Science.gov (United States)

    Bigagli, L.; Santoro, M.; Roncella, R.; Mazzetti, P.

    2012-04-01

    The identification of appropriate mechanisms for process reuse, chaining and composition is considered a key enabler for the effective uptake of a global Earth Observation infrastructure, currently pursued by the international geospatial research community. In the Earth and Space Sciences, such a facility could primarily enable integrated and interoperable modeling, for what several approaches have been proposed and developed, over the last years. In fact, GEOSS is specifically tasked with the development of the so-called "Model Web". At increasing levels of abstraction and generalization, the initial stove-pipe software tools have evolved to community-wide modeling frameworks, to Component-Based Architecture solution, and, more recently, started to embrace Service-Oriented Architectures technologies, such as the OGC WPS specification and the WS-* stack of W3C standards for service composition. However, so far, the level of abstraction seems too low for implementing the Model Web vision, and far too complex technological aspects must still be addressed by both providers and users, resulting in limited usability and, eventually, difficult uptake. As by the recent ICT trend of resource virtualization, it has been suggested that users in need of a particular processing capability, required by a given modeling workflow, may benefit from outsourcing the composition activities into an external first-class service, according to the Composition as a Service (CaaS) approach. A CaaS system provides the necessary interoperability service framework for adaptation, reuse and complementation of existing processing resources (including models and geospatial services in general) in the form of executable workflows. This work introduces the architecture of a CaaS system, as a distributed information system for creating, validating, editing, storing, publishing, and executing geospatial workflows. This way, the users can be freed from the need of a composition infrastructure and

  14. Geodata fusion study by the Open Geospatial Consortium

    Science.gov (United States)

    Percivall, George

    2013-05-01

    Making new connections in existing data is a powerful method to gain understanding of the world. Data fusion is not a new topic, but new approaches provide opportunities to enhance this ubiquitous process. Interoperability based on open standards is radically changing the classical domains of data fusion while inventing entirely new ways to discern relationships in data with little structure. Associations based on locations and times are of the most primary type. The Open Geospatial Consortium (OGC) conducted a Fusion Standards study with recommendations implemented in testbeds. In the context of this study, Data Fusion was defined as: "the act or process of combining or associating data or information regarding one or more entities considered in an explicit or implicit knowledge framework to improve one's capability (or provide a new capability) for detection, identification, or characterization of that entity". Three categories were used to organize this study: Observation Fusion, Feature fusion, and Decision fusion. The study considered classical fusion as exemplified by the JDL and OODA models as well as how fusion is achieved by new technology such as web-based mash-ups and mobile Internet. The study considers both OGC standards as well open standards from other standards organizations. These technologies and standards aid in bringing structure to unstructured data as well as enabling a major new thrust in Decision Fusion.

  15. Contextual object understanding through geospatial analysis and reasoning (COUGAR)

    Science.gov (United States)

    Douglas, Joel; Antone, Matthew; Coggins, James; Rhodes, Bradley J.; Sobel, Erik; Stolle, Frank; Vinciguerra, Lori; Zandipour, Majid; Zhong, Yu

    2009-05-01

    Military operations in urban areas often require detailed knowledge of the location and identity of commonly occurring objects and spatial features. The ability to rapidly acquire and reason over urban scenes is critically important to such tasks as mission and route planning, visibility prediction, communications simulation, target recognition, and inference of higher-level form and function. Under DARPA's Urban Reasoning and Geospatial ExploitatioN Technology (URGENT) Program, the BAE Systems team has developed a system that combines a suite of complementary feature extraction and matching algorithms with higher-level inference and contextual reasoning to detect, segment, and classify urban entities of interest in a fully automated fashion. Our system operates solely on colored 3D point clouds, and considers object categories with a wide range of specificity (fire hydrants, windows, parking lots), scale (street lights, roads, buildings, forests), and shape (compact shapes, extended regions, terrain). As no single method can recognize the diverse set of categories under consideration, we have integrated multiple state-of-the-art technologies that couple hierarchical associative reasoning with robust computer vision and machine learning techniques. Our solution leverages contextual cues and evidence propagation from features to objects to scenes in order to exploit the combined descriptive power of 3D shape, appearance, and learned inter-object spatial relationships. The result is a set of tools designed to significantly enhance the productivity of analysts in exploiting emerging 3D data sources.

  16. Cloud Computing for Geosciences--GeoCloud for standardized geospatial service platforms (Invited)

    Science.gov (United States)

    Nebert, D. D.; Huang, Q.; Yang, C.

    2013-12-01

    The 21st century geoscience faces challenges of Big Data, spike computing requirements (e.g., when natural disaster happens), and sharing resources through cyberinfrastructure across different organizations (Yang et al., 2011). With flexibility and cost-efficiency of computing resources a primary concern, cloud computing emerges as a promising solution to provide core capabilities to address these challenges. Many governmental and federal agencies are adopting cloud technologies to cut costs and to make federal IT operations more efficient (Huang et al., 2010). However, it is still difficult for geoscientists to take advantage of the benefits of cloud computing to facilitate the scientific research and discoveries. This presentation reports using GeoCloud to illustrate the process and strategies used in building a common platform for geoscience communities to enable the sharing, integration of geospatial data, information and knowledge across different domains. GeoCloud is an annual incubator project coordinated by the Federal Geographic Data Committee (FGDC) in collaboration with the U.S. General Services Administration (GSA) and the Department of Health and Human Services. It is designed as a staging environment to test and document the deployment of a common GeoCloud community platform that can be implemented by multiple agencies. With these standardized virtual geospatial servers, a variety of government geospatial applications can be quickly migrated to the cloud. In order to achieve this objective, multiple projects are nominated each year by federal agencies as existing public-facing geospatial data services. From the initial candidate projects, a set of common operating system and software requirements was identified as the baseline for platform as a service (PaaS) packages. Based on these developed common platform packages, each project deploys and monitors its web application, develops best practices, and documents cost and performance information. This

  17. An Automated End-To Multi-Agent Qos Based Architecture for Selection of Geospatial Web Services

    Science.gov (United States)

    Shah, M.; Verma, Y.; Nandakumar, R.

    2012-07-01

    Over the past decade, Service-Oriented Architecture (SOA) and Web services have gained wide popularity and acceptance from researchers and industries all over the world. SOA makes it easy to build business applications with common services, and it provides like: reduced integration expense, better asset reuse, higher business agility, and reduction of business risk. Building of framework for acquiring useful geospatial information for potential users is a crucial problem faced by the GIS domain. Geospatial Web services solve this problem. With the help of web service technology, geospatial web services can provide useful geospatial information to potential users in a better way than traditional geographic information system (GIS). A geospatial Web service is a modular application designed to enable the discovery, access, and chaining of geospatial information and services across the web that are often both computation and data-intensive that involve diverse sources of data and complex processing functions. With the proliferation of web services published over the internet, multiple web services may provide similar functionality, but with different non-functional properties. Thus, Quality of Service (QoS) offers a metric to differentiate the services and their service providers. In a quality-driven selection of web services, it is important to consider non-functional properties of the web service so as to satisfy the constraints or requirements of the end users. The main intent of this paper is to build an automated end-to-end multi-agent based solution to provide the best-fit web service to service requester based on QoS.

  18. Geospatial Health: the first five years

    Directory of Open Access Journals (Sweden)

    Jürg Utzinger

    2011-11-01

    Full Text Available Geospatial Health is an international, peer-reviewed scientific journal produced by the Global Network for Geospatial Health (GnosisGIS. This network was founded in 2000 and the inaugural issue of its official journal was published in November 2006 with the aim to cover all aspects of geographical information system (GIS applications, remote sensing and other spatial analytic tools focusing on human and veterinary health. The University of Naples Federico II is the publisher, producing two issues per year, both as hard copy and an open-access online version. The journal is referenced in major databases, including CABI, ISI Web of Knowledge and PubMed. In 2008, it was assigned its first impact factor (1.47, which has now reached 1.71. Geospatial Health is managed by an editor-in-chief and two associate editors, supported by five regional editors and a 23-member strong editorial board. This overview takes stock of the first five years of publishing: 133 contributions have been published so far, primarily original research (79.7%, followed by reviews (7.5%, announcements (6.0%, editorials and meeting reports (3.0% each and a preface in the first issue. A content analysis of all the original research articles and reviews reveals that three quarters of the publications focus on human health with the remainder dealing with veterinary health. Two thirds of the papers come from Africa, Asia and Europe with similar numbers of contributions from each continent. Studies of more than 35 different diseases, injuries and risk factors have been presented. Malaria and schistosomiasis were identified as the two most important diseases (11.2% each. Almost half the contributions were based on GIS, one third on spatial analysis, often using advanced Bayesian geostatistics (13.8%, and one quarter on remote sensing. The 120 original research articles, reviews and editorials were produced by 505 authors based at institutions and universities in 52 countries

  19. Geospatial health: the first five years.

    Science.gov (United States)

    Utzinger, Jürg; Rinaldi, Laura; Malone, John B; Krauth, Stefanie J; Kristensen, Thomas K; Cringoli, Giuseppe; Bergquist, Robert

    2011-11-01

    Geospatial Health is an international, peer-reviewed scientific journal produced by the Global Network for Geospatial Health (GnosisGIS). This network was founded in 2000 and the inaugural issue of its official journal was published in November 2006 with the aim to cover all aspects of geographical information system (GIS) applications, remote sensing and other spatial analytic tools focusing on human and veterinary health. The University of Naples Federico II is the publisher, producing two issues per year, both as hard copy and an open-access online version. The journal is referenced in major databases, including CABI, ISI Web of Knowledge and PubMed. In 2008, it was assigned its first impact factor (1.47), which has now reached 1.71. Geospatial Health is managed by an editor-in-chief and two associate editors, supported by five regional editors and a 23-member strong editorial board. This overview takes stock of the first five years of publishing: 133 contributions have been published so far, primarily original research (79.7%), followed by reviews (7.5%), announcements (6.0%), editorials and meeting reports (3.0% each) and a preface in the first issue. A content analysis of all the original research articles and reviews reveals that three quarters of the publications focus on human health with the remainder dealing with veterinary health. Two thirds of the papers come from Africa, Asia and Europe with similar numbers of contributions from each continent. Studies of more than 35 different diseases, injuries and risk factors have been presented. Malaria and schistosomiasis were identified as the two most important diseases (11.2% each). Almost half the contributions were based on GIS, one third on spatial analysis, often using advanced Bayesian geostatistics (13.8%), and one quarter on remote sensing. The 120 original research articles, reviews and editorials were produced by 505 authors based at institutions and universities in 52 countries. Importantly, a

  20. VISA: AN AUTOMATIC AWARE AND VISUAL AIDS MECHANISM FOR IMPROVING THE CORRECT USE OF GEOSPATIAL DATA

    Directory of Open Access Journals (Sweden)

    J. H. Hong

    2016-06-01

    Full Text Available With the fast growth of internet-based sharing mechanism and OpenGIS technology, users nowadays enjoy the luxury to quickly locate and access a variety of geospatial data for the tasks at hands. While this sharing innovation tremendously expand the possibility of application and reduce the development cost, users nevertheless have to deal with all kinds of “differences” implicitly hidden behind the acquired georesources. We argue the next generation of GIS-based environment, regardless internet-based or not, must have built-in knowledge to automatically and correctly assess the fitness of data use and present the analyzed results to users in an intuitive and meaningful way. The VISA approach proposed in this paper refer to four different types of visual aids that can be respectively used for addressing analyzed results, namely, virtual layer, informative window, symbol transformation and augmented TOC. The VISA-enabled interface works in an automatic-aware fashion, where the standardized metadata serve as the known facts about the selected geospatial resources, algorithms for analyzing the differences of temporality and quality of the geospatial resources were designed and the transformation of analyzed results into visual aids were automatically executed. It successfully presents a new way for bridging the communication gaps between systems and users. GIS has been long seen as a powerful integration tool, but its achievements would be highly restricted if it fails to provide a friendly and correct working platform.

  1. MOBILE TRAFFIC ALERT AND TOURIST ROUTE GUIDANCE SYSTEM DESIGN USING GEOSPATIAL DATA

    Directory of Open Access Journals (Sweden)

    D. Bhattacharya

    2017-09-01

    Full Text Available The present study describes an integrated system for traffic data collection and alert warning. Geographical information based decision making related to traffic destinations and routes is proposed through the design. The system includes a geospatial database having profile relating to a user of a mobile device. The processing and understanding of scanned maps, other digital data input leads to route guidance. The system includes a server configured to receive traffic information relating to a route and location information relating to the mobile device. Server is configured to send a traffic alert to the mobile device when the traffic information and the location information indicate that the mobile device is traveling toward traffic congestion. Proposed system has geospatial and mobile data sets pertaining to Bangalore city in India. It is envisaged to be helpful for touristic purposes as a route guidance and alert relaying information system to tourists for proximity to sites worth seeing in a city they have entered into. The system is modular in architecture and the novelty lies in integration of different modules carrying different technologies for a complete traffic information system. Generic information processing and delivery system has been tested to be functional and speedy under test geospatial domains. In a restricted prototype model with geo-referenced route data required information has been delivered correctly over sustained trials to designated cell numbers, with average time frame of 27.5 seconds, maximum 50 and minimum 5 seconds. Traffic geo-data set trials testing is underway.

  2. Mobile Traffic Alert and Tourist Route Guidance System Design Using Geospatial Data

    Science.gov (United States)

    Bhattacharya, D.; Painho, M.; Mishra, S.; Gupta, A.

    2017-09-01

    The present study describes an integrated system for traffic data collection and alert warning. Geographical information based decision making related to traffic destinations and routes is proposed through the design. The system includes a geospatial database having profile relating to a user of a mobile device. The processing and understanding of scanned maps, other digital data input leads to route guidance. The system includes a server configured to receive traffic information relating to a route and location information relating to the mobile device. Server is configured to send a traffic alert to the mobile device when the traffic information and the location information indicate that the mobile device is traveling toward traffic congestion. Proposed system has geospatial and mobile data sets pertaining to Bangalore city in India. It is envisaged to be helpful for touristic purposes as a route guidance and alert relaying information system to tourists for proximity to sites worth seeing in a city they have entered into. The system is modular in architecture and the novelty lies in integration of different modules carrying different technologies for a complete traffic information system. Generic information processing and delivery system has been tested to be functional and speedy under test geospatial domains. In a restricted prototype model with geo-referenced route data required information has been delivered correctly over sustained trials to designated cell numbers, with average time frame of 27.5 seconds, maximum 50 and minimum 5 seconds. Traffic geo-data set trials testing is underway.

  3. Visa: AN Automatic Aware and Visual Aids Mechanism for Improving the Correct Use of Geospatial Data

    Science.gov (United States)

    Hong, J. H.; Su, Y. T.

    2016-06-01

    With the fast growth of internet-based sharing mechanism and OpenGIS technology, users nowadays enjoy the luxury to quickly locate and access a variety of geospatial data for the tasks at hands. While this sharing innovation tremendously expand the possibility of application and reduce the development cost, users nevertheless have to deal with all kinds of "differences" implicitly hidden behind the acquired georesources. We argue the next generation of GIS-based environment, regardless internet-based or not, must have built-in knowledge to automatically and correctly assess the fitness of data use and present the analyzed results to users in an intuitive and meaningful way. The VISA approach proposed in this paper refer to four different types of visual aids that can be respectively used for addressing analyzed results, namely, virtual layer, informative window, symbol transformation and augmented TOC. The VISA-enabled interface works in an automatic-aware fashion, where the standardized metadata serve as the known facts about the selected geospatial resources, algorithms for analyzing the differences of temporality and quality of the geospatial resources were designed and the transformation of analyzed results into visual aids were automatically executed. It successfully presents a new way for bridging the communication gaps between systems and users. GIS has been long seen as a powerful integration tool, but its achievements would be highly restricted if it fails to provide a friendly and correct working platform.

  4. Web-Based Geospatial Tools to Address Hazard Mitigation, Natural Resource Management, and Other Societal Issues

    Science.gov (United States)

    Hearn,, Paul P.

    2009-01-01

    Federal, State, and local government agencies in the United States face a broad range of issues on a daily basis. Among these are natural hazard mitigation, homeland security, emergency response, economic and community development, water supply, and health and safety services. The U.S. Geological Survey (USGS) helps decision makers address these issues by providing natural hazard assessments, information on energy, mineral, water and biological resources, maps, and other geospatial information. Increasingly, decision makers at all levels are challenged not by the lack of information, but by the absence of effective tools to synthesize the large volume of data available, and to utilize the data to frame policy options in a straightforward and understandable manner. While geographic information system (GIS) technology has been widely applied to this end, systems with the necessary analytical power have been usable only by trained operators. The USGS is addressing the need for more accessible, manageable data tools by developing a suite of Web-based geospatial applications that will incorporate USGS and cooperating partner data into the decision making process for a variety of critical issues. Examples of Web-based geospatial tools being used to address societal issues follow.

  5. The Challenges to Coupling Dynamic Geospatial Models

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, N

    2006-06-23

    Many applications of modeling spatial dynamic systems focus on a single system and a single process, ignoring the geographic and systemic context of the processes being modeled. A solution to this problem is the coupled modeling of spatial dynamic systems. Coupled modeling is challenging for both technical reasons, as well as conceptual reasons. This paper explores the benefits and challenges to coupling or linking spatial dynamic models, from loose coupling, where information transfer between models is done by hand, to tight coupling, where two (or more) models are merged as one. To illustrate the challenges, a coupled model of Urbanization and Wildfire Risk is presented. This model, called Vesta, was applied to the Santa Barbara, California region (using real geospatial data), where Urbanization and Wildfires occur and recur, respectively. The preliminary results of the model coupling illustrate that coupled modeling can lead to insight into the consequences of processes acting on their own.

  6. A novel algorithm for fully automated mapping of geospatial ontologies

    Science.gov (United States)

    Chaabane, Sana; Jaziri, Wassim

    2017-09-01

    Geospatial information is collected from different sources thus making spatial ontologies, built for the same geographic domain, heterogeneous; therefore, different and heterogeneous conceptualizations may coexist. Ontology integrating helps creating a common repository of the geospatial ontology and allows removing the heterogeneities between the existing ontologies. Ontology mapping is a process used in ontologies integrating and consists in finding correspondences between the source ontologies. This paper deals with the "mapping" process of geospatial ontologies which consist in applying an automated algorithm in finding the correspondences between concepts referring to the definitions of matching relationships. The proposed algorithm called "geographic ontologies mapping algorithm" defines three types of mapping: semantic, topological and spatial.

  7. PROCEDIMIENTOS PARA EL ANÁLISIS DE LA MOVILIDAD PREHISTÓRICA ENTRE LOS CONSTRUCTORES DE CERRITOS MEDIANTE EL USO DE TECNOLOGÍAS GEOESPACIALES / Procedures for prehistoric mobility analysis among mound builders through geospatial technologies

    Directory of Open Access Journals (Sweden)

    Camila Gianotti García

    2014-12-01

    structure and geographical aspects through the application of GIS technologies. The analytic routines applied allow us to establish and model general patterns of movement in the ecological context of the lowlands and to discuss their continuity, ruptures and survival in the long term.   Keywords: landscape, human movement, mounds, lowlands, GIS 

  8. Academic research opportunities at the National Geospatial-Intelligence Agency(NGA)

    Science.gov (United States)

    Loomer, Scott A.

    2006-05-01

    The vision of the National Geospatial-Intelligence Agency (NGA) is to "Know the Earth...Show the Way." To achieve this vision, the NGA provides geospatial intelligence in all its forms and from whatever source-imagery, imagery intelligence, and geospatial data and information-to ensure the knowledge foundation for planning, decision, and action. Academia plays a key role in the NGA research and development program through the NGA Academic Research Program. This multi-disciplinary program of basic research in geospatial intelligence topics provides grants and fellowships to the leading investigators, research universities, and colleges of the nation. This research provides the fundamental science support to NGA's applied and advanced research programs. The major components of the NGA Academic Research Program are: *NGA University Research Initiatives (NURI): Three-year basic research grants awarded competitively to the best investigators across the US academic community. Topics are selected to provide the scientific basis for advanced and applied research in NGA core disciplines. *Historically Black College and University - Minority Institution Research Initiatives (HBCU-MI): Two-year basic research grants awarded competitively to the best investigators at Historically Black Colleges and Universities, and Minority Institutions across the US academic community. *Intelligence Community Post-Doctoral Research Fellowships: Fellowships providing access to advanced research in science and technology applicable to the intelligence community's mission. The program provides a pool of researchers to support future intelligence community needs and develops long-term relationships with researchers as they move into career positions. This paper provides information about the NGA Academic Research Program, the projects it supports and how researchers and institutions can apply for grants under the program. In addition, other opportunities for academia to engage with NGA through

  9. TOWARDS IMPLEMENTATION OF THE FOG COMPUTING CONCEPT INTO THE GEOSPATIAL DATA INFRASTRUCTURES

    Directory of Open Access Journals (Sweden)

    E. A. Panidi

    2016-01-01

    Full Text Available The information technologies and Global Network technologies in particular are developing very quickly. According to this, the problem remains actual that incorporates implementation issues for the general-purpose technologies into the information systems which operate with geospatial data. The paper discusses the implementation feasibility for a number of new approaches and concepts that solve the problems of spatial data publish and management on the Global Network. A brief review describes some contemporary concepts and technologies used for distributed data storage and management, which provide combined use of server-side and client-side resources. In particular, the concepts of Cloud Computing, Fog Computing, and Internet of Things, also with Java Web Start, WebRTC and WebTorrent technologies are mentioned. The author's experience is described briefly, which incorporates the number of projects devoted to the development of the portable solutions for geospatial data and GIS software publication on the Global Network.

  10. Five-Year Action Plan to Improve NWRS Geospatial Capabilities

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — National Wildlife Refuge System (NWRS) geospatial plan and the associated memo (Date: 20160304; FWS/ANRS/ITM/062385) from Cynthia Martinez (Chief, NWRS) to the NWRS...

  11. Dhaka megacity geospatial perspectives on urbanisation, environment and health

    CERN Document Server

    Dewan, Ashraf

    2014-01-01

    Focused on Dhaka, and applicable to other cities, this book uses geospatial techniques to explore land use, climate variability, urban sprawl, population density modeling, flooding, water quality, urban growth modeling, infectious disease and quality of life.

  12. FOSS geospatial libraries in scientific workflow environments: experiences and directions

    CSIR Research Space (South Africa)

    McFerren, G

    2011-07-01

    Full Text Available of experiments. In context of three sets of research (wildfire research, flood modelling and the linking of disease outbreaks to multi-scale environmental conditions), we describe our efforts to provide geospatial capability for scientific workflow software...

  13. 76 FR 28449 - Announcement of National Geospatial Advisory Committee Meeting

    Science.gov (United States)

    2011-05-17

    ... advise the Federal Geographic Data Committee on management of Federal geospatial programs, the.... --Transportation for the Nation. --Census Update. --Parcel Data. --National Map Users Conference. --NGAC Action..., Federal Geographic Data Committee. BILLING CODE 4311-AM-P ...

  14. Integrated web system of geospatial data services for climate research

    Science.gov (United States)

    Okladnikov, Igor; Gordov, Evgeny; Titov, Alexander

    2016-04-01

    Georeferenced datasets are currently actively used for modeling, interpretation and forecasting of climatic and ecosystem changes on different spatial and temporal scales. Due to inherent heterogeneity of environmental datasets as well as their huge size (up to tens terabytes for a single dataset) a special software supporting studies in the climate and environmental change areas is required. An approach for integrated analysis of georefernced climatological data sets based on combination of web and GIS technologies in the framework of spatial data infrastructure paradigm is presented. According to this approach a dedicated data-processing web system for integrated analysis of heterogeneous georeferenced climatological and meteorological data is being developed. It is based on Open Geospatial Consortium (OGC) standards and involves many modern solutions such as object-oriented programming model, modular composition, and JavaScript libraries based on GeoExt library, ExtJS Framework and OpenLayers software. This work is supported by the Ministry of Education and Science of the Russian Federation, Agreement #14.613.21.0037.

  15. Theoretical multi-tier trust framework for the geospatial domain

    CSIR Research Space (South Africa)

    Umuhoza, D

    2010-01-01

    Full Text Available to knowledge discovery in geospatial domain. Holistic trust will be computed trough a trust function that integrate take the existing trust models. Key-words: trust; workflow; Geospatial domain, processing chain. I. INTRODUCTION AND PROBLEM DEFINITION... for the possibility of re-using data and data analysis processes from various sites. There are typically many complex steps and processes involved in transforming sensed data into discovered environmental knowledge. Acquired data such as remotely sensed...

  16. EFFICACIOUS GEOSPATIAL INFORMATION RETRIEVAL USING DENSITY PROBABILISTIC DOCUMENT CORRELATION APPROACH

    OpenAIRE

    Uma, R.; Muneeswaran

    2013-01-01

    Information Retrieval (IR) is a profound technique to find information that addresses the need of query. Processing of normal text is easier and information can be retrieved efficiently. There are plenty of algorithms in hand to carry out the normal text retrieval. Whereas retrieving geospatial information is very complex and requires additional operations to be performed. Since geospatial data contain complex details than general data such as location, direction. To handle geographical quer...

  17. RSS as a distribution medium for geo-spatial hypermedia

    DEFF Research Database (Denmark)

    Hansen, Frank Allan; Christensen, Bent Guldbjerg; Bouvin, Niels Olof

    2005-01-01

    This paper describes how the XML based RSS syndication formats used in weblogs can be utilized as the distribution medium for geo-spatial hypermedia, and how this approach can be used to create a highly distributed multi-user annotation system for geo-spatial hypermedia. It is demonstrated, how...... the HyCon annotation model [2] can be formulated as a RSS 2.0 feed and how such feeds allow annotation threads to be distributed across multiple weblogs and servers....

  18. DIGI-vis: Distributed interactive geospatial information visualization

    KAUST Repository

    Ponto, Kevin

    2010-03-01

    Geospatial information systems provide an abundance of information for researchers and scientists. Unfortunately this type of data can usually only be analyzed a few megapixels at a time, giving researchers a very narrow view into these voluminous data sets. We propose a distributed data gathering and visualization system that allows researchers to view these data at hundreds of megapixels simultaneously. This system allows scientists to view real-time geospatial information at unprecedented levels expediting analysis, interrogation, and discovery. ©2010 IEEE.

  19. Geospatial collection development policies in academic libraries: a worldwide research

    OpenAIRE

    Vardakosta, Ifigeneia; Kapidakis, Sarantos

    2011-01-01

    The widespread applications of GIS have challenged librarians worldwide to provide geospatial collections and services to their users. Despite the fact that collection development policies in digital environment have derived from the policies set down in traditional environments of information, geospatial data address a wide array of issues (metadata, standards, reliability, co-operations, data management etc) that require special attention as well as an understanding of both cartographic and...

  20. OGC NetCDF specifications: Towards a unified Interface for Earth Observation data in the Geospatial Information domain

    Science.gov (United States)

    Nativi, S.; Domenico, B.

    2016-12-01

    The purpose of the OGC netCDF Standardization Working Group (SWG) is to extend further the existing netCDF standard with extension modules for additional data models, encodings, and conventions. The scope is to use netCDF as a unified model and interface for encoding and accessing multidisciplinary Geosciences data. This has facilitated the interoperability across the diverse Geoscience disciplines in the geospatial information area. OGC netCDF SWG has developed a primer document to provide an overview of the current OGC netCDF standards suite and describe the possible extensions. These extensions have been recognized to fill the gap between the netCDF Community (e.g. Climate Changes, Atmospheric and Oceanography Communities) and the Geospatial Information Community (e.g. GIS, Geo-Web, etc.). This is pursued by supporting modeling and encoding of digital geospatial information representing space/time-varying phenomena. OGC netCDF SWG, has recently recognized a set of useful specifications (e.g. semantics, conventions, and encodings) to be specified for improving interoperability among the systems using the netCDF technology. They address important requirements coming from the netCDF Community and consider the present geospatial information landscape, i.e. ISO standards, CF conventions, the other OGC specifications, W3C specification for spatial data on the Web, etc. The main netCDF developments and related challenges considered by the presentation are: (Discovery) Metadata conventions; Advanced «Reference» conventions; Earth Observation Conventions; Semi-structured Encodings.

  1. Integrating Free and Open Source Solutions into Geospatial Science Education

    Directory of Open Access Journals (Sweden)

    Vaclav Petras

    2015-06-01

    Full Text Available While free and open source software becomes increasingly important in geospatial research and industry, open science perspectives are generally less reflected in universities’ educational programs. We present an example of how free and open source software can be incorporated into geospatial education to promote open and reproducible science. Since 2008 graduate students at North Carolina State University have the opportunity to take a course on geospatial modeling and analysis that is taught with both proprietary and free and open source software. In this course, students perform geospatial tasks simultaneously in the proprietary package ArcGIS and the free and open source package GRASS GIS. By ensuring that students learn to distinguish between geospatial concepts and software specifics, students become more flexible and stronger spatial thinkers when choosing solutions for their independent work in the future. We also discuss ways to continually update and improve our publicly available teaching materials for reuse by teachers, self-learners and other members of the GIS community. Only when free and open source software is fully integrated into geospatial education, we will be able to encourage a culture of openness and, thus, enable greater reproducibility in research and development applications.

  2. Deductive Coordination of Multiple Geospatial Knowledge Sources

    Science.gov (United States)

    Waldinger, R.; Reddy, M.; Culy, C.; Hobbs, J.; Jarvis, P.; Dungan, J. L.

    2002-12-01

    Deductive inference is applied to choreograph the cooperation of multiple knowledge sources to respond to geospatial queries. When no one source can provide an answer, the response may be deduced from pieces of the answer provided by many sources. Examples of sources include (1) The Alexandria Digital Library Gazetteer, a repository that gives the locations for almost six million place names, (2) The Cia World Factbook, an online almanac with basic information about more than 200 countries. (3) The SRI TerraVision 3D Terrain Visualization System, which displays a flight-simulator-like interactive display of geographic data held in a database, (4) The NASA GDACC WebGIS client for searching satellite and other geographic data available through OpenGIS Consortium (OGC) Web Map Servers, and (5) The Northern Arizona University Latitude/Longitude Distance Calculator. Queries are phrased in English and are translated into logical theorems by the Gemini Natural Language Parser. The theorems are proved by SNARK, a first-order-logic theorem prover, in the context of an axiomatic geospatial theory. The theory embodies a representational scheme that takes into account the fact that the same place may have many names, and the same name may refer to many places. SNARK has built-in procedures (RCC8 and the Allen calculus, respectively) for reasoning about spatial and temporal concepts. External knowledge sources may be consulted by SNARK as the proof is in progress, so that most knowledge need not be stored axiomatically. The Open Agent Architecture (OAA) facilitates communication between sources that may be implemented on different machines in different computer languages. An answer to the query, in the form of text or an image, is extracted from the proof. Currently, three-dimensional images are displayed by TerraVision but other displays are possible. The combined system is called Geo-Logica. Some example queries that can be handled by Geo-Logica include: (1) show the

  3. Geospatial Technologies for Groundwater Management in Aurangabad City

    Directory of Open Access Journals (Sweden)

    Manisha R.Mundhe

    2014-11-01

    Full Text Available The Aurangabad City is located in the heart of Maharashtra State an urban center of the Deccan sub-region. The water provided by the Aurangabad Municipal Corporation (AMC is not sufficient for the use of citizen. In this study, we have only considered the water resources available in the different area only in the Aurangabad city.All resources are mapped on the Google map/Google earth using KML platform. The Groundwater resources available in the Aurangabadare mapped in Google earth and detail availability of the water is provided. These ground water resources are divided into different Zones according to the availability of the water in that particular location. The spatial data of the available water resources according tothe area are mapped with all detail of the water available such as usage and different sources available along with their property so it's convenient for analysis the spatial data.

  4. Domestic Disasters and Geospatial Technology for the Defense Logistics Agency

    Science.gov (United States)

    2014-12-01

    Routing Problem ( VRP ) Spreadsheet Solver and Esri Maps for Microsoft Office to determine the optimal route each fuel truck should take to meet every...also used an optimization model to analyze DLA quantitative fuel distribution data. This report used Vehicle Routing Problem ( VRP ) Spreadsheet Solver...Contract Action USACE U.S. Army Corps of Engineers VIC Virtual Information Center VRP Vehicle Routing Problem xv ACKNOWLEDGMENTS We would

  5. Using Remote Sensing and Geospatial Technology for Climate Change Education

    Science.gov (United States)

    Cox, Helen; Kelly, Kimberle; Yetter, Laura

    2014-01-01

    This curriculum and instruction paper describes initial implementation and evaluation of remote-sensing exercises designed to promote post-secondary climate literacy in the geosciences. Tutorials developed by the first author engaged students in the analysis of climate change data obtained from NASA satellite missions, including the LANDSAT,…

  6. Data Quality, Provenance and IPR Management services: their role in empowering geospatial data suppliers and users

    Science.gov (United States)

    Millard, Keiran

    2015-04-01

    This paper looks at current experiences of geospatial users and geospatial suppliers and how they have been limited by suitable frameworks for managing and communicating data quality, data provenance and intellectual property rights (IPR). Current political and technological drivers mean that increasing volumes of geospatial data are available through a plethora of different products and services, and whilst this is inherently a good thing it does create a new generation of challenges. This paper consider two examples of where these issues have been examined and looks at the challenges and possible solutions from a data user and data supplier perspective. The first example is the IQmulus project that is researching fusion environments for big geospatial point clouds and coverages. The second example is the EU Emodnet programme that is establishing thematic data portals for public marine and coastal data. IQmulus examines big geospatial data; the data from sources such as LIDAR, SONAR and numerical simulations; these data are simply too big for routine and ad-hoc analysis, yet they could realise a myriad of disparate, and readily useable, information products with the right infrastructure in place. IQmulus is researching how to deliver this infrastructure technically, but a financially sustainable delivery depends on being able to track and manage ownership and IPR across the numerous data sets being processed. This becomes complex when the data is composed of multiple overlapping coverages, however managing this allows for uses to be delivered highly-bespoke products to meet their budget and technical needs. The Emodnet programme delivers harmonised marine data at the EU scale across seven thematic portals. As part of the Emodnet programme a series of 'check points' have been initiated to examine how useful these services and other public data services actually are to solve real-world problems. One key finding is that users have been confused by the fact that often

  7. Dynamic object-oriented geospatial modeling

    Directory of Open Access Journals (Sweden)

    Tomáš Richta

    2010-02-01

    Full Text Available Published literature about moving objects (MO simplifies the problem to the representation and storage of moving points, moving lines, or moving regions. The main insufficiency of this approach is lack of MO inner structure and dynamics modeling – the autonomy of moving agent. This paper describes basics of the object-oriented geospatial methodology for modeling complex systems consisting of agents, which move within spatial environment. The main idea is that during the agent movement, different kinds of connections with other moving or stationary objects are established or disposed, based on some spatial constraint satisfaction or nonfulfilment respectively. The methodology is constructed with regard to following two main conditions – 1 the inner behavior of agents should be represented by any formalism, e.g.  Petri net, finite state machine, etc., and 2 the spatial characteristic of environment should be supplied by any information system, that is able to store defined set of spatial types, and support defined set of spatial operations. Finally, the methodology is demonstrated on simple simulation model of tram transportation system.

  8. Strategic considerations for geospatial collection development from Greek Academic Libraries in an open access era: GIS users point of view

    OpenAIRE

    Vardakosta, Ifigenia; Kapidakis, Sarantos

    2014-01-01

    Today, that the access in a wide variety of data and services is possible more than ever, GIS patrons need libraries’ further engaged with them, meeting their increasingly diverse education/research needs. Patrons are the core element in an organization that provides services and that is why our research approached the Greek GIS users. Excluding some surveys for GIS technology in public sector organizations there have never carried out a survey of this type for geospatial collections and GIS ...

  9. An updated geospatial liquefaction model for global application

    Science.gov (United States)

    Zhu, Jing; Baise, Laurie G.; Thompson, Eric M.

    2017-01-01

    We present an updated geospatial approach to estimation of earthquake-induced liquefaction from globally available geospatial proxies. Our previous iteration of the geospatial liquefaction model was based on mapped liquefaction surface effects from four earthquakes in Christchurch, New Zealand, and Kobe, Japan, paired with geospatial explanatory variables including slope-derived VS30, compound topographic index, and magnitude-adjusted peak ground acceleration from ShakeMap. The updated geospatial liquefaction model presented herein improves the performance and the generality of the model. The updates include (1) expanding the liquefaction database to 27 earthquake events across 6 countries, (2) addressing the sampling of nonliquefaction for incomplete liquefaction inventories, (3) testing interaction effects between explanatory variables, and (4) overall improving model performance. While we test 14 geospatial proxies for soil density and soil saturation, the most promising geospatial parameters are slope-derived VS30, modeled water table depth, distance to coast, distance to river, distance to closest water body, and precipitation. We found that peak ground velocity (PGV) performs better than peak ground acceleration (PGA) as the shaking intensity parameter. We present two models which offer improved performance over prior models. We evaluate model performance using the area under the curve under the Receiver Operating Characteristic (ROC) curve (AUC) and the Brier score. The best-performing model in a coastal setting uses distance to coast but is problematic for regions away from the coast. The second best model, using PGV, VS30, water table depth, distance to closest water body, and precipitation, performs better in noncoastal regions and thus is the model we recommend for global implementation.

  10. Finding geospatial pattern of unstructured data by clustering routes

    Science.gov (United States)

    Boustani, M.; Mattmann, C. A.; Ramirez, P.; Burke, W.

    2016-12-01

    Today the majority of data generated has a geospatial context to it. Either in attribute form as a latitude or longitude, or name of location or cross referenceable using other means such as an external gazetteer or location service. Our research is interested in exploiting geospatial location and context in unstructured data such as that found on the web in HTML pages, images, videos, documents, and other areas, and in structured information repositories found on intranets, in scientific environments, and otherwise. We are working together on the DARPA MEMEX project to exploit open source software tools such as the Lucene Geo Gazetteer, Apache Tika, Apache Lucene, and Apache OpenNLP, to automatically extract, and make meaning out of geospatial information. In particular, we are interested in unstructured descriptors e.g., a phone number, or a named entity, and the ability to automatically learn geospatial paths related to these descriptors. For example, a particular phone number may represent an entity that travels on a monthly basis, according to easily identifiable and somes more difficult to track patterns. We will present a set of automatic techniques to extract descriptors, and then to geospatially infer their paths across unstructured data.

  11. Interoperability in planetary research for geospatial data analysis

    Science.gov (United States)

    Hare, Trent M.; Rossi, Angelo P.; Frigeri, Alessandro; Marmo, Chiara

    2018-01-01

    For more than a decade there has been a push in the planetary science community to support interoperable methods for accessing and working with geospatial data. Common geospatial data products for planetary research include image mosaics, digital elevation or terrain models, geologic maps, geographic location databases (e.g., craters, volcanoes) or any data that can be tied to the surface of a planetary body (including moons, comets or asteroids). Several U.S. and international cartographic research institutions have converged on mapping standards that embrace standardized geospatial image formats, geologic mapping conventions, U.S. Federal Geographic Data Committee (FGDC) cartographic and metadata standards, and notably on-line mapping services as defined by the Open Geospatial Consortium (OGC). The latter includes defined standards such as the OGC Web Mapping Services (simple image maps), Web Map Tile Services (cached image tiles), Web Feature Services (feature streaming), Web Coverage Services (rich scientific data streaming), and Catalog Services for the Web (data searching and discoverability). While these standards were developed for application to Earth-based data, they can be just as valuable for planetary domain. Another initiative, called VESPA (Virtual European Solar and Planetary Access), will marry several of the above geoscience standards and astronomy-based standards as defined by International Virtual Observatory Alliance (IVOA). This work outlines the current state of interoperability initiatives in use or in the process of being researched within the planetary geospatial community.

  12. Open Source Web Based Geospatial Processing with OMAR

    Directory of Open Access Journals (Sweden)

    Mark Lucas

    2009-01-01

    Full Text Available The availability of geospatial data sets is exploding. New satellites, aerial platforms, video feeds, global positioning system tagged digital photos, and traditional GIS information are dramatically increasing across the globe. These raw materials need to be dynamically processed, combined and correlated to generate value added information products to answer a wide range of questions. This article provides an overview of OMAR web based geospatial processing. OMAR is part of the Open Source Software Image Map project under the Open Source Geospatial Foundation. The primary contributors of OSSIM make their livings by providing professional services to US Government agencies and programs. OMAR provides one example that open source software solutions are increasingly being deployed in US government agencies. We will also summarize the capabilities of OMAR and its plans for near term development.

  13. Making geospatial data in ASF archive readily accessible

    Science.gov (United States)

    Gens, R.; Hogenson, K.; Wolf, V. G.; Drew, L.; Stern, T.; Stoner, M.; Shapran, M.

    2015-12-01

    The way geospatial data is searched, managed, processed and used has changed significantly in recent years. A data archive such as the one at the Alaska Satellite Facility (ASF), one of NASA's twelve interlinked Distributed Active Archive Centers (DAACs), used to be searched solely via user interfaces that were specifically developed for its particular archive and data sets. ASF then moved to using an application programming interface (API) that defined a set of routines, protocols, and tools for distributing the geospatial information stored in the database in real time. This provided a more flexible access to the geospatial data. Yet, it was up to user to develop the tools to get a more tailored access to the data they needed. We present two new approaches for serving data to users. In response to the recent Nepal earthquake we developed a data feed for distributing ESA's Sentinel data. Users can subscribe to the data feed and are provided with the relevant metadata the moment a new data set is available for download. The second approach was an Open Geospatial Consortium (OGC) web feature service (WFS). The WFS hosts the metadata along with a direct link from which the data can be downloaded. It uses the open-source GeoServer software (Youngblood and Iacovella, 2013) and provides an interface to include the geospatial information in the archive directly into the user's geographic information system (GIS) as an additional data layer. Both services are run on top of a geospatial PostGIS database, an open-source geographic extension for the PostgreSQL object-relational database (Marquez, 2015). Marquez, A., 2015. PostGIS essentials. Packt Publishing, 198 p. Youngblood, B. and Iacovella, S., 2013. GeoServer Beginner's Guide, Packt Publishing, 350 p.

  14. Brokered virtual hubs for facilitating access and use of geospatial Open Data

    Science.gov (United States)

    Mazzetti, Paolo; Latre, Miguel; Kamali, Nargess; Brumana, Raffaella; Braumann, Stefan; Nativi, Stefano

    2016-04-01

    Open Data is a major trend in current information technology scenario and it is often publicised as one of the pillars of the information society in the near future. In particular, geospatial Open Data have a huge potential also for Earth Sciences, through the enablement of innovative applications and services integrating heterogeneous information. However, open does not mean usable. As it was recognized at the very beginning of the Web revolution, many different degrees of openness exist: from simple sharing in a proprietary format to advanced sharing in standard formats and including semantic information. Therefore, to fully unleash the potential of geospatial Open Data, advanced infrastructures are needed to increase the data openness degree, enhancing their usability. In October 2014, the ENERGIC OD (European NEtwork for Redistributing Geospatial Information to user Communities - Open Data) project, funded by the European Union under the Competitiveness and Innovation framework Programme (CIP), has started. In response to the EU call, the general objective of the project is to "facilitate the use of open (freely available) geographic data from different sources for the creation of innovative applications and services through the creation of Virtual Hubs". The ENERGIC OD Virtual Hubs aim to facilitate the use of geospatial Open Data by lowering and possibly removing the main barriers which hampers geo-information (GI) usage by end-users and application developers. Data and services heterogeneity is recognized as one of the major barriers to Open Data (re-)use. It imposes end-users and developers to spend a lot of effort in accessing different infrastructures and harmonizing datasets. Such heterogeneity cannot be completely removed through the adoption of standard specifications for service interfaces, metadata and data models, since different infrastructures adopt different standards to answer to specific challenges and to address specific use-cases. Thus

  15. Big Data analytics in the Geo-Spatial Domain

    OpenAIRE

    Goncalves, Romulo; Ivanova, Milena; Kersten, Martin; Scholten, H.; Zlatanova, S.; Alvanaki, Foteini; Nourian, Pirouz; Dias, E.

    2014-01-01

    htmlabstractBig data collections in many scientific domains have inherently rich spatial and geo-spatial features. Spatial location is among the core aspects of data in Earth observation sciences, astronomy, and seismology to name a few. The goal of our project is to design an efficient data management layer for a generic geo-spatial analysis system with focus on three dimensional (3D) city models. Digital 3D city models play a crucial role in research of urban phenomena; they form the basis ...

  16. Geo-spatial Informatics in International Public Health Nursing Education.

    Science.gov (United States)

    Kerr, Madeleine J; Honey, Michelle L L; Krzyzanowski, Brittany

    2016-01-01

    This poster describes results of an undergraduate nursing informatics experience. Students applied geo-spatial methods to community assessments in two urban regions of New Zealand and the United States. Students used the Omaha System standardized language to code their observations during a brief community assessment activity and entered their data into a mapping program developed in Esri ArcGIS Online, a geographic information system. Results will be displayed in tables and maps to allow comparison among the communities. The next generation of nurses can employ geo-spatial informatics methods to contribute to innovative community assessment, planning and policy development.

  17. Geospatial Perspective: Toward a Visual Political Literacy Project in Education, Health, and Human Services

    Science.gov (United States)

    Hogrebe, Mark C.; Tate, William F., IV

    2012-01-01

    In this chapter, "geospatial" refers to geographic space that includes location, distance, and the relative position of things on the earth's surface. Geospatial perspective calls for the addition of a geographic lens that focuses on place and space as important contextual variables. A geospatial view increases one's understanding of…

  18. DEVELOPMENT OF GEOSPATIAL MAP BASED PORTAL FOR DELIMITATION OF MCD WARDS

    Directory of Open Access Journals (Sweden)

    A. Kumar Chandra Gupta

    2017-09-01

    Full Text Available The Geospatial Delhi Limited (GSDL, a Govt. of NCT of Delhi Company formed in order to provide the geospatial information of National Capital Territory of Delhi (NCTD to the Government of National Capital Territory of Delhi (GNCTD and its organs such as DDA, MCD, DJB, State Election Department, DMRC etc., for the benefit of all citizens of Government of National Capital Territory of Delhi (GNCTD. This paper describes the development of Geospatial Map based Portal for Delimitation of MCD Wards (GMPDW and election of 3 Municipal Corporations of NCT of Delhi. The portal has been developed as a map based spatial decision support system (SDSS for delimitation of MCD Wards and draw of peripheral wards boundaries to planning and management of MCD Election process of State Election Commission, and as an MCD election related information searching tools (Polling Station, MCD Wards and Assembly constituency etc., for the citizens of NCTD. The GMPDW is based on Client-Server architecture model. It has been developed using Arc GIS Server 10.0 with .NET (pronounced dot net technology. The GMPDW is scalable to enterprise SDSS with enterprise Geo Database & Virtual Private Network (VPN connectivity. Spatial data to GMPDW includes Enumeration Block (EB and Enumeration Blocks Group (EBG boundaries of Citizens of Delhi, Assembly Constituency, Parliamentary Constituency, Election District, Landmark locations of Polling Stations & basic amenities (Police Stations, Hospitals, Schools and Fire Stations etc.. GMPDW could help achieve not only the desired transparency and easiness in planning process but also facilitates through efficient & effective tools for management of MCD election. It enables a faster response to the changing ground realities in the development planning, owing to its in-built scientific approach and open-ended design.

  19. Creating of Central Geospatial Database of the Slovak Republic and Procedures of its Revision

    Science.gov (United States)

    Miškolci, M.; Šafář, V.; Šrámková, R.

    2016-06-01

    The article describes the creation of initial three dimensional geodatabase from planning and designing through the determination of technological and manufacturing processes to practical using of Central Geospatial Database (CGD - official name in Slovak language is Centrálna Priestorová Databáza - CPD) and shortly describes procedures of its revision. CGD ensures proper collection, processing, storing, transferring and displaying of digital geospatial information. CGD is used by Ministry of Defense (MoD) for defense and crisis management tasks and by Integrated rescue system. For military personnel CGD is run on MoD intranet, and for other users outside of MoD is transmutated to ZbGIS (Primary Geodatabase of Slovak Republic) and is run on public web site. CGD is a global set of geo-spatial information. CGD is a vector computer model which completely covers entire territory of Slovakia. Seamless CGD is created by digitizing of real world using of photogrammetric stereoscopic methods and measurements of objects properties. Basic vector model of CGD (from photogrammetric processing) is then taken out to the field for inspection and additional gathering of objects properties in the whole area of mapping. Finally real-world objects are spatially modeled as a entities of three-dimensional database. CGD gives us opportunity, to get know the territory complexly in all the three spatial dimensions. Every entity in CGD has recorded the time of collection, which allows the individual to assess the timeliness of information. CGD can be utilized for the purposes of geographical analysis, geo-referencing, cartographic purposes as well as various special-purpose mapping and has the ambition to cover the needs not only the MoD, but to become a reference model for the national geographical infrastructure.

  20. Geospatial Education in Alaska's High Schools: A new Initiative of the Alaska Space Grant Program

    Science.gov (United States)

    Brown, N.; Prakash, A.

    2005-05-01

    In the summer of 2004, the Alaska Space Grant Program (ASGP) made its first step to start a new and unique initiative to bring geospatial education to the high schools. Setting up this education outreach effort in the largest of the 50 states of US that has a population density of about one person per square mile, has its unique benefits and challenges. It is particularly rewarding as one reaches out to distant native and minority communities in their own local environment. Introducing Earth and Space Science topics with a geospatial context makes such educational efforts of local relevance. Training in the use of Earth and Space Science data and tools is of practical significance to the distant communities and also contributes to the development of a new technically skilled geospatial workforce that is prepared to meet the state and national needs. In the summer of 2004 ASGP ran the first two week summer workshop on "Global Positioning System (GPS) and Geographic Information System (GIS) for Alaska School Teachers". Fourteen high school teachers from various parts of the state participated and received training on the use of GPS and GIS and carried out small projects of significance to their local regions. Follow up visits were made by the course instructors to some selected schools and within six months, two high schools incorporated these in their class room teaching (www.gi.alaska.edu/~prakash/teaching/geos595). To reach out to schools that do not have well established computational facilities, ASGP build a mobile GIS laboratory with 15 laptops-GPS-GIS software assemblage. This mobile set up will be used in the second two week summer course scheduled to be run in June 2005. This batch of teachers will be more comfortable introducing GPS/GIS technology in their class rooms where they will have the possibility to use the same hardware and software setup as they used during their training, ensuring even greater success of this initiative.

  1. CREATING OF CENTRAL GEOSPATIAL DATABASE OF THE SLOVAK REPUBLIC AND PROCEDURES OF ITS REVISION

    Directory of Open Access Journals (Sweden)

    M. Miškolci

    2016-06-01

    Full Text Available The article describes the creation of initial three dimensional geodatabase from planning and designing through the determination of technological and manufacturing processes to practical using of Central Geospatial Database (CGD – official name in Slovak language is Centrálna Priestorová Databáza – CPD and shortly describes procedures of its revision. CGD ensures proper collection, processing, storing, transferring and displaying of digital geospatial information. CGD is used by Ministry of Defense (MoD for defense and crisis management tasks and by Integrated rescue system. For military personnel CGD is run on MoD intranet, and for other users outside of MoD is transmutated to ZbGIS (Primary Geodatabase of Slovak Republic and is run on public web site. CGD is a global set of geo-spatial information. CGD is a vector computer model which completely covers entire territory of Slovakia. Seamless CGD is created by digitizing of real world using of photogrammetric stereoscopic methods and measurements of objects properties. Basic vector model of CGD (from photogrammetric processing is then taken out to the field for inspection and additional gathering of objects properties in the whole area of mapping. Finally real-world objects are spatially modeled as a entities of three-dimensional database. CGD gives us opportunity, to get know the territory complexly in all the three spatial dimensions. Every entity in CGD has recorded the time of collection, which allows the individual to assess the timeliness of information. CGD can be utilized for the purposes of geographical analysis, geo-referencing, cartographic purposes as well as various special-purpose mapping and has the ambition to cover the needs not only the MoD, but to become a reference model for the national geographical infrastructure.

  2. Development of Geospatial Map Based Portal for New Delhi Municipal Council

    Science.gov (United States)

    Gupta, A. Kumar Chandra; Kumar, P.; Sharma, P. Kumar

    2017-09-01

    The Geospatial Delhi Limited (GSDL), a Govt. of NCT of Delhi Company formed in order to provide the geospatial information of National Capital Territory of Delhi (NCTD) to the Government of National Capital Territory of Delhi (GNCTD) and its organs such as DDA, MCD, DJB, State Election Department, DMRC etc., for the benefit of all citizens of Government of National Capital Territory of Delhi (GNCTD). This paper describes the development of Geospatial Map based Portal (GMP) for New Delhi Municipal Council (NDMC) of NCT of Delhi. The GMP has been developed as a map based spatial decision support system (SDSS) for planning and development of NDMC area to the NDMC department and It's heaving the inbuilt information searching tools (identifying of location, nearest utilities locations, distance measurement etc.) for the citizens of NCTD. The GMP is based on Client-Server architecture model. It has been developed using Arc GIS Server 10.0 with .NET (pronounced dot net) technology. The GMP is scalable to enterprise SDSS with enterprise Geo Database & Virtual Private Network (VPN) connectivity. Spatial data to GMP includes Circle, Division, Sub-division boundaries of department pertaining to New Delhi Municipal Council, Parcels of residential, commercial, and government buildings, basic amenities (Police Stations, Hospitals, Schools, Banks, ATMs and Fire Stations etc.), Over-ground and Underground utility network lines, Roads, Railway features. GMP could help achieve not only the desired transparency and easiness in planning process but also facilitates through efficient & effective tools for development and management of MCD area. It enables a faster response to the changing ground realities in the development planning, owing to its in-built scientific approach and open-ended design.

  3. Development of Geospatial Map Based Portal for Delimitation of Mcd Wards

    Science.gov (United States)

    Gupta, A. Kumar Chandra; Kumar, P.; Sharma, P. Kumar

    2017-09-01

    The Geospatial Delhi Limited (GSDL), a Govt. of NCT of Delhi Company formed in order to provide the geospatial information of National Capital Territory of Delhi (NCTD) to the Government of National Capital Territory of Delhi (GNCTD) and its organs such as DDA, MCD, DJB, State Election Department, DMRC etc., for the benefit of all citizens of Government of National Capital Territory of Delhi (GNCTD). This paper describes the development of Geospatial Map based Portal for Delimitation of MCD Wards (GMPDW) and election of 3 Municipal Corporations of NCT of Delhi. The portal has been developed as a map based spatial decision support system (SDSS) for delimitation of MCD Wards and draw of peripheral wards boundaries to planning and management of MCD Election process of State Election Commission, and as an MCD election related information searching tools (Polling Station, MCD Wards and Assembly constituency etc.,) for the citizens of NCTD. The GMPDW is based on Client-Server architecture model. It has been developed using Arc GIS Server 10.0 with .NET (pronounced dot net) technology. The GMPDW is scalable to enterprise SDSS with enterprise Geo Database & Virtual Private Network (VPN) connectivity. Spatial data to GMPDW includes Enumeration Block (EB) and Enumeration Blocks Group (EBG) boundaries of Citizens of Delhi, Assembly Constituency, Parliamentary Constituency, Election District, Landmark locations of Polling Stations & basic amenities (Police Stations, Hospitals, Schools and Fire Stations etc.). GMPDW could help achieve not only the desired transparency and easiness in planning process but also facilitates through efficient & effective tools for management of MCD election. It enables a faster response to the changing ground realities in the development planning, owing to its in-built scientific approach and open-ended design.

  4. Evaluation of groundwater potential using geospatial techniques

    Science.gov (United States)

    Hussein, Abdul-Aziz; Govindu, Vanum; Nigusse, Amare Gebre Medhin

    2017-09-01

    The issue of unsustainable groundwater utilization is becoming increasingly an evident problem and the key concern for many developing countries. One of the problems is the absence of updated spatial information on the quantity and distribution of groundwater resource. Like the other developing countries, groundwater evaluation in Ethiopia has been usually conducted using field survey which is not feasible in terms of time and resource. This study was conducted in Northern Ethiopia, Wollo Zone, in Gerardo River Catchment district to spatially delineate the groundwater potential areas using geospatial and MCDA tools. To do so, eight major biophysical and environmental factors like geomorphology, lithology, slope, rainfall, land use land cover (LULC), soil, lineament density and drainage density were considered. The sources of these data were satellite image, digital elevation model (DEM), existing thematic maps and metrological station data. Landsat image was used in ERDAS Imagine to drive the LULC of the area, while the geomorphology, soil, and lithology of the area were identified and classified through field survey and digitized from existing maps using the ArcGIS software. The slope, lineament and drainage density of the area were derived from DEM using spatial analysis tools. The rainfall surface map was generated using the thissen polygon interpolation. Finally, after all these thematic maps were organized, weighted value determination for each factor and its field value was computed using IDRSI software. At last, all the factors were integrated together and computed the model using the weighted overlay so that potential groundwater areas were mapped. The findings depicted that the most potential groundwater areas are found in the central and eastern parts of the study area, while the northern and western parts of the Gerado River Catchment have poor potential of groundwater availability. This is mainly due to the cumulative effect of steep topographic and

  5. Geospatial and Temporal Analysis of Thyroid Cancer Incidence in a Rural Population.

    Science.gov (United States)

    Hanley, John P; Jackson, Erin; Morrissey, Leslie A; Rizzo, Donna M; Sprague, Brian L; Sarkar, Indra Neil; Carr, Frances E

    2015-07-01

    The increasing incidence of thyroid cancer has resulted in the rate tripling over the past 30 years. Reasons for this increase have not been established. Geostatistics and geographic information system (GIS) tools have emerged as powerful geospatial technologies to identify disease clusters, map patterns and trends, and assess the impact of ecological and socioeconomic factors (SES) on the spatial distribution of diseases. In this study, these tools were used to analyze thyroid cancer incidence in a rural population. Thyroid cancer incidence and socio-demographic factors in Vermont (VT), United States, between 1994 and 2007 were analyzed by logistic regression and geospatial and temporal analyses. The thyroid cancer age-adjusted incidence in Vermont (8.0 per 100,000) was comparable to the national level (8.4 per 100,000), as were the ratio of the incidence of females to males (3.1:1) and the mortality rate (0.5 per 100,000). However, the estimated annual percentage change was higher (8.3 VT; 5.7 U.S.). Incidence among females peaked at 30-59 years of age, reflecting a significant rise from 1994 to 2007, while incidence trends for males did not vary significantly by age. For both females and males, the distribution of tumors by size did not vary over time; ≤1.0 cm, 1.1-2.0 cm, and >2.0 cm represented 38%, 22%, and 40%, respectively. In females, papillary thyroid cancer (PTC) accounted for 89% of cases, follicular (FTC) 8%, medullary (MTC) 2%, and anaplastic (ATC) 0.6%, while in males PTC accounted for 77% of cases, FTC 15%, MTC 1%, and ATC 3%. Geospatial analysis revealed locations and spatial patterns that, when combined with multivariate incidence analyses, indicated that factors other than increased surveillance and access to healthcare (physician density or insurance) contributed to the increased thyroid cancer incidence. Nine thyroid cancer incidence hot spots, areas with very high normalized incidence, were identified based on zip code data. Those

  6. Geospatial Based Information System Development in Public Administration for Sustainable Development and Planning in Urban Environment

    Science.gov (United States)

    Kouziokas, Georgios N.

    2016-09-01

    It is generally agreed that the governmental authorities should actively encourage the development of an efficient framework of information and communication technology initiatives so as to advance and promote sustainable development and planning strategies. This paper presents a prototype Information System for public administration which was designed to facilitate public management and decision making for sustainable development and planning. The system was developed by using several programming languages and programming tools and also a Database Management System (DBMS) for storing and managing urban data of many kinds. Furthermore, geographic information systems were incorporated into the system in order to make possible to the authorities to deal with issues of spatial nature such as spatial planning. The developed system provides a technology based management of geospatial information, environmental and crime data of urban environment aiming at improving public decision making and also at contributing to a more efficient sustainable development and planning.

  7. Ensuring Standards in Geospatial Data | Nwadialor | FUTY Journal ...

    African Journals Online (AJOL)

    ... and that about three organizations already exist fur this purpose, viz: International Organization for Standardization (ISO), International Federation of Surveyors (FIG), and the Open Geospatial Consortium (OGC). The roles and functions of these organizations were also examined, and it was discovered that membership of ...

  8. What Lives Where & Why? Understanding Biodiversity through Geospatial Exploration

    Science.gov (United States)

    Trautmann, Nancy M.; Makinster, James G.; Batek, Michael

    2013-01-01

    Using an interactive map-based PDF, students learn key concepts related to biodiversity while developing data-analysis and critical-thinking skills. The Bird Island lesson provides students with experience in translating geospatial data into bar graphs, then interpreting these graphs to compare biodiversity across ecoregions on a fictional island.…

  9. Geospatial evaluations of potato production systems in Maine

    Science.gov (United States)

    Maine consistently ranks in the top ten potato (Solanum tuberosum L.) production areas though yields are substantially lower than the mid- and western USA. Geospatial frameworks help resolve patterns and trends in production environments (at multiple scales) that may enable improvements in adaptive ...

  10. Geospatial modelling of the Obudu cattle ranch Cross River state ...

    African Journals Online (AJOL)

    Geospatial modelling of the Obudu cattle ranch Cross River state, Nigeria. EJ Aniah, DD Eni, MA Abua, MA Amama. Abstract. No Abstract. Lwati: A Journal of Contemporary Research Vol. 4 () 2007: pp.309-328. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  11. Geospatial Analysis of Renewable Energy Technical Potential on Tribal Lands

    Energy Technology Data Exchange (ETDEWEB)

    Doris, E.; Lopez, A.; Beckley, D.

    2013-02-01

    This technical report uses an established geospatial methodology to estimate the technical potential for renewable energy on tribal lands for the purpose of allowing Tribes to prioritize the development of renewable energy resources either for community scale on-tribal land use or for revenue generating electricity sales.

  12. Non-Spatial and Geospatial Semantic Query of Health Information

    DEFF Research Database (Denmark)

    Gao, S.; Anton, François; Mioc, Darka

    2012-01-01

    -spatial semantics of health data, using ontologies and rules. Utilizing the spatial component of health data can assist in the understanding of health phenomena. This research proposes a semantic health information query architecture that allows the incorporation of both non-spatial semantics and geospatial...

  13. Big Data analytics in the Geo-Spatial Domain

    NARCIS (Netherlands)

    R.A. Goncalves (Romulo); M.G. Ivanova (Milena); M.L. Kersten (Martin); H. Scholten; S. Zlatanova; F. Alvanaki (Foteini); P. Nourian (Pirouz); E. Dias

    2014-01-01

    htmlabstractBig data collections in many scientific domains have inherently rich spatial and geo-spatial features. Spatial location is among the core aspects of data in Earth observation sciences, astronomy, and seismology to name a few. The goal of our project is to design an efficient data

  14. Sextant: Visualizing time-evolving linked geospatial data

    NARCIS (Netherlands)

    C. Nikolaou (Charalampos); K. Dogani (Kallirroi); K. Bereta (Konstantina); G. Garbis (George); M. Karpathiotakis (Manos); K. Kyzirakos (Konstantinos); M. Koubarakis (Manolis)

    2015-01-01

    textabstractThe linked open data cloud is constantly evolving as datasets get continuously updated with newer versions. As a result, representing, querying, and visualizing the temporal dimension of linked data is crucial. This is especially important for geospatial datasets that form the backbone

  15. SexTant: Visualizing Time-Evolving Linked Geospatial Data

    NARCIS (Netherlands)

    K. Bereta (Konstantina); C. Nikolaou (Charalampos); M. Karpathiotakis (Manos); K. Kyzirakos (Konstantinos); M. Koubarakis (Manolis); E. Blomqvist; T. Groza

    2013-01-01

    htmlabstractWe present SexTant, a Web-based system for the visualization and exploration of time-evolving linked geospatial data and the creation, sharing, and collaborative editing of "temporally-enriched" thematic maps which are produced by combining dierent sources of such data.

  16. Shared Geospatial Metadata Repository for Ontario University Libraries: Collaborative Approaches

    Science.gov (United States)

    Forward, Erin; Leahey, Amber; Trimble, Leanne

    2015-01-01

    Successfully providing access to special collections of digital geospatial data in academic libraries relies upon complete and accurate metadata. Creating and maintaining metadata using specialized standards is a formidable challenge for libraries. The Ontario Council of University Libraries' Scholars GeoPortal project, which created a shared…

  17. Crisp Clustering Algorithm for 3D Geospatial Vector Data Quantization

    DEFF Research Database (Denmark)

    Azri, Suhaibah; Anton, François; Ujang, Uznir

    2015-01-01

    In the next few years, 3D data is expected to be an intrinsic part of geospatial data. However, issues on 3D spatial data management are still in the research stage. One of the issues is performance deterioration during 3D data retrieval. Thus, a practical 3D index structure is required for effic...

  18. Geospatial Google Street View with Virtual Reality: A Motivational Approach for Spatial Training Education

    Directory of Open Access Journals (Sweden)

    Carlos Carbonell-Carrera

    2017-08-01

    Full Text Available Motivation is a determining factor in the learning process, and encourages the student to participate in activities that increase their performance. Learning strategies supplemented by computer technology in a scenario-based learning environment can improve students′ motivation for spatial knowledge acquisition. In this sense, a workshop carried out with 43-second year engineering students supported by Google Street View mobile geospatial application for location-based tasks is presented, in which participants work in an immersive wayfinding 3D urban environment on virtual reality. Students use their own smartphones with Google Street View application integrated in virtual reality (VR 3D glasses with a joystick as locomotion interface. The tool to analyse the motivational factor of this pedagogical approach is the multidimensional measurement device Intrinsic Motivation Inventory with six subscales: interest, perceived competence, perceived choice, effort, tension, and value, measured on a seven point Likert scale. Scores in all subscales considered are above 4 on a scale of 7. A usability study conducted at the end of the experiment provides values above 3 on a scale of 5 in efficacy, efficiency and satisfaction. The results of the experiment carried out indicate that geospatial Google Street View application in Virtual Reality is a motivating educational purpose in the field of spatial training.

  19. KML Tours: A New Platform for Exploring and Sharing Geospatial Data

    Science.gov (United States)

    Barcay, D. P.; Weiss-Malik, M.

    2009-12-01

    Google Earth and other virtual globes have allowed millions of people to explore the world from their own home. This technology has also raised the bar for professional visualizations: enabling interactive 3D visualizations to be created from massive data-sets, and shared using the KML language. For academics and professionals alike, an engaging presentation of your geospatial data is generally expected and can be the most effective form of advertisement. To that end, we released 'Touring' in Google Earth 5.0: a new medium for cinematic expression, visualized in Google Earth and written as extensions to the KML language. In a KML tour, the author has fine-grained control over the entire visual experience: precisely moving the virtual camera through the world while dynamically modifying the content, style, position, and visibility of the displayed data. An author can synchronize audio to this experience, bringing further immersion to a visualization. KML tours can help engage a broad user-base and conveying subtle concepts that aren't immediately apparent in traditional geospatial content. Unlike a pre-rendered video, a KML Tour maintains the rich interactivity of Google Earth, allowing users to continue exploring your content, and to mash-up other content with your visualization. This session will include conceptual explanations of the Touring feature in Google Earth, the structure of the touring KML extensions, as well as examples of compelling tours.

  20. SPECTRAL COLOR INDICES BASED GEOSPATIAL MODELING OF SOIL ORGANIC MATTER IN CHITWAN DISTRICT, NEPAL

    Directory of Open Access Journals (Sweden)

    U. K. Mandal

    2016-06-01

    Full Text Available Space Technology provides a resourceful-cost effective means to assess soil nutrients essential for soil management plan. Soil organic matter (SOM is one of valuable controlling productivity of crops by providing nutrient in farming systems. Geospatial modeling of soil organic matter is essential if there is unavailability of soil test laboratories and its strong spatial correlation. In the present analysis, soil organic matter is modeled from satellite image derived spectral color indices. Brightness Index (BI, Coloration Index (CI, Hue Index (HI, Redness Index (RI and Saturation Index (SI were calculated by converting DN value to radiance and radiance to reflectance from Thematic Mapper image. Geospatial model was developed by regressing SOM with color indices and producing multiple regression model using stepwise regression technique. The multiple regression equation between SOM and spectral indices was significant with R = 0. 56 at 95% confidence level. The resulting MLR equation was then used for the spatial prediction for the entire study area. Redness Index was found higher significance in estimating the SOM. It was used to predict SOM as auxiliary variables using cokringing spatial interpolation technique. It was tested in seven VDCs of Chitwan district of Nepal using Thematic Mapper remotely sensed data. SOM was found to be measured ranging from 0.15% to 4.75 %, with a mean of 2.24 %. Remotely sensed data derived spectral color indices have the potential as useful auxiliary variables for estimating SOM content to generate soil fertility management plans.

  1. Operational Marine Data Acquisition and Delivery Powered by Web and Geospatial Standards

    Science.gov (United States)

    Thomas, R.; Buck, J. J. H.

    2015-12-01

    As novel sensor types and new platforms are deployed to monitor the global oceans, the volumes of scientific and environmental data collected in the marine context are rapidly growing. In order to use these data in both the traditional operational modes and in innovative "Big Data" applications the data must be readily understood by software agents. One approach to achieving this is the application of both World Wide Web and Open Geospatial Consortium standards: namely Linked Data1 and Sensor Web Enablement2 (SWE). The British Oceanographic Data Centre (BODC) is adopting this strategy in a number of European Commission funded projects (NETMAR; SenseOCEAN; Ocean Data Interoperability Platform - ODIP; and AtlantOS) to combine its existing data archiving architecture with SWE components (such as Sensor Observation Services) and a Linked Data interface. These will evolve the data management and data transfer from a process that requires significant manual intervention to an automated operational process enabling the rapid, standards-based, ingestion and delivery of data. This poster will show the current capabilities of BODC and the status of on-going implementation of this strategy. References1. World Wide Web Consortium. (2013). Linked Data. Available:http://www.w3.org/standards/semanticweb/data. Last accessed 7th April 20152. Open Geospatial Consortium. (2014). Sensor Web Enablement (SWE). Available:http://www.opengeospatial.org/ogc/markets-technologies/swe. Last accessed 8th October 2014

  2. Global polar geospatial registry centre system and its realization

    Science.gov (United States)

    He, Jie; Wang, Wei; Chen, Nengcheng; Chen, Zeqiang; Chen, Jiaying

    2008-12-01

    Antarctica plays a key role in many scientific questions, of which those related to global climate change are probably the most prominent examples. There are many researches on Antarctic are carried out at present, and some special institutes sponsored by public and private communities are responsible for antarctica data management and maintenance. Antarctic Spatial Data Infrastructure (AntSDI) [1]sponsored by SCAR's Standing Committee on Antarctic Geographic Information (SC-AGI) is the one responsible for Antarctica spatial data maintenance and sharing by means of OGC standard and specification. Antarctica Spatial Data Infrastructure (AntSDI) has already collected huge volumes of geospatial data and offer an opening geospatial information service. In order to management and use Geospatial data efficiently, and enable most of the users can access to Geospatical data and service at will, we firstly must registry data and service into one or more registry center, then we should construct a building system which can supply users a uniform interface to access data and service in registry center and user also can add their own data and service to system and become part of system's capability. in this paper we present GeoAnt, a prototype interoperable AntSDI building system. GeoAnt is a three-tier standard-based open geospatial web service system which fully automates data discovery, access, and integration steps of the geospatial information discovery process under the interoperable service framework. The paper discusses the system architecture, the individual components of the system and the use of the system in the international project- Grove Mountains GIService Portal (GMGP).

  3. Geospatial Narratives and Their Spatio-Temporal Dynamics: Commonsense Reasoning for High-Level Analyses in Geographic Information Systems

    Directory of Open Access Journals (Sweden)

    Mehul Bhatt

    2014-02-01

    Full Text Available The modeling, analysis and visualization of dynamic geospatial phenomenahas been identified as a key developmental challenge for next-generation GeographicInformation Systems (GIS. In this context, the envisaged paradigmatic extensions tocontemporary foundational GIS technology raises fundamental questions concerning theontological, formal representational and (analytical computational methods that wouldunderlie their spatial information theoretic underpinnings. We present the conceptualoverview and architecture for the development of high-level semantic and qualitativeanalytical capabilities for dynamic geospatial domains. Building on formal methods in theareas of commonsense reasoning, qualitative reasoning, spatial and temporal representationand reasoning, reasoning about actions and change and computational models of narrative,we identify concrete theoretical and practical challenges that accrue in the context offormal reasoning about space, events, actions and change. With this as a basis and withinthe backdrop of an illustrated scenario involving the spatio-temporal dynamics of urbannarratives, we address specific problems and solution techniques chiefly involving qualitativeabstraction, data integration and spatial consistency and practical geospatial abduction.

  4. The Federal Geospatial Platform a shared infrastructure for publishing, discovering and exploiting public data and spatial applications.

    Science.gov (United States)

    Dabolt, T. O.

    2016-12-01

    The proliferation of open data and data services continues to thrive and is creating new challenges on how researchers, policy analysts and other decision makes can quickly discover and use relevant data. While traditional metadata catalog approaches used by applications such as data.gov prove to be useful starting points for data search they can quickly frustrate end users who are seeking ways to quickly find and then use data in machine to machine environs. The Geospatial Platform is overcoming these obstacles and providing end users and applications developers a richer more productive user experience. The Geospatial Platform leverages a collection of open source and commercial technology hosted on Amazon Web Services providing an ecosystem of services delivering trusted, consistent data in open formats to all users as well as a shared infrastructure for federal partners to serve their spatial data assets. It supports a diverse array of communities of practice ranging on topics from the 16 National Geospatial Data Assets Themes, to homeland security and climate adaptation. Come learn how you can contribute your data and leverage others or check it out on your own at https://www.geoplatform.gov/

  5. GeoNotebook: Browser based Interactive analysis and visualization workflow for very large climate and geospatial datasets

    Science.gov (United States)

    Ozturk, D.; Chaudhary, A.; Votava, P.; Kotfila, C.

    2016-12-01

    Jointly developed by Kitware and NASA Ames, GeoNotebook is an open source tool designed to give the maximum amount of flexibility to analysts, while dramatically simplifying the process of exploring geospatially indexed datasets. Packages like Fiona (backed by GDAL), Shapely, Descartes, Geopandas, and PySAL provide a stack of technologies for reading, transforming, and analyzing geospatial data. Combined with the Jupyter notebook and libraries like matplotlib/Basemap it is possible to generate detailed geospatial visualizations. Unfortunately, visualizations generated is either static or does not perform well for very large datasets. Also, this setup requires a great deal of boilerplate code to create and maintain. Other extensions exist to remedy these problems, but they provide a separate map for each input cell and do not support map interactions that feed back into the python environment. To support interactive data exploration and visualization on large datasets we have developed an extension to the Jupyter notebook that provides a single dynamic map that can be managed from the Python environment, and that can communicate back with a server which can perform operations like data subsetting on a cloud-based cluster.

  6. Estimated Perennial Streams of Idaho and Related Geospatial Datasets

    Science.gov (United States)

    Rea, Alan; Skinner, Kenneth D.

    2009-01-01

    The perennial or intermittent status of a stream has bearing on many regulatory requirements. Because of changing technologies over time, cartographic representation of perennial/intermittent status of streams on U.S. Geological Survey (USGS) topographic maps is not always accurate and (or) consistent from one map sheet to another. Idaho Administrative Code defines an intermittent stream as one having a 7-day, 2-year low flow (7Q2) less than 0.1 cubic feet per second. To establish consistency with the Idaho Administrative Code, the USGS developed regional regression equations for Idaho streams for several low-flow statistics, including 7Q2. Using these regression equations, the 7Q2 streamflow may be estimated for naturally flowing streams anywhere in Idaho to help determine perennial/intermittent status of streams. Using these equations in conjunction with a Geographic Information System (GIS) technique known as weighted flow accumulation allows for an automated and continuous estimation of 7Q2 streamflow at all points along a stream, which in turn can be used to determine if a stream is intermittent or perennial according to the Idaho Administrative Code operational definition. The selected regression equations were applied to create continuous grids of 7Q2 estimates for the eight low-flow regression regions of Idaho. By applying the 0.1 ft3/s criterion, the perennial streams have been estimated in each low-flow region. Uncertainty in the estimates is shown by identifying a 'transitional' zone, corresponding to flow estimates of 0.1 ft3/s plus and minus one standard error. Considerable additional uncertainty exists in the model of perennial streams presented in this report. The regression models provide overall estimates based on general trends within each regression region. These models do not include local factors such as a large spring or a losing reach that may greatly affect flows at any given point. Site-specific flow data, assuming a sufficient period of

  7. Preliminary Geospatial Analysis of Arctic Ocean Hydrocarbon Resources

    Energy Technology Data Exchange (ETDEWEB)

    Long, Philip E.; Wurstner, Signe K.; Sullivan, E. C.; Schaef, Herbert T.; Bradley, Donald J.

    2008-10-01

    Ice coverage of the Arctic Ocean is predicted to become thinner and to cover less area with time. The combination of more ice-free waters for exploration and navigation, along with increasing demand for hydrocarbons and improvements in technologies for the discovery and exploitation of new hydrocarbon resources have focused attention on the hydrocarbon potential of the Arctic Basin and its margins. The purpose of this document is to 1) summarize results of a review of published hydrocarbon resources in the Arctic, including both conventional oil and gas and methane hydrates and 2) develop a set of digital maps of the hydrocarbon potential of the Arctic Ocean. These maps can be combined with predictions of ice-free areas to enable estimates of the likely regions and sequence of hydrocarbon production development in the Arctic. In this report, conventional oil and gas resources are explicitly linked with potential gas hydrate resources. This has not been attempted previously and is particularly powerful as the likelihood of gas production from marine gas hydrates increases. Available or planned infrastructure, such as pipelines, combined with the geospatial distribution of hydrocarbons is a very strong determinant of the temporal-spatial development of Arctic hydrocarbon resources. Significant unknowns decrease the certainty of predictions for development of hydrocarbon resources. These include: 1) Areas in the Russian Arctic that are poorly mapped, 2) Disputed ownership: primarily the Lomonosov Ridge, 3) Lack of detailed information on gas hydrate distribution, and 4) Technical risk associated with the ability to extract methane gas from gas hydrates. Logistics may control areas of exploration more than hydrocarbon potential. Accessibility, established ownership, and leasing of exploration blocks may trump quality of source rock, reservoir, and size of target. With this in mind, the main areas that are likely to be explored first are the Bering Strait and Chukchi

  8. GEOSPATIAL IT/IM QA CHECKLIST

    Science.gov (United States)

    Quality assurance (QA) of information technology (IT) and Information Management (IM) systems help to ensure that the end product is of known quality and integrity. As the complexity of IT & IM processes increase, so does the need for regular QA evaluation. The areas revi...

  9. GSKY: A scalable distributed geospatial data server on the cloud

    Science.gov (United States)

    Rozas Larraondo, Pablo; Pringle, Sean; Antony, Joseph; Evans, Ben

    2017-04-01

    Earth systems, environmental and geophysical datasets are an extremely valuable sources of information about the state and evolution of the Earth. Being able to combine information coming from different geospatial collections is in increasing demand by the scientific community, and requires managing and manipulating data with different formats and performing operations such as map reprojections, resampling and other transformations. Due to the large data volume inherent in these collections, storing multiple copies of them is unfeasible and so such data manipulation must be performed on-the-fly using efficient, high performance techniques. Ideally this should be performed using a trusted data service and common system libraries to ensure wide use and reproducibility. Recent developments in distributed computing based on dynamic access to significant cloud infrastructure opens the door for such new ways of processing geospatial data on demand. The National Computational Infrastructure (NCI), hosted at the Australian National University (ANU), has over 10 Petabytes of nationally significant research data collections. Some of these collections, which comprise a variety of observed and modelled geospatial data, are now made available via a highly distributed geospatial data server, called GSKY (pronounced [jee-skee]). GSKY supports on demand processing of large geospatial data products such as satellite earth observation data as well as numerical weather products, allowing interactive exploration and analysis of the data. It dynamically and efficiently distributes the required computations among cloud nodes providing a scalable analysis framework that can adapt to serve large number of concurrent users. Typical geospatial workflows handling different file formats and data types, or blending data in different coordinate projections and spatio-temporal resolutions, is handled transparently by GSKY. This is achieved by decoupling the data ingestion and indexing process as

  10. Societal Impact of Improved Environment and Geospatial Information

    Science.gov (United States)

    Pearlman, J.; Andrzejewska, M.; Stonor, T.

    2013-12-01

    Geospatial projects are often dogged by the inability to establish a strong quantitative value proposition and are unable to sustain the attention of senior decision makers. In a tough economic climate, it is particularly important that any project that requires a significant investment can show a clear Return on Investment (ROI). In the case of commerce, benefit can be quantified through increase in sales/profit or reduction of risk. In the case of societal impact, quantification is more challenging. At the Geospatial World Forum (GWF) 2013 in Rotterdam, a number of case studies were presented on social impacts which used differing approaches to impact assessment. Some of the cases discussed projects with community issues and explained alternative means of conflict resolution. However, a comparison of the different case studies was not made at the GWF meeting. This presentation will take the next step and address the commonalities and differences in the approaches.

  11. Geospatial (stools: integration of advanced epidemiological sampling and novel diagnostics

    Directory of Open Access Journals (Sweden)

    Giuseppe Cringoli

    2013-05-01

    Full Text Available Large-scale control and progressive elimination of a wide variety of parasitic diseases is moving to the fore. Indeed, there is good pace and broad political commitment. Yet, there are some worrying signs ahead, particularly the anticipated declines in funding and coverage of key interventions, and the paucity of novel tools and strategies. Further and intensified research and development is thus urgently required. We discuss advances in epidemiological sampling, diagnostic tools and geospatial methodologies. We emphasise the need for integrating sound epidemiological designs (e.g. cluster-randomised sampling with innovative diagnostic tools and strategies (e.g. Mini-FLOTAC for detection of parasitic elements and pooling of biological samples and high-resolution geospatial tools. Recognising these challenges, standardisation of quality procedures, and innovating, validating and applying new tools and strategies will foster and sustain long-term control and eventual elimination of human and veterinary public health issues.

  12. The Development of Geospatial Education and Training in North Africa

    Science.gov (United States)

    Dowman, I.; Labbassi, K.

    2014-04-01

    This paper described the progress in a project funded by the ISPRS Scientific Initiative to develop a curriculum for the African Geospatial Sciences Institute (AGSI) in Tunis. AGSI is a non profit organisation registered in Germany and has the objective of developing geospatial capacity in North Africa through training, education and the provision of facilities. The first step in the project involved a survey of potential stakeholders in North Africa in order to determine the requirements for training and education. The questionnaire sought information on the type of work which organisations in North Africa undertake, and the type of employees who are needed to fill gaps in the skill set required. It also solicited information on the type of training which is needed and the level of qualification required. The results from this questionnaire are analysed in the paper which also reports on the discussion with stakeholders at a workshop held in Tunis in March 2014, which also resulted in a draft curriculum.

  13. Evaluation of the urban forest through geospatial methods

    Science.gov (United States)

    Ward, Kathleen Theresa

    2007-12-01

    Many forest management questions could be effectively addressed with geospatial methods. Geographic Information Systems (GIS) and remote sensing are two geospatial tools that work extremely well together and can be used to perform a variety of tasks, from the creation of basic maps of forest extent to complex forest change models. The complementary geospatial tools were used in the rapidly urbanizing Minneapolis/St. Paul Metropolitan Area (TCMA), Minneapolis/St. Paul, Minnesota, U.S. in four related research topics, (1) a discussion of the geospatial tools that can assist urban forest managers, (2) the classification of the historical oak resource and the change from 1991 to 1998, (3) the investigation of the transformation in oak stand spatial structure over time, and (4) a summary of the results and significance of the research. It was determined from this research that the total area of oak forests in the TCMA decreased by 5.6 percent between 1991 and 1998, and that oak forest loss ranged from 12 ha to 1,229 ha in six of seven ecological subsections. In addition, oak forest patches in the TCMA as a whole became more fragmented and decreased in number and complexity between 1991 and 1998. Forest loss and alteration can have great impacts on forest health, water flow and quality, wildlife habitat, potential for the spread of invasive species, and the quality of life of urban residents. The results of these studies provide visual and quantitative information to decision makers on the loss and structural transformation of the oak forest resource in the TCMA during the 1990s. Information on the changes in the landscape over time and the relationship of those changes to the ecological integrity of the communities is essential to future decision-making and planning processes.

  14. Towards Geo-spatial Hypermedia: Concepts and Prototype Implementation

    DEFF Research Database (Denmark)

    Grønbæk, Kaj; Vestergaard, Peter Posselt; Ørbæk, Peter

    2002-01-01

    This paper combines spatial hypermedia with techniques from Geographical Information Systems and location based services. We describe the Topos 3D Spatial Hypermedia system and how it has been developed to support geo-spatial hypermedia coupling hypermedia information to model representations...... introduce a number of central concepts to understand the relation between hypermedia and spatial information management. The distinction between metaphorical (and abstract) versus literal (and concrete) spaces is introduced together with a workspace composition semantics and a distinction between direct...

  15. The new geospatial tools: global transparency enhancing safeguards verification

    Energy Technology Data Exchange (ETDEWEB)

    Pabian, Frank Vincent [Los Alamos National Laboratory

    2010-09-16

    This paper focuses on the importance and potential role of the new, freely available, geospatial tools for enhancing IAEA safeguards and how, together with commercial satellite imagery, they can be used to promote 'all-source synergy'. As additional 'open sources', these new geospatial tools have heralded a new era of 'global transparency' and they can be used to substantially augment existing information-driven safeguards gathering techniques, procedures, and analyses in the remote detection of undeclared facilities, as well as support ongoing monitoring and verification of various treaty (e.g., NPT, FMCT) relevant activities and programs. As an illustration of how these new geospatial tools may be applied, an original exemplar case study provides how it is possible to derive value-added follow-up information on some recent public media reporting of a former clandestine underground plutonium production complex (now being converted to a 'Tourist Attraction' given the site's abandonment by China in the early 1980s). That open source media reporting, when combined with subsequent commentary found in various Internet-based Blogs and Wikis, led to independent verification of the reporting with additional ground truth via 'crowdsourcing' (tourist photos as found on 'social networking' venues like Google Earth's Panoramio layer and Twitter). Confirmation of the precise geospatial location of the site (along with a more complete facility characterization incorporating 3-D Modeling and visualization) was only made possible following the acquisition of higher resolution commercial satellite imagery that could be correlated with the reporting, ground photos, and an interior diagram, through original imagery analysis of the overhead imagery.

  16. Progress of Interoperability in Planetary Research for Geospatial Data Analysis

    Science.gov (United States)

    Hare, T. M.; Gaddis, L. R.

    2015-12-01

    For nearly a decade there has been a push in the planetary science community to support interoperable methods of accessing and working with geospatial data. Common geospatial data products for planetary research include image mosaics, digital elevation or terrain models, geologic maps, geographic location databases (i.e., craters, volcanoes) or any data that can be tied to the surface of a planetary body (including moons, comets or asteroids). Several U.S. and international cartographic research institutions have converged on mapping standards that embrace standardized image formats that retain geographic information (e.g., GeoTiff, GeoJpeg2000), digital geologic mapping conventions, planetary extensions for symbols that comply with U.S. Federal Geographic Data Committee cartographic and geospatial metadata standards, and notably on-line mapping services as defined by the Open Geospatial Consortium (OGC). The latter includes defined standards such as the OGC Web Mapping Services (simple image maps), Web Feature Services (feature streaming), Web Coverage Services (rich scientific data streaming), and Catalog Services for the Web (data searching and discoverability). While these standards were developed for application to Earth-based data, they have been modified to support the planetary domain. The motivation to support common, interoperable data format and delivery standards is not only to improve access for higher-level products but also to address the increasingly distributed nature of the rapidly growing volumes of data. The strength of using an OGC approach is that it provides consistent access to data that are distributed across many facilities. While data-steaming standards are well-supported by both the more sophisticated tools used in Geographic Information System (GIS) and remote sensing industries, they are also supported by many light-weight browsers which facilitates large and small focused science applications and public use. Here we provide an

  17. GEO Label: User and Producer Perspectives on a Label for Geospatial Data

    Science.gov (United States)

    Lush, V.; Lumsden, J.; Masó, J.; Díaz, P.; McCallum, I.

    2012-04-01

    One of the aims of the Science and Technology Committee (STC) of the Group on Earth Observations (GEO) was to establish a GEO Label- a label to certify geospatial datasets and their quality. As proposed, the GEO Label will be used as a value indicator for geospatial data and datasets accessible through the Global Earth Observation System of Systems (GEOSS). It is suggested that the development of such a label will significantly improve user recognition of the quality of geospatial datasets and that its use will help promote trust in datasets that carry the established GEO Label. Furthermore, the GEO Label is seen as an incentive to data providers. At the moment GEOSS contains a large amount of data and is constantly growing. Taking this into account, a GEO Label could assist in searching by providing users with visual cues of dataset quality and possibly relevance; a GEO Label could effectively stand as a decision support mechanism for dataset selection. Currently our project - GeoViQua, - together with EGIDA and ID-03 is undertaking research to define and evaluate the concept of a GEO Label. The development and evaluation process will be carried out in three phases. In phase I we have conducted an online survey (GEO Label Questionnaire) to identify the initial user and producer views on a GEO Label or its potential role. In phase II we will conduct a further study presenting some GEO Label examples that will be based on Phase I. We will elicit feedback on these examples under controlled conditions. In phase III we will create physical prototypes which will be used in a human subject study. The most successful prototypes will then be put forward as potential GEO Label options. At the moment we are in phase I, where we developed an online questionnaire to collect the initial GEO Label requirements and to identify the role that a GEO Label should serve from the user and producer standpoint. The GEO Label Questionnaire consists of generic questions to identify whether

  18. Extracting Urban Land Use from Linked Open Geospatial Data

    Directory of Open Access Journals (Sweden)

    Gloria Re Calegari

    2015-10-01

    Full Text Available The ever-increasing availability of linked open geospatial data provides an unprecedented source of geo-information to describe urban environments. This wealth of data should be turned into actionable knowledge: for example, open data could be used as a proxy or substitute for closed or expensive information. The successful employment of linked open geospatial data can pave the way for innovative solutions to smart city problems. In this paper, we illustrate a set of experiments that, starting from linked open geospatial data, execute a knowledge discovery process to predict urban semantics. More specifically, we leverage geo-information about points of interests as input in a classification model of land use at a moderate spatial resolution (250 meters over wide urban areas in Europe. We replicate our experiments in different European cities—Milano, München, Barcelona and Brussels—to ensure the repeatability and generality of our approach, and we explain the experimental conditions, as well as the employed datasets to guarantee reproducibility. We extensively report on quantitative and qualitative evaluation results, to judge the validity, as well as the limitations of our proposed approach.

  19. Geospatial Selection Using Mapx and JAZ JavaScript Libraries

    Science.gov (United States)

    Lewis, S.

    2008-12-01

    Geospatial selection widgets are becoming more prominent in many online data search tools. In order to make these selection widgets function, it is important to be able to project coordinates from the screen to the earth, and vice-versa. The JavaScript Mapx library enables these projection algorithms to be embedded into a web page, allowing the page to make use of on-the-fly projections in a client browser without having to make calls to a server. This, in turn, can greatly speed up projection calculations, and allow for more robust and interactive functionality in client web applications. The JavaScript JAZ library harnesses the power of the Mapx projections by allowing the user to easily embed a selection widget into any tool requiring a visual geospatial selection mechanism. This relatively lightweight tool provides some significant power by allowing geospatial selections to be done on images of a variety of different map projections. These images can be served from a static image library, or a more dynamic Web Map Server (WMS) setup on a host. The flexibility of this widget has made it possible to use in a variety of web search tools.

  20. Temporal geospatial analysis of secondary school students’ examination performance

    Science.gov (United States)

    Nik Abd Kadir, ND; Adnan, NA

    2016-06-01

    Malaysia's Ministry of Education has improved the organization of the data to have the geographical information system (GIS) school database. However, no further analysis is done using geospatial analysis tool. Mapping has emerged as a communication tool and becomes effective way to publish the digital and statistical data such as school performance results. The objective of this study is to analyse secondary school student performance of science and mathematics scores of the Sijil Pelajaran Malaysia Examination result in the year 2010 to 2014 for the Kelantan's state schools with the aid of GIS software and geospatial analysis. The school performance according to school grade point average (GPA) from Grade A to Grade G were interpolated and mapped and query analysis using geospatial tools able to be done. This study will be beneficial to the education sector to analyse student performance not only in Kelantan but to the whole Malaysia and this will be a good method to publish in map towards better planning and decision making to prepare young Malaysians for the challenges of education system and performance.

  1. Geospatial assessment of solar energy potential for utility scale parabolic trough collector power plant in Saudi Arabia

    Science.gov (United States)

    Ibarra, Mercedes; Gherboudj, Imen; Al Rished, Abdulaziz; Ghedira, Hosni

    2017-06-01

    Given ambitious plans to increase the amount of electricity production from renewable resources and the natural resources of the Kingdom of Saudi Arabia (KSA), solar energy stands as a technology with a great development potential in this country. In this work, the suitability of the territory is assess through a geospatial analysis, using a PTC performance model to account for the technical potential. As a result, a land suitability map is presented, where the North-West area of the country is identified as the one with more highly suitable area.

  2. Geo-Spatial Tactical Decision Aid Systems: Fuzzy Logic for Supporting Decision Making

    National Research Council Canada - National Science Library

    Grasso, Raffaele; Giannecchini, Simone

    2006-01-01

    .... This paper describes a tactical decision aid system based on fuzzy logic reasoning for data fusion and on current Open Geospatial Consortium specifications for interoperability, data dissemination...

  3. GIS-and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wei [Colorado School of Mines, Golden, CO (United States); Minnick, Matthew [Colorado School of Mines, Golden, CO (United States); Geza, Mengistu [Colorado School of Mines, Golden, CO (United States); Murray, Kyle [Colorado School of Mines, Golden, CO (United States); Mattson, Earl [Colorado School of Mines, Golden, CO (United States)

    2012-09-30

    The Colorado School of Mines (CSM) was awarded a grant by the National Energy Technology Laboratory (NETL), Department of Energy (DOE) to conduct a research project en- titled GIS- and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development in October of 2008. The ultimate goal of this research project is to develop a water resource geo-spatial infrastructure that serves as “baseline data” for creating solutions on water resource management and for supporting decisions making on oil shale resource development. The project came to the end on September 30, 2012. This final project report will report the key findings from the project activity, major accomplishments, and expected impacts of the research. At meantime, the gamma version (also known as Version 4.0) of the geodatabase as well as other various deliverables stored on digital storage media will be send to the program manager at NETL, DOE via express mail. The key findings from the project activity include the quantitative spatial and temporal distribution of the water resource throughout the Piceance Basin, water consumption with respect to oil shale production, and data gaps identified. Major accomplishments of this project include the creation of a relational geodatabase, automated data processing scripts (Matlab) for database link with surface water and geological model, ArcGIS Model for hydrogeologic data processing for groundwater model input, a 3D geological model, surface water/groundwater models, energy resource development systems model, as well as a web-based geo-spatial infrastructure for data exploration, visualization and dissemination. This research will have broad impacts of the devel- opment of the oil shale resources in the US. The geodatabase provides a “baseline” data for fur- ther study of the oil shale development and identification of further data collection needs. The 3D geological model provides better understanding through data interpolation and

  4. A geospatial comparison of distributed solar heat and power in Europe and the US.

    Science.gov (United States)

    Norwood, Zack; Nyholm, Emil; Otanicar, Todd; Johnsson, Filip

    2014-01-01

    The global trends for the rapid growth of distributed solar heat and power in the last decade will likely continue as the levelized cost of production for these technologies continues to decline. To be able to compare the economic potential of solar technologies one must first quantify the types and amount of solar resource that each technology can utilize; second, estimate the technological performance potential based on that resource; and third, compare the costs of each technology across regions. In this analysis, we have performed the first two steps in this process. We use physical and empirically validated models of a total of 8 representative solar system types: non-tracking photovoltaics, 2d-tracking photovoltaics, high concentration photovoltaics, flat-plate thermal, evacuated tube thermal, concentrating trough thermal, concentrating solar combined heat and power, and hybrid concentrating photovoltaic/thermal. These models are integrated into a simulation that uses typical meteorological year weather data to create a yearly time series of heat and electricity production for each system over 12,846 locations in Europe and 1,020 locations in the United States. Through this simulation, systems composed of various permutations of collector-types and technologies can be compared geospatially and temporally in terms of their typical production in each location. For example, we see that silicon solar cells show a significant advantage in yearly electricity production over thin-film cells in the colder climatic regions, but that advantage is lessened in regions that have high average irradiance. In general, the results lead to the conclusion that comparing solar technologies across technology classes simply on cost per peak watt, as is usually done, misses these often significant regional differences in annual performance. These results have implications for both solar power development and energy systems modeling of future pathways of the electricity system.

  5. A geospatial comparison of distributed solar heat and power in Europe and the US.

    Directory of Open Access Journals (Sweden)

    Zack Norwood

    Full Text Available The global trends for the rapid growth of distributed solar heat and power in the last decade will likely continue as the levelized cost of production for these technologies continues to decline. To be able to compare the economic potential of solar technologies one must first quantify the types and amount of solar resource that each technology can utilize; second, estimate the technological performance potential based on that resource; and third, compare the costs of each technology across regions. In this analysis, we have performed the first two steps in this process. We use physical and empirically validated models of a total of 8 representative solar system types: non-tracking photovoltaics, 2d-tracking photovoltaics, high concentration photovoltaics, flat-plate thermal, evacuated tube thermal, concentrating trough thermal, concentrating solar combined heat and power, and hybrid concentrating photovoltaic/thermal. These models are integrated into a simulation that uses typical meteorological year weather data to create a yearly time series of heat and electricity production for each system over 12,846 locations in Europe and 1,020 locations in the United States. Through this simulation, systems composed of various permutations of collector-types and technologies can be compared geospatially and temporally in terms of their typical production in each location. For example, we see that silicon solar cells show a significant advantage in yearly electricity production over thin-film cells in the colder climatic regions, but that advantage is lessened in regions that have high average irradiance. In general, the results lead to the conclusion that comparing solar technologies across technology classes simply on cost per peak watt, as is usually done, misses these often significant regional differences in annual performance. These results have implications for both solar power development and energy systems modeling of future pathways of the

  6. A Geospatial Comparison of Distributed Solar Heat and Power in Europe and the US

    Science.gov (United States)

    Norwood, Zack; Nyholm, Emil; Otanicar, Todd; Johnsson, Filip

    2014-01-01

    The global trends for the rapid growth of distributed solar heat and power in the last decade will likely continue as the levelized cost of production for these technologies continues to decline. To be able to compare the economic potential of solar technologies one must first quantify the types and amount of solar resource that each technology can utilize; second, estimate the technological performance potential based on that resource; and third, compare the costs of each technology across regions. In this analysis, we have performed the first two steps in this process. We use physical and empirically validated models of a total of 8 representative solar system types: non-tracking photovoltaics, 2d-tracking photovoltaics, high concentration photovoltaics, flat-plate thermal, evacuated tube thermal, concentrating trough thermal, concentrating solar combined heat and power, and hybrid concentrating photovoltaic/thermal. These models are integrated into a simulation that uses typical meteorological year weather data to create a yearly time series of heat and electricity production for each system over 12,846 locations in Europe and 1,020 locations in the United States. Through this simulation, systems composed of various permutations of collector-types and technologies can be compared geospatially and temporally in terms of their typical production in each location. For example, we see that silicon solar cells show a significant advantage in yearly electricity production over thin-film cells in the colder climatic regions, but that advantage is lessened in regions that have high average irradiance. In general, the results lead to the conclusion that comparing solar technologies across technology classes simply on cost per peak watt, as is usually done, misses these often significant regional differences in annual performance. These results have implications for both solar power development and energy systems modeling of future pathways of the electricity system. PMID

  7. Geospatial Modeling of Asthma Population in Relation to Air Pollution

    Science.gov (United States)

    Kethireddy, Swatantra R.; Tchounwou, Paul B.; Young, John H.; Luvall, Jeffrey C.; Alhamdan, Mohammad

    2013-01-01

    Current observations indicate that asthma is growing every year in the United States, specific reasons for this are not well understood. This study stems from an ongoing research effort to investigate the spatio-temporal behavior of asthma and its relatedness to air pollution. The association between environmental variables such as air quality and asthma related health issues over Mississippi State are investigated using Geographic Information Systems (GIS) tools and applications. Health data concerning asthma obtained from Mississippi State Department of Health (MSDH) for 9-year period of 2003-2011, and data of air pollutant concentrations (PM2.5) collected from USEPA web resources, and are analyzed geospatially to establish the impacts of air quality on human health specifically related to asthma. Disease mapping using geospatial techniques provides valuable insights into the spatial nature, variability, and association of asthma to air pollution. Asthma patient hospitalization data of Mississippi has been analyzed and mapped using quantitative Choropleth techniques in ArcGIS. Patients have been geocoded to their respective zip codes. Potential air pollutant sources of Interstate highways, Industries, and other land use data have been integrated in common geospatial platform to understand their adverse contribution on human health. Existing hospitals and emergency clinics are being injected into analysis to further understand their proximity and easy access to patient locations. At the current level of analysis and understanding, spatial distribution of Asthma is observed in the populations of Zip code regions in gulf coast, along the interstates of south, and in counties of Northeast Mississippi. It is also found that asthma is prevalent in most of the urban population. This GIS based project would be useful to make health risk assessment and provide information support to the administrators and decision makers for establishing satellite clinics in future.

  8. Contextualizing Cave Maps as Geospatial Information: Case Study of Indonesia

    Science.gov (United States)

    Reinhart, H.

    2017-12-01

    Caves are the result of solution processes. Because they are happened from geochemical and tectonic activity, they can be considered as geosphere phenomena. As one of the geosphere phenomena, especially at karst landform, caves have spatial dimensions and aspects. Cave’s utilizations and developments are increasing in many sectors such as hydrology, earth science, and tourism industry. However, spatial aspects of caves are poorly concerned dues to the lack of recognition toward cave maps. Many stakeholders have not known significances and importance of cave maps in determining development of a cave. Less information can be considered as the cause. Therefore, it is strongly necessary to put cave maps into the right context in order to make stakeholders realize the significance of it. Also, cave maps will be officially regarded as tools related to policy, development, and conservation act of caves hence they will have regulation in the usages and applications. This paper aims to make the contextualization of cave maps toward legal act. The act which is used is Act Number 4 Year 2011 About Geospatial Information. The contextualization is done by scrutinizing every articles and clauses related to cave maps and seek the contextual elements from both of them. The results are that cave maps can be regarded as geospatial information and classified as thematic geospatial information. The usages of them can be regulated through the Act Number 4 Year 2011. The regulations comprised by data acquisition, database, authorities, surveyor, and the obligation of providing cave maps in planning cave’s development and the environment surrounding.

  9. Virtual Observatory Integration of OGC geospatial data and services.

    Science.gov (United States)

    Minin, M.; Rossi, A. P.; Marmo, C.; Cecconi, B.; Le Sidaner, P.; Erard, S.

    2016-12-01

    Planetary exploration missions produce a wealth of geospatial data, largely from imaging experiments. Data discovery and access can rely on Terrestrial geospatial standards [1], or Virtual Observatory (VO) approach of EuroPlanet-RI H2020 VESPA [2]. Integrating the two is the aim of VESPA Surface Task. VO-GIS interoperability facilitates discovery, display, access and use of geospatial data. In combination with non-surface imaging datasets, it has a potential for interdisciplinary science. We provide geospatial data through VO (Virtual Observatory) TAP (Table Access Protocol) on a dedicated server. Our service runs GAVO DaCHS (Data Center Helper Suite) and is registered with the IVOA (International Virtual Observatory Alliance). Currently exposed tables are: (a) usgs_wms - VO/GIS access to USGS-served WMS (Web Map Service) [3]; (b) crism - CRISM data on [4], with a JavaScript viewer where a spectrum selected on a preview can be visualized in a browser or broadcasted to VO tools; (c) mars_craters - Mars Crater Catalog [5]. Footprint polygons in crism and mars_craters can be sent to the VO viewing tool Aladin. Support from the latter for complex polygons will allow for improved, GIS-like search and data access capabilities. The exposure of additional planetary OGC services is planned. Current work involves the development of a Desktop GIS (QGIS) plugin to enable VO-access and expanding the range of datasets suitable for surface mapping and analysis. All of our developments are Open Source and our code and tools are available on the VESPA GitHub organization page and repositories therein [6]. References[1] Hare et al. (2015) LPSC XLVI, #2476. [2] Erard, S., et al., (2014), Astronomy and Computing 7, 52-61. [3] Hare, T. M., et al. (2014) LPSC 45. MTSTC4-2014-135. [4] Rossi A. P., et al., (2016) Geophysical Research Abstracts, 18, EGU2016-3996 [5] Robbins, S.J., and B.M. Hynek (2012) JGR 117, E06001. [6] https://github.com/epn-vespa/DaCHS-for-VESPA

  10. Geospatial Cyberinfrastructure and Geoprocessing Web—A Review of Commonalities and Differences of E-Science Approaches

    Directory of Open Access Journals (Sweden)

    Barbara Hofer

    2013-08-01

    Full Text Available Online geoprocessing gains momentum through increased online data repositories, web service infrastructures, online modeling capabilities and the required online computational resources. Advantages of online geoprocessing include reuse of data and services, extended collaboration possibilities among scientists, and efficiency thanks to distributed computing facilities. In the field of Geographic Information Science (GIScience, two recent approaches exist that have the goal of supporting science in online environments: the geospatial cyberinfrastructure and the geoprocessing web. Due to its historical development, the geospatial cyberinfrastructure has strengths related to the technologies required for data storage and processing. The geoprocessing web focuses on providing components for model development and sharing. These components shall allow expert users to develop, execute and document geoprocessing workflows in online environments. Despite this difference in the emphasis of the two approaches, the objectives, concepts and technologies they use overlap. This paper provides a review of the definitions and representative implementations of the two approaches. The provided overview clarifies which aspects of e-Science are highlighted in approaches differentiated in the geographic information domain. The discussion of the two approaches leads to the conclusion that synergies in research on e-Science environments shall be extended. Full-fledged e-Science environments will require the integration of approaches with different strengths.

  11. Developing a Cloud-Based Online Geospatial Information Sharing and Geoprocessing Platform to Facilitate Collaborative Education and Research

    Science.gov (United States)

    Yang, Z. L.; Cao, J.; Hu, K.; Gui, Z. P.; Wu, H. Y.; You, L.

    2016-06-01

    Efficient online discovering and applying geospatial information resources (GIRs) is critical in Earth Science domain as while for cross-disciplinary applications. However, to achieve it is challenging due to the heterogeneity, complexity and privacy of online GIRs. In this article, GeoSquare, a collaborative online geospatial information sharing and geoprocessing platform, was developed to tackle this problem. Specifically, (1) GIRs registration and multi-view query functions allow users to publish and discover GIRs more effectively. (2) Online geoprocessing and real-time execution status checking help users process data and conduct analysis without pre-installation of cumbersome professional tools on their own machines. (3) A service chain orchestration function enables domain experts to contribute and share their domain knowledge with community members through workflow modeling. (4) User inventory management allows registered users to collect and manage their own GIRs, monitor their execution status, and track their own geoprocessing histories. Besides, to enhance the flexibility and capacity of GeoSquare, distributed storage and cloud computing technologies are employed. To support interactive teaching and training, GeoSquare adopts the rich internet application (RIA) technology to create user-friendly graphical user interface (GUI). Results show that GeoSquare can integrate and foster collaboration between dispersed GIRs, computing resources and people. Subsequently, educators and researchers can share and exchange resources in an efficient and harmonious way.

  12. Installation Mapping Enables Many Missions: The Benefits of and Barriers to Sharing Geospatial Data Assets

    Science.gov (United States)

    2007-01-01

    geospatial data assets. The U.S. Army IMA Europe Chaplin Office wants to use I&E geospatial data assets to better provide religious ser- vices to Army...perimeter intrusion detectors. Positions for all features are set for each of four force protection conditions (Alpha, Bravo, Charlie , Delta). Security

  13. Geospatial Data Combined With The Automated Geospatial Watershed Assessment (AGWA) Tool For Rapid Post-Fire Watershed Assessments

    Science.gov (United States)

    Goodrich, D. C.; Clifford, T. J.; Guertin, D. P.; Sheppard, B. S.; Barlow, J. E.; Korgaonkar, Y.; Burns, I. S.; Unkrich, C. C.

    2016-12-01

    Wildfires disasters are common throughout the western US. While many feel fire suppression is the largest cost of wildfires, case studies note rehabilitation costs often equal or greatly exceed suppression costs. Using geospatial data sets, and post-fire burn severity products, coupled with the Automated Geospatial Watershed Assessment tool (AGWA - www.tucson.ars.ag.gov/agwa), the Dept. of Interior, Burned Area Emergency Response (BAER) teams can rapidly analyze and identify at-risk areas to target rehabilitation efforts. AGWA employs nationally available geospatial elevation, soils, and land cover data to parameterize the KINEROS2 hydrology and erosion model. A pre-fire watershed simulation can be done prior to BAER deployment using design storms. As soon as the satellite-derived Burned Area Reflectance Classification (BARC) map is obtained, a post-fire watershed simulation using the same storm is conducted. The pre- and post-fire simulations can be spatially differenced in the GIS for rapid identification of high at-risk areas of erosion or flooding. This difference map is used by BAER teams to prioritize field observations and in-turn produce a final burn severity map that is used in AGWA/KINEROS2 simulations to provide report ready results. The 2013 Elk Wildfire Complex that burned over 52,600 ha east of Boise, Idaho provides a tangible example of how BAER experts combined AGWA and geospatial data that resulted in substantial rehabilitation cost savings. The BAER team initially, they identified approximately 6,500 burned ha for rehabilitation. The team then used the AGWA pre- and post-fire watershed simulation results, accessibility constraints, and land slope conditions in an interactive process to locate burned areas that posed the greatest threat to downstream values-at-risk. The group combined the treatable area, field observations, and the spatial results from AGWA to target seed and mulch treatments that most effectively reduced the threats. Using this

  14. Validation of a Previously Developed Geospatial Model That Predicts the Prevalence of Listeria monocytogenes in New York State Produce Fields

    Science.gov (United States)

    Weller, Daniel; Shiwakoti, Suvash; Bergholz, Peter; Grohn, Yrjo; Wiedmann, Martin

    2015-01-01

    Technological advancements, particularly in the field of geographic information systems (GIS), have made it possible to predict the likelihood of foodborne pathogen contamination in produce production environments using geospatial models. Yet, few studies have examined the validity and robustness of such models. This study was performed to test and refine the rules associated with a previously developed geospatial model that predicts the prevalence of Listeria monocytogenes in produce farms in New York State (NYS). Produce fields for each of four enrolled produce farms were categorized into areas of high or low predicted L. monocytogenes prevalence using rules based on a field's available water storage (AWS) and its proximity to water, impervious cover, and pastures. Drag swabs (n = 1,056) were collected from plots assigned to each risk category. Logistic regression, which tested the ability of each rule to accurately predict the prevalence of L. monocytogenes, validated the rules based on water and pasture. Samples collected near water (odds ratio [OR], 3.0) and pasture (OR, 2.9) showed a significantly increased likelihood of L. monocytogenes isolation compared to that for samples collected far from water and pasture. Generalized linear mixed models identified additional land cover factors associated with an increased likelihood of L. monocytogenes isolation, such as proximity to wetlands. These findings validated a subset of previously developed rules that predict L. monocytogenes prevalence in produce production environments. This suggests that GIS and geospatial models can be used to accurately predict L. monocytogenes prevalence on farms and can be used prospectively to minimize the risk of preharvest contamination of produce. PMID:26590280

  15. The National 3-D Geospatial Information Web-Based Service of Korea

    Science.gov (United States)

    Lee, D. T.; Kim, C. W.; Kang, I. G.

    2013-09-01

    3D geospatial information systems should provide efficient spatial analysis tools and able to use all capabilities of the third dimension, and a visualization. Currently, many human activities make steps toward the third dimension like land use, urban and landscape planning, cadastre, environmental monitoring, transportation monitoring, real estate market, military applications, etc. To reflect this trend, the Korean government has been started to construct the 3D geospatial data and service platform. Since the geospatial information was introduced in Korea, the construction of geospatial information (3D geospatial information, digital maps, aerial photographs, ortho photographs, etc.) has been led by the central government. The purpose of this study is to introduce the Korean government-lead 3D geospatial information web-based service for the people who interested in this industry and we would like to introduce not only the present conditions of constructed 3D geospatial data but methodologies and applications of 3D geospatial information. About 15% (about 3,278.74 km2) of the total urban area's 3D geospatial data have been constructed by the national geographic information institute (NGII) of Korea from 2005 to 2012. Especially in six metropolitan cities and Dokdo (island belongs to Korea) on level of detail (LOD) 4 which is photo-realistic textured 3D models including corresponding ortho photographs were constructed in 2012. In this paper, we represented web-based 3D map service system composition and infrastructure and comparison of V-world with Google Earth service will be presented. We also represented Open API based service cases and discussed about the protection of location privacy when we construct 3D indoor building models. In order to prevent an invasion of privacy, we processed image blurring, elimination and camouflage. The importance of public-private cooperation and advanced geospatial information policy is emphasized in Korea. Thus, the progress of

  16. Geospatial Data Standards for Indian Water Resources Systems

    Science.gov (United States)

    Goyal, A.; Tyagi, H.; Gosain, A. K.; Khosa, R.

    2016-12-01

    Sustainable management of water resources is fundamental to the socio-economic development of any nation. There is an increasing degree of dependency on digital geographical data for monitoring, planning, managing and preserving the water resources and environmental quality. But the rising sophistication associated with the sharing of geospatial data among organizations or users, demands development of data standards for seamless information exchange among collaborators. Therefore, due to the realization that these datasets are vital for efficient use of Geographical Information Systems, there is a growing emphasis on data standards for modeling, encoding and communicating spatial data. Real world hydrologic interactions represented in a digital framework requires geospatial standards that may vary in contexts like: governance, resource inventory, cultural diversity, identifiers, role and scale. Though the prevalent standards for the hydrology data facilitate a particular need in a particular context but they lack a holistic approach. However, several worldwide initiatives such as Consortium for the Advancement of Hydrologic Sciences Inc. (USA), Infrastructure for Spatial Information in the European Community (Europe), Australian Water Resources Information System, etc., endeavour to address this issue of hydrology specific spatial data standards in a wholesome manner. But unfortunately there is no such provision for hydrology data exchange within the Indian community. Moreover, these standards somehow fail in providing powerful communication of the spatial hydrologic data. This study thus investigates the shortcomings of the existing industry standards for the hydrologic data models and then demonstrates a set of requirements for effective exchange of the hydrologic information in the Indian scenario.

  17. River predisposition to ice jams: a simplified geospatial model

    Science.gov (United States)

    De Munck, Stéphane; Gauthier, Yves; Bernier, Monique; Chokmani, Karem; Légaré, Serge

    2017-07-01

    Floods resulting from river ice jams pose a great risk to many riverside municipalities in Canada. The location of an ice jam is mainly influenced by channel morphology. The goal of this work was therefore to develop a simplified geospatial model to estimate the predisposition of a river channel to ice jams. Rather than predicting the timing of river ice breakup, the main question here was to predict where the broken ice is susceptible to jam based on the river's geomorphological characteristics. Thus, six parameters referred to potential causes for ice jams in the literature were initially selected: presence of an island, narrowing of the channel, high sinuosity, presence of a bridge, confluence of rivers, and slope break. A GIS-based tool was used to generate the aforementioned factors over regular-spaced segments along the entire channel using available geospatial data. An ice jam predisposition index (IJPI) was calculated by combining the weighted optimal factors. Three Canadian rivers (province of Québec) were chosen as test sites. The resulting maps were assessed from historical observations and local knowledge. Results show that 77 % of the observed ice jam sites on record occurred in river sections that the model considered as having high or medium predisposition. This leaves 23 % of false negative errors (missed occurrence). Between 7 and 11 % of the highly predisposed river sections did not have an ice jam on record (false-positive cases). Results, limitations, and potential improvements are discussed.

  18. FOSS Tools and Applications for Education in Geospatial Sciences

    Directory of Open Access Journals (Sweden)

    Marco Ciolli

    2017-07-01

    Full Text Available While the theory and implementation of geographic information systems (GIS have a history of more than 50 years, the development of dedicated educational tools and applications in this field is more recent. This paper presents a free and open source software (FOSS approach for education in the geospatial disciplines, which has been used over the last 20 years at two Italian universities. The motivations behind the choice of FOSS are discussed with respect to software availability and development, as well as educational material licensing. Following this philosophy, a wide range of educational tools have been developed, covering topics from numerical cartography and GIS principles to the specifics regarding different systems for the management and analysis of spatial data. Various courses have been implemented for diverse recipients, ranging from professional training workshops to PhD courses. Feedback from the students of those courses provides an invaluable assessment of the effectiveness of the approach, supplying at the same time directions for further improvement. Finally, lessons learned after 20 years are discussed, highlighting how the management of educational materials can be difficult even with a very open approach to licensing. Overall, the use of free and open source software for geospatial (FOSS4G science provides a clear advantage over other approaches, not only simplifying software and data management, but also ensuring that all of the information related to system design and implementation is available.

  19. Ontology-based geospatial data query and integration

    Science.gov (United States)

    Zhao, T.; Zhang, C.; Wei, M.; Peng, Z.-R.

    2008-01-01

    Geospatial data sharing is an increasingly important subject as large amount of data is produced by a variety of sources, stored in incompatible formats, and accessible through different GIS applications. Past efforts to enable sharing have produced standardized data format such as GML and data access protocols such as Web Feature Service (WFS). While these standards help enabling client applications to gain access to heterogeneous data stored in different formats from diverse sources, the usability of the access is limited due to the lack of data semantics encoded in the WFS feature types. Past research has used ontology languages to describe the semantics of geospatial data but ontology-based queries cannot be applied directly to legacy data stored in databases or shapefiles, or to feature data in WFS services. This paper presents a method to enable ontology query on spatial data available from WFS services and on data stored in databases. We do not create ontology instances explicitly and thus avoid the problems of data replication. Instead, user queries are rewritten to WFS getFeature requests and SQL queries to database. The method also has the benefits of being able to utilize existing tools of databases, WFS, and GML while enabling query based on ontology semantics. ?? 2008 Springer-Verlag Berlin Heidelberg.

  20. Geospatial Data Quality of the Servir CORS Network

    Science.gov (United States)

    Santos, J.; Teodoro, R.; Mira, N.; Mendes, V. B.

    2015-08-01

    The SERVIR Continuous Operation Reference Stations (CORS) network was implemented in 2006 to facilitate land surveying with Global Navigation Satellite Systems (GNSS) positioning techniques. Nowadays, the network covers all Portuguese mainland. The SERVIR data is provided to many users, such as surveyors, universities (for education and research purposes) and companies that deal with geographic information. By middle 2012, there was a significant change in the network accessing paradigm, the most important of all being the increase in the responsibility of managing the network to guarantee a permanent availability and the highest quality of the geospatial data. In addition, the software that is used to manage the network and to compute the differential corrections was replaced by a new software package. These facts were decisive to perform the quality control of the SERVIR network and evaluate positional accuracy. In order to perform such quality control, a significant number of geodetic monuments spread throughout the country were chosen. Some of these monuments are located in the worst location regarding the network geometry in order to evaluate the accuracy of positions for the worst case scenarios. Data collection was carried out using different GNSS positioning modes and were compared against the benchmark positions that were determined using data acquired in static mode in 3-hour sessions. We conclude the geospatial data calculated and provided to the users community by the network is, within the surveying purposes, accurate, precise and fits the needs of those users.

  1. River predisposition to ice jams: a simplified geospatial model

    Directory of Open Access Journals (Sweden)

    S. De Munck

    2017-07-01

    Full Text Available Floods resulting from river ice jams pose a great risk to many riverside municipalities in Canada. The location of an ice jam is mainly influenced by channel morphology. The goal of this work was therefore to develop a simplified geospatial model to estimate the predisposition of a river channel to ice jams. Rather than predicting the timing of river ice breakup, the main question here was to predict where the broken ice is susceptible to jam based on the river's geomorphological characteristics. Thus, six parameters referred to potential causes for ice jams in the literature were initially selected: presence of an island, narrowing of the channel, high sinuosity, presence of a bridge, confluence of rivers, and slope break. A GIS-based tool was used to generate the aforementioned factors over regular-spaced segments along the entire channel using available geospatial data. An ice jam predisposition index (IJPI was calculated by combining the weighted optimal factors. Three Canadian rivers (province of Québec were chosen as test sites. The resulting maps were assessed from historical observations and local knowledge. Results show that 77 % of the observed ice jam sites on record occurred in river sections that the model considered as having high or medium predisposition. This leaves 23 % of false negative errors (missed occurrence. Between 7 and 11 % of the highly predisposed river sections did not have an ice jam on record (false-positive cases. Results, limitations, and potential improvements are discussed.

  2. Geo-Spatial Multi-criteria Analysis for Wave Energy System Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Nobre, Ana; Pacheco, Miguel (Instituto Hidrografico, Rua das Trinas, 49, Lisboa (PT)); Jorge, Raquel Lopes, M. F. P.; Gato, L. M. C. (IDMEC, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, Lisboa (PT))

    2007-07-01

    The growing requirements for renewable energy production lead to the development of a new series of systems, including wave energy conversion systems. Due to their sensitivity and the impact of the aggressive marine environment, the selection of the most adequate location for these systems is a major and very important task. Several factors, such as technological limitations, environmental conditions, administrative and logistic conditions, have to be taken into account in order to support the decision for best location. This paper describes a geo-spatial multi-criteria analysis methodology, based on geographic information systems technology, for selection of the best location to deploy a wave energy farm. This methodology is not conversion system dependent and therefore can be easily customized for different systems and conditions. Selection factors can include, for example, ocean depth, bottom type, underwater cables, marine protected areas, ports location, shoreline, power grid location, military exercise areas, climatology of wave significant height, period and direction. A case study demonstrating this methodology is presented, for an area offshore the Portuguese southwest coast. The system output allows a clear identification of the best spots for a wave energy farm. It is not just a simple Boolean result showing valid and invalid locations, but a layer with a graded suitability for farm deployment.

  3. Geo-spatial multi-criteria analysis for wave energy conversion system deployment

    Energy Technology Data Exchange (ETDEWEB)

    Nobre, Ana; Pacheco, Miguel [Data Centre, Instituto Hidrografico, Portuguese Navy, Rua das Trinas 49, 1249-093 Lisboa (Portugal); Jorge, Raquel; Lopes, M.F.P.; Gato, L.M.C. [IDMEC, Instituto Superior Tecnico, Technical University of Lisbon, Avenida Rovisco Pais 1, 1049-001, Lisboa (Portugal)

    2009-01-15

    The growing requirements for renewable energy production lead to the development of a new series of systems, including wave energy conversion systems. Due to their sensitivity and the impact of the aggressive marine environment, the selection of the most adequate location for these systems is a major and very important task. Several factors, such as technological limitations, environmental conditions, administrative and logistic conditions, have to be taken into account in order to support the decision for best location. This paper describes a geo-spatial multi-criteria analysis methodology, based on geographic information systems technology, for identification of the best location to deploy a wave energy farm. This methodology is not conversion system dependent and therefore can be easily customized for different systems and implementation conditions. Selection factors can include, for example, ocean depth, sea bottom type, existing underwater cables, marine protected areas, ports location, shoreline, power grid location, military exercise areas, climatology of wave significant height, period and power. A case study demonstrating this methodology is presented, for an area offshore the Portuguese southwest coast. The system output allows a clear differential identification of the best spots for implementing a wave energy farm. It is not just a simple Boolean result showing valid and invalid locations, but a layer with a valued suitability for farm deployment. (author)

  4. Geospatial revolution and remote sensing LiDAR in Mesoamerican archaeology.

    Science.gov (United States)

    Chase, Arlen F; Chase, Diane Z; Fisher, Christopher T; Leisz, Stephen J; Weishampel, John F

    2012-08-07

    The application of light detection and ranging (LiDAR), a laser-based remote-sensing technology that is capable of penetrating overlying vegetation and forest canopies, is generating a fundamental shift in Mesoamerican archaeology and has the potential to transform research in forested areas world-wide. Much as radiocarbon dating that half a century ago moved archaeology forward by grounding archaeological remains in time, LiDAR is proving to be a catalyst for an improved spatial understanding of the past. With LiDAR, ancient societies can be contextualized within a fully defined landscape. Interpretations about the scale and organization of densely forested sites no longer are constrained by sample size, as they were when mapping required laborious on-ground survey. The ability to articulate ancient landscapes fully permits a better understanding of the complexity of ancient Mesoamerican urbanism and also aids in modern conservation efforts. The importance of this geospatial innovation is demonstrated with newly acquired LiDAR data from the archaeological sites of Caracol, Cayo, Belize and Angamuco, Michoacán, Mexico. These data illustrate the potential of technology to act as a catalytic enabler of rapid transformational change in archaeological research and interpretation and also underscore the value of on-the-ground archaeological investigation in validating and contextualizing results.

  5. Towards Innovative Geospatial Tools for Fit-For Land Rights Mapping

    Science.gov (United States)

    Koeva, M.; Bennett, R.; Gerke, M.; Crommelinck, S.; Stöcker, C.; Crompvoets, J.; Ho, S.; Schwering, A.; Chipofya, M.; Schultz, C.; Zein, T.; Biraro, M.; Alemie, B.; Wayumba, R.; Kundert, K.

    2017-09-01

    In large parts of sub Saharan Africa it remains an ongoing challenging to map millions of unrecognized land rights. Existing approaches for recognizing these rights have proven inappropriate in many cases. A new generation of tools needs to be developed to support faster, cheaper, easier, and more responsible land rights mapping. This is the main goal of its4land, an European Commission Horizon 2020 project that aims to develop innovative tools inspired by the continuum of land rights, fit-for-purpose land administration, and cadastral intelligence. its4land is using strategic collaboration between the EU and East Africa to deliver innovative, scalable, and transferrable ICT solutions. The innovation process incorporates a broad range of stakeholders and emergent geospatial technologies, including smart sketchmaps, UAVs, automated feature extraction, as well as geocloud services. The aim is to combine innovative technologies, capture the specific needs, market opportunities and readiness of end-users in the domain of land tenure information recording in Eastern Africa. The project consists of a four year work plan, € 3.9M funding, and eight consortium partners collaborating with stakeholders from six case study locations in Ethiopia, Kenya, and Rwanda. The major tasks include tool development, prototyping, and demonstration for local, national, regional, and international interest groups. The case locations cover different land uses such as: urban, peri-urban, rural smallholder, and (former) pastoralist. This paper describes the project's activities within the first 18 months and covers barriers discovered, lessons learned and results achieved.

  6. Geospatial Web Services in Real Estate Information System

    Science.gov (United States)

    Radulovic, Aleksandra; Sladic, Dubravka; Govedarica, Miro; Popovic, Dragana; Radovic, Jovana

    2017-12-01

    Since the data of cadastral records are of great importance for the economic development of the country, they must be well structured and organized. Records of real estate on the territory of Serbia met many problems in previous years. To prevent problems and to achieve efficient access, sharing and exchange of cadastral data on the principles of interoperability, domain model for real estate is created according to current standards in the field of spatial data. The resulting profile of the domain model for the Serbian real estate cadastre is based on the current legislation and on Land Administration Domain Model (LADM) which is specified in the ISO19152 standard. Above such organized data, and for their effective exchange, it is necessary to develop a model of services that must be provided by the institutions interested in the exchange of cadastral data. This is achieved by introducing a service-oriented architecture in the information system of real estate cadastre and with that ensures efficiency of the system. It is necessary to develop user services for download, review and use of the real estate data through the web. These services should be provided to all users who need access to cadastral data (natural and legal persons as well as state institutions) through e-government. It is also necessary to provide search, view and download of cadastral spatial data by specifying geospatial services. Considering that real estate contains geometric data for parcels and buildings it is necessary to establish set of geospatial services that would provide information and maps for the analysis of spatial data, and for forming a raster data. Besides the theme Cadastral parcels, INSPIRE directive specifies several themes that involve data on buildings and land use, for which data can be provided from real estate cadastre. In this paper, model of geospatial services in Serbia is defined. A case study of using these services to estimate which household is at risk of

  7. Bridging the Gap Between Surveyors and the Geo-Spatial Society

    Science.gov (United States)

    Müller, H.

    2016-06-01

    For many years FIG, the International Association of Surveyors, has been trying to bridge the gap between surveyors and the geospatial society as a whole, with the geospatial industries in particular. Traditionally the surveying profession contributed to the good of society by creating and maintaining highly precise and accurate geospatial data bases, based on an in-depth knowledge of spatial reference frameworks. Furthermore in many countries surveyors may be entitled to make decisions about land divisions and boundaries. By managing information spatially surveyors today develop into the role of geo-data managers, the longer the more. Job assignments in this context include data entry management, data and process quality management, design of formal and informal systems, information management, consultancy, land management, all that in close cooperation with many different stakeholders. Future tasks will include the integration of geospatial information into e-government and e-commerce systems. The list of professional tasks underpins the capabilities of surveyors to contribute to a high quality geospatial data and information management. In that way modern surveyors support the needs of a geo-spatial society. The paper discusses several approaches to define the role of the surveyor within the modern geospatial society.

  8. An Institutional Community-Driven effort to Curate and Preserve Geospatial Data using GeoBlacklight

    Science.gov (United States)

    Petters, J.; Coleman, S.; Andrea, O.

    2016-12-01

    A variety of geospatial data is produced or collected by both academic researchers and non-academic groups in the Virginia Tech community. In an effort to preserve, curate and make this geospatial data discoverable, the University Libraries have been building a local implementation of GeoBlacklight, a multi-institutional open-source collaborative project to improve the discoverability and sharing of geospatial data. We will discuss the local implementation of Geoblacklight at Virginia Tech, focusing on the efforts necessary to make it a sustainable resource for the institution and local community going forward. This includes technical challenges such as the development of uniform workflows for geospatial data produced within and outside the course of research, but organizational and economic barriers must be overcome as well. In spearheading this GeoBlacklight effort the Libraries have partnered with University Facilities and University IT. The IT group manages the storage and backup of geospatial data, allowing our group to focus on geospatial data collection and curation. Both IT and University Facilities are in possession of localized geospatial data of interest to Viriginia Tech researchers that all parties agreed should be made discoverable and accessible. The interest and involvement of these and other university stakeholders is key to establishing the sustainability of the infrastructure and the capabilities it can provide to the Virginia Tech community and beyond.

  9. Technology

    Directory of Open Access Journals (Sweden)

    Xu Jing

    2016-01-01

    Full Text Available The traditional answer card reading method using OMR (Optical Mark Reader, most commonly, OMR special card special use, less versatile, high cost, aiming at the existing problems proposed a method based on pattern recognition of the answer card identification method. Using the method based on Line Segment Detector to detect the tilt of the image, the existence of tilt image rotation correction, and eventually achieve positioning and detection of answers to the answer sheet .Pattern recognition technology for automatic reading, high accuracy, detect faster

  10. Virtual globes and geospatial health: the potential of new tools in the management and control of vector-borne diseases

    Directory of Open Access Journals (Sweden)

    Anna-Sofie Stensgaard

    2009-05-01

    Full Text Available The rapidly growing field of three-dimensional software modeling of the Earth holds promise for applications in the geospatial health sciences. Easy-to-use, intuitive virtual globe technologies such as Google Earth™ enable scientists around the world to share their data and research results in a visually attractive and readily understandable fashion without the need for highly sophisticated geographical information systems (GIS or much technical assistance. This paper discusses the utility of the rapid and simultaneous visualization of how the agents of parasitic diseases are distributed, as well as that of their vectors and/or intermediate hosts together with other spatially-explicit information. The resulting better understanding of the epidemiology of infectious diseases, and the multidimensional environment in which they occur, are highlighted. In particular, the value of Google Earth™, and its web-based pendant Google Maps™, are reviewed from a public health view point, combining results from literature searches and experiences gained thus far from a multidisciplinary project aimed at optimizing schistosomiasis control and transmission surveillance in sub-Saharan Africa. Although the basic analytical capabilities of virtual globe applications are limited, we conclude that they have considerable potential in the support and promotion of the geospatial health sciences as a userfriendly, straightforward GIS tool for the improvement of data collation, visualization and exploration. The potential of these systems for data sharing and broad dissemination of scientific research and results is emphasized.

  11. Accuracy VS Performance: Finding the Sweet Spot in the Geospatial Resolution of Satellite Metadata

    Science.gov (United States)

    Baskin, W. E.; Mangosing, D. C.; Rinsland, P. L.

    2010-12-01

    NASA’s Atmospheric Science Data Center (ASDC) and the Cloud-Aerosol LIDAR and Infrared Pathfinder Satellite Observation (CALIPSO) team at the NASA Langley Research Center recently collaborated in the development of a new CALIPSO Search and Subset web application. The web application is comprised of three elements: (1) A PostGIS-enabled PostgreSQL database system, which is used to store temporal and geospatial metadata from CALIPSO’s LIDAR, Infrared, and Wide Field Camera datasets, (2) the SciFlo engine, which is a data flow engine that enables semantic, scientific data flow executions in a grid or clustered network computational environment, and (3) PHP-based web application that incorporates some Web 2.0 / AJAX technologies used in the web interface. The search portion of the web application leverages geodetic indexing and search capabilities that became available in the February 2010 release of PostGIS version1.5. This presentation highlights the lessons learned in experimenting with various geospatial resolutions of CALIPSO’s LIDAR sensor ground track metadata. Details of the various spatial resolutions, spatial database schema designs, spatial indexing strategies, and performance results will be discussed. The focus will be on illustrating our findings on the spatial resolutions for ground track metadata that optimized search time and search accuracy in the CALIPSO Search and Subset Application. The CALIPSO satellite provides new insight into the role that clouds and atmospheric aerosols (airborne particles) play in regulating Earth's weather, climate, and air quality. CALIPSO combines an active LIDAR instrument with passive infrared and visible imagers to probe the vertical structure and properties of thin clouds and aerosols over the globe. The CALIPSO satellite was launched on April 28, 2006 and is part of the A-train satellite constellation. The ASDC in Langley’s Science Directorate leads NASA’s program for the processing, archival and

  12. Schistosomiasis: Geospatial Surveillance and Response Systems in Southeast Asia

    Science.gov (United States)

    Malone, John; Bergquist, Robert; Rinaldi, Laura; Xiao-nong, Zhou

    2016-10-01

    Geographic information system (GIS) and remote sensing (RS) from Earth-observing satellites offer opportunities for rapid assessment of areas endemic for vector-borne diseases including estimates of populations at risk and guidance to intervention strategies. This presentation deals with GIS and RS applications for the control of schistosomiasis in China and the Philippines. It includes large-scale risk mapping including identification of suitable habitats for Oncomelania hupensis, the intermediate host snail of Schistosoma japonicum. Predictions of infection risk are discussed with reference to ecological transformations and the potential impact of climate change and the potential for long-term temperature increases in the North as well as the impact on rivers, lakes and water resource developments. Potential integration of geospatial mapping and modeling in schistosomiasis surveillance and response systems in Asia within Global Earth Observation System of Systems (GEOSS) guidelines in the health societal benefit area is discussed.

  13. Geospatial and Contextual Approaches to Energy Balance and Health.

    Science.gov (United States)

    Berrigan, David; Hipp, J Aaron; Hurvitz, Philip M; James, Peter; Jankowska, Marta M; Kerr, Jacqueline; Laden, Francine; Leonard, Tammy; McKinnon, Robin A; Powell-Wiley, Tiffany M; Tarlov, Elizabeth; Zenk, Shannon N

    In the past 15 years, a major research enterprise has emerged that is aimed at understanding associations between geographic and contextual features of the environment (especially the built environment) and elements of human energy balance, including diet, weight, and physical activity. Here we highlight aspects of this research area with a particular focus on research and opportunities in the United States as an example. We address four main areas: 1) The importance of valid and comparable data concerning behavior across geographies, 2) The ongoing need to identify and explore new environmental variables, 3) The challenge of identifying the causally relevant context, and 4) The pressing need for stronger study designs and analytical methods. Additionally, we discuss existing sources of geo-referenced health data which might be exploited by interdisciplinary research teams, personnel challenges and some aspects of funding for geospatial research by the US National Institutes of Health in the past decade, including funding for international collaboration and training opportunities.

  14. GIS information organization based on the Semantic Geospatial Web

    Science.gov (United States)

    Li, Shuxia; Su, Xuming; Li, Ke

    2008-10-01

    People typically use geographic names instead of coordinates to find geographic information on the web through a search engine. But the current keyword-based web search engines are poorly adapted to help people find information that relates to a particular geographic name, because they don't incorporate the geospatial semantic during the search process. The Semantic Web is a new semantic-based information-retrieval environment. We propose the information organization framework of the GIS semantic data according to the architecture of the Semantic Web, that is, the ontology, the metadata and the data source. Then we deal with the organization of the semantic data based on the three-layered framework respectively. As a focus, we present a novel method to disambiguate geographical name based on the ontology of the place.

  15. SCHISTOSOMIASIS: GEOSPATIAL SURVEILLANCE AND RESPONSE SYSTEMS IN SOUTHEAST ASIA

    Directory of Open Access Journals (Sweden)

    J. Malone

    2016-10-01

    Full Text Available Geographic information system (GIS and remote sensing (RS from Earth-observing satellites offer opportunities for rapid assessment of areas endemic for vector-borne diseases including estimates of populations at risk and guidance to intervention strategies. This presentation deals with GIS and RS applications for the control of schistosomiasis in China and the Philippines. It includes large-scale risk mapping including identification of suitable habitats for Oncomelania hupensis, the intermediate host snail of Schistosoma japonicum. Predictions of infection risk are discussed with reference to ecological transformations and the potential impact of climate change and the potential for long-term temperature increases in the North as well as the impact on rivers, lakes and water resource developments. Potential integration of geospatial mapping and modeling in schistosomiasis surveillance and response systems in Asia within Global Earth Observation System of Systems (GEOSS guidelines in the health societal benefit area is discussed.

  16. Efficient Extraction of Content from Enriched Geospatial and Networked Data

    DEFF Research Database (Denmark)

    Qu, Qiang

    Social network services such as Google Places and Twitter have led to a proliferation of user-generated web content that is constantly shared among users. These services enable access to various types of content, covering geospatial locations, textual descriptions, social relationships, and so...... forth, which makes it possible to extract relevant and interesting information that can then be utilized in different applications. However, web content is often semantically rich, structurally complex, and highly dynamic. This dissertation addresses some of the challenges posed by the use of such data......-spatial in general) properties of the objects, and it retrieves a set of objects that best satisfy the query. The dissertation covers application scenarios for each function, it presents efficient implementations, and it offers experimental findings with real-world data. Second, the dissertation studies the problem...

  17. Geospatial and Contextual Approaches to Energy Balance and Health

    Science.gov (United States)

    Berrigan, David; Hipp, J. Aaron; Hurvitz, Philip M.; James, Peter; Jankowska, Marta M.; Kerr, Jacqueline; Laden, Francine; Leonard, Tammy; McKinnon, Robin A.; Powell-Wiley, Tiffany M.; Tarlov, Elizabeth; Zenk, Shannon N.

    2016-01-01

    In the past 15 years, a major research enterprise has emerged that is aimed at understanding associations between geographic and contextual features of the environment (especially the built environment) and elements of human energy balance, including diet, weight, and physical activity. Here we highlight aspects of this research area with a particular focus on research and opportunities in the United States as an example. We address four main areas: 1) The importance of valid and comparable data concerning behavior across geographies, 2) The ongoing need to identify and explore new environmental variables, 3) The challenge of identifying the causally relevant context, and 4) The pressing need for stronger study designs and analytical methods. Additionally, we discuss existing sources of geo-referenced health data which might be exploited by interdisciplinary research teams, personnel challenges and some aspects of funding for geospatial research by the US National Institutes of Health in the past decade, including funding for international collaboration and training opportunities. PMID:27076868

  18. Geospatial Big Data Handling Theory and Methods: A Review and Research Challenges

    DEFF Research Database (Denmark)

    Li, Songnian; Dragicevic, Suzana; Anton, François

    2016-01-01

    Big data has now become a strong focus of global interest that is increasingly attracting the attention of academia, industry, government and other organizations. Big data can be situated in the disciplinary area of traditional geospatial data handling theory and methods. The increasing volume...... for Photogrammetry and Remote Sensing (ISPRS) Technical Commission II (TC II) revisits the existing geospatial data handling methods and theories to determine if they are still capable of handling emerging geospatial big data. Further, the paper synthesises problems, major issues and challenges with current...

  19. Collaborative Open Source Geospatial Tools and Maps Supporting the Response Planning to Disastrous Earthquake Events

    Directory of Open Access Journals (Sweden)

    Valentina James

    2012-05-01

    Full Text Available The latest improvements in geo-informatics offer new opportunities in a wide range of territorial and environmental applications. In this general framework, a relevant issue is represented by earthquake early warning and emergency management. This research work presents the investigation and development of a simple and innovative geospatial methodology and related collaborative open source geospatial tools for predicting and mapping the vulnerability to seismic hazard in order to support the response planning to disastrous events. The proposed geospatial methodology and tools have been integrated into an open source collaborative GIS system, designed and developed as an integrated component of an earthquake early warning and emergency management system.

  20. Geospatial analysis of food environment demonstrates associations with gestational diabetes.

    Science.gov (United States)

    Kahr, Maike K; Suter, Melissa A; Ballas, Jerasimos; Ramin, Susan M; Monga, Manju; Lee, Wesley; Hu, Min; Shope, Cindy D; Chesnokova, Arina; Krannich, Laura; Griffin, Emily N; Mastrobattista, Joan; Dildy, Gary A; Strehlow, Stacy L; Ramphul, Ryan; Hamilton, Winifred J; Aagaard, Kjersti M

    2016-01-01

    Gestational diabetes mellitus (GDM) is one of most common complications of pregnancy, with incidence rates varying by maternal age, race/ethnicity, obesity, parity, and family history. Given its increasing prevalence in recent decades, covariant environmental and sociodemographic factors may be additional determinants of GDM occurrence. We hypothesized that environmental risk factors, in particular measures of the food environment, may be a diabetes contributor. We employed geospatial modeling in a populous US county to characterize the association of the relative availability of fast food restaurants and supermarkets to GDM. Utilizing a perinatal database with >4900 encoded antenatal and outcome variables inclusive of ZIP code data, 8912 consecutive pregnancies were analyzed for correlations between GDM and food environment based on countywide food permit registration data. Linkage between pregnancies and food environment was achieved on the basis of validated 5-digit ZIP code data. The prevalence of supermarkets and fast food restaurants per 100,000 inhabitants for each ZIP code were gathered from publicly available food permit sources. To independently authenticate our findings with objective data, we measured hemoglobin A1c levels as a function of geospatial distribution of food environment in a matched subset (n = 80). Residence in neighborhoods with a high prevalence of fast food restaurants (fourth quartile) was significantly associated with an increased risk of developing GDM (relative to first quartile: adjusted odds ratio, 1.63; 95% confidence interval, 1.21-2.19). In multivariate analysis, this association held true after controlling for potential confounders (P = .002). Measurement of hemoglobin A1c levels in a matched subset were significantly increased in association with residence in a ZIP code with a higher fast food/supermarket ratio (n = 80, r = 0.251 P food environment and risk for gestational diabetes was identified. Copyright © 2016

  1. Assessing and Valuing Historical Geospatial Data for Decisions

    Science.gov (United States)

    Sylak-Glassman, E.; Gallo, J.

    2016-12-01

    We will present a method for assessing the use and valuation of historical geospatial data and information products derived from Earth observations (EO). Historical data is widely used in the establishment of baseline reference cases, time-series analysis, and Earth system modeling. Historical geospatial data is used in diverse application areas, such as risk assessment in the insurance and reinsurance industry, disaster preparedness and response planning, historical demography, land-use change analysis, and paleoclimate research, among others. Establishing the current value of previously collected data, often from EO systems that are no longer operating, is difficult since the costs associated with their preservation, maintenance, and dissemination are current, while the costs associated with their original collection are sunk. Understanding their current use and value can aid in funding decisions about the data management infrastructure and workforce allocation required to maintain their availability. Using a value-tree framework to trace the application of data from EO systems, sensors, networks, and surveys, to weighted key Federal objectives, we are able to estimate relative contribution of individual EO systems, sensors, networks, and surveys to meeting those objectives. The analysis relies on a modified Delphi method to elicit relative levels of reliance on individual EO data inputs, including historical data, from subject matter experts. This results in the identification of a representative portfolio of all EO data used to meet key Federal objectives. Because historical data is collected in conjunction with all other EO data within a weighted framework, its contribution to meeting key Federal objectives can be specifically identified and evaluated in relationship to other EO data. The results of this method could be applied better understanding and projecting the long-term value of data from current and future EO systems.

  2. River channel's predisposition to ice jams: a geospatial model

    Science.gov (United States)

    De Munck, S.; Gauthier, Y.; Bernier, M.; Légaré, S.

    2012-04-01

    When dynamic breakup occurs on rivers, ice moving downstream may eventually stop at an obstacle when the volume of moving ice exceeds the transport capacity of the river, resulting into an ice jam. The suddenness and unpredictability of these ice jams are a constant danger to local population. Therefore forecasting methods are necessary to provide an early warning to these population. Nonetheless the morphological and hydrological factors controlling where and how the ice will jam are numerous and complex. Existing studies which exist on this topic are highly site specific. Therefore, the goal of this work is to develop a simplified geospatial model that would estimate the predisposition of any river channel to ice jams. The question here is not to predict when the ice will break up but rather to know where the released ice would be susceptible to jam. This paper presents the developments and preliminary results of the proposed approach. The initial step was to document the main factors identified in the literature, as potential cause for an ice jam. First, several main factors identified in the literature as potential cause for an ice jam have been selected: presence of an island, narrowing of the channel, sinuosity, presence of a bridge, confluence of rivers and slope break. The second step was to spatially represent, in 2D, the physical characteristics of the channel and to translate these characteristics into potential ice jamming factors. The Chaudiere River, south of Quebec City (Canada), was chosen as a test site. Tools from the GIS-based FRAZIL system have been used to generate these factors from readily available geospatial data and calcutate an "ice jam predisposition index" over regular-spaced segments along the entire channel. The resulting map was validated upon historical observations and local knowledge, collected in relationship with the Minister of Public Security.

  3. A Constraint-Based Geospatial Data Integration System for Wildfire Management Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a constraint-based system for automatically integrating online, heterogeneous data sources with geospatial data produced by NASA in order to...

  4. Geospatial tools for data-sharing : case studies of select transportation agencies

    Science.gov (United States)

    2014-09-01

    This report provides case studies from 23 State Departments of Transportation (DOTs) and others that are developing, using, and maintaining a variety of geospatial applications and tools to support GDC goals. The report also summarizes the state of t...

  5. Nansat: a Scientist-Orientated Python Package for Geospatial Data Processing

    National Research Council Canada - National Science Library

    Korosov, Anton A; Hansen, Morten W; Dagestad, Knut-Frode; Yamakawa, Asuka; Vines, Aleksander; Riechert, Maik

    2016-01-01

    .... Nansat extends the widely used Geospatial Abstraction Data Library (GDAL) by adding scientific meaning to the datasets through metadata, and by adding common functionality for data analysis and handling (e.g...

  6. Shuttle Radar Topography Mission Water Body Data - National Geospatial Data Asset (NGDA)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The SRTM Water Body Data files are a by-product of the data editing performed by the National Geospatial-Intelligence Agency (NGA) to produce the finished SRTM...

  7. Geospatial big data handling theory and methods: A review and research challenges

    Science.gov (United States)

    Li, Songnian; Dragicevic, Suzana; Castro, Francesc Antón; Sester, Monika; Winter, Stephan; Coltekin, Arzu; Pettit, Christopher; Jiang, Bin; Haworth, James; Stein, Alfred; Cheng, Tao

    2016-05-01

    Big data has now become a strong focus of global interest that is increasingly attracting the attention of academia, industry, government and other organizations. Big data can be situated in the disciplinary area of traditional geospatial data handling theory and methods. The increasing volume and varying format of collected geospatial big data presents challenges in storing, managing, processing, analyzing, visualizing and verifying the quality of data. This has implications for the quality of decisions made with big data. Consequently, this position paper of the International Society for Photogrammetry and Remote Sensing (ISPRS) Technical Commission II (TC II) revisits the existing geospatial data handling methods and theories to determine if they are still capable of handling emerging geospatial big data. Further, the paper synthesises problems, major issues and challenges with current developments as well as recommending what needs to be developed further in the near future.

  8. Geospatial Google Street View with Virtual Reality: A Motivational Approach for Spatial Training Education

    National Research Council Canada - National Science Library

    Carlos Carbonell-Carrera; Jose Luis Saorín

    2017-01-01

    ...′ motivation for spatial knowledge acquisition. In this sense, a workshop carried out with 43-second year engineering students supported by Google Street View mobile geospatial application for location-based tasks is presented, in which...

  9. Improved satellite and geospatial tools for pipeline operator decision support systems.

    Science.gov (United States)

    2017-01-06

    Under Cooperative Agreement No. OASRTRS-14-H-CAL, California Polytechnic State University San Luis Obispo (Cal Poly), partnered with C-CORE, MDA, PRCI, and Electricore to design and develop improved satellite and geospatial tools for pipeline operato...

  10. TopoCad - A unified system for geospatial data and services

    Science.gov (United States)

    Felus, Y. A.; Sagi, Y.; Regev, R.; Keinan, E.

    2013-10-01

    "E-government" is a leading trend in public sector activities in recent years. The Survey of Israel set as a vision to provide all of its services and datasets online. The TopoCad system is the latest software tool developed in order to unify a number of services and databases into one on-line and user friendly system. The TopoCad system is based on Web 1.0 technology; hence the customer is only a consumer of data. All data and services are accessible for the surveyors and geo-information professional in an easy and comfortable way. The future lies in Web 2.0 and Web 3.0 technologies through which professionals can upload their own data for quality control and future assimilation with the national database. A key issue in the development of this complex system was to implement a simple and easy (comfortable) user experience (UX). The user interface employs natural language dialog box in order to understand the user requirements. The system then links spatial data with alpha-numeric data in a flawless manner. The operation of the TopoCad requires no user guide or training. It is intuitive and self-taught. The system utilizes semantic engines and machine understanding technologies to link records from diverse databases in a meaningful way. Thus, the next generation of TopoCad will include five main modules: users and projects information, coordinates transformations and calculations services, geospatial data quality control, linking governmental systems and databases, smart forms and applications. The article describes the first stage of the TopoCad system and gives an overview of its future development.

  11. The use of U.S. Geological Survey digital geospatial data products for science research

    Science.gov (United States)

    Varanka, Dalia E.; Deering, Carol; Caro, Holly

    2012-01-01

    The development of geographic information system (GIS) transformed the practice of geographic science research. The availability of low-cost, reliable data by the U.S. Geological Survey (USGS) supported the advance of GIS in the early stages of the transition to digital technology. To estimate the extent of the scientific use of USGS digital geospatial data products, a search of science literature databases yielded numbers of articles citing USGS products. Though this method requires careful consideration to avoid false positives, these citation numbers of three types of products (vector, land-use/land-cover, and elevation data) were graphed, and the frequency trends were examined. Trends indicated that the use of several, but not all, products increased with time. The use of some products declined and reasons for these declines are offered. To better understand how these data affected the design and outcomes of research projects, the study begins to build a context for the data by discussing digital cartographic research preceding the production of mass-produced products. The data distribution methods used various media for different system types and were supported by instructional material. The findings are an initial assessment of the affect of USGS products on GIS-enabled science research. A brief examination of the specific papers indicates that USGS data were used for science and GIS conceptual research, advanced education, and problem analysis and solution applications.

  12. WebGL Visualisation of 3D Environmental Models Based on Finnish Open Geospatial Data Sets

    Science.gov (United States)

    Krooks, A.; Kahkonen, J.; Lehto, L.; Latvala, P.; Karjalainen, M.; Honkavaara, E.

    2014-08-01

    Recent developments in spatial data infrastructures have enabled real time GIS analysis and visualization using open input data sources and service interfaces. In this study we present a new concept where metric point clouds derived from national open airborne laser scanning (ALS) and photogrammetric image data are processed, analyzed, finally visualised a through open service interfaces to produce user-driven analysis products from targeted areas. The concept is demonstrated in three environmental applications: assessment of forest storm damages, assessment of volumetric changes in open pit mine and 3D city model visualization. One of the main objectives was to study the usability and requirements of national level photogrammetric imagery in these applications. The results demonstrated that user driven 3D geospatial analyses were possible with the proposed approach and current technology, for instance, the landowner could assess the amount of fallen trees within his property borders after a storm easily using any web browser. On the other hand, our study indicated that there are still many uncertainties especially due to the insufficient standardization of photogrammetric products and processes and their quality indicators.

  13. Sustainable intermodal freight transportation: Applying the geospatial intermodal freight transport model

    Science.gov (United States)

    Comer, Bryan

    To study the energy and environmental impacts of emissions associated with freight transportation, the Geospatial Intermodal Freight Transport (GIFT) model was created as a joint research collaborative between the Rochester Institute of Technology (RIT) and the University of Delaware (UD). The GIFT model is a Geographic Information Systems (GIS) based model that links the U.S. and Canadian water, rail, and road transportation networks through intermodal transfer facilities to create an intermodal network. The purpose of my thesis is to apply the GIFT model to examine potential public policies related to intermodal freight transportation in the Great Lakes region of the United States. My thesis will consist of two papers. The first paper will examine the environmental, economic, and time-of-delivery tradeoffs associated with freight transportation in the Great Lakes region and examine opportunities for marine vessels to replace a portion of heavy-duty trucks for containerized freight transport. The second paper will explore the potential benefits of using the Great Lakes as a corridor for short-sea shipping as part of a longer intermodal route. The intent of my thesis is to shed light on the current issues associated with freight transport in the Great Lakes region and present public policy alternatives to address said issues. Ideally, this thesis will better inform policymakers on the impacts and tradeoffs associated with freight transportation.

  14. Nansat: a Scientist-Orientated Python Package for Geospatial Data Processing

    OpenAIRE

    Korosov, Anton A.; Hansen, Morten W.; Knut-Frode Dagestad; Asuka Yamakawa; Aleksander Vines; Maik Riechert

    2016-01-01

    Nansat is a Python toolbox for analysing and processing 2-dimensional geospatial data, such as satellite imagery, output from numerical models, and gridded in-situ data. It is created with strong focus on facilitating research, and development of algorithms and autonomous processing systems. Nansat extends the widely used Geospatial Abstraction Data Library (GDAL) by adding scientific meaning to the datasets through metadata, and by adding common functionality for data analysis and handling (...

  15. Building and Using Geospatial Ontology in the BioCaster Surveillance System

    OpenAIRE

    Son Doan; Quoc-Hung Ngo; Ai Kawazoe; Nigel Collier

    2008-01-01

    This abstract presents an approach to building a geospatial ontology from Wikipedia and using it in BioCaster, a system for detecting and tracking infectious disease outbreaks from online news. Motivated by the need to interpret the geospatial dynamics of events we built a database containing the names of countries and major cities from Wikipedia. We started by automatically extracting country and dependent territory names and sub-country (subdivision and dependent area) names in the form of ...

  16. Distributed Storage Algorithm for Geospatial Image Data Based on Data Access Patterns

    OpenAIRE

    Shaoming Pan; Yongkai Li; Zhengquan Xu; Yanwen Chong

    2015-01-01

    Declustering techniques are widely used in distributed environments to reduce query response time through parallel I/O by splitting large files into several small blocks and then distributing those blocks among multiple storage nodes. Unfortunately, however, many small geospatial image data files cannot be further split for distributed storage. In this paper, we propose a complete theoretical system for the distributed storage of small geospatial image data files based on mining the access pa...

  17. GABBs: Cyberinfrastructure for Self-Service Geospatial Data Exploration, Computation, and Sharing

    Science.gov (United States)

    Song, C. X.; Zhao, L.; Biehl, L. L.; Merwade, V.; Villoria, N.

    2016-12-01

    Geospatial data are present everywhere today with the proliferation of location-aware computing devices. This is especially true in the scientific community where large amounts of data are driving research and education activities in many domains. Collaboration over geospatial data, for example, in modeling, data analysis and visualization, must still overcome the barriers of specialized software and expertise among other challenges. In addressing these needs, the Geospatial data Analysis Building Blocks (GABBs) project aims at building geospatial modeling, data analysis and visualization capabilities in an open source web platform, HUBzero. Funded by NSF's Data Infrastructure Building Blocks initiative, GABBs is creating a geospatial data architecture that integrates spatial data management, mapping and visualization, and interfaces in the HUBzero platform for scientific collaborations. The geo-rendering enabled Rappture toolkit, a generic Python mapping library, geospatial data exploration and publication tools, and an integrated online geospatial data management solution are among the software building blocks from the project. The GABBS software will be available through Amazon's AWS Marketplace VM images and open source. Hosting services are also available to the user community. The outcome of the project will enable researchers and educators to self-manage their scientific data, rapidly create GIS-enable tools, share geospatial data and tools on the web, and build dynamic workflows connecting data and tools, all without requiring significant software development skills, GIS expertise or IT administrative privileges. This presentation will describe the GABBs architecture, toolkits and libraries, and showcase the scientific use cases that utilize GABBs capabilities, as well as the challenges and solutions for GABBs to interoperate with other cyberinfrastructure platforms.

  18. Assessing Student Learning About Climate Change With Earth System Place-Based Geospatial Data

    Science.gov (United States)

    Zalles, D. R.; Krumhansl, R. A.; Acker, J. G.; Manitakos, J.; Elston, A.

    2012-12-01

    Powerful web-based data sets about geospatially situated Earth system phenomena are now available for analysis by the general public, including for any teacher or set of students who have the requisite skills to partake in the analyses. Unfortunately there exist impediments to successful use of these data. Teachers and students may lack (1) readiness to use the software interfaces for querying and representing the data, (2) needed scientific practice skills such as interpreting geographic information system-based maps and time series plots, and (3) needed understandings of the fundamental scientific concepts to make sense of the data. Hence, to evaluate any program designed to engage students and teachers with these data resources, there need to be assessment strategies to check for understanding. Assessment becomes the key to identifying learning needs and intervening appropriately with additional task scaffolding or other forms of instructional support. The paper will describe contrasting assessment strategies being carried out in two climate change education projects funded by NASA and NSF. The NASA project, Data Enhanced Investigations for Climate Change Education (DICCE), brings data from NASA satellite missions to the classroom. A bank of DICCE assessment items is being developed to measure students' abilities to transfer their skills in analyzing data about their local region to other regions of the world. Teachers choose pre-post assessment items for variables of Earth system phenomena that they target in their instruction. The data vary depending on what courses the teachers are teaching. For example, Earth science teachers are likely to choose data about atmospheric phenomena and biology teachers are more likely to choose land cover data. The NSF project, Studying Topography, Orographic Rainfall, and Ecosystems with Geospatial Information Technology (STORE), provides to teachers recent climatological and vegetation data about "study areas" in Central

  19. Advancements in Open Geospatial Standards for Photogrammetry and Remote Sensing from Ogc

    Science.gov (United States)

    Percivall, George; Simonis, Ingo

    2016-06-01

    The necessity of open standards for effective sharing and use of remote sensing continues to receive increasing emphasis in policies of agencies and projects around the world. Coordination on the development of open standards for geospatial information is a vital step to insure that the technical standards are ready to support the policy objectives. The mission of the Open Geospatial Consortium (OGC) is to advance development and use of international standards and supporting services that promote geospatial interoperability. To accomplish this mission, OGC serves as the global forum for the collaboration of geospatial data / solution providers and users. Photogrammetry and remote sensing are sources of the largest and most complex geospatial information. Some of the most mature OGC standards for remote sensing include the Sensor Web Enablement (SWE) standards, the Web Coverage Service (WCS) suite of standards, encodings such as NetCDF, GMLJP2 and GeoPackage, and the soon to be approved Discrete Global Grid Systems (DGGS) standard. In collaboration with ISPRS, OGC working with government, research and industrial organizations continue to advance the state of geospatial standards for full use of photogrammetry and remote sensing.

  20. A Pilot Study Using Mixed GPS/Narrative Interview Methods to Understand Geospatial Behavior in Homeless Populations.

    Science.gov (United States)

    North, Carol S; Wohlford, Sarah E; Dean, Denis J; Black, Melissa; Balfour, Margaret E; Petrovich, James C; Downs, Dana L; Pollio, David E

    2017-08-01

    Tracking the movements of homeless populations presents methodological difficulties, but understanding their movements in space and time is needed to inform optimal placement of services. This pilot study developed, tested, and refined methods to apply global positioning systems (GPS) technology paired with individual narratives to chronicle the movements of homeless populations. Detail of methods development and difficulties encountered and addressed, and geospatial findings are provided. A pilot sample of 29 adults was recruited from a low-demand homeless shelter in the downtown area of Fort Worth, Texas. Pre- and post-deployment interviews provided participant characteristics and planned and retrospectively-reported travels. Only one of the first eight deployments returned with sufficient usable data. Ultimately 19 participants returned the GPS device with >20 h of usable data. Protocol adjustments addressing methodological difficulties achieved 81 % of subsequent participants returning with sufficient usable data. This study established methods and demonstrated feasibility for tracking homeless population travels.

  1. Bim-Gis Integrated Geospatial Information Model Using Semantic Web and Rdf Graphs

    Science.gov (United States)

    Hor, A.-H.; Jadidi, A.; Sohn, G.

    2016-06-01

    In recent years, 3D virtual indoor/outdoor urban modelling becomes a key spatial information framework for many civil and engineering applications such as evacuation planning, emergency and facility management. For accomplishing such sophisticate decision tasks, there is a large demands for building multi-scale and multi-sourced 3D urban models. Currently, Building Information Model (BIM) and Geographical Information Systems (GIS) are broadly used as the modelling sources. However, data sharing and exchanging information between two modelling domains is still a huge challenge; while the syntactic or semantic approaches do not fully provide exchanging of rich semantic and geometric information of BIM into GIS or vice-versa. This paper proposes a novel approach for integrating BIM and GIS using semantic web technologies and Resources Description Framework (RDF) graphs. The novelty of the proposed solution comes from the benefits of integrating BIM and GIS technologies into one unified model, so-called Integrated Geospatial Information Model (IGIM). The proposed approach consists of three main modules: BIM-RDF and GIS-RDF graphs construction, integrating of two RDF graphs, and query of information through IGIM-RDF graph using SPARQL. The IGIM generates queries from both the BIM and GIS RDF graphs resulting a semantically integrated model with entities representing both BIM classes and GIS feature objects with respect to the target-client application. The linkage between BIM-RDF and GIS-RDF is achieved through SPARQL endpoints and defined by a query using set of datasets and entity classes with complementary properties, relationships and geometries. To validate the proposed approach and its performance, a case study was also tested using IGIM system design.

  2. Geospatial Education and Research Development: A Laboratory for Remote Sensing and Environmental Analysis (LaRSEA)

    Science.gov (United States)

    Allen, Thomas R., Jr.

    1999-01-01

    Old Dominion University has claimed the title "University of the 21st Century," with a bold emphasis on technology innovation and application. In keeping with this claim, the proposed work has implemented a new laboratory equipped for remote sensing as well as curriculum and research innovations afforded for present and future faculty and students. The developments summarized within this report would not have been possible without the support of the NASA grant and significant cost-sharing of several units within the University. The grant effectively spring-boarded the university into major improvements in its approach to remote sensing and geospatial information technologies. The university has now committed to licensing Erdas Imagine software for the laboratory, a campus-wide ESRI geographic information system (GIS) products license, and several smaller software and hardware utilities available to faculty and students through the laboratory. Campus beneficiaries of this grant have included faculty from departments including Ocean, Earth. and Atmospheric Sciences, Political Science and Geography, Ecological Sciences, Environmental Health, and Civil and Environmental Engineering. High student interest is evidenced in students in geology, geography, ecology, urban studies, and planning. Three new courses have been added to the catalog and offered this year. Cross-cutting curriculum changes are in place with growing enrollments in remote sensing, GIS, and a new co-taught seminar in applied coastal remote sensing. The enabling grant has also allowed project participants to attract external funding for research grants, thereby providing additional funds beyond the planned matching, maintenance and growth of software and hardware, and stipends for student assistants. Two undergraduate assistants and two graduate assistants have been employed by full-time assistantships as a result. A new certificate is offered to students completing an interdisciplinary course sequence

  3. TOWARDS INNOVATIVE GEOSPATIAL TOOLS FOR FIT-FOR-PURPOSE LAND RIGHTS MAPPING

    Directory of Open Access Journals (Sweden)

    M. Koeva

    2017-09-01

    Full Text Available In large parts of sub Saharan Africa it remains an ongoing challenging to map millions of unrecognized land rights. Existing approaches for recognizing these rights have proven inappropriate in many cases. A new generation of tools needs to be developed to support faster, cheaper, easier, and more responsible land rights mapping. This is the main goal of its4land, an European Commission Horizon 2020 project that aims to develop innovative tools inspired by the continuum of land rights, fit-for-purpose land administration, and cadastral intelligence. its4land is using strategic collaboration between the EU and East Africa to deliver innovative, scalable, and transferrable ICT solutions. The innovation process incorporates a broad range of stakeholders and emergent geospatial technologies, including smart sketchmaps, UAVs, automated feature extraction, as well as geocloud services. The aim is to combine innovative technologies, capture the specific needs, market opportunities and readiness of end-users in the domain of land tenure information recording in Eastern Africa. The project consists of a four year work plan, € 3.9M funding, and eight consortium partners collaborating with stakeholders from six case study locations in Ethiopia, Kenya, and Rwanda. The major tasks include tool development, prototyping, and demonstration for local, national, regional, and international interest groups. The case locations cover different land uses such as: urban, peri-urban, rural smallholder, and (former pastoralist. This paper describes the project’s activities within the first 18 months and covers barriers discovered, lessons learned and results achieved.

  4. Geospatial Data Processing for 3d City Model Generation, Management and Visualization

    Science.gov (United States)

    Toschi, I.; Nocerino, E.; Remondino, F.; Revolti, A.; Soria, G.; Piffer, S.

    2017-05-01

    Recent developments of 3D technologies and tools have increased availability and relevance of 3D data (from 3D points to complete city models) in the geospatial and geo-information domains. Nevertheless, the potential of 3D data is still underexploited and mainly confined to visualization purposes. Therefore, the major challenge today is to create automatic procedures that make best use of available technologies and data for the benefits and needs of public administrations (PA) and national mapping agencies (NMA) involved in "smart city" applications. The paper aims to demonstrate a step forward in this process by presenting the results of the SENECA project (Smart and SustaiNablE City from Above - http://seneca.fbk.eu). State-of-the-art processing solutions are investigated in order to (i) efficiently exploit the photogrammetric workflow (aerial triangulation and dense image matching), (ii) derive topologically and geometrically accurate 3D geo-objects (i.e. building models) at various levels of detail and (iii) link geometries with non-spatial information within a 3D geo-database management system accessible via web-based client. The developed methodology is tested on two case studies, i.e. the cities of Trento (Italy) and Graz (Austria). Both spatial (i.e. nadir and oblique imagery) and non-spatial (i.e. cadastral information and building energy consumptions) data are collected and used as input for the project workflow, starting from 3D geometry capture and modelling in urban scenarios to geometry enrichment and management within a dedicated webGIS platform.

  5. GEOSPATIAL DATA PROCESSING FOR 3D CITY MODEL GENERATION, MANAGEMENT AND VISUALIZATION

    Directory of Open Access Journals (Sweden)

    I. Toschi

    2017-05-01

    Full Text Available Recent developments of 3D technologies and tools have increased availability and relevance of 3D data (from 3D points to complete city models in the geospatial and geo-information domains. Nevertheless, the potential of 3D data is still underexploited and mainly confined to visualization purposes. Therefore, the major challenge today is to create automatic procedures that make best use of available technologies and data for the benefits and needs of public administrations (PA and national mapping agencies (NMA involved in “smart city” applications. The paper aims to demonstrate a step forward in this process by presenting the results of the SENECA project (Smart and SustaiNablE City from Above – http://seneca.fbk.eu. State-of-the-art processing solutions are investigated in order to (i efficiently exploit the photogrammetric workflow (aerial triangulation and dense image matching, (ii derive topologically and geometrically accurate 3D geo-objects (i.e. building models at various levels of detail and (iii link geometries with non-spatial information within a 3D geo-database management system accessible via web-based client. The developed methodology is tested on two case studies, i.e. the cities of Trento (Italy and Graz (Austria. Both spatial (i.e. nadir and oblique imagery and non-spatial (i.e. cadastral information and building energy consumptions data are collected and used as input for the project workflow, starting from 3D geometry capture and modelling in urban scenarios to geometry enrichment and management within a dedicated webGIS platform.

  6. A linear geospatial streamflow modeling system for data sparse environments

    Science.gov (United States)

    Asante, Kwabena O.; Arlan, Guleid A.; Pervez, Md Shahriar; Rowland, James

    2008-01-01

    In many river basins around the world, inaccessibility of flow data is a major obstacle to water resource studies and operational monitoring. This paper describes a geospatial streamflow modeling system which is parameterized with global terrain, soils and land cover data and run operationally with satellite‐derived precipitation and evapotranspiration datasets. Simple linear methods transfer water through the subsurface, overland and river flow phases, and the resulting flows are expressed in terms of standard deviations from mean annual flow. In sample applications, the modeling system was used to simulate flow variations in the Congo, Niger, Nile, Zambezi, Orange and Lake Chad basins between 1998 and 2005, and the resulting flows were compared with mean monthly values from the open‐access Global River Discharge Database. While the uncalibrated model cannot predict the absolute magnitude of flow, it can quantify flow anomalies in terms of relative departures from mean flow. Most of the severe flood events identified in the flow anomalies were independently verified by the Dartmouth Flood Observatory (DFO) and the Emergency Disaster Database (EM‐DAT). Despite its limitations, the modeling system is valuable for rapid characterization of the relative magnitude of flood hazards and seasonal flow changes in data sparse settings.

  7. Encoding and analyzing aerial imagery using geospatial semantic graphs

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Jean-Paul; Strip, David R.; McLendon, William Clarence,; Parekh, Ojas D.; Diegert, Carl F.; Martin, Shawn Bryan; Rintoul, Mark Daniel

    2014-02-01

    While collection capabilities have yielded an ever-increasing volume of aerial imagery, analytic techniques for identifying patterns in and extracting relevant information from this data have seriously lagged. The vast majority of imagery is never examined, due to a combination of the limited bandwidth of human analysts and limitations of existing analysis tools. In this report, we describe an alternative, novel approach to both encoding and analyzing aerial imagery, using the concept of a geospatial semantic graph. The advantages of our approach are twofold. First, intuitive templates can be easily specified in terms of the domain language in which an analyst converses. These templates can be used to automatically and efficiently search large graph databases, for specific patterns of interest. Second, unsupervised machine learning techniques can be applied to automatically identify patterns in the graph databases, exposing recurring motifs in imagery. We illustrate our approach using real-world data for Anne Arundel County, Maryland, and compare the performance of our approach to that of an expert human analyst.

  8. ESTIMATION OF CARBON SEQUESTRATION BY RUSSIAN FORESTS: GEOSPATIAL ISSUE

    Directory of Open Access Journals (Sweden)

    N. V. Malysheva

    2017-01-01

    Full Text Available Сategories of carbon sequestration assessment for Russian forests are identified by GIS toolkit. Those are uniform by bioclimatic and site-specific conditions strata corresponding to modern version of bioclimatic forest district division. Stratification of forests at early stage substantially reduces the ambiguity of the evaluation because phytomass conversion sequestration capacity and expansion factor dependent on site-specific condition for calculating of forest carbon sink are absolutely necessary. Forest management units were linked to strata. Biomass conversion and expansion factor for forest carbon sink assessment linked to the strata were recalculated for forest management units. All operations were carried out with GIS analytical toolkit due to accessible functionalities. Units for forest carbon storage inventory and forest carbon balance calculation were localized. Production capacity parameters and forest carbon sequestration capacity have been visualized on maps complied by ArcGIS. Based on spatially-explicit information, we have found out that the greatest annual rates of forest’s carbon accumulation in Russian forests fall into mixed coniferous-deciduous forests of European-Ural part of Russia to Kaliningrad, Smolensk and Briansk Regions, coniferous-deciduous forests close to the boundary of Khabarovsk Region and Primorskij Kray in the Far East, as well as separate forest management units of Kabardino-Balkariya NorthCaucasian mountain area. The geospatial visualization of carbon sequestration by Russian forests and carbon balance assessment has been given.

  9. Quantitative, Qualitative and Geospatial Methods to Characterize HIV Risk Environments.

    Directory of Open Access Journals (Sweden)

    Erin E Conners

    Full Text Available Increasingly, 'place', including physical and geographical characteristics as well as social meanings, is recognized as an important factor driving individual and community health risks. This is especially true among marginalized populations in low and middle income countries (LMIC, whose environments may also be more difficult to study using traditional methods. In the NIH-funded longitudinal study Mapa de Salud, we employed a novel approach to exploring the risk environment of female sex workers (FSWs in two Mexico/U.S. border cities, Tijuana and Ciudad Juárez. In this paper we describe the development, implementation, and feasibility of a mix of quantitative and qualitative tools used to capture the HIV risk environments of FSWs in an LMIC setting. The methods were: 1 Participatory mapping; 2 Quantitative interviews; 3 Sex work venue field observation; 4 Time-location-activity diaries; 5 In-depth interviews about daily activity spaces. We found that the mixed-methodology outlined was both feasible to implement and acceptable to participants. These methods can generate geospatial data to assess the role of the environment on drug and sexual risk behaviors among high risk populations. Additionally, the adaptation of existing methods for marginalized populations in resource constrained contexts provides new opportunities for informing public health interventions.

  10. Risk of human helminthiases: geospatial distribution and targeted control.

    Science.gov (United States)

    Yu, Weiwei; Ross, Allen G; Olveda, Remigio M; Harn, Donald A; Li, Yuesheng; Chy, Delia; Williams, Gail M

    2017-02-01

    We conducted a cross-sectional survey in 2012 among 22 rural barangays in Northern Samar, the Philippines in order to determine the prevalence of single and multiple species helminth infections, their geospatial distribution and underlying risk factors. A total of 10,434 individuals who had completed both a medical questionnaire and a stool examination were included in the analysis. Barangay specific prevalence rates were displayed in ArcMap. The prevalence of Trichuris trichiura infection was found to be the highest at 62.4%, followed by Ascaris lumbricoides, hookworm and S. japonicum with the prevalence rates of 40.2%, 31.32%, and 27.1%, respectively. 52.7% of people were infected with at least two parasites and 4.8% with all four parasites. Males aged 10-19 years were the most vulnerable to coinfection infection. Students, fishermen, farmers and housewives were the most vulnerable occupations for co-infection of A. lumbricoides and T. trichiura. Considerable heterogeneity in the spatial distribution was observed for the different parasite species. There was a considerably higher risk of A. lumbricoides and T. trichiura co-infection in villages with no schistosomiasis infection (Pgeospatial distribution of multi-parasitism will guide future integrated strategies leading to elimination. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  11. Geospatial tools for landscape character assessment in Cyprus

    Science.gov (United States)

    Symons, N. P.; Vogiatzakis, I. N.; Griffiths, G. H.; Warnock, S.; Vassou, V.; Zomeni, M.; Trigkas, V.

    2013-08-01

    The development of Landscape Typologies in Europe relies upon advances in geospatial tools and increasing availability of digital datasets. Landscape Character Assessment (LCA) is a technique used to classify, describe and understand the combined physical, ecological and cultural characteristics of a landscape. LCA uses a range of data sources to identify and describe areas of common character and can operate at a range of scales i.e.national and regional and local. The paper describes the steps taken to develop an island wide landscape typology for Cyprus, based on the use of GIS and remote sensing tools. The methodology involved integrating physiographical, ecological and cultural information about the Cypriot landscape. Datasets on the cultural attributes (e.g. settlement and field patterns) were not available, so they were created de novo based on information from topographical maps (for settlement dispersion and density) and medium resolution satellite imagery from Google Earth, from which a number of distinctive field patterns could be distinguished. The mapping work is carried out on two levels using a hierarchical approach. The first level at a 1:100, 000 scale has been completed resulting in a map with 17 distinct landscape types. The second level is under way with the view of producing a more detailed landscape typology at 1:50, 000 scale which will incorporate the cultural aspects of the island. This is the first time that such a typology has been produced for Cyprus and it is expected to provide an invaluable tool for landscape planning and management.

  12. GEOSPATIAL MODELLING APPROACH FOR 3D URBAN DENSIFICATION DEVELOPMENTS

    Directory of Open Access Journals (Sweden)

    O. Koziatek

    2016-06-01

    Full Text Available With growing populations, economic pressures, and the need for sustainable practices, many urban regions are rapidly densifying developments in the vertical built dimension with mid- and high-rise buildings. The location of these buildings can be projected based on key factors that are attractive to urban planners, developers, and potential buyers. Current research in this area includes various modelling approaches, such as cellular automata and agent-based modelling, but the results are mostly linked to raster grids as the smallest spatial units that operate in two spatial dimensions. Therefore, the objective of this research is to develop a geospatial model that operates on irregular spatial tessellations to model mid- and high-rise buildings in three spatial dimensions (3D. The proposed model is based on the integration of GIS, fuzzy multi-criteria evaluation (MCE, and 3D GIS-based procedural modelling. Part of the City of Surrey, within the Metro Vancouver Region, Canada, has been used to present the simulations of the generated 3D building objects. The proposed 3D modelling approach was developed using ESRI’s CityEngine software and the Computer Generated Architecture (CGA language.

  13. Geospatial Modelling Approach for 3d Urban Densification Developments

    Science.gov (United States)

    Koziatek, O.; Dragićević, S.; Li, S.

    2016-06-01

    With growing populations, economic pressures, and the need for sustainable practices, many urban regions are rapidly densifying developments in the vertical built dimension with mid- and high-rise buildings. The location of these buildings can be projected based on key factors that are attractive to urban planners, developers, and potential buyers. Current research in this area includes various modelling approaches, such as cellular automata and agent-based modelling, but the results are mostly linked to raster grids as the smallest spatial units that operate in two spatial dimensions. Therefore, the objective of this research is to develop a geospatial model that operates on irregular spatial tessellations to model mid- and high-rise buildings in three spatial dimensions (3D). The proposed model is based on the integration of GIS, fuzzy multi-criteria evaluation (MCE), and 3D GIS-based procedural modelling. Part of the City of Surrey, within the Metro Vancouver Region, Canada, has been used to present the simulations of the generated 3D building objects. The proposed 3D modelling approach was developed using ESRI's CityEngine software and the Computer Generated Architecture (CGA) language.

  14. Geospatial analysis identifies critical mineral-resource potential in Alaska

    Science.gov (United States)

    Karl, Susan; Labay, Keith A.; Jacques, Katherine; Landowski, Claire

    2017-03-03

    Alaska consists of more than 663,000 square miles (1,717,000 square kilometers) of land—more than a sixth of the total area of the United States—and large tracts of it have not been systematically studied or sampled for mineral-resource potential. Many regions of the State are known to have significant mineral-resource potential, and there are currently six operating mines in the State along with numerous active mineral exploration projects. The U.S. Geological Survey and the Alaska Division of Geological & Geophysical Surveys have developed a new geospatial tool that integrates and analyzes publicly available databases of geologic information and estimates the mineral-resource potential for critical minerals, which was recently used to evaluate Alaska. The results of the analyses highlight areas that have known mineral deposits and also reveal areas that were not previously considered to be prospective for these deposit types. These results will inform land management decisions by Federal, State, and private landholders, and will also help guide future exploration activities and scientific investigations in Alaska.

  15. SDGs and Geospatial Frameworks: Data Integration in the United States

    Science.gov (United States)

    Trainor, T.

    2016-12-01

    Responding to the need to monitor a nation's progress towards meeting the Sustainable Development Goals (SDG) outlined in the 2030 U.N. Agenda requires the integration of earth observations with statistical information. The urban agenda proposed in SDG 11 challenges the global community to find a geospatial approach to monitor and measure inclusive, safe, resilient, and sustainable cities and communities. Target 11.7 identifies public safety, accessibility to green and public spaces, and the most vulnerable populations (i.e., women and children, older persons, and persons with disabilities) as the most important priorities of this goal. A challenge for both national statistical organizations and earth observation agencies in addressing SDG 11 is the requirement for detailed statistics at a sufficient spatial resolution to provide the basis for meaningful analysis of the urban population and city environments. Using an example for the city of Pittsburgh, this presentation proposes data and methods to illustrate how earth science and statistical data can be integrated to respond to Target 11.7. Finally, a preliminary series of data initiatives are proposed for extending this method to other global cities.

  16. Geospatial Techniques for Improved Water Management in Jordan

    Directory of Open Access Journals (Sweden)

    Jawad T. Al-Bakri

    2016-04-01

    Full Text Available This research shows a case from Jordan where geospatial techniques were utilized for irrigation water auditing. The work was based on assessing records of groundwater abstraction in relation to irrigated areas and estimated crop water consumption in three water basins: Yarmouk, Amman-Zarqa and Azraq. Mapping of irrigated areas and crop water requirements was carried out using remote sensing data of Landsat 8 and daily weather records. The methodology was based on visual interpretation and the unsupervised classification for remote sensing data, supported by ground surveys. Net (NCWR and gross (GCWR crop water requirements were calculated by merging crop evapotranspiration (ETc, calculated from daily weather records, with maps of irrigated crops. Gross water requirements were compared with groundwater abstractions recorded at a farm level to assess the levels of abstraction in relation to groundwater safe yield. Results showed that irrigated area and GCWR were higher than officially recorded cropped area and abstracted groundwater. The over abstraction of groundwater was estimated to range from 144% to 360% of the safe yield in the three basins. Overlaying the maps of irrigation and groundwater wells enabled the Ministry of Water and Irrigation (MWI to detect and uncover violations and illegal practices of irrigation, in the form of unlicensed wells, incorrect metering of pumped water and water conveyance for long distances. Results from the work were utilized at s high level of decision-making and changes to the water law were made, with remote sensing data being accredited for monitoring water resources in Jordan.

  17. GeoLearn: Prediction Modeling Using Large Size Geospatial Raster and Vector Data

    Science.gov (United States)

    Bajcsy, P.; Kooper, R.; Keselman, Y.; Li, Q.; Feng, W.; Mehra, V.; Richard, R.; Kumar, P.

    2006-12-01

    This research develops informatics technologies that support hydrologic scientists in predictive modeling using large size geospatial raster and vector data. The technology helps scientists understand inter-relationships between land surface variables such as radiation, precipitation, temperature, and the presence and amount of vegetation. We have been studying how these relationships manifest themselves at relatively large scales of regions, continents, and the entire globe. In the past, the class of such scientific studies usually has been limited to small spatial regions because of the lack of informatics solutions and the challenges associated with integration and modeling using large size geospatial raster and vector data. The motivation for our work was to provide a desktop software solution for understanding the inter-relationships among multiple variables at spatial scales and resolutions than have not been modeled in the past. Examples of such studies include the understanding of the most important drivers of vegetation growth across a variety of ecosystems at the US continental scale in search of common elements, or finding commonalities and differences within existing eco-regions. The studies conducted in our work considered a large number of input variables for predicting vegetation greenness and are broadly characterized into meteorology, topography, and soil categories. Most of the variables of interest are acquired using remote sensing because otherwise large spatial coverage and sufficient spatial resolution could not be achieved. The data sets are accessible from NASA web sites, for instance, the data products acquired by the MODIS satellite. These data products in HDF EOS file format are characterized by a large size, variable temporal and spatial resolution, spatially varying quality control and quality assurance (QA/QC) parameters and by a set of geographic projections. Additional data sets might come from other agencies (e.g., soil type maps or

  18. ISSUES ON BUILDING KAZAKHSTAN GEOSPATIAL PORTAL TO IMPLEMENT E-GOVERNMENT

    Directory of Open Access Journals (Sweden)

    K. Sagadiyev

    2016-06-01

    Full Text Available A main issue in developing e-government is about how to integrate and organize many complicated processes and different stakeholders. Interestingly geospatial information provides an efficient framework to integrate and organized them. In particular, it is very useful to integrate the process of land management in e-government with geospatial information framework, since most of land management tasks are related with geospatial properties. In this paper, we present a use-case on the e-government project in Kazakhstan for land management. We develop a geoportal to connect many tasks and different users via geospatial information framework. This geoportal is based on open source geospatial software including GeoServer, PostGIS, and OpenLayers. With this geoportal, we expect three achievements as follows. First we establish a transparent governmental process, which is one of main goal of e-government. Every stakeholder monitors what is happening in land management process. Second, we can significantly reduce the time and efforts in the government process. For example, a grant procedure for a building construction has taken more than one year with more than 50 steps. It is expected that this procedure would be reduced to 2 weeks by the geoportal framework. Third we provide a collaborative environment between different governmental structures via the geoportal, while many conflicts and mismatches have been a critical issue of governmental administration processes.

  19. Intelligent services for discovery of complex geospatial features from remote sensing imagery

    Science.gov (United States)

    Yue, Peng; Di, Liping; Wei, Yaxing; Han, Weiguo

    2013-09-01

    Remote sensing imagery has been commonly used by intelligence analysts to discover geospatial features, including complex ones. The overwhelming volume of routine image acquisition requires automated methods or systems for feature discovery instead of manual image interpretation. The methods of extraction of elementary ground features such as buildings and roads from remote sensing imagery have been studied extensively. The discovery of complex geospatial features, however, is still rather understudied. A complex feature, such as a Weapon of Mass Destruction (WMD) proliferation facility, is spatially composed of elementary features (e.g., buildings for hosting fuel concentration machines, cooling towers, transportation roads, and fences). Such spatial semantics, together with thematic semantics of feature types, can be used to discover complex geospatial features. This paper proposes a workflow-based approach for discovery of complex geospatial features that uses geospatial semantics and services. The elementary features extracted from imagery are archived in distributed Web Feature Services (WFSs) and discoverable from a catalogue service. Using spatial semantics among elementary features and thematic semantics among feature types, workflow-based service chains can be constructed to locate semantically-related complex features in imagery. The workflows are reusable and can provide on-demand discovery of complex features in a distributed environment.

  20. Issues on Building Kazakhstan Geospatial Portal to Implement E-Government

    Science.gov (United States)

    Sagadiyev, K.; Kang, H. K.; Li, K. J.

    2016-06-01

    A main issue in developing e-government is about how to integrate and organize many complicated processes and different stakeholders. Interestingly geospatial information provides an efficient framework to integrate and organized them. In particular, it is very useful to integrate the process of land management in e-government with geospatial information framework, since most of land management tasks are related with geospatial properties. In this paper, we present a use-case on the e-government project in Kazakhstan for land management. We develop a geoportal to connect many tasks and different users via geospatial information framework. This geoportal is based on open source geospatial software including GeoServer, PostGIS, and OpenLayers. With this geoportal, we expect three achievements as follows. First we establish a transparent governmental process, which is one of main goal of e-government. Every stakeholder monitors what is happening in land management process. Second, we can significantly reduce the time and efforts in the government process. For example, a grant procedure for a building construction has taken more than one year with more than 50 steps. It is expected that this procedure would be reduced to 2 weeks by the geoportal framework. Third we provide a collaborative environment between different governmental structures via the geoportal, while many conflicts and mismatches have been a critical issue of governmental administration processes.

  1. Using the Geospatial Web to Deliver and Teach Giscience Education Programs

    Science.gov (United States)

    Veenendaal, B.

    2015-05-01

    Geographic information science (GIScience) education has undergone enormous changes over the past years. One major factor influencing this change is the role of the geospatial web in GIScience. In addition to the use of the web for enabling and enhancing GIScience education, it is also used as the infrastructure for communicating and collaborating among geospatial data and users. The web becomes both the means and the content for a geospatial education program. However, the web does not replace the traditional face-to-face environment, but rather is a means to enhance it, expand it and enable an authentic and real world learning environment. This paper outlines the use of the web in both the delivery and content of the GIScience program at Curtin University. The teaching of the geospatial web, web and cloud based mapping, and geospatial web services are key components of the program, and the use of the web and online learning are important to deliver this program. Some examples of authentic and real world learning environments are provided including joint learning activities with partner universities.

  2. Geospatial resources for supporting data standards, guidance and best practice in health informatics

    Directory of Open Access Journals (Sweden)

    Kamel Boulos Maged N

    2011-01-01

    Full Text Available Abstract Background The 1980s marked the occasion when Geographical Information System (GIS technology was broadly introduced into the geo-spatial community through the establishment of a strong GIS industry. This technology quickly disseminated across many countries, and has now become established as an important research, planning and commercial tool for a wider community that includes organisations in the public and private health sectors. The broad acceptance of GIS technology and the nature of its functionality have meant that numerous datasets have been created over the past three decades. Most of these datasets have been created independently, and without any structured documentation systems in place. However, search and retrieval systems can only work if there is a mechanism for datasets existence to be discovered and this is where proper metadata creation and management can greatly help. This situation must be addressed through support mechanisms such as Web-based portal technologies, metadata editor tools, automation, metadata standards and guidelines and collaborative efforts with relevant individuals and organisations. Engagement with data developers or administrators should also include a strategy of identifying the benefits associated with metadata creation and publication. Findings The establishment of numerous Spatial Data Infrastructures (SDIs, and other Internet resources, is a testament to the recognition of the importance of supporting good data management and sharing practices across the geographic information community. These resources extend to health informatics in support of research, public services and teaching and learning. This paper identifies many of these resources available to the UK academic health informatics community. It also reveals the reluctance of many spatial data creators across the wider UK academic community to use these resources to create and publish metadata, or deposit their data in repositories

  3. Geospatial resources for supporting data standards, guidance and best practice in health informatics.

    Science.gov (United States)

    Mathys, Tony; Kamel Boulos, Maged N

    2011-01-26

    The 1980s marked the occasion when Geographical Information System (GIS) technology was broadly introduced into the geo-spatial community through the establishment of a strong GIS industry. This technology quickly disseminated across many countries, and has now become established as an important research, planning and commercial tool for a wider community that includes organisations in the public and private health sectors.The broad acceptance of GIS technology and the nature of its functionality have meant that numerous datasets have been created over the past three decades. Most of these datasets have been created independently, and without any structured documentation systems in place. However, search and retrieval systems can only work if there is a mechanism for datasets existence to be discovered and this is where proper metadata creation and management can greatly help.This situation must be addressed through support mechanisms such as Web-based portal technologies, metadata editor tools, automation, metadata standards and guidelines and collaborative efforts with relevant individuals and organisations. Engagement with data developers or administrators should also include a strategy of identifying the benefits associated with metadata creation and publication. The establishment of numerous Spatial Data Infrastructures (SDIs), and other Internet resources, is a testament to the recognition of the importance of supporting good data management and sharing practices across the geographic information community. These resources extend to health informatics in support of research, public services and teaching and learning.This paper identifies many of these resources available to the UK academic health informatics community. It also reveals the reluctance of many spatial data creators across the wider UK academic community to use these resources to create and publish metadata, or deposit their data in repositories for sharing.The Go-Geo! service is introduced as an

  4. Grid enablement of OpenGeospatial Web Services: the G-OWS Working Group

    Science.gov (United States)

    Mazzetti, Paolo

    2010-05-01

    In last decades two main paradigms for resource sharing emerged and reached maturity: the Web and the Grid. They both demonstrate suitable for building Distributed Computing Infrastructures (DCIs) supporting the coordinated sharing of resources (i.e. data, information, services, etc) on the Internet. Grid and Web DCIs have much in common as a result of their underlying Internet technology (protocols, models and specifications). However, being based on different requirements and architectural approaches, they show some differences as well. The Web's "major goal was to be a shared information space through which people and machines could communicate" [Berners-Lee 1996]. The success of the Web, and its consequent pervasiveness, made it appealing for building specialized systems like the Spatial Data Infrastructures (SDIs). In this systems the introduction of Web-based geo-information technologies enables specialized services for geospatial data sharing and processing. The Grid was born to achieve "flexible, secure, coordinated resource sharing among dynamic collections of individuals, institutions, and resources" [Foster 2001]. It specifically focuses on large-scale resource sharing, innovative applications, and, in some cases, high-performance orientation. In the Earth and Space Sciences (ESS) the most part of handled information is geo-referred (geo-information) since spatial and temporal meta-information is of primary importance in many application domains: Earth Sciences, Disasters Management, Environmental Sciences, etc. On the other hand, in several application areas there is the need of running complex models which require the large processing and storage capabilities that the Grids are able to provide. Therefore the integration of geo-information and Grid technologies might be a valuable approach in order to enable advanced ESS applications. Currently both geo-information and Grid technologies have reached a high level of maturity, allowing to build such an

  5. Simulation of geospatial production changes of barley due to the impacts of climate change in South Korea

    Science.gov (United States)

    Ko, J.; Seungtaek, J.

    2016-12-01

    Determining effective measures to alleviate or adjust the changing climate for crops is a prominent issue to be delivered in the upcoming years. Impacts of global change on crops are considered to appear geographically different aspects from region to region and area to area. The objectives of this study are to apply a grid crop simulation modeling (GCSM) system for geospatial projection of the climate change impacts on barley (Hordeum vulgare) in order to determine likely current and future remedial measures using the developed simulation design for South Korea. The barley GCSM scheme was formulated using the Decision Support System for Agricultural Technology (DSSAT) crop model package version 4.6, in which crop models can be used to conduct grid data runs based on shell scripting in a Linux operating system. We used twelve years (1999-2011) climate data with a 3 km pixel resolution as the baseline climate and projected data of the specific future climate changes for the climate change scenarios of RCP4.5 and RCP8.5 according to the IPCC's fifth assessment report. Four soil layers containing different soil physical and chemical properties for the corresponding region were aggregated in order to use as the model input data as well. We will further report the current projection outcomes and discuss potential remedial measures that can be used to adjust the future impacts of climate change on barley production of South Korea. We assume that the current GCSM system could be used as a promising tool to simulate geospatial production changes of crops due to the climate change impacts and to search for likely solutions to the forthcoming food insecurity.

  6. Geo-spatial reporting for monitoring of household immunization coverage through mobile phones: Findings from a feasibility study.

    Science.gov (United States)

    Kazi, A M; Ali, M; K, Ayub; Kalimuddin, H; Zubair, K; Kazi, A N; A, Artani; Ali, S A

    2017-11-01

    The addition of Global Positioning System (GPS) to a mobile phone makes it a very powerful tool for surveillance and monitoring coverage of health programs. This technology enables transfer of data directly into computer applications and cross-references to Geographic Information Systems (GIS) maps, which enhances assessment of coverage and trends. Utilization of these systems in low and middle income countries is currently limited, particularly for immunization coverage assessments and polio vaccination campaigns. We piloted the use of this system and discussed its potential to improve the efficiency of field-based health providers and health managers for monitoring of the immunization program. Using "30×7" WHO sampling technique, a survey of children less than five years of age was conducted in random clusters of Karachi, Pakistan in three high risk towns where a polio case was detected in 2011. Center point of the cluster was calculated by the application on the mobile. Data and location coordinates were collected through a mobile phone. This data was linked with an automated mHealth based monitoring system for monitoring of Supplementary Immunization Activities (SIAs) in Karachi. After each SIA, a visual report was generated according to the coordinates collected from the survey. A total of 3535 participants consented to answer to a baseline survey. We found that the mobile phones incorporated with GIS maps can improve efficiency of health providers through real-time reporting and replacing paper based questionnaire for collection of data at household level. Visual maps generated from the data and geospatial analysis can also give a better assessment of the immunization coverage and polio vaccination campaigns. The study supports a model system in resource constrained settings that allows routine capture of individual level data through GPS enabled mobile phone providing actionable information and geospatial maps to local public health managers, policy makers

  7. GEOSPATIAL DATA INTEGRATION FOR ASSESSING LANDSLIDE HAZARD ON ENGINEERED SLOPES

    Directory of Open Access Journals (Sweden)

    P. E. Miller

    2012-07-01

    Full Text Available Road and rail networks are essential components of national infrastructures, underpinning the economy, and facilitating the mobility of goods and the human workforce. Earthwork slopes such as cuttings and embankments are primary components, and their reliability is of fundamental importance. However, instability and failure can occur, through processes such as landslides. Monitoring the condition of earthworks is a costly and continuous process for network operators, and currently, geospatial data is largely underutilised. The research presented here addresses this by combining airborne laser scanning and multispectral aerial imagery to develop a methodology for assessing landslide hazard. This is based on the extraction of key slope stability variables from the remotely sensed data. The methodology is implemented through numerical modelling, which is parameterised with the slope stability information, simulated climate conditions, and geotechnical properties. This allows determination of slope stability (expressed through the factor of safety for a range of simulated scenarios. Regression analysis is then performed in order to develop a functional model relating slope stability to the input variables. The remotely sensed raster datasets are robustly re-sampled to two-dimensional cross-sections to facilitate meaningful interpretation of slope behaviour and mapping of landslide hazard. Results are stored in a geodatabase for spatial analysis within a GIS environment. For a test site located in England, UK, results have shown the utility of the approach in deriving practical hazard assessment information. Outcomes were compared to the network operator’s hazard grading data, and show general agreement. The utility of the slope information was also assessed with respect to auto-population of slope geometry, and found to deliver significant improvements over the network operator’s existing field-based approaches.

  8. Validation techniques of agent based modelling for geospatial simulations

    Science.gov (United States)

    Darvishi, M.; Ahmadi, G.

    2014-10-01

    One of the most interesting aspects of modelling and simulation study is to describe the real world phenomena that have specific properties; especially those that are in large scales and have dynamic and complex behaviours. Studying these phenomena in the laboratory is costly and in most cases it is impossible. Therefore, Miniaturization of world phenomena in the framework of a model in order to simulate the real phenomena is a reasonable and scientific approach to understand the world. Agent-based modelling and simulation (ABMS) is a new modelling method comprising of multiple interacting agent. They have been used in the different areas; for instance, geographic information system (GIS), biology, economics, social science and computer science. The emergence of ABM toolkits in GIS software libraries (e.g. ESRI's ArcGIS, OpenMap, GeoTools, etc) for geospatial modelling is an indication of the growing interest of users to use of special capabilities of ABMS. Since ABMS is inherently similar to human cognition, therefore it could be built easily and applicable to wide range applications than a traditional simulation. But a key challenge about ABMS is difficulty in their validation and verification. Because of frequent emergence patterns, strong dynamics in the system and the complex nature of ABMS, it is hard to validate and verify ABMS by conventional validation methods. Therefore, attempt to find appropriate validation techniques for ABM seems to be necessary. In this paper, after reviewing on Principles and Concepts of ABM for and its applications, the validation techniques and challenges of ABM validation are discussed.

  9. Smart sensor-based geospatial architecture for dike monitoring

    Science.gov (United States)

    Herle, S.; Becker, R.; Blankenbach, J.

    2016-04-01

    Artificial hydraulic structures like dams or dikes used for water level regulations or flood prevention are continuously under the influence of the weather and variable river regimes. Thus, ongoing monitoring and simulation is crucial in order to determine the inner condition. Potentially life-threatening situations, in extreme case a failure, must be counteracted by all available means. Nowadays flood warning systems rely exclusively on water level forecast without considering the state of the structure itself. Area-covering continuous knowledge of the inner state including time dependent changes increases the capability of recognizing and locating vulnerable spots for early treatment. In case of a predicted breach, advance warning time for alerting affected citizens can be extended. Our approach is composed of smart sensors integrated in a service-oriented geospatial architecture to monitor and simulate artificial hydraulic structures continuously. The sensors observe the inner state of the construction like the soil moisture or the stress and deformation over time but also various external influences like water levels or wind speed. They are interconnected in distributed network architecture by a so-called sensor bus system based on lightweight protocols like Message Queue Telemetry Transport for Sensor Networks (MQTT-SN). These sensor data streams are transferred into an OGC Sensor Web Enablement (SWE) data structure providing high-level geo web services to end users. Bundled with 3rd party geo web services (WMS etc.) powerful processing and simulation tools can be invoked using the Web Processing Service (WPS) standard. Results will be visualized in a geoportal allowing user access to all information.

  10. Geospatial decision support systems for societal decision making

    Science.gov (United States)

    Bernknopf, R.L.

    2005-01-01

    While science provides reliable information to describe and understand the earth and its natural processes, it can contribute more. There are many important societal issues in which scientific information can play a critical role. Science can add greatly to policy and management decisions to minimize loss of life and property from natural and man-made disasters, to manage water, biological, energy, and mineral resources, and in general, to enhance and protect our quality of life. However, the link between science and decision-making is often complicated and imperfect. Technical language and methods surround scientific research and the dissemination of its results. Scientific investigations often are conducted under different conditions, with different spatial boundaries, and in different timeframes than those needed to support specific policy and societal decisions. Uncertainty is not uniformly reported in scientific investigations. If society does not know that data exist, what the data mean, where to use the data, or how to include uncertainty when a decision has to be made, then science gets left out -or misused- in a decision making process. This paper is about using Geospatial Decision Support Systems (GDSS) for quantitative policy analysis. Integrated natural -social science methods and tools in a Geographic Information System that respond to decision-making needs can be used to close the gap between science and society. The GDSS has been developed so that nonscientists can pose "what if" scenarios to evaluate hypothetical outcomes of policy and management choices. In this approach decision makers can evaluate the financial and geographic distribution of potential policy options and their societal implications. Actions, based on scientific information, can be taken to mitigate hazards, protect our air and water quality, preserve the planet's biodiversity, promote balanced land use planning, and judiciously exploit natural resources. Applications using the

  11. Moving Toward an Optimal and Automated Geospatial Network for CCUS Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Hoover, Brendan Arthur [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-05

    Modifications in the global climate are being driven by the anthropogenic release of greenhouse gases (GHG) including carbon dioxide (CO2) (Middleton et al. 2014). CO2 emissions have, for example, been directly linked to an increase in total global temperature (Seneviratne et al. 2016). Strategies that limit CO2 emissions—like CO2 capture, utilization, and storage (CCUS) technology—can greatly reduce emissions by capturing CO2 before it is released to the atmosphere. However, to date CCUS technology has not been developed at a large commercial scale despite several promising high profile demonstration projects (Middleton et al. 2015). Current CCUS research has often focused on capturing CO2 emissions from coal-fired power plants, but recent research at Los Alamos National Laboratory (LANL) suggests focusing CCUS CO2 capture research upon industrial sources might better encourage CCUS deployment. To further promote industrial CCUS deployment, this project builds off current LANL research by continuing the development of a software tool called SimCCS, which estimates a regional system of transport to inject CO2 into sedimentary basins. The goal of SimCCS, which was first developed by Middleton and Bielicki (2009), is to output an automated and optimal geospatial industrial CCUS pipeline that accounts for industrial source and sink locations by estimating a Delaunay triangle network which also minimizes topographic and social costs (Middleton and Bielicki 2009). Current development of SimCCS is focused on creating a new version that accounts for spatial arrangements that were not available in the previous version. This project specifically addresses the issue of non-unique Delaunay triangles by adding additional triangles to the network, which can affect how the CCUS network is calculated.

  12. An Efficient Tile-Pyramids Building Method for Fast Visualization of Massive Geospatial Raster Datasets

    Directory of Open Access Journals (Sweden)

    GUO, N.

    2016-11-01

    Full Text Available Building tile-pyramids is an effective way for publishing and accessing the map visualization service of large-scale geospatial data in the web. But it is a time-consuming task in Geographic Information System (GIS to build tile-pyramids using traditional methods. In this article, an adaptive multilevel tiles generation method is proposed, which first builds grid index for the geospatial raster dataset, and then generates tiles according to different hierarchy level numbers in the tile-pyramid. With the optimized map rendering engine implemented, a parallel tiles pyramid generation method for large-scale geospatial raster dataset is integrated into a high performance GIS platform. Proved by experiments, the new method shows acceptable applicability, stability and scalability besides its high efficiency.

  13. Geospatial-Enabled RuleML in a Study on Querying Respiratory Disease Information

    DEFF Research Database (Denmark)

    Gao, Sheng; Boley, Harold; Mioc, Darka

    2009-01-01

    A spatial component for health data can support spatial analysis and visualization in the investigation of health phenomena. Therefore, the utilization of spatial information in a Semantic Web environment will enhance the ability to query and to represent health data. In this paper, a semantic...... health data query and representation framework is proposed through the formalization of spatial information. We include the geometric representation in RuleML deduction, and apply ontologies and rules for querying and representing health information. Corresponding geospatial built-ins were implemented...... as an extension to OO jDREW. Case studies were carried out using geospatial-enabled RuleML queries for respiratory disease information. The paper thus demonstrates the use of RuleML for geospatial-semantic querying and representing of health information....

  14. Geospatial Information Relevant to the Flood Protection Available on The Mainstream Web

    Directory of Open Access Journals (Sweden)

    Kliment Tomáš

    2014-03-01

    Full Text Available Flood protection is one of several disciplines where geospatial data is very important and is a crucial component. Its management, processing and sharing form the foundation for their efficient use; therefore, special attention is required in the development of effective, precise, standardized, and interoperable models for the discovery and publishing of data on the Web. This paper describes the design of a methodology to discover Open Geospatial Consortium (OGC services on the Web and collect descriptive information, i.e., metadata in a geocatalogue. A pilot implementation of the proposed methodology - Geocatalogue of geospatial information provided by OGC services discovered on Google (hereinafter “Geocatalogue” - was used to search for available resources relevant to the area of flood protection. The result is an analysis of the availability of resources discovered through their metadata collected from the OGC services (WMS, WFS, etc. and the resources they provide (WMS layers, WFS objects, etc. within the domain of flood protection.

  15. New Geodetic Infrastructure for Australia: The NCRIS / AuScope Geospatial Component

    Science.gov (United States)

    Tregoning, P.; Watson, C. S.; Coleman, R.; Johnston, G.; Lovell, J.; Dickey, J.; Featherstone, W. E.; Rizos, C.; Higgins, M.; Priebbenow, R.

    2009-12-01

    In November 2006, the Australian Federal Government announced AUS15.8M in funding for geospatial research infrastructure through the National Collaborative Research Infrastructure Strategy (NCRIS). Funded within a broader capability area titled ‘Structure and Evolution of the Australian Continent’, NCRIS has provided a significant investment across Earth imaging, geochemistry, numerical simulation and modelling, the development of a virtual core library, and geospatial infrastructure. Known collectively as AuScope (www.auscope.org.au), this capability area has brought together Australian’s leading Earth scientists to decide upon the most pressing scientific issues and infrastructure needs for studying Earth systems and their impact on the Australian continent. Importantly and at the same time, the investment in geospatial infrastructure offers the opportunity to raise Australian geodetic science capability to the highest international level into the future. The geospatial component of AuScope builds onto the AUS15.8M of direct funding through the NCRIS process with significant in-kind and co-investment from universities and State/Territory and Federal government departments. The infrastructure to be acquired includes an FG5 absolute gravimeter, three gPhone relative gravimeters, three 12.1 m radio telescopes for geodetic VLBI, a continent-wide network of continuously operating geodetic quality GNSS receivers, a trial of a mobile SLR system and access to updated cluster computing facilities. We present an overview of the AuScope geospatial capability, review the current status of the infrastructure procurement and discuss some examples of the scientific research that will utilise the new geospatial infrastructure.

  16. The Role of Discrete Global Grid Systems in the Global Statistical Geospatial Framework

    Science.gov (United States)

    Purss, M. B. J.; Peterson, P.; Minchin, S. A.; Bermudez, L. E.

    2016-12-01

    The United Nations Committee of Experts on Global Geospatial Information Management (UN-GGIM) has proposed the development of a Global Statistical Geospatial Framework (GSGF) as a mechanism for the establishment of common analytical systems that enable the integration of statistical and geospatial information. Conventional coordinate reference systems address the globe with a continuous field of points suitable for repeatable navigation and analytical geometry. While this continuous field is represented on a computer in a digitized and discrete fashion by tuples of fixed-precision floating point values, it is a non-trivial exercise to relate point observations spatially referenced in this way to areal coverages on the surface of the Earth. The GSGF states the need to move to gridded data delivery and the importance of using common geographies and geocoding. The challenges associated with meeting these goals are not new and there has been a significant effort within the geospatial community to develop nested gridding standards to tackle these issues over many years. These efforts have recently culminated in the development of a Discrete Global Grid Systems (DGGS) standard which has been developed under the auspices of Open Geospatial Consortium (OGC). DGGS provide a fixed areal based geospatial reference frame for the persistent location of measured Earth observations, feature interpretations, and modelled predictions. DGGS address the entire planet by partitioning it into a discrete hierarchical tessellation of progressively finer resolution cells, which are referenced by a unique index that facilitates rapid computation, query and analysis. The geometry and location of the cell is the principle aspect of a DGGS. Data integration, decomposition, and aggregation is optimised in the DGGS hierarchical structure and can be exploited for efficient multi-source data processing, storage, discovery, transmission, visualization, computation, analysis, and modelling. During

  17. Is This a Geolibrary? A Case of the Idaho Geospatial Data Center

    Directory of Open Access Journals (Sweden)

    Maria Anna Jankowska

    2017-09-01

    Full Text Available The article presents the Idaho Geospatial Data Center (IGDC, a digital library of public-domain geographic data for the state of Idaho. The design and implementation of IGDC are introduced as part of the larger context of a geolibrary model. The article presents methodology and tools used to build IGDC with the focus on a geolibrary map browser. The use of IGDC is evaluated from the perspective of accessa and demand for geographic data. Finally, the article offers recommendations for future development of geospatial data centers.

  18. Parallelizing Affinity Propagation Using Graphics Processing Units for Spatial Cluster Analysis over Big Geospatial Data.

    Science.gov (United States)

    Shi, Xuan

    2017-01-01

    Introduced in 2007, affinity propagation (AP) is a relatively new machine learning algorithm for unsupervised classification that has seldom been applied in geospatial applications. One bottleneck is that AP could hardly handle large data, and a serial computer program would take a long time to complete an AP calculation. New multicore and manycore computer architectures, combined with application accelerators, show promise for achieving scalable geocomputation by exploiting task and data levels of parallelism. This chapter introduces our recent progress in parallelizing the AP algorithm on a graphics processing unit (GPU) for spatial cluster analysis, the potential of the proposed solution to process big geospatial data, and its broader impact for the GIScience community.

  19. Participating in the Geospatial Web: Collaborative Mapping, Social Networks and Participatory GIS

    Science.gov (United States)

    Rouse, L. Jesse; Bergeron, Susan J.; Harris, Trevor M.

    In 2005, Google, Microsoft and Yahoo! released free Web mapping applications that opened up digital mapping to mainstream Internet users. Importantly, these companies also released free APIs for their platforms, allowing users to geo-locate and map their own data. These initiatives have spurred the growth of the Geospatial Web and represent spatially aware online communities and new ways of enabling communities to share information from the bottom up. This chapter explores how the emerging Geospatial Web can meet some of the fundamental needs of Participatory GIS projects to incorporate local knowledge into GIS, as well as promote public access and collaborative mapping.

  20. High Performance Processing and Analysis of Geospatial Data Using CUDA on GPU

    Directory of Open Access Journals (Sweden)

    STOJANOVIC, N.

    2014-11-01

    Full Text Available In this paper, the high-performance processing of massive geospatial data on many-core GPU (Graphic Processing Unit is presented. We use CUDA (Compute Unified Device Architecture programming framework to implement parallel processing of common Geographic Information Systems (GIS algorithms, such as viewshed analysis and map-matching. Experimental evaluation indicates the improvement in performance with respect to CPU-based solutions and shows feasibility of using GPU and CUDA for parallel implementation of GIS algorithms over large-scale geospatial datasets.

  1. Transportation of Large Wind Components: A Review of Existing Geospatial Data

    Energy Technology Data Exchange (ETDEWEB)

    Mooney, Meghan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Maclaurin, Galen [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    This report features the geospatial data component of a larger project evaluating logistical and infrastructure requirements for transporting oversized and overweight (OSOW) wind components. The goal of the larger project was to assess the status and opportunities for improving the infrastructure and regulatory practices necessary to transport wind turbine towers, blades, and nacelles from current and potential manufacturing facilities to end-use markets. The purpose of this report is to summarize existing geospatial data on wind component transportation infrastructure and to provide a data gap analysis, identifying areas for further analysis and data collection.

  2. Towards Precise Metadata-set for Discovering 3D Geospatial Models in Geo-portals

    Science.gov (United States)

    Zamyadi, A.; Pouliot, J.; Bédard, Y.

    2013-09-01

    Accessing 3D geospatial models, eventually at no cost and for unrestricted use, is certainly an important issue as they become popular among participatory communities, consultants, and officials. Various geo-portals, mainly established for 2D resources, have tried to provide access to existing 3D resources such as digital elevation model, LIDAR or classic topographic data. Describing the content of data, metadata is a key component of data discovery in geo-portals. An inventory of seven online geo-portals and commercial catalogues shows that the metadata referring to 3D information is very different from one geo-portal to another as well as for similar 3D resources in the same geo-portal. The inventory considered 971 data resources affiliated with elevation. 51% of them were from three geo-portals running at Canadian federal and municipal levels whose metadata resources did not consider 3D model by any definition. Regarding the remaining 49% which refer to 3D models, different definition of terms and metadata were found, resulting in confusion and misinterpretation. The overall assessment of these geo-portals clearly shows that the provided metadata do not integrate specific and common information about 3D geospatial models. Accordingly, the main objective of this research is to improve 3D geospatial model discovery in geo-portals by adding a specific metadata-set. Based on the knowledge and current practices on 3D modeling, and 3D data acquisition and management, a set of metadata is proposed to increase its suitability for 3D geospatial models. This metadata-set enables the definition of genuine classes, fields, and code-lists for a 3D metadata profile. The main structure of the proposal contains 21 metadata classes. These classes are classified in three packages as General and Complementary on contextual and structural information, and Availability on the transition from storage to delivery format. The proposed metadata set is compared with Canadian Geospatial

  3. Organizational needs for managing and preserving geospatial data and related electronic records

    Directory of Open Access Journals (Sweden)

    R R Downs

    2006-01-01

    Full Text Available Government agencies and other organizations are required to manage and preserve records that they create and use to facilitate future access and reuse. The increasing use of geospatial data and related electronic records presents new challenges for these organizations, which have relied on traditional practices for managing and preserving records in printed form. This article reports on an investigation of current and future needs for managing and preserving geospatial electronic records on the part of localand state-level organizations in the New York City metropolitan region. It introduces the study and describes organizational needs observed, including needs for organizational coordination and interorganizational cooperation throughout the entire data lifecycle.

  4. Applied Geospatial Education: Acquisition and Processing of High Resolution Airborne LIDAR and Orthoimages for the Great Smoky Mountains National Park, Southeastern United States

    Science.gov (United States)

    Jordan, T. R.; Madden, M.; Sharma, J. B.; Panda, S. S.

    2012-07-01

    In an innovative collaboration between government, university and private industry, researchers at the University of Georgia and Gainesville State College are collaborating with Photo Science, Inc. to acquire, process and quality control check lidar and or-thoimages of forest areas in the Southern Appalachian Mountains of the United States. Funded by the U.S. Geological Survey, this project meets the objectives of the ARRA initiative by creating jobs, preserving jobs and training students for high skill positions in geospatial technology. Leaf-off lidar data were acquired at 1-m resolution of the Tennessee portion of the Great Smoky Mountain National Park (GRSM) and adjacent Foothills Parkway. This 1400-sq. km. area is of high priority for national/global interests due to biodiversity, rare and endangered species and protection of some of the last remaining virgin forest in the U.S. High spatial resolution (30 cm) leaf-off 4-band multispectral orthoimages also were acquired for both the Chattahoochee National Forest in north Georgia and the entire GRSM. The data are intended to augment the National Elevation Dataset and orthoimage database of The National Map with information that can be used by many researchers in applications of LiDAR point clouds, high resolution DEMs and or-thoimage mosaics. Graduate and undergraduate students were involved at every stage of the workflow in order to provide then with high level technical educational and professional experience in preparation for entering the geospatial workforce. This paper will present geospatial workflow strategies, multi-team coordination, distance-learning training and industry-academia partnership.

  5. Influences of geo-spatial location on pre-exposure prophylaxis use in South Africa: positioning microbicides for better product uptake.

    Science.gov (United States)

    Govender, Eliza M; Mansoor, Leila E; Abdool Karim, Quarraisha

    2017-06-01

    Young women bear a disproportionately high burden of HIV infection in sub-Saharan Africa, prioritising pre-exposure prophylaxis (PrEP) can be an integral part of HIV prevention combination strategies. Women initiated HIV prevention technology options will require consistent adherence, an imperative for product effectiveness. With several PrEP clinical trials underway; exploring women's acceptability to advances in HIV prevention technologies can better facilitate demand creation for future PrEP roll out. This study utilised the opportunity of post-trial access to CAPRISA 008 women (trial) and non-trial women from three geo-spatial settings (urban, rural and peri-urban) to identify microbicide acceptability and how product associations of microbicides can influence future HIV prevention choices. Six participatory workshops using participatory action research with art-based activities and discussion groups were conducted in KwaZulu-Natal with 104 women from various geo-spatial locations and social status to understand microbicide acceptability and product associations. The data were analysed using thematic analysis. The study found that women's acceptability and product association of the tenofovir gel microbicide differed according to rural and urban areas. Most urban women identified confidence, sexiness and classiness as key associations that will encourage microbicide acceptability and use, while rural women identified respect, responsibility and confidence as the key product associations, with increased focus on the individual and collective family/community benefits of product acceptance and use. Urban-rural differences suggest a market segmentation that is contextualised to be locally responsive to promote HIV prevention technologies. Various sexual encounters further determined the types of HIV prevention technologies women would consider. In line with WHO's recommendation that PrEP should be an additional prevention choice for people at risk of HIV, this

  6. Developing a distributed HTML5-based search engine for geospatial resource discovery

    Science.gov (United States)

    ZHOU, N.; XIA, J.; Nebert, D.; Yang, C.; Gui, Z.; Liu, K.

    2013-12-01

    With explosive growth of data, Geospatial Cyberinfrastructure(GCI) components are developed to manage geospatial resources, such as data discovery and data publishing. However, the efficiency of geospatial resources discovery is still challenging in that: (1) existing GCIs are usually developed for users of specific domains. Users may have to visit a number of GCIs to find appropriate resources; (2) The complexity of decentralized network environment usually results in slow response and pool user experience; (3) Users who use different browsers and devices may have very different user experiences because of the diversity of front-end platforms (e.g. Silverlight, Flash or HTML). To address these issues, we developed a distributed and HTML5-based search engine. Specifically, (1)the search engine adopts a brokering approach to retrieve geospatial metadata from various and distributed GCIs; (2) the asynchronous record retrieval mode enhances the search performance and user interactivity; (3) the search engine based on HTML5 is able to provide unified access capabilities for users with different devices (e.g. tablet and smartphone).

  7. Development of a Web-Enabled Learning Platform for Geospatial Laboratories: Improving the Undergraduate Learning Experience

    Science.gov (United States)

    Mui, Amy B.; Nelson, Sarah; Huang, Bruce; He, Yuhong; Wilson, Kathi

    2015-01-01

    This paper describes a web-enabled learning platform providing remote access to geospatial software that extends the learning experience outside of the laboratory setting. The platform was piloted in two undergraduate courses, and includes a software server, a data server, and remote student users. The platform was designed to improve the quality…

  8. Thinking Critically in Space: Toward a Mixed-Methods Geospatial Approach to Education Policy Analysis

    Science.gov (United States)

    Yoon, Ee-Seul; Lubienski, Christopher

    2018-01-01

    This paper suggests that synergies can be produced by using geospatial analyses as a bridge between traditional qualitative-quantitative distinctions in education research. While mapping tools have been effective for informing education policy studies, especially in terms of educational access and choice, they have also been underutilized and…

  9. Center of Excellence for Geospatial Information Science research plan 2013-18

    Science.gov (United States)

    Usery, E. Lynn

    2013-01-01

    The U.S. Geological Survey Center of Excellence for Geospatial Information Science (CEGIS) was created in 2006 and since that time has provided research primarily in support of The National Map. The presentations and publications of the CEGIS researchers document the research accomplishments that include advances in electronic topographic map design, generalization, data integration, map projections, sea level rise modeling, geospatial semantics, ontology, user-centered design, volunteer geographic information, and parallel and grid computing for geospatial data from The National Map. A research plan spanning 2013–18 has been developed extending the accomplishments of the CEGIS researchers and documenting new research areas that are anticipated to support The National Map of the future. In addition to extending the 2006–12 research areas, the CEGIS research plan for 2013–18 includes new research areas in data models, geospatial semantics, high-performance computing, volunteered geographic information, crowdsourcing, social media, data integration, and multiscale representations to support the Three-Dimensional Elevation Program (3DEP) and The National Map of the future of the U.S. Geological Survey.

  10. Using a Web GIS Plate Tectonics Simulation to Promote Geospatial Thinking

    Science.gov (United States)

    Bodzin, Alec M.; Anastasio, David; Sharif, Rajhida; Rutzmoser, Scott

    2016-01-01

    Learning with Web-based geographic information system (Web GIS) can promote geospatial thinking and analysis of georeferenced data. Web GIS can enable learners to analyze rich data sets to understand spatial relationships that are managed in georeferenced data visualizations. We developed a Web GIS plate tectonics simulation as a capstone learning…

  11. GEOSPATIAL DATABASE FOR STRATA OBJECTS BASED ON LAND ADMINISTRATION DOMAIN MODEL (LADM

    Directory of Open Access Journals (Sweden)

    N. N. Nasorudin

    2016-09-01

    Full Text Available Recently in our country, the construction of buildings become more complex and it seems that strata objects database becomes more important in registering the real world as people now own and use multilevel of spaces. Furthermore, strata title was increasingly important and need to be well-managed. LADM is a standard model for land administration and it allows integrated 2D and 3D representation of spatial units. LADM also known as ISO 19152. The aim of this paper is to develop a strata objects database using LADM. This paper discusses the current 2D geospatial database and needs for 3D geospatial database in future. This paper also attempts to develop a strata objects database using a standard data model (LADM and to analyze the developed strata objects database using LADM data model. The current cadastre system in Malaysia includes the strata title is discussed in this paper. The problems in the 2D geospatial database were listed and the needs for 3D geospatial database in future also is discussed. The processes to design a strata objects database are conceptual, logical and physical database design. The strata objects database will allow us to find the information on both non-spatial and spatial strata title information thus shows the location of the strata unit. This development of strata objects database may help to handle the strata title and information.

  12. Geospatial Database for Strata Objects Based on Land Administration Domain Model (ladm)

    Science.gov (United States)

    Nasorudin, N. N.; Hassan, M. I.; Zulkifli, N. A.; Rahman, A. Abdul

    2016-09-01

    Recently in our country, the construction of buildings become more complex and it seems that strata objects database becomes more important in registering the real world as people now own and use multilevel of spaces. Furthermore, strata title was increasingly important and need to be well-managed. LADM is a standard model for land administration and it allows integrated 2D and 3D representation of spatial units. LADM also known as ISO 19152. The aim of this paper is to develop a strata objects database using LADM. This paper discusses the current 2D geospatial database and needs for 3D geospatial database in future. This paper also attempts to develop a strata objects database using a standard data model (LADM) and to analyze the developed strata objects database using LADM data model. The current cadastre system in Malaysia includes the strata title is discussed in this paper. The problems in the 2D geospatial database were listed and the needs for 3D geospatial database in future also is discussed. The processes to design a strata objects database are conceptual, logical and physical database design. The strata objects database will allow us to find the information on both non-spatial and spatial strata title information thus shows the location of the strata unit. This development of strata objects database may help to handle the strata title and information.

  13. The geospatial modeling interface (GMI) framework for deploying and assessing environmental models

    Science.gov (United States)

    Geographical information systems (GIS) software packages have been used for close to three decades as analytical tools in environmental management for geospatial data assembly, processing, storage, and visualization of input data and model output. However, with increasing availability and use of ful...

  14. REAL-TIME UAV BASED GEOSPATIAL VIDEO INTEGRATED INTO THE FIRE BRIGADES CRISIS MANAGEMENT GIS SYSTEM

    Directory of Open Access Journals (Sweden)

    M. van Persie

    2012-09-01

    Full Text Available During a fire incident live airborne video offers the fire brigade an additional means of information. Essential for the effective usage of the daylight and infra red video data from the UAS is that the information is fully integrated into the crisis management system of the fire brigade. This is a GIS based system in which all relevant geospatial information is brought together and automatically distributed to all levels of the organisation. In the context of the Dutch Fire-Fly project a geospatial video server was integrated with a UAS and the fire brigades crisis management system, so that real-time geospatial airborne video and derived products can be made available at all levels during a fire incident. The most important elements of the system are the Delftdynamics Robot Helicopter, the Video Multiplexing System, the Keystone geospatial video server/editor and the Eagle and CCS-M crisis management systems. In discussion with the Security Region North East Gelderland user requirements and a concept of operation were defined, demonstrated and evaluated. This article describes the technical and operational approach and results.

  15. Geo-spatial analysis of land use and land cover changes in the Lake ...

    African Journals Online (AJOL)

    This paper examines forest degradation and biodiversity loss in the Lake Bosomtwe Basin of Ghana between 1986 and 2008 from a geospatial perspective. The study was conducted using an integrated approach with Remote Sensing and GIS techniques, and supported with socioeconomic data for forest cover change ...

  16. Geo-spatial analysis of crime in Kaduna Metropolis, Nigeria | Ayuba ...

    African Journals Online (AJOL)

    Criminal activities are important concerns for public safety of our contemporary society. Clarifying where different types of crimes occur is one of the many important functions of crime analyses. This research aimed to map and analyse crime in Kaduna metropolis, Nigeria, applying Geo-Spatial Technique. The attribute data ...

  17. Parallel Agent-as-a-Service (P-AaaS Based Geospatial Service in the Cloud

    Directory of Open Access Journals (Sweden)

    Xicheng Tan

    2017-04-01

    Full Text Available To optimize the efficiency of the geospatial service in the flood response decision making system, a Parallel Agent-as-a-Service (P-AaaS method is proposed and implemented in the cloud. The prototype system and comparisons demonstrate the advantages of our approach over existing methods. The P-AaaS method includes both parallel architecture and a mechanism for adjusting the computational resources—the parallel geocomputing mechanism of the P-AaaS method used to execute a geospatial service and the execution algorithm of the P-AaaS based geospatial service chain, respectively. The P-AaaS based method has the following merits: (1 it inherits the advantages of the AaaS-based method (i.e., avoiding transfer of large volumes of remote sensing data or raster terrain data, agent migration, and intelligent conversion into services to improve domain expert collaboration; (2 it optimizes the low performance and the concurrent geoprocessing capability of the AaaS-based method, which is critical for special applications (e.g., highly concurrent applications and emergency response applications; and (3 it adjusts the computing resources dynamically according to the number and the performance requirements of concurrent requests, which allows the geospatial service chain to support a large number of concurrent requests by scaling up the cloud-based clusters in use and optimizes computing resources and costs by reducing the number of virtual machines (VMs when the number of requests decreases.

  18. Geospatial economics of the woody biomass supply in Kansas -- A case study

    Science.gov (United States)

    Olga Khaliukova; Darci Paull; Sarah L. Lewis-Gonzales; Nicolas Andre; Larry E. Biles; Timothy M. Young; James H. Perdue

    2017-01-01

    This research assessed the geospatial supply of cellulosic feedstocks for potential mill sites in Kansas (KS), with procurement zones extending to Arkansas (AR), Iowa(IA), Missouri(MO), Oklahoma (OK), and Nebraska (NE). A web-based modeling system, the Kansas Biomass Supply Assessment Tool, was developed to identify least-cost sourcing areas for logging residues and...

  19. Decision Performance Using Spatial Decision Support Systems: A Geospatial Reasoning Ability Perspective

    Science.gov (United States)

    Erskine, Michael A.

    2013-01-01

    As many consumer and business decision makers are utilizing Spatial Decision Support Systems (SDSS), a thorough understanding of how such decisions are made is crucial for the information systems domain. This dissertation presents six chapters encompassing a comprehensive analysis of the impact of geospatial reasoning ability on…

  20. A Geo-Event-Based Geospatial Information Service: A Case Study of Typhoon Hazard

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2017-03-01

    Full Text Available Social media is valuable in propagating information during disasters for its timely and available characteristics nowadays, and assists in making decisions when tagged with locations. Considering the ambiguity and inaccuracy in some social data, additional authoritative data are needed for important verification. However, current works often fail to leverage both social and authoritative data and, on most occasions, the data are used in disaster analysis after the fact. Moreover, current works organize the data from the perspective of the spatial location, but not from the perspective of the disaster, making it difficult to dynamically analyze the disaster. All of the disaster-related data around the affected locations need to be retrieved. To solve these limitations, this study develops a geo-event-based geospatial information service (GEGIS framework and proceeded as follows: (1 a geo-event-related ontology was constructed to provide a uniform semantic basis for the system; (2 geo-events and attributes were extracted from the web using a natural language process (NLP and used in the semantic similarity match of the geospatial resources; and (3 a geospatial information service prototype system was designed and implemented for automatically retrieving and organizing geo-event-related geospatial resources. A case study of a typhoon hazard is analyzed here within the GEGIS and shows that the system would be effective when typhoons occur.

  1. AGENT- AND CLOUD-SUPPORTED GEOSPATIAL SERVICE AGGREGATION FOR FLOOD RESPONSE

    Directory of Open Access Journals (Sweden)

    X. Tan

    2015-07-01

    Full Text Available Flooding caused serious losses in China in the past two decades; therefore, responding to and mitigating the impact of flooding is a task of critical importance. The traditional flood response process is usually very time-consuming and labor-intensive. The Service-Oriented Architecture (SOA)-based flood response is a method with low efficiency due to the large volume of geospatial data transfer, and this method cannot meet the real-time requirement of a rapid response to flooding. This paper presents an Agent- and Cloud-supported geospatial service aggregation to obtain a more efficient geospatial service system for the response to flooding. The architecture of this method is designed and deployed on the Cloud environment, and the flooding response prototype system is built on the Amazon AWS Cloud to demonstrate that the proposed method can avoid transferring large volumes of geospatial data or Big Spatial Data. Consequently, this method is able to achieve better performance than that of the SOA-based method.

  2. Algorithmic design considerations for geospatial and/or temporal big data

    CSIR Research Space (South Africa)

    Van Zyl, T

    2014-02-01

    Full Text Available In order to frame the geospatial temporal big data conversation, it is important to discuss them within the context of the three Vs (velocity, variety, and volume) of big data. Each of the Vs brings its own technical requirements to the algorithmic...

  3. A Geospatial Statistical Analysis of the Density of Lottery Outlets within Ethnically Concentrated Neighborhoods

    Science.gov (United States)

    Wiggins, Lyna; Nower, Lia; Mayers, Raymond Sanchez; Peterson, N. Andrew

    2010-01-01

    This study examines the density of lottery outlets within ethnically concentrated neighborhoods in Middlesex County, New Jersey, using geospatial statistical analyses. No prior studies have empirically examined the relationship between lottery outlet density and population demographics. Results indicate that lottery outlets were not randomly…

  4. Distributed Storage Algorithm for Geospatial Image Data Based on Data Access Patterns.

    Directory of Open Access Journals (Sweden)

    Shaoming Pan

    Full Text Available Declustering techniques are widely used in distributed environments to reduce query response time through parallel I/O by splitting large files into several small blocks and then distributing those blocks among multiple storage nodes. Unfortunately, however, many small geospatial image data files cannot be further split for distributed storage. In this paper, we propose a complete theoretical system for the distributed storage of small geospatial image data files based on mining the access patterns of geospatial image data using their historical access log information. First, an algorithm is developed to construct an access correlation matrix based on the analysis of the log information, which reveals the patterns of access to the geospatial image data. Then, a practical heuristic algorithm is developed to determine a reasonable solution based on the access correlation matrix. Finally, a number of comparative experiments are presented, demonstrating that our algorithm displays a higher total parallel access probability than those of other algorithms by approximately 10-15% and that the performance can be further improved by more than 20% by simultaneously applying a copy storage strategy. These experiments show that the algorithm can be applied in distributed environments to help realize parallel I/O and thereby improve system performance.

  5. International outreach for promoting open geoscience content in Finnish university libraries - libraries as the advocates of citizen science awareness on emerging open geospatial data repositories in Finnish society

    Science.gov (United States)

    Rousi, A. M.; Branch, B. D.; Kong, N.; Fosmire, M.

    2013-12-01

    In their Finnish National Spatial Strategy 2010-2015 the Finland's Ministry of Agriculture and Forestry delineated e.g. that spatial data skills should support citizens everyday activities and facilitate decision-making and participation of citizens. Studies also predict that open data, particularly open spatial data, would create, when fully realizing their potential, a 15% increase into the turnovers of Finnish private sector companies. Finnish libraries have a long tradition of serving at the heart of Finnish information society. However, with the emerging possibilities of educating their users on open spatial data a very few initiatives have been made. The National Survey of Finland opened its data in 2012. Finnish technology university libraries, such as Aalto University Library, are open environments for all citizens, and seem suitable of being the first thriving entities in educating citizens on open geospatial data. There are however many obstacles to overcome, such as lack of knowledge about policies, lack of understanding of geospatial data services and insufficient know-how of GIS software among the personnel. This framework examines the benefits derived from an international collaboration between Purdue University Libraries and Aalto University Library to create local strategies in implementing open spatial data education initiatives in Aalto University Library's context. The results of this international collaboration are explicated for the benefit of the field as a whole.

  6. Future U.S. workforce for Geospatial Intelligence

    National Research Council Canada - National Science Library

    Board on Earth Sciences and Resources; Division on Earth and Life Studies; Board on Higher Education and Workforce; Policy and Global Affairs; National Research Council

    .... The challenge for NGA is to maintain a workforce that can deal with evolving threats to national security, ongoing scientific and technological advances, and changing skills and expectations of workers. Future U.S...

  7. Qualitative-Geospatial Methods of Exploring Person-Place Transactions in Aging Adults: A Scoping Review.

    Science.gov (United States)

    Hand, Carri; Huot, Suzanne; Laliberte Rudman, Debbie; Wijekoon, Sachindri

    2017-06-01

    Research exploring how places shape and interact with the lives of aging adults must be grounded in the places where aging adults live and participate. Combined participatory geospatial and qualitative methods have the potential to illuminate the complex processes enacted between person and place to create much-needed knowledge in this area. The purpose of this scoping review was to identify methods that can be used to study person-place relationships among aging adults and their neighborhoods by determining the extent and nature of research with aging adults that combines qualitative methods with participatory geospatial methods. A systematic search of nine databases identified 1,965 articles published from 1995 to late 2015. We extracted data and assessed whether the geospatial and qualitative methods were supported by a specified methodology, the methods of data analysis, and the extent of integration of geospatial and qualitative methods. Fifteen studies were included and used the photovoice method, global positioning system tracking plus interview, or go-along interviews. Most included articles provided sufficient detail about data collection methods, yet limited detail about methodologies supporting the study designs and/or data analysis. Approaches that combine participatory geospatial and qualitative methods are beginning to emerge in the aging literature. By more explicitly grounding studies in a methodology, better integrating different types of data during analysis, and reflecting on methods as they are applied, these methods can be further developed and utilized to provide crucial place-based knowledge that can support aging adults' health, well-being, engagement, and participation.

  8. Automatic Scaling Hadoop in the Cloud for Efficient Process of Big Geospatial Data

    Directory of Open Access Journals (Sweden)

    Zhenlong Li

    2016-09-01

    Full Text Available Efficient processing of big geospatial data is crucial for tackling global and regional challenges such as climate change and natural disasters, but it is challenging not only due to the massive data volume but also due to the intrinsic complexity and high dimensions of the geospatial datasets. While traditional computing infrastructure does not scale well with the rapidly increasing data volume, Hadoop has attracted increasing attention in geoscience communities for handling big geospatial data. Recently, many studies were carried out to investigate adopting Hadoop for processing big geospatial data, but how to adjust the computing resources to efficiently handle the dynamic geoprocessing workload was barely explored. To bridge this gap, we propose a novel framework to automatically scale the Hadoop cluster in the cloud environment to allocate the right amount of computing resources based on the dynamic geoprocessing workload. The framework and auto-scaling algorithms are introduced, and a prototype system was developed to demonstrate the feasibility and efficiency of the proposed scaling mechanism using Digital Elevation Model (DEM interpolation as an example. Experimental results show that this auto-scaling framework could (1 significantly reduce the computing resource utilization (by 80% in our example while delivering similar performance as a full-powered cluster; and (2 effectively handle the spike processing workload by automatically increasing the computing resources to ensure the processing is finished within an acceptable time. Such an auto-scaling approach provides a valuable reference to optimize the performance of geospatial applications to address data- and computational-intensity challenges in GIScience in a more cost-efficient manner.

  9. Data Democracy and Decision Making: Enhancing the Use and Value of Geospatial Data and Scientific Information

    Science.gov (United States)

    Shapiro, C. D.

    2014-12-01

    Data democracy is a concept that has great relevance to the use and value of geospatial data and scientific information. Data democracy describes a world in which data and information are widely and broadly accessible, understandable, and useable. The concept operationalizes the public good nature of scientific information and provides a framework for increasing benefits from its use. Data democracy encompasses efforts to increase accessibility to geospatial data and to expand participation in its collection, analysis, and application. These two pillars are analogous to demand and supply relationships. Improved accessibility, or demand, includes increased knowledge about geospatial data and low barriers to retrieval and use. Expanded participation, or supply, encompasses a broader community involved in developing geospatial data and scientific information. This pillar of data democracy is characterized by methods such as citizen science or crowd sourcing.A framework is developed for advancing the use of data democracy. This includes efforts to assess the societal benefits (economic and social) of scientific information. This knowledge is critical to continued monitoring of the effectiveness of data democracy implementation and of potential impact on the use and value of scientific information. The framework also includes an assessment of opportunities for advancing data democracy both on the supply and demand sides. These opportunities include relatively inexpensive efforts to reduce barriers to use as well as the identification of situations in which participation can be expanded in scientific efforts to enhance the breadth of involvement as well as expanding participation to non-traditional communities. This framework provides an initial perspective on ways to expand the "scientific community" of data users and providers. It also describes a way forward for enhancing the societal benefits from geospatial data and scientific information. As a result, data

  10. 3D geospatial visualizations: Animation and motion effects on spatial objects

    Science.gov (United States)

    Evangelidis, Konstantinos; Papadopoulos, Theofilos; Papatheodorou, Konstantinos; Mastorokostas, Paris; Hilas, Constantinos

    2018-02-01

    Digital Elevation Models (DEMs), in combination with high quality raster graphics provide realistic three-dimensional (3D) representations of the globe (virtual globe) and amazing navigation experience over the terrain through earth browsers. In addition, the adoption of interoperable geospatial mark-up languages (e.g. KML) and open programming libraries (Javascript) makes it also possible to create 3D spatial objects and convey on them the sensation of any type of texture by utilizing open 3D representation models (e.g. Collada). One step beyond, by employing WebGL frameworks (e.g. Cesium.js, three.js) animation and motion effects are attributed on 3D models. However, major GIS-based functionalities in combination with all the above mentioned visualization capabilities such as for example animation effects on selected areas of the terrain texture (e.g. sea waves) as well as motion effects on 3D objects moving in dynamically defined georeferenced terrain paths (e.g. the motion of an animal over a hill, or of a big fish in an ocean etc.) are not widely supported at least by open geospatial applications or development frameworks. Towards this we developed and made available to the research community, an open geospatial software application prototype that provides high level capabilities for dynamically creating user defined virtual geospatial worlds populated by selected animated and moving 3D models on user specified locations, paths and areas. At the same time, the generated code may enhance existing open visualization frameworks and programming libraries dealing with 3D simulations, with the geospatial aspect of a virtual world.

  11. Analysis of Urban Sprawl Dynamics Using Geospatial Technology in Ranchi City, Jharkhand, India

    Directory of Open Access Journals (Sweden)

    Ahmad Firoz

    2016-06-01

    Full Text Available The availability of remote sensing satellite data at various spatial, temporal and spectral resolutions provides enormous opportunity to map the urban sprawl. When coupled with Geographic Information System (GIS it is possible to evaluate, analyse and integrate large data. We need to understand and quantify the urban sprawl on spatial and temporal scales which forms a basis for better planning and sustainable management of cities and towns. The city of Ranchi has witnessed unprecedented urban growth after assuming the status of a capital of Jharkhand state, India in 2000. The increasing population has put pressure on the natural resources of the city. The urban growth has been in a haphazard manner at the cost of agricultural lands, forest land and open green spaces such as park, garden and recreational forestry.

  12. Restoration scaling of seagrass habitats in the oceanic islands of Lakshadweep, India using geospatial technology

    Digital Repository Service at National Institute of Oceanography (India)

    Nobi, E.P.; Dilipan, E.; Thangaradjou, T.; DineshKumar, P.K.

    ) Guidelines for the conservation and restoration of seagrasses in the United States and adjacent waters. Silver Spring (MD): NOAA Coastal Ocean Program Decision Analysis Series no. 12 Harrison PG (1990) Variations in success of eelgrass transplants over a... and field observations Satellite data of the years 2000 (IRS ID LISS III) and 2008 (IRS P6 LISS III) were used for estimating the seagrass spatial changes over a time period for the six islands following the methodology of Mumby and Green (2000). Digital...

  13. Key practices for implementing geospatial technologies for a planning and environment linkages (PEL) approach

    Science.gov (United States)

    2008-07-01

    This report presents three case studies that illustrate how geographic information systems (GIS) have been used to implement the Federal Highway Administrations (FHWA) Planning and Environment Linkages (PEL) approach. The PEL approach provides inf...

  14. Geological mapping of the Schuppen belt of north-east India using geospatial technology

    Science.gov (United States)

    Ghosh, Tanaya; Basu, Surajit; Hazra, Sugata

    2014-01-01

    A revised geologic map of the Schuppen belt of northeast India has been prepared based on interpretation of digitally enhanced satellite images. The satellite image interpretation is supported by limited field work and existing geologic maps. Available geological maps of this fold thrust belt are discontinuous and multi-scaled. The authors are of multiple opinions regarding the trajectory of formation boundaries and fault contacts. Digital image processing of satellite images and limited field surveys have been used to reinterpret and modify the existing geological maps of this fold thrust belt. Optical data of Landsat Thematic Mapper, Enhanced Thematic Mapper and elevation data of ASTER have been used to prepare this revised geological map. The study area extends from Hajadisa in south to Digboi oilfield in north, bounded by Naga thrust in the west and Disang thrust in the east. PCA, Image fusion, Linear Contrast stretch, Histogram Equalization and Painted relief algorithms have been used for the delineation of major geological lineaments like lithological boundary, thrust and strike slip faults. Digital elevation maps have enabled in the discrimination between thrust contacts and lithological boundaries, with the former being located mostly in the valleys. Textural enhancements of PCA, colour composites and Painted relief algorithm have been used to discriminate between different rock types. Few geological concepts about the terrain have been revisited and modified. It is assumed that this revised map should be of practical use as this terrain promises unexploited hydrocarbon reserves.

  15. Cropping Systems Dynamics in the Lower Gangetic Plains of India using Geospatial Technologies

    Directory of Open Access Journals (Sweden)

    K. R. Manjunath

    2012-08-01

    Full Text Available Cropping system study is useful to understand the overall sustainability of agricultural system. Capturing the change dynamics of cropping systems, especially spatial and temporal aspects, is of utmost importance in overall planning and management of natural resources. This paper highlights the remote sensing based cropping systems change-dynamics assessment. Current study is aimed at use of multidate-multisensor data for deriving the seasonal cropping pattern maps and deriving the remote sensing based cropping system performance indicators during 1998–99 and 2004–05 in West- Bengal state of India. The temporal assessment of the changes of cropping systems components such as cropping pattern and indices for the study years 1998–99 and 2004–05 have been brought out. The results indicate that during the six years of time the kharif cropping pattern has almost remained the same, being a rice dominant system. A notable point is the decrease in the aus rice due to readjusting the cropping system practice to suit the two crop systems in many places was observed. Marginal variations in mustard and wheat areas during rabi season was observed. The boro (summer rice area has almost remained constant. The rice-fallow-fallow (R-F-F rotation reduced by about 4 percent while the rice-fallow-rice (R-F-R increased by about 7 percent percent. The Area Diversity Index reduced by about 38 percent in 2004 which may be attributed to decrease in kharif pulses and minor crops during kharif and summer. However, diversity during rabi season continued to remain high. The increase in Multiple Cropping Index was observed predominantly in the southern part of the state. Cultivated Land Utilization Index shows an increase by about 0.05.

  16. Interdisciplinary Navigation Unit for Mathematics and Earth Science Using Geospatial Technology

    Science.gov (United States)

    Smaglik, S. M.; Harris, V.

    2006-12-01

    Central Wyoming College (CWC) is located northeast of the Wind River Mountains. Although many people find recreation in the wilderness and remote areas surrounding the area, people still lose their lives because they become lost or disoriented. Creating an interdisciplinary field-based curriculum unit within mathematics (MATH 1000) and earth science (GEOL 1070) courses for non-science and education majors, provides students an opportunity to develop critical thinking skills and quantitative literacy. It also provides some necessary skills for survival and an understanding of landscape formation and wilderness navigation using geoscience. A brief history of navigation, including the importance of finding latitude and longitude, and the fairly recent implementation of the Global Positioning System, precedes activities in which students learn to use a basic compass. In addition to learning how to adjust for magnetic declination they read topographic maps, specifically USGS quadrangles, and learn how to use the scale in the legend to verify calculations using the Pythagorean Theorem. Students learn how to estimate distance and time required for traveling a pre- determined distance while using dimensional analysis to convert from the English system to metric. They learn how to read and measure latitude and longitude, as well as universal transverse Mercator projection measurements (UTM's), to find their position. The basic mathematical skills are assessed through hands-on activities such as finding their location on a map using a compass, a GPS unit, and Google Earth, and using a combination of maps, compasses, and GPS units to navigate through a course. Our goal is to provide life-saving information to students while incorporating necessary core curriculum from both mathematics and earth science classes. We work to create field-based activities, as well as assessments, to insure that students who complete the course are prepared to safely enjoy the outdoors and are prepared for future courses requiring mathematical problem-solving and/or lab science as a prerequisite.

  17. Identifying Environmental Risk Factors of Cholera in a Coastal Area with Geospatial Technologies

    Science.gov (United States)

    Xu, Min; Cao, Chunxiang; Wang, Duochun; Kan, Biao

    2014-01-01

    Satellites contribute significantly to environmental quality and public health. Environmental factors are important indicators for the prediction of disease outbreaks. This study reveals the environmental factors associated with cholera in Zhejiang, a coastal province of China, using both Remote Sensing (RS) and Geographic information System (GIS). The analysis validated the correlation between the indirect satellite measurements of sea surface temperature (SST), sea surface height (SSH) and ocean chlorophyll concentration (OCC) and the local cholera magnitude based on a ten-year monthly data from the year 1999 to 2008. Cholera magnitude has been strongly affected by the concurrent variables of SST and SSH, while OCC has a one-month time lag effect. A cholera prediction model has been established based on the sea environmental factors. The results of hot spot analysis showed the local cholera magnitude in counties significantly associated with the estuaries and rivers. PMID:25551518

  18. The Use of Geospatial Technologies in Flood Hazard Mapping and Assessment: Case Study from River Evros

    Science.gov (United States)

    Mentzafou, Angeliki; Markogianni, Vasiliki; Dimitriou, Elias

    2017-02-01

    Many scientists link climate change to the increase of the extreme weather phenomena frequency, which combined with land use changes often lead to disasters with severe social and economic effects. Especially floods as a consequence of heavy rainfall can put vulnerable human and natural systems such as transboundary wetlands at risk. In order to meet the European Directive 2007/60/EC requirements for the development of flood risk management plans, the flood hazard map of Evros transboundary watershed was produced after a grid-based GIS modelling method that aggregates the main factors related to the development of floods: topography, land use, geology, slope, flow accumulation and rainfall intensity. The verification of this tool was achieved through the comparison between the produced hazard map and the inundation maps derived from the supervised classification of Landsat 5 and 7 satellite imageries of four flood events that took place at Evros delta proximity, a wetland of international importance. The comparison of the modelled output (high and very high flood hazard areas) with the extent of the inundated areas as mapped from the satellite data indicated the satisfactory performance of the model. Furthermore, the vulnerability of each land use against the flood events was examined. Geographically Weighted Regression has also been applied between the final flood hazard map and the major factors in order to ascertain their contribution to flood events. The results accredited the existence of a strong relationship between land uses and flood hazard indicating the flood susceptibility of the lowlands and agricultural land. A dynamic transboundary flood hazard management plan should be developed in order to meet the Flood Directive requirements for adequate and coordinated mitigation practices to reduce flood risk.

  19. Toward Open Science at the European Scale: Geospatial Semantic Array Programming for Integrated Environmental Modelling

    Science.gov (United States)

    de Rigo, Daniele; Corti, Paolo; Caudullo, Giovanni; McInerney, Daniel; Di Leo, Margherita; San-Miguel-Ayanz, Jesús

    2013-04-01

    Interfacing science and policy raises challenging issues when large spatial-scale (regional, continental, global) environmental problems need transdisciplinary integration within a context of modelling complexity and multiple sources of uncertainty [1]. This is characteristic of science-based support for environmental policy at European scale [1], and key aspects have also long been investigated by European Commission transnational research [2-5]. Parameters ofthe neededdata- transformations ? = {?1????m} (a.5) Wide-scale transdisciplinary modelling for environment. Approaches (either of computational science or of policy-making) suitable at a given domain-specific scale may not be appropriate for wide-scale transdisciplinary modelling for environment (WSTMe) and corresponding policy-making [6-10]. In WSTMe, the characteristic heterogeneity of available spatial information (a) and complexity of the required data-transformation modelling (D- TM) appeal for a paradigm shift in how computational science supports such peculiarly extensive integration processes. In particular, emerging wide-scale integration requirements of typical currently available domain-specific modelling strategies may include increased robustness and scalability along with enhanced transparency and reproducibility [11-15]. This challenging shift toward open data [16] and reproducible research [11] (open science) is also strongly suggested by the potential - sometimes neglected - huge impact of cascading effects of errors [1,14,17-19] within the impressively growing interconnection among domain-specific computational models and frameworks. From a computational science perspective, transdisciplinary approaches to integrated natural resources modelling and management (INRMM) [20] can exploit advanced geospatial modelling techniques with an awesome battery of free scientific software [21,22] for generating new information and knowledge from the plethora of composite data [23-26]. From the perspective

  20. Identification of Potential Fishing Grounds Using Geospatial Technique

    Science.gov (United States)

    Abdullah, Muhammad

    2016-07-01

    Fishery resources surveys using actual sampling and data collection methods require extensive ship time and sampling time. Informative data from satellite plays a vital role in fisheries application. Satellite Remote Sensing techniques can be used to detect fish aggregation just like visual fish identification ultimately these techniques can be used to predict the potential fishing zones by measuring the parameters which affect the distribution of fishes. Remote sensing is a time saving technique to locate fishery resources along the coast. Pakistan has a continental shelf area of 50,270 km2 and coastline length of 1,120 km. The total maritime zone of Pakistan is over 30 percent of the land area. Fishery plays an important role in the national economy. The marine fisheries sector is the main component, contributing about 57 percent in terms of production. Fishery is the most important economic activity in the villages and towns along the coast, and in most of the coastal villages and settlements it is the sole source of employment and income generation. Fishing by fishermen is done on the sole basis of repeated experiments and collection of information from other fishermen. Often they are in doubt about the location of potential fishing zones. This leads to waste of time and money, adversely affecting fishermen incomes and over or under-exploitation of fishing zones. The main purpose of this study was to map potential fishing grounds by identifying various environmental parameters which impact fish aggregation along the Pakistan coastline. The primary reason of this study is the fact that the fishing communities of Pakistan's coastal regions are extremely poor and lack knowledge of the modern tools and techniques that may be incorporated to enhance their yield and thus, improve their livelihood. Using geospatial techniques in order to accurately map the potential fishing zones based on sea surface temperature (SST) and chlorophyll -a content, in conjunction with

  1. Wildfire monitoring using satellite images, ontologies and linked geospatial data

    NARCIS (Netherlands)

    K. Kyzirakos (Konstantinos); M. Karpathiotakis (Manos); G. Garbis (George); C. Nikolaou (Charalampos); K. Bereta (Konstantina); I. Papoutsis (Ioannis); T. Herekakis (Themistocles); D. Michail (Dimitrios); M. Koubarakis (Manolis); C. Kontoes (Charalampos)

    2014-01-01

    htmlabstractAdvances in remote sensing technologies have allowed us to send an ever-increasing number of satellites in orbit around Earth. As a result, Earth Observation data archives have been constantly increasing in size in the last few years, and have become a valuable source of data for many

  2. Building Virtual Earth Observatories using Ontologies and Linked Geospatial Data

    NARCIS (Netherlands)

    M. Koubarakis (Manolis); M. Karpathiotakis (Manos); K. Kyzirakos (Konstantinos); C. Nikolaou (Charalampos); S. Vassos (Stavros); G. Garbis (George); M. Sioutis (Michael); K. Bereta (Konstantina); S. Manegold (Stefan); M.L. Kersten (Martin); M.G. Ivanova (Milena); H. Pirk (Holger); Y. Zhang (Ying); C. Kontoes (Charalampos); I. Papoutsis (Ioannis); T. Herekakis (Themistocles); D. Michail (Dimitrios); M. Datcu (Mihai); G. Schwarz (Gottfried); O.C. Dumitru (Octavian); D.E. Molina (Daniela); K. Molch (Katrin); U.D. Giammatteo (Ugo); M. Sagona (Manuela); S. Perelli (Sergio); E. Klien (Eva); T. Reitz (Thorsten); R. Gregor (Robert)

    2012-01-01

    textabstractTELEIOS is a European project that addresses the need for scalable access to petabytes of Earth Observation data and the discovery of knowledge that can be used in applications. To achieve this, TELEIOS builds on scientific database technologies (array databases, SciQL, data vaults),

  3. Enhancing the online discovery of geospatial data through ...

    African Journals Online (AJOL)

    Spatial data infrastructures (SDIs) are meant to facilitate dissemination and consumption of spatial data, amongst others, through publication and discovery of spatial metadata in geoportals. However, geoportals are often known to geoinformation communities only and present technological limitations which make it difficult ...

  4. Local government GIS and geospatial capabilities : suitability for integrated transportation and land use planning (California SB 375).

    Science.gov (United States)

    2009-11-01

    This report examines two linked phenomena in transportation planning: the geospatial analysis capabilities of local planning agencies and the increasing demands on such capabilities imposed by comprehensive planning mandates. The particular examples ...

  5. Dynamic Science Data Services for Display, Analysis and Interaction in Widely-Accessible, Web-Based Geospatial Platforms Project

    Data.gov (United States)

    National Aeronautics and Space Administration — TerraMetrics, Inc., proposes a Phase II R/R&D program to implement the TerraBlocksTM Server architecture that provides geospatial data authoring, storage and...

  6. Shuttle Radar Topography Mission 1 Arc and 3 Arc Second Digital Terrain Elevation Data - National Geospatial Data Asset (NGDA)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Shuttle Radar Topography Mission (SRTM) was a partnership between NASA and the National Geospatial-Intelligence Agency (NGA). Flown aboard the NASA Space Shuttle...

  7. Shuttle Radar Topography Mission 1 Arc-Second Digital Terrain Elevation Data - Global - National Geospatial Data Asset (NGDA)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Shuttle Radar Topography Mission (SRTM) was a partnership between NASA and the National Geospatial-Intelligence Agency (NGA). Flown aboard the NASA Space Shuttle...

  8. Integrating land cover and terrain characteristics to explain plague risks in Western Usambara Mountains, Tanzania: a geospatial approach.

    Science.gov (United States)

    Hieronimo, Proches; Meliyo, Joel; Gulinck, Hubert; Kimaro, Didas N; Mulungu, Loth S; Kihupi, Nganga I; Msanya, Balthazar M; Leirs, Herwig; Deckers, Jozef A

    2014-07-01

    Literature suggests that higher resolution remote sensing data integrated in Geographic Information System (GIS) can provide greater possibility to refine the analysis of land cover and terrain characteristics for explanation of abundance and distribution of plague hosts and vectors and hence of health risk hazards to humans. These technologies are not widely used in East Africa for studies on diseases including plague. The objective of this study was to refine the analysis of single and combined land cover and terrain characteristics in order to gain an insight into localized plague infection risks in the West Usambara Mountains in north-eastern Tanzania. The study used a geospatial approach to assess the influence of land cover and terrain factors on the abundance and spatial distribution of plague hosts (small mammals) and plague vectors (fleas). It considered different levels of scale and resolution. Boosted Regression Tree (BRT) statistical method was used to clarify the relationships between land cover and terrain variables with small mammals and fleas. Results indicate that elevation positively influenced the presence of small mammals. The presence of fleas was clearly influenced by land management features such as miraba. Medium to high resolution remotely sensed data integrated in a GIS have been found to be quite useful in this type of analysis. These findings contribute to efforts on plague surveillance and awareness creation among communities on the probable risks associated with various landscape factors during epidemics.

  9. A Dynamic Information Framework: A Multi-Sector, Geospatial Gateway for Environmental Conservation and Adaptation to Climate Change

    Science.gov (United States)

    Fernandes, E. C.; Norbu, C.; Juizo, D.; Wangdi, T.; Richey, J. E.

    2011-12-01

    Landscapes, watersheds, and their downstream coastal and lacustrine zones are facing a series of challenges critical to their future, centered on the availability and distribution of water. Management options cover a range of issues, from bringing safe water to local villages for the rural poor, developing adaptation strategies for both rural and urban populations and large infrastructure, and sustaining environmental flows and ecosystem services needed for natural and human-dominated ecosystems. These targets represent a very complex set of intersecting issues of scale, cross-sector science and technology, education, politics, and economics, and the desired sustainable development is closely linked to how the nominally responsible governmental Ministries respond to the information they have. In practice, such information and even perspectives are virtually absent, in much of the developing world. A Dynamic Information Framework (DIF) is being designed as a knowledge platform whereby decision-makers in information-sparse regions can consider rigorous scenarios of alternative futures and obtain decision support for complex environmental and economic decisions is essential. The DIF is geospatial gateway, with functional components of base data layers, directed data layers focused on synthetic objectives, geospatially-explicit, process-based, cross-sector simulation models (requiring data from the directed data layers), and facilitated input/output (including visualizations), and decision support system and scenario testing capabilities. A fundamental aspect to a DIF is not only the convergence of multi-sector information, but how that information can be (a) integrated (b) used for robust simulations and projections, and (c) conveyed to policymakers and stakeholders, in the most compelling, and visual, manner. Examples are given of emerging applications. The ZambeziDIF was used to establish baselines for agriculture, biodiversity, and water resources in the lower

  10. Geospatial Modelling Approach for Interlinking of Rivers: A Case Study of Vamsadhara and Nagavali River Systems in Srikakulam, Andhra Pradesh

    Science.gov (United States)

    Swathi Lakshmi, A.; Saran, S.; Srivastav, S. K.; Krishna Murthy, Y. V. N.

    2014-11-01

    India is prone to several natural disasters such as floods, droughts, cyclones, landslides and earthquakes on account of its geoclimatic conditions. But the most frequent and prominent disasters are floods and droughts. So to reduce the impact of floods and droughts in India, interlinking of rivers is one of the best solutions to transfer the surplus flood waters to deficit/drought prone areas. Geospatial modelling provides a holistic approach to generate probable interlinking routes of rivers based on existing geoinformatics tools and technologies. In the present study, SRTM DEM and AWiFS datasets coupled with land-use/land -cover, geomorphology, soil and interpolated rainfall surface maps have been used to identify the potential routes in geospatial domain for interlinking of Vamsadhara and Nagavali River Systems in Srikakulam district, Andhra Pradesh. The first order derivatives are derived from DEM and road, railway and drainage networks have been delineated using the satellite data. The inundation map has been prepared using AWiFS derived Normalized Difference Water Index (NDWI). The Drought prone areas were delineated on the satellite image as per the records declared by Revenue Department, Srikakulam. Majority Rule Based (MRB) aggregation technique is performed to optimize the resolution of obtained data in order to retain the spatial variability of the classes. Analytical Hierarchy Process (AHP) based Multi-Criteria Decision Making (MCDM) is implemented to obtain the prioritization of parameters like geomorphology, soil, DEM, slope, and land use/land-cover. A likelihood grid has been generated and all the thematic layers are overlaid to identify the potential grids for routing optimization. To give a better routing map, impedance map has been generated and several other constraints are considered. The implementation of canal construction needs extra cost in some areas. The developed routing map is published into OGC WMS services using open source Geo

  11. Civil Information Management in Support of Counterinsurgency Operations: A Case for the Use of Geospatial Information Systems in Colombia

    Science.gov (United States)

    2006-05-25

    Ediciones B Colombia, S.A.. 2004. Presidencia República de Colombia. Plan Nacional de Desarrollo 2002-2006: Hacia un Estado Comunitario. Bogotá...Operational Picture (COP) upon which to base operational planning and execution. Geospatial Information Systems (GIS) are a type of CIMS. The military has...commanders to build a Common Operational Picture (COP) upon which to base their operational planning and execution. Geospatial Information Systems (GIS) are

  12. Implementing a geospatial health data infrastructure for control of Asian schistosomiasis in the People's Republic of China and the Philippines.

    Science.gov (United States)

    Malone, John B; Yang, Guo-Jing; Leonardo, Lydia; Zhou, Xiao-Nong

    2010-01-01

    This review focuses on implementing a geospatial health infrastructure for control of schistosomiasis and other helminthic infections in Southeast Asia, with special focus on the People's Republic of China and the Philippines, using a model working group approach. Health workers have lagged in utilization of geospatial analysis and widely available, low-cost spatial data resources for epidemiological modelling and control programme management. The critical limitation on development of useful health applications to date has not been the availability of geospatial data and methods. Rather, the key barriers have been the speed of adoption of geospatial analysis tools by health scientists and the quality of geographic information system (GIS)-friendly medical databases. Regional GIS applications on Asian schistosomiasis are reviewed to illustrate recent geospatial health analysis applications. A model programme is presented for implementation of training programmes and establishment of regional working groups to facilitate development and use of geospatial health infrastructure resources by health workers in Southeast Asia. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. MatchingLand, geospatial data testbed for the assessment of matching methods.

    Science.gov (United States)

    Xavier, Emerson M A; Ariza-López, Francisco J; Ureña-Cámara, Manuel A

    2017-12-05

    This article presents datasets prepared with the aim of helping the evaluation of geospatial matching methods for vector data. These datasets were built up from mapping data produced by official Spanish mapping agencies. The testbed supplied encompasses the three geometry types: point, line and area. Initial datasets were submitted to geometric transformations in order to generate synthetic datasets. These transformations represent factors that might influence the performance of geospatial matching methods, like the morphology of linear or areal features, systematic transformations, and random disturbance over initial data. We call our 11 GiB benchmark data 'MatchingLand' and we hope it can be useful for the geographic information science research community.

  14. A Collaborative Geospatial Shoreline Inventory Tool to Guide Coastal Development and Habitat Conservation

    Directory of Open Access Journals (Sweden)

    Peter Gies

    2013-05-01

    Full Text Available We are developing a geospatial inventory tool that will guide habitat conservation, restoration and coastal development and benefit several stakeholders who seek mitigation and adaptation strategies to shoreline changes resulting from erosion and sea level rise. The ESRI Geoportal Server, which is a type of web portal used to find and access geospatial information in a central repository, is customized by adding a Geoinventory tool capability that allows any shoreline related data to be searched, displayed and analyzed on a map viewer. Users will be able to select sections of the shoreline and generate statistical reports in the map viewer to allow for comparisons. The tool will also facilitate map-based discussion forums and creation of user groups to encourage citizen participation in decisions regarding shoreline stabilization and restoration, thereby promoting sustainable coastal development.

  15. Large-scale distributed foraging, gathering, and matching for information retrieval: assisting the geospatial intelligence analyst

    Science.gov (United States)

    Santos, Eugene, Jr.; Santos, Eunice E.; Nguyen, Hien; Pan, Long; Korah, John

    2005-03-01

    With the proliferation of online resources, there is an increasing need to effectively and efficiently retrieve data and knowledge from distributed geospatial databases. One of the key challenges of this problem is the fact that geospatial databases are usually large and dynamic. In this paper, we address this problem by developing a large scale distributed intelligent foraging, gathering and matching (I-FGM) framework for massive and dynamic information spaces. We assess the effectiveness of our approach by comparing a prototype I-FGM against two simple controls systems (randomized selection and partially intelligent systems). We designed and employed a medium-sized testbed to get an accurate measure of retrieval precision and recall for each system. The results obtained show that I-FGM retrieves relevant information more quickly than the two other control approaches.

  16. The Geospatial Data Cloud: An Implementation of Applying Cloud Computing in Geosciences

    Directory of Open Access Journals (Sweden)

    Xuezhi Wang

    2014-11-01

    Full Text Available The rapid growth in the volume of remote sensing data and its increasing computational requirements bring huge challenges for researchers as traditional systems cannot adequately satisfy the huge demand for service. Cloud computing has the advantage of high scalability and reliability, which can provide firm technical support. This paper proposes a highly scalable geospatial cloud platform named the Geospatial Data Cloud, which is constructed based on cloud computing. The architecture of the platform is first introduced, and then two subsystems, the cloud-based data management platform and the cloud-based data processing platform, are described.  ––– This paper was presented at the First Scientific Data Conference on Scientific Research, Big Data, and Data Science, organized by CODATA-China and held in Beijing on 24-25 February, 2014.

  17. Open cyberGIS software for geospatial research and education in the big data era

    Directory of Open Access Journals (Sweden)

    Shaowen Wang

    2016-01-01

    Full Text Available CyberGIS represents an interdisciplinary field combining advanced cyberinfrastructure, geographic information science and systems (GIS, spatial analysis and modeling, and a number of geospatial domains to improve research productivity and enable scientific breakthroughs. It has emerged as new-generation GIS that enable unprecedented advances in data-driven knowledge discovery, visualization and visual analytics, and collaborative problem solving and decision-making. This paper describes three open software strategies–open access, source, and integration–to serve various research and education purposes of diverse geospatial communities. These strategies have been implemented in a leading-edge cyberGIS software environment through three corresponding software modalities: CyberGIS Gateway, Toolkit, and Middleware, and achieved broad and significant impacts.

  18. High Performance Processing and Analysis of Geospatial Data Using CUDA on GPU

    OpenAIRE

    STOJANOVIC, N.; STOJANOVIC, D.

    2014-01-01

    In this paper, the high-performance processing of massive geospatial data on many-core GPU (Graphic Processing Unit) is presented. We use CUDA (Compute Unified Device Architecture) programming framework to implement parallel processing of common Geographic Information Systems (GIS) algorithms, such as viewshed analysis and map-matching. Experimental evaluation indicates the improvement in performance with respect to CPU-based solutions and shows feasibility of using GPU and CU...

  19. Geospatial Information and Geographic Information Systems (GIS): Current Issues and Future Challenges

    Science.gov (United States)

    2009-06-08

    Cadastre : the map of ownership and boundaries of land parcels. Cartography: the study and practice of making maps. Datum: a definition of the origin...Data themes. These are geodetic control, orthoimagery, elevation and bathymetry, transportation, hydrography, cadastre , and governmental units...or cadastral , data. The benefits of sharing geospatial data so that what is produced locally can by used for national needs, however, is not as

  20. The Information Edge: Imagery Intelligence and Geospatial Information in an Evolving National Security Environment

    Science.gov (United States)

    2000-12-01

    custodian of USIGS. Sometimes misunderstood, this reformulation is emblematic of a healthy change in focus, away from systems, away from products... inept –as evidenced by their ability to innovate the marriage between IA and GIS tools–and they should be afforded the flexibility to design by discovery...of NIMA as custodian of the US Information and Geospatial Service (USIGS). Sometimes misunderstood, this reformulation is emblematic of a healthy

  1. Comment on "Using geospatial mapping to design HIV elimination strategies for sub-Saharan Africa".

    Science.gov (United States)

    Fontaine, Christopher; Mahy, Mary; Izazola, José-Antonio; Ghys, Peter D

    2017-08-02

    A recent study showed how geospatial mapping can be used to improve Lesotho's HIV treatment program to achieve the 90-90-90 targets set by the United Nations but incorrectly describes "treatment as prevention" as the UN's strategy for a successful national AIDS response. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  2. A comprehensive open package format for preservation and distribution of geospatial data and metadata

    Science.gov (United States)

    Pons, X.; Masó, J.

    2016-12-01

    The complexities of the intricate geospatial resources and formats make preservation and distribution of GIS data difficult even among experts. The proliferation of, for instance, KML, Internet map services, etc, reflects the need for sharing geodata but a comprehensive solution when having to deal with data and metadata of a certain complexity is not currently provided. Original geospatial data is usually divided into several parts to record its different aspects (spatial and thematic features, etc), plus additional files containing, metadata, symbolization specifications and tables, etc; these parts are encoded in different formats, both standard and proprietary. To simplify data access, software providers encourage the use of an additional element that we call generically "map project", and this contains links to other parts (local or remote). Consequently, in order to distribute the data and metadata refereed by the map in a complete way, or to apply the Open Archival Information System (OAIS) standard to preserve it for the future, we need to face the multipart problem. This paper proposes a package allowing the distribution of real (comprehensive although diverse and complex) GIS data over the Internet and for data preservation. This proposal, complemented with the right tools, hides but keeps the multipart structure, so providing a simpler but professional user experience. Several packaging strategies are reviewed in the paper, and a solution based on ISO 29500-2 standard is chosen. The solution also considers the adoption of the recent Open Geospatial Consortium Web Services common standard (OGC OWS) context document as map part, and as a way for also combining data files with geospatial services. Finally, and by using adequate strategies, different GIS implementations can use several parts of the package and ignore the rest: a philosophy that has proven useful (e.g. in TIFF).

  3. Ontology Based Natural Language Discovery of Semantic Web Services in the Geospatial Domain

    OpenAIRE

    Yang, Yuzhu

    2009-01-01

    Semantic Web Services (SWS) has been an active research topic in the recent years. It aims to achieve automatic Web service discovery, and invocation and composition of services, by adding semantics to the services, which is very significant for accelerating the achievement of Serviceoriented architectures by solving a lot of interoperability issues. Geospatial data on the Web contains more and more important information. Capturing, analyzing and managing such data can help peo...

  4. Geospatial Analyses of Alcohol and Drug Problems: Empirical Needs and Theoretical Foundations.

    Science.gov (United States)

    Gruenewald, Paul J

    2013-06-01

    Over the past four decades geospatial analyses of alcohol and drug problems have moved to the forefront of ecological studies of the correlates and determinants of drug addictions in community health. These advances have been predicated upon the expanding computational capabilities of geographic information systems, advancement of statistical tools for the analysis of spatial data, and the formulation of suitable social ecological theory. This paper provides an introduction to the study of drug markets in the US as a model social problem for geospatial research and analysis. Market and epidemic models of the growth of the methamphetamine abuse and dependence in California are used as examples of two fruitful approaches to understanding the social processes that underlie use of this dangerous substance. Data on the growth of the epidemic are described and used to motivate theoretical and empirical concerns regarding further analyses of the development of drug markets over space and time. These concerns, in turn, begin to be addressed by the remaining four papers in this series, each providing some examples and insights into avenues of geospatial research which can be profitably explored in the future.

  5. Approach to Facilitating Geospatial Data and Metadata Publication Using a Standard Geoservice

    Directory of Open Access Journals (Sweden)

    Sergio Trilles

    2017-04-01

    Full Text Available Nowadays, the existence of metadata is one of the most important aspects of effective discovery of geospatial data published in Spatial Data Infrastructures (SDIs. However, due to lack of efficient mechanisms integrated in the data workflow, to assist users in metadata generation, a lot of low quality and outdated metadata are stored in the catalogues. This paper presents a mechanism for generating and publishing metadata through a publication service. This mechanism is provided as a web service implemented with a standard interface called a web processing service, which improves interoperability between other SDI components. This work extends previous research, in which a publication service has been designed in the framework of the European Directive Infrastructure for Spatial Information in Europe (INSPIRE as a solution to assist users in automatically publishing geospatial data and metadata in order to improve, among other aspects, SDI maintenance and usability. Also, this work adds more extra features in order to support more geospatial formats, such as sensor data.

  6. National Geospatial Data Asset Lifecycle Baseline Maturity Assessment for the Federal Geographic Data Committee

    Science.gov (United States)

    Peltz-Lewis, L. A.; Blake-Coleman, W.; Johnston, J.; DeLoatch, I. B.

    2014-12-01

    The Federal Geographic Data Committee (FGDC) is designing a portfolio management process for 193 geospatial datasets contained within the 16 topical National Spatial Data Infrastructure themes managed under OMB Circular A-16 "Coordination of Geographic Information and Related Spatial Data Activities." The 193 datasets are designated as National Geospatial Data Assets (NGDA) because of their significance in implementing to the missions of multiple levels of government, partners and stakeholders. As a starting point, the data managers of these NGDAs will conduct a baseline maturity assessment of the dataset(s) for which they are responsible. The maturity is measured against benchmarks related to each of the seven stages of the data lifecycle management framework promulgated within the OMB Circular A-16 Supplemental Guidance issued by OMB in November 2010. This framework was developed by the interagency Lifecycle Management Work Group (LMWG), consisting of 16 Federal agencies, under the 2004 Presidential Initiative the Geospatial Line of Business,using OMB Circular A-130" Management of Federal Information Resources" as guidance The seven lifecycle stages are: Define, Inventory/Evaluate, Obtain, Access, Maintain, Use/Evaluate, and Archive. This paper will focus on the Lifecycle Baseline Maturity Assessment, and efforts to integration the FGDC approach with other data maturity assessments.

  7. Geospatial clustering in sugar-sweetened beverage consumption among Boston youth.

    Science.gov (United States)

    Tamura, Kosuke; Duncan, Dustin T; Athens, Jessica K; Bragg, Marie A; Rienti, Michael; Aldstadt, Jared; Scott, Marc A; Elbel, Brian

    2017-09-01

    The objective was to detect geospatial clustering of sugar-sweetened beverage (SSB) intake in Boston adolescents (age = 16.3 ± 1.3 years [range: 13-19]; female = 56.1%; White = 10.4%, Black = 42.6%, Hispanics = 32.4%, and others = 14.6%) using spatial scan statistics. We used data on self-reported SSB intake from the 2008 Boston Youth Survey Geospatial Dataset (n = 1292). Two binary variables were created: consumption of SSB (never versus any) on (1) soda and (2) other sugary drinks (e.g., lemonade). A Bernoulli spatial scan statistic was used to identify geospatial clusters of soda and other sugary drinks in unadjusted models and models adjusted for age, gender, and race/ethnicity. There was no statistically significant clustering of soda consumption in the unadjusted model. In contrast, a cluster of non-soda SSB consumption emerged in the middle of Boston (relative risk = 1.20, p = .005), indicating that adolescents within the cluster had a 20% higher probability of reporting non-soda SSB intake than outside the cluster. The cluster was no longer significant in the adjusted model, suggesting spatial variation in non-soda SSB drink intake correlates with the geographic distribution of students by race/ethnicity, age, and gender.

  8. Mapping Geospatial Gaps in Early Identification of Children With Autism Spectrum Disorder.

    Science.gov (United States)

    DeGuzman, Pamela B; Altrui, Paige; Allen, Marcus; Deagle, Cornelia Ramsey; Keim-Malpass, Jessica

    Despite the known developmental benefits of early intervention for autism spectrum disorder (ASD), diagnosis before age 5 years is often not achieved. Research suggests that lack of health insurance and living in rural areas and areas of severe provider shortages contribute significantly to these delays. The purpose of this project was to conduct a geospatial evaluation of potential gaps in early ASD diagnosis of uninsured children in Virginia. A secondary purpose was to show the use of geospatial analysis by pediatric nurse practitioners for policy advocacy. We mapped data from a statewide provider of ASD evaluative services associated with the Virginia Department of Health and found several communities with high numbers of uninsured children where children may not be receiving early diagnostic services. Pediatric nurse practitioners can help address community-level gaps in early identification of ASD for uninsured young children living in rural areas by conducting outreach programs to providers and families within rural communities and concurrently partnering with nurse-scientists to develop visually impactful geospatial analyses to educate legislators and further advocate for policy positions. Copyright © 2017 National Association of Pediatric Nurse Practitioners. Published by Elsevier Inc. All rights reserved.

  9. Nansat: a Scientist-Orientated Python Package for Geospatial Data Processing

    Directory of Open Access Journals (Sweden)

    Anton A. Korosov

    2016-10-01

    Full Text Available Nansat is a Python toolbox for analysing and processing 2-dimensional geospatial data, such as satellite imagery, output from numerical models, and gridded in-situ data. It is created with strong focus on facilitating research, and development of algorithms and autonomous processing systems. Nansat extends the widely used Geospatial Abstraction Data Library (GDAL by adding scientific meaning to the datasets through metadata, and by adding common functionality for data analysis and handling (e.g., exporting to various data formats. Nansat uses metadata vocabularies that follow international metadata standards, in particular the Climate and Forecast (CF conventions, and the NASA Directory Interchange Format (DIF and Global Change Master Directory (GCMD keywords. Functionality that is commonly needed in scientific work, such as seamless access to local or remote geospatial data in various file formats, collocation of datasets from different sources and geometries, and visualization, is also built into Nansat. The paper presents Nansat workflows, its functional structure, and examples of typical applications.

  10. SCHOOL MAPPING AND GEOSPATIAL ANALYSIS OF THE SCHOOLS IN JASRA DEVELOPMENT BLOCK OF INDIA

    Directory of Open Access Journals (Sweden)

    S. Agrawal

    2016-06-01

    Full Text Available GIS is a collection of tools and techniques that works on the geospatial data and is used in the analysis and decision making. Education is an inherent part of any civil society. Proper educational facilities generate the high quality human resource for any nation. Therefore, government needs an efficient system that can help in analysing the current state of education and its progress. Government also needs a system that can support in decision making and policy framing. GIS can serve the mentioned requirements not only for government but also for the general public. In order to meet the standards of human development, it is necessary for the government and decision makers to have a close watch on the existing education policy and its implementation condition. School mapping plays an important role in this aspect. School mapping consists of building the geospatial database of schools that supports in the infrastructure development, policy analysis and decision making. The present research work is an attempt for supporting Right to Education (RTE and Sarv Sikha Abhiyaan (SSA programmes run by Government of India through the use of GIS. School mapping of the study area is performed which is followed by the geospatial analysis. This research work will help in assessing the present status of educational infrastructure in Jasra block of Allahabad district, India.

  11. Describing Geospatial Assets in the Web of Data: A Metadata Management Scenario

    Directory of Open Access Journals (Sweden)

    Cristiano Fugazza

    2016-12-01

    Full Text Available Metadata management is an essential enabling factor for geospatial assets because discovery, retrieval, and actual usage of the latter are tightly bound to the quality of these descriptions. Unfortunately, the multi-faceted landscape of metadata formats, requirements, and conventions makes it difficult to identify editing tools that can be easily tailored to the specificities of a given project, workgroup, and Community of Practice. Our solution is a template-driven metadata editing tool that can be customised to any XML-based schema. Its output is constituted by standards-compliant metadata records that also have a semantics-aware counterpart eliciting novel exploitation techniques. Moreover, external data sources can easily be plugged in to provide autocompletion functionalities on the basis of the data structures made available on the Web of Data. Beside presenting the essentials on customisation of the editor by means of two use cases, we extend the methodology to the whole life cycle of geospatial metadata. We demonstrate the novel capabilities enabled by RDF-based metadata representation with respect to traditional metadata management in the geospatial domain.

  12. Multi-Crop Specific Area Frame Stratification Based on Geospatial Crop Planting Frequency Data Layers

    Science.gov (United States)

    Boryan, C. G.; Yang, Z.; Willis, P.; Di, L.

    2016-12-01

    Area sampling frames (ASFs) are the basis of many statistical programs around the world. When an ASF's stratification is based on generalized percent cultivation, the ASF usually cannot identify the planting location of specific crops targeted for agricultural surveys. To improve the accuracy, objectivity and efficiency of crop survey estimates, an automated stratification method based on geospatial crop planting frequency data is proposed. The Crop Planting Frequency Data Layers are crop specific geospatial data sets derived from multi-year Cropland Data Layers. Therefore, the ASF stratification based on the crop planting frequency data is crop specific. This paper investigates using 2008-2013 geospatial Crop Frequency Data Layers to create a novel multi-crop specific stratification for South Dakota, U.S. The crop specific ASF stratification is developed based on crop frequency statistics calculated at the primary sampling unit (PSU) level based on the corn, soybean and wheat planting frequency data layers, three major crops in South Dakota. Strata are formed using a k means clustering algorithm. It is observed that the crop frequency based ASF stratification predicts corn, soybean and wheat planting patterns well as verified by 2014 Farm Service Agency (FSA) Common Land Unit (CLU) and 578 administrative data. This finding demonstrates that the novel multi-crop specific stratification based on crop planting frequency data is crop type independent and applicable to all major crops. Further, these results indicate that the new multi-crop specific ASF stratification has great potential to improve ASF accuracy, efficiency and crop estimates.

  13. Developing geospatial thinking and the science practices of investigation and evalutation with geographic information systems

    Science.gov (United States)

    Hamilton, Kelli

    Geospatial thinking is a subset of spatial thinking, which has been identified by the National Geography Standards as an essential skill for students to gain through geography instruction (Heffron & Downs, 2013). One tool which has been shown to help students develop their geospatial thinking skills is Geographic Information Systems (GIS) (Kim & Bednraz, 2013; Lee & Bednarz, 2009; Patterson, 2007). Much of the research conducted with GIS has been in the context of social studies classrooms. This study examined the use of GIS with seventh grade students in a science classroom. Results of this study indicate that students who use GIS as part of their science instruction are able to practice geospatial thinking skills. In addition, this study examined how GIS could be used to enhance the instruction of the science practices of investigation and evaluation. The Next Generation Science Standards identify certain science practices which students should experience as part of science instruction (NGSS Lead States, 2013). Among those practices are investigation and evaluation. Students in this study used GIS to investigate and evaluate scientific data. Both the teacher and the students were able to identify ways that GIS enhanced both the investigation and evaluation of data.

  14. A NEW INITIATIVE FOR TILING, STITCHING AND PROCESSING GEOSPATIAL BIG DATA IN DISTRIBUTED COMPUTING ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    A. Olasz

    2016-06-01

    Full Text Available Within recent years, several new approaches and solutions for Big Data processing have been developed. The Geospatial world is still facing the lack of well-established distributed processing solutions tailored to the amount and heterogeneity of geodata, especially when fast data processing is a must. The goal of such systems is to improve processing time by distributing data transparently across processing (and/or storage nodes. These types of methodology are based on the concept of divide and conquer. Nevertheless, in the context of geospatial processing, most of the distributed computing frameworks have important limitations regarding both data distribution and data partitioning methods. Moreover, flexibility and expendability for handling various data types (often in binary formats are also strongly required. This paper presents a concept for tiling, stitching and processing of big geospatial data. The system is based on the IQLib concept (https://github.com/posseidon/IQLib/ developed in the frame of the IQmulus EU FP7 research and development project (http://www.iqmulus.eu. The data distribution framework has no limitations on programming language environment and can execute scripts (and workflows written in different development frameworks (e.g. Python, R or C#. It is capable of processing raster, vector and point cloud data. The above-mentioned prototype is presented through a case study dealing with country-wide processing of raster imagery. Further investigations on algorithmic and implementation details are in focus for the near future.

  15. How Leisure Venues Are and Why? A Geospatial Perspective in Wuhan, Central China

    Directory of Open Access Journals (Sweden)

    Yaolin Liu

    2017-10-01

    Full Text Available Urban leisure venues proffer spatial carriers for citizens’ leisure activities and their functions rely heavily on the spatial configuration, which have largely been ignored. The increasing needs for healthy leisure life and the availability of geospatial open data provide a rising opportunity to fill this gap. To examine the spatial distribution of leisure venues and explore its underlying dominating factors, we adopt geospatial analysis techniques—point pattern analysis and cluster analysis with multi-sources geospatial data in Wuhan, Central China. Results conclude interesting spatial discrepancy based on a three-level clustered pattern of 86520 leisure venues. We find that (1 most clusters are in urban center along the Yangtze River with all 1st-level clusters and plentiful 2nd-level and 3rd-level clusters; (2 There are just sporadic clusters in suburban areas—no 1st-level, merely one 2nd-level and some few 3rd-level ones. Moreover, we demonstrate three underlying dominating factors (i.e., the policy, population and economy and identify that (1 No systematic (spatial-relevant leisure policy framework is formed; (2 Population density and commercial centers have positive correlation with the distribution of leisure venues. This study contributes to spatial-relevant leisure policy-making for facilitating healthy leisure life, optimizing leisure space, guiding people-oriented urbanization transition and promoting urban competence.

  16. School Mapping and Geospatial Analysis of the Schools in Jasra Development Block of India

    Science.gov (United States)

    Agrawal, S.; Gupta, R. D.

    2016-06-01

    GIS is a collection of tools and techniques that works on the geospatial data and is used in the analysis and decision making. Education is an inherent part of any civil society. Proper educational facilities generate the high quality human resource for any nation. Therefore, government needs an efficient system that can help in analysing the current state of education and its progress. Government also needs a system that can support in decision making and policy framing. GIS can serve the mentioned requirements not only for government but also for the general public. In order to meet the standards of human development, it is necessary for the government and decision makers to have a close watch on the existing education policy and its implementation condition. School mapping plays an important role in this aspect. School mapping consists of building the geospatial database of schools that supports in the infrastructure development, policy analysis and decision making. The present research work is an attempt for supporting Right to Education (RTE) and Sarv Sikha Abhiyaan (SSA) programmes run by Government of India through the use of GIS. School mapping of the study area is performed which is followed by the geospatial analysis. This research work will help in assessing the present status of educational infrastructure in Jasra block of Allahabad district, India.

  17. Towards a voxel-based geographic automata for the simulation of geospatial processes

    Science.gov (United States)

    Jjumba, Anthony; Dragićević, Suzana

    2016-07-01

    Many geographic processes evolve in a three dimensional space and time continuum. However, when they are represented with the aid of geographic information systems (GIS) or geosimulation models they are modelled in a framework of two-dimensional space with an added temporal component. The objective of this study is to propose the design and implementation of voxel-based automata as a methodological approach for representing spatial processes evolving in the four-dimensional (4D) space-time domain. Similar to geographic automata models which are developed to capture and forecast geospatial processes that change in a two-dimensional spatial framework using cells (raster geospatial data), voxel automata rely on the automata theory and use three-dimensional volumetric units (voxels). Transition rules have been developed to represent various spatial processes which range from the movement of an object in 3D to the diffusion of airborne particles and landslide simulation. In addition, the proposed 4D models demonstrate that complex processes can be readily reproduced from simple transition functions without complex methodological approaches. The voxel-based automata approach provides a unique basis to model geospatial processes in 4D for the purpose of improving representation, analysis and understanding their spatiotemporal dynamics. This study contributes to the advancement of the concepts and framework of 4D GIS.

  18. A Hybrid Semi-supervised Classification Scheme for Mining Multisource Geospatial Data

    Energy Technology Data Exchange (ETDEWEB)

    Vatsavai, Raju [ORNL; Bhaduri, Budhendra L [ORNL

    2011-01-01

    Supervised learning methods such as Maximum Likelihood (ML) are often used in land cover (thematic) classification of remote sensing imagery. ML classifier relies exclusively on spectral characteristics of thematic classes whose statistical distributions (class conditional probability densities) are often overlapping. The spectral response distributions of thematic classes are dependent on many factors including elevation, soil types, and ecological zones. A second problem with statistical classifiers is the requirement of large number of accurate training samples (10 to 30 |dimensions|), which are often costly and time consuming to acquire over large geographic regions. With the increasing availability of geospatial databases, it is possible to exploit the knowledge derived from these ancillary datasets to improve classification accuracies even when the class distributions are highly overlapping. Likewise newer semi-supervised techniques can be adopted to improve the parameter estimates of statistical model by utilizing a large number of easily available unlabeled training samples. Unfortunately there is no convenient multivariate statistical model that can be employed for mulitsource geospatial databases. In this paper we present a hybrid semi-supervised learning algorithm that effectively exploits freely available unlabeled training samples from multispectral remote sensing images and also incorporates ancillary geospatial databases. We have conducted several experiments on real datasets, and our new hybrid approach shows over 25 to 35% improvement in overall classification accuracy over conventional classification schemes.

  19. Simulation Technologies for C2IS Development & Training

    Science.gov (United States)

    2008-02-01

    reels; ces demiers sont modifies (p. ex. fausses balles) ou augmentes (p. ex. equipement laser) afin de permettre Ie realisme sans encourir les risques...Simulation technologies for C2 information system (C2IS) development & training project was known as 12kr before 2003. Briefly designated 2kq when...split off from l2kr in fiscal year 200 1-2002 to become l2kx, which later became project l5al Geospatial technologies for information decisions (GEO

  20. Application of Geospatial Information System for the Study of Illuminance in Carpet Weaving Workshops in Bokan, Iran

    Directory of Open Access Journals (Sweden)

    Faramarz Madjidi

    2015-12-01

    Full Text Available Background: Carpet weaving is an occupation that requires sufficient and appropriate lighting. The lighting in carpet weaving workshops affects the productivity and the physical and mental health of workers. Therefore, the evaluation of the illumination and the identification of work stations requiring lighting modifications will be helpful in promotion of the health and safety of workers in carpet weaving workshops. Methods: This study was carried out for the evaluation of illumination on the basis of Geospatial Information System (GIS technology in two carpet weaving workshops of Bokan city. As per the norms of Illumination Engineering Society, the sensors of the photometer Testo 545 were placed at lowest and highest of 35 and 163 cm in workshop I, and at 40 and 245 cm in workshop II, which correspond to the lowest and highest work surfaces in the respective workshops. Total, natural, and artificial illuminance was measured in the center of each measurement station using the photometer, and data was analyzed using the Arc GIS software. The maximum and minimum illuminances as well as isolux curves were obtained for each workshop. Results: The illuminance in workshops I and II were found to be lower and higher, respectively, than 200 lux, which is considered the standard for carpet weaving workshops. Thus, improving the artificial lighting system or redesigning it is essential for ensuring that the standard conditions of illuminance (200–300 lux are provided. Discussion: This study showed that the application of GIS technology renders the assessment of illumination in carpet weaving workshops possible. This assessment method could also prove useful for determining the exact stations in the carpet weaving workshops that need modifications, thereby leading to cost reduction.