WorldWideScience

Sample records for geospace science unit

  1. Ushering in a New Frontier in Geospace Through Data Science

    Science.gov (United States)

    McGranaghan, Ryan M.; Bhatt, Asti; Matsuo, Tomoko; Mannucci, Anthony J.; Semeter, Joshua L.; Datta-Barua, Seebany

    2017-12-01

    Our understanding and specification of solar-terrestrial interactions benefit from taking advantage of comprehensive data-intensive approaches. These data-driven methods are taking on new importance in light of the shifting data landscape of the geospace system, which extends from the near Earth space environment, through the magnetosphere and interplanetary space, to the Sun. The space physics community faces both an exciting opportunity and an important imperative to create a new frontier built at the intersection of traditional approaches and state-of-the-art data-driven sciences and technologies. This brief commentary addresses the current paradigm of geospace science and the emerging need for data science innovation, discusses the meaning of data science in the context of geospace, and highlights community efforts to respond to the changing landscape.

  2. Small Satellite Constellations for Geospace Sciences

    Science.gov (United States)

    Spence, H. E.

    2016-12-01

    The recent National Academy of Sciences Solar and Space Physics Decadal Survey (DS) identified community-consensus science priorities for the decade spanning 2013 - 2022. In this talk, we discuss the ways by which small satellite constellations are already and may soon accelerate progress toward achieving many of these science targets. The DS outlined four overarching science goals: (1) determine the origins of the Sun's activity and predict the variations in the space environment; (2) determine the dynamics and coupling of Earth's magnetosphere, ionosphere, and atmosphere and their response to solar and terrestrial inputs; (3) determine the interaction of the Sun with the solar system and the interstellar medium; and, (4) discover and characterize fundamental processes that occur both within the heliosphere and throughout the universe. These DS science goals provide the context for key science challenges in the three connected parts of the system that encompass all of solar and space physics, herein referred to as geospace: the Sun and heliosphere; the coupled solar wind-magnetosphere system; and, the coupled atmosphere-ionosphere-magnetosphere system. The DS further presented the role that small satellites play in resolving many of these science challenges, with a particular emphasis on the role that constellations of small satellites will play. While once considered by many as being "futuristic" or even "unrealizable", constellations of small satellites are already making important contributions to geospace science and with the promise for more to come. Using the DS as a guidepost, in this presentation, we outline representative small satellite constellation missions alread underway, some in development, and others notionally proposed over the next several years that employ small satellite constellations to tackle large science imperatives. Finally, we give examples of key small satellite technologies in development that will potentially enable great scientific

  3. The Geospace Dynamics Observatory; a mission of discovery for Geospace

    Science.gov (United States)

    Spann, J. F.; Paxton, L.; Burch, J. L.; Reardon, P.; Habash Krause, L.; Gallagher, D. L.; Hopkins, R.

    2013-12-01

    Geospace Dynamics Observatory (GDO) takes advantage a repurposed optical system to provide new, unique, and cost-effective insights into the dynamics of geospace. New missions investigating the ITM system and the magnetospheric-ionospheric coupling processes have generally been very focused on specific phenomena, generally limited by the resource constraints and mission size. Exploring options for observing these regions with instrumentation that is 'non-traditional' is not often considered. The possibility of using very large optics to image Geospace has recently come to the fore. This talk will address the science that would be enabled by flying an ultraviolet telescope imaging the ITM region with an aperture greater than 2 meters. A brief overview of the use of this asset in a science-driven mission concept called the Geospace Dynamics Observatory (GDO) will be presented. This talk will explore the optical and technical aspects of the GDO mission and the implementation strategy. Additionally, the case will be made that GDO will address a significant portion of the priority mission science articulated in the recent Solar and Space Physics Decadal Survey, and provide unprecedented discovery opportunities. One of the problems common to all of geospace research is that of resolving temporal and spatial ambiguities: are the observed changes due the fact that the location of the observation has changed or have the state variables changed? This is a particularly vexing problem for low-cost missions that may have to rely on in situ measurements or other low spatial resolution techniques such as GPS radio occultation. The exceptional capabilities of the GDO mission include (1) unprecedented improvement in signal to noise for global-scale imaging of Earth's space environment that enables changes in the Earth's space environment to be resolved with orders of magnitude higher temporal and spatial resolution compared to existing data and other approaches, and (2) unrivaled

  4. The Now Age, New Space, and Transforming the Exploration of Geospace

    Science.gov (United States)

    Paxton, L. J.

    2017-12-01

    In this talk I will discuss: 1) Changing our description of how and why we do Heliophysics (NASA) and Geospace Science (NSF) research 2) How we can take advantage of the New Space industry capabilities 3) How and why we can use the technology that has begun the transformation of our society into the "Now Age" I will discuss trends that I see that enable, if we have the will, a fundamental revitalization of the science that we aspire to do. I will focus on our opportunities to revolutionize the exploration of geospace (the region below about 1000km) and how that addresses fundamental questions about our place in the universe. Exploration of space, in particular exploration of geospace, is at a cusp - we can either attempt to continue to move forward using the same, tried and true techniques or we can embrace the "Now Age" and the capabilities enabled by the New Space industry to move forward to a fuller understanding of our world's place in the solar system. Heliophysics at NASA and Geospace Science at NSF can be recast as fundamental exploratory basic research that asks and answers questions that everyone can understand. We are in the Now Age because the human race has enabled and embraced a fundamentally different way of accessing information and, potentially gaining knowledge. For the first time, we have the capability to provide essentially all of recorded human knowledge immediately and to anyone - and people want that access "now". Even in the scientific community we expect to be able to see the latest data right now. This is enabled by the internet and ubiquitous connectivity; low cost data storage and memory; fast, low-cost computing; the means to visualize the information; advances in the way we store, catalog and retrieve information; and advances in modeling and simulation. Concomitant with the Now Age, and providing an impetus to do things "now", the New Space industry has enabled low cost access to space and has embraced a vision of human presence in

  5. Geospace monitoring for space weather research and operation

    Directory of Open Access Journals (Sweden)

    Nagatsuma Tsutomu

    2017-01-01

    Full Text Available Geospace, a space surrounding the Earth, is one of the key area for space weather. Because geospace environment dynamically varies depending on the solar wind conditions. Many kinds of space assets are operating in geospace for practical purposes. Anomalies of space assets are sometimes happened because of space weather disturbances in geospace. Therefore, monitoring and forecasting of geospace environment is very important tasks for NICT's space weather research and development. To monitor and to improve forecasting model, fluxgate magnetometers and HF radars are operated by our laboratory, and its data are used for our research work, too. We also operate real-time data acquisition system for satellite data, such as DSCOVR, STEREO, and routinely received high energy particle data from Himawari-8. Based on these data, we are monitoring current condition of geomagnetic disturbances, and that of radiation belt. Using these data, we have developed empirical models for relativistic electron flux at GEO and inner magnetosphere. To provide userfriendly information , we are trying to develop individual spacecraft anomaly risk estimation tool based on combining models of space weather and those of spacecraft charging, Current status of geospace monitoring, forecasting, and research activities are introduced.

  6. Geospace monitoring for space weather research and operation

    Science.gov (United States)

    Nagatsuma, Tsutomu

    2017-10-01

    Geospace, a space surrounding the Earth, is one of the key area for space weather. Because geospace environment dynamically varies depending on the solar wind conditions. Many kinds of space assets are operating in geospace for practical purposes. Anomalies of space assets are sometimes happened because of space weather disturbances in geospace. Therefore, monitoring and forecasting of geospace environment is very important tasks for NICT's space weather research and development. To monitor and to improve forecasting model, fluxgate magnetometers and HF radars are operated by our laboratory, and its data are used for our research work, too. We also operate real-time data acquisition system for satellite data, such as DSCOVR, STEREO, and routinely received high energy particle data from Himawari-8. Based on these data, we are monitoring current condition of geomagnetic disturbances, and that of radiation belt. Using these data, we have developed empirical models for relativistic electron flux at GEO and inner magnetosphere. To provide userfriendly information , we are trying to develop individual spacecraft anomaly risk estimation tool based on combining models of space weather and those of spacecraft charging, Current status of geospace monitoring, forecasting, and research activities are introduced.

  7. Geospace exploration project: Arase (ERG)

    Science.gov (United States)

    Miyoshi, Y.; Kasaba, Y.; Shinohara, I.; Takashima, T.; Asamura, K.; Matsumoto, H.; Higashio, N.; Mitani, T.; Kasahara, S.; Yokota, S.; Wang, S.; Kazama, Y.; Kasahara, Y.; Yagitani, S.; Matsuoka, A.; Kojima, H.; Katoh, Y.; Shiokawa, K.; Seki, K.; Fujimoto, M.; Ono, T.; ERG project Group

    2017-06-01

    The ERG (Exploration of energization and Radiation in Geospace) is Japanese geospace exploration project. The project focuses on relativistic electron acceleration mechanism of the outer belt and dynamics of space storms in the context of the cross-energy coupling via wave-particle interactions. The project consists of the satellite observation team, the ground-based network observation team, and integrated-data analysis/simulation team. The satellite was launched on December 20 2016 and has been nicknamed, “Arase”. This paper describes overview of the project and future plan for observations.

  8. Dagik: A Data-Showcase System for the Geospace

    Directory of Open Access Journals (Sweden)

    A Saito

    2009-04-01

    Full Text Available We propose to establish "#data-showcase" system to display the various geophysical data in one frame. Data-showcase is a system not to provide data but to show various types of the geophysical data in intuitable way. The newly developed Dagik, Daily geospace data in kml, is the first data-showcase system for the geospace data. It contains several types of data by ground-based and satellite measurements in addition to numerical models. We expect Dagik would make the combination and comparison of the geospace data easier, and foster new inter-disciplinary scientific researches.

  9. Geospace Science from Ground-based Magnetometer Arrays: Advances in Sensors, Data Collection, and Data Integration

    Science.gov (United States)

    Mann, Ian; Chi, Peter

    2016-07-01

    , acceleration, and loss of electrons in the radiation belts promise high profile science returns. Integrated, global scale data products also have potential importance and application for real-time monitoring of the space weather threats to electrical power grids from geomagnetically induced currents. Such data exploitation increasingly relies on the collaborations between multiple national magnetometer arrays to generate single data products with common file format and data properties. We review advances in geospace science which can be delivered by networks of ground-based magnetometers - in terms of advances in sensors, data collection, and data integration - including through collaborations within the Ultra-Large Terrestrial International Magnetometer Array (ULTIMA) consortium.

  10. AF-GEOSpace Version 2.0: Space Environment Software Products for 2002

    Science.gov (United States)

    Hilmer, R. V.; Ginet, G. P.; Hall, T.; Holeman, E.; Tautz, M.

    2002-05-01

    AF-GEOSpace Version 2.0 (release 2002 on WindowsNT/2000/XP) is a graphics-intensive software program developed by AFRL with space environment models and applications. It has grown steadily to become a development tool for automated space weather visualization products and helps with a variety of tasks: orbit specification for radiation hazard avoidance; satellite design assessment and post-event analysis; solar disturbance effects forecasting; frequency and antenna management for radar and HF communications; determination of link outage regions for active ionospheric conditions; and physics research and education. The object-oriented C++ code is divided into five module classes. Science Modules control science models to give output data on user-specified grids. Application Modules manipulate these data and provide orbit generation and magnetic field line tracing capabilities. Data Modules read and assist with the analysis of user-generated data sets. Graphics Modules enable the display of features such as plane slices, magnetic field lines, line plots, axes, the Earth, stars, and satellites. Worksheet Modules provide commonly requested coordinate transformations and calendar conversion tools. Common input data archive sets, application modules, and 1-, 2-, and 3-D visualization tools are provided to all models. The code documentation includes detailed examples with click-by-click instructions for investigating phenomena that have well known effects on communications and spacecraft systems. AF-GEOSpace Version 2.0 builds on the success of its predecessors. The first release (Version 1.21, 1996/IRIX on SGI) contained radiation belt particle flux and dose models derived from CRRES satellite data, an aurora model, an ionosphere model, and ionospheric HF ray tracing capabilities. Next (Version 1.4, 1999/IRIX on SGI) science modules were added related to cosmic rays and solar protons, low-Earth orbit radiation dosages, single event effects probability maps, ionospheric

  11. The Big Picture: Imaging of the Global Geospace Environment by the TWINS Mission

    Science.gov (United States)

    Goldstein, J.; McComas, D. J.

    2018-03-01

    Encircling our planet at distances of 2.5 to 8 Earth radii is a dynamic plasma population known as the ring current (RC). During geomagnetic storms, the solar wind's interaction with Earth's magnetic field pumps petaJoules of energy into the RC, energizing and transporting particles. To measure the global geospace response, RC imaging is performed by capturing energetic neutral atoms (ENAs) created by charge exchange between geospace ions and the neutral exosphere. The H exosphere is itself imaged via its geocoronal Lyman-α glow. Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) is a stereoscopic ENA and Lyman-α imaging mission that has recorded the deep minimum of solar cycle (SC) 23 and the moderate maximum of SC 24, observing geospace conditions ranging from utterly quiet to major storms. This review covers TWINS studies of the geospace response published during 2013 to 2017. Stereo ENA imaging has revealed new dimensionality and structure of RC ions. Continuous coverage by two imagers has allowed monitoring storms from start to finish. Deconvolution of the low-altitude signal has extended ENA analysis and revealed causal connections between the trapped and precipitating ion populations. ENA-based temperature and composition analyses have been refined, validated, and applied to an unprecedented sequence of solar activity changes in SC 23 and SC 24. Geocoronal imaging has revealed a surprising amount of time variability and structure in the neutral H exosphere, driven by both Sun and solar wind. Global models have been measurably improved. Routine availability of simultaneous in situ measurements has fostered huge leaps forward in the areas of ENA validation and cross-scale studies.

  12. GENERAL SCIENTIFIC PRECONDITIONS AND PROSPECTS OF PREDICTION OF GEOSPACE PROCESSES FOR THE BENEFIT OF THE SUSTAINABLE DEVELOPMENT OF TERRITORIES

    Directory of Open Access Journals (Sweden)

    T. P. Varshanina

    2016-01-01

    Full Text Available This work substantiates the need to ontologically couple methods of prediction of geospace processes and fundamental bases of the modern epistemological picture of the world. The method of a structural mask of power geographical fields is offered. On its basis a way of a solution of the problem of indeterminacy and overcoming influence of nonlinearity of geospace processes, as well as the methods of their dot prediction are developed.

  13. Finding Multi-scale Connectivity in Our Geospace Observational System: A New Perspective for Total Electron Content Data Through Network Analysis

    Science.gov (United States)

    McGranaghan, R. M.; Mannucci, A. J.; Verkhoglyadova, O. P.; Malik, N.

    2017-12-01

    How do we evolve beyond current traditional methods in order to innovate into the future? In what disruptive innovations will the next frontier of space physics and aeronomy (SPA) be grounded? We believe the answer to these compelling, yet equally challenging, questions lies in a shift of focus: from a narrow, field-specific view to a radically inclusive, interdisciplinary new modus operandi at the intersection of SPA and the information and data sciences. Concretely addressing these broader themes, we present results from a novel technique for knowledge discovery in the magnetosphere-ionosphere-thermosphere (MIT) system: complex network analysis (NA). We share findings from the first NA of ionospheric total electron content (TEC) data, including hemispheric and interplanetary magnetic field clock angle dependencies [1]. Our work shows that NA complements more traditional approaches for the investigation of TEC structure and dynamics, by both reaffirming well-established understanding, giving credence to the method, and identifying new connections, illustrating the exciting potential. We contextualize these new results through a discussion of the potential of data-driven discovery in the MIT system when innovative data science techniques are embraced. We address implications and potentially disruptive data analysis approaches for SPA in terms of: 1) the future of the geospace observational system; 2) understanding multi-scale phenomena; and 3) machine learning. [1] McGranaghan, R. M., A. J. Mannucci, O. Verkhoglyadova, and N. Malik (2017), Finding multiscale connectivity in our geospace observational system: Network analysis of total electron content, J. Geophys. Res. Space Physics, 122, doi:10.1002/2017JA024202.

  14. Globalization and regionalisation: Determinants of the transformation and the process of the integration of the geo-space

    Directory of Open Access Journals (Sweden)

    Todorović Marina J.

    2005-01-01

    Full Text Available The two processes that, basically since the emergence of the classic civilizations, determine major changes in the basic spatial structures in the world are, de facto, of antipode basic characteristics (globalization and regionalisation, but it is often the case that there are elements with traits of complementarily. They have crucial effect on development and integration of geo-spaces and many research results indicate that, depending of the stage of the development, both processes were present in the geo-space in various forms in almost all the phases of its development and that they have contributed to establishment of all the new spatial-structural relations. The subject of this analyses is, among other issues, a brief genesis of these two processes, including identification of their main starters and effects. Besides from that, there is a special attention paid to the role of the traffic as their basic element and one of the important initiators and its role in those parts of the European continent that are not yet included by these processes of crucial changes of the geo-space as the whole.

  15. Statistical Maps of Ground Magnetic Disturbance Derived from Global Geospace Models

    Science.gov (United States)

    Rigler, E. J.; Wiltberger, M. J.; Love, J. J.

    2017-12-01

    Electric currents in space are the principal driver of magnetic variations measured at Earth's surface. These in turn induce geoelectric fields that present a natural hazard for technological systems like high-voltage power distribution networks. Modern global geospace models can reasonably simulate large-scale geomagnetic response to solar wind variations, but they are less successful at deterministic predictions of intense localized geomagnetic activity that most impacts technological systems on the ground. Still, recent studies have shown that these models can accurately reproduce the spatial statistical distributions of geomagnetic activity, suggesting that their physics are largely correct. Since the magnetosphere is a largely externally driven system, most model-measurement discrepancies probably arise from uncertain boundary conditions. So, with realistic distributions of solar wind parameters to establish its boundary conditions, we use the Lyon-Fedder-Mobarry (LFM) geospace model to build a synthetic multivariate statistical model of gridded ground magnetic disturbance. From this, we analyze the spatial modes of geomagnetic response, regress on available measurements to fill in unsampled locations on the grid, and estimate the global probability distribution of extreme magnetic disturbance. The latter offers a prototype geomagnetic "hazard map", similar to those used to characterize better-known geophysical hazards like earthquakes and floods.

  16. System-level musings about system-level science (Invited)

    Science.gov (United States)

    Liu, W.

    2009-12-01

    In teleology, a system has a purpose. In physics, a system has a tendency. For example, a mechanical system has a tendency to lower its potential energy. A thermodynamic system has a tendency to increase its entropy. Therefore, if geospace is seen as a system, what is its tendency? Surprisingly or not, there is no simple answer to this question. Or, to flip the statement, the answer is complex, or complexity. We can understand generally why complexity arises, as the geospace boundary is open to influences from the solar wind and Earth’s atmosphere and components of the system couple to each other in a myriad of ways to make the systemic behavior highly nonlinear. But this still begs the question: What is the system-level approach to geospace science? A reductionist view might assert that as our understanding of a component or subsystem progresses to a certain point, we can couple some together to understand the system on a higher level. However, in practice, a subsystem can almost never been observed in isolation with others. Even if such is possible, there is no guarantee that the subsystem behavior will not change when coupled to others. Hence, there is no guarantee that a subsystem, such as the ring current, has an innate and intrinsic behavior like a hydrogen atom. An absolutist conclusion from this logic can be sobering, as one would have to trace a flash of aurora to the nucleosynthesis in the solar core. The practical answer, however, is more promising; it is a mix of the common sense we call reductionism and awareness that, especially when strongly coupled, subsystems can experience behavioral changes, breakdowns, and catastrophes. If the stock answer to the systemic tendency of geospace is complexity, the objective of the system-level approach to geospace science is to define, measure, and understand this complexity. I will use the example of magnetotail dynamics to illuminate some key points in this talk.

  17. The solar-terrestrial environment. An introduction to geospace - the science of the terrestrial upper atmosphere, ionosphere and magnetosphere.

    Science.gov (United States)

    Hargreaves, J. K.

    This textbook is a successor to "The upper atmosphere and solar-terrestrial relations" first published in 1979. It describes physical conditions in the upper atmosphere and magnetosphere of the Earth. This geospace environment begins 70 kilometres above the surface of the Earth and extends in near space to many times the Earth's radius. It is the region of near-Earth environment where the Space Shuttle flies, the aurora is generated, and the outer atmosphere meets particles streaming out of the sun. The account is introductory. The intent is to present basic concepts, and for that reason the mathematical treatment is not complex. There are three introductory chapters that give basic physics and explain the principles of physical investigation. The principal material contained in the main part of the book covers the neutral and ionized upper atmosphere, the magetosphere, and structures, dynamics, disturbances and irregularities. The concluding chapter deals with technological applications.

  18. SWARM - An earth Observation Mission investigating Geospace

    DEFF Research Database (Denmark)

    Friis-Christensen, Eigil; Lühr, H.; Knudsen, D.

    2008-01-01

    The Swarm mission was selected as the 5th mission in ESA's Earth Explorer Programme in 2004. This mission aims at measuring the Earth's magnetic field with unprecedented accuracy. This will be done by a constellation of three satellites, where two will fly at lower altitude, measuring the gradient...... of the magnetic field, and one satellite will fly at higher altitude. The measured magnetic field is the sum of many contributions including both magnetic fields and currents in the Earth's interior and electrical currents in Geospace. In order to separate all these sources electric field and plasma measurements...... will also be made to complement the primary magnetic field measurements. Together these will allow the deduction of information on a series of solid earth processes responsible for the creation of the fields measured. The completeness of the measurements on each satellite and the constellation aspect...

  19. Science Unit Plans. PACE '94.

    Science.gov (United States)

    Schoon, Kenneth J., Ed.; Wiles, Clyde A., Ed.

    This booklet contains mathematics unit plans for Biology, Chemistry, and Physical Science developed by PACE (Promoting Academic Excellence In Mathematics, Science & Technology for Workers of the 21st Century). Each unit plan contains suggested timing, objectives, skills to be acquired, workplace relationships, learning activities with suggested…

  20. Waves, particles, and storms in geospace a complex interplay

    CERN Document Server

    Daglis, Ioannis A; Mann, Ian R

    2017-01-01

    Geospace features highly dynamic populations of charged particles with a wide range of energies from thermal to ultra-relativistic. Influenced by magnetic and electric fields in the terrestrial magnetosphere driven by solar wind forcing, changes in the numbers and energies of these particles lead to a variety of space weather phenomena, some of which are detrimental to space infrastructure. This book includes investigations relevant to understanding and forecasting this space environment and the adverse impacts of space weather. High-energy electrons and ions in the Van Allen radiation belts and the ring current are of particular interest and importance with regard to the operation of space-based technological infrastructure upon which 21st century civilization increasingly relies. This book presents an overview of the latest discoveries, current scientific understanding, and the latest research on the sources, transport, acceleration and loss of these energetic particle populations, as well as their coupling...

  1. Biomolecular Sciences: uniting Biology and Chemistry

    NARCIS (Netherlands)

    Vrieling, Engel

    2017-01-01

    Biomolecular Sciences: uniting Biology and Chemistry www.rug.nl/research/gbb The scientific discoveries in biomolecular sciences have benefitted enormously from technological innovations. At the Groningen Biomolecular Science and Biotechnology Institute (GBB) we now sequence a genome in days,

  2. The Transition Region Explorer: Observing the Multi-Scale Dynamics of Geospace

    Science.gov (United States)

    Donovan, E.

    2015-12-01

    Meso- and global-scale IT remote sensing is accomplished via satellite imagers and ground-based instruments. On the ground, the approach is arrays providing extensive as possible coverage (the "net") and powerful observatories that drill deep to provide detailed information about small-scale processes (the "drill"). Always, there is a trade between cost, spatial resolution, coverage (extent), number of parameters, and more, such that in general the larger the network the sparser the coverage. Where are we now? There are important gaps. With THEMIS-ASI, we see processes that quickly evolve beyond the field of view of one observatory, but involve space/time scales not captured by existing meso- and large-scale arrays. Many forefront questions require observations at heretofore unexplored space and time scales, and comprehensive inter-hemispheric conjugate observations than are presently available. To address this, a new ground-based observing initiative is being developed in Canada. Called TREx, for Transition Region Explorer, this new facility will incorporate dedicated blueline, redline, and Near-Infrared All-Sky Imagers, together with an unprecedented network of ten imaging riometers, with a combined field of view spanning more than three hours of magnetic local time and from equatorward to poleward of typical auroral latitudes (spanning the ionospheric footprint of the "nightside transition region" that separates the highly stretched tail and the inner magnetosphere). The TREx field-of-view is covered by HF radars, and contains a dense network of magnetometers and VLF receivers, as well as other geospace and upper atmospheric remote sensors. Taken together, TREx and these co-located instruments represent a quantum leap forward in terms of imaging, in multiple parameters (precipitation, ionization, convection, and currents), ionospheric dynamics in the above-mentioned scale gap. This represents an exciting new opportunity for studying geospace at the system level

  3. Medium-Energy Particle experiments (MEPs) for the Exploration of energization and Radiation in Geospace (ERG) mission

    Science.gov (United States)

    Kasahara, S.; Yokota, S.; Mitani, T.; Asamura, K.; Hirahara, M.; Shibano, Y.; Yamamoto, K.; Takashima, T.

    2017-12-01

    ERG (Exploration of energization and Radiation in Geospace) is the geospace exploration spacecraft, which was launched on 20 December 2016. The mission goal is to unveil the physics behind the drastic radiation belt variability during space storms. One of key observations is the measurement of ions and electrons in the medium-energy range (10-200 keV), since these particles excite EMIC, magnetosonic, and whistler waves, which are theoretically suggested to play significant roles in the relativistic electron acceleration and loss. Medium-Energy Particle experiments - electron analyser (MEP-e) measures the energy and the direction of each incoming electron in the range of 7 to 87 keV. The sensor covers 2π radian disk-like field-of-view with 16 detectors, and the solid angle coverage is achieved by using spacecraft spin motion. The electron energy is independently measured by an electrostatic analyser and avalanche photodiodes, enabling the significant background reduction. Medium-Energy Particle experiments - ion mass analyzer (MEP-i) measures the energy, mass, and charge state of the direction of each incoming ion in the medium-energy range (180 keV/q). MEP-i thus provides the velocity distribution functions of medium-energy ions (e.g., protons and oxygens), from which we can obtain significant information on local ion energization and pitch angle scattering in the inner magnetosphere. Heavy ion measurements can also play an important role to restrict global mass transport including the ionosphere and the plasmasheet. Here we show the technical approaches, data output, and highlights of initial observations.

  4. How does a Next Generation Science Standard Aligned, Inquiry Based, Science Unit Impact Student Achievement of Science Practices and Student Science Efficacy in an Elementary Classroom?

    Science.gov (United States)

    Whittington, Kayla Lee

    This study examined the impact of an inquiry based Next Generation Science Standard aligned science unit on elementary students' understanding and application of the eight Science and Engineering Practices and their relation in building student problem solving skills. The study involved 44 second grade students and three participating classroom teachers. The treatment consisted of a school district developed Second Grade Earth Science unit: What is happening to our playground? that was taught at the beginning of the school year. Quantitative results from a Likert type scale pre and post survey and from student content knowledge assessments showed growth in student belief of their own abilities in the science classroom. Qualitative data gathered from student observations and interviews performed at the conclusion of the Earth Science unit further show gains in student understanding and attitudes. This study adds to the existing literature on the importance of standard aligned, inquiry based science curriculum that provides time for students to engage in science practices.

  5. The New Outlook for Science. Science and Belief: from Copernicus to Darwin, Block VI, Units 15-16.

    Science.gov (United States)

    Open Univ., Walton, Bletchley, Bucks (England).

    This text contains units 15-16 in the Open University course, Science and Belief: from Copernicus to Darwin. It is an inter-faculty second level course in the history of science. Unit 15 is concerned with Nature and History and includes uniformitarianism, human history, evolutionism, and Darwinism. Unit objectives, readings, and questions with the…

  6. Chinese Dragons in an American Science Unit

    Science.gov (United States)

    Lew, Lee Yuen; McLure, John W.

    2005-01-01

    Can art and science find a happy home in the same unit? We think the answer is yes, if the central problem interests the students and allows them to try out multiple abilities. The sixth-grade unit described in this article, which we called "The Dragon Project," grew mainly from two roots, a study of ancient China and a later probe into…

  7. Information Science and integrative Science. A sistemic approach to information units

    Directory of Open Access Journals (Sweden)

    Rita Dolores Santaella Ruiz

    2006-01-01

    Full Text Available Structured in two parts: The Documentation like integrating science and Systematics approach to the documentary units, this work understands the Documentation from a brought integrating perspective of the twinning that supposes same modus operandi in the information systems through the use of the technologies of the communication. From the General Theory of Systems, the present work interprets this science to multidiscipline like a system formed by the technical subsystems, of elements and individuals

  8. Geospace ionosphere research with a MF/HF radio instrument on a cubesat

    Science.gov (United States)

    Kallio, E. J.; Aikio, A. T.; Alho, M.; Fontell, M.; van Gijlswijk, R.; Kauristie, K.; Kestilä, A.; Koskimaa, P.; Makela, J. S.; Mäkelä, M.; Turunen, E.; Vanhamäki, H.

    2016-12-01

    Modern technology provides new possibilities to study geospace and its ionosphere, using spacecraft and and computer simulations. A type of nanosatellites, CubeSats, provide a cost effective possibility to provide in-situ measurements in the ionosphere. Moreover, combined CubeSat observations with ground-based observations gives a new view on auroras and associated electromagnetic phenomena. Especially joint and active CubeSat - ground based observation campaigns enable the possibility of studying the 3D structure of the ionosphere. Furthermore using several CubeSats to form satellite constellations enables much higher temporal resolution. At the same time, increasing computation capacity has made it possible to perform simulations where properties of the ionosphere, such as propagation of the electromagnetic waves in the medium frequency, MF (0.3-3 MHz) and high frequency, HF (3-30 MHz), ranges is based on a 3D ionospheric model and on first-principles modelling. Electromagnetic waves at those frequencies are strongly affected by ionospheric electrons and, consequently, those frequencies can be used for studying the plasma. On the other hand, even if the ionosphere originally enables long-range telecommunication at MF and HF frequencies, the frequent occurrence of spatiotemporal variations in the ionosphere disturbs communication channels, especially at high latitudes. Therefore, study of the MF and HF waves in the ionosphere has both a strong science and technology interests. We present computational simulation results and measuring principles and techniques to investigate the arctic ionosphere by a polar orbiting CubeSat whose novel AM radio instrument measures HF and MF waves. The cubesat, which contains also a white light aurora camera, is planned to be launched in 2017 (http://www.suomi100satelliitti.fi/eng). We have modelled the propagation of the radio waves, both ground generated man-made waves and space formed space weather related waves, through the 3D

  9. Big science transformed science, politics and organization in Europe and the United States

    CERN Document Server

    Hallonsten, Olof

    2016-01-01

    This book analyses the emergence of a transformed Big Science in Europe and the United States, using both historical and sociological perspectives. It shows how technology-intensive natural sciences grew to a prominent position in Western societies during the post-World War II era, and how their development cohered with both technological and social developments. At the helm of post-war science are large-scale projects, primarily in physics, which receive substantial funds from the public purse. Big Science Transformed shows how these projects, popularly called 'Big Science', have become symbols of progress. It analyses changes to the political and sociological frameworks surrounding publicly-funding science, and their impact on a number of new accelerator and reactor-based facilities that have come to prominence in materials science and the life sciences. Interdisciplinary in scope, this book will be of great interest to historians, sociologists and philosophers of science.

  10. The United Nations Basic Space Science Initiative

    Science.gov (United States)

    Haubold, Hans; Balogh, Werner

    2014-05-01

    The basic space science initiative was a long-term effort for the development of astronomy and space science through regional and international cooperation in this field on a worldwide basis, particularly in developing nations. Basic space science workshops were co-sponsored and co-organized by ESA, JAXA, and NASA. A series of workshops on basic space science was held from 1991 to 2004 (India 1991, Costa Rica and Colombia 1992, Nigeria 1993, Egypt 1994, Sri Lanka 1995, Germany 1996, Honduras 1997, Jordan 1999, France 2000, Mauritius 2001, Argentina 2002, and China 2004; http://neutrino.aquaphoenix.com/un-esa/) and addressed the status of astronomy in Asia and the Pacific, Latin America and the Caribbean, Africa, and Western Asia. Through the lead of the National Astronomical Observatory Japan, astronomical telescope facilities were inaugurated in seven developing nations and planetariums were established in twenty developing nations based on the donation of respective equipment by Japan.Pursuant to resolutions of the Committee on the Peaceful Uses of Outer Space of the United Nations (COPUOS) and its Scientific and Technical Subcommittee, since 2005, these workshops focused on the preparations for and the follow-ups to the International Heliophysical Year 2007 (UAE 2005, India 2006, Japan 2007, Bulgaria 2008, South Korea 2009; www.unoosa.org/oosa/SAP/bss/ihy2007/index.html). IHY's legacy is the current operation of 16 worldwide instrument arrays with more than 1000 instruments recording data on solar-terrestrial interaction from coronal mass ejections to variations of the total electron content in the ionosphere (http://iswisecretariat.org/). Instruments are provided to hosting institutions by entities of Armenia, Brazil, France, Israel, Japan, Switzerland, and the United States. Starting in 2010, the workshops focused on the International Space Weather Initiative (ISWI) as mandated in a three-year-work plan as part of the deliberations of COPUOS. Workshops on ISWI

  11. Theory, modeling, and integrated studies in the Arase (ERG) project

    Science.gov (United States)

    Seki, Kanako; Miyoshi, Yoshizumi; Ebihara, Yusuke; Katoh, Yuto; Amano, Takanobu; Saito, Shinji; Shoji, Masafumi; Nakamizo, Aoi; Keika, Kunihiro; Hori, Tomoaki; Nakano, Shin'ya; Watanabe, Shigeto; Kamiya, Kei; Takahashi, Naoko; Omura, Yoshiharu; Nose, Masahito; Fok, Mei-Ching; Tanaka, Takashi; Ieda, Akimasa; Yoshikawa, Akimasa

    2018-02-01

    Understanding of underlying mechanisms of drastic variations of the near-Earth space (geospace) is one of the current focuses of the magnetospheric physics. The science target of the geospace research project Exploration of energization and Radiation in Geospace (ERG) is to understand the geospace variations with a focus on the relativistic electron acceleration and loss processes. In order to achieve the goal, the ERG project consists of the three parts: the Arase (ERG) satellite, ground-based observations, and theory/modeling/integrated studies. The role of theory/modeling/integrated studies part is to promote relevant theoretical and simulation studies as well as integrated data analysis to combine different kinds of observations and modeling. Here we provide technical reports on simulation and empirical models related to the ERG project together with their roles in the integrated studies of dynamic geospace variations. The simulation and empirical models covered include the radial diffusion model of the radiation belt electrons, GEMSIS-RB and RBW models, CIMI model with global MHD simulation REPPU, GEMSIS-RC model, plasmasphere thermosphere model, self-consistent wave-particle interaction simulations (electron hybrid code and ion hybrid code), the ionospheric electric potential (GEMSIS-POT) model, and SuperDARN electric field models with data assimilation. ERG (Arase) science center tools to support integrated studies with various kinds of data are also briefly introduced.[Figure not available: see fulltext.

  12. Science Policy Research Unit annual report 1984/1985

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    The report covers the principal research programmes of the Unit, and also describes its graduate and undergraduate teaching, (listing subjects of postgraduate research) and library services. A list of 1984 published papers and staff is presented. The principle research programmes include: the setting up of the Designated Research Centre on Science, Technology and Energy Policy in British Economic Development; policy for technology and industrial innovation in industrialised countries; energy economics, technology and policy (with a sub-section on coal); European science and industrial policy; science policy and research evaluation; technical change and employment opportunities in the UK economy; new technology, manpower and skills; technology and social change; science and technology policy in developing countries; military technology and arms limitation. Short-term projects and consultancy are also covered.

  13. Erratum to "Solar Sources and Geospace Consequences of Interplanetary Magnetic Clouds Observed During Solar Cycle 23-Paper 1" [J. Atmos. Sol.-Terr. Phys. 70(2-4) (2008) 245-253

    Science.gov (United States)

    Gopalswamy, N.; Akiyama, S.; Yashiro, S.; Michalek, G.; Lepping, R. P.

    2009-01-01

    One of the figures (Fig. 4) in "Solar sources and geospace consequences of interplanetary magnetic Clouds observed during solar cycle 23 -- Paper 1" by Gopalswamy et al. (2008, JASTP, Vol. 70, Issues 2-4, February 2008, pp. 245-253) is incorrect because of a software error in t he routine that was used to make the plot. The source positions of various magnetic cloud (MC) types are therefore not plotted correctly.

  14. The United Nations Basic Space Science Initiative

    Science.gov (United States)

    Haubold, H. J.

    2006-08-01

    Pursuant to recommendations of the United Nations Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE III) and deliberations of the United Nations Committee on the Peaceful Uses of Outer Space (UNCOPUOS), annual UN/ European Space Agency workshops on basic space science have been held around the world since 1991. These workshops contribute to the development of astrophysics and space science, particularly in developing nations. Following a process of prioritization, the workshops identified the following elements as particularly important for international cooperation in the field: (i) operation of astronomical telescope facilities implementing TRIPOD, (ii) virtual observatories, (iii) astrophysical data systems, (iv) concurrent design capabilities for the development of international space missions, and (v) theoretical astrophysics such as applications of nonextensive statistical mechanics. Beginning in 2005, the workshops focus on preparations for the International Heliophysical Year 2007 (IHY2007). The workshops continue to facilitate the establishment of astronomical telescope facilities as pursued by Japan and the development of low-cost, ground-based, world-wide instrument arrays as lead by the IHY secretariat. Wamsteker, W., Albrecht, R. and Haubold, H.J.: Developing Basic Space Science World-Wide: A Decade of UN/ESA Workshops. Kluwer Academic Publishers, Dordrecht 2004. http://ihy2007.org http://www.unoosa.org/oosa/en/SAP/bss/ihy2007/index.html http://www.cbpf.br/GrupPesq/StatisticalPhys/biblio.htm

  15. The "Earth Physics" Workshops Offered by the Earth Science Education Unit

    Science.gov (United States)

    Davies, Stephen

    2012-01-01

    Earth science has a part to play in broadening students' learning experience in physics. The Earth Science Education Unit presents a range of (free) workshops to teachers and trainee teachers, suggesting how Earth-based science activities, which show how we understand and use the planet we live on, can easily be slotted into normal science…

  16. The Future of Ground Magnetometer Arrays in Support of Space Weather Monitoring and Research

    Science.gov (United States)

    Engebretson, Mark; Zesta, Eftyhia

    2017-11-01

    A community workshop was held in Greenbelt, Maryland, on 5-6 May 2016 to discuss recommendations for the future of ground magnetometer array research in space physics. The community reviewed findings contained in the 2016 Geospace Portfolio Review of the Geospace Section of the Division of Atmospheric and Geospace Science of the National Science Foundation and discussed the present state of ground magnetometer arrays and possible pathways for a more optimal, robust, and effective organization and scientific use of these ground arrays. This paper summarizes the report of that workshop to the National Science Foundation (Engebretson & Zesta, as well as conclusions from two follow-up meetings. It describes the current state of U.S.-funded ground magnetometer arrays and summarizes community recommendations for changes in both organizational and funding structures. It also outlines a variety of new and/or augmented regional and global data products and visualizations that can be facilitated by increased collaboration among arrays. Such products will enhance the value of ground-based magnetometer data to the community's effort for understanding of Earth's space environment and space weather effects.

  17. Examining Teacher Talk in an Engineering Design-Based Science Curricular Unit

    Science.gov (United States)

    Aranda, Maurina L.; Lie, Richard; Selcen Guzey, S.; Makarsu, Murat; Johnston, Amanda; Moore, Tamara J.

    2018-03-01

    Recent science education reforms highlight the importance for teachers to implement effective instructional practices that promote student learning of science and engineering content and their practices. Effective classroom discussion has been shown to support the learning of science, but work is needed to examine teachers' enactment of engineering design-based science curricula by focusing on the content, complexity, structure, and orchestration of classroom discussions. In the present study, we explored teacher-student talk with respect to science in a middle school curriculum focused on genetics and genetic engineering. Our study was guided by the following major research question: What are the similarities and differences in teacher talk moves that occurred within an engineering design-based science unit enacted by two teachers? Through qualitative and quantitative approaches, we found that there were clear differences in two teachers' use of questioning strategies and presentation of new knowledge that affected the level of student involvement in classroom discourse and the richness and details of student contributions to the conversations. We also found that the verbal explanations of science content differed between two teachers. Collectively, the findings in this study demonstrate that although the teachers worked together to design an engineering designed-based science curriculum unit, their use of different discussion strategies and patterns, and interactions with students differed to affect classroom discourse.

  18. Water. Seychelles Integrated Science. [Teacher and Pupil Booklets]. Unit 3.

    Science.gov (United States)

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P7 SIS unit focuses on: (1) the importance of water in students' daily lives; (2) the need to purify drinking…

  19. Classifying Floating Potential Measurement Unit Data Products as Science Data

    Science.gov (United States)

    Coffey, Victoria; Minow, Joseph

    2015-01-01

    We are Co-Investigators for the Floating Potential Measurement Unit (FPMU) on the International Space Station (ISS) and members of the FPMU operations and data analysis team. We are providing this memo for the purpose of classifying raw and processed FPMU data products and ancillary data as NASA science data with unrestricted, public availability in order to best support science uses of the data.

  20. Framework of Information Science in Japan − Introduction: Comparison with United States −

    OpenAIRE

    加藤, 淳一; KATO, Junichi

    2008-01-01

    This report concisely explains the history of information science in the United States. The purpose of this report is to reconfirm the field framework of information science. The framework of information science of Japan is different from the information science that Machlup and Mansfield define, because it is a framework similar to informatics for Japan.

  1. French language space science educational outreach

    Science.gov (United States)

    Schofield, I.; Masongsong, E. V.; Connors, M. G.

    2015-12-01

    Athabasca University's AUTUMNX ground-based magnetometer array to measure and report geomagnetic conditions in eastern Canada is located in the heart of French speaking Canada. Through the course of the project, we have had the privilege to partner with schools, universities, astronomy clubs and government agencies across Quebec, all of which operate primarily in French. To acknowledge and serve the needs of our research partners, we have endeavored to produce educational and outreach (EPO) material adapted for francophone audiences with the help of UCLA's department of Earth, Planetary and Space Sciences (EPSS). Not only will this provide greater understanding and appreciation of the geospace environment unique to Quebec and surrounding regions, it strengthens our ties with our francophone, first nations (native Americans) and Inuit partners, trailblazing new paths of research collaboration and inspiring future generations of researchers.

  2. Solar filament impact on 21 January 2005: Geospace consequences

    Science.gov (United States)

    Kozyra, J. U.; Liemohn, M. W.; Cattell, C.; De Zeeuw, D.; Escoubet, C. P.; Evans, D. S.; Fang, X.; Fok, M.-C.; Frey, H. U.; Gonzalez, W. D.; Hairston, M.; Heelis, R.; Lu, G.; Manchester, W. B.; Mende, S.; Paxton, L. J.; Rastaetter, L.; Ridley, A.; Sandanger, M.; Soraas, F.; Sotirelis, T.; Thomsen, M. W.; Tsurutani, B. T.; Verkhoglyadova, O.

    2014-07-01

    equatorial ionization anomaly. Understanding the geospace consequences of extremes in density and pressure is important because some of the largest and most damaging space weather events ever observed contained similar intervals of dense solar material.

  3. "Individualized Science" Field Test Findings and Recommendations, the Hooke Unit. Appendix A.

    Science.gov (United States)

    Loue, William E., III

    This informal report contains the findings and recommendations resulting from the field test of the Hooke Unit of the "Individualized Science" program. Data were collected from three schools. Because of an unusual number of weaknesses ranging from formal inconsistencies to manipulative deficiencies, it was concluded that the Hooke Unit is somewhat…

  4. Numbers and Measuring, Learning With TOR: MINNEMAST Coordinated Mathematics - Science Series, Unit 16.

    Science.gov (United States)

    Vogt, Elaine E., Ed.

    This volume is the sixteenth in a series of 29 coordinated MINNEMAST units in mathematics and science for kindergarten and the primary grades. Intended for use by second-grade teachers, this unit guide provides a summary and overview of the unit, a list of materials needed, and descriptions of five groups of lessons. The purposes and procedures…

  5. Conserving Our Environment. Seychelles Integrated Science. [Teacher and Pupil Booklets]. Unit 13.

    Science.gov (United States)

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P9 SIS unit focuses on: (1) basic ecological and conservation concepts; (2) problems and complexities of…

  6. Conserving Our Energy. Seychelles Integrated Science. [Teacher and Pupil Booklets]. Unit 11.

    Science.gov (United States)

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P9 SIS unit deals with: (1) the importance of energy in students' everyday lives; (2) energy forms and…

  7. Conserving Our Health. Seychelles Integrated Science. [Teacher and Pupil Booklets]. Unit 12.

    Science.gov (United States)

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P9 SIS unit deals with conserving health, focusing on such body processes as breathing, digestion, excretion,…

  8. Living Things Reproduce. Seychelles Integrated Science. [Teacher and Pupil Booklets]. Unit 6.

    Science.gov (United States)

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P8 SIS unit focuses on reproduction in animals and in flowering plants. Particular topics examined include the…

  9. Different Living Things. Seychelles Integrated Science. [Teacher and Pupil Booklets.] Unit 5.

    Science.gov (United States)

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P7 SIS unit is designed to: (1) help students develop an elementary understanding of how living things can be…

  10. Air and Weather Seychelles Integrated Science. [Teacher and Pupil Booklets]. Unit 2.

    Science.gov (United States)

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P7 SIS unit focuses on: (1) the importance of air and air pressure in students' everyday lives; (2) oxidation…

  11. Techniques and Measurements. Seychelles Integrated Science. [Teacher and Pupil Booklets]. Unit 1.

    Science.gov (United States)

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P7 SIS unit is designed to: (1) introduce students to and familiarize them with working in the school laboratory;…

  12. Food and Growth. Seychelles Integrated Science. [Teacher and Pupil Booklets]. Unit 7.

    Science.gov (United States)

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P8 SIS unit examines: (1) the role played by bones, muscles, and teeth and the importance of developing and…

  13. Heat and Molecules. Seychelles Integrated Science. [Teacher and Pupil Booklets]. Unit 10.

    Science.gov (United States)

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P8 SIS unit deals with: (1) changes in temperature which make matter expand and contract (and how this affects…

  14. Magnets and Electricity. Seychelles Integrated Science [Teacher and Pupil Booklets]. Unit 8.

    Science.gov (United States)

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P8 SIS unit focuses on: (1) elementary concepts in magnetic theory and the role magnets and magnetism play in…

  15. Acids and Alkalis. Seychelles Integrated Science. [Teacher and Pupil Booklets]. Unit 9.

    Science.gov (United States)

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P8 SIS unit focuses on: (1) the uses of acids and bases (alkalis) in students' everyday lives, stressing their…

  16. Feeling the Science, Thinking about Art

    Science.gov (United States)

    Chatzichristou, E. T.; Daglis, I. A.; Anastasiadis, A.; Giannakis, O.

    2015-10-01

    MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Loss and Energization) was an FP7- funded project, involving monitoring of the geospace environment through space and ground-based observations, in order to understand various aspects of the radiation belts (torus-shaped regions encircling the Earth, in which high-energy charged particles are trapped by the geomagnetic field), which have direct impact on human endeavors in space (spacecraft and astronauts exposure). Besides interesting science, the MAARBLE outreach team employed a variety of outreach techniques to provide the general public with simplified information concerning the scientific objectives of the project, its focus and its expected outcomes. An outstanding moment of the MAARBLE outreach experience was the organization of an international contest of musical compositions inspired by impressive sounds of space related to very low and ultra-low frequency (VLF/ULF) electromagnetic waves. The MAARBLE international contest of musical composition aspired to combine scientific and artistic ways of thinking, through the science of Astronomy and Space and the art of Music. It was an original idea to provide scientific information to the public, inviting people to "feel" the science and to think about art. The leading concept was to use the natural sounds of the Earth's magnetosphere in order to compose electroacoustic music. Composers from all European countries were invited to take part at the contest, using some (or all) of the sounds included in a database of magnetospheric sounds compiled by the MAARBLE outreach team. The results were astonishing: the contest was oversubscribed by a factor of 19 (in total 55 applications from 17 countries) and the musical pieces were of overall excellent quality, making the selection of winners a very difficult task. Ultimately, the selection committee concluded on the ten highest ranked compositions, which were uploaded on the MAARBLE website. Furthermore, the

  17. A Web Server for MACCS Magnetometer Data

    Science.gov (United States)

    Engebretson, Mark J.

    1998-01-01

    NASA Grant NAG5-3719 was provided to Augsburg College to support the development of a web server for the Magnetometer Array for Cusp and Cleft Studies (MACCS), a two-dimensional array of fluxgate magnetometers located at cusp latitudes in Arctic Canada. MACCS was developed as part of the National Science Foundation's GEM (Geospace Environment Modeling) Program, which was designed in part to complement NASA's Global Geospace Science programs during the decade of the 1990s. This report describes the successful use of these grant funds to support a working web page that provides both daily plots and file access to any user accessing the worldwide web. The MACCS home page can be accessed at http://space.augsburg.edu/space/MaccsHome.html.

  18. High magnetic field science and its application in the United States current status and future directions

    CERN Document Server

    National Research Council of the National Academies

    2013-01-01

    The Committee to Assess the Current Status and Future Direction of High Magnetic Field Science in the United States was convened by the National Research Council in response to a request by the National Science Foundation. This report answers three questions: (1) What is the current state of high-field magnet science, engineering, and technology in the United States, and are there any conspicuous needs to be addressed? (2) What are the current science drivers and which scientific opportunities and challenges can be anticipated over the next ten years? (3) What are the principal existing and planned high magnetic field facilities outside of the United States, what roles have U.S. high field magnet development efforts played in developing those facilities, and what potentials exist for further international collaboration in this area? A magnetic field is produced by an electrical current in a metal coil. This current exerts an expansive force on the coil, and a magnetic field is "high" if it challenges the str...

  19. Global Space Weather Observational Network: Challenges and China's Contribution

    Science.gov (United States)

    Wang, C.

    2017-12-01

    To understand space weather physical processes and predict space weather accurately, global space-borne and ground-based space weather observational network, making simultaneous observations from the Sun to geo-space (magnetosphere, ionosphere and atmosphere), plays an essential role. In this talk, we will present the advances of the Chinese space weather science missions, including the ASO-S (Advanced Space-borne Solar Observatory), MIT (Magnetosphere - Ionosphere- Thermosphere Coupling Exploration), and the ESA-China joint space weather science mission SMILE (Solar wind - Magnetosphere - Ionosphere Link Explore), a new mission to image the magnetosphere. Compared to satellites, ground-based monitors are cheap, convenient, and provide continuous real-time data. We will also introduce the Chinese Meridian Project (CMP), a ground-based program fully utilizing the geographic location of the Chinese landmass to monitor the geo-space environment. CMP is just one arm of a larger program that Chinese scientists are proposing to the international community. The International Meridian Circle Program (IMCP) for space weather hopes to connect chains of ground-based monitors at the longitudinal meridians 120 deg E and 60 deg W. IMCP takes advantage of the fact that these meridians already have the most monitors of any on Earth, with monitors in Russia, Australia, Brazil, the United States, Canada, and other countries. This data will greatly enhance the ability of scientists to monitor and predict the space weather worldwide.

  20. Implicit Theories of Creativity in Computer Science in the United States and China

    Science.gov (United States)

    Tang, Chaoying; Baer, John; Kaufman, James C.

    2015-01-01

    To study implicit concepts of creativity in computer science in the United States and mainland China, we first asked 308 Chinese computer scientists for adjectives that would describe a creative computer scientist. Computer scientists and non-computer scientists from China (N = 1069) and the United States (N = 971) then rated how well those…

  1. Simple, Accurate, Low-cost RO Science with the Iridium-NEXT Satellite Constellation

    Science.gov (United States)

    Meehan, T.; Mannucci, A. J.

    2011-12-01

    Over the last decade, a disparate collection of GNSS-RO instruments have been measuring the refractivity of the Earth's ionosphere and atmosphere. These measurements have proven to be robust and precise data sets for operational weather, climate and geospace sciences. Future GNSS-RO weather and science will most benefit from a large number of profiles (10000+/day), with lower latency and greater accuracy in the lowest 5 km altitude. For weather, latencies below 90 minutes are required, 30 minutes desired. Space weather latency requirements are more stringent, with 15 minutes being a long sought goal. Climate studies benefit from averaging measurements uniformly distributed over the Earth, acquired over decades, with local time sampling errors minimized by dense coverage or well designed orbits. There's much more of course, because space GNSS science is still nascent but with gathering momentum among the international community. Although individual GNSS-RO instruments are relatively cheap as space hardware goes, growing the measurement density can be costly when a dozen or more are required for a single program. In this presentation, we propose a novel technique for greatly reducing the cost of a constellation of GNSS-RO instruments and discuss the science trade-offs of this approach versus the more traditional GNSS-RO designs.

  2. Soil and Living Things. Seychelles Integrated Science. [Teacher and Pupil Booklets]. Unit 4.

    Science.gov (United States)

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P7 SIS unit focuses on: (1) the structure of the two main soil types in Seychelles; (2) the role of roots in…

  3. The development of a virtual science museum for the public understanding of science in eastern China and in the United States

    Science.gov (United States)

    Delello, Julie Anne

    2009-12-01

    In 1999, the Chinese Academy of Sciences realized that there was a need for a better public understanding of science. For the public to have better accessibility and comprehension of China's significance to the world, the Computer Network Information Center (CNIC), under the direction of the Chinese Academy of Sciences, combined resources from thousands of experts across the world to develop online science exhibits housed within the Virtual Science Museum of China. Through an analysis of historical documents, this descriptive dissertation presents a research project that explores a dimension of the development of the Giant Panda Exhibit. This study takes the reader on a journey, first to China and then to a classroom within the United States, in order to answer the following questions: (1) What is the process of the development of a virtual science exhibit; and, (2) What role do public audiences play in the design and implementation of virtual science museums? The creation of a virtual science museum exhibition is a process that is not completed with just the building and design, but must incorporate feedback from public audiences who utilize the exhibit. To meet the needs of the museum visitors, the designers at CNIC took a user-centered approach and solicited feedback from six survey groups. To design a museum that would facilitate a cultural exchange of scientific information, the CNIC looked at the following categories: visitor insights, the usability of the technology, the educational effectiveness of the museum exhibit, and the cultural nuances that existed between students in China and in the United States. The findings of this study illustrate that the objectives of museum designers may not necessarily reflect the needs of the visitors and confirm previous research studies which indicate that museum exhibits need a more constructivist approach that fully engages the visitor in an interactive, media-rich environment. Even though the world has moved forwards

  4. 78 FR 12369 - United States Government Policy for Institutional Oversight of Life Sciences Dual Use Research of...

    Science.gov (United States)

    2013-02-22

    ... Oversight of Life Sciences Dual Use Research of Concern AGENCY: Office of Science and Technology Policy... comments on the proposed United States Government Policy for Institutional Oversight of Life Sciences Dual... requirements for certain categories of life sciences research at institutions that accept Federal funding for...

  5. Outreach Education Modules on Space Sciences in Taiwan

    Science.gov (United States)

    Lee, I.-Te; Tiger Liu, Jann-Yeng; Chen, Chao-Yen

    2013-04-01

    The Ionospheric Radio Science Laboratory (IRSL) at Institute of Space Science, National Central University in Taiwan has been conducting a program for public outreach educations on space science by giving lectures, organizing camps, touring exhibits, and experiencing hand-on experiments to elementary school, high school, and college students as well as general public since 1991. The program began with a topic of traveling/living in space, and was followed by space environment, space mission, and space weather monitoring, etc. and a series of course module and experiment (i.e. experiencing activity) module was carried out. For past decadal, the course modules have been developed to cover the space environment of the Sun, interplanetary space, and geospace, as well as the space technology of the rocket, satellite, space shuttle (plane), space station, living in space, observing the Earth from space, and weather observation. Each course module highlights the current status and latest new finding as well as discusses 1-3 key/core issues/concepts and equip with 2-3 activity/experiment modules to make students more easily to understand the topics/issues. Meanwhile, scientific camps are given to lead students a better understanding and interesting on space science. Currently, a visualized image projecting system, Dagik Earth, is developed to demonstrate the scientific results on a sphere together with the course modules. This system will dramatically improve the educational skill and increase interests of participators.

  6. Interdisciplinary Navigation Unit for Mathematics and Earth Science Using Geospatial Technology

    Science.gov (United States)

    Smaglik, S. M.; Harris, V.

    2006-12-01

    Central Wyoming College (CWC) is located northeast of the Wind River Mountains. Although many people find recreation in the wilderness and remote areas surrounding the area, people still lose their lives because they become lost or disoriented. Creating an interdisciplinary field-based curriculum unit within mathematics (MATH 1000) and earth science (GEOL 1070) courses for non-science and education majors, provides students an opportunity to develop critical thinking skills and quantitative literacy. It also provides some necessary skills for survival and an understanding of landscape formation and wilderness navigation using geoscience. A brief history of navigation, including the importance of finding latitude and longitude, and the fairly recent implementation of the Global Positioning System, precedes activities in which students learn to use a basic compass. In addition to learning how to adjust for magnetic declination they read topographic maps, specifically USGS quadrangles, and learn how to use the scale in the legend to verify calculations using the Pythagorean Theorem. Students learn how to estimate distance and time required for traveling a pre- determined distance while using dimensional analysis to convert from the English system to metric. They learn how to read and measure latitude and longitude, as well as universal transverse Mercator projection measurements (UTM's), to find their position. The basic mathematical skills are assessed through hands-on activities such as finding their location on a map using a compass, a GPS unit, and Google Earth, and using a combination of maps, compasses, and GPS units to navigate through a course. Our goal is to provide life-saving information to students while incorporating necessary core curriculum from both mathematics and earth science classes. We work to create field-based activities, as well as assessments, to insure that students who complete the course are prepared to safely enjoy the outdoors and are

  7. Anthropogenic Climate Change in Undergraduate Marine and Environmental Science Programs in the United States

    Science.gov (United States)

    Vlietstra, Lucy S.; Mrakovcich, Karina L.; Futch, Victoria C.; Stutzman, Brooke S.

    2016-01-01

    To develop a context for program-level design decisions pertaining to anthropogenic climate change, the authors studied the prevalence of courses focused on human-induced climate change in undergraduate marine science and environmental science degree programs in the United States. Of the 86 institutions and 125 programs the authors examined, 37%…

  8. The Cuba–United States Thaw: Building Bridges through Science and Global Health

    Science.gov (United States)

    Bausch, Daniel G.; Kouri, Vivian; Resik, Sonia; Acosta, Belsy; Guillen, Gerardo; Goraleski, Karen; Espinal, Marcos; Guzman, Maria G.

    2017-01-01

    Beginning in 2014, there has been significant progress in normalization of relations between Cuba and the United States. Herein, we discuss the history and recent progress in scientific collaboration between the two countries as well as the continued challenges. Science and global health diplomacy can be key tools in reestablishing a trusting and productive relationship of mutual and global benefit, bringing about better and healthier lives for people in both Cuba and the United States. PMID:28719268

  9. The Cuba-United States Thaw: Building Bridges Through Science and Global Health.

    Science.gov (United States)

    Bausch, Daniel G; Kouri, Vivian; Resik, Sonia; Acosta, Belsy; Guillen, Gerardo; Goraleski, Karen; Espinal, Marcos; Guzman, Maria G

    2017-06-01

    AbstractBeginning in 2014, there has been significant progress in normalization of relations between Cuba and the United States. Herein, we discuss the history and recent progress in scientific collaboration between the two countries as well as the continued challenges. Science and global health diplomacy can be key tools in reestablishing a trusting and productive relationship of mutual and global benefit, bringing about better and healthier lives for people in both Cuba and the United States.

  10. A History of Soil Science Education in the United States

    Science.gov (United States)

    Brevik, Eric C.

    2017-04-01

    The formal study of soil science is a fairly recent undertaking in academics. Fields like biology, chemistry, and physics date back hundreds of years, but the scientific study of soils only dates to the late 1800s. Academic programs to train students in soil science are even more recent, with the first such programs only developing in the USA in the early 1900s. Some of the first schools to offer soil science training at the university level included the University of North Carolina (UNC), Earlham College (EC), and Cornell University. The first modern soil science textbook published in the United States was "Soils, Their Properties and Management" by Littleton Lyon, Elmer Fippin and Harry Buckman in 1909. This has evolved over time into the popular modern textbook "The Nature and Properties of Soils", most recently authored by Raymond Weil and Nyle Brady. Over time soil science education moved away from liberal arts schools such as UNC and EC and became associated primarily with land grant universities in their colleges of agriculture. There are currently about 71 colleges and universities in the USA that offer bachelors level soil science degree programs, with 54 of these (76%) being land grant schools. In the 1990s through the early 2000s enrollment in USA soil science programs was on the decline, even as overall enrollment at USA colleges and universities increased. This caused considerable concern in the soil science community. More recently there is evidence that soil science student numbers may be increasing, although additional information on this potential trend is desirable. One challenge soil science faces in the modern USA is finding an academic home, as soils are taught by a wide range of fields and soils classes are taken by students in many fields of study, including soil science, a range of agricultural programs, environmental science, environmental health, engineering, geology, geography, and others.

  11. Regional Centres for Space Science and Technology Education Affiliated to the United Nations

    Science.gov (United States)

    Aquino, A. J. A.; Haubold, H. J.

    2010-05-01

    Based on resolutions of the United Nations General Assembly, Regional Centres for space science and technology education were established in India, Morocco, Nigeria, Brazil and Mexico. Simultaneously, education curricula were developed for the core disciplines of remote sensing, satellite communications, satellite meteorology, and space and atmospheric science. This paper provides a brief report on the status of the operation of the Regional Centres and draws attention to their educational activities.

  12. The United Nations Basic Space Science Initiative (UNBSSI): A Historical Introduction

    Science.gov (United States)

    Haubold, H. J.

    2006-11-01

    Pursuant to recommendations of the Third United Nations Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE III) and deliberations of the United Nations Committee on the Peaceful Uses of Outer Space (UNCOPUOS), annual UN/European Space Agency workshops on basic space science have been held around the world since 1991. These workshops contributed to the development of astrophysics and space science, particularly in developing nations. Following a process of prioritization, the workshops identified the following elements as particularly important for international cooperation in the field: (i) operation of astronomical telescope facilities implementing TRIPOD, (ii) virtual observatories, (iii) astrophysical data systems, (iv) con-current design capabilities for the development of international space missions, and (v) theoretical astrophysics such as applications of non-extensive statistical mechanics. Beginning in 2005, the workshops are focusing on preparations for the International Heliophysical Year 2007 (IHY2007). The workshops continue to facilitate the establishment of astronomical telescope facilities as pursued by Japan and the development of low-cost, ground-based, world- wide instrument arrays as led by the IHY secretariat. Wamsteker, W., Albrecht, R. and Haubold, H.J.: Developing Basic Space Science World-Wide: A Decade of UN/ESA Workshops: Kluwer Academic Publishers, Dordrecht 2004. http://ihy2007.org http://www.unoosa.org/oosa/en/SAP/bss/ihy2007/index.html http://www.cbpf.br/GrupPesq/StatisticalPhys/biblio.htm

  13. Science, Society, and America's Nuclear Waste: Nuclear Waste, Unit 1. Teacher Guide. Second Edition.

    Science.gov (United States)

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 1 of the four-part series Science, Society, and America's Nuclear Waste produced by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management. The goal of this unit is to help students establish the relevance of the topic of nuclear waste to their everyday lives and activities. Particular attention is…

  14. Science, Society, and America's Nuclear Waste: Ionizing Radiation, Unit 2. Teacher Guide. Second Edition.

    Science.gov (United States)

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 2 of the four-part series, Science, Society, and America's Nuclear Waste, produced by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management. The goal of this unit is to convey factual information relevant to radioactivity and radiation and relate that information both to the personal lives of students…

  15. Use of Jigsaw Technique to Teach the Unit "Science within Time" in Secondary 7th Grade Social Sciences Course and Students' Views on This Technique

    Science.gov (United States)

    Yapici, Hakki

    2016-01-01

    The aim of this study is to apply the jigsaw technique in Social Sciences teaching and to unroll the effects of this technique on learning. The unit "Science within Time" in the secondary 7th grade Social Sciences text book was chosen for the research. It is aimed to compare the jigsaw technique with the traditional teaching method in…

  16. Magnetoresistive magnetometer for space science applications

    International Nuclear Information System (INIS)

    Brown, P; Beek, T; Carr, C; O’Brien, H; Cupido, E; Oddy, T; Horbury, T S

    2012-01-01

    Measurement of the in situ dc magnetic field on space science missions is most commonly achieved using instruments based on fluxgate sensors. Fluxgates are robust, reliable and have considerable space heritage; however, their mass and volume are not optimized for deployment on nano or picosats. We describe a new magnetometer design demonstrating science measurement capability featuring significantly lower mass, volume and to a lesser extent power than a typical fluxgate. The instrument employs a sensor based on anisotropic magnetoresistance (AMR) achieving a noise floor of less than 50 pT Hz −1/2 above 1 Hz on a 5 V bridge bias. The instrument range is scalable up to ±50 000 nT and the three-axis sensor mass and volume are less than 10 g and 10 cm 3 , respectively. The ability to switch the polarization of the sensor's easy axis and apply magnetic feedback is used to build a driven first harmonic closed loop system featuring improved linearity, gain stability and compensation of the sensor offset. A number of potential geospace applications based on the initial instrument results are discussed including attitude control systems and scientific measurement of waves and structures in the terrestrial magnetosphere. A flight version of the AMR magnetometer will fly on the TRIO-CINEMA mission due to be launched in 2012. (paper)

  17. Science standards: The foundation of evolution education in the United States

    Directory of Open Access Journals (Sweden)

    Elizabeth Watts

    2016-12-01

    Full Text Available Science standards and textbooks have a huge impact on the manner in which evolution is taught in American classrooms. Standards dictate how much time and what points have to be dedicated to the subject in order to prepare students for state-wide assessments, while the textbooks will largely determine how the subject is presented in the classroom. In the United States both standards and textbooks are determined at the state-level through a political process. Currently there is a tremendous amount of pressure arising from anti-evolutionists in the United States to weaken or omit the teaching of evolution despite recommendations from central institutions such as the National Academy of Science. Results from the Program for International Student Assessment (PISA showed that not only are American students performing below average, but also that their performance is declining as they scored worse in 2012 than they did in 2010. Interestingly PISA also found that the internal variation within a country is often greater than between countries with a variation of up to 300 points, which is equivalent to seven years of education pointing to the extreme heterogeneous quality of education within a country (OECD, 2012. An implementation of strong standards would not only help to increase the average performance of American students but could also alleviate the vast discrepancy between the highest and lowest scoring groups of American students. Although the Next Generation Science Standards have been in existence since 2013 and A Framework for K-12 Science Education has been available to the public since 2011 many American states still continue to create their own standards that, according to the Fordham study, are well below par (Lerner et al., 2012. Due to the political nature of the adoption procedure of standards and textbooks, there are many opportunities for interested individuals to get involved in the process of improving these fundamental elements of

  18. Computer Science Teacher Professional Development in the United States: A Review of Studies Published between 2004 and 2014

    Science.gov (United States)

    Menekse, Muhsin

    2015-01-01

    While there has been a remarkable interest to make computer science a core K-12 academic subject in the United States, there is a shortage of K-12 computer science teachers to successfully implement computer sciences courses in schools. In order to enhance computer science teacher capacity, training programs have been offered through teacher…

  19. The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Science Objectives and Mast Unit Description

    Science.gov (United States)

    Maurice, S.; Wiens, R.C.; Saccoccio, M.; Barraclough, B.; Gasnault, O.; Forni, O.; Mangold, N.; Baratoux, D.; Bender, S.; Berger, G.; Bernardin, J.; Berthé, M.; Bridges, N.; Blaney, D.; Bouyé, M.; Caïs, P.; Clark, B.; Clegg, S.; Cousin, A.; Cremers, D.; Cros, A.; DeFlores, L.; Derycke, C.; Dingler, B.; Dromart, G.; Dubois, B.; Dupieux, M.; Durand, E.; d'Uston, L.; Fabre, C.; Faure, B.; Gaboriaud, A.; Gharsa, T.; Herkenhoff, K.; Kan, E.; Kirkland, L.; Kouach, D.; Lacour, J.-L.; Langevin, Y.; Lasue, J.; Le Mouélic, S.; Lescure, M.; Lewin, E.; Limonadi, D.; Manhès, G.; Mauchien, P.; McKay, C.; Meslin, P.-Y.; Michel, Y.; Miller, E.; Newsom, Horton E.; Orttner, G.; Paillet, A.; Parès, L.; Parot, Y.; Pérez, R.; Pinet, P.; Poitrasson, F.; Quertier, B.; Sallé, B.; Sotin, Christophe; Sautter, V.; Séran, H.; Simmonds, J.J.; Sirven, J.-B.; Stiglich, R.; Striebig, N.; Thocaven, J.-J.; Toplis, M.J.; Vaniman, D.

    2012-01-01

    ChemCam is a remote sensing instrument suite on board the "Curiosity" rover (NASA) that uses Laser-Induced Breakdown Spectroscopy (LIBS) to provide the elemental composition of soils and rocks at the surface of Mars from a distance of 1.3 to 7 m, and a telescopic imager to return high resolution context and micro-images at distances greater than 1.16 m. We describe five analytical capabilities: rock classification, quantitative composition, depth profiling, context imaging, and passive spectroscopy. They serve as a toolbox to address most of the science questions at Gale crater. ChemCam consists of a Mast-Unit (laser, telescope, camera, and electronics) and a Body-Unit (spectrometers, digital processing unit, and optical demultiplexer), which are connected by an optical fiber and an electrical interface. We then report on the development, integration, and testing of the Mast-Unit, and summarize some key characteristics of ChemCam. This confirmed that nominal or better than nominal performances were achieved for critical parameters, in particular power density (>1 GW/cm2). The analysis spot diameter varies from 350 μm at 2 m to 550 μm at 7 m distance. For remote imaging, the camera field of view is 20 mrad for 1024×1024 pixels. Field tests demonstrated that the resolution (˜90 μrad) made it possible to identify laser shots on a wide variety of images. This is sufficient for visualizing laser shot pits and textures of rocks and soils. An auto-exposure capability optimizes the dynamical range of the images. Dedicated hardware and software focus the telescope, with precision that is appropriate for the LIBS and imaging depths-of-field. The light emitted by the plasma is collected and sent to the Body-Unit via a 6 m optical fiber. The companion to this paper (Wiens et al. this issue) reports on the development of the Body-Unit, on the analysis of the emitted light, and on the good match between instrument performance and science specifications.

  20. Impact of interactive online units on learning science among students with learning disabilities and English learners

    Science.gov (United States)

    Terrazas-Arellanes, Fatima E.; Gallard M., Alejandro J.; Strycker, Lisa A.; Walden, Emily D.

    2018-03-01

    The purpose of this study was to document the design, classroom implementation, and effectiveness of interactive online units to enhance science learning over 3 years among students with learning disabilities, English learners, and general education students. Results of a randomised controlled trial with 2,303 middle school students and 71 teachers across 13 schools in two states indicated that online units effectively deepened science knowledge across all three student groups. Comparing all treatment and control students on pretest-to-posttest improvement on standards-based content-specific assessments, there were statistically significant mean differences (17% improvement treatment vs. 6% control; p English learner status, indicating that these two groups performed similarly to their peers; students with learning disabilities had significantly lower assessment scores overall. Teachers and students were moderately satisfied with the units.

  1. Mi-STAR Unit Challenges serve as a model for integrating earth science and systems thinking in a Next Generation Science Standards (NGSS) aligned curriculum.

    Science.gov (United States)

    Gochis, E. E.; Tubman, S.; Matthys, T.; Bluth, G.; Oppliger, D.; Danhoff, B.; Huntoon, J. E.

    2017-12-01

    Michigan Science Teaching and Assessment Reform (Mi-STAR) is developing an NGSS-aligned middle school curriculum and associated teacher professional learning program in which science is taught and learned as an integrated body of knowledge that can be applied to address societal issues. With the generous support of the Herbert H. and Grace A. Dow Foundation, Mi-STAR has released several pilot-tested units through the Mi-STAR curriculum portal at mi-star.mtu.edu. Each of these units focuses on an ongoing `Unit Challenge' investigation that integrates STEM content across disciplinary boundaries, stimulates interest, and engages students in using scientific practices to address 21st century challenges. Each Mi-STAR unit is connected to a Unifying NGSS Crosscutting Concept (CCC) that allows students to recognize the concepts that are related to the phenomena or problems under investigation. In the 6th grade, students begin with an exploration of the CCC Systems and System Models. Through repeated applications across units, students refine their understanding of what a system is and how to model a complex Earth system. An example 6th grade unit entitled "Water on the Move: The Water Cycle," provides an example of how Mi-STAR approaches the use of Unifying CCCs and Unit Challenges to enhance middle school students' understanding of the interconnections of Earth system processes and human activities. Throughout the unit, students use a series of hands-on explorations and simulations to explore the hydrologic cycle and how human activity can alter Earth systems. Students develop new knowledge through repeated interactions with the Unit Challenge, which requires development of system models and construction of evidence-based arguments related to flooding problems in a local community. Students have the opportunity to make predictions about how proposed land-use management practices (e.g. development of a skate-park, rain garden, soccer field, etc.) can alter the earth

  2. United States-Mexican Borderlands: Facing tomorrow's challenges through USGS science

    Science.gov (United States)

    Updike, Randall G.; Ellis, Eugene G.; Page, William R.; Parker, Melanie J.; Hestbeck, Jay B.; Horak, William F.

    2013-01-01

    Along the nearly 3,200 kilometers (almost 2,000 miles) of the United States–Mexican border, in an area known as the Borderlands, we are witnessing the expression of the challenges of the 21st century. This circular identifies several challenge themes and issues associated with life and the environment in the Borderlands, listed below. The challenges are not one-sided; they do not originate in one country only to become problems for the other. The issues and concerns of each challenge theme flow in both directions across the border, and both nations feel their effects throughout the Borderlands and beyond. The clear message is that our two nations, the United States and Mexico, face the issues in these challenge themes together, and the U.S. Geological Survey (USGS) understands it must work with its counterparts, partners, and customers in both countries.Though the mission of the USGS is not to serve as land manager, law enforcer, or code regulator, its innovation and creativity and the scientific and technical depth of its capabilities can be directly applied to monitoring the conditions of the landscape. The ability of USGS scientists to critically analyze the monitored data in search of signals and trends, whether they lead to negative or positive results, allows us to reach significant conclusions—from providing factual conclusions to decisionmakers, to estimating how much of a natural resource exists in a particular locale, to predicting how a natural hazard phenomenon will unfold, to forecasting on a scale from hours to millennia how ecosystems will behave.None of these challenge themes can be addressed strictly by one or two science disciplines; all require well-integrated, cross-discipline thinking, data collection, and analyses. The multidisciplinary science themes that have become the focus of the USGS mission parallel the major challenges in the border region between Mexico and the United States. Because of this multidisciplinary approach, the USGS

  3. 3D-Printing Crystallographic Unit Cells for Learning Materials Science and Engineering

    Science.gov (United States)

    Rodenbough, Philip P.; Vanti, William B.; Chan, Siu-Wai

    2015-01-01

    Introductory materials science and engineering courses universally include the study of crystal structure and unit cells, which are by their nature highly visual 3D concepts. Traditionally, such topics are explored with 2D drawings or perhaps a limited set of difficult-to-construct 3D models. The rise of 3D printing, coupled with the wealth of…

  4. Science, Society, and America's Nuclear Waste: The Nuclear Waste Policy Act, Unit 3. Teacher Guide. Second Edition.

    Science.gov (United States)

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 3 of the four-part series, Science, Society, and America's Nuclear Waste, produced by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management. The goal of this unit is to identify the key elements of the United States' nuclear waste dilemma and introduce the Nuclear Waste Policy Act and the role of the…

  5. Real-time SWMF-Geospace at CCMC: assessing the quality of output from continuous operational simulations

    Science.gov (United States)

    Liemohn, M. W.; Welling, D. T.; De Zeeuw, D.; Kuznetsova, M. M.; Rastaetter, L.; Ganushkina, N. Y.; Ilie, R.; Toth, G.; Gombosi, T. I.; van der Holst, B.

    2016-12-01

    The ground-based magnetometer index Dst is a decent measure of the near-Earth current systems, in particular those in the storm-time inner magnetosphere. The ability of a large-scale, physics-based model to reproduce, or even predict, this index is therefore a tangible measure of the overall validity of the code for space weather research and space weather operational usage. Experimental real-time simulations of the Space Weather Modeling Framework (SWMF) are conducted at the Community Coordinated Modeling Center (CCMC), with results available there (http://ccmc.gsfc.nasa.gov/realtime.php), through the CCMC Integrated Space Weather Analysis (iSWA) site (http://iswa.ccmc.gsfc.nasa.gov/IswaSystemWebApp/), and the Michigan SWMF site (http://csem.engin.umich.edu/realtime). Presently, two configurations of the SWMF are running in real time at CCMC, both focusing on the geospace modules, using the BATS-R-US magnetohydrodynamic model, the Ridley Ionosphere Model, and with and without the Rice Convection Model for inner magnetospheric drift physics. While both have been running for several years, nearly continuous results are available since July 2015. Dst from the model output is compared against the Kyoto real-time Dst. Various quantitative measures are presented to assess the goodness of fit between the models and observations. In particular, correlation coefficients, RMSE and prediction efficiency are calculated and discussed. In addition, contingency tables are presented, demonstrating the ability of the model to predict "disturbed times" as defined by Dst values below some critical threshold. It is shown that the SWMF run with the inner magnetosphere model is significantly better at reproducing storm-time values, with prediction efficiencies above 0.25 and Heidke skill scores above 0.5. This work was funded by NASA and NSF grants, and the European Union's Horizon 2020 research and innovation programme under grant agreement 637302 PROGRESS.

  6. Education and Outreach on Space Sciences and Technologies in Taiwan

    Science.gov (United States)

    Tiger Liu, Jann-Yeng; Chen, hao-Yen; Lee, I.-Te

    2014-05-01

    The Ionospheric Radio Science Laboratory (IRSL) at Institute of Space Science, National Central University in Taiwan has been conducting a program for public outreach educations on space science by giving lectures, organizing camps, touring exhibits, and experiencing hand-on experiments to elementary school, high school, and college students as well as general public since 1991. The program began with a topic of traveling/living in space, and was followed by space environment, space mission, and space weather monitoring, etc. and a series of course module and experiment (i.e. experiencing activity) module was carried out. For past decadal, the course modules have been developed to cover the space environment of the Sun, interplanetary space, and geospace, as well as the space technology of the rocket, satellite, space shuttle (plane), space station, living in space, observing the Earth from space, and weather observation. Each course module highlights the current status and latest new finding as well as discusses 1-3 key/core issues/concepts and equip with 2-3 activity/experiment modules to make students more easily to understand the topics/issues. Regarding the space technologies, we focus on remote sensing of Earth's surface by FORMOSAT-2 and occultation sounding by FORMOSAT-3/COSMIC of Taiwan space mission. Moreover, scientific camps are given to lead students a better understanding and interesting on space sciences/ technologies. Currently, a visualized image projecting system, Dagik Earth, is developed to demonstrate the scientific results on a sphere together with the course modules. This system will dramatically improve the educational skill and increase interests of participators.

  7. Science, Society, and America's Nuclear Waste: The Waste Management System, Unit 4. Teacher Guide. Second Edition.

    Science.gov (United States)

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 4 of the four-part series, Science, Society, and America's Nuclear Waste, produced by the U.S. Department of Energy's Office Civilian Radioactive Waste Management. The goal of this unit is to explain how transportation, a geologic repository, and the multi-purpose canister will work together to provide short-term and long-term…

  8. Creating Deep Time Diaries: An English/Earth Science Unit for Middle School Students

    Science.gov (United States)

    Jordan, Vicky; Barnes, Mark

    2006-01-01

    Students love a good story. That is why incorporating literary fiction that parallels teaching goals and standards can be effective. In the interdisciplinary, thematic six-week unit described in this article, the authors use the fictional book "The Deep Time Diaries," by Gary Raham, to explore topics in paleontology, Earth science, and creative…

  9. An Update on the Status of Anatomical Sciences Education in United States Medical Schools

    Science.gov (United States)

    Drake, Richard L.; McBride, Jennifer M.; Pawlina, Wojciech

    2014-01-01

    Curricular changes continue at United States medical schools and directors of gross anatomy, microscopic anatomy, neuroscience/neuroanatomy, and embryology courses continue to adjust and modify their offerings. Developing and supplying data related to current trends in anatomical sciences education is important if informed decisions are going to…

  10. Building the capacity for public engagement with science in the United States.

    Science.gov (United States)

    Guston, David H

    2014-01-01

    This paper reviews efforts of the Center for Nanotechnology in Society at Arizona State University (CNS-ASU) to begin to build capacity for public engagement with science in the United States. First, the paper sets a context in the US of the current challenges to democracy and for science. It then reviews the literature on the accomplishments of the National Citizens' Technology Forum (NCTF) on nanotechnology and human enhancement, held in 2008, as well as some caveats that emerged from that enterprise. It concludes with a brief discussion of two kinds of activities - participation in the World Wide Views process organized by the Danish Board of Technology, and methodological innovations that include more concrete and experiential modes of engagement - that have spun off from the NCTF.

  11. Measuring relative efficiency of applied science and technology universities in province of Semnan, Iran and providing suggestions for merging units

    Directory of Open Access Journals (Sweden)

    Abolfazl Danaei

    2013-03-01

    Full Text Available University of applied science and technology has been designed to create a platform for multilateral activities such as industrial, military and academic in developing countries to promote science and scientific research applications. These universities are responsible to promote practical training in quantitative and qualitative indicators and they provide appropriate infrastructure to implement theoretical graduates to solve practical problems to build necessary infrastructure to transfer modern technology into developing countries. During the past few years, there have been tremendous development on these units but some of them have not been efficient. In this paper, we present an empirical study to measure the relative efficiencies of various units of applied science and technology universities using data envelopment analysis. The proposed model of this paper uses two inputs including human resources as well as total assets and two outputs including the number of graduate students as well as operating profit. The results of the study have indicated that some of the units are inefficient and need to be merged with other units to increase the relative efficiency of these universities.

  12. Dr Kathryn Beers, Assistant Director Physical Sciences and Engineering, Office of Science and Technology Policy Executive Office of the President United States of America visit the CMS experiment at point 5.

    CERN Multimedia

    Maximilien Brice

    2007-01-01

    Dr Kathryn Beers, Assistant Director Physical Sciences and Engineering, Office of Science and Technology Policy Executive Office of the President United States of America visit the CMS experiment at point 5.

  13. Women's Advancement in Political Science. A Report on the APSA Workshop on the Advancement of Women in Academic Political Science in the United States (Washington, DC, March 4-5, 2004)

    Science.gov (United States)

    American Political Science Association (NJ1), 2005

    2005-01-01

    In March 2004, the National Science Foundation funded a two-day workshop by the American Political Science Association (APSA) on the advancement of women in academic political science in the United States. The workshop was prompted by an alarming stall in the number of women entering the discipline and persisting through early years of faculty…

  14. Meats Units for Agricultural Science I and Advanced Livestock Production and Marketing Courses. Instructor's Guide. Volume 18, Number 4.

    Science.gov (United States)

    Stewart, Bob R.; McCaskey, Michael J.

    These two units are designed to aid teachers in lesson planning in the secondary agricultural education curriculum in Missouri. The first unit, on meat identification, is to be taught as part of the first year of instruction in agricultural science, while the second unit, advanced meats, was prepared for use with 11th- and 12th-grade students in…

  15. General Education Earth, Astronomy and Space Science College Courses Serve as a Vehicle for Improving Science Literacy in the United States.

    Science.gov (United States)

    Prather, E.

    2011-10-01

    Every year approximately 500,000 undergraduate college students take a general education Earth, Astronomy and Space Science (EASS) course in the Unites States. For the majority of these students this will be their last physical science course in life. This population of students is incredibly important to the science literacy of the United States citizenry and to the success of the STEM career pipeline. These students represent future scientists, technologists, business leaders, politicians, journalists, historians, artists, and most importantly, policy makers, parents, voters, and teachers. A significant portion of these students are taught at minority serving institutions and community colleges and often are from underserved and underrepresented groups, such as women and minorities. Members of the Center for Astronomy Education (CAE) at the University of Arizona have been developing and conducting research on the effectiveness of instructional strategies and materials that are explicitly designed to challenge students' naïve ideas and intellectually engage their thinking at a deep level in the traditional lecture classroom. The results of this work show that dramatic improvement in student understanding can be made from increased use of interactive learning strategies. These improvements are shown to be independent of institution type or class size, but appear to be strongly influenced by the quality of the instructor's implementation. In addition, we find that the positive effects of interactive learning strategies apply equally to men and women, across ethnicities, for students with all levels of prior mathematical preparation and physical science course experience, independent of GPA, and regardless of primary language. These results powerfully illustrate that all students can benefit from the effective implementation of interactive learning strategies.

  16. A science confidence gap : Education, trust in scientific methods, and trust in scientific institutions in the United States, 2014

    NARCIS (Netherlands)

    Achterberg, P.H.J.; De Koster, W.; van der Waal, J.

    2017-01-01

    Following up on suggestions that attitudes toward science are multi-dimensional, we analyze nationally representative survey data collected in the United States in 2014 (N = 2006), and demonstrate the existence of a science confidence gap: some people place great trust in scientific methods and

  17. Investigation of science faculty with education specialties within the largest university system in the United States.

    Science.gov (United States)

    Bush, Seth D; Pelaez, Nancy J; Rudd, James A; Stevens, Michael T; Tanner, Kimberly D; Williams, Kathy S

    2011-01-01

    Efforts to improve science education include university science departments hiring Science Faculty with Education Specialties (SFES), scientists who take on specialized roles in science education within their discipline. Although these positions have existed for decades and may be growing more common, few reports have investigated the SFES approach to improving science education. We present comprehensive data on the SFES in the California State University (CSU) system, the largest university system in the United States. We found that CSU SFES were engaged in three key arenas including K-12 science education, undergraduate science education, and discipline-based science education research. As such, CSU SFES appeared to be well-positioned to have an impact on science education from within science departments. However, there appeared to be a lack of clarity and agreement about the purpose of these SFES positions. In addition, formal training in science education among CSU SFES was limited. Although over 75% of CSU SFES were fulfilled by their teaching, scholarship, and service, our results revealed that almost 40% of CSU SFES were seriously considering leaving their positions. Our data suggest that science departments would likely benefit from explicit discussions about the role of SFES and strategies for supporting their professional activities.

  18. A Year of Hands-on Science: Exciting Theme Units with More Than 100 Activities, Projects, and Experiments To Make Science Come Alive.

    Science.gov (United States)

    Kepler, Lynne; Novelli, Joan, Ed.

    This book contains 18 themed teaching units with 2 themes per chapter, organized seasonally around the traditional school year. Each theme includes natural connections and hands-on science activities that correspond to what children are already observing in their world. Each chapter begins with highlights of the month and a reproducible "Science…

  19. Solar and Space Physics: A Science for a Technological Society

    Science.gov (United States)

    2013-01-01

    From the interior of the Sun, to the upper atmosphere and near-space environment of Earth, and outward to a region far beyond Pluto where the Sun's influence wanes, advances during the past decade in space physics and solar physics the disciplines NASA refers to as heliophysics have yielded spectacular insights into the phenomena that affect our home in space. This report, from the National Research Council's (NRC's) Committee for a Decadal Strategy in Solar and Space Physics, is the second NRC decadal survey in heliophysics. Building on the research accomplishments realized over the past decade, the report presents a program of basic and applied research for the period 2013-2022 that will improve scientific understanding of the mechanisms that drive the Sun's activity and the fundamental physical processes underlying near-Earth plasma dynamics, determine the physical interactions of Earth's atmospheric layers in the context of the connected Sun-Earth system, and enhance greatly the capability to provide realistic and specific forecasts of Earth's space environment that will better serve the needs of society. Although the recommended program is directed primarily to NASA (Science Mission Directorate -- Heliophysics Division) and the National Science Foundation (NSF) (Directorate for Geosciences -- Atmospheric and Geospace Sciences) for action, the report also recommends actions by other federal agencies, especially the National Oceanic and Atmospheric Administration (NOAA) those parts of NOAA charged with the day-to-day (operational) forecast of space weather. In addition to the recommendations included in this summary, related recommendations are presented in the main text of the report.

  20. Earth Science Research in DUSEL; a Deep Underground Science and Engineering Laboratory in the United States

    Science.gov (United States)

    Fairhurst, C.; Onstott, T. C.; Tiedje, J. M.; McPherson, B.; Pfiffner, S. M.; Wang, J. S.

    2004-12-01

    A summary of efforts to create one or more Deep Underground Science and Engineering Laboratories (DUSEL) in the United States is presented. A workshop in Berkeley, August 11-14, 2004, explored the technical requirements of DUSEL for research in basic and applied geological and microbiological sciences, together with elementary particle physics and integrated education and public outreach. The workshop was organized by Bernard Sadoulet, an astrophysicist and the principal investigator (PI) of a community-wide DUSEL program evolving in coordination with the National Science Foundation. The PI team has three physicists (in nuclear science, high-energy physics, and astrophysics) and three earth scientists (in geoscience, biology and engineering). Presentations, working group reports, links to previous workshop/meeting talks, and information about DUSEL candidate sites, are presented in http://neutrino.lbl.gov/DUSELS-1. The Berkeley workshop is a continuation of decades of efforts, the most recent including the 2001 Underground Science Conference's earth science and geomicrobiology workshops, the 2002 International Workshop on Neutrino and Subterranean Science, and the 2003 EarthLab Report. This perspective (from three earth science co-PIs, the lead author of EarthLab report, the lead scientist of education/outreach, and the local earth science organizer) is to inform the community on the status of this national initiative, and to invite their active support. Having a dedicated facility with decades-long, extensive three-dimensional underground access was recognized as the most important single attribute of DUSEL. Many research initiatives were identified and more are expected as the broader community becomes aware of DUSEL. Working groups were organized to evaluate hydrology and coupled processes; geochemistry; rock mechanics/seismology; applications (e.g., homeland security, environment assessment, petroleum recovery, and carbon sequestration); geomicrobiology and

  1. Professor Tony F. Chan Assistant Director for Mathematics and Physical Sciences National Science Foundation United States of America on 23rd May 2007. Here visiting ATLAS experiment with P. Jenni and M. Tuts.

    CERN Multimedia

    Maximilien Brice

    2007-01-01

    Professor Tony F. Chan Assistant Director for Mathematics and Physical Sciences National Science Foundation United States of America on 23rd May 2007. Here visiting ATLAS experiment with P. Jenni and M. Tuts.

  2. NSF's Perspective on Space Weather Research for Building Forecasting Capabilities

    Science.gov (United States)

    Bisi, M. M.; Pulkkinen, A. A.; Bisi, M. M.; Pulkkinen, A. A.; Webb, D. F.; Oughton, E. J.; Azeem, S. I.

    2017-12-01

    Space weather research at the National Science Foundation (NSF) is focused on scientific discovery and on deepening knowledge of the Sun-Geospace system. The process of maturation of knowledge base is a requirement for the development of improved space weather forecast models and for the accurate assessment of potential mitigation strategies. Progress in space weather forecasting requires advancing in-depth understanding of the underlying physical processes, developing better instrumentation and measurement techniques, and capturing the advancements in understanding in large-scale physics based models that span the entire chain of events from the Sun to the Earth. This presentation will provide an overview of current and planned programs pertaining to space weather research at NSF and discuss the recommendations of the Geospace Section portfolio review panel within the context of space weather forecasting capabilities.

  3. Research Directions: Multimodal Books in Science-Literacy Units: Language and Visual Images for Meaning Making

    Science.gov (United States)

    Pappas, Christine C.; Varelas, Maria

    2009-01-01

    This article presents a review of the author's long-term research in urban classrooms. The authors explore six illustrated information books created by children as culminating activities of integrated science-literacy units, Forest and Matter, that they developed, implemented, and studied in several 1st-3rd grade classrooms in Chicago Public…

  4. Gender in STEM Education: An Exploratory Study of Student Perceptions of Math and Science Instructors in the United Arab Emirates

    Science.gov (United States)

    Pasha-Zaidi, Nausheen; Afari, Ernest

    2016-01-01

    The current study addresses student perceptions of math and science professors in the Middle East. Gender disparity in science, technology, engineering, and math (STEM) education continues to exist in higher education, with male professors holding a normative position. This disparity can also be seen in the United Arab Emirates. As female…

  5. Science Literacy of Undergraduates in the United States

    Science.gov (United States)

    Impey, Chris

    2013-01-01

    Science literacy is a matter of broad concern among scientists, educators, and many policy-makers. National Science Foundation surveys of the general public for biannual Science Indicators series show that respondents on average score less than 2/3 correct on a series of science knowledge questions, and less than half display an understanding of the process of scientific inquiry. Both measures are essentially unchanged over two decades. At the University of Arizona, we have gathered over 11,000 undergraduate student responses to a survey of knowledge and beliefs that is tethered in the NSF survey. This non-science major population demographically represents ten million students nationwide. There is a less than 10% gain in performance in the science knowledge score between the incoming freshmen and seniors who graduate having completed their requirement of three science classes. Belief levels in pseudoscience and supernatural phenomena are disconcertingly high, mostly resistant to college science instruction, and weakly correlated with performance on the science knowledge questions. The Internet is rapidly becoming the primary information source for anyone interested in science so students may not get most of their information from the classroom. Educators and policy makers need to decide what aspects of science knowledge and process are important for adults to know. College science educators have major challenges in better in preparing graduates for participation in a civic society largely driven by science and technology.

  6. The Effect of Jigsaw Technique on 6th Graders' Learning of Force and Motion Unit and Their Science Attitudes and Motivation

    Science.gov (United States)

    Ural, Evrim; Ercan, Orhan; Gençoglan, Durdu Mehmet

    2017-01-01

    The study aims to investigate the effects of jigsaw technique on 6th graders' learning of "Force and Motion" unit, their science learning motivation and their attitudes towards science classes. The sample of the study consisted of 49 6th grade students from two different classes taking the Science and Technology course at a government…

  7. Science, society, and America's nuclear waste: Unit 2, Ionizing radiation

    International Nuclear Information System (INIS)

    1992-01-01

    ''Science, Society and America's Nuclear Waste'' is a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system

  8. United Kingdom Nuclear Science Forum Progress Report. Data Studies during 2008

    Energy Technology Data Exchange (ETDEWEB)

    Hawkes, N.P. (ed.) [National Physical Laboratory, Acoustics and Ionising Radiation Division, Middlesex (United Kingdom)

    2010-02-15

    The United Kingdom Nuclear Science Forum (UKNSF) meets twice a year to discuss issues relating to the measurement and evaluation of nuclear data. Topics cover a wide range of applications in the UK nuclear industry. Links between members are maintained throughout the year, mainly through e-mail and the UKNSF website (www.uknsf.ofg.uk). Work of primary interest includes the measurement and evaluation of decay data (e.g. half-lives and gamma ray emission probabilities), fission yields, and neutron cross sections for fission and fusion. All known studies within the UK are summarised in this report. Specific applications and international links of relevance are also described. (author)

  9. United Kingdom Nuclear Science Forum Progress Report. Data Studies during 2008

    International Nuclear Information System (INIS)

    Hawkes, N.P.

    2010-02-01

    The United Kingdom Nuclear Science Forum (UKNSF) meets twice a year to discuss issues relating to the measurement and evaluation of nuclear data. Topics cover a wide range of applications in the UK nuclear industry. Links between members are maintained throughout the year, mainly through e-mail and the UKNSF website (www.uknsf.ofg.uk). Work of primary interest includes the measurement and evaluation of decay data (e.g. half-lives and gamma ray emission probabilities), fission yields, and neutron cross sections for fission and fusion. All known studies within the UK are summarised in this report. Specific applications and international links of relevance are also described. (author)

  10. Sunflower/Girasol: Spanish/English Elementary School Science Activity Curriculum. Evaluation of the Educational Efficacy of the Plant and Water Units.

    Science.gov (United States)

    Intercultural Center for Research in Education, Arlington, MA.

    The Sunflower/Girasol program is a Spanish/English bilingual science discovery program for Hispanic children in grades 2-6, designed to improve science instruction and educational opportunity for this group. The report describes the program's proposed activities and products, progress to date, and results of an evaluation of the first two units of…

  11. Computer science teacher professional development in the United States: a review of studies published between 2004 and 2014

    Science.gov (United States)

    Menekse, Muhsin

    2015-10-01

    While there has been a remarkable interest to make computer science a core K-12 academic subject in the United States, there is a shortage of K-12 computer science teachers to successfully implement computer sciences courses in schools. In order to enhance computer science teacher capacity, training programs have been offered through teacher professional development. In this study, the main goal was to systematically review the studies regarding computer science professional development to understand the scope, context, and effectiveness of these programs in the past decade (2004-2014). Based on 21 journal articles and conference proceedings, this study explored: (1) Type of professional development organization and source of funding, (2) professional development structure and participants, (3) goal of professional development and type of evaluation used, (4) specific computer science concepts and training tools used, (5) and their effectiveness to improve teacher practice and student learning.

  12. Impact of Interactive Online Units on Learning Science among Students with Learning Disabilities and English Learners

    Science.gov (United States)

    Terrazas-Arellanes, Fatima E.; Gallard M., Alejandro J.; Strycker, Lisa A.; Walden, Emily D.

    2018-01-01

    The purpose of this study was to document the design, classroom implementation, and effectiveness of interactive online units to enhance science learning over 3 years among students with learning disabilities, English learners, and general education students. Results of a randomised controlled trial with 2,303 middle school students and 71…

  13. Black Scientists and Inventors in the United States: 1731-1980. Curriculum Guide: Department of Science, Cambridge Rindge and Latin School.

    Science.gov (United States)

    Walcott, Phyllis B.

    Four units focusing on 16 different Black scientists or inventors who have contributed to American life and research are presented. As part of an interdisciplinary high school science course, the units are designed to help students develop an understanding of and appreciation for the talents of the individuals studied, motivate minority students…

  14. Regional Centres for Space Science and Technology Education and ICG Information Centres affiliated to the United Nations

    Science.gov (United States)

    Gadimova, S.; Haubold, H. J.

    2009-06-01

    Based on resolutions of the United Nations General Assembly, Regional Centres for Space Science and Technology Education were established in India, Morocco, Nigeria, Brazil and Mexico. Simultaneously, education curricula were developed for the core disciplines of remote sensing, satellite communications, satellite meteorology, and space and atmospheric science. This paper provides a brief summary on the status of the operation of the regional centres with a view to use them as information centres of the International Committee on Global Navigation Satellite Systems (ICG), and draws attention to their educational activities.

  15. Naval Research Laboratory Fact Book 2012

    Science.gov (United States)

    2012-11-01

    markets NRL’s patented inventions, negotiates patent license agreements under which the Navy grants a licensee the right to make, use, and sell NRL...Sr. Licensing Associate Social Media Marketing Associate Licensing Associate Management Analyst Administrative Assistant (SCEP) Administrative...ADMINISTRATIVE OFFICE SENIOR SCIENTIST FOR SUN-EARTH SYSTEMS RESEARCH 7605 GEOSPACE SCIENCE AND TECHNOLOGY BRANCH 7630 SPACE TEST PROGRAM ( STP

  16. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Santanu Bhattacharya1 Raghavan Varadarajan2. Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012; Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012 ...

  17. Attack Helicopter Operations: Art or Science

    Science.gov (United States)

    1991-05-13

    ATTACK HELICOPTER OPERATIONS: ART OR SCIENCE ? BY LIEUTENANT COLONEL JAN CALLEN United States Army DISTRIBUTION STATEMENT A: Approved for public release...TASK IWORK UNIT ELEMENT NO. NO. NO. ACCESSION NC 11. TITLE (Include Socurity Classification) Attack Helicopter Operations: Art or Science ? 12. PERSONAL...OPERATIONS: ART OR SCIENCE ? AN INDIVIDUAL STUDY PROJECT by Lieutenant Colonel Jan Callen United States Army Colonel Greg Snelgrove Project Adviser U.S

  18. Science in Cinema. Teaching Science Fact through Science Fiction Films.

    Science.gov (United States)

    Dubeck, Leroy W.; And Others

    Many feel that secondary school graduates are not prepared to compete in a world of rapidly expanding technology. High school and college students in the United States often prefer fantasy to science. This book offers a strategy for overcoming student apathy toward the physical sciences by harnessing the power of the cinema. In it, ten popular…

  19. Sun-Earth Day Connects History, Culture and Science

    Science.gov (United States)

    Cline, T.; Thieman, J.

    2003-12-01

    The NASA Sun-Earth Connection Education forum annually promotes and event called Sun-Earth Day: a national celebration of the Sun, the space around the Earth (geospace), and how all of it affects life on our planet. For the past 3 years this event has provided a venue by which classrooms, museums, planetaria, and at NASA centers have had a sensational time sharing stories, images, and activities related to the Sun-Earth connections and the views o fthe Sun from Earth. Each year we select a different theme by which NASA Space Science can be further related to cross-curricular activities. Sun-Earth Day 2002, "Celebrate the Equinox", drew parallels between Native American Cultures and NASA's Sun-Earth Connection research via cultural stories, interviews, web links, activities and Native American participation. Sun-Earth Day 2003, "Live From the Aurora", shared the beauty of the Aurora through a variety of activities and stories related to perspectives of Northern Peoples. Sun-Earth Day 2004 will share the excitement of the transit of Venus through comparisons of Venus with Earth and Mars, calculations of the distances to nearby stars, and the use of transits to identify extra-solar planets. Finally, Sun-Earth Day 2005 will bring several of these themes together by turning our focus to the history and culture surrounding ancient observatories such as Chaco Canyon, Machu Picchu, and Chichen Itza.

  20. Show Me the Evidence: How a Unit Challenge Can Support Middle School Teachers and Students in Investigating Climate Change Using Real-World Data and Science Practices

    Science.gov (United States)

    Gochis, E. E.; Tubman, S.; Grazul, K.; Bluth, G.; Huntoon, J. E.

    2017-12-01

    Michigan Science Teaching and Assessment Reform (Mi-STAR) is developing an NGSS-aligned integrated science middle school curriculum and associated teacher professional learning program that addresses all performance expectations for the 6-8 grade-band. The Mi-STAR instructional model is a unit- and lesson-level model that scaffolds students in using science practices to investigate scientific phenomena and apply engineering principles to address a real-world challenge. Mi-STAR has developed an 8th grade unit on climate change based on the Mi-STAR instructional model and NGSS performance expectations. The unit was developed in collaboration with Michigan teachers, climate scientists, and curriculum developers. The unit puts students in the role of advisers to local officials who need an evidence-based explanation of climate change and recommendations about community-based actions to address it. Students discover puzzling signs of global climate change, ask questions about these signs, and engage in a series of investigations using simulations and real data to develop scientific models for the mechanisms of climate change. Students use their models as the basis for evidence-based arguments about the causes and impacts of climate change and employ engineering practices to propose local actions in their community to address climate change. Dedicated professional learning supports teachers before and during implementation of the unit. Before implementing the unit, all teachers complete an online self-paced "unit primer" during which they assume the role of their students as they are introduced to the unit challenge. During this experience, teachers experience science as a practice by using real data and simulations to develop a model of the causes of climate change, just as their students will later do. During unit implementation, teachers are part of a professional learning community led by a teacher facilitator in their local area or school. This professional learning

  1. Science Lives: Women and Minorities in the Sciences.

    Science.gov (United States)

    Minnesota Univ., Minneapolis. KUOM Radio.

    This pamphlet and accompanying brochure of the same title describe a radio series of 13 half hour programs on the participation of women and minorities in science in the United States. The series attempts to make the public aware of the crisis in the sciences and science education and provides role models for young people, particularly young women…

  2. Uniting Science and Literacy: A WIn for All (Invited)

    Science.gov (United States)

    Cobabe-Ammann, E. A.

    2009-12-01

    Science is all about inquiry in our natural world. Yet all of the observational skills at our fingertips are useless if we don’t have the ability to communicate it effectively to our friends, family, and classmates. The development of language skills is critical for students to be able to codify their ideas, integrate observations from the outside, and synthesize both to create the next step in their educational journey. The connections between science and literacy in the classroom have received increasing attention over the last two decades, as more and more evidence demonstrates that science offers an important opportunity to excite and engage students in the area of literacy improvement. When students are actively participating in science activities, including making observations, formulating hypotheses, and explicating their findings, they are also learning to utilize language to express then ideas. In addition, combining literacy with science allows students to increase their ability to explore their world or universe by taking vicarious journeys to the bottom of the ocean or the edge of our solar system. Combining science and literacy helps both, improving both reading and science scores, as well as increasing students’ interest in science. This talk explores the importance of connecting science and literacy as a pathway to allowing students to excel at both.

  3. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. DIPU SUTRADHAR. Articles written in Journal of Chemical Sciences. Volume 128 Issue 9 September 2016 pp 1377-1384 Regular Article. Two new hexacoordinated coordination polymers of cadmium(II) containing bridging units only: Syntheses, structures and molecular ...

  4. A science confidence gap: Education, trust in scientific methods, and trust in scientific institutions in the United States, 2014.

    Science.gov (United States)

    Achterberg, Peter; de Koster, Willem; van der Waal, Jeroen

    2017-08-01

    Following up on suggestions that attitudes toward science are multi-dimensional, we analyze nationally representative survey data collected in the United States in 2014 ( N = 2006), and demonstrate the existence of a science confidence gap: some people place great trust in scientific methods and principles, but simultaneously distrust scientific institutions. This science confidence gap is strongly associated with level of education: it is larger among the less educated than among the more educated. We investigate explanations for these educational differences. Whereas hypotheses deduced from reflexive-modernization theory do not pass the test, those derived from theorizing on the role of anomie are corroborated. The less educated are more anomic (they have more modernity-induced cultural discontents), which not only underlies their distrust in scientific institutions, but also fuels their trust in scientific methods and principles. This explains why this science confidence gap is most pronounced among the less educated.

  5. Space Weather Research at the National Science Foundation

    Science.gov (United States)

    Moretto, T.

    2015-12-01

    There is growing recognition that the space environment can have substantial, deleterious, impacts on society. Consequently, research enabling specification and forecasting of hazardous space effects has become of great importance and urgency. This research requires studying the entire Sun-Earth system to understand the coupling of regions all the way from the source of disturbances in the solar atmosphere to the Earth's upper atmosphere. The traditional, region-based structure of research programs in Solar and Space physics is ill suited to fully support the change in research directions that the problem of space weather dictates. On the observational side, dense, distributed networks of observations are required to capture the full large-scale dynamics of the space environment. However, the cost of implementing these is typically prohibitive, especially for measurements in space. Thus, by necessity, the implementation of such new capabilities needs to build on creative and unconventional solutions. A particularly powerful idea is the utilization of new developments in data engineering and informatics research (big data). These new technologies make it possible to build systems that can collect and process huge amounts of noisy and inaccurate data and extract from them useful information. The shift in emphasis towards system level science for geospace also necessitates the development of large-scale and multi-scale models. The development of large-scale models capable of capturing the global dynamics of the Earth's space environment requires investment in research team efforts that go beyond what can typically be funded under the traditional grants programs. This calls for effective interdisciplinary collaboration and efficient leveraging of resources both nationally and internationally. This presentation will provide an overview of current and planned initiatives, programs, and activities at the National Science Foundation pertaining to space weathe research.

  6. NSF Lower Atmospheric Observing Facilities (LAOF) in support of science and education

    Science.gov (United States)

    Baeuerle, B.; Rockwell, A.

    2012-12-01

    Researchers, students and teachers who want to understand and describe the Earth System require high quality observations of the atmosphere, ocean, and biosphere. Making these observations requires state-of-the-art instruments and systems, often carried on highly capable research platforms. To support this need of the geosciences community, the National Science Foundation's (NSF) Division of Atmospheric and Geospace Sciences (AGS) provides multi-user national facilities through its Lower Atmospheric Observing Facilities (LAOF) Program at no cost to the investigator. These facilities, which include research aircraft, radars, lidars, and surface and sounding systems, receive NSF financial support and are eligible for deployment funding. The facilities are managed and operated by five LAOF partner organizations: the National Center for Atmospheric Research (NCAR); Colorado State University (CSU); the University of Wyoming (UWY); the Center for Severe Weather Research (CSWR); and the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS). These observational facilities are available on a competitive basis to all qualified researchers from US universities, requiring the platforms and associated services to carry out various research objectives. The deployment of all facilities is driven by scientific merit, capabilities of a specific facility to carry out the proposed observations, and scheduling for the requested time. The process for considering requests and setting priorities is determined on the basis of the complexity of a field campaign. The poster will describe available observing facilities and associated services, and explain the request process researchers have to follow to secure access to these platforms for scientific as well as educational deployments. NSF/NCAR GV Aircraft

  7. Fermentation. Third World Science.

    Science.gov (United States)

    Jones, Natalie; Hughes, Wyn

    This unit, developed by the Third World Science Project, is designed to add a multicultural element to existing science syllabi (for students aged 11-16) in the United Kingdom. The project seeks to develop an appreciation of the: boundless fascination of the natural world; knowledge, skills, and expertise possessed by men/women everywhere;…

  8. Earth Science: It's All about the Processes

    Science.gov (United States)

    King, Chris

    2013-01-01

    Readers of the draft new English primary science curriculum (DfE, 2012) might be concerned to see that there is much more detail on the Earth science content than previously in the United Kingdom. In this article, Chris King, a professor of Earth Science Education at Keele University and Director of the Earth Science Education Unit (ESEU),…

  9. The Earth Science Education Unit's Professional Development Workshop on "The Carbon Question--Cycling, Releasing, Capturing" for Teachers of Key Stages 3 and 4

    Science.gov (United States)

    King, Chris

    2014-01-01

    The revised National Curriculum for Science for key stages 3 and 4 (ages 11-16) in England provides the opportunity to develop a new coherent approach to teaching about the carbon cycle, the use of carbon as a fuel and the resulting issues. The Earth Science Education Unit (ESEU) intends to develop a new workshop to support the teaching of this…

  10. Clinical medical sciences for undergraduate dental students in the United Kingdom and Ireland - a curriculum.

    LENUS (Irish Health Repository)

    Mighell, A J

    2011-08-01

    The technical aspects of dentistry need to be practised with insight into the spectrum of human diseases and illnesses and how these impact upon individuals and society. Application of this insight is critical to decision-making related to the planning and delivery of safe and appropriate patient-centred healthcare tailored to the needs of the individual. Provision for the necessary training is included in undergraduate programmes, but in the United Kingdom and Ireland there is considerable variation between centres without common outcomes. In 2009 representatives from 17 undergraduate dental schools in the United Kingdom and Ireland agreed to move towards a common, shared approach to meet their own immediate needs and that might also be of value to others in keeping with the Bologna Process. To provide a clear identity the term \\'Clinical Medical Sciences in Dentistry\\' was agreed in preference to other names such as \\'Human Disease\\' or \\'Medicine and Surgery\\'. The group was challenged to define consensus outcomes. Contemporary dental education documents informed, but did not drive the process. The consensus curriculum for undergraduate Clinical Medical Sciences in Dentistry teaching agreed by the participating centres is reported. Many of the issues are generic and it includes elements that are likely to be applicable to others. This document will act as a focus for a more unified approach to the outcomes required by graduates of the participating centres and act as a catalyst for future developments that ultimately aim to enhance the quality of patient care.

  11. Science Specialists or Classroom Teachers: Who Should Teach Elementary Science?

    Science.gov (United States)

    Levy, Abigail Jurist; Jia, Yueming; Marco-Bujosa, Lisa; Gess-Newsome, Julie; Pasquale, Marian

    2016-01-01

    This study examined science programs, instruction, and student outcomes at 30 elementary schools in a large, urban district in the northeast United States in an effort to understand whether there were meaningful differences in the quality, quantity and cost of science education when provided by a science specialist or a classroom teacher. Student…

  12. Biogeography of Missouri. Instructional Unit. Conservation Education Series.

    Science.gov (United States)

    Castillon, David A.

    This unit is designed to help social studies or science teachers incorporate ecological concepts into the teaching of science and Missouri geography. The unit includes: (1) a topic outline; (2) general unit objectives; (3) an introduction to basic biogeographical concepts; (4) descriptions of the glaciated prairie, unglaciated prairie, ozark, and…

  13. Deciding on Science: An Analysis of Higher Education Science Student Major Choice Criteria

    Science.gov (United States)

    White, Stephen Wilson

    The number of college students choosing to major in science, technology, engineering, and math (STEM) in the United States affects the size and quality of the American workforce (Winters, 2009). The number of graduates in these academic fields has been on the decline in the United States since the 1960s, which, according to Lips and McNeil (2009), has resulted in a diminished ability of the United States to compete in science and engineering on the world stage. The purpose of this research was to learn why students chose a STEM major and determine what decision criteria influenced this decision. According to Ajzen's (1991) theory of planned behavior (TPB), the key components of decision-making can be quantified and used as predictors of behavior. In this study the STEM majors' decision criteria were compared between different institution types (two-year, public four-year, and private four-year), and between demographic groups (age and sex). Career, grade, intrinsic, self-efficacy, and self-determination were reported as motivational factors by a majority of science majors participating in this study. Few students reported being influenced by friends and family when deciding to major in science. Science students overwhelmingly attributed the desire to solve meaningful problems as central to their decision to major in science. A majority of students surveyed credited a teacher for influencing their desire to pursue science as a college major. This new information about the motivational construct of the studied group of science majors can be applied to the previously stated problem of not enough STEM majors in the American higher education system to provide workers required to fill the demand of a globally STEM-competitive United States (National Academy of Sciences, National Academy of Engineering, & Institute of Medicine, 2010).

  14. Next Generation Science Standards and edTPA: Evidence of Science and Engineering Practices

    Science.gov (United States)

    Brownstein, Erica M.; Horvath, Larry

    2016-01-01

    Science teacher educators in the United States are currently preparing future science teachers to effectively implement the "Next Generation Science Standards" (NGSS) and, in thirteen states, to successfully pass a content-specific high stakes teacher performance assessment, the edTPA. Science education and teacher performance assessment…

  15. United States Science Policy: from Conceptions to Practice

    Directory of Open Access Journals (Sweden)

    V I Konnov

    2012-06-01

    Full Text Available The authors analyze the organizational structure of the U.S. scientific community, examining the V. Bush report Science: the Endless Frontier (1945 as its conceptual basis, which remains the cornerstone of the American science policy. The authors point out decentralization as the key trait of this structure, which reveals itself in the absence of a unitary centre with a mission to formulate and implement science policy and high level of dissemination of self-government practices supported by a wide range of government agencies. This configuration determines the special position, occupied by the universities as universal research establishments possessing flexibility in cooperation with state agencies and private sector.

  16. Dr Pierre Perrolle, Director, Office of International Science and Engineering, National Science Foundation, United States of America

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    Photo 01: Dr Pierre Perrolle, Director, Office of International Science and Engineering, National Science Foundation, USA (second from right) in the ATLAS assembly hall with from left to right Randi Ruchti, Peter Jenni and Robert Eisenstein, Senior Science Advisor, National Science Foundation, USA. Photo 02: Dr Pierre Perrolle, Director, Office of International Science and Engineering, National Science Foundation, USA (second from right) in the ATLAS assembly hall with from left to right Randi Ruchti, Robert Eisenstein, Senior Science Advisor, National Science Foundation, USA and Peter Jenni. Photo 03: Dr Pierre Perrolle, Director, Office of International Science and Engineering, National Science Foundation, USA (second from right) in front of the ATLAS End-Cap Toroid vacuum vessel in the ATLAS assembly hall with from left to right Peter Jenni, Robert Eisenstein, Senior Science Advisor, National Science Foundation, USA and Randi Ruchti ________________________________

  17. Water Pollution, Environmental Science Curriculum Guide Supplement.

    Science.gov (United States)

    McKenna, Harold J.

    This curriculum guide is a 40-day unit plan on water pollution developed, in part, from the National Science Foundation Environmental Science Institutes' Ninth Grade Environmental Science Curriculum Guide. This unit contains teacher lesson plans, suggested teacher and student modules, case studies, and activities to be developed by teachers…

  18. International solar-terrestrial physics program: a plan for the core spaceflight missions

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    This brochure has been prepared to describe the scope of the science problems to be investigated and the mission plan for the core International Solar-Terrestrial Physics (ISTP) Program. This information is intended to stimulate discussions and plans for the comprehensive worldwide ISTP Program. The plan for the study of the solar - terrestrial system is included. The Sun, geospace, and Sun-Earth interaction is discussed as is solar dynamics and the origins of solar winds.

  19. Task value profiles across subjects and aspirations to physical and IT-related sciences in the United States and Finland.

    Science.gov (United States)

    Chow, Angela; Eccles, Jacquelynne S; Salmela-Aro, Katariina

    2012-11-01

    Two independent studies were conducted to extend previous research by examining the associations between task value priority patterns across school subjects and aspirations toward the physical and information technology- (IT-) related sciences. Study 1 measured task values of a sample of 10th graders in the United States (N = 249) across (a) physics and chemistry, (b) math, and (c) English. Study 2 measured task values of a sample of students in the second year of high school in Finland (N = 351) across (a) math and science, (b) Finnish, and (c) the arts and physical education. In both studies, students were classified into groups according to how they ranked math and science in relation to the other subjects. Regression analyses indicated that task value group membership significantly predicted subsequent aspirations toward physical and IT-related sciences measured 1-2 years later. The task value groups who placed the highest priority on math and science were significantly more likely to aspire to physical and IT-related sciences than were the other groups. These findings provide support for the theoretical assumption regarding the predictive role of intraindividual hierarchical patterns of task values for subsequent preferences and choices suggested by the Eccles [Parsons] (1983) expectancy-value model.

  20. Citizen science can improve conservation science, natural resource management, and environmental protection

    Science.gov (United States)

    McKinley, Duncan C.; Miller-Rushing, Abe J.; Ballard, Heidi L.; Bonney, Rick; Brown, Hutch; Cook-Patton, Susan; Evans, Daniel M.; French, Rebecca A.; Parrish, Julia; Phillips, Tina B.; Ryan, Sean F.; Shanley, Lea A.; Shirk, Jennifer L.; Stepenuck, Kristine F.; Weltzin, Jake F.; Wiggins, Andrea; Boyle, Owen D.; Briggs, Russell D.; Chapin, Stuart F.; Hewitt, David A.; Preuss, Peter W.; Soukup, Michael A.

    2017-01-01

    Citizen science has advanced science for hundreds of years, contributed to many peer-reviewed articles, and informed land management decisions and policies across the United States. Over the last 10 years, citizen science has grown immensely in the United States and many other countries. Here, we show how citizen science is a powerful tool for tackling many of the challenges faced in the field of conservation biology. We describe the two interwoven paths by which citizen science can improve conservation efforts, natural resource management, and environmental protection. The first path includes building scientific knowledge, while the other path involves informing policy and encouraging public action. We explore how citizen science is currently used and describe the investments needed to create a citizen science program. We find that:Citizen science already contributes substantially to many domains of science, including conservation, natural resource, and environmental science. Citizen science informs natural resource management, environmental protection, and policymaking and fosters public input and engagement.Many types of projects can benefit from citizen science, but one must be careful to match the needs for science and public involvement with the right type of citizen science project and the right method of public participation.Citizen science is a rigorous process of scientific discovery, indistinguishable from conventional science apart from the participation of volunteers. When properly designed, carried out, and evaluated, citizen science can provide sound science, efficiently generate high-quality data, and help solve problems.

  1. Negotiating Science and Engineering: An Exploratory Case Study of a Reform-Minded Science Teacher

    Science.gov (United States)

    Guzey, S. Selcen; Ring-Whalen, Elizabeth A.

    2018-01-01

    Engineering has been slowly integrated into K-12 science classrooms in the United States as the result of recent science education reforms. Such changes in science teaching require that a science teacher is confident with and committed to content, practices, language, and cultures related to both science and engineering. However, from the…

  2. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Aloke Kumar Ghosh. Articles written in Journal of Chemical Sciences. Volume 124 Issue 6 November 2012 pp 1377-1383. Rhomboidal [Cu4] coordination cluster from self-assembly of two asymmetric phenoxido-bridged Cu2 units: Role of 1,1-azido clips · Avijit Sarkar Aloke ...

  3. Integrating Forensic Science.

    Science.gov (United States)

    Funkhouser, John; Deslich, Barbara J.

    2000-01-01

    Explains the implementation of forensic science in an integrated curriculum and discusses the advantages of this approach. Lists the forensic science course syllabi studied in three high schools. Discusses the unit on polymers in detail. (YDS)

  4. Attribution Theory in Science Achievement

    Science.gov (United States)

    Craig, Martin

    2013-01-01

    Recent research reveals consistent lags in American students' science achievement scores. Not only are the scores lower in the United States compared to other developed nations, but even within the United States, too many students are well below science proficiency scores for their grade levels. The current research addresses this problem by…

  5. Methane Digestors. Third World Science.

    Science.gov (United States)

    Jones, Natalie; Hughes, Wyn

    This unit, developed by the Third World Science Project, is designed to add a multicultural element to existing science syllabi (for students aged 11-16) in the United Kingdom. The project seeks to develop an appreciation of the: boundless fascination of the natural world; knowledge, skills, and expertise possessed by men/women everywhere;…

  6. The National Science Foundation and the History of Science

    Science.gov (United States)

    Rothenberg, Marc

    2014-01-01

    The National Science Foundation (NSF) is the major funder of the history of science in the United States. Between 1958 and 2010, the NSF program for the history of science has given 89 awards in the history of astronomy. This paper analyzes the award recipients and subject areas of the awards and notes significant shifts in the concentration of award recipients and the chronological focus of the research being funded.

  7. Science policy and diplomacy in UNESCO 1955-1975

    DEFF Research Database (Denmark)

    Andersen, Casper; Christensen, Ivan Lind

    . In a seminal article Martha Finnemore has demonstrated that UNESCO from the mid-1950s pushed for the establishment of national science policy units in UNESCO member states. This often happened against the expressed priorities of member states that did not regard science policy units as an indispensable part......Science diplomacy has become increasingly important in inter-state relations during the last decades and historians are only now beginning to explore its historical roots. This work-in-progress paper is a contribution to the history of international science relations and science diplomacy...... of their state apparatus or imagined the science policy unite in a different manner. Finnemore thus showed how UNESCO served as a supplier of norms in international science relations. In this paper we revisit UNESCO Science policy program from the perspective of the member states - the recipients of UNESCO...

  8. ORGANIZATION II, NOVA SCIENCE UNIT 3.

    Science.gov (United States)

    Broward County Schools, Fort Lauderdale, FL.

    THE ORGANIZATION OF THE NATURE OF SCIENCE IS EMPHASIZED THROUGH A FOCUS ON CHEMICAL REACTIONS. SIMILARITIES OF THE REACTIONS OF THE HALOGENS WITH THE ALKALI METALS OF LITHIUM, SODIUM, POTASSIUM, AND HYDROGEN ARE INTRODUCED TO THE STUDENT. STUDENTS ARE INTRODUCED TO THE PERIODIC TABLE OF ELEMENTS WHICH EMPHASIZES THE ORGANIZATION OF CHEMICAL…

  9. Combustion strategy : United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Greenhalgh, D. [Heriot-Watt Univ., Edingburgh, Scotland (United Kingdom). School of Engineering and Physical Sciences

    2009-07-01

    The United Kingdom's combustion strategy was briefly presented. Government funding sources for universities were listed. The United Kingdom Research Councils that were listed included the Arts and Humanities Research Council (AHRC) and the Biotechnology and Biological Sciences Research Council (BBSRC); the Engineering and Physical Sciences Research Council (EPSRC); the Economic and Social Research Council; the Medical Research Council; the Natural Environment Research Council; and the Science and Technology Facilities Council. The EPSRC supported 65 grants worth 30.5 million pounds. The combustion industry was noted to be dominated by three main players of which one was by far the largest. The 3 key players were Rolls-Royce; Jaguar Land Rover; and Doosan Babcock. Industry and government involvement was also discussed for the BIS Technology Strategy Board, strategy technology areas, and strategy application areas.

  10. Emotionally Intense Science Activities

    Science.gov (United States)

    King, Donna; Ritchie, Stephen; Sandhu, Maryam; Henderson, Senka

    2015-01-01

    Science activities that evoke positive emotional responses make a difference to students' emotional experience of science. In this study, we explored 8th Grade students' discrete emotions expressed during science activities in a unit on Energy. Multiple data sources including classroom videos, interviews and emotion diaries completed at the end of…

  11. What Science Teaching Looks Like: An International Perspective

    Science.gov (United States)

    Roth, Kathleen; Garnier, Helen

    2007-01-01

    Using the Trends in International Mathematics and Science (TIMSS) video study, the authors compare science teaching practices in the United States and in four other countries that outperformed the United States: Australia, the Czech Republic, Japan, and the Netherlands. Their observations of videotapes from 100 8th-grade science lessons in each…

  12. Science Self-Beliefs and Science Achievement of Adolescents in Gulf Cooperation Council Countries

    Science.gov (United States)

    Areepattamannil, Shaljan

    2012-01-01

    This study explored the predictive effects of science self-beliefs on science achievement for 24,680 13-year-old students from Gulf Cooperation Council member countries--Bahrain, Kuwait, Oman, Qatar, Saudi Arabia and the United Arab Emirates--who participated in the Trends in International Mathematics and Science Study (TIMSS) 2007. The…

  13. Integrating the Nature of Science

    Science.gov (United States)

    Weiland, Ingrid; Blieden, Katherine; Akerson, Valarie

    2014-01-01

    The nature of science (NOS) describes what science is and how knowledge in science is developed (NSTA 2013). To develop elementary students' understandings of how scientists explore the world, the authors--an education professor and a third-grade teacher--endeavored to integrate NOS into a third-grade life science unit. Throughout the lesson,…

  14. Plants and Medicines. Third World Science.

    Science.gov (United States)

    Jones, Natalie; Hughes, Wyn

    This unit, developed by the Third World Science Project, is designed to add a multicultural element to existing science syllabi (for students aged 11-16) in the United Kingdom. The project seeks to develop an appreciation of the: boundless fascination of the natural world; knowledge, skills, and expertise possessed by men/women everywhere;…

  15. Social and science issues in the local environment

    International Nuclear Information System (INIS)

    Gilbert, L.; Robinson, M.

    1992-01-01

    This paper discusses the Nevada Science Project (NSP) which is a teacher run program aimed at assisting teachers in Nevada in the task of developing; learning; and teaching science, technology, and society (STS) issues; vital to Nevada; the United States; and the global community. NSP promotes innovative science instruction, and develops curriculum units on topics inherent in science and technology in order to make science more relevant and interesting to all students. The Nevada Science Project wants to prepare teachers and students to understand important science concepts, to see science as a way of thinking, and science as a way of investigating. The NSP believes that science must be an integrated curriculum based on relevant and interesting STS issues that have everyday applications

  16. The Significance of Language Study in Library and Information Science: A Comparison of Two Programs in the United States and Honduras

    Science.gov (United States)

    Ford, Charlotte; Faires, Debbie; Hirsh, Sandra; Carranza, Nítida

    2017-01-01

    This comparative case study evaluated the role of foreign language study within the Library and Information Science (LIS) curriculum of two programs in the United States and Honduras. The purpose of this research was to understand the significance and usefulness of language courses from the perspective of the students enrolled. Students who had…

  17. Science Roles and Interactions in Adaptive Management of Large River Restoration Projects, Midwest United States

    Science.gov (United States)

    Jacobson, R. B.; Galat, D. L.; Smith, C. B.

    2010-12-01

    Most large-river restoration projects include formal or informal implementations of adaptive management strategies which acknowledge uncertainty and use scientific inquiry to learn and refine management options. Although the central role of science in reducing uncertainty is acknowledged in such projects, specific roles and interactions can vary widely, including how science relates to decision-making within the governance of these projects. Our objective is to present some structured generalizations about science roles and interactions as developed from the authors’ experiences in adaptive management of large river restoration in the Midwest United States. Scientific information may be introduced into decision making by scientists acting in any of the three roles common to adaptive management -- action agency representative, stakeholder, or science provider. We have observed that confusion and gridlock can arise when it is unclear if a scientist is acting as an advocate for a stakeholder or management position, or instead as an independent, “honest broker” of science. Although both advocacy and independence are proper and expected in public decision making, it is useful when scientists unambiguously identify their role. While complete scientific independence may be illusory, transparency and peer review can promote the ideal. Transparency comes from setting clear directions and objectives at the decision-making level and defining at the outset how learning will help assess progress and inform decisions. Independent peer reviews of proposals, study plans, and publications serve as a powerful tool to advance scientific independence, even if funding sources present a potential conflict of interest. Selection of experts for scientific advice and review often requires consideration of the balance between benefits of the “outside” expert (independent, knowledgeable but with little specific understanding of the river system), compared to those provided by the

  18. Social science and the public agenda: reflections on the relation of knowledge to policy in the United States and abroad.

    Science.gov (United States)

    Wilensky, H L

    1997-10-01

    It is tempting to oversell the practical value of applied research. A hard look at the effects of U.S. social science on public policy in areas such as active labor market policies (training, job creation, placement, etc.), crime prevention, fiscal policy, poverty reduction, and health care reform suggests an inverse relationship between social science consensus and policy and budgetary decisions. Fragmented and decentralized political economies (e.g., the United States) foster policy segmentation and isolated, short-run single-issue research--often politicized and misleading. More corporatist democracies (such as Sweden, Norway, Austria, and Germany) evidence a tighter relation between knowledge and power in which a wider range of issues is connected, longer-range effects are sometimes considered, and research is more often actually used for planning and implementation. Even in less hospitable societies, however, social science does make its way in the long run. Favorable conditions and examples are discussed.

  19. Exploring differential item functioning (DIF) with the Rasch model: a comparison of gender differences on eighth grade science items in the United States and Spain.

    Science.gov (United States)

    Babiar, Tasha Calvert

    2011-01-01

    Traditionally, women and minorities have not been fully represented in science and engineering. Numerous studies have attributed these differences to gaps in science achievement as measured by various standardized tests. Rather than describe mean group differences in science achievement across multiple cultures, this study focused on an in-depth item-level analysis across two countries: Spain and the United States. This study investigated eighth-grade gender differences on science items across the two countries. A secondary purpose of the study was to explore the nature of gender differences using the many-faceted Rasch Model as a way to estimate gender DIF. A secondary analysis of data from the Third International Mathematics and Science Study (TIMSS) was used to address three questions: 1) Does gender DIF in science achievement exist? 2) Is there a relationship between gender DIF and characteristics of the science items? 3) Do the relationships between item characteristics and gender DIF in science items replicate across countries. Participants included 7,087 eight grade students from the United States and 3,855 students from Spain who participated in TIMSS. The Facets program (Linacre and Wright, 1992) was used to estimate gender DIF. The results of the analysis indicate that the content of the item seemed to be related to gender DIF. The analysis also suggests that there is a relationship between gender DIF and item format. No pattern of gender DIF related to cognitive demand was found. The general pattern of gender DIF was similar across the two countries used in the analysis. The strength of item-level analysis as opposed to group mean difference analysis is that gender differences can be detected at the item level, even when no mean differences can be detected at the group level.

  20. Exploring differential item functioning (DIF) with the Rasch model: A comparison of gender differences on eighth-grade science items in the United States and Spain

    Science.gov (United States)

    Calvert, Tasha

    Despite the attention that has been given to gender and science, boys continue to outperform girls in science achievement, particularly by the end of secondary school. Because it is unclear whether gender differences have narrowed over time (Leder, 1992; Willingham & Cole, 1997), it is important to continue a line of inquiry into the nature of gender differences, specifically at the international level. The purpose of this study was to investigate gender differences in science achievement across two countries: United States and Spain. A secondary purpose was to demonstrate an alternative method for exploring gender differences based on the many-faceted Rasch model (1980). A secondary analysis of the data from the Third International Mathematics and Science Study (TIMSS) was used to examine the relationship between gender DIF (differential item functioning) and item characteristics (item type, content, and performance expectation) across both countries. Nationally representative samples of eighth grade students in the United States and Spain who participated in TIMSS were analyzed to answer the research questions in this study. In both countries, girls showed an advantage over boys on life science items and most extended response items, whereas boys, by and large, had an advantage on earth science, physics, and chemistry items. However, even within areas that favored boys, such as physics, there were items that were differentially easier for girls. In general, patterns in gender differences were similar across both countries although there were a few differences between the countries on individual items. It was concluded that simply looking at mean differences does not provide an adequate understanding of the nature of gender differences in science achievement.

  1. Intertextuality in Read-Alouds of Integrated Science-Literacy Units in Urban Primary Classrooms: Opportunities for the Development of Thought and Language

    Science.gov (United States)

    Varelas, Maria; Pappas, Christine C.

    2006-01-01

    The nature and evolution of intertextuality was studied in 2 urban primary-grade classrooms, focusing on read-alouds of an integrated science-literacy unit. The study provides evidence that both debunks deficit theories for urban children by highlighting funds of knowledge that these children bring to the classroom and the sense they make of them…

  2. The Need for Computer Science

    Science.gov (United States)

    Margolis, Jane; Goode, Joanna; Bernier, David

    2011-01-01

    Broadening computer science learning to include more students is a crucial item on the United States' education agenda, these authors say. Although policymakers advocate more computer science expertise, computer science offerings in high schools are few--and actually shrinking. In addition, poorly resourced schools with a high percentage of…

  3. Response to science education reforms: The case of three science education doctoral programs in the United States

    Science.gov (United States)

    Gwekwerere, Yovita Netsai

    Doctoral programs play a significant role in preparing future leaders. Science Education doctoral programs play an even more significant role preparing leaders in a field that is critical to maintaining national viability in the face of global competition. The current science education reforms have the goal of achieving science literacy for all students and for this national goal to be achieved; we need strong leadership in the field of science education. This qualitative study investigated how doctoral programs are preparing their graduates for leadership in supporting teachers to achieve the national goal of science literacy for all. A case study design was used to investigate how science education faculty interpreted the national reform goal of science literacy for all and how they reformed their doctoral courses and research programs to address this goal. Faculty, graduate students and recent graduates of three science education doctoral programs participated in the study. Data collection took place through surveys, interviews and analysis of course documents. Two faculty members, three doctoral candidates and three recent graduates were interviewed from each of the programs. Data analysis involved an interpretive approach. The National Research Council Framework for Investigating Influence of the National Standards on student learning (2002) was used to analyze interview data. Findings show that the current reforms occupy a significant part of the doctoral coursework and research in these three science education doctoral programs. The extent to which the reforms are incorporated in the courses and the way they are addressed depends on how the faculty members interpret the reforms and what they consider to be important in achieving the goal of science literacy for all. Whereas some faculty members take a simplistic critical view of the reform goals as a call to achieve excellence in science teaching; others take a more complex critical view where they question

  4. BES Science Network Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Biocca, Alan; Carlson, Rich; Chen, Jackie; Cotter, Steve; Tierney, Brian; Dattoria, Vince; Davenport, Jim; Gaenko, Alexander; Kent, Paul; Lamm, Monica; Miller, Stephen; Mundy, Chris; Ndousse, Thomas; Pederson, Mark; Perazzo, Amedeo; Popescu, Razvan; Rouson, Damian; Sekine, Yukiko; Sumpter, Bobby; Dart, Eli; Wang, Cai-Zhuang -Z; Whitelam, Steve; Zurawski, Jason

    2011-02-01

    The Energy Sciences Network (ESnet) is the primary provider of network connectivityfor the US Department of Energy Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of the Office ofScience programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years.

  5. BES Science Network Requirements

    International Nuclear Information System (INIS)

    Dart, Eli; Tierney, Brian; Biocca, A.; Carlson, R.; Chen, J.; Cotter, S.; Dattoria, V.; Davenport, J.; Gaenko, A.; Kent, P.; Lamm, M.; Miller, S.; Mundy, C.; Ndousse, T.; Pederson, M.; Perazzo, A.; Popescu, R.; Rouson, D.; Sekine, Y.; Sumpter, B.; Wang, C.-Z.; Whitelam, S.; Zurawski, J.

    2011-01-01

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years.

  6. SI units in radiation protection

    International Nuclear Information System (INIS)

    Jain, V.K.; Soman, S.D.

    1978-01-01

    International System of Units abbreviated as SI units has been adopted by most of the countries of the world. Following this development, the implementation of SI units has become mandatory with a transition period of about ten years. Some of the journals have already adopted the SI units and any material sent for publication to them must use only these. International Commission on Radiation Units and Measurement (ICRU) published letters in several journals including Physics in Medicine and Biology, Health Physics, British Journal of Radiology, etc. outlining the latest recommendations on SI units to elicit the reactions of scientists in the general field of radiological sciences. Reactions to the letters were numerous as can be seen in the correspondence columns of these journals for the last few years and ranged from great misgivings and apprehension to support and appreciation. SI units have also been the subject of editorial comments in several journals. On the basis of a survey of this literature, it may be said that there was general agreement on the long term advantage of SI units inspite of some practical difficulties in their use particularly in the initial stages. This report presents a review of SI units in radiological sciences with a view to familiarize the users with the new units in terms of the old. A time table for the gradual changeover to the SI units is also outlined. (auth.)

  7. The Effectiveness of Drama Method in Unit “The Systems in Our Bodies” in Science and Technology Course: Using Two Tier Diagnostic Test

    OpenAIRE

    Ümmühan Ormancı; Sevil ÖZCAN

    2012-01-01

    In the study, it has been aimed to examine the effect of usage the drama method on the students’ success in the unit of “The Systems in Our Bodies’ in Science and Technology course. In this regard, as success test in the study, two tier diagnostic tests were used. In the study, a quasi-experimental pretest-posttest design was used and 36 students in the 6th grade were included in the study. In the application period; the lessons were maintained with drama method supported the Science and Tech...

  8. Science Education at Arts-Focused Colleges

    Science.gov (United States)

    Oswald, W. Wyatt; Ritchie, Aarika; Murray, Amy Vashlishan; Honea, Jon

    2016-01-01

    Many arts-focused colleges and universities in the United States offer their undergraduate students coursework in science. To better understand the delivery of science education at this type of institution, this article surveys the science programs of forty-one arts-oriented schools. The findings suggest that most science programs are located in…

  9. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    , Burkina Faso, Africa. African Policy Center, United Nations Economic Commission for Africa (UNECA), Addis-Ababa, Ethiopia. Department of Civil Engineering, National Pingtung University of Science and Technology, Pingtung, Taiwan, ...

  10. Hot Topics in Science Teaching

    Science.gov (United States)

    Ediger, Marlow

    2018-01-01

    There are vital topics in science teaching and learning which are mentioned frequently in the literature. Specialists advocate their importance in the curriculum as well as science teachers stress their saliency. Inservice education might well assist new and veteran teachers in knowledge and skills. The very best science lessons and units of…

  11. Opening up animal research and science-society relations? A thematic analysis of transparency discourses in the United Kingdom.

    Science.gov (United States)

    McLeod, Carmen; Hobson-West, Pru

    2016-10-01

    The use of animals in scientific research represents an interesting case to consider in the context of the contemporary preoccupation with transparency and openness in science and governance. In the United Kingdom, organisations critical of animal research have long called for more openness. More recently, organisations involved in animal research also seem to be embracing transparency discourses. This article provides a detailed analysis of publically available documents from animal protection groups, the animal research community and government/research funders. Our aim is to explore the similarities and differences in the way transparency is constructed and to identify what more openness is expected to achieve. In contrast to the existing literature, we conclude that the slipperiness of transparency discourses may ultimately have transformative implications for the relationship between science and society and that contemporary openness initiatives might be sowing the seeds for change to the status quo. © The Author(s) 2015.

  12. Effect of Computer Animation Technique on Students' Comprehension of the "Solar System and Beyond" Unit in the Science and Technology Course

    Science.gov (United States)

    Aksoy, Gokhan

    2013-01-01

    The purpose of this study is to determine the effect of computer animation technique on academic achievement of students in the "Solar System and Beyond" unit lecture as part of the Science and Technology course of the seventh grade in primary education. The sample of the study consists of 60 students attending to the 7th grade of primary school…

  13. Science Educators Teaching Engineering Design: An Examination across Science Professional Development Sites

    Science.gov (United States)

    Grubbs, Michael E.; Love, Tyler S.; Long, David E.; Kittrell, Danielle

    2016-01-01

    Although the currently employed STEM (science, technology, engineering, and mathematics) acronym is of recent origin, dating to the early 2000s (Chute, 2009), the United States has long emphasized the importance of teaching STEM in its public schools. Early efforts, such as "Science, the Endless Frontier" (Bush, 1945) and the…

  14. Practices influenced by policy? An exploration of newly hired science teachers at sites in South Africa and the United States

    Science.gov (United States)

    Navy, S. L.; Luft, J. A.; Toerien, R.; Hewson, P. W.

    2018-05-01

    In many parts of the world, newly hired science teachers' practices are developing in a complex policy environment. However, little is known about how newly hired science teachers' practices are enacted throughout a cycle of instruction and how these practices can be influenced by macro-, meso-, and micro-policies. Knowing how policies impact practice can result in better policies or better support for certain policies in order to enhance the instruction of newly hired teachers. This comparative study investigated how 12 newly hired science teachers at sites in South Africa (SA) and the United States (US) progressed through an instructional cycle of planning, teaching, and reflection. The qualitative data were analysed through beginning teacher competency frameworks, the cycle of instruction, and institutional theory. Data analysis revealed prevailing areas of practice and connections to levels of policy within the instructional cycle phases. There were some differences between the SA and US teachers and among first-, second-, and third-year teachers. More importantly, this study indicates that newly hired teachers are susceptible to micro-policies and are progressively developing their practice. It also shows the importance of meso-level connectors. It suggests that teacher educators and policy makers must consider how to prepare and support newly hired science teachers to achieve the shared global visions of science teaching.

  15. Experience in the United States with a secondary resource curriculum on ''Science, society and America's nuclear waste''

    International Nuclear Information System (INIS)

    King, G.P.

    1994-01-01

    The nuclear power and nuclear waste situation in the Usa, is first reviewed. In order to enhance information concerning these topics among pupils and teachers, a resource curriculum, 'Science, society, and America's Nuclear Waste', was developed by teachers for teachers; it consists of four units: nuclear waste, ionizing radiation, the nuclear waste policy act, and the waste management system. It has been well received by teachers. Within nine months after its national introduction, 350000 teacher and student curriculum documents were requested by teachers from all 50 states. Requests have been also received from 250 foreign colleges and universities

  16. Mechanical engineering science in SI units

    CERN Document Server

    Gwyther, J L; Williams, G

    1970-01-01

    0.1 Mechanical Engineering Science covers various fundamental concepts that are essential in the practice of mechanical engineering. The title is comprised of 19 chapters that detail various topics, including chemical and physical laws. The coverage of the book includes Newtonian laws, mechanical energy, friction, stress, and gravity. The text also discusses the chemical aspects of mechanical engineering, which include gas laws, states of matter, and fuel combustion. The last chapter tackles concerns in laboratory experiments. The book will be of great use to students of mechanical eng

  17. Early Science Results from the Williams College Eclipse Expedition

    Science.gov (United States)

    Pasachoff, Jay M.; Person, Michael J.; Dantowitz, Ron; Lockwood, Christian A.; Nagle-McNaughton, Tim; Meadors, Erin N.; Perez, Cielo C.; Marti, Connor J.; Yu, Ross; Rosseau, Brendan; Daly, Declan M.; Ide, Charles A.; Davis, Allen B.; Lu, Muzhou; Sliski, David; Seiradakis, John; Voulgaris, Aris; Rusin, Vojtech; Peñaloza-Murillo, Marcos A.; Roman, Michael; Seaton, Daniel B.; Steele, Amy; Lee, Duane M.; Freeman, Marcus J.

    2018-01-01

    We describe our first cut of data reduction on a wide variety of observations of the solar corona and of the effect of the penumbra and umbra on the terrestrial atmosphere, carried out from our eclipse site on the campus of Willamette University in Salem, Oregon. Our team of faculty, undergraduate students, graduate students, and other colleagues observed the eclipse, taking images and spectra with a variety of sensors and telescopes. Equipment included frame-transfer cameras observing at 3 Hz in 0.3 nm filters at the coronal green and red lines to measure the power spectrum of oscillations in coronal loops or elsewhere in the lower corona; 3 spectrographs; a variety of telescopes and telephotos for white-light imaging; a double Lyot system tuned at Fe XIV 530.3 nm (FWHM 0.4 nm) and Fe X 637.4 nm (FWHM 0.5 nm); and a weather station to record changes in the terrestrial atmosphere. We are comparing our observations with predictions based on the previous mapping of the photospheric magnetic field, and preparing wide-field complete coronal imaging incorporating NOAA/NASA GOES-16 SUVI and NRL/NASA/LASCO for the corona outside our own images (which extend, given the completely clear skies we had, at least 4 solar radii), and NASA SDO/AIA and NOAA/NASA GOES-16 SUVI for the solar disk. One of our early composites appeared as Astronomy Picture of the Day for September 27: https://apod.nasa.gov/apod/ap170927.htmlOur expedition was supported in large part by grants from the Committee for Research and Exploration of the National Geographic Society and from the Solar Terrestrial Program of the Atmospheric and Geospace Sciences Division of the National Science Foundation, with additional student support from the STP/AGS of NSF, the NASA Massachusetts Space Grant Consortium, the Sigma Xi honorary scientific society, the Clare Booth Luce Foundation studentship and the Freeman Foote Expeditionary Fund at Williams College, other Williams College funds, and U. Pennsylvania funds.

  18. Science informed water resources decision-making: Examples using remote sensing observations in East Africa, the Lower Mekong Basin and the western United States

    Science.gov (United States)

    Granger, S. L.; Andreadis, K.; Das, N.; Farr, T. G.; Ines, A. V. M.; Jayasinghe, S.; Jones, C. E.; Melton, F. S.; Ndungu, L. W.; Lai-Norling, J.; Painter, T. H.

    2017-12-01

    Across the globe, planners and decision makers are often hampered by organizational and data silos and/or a lack of historic data or scant in situ observations on which to base policy and action plans. The end result is a complex interaction of responsibilities, legal frameworks, and stakeholder needs guided by uncertain information that is essentially bounded by how climate extremes are defined and characterized. Because of the importance of water, considerable resources in the developing and developed world are invested in data and tools for managing water. However, the existing paradigm of water management around the world faces significant challenges including inadequate funding to install, maintain or upgrade monitoring networks, lack of resources to integrate new science and data sources into existing tools, and demands for improved spatial coverage of observations. Add to this, a changing hydrology that is so complex it requires measurements and analyses that have never been done before. Interest in applying remote sensing science and observations into the decision making process is growing the world over, but in order to succeed, it is essential to form partnerships with stakeholder organizations and decision makers at the outset. In this talk, we describe examples of succesful decision-maker and science partnering based on projects that apply remote sensing science and observations in East Africa and the Lower Mekong Basin supported by the SERVIR Initiative, a joint United States Agency for International Development (USAID) and National Aeronautics and Space Administration (NASA) program, and projects in the western United States supported by NASA's Jet Propulsion Laboratory and the Western Water Applications Office (WWAO). All of these examples have benefitted from strong, committed partnerships with end user agencies. Best practices and lessons learned in connecting science to decision making amongst these examples are explored.

  19. Geospace Plasma Dynamics

    Science.gov (United States)

    2013-05-22

    perturbations. High-speed solar wind streams cause recurrent geomagnetic activity and ionospheric disturbances. In [5], we analyze the equatorial...over eight successive orbits (~12 hours). A clear pre- reversal enhancement of upward plasma drift occurred between 18:00 and 19:00 LT when plasma

  20. Improving Early Career Science Teachers' Ability to Teach Space Science

    Science.gov (United States)

    Schultz, G. R.; Slater, T. F.; Wierman, T.; Erickson, J. G.; Mendez, B. J.

    2012-12-01

    assigned interning student teachers in using the GEMS Space Science Sequence. As such, the project targeted the high leverage point of early career teachers who may well go on to use the GEMS materials for the next 30 years of their teaching careers, impacting potentially many hundreds of students. External evaluation showed that the novice teachers mentored by the master teachers felt knowledgeable about the topics covered in the four units after teaching the Space Science units. However, they seemed relatively less confident about the solar system, and objects beyond the solar system, which are covered in Units 3 and 4, respectively. This may be due to the fact that not all of them taught these units. Overall, mentees felt strongly on the post-survey taken at the end of the year that they have acquired good strategies for teaching the various topics, suggesting that the support they received while teaching and working with a mentor was of real benefit to them. The main challenges reported by the novice teachers were not having time to meet or talk with their mentors, and having different approaches to teaching from their mentors. In general, however, the novice teachers had very positive experiences with their mentor teachers and the curriculum materials provided.

  1. The Study of Life Change Unit as Stressor Agents among Tehran University of Medical Sciences Hospitals' Employees

    Directory of Open Access Journals (Sweden)

    Hossein Dargahi

    2010-08-01

    Full Text Available Life crises as stressor agents can disrupt the best stress management regime. Different life crises have different impacts. A standard scale to rate change and its related stress impact has been developed commonly referred to as LCU (Life Change Unit Rating. This allocates a number of Life Crisis Units or Life Change Units (LCUs to different event and then evaluates them and takes action accordingly. This idea behind this approach of is to rundown the LCU table, totaling the LCUs for life crisis that have occurred in the previous one year. A Cross - sectional, descriptive and analytical study was conducted among 900 Tehran University of Medical Sciences (TUMS Employees by a Holms and Rahe LCU questionnaire at 15 hospitals. The respondents were asked to determine their demographic information, list of stress symptoms which suffered from these diseases in the previous one year and finally, responded to 45 Life Change Unit as stressful life events and the value of each in "stress units" which occurred in the previous one year. The results showed that there is significant correlation between the employees LCU rating by sex, educational degree and size of hospital. Also we found that there are significant correlations between the employees stress symptoms with their LCU rating. Totally, 40% of the employees have less than 150 LCU rating (normal range and 60% of them have 150-300 or more than 300 LCU rating (abnormal range. In conclusion most of TUMS hospitals' employees who had stress symptoms have more LCU rating. One third of these employees are not in danger of suffering the illness effect, while two third of them are in danger.

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Modelling and analyzing the watershed dynamics using Cellular Automata (CA)– Markov ... based on past trend in a hydrological unit, Choudwar watershed, India. ... Centre for Oceans, Rivers, Atmosphere and Land Sciences (CORAL), Indian ...

  3. Using Evolution as a Context for Teaching the Nature of Science to Diverse Student Populations: A High School Unit of Curriculum

    Science.gov (United States)

    Metcalfe, Angela C.

    Teaching evolution provides teachers with the opportunity to educate students on how science aims to understand the natural world. Rooted in research, the purpose of this project was to create NGSS-aligned curriculum focused on teaching the nature of science (NOS) within the context of biological evolution. Field testing and review of the unit resulted in revisions aimed at creating more comprehensive teacher resource materials and explicit inclusion of NOS. Emphasizing NOS in curriculum development and teaching scientific qualities through an evolutionary context has taken the focus off belief or disbelief, keeping the attention on the scientific concept at hand. Designing curriculum around compelling subject matter and embracing student-led learning increased and maintained student interest in the classroom. Implementation of this curriculum not only requires the teacher to be knowledgeable in conventional educational pedagogy, but also the subjects of NGSS and NOS. Additional training and support centered around NGSS is recommended for science educators interested in integrating NOS into their curriculum and instruction.

  4. Incorporating Earth Science into Other High School Science Classes

    Science.gov (United States)

    Manning, C. L. B.; Holzer, M.; Colson, M.; Courtier, A. M. B.; Jacobs, B. E.

    2016-12-01

    As states begin to review their standards, some adopt or adapt the NGSS and others write their own, many basing these on the Framework for K-12 Science Education. Both the NGSS and the Frameworks have an increased emphasis on Earth Science but many high school teachers are being asked to teach these standards in traditional Biology, Chemistry and Physics courses. At the Earth Educators Rendezvous, teachers, scientists, and science education researchers worked together to find the interconnections between the sciences using the NGSS and identified ways to reference the role of Earth Sciences in the other sciences during lectures, activities and laboratory assignments. Weaving Earth and Space sciences into the other curricular areas, the teams developed relevant problems for students to solve by focusing on using current issues, media stories, and community issues. These and other lessons and units of study will be presented along with other resources used by teachers to ensure students are gaining exposure and a deeper understanding of Earth and Space Science concepts.

  5. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Chemistry Department, Faculty of Science, El-Azhar University, Cairo 11787, Egypt; Drug Exploration and Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; Applied Organic Chemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt; Research Unit, ...

  6. Inquiry Science Learning and Teaching: a Comparison Between the Conceptions and Attitudes of Pre-service Elementary Teachers in Hong Kong and the United States

    Science.gov (United States)

    Lee, Yeung Chung; Lee, Carole Kwan-Ping; Lam, Irene Chung-Man; Kwok, Ping Wai; So, Winnie Wing-Mui

    2018-01-01

    International studies of science education, such as the Trends in Mathematics and Science Study (TIMSS), have revealed considerable national disparities in students' achievements in science education. The results have prompted many nations to compare their science education systems and practices to those of others, to gain insights for improvement. Teacher training and professional development are key educational components that have not attracted as much attention as they deserve in international comparative studies. This study compares the conceptions and attitudes of pre-service elementary teachers (PSETs) in Hong Kong and the United States with respect to inquiry science learning and teaching at the beginning of the semester before the start of the science methods course. PSETs' conceptions and attitudes in the two countries were compared by means of a questionnaire with both Likert-type and open-ended questions. Quantitative data were analyzed using exploratory factor analysis and inferential statistics, while qualitative data were analyzed through the systematic categorization of PSETs' responses into broad themes and subthemes to reflect patterns in their conceptions of and attitudes toward inquiry science learning and teaching. The results revealed a complex interplay between PSETs' conceptions of and attitudes toward inquiry science learning and teaching. The results shed light on the effects of sociocultural contexts and have important implications for the design of science methods courses.

  7. Diversity and Innovation for Geosciences (dig) Texas Earth and Space Science Instructional Blueprints

    Science.gov (United States)

    Ellins, K. K.; Bohls-Graham, E.; Riggs, E. M.; Serpa, L. F.; Jacobs, B. E.; Martinez, A. O.; Fox, S.; Kent, M.; Stocks, E.; Pennington, D. D.

    2014-12-01

    The NSF-sponsored DIG Texas Instructional Blueprint project supports the development of online instructional blueprints for a yearlong high school-level Earth science course. Each blueprint stitches together three-week units that contain curated educational resources aligned with the Texas state standards for Earth and Space Science and the Earth Science Literacy Principles. Units focus on specific geoscience content, place-based concerns, features or ideas, or other specific conceptual threads. Five regional teams composed of geoscientists, pedagogy specialists, and practicing science teachers chose unit themes and resources for twenty-two units during three workshops. In summer 2014 three Education Interns (Earth science teachers) spent six weeks refining the content of the units and aligning them with the Next Generation Science Standards. They also assembled units into example blueprints. The cross-disciplinary collaboration among blueprint team members allowed them to develop knowledge in new areas and to share their own discipline-based knowledge and perspectives. Team members and Education Interns learned where to find and how to evaluate high quality geoscience educational resources, using a web-based resource review tool developed by the Science Education Resource Center (SERC). SERC is the repository for the DIG Texas blueprint web pages. Work is underway to develop automated tools to allow educators to compile resources into customized instructional blueprints by reshuffling units within an existing blueprint, by mixing units from other blueprints, or creating new units and blueprints. These innovations will enhance the use of the units by secondary Earth science educators beyond Texas. This presentation provides an overview of the project, shows examples of blueprints and units, reports on the preliminary results of classroom implementation by Earth science teachers, and considers challenges encountered in developing and testing the blueprints. The

  8. Utilizing new GNSS capabilities for exploring Geospace

    Science.gov (United States)

    Coster, A. J.

    2015-12-01

    In 2000 the density of GPS receivers across the continental United States increased to the point that strictly data-driven regional maps of total electron content (TEC) could be constructed. These data-driven maps allowed the TEC to be monitored throughout the course of geomagnetic storms and to observe the progression of traveling ionospheric disturbances. This allowed studies of the development of storm enhanced density plumes in both hemispheres and of the dynamic changes in the equatorial TEC following stratospheric warming events. Currently, GPS TEC maps have become recognized as one of the premier tools to monitor coupling of atmospheric regions from both below and above the ionosphere. The number of available scientific dual-frequency receivers across the globe now exceeds 3000. However this number is anticipated to increase rapidly in part due to the numerous arrays being fielded for commercial applications such as precision farming and highway surveying. In addition, there will be a rapid increase in the number of GNSS signals available in the near future. Besides GPS, the European Union is building a system named GALILEO, which will consist of a 30-satellite constellation. The Russians have a system based on a 24-satellite constellation named GLONASS. The Chinese are developing a system called Beidou, which means "stars of the Big Dipper". The Beidou system will consist of 35 satellites. By 2023, there will be more than 160 GNSS satellites and 400 signals. Multi-constellation, multi-band GNSS will be a major enabler for space weather studies. This talk will focus on the potential of using the multiple new GNSS signals and the new higher density receiver arrays for measurements of plasma drift, detailed studies of traveling ionospheric disturbances (TIDS) and expanded studies of atmospheric coupling. We will conclude by describing the tremendous potential of merging GNSS observations with observations collected by arrays of low-cost, low-power, and small

  9. Elementary Science Resource Guide.

    Science.gov (United States)

    Texas Education Agency, Austin. Div. of Curriculum Development.

    This guide for elementary teachers provides information on getting ideas into action, designing and implementing the right situation, ways in which to evaluate science process activities with students, and seven sample units. The units cover using the senses, magnets, forces, weather forecasting, classification of living things, and the physical…

  10. Road Safety Education in a Science Course: Evaluation of "Science and the Road."

    Science.gov (United States)

    Gardner, Paul L.

    1989-01-01

    A traffic safety instructional package--"Science and the Road"--was assessed. It was designed by the Road Traffic Authority of Victoria (Australia) for use in tenth-grade science courses. Evaluation findings resulted in revision of the unit and implementation of more inservice courses for teachers lacking relevant biology and physics…

  11. Teacher beliefs about teaching science through Science-Technology-Society (STS)

    Science.gov (United States)

    Massenzio, Lynn

    2001-07-01

    Statement of the problem. As future citizens, students will have the enormous responsibility of making decisions that will require an understanding of the interaction of science and technology and its interface with society. Since many societal issues today are grounded in science and technology, learning science in its social context is vital to science education reform. Science-Technology-Society (STS) has been strongly identified with meeting this goal, but despite its benefits, putting theory into practice has been difficult. Research design and methodology. The purpose of this study was to explore teacher beliefs about teaching science through STS. The following broad research questions guided the study: (1) What are the participants' initial beliefs about teaching science through STS? (2) What beliefs emerge as participants reflect upon and share their STS instructional experiences with their peers? A social constructivist theoretical framework was developed to plan interactions and collect data. Within this framework, a qualitative methodology was used to interpret the data and answer the research questions. Three provisionally certified science teachers engaged in a series of qualitative tasks including a written essay, verbal STS unit explanation, reflective journal writings, and focus group interviews. After implementing their STS unit, the participants engaged in meaningful dialogue with their peers as they reflected upon, shared, and constructed their beliefs. Conclusions. The participants strongly believed in STS as a means for achieving scientific and technological literacy, developing cognition, enhancing scientific habits of mind and affective qualities, and fostering citizen responsibility. Four major assertions were drawn: (a) Participants' initial belief in teaching for citizen responsibility did not fully align with practice, (b) Educators at the administrative level should be made aware of the benefits of teaching science through STS, (c

  12. Biomedical Science, Unit II: Nutrition in Health and Medicine. Digestion of Foods; Organic Chemistry of Nutrients; Energy and Cell Respiration; The Optimal Diet; Foodborne Diseases; Food Technology; Dental Science and Nutrition. Student Text. Revised Version, 1975.

    Science.gov (United States)

    Biomedical Interdisciplinary Curriculum Project, Berkeley, CA.

    This student text presents instructional materials for a unit of science within the Biomedical Interdisciplinary Curriculum Project (BICP), a two-year interdisciplinary precollege curriculum aimed at preparing high school students for entry into college and vocational programs leading to a career in the health field. Lessons concentrate on…

  13. Role Models in Science - An Effective Dissemination Strategy

    Science.gov (United States)

    Chatzichristou, Eleni; Daglis, Ioannis A.; Anastasiadis, Anastasios; Balasis, George; Bourdarie, Sebastien; Horne, Richard B.; Khotyaintsev, Yuri; Mann, Ian R.; Santolik, Ondrej; Turner, Drew L.; Giannakis, Omiros; Ropokis, George

    2014-05-01

    We present the outreach efforts of the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Loss and Energization) project, intended to provide the general public with simplified information concerning the scientific objectives of the project and its expected outcomes, to strengthen their understanding of space science, as well as to engage and inspire the next generation of scientists. MAARBLE involves monitoring of the geospace environment through space and ground-based observations, in order to understand various aspects of the radiation belts, an important element of the space weather system, which have direct impact on human endeavors in space (spacecraft and astronauts exposure). The public outreach website of MAARBLE, besides instructive text and regular updates with relevant news, also employs a variety of multimedia (image and video galleries) and characteristic sounds of space related to very low and ultra low frequency (VLF/ULF) electromagnetic waves. It also provides links to some of the most interesting relevant educational activities, including those at partner institutions such as the Institute of Geophysics and Planetary Physics at UCLA, the University of Alberta, the Swedish Institute of Space Physics and the Institute of Atmospheric Physics of the Academy of Sciences of the Czech Republic. We will focus on a specific activity: "Interviewing a MAARBLE Scientist", which enriches and broadens the scope of the MAARBLE outreach website. The profile of a MAARBLE scientist appears every month through an inspired interview, the scientists relating to the public their real stories, aspirations and endeavors. The intimacy of this approach is very effective in catching the attention of an otherwise indifferent public, and to inspire young people to pursue science careers by identifying themselves with "real" scientists. We cover one interview per month, featuring either a high-profile scientist from each partner institute, or a young researcher on a

  14. Quantum metrology foundation of units and measurements

    CERN Document Server

    Goebel, Ernst O

    2015-01-01

    The International System of Units (SI) is the world's most widely used system of measurement, used every day in commerce and science, and is the modern form of the metric system. It currently comprises the meter (m), the kilogram (kg), the second (s), the ampere (A), the kelvin (K), the candela (cd) and the mole (mol)). The system is changing though, units and unit definitions are modified through international agreements as the technology of measurement progresses, and as the precision of measurements improves. The SI is now being redefined based on constants of nature and their realization by quantum standards. Therefore, the underlying physics and technologies will receive increasing interest, and not only in the metrology community but in all fields of science. This book introduces and explains the applications of modern physics concepts to metrology, the science and the applications of measurements. A special focus is made on the use of quantum standards for the realization of the forthcoming new SI (the...

  15. Towards Building Science Teachers’ Understandings of Contemporary Science Practices

    Directory of Open Access Journals (Sweden)

    Greg Lancaster

    2017-03-01

    Full Text Available Faculties of Education and Science at Monash University have designed a Masters unit to assist pre-service and in-service science teachers in exploring the practices of contemporary science and examine how varied understandings can influence science communication. Teachers are encouraged to explore their current understandings of the Nature of Science (NoS and to contrast their views with those known to be widely held by society (Cobern & Loving, 1998. Teachers are challenged to provide insights into their thinking relating to the NoS. In order to build understandings of contemporary science practice each teacher shadows a research scientist and engages them in conversations intended to explore the scientists’ views of NoS and practice. Findings suggest that teachers were initially uncomfortable with the challenge to express ideas relating to their NoS and were also surprised how diverse the views of NoS can be among teachers, scientists and their peers, and that these views can directly impact ways of communicating contemporary science practice.

  16. Knowledge, Attitudes and Practices (KAP) Relating to Dietary Supplements Among Health Sciences and Non-Health Sciences Students in One of The Universities of United Arab Emirates (UAE).

    Science.gov (United States)

    Alhomoud, Farah Kais; Basil, Mohammed; Bondarev, Andrey

    2016-09-01

    The use of Dietary Supplements (DS) has increased substantially in the United Arab Emirates (UAE) in recent years, despite the fact that the efficacy and safety of these supplements are not proven yet. In addition, the practices of supplement users in the UAE remain undocumented. To determine the usage of DS in health sciences and non-health sciences students; and to determine their knowledge, attitudes and practices (KAP) regarding these supplements. A descriptive, cross-sectional, questionnaire-based study was conducted among university students. Based on the Raosoft online calculator, it was anticipated that the sample of 383 students would enable us to achieve the study objectives. Students were recruited from Ajman University of Science and Technology and identified by the academic staff through students' records. All students who were registered at Ajman University of Science and Technology - including medical (i.e. dental, pharmacy and health sciences) and non-medical colleges (i.e. engineering, business administration, law, information technology, mass communications and humanities) - were invited to participate, after obtaining the approval of the Institutional Ethics Committee (IEC), (during the period of January-February 2015). This study used quantitative method approach. Therefore, data were analysed quantitatively using SPSS version 22.0. More than one-third of participants (39%) were found to consume DS. The most common reasons for consuming supplements were to maintain good health (58,21%) and ensure adequate nutrition (43,15%). Almost two-thirds of participants (65%) perceived that the best way to obtain nutrients is through food and DS together (49%), or DS alone (16%). Therefore, there was a relatively high amount of DS intake among participants in this study. With regard to medical and non-medical students' use of DS, there were no significant differences in the use (p=0.139). However, other findings suggest that there are significant

  17. Science for a sustainable future

    CERN Multimedia

    2013-01-01

    Today we had a visit from Ban Ki-moon, Secretary-General of the United Nations. This is Mr Ban’s second visit to our laboratory, but his first since CERN was granted Observer status at the United Nations General Assembly last December. It therefore gave us our first opportunity to discuss joint initiatives already under way.   Our discussions focused on CERN’s contribution to science-related UN activities, and in particular those of the UN’s Economic and Social Council, ECOSOC, whose focus for 2013 is on leveraging science, technology, innovation and culture for a sustainable future. CERN will be taking part in ECOSOC meetings in Geneva in July, and we will be contributing on the theme of young women in science to ECOSOC’s Youth Forum on 27 March. Mr Ban and I also discussed the role of the Secretary-General’s recently established science advisory board. During his brief visit, Mr Ban became one of our first visitors to see some of the underg...

  18. The Study of Life Change Unit as Stressor Agents among Tehran University of Medical Sciences Hospitals' Employees

    Directory of Open Access Journals (Sweden)

    Hossein Dargahi

    2010-07-01

    Full Text Available "nLife crises as stressor agents can disrupt the best stress management regime. Different life crises have different impacts. A standard scale to rate change and its related stress impact has been developed commonly referred to as LCU (Life Change Unit Rating. This allocates a number of Life Crisis Units or Life Change Units (LCUs to different event and then evaluates them and takes action accordingly. This idea behind this approach of is to rundown the LCU table, totaling the LCUs for life crisis that have occurred in the previous one year. A Cross - sectional, descriptive and analytical study was conducted among 900 Tehran University of Medical Sciences (TUMS Employees by a Holms and Rahe LCU questionnaire at 15 hospitals. The respondents were asked to determine their demographic information, list of stress symptoms which suffered from these diseases in the previous one year and finally, responded to 45 Life Change Unit as stressful life events and the value of each in "stress units" which occurred in the previous one year. The results showed that there is significant correlation between the employees LCU rating by sex, educational degree and size of hospital. Also we found that there are significant correlations between the employees stress symptoms with their LCU rating. Totally, 40% of the employees have less than 150 LCU rating (normal range and 60% of them have 150-300 or more than 300 LCU rating (abnormal range. In conclusion most of TUMS hospitals' employees who had stress symptoms have more LCU rating. One third of these employees are not in danger of suffering the illness effect, while two third of them are in danger.

  19. Needs Assessment Study in Science Education: Sample of Turkey

    OpenAIRE

    Z. Ozdilek; M. Ozkan

    2008-01-01

    A needs assessment process was conducted to determine the difficulties and requirements of a science unit as an example how needs assessment process can be used in science education in Turkey. A 40-item teacher questionnaire containing four dimensions related to a chemistry unit named “Travel to the Inner Structure of Matter” as presented in the current curriculum materials was administered. The questionnaire was completed by 130 elementary school science teachers in order to get their views ...

  20. Preface [IFSA 2015: 9. international conference on inertial fusion sciences and applications, Seattle, WA (United States), 20-25 September 2015

    International Nuclear Information System (INIS)

    2016-01-01

    The Ninth International Conference on Inertial Fusion Science and Applications (IFSA) was held on September 20-25, 2015 at the Hyatt Regency Bellevue on Seattle's Eastside, Washington, U.S.A. The event was hosted by the University of California and was organized by the Lawrence Livermore National Laboratory. It brought together more than 370 participants from 16 countries. The goal, as for all previous IFSA Conferences, was to bring together scientists in the fields of inertial fusion science and high-energy-density physics, and their applications. Three hundred twenty seven papers were presented emphasizing the science of high-energy and high-intensity laser, pulsed-power, and particle-beam interactions with matter, the associated high-energy-density physics, and their application to fusion concepts. Results presented included theory, modeling, and experimental results from facilities worldwide. In recent years, significant advances have been made in high-energy-density science using lasers, Z-pinches, and particle beam systems with dramatic technical achievements in areas such as central-hot-spot ignition, fast and impulse ignition, material properties at extreme conditions, warm dense matter, particle acceleration and laser-plasma interactions. For the first time in the laboratory, x-ray driven ignition experiments, performed at the National Ignition Facility (NIF) in the United States, have exhibited self-heating. In the month following the Conference, the first plasma experiments were performed at Laser Mégajoule (LMJ) in France, and ignition scale projects are under way in China and Russia. Other approaches, such as magnetic compression on the Z-machine at Sandia National Laboratories and direct drive experiments at the University of Rochester, have produced exciting new results which were reported on at the Conference. Second-generation petawatt short-pulse laser systems such as the highest-energy petawatt laser systems LFEX (FIREX) in Japan, OMEGA

  1. Geospace environment modeling 2008--2009 challenge: Dst index

    Science.gov (United States)

    Rastätter, L.; Kuznetsova, M.M.; Glocer, A.; Welling, D.; Meng, X.; Raeder, J.; Wittberger, M.; Jordanova, V.K.; Yu, Y.; Zaharia, S.; Weigel, R.S.; Sazykin, S.; Boynton, R.; Wei, H.; Eccles, V.; Horton, W.; Mays, M.L.; Gannon, J.

    2013-01-01

    This paper reports the metrics-based results of the Dst index part of the 2008–2009 GEM Metrics Challenge. The 2008–2009 GEM Metrics Challenge asked modelers to submit results for four geomagnetic storm events and five different types of observations that can be modeled by statistical, climatological or physics-based models of the magnetosphere-ionosphere system. We present the results of 30 model settings that were run at the Community Coordinated Modeling Center and at the institutions of various modelers for these events. To measure the performance of each of the models against the observations, we use comparisons of 1 hour averaged model data with the Dst index issued by the World Data Center for Geomagnetism, Kyoto, Japan, and direct comparison of 1 minute model data with the 1 minute Dst index calculated by the United States Geological Survey. The latter index can be used to calculate spectral variability of model outputs in comparison to the index. We find that model rankings vary widely by skill score used. None of the models consistently perform best for all events. We find that empirical models perform well in general. Magnetohydrodynamics-based models of the global magnetosphere with inner magnetosphere physics (ring current model) included and stand-alone ring current models with properly defined boundary conditions perform well and are able to match or surpass results from empirical models. Unlike in similar studies, the statistical models used in this study found their challenge in the weakest events rather than the strongest events.

  2. The United States Polar Rock Repository: A geological resource for the Earth science community

    Science.gov (United States)

    Grunow, Annie M.; Elliot, David H.; Codispoti, Julie E.

    2007-01-01

    The United States Polar Rock Repository (USPRR) is a U. S. national facility designed for the permanent curatorial preservation of rock samples, along with associated materials such as field notes, annotated air photos and maps, raw analytic data, paleomagnetic cores, ground rock and mineral residues, thin sections, and microfossil mounts, microslides and residues from Polar areas. This facility was established by the Office of Polar Programs at the U. S. National Science Foundation (NSF) to minimize redundant sample collecting, and also because the extreme cold and hazardous field conditions make fieldwork costly and difficult. The repository provides, along with an on-line database of sample information, an essential resource for proposal preparation, pilot studies and other sample based research that should make fieldwork more efficient and effective. This latter aspect should reduce the environmental impact of conducting research in sensitive Polar Regions. The USPRR also provides samples for educational outreach. Rock samples may be borrowed for research or educational purposes as well as for museum exhibits.

  3. Teaching climate science within the transdisciplinary framework of Critical Zone science

    Science.gov (United States)

    White, T. S.; Wymore, A.; Dere, A. L. D.; Washburne, J. C.; Hoffman, A.; Conklin, M. H.

    2017-12-01

    During the past decade a new realm of Earth surface and environmental science has evolved, Critical Zone (CZ) science. The CZ is the outermost layer of the continents spanning from the top of the vegetation canopy down to the bottom of the fresh groundwater zone. CZ science integrates across many disciplines and cross cutting concepts, including climate science, and much progress has been made by the CZ community to develop educational curricula - descriptions of the climate science aspects of two of those follows. An interdisciplinary team of CZ scientists developed an undergraduate course entitled "Introduction to CZ science". The semester-long course is modular, has been tested in multiple university settings, and the content is available online. A primary tenet of the course is that to achieve environmental sustainability, society must understand the CZ system, the natural processes and services of the CZ that are of value to society, and how those processes operate with and without the presence of humanity. A fundamental concept in the course is that the fluxes of water, C, energy, reactive gases, particulates and nutrients throughout the CZ are directly and indirectly related to climatic phenomenon and processes. Units on land-atmosphere interactions, weathering, and water budgets highlight the connection between CZ science and climate science, and are augmented by learning activities that consider climate links to soil development and landscape evolution. An online open-source course entitled "Earth 530: Earth Surface Processes in the Critical Zone'" is offered as part of The Pennsylvania State University's Masters of Education in Earth Sciences program. The course is designed to educate teachers interested in incorporating CZ science into their classrooms, though it is usable by anyone with a basic understanding of Earth surface and environmental science. Earth 530 introduces students to knowledge needed to understand the CZ through integration of

  4. Science Through ARts (STAR)

    Science.gov (United States)

    Kolecki, Joseph; Petersen, Ruth; Williams, Lawrence

    2002-01-01

    Science Through ARts (STAR) is an educational initiative designed to teach students through a multidisciplinary approach to learning. This presentation describes the STAR pilot project, which will use Mars exploration as the topic to be integrated. Schools from the United Kingdom, Japan, the United States, and possibly eastern Europe are expected to participate in the pilot project.

  5. The Kepler Science Operations Center Pipeline Framework Extensions

    Science.gov (United States)

    Klaus, Todd C.; Cote, Miles T.; McCauliff, Sean; Girouard, Forrest R.; Wohler, Bill; Allen, Christopher; Chandrasekaran, Hema; Bryson, Stephen T.; Middour, Christopher; Caldwell, Douglas A.; hide

    2010-01-01

    The Kepler Science Operations Center (SOC) is responsible for several aspects of the Kepler Mission, including managing targets, generating on-board data compression tables, monitoring photometer health and status, processing the science data, and exporting the pipeline products to the mission archive. We describe how the generic pipeline framework software developed for Kepler is extended to achieve these goals, including pipeline configurations for processing science data and other support roles, and custom unit of work generators that control how the Kepler data are partitioned and distributed across the computing cluster. We describe the interface between the Java software that manages the retrieval and storage of the data for a given unit of work and the MATLAB algorithms that process these data. The data for each unit of work are packaged into a single file that contains everything needed by the science algorithms, allowing these files to be used to debug and evolve the algorithms offline.

  6. Representing the nature of science in a science textbook: Exploring author-editor-publisher interactions

    Science.gov (United States)

    Digiuseppe, Maurizio

    Current reforms in elementary and secondary science education call for students and teachers to develop more informed views of the nature of science---a process in which learning materials like science textbooks play a significant role. This dissertation reports on a case study of the development of representations of the nature of science in one unit of a senior high school chemistry textbook by the book's author, editor, and publisher. The study examines the multiple discourses that arose as the developers reflected on their personal and shared understandings of the nature of science; squared these understandings with mandated curricula, the educational needs of chemistry students and teachers, and the exigencies of large-scale commercial textbook publishing; and developed and incorporated into the textbook representations of the nature of science they believed were the most suitable. Analyses of the data in this study indicate that a number of factors significantly influenced the development of representations of the nature of science, including representational accuracy (the degree to which suggested representations of the nature of science conformed to what the developers believed were contemporary understandings of the nature of science), representational consistency (the degree to which similar representations of the nature of science in different parts of the textbook conveyed the same meaning), representational appropriateness (the age-, grade-, and reading-level suitability of the suggested nature of science representations), representational alignment (the degree to which suggested representations of the nature of science addressed the requirements of mandated curricula), representational marketability (the degree to which textbook developers believed suggested representations of the nature of science would affect sales of the textbook in the marketplace), and a number of "Workplace Resources" factors such as the availability of time, relevant expertise

  7. Science in the Bilingual Classroom

    Science.gov (United States)

    Gutierrez, Patricia A.

    1996-07-01

    One in seven children in the United States speaks a language other than English at home. Their difficulties with English may seem like a barrier to science education. But science education can be the impetus they need to overcome their difficulties with English. With sidebars by Isabel Hawkins and George Musser.

  8. Cooperative Learning about Nature of Science with a Case from the History of Science

    Science.gov (United States)

    Wolfensberger, Balz; Canella, Claudia

    2015-01-01

    This paper reports a predominantly qualitative classroom study on cooperative learning about nature of science (NOS) using a case from the history of science. The purpose of the research was to gain insight into how students worked with the historical case study during cooperative group work, how students and teachers assessed the teaching unit,…

  9. Managing for climate change on federal lands of the western United States: perceived usefulness of climate science, effectiveness of adaptation strategies, and barriers to implementation

    Directory of Open Access Journals (Sweden)

    Kerry B. Kemp

    2015-06-01

    Full Text Available Recent mandates in the United States require federal agencies to incorporate climate change science into land management planning efforts. These mandates target possible adaptation and mitigation strategies. However, the degree to which climate change is actively being considered in agency planning and management decisions is largely unknown. We explored the usefulness of climate change science for federal resource managers, focusing on the efficacy of potential adaptation strategies and barriers limiting the use of climate change science in adaptation efforts. Our study was conducted in the northern Rocky Mountains region of the western United States, where we interacted with 77 U.S. Forest Service and Bureau of Land Management personnel through surveys, semistructured interviews, and four collaborative workshops at locations across Idaho and Montana. We used a mixed-methods approach to evaluate managers' perceptions about adapting to and mitigating for climate change. Although resource managers incorporate general language about climate change in regional and landscape-level planning documents, they are currently not planning on-the-ground adaptation or mitigation projects. However, managers felt that their organizations were most likely to adapt to climate change through use of existing management strategies that are already widely implemented for other non climate-related management goals. These existing strategies, (e.g., thinning and prescribed burning are perceived as more feasible than new climate-specific methods (e.g., assisted migration because they already have public and agency support, accomplish multiple goals, and require less anticipation of the future timing and probability of climate change impacts. Participants reported that the most common barriers to using climate change information included a lack of management-relevant climate change science, inconsistent agency guidance, and insufficient time and resources to access

  10. An educational ethnography of teacher-developed science curriculum implementation: Enacting conceptual change-based science inquiry with Hispanic students

    Science.gov (United States)

    Brunsell, Eric Steven

    An achievement gap exists between White and Hispanic students in the United States. Research has shown that improving the quality of instruction for minority students is an effective way to narrow this gap. Science education reform movements emphasize that science should be taught using a science inquiry approach. Extensive research in teaching and learning science also shows that a conceptual change model of teaching is effective in helping students learn science. Finally, research into how Hispanic students learn best has provided a number of suggestions for science instruction. The Inquiry for Conceptual Change model merges these three research strands into a comprehensive yet accessible model for instruction. This study investigates two questions. First, what are teachers' perceptions of science inquiry and its implementation in the classroom? Second, how does the use of the Inquiry for Conceptual Change model affect the learning of students in a predominantly Hispanic, urban neighborhood. Five teachers participated in a professional development project where they developed and implemented a science unit based on the Inquiry for Conceptual Change model. Three units were developed and implemented for this study. This is a qualitative study that included data from interviews, participant reflections and journals, student pre- and post-assessments, and researcher observations. This study provides an in-depth description of the role of professional development in helping teachers understand how science inquiry can be used to improve instructional quality for students in a predominantly Hispanic, urban neighborhood. These teachers demonstrated that it is important for professional development to be collaborative and provide opportunities for teachers to enact and reflect on new teaching paradigms. This study also shows promising results for the ability of the Inquiry for Conceptual Change model to improve student learning.

  11. The integration of creative drama into science teaching

    Science.gov (United States)

    Arieli, Bracha (Bari)

    This study explored the inclusion of creative drama into science teaching as an instructional strategy for enhancing elementary school students' understanding of scientific concepts. A treatment group of sixth grade students was taught a Full Option Science System (FOSS) science unit on Mixtures and Solutions with the addition of creative drama while a control group was taught using only the FOSS teaching protocol. Quantitative and qualitative data analyses demonstrated that students who studied science through creative drama exhibited a greater understanding of scientific content of the lessons and preferred learning science through creative drama. Treatment group students stated that they enjoyed participating in the activities with their friends and that the creative drama helped them to better understand abstract scientific concepts. Teachers involved with the creative drama activities were positively impressed and believed creative drama is a good tool for teaching science. Observations revealed that creative drama created a positive classroom environment, improved social interactions and self-esteem, that all students enjoyed creative drama, and that teachers' teaching style affected students' use of creative drama. The researcher concluded that the inclusion of creative drama with the FOSS unit enhanced students' scientific knowledge and understanding beyond that of the FOSS unit alone, that both teachers and students reacted positively to creative drama in science and that creative drama requires more time.

  12. Learning Activities That Combine Science Magic Activities with the 5E Instructional Model to Influence Secondary-School Students' Attitudes to Science

    Science.gov (United States)

    Lin, Jang-Long; Cheng, Meng-Fei; Chang, Ying-Chi; Li, Hsiao-Wen; Chang, Jih-Yuan; Lin, Deng-Min

    2014-01-01

    The purpose of this study was to investigate how learning materials based on Science Magic activities affect student attitudes to science. A quasi-experimental design was conducted to explore the combination of Science Magic with the 5E Instructional Model to develop learning materials for teaching a science unit about friction. The participants…

  13. Questioning the Fidelity of the "Next Generation Science Standards" for Astronomy and Space Sciences Education

    Science.gov (United States)

    Slater, Stephanie J.; Slater, Timothy F.

    2015-01-01

    Although the Next Generation Science Standards (NGSS) are not federally mandated national standards or performance expectations for K-12 schools in the United States, they stand poised to become a de facto national science and education policy, as state governments, publishers of curriculum materials, and assessment providers across the country…

  14. Canadian radiation belt science in the ILWS era

    Science.gov (United States)

    Mann, I. R.

    The Outer Radiation Belt Injection, Transport, Acceleration, and Loss Satellite (ORBITALS) is a Canadian Space Agency small satellite mission proposed as a Canadian contribution to the satellite infrastructure for the International Living With a Star (ILWS) program. Planned to operate contemporaneously with the NASA Radiation Belt Storm Probes (RBSP), the ORBITALS will monitor the energetic electron and ion populations in the inner magnetosphere across a wide range of energies (keV to tens of MeV) as well as the dynamic electric and magnetic fields, waves, and cold plasma environment which govern the injection, transport, acceleration and loss of these energetic and space weather critical particle populations in the inner magnetosphere. Currently in Phase A Design Study, the ORBITALS will be launched into a low-inclination GTO-like orbit which every second orbit maximizes the long lasting apogee-pass conjunctions with both the ground-based instruments of the Canadian Geospace Monitoring (CGSM) array as well as with the GOES East and West and geosynchronous communications satellites in the North American sector. In a twelve-hour orbit, every second apogee will conjunct with instrumentation 180 degree in longitude away in the Asian sector. Specifically, the ORBITALS will make the measurements necessary to reach reveal fundamental new understanding of the relative importance of different physical processes (for example VLF verses ULF waves) which shape the energetic particle populations in the inner magnetosphere, as well as providing the raw radiation measurements at MEO altitudes necessary for the development of the next-generation of radiation belt specification models. On-board experiments will also monitor the dose, single event upset, and deep-dielectric charging responses of electronic components on-orbit. Supporting ground-based measurements of ULF and higher frequency wave fields from the Canadian CARISMA (www.carisma.ca) magnetometer array, as well as from

  15. A glossary of atmospheric science

    International Nuclear Information System (INIS)

    1996-09-01

    This book concentrates on the glossary of atmospheric science, which contains summary, for enactment and deliberation on choosing special glossary on atmospheric science in Korea, examiner for the glossary on atmospheric science, reference, explanatory notes and a lot of glossary on atmospheric science. It also has an appendix on commercial abbreviation, prefix, unit, wavelength and the number o vibrations of electromagnetic waves, ICAO classified catalogue on cloud, list of varietal cloud and list of local wind. It has explanation of the glossary in English, Korea, China and Japan.

  16. 474 Science Activities for Young Children.

    Science.gov (United States)

    Green, Moira D.

    This book uses a child-initiated, whole language approach to help children have fun while exploring the world of science. The activities are divided into 23 units. Each unit begins with an "Attention Getter," the purpose of which is to introduce the unit to children in a way that grabs their attention, stimulates their interest, and creates…

  17. Life Science's Average Publishable Unit (APU Has Increased over the Past Two Decades.

    Directory of Open Access Journals (Sweden)

    Radames J B Cordero

    Full Text Available Quantitative analysis of the scientific literature is important for evaluating the evolution and state of science. To study how the density of biological literature has changed over the past two decades we visually inspected 1464 research articles related only to the biological sciences from ten scholarly journals (with average Impact Factors, IF, ranging from 3.8 to 32.1. By scoring the number of data items (tables and figures, density of composite figures (labeled panels per figure or PPF, as well as the number of authors, pages and references per research publication we calculated an Average Publishable Unit or APU for 1993, 2003, and 2013. The data show an overall increase in the average ± SD number of data items from 1993 to 2013 of approximately 7±3 to 14±11 and PPF ratio of 2±1 to 4±2 per article, suggesting that the APU has doubled in size over the past two decades. As expected, the increase in data items per article is mainly in the form of supplemental material, constituting 0 to 80% of the data items per publication in 2013, depending on the journal. The changes in the average number of pages (approx. 8±3 to 10±3, references (approx. 44±18 to 56±24 and authors (approx. 5±3 to 8±9 per article are also presented and discussed. The average number of data items, figure density and authors per publication are correlated with the journal's average IF. The increasing APU size over time is important when considering the value of research articles for life scientists and publishers, as well as, the implications of these increasing trends in the mechanisms and economics of scientific communication.

  18. Life Science's Average Publishable Unit (APU) Has Increased over the Past Two Decades.

    Science.gov (United States)

    Cordero, Radames J B; de León-Rodriguez, Carlos M; Alvarado-Torres, John K; Rodriguez, Ana R; Casadevall, Arturo

    2016-01-01

    Quantitative analysis of the scientific literature is important for evaluating the evolution and state of science. To study how the density of biological literature has changed over the past two decades we visually inspected 1464 research articles related only to the biological sciences from ten scholarly journals (with average Impact Factors, IF, ranging from 3.8 to 32.1). By scoring the number of data items (tables and figures), density of composite figures (labeled panels per figure or PPF), as well as the number of authors, pages and references per research publication we calculated an Average Publishable Unit or APU for 1993, 2003, and 2013. The data show an overall increase in the average ± SD number of data items from 1993 to 2013 of approximately 7±3 to 14±11 and PPF ratio of 2±1 to 4±2 per article, suggesting that the APU has doubled in size over the past two decades. As expected, the increase in data items per article is mainly in the form of supplemental material, constituting 0 to 80% of the data items per publication in 2013, depending on the journal. The changes in the average number of pages (approx. 8±3 to 10±3), references (approx. 44±18 to 56±24) and authors (approx. 5±3 to 8±9) per article are also presented and discussed. The average number of data items, figure density and authors per publication are correlated with the journal's average IF. The increasing APU size over time is important when considering the value of research articles for life scientists and publishers, as well as, the implications of these increasing trends in the mechanisms and economics of scientific communication.

  19. Social science findings in the United States

    Science.gov (United States)

    Sarah McCaffrey; Eric Toman; Melanie Stidham; Bruce. Shindler

    2015-01-01

    The rising number of acres burned annually and growing number of people living in or adjacent to fire-prone areas in the United States make wildfire management an increasingly complex and challenging problem. Given the prominence of social issues in shaping the current challenges and determining paths forward, it will be important to have an accurate understanding of...

  20. Science of driving.

    Science.gov (United States)

    2016-08-01

    The Science of Driving project focused on developing a collaborative relationship to develop curriculum units for middle school and high school students to engage them in exciting real-world scenarios. This effort involved faculty, staff, and student...

  1. Student Interest in Engineering Design-Based Science

    Science.gov (United States)

    Selcen Guzey, S.; Moore, Tamara J.; Morse, Gillian

    2016-01-01

    Current reform efforts in science education around the world call on teachers to use integrated approaches to teach science. As a part of such reform efforts in the United States, engineering practices and engineering design have been identified in K-12 science education standards. However, there is relatively little is known about effective ways…

  2. Journal of Applied Science and Technology: Submissions

    African Journals Online (AJOL)

    The Journal of Applied Science and Technology (JAST) seeks to promote and ... knowledge of various research topics in the applied sciences which address issues of ... Numerical value must be separated from the Physical Unit by 1 spacing.

  3. But science is international! Finding time and space to encourage intercultural learning in a content-driven physiology unit.

    Science.gov (United States)

    Etherington, Sarah J

    2014-06-01

    Internationalization of the curriculum is central to the strategic direction of many modern universities and has widespread benefits for student learning. However, these clear aspirations for internationalization of the curriculum have not been widely translated into more internationalized course content and teaching methods in the classroom, particularly in scientific disciplines. This study addressed one major challenge to promoting intercultural competence among undergraduate science students: finding time to scaffold such learning within the context of content-heavy, time-poor units. Small changes to enhance global and intercultural awareness were incorporated into existing assessments and teaching activities within a second-year biomedical physiology unit. Interventions were designed to start a conversation about global and intercultural perspectives on physiology, to embed the development of global awareness into the assessment and to promote cultural exchanges through peer interactions. In student surveys, 40% of domestic and 60% of international student respondents articulated specific learning about interactions in cross-cultural groups resulting from unit activities. Many students also identified specific examples of how cultural beliefs would impact on the place of biomedical physiology within the global community. In addition, staff observed more widespread benefits for student engagement and learning. It is concluded that a significant development of intercultural awareness and a more global perspective on scientific understanding can be supported among undergraduates with relatively modest, easy to implement adaptations to course content.

  4. Geomorphology, Science (Experimental): 5343.09.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    Performance objectives are stated for this secondary school instructional unit concerned with aspects of earth science with emphases on the internal and external forces that bring about changes in the earth's crust. Lists of films and state-adopted and other texts are presented. Included are a course outline summarizing the unit content; numerous…

  5. A Mathematics and Science Trail

    Science.gov (United States)

    Smith, Kathy Horak; Fuentes, Sarah Quebec

    2012-01-01

    In an attempt to engage primary-school students in a hands-on, real-world problem-solving context, a large urban district, a mathematics and science institute housed in a college of education, and a corporate sponsor in the southwest United States, joined forces to create a mathematics and science trail for fourth- and fifth-grade students. A…

  6. Engaging a middle school teacher and students in formal-informal science education: Contexts of science standards-based curriculum and an urban science center

    Science.gov (United States)

    Grace, Shamarion Gladys

    This is a three-article five chapter doctoral dissertation. The overall purpose of this three-pronged study is to engage a middle school science teacher and students in formal-informal science education within the context of a science standards-based curriculum and Urban Science Center. The goals of the study were: (1) to characterize the conversations of formal and informal science educators as they attempted to implement a standards-based curriculum augmented with science center exhibits; (2) to study the classroom discourse between the teacher and students that foster the development of common knowledge in science and student understanding of the concept of energy before observing science center exhibits on energy; (3) to investigate whether or not a standards-driven, project-based Investigating and Questioning our World through Science and Technology (IQWST) curriculum unit on forms and transformation of energy augmented with science center exhibits had a significant effect on urban African-American seventh grade students' achievement and learning. Overall, the study consisted of a mixed-method approach. Article one consists of a case study featuring semi-structured interviews and field notes. Article two consists of documenting and interpreting teacher-students' classroom discourse. Article three consists of qualitative methods (classroom discussion, focus group interviews, student video creation) and quantitative methods (multiple choice and open-ended questions). Oral discourses in all three studies were audio-recorded and transcribed verbatim. In article one, the community of educators' conversations were critically analyzed to discern the challenges educators encountered when they attempted to connect school curriculum to energy exhibits at the Urban Science Center. The five challenges that characterize the emergence of a third space were as follows: (a) science terminology for lesson focus, (b) "dumb-down" of science exhibits, (c) exploration distracts

  7. Biomass Maps | Geospatial Data Science | NREL

    Science.gov (United States)

    Biomass Maps Biomass Maps These maps illustrate the biomass resource in the United States by county . Biomass feedstock data are analyzed both statistically and graphically using a geographic information Data Science Team. Solid Biomass Resources Map of Total Biomass Resources in the United States Solid

  8. Science objectives of the magnetic field experiment onboard Aditya-L1 spacecraft

    Science.gov (United States)

    Yadav, Vipin K.; Srivastava, Nandita; Ghosh, S. S.; Srikar, P. T.; Subhalakshmi, Krishnamoorthy

    2018-01-01

    The Aditya-L1 is first Indian solar mission scheduled to be placed in a halo orbit around the first Lagrangian point (L1) of Sun-Earth system in the year 2018-19. The approved scientific payloads onboard Aditya-L1 spacecraft includes a Fluxgate Digital Magnetometer (FGM) to measure the local magnetic field which is necessary to supplement the outcome of other scientific experiments onboard. The in-situ vector magnetic field data at L1 is essential for better understanding of the data provided by the particle and plasma analysis experiments, onboard Aditya-L1 mission. Also, the dynamics of Coronal Mass Ejections (CMEs) can be better understood with the help of in-situ magnetic field data at the L1 point region. This data will also serve as crucial input for the short lead-time space weather forecasting models. The proposed FGM is a dual range magnetic sensor on a 6 m long boom mounted on the Sun viewing panel deck and configured to deploy along the negative roll direction of the spacecraft. Two sets of sensors (tri-axial each) are proposed to be mounted, one at the tip of boom (6 m from the spacecraft) and other, midway (3 m from the spacecraft). The main science objective of this experiment is to measure the magnitude and nature of the interplanetary magnetic field (IMF) locally and to study the disturbed magnetic conditions and extreme solar events by detecting the CME from Sun as a transient event. The proposed secondary science objectives are to study the impact of interplanetary structures and shock solar wind interaction on geo-space environment and to detect low frequency plasma waves emanating from the solar corona at L1 point. This will provide a better understanding on how the Sun affects interplanetary space. In this paper, we shall give the main scientific objectives of the magnetic field experiment and brief technical details of the FGM onboard Aditya-1 spacecraft.

  9. SI units in engineering and technology

    CERN Document Server

    Qasim, S H

    2016-01-01

    SI Units in Engineering and Technology focuses on the use of the International System of Units-Systeme International d'Unités (SI). The publication first elaborates on the SI, derivation of important engineering units, and derived SI units in science and engineering. Discussions focus on applied mechanics in mechanical engineering, electrical and magnetic units, stress and pressure, work and energy, power and force, and magnitude of SI units. The text then examines SI units conversion tables and engineering data in SI units. Tables include details on the sectional properties of metals in SI units, physical properties of important molded plastics, important physical constants expressed in SI units, and temperature, area, volume, and mass conversion. Tables that show the mathematical constants, standard values expressed in SI units, and Tex count conversion are also presented. The publication is a dependable source of data for researchers interested in the use of the International System of Units-Systeme Inter...

  10. Proceedings – Mathematical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Proceedings – Mathematical Sciences; Volume 119; Issue 3. Issue front cover thumbnail. Volume 119, Issue 3. June 2009, pages 267-410. pp 267-274. A Finer Classification of the Unit Sum Number of the Ring of Integers of Quadratic Fields and Complex Cubic Fields · Nahid Ashrafi · More Details Abstract ...

  11. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. F G Pazzona1 B J Borah1 P Demontis2 G B Suffritti2 S Yashonath1 3. Solid State and Structural Chemistry Unit,; Dipartimento di Chimica, Università di Sassari, Via Vienna 2 I-07100 Sassari, Italy; Center for Condensed Matter Theory, Indian Institute of Science, Bangalore 560 012 ...

  12. Ecology of Missouri Forests. Instructional Unit. Conservation Education Series.

    Science.gov (United States)

    Jackson, Jim

    This unit is designed to help science, social studies, vocational agriculture, and other teachers incorporate forest ecology concepts into their subject matter. The unit includes: (1) topic outline; (2) unit objectives; (3) background information on climate and soils, levels of a deciduous forest, age classes, food and energy relationships, forest…

  13. The Thing We Really Need

    Science.gov (United States)

    Donovan, E.

    2017-12-01

    I'm known for hyperbole and provocative statements. "What do you get from 10,000 magnetometers distributed around the globe? A low resolution image of currents." To a great extent, I'm having fun with such statements, I truly value the phenomenal armada of spacecraft - the HSO - with which we are exploring geospace, and certainly we need the in situ measurements to unravel the fundamental (small scale) processes at the heart of space weather. But, for me there is underlying truth for my light-hearted rhetoric. The geospace community has been too accepting of arguments against significant investment in imaging. Some say "you can't do science with images." My answer? "Tell that to the astronomers". Some say "we've flown an auroral imager… been there, done that." My answer? "The fact that we've flown ten magnetometers seems to not preclude flying another ten." We are comfortable spending multiple billions of dollars on in situ observations, yet uncomfortable spending even just tens of millions on imaging. Why does this matter? In situ focused missions are giving us a profoundly important of the small scale physics by which everything in geospace happens. However, these effects spin up via space/time scales that are poorly sampled. We are often left piecing together the critically important mesoscale picture with dramatically under-sampled "images". Consider the images below. Consider the SDO images showing a flare in exquisite detail in multiple wavelengths. With these, solar physicists have made dramatic advances relating small scale with mesoscales and their consequences. Through these the public has been inspired and awe stricken. Consider the ASI images with overlaid SuperDARN observations. Such images have allowed us to make great advances, but it's time for us to acknowledge that our imaging leaves too much to the imagination, and falls well short of creating visuals that inspire. It's time for us to make the movie of our system. In this presentation, I

  14. The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Body Unit and Combined System Tests

    International Nuclear Information System (INIS)

    Wiens, Roger C.; Barraclough, Bruce; Barkley, Walter C.; Bender, Steve; Bernardin, John; Bultman, Nathan; Clanton, Robert C.; Clegg, Samuel; Delapp, Dorothea; Dingler, Robert; Enemark, Don; Flores, Mike; Hale, Thomas; Lanza, Nina; Lasue, Jeremie; Latino, Joseph; Little, Cynthia; Morrison, Leland; Nelson, Tony; Romero, Frank; Salazar, Steven; Stiglich, Ralph; Storms, Steven; Trujillo, Tanner; Ulibarri, Mike; Vaniman, David; Whitaker, Robert; Witt, James; Maurice, Sylvestre; Bouye, Marc; Cousin, Agnes; Cros, Alain; D'Uston, Claude; Forni, Olivier; Gasnault, Olivier; Kouach, Driss; Lasue, Jeremie; Pares, Laurent; Poitrasson, Franck; Striebig, Nicolas; Thocaven, Jean-Jacques; Saccoccio, Muriel; Perez, Rene; Bell, James F. III; Hays, Charles; Blaney, Diana; DeFlores, Lauren; Elliott, Tom; Kan, Ed; Limonadi, Daniel; Lindensmith, Chris; Miller, Ed; Reiter, Joseph W.; Roberts, Tom; Simmonds, John J.; Warner, Noah; Blank, Jennifer; Bridges, Nathan; Cais, Phillippe; Clark, Benton; Cremers, David; Dyar, M. Darby; Fabre, Cecile; Herkenhoff, Ken; Kirkland, Laurel; Landis, David; Langevin, Yves; Lanza, Nina; Newsom, Horton; Ollila, Ann; LaRocca, Frank; Ott, Melanie; Mangold, Nicolas; Manhes, Gerard; Mauchien, Patrick; Blank, Jennifer; McKay, Christopher; Mooney, Joe; Provost, Cheryl; Morris, Richard V.; Sautter, Violaine; Sautter, Violaine; Waterbury, Rob; Wong-Swanson, Belinda; Barraclough, Bruce; Bender, Steve; Vaniman, David

    2012-01-01

    The ChemCam instrument suite on the Mars Science Laboratory (MSL) rover Curiosity provides remote compositional information using the first laser-induced breakdown spectrometer (LIBS) on a planetary mission, and provides sample texture and morphology data using a remote micro-imager (RMI). Overall, ChemCam supports MSL with five capabilities: remote classification of rock and soil characteristics; quantitative elemental compositions including light elements like hydrogen and some elements to which LIBS is uniquely sensitive (e.g., Li, Be, Rb, Sr, Ba); remote removal of surface dust and depth profiling through surface coatings; context imaging; and passive spectroscopy over the 240-905 nm range. ChemCam is built in two sections: The mast unit, consisting of a laser, telescope, RMI, and associated electronics, resides on the rover's mast, and is described in a companion paper. ChemCam's body unit, which is mounted in the body of the rover, comprises an optical de-multiplexer, three spectrometers, detectors, their coolers, and associated electronics and data handling logic. Additional instrument components include a 6 m optical fiber which transfers the LIBS light from the telescope to the body unit, and a set of onboard calibration targets. ChemCam was integrated and tested at Los Alamos National Laboratory where it also underwent LIBS calibration with 69 geological standards prior to integration with the rover. Post-integration testing used coordinated mast and instrument commands, including LIBS line scans on rock targets during system-level thermal-vacuum tests. In this paper we describe the body unit, optical fiber, and calibration targets, and the assembly, testing, and verification of the instrument prior to launch. (authors)

  15. Investing in citizen science can improve natural resource management and environmental protection

    Science.gov (United States)

    McKinley, Duncan C.; Miller-Rushing, Abraham J.; Ballard, Heidi L.; Bonney, Rick; Brown, Hutch; Evans, Daniel M.; French, Rebecca A.; Parrish, Julia K.; Phillips, Tina B.; Ryan, Sean F.; Shanley, Lea A.; Shirk, Jennifer L.; Stepenuck, Kristine F.; Weltzin, Jake F.; Wiggins, Andrea; Boyle, Owen D.; Briggs, Russell D.; Chapin, Stuart F.; Hewitt, David A.; Preuss, Peter W.; Soukup, Michael A.

    2015-01-01

    Citizen science has made substantive contributions to science for hundreds of years. More recently, it has contributed to many articles in peer-reviewed scientific journals and has influenced natural resource management and environmental protection decisions and policies across the nation. Over the last 10 years, citizen science—participation by the public in a scientific project—has seen explosive growth in the United States, particularly in ecology, the environmental sciences, and related fields of inquiry. In this report, we explore the current use of citizen science in natural resource and environmental science and decision making in the United States and describe the investments organizations might make to benefit from citizen science.

  16. A Reflight of the Explorer-1 Science Mission: The Montana EaRth Orbiting Pico Explorer (MEROPE)

    Science.gov (United States)

    Klumpar, D. M.; Obland, M.; Hunyadi, G.; Jepsen, S.; Larsen, B.; Kankelborg, C.; Hiscock, W.

    2001-05-01

    Montana State University's interdisciplinary Space Science and Engineering Laboratory (SSEL) under support from the Montana NASA Space Grant Consortium is engaged in an earth orbiting satellite student design and flight project. The Montana EaRth Orbiting Pico Explorer (MEROPE) will carry a modern-day reproduction of the scientific payload carried on Explorer-1. On February 1, 1958 the United States launched its first earth orbiting satellite carrying a 14 kg scientific experiment built by Professor James Van Allen's group at the State University of Iowa (now The University of Iowa). The MEROPE student satellite will carry a reproduction, using current-day technology, of the scientific payload flown on Explorer-1. The CubeSat-class satellite will use currently available, low cost technologies to produce a payload-carrying satellite with a total orbital mass of 1 kg in a volume of 1 cubic liter. The satellite is to be launched in late 2001 into a 600 km, 65° inclination orbit. MEROPE will utilize passive magnetic orientation for 2-axis attitude control. A central microprocessor provides timing, controls on-board operations and switching, and enables data storage. Body mounted GaAs solar arrays are expected to provide in excess of 1.5 W. to maintain battery charge and operate the bus and payload. The Geiger counter will be operated at approximately 50% duty cycle, primarily during transits of the earth's radiation belts. Data will be stored on board and transmitted approximately twice per day to a ground station located on the Bozeman campus of the Montana State University. Owing to the 65° inclination, the instrument will also detect the higher energy portion of the electron spectrum responsible for the production of the Aurora Borealis. This paper describes both the technical implementation and design of the satellite and its payload as well as the not inconsiderable task of large team organization and management. As of March 2001, the student team consists of

  17. Collaborative online projects for English language learners in science

    Science.gov (United States)

    Terrazas-Arellanes, Fatima E.; Knox, Carolyn; Rivas, Carmen

    2013-12-01

    This paper summarizes how collaborative online projects (COPs) are used to facilitate science content-area learning for English Learners of Hispanic origin. This is a Mexico-USA partnership project funded by the National Science Foundation. A COP is a 10-week thematic science unit, completely online, and bilingual (Spanish and English) designed to provide collaborative learning experiences with culturally and linguistically relevant science instruction in an interactive and multimodal learning environment. Units are integrated with explicit instructional lessons that include: (a) hands-on and laboratory activities, (b) interactive materials and interactive games with immediate feedback, (c) animated video tutorials, (d) discussion forums where students exchange scientific learning across classrooms in the USA and in Mexico, and (e) summative and formative assessments. Thematic units have been aligned to U.S. National Science Education Standards and are under current revisions for alignment to the Common Core State Standards. Training materials for the teachers have been integrated into the project website to facilitate self-paced and independent learning. Preliminary findings of our pre-experimental study with a sample of 53 students (81 % ELs), distributed across three different groups, resulted in a 21 % statistically significant points increase from pretest to posttest assessments of science content learning, t( 52) = 11.07, p = .000.

  18. [Internationalism and science. Social and scientific bases of the European information science movement].

    Science.gov (United States)

    Olague de Ros, G; Menendez Navarro, A; Medina Domenech, R M; Astrain Gallart, M

    1997-01-01

    As part of a continuing line of research on scientific documentation we propose in this article a novel approach to the study of the European information science movement at the end of the nineteenth and beginning of the twentieth centuries. We suggest that this movement took place within the context of increasing internationalism of scientific endeavours, a process which was paralleled by the standardization of units, weight and measures for the different sciences. We investigate problems arising from scientific communication in connection with other aspects apparently unrelated to Information Science. Specifically, we refer to conflicts between nationalism and colonialism; concordance and discord between science policy and the corporate interests of nonscientific associations; higher educational policy; the professionalization of sciences; and the economic interests at stake as a consequence of the use of different information models.

  19. Next Generation Science Standards: Adoption and Implementation Workbook

    Science.gov (United States)

    Peltzman, Alissa; Rodriguez, Nick

    2013-01-01

    The Next Generation Science Standards (NGSS) represent the culmination of years of collaboration and effort by states, science educators and experts from across the United States. Based on the National Research Council's "A Framework for K-12 Science Education" and developed in partnership with 26 lead states, the NGSS, when…

  20. A methodological proposal to contribute to the development of research skills in science education to start the design of a didactic unit built on foundations of scientific and technological literacy

    Directory of Open Access Journals (Sweden)

    Andrés Felipe Velásquez Mosquera

    2013-10-01

    Full Text Available This paper seeks to promote a discussion of the need to promote the training of investigative skills in students of natural sciences from a methodology structured from the design of the plan of course, including a didactic unit, based on scientific and technological literacy to. It is the result of several years of experience in teaching and research of the author in the field of the didactics of the sciences

  1. Fusion Energy Sciences Network Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Dart, Eli [ESNet, Berkeley, CA (United States); Tierney, Brian [ESNet, Berkeley, CA (United States)

    2012-09-26

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In December 2011, ESnet and the Office of Fusion Energy Sciences (FES), of the DOE Office of Science (SC), organized a workshop to characterize the networking requirements of the programs funded by FES. The requirements identified at the workshop are summarized in the Findings section, and are described in more detail in the body of the report.

  2. Bringing Science to Life for Students, Teachers and the Community

    Science.gov (United States)

    Pratt, K.

    2012-04-01

    Bringing Science to Life for Students, Teachers and the Community Prior to 2008, 5th grade students at two schools of the New Haven Unified School District consistently scored in the bottom 20% of the California State Standards Test for science. Teachers in the upper grades reported not spending enough time teaching science, which is attributed to lack of time, resources or knowledge of science. A proposal was written to the National Oceanic and Atmospheric Administration's Bay Watershed Education Grant program and funding was received for Bringing Science to Life for Students, Teachers and the Community to address these concerns and instill a sense of stewardship in our students. This program engages and energizes students in learning science and the protection of the SF Bay Watershed, provides staff development for teachers, and educates the community about conservation of our local watershed. The project includes a preparation phase, outdoor phase, an analysis and reporting phase, and teacher training and consists of two complete units: 1) The San Francisco Bay Watershed Unit and 2) the Marine Environment Unit. At the end of year 5, our teachers were teaching more science, the community was engaged in conservation of the San Francisco Bay Watershed and most importantly, student scores increased on the California Science Test at one site by over 121% and another site by 152%.

  3. Unit testing as a teaching tool in higher education

    Directory of Open Access Journals (Sweden)

    Peláez Canek

    2016-01-01

    Full Text Available Unit testing in the programming world has had a profound impact in the way modern complex systems are developed. Many Open Source and Free Software projects encourage (and in some cases, mandate the use of unit tests for new code submissions, and many software companies around the world have incorporated unit testing as part of their standard developing practices. And although not all software engineers use them, very few (if at all object their use. However, there is almost no research available pertaining the use of unit tests as a teaching tool in introductory programming courses. I have been teaching introductory programming courses in the Computer Sciences program at the Sciences Faculty in the National Autonomous University of Mexico for almost ten years, and since 2013 I have been using unit testing as a teaching tool in those courses. The intent of this paper is to discuss the results of this experience.

  4. Professor Sir Mark Walport Government Chief Scientific Adviser Head of Government Science and Engineering Profession Chief Executive Designate of UK Research and Innovation United Kingdom of Great Britain and Northern Ireland

    CERN Multimedia

    Bennett, Sophia Elizabeth

    2017-01-01

    Professor Sir Mark Walport Government Chief Scientific Adviser Head of Government Science and Engineering Profession Chief Executive Designate of UK Research and Innovation United Kingdom of Great Britain and Northern Ireland

  5. Use of a virtual human performance laboratory to improve integration of mathematics and biology in sports science curricula in Sweden and the United States.

    Science.gov (United States)

    Garza, D; Besier, T; Johnston, T; Rolston, B; Schorsch, A; Matheson, G; Annerstedt, C; Lindh, J; Rydmark, M

    2007-01-01

    New fields such as bioengineering are exploring the role of the physical sciences in traditional biological approaches to problems, with exciting results in device innovation, medicine, and research biology. The integration of mathematics, biomechanics, and material sciences into the undergraduate biology curriculum will better prepare students for these opportunities and enhance cooperation among faculty and students at the university level. We propose the study of sports science as the basis for introduction of this interdisciplinary program. This novel integrated approach will require a virtual human performance laboratory dual-hosted in Sweden and the United States. We have designed a course model that involves cooperative learning between students at Göteborg University and Stanford University, utilizes new technologies, encourages development of original research and will rely on frequent self-assessment and reflective learning. We will compare outcomes between this course and a more traditional didactic format as well as assess the effectiveness of multiple web-hosted virtual environments. We anticipate the grant will result in a network of original faculty and student research in exercise science and pedagogy as well as provide the opportunity for implementation of the model in more advance training levels and K-12 programs.

  6. Science packages

    Science.gov (United States)

    1997-01-01

    Primary science teachers in Scotland have a new updating method at their disposal with the launch of a package of CDi (Compact Discs Interactive) materials developed by the BBC and the Scottish Office. These were a response to the claim that many primary teachers felt they had been inadequately trained in science and lacked the confidence to teach it properly. Consequently they felt the need for more in-service training to equip them with the personal understanding required. The pack contains five disks and a printed user's guide divided up as follows: disk 1 Investigations; disk 2 Developing understanding; disks 3,4,5 Primary Science staff development videos. It was produced by the Scottish Interactive Technology Centre (Moray House Institute) and is available from BBC Education at £149.99 including VAT. Free Internet distribution of science education materials has also begun as part of the Global Schoolhouse (GSH) scheme. The US National Science Teachers' Association (NSTA) and Microsoft Corporation are making available field-tested comprehensive curriculum material including 'Micro-units' on more than 80 topics in biology, chemistry, earth and space science and physics. The latter are the work of the Scope, Sequence and Coordination of High School Science project, which can be found at http://www.gsh.org/NSTA_SSandC/. More information on NSTA can be obtained from its Web site at http://www.nsta.org.

  7. Missing Links: Gender Equity in Science and Technology for ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Missing Links: Gender Equity in Science and Technology for Development. Book cover ... Gender Working Group of the United Nations Commission on Science and Technology for Development. Publisher(s): ... Knowledge. Innovation.

  8. Big Data and Data Science in Critical Care.

    Science.gov (United States)

    Sanchez-Pinto, L Nelson; Luo, Yuan; Churpek, Matthew M

    2018-05-09

    The digitalization of the healthcare system has resulted in a deluge of clinical Big Data and has prompted the rapid growth of data science in medicine. Data science, which is the field of study dedicated to the principled extraction of knowledge from complex data, is particularly relevant in the critical care setting. The availability of large amounts of data in the intensive care unit, the need for better evidence-based care, and the complexity of critical illness makes the use of data science techniques and data-driven research particularly appealing to intensivists. Despite the increasing number of studies and publications in the field, so far there have been few examples of data science projects that have resulted in successful implementations of data-driven systems in the intensive care unit. However, given the expected growth in the field, intensivists should be familiar with the opportunities and challenges of Big Data and data science. In this paper, we review the definitions, types of algorithms, applications, challenges, and future of Big Data and data science in critical care. Copyright © 2018. Published by Elsevier Inc.

  9. Science Ideals and Science Careers in a University Biology Department

    Science.gov (United States)

    Long, David E.

    2014-01-01

    In an ethnographic study set within a biology department of a public university in the United States, incongruity between the ideals and practice of science education are investigated. Against the background of religious conservative students' complaints about evolution in the curriculum, biology faculty describe their political intents for…

  10. Analyzing Science Activities in Force and Motion Concepts: A Design of an Immersion Unit

    Science.gov (United States)

    Ayar, Mehmet C.; Aydeniz, Mehmet; Yalvac, Bugrahan

    2015-01-01

    In this paper, we analyze the science activities offered at 7th grade in the Turkish science and technology curriculum along with addressing the curriculum's original intent. We refer to several science education researchers' ideas, including Chinn & Malhotra's (Science Education, 86:175--218, 2002) theoretical framework and Edelson's (1998)…

  11. Unit: Plants, Inspection Pack, National Trial Print.

    Science.gov (United States)

    Australian Science Education Project, Toorak, Victoria.

    This is a National Trial Print of a unit on plants produced as a part of the Australian Science Education Project. The unit consists of an information booklet for students, a booklet for recording student data, and a teacher's guide. The material, designed for use with students in the upper elementary grades, takes from 15 to 20 forty-minute…

  12. Teaching Science Down on the Farm

    Science.gov (United States)

    Hicks, Debbie

    2016-01-01

    Throughout the United Kingdom's (UK's) primary science curriculum, there are numerous opportunities for teachers to use the farming industry as a rich and engaging real-world context for science learning. Teachers can focus on the animals and plants on the farm as subjects for children to learn about life processes. They can turn attention…

  13. What Predicts Whether Foreign Doctorate Recipients from U.S. Institutions Stay in the United States: Foreign Doctorate Recipients in Science and Engineering Fields from 2000 to 2010

    Science.gov (United States)

    Roh, Jin-Young

    2015-01-01

    Using data from the Survey of Earned Doctorates by the National Science Foundation, this study examines factors influencing foreign doctorate recipients' decisions to stay in the United States after they complete their degrees. This study expands the existing literature on human capital theory on migration decision by exploring the variables that…

  14. Crop and Soil Science. A Curriculum Guide for Idaho Vocational Agriculture Instructors. Volume 1 and Volume 2.

    Science.gov (United States)

    Ledington, Richard L.

    The 24 units that comprise this crop and soil science curriculum guide are not geared to a particular age level and must be adapted to the students for whom they are used. Units 1 through 6 are general units covering topics common to soil science. Units 7 through 24 are units covering topics common to crop production. Each unit includes objectives…

  15. Of responsible research-Exploring the science-society dialogue in undergraduate training within the life sciences.

    Science.gov (United States)

    Almeida, Maria Strecht; Quintanilha, Alexandre

    2017-01-02

    We explore the integration of societal issues in undergraduate training within the life sciences. Skills in thinking about science, scientific knowledge production and the place of science in society are crucial in the context of the idea of responsible research and innovation. This idea became institutionalized and it is currently well-present in the scientific agenda. Developing abilities in this regard seems particularly relevant to training in the life sciences, as new developments in this area somehow evoke the involvement of all of us citizens, our engagement to debate and take part in processes of change. The present analysis draws from the implementation of a curricular unit focused on science-society dialogue, an optional course included in the Biochemistry Degree study plan offered at the University of Porto. This curricular unit was designed to be mostly an exploratory activity for the students, enabling them to undertake in-depth study in areas/topics of their specific interest. Mapping topics from students' final papers provided a means of analysis and became a useful tool in the exploratory collaborative construction of the course. We discuss both the relevance and the opportunity of thinking and questioning the science-society dialogue. As part of undergraduate training, this pedagogical practice was deemed successful. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(1):46-52, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  16. The potential scientist’s dilemma: How the Masculinization of Science Shapes Friendships and Science Job Preferences*

    Science.gov (United States)

    Gauthier, G. Robin; Hill, Patricia Wonch; McQuillan, Julia; Spiegel, Amy N.; Diamond, Judy

    2017-01-01

    In the United States, girls and boys have similar science achievement, yet fewer girls aspire to science careers than boys. This paradox emerges in middle school, when peers begin to play a stronger role in shaping adolescent identities. We use complete network data from a single middle school and theories of gender, identity, and social distance to explore how friendship patterns might influence this gender and science paradox. Three patterns highlight the social dimensions of gendered science persistence: (1) boys and girls do not differ in self-perceived science potential and science career aspirations; (2) consistent with gender-based norms, both middle school boys and girls report that the majority of their female friends are not science kinds of people; and (3) youth with gender-inconsistent science aspirations are more likely to be friends with each other than youth with gender normative science aspirations. Together, this evidence suggests that friendship dynamics contribute to gendered patterns in science career aspirations. PMID:28491465

  17. Designing an educative curriculum unit for teaching molecular geometry in high school chemistry

    Science.gov (United States)

    Makarious, Nader N.

    Chemistry is a highly abstract discipline that is taught and learned with the aid of various models. Among the most challenging, yet a fundamental topic in general chemistry at the high school level, is molecular geometry. This study focused on developing exemplary educative curriculum materials pertaining to the topic of molecular geometry. The methodology used in this study consisted of several steps. First, a diverse set of models were analyzed to determine to what extent each model serves its purpose in teaching molecular geometry. Second, a number of high school teachers and college chemistry professors were asked to share their experiences on using models in teaching molecular geometry through an online questionnaire. Third, findings from the comparative analysis of models, teachers’ experiences, literature review on models and students’ misconceptions, the curriculum expectations of the Next Generation Science Standards and their emphasis on three-dimensional learning and nature of science (NOS) contributed to the development of the molecular geometry unit. Fourth, the developed unit was reviewed by fellow teachers and doctoral-level science education experts and was revised to further improve its coherence and clarity in support of teaching and learning of the molecular geometry concepts. The produced educative curriculum materials focus on the scientific practice of developing and using models as promoted in the Next Generations Science Standards (NGSS) while also addressing nature of science (NOS) goals. The educative features of the newly developed unit support teachers’ pedagogical knowledge (PK) and pedagogical content knowledge (PCK). The unit includes an overview, teacher’s guide, and eight detailed lesson plans with inquiry oriented modeling activities replete with models and suggestions for teachers, as well as formative and summative assessment tasks. The unit design process serves as a model for redesigning other instructional units in

  18. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Raghavendra Gadagkar1 2. Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560012, India; Evolutionary and Organismal Biology Unit, lawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India ...

  19. Rock Cycle. K-6 Science Curriculum.

    Science.gov (United States)

    Blueford, J. R.; And Others

    Rock Cycle is one of the units of a K-6 unified science curriculum program. The unit consists of four organizing sub-themes: (1) chemistry (introducing the topics of matter, elements, compounds, and chemical bonding); (2) characteristics (presenting hands-on activities with rocks and minerals); (3) minerals (emphasizing the aesthetic and economic…

  20. Early Childhood Educators' Self-Efficacy in Science, Math, and Literacy Instruction and Science Practice in the Classroom

    Science.gov (United States)

    Gerde, Hope K.; Pierce, Steven J.; Lee, Kyungsook; Van Egeren, Laurie A.

    2018-01-01

    Research Findings: Quality early science education is important for addressing the low science achievement, compared to international peers, of elementary students in the United States. Teachers' beliefs about their skills in a content area, that is, their content self-efficacy is important because it has implications for teaching practice and…

  1. Fort Collins Science Center-Fiscal year 2009 science accomplishments

    Science.gov (United States)

    Wilson, Juliette T.

    2010-01-01

    Public land and natural resource managers in the United States are confronted with increasingly complex decisions that have important ramifications for both ecological and human systems. The scientists and technical professionals at the U.S. Geological Survey Fort Collins Science Center?many of whom are at the forefront of their fields?possess a unique blend of ecological, socioeconomic, and technological expertise. Because of this diverse talent, Fort Collins Science Center staff are able to apply a systems approach to investigating complicated ecological problems in a way that helps answer critical management questions. In addition, the Fort Collins Science Center has a long record of working closely with the academic community through cooperative agreements and other collaborations. The Fort Collins Science Center is deeply engaged with other U.S. Geological Survey science centers and partners throughout the Department of the Interior. As a regular practice, we incorporate the expertise of these partners in providing a full complement of ?the right people? to effectively tackle the multifaceted research problems of today's resource-management world. In Fiscal Year 2009, the Fort Collins Science Center's scientific and technical professionals continued research vital to Department of the Interior's science and management needs. Fort Collins Science Center work also supported the science needs of other Federal and State agencies as well as non-government organizations. Specifically, Fort Collins Science Center research and technical assistance focused on client and partner needs and goals in the areas of biological information management and delivery, enterprise information, fisheries and aquatic systems, invasive species, status and trends of biological resources (including human dimensions), terrestrial ecosystems, and wildlife resources. In the process, Fort Collins Science Center science addressed natural-science information needs identified in the U

  2. Forest science in the South - 2006

    Science.gov (United States)

    Southern Research Station USDA Forest Service

    2007-01-01

    Welcome to the Southern Research Station's 2006 Forest Science in the South. Our summary highlights key accomplishments and activities from this past fiscal year, October 1, 2005, through September 30, 2006.This was a dynamic year for the Station! We recently realigned our 28 research work units (RWUs) into 15 RWUs grouped under five science areas –...

  3. Nigerian Journal of Basic and Applied Sciences: Editorial Policies

    African Journals Online (AJOL)

    The Nigerian Journal of Basic and Applied Sciences is a biannual journal ... S.A. Isezuo, College of Health Sciences, UsmanuDanfodiyo University, Sokoto, ... of Mathematics, Statistics Unit, UsmanuDanfodiyo University, Sokoto, Nigeria. 7.

  4. Nanotechnology and Secondary Science Teacher's Self-Efficacy

    Science.gov (United States)

    Cox, Elena K.

    The recommendations of the United States President's Council of Advisors on Science and Technology and the multi-agency National Nanotechnology Initiative (NNI) identified the need to prepare the workforce and specialists in the field of nanotechnology in order for the United States to continue to compete in the global marketplace. There is a lack of research reported in recent literature on the readiness of secondary science teachers to introduce higher level sciences---specifically nanotechnology---in their classes. The central research question of this study examined secondary science teachers' beliefs about teaching nanotechnology comfortably, effectively, and successfully. Bandura's self-efficacy theory provided the conceptual framework for this phenomenological study. A data analysis rubric was used to identify themes and patterns that emerged from detailed descriptions during in-depth interviews with 15 secondary science teachers. The analysis revealed the shared, lived experiences of teachers and their beliefs about their effectiveness and comfort in teaching higher-level sciences, specifically nanotechnology. The results of the study indicated that, with rare exceptions, secondary science teachers do not feel comfortable or effective, nor do they believe they have adequate training to teach nanotechnology concepts to their students. These teachers believed they were not prepared or trained in incorporating these higher level science concepts in the curriculum. Secondary science teachers' self-efficacy and personal beliefs of effectiveness in teaching nanotechnology can be an important component in achieving a positive social change by helping to familiarize high school students with nanotechnology and how it can benefit society and the future of science.

  5. Religion as a Support Factor for Women of Color Pursuing Science Degrees: Implications for Science Teacher Educators

    Science.gov (United States)

    Ceglie, Robert

    2013-01-01

    This study explores the influence of religion as a support factor for a group of Latina and African-American women majoring in science. The current project is a part of a larger study that investigated persistence factors of underrepresented woman who were enrolled as science majors at United States colleges and universities. This paper focuses on…

  6. Aligning Science Achievement and STEM Expectations for College Success: A Comparative Study of Curricular Standardization

    Directory of Open Access Journals (Sweden)

    Siqi Han

    2016-04-01

    Full Text Available Lack of preparation in science leads to high rates of attrition among science, technology, engineering, and mathematics (STEM majors, even among students who are highly oriented toward STEM. Using data for twenty-seven countries from the 2006 Program for International Student Assessment, we compare the United States with other industrialized countries in terms of fifteen-year-olds’ science achievement and their expectations to focus on STEM in the future. The United States trails most countries in the mean science achievement of the general student population and among students expecting to pursue STEM majors or careers. Lack of curricular standardization in the United States is related to this lower science achievement. Countries with higher curricular standardization exhibit higher average science achievement scores; science achievement and students’ future orientation toward science are also better aligned in these countries. We discuss the implications of these findings for American colleges and universities as they seek to reduce student attrition in STEM fields.

  7. Utilizing the National Research Council's (NRC) Conceptual Framework for the Next Generation Science Standards (NGSS): A Self-Study in My Science, Engineering, and Mathematics Classroom

    Science.gov (United States)

    Corvo, Arthur Francis

    Given the reality that active and competitive participation in the 21 st century requires American students to deepen their scientific and mathematical knowledge base, the National Research Council (NRC) proposed a new conceptual framework for K--12 science education. The framework consists of an integration of what the NRC report refers to as the three dimensions: scientific and engineering practices, crosscutting concepts, and core ideas in four disciplinary areas (physical, life and earth/spaces sciences, and engineering/technology). The Next Generation Science Standards (NGSS ), which are derived from this new framework, were released in April 2013 and have implications on teacher learning and development in Science, Technology, Engineering, and Mathematics (STEM). Given the NGSS's recent introduction, there is little research on how teachers can prepare for its release. To meet this research need, I implemented a self-study aimed at examining my teaching practices and classroom outcomes through the lens of the NRC's conceptual framework and the NGSS. The self-study employed design-based research (DBR) methods to investigate what happened in my secondary classroom when I designed, enacted, and reflected on units of study for my science, engineering, and mathematics classes. I utilized various best practices including Learning for Use (LfU) and Understanding by Design (UbD) models for instructional design, talk moves as a tool for promoting discourse, and modeling instruction for these designed units of study. The DBR strategy was chosen to promote reflective cycles, which are consistent with and in support of the self-study framework. A multiple case, mixed-methods approach was used for data collection and analysis. The findings in the study are reported by study phase in terms of unit planning, unit enactment, and unit reflection. The findings have implications for science teaching, teacher professional development, and teacher education.

  8. Clinical caring science as a scientific discipline.

    Science.gov (United States)

    Rehnsfeldt, Arne; Arman, Maria; Lindström, Unni Å

    2017-09-01

    Clinical caring science will be described from a theory of science perspective. The aim of this theoretical article to give a comprehensive overview of clinical caring science as a human science-based discipline grounded in a theory of science argumentation. Clinical caring science seeks idiographic or specific variations of the ontology, concepts and theories, formulated by caring science. The rationale is the insight that the research questions do not change when they are addressed in different contexts. The academic subject contains a concept order with ethos concepts, core and basic concepts and practice concepts that unites systematic caring science with clinical caring science. In accordance with a hermeneutic tradition, the idea of the caring act is based on the degree to which the theory base is hermeneutically appropriated by the caregiver. The better the ethos, essential concepts and theories are understood, the better the caring act can be understood. In order to understand the concept order related to clinical caring science, an example is given from an ongoing project in a disaster context. The concept order is an appropriate way of making sense of the essence of clinical caring science. The idea of the concept order is that concepts on all levels need to be united with each other. A research project in clinical caring science can start anywhere on the concept order, either in ethos, core concepts, basic concepts, practice concepts or in concrete clinical phenomena, as long as no parts are locked out of the concept order as an entity. If, for example, research on patient participation as a phenomenon is not related to core and basic concepts, there is a risqué that the research becomes meaningless. © 2016 Nordic College of Caring Science.

  9. NP Science Network Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Dart, Eli [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Rotman, Lauren [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Tierney, Brian [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)

    2011-08-26

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. To support SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In August 2011, ESnet and the Office of Nuclear Physics (NP), of the DOE SC, organized a workshop to characterize the networking requirements of the programs funded by NP. The requirements identified at the workshop are summarized in the Findings section, and are described in more detail in the body of the report.

  10. Bioinformatics: future of life sciences

    International Nuclear Information System (INIS)

    Arif, R.; Ghafoor, M.; Saleem, M.; Baig, S.J.; Hassan, S.W.

    2004-01-01

    The vital part of our life or the basic unit of life is the cell. The cellular biomolecules function in a conjugate manner and this system provide us with the necessary elements of life, and the sciences that deals with nature function of the cell and it's molecular components are defined as life sciences. Vital subjects involved in maintaining the identity and functioning of cells are genomics and proteomics. (author)

  11. Citizen Science: Opportunities for Girls' Development of Science Identity

    Science.gov (United States)

    Brien, Sinead Carroll

    Many students in the United States, particularly girls, have lost interest in science by the time they reach high school and do not pursue higher degrees or careers in science. Several science education researchers have found that the ways in which youth see themselves and position themselves in relation to science can influence whether they pursue science studies and careers. I suggest that participation in a citizen science program, which I define as a program in which girls interact with professional scientists and collect data that contributes to scientific research, could contribute to changing girls' perceptions of science and scientists, and promote their science identity work. I refer to science identity as self-recognition and recognition by others that one thinks scientifically and does scientific work. I examined a case study to document and analyze the relationship between girls' participation in a summer citizen science project and their development of science identity. I observed six girls between the ages of 16 and 18 during the Milkweed and Monarch Project, taking field notes on focal girls' interactions with other youth, adults, and the scientist, conducted highly-structured interviews both pre-and post- girls' program participation, and interviewed the project scientist and educator. I qualitatively analyzed field notes and interview responses for themes in girls' discussion of what it meant to think scientifically, roles they took on, and how they recognized themselves as thinking scientifically. I found that girls who saw themselves as thinking scientifically during the program seemed to demonstrate shifts in their science identity. The aspects of the citizen science program that seemed to most influence shifts in these girls' science identities were 1) the framing of the project work as "real science, 2) that it involved ecological field work, and 3) that it created a culture that valued data and scientific work. However, some of the girls only

  12. Building Bridges between Science Courses Using Honors Organic Chemistry Projects

    Science.gov (United States)

    Hickey, Timothy; Pontrello, Jason

    2016-01-01

    Introductory undergraduate science courses are traditionally offered as distinct units without formalized student interaction between classes. To bridge science courses, the authors used three Honors Organic Chemistry projects paired with other science courses. The honors students delivered presentations to mainstream organic course students and…

  13. How Do Volcanoes Affect Human Life? Integrated Unit.

    Science.gov (United States)

    Dayton, Rebecca; Edwards, Carrie; Sisler, Michelle

    This packet contains a unit on teaching about volcanoes. The following question is addressed: How do volcanoes affect human life? The unit covers approximately three weeks of instruction and strives to present volcanoes in an holistic form. The five subject areas of art, language arts, mathematics, science, and social studies are integrated into…

  14. It's Time to Stand up for Earth Science

    Science.gov (United States)

    Schaffer, Dane L.

    2012-01-01

    This commentary paper focuses upon the loss of respect for Earth Sciences on the part of many school districts across the United States. Too many Earth Science teachers are uncertified to teach Earth Science, or hold certificates to teach the subject merely because they took a test. The Earth Sciences have faced this problem for many years…

  15. Plans of mice and men: from bench science to science policy.

    Science.gov (United States)

    Simon, Ian D

    2011-09-01

    The transition from bench science to science policy is not always a smooth one, and my journey stretched as far as the unemployment line to the hallowed halls of the U.S. Capitol. While earning my doctorate in microbiology, I found myself more interested in my political activities than my experiments. Thus, my science policy career aspirations were born from merging my love of science with my interest in policy and politics. After receiving my doctorate, I accepted the Henry Luce Scholarship, which allowed me to live in South Korea for 1 year and delve into the field of science policy research. This introduction into science policy occurred at the South Korean think tank called the Science and Technology Policy Institute (STEPI). During that year, I used textbooks, colleagues, and hands-on research projects as my educational introduction into the social science of science and technology decision-making. However, upon returning to the United States during one of the worst job markets in nearly 80 years, securing a position in science policy proved to be very difficult, and I was unemployed for five months. Ultimately, it took more than a year from the end of the Luce Scholarship to obtain my next science policy position with the American Society for Microbiology Congressional Fellowship. This fellowship gave me the opportunity to work as the science and public health advisor to U.S. Senator Harry Reid. While there were significant challenges during my transition from the laboratory to science policy, those challenges made me tougher, more appreciative, and more prepared to move from working at the bench to working in the field of science policy. Copyright © 2011.

  16. Negotiating science and engineering: an exploratory case study of a reform-minded science teacher

    Science.gov (United States)

    Guzey, S. Selcen; Ring-Whalen, Elizabeth A.

    2018-05-01

    Engineering has been slowly integrated into K-12 science classrooms in the United States as the result of recent science education reforms. Such changes in science teaching require that a science teacher is confident with and committed to content, practices, language, and cultures related to both science and engineering. However, from the perspective of the science teacher, this would require not only the development of knowledge and pedagogies associated with engineering, but also the construction of new identities operating within the reforms and within the context of their school. In this study, a middle school science teacher was observed and interviewed over a period of nine months to explore his experiences as he adopted new values, discourses, and practices and constructed his identity as a reform-minded science teacher. Our findings revealed that, as the teacher attempted to become a reform-minded science teacher, he constantly negotiated his professional identities - a dynamic process that created conflicts in his classroom practices. Several differences were observed between the teacher's science and engineering instruction: hands-on activities, depth and detail of content, language use, and the way the teacher positioned himself and his students with respect to science and engineering. Implications for science teacher professional development are discussed.

  17. The Potential Scientist’s Dilemma: How the Masculine Framing of Science Shapes Friendships and Science Job Aspirations

    Directory of Open Access Journals (Sweden)

    G. Robin Gauthier

    2017-02-01

    Full Text Available In the United States, girls and boys have similar science achievement, yet fewer girls aspire to science careers than boys. This paradox emerges in middle school, when peers begin to play a stronger role in shaping adolescent identities. We use complete network data from a single middle school and theories of gender, identity, and social distance to explore how friendship patterns might influence this gender and science paradox. Three patterns highlight the social dimensions of gendered science persistence: (1 boys and girls do not differ in self-perceived science potential and science career aspirations; (2 consistent with gender-based norms, both middle school boys and girls report that the majority of their female friends are not science kinds of people; and (3 youth with gender-inconsistent science aspirations are more likely to be friends with each other than youth with gender normative science aspirations. Together, this evidence suggests that friendship dynamics contribute to gendered patterns in science career aspirations.

  18. Ciencia: Nivel A (Science: Level A).

    Science.gov (United States)

    Duron, Dolores; And Others

    A teacher's manual was developed for an elementary level science course in Spanish as part of an immersion program for English speaking children. The Level A manual is designed for kindergarten and grade 1 pupils. The five units cover the basic concepts of the weather, colors, animals, plants, and the five senses. Each unit includes vocabulary,…

  19. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Raghavendra Gadagkar1 2. Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560 012, India. India and Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India.

  20. CERN’s new seat at the United Nations

    CERN Multimedia

    Antonella Del Rosso

    2013-01-01

    At the end of December, the General Assembly of the United Nations in New York granted CERN Observer status. As the only science organisation to acquire this prestigious status in the Assembly, CERN hopes to be able to raise awareness about the importance of fundamental science for society more effectively.   “Both CERN and the United Nations are committed to promoting science as a driving element for society. Both organisations promote dialogue between different cultures and can propose concrete models for peaceful cooperation towards objectives that benefit society as a whole,” says Maurizio Bona, CERN's officer in charge of relations with international organisations. Although the basic motivations are clear, obtaining the prestigious status from the UN was a long process that required negotiations and diplomatic work. Following some preliminary contacts with Switzerland starting in spring 2012, the resolution to grant observer status to CERN was jointly submitted...

  1. ANSTO: Australian Nuclear Science and Technology Organization

    International Nuclear Information System (INIS)

    1989-01-01

    The Australian Nuclear Science and Technology Organization conducts or is engaged in collaborative research and development in the application of nuclear science and associated technology. Through its Australian radio-isotopes unit, it markets radioisotopes, their products and other services for nuclear medicine industry and research. It also operates national nuclear facilities ( HIFAR and Moata research reactors), promote training, provide advice and disseminates information on nuclear science and technology. The booklet briefly outlines these activities. ills

  2. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Prashant K Pandey1 Jay Siddharth1 Pankaj Verma1 Ashish Bavdekar2 Milind S Patole1 Yogesh S Shouche1. Insect Molecular Biology Unit, National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune 411 007, Maharashtra, India; Gastroenterology Unit, Department of P ediatrics, KEM Hospital, Rasta ...

  3. United States rejoin ITER

    International Nuclear Information System (INIS)

    Roberts, M.

    2003-01-01

    Upon pressure from the United States Congress, the US Department of Energy had to withdraw from further American participation in the ITER Engineering Design Activities after the end of its commitment to the EDA in July 1998. In the years since that time, changes have taken place in both the ITER activity and the US fusion community's position on burning plasma physics. Reflecting the interest in the United States in pursuing burning plasma physics, the DOE's Office of Science commissioned three studies as part of its examination of the option of entering the Negotiations on the Agreement on the Establishment of the International Fusion Energy Organization for the Joint Implementation of the ITER Project. These were a National Academy Review Panel Report supporting the burning plasma mission; a Fusion Energy Sciences Advisory Committee (FESAC) report confirming the role of ITER in achieving fusion power production, and The Lehman Review of the ITER project costing and project management processes (for the latter one, see ITER CTA Newsletter, no. 15, December 2002). All three studies have endorsed the US return to the ITER activities. This historical decision was announced by DOE Secretary Abraham during his remarks to employees of the Department's Princeton Plasma Physics Laboratory. The United States will be working with the other Participants in the ITER Negotiations on the Agreement and is preparing to participate in the ITA

  4. STEM Integration in Middle School Life Science: Student Learning and Attitudes

    Science.gov (United States)

    Guzey, S. Selcen; Moore, Tamara J.; Harwell, Michael; Moreno, Mario

    2016-08-01

    In many countries around the world, there has been an increasing emphasis on improving science education. Recent reform efforts in the USA call for teachers to integrate scientific and engineering practices into science teaching; for example, science teachers are asked to provide learning experiences for students that apply crosscutting concepts (e.g., patterns, scale) and increase understanding of disciplinary core ideas (e.g., physical science, earth science). Engineering practices and engineering design are essential elements of this new vision of science teaching and learning. This paper presents a research study that evaluates the effects of an engineering design-based science curriculum on student learning and attitudes. Three middle school life science teachers and 275 seventh grade students participated in the study. Content assessments and attitude surveys were administered before and after the implementation of the curriculum unit. Statewide mathematics test proficiency scores were included in the data analysis as well. Results provide evidence of the positive effects of implementing the engineering design-based science unit on student attitudes and learning.

  5. Shifts in funding for science curriculum design and their (unintended) consequences

    NARCIS (Netherlands)

    Pareja Roblin, Natalie; Schunn, Christian; Bernstein, Debra; McKenney, Susan

    2016-01-01

    Federal agencies in the Unites States invest heavily in the development of science curriculum materials, which can significantly facilitate science education reform. The current study describes the characteristics of K-12 science curriculum materials produced by federally funded projects between

  6. Coordinators for health science libraries in the Midwest Health Science Library Network.

    Science.gov (United States)

    Holtum, E A; McKloskey, J; Mahan, R

    1977-04-01

    In the summer of 1973 one resource library in each of the six states of the Midwest Health Science Library Network received funding from the National Library of Medicine to hire a coordinator for health science libraries. The development of the role of coordinator is examined and evaluated. The coordinators have proved valuable in the areas of consortium formation, basic unit development, communication facilitation, and program initiation. The function of the coordinators in the extensive planning effort now being undertaken by the network and the future need for the coordinator positions are discussed.

  7. Undergraduate Research-Methods Training in Political Science: A Comparative Perspective

    Science.gov (United States)

    Parker, Jonathan

    2010-01-01

    Unlike other disciplines in the social sciences, there has been relatively little attention paid to the structure of the undergraduate political science curriculum. This article reports the results of a representative survey of 200 political science programs in the United States, examining requirements for quantitative methods, research methods,…

  8. Planetary Science Educational Materials for Out-of-School Time Educators

    Science.gov (United States)

    Barlow, Nadine G.; Clark, Joelle G.

    2017-10-01

    Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) is a five-year NASA-funded (NNX16AC53A) interdisciplinary and cross-institutional partnership to develop and disseminate STEM out-of-school time (OST) curricular and professional development units that integrate planetary science, technology, and engineering. The Center for Science Teaching and Learning (CSTL) and Department of Physics and Astronomy (P&A) at Northern Arizona University, the U.S. Geological Survey Astrogeology Science Center (USGS ASC), and the Museum of Science Boston (MoS) are partners in developing, piloting, and researching the impact of three out-of-school time units. Planetary scientists at USGS ASC and P&A have developed two units for middle grades youth and one for upper elementary aged youth. The two middle school units focus on greywater recycling and remote sensing of planetary surfaces while the elementary unit centers on exploring space hazards. All units are designed for small teams of ~4 youth to work together to investigate materials, engineer tools to assist in the explorations, and utilize what they have learned to solve a problem. Youth participate in a final share-out with adults and other youth of what they learned and their solution to the problem. Curriculum pilot testing of the two middle school units has begun with out-of-school time educators. A needs assessment has been conducted nationwide among educators and evaluation of the curriculum units is being conducted by CSTL during the pilot testing. Based on data analysis, the project is developing and testing four tiers of professional support for OST educators. Tier 1 meets the immediate needs of OST educators to teach curriculum and include how-to videos and other direct support materials. Tier 2 provides additional content and pedagogical knowledge and includes short content videos designed to specifically address the content of the curriculum. Tier 3 elaborates on best practices

  9. Reviews Book: SEP Communications: Transmitting and Receiving Signals Book: Gliding for Gold Book: Radioactivity: A History of a Mysterious Science Book: The New Quantum Age Books: The Art of Science and The Oxford Book of Modern Science Writing Equipment: SEP Analogue/digital transmission unit Equipment: SEP Optical signal transmission set Book: Stars and their Spectra Book: Voicebox: The Physics and Evolution of Speech Web Watch

    Science.gov (United States)

    2012-03-01

    WE RECOMMEND Transmitting and Receiving Signals SEP booklet transmits knowledge The New Quantum Age Understanding modern quantum theory The Art of Science and The Oxford Book of Modern Science Writing Anthologies bring science to life SEP Analogue/digital transmission unit Kit transmits signal between two points SEP Optical signal transmission set Optical kit shows light transmission Stars and their Spectra New book for teaching astrophysics WORTH A LOOK Gliding for Gold Take a journey through the physics of winter sports Radioactivity: A History of a Mysterious Science Book looks at history of radioactivity Voicebox: The Physics and Evolution of Speech TExploring the evolution of the voice WEB WATCH An interactive program with promise?

  10. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Keywords. Fermentation; enzymes; catalysis; proteins; biochemistry. Author Affiliations. T Ramasarma1. INSA Honorary Scientist Solid State and Structural Chemistry Unit and Department of Biochemistry Indian Institute of Science Bangalore 560 012, India. Resonance – Journal of Science Education. Current Issue : Vol.

  11. Factors that influence women's dispositions toward science

    Science.gov (United States)

    Atria, Catherine Graczyk

    Females have been underrepresented in the study of science and science careers for decades although advancements have been made in closing this gender gap, the gap persists particularly in the physical sciences. Variables which influence a woman's desire to pursue and maintain a science course of study and career must be discovered. The United States lags behind other industrialized countries in the fields of science, math, and engineering. Females comprise an estimated half of the population; their potential contributions cannot be ignored or overlooked. This retrospective research study explores the personal experiences of ten women enrolled in science majors, with science related career plans. The goal of this study is to describe the factors that influence the participants' interest in science. The findings, the effect of science coursework, science teachers' personality and manner, other influential educational personnel, role models and mentors, external influences exclusive of school, parental influence, locus of control and positive attitudes toward science confirm what other researchers have found.

  12. Public values and public failure in US science policy

    OpenAIRE

    Barry Bozeman; Daniel Sarewitz

    2005-01-01

    Domestic science policy in the United States is linked inextricably to economic thinking. We seek to develop a practical analytical framework that confronts the manifest problems of economic valuing for science and technology activities. We argue that pervasive use of market valuation, market-failure assumptions and economic metaphors shapes the structure of science policy in undesirable ways. In particular, reliance on economic reasoning tends to shift the discourse about science policy away...

  13. African Journal of Neurological Sciences - 2009 Vol. 28 No 1

    African Journals Online (AJOL)

    Department of Medicine, Makerere University College of Health Sciences, Kampala, ... and emergency unit, and general neurology unit by a neurologist, internal medicine physicians, nurses and ... deep vein thrombosis and pressure sores.

  14. Arase: mission overview and initial results

    Science.gov (United States)

    Miyoshi, Y.; Shinohara, I.; Takashima, T.; Asamura, K.; Wang, S. Y.; Kazama, Y.; Kasahara, S.; Yokota, S.; Mitani, T.; Higashio, N.; Kasahara, Y.; Kasaba, Y.; Yagitani, S.; Matsuoka, A.; Kojima, H.; Kazuo, S.; Seki, K.; Hori, T.; Shoji, M.; Teramoto, M.; Chang, T. F.; Kurita, S.; Matsuda, S.; Keika, K.; Miyashita, Y.; Hosokawa, K.; Ogawa, Y.; Kadokura, A.; Kataoka, R.; Ono, T.

    2017-12-01

    Geospace Exploation Project; ERG addresses what mechanisms cause acceleration, transportation and loss of MeV electrons of the radiation belts and evolutions of space storms. Cross-energy and cross-regional couplings are key concepts for the project. In order to address questions, the project has been organized by three research teams; satellite observations, ground-based observations, and modeling/data-analysis studies, and interdisciplinary research are realized for comprehensive understanding of geospace. The Arase (ERG) satellite had been developed and 9 science instruments are developed and provided from JAXA, universities and instituted in Japan and Taiwan. The Arase satellite was successfully launched on December 20, 2016. After the initial operation including maneuvers, Arase has started normal observations since March, 2017. Until now, Arase has observed several geomagnetic storms driven by coronal hole streams and CMEs, and several interesting features are observed associated with geomagnetic disturbances. The six particle instruments; LEP-e/LEP-i/MEP-e/MEP-i/HEP/XEP have shown large enhancement as well as loss of wide energy electrons and ions and variations as well as changes of pitch angle and energy spectrum. The two field/wave instruments: PWE and MGF observed several kinds of plasma waves such as chorus, hiss, EMIC as well as large scale electric and magnetic field variations. And newly developed S-WPIA has been operated to identify micro-process of wave-particle interactions. Since conjugate observations between Arase and ground-based observations are essential for comprehensive understanding of geospace, we organized several campaign observations that include both satellite and ground-based observations. The project has collaborated with the international projects, EISCAT, SuperDARN and other ground-based observations, and various data are obtained from such international collaborations. Moreover, multi-point satellite observations by

  15. Assessment of Examinations in Computer Science Doctoral Education

    Science.gov (United States)

    Straub, Jeremy

    2014-01-01

    This article surveys the examination requirements for attaining degree candidate (candidacy) status in computer science doctoral programs at all of the computer science doctoral granting institutions in the United States. It presents a framework for program examination requirement categorization, and categorizes these programs by the type or types…

  16. Hanny and the Mystery of the Voorwerp: Citizen Science in the Classroom

    Science.gov (United States)

    Costello, K.; Reilly, E.; Bracey, G.; Gay, P.

    2012-08-01

    The highly engaging graphic comic Hanny and the Mystery of the Voorwerp is the focus of an eight-day educational unit geared to middle level students. Activities in the unit link national astronomy standards to the citizen science Zooniverse website through tutorials that lead to analysis of real data online. NASA resources are also included in the unit. The content of the session focused on the terminology and concepts - galaxy formation, types and characteristics of galaxies, use of spectral analysis - needed to classify galaxies. Use of citizen science projects as tools to teach inquiry in the classroom was the primary focus of the workshop. The session included a hands-on experiment taken from the unit, including a NASA spectral analysis activity called "What's the Frequency, Roy G Biv?" In addition, presenters demonstrated the galaxy classification tools found in the "Galaxy Zoo" project at the Zooniverse citizen science website.

  17. Enacting Informal Science Learning: Exploring the Battle for Informal Learning

    Science.gov (United States)

    Clapham, Andrew

    2016-01-01

    Informal Science Learning (ISL) is a policy narrative of interest in the United Kingdom and abroad. This paper explores how a group of English secondary school science teachers, enacted ISL science clubs through employing the Periodic Table of Videos. It examines how these teachers "battled" to enact ISL policy in performative conditions…

  18. Victorian Era: An Interdisciplinary Unit.

    Science.gov (United States)

    Gildart, Donna Mae; And Others

    Seventh grade students studied the Victorian period using a 4-6 week interdisciplinary unit that integrated language arts, mathematics, art, science, social studies, music, home economics, parents, and business into the program. The main goals were to help students understand the importance of all curriculum subjects; comprehend how subjects are…

  19. THE UNITED STATES AND NIGERIAN RELATIONS:

    African Journals Online (AJOL)

    Mrs. I.D

    2009-12-25

    Dec 25, 2009 ... response from the Nigerian government. ... domestic crises that negatively impacts state stability, the US government ... Harrison C. Ajebon, Department of Political Science, University of Calabar, ..... Sweden. United Kingdom. Switzerland. Asia & far East. Japan ..... case Study of Nigeria, in Ikonnechidi and.

  20. Challenge theme 6: Natural hazard risks in the Borderlands: Chapter 8 in United States-Mexican Borderlands: Facing tomorrow's challenges through USGS science

    Science.gov (United States)

    Page, William R.; Parcher, Jean W.; Stefanov, Jim

    2013-01-01

    Natural hazards such as earthquakes, landslides and debris flows, wildfires, hurricanes, and intense storm-induced flash floods threaten communities to varying degrees all along the United States–Mexican border. The U.S. Geological Survey (USGS) collaborates with Federal, State, and local agencies to minimize the effects of natural hazards by providing timely, unbiased science information to emergency response officials, resource managers, and the public to help reduce property damage, injury, and loss of life. The USGS often mobilizes response efforts during and after a natural hazard event to provide technical and scientific counsel on recovery and response, and it has a long history of deploying emergency response teams to major disasters in both domestic and international locations. This chapter describes the challenges of natural hazards in the United States–Mexican border region and the capabilities of the USGS in the fields of hazard research, monitoring, and assessment, as well as preventative mitigation and post-disaster response.

  1. Toward a global multi-scale heliophysics observatory

    Science.gov (United States)

    Semeter, J. L.

    2017-12-01

    We live within the only known stellar-planetary system that supports life. What we learn about this system is not only relevant to human society and its expanding reach beyond Earth's surface, but also to our understanding of the origins and evolution of life in the universe. Heliophysics is focused on solar-terrestrial interactions mediated by the magnetic and plasma environment surrounding the planet. A defining feature of energy flow through this environment is interaction across physical scales. A solar disturbance aimed at Earth can excite geospace variability on scales ranging from thousands of kilometers (e.g., global convection, region 1 and 2 currents, electrojet intensifications) to 10's of meters (e.g., equatorial spread-F, dispersive Alfven waves, plasma instabilities). Most "geospace observatory" concepts are focused on a single modality (e.g., HF/UHF radar, magnetometer, optical) providing a limited parameter set over a particular spatiotemporal resolution. Data assimilation methods have been developed to couple heterogeneous and distributed observations, but resolution has typically been prescribed a-priori and according to physical assumptions. This paper develops a conceptual framework for the next generation multi-scale heliophysics observatory, capable of revealing and quantifying the complete spectrum of cross-scale interactions occurring globally within the geospace system. The envisioned concept leverages existing assets, enlists citizen scientists, and exploits low-cost access to the geospace environment. Examples are presented where distributed multi-scale observations have resulted in substantial new insight into the inner workings of our stellar-planetary system.

  2. BER Science Network Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Alapaty, Kiran; Allen, Ben; Bell, Greg; Benton, David; Brettin, Tom; Canon, Shane; Dart, Eli; Cotter, Steve; Crivelli, Silvia; Carlson, Rich; Dattoria, Vince; Desai, Narayan; Egan, Richard; Tierney, Brian; Goodwin, Ken; Gregurick, Susan; Hicks, Susan; Johnston, Bill; de Jong, Bert; Kleese van Dam, Kerstin; Livny, Miron; Markowitz, Victor; McGraw, Jim; McCord, Raymond; Oehmen, Chris; Regimbal, Kevin; Shipman, Galen; Strand, Gary; Flick, Jeff; Turnbull, Susan; Williams, Dean; Zurawski, Jason

    2010-11-01

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In April 2010 ESnet and the Office of Biological and Environmental Research, of the DOE Office of Science, organized a workshop to characterize the networking requirements of the science programs funded by BER. The requirements identified at the workshop are summarized and described in more detail in the case studies and the Findings section. A number of common themes emerged from the case studies and workshop discussions. One is that BER science, like many other disciplines, is becoming more and more distributed and collaborative in nature. Another common theme is that data set sizes are exploding. Climate Science in particular is on the verge of needing to manage exabytes of data, and Genomics is on the verge of a huge paradigm shift in the number of sites with sequencers and the amount of sequencer data being generated.

  3. Science Outreach for the Thousands: Coe College's Playground of Science

    Science.gov (United States)

    Watson, D. E.; Franke, M.; Affatigato, M.; Feller, S.

    2011-12-01

    Coe College is a private liberal arts college nestled in the northeast quadrant of Cedar Rapids, IA. Coe takes pride in the outreach it does in the local community. The sciences at Coe find enjoyment in educating the children and families of this community through a diverse set of venues; from performing science demonstrations for children at Cedar Rapids' Fourth of July Freedom Festival to hosting summer forums and talks to invigorate the minds of its more mature audiences. Among these events, the signature event of the year is the Coe Playground of Science. On the last Thursday of October, before Halloween, the science departments at Coe invite nearly two thousand children from pre elementary to high school ages, along with their parents to participate in a night filled with science demos, haunted halls, and trick-or-treating for more than just candy. The demonstrations are performed by professors and students alike from a raft of cooperative departments including physics, chemistry, biology, math, computer science, nursing, ROTC, and psychology. This event greatly strengthens the relationships between institution members and community members. The sciences at Coe understand the importance of imparting the thrill and hunger for exploration and discovery into the future generations. More importantly they recognize that this cannot start and end at the collegiate level, but the American public must be reached at younger ages and continue to be encouraged beyond the college experience. The Playground of Science unites these two groups under the common goal of elevating scientific interest in the American people.

  4. Science Teachers' Data Use Practices: A Descriptive Analysis

    Science.gov (United States)

    Rangel, Virginia Snodgrass; Monroy, Carlos; Bell, Elizabeth R.

    2016-01-01

    There is a debate on students' low science achievement in the United States, particularly among low income, African American students, and Latino students. An important part of the education community's response to low achievement generally and in science specifically has been the implementation of high stakes accountability policies. Because of…

  5. Individual and Collective Leadership in School Science Departments

    Science.gov (United States)

    Ritchie, Stephen M.; Mackay, Gail; Rigano, Donna L.

    2006-01-01

    Given that the subject department is recognised by subject specialist teachers as the central and immediate unit of organization in secondary schools it is surprising that so little attention has been paid by researchers to the leadership dynamics within science departments. The leadership dynamics within the science departments of two…

  6. Swap Meet: A Novel Way to Introduce Unit Conversion

    Science.gov (United States)

    Anticole, Matthew

    2012-01-01

    Many science problems require students to convert units. While this skill may not get the attention that more central science concepts do, teachers in the middle school and early high school grades will be doing their students a great service by leaving them with a strong understanding of both the skill itself and the reasons behind it. When the…

  7. United States Japan Industry and Technology Management Training

    National Research Council Canada - National Science Library

    Gercik, Patricia

    2001-01-01

    .... The intellectual focus of the Program is to integrate the research methodologies of the social sciences, the humanities, and technology to approach issues confronting the United States and Japan...

  8. Science Teachers' Drawings of What Is inside the Human Body

    Science.gov (United States)

    Patrick, Patricia G.; Tunnicliffe, Sue Dale

    2010-01-01

    The purpose of this study was to report United States of America (USA) science teachers' understandings of the internal structures of the human body. The 71 science teachers who participated in this study attended a frog/pig, two-hour dissection workshop at the 2004 National Science Teachers Association (NSTA) conference in Atlanta, Georgia. The…

  9. Key Science and Engineering Indicators: 2010 Digest. NSB 10-02

    Science.gov (United States)

    Roesel, Cheryl, Ed.

    2010-01-01

    The National Science Board (Board) is required under the National Science Foundation (NSF) Act, 42 U.S.C. (United States Code) Section 1863 (j) (1) to prepare and transmit the biennial "Science and Engineering Indicators" ("SEI") report to the President and to the Congress by January 15 of every even-numbered year. The report…

  10. Climate Science: An Empirical Example of Postnormal Science.

    Science.gov (United States)

    Bray, Dennis; von Storch, Hans

    1999-03-01

    This paper addresses the views regarding the certainty and uncertainty of climate science knowledge held by contemporary climate scientists. More precisely, it addresses the extension of this knowledge into the social and political realms as per the definition of postnormal science. The data for the analysis is drawn from a response rate of approximately 40% from a survey questionnaire mailed to 1000 scientists in Germany, the United States, and Canada, and from a series of in-depth interviews with leading scientists in each country. The international nature of the sample allows for cross-cultural comparisons.With respect to the relative scientific discourse, similar assessments of the current state of knowledge are held by the respondents of each country. Almost all scientists agreed that the skill of contemporary models is limited. Minor differences were notable. Scientists from the United States were less convinced of the skills of the models than their German counterparts and, as would be expected under such circumstances, North American scientists perceived the need for societal and political responses to be less urgent than their German counterparts. The international consensus was, however, apparent regarding the utility of the knowledge to date: climate science has provided enough knowledge so that the initiation of abatement measures is warranted. However, consensus also existed regarding the current inability to explicitly specify detrimental effects that might result from climate change. This incompatibility between the state of knowledge and the calls for action suggests that, to some degree at least, scientific advice is a product of both scientific knowledge and normative judgment, suggesting a socioscientific construction of the climate change issue.

  11. Science Fiction and the Big Questions

    Science.gov (United States)

    O'Keefe, M.

    Advocates of space science promote investment in science education and the development of new technologies necessary for space travel. Success in these areas requires an increase of interest and support among the general public. What role can entertainment media play in inspiring the public ­ especially young people ­ to support the development of space science? Such inspiration is badly needed. Science education and funding in the United States are in a state of crisis. This bleak situation exists during a boom in the popularity of science-oriented television shows and science fiction movies. This paper draws on interviews with professionals in science, technology, engineering and mathematics (STEM) fields, as well as students interested in those fields. The interviewees were asked about their lifelong media-viewing habits. Analysis of these interviews, along with examples from popular culture, suggests that science fiction can be a valuable tool for space advocates. Specifically, the aspects of character, story, and special effects can provide viewers with inspiration and a sense of wonder regarding space science and the prospect of long-term human space exploration.

  12. Social Anthropology and Social Science History

    Science.gov (United States)

    2015-01-01

    In the 1970s, when the social science history movement emerged in the United States, leading to the founding of the Social Science History Association, a simultaneous movement arose in which historians looked to cultural anthropology for inspiration. Although both movements involved historians turning to social sciences for theory and method, they reflected very different views of the nature of the historical enterprise. Cultural anthropology, most notably as preached by Clifford Geertz, became a means by which historians could find a theoretical basis in the social sciences for rejecting a scientific paradigm. This article examines this development while also exploring the complex ways cultural anthropology has embraced—and shunned—history in recent years. PMID:26549914

  13. The impact of science methods courses on preservice elementary teachers' science teaching self-efficacy beliefs: Case studies from Turkey and the United States

    Science.gov (United States)

    Bursal, Murat

    Four case studies in two American and two Turkish science methods classrooms were conducted to investigate the changes in preservice elementary teachers' personal science teaching efficacy (PSTE) beliefs during their course periods. The findings indicated that while Turkish preservice elementary teachers (TR sample) started the science methods course semester with higher PSTE than their American peers (US sample), due to a significant increase in the US sample's and an insignificant decline in the TR sample's PSTE scores, both groups completed the science methods course with similar PSTE levels. Consistent with Bandura's social cognitive theory, describing four major sources of self-efficacy, the inclusion of mastery experiences (inquiry activities and elementary school micro-teaching experiences) and vicarious experiences (observation of course instructor and supervisor elementary teacher) into the science methods course, providing positive social persuasion (positive appraisal from the instructor and classmates), and improving physiological states (reduced science anxiety and positive attitudes toward becoming elementary school teachers), were found to contribute to the significant enhancement of the US sample's PSTE beliefs. For the TR sample, although some of the above sources were present, the lack of student teaching experiences and inservice teacher observations, as well as the TR samples' negative attitudes toward becoming elementary school teachers and a lack of positive classroom support were found to make Turkish preservice teachers rely mostly on their mastery in science concepts, and therefore resulted in not benefiting from their science methods course, in terms of enhancing their PSTE beliefs. Calls for reforms in the Turkish education system that will include more mastery experiences in the science methods courses and provide more flexibility for students to choose their high school majors and college programs, and switch between them are made. In

  14. Aerial radiological survey of the United States Department of Energy's Battelle Nuclear Science Facility, West Jefferson, Ohio, date of survey: May 1977

    International Nuclear Information System (INIS)

    Feimster, E.L.

    1979-05-01

    An aerial radiological survey to measure terrestrial gamma radiation was carried out over the United States Department of Energy's Battelle Nuclear Science Facility located in West Jefferson, Ohio. Gamma ray data were collected over a 5.5 km 2 area centered on the facility by flying east-west lines spaced 61 m apart. Processed data indicated that on-site radioactivity was primarily due to radionuclides currently being processed due to the hot lab operations. Off-site data showed the radioactivity to be due to naturally occurring background radiation consistent with variations due to geologic base terrain and land use of similar areas

  15. Checklist for Excellence in Science Teaching and Learning

    Science.gov (United States)

    Ediger, Marlow

    2016-01-01

    Science teachers need to evaluate their lessons and units of study, frequently, to stay abreast of recommended trends in the curriculum. Self evaluation is involved here. A quality science program must be implemented in order to assist learners to achieve as optimally as possible. Which guidelines should then serve in self evaluation?

  16. Fundamentalism and science

    Directory of Open Access Journals (Sweden)

    Massimo Pigliucci

    2006-06-01

    Full Text Available The many facets of fundamentalism. There has been much talk about fundamentalism of late. While most people's thought on the topic go to the 9/11 attacks against the United States, or to the ongoing war in Iraq, fundamentalism is affecting science and its relationship to society in a way that may have dire long-term consequences. Of course, religious fundamentalism has always had a history of antagonism with science, and – before the birth of modern science – with philosophy, the age-old vehicle of the human attempt to exercise critical thinking and rationality to solve problems and pursue knowledge. “Fundamentalism” is defined by the Oxford Dictionary of the Social Sciences1 as “A movement that asserts the primacy of religious values in social and political life and calls for a return to a 'fundamental' or pure form of religion.” In its broadest sense, however, fundamentalism is a form of ideological intransigence which is not limited to religion, but includes political positions as well (for example, in the case of some extreme forms of “environmentalism”.

  17. Hispanic Women Overcoming Deterrents to Computer Science: A Phenomenological Study

    Science.gov (United States)

    Herling, Lourdes

    2011-01-01

    The products of computer science are important to all aspects of society and are tools in the solution of the world's problems. It is, therefore, troubling that the United States faces a shortage in qualified graduates in computer science. The number of women and minorities in computer science is significantly lower than the percentage of the…

  18. Corporate science education: Westinghouse and the value of science in mid-twentieth century America.

    Science.gov (United States)

    Terzian, Sevan G; Shapiro, Leigh

    2015-02-01

    This study examines a largely neglected aspect of the history of science popularization in the United States: corporate depictions of the value of science to society. It delineates the Westinghouse Electric Corporation's portrayals of science to its shareholders, employees and consumers, and schoolchildren and educators during World War Two and the postwar era. Annual reports to shareholders, in-house news publications, publicity records, advertising campaigns, and educational pamphlets distributed to schools reveal the company's distinct, but complementary, messages for different stakeholders about the importance of science to American society. Collectively, Westinghouse encouraged these audiences to rely on scientists' expert leadership for their nation's security and material comforts. In an era of military mobilization, the company was able to claim that industry-led scientific research would fortify the nation and create unbounded prosperity. © The Author(s) 2013.

  19. Science Innovation Through Industry Partnership: Lessons from AMPERE in Bridging the Federal Sponsor/Private Corporation Divide

    Science.gov (United States)

    Anderson, B. J.; Korth, H.; Erlandson, R. E.

    2017-12-01

    The Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) was made possible by harnessing an fortuitous capability of the Iridium Communications constellation of 70 polar orbiting satellites. In 1996 it was realized that the attitude magnetometers on-board the Iridium satellites, then in fabrication, could potentially be used to obtain the first ever global and continuous measurements of the Birkeland currents with a sufficiently short re-sampling cadence (10 minutes) to track the dynamic evolution of the large-scale currents. The experience of taking this idea from 1996 through various research grant supported efforts, mission of opportunity proposal attempts, and finally through funding and implementation as a National Science Foundation geospace facility, revealed a number of challenges both in proposing innovative solutions to existing sponsor programs and also in working between the federal sponsor community and the private commercial space environment. Implementing AMPERE required a code change to on-board software on the Iridium satellites and it proved necessary to engage NASA to adjust the solicitation language to allow AMPERE. For NASA proposals we also encountered a conflict with respect to federal sponsorship such that the original business configuration of Iridium could not accept the accounting regime implied by a sub-contract derived from a federal contract acquisition. Subsequent mission of opportunity efforts encountered various other challenges including the cancellation of an explorer to fund the exploration initiative in 2001. The facilities proposal to NSF was almost not submitted owing a funding vehicle disparity between the preferred proposer structure (contract) vs NSF's requirement to fund only grants and a final hurdle concerned the structure of the contract with Iridium which was initially a sub-contract but was changed to a fixed-price data purchase due to NSF's limitations on funding fee-bearing engineering

  20. Engaging a Rural Community with Science through a Science Café

    Science.gov (United States)

    Adams, P. E.

    2012-12-01

    Public awareness about science and science issues is often lacking in the general community; in a rural community there are even fewer options for an interested person to engage with others on science topics. One approach to address this issue is through the use of the Science Café model of citizen science at the local level. The Science Café concept, for the United States, originated in Boston (http://www.sciencecafes.org/). Science Café events are held in informal settings, such as restaurants, pubs, or coffee houses with presentations being provided by experts on the subject. The format is designed to promote discussion and questions. Fort Hays State University Science and Mathematics Institute (SMEI), located in Hays, KS, is now in its fifth year of hosting a science café in a community of 20,000 people. The program in Hays started as a grassroots effort from an area high school teacher asking SMEI to organize and support the program. Attendance at the Science Café has range from 14 to 75 people (fire code capacity!), with an average attendance of 30 people. The audience for our Science Café has been citizens, college students, high school students, and university faculty. The presenters at the Hays Science Café have ranged from scientists to engineers, high school students to hobbyists. Our topics have ranged from searching for life in the universe, wind energy, paleo-life in Kansas, climate change, honey bees, and planetary science. The program has developed a strong following in the community and has led to the formation of additional Science Café programs in Kansas. Selection of topics is based on community interest and timeliness. Publicity occurs through posters, e-mail, and social media outlets. Participants have found the sessions to be of interest and a place to learn more about the world and become informed about issues in the news. The Science Café in Hays has had a positive impact on the community.

  1. China's rise as a major contributor to science and technology.

    Science.gov (United States)

    Xie, Yu; Zhang, Chunni; Lai, Qing

    2014-07-01

    In the past three decades, China has become a major contributor to science and technology. China now employs an increasingly large labor force of scientists and engineers at relatively high earnings and produces more science and engineering degrees than the United States at all levels, particularly bachelor's. China's research and development expenditure has been rising. Research output in China has been sharply increasing since 2002, making China the second largest producer of scientific papers after the United States. The quality of research by Chinese scientists has also been improving steadily. However, China's rise in science also faces serious difficulties, partly attributable to its rigid, top-down administrative system, with allegations of scientific misconduct trending upward.

  2. Claude Grignon, Claude Kordon, Sciences de l'homme et sciences de la nature. Essais d'épistémologie comparée

    OpenAIRE

    Rogel, Thierry

    2011-01-01

    Cet ouvrage est composé d'un ensemble de contributions faites au cours du séminaire « Sciences de l'homme et sciences de la nature » qui s'est tenu à la Maison des Sciences de l'Homme de 2003 à 2007. Ce séminaire portait sur les questions de l'unité des sciences et de la scientificité des « sciences de l'homme ». Les domaines abordés sont multiples et couvrent un large spectre de sciences - mathématiques, physique, chimie, cosmologie, archéologie, biologie, épidémiologie, économie, sociologie...

  3. Developments in reactor materials science methodology

    International Nuclear Information System (INIS)

    Tsykanov, V.A.; Ivanov, V.B.

    1987-01-01

    Problems related to organization of investigations into reactor materials science are considered. Currently the efficiency and reliability of nuclear power units are largely determined by the fact, how correctly and quickly conclusions concerning the parameters of designs and materials worked out for a long time in reactor cores, are made. To increase information value of materials science investigations it is necessary to create a uniform system, providing for solving methodical, technical and organizational problems. Peculiarities of the current state of reactor material science are analysed and recommendations on constructing an optimal scheme of investigations and data flow interconnection are given

  4. Biomedical Engineering and Cognitive Science Secondary Science Curriculum Development: A Three Year Study

    Science.gov (United States)

    Klein, Stacy S.; Sherwood, Robert D.

    2005-01-01

    This study reports on a multi-year effort to create and evaluate cognitive-based curricular materials for secondary school science classrooms. A team of secondary teachers, educational researchers, and academic biomedical engineers developed a series of curriculum units that are based in biomedical engineering for secondary level students in…

  5. Cooperative Fish and Wildlife Research Units Program—2017 year in review postcard

    Science.gov (United States)

    Organ, John F.; Thompson, John D.; Dennerline, Donald E.; Childs, Dawn E.

    2018-02-08

    This postcard provides details about the Cooperative Fish and Wildlife Research Units Program—2017 Year in Review, U.S. Geological Survey Circular 1438, now available at https://doi.org/10.3133/cir1438. In this report, you will find details about the Cooperative Fish and Wildlife Research Units (CRU) Program relating to its background, fish and wildlife science, students, staffing, vacancies, research funding, outreach and training, science themes, accolades, and professional services. You will see snapshots of CRU projects with information on how results have been or are being applied by cooperators. This is the essence of what we do: science that matters.Throughout the year, keep up with CRU research projects at http://www.coopunits.org.

  6. Development of an Analysis Model from the Perspectives of Science, Individual and Society in the Teaching of Science

    Directory of Open Access Journals (Sweden)

    José Manuel do Carmo

    2016-12-01

    Full Text Available The basic vision of learning science has changed as scientific culture concepts evolution and the nature of the teaching of science go along. From a model essentially based on information acquisition, science instruction has included the practice of the science method when the importance of emphasizing the development of personal skills, thinking processes, and action was considered. The concern about citizens’ education in matters referring to the relationship between science and society and enlightened social participation demanded a special attention in investigation and in students’ participation in issues related to urban, natural, and technological environment. This research seeks to develop an integrative model of curriculum organizations based on these three axes or perspectives: science, individual, and society. A matrix enabling the analysis of curricular proposals and organization plans of didactic units is built, as well as the observation of teachers’ representations in the teaching of science.

  7. Looking in a science classroom: exploring possibilities of creative cultural divergence in science teaching and learning

    Science.gov (United States)

    Baron, Alex; Chen, Hsiao-Lan Sharon

    2012-03-01

    Worldwide proliferation of pedagogical innovations creates expanding potential in the field of science education. While some teachers effectively improve students' scientific learning, others struggle to achieve desirable student outcomes. This study explores a Taiwanese science teacher's ability to effectively enhance her students' science learning. The authors visited a Taipei city primary school class taught by an experienced science teacher during a 4-week unit on astronomy, with a total of eight, 90-minute periods. Research methods employed in this study included video capture of each class as well as reflective interviews with the instructor, eliciting the teacher's reflection upon both her pedagogical choices and the perceived results of these choices. We report that the teacher successfully teaches science by creatively diverging from culturally generated educational expectations. Although the pedagogical techniques and ideas enumerated in the study are relevant specifically to Taiwan, creative cultural divergence might be replicated to improve science teaching worldwide.

  8. The Need for Social Ethics in Interdisciplinary Environmental Science Graduate Programs: Results from a Nation-Wide Survey in the United States.

    Science.gov (United States)

    Hall, Troy E; Engebretson, Jesse; O'Rourke, Michael; Piso, Zach; Whyte, Kyle; Valles, Sean

    2017-04-01

    Professionals in environmental fields engage with complex problems that involve stakeholders with different values, different forms of knowledge, and contentious decisions. There is increasing recognition of the need to train graduate students in interdisciplinary environmental science programs (IESPs) in these issues, which we refer to as "social ethics." A literature review revealed topics and skills that should be included in such training, as well as potential challenges and barriers. From this review, we developed an online survey, which we administered to faculty from 81 United States colleges and universities offering IESPs (480 surveys were completed). Respondents overwhelmingly agreed that IESPs should address values in applying science to policy and management decisions. They also agreed that programs should engage students with issues related to norms of scientific practice. Agreement was slightly less strong that IESPs should train students in skills related to managing value conflicts among different stakeholders. The primary challenges to incorporating social ethics into the curriculum were related to the lack of materials and expertise for delivery, though challenges such as ethics being marginalized in relation to environmental science content were also prominent. Challenges related to students' interest in ethics were considered less problematic. Respondents believed that social ethics are most effectively delivered when incorporated into existing courses, and they preferred case studies or problem-based learning for delivery. Student competence is generally not assessed, and respondents recognized a need for both curricular materials and assessment tools.

  9. On Tour... Primary Hardwood Processing, Products and Recycling Unit

    Science.gov (United States)

    Philip A. Araman; Daniel L. Schmoldt

    1995-01-01

    Housed within the Department of Wood Science and Forest Products at Virginia Polytechnic Institute is a three-person USDA Forest Service research work unit (with one vacancy) devoted to hardwood processing and recycling research. Phil Araman is the project leader of this truly unique and productive unit, titled ãPrimary Hardwood Processing, Products and Recycling.ä The...

  10. Educating Tomorrow's Science Teachers: STEM ACT Conference Report

    Science.gov (United States)

    Sternheim, Morton M.; Feldman, Allan; Berger, Joseph B.; Zhao, Yijie

    2008-01-01

    This document reports on the findings of an NSF-funded conference (STEM ACT) on the alternative certification of science teachers. The conference explored the issues that have arisen in science education as a result of the proliferation of alternative certification programs in the United States, and to identify the research that needs to be done…

  11. Bibliometrics of electronic journals in information science

    Directory of Open Access Journals (Sweden)

    Donald T. Hawkins

    2001-01-01

    Full Text Available The bibliometric characteristics of electronic journals (e-journals covering the field of information science have been studied. Twenty-eight e-journals were identified and ranked by number of articles on the subject they published. A Bradford plot revealed that the core is not well developed yet, but it will likely contain six journals. The publication of information science articles in e-journals began modestly in 1995 with 26 articles, but it has risen to approximately 250 articles per year. The most prolific authors are identified. The vast majority of them are located in the United States or United Kingdom. Only 26 articles have authors from more than one country, showing that electronic technology has not yet strongly influenced international collaboration. About 2/3 of the articles originate in academic institutions. Common topics of e-journal articles in information science include electronic information, electronic publishing, virtual (digital libraries, information search and retrieval, and use of the Internet. Seven online databases cover these e-journals; Information Science Abstracts is the only one to cover all 28 journals, and it has the highest number of abstracts from them - over 1,100.

  12. Epistemic Agency in an Environmental Sciences Watershed Investigation Fostered by Digital Photography

    Science.gov (United States)

    Zimmerman, Heather Toomey; Weible, Jennifer L.

    2018-01-01

    This collective case study investigates the role of digital photography to support high school students' engagement in science inquiry practices during a three-week environmental sciences unit. The study's theoretical framework brings together research from digital photography, participation in environmental science practices, and epistemic…

  13. International collaboration in medical radiation science.

    Science.gov (United States)

    Denham, Gary; Allen, Carla; Platt, Jane

    2016-06-01

    International collaboration is recognised for enhancing the ability to approach complex problems from a variety of perspectives, increasing development of a wider range of research skills and techniques and improving publication and acceptance rates. The aim of this paper is to describe the current status of international collaboration in medical radiation science and compare this to other allied health occupations. This study utilised a content analysis approach where co-authorship of a journal article was used as a proxy for research collaboration and the papers were assigned to countries based on the corporate address given in the by-line of the publication. A convenience sample method was employed and articles published in the professional medical radiation science journals in the countries represented within our research team - Australia, the United Kingdom (UK) and the United States of America (USA) were sampled. Physiotherapy, speech pathology, occupational therapy and nursing were chosen for comparison. Rates of international collaboration in medical radiation science journals from Australia, the UK and the USA have steadily increased over the 3-year period sampled. Medical radiation science demonstrated lower average rates of international collaboration than the other allied health occupations sampled. The average rate of international collaboration in nursing was far below that of the allied health occupations sampled. Overall, the UK had the highest average rate of international collaboration, followed by Australia and the USA, the lowest. Overall, medical radiation science is lagging in international collaboration in comparison to other allied health fields.

  14. Reversals of national fortune, and social science methodologies.

    Science.gov (United States)

    Diamond, Jared

    2014-12-16

    Among non-European regions colonized by Europeans, regions that were relatively richer five centuries ago (like Mexico, Peru, and India) tend to be poorer today, while regions that originally were relatively poorer (like the United States, Chile, and Australia) tend now to be richer. Acemoglu, Johnson, and Robinson (abbreviated AJR) established the generality of this reversal of fortune. Chanda, Cook, and Putterman (abbreviated CCP) have now reanalyzed it, taking as a unit of analysis populations rather than geographic regions. That is, India's population was Indian 500 y ago and is still overwhelmingly Indian today, whereas the United States' population was Native American 500 years ago but is overwhelmingly Old World (especially European) today. Reversals of fortune disappeared when CCP analyzed populations rather than geographic regions: for instance, the geographic region of the modern United States has become relatively richer since AD 1500, but the predominantly European population now occupying the United States was already relatively rich in AD 1500. Evidently, European colonists carried ingredients of wealth with them. I discuss the biological and cultural baggage transported by European immigrants and associated with wealth. Among that baggage, AJR emphasize institutions, CCP emphasize social capital, and I identify many different elements only loosely coupled to each other. This paper discusses the problem, especially acute in the social sciences, of "operationalizing" intuitive concepts (such as mass, temperature, wealth, and innovation) so that they can be measured. Basic concepts tend to be harder to define, operationalize, and measure in the social sciences than in the laboratory sciences.

  15. Fellowship | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Date of birth: 7 July 1939. Specialization: Structural Biology, Membrane Biophysics and Molecular Biophysics Address: Emeritus Professor, Molecular Biophysics Unit, Indian Institute of Science, Bengaluru 560 012, Karnataka Contact: Residence: (080) 4094 3455. Mobile: 99866 22397. Email: krk_easwaran@yahoo.com, ...

  16. Effects of multisensory resources on the achievement and science attitudes of seventh-grade suburban students taught science concepts on and above grade level

    Science.gov (United States)

    Roberts, Patrice Helen

    This research was designed to determine the relationships among students' achievement scores on grade-level science content, on science content that was three years above-grade level, on attitudes toward instructional approaches, and learning-styles perceptual preferences when instructional approaches were multisensory versus traditional. The dependent variables for this investigation were scores on achievement posttests and scores on the attitude survey. The independent variables were the instructional strategy and students' perceptual preferences. The sample consisted of 74 educationally oriented seventh-grade students. The Learning Styles Inventory (LSI) (Dunn, Dunn, & Price, 1990) was administered to determine perceptual preferences. The control group was taught seventh-grade and tenth-grade science units using a traditional approach and the experimental group was instructed on the same units using multisensory instructional resources. The Semantic Differential Scale (SDS) (Pizzo, 1981) was administered to reveal attitudinal differences. The traditional unit included oral reading from the textbook, completing outlines, labeling diagrams, and correcting the outlines and diagrams as a class. The multisensory unit included five instructional stations established in different sections of the classroom to allow students to learn by: (a) manipulating Flip Chutes, (b) using Electroboards, (c) assembling Task Cards, (d) playing a kinesthetic Floor Game, and (e) reading an individual Programmed Learning Sequence. Audio tapes and scripts were provided at each location. Students circulated in groups of four from station to station. The data subjected to statistical analyses supported the use of a multisensory, rather than a traditional approach, for teaching science content that is above-grade level. T-tests revealed a positive and significant impact on achievement scores (p < 0.0007). No significance was detected on grade-level achievement nor on the perceptual

  17. Success stories in nuclear science

    International Nuclear Information System (INIS)

    Fox, M.R.

    1990-01-01

    The low level of public understanding of energy in general, and nuclear energy in particular in the United States is well known, especially by the world's scientific community. A technologically leading nation such as the United States, will not remain so for long, if fear, anxiety, worry, anger, and technological misinformation continue to influence if not drive science and energy policy. Our society, our freedom, and even our national security are at risk when sound science and energy policies are inhibited or prevented. As a scientific organization, the American Nuclear Society believes that it is our responsibility, not merely an obligation, to get involved with the educational processes of our nation. Through the Public Information Committee of ANS a variety of educational activities have been undertaken, with remarkable success. This presentation describes some of these and some of the many lessons learned from these activities and about ourselves

  18. Investigation of Science Faculty with Education Specialties within the Largest University System in the United States

    OpenAIRE

    Bush, Seth D; Pelaez, Nancy; Rudd, James A, II; Stevens, Michael T; Tanner, Kimberly D; Williams, Kathy, PhD

    2011-01-01

    Efforts to improve science education include university science departments hiring Science Faculty with Education Specialties (SFES), scientists who take on specialized roles in science education within their discipline. Although these positions have existed for decades and may be growing more common, few reports have investigated the SFES approach to improving science education. We present comprehensive data on the SFES in the California State University (CSU) system, the largest university ...

  19. Teacher collaboration and elementary science teaching: Using action research as a tool for instructional leadership

    Science.gov (United States)

    Roberts, Sara Hayes

    The primary purpose of this action research study was to explore an elementary science program and find ways to support science education as an administrator of an elementary school. The study took place in a large suburban school system in the southeastern United States. Seven teachers at a small rural school volunteered to participate in the study. Each participant became an active member of the research by determining what changes needed to take place and implementing the lessons in science. The study was also focused on teacher collaboration and how it influenced the science instruction. The data collected included two interviews, ten observations of science lessons, the implementation of four science units, and informal notes from planning sessions over a five month period. The questions that guided this study focused on how teachers prepare to teach science through active learning and how instruction shifts due to teacher collaboration. Teachers were interviewed at the beginning of the study to gain the perceptions of the participants in the areas of (a) planning, (b) active learning, (c) collaboration, and (d) teaching science lessons. The teachers and principal then formed a research team that determined the barriers to teaching science according to the Standards, designed units of study using active learning strategies, and worked collaboratively to implement the units of study. The action research project reviewed the National Science Education Standards, the theory of constructivism, active learning and teacher collaboration as they relate to the actions taken by a group of teachers in an elementary school. The evidence from this study showed that by working together collaboratively and overcoming the barriers to teaching science actively, teachers feel more confident and knowledgeable about teaching the concepts.

  20. Going Global: Science Issues for the Junior High.

    Science.gov (United States)

    Cronkhite, Louella; And Others

    This book contains a unit on science and global education that is designed to enable students to gain a practical understanding of the world they live in and the confidence to take appropriate action as responsible global citizens. This unit emphasizes cooperative learning that is experiential and participatory. Teachers and students are…

  1. Religion as a Support Factor for Women of Color Pursuing Science Degrees: Implications for Science Teacher Educators

    Science.gov (United States)

    Ceglie, Robert

    2013-02-01

    This study explores the influence of religion as a support factor for a group of Latina and African-American women majoring in science. The current project is a part of a larger study that investigated persistence factors of underrepresented woman who were enrolled as science majors at United States colleges and universities. This paper focuses on one theme that emerged among six participants who disclosed how religion was a significant influence on their persistence in science fields. The strength and support offered by religious values is certainly not specific to science content; however, the support received from their beliefs highlights a potential area for further exploration. Given the importance of increasing participation by students from diverse backgrounds into science fields, it is critical to recognize how some of these differences may be the key factors influencing the way these students look at the world. This study offers evidence that science educators need to consider what role religious beliefs have for students who may be considering science or science education as a future career, particularly for those students from underrepresented groups.

  2. Core II Materials for Rural Agriculture Programs. Units E-H.

    Science.gov (United States)

    Biondo, Ron; And Others

    This curriculum guide includes teaching packets for 21 problem areas to be included in a core curriculum for 10th grade students enrolled in a rural agricultural program. Covered in the four units included in this volume are crop science (harvesting farm crops and growing small grains); soil science and conservation of natural resources…

  3. Marine Science Summer Enrichment Camp's Impact Ocean Literacy for Middle School Students

    Science.gov (United States)

    Young, Victoria Jewel

    2017-01-01

    Although careers in science, technology, engineering, and mathematics have expanded in the United States, science literacy skills for K-12 students have declined from 2001 to 2011. Limited research has been conducted on the impact of science enrichment programs on the science literacy skills of K-12 students, particularly in marine science. The…

  4. Science Festivals: Grand Experiments in Public Outreach

    Science.gov (United States)

    Hari, K.

    2015-12-01

    Since the Cambridge Science Festival launched in 2007, communities across the United States have experimented with the science festival format, working out what it means to celebrate science and technology. What have we learned, and where might we go from here? The Science Festival Alliance has supported and tracked developments among U.S. festivals, and this presentation will present key findings from three years of independent evaluation. While science festivals have coalesced into a distinct category of outreach activity, the diversity of science festival initiatives reflects the unique character of the regions in which the festivals are organized. This symposium will consider how festivals generate innovative public programming by adapting to local conditions and spur further innovation by sharing insights into such adaptations with other festivals. With over 55 annual large scale science festivals in the US alone, we will discuss the implications of a dramatic increase in future festival activity.

  5. Map of the Physical Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Boyack, Kevin W.

    1999-07-02

    Various efforts to map the structure of science have been undertaken over the years. Using a new tool, VxInsight{trademark}, we have mapped and displayed 3000 journals in the physical sciences. This map is navigable and interactively reveals the structure of science at many different levels. Science mapping studies are typically focused at either the macro-or micro-level. At a macro-level such studies seek to determine the basic structural units of science and their interrelationships. The majority of studies are performed at the discipline or specialty level, and seek to inform science policy and technical decision makers. Studies at both levels probe the dynamic nature of science, and the implications of the changes. A variety of databases and methods have been used for these studies. Primary among databases are the citation indices (SCI and SSCI) from the Institute for Scientific Information, which have gained widespread acceptance for bibliometric studies. Maps are most often based on computed similarities between journal articles (co-citation), keywords or topics (co-occurrence or co-classification), or journals (journal-journal citation counts). Once the similarity matrix is defined, algorithms are used to cluster the data.

  6. Science-based occupations and the science curriculum: Concepts of evidence

    Science.gov (United States)

    Aikenhead, Glen S.

    2005-03-01

    What science-related knowledge is actually used by nurses in their day-to-day clinical reasoning when attending patients? The study investigated the knowledge-in-use of six acute-care nurses in a hospital surgical unit. It was found that the nurses mainly drew upon their professional knowledge of nursing and upon their procedural understanding that included a common core of concepts of evidence (concepts implicitly applied to the evaluation of data and the evaluation of evidence - the focus of this research). This core included validity triangulation, normalcy range, accuracy, and a general predilection for direct sensual access to a phenomenon over indirect machine-managed access. A cluster of emotion-related concepts of evidence (e.g. cultural sensitivity) was also discovered. These results add to a compendium of concepts of evidence published in the literature. Only a small proportion of nurses (one of the six nurses in the study) used canonical science content in their clinical reasoning, a result consistent with other research. This study also confirms earlier research on employees in science-rich workplaces in general, and on professional development programs for nurses specifically: canonical science content found in a typical science curriculum (e.g. high school physics) does not appear relevant to many nurses' knowledge-in-use. These findings support a curriculum policy that gives emphasis to students learning how to learn science content as required by an authentic everyday or workplace context, and to students learning concepts of evidence.

  7. Is the United States losing ground in science? A global perspective on the world science system

    NARCIS (Netherlands)

    Leydesdorff, L.; Wagner, C.S.

    2009-01-01

    Based on the Science Citation Index-Expanded web-version, the USA is still by far the strongest nation in terms of scientific performance. Its relative decline in percentage share of publications is largely due to the emergence of China and other Asian nations. In 2006, China has become the second

  8. Research in Library and Information Science and the Contribution of Ranganathan.

    Science.gov (United States)

    Mangla, P. B.

    1984-01-01

    Traces historical developments and recent trends in library and information science research in United States, Great Britain, and India; discusses factors contributing to developments in United States and United Kingdom; and reviews Ranganathan's contributions in detail. Some factors hindering research in India and areas which require research are…

  9. Consistent adoption of the International System of Units (SI) in nuclear science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Klumpar, J; Kovar, Z [Ceskoslovenska Akademie Ved, Prague. Laborator Radiologicke Dozimetrie; Sacha, J [Slovenska Akademia Vied, Bratislava (Czechoslovakia). Fyzikalny Ustav

    1975-11-01

    The principles are stressed behind a consistent introduction of the International System of Units (SI) in Czechoslovakia complying with the latest edition of the Czechoslovak Standard CSN 01 1300 on the prescribed system of national and international units. The use of special and auxiliary units in nuclear physics and technology is discussed, particular attention being devoted to the units of activity and to the time units applied in radiology. Conversion graph and tables are annexed.

  10. Regaining the Edge in Urban Education: Mathematics and Sciences.

    Science.gov (United States)

    Gallon, Dennis P., Ed.

    In order to remain competitive in the world economy, the United States must develop and improve mathematics and science education. Given that the future workforce in this country will be comprised largely of women and minorities, groups traditionally not entering mathematics and science careers, special recruitment and retention efforts must be…

  11. Doing, talking and writing science: A discourse analysis of the process of resemiotization in a middle school lab-based science class

    Science.gov (United States)

    Wright, Laura J.

    This study examines students' sense making practices in a middle school science class from a discourse analytic perspective. Using Mediated Discourse Analysis (MDA) (Scollon 1998, 2001) and interactional sociolinguistics (Gumperz 1999, 2001, Schiffrin 1994), my research seeks to enrich findings from recent sociocultural studies of science classrooms that focus on doing, talking and writing science (Roth 2005, Kress, et al. 2002, Halliday & Martin 1993, Lemke 1990). Within a middle school science classroom, these fundamental activities form a nexus of practice (Scollon 1998, 2001) basic to science literacy (AAAS 1989) and reflective of the work of practicing scientists. Moreover, students' engagement in these practices provides insight into the cultural production and reproduction of science and scientist. I first examine how the students' curriculum text encourages these three scientific practices and then trace students' uptake; that is, how they subsequently do, talk, and write science throughout the course of the unit. I argue that learning science with this curriculum unit requires students to resemiotize (Iedema 2001, 2003) first hand experience so they can represent their knowledge cohesively and coherently in evaluable forms. Ultimately, students must transform language from the curriculum text and their teacher into action in their laboratory activities and action in their laboratory activities into language. In addition, I show how students are apprenticed to the conventionalized practices and voices (Bakhtin 1986) of science (i.e. the scientific register), and how their figures of personhood (Agha 2005) reflect the development of their scientific identities. Overall, I argue that the microanalytic methods I use illuminate how students draw upon curricular resources to become scientifically literate and develop scientific identities.

  12. Looking at Life. Study Guide. Unit A2. ZIM-SCI, Zimbabwe Secondary School Science Project.

    Science.gov (United States)

    Hosking, Bunty

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the first 2 years of secondary school without the aid of qualified teachers and conventional laboratories. This ZIM-SCI study guide presents activities…

  13. Looking at Life. Teacher's Guide. Unit A2. ZIM-SCI, Zimbabwe Secondary School Science Project.

    Science.gov (United States)

    Hosking, Bunty

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the first 2 years of secondary school without the aid of qualified teachers and conventional laboratories. This teaching guide, designed to be read in…

  14. Sustainability Assessment Using a Unit-based Sustainability ...

    African Journals Online (AJOL)

    A sustainability assessment study was performed with three teaching departments at Rhodes University – Ichthyology and Fisheries Science, Anthropology, and Accounting. The assessment used a Unit-based Sustainability Assessment Tool (USAT) and was guided by systems thinking and the ontological framework ...

  15. Managing Natural Resources for Sustainable Livelihoods: Uniting ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2003-07-31

    Jul 31, 2003 ... Management of local resources has a greater chance of a ... Managing Natural Resources for Sustainable Livelihoods: Uniting Science and Participation ... innovative approaches for establishing and sustaining participation and ... A new IDRC-supported project will help improve water conservation and ...

  16. Measurement Science and Training.

    Science.gov (United States)

    Bunderson, C. Victor

    The need for training and retraining is a central element in current discussions about the economy of the United States. This paper is designed to introduce training practitioners to some new concepts about how measurement science can provide a new framework for assessing progress and can add new discipline to the development, implementation, and…

  17. Computer Networking Strategies for Building Collaboration among Science Educators.

    Science.gov (United States)

    Aust, Ronald

    The development and dissemination of science materials can be associated with technical delivery systems such as the Unified Network for Informatics in Teacher Education (UNITE). The UNITE project was designed to investigate ways for using computer networking to improve communications and collaboration among university schools of education and…

  18. Using Art to Enhance the Learning of Math and Science: Developing an Educational Art-Science Kit about Fractal Patterns in Nature

    Science.gov (United States)

    Rao, Deepa

    This study documents the development of an educational art-science kit about natural fractals, whose aim is to unite artistic and scientific inquiry in the informal learning of science and math. Throughout this research, I argue that having an arts-integrated approach can enhance the learner of science and math concepts. A guiding metaphor in this thesis is the Enlightenment-era cabinet of curiosities that represents a time when art and science were unified in the process of inquiry about the natural world. Over time, increased specialization in the practice of arts and science led to a growing divergence between the disciplines in the educational system. Recently, initiatives like STEAM are underway at the national level to integrate "Arts and Design" into the Science, Technology, Engineering, and Math (STEM) formal education agenda. Learning artifacts like science kits present an opportunity to unite artistic and scientific inquiry in informal settings. Although science kits have been introduced to promote informal learning, presently, many science kits have a gap in their design, whereby the activities consist of recipe-like instructions that do not encourage further inquiry-based learning. In the spirit of the cabinet of curiosities, this study seeks to unify visual arts and science in the process of inquiry. Drawing from educational theories of Dewey, Piaget, and Papert, I developed a novel, prototype "art-science kit" that promotes experiential, hands-on, and active learning, and encourages inquiry, exploration, creativity, and reflection through a series of art-based activities to help users learn science and math concepts. In this study, I provide an overview of the design and development process of the arts-based educational activities. Furthermore, I present the results of a pilot usability study (n=10) conducted to receive user feedback on the designed materials for use in improving future iterations of the art-science fractal kit. The fractal kit

  19. Science, society, and America's nuclear waste: Unit 1, Nuclear waste

    International Nuclear Information System (INIS)

    1992-01-01

    This is unit 1 in a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system

  20. Developing Elementary Science PCK for Teacher Education: Lessons Learned from a Second Grade Partnership

    Science.gov (United States)

    Bradbury, Leslie U.; Wilson, Rachel E.; Brookshire, Laura E.

    2017-06-01

    In this self-study, two science educators partnered with two elementary teachers to plan, implement, and reflect on a unit taught in second grade classrooms that integrated science and language arts. The researchers hoped to increase their pedagogical content knowledge (PCK) for elementary science teaching so that they might use their experiences working in an elementary context to modify their practices in their elementary science method instruction. The research question guiding the study was: What aspects of our PCK for elementary science teaching do we as science educators develop by co-planning, co-teaching, and reflecting with second grade teachers? Data include transcripts of planning meetings, oral reflections about the experience, and videos of the unit being enacted. Findings indicate that managing resources for science teaching, organizing students for science learning, and reflecting on science teaching were themes prevalent in the data. These themes were linked to the model of PCK developed by Park and Oliver (Research in Science Education, 38, 261-284, 2008) and demonstrate that we developed PCK for elementary science teaching in several areas. In our discussion, we include several proposed changes for our elementary science methods course based on the outcomes of the study.

  1. Reading, Writing & Rings: Science Literacy for K-4 Students

    Science.gov (United States)

    McConnell, S.; Spilker, L.; Zimmerman-Brachman, R.

    2007-12-01

    Scientific discovery is the impetus for the K-4 Education program, "Reading, Writing & Rings." This program is unique because its focus is to engage elementary students in reading and writing to strengthen these basic academic skills through scientific content. As science has been increasingly overtaken by the language arts in elementary classrooms, the Cassini Education Program has taken advantage of a new cross-disciplinary approach to use language arts as a vehicle for increasing scientific content in the classroom. By utilizing the planet Saturn and the Cassini-Huygens mission as a model in both primary reading and writing students in these grade levels, young students can explore science material while at the same time learning these basic academic skills. Content includes reading, thinking, and hands-on activities. Developed in partnership with the Cassini-Huygens Education and Public Outreach Program, the Bay Area Writing Project/California Writing Project, Foundations in Reading Through Science & Technology (FIRST), and the Caltech Pre-College Science Initiative (CAPSI), and classroom educators, "Reading, Writing & Rings" blends the excitement of space exploration with reading and writing. All materials are teacher developed, aligned with national science and language education standards, and are available from the Cassini-Huygens website: http://saturn.jpl.nasa.gov/education/edu-k4.cfm Materials are divided into two grade level units. One unit is designed for students in grades 1 and 2 while the other unit focuses on students in grades 3 and 4. Each includes a series of lessons that take students on a path of exploration of Saturn using reading and writing prompts.

  2. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 31; Issue 1 ... and Plant Breeding, University of Agricultural Sciences, Bangalore 560 065, India; Biometrics and Bioinformatics Unit, International Rice Research Institute, Los Banos, Philippines ...

  3. Multi-Stakeholder Processes and Innovation Systems towards Science for impact

    NARCIS (Netherlands)

    Vugt, van S.M.; Geene, van J.

    2008-01-01

    Multi_stakeholder processes (MSPs) have become an important phenomena in the work of many of the Science Groups and knowledge units of Wageningen UR. To realise ‘science for impact’ it is increasingly recognized that stakeholder engagement is a critical element. Much remains to be understood about

  4. Implementing climate change adaptation in forested regions of the United States

    Science.gov (United States)

    Jessica E. Halofsky; David L. Peterson; Linda A. Joyce; Constance I. Millar; Janine M. Rice; Christopher W. Swanston

    2014-01-01

    Natural resource managers need concrete ways to adapt to the effects of climate change. Science-management partnerships have proven to be an effective means of facilitating climate change adaptation for natural resource management agencies. Here we describe the process and results of several science-management partnerships in different forested regions of the United...

  5. Middle School Science and Mathematics Teachers' Conceptions of the Nature of Science: A One-Year Study on the Effects of Explicit and Reflective Online Instruction

    Science.gov (United States)

    Wong, Sissy S.; Firestone, Jonah B.; Ronduen, Lionnel G.; Bang, EunJin

    2016-01-01

    Science, Technology, Engineering, and Mathematics (STEM) education has become one of the main priorities in the United States. Science education communities and researchers advocate for integration of STEM disciplines throughout the teaching curriculum. This requires teacher knowledge in STEM disciplines, as well as competence in scientific…

  6. The Science of Social Work and Its Relationship to Social Work Practice

    Science.gov (United States)

    Anastas, Jeane W.

    2014-01-01

    As John Brekke has observed, social work does not use the word "science" to define itself, suggesting a need to articulate a science of social work. This article discusses the science of social work and its relationship to social work practice in the United States, arguing that a "rapprochement" between practice and science…

  7. Improving the primary school science learning unit about force and motion through lesson study

    Science.gov (United States)

    Phaikhumnam, Wuttichai; Yuenyong, Chokchai

    2018-01-01

    The study aimed to develop primary school science lesson plan based on inquiry cycle (5Es) through lesson study. The study focused on the development of 4 primary school science lesson plans of force and motion for Grade 3 students in KKU Demonstration Primary School (Suksasart), first semester of 2015 academic year. The methodology is mixed method. The Inthaprasitha (2010) lesson study cycle was implemented in group of KKU Demonstration Primary School. Instruments of reflection of lesson plan developing included participant observation, meeting and reflection report, lesson plan and other document. The instruments of examining students' learning include classroom observation and achievement test. Data was categorized from these instruments to find the issues of changing and improving the good lesson plan of Thai primary school science learning. The findings revealed that teachers could develop the lesson plans through lesson study. The issues of changing and improving were disused by considering on engaging students related to societal issues, students' prior knowledge, scientific concepts for primary school students, and what they learned from their changing. It indicated that the Lesson Study allowed primary school science teachers to share ideas and develop ideas to improve the lesson. The study may have implications for Thai science teacher education through Lesson Study.

  8. A Special Assignment from NASA: Understanding Earth's Atmosphere through the Integration of Science and Mathematics

    Science.gov (United States)

    Fox, Justine E.; Glen, Nicole J.

    2012-01-01

    Have your students ever wondered what NASA scientists do? Have they asked you what their science and mathematics lessons have to do with the real world? This unit about Earth's atmosphere can help to answer both of those questions. The unit described here showcases "content specific integration" of science and mathematics in that the lessons meet…

  9. Open science versus commercialization: a modern research conflict?

    Science.gov (United States)

    Caulfield, Timothy; Harmon, Shawn He; Joly, Yann

    2012-02-27

    Efforts to improve research outcomes have resulted in genomic researchers being confronted with complex and seemingly contradictory instructions about how to perform their tasks. Over the past decade, there has been increasing pressure on university researchers to commercialize their work. Concurrently, they are encouraged to collaborate, share data and disseminate new knowledge quickly (that is, to adopt an open science model) in order to foster scientific progress, meet humanitarian goals, and to maximize the impact of their research. We present selected guidelines from three countries (Canada, United States, and United Kingdom) situated at the forefront of genomics to illustrate this potential policy conflict. Examining the innovation ecosystem and the messages conveyed by the different policies surveyed, we further investigate the inconsistencies between open science and commercialization policies. Commercialization and open science are not necessarily irreconcilable and could instead be envisioned as complementary elements of a more holistic innovation framework. Given the exploratory nature of our study, we wish to point out the need to gather additional evidence on the coexistence of open science and commercialization policies and on its impact, both positive and negative, on genomics academic research.

  10. Introduction: the human sciences and Cold War America.

    Science.gov (United States)

    Isaac, Joel

    2011-01-01

    Studies of the history of the human sciences during the Cold War era have proliferated over the past decade--in JHBS and elsewhere. This special issue focuses on the connections between the behavioral sciences and the culture and politics of the Cold War in the United States. In the recent literature, there is a tendency to identify the Cold War human sciences with two main paradigms: that of psychocultural analysis, on the one hand, and of the systems sciences, on the other. The essays in the special issue both extend understanding of each of these interpretive frameworks and help us to grasp their interconnection. © 2011 Wiley Periodicals, Inc.

  11. A RWMAC commentary on the Science Policy Research Unit report: UK nuclear decommissioning policy: time for decision

    International Nuclear Information System (INIS)

    1994-04-01

    Chapter 4 of the RWMAC's Twelfth Annual Report discussed nuclear power plant decommissioning strategy. One of the RWMAC's conclusions was that the concept of financial provisioning for power station decommissioning liabilities, which might be passed on to society several generations into the future, deserved further study. A specification for such a study was duly written (Annex 2) and, following consideration of tendered responses, the Science Policy Research Unit (SPRU) at Sussex University, was contracted to carry out the work. The SPRU report stands as a SPRU analysis of the subject. This separate short RWMAC report, which is being released at the same time as the SPRU report, presents the RWMAC's own commentary on the SPRU study. The RWMAC has identified five main issues which should be addressed when deciding on a nuclear plant decommissioning strategy. These are: the technical approach to decommissioning, the basis of financial provisions, treatment of risk, segregation of management of funds, and the need for a wider environmental view. These issues are addressed in this RWMAC report. (author)

  12. Science and Engineering Indicators: Digest 2012. NSB 12-02

    Science.gov (United States)

    National Science Foundation, 2012

    2012-01-01

    The United States holds a preeminent position in science and engineering (S&E) in the world, derived in large part from its long history of public and private investment in S&E research and development (R&D) and education. Investment in R&D, science, technology, and education correlate strongly with economic growth, as well the development of a…

  13. Principles and foundation: national standards on quantities and units in nuclear science field

    International Nuclear Information System (INIS)

    Chen Lishu

    1993-11-01

    The main contents of National Standards on Quantities and units of atomic and nuclear physics (GB 3102.9) and Quantities and Units of nuclear reactions and ionizing radiations (GB 310.10) are presented in which most important quantities with their symbols and definitions in the nuclear scientific field are given. The principles and foundation, including the International System of Units (SI) and its application to the nuclear scientific field, in the setting of the National Standards are explained

  14. China’s rise as a major contributor to science and technology

    Science.gov (United States)

    Xie, Yu; Zhang, Chunni; Lai, Qing

    2014-01-01

    In the past three decades, China has become a major contributor to science and technology. China now employs an increasingly large labor force of scientists and engineers at relatively high earnings and produces more science and engineering degrees than the United States at all levels, particularly bachelor’s. China’s research and development expenditure has been rising. Research output in China has been sharply increasing since 2002, making China the second largest producer of scientific papers after the United States. The quality of research by Chinese scientists has also been improving steadily. However, China’s rise in science also faces serious difficulties, partly attributable to its rigid, top–down administrative system, with allegations of scientific misconduct trending upward. PMID:24979796

  15. Forest science in the South - 2002

    Science.gov (United States)

    Southern Research Station USDA Forest Service

    2003-01-01

    Forest Science in the South includes the Southern Station's accomplishments, emerging research priorities, and products - journal articles, books, Station publications, presentations, and Web postings. This report details budget allocations, highlights collaborative research, includes a directory of research units and experimental forests, and summarizes...

  16. Chemical Sciences Division: Annual report 1992

    International Nuclear Information System (INIS)

    1993-10-01

    The Chemical Sciences Division (CSD) is one of twelve research Divisions of the Lawrence Berkeley Laboratory, a Department of Energy National Laboratory. The CSD is composed of individual groups and research programs that are organized into five scientific areas: Chemical Physics, Inorganic/Organometallic Chemistry, Actinide Chemistry, Atomic Physics, and Physical Chemistry. This report describes progress by the CSD for 1992. Also included are remarks by the Division Director, a description of work for others (United States Office of Naval Research), and appendices of the Division personnel and an index of investigators. Research reports are grouped as Fundamental Interactions (Photochemical and Radiation Sciences, Chemical Physics, Atomic Physics) or Processes and Techniques (Chemical Energy, Heavy-Element Chemistry, and Chemical Engineering Sciences)

  17. "Look at what I am saying": Multimodal science teaching

    Science.gov (United States)

    Pozzer-Ardenghi, Lilian

    Language constitutes the dominant representational mode in science teaching, and lectures are still the most prevalent of the teaching methods in school science. In this dissertation, I investigate lectures from a multimodal and communicative perspective to better understand how teaching as a cultural-historical and social activity unfolds; that is, I am concerned with teaching as a communicative event, where a variety of signs (or semiotic resources), expressed in diverse modalities (or modes of communication) are produced and reproduced while the teacher articulates very specific conceptual meanings for the students. Within a trans-disciplinary approach that merges theoretical and methodical frameworks of social and cultural studies of human activity and interaction, communicative and gestures studies, linguistics, semiotics, pragmatics, and studies on teaching and learning science, I investigate teaching as a communicative, dynamic, multimodal, and social activity. My research questions include: What are the resources produced and reproduced in the classroom when the teacher is lecturing? How do these resources interact with each other? What meanings do they carry and how are these associated to achieve the coherence necessary to accomplish the communication of complex and abstract scientific concepts, not only within one lecture, but also within an entire unit of the curricula encompassing various lectures? My results show that, when lecturing, the communication of scientific concepts occur along trajectories driven by the dialectical relation among the various semiotic resources a lecturer makes available that together constitute a unit---the idea. Speech, gestures, and other nonverbal resources are but one-sided expressions of a higher order communicative meaning unit. The iterable nature of the signs produced and reproduced during science lectures permits, supports, and encourages the repetition, variation, and translation of ideas, themes, and languages and

  18. Associateship | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Date of birth: 15 January 1966. Specialization: Computer Science Address during Associateship: Machine Intelligence Unit, Indian Statistical Institute, 203, B T Road, Calcutta 700 035. YouTube; Twitter; Facebook; Blog. Academy News. IAS Logo. 29th Mid-year meeting. Posted on 19 January 2018. The 29th Mid-year ...

  19. Water, law, science

    Science.gov (United States)

    Narasimhan, T. N.

    2008-01-01

    SummaryIn a world with water resources severely impacted by technology, science must actively contribute to water law. To this end, this paper is an earth scientist's attempt to comprehend essential elements of water law, and to examine their connections to science. Science and law share a common logical framework of starting with a priori prescribed tenets, and drawing consistent inferences. In science, observationally established physical laws constitute the tenets, while in law, they stem from social values. The foundations of modern water law in Europe and the New World were formulated nearly two thousand years ago by Roman jurists who were inspired by Greek philosophy of reason. Recognizing that vital natural elements such as water, air, and the sea were governed by immutable natural laws, they reasoned that these elements belonged to all humans, and therefore cannot be owned as private property. Legally, such public property was to be governed by jus gentium, the law of all people or the law of all nations. In contrast, jus civile or civil law governed private property. Remarkably, jus gentium continues to be relevant in our contemporary society in which science plays a pivotal role in exploiting vital resources common to all. This paper examines the historical roots of modern water law, follows their evolution through the centuries, and examines how the spirit of science inherent in jus gentium is profoundly influencing evolving water and environmental laws in Europe, the United States and elsewhere. In a technological world, scientific knowledge has to lie at the core of water law. Yet, science cannot formulate law. It is hoped that a philosophical understanding of the relationships between science and law will contribute to their constructively coming together in the service of society.

  20. Coteaching as a Model for Preservice Secondary Science Teacher Education

    Science.gov (United States)

    Scantlebury, Kathryn; Gallo-Fox, Jennifer; Wassell, Beth

    2008-01-01

    This paper focuses on a 3-year, longitudinal study of the implementation of coteaching, as an innovative approach for preparing high school science teachers enrolled in an undergraduate science teacher education programme located in the United States. The coteaching/co-generative dialogue/co-respect/co-responsibility dialectic is introduced as a…

  1. A review of forensic science higher education programs in the United States: bachelor's and master's degrees.

    Science.gov (United States)

    Tregar, Kristen L; Proni, Gloria

    2010-11-01

    As the number of forensic science programs offered at higher education institutions rises, and more students express an interest in them, it is important to gain information regarding the offerings in terms of courses, equipment available to students, degree requirements, and other important aspects of the programs. A survey was conducted examining the existing bachelor's and master's forensic science programs in the U.S. Of the responding institutions, relatively few were, at the time of the survey, accredited by the forensic science Education Programs Accreditation Commission (FEPAC). In general, the standards of the responding programs vary considerably primarily in terms of their size and subjects coverage. While it is clear that the standards for the forensic science programs investigated are not homogeneous, the majority of the programs provide a strong science curriculum, faculties with advanced degrees, and interesting forensic-oriented courses. © 2010 American Academy of Forensic Sciences.

  2. Nanotechnology and Secondary Science Teacher's Self-Efficacy

    Science.gov (United States)

    Cox, Elena K.

    2012-01-01

    The recommendations of the United States President's Council of Advisors on Science and Technology and the multi-agency National Nanotechnology Initiative (NNI) identified the need to prepare the workforce and specialists in the field of nanotechnology in order for the United States to continue to compete in the global marketplace. There is a…

  3. A New Era of Science Education: Science Teachers' Perceptions and Classroom Practices of Science, Technology, Engineering, and Mathematics (STEM) Integration

    Science.gov (United States)

    Wang, Hui-Hui

    Quality STEM education is the key in helping the United States maintain its lead in global competitiveness and in preparing for new economic and security challenges in the future. Policymakers and professional societies emphasize STEM education by legislating the addition of engineering standards to the existing science standards. On the other hand, the nature of the work of most STEM professionals requires people to actively apply STEM knowledge to make critical decisions. Therefore, using an integrated approach to teaching STEM in K-12 is expected. However, science teachers encounter numerous difficulties in adapting the new STEM integration reforms into their classrooms because of a lack of knowledge and experience. Therefore, high quality STEM integration professional development programs are an urgent necessity. In order to provide these high quality programs, it is important to understand teachers' perceptions and classroom practices regarding STEM integration. A multiple-case study was conducted with five secondary school science teachers in order to gain a better understanding of teachers' perceptions and classroom practices in using STEM integration. This study addresses the following research questions: 1) What are secondary school science teachers' practices of STEM integration? 2) What are secondary science teachers' overall perceptions of STEM integration? and 3) What is the connection between secondary science teachers' perceptions and understanding of STEM integration with their classroom practices? This research aims to explore teachers' perceptions and classroom practices in order to set up the baseline for STEM integration and also to determine STEM integration professional development best practices in science education. Findings from the study provide critical data for making informed decision about the direction for STEM integration in science education in K-12.

  4. Co-authorship of Iranian Researchers in Science, Social Science, Art and Humanities Citation Indexes in the Web of Science between 2000 and 2006

    Directory of Open Access Journals (Sweden)

    Farideh Osareh

    2010-09-01

    Full Text Available The present study determines the co-authorship factor in the Iranian scientific output between 2000 and 2006 as reflected in the science, social science art and humanities citation indexes made available through the Web of Science database. Webometric indicators were used. The data were extracted in plain text from WOS, analyzed using HistCite software and counted in MS Office Excel program. Of the Total of 25320 documents indexed, 24480 documents were in Science Citation Index, 783 in Social Citation Index and 57 in Art and Humanities index. The findings indicated that co-authorship factor in the period studied had been on the rise. The highest participation rate belonged to the documents with two or three authors. General coauthorship factor was 0.59. The year 2006 had the highest coauthorship factor (0.62 while the year 2000 had the least (0.55. Bradford and Lotka laws were applied to the data sets. The Lotka’s Law only held true for the science citation index. The Bradford’s Law, however, held true for all indexes. In all citation indexes, the United States with 1865 documents (7.38 had the highest degree of coauthorship in Iranian scientific output.

  5. Redesign of a health science centre: reflections on co-leadership.

    Science.gov (United States)

    MacTavish, M; Norton, P

    1995-01-01

    Since 1988, the Sunnybrook Health Science Centre has been proactive in re-designing its system toward decentralized management, the purpose being to further enhance patient care. This process has involved numerous changes, among which were the establishment of three large clinical units. These clinical units are not defined following the historic medical model, but group patients with similar service and care needs. Subsequently, each of the clinical units defined Patient Service Units (PSUs). The hospital has chosen a co-leadership model for the lead management at each of the unit levels. This paper describes the model for clinical units.

  6. The United Nations University and Information Development.

    Science.gov (United States)

    Tanaskovic, Ines Wesley

    1994-01-01

    Describes the role of the United Nations University (UNU) in promoting the effective use of new information technologies in support of science and technology for development. The UNU Information and Decision Systems (INDES) project examines the constraints preventing developing nations from using advances in informatics and from integrating their…

  7. Investigating Teachers' Beliefs in the Implementation of Science Inquiry and Science Fair in Three Boston High Schools

    Science.gov (United States)

    De Barros Miller, Anne Marie

    In previous decades, inquiry has been the focus of science education reform in the United States. This study sought to investigate how teachers' beliefs affect their implementation of inquiry science and science fair. It was hypothesized that science teachers' beliefs about inquiry science and science fair are predictive of their implementation of such strategies. A case study approach and semi-structured interviews were employed to collect the data, and an original thematic approach was created to analyze the data. Findings seem to suggest that science teachers who embrace science inquiry and science fair believe these practices enhance students' performance, facilitate their learning experience, and allow them to take ownership of their learning. However, results also suggest that teachers who do not fully embrace inquiry science as a central teaching strategy tend to believe that it is not aligned with standardized tests and requires higher cognitive skills from students. Overall, the study seems to indicate that when inquiry is presented as a prescribed teaching approach, this elicits strong negative feelings/attitudes amongst science teachers, leading them not only to resist inquiry as a teaching tool, but also dissuading them from participating in science fair. Additionally, the findings suggest that such feelings among teachers could place the school at risk of not implementing inquiry science and science fair. In conclusion, the study reveals that science inquiry and science fair should not be prescribed to teachers as a top-down, mandatory approach for teaching science. In addition, the findings suggest that adequate teacher training in content knowledge and pedagogy in science inquiry and science fair should be encouraged, as this could help build a culture of science inquiry and implementation amongst teachers. This should go hand-in-hand with offering mentoring to science teachers new to inquiry and science fair for 2-5 years.

  8. Basic science and energy research sector profile: Background for the National Energy Strategy

    Energy Technology Data Exchange (ETDEWEB)

    March, F.; Ashton, W.B.; Kinzey, B.R.; McDonald, S.C.; Lee, V.E.

    1990-11-01

    This Profile report provides a general perspective on the role of basic science in the spectrum of research and development in the United States, and basic research's contributions to the goals of the National Energy Strategy (NES). It includes selected facts, figures, and analysis of strategic issues affecting the future of science in the United States. It is provided as background for people from government, the private sector, academia, and the public, who will be reviewing the NES in the coming months; and it is intended to serve as the basis for discussion of basic science issues within the context of the developing NES.

  9. Environmental challenges threatening the growth of urban agriculture in the United States.

    Science.gov (United States)

    Wortman, Sam E; Lovell, Sarah Taylor

    2013-09-01

    Urban agriculture, though often difficult to define, is an emerging sector of local food economies in the United States. Although urban and agricultural landscapes are often integrated in countries around the world, the establishment of mid- to large-scale food production in the U.S. urban ecosystem is a relatively new development. Many of the urban agricultural projects in the United States have emerged from social movements and nonprofit organizations focused on urban renewal, education, job training, community development, and sustainability initiatives. Although these social initiatives have traction, critical knowledge gaps exist regarding the science of food production in urban ecosystems. Developing a science-based approach to urban agriculture is essential to the economic and environmental sustainability of the movement. This paper reviews abiotic environmental factors influencing urban cropping systems, including soil contamination and remediation; atmospheric pollutants and altered climatic conditions; and water management, sources, and safety. This review paper seeks to characterize the limited state of the science on urban agricultural systems and identify future research questions most relevant to urban farmers, land-use planners, and environmental consultants. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. A report from the second US/Japan workshop on global change research: Environmental response technologies (mitigation and adaptation). United States-Japan Science and Technology Agreement

    Energy Technology Data Exchange (ETDEWEB)

    Edgerton, S. [comp.] [National Science Foundation, Washington, DC (United States). Committee on Earth and Environmental Sciences; Mizuno, Tateki [comp.] [National Inst. for Resources and Environment, MITI (Japan)

    1993-12-31

    The Second US - Japan Workshop on Global Change: Environmental Response Technologies for Global Change was hosted by the Program on Resources at the East-West Center, in Honolulu, Hawaii on February 1--3, 1993, on behalf of the United States Committee on Earth and Environmental Sciences (CEES) of the Federal Coordinating Council for Science, Engineering, and Technology (FCCSET). This workshop brought together over fifty leading scientists from the two countries to review existing technologies and to identify needed research on the development of new technologies for mitigation and adaptation of global change. The Workshop was organized around three areas of research: (1) capture, fixation/utilization, and disposal of CO{sub 2} (e.g. CO{sub 2}, separation and capture technologies, ocean and land disposal of CO{sub 2}; (2) energy production and conservation technologies to reduce greenhouse gas emissions (e.g. combustion efficiency, non-carbon based energy technologies, energy conservation technologies); and (3) adaptation technologies and practices related to global climate change (e.g., adaptation responses of crops to climate change, adapting urban infrastructure for climate change). Priorities for joint research in each of these areas were discussed. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  11. Developing "Butterfly Warriors": A Case Study of Science for Citizenship

    Science.gov (United States)

    Chen, Junjun; Cowie, Bronwen

    2013-01-01

    Given worldwide concern about a decline in student engagement in school science and an increasing call for science for citizenship in New Zealand Curriculum, this study focused on a butterfly unit that investigated how students in a year-4 primary classroom learnt about New Zealand butterflies through thinking, talking, and acting as citizen…

  12. Earth Science Informatics - Overview

    Science.gov (United States)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.The talk will present an overview of current efforts in ESI, the role members of IEEE GRSS play, and discuss

  13. Activity and Action: Bridging Environmental Sciences and Environmental Education

    Science.gov (United States)

    Tal, Tali; Abramovitch, Anat

    2013-01-01

    The main goal of this study was to examine the Environmental Workshop unit taught to Environmental Sciences majors in the high schools in Israel and learn if, and in what ways, this unit could become a model for environmental education throughout the high school curriculum. We studied the special characteristics of the Environmental Workshop (EW)…

  14. Inquiry-based Science Education Competence of Primary School Teachers: A Delphi Study

    NARCIS (Netherlands)

    Alake-Tuenter, E.; Biemans, H.J.A.; Tobi, H.; Mulder, M.

    2013-01-01

    Earlier, extracted inquiry-based science teaching competency elements and domains from the international literature were compared to the United States' National Science Teaching Standards. The present Delphi study aimed to validate the findings for the Netherlands, where such standards are lacking.

  15. An overview of the United States government's space and science policy-making process

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    A brief overview of the basic elements of the US space and science policy-making apparatus will be presented, focussing on insights into the interactions among the principal organizations, policy-making bodies and individual participants and their respective impact on policy outcomes. Several specific examples will be provided to illustrate the points made, and in the conclusion there will be some observations on current events in the US that may shape the outcome for the near-term future of US space and science policy in several areas.

  16. Observing Some Life Cycles. Teacher's Guide. Unit E3. ZIM-SCI, Zimbabwe Secondary School Science Project.

    Science.gov (United States)

    Chitepo, Thoko; And Others

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the first 2 years of secondary school without the aid of qualified teachers and conventional laboratories. This teaching guide contains instructional…

  17. CSIR eNews: Materials science and manufacturing

    CSIR Research Space (South Africa)

    CSIR

    2009-09-01

    Full Text Available knowledge and networks within these fields. A major competitive advantage is the wide coverage of materials (e.g. fibres, textiles, polymers, ceramics, composites, metals) and manufacturing disciplines within one unit. This enables CSIR Materials Science...

  18. CSIR eNews: Materials science and manufacturing

    CSIR Research Space (South Africa)

    CSIR

    2007-12-01

    Full Text Available knowledge and networks within these fields. A major competitive advantage is the wide coverage of materials (e.g. fibres, textiles, polymers, ceramics, composites, metals) and manufacturing disciplines within one unit. This enables CSIR Materials Science...

  19. CSIR eNews: Materials science and manufacturing

    CSIR Research Space (South Africa)

    CSIR

    2008-12-01

    Full Text Available knowledge and networks within these fields. A major competitive advantage is the wide coverage of materials (e.g. fibres, textiles, polymers, ceramics, composites, metals) and manufacturing disciplines within one unit. This enables CSIR Materials Science...

  20. CSIR eNews: Materials science and manufacturing

    CSIR Research Space (South Africa)

    CSIR

    2008-03-01

    Full Text Available knowledge and networks within these fields. A major competitive advantage is the wide coverage of materials (e.g. fibres, textiles, polymers, ceramics, composites, metals) and manufacturing disciplines within one unit. This enables CSIR Materials Science...

  1. Forces. 'O' Level Teacher's Guide. Unit 1. ZIM-SCI, Zimbabwe Secondary School Science Project. Year 3.

    Science.gov (United States)

    Udwin, Martin

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the third year of secondary school without the aid of qualified teachers and conventional laboratories. This teaching guide, designed to be read in…

  2. Women and Spatial Change: Learning Resources for Social Science Courses.

    Science.gov (United States)

    Rengert, Arlene C., Ed.; Monk, Janice J., Ed.

    Six units focusing on the effects of spatial change on women are designed to supplement college introductory courses in geography and the social sciences. Unit 1, Woman and Agricultural Landscapes, focuses on how women contributed to landscape change in prehistory, women's impact on the environment, and the hypothesis that women developed…

  3. Internet application: production-technical information system MoNET

    International Nuclear Information System (INIS)

    Tomiga, J.

    2004-01-01

    MoNET is the production-technical information system supporting engineering, operational and maintenance processes of distribution network administrator. It utilizes the model of distribution network that is situated in the geo-space relational database. The geo-space database represents an information base of operational-technical processes. It contains elements and equipment s of the distribution network, failures, operational events, maintenance records, but also, parcels, reference planimetry, e.g. and other subjects for which is relevant the positional datum - geo-space information. MoNET is typically exploited in the fields: - evidence of the subjects and equipment of network, technical documentation; - property administration; - planning of network development, support of designing and construction; - technical calculation; - breakdown controller centre; - maintenance management. MoNET can be implemented as the desktop application, however its first benefit is derived from its usage as the intranet application MoNET WEB for the whole enterprise or organisation. This version enables an unrestricted number of end-users to enter this system. The end-users don't need any special software to enter the data of MoNet WEB application, the pre-installed Internet Explorer will do. (author)

  4. Revolutions in Science and Technology: Future Threats to US National Security

    Science.gov (United States)

    2011-04-01

    to Iran, the Stuxnet virus is known to have affected computers in Indonesia, India, Australia, Malaysia , Pakistan, the United Kingdom, and the United...Bioterrorism: Biodefense Strategy, Practice, and Science , Vol. 4, No.3, 2006. "’ Julie E. Fischer, Stewardship or Censorship : Balancing Biosecurity

  5. Forces. 'O' Level Study Guide. Unit 1. ZIM-SCI, Zimbabwe Secondary School Science Project. Year 3.

    Science.gov (United States)

    Udwin, Martin

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the third year of secondary school without the aid of qualified teachers and conventional laboratories. This ZIM-SCI study guide is a five-part unit…

  6. Incorporating Argumentation through Forensic Science

    Science.gov (United States)

    Wheeler, Lindsay B.; Maeng, Jennifer L.; Smetana, Lara K.

    2014-01-01

    This article outlines how to incorporate argumentation into a forensic science unit using a mock trial. Practical details of the mock trial include: (1) a method of scaffolding students' development of their argument for the trial, (2) a clearly outlined set of expectations for students during the planning and implementation of the mock…

  7. Physical Science-Supplement: Project Oriented.

    Science.gov (United States)

    Nederland Independent School District, TX.

    GRADES OR AGES: No mention; appears to be for secondary grades. SUBJECT MATTER: Physical sciences for slow learners. ORGANIZATION AND PHYSICAL APPEARANCE: The guide is divided into 11 units, each of which is further subdivided into several chapters. Each chapter is laid out in three columns; column headings are concepts, content, and activities.…

  8. U.S. Competitiveness in Science and Technology

    National Research Council Canada - National Science Library

    Galama, Titus; Hosek, James

    2008-01-01

    ...), problems with U.S. education in science and engineering (S&E), a shortage of S&E workers in the United States, increasing reliance on foreigners in the workforce, and decreasing attractiveness of S&E careers to U.S. citizens...

  9. Developing Young Adults' Representational Competence through Infographic-Based Science News Reporting

    Science.gov (United States)

    Gebre, Engida H.; Polman, Joseph L.

    2016-01-01

    This study presents descriptive analysis of young adults' use of multiple representations in the context of science news reporting. Across one semester, 71 high school students, in a socioeconomically diverse suburban secondary school in Midwestern United States, participated in activities of researching science topics of their choice and…

  10. Global climate change impacts in the United States

    Science.gov (United States)

    2009-06-01

    This report summarizes the science of climate change and the impacts of climate change on the United States, now and in the future. It is largely based on results of the U.S. Global Change Research Program (USGCRP), a and integrates those results wit...

  11. Women in the United States Marine Corps CI/HUMINT Community

    National Research Council Canada - National Science Library

    Reese, Jackson L

    2008-01-01

    The purpose of the researchers Masters of Military Arts and Science thesis is to explore the possibility of including women in the Marine Corps CI/HUMINT community without diminishing the overall unit...

  12. Mixed reaction to science department proposal

    Science.gov (United States)

    The recommendation last month by a presidential commission that a federal Department of Science and Technology be created to encompass “major civilian research and development (R&D) agencies” has elicited a mixed reaction from members of the geophysical sciences community.The Commission on Industrial Competitiveness, created by President Ronald Reagan in June 1983 to study ways to strengthen the ability of the United States to compete in a global marketplace, recommended establishment of a Cabinet-level science department “to promote national interest in and policies for research and technological innovation.” The commission, chaired by John A. Young, president of the Hewlett-Packard Company, was composed primarily of presidents and chief executive officers of major technology corporations but also included members of academia and government. Creation of a federal science and technology 'department is one of many suggestions contained in the commission's final report, Global Competition: The New Reality.

  13. Engaging Life-Sciences Students with Mathematical Models: Does Authenticity Help?

    Science.gov (United States)

    Poladian, Leon

    2013-01-01

    Compulsory mathematics service units for the life sciences present unique challenges: even students who learn some specific skills maintain a negative attitude to mathematics and do not see the relevance of the unit towards their degree. The focus on authentic content and the presentation and teaching of global or qualitative methods before…

  14. USGS science in Menlo Park -- a science strategy for the U.S. Geological Survey Menlo Park Science Center, 2005-2015

    Science.gov (United States)

    Brocher, Thomas M.; Carr, Michael D.; Halsing, David L.; John, David A.; Langenheim, V.E.; Mangan, Margaret T.; Marvin-DiPasquale, Mark C.; Takekawa, John Y.; Tiedeman, Claire

    2006-01-01

    In the spring of 2004, the U.S. Geological Survey (USGS) Menlo Park Center Council commissioned an interdisciplinary working group to develop a forward-looking science strategy for the USGS Menlo Park Science Center in California (hereafter also referred to as "the Center"). The Center has been the flagship research center for the USGS in the western United States for more than 50 years, and the Council recognizes that science priorities must be the primary consideration guiding critical decisions made about the future evolution of the Center. In developing this strategy, the working group consulted widely within the USGS and with external clients and collaborators, so that most stakeholders had an opportunity to influence the science goals and operational objectives.The Science Goals are to: Natural Hazards: Conduct natural-hazard research and assessments critical to effective mitigation planning, short-term forecasting, and event response. Ecosystem Change: Develop a predictive understanding of ecosystem change that advances ecosystem restoration and adaptive management. Natural Resources: Advance the understanding of natural resources in a geologic, hydrologic, economic, environmental, and global context. Modeling Earth System Processes: Increase and improve capabilities for quantitative simulation, prediction, and assessment of Earth system processes.The strategy presents seven key Operational Objectives with specific actions to achieve the scientific goals. These Operational Objectives are to:Provide a hub for technology, laboratories, and library services to support science in the Western Region. Increase advanced computing capabilities and promote sharing of these resources. Enhance the intellectual diversity, vibrancy, and capacity of the work force through improved recruitment and retention. Strengthen client and collaborative relationships in the community at an institutional level.Expand monitoring capability by increasing density, sensitivity, and

  15. A study of assessment indicators for environmental sustainable development of science parks in Taiwan.

    Science.gov (United States)

    Chen, Han-Shen; Chien, Li-Hsien; Hsieh, Tsuifang

    2013-08-01

    This study adopted the ecological footprint calculation structure to calculate the ecological footprints of the three major science parks in Taiwan from 2008 to 2010. The result shows that the ecological footprints of the Hsinchu Science Park, the Central Taiwan Science Park, and the Southern Taiwan Science Park were about 3.964, 2.970, and 4.165 ha per capita. The ecological footprint (EF) of the Central Taiwan Science Park was the lowest, meaning that the influence of the daily operations in the Central Taiwan Science Park on the environment was rather low. Secondly, the population density was relatively high, and the EF was not the highest of the Hsinchu Science Park, meaning that, while consuming ecological resources, the environmental management done was effective. In addition, the population density in Southern Taiwan Science Park is 82.8 units, lower than that of Hsinchu Science Park, but its ecological footprint per capita is 0.201 units, higher than Hsinchu, implying its indicator management has space for improvement. According to the analysis result above, in the science parks, the percentages of high-energy-consuming industries were rather high. It was necessary to encourage development of green industries with low energy consumption and low pollution through industry transformation.

  16. Unit: Petroleum, Inspection Pack, National Trial Print.

    Science.gov (United States)

    Australian Science Education Project, Toorak, Victoria.

    This is a National Trial Print of a unit on petroleum developed for the Australian Science Education Project. The package contains the teacher's edition of the written material and a script for a film entitled "The Extraordinary Experience of Nicholas Nodwell" emphasizing the uses of petroleum and petroleum products in daily life and…

  17. Evaluating Educational Resources for Inclusion in the Dig Texas Instructional Blueprints for Earth & Space Science

    Science.gov (United States)

    Jacobs, B. E.; Bohls-Graham, E.; Martinez, A. O.; Ellins, K. K.; Riggs, E. M.; Serpa, L. F.; Stocks, E.; Fox, S.; Kent, M.

    2014-12-01

    Today's instruction in Earth's systems requires thoughtful selection of curricula, and in turn, high quality learning activities that address modern Earth science. The Next Generation Science Standards (NGSS), which are intended to guide K-12 science instruction, further demand a discriminating selection process. The DIG (Diversity & Innovation in Geoscience) Texas Instructional Blueprints attempt to fulfill this practice by compiling vetted educational resources freely available online into units that are the building blocks of the blueprints. Each blueprint is composed of 9 three-week teaching units and serves as a scope and sequence for teaching a one-year Earth science course. In the earliest stages of the project, teams explored the Internet for classroom-worthy resources, including laboratory investigations, videos, visualizations, and readings, and submitted the educational resources deemed suitable for the project into the project's online review tool. Each team member evaluated the educational resources chosen by fellow team members according to a set of predetermined criteria that had been incorporated into the review tool. Resources rated as very good or excellent by all team members were submitted to the project PIs for approval. At this stage, approved resources became candidates for inclusion in the blueprint units. Team members tagged approved resources with descriptors for the type of resource and instructional strategy, and aligned these to the Texas Essential Knowledge and Skills for Earth and Space Science and the Earth Science Literacy Principles. Each team then assembled and sequenced resources according to content strand, balancing the types of learning experiences within each unit. Once units were packaged, teams then considered how they addressed the NGSS and identified the relevant disciplinary core ideas, crosscutting concepts, and science and engineering practices. In addition to providing a brief overview of the project, this

  18. Concerns and professional development needs of science faculty at Taibah University in adopting blended learning

    Science.gov (United States)

    Al-Sarrani, Nauaf

    questions were on blended learning concerns comments (question 36, which had 10 units), professional development activities, support, or incentive requested (question 74, which had 28 units), and the most important professional development activities, support, or incentive (question 75, which had 37 units). These questions yielded 75 units, 23 categories and 8 themes that triangulated with the quantitative data. These 8 themes were then combined to obtain overall themes for all qualitative questions in the study. The two most important themes were "Professional development" with three categories; Professional development through workshops (10 units), Workshops (10 units), Professional development (5 units) and the second overall theme was "Technical support" with two categories: Internet connectivity (4 units), and Technical support (4 units). Finally, based on quantitative and qualitative data, the summary, conclusions, and recommendations for Taibah University regarding faculty adoption of BL in teaching were presented. The recommendations for future studies focused on Science faculty Level of Use and technology use in Saudi universities.

  19. Transnational science during the Cold War: the case of Chinese/American scientists.

    Science.gov (United States)

    Wang, Zuoyue

    2010-06-01

    This essay examines the experiences of about five thousand Chinese students/scientists in the United States after the Communist takeover of mainland China in 1949. These experiences illustrate the often hidden transnational movements of people, instruments, and ideas in science and technology across the Iron Curtain during the Cold War. I argue that those hundreds who returned to China represented a partial "Americanization" of Chinese science and technology, while the rest of the group staying in the United States contributed to a transnationalization of the American scientific community.

  20. The Climate Science Special Report: Arctic Changes and their Effect on Alaska and the Rest of the United States

    Science.gov (United States)

    Taylor, P. C.

    2017-12-01

    Rapid and visible climate change is happening across the Arctic, outpacing global change. Annual average near-surface air temperatures across the Arctic are increasing at more than twice the rate of global average surface temperature. In addition to surface temperature, all components of the Arctic climate system are responding in kind, including sea ice, mountain glaciers and the Greenland Ice sheet, snow cover, and permafrost. Many of these changes with a discernable anthropogenic imprint. While Arctic climate change may seem physically remote to those living in other regions of the planet, Arctic climate change can affect the global climate influencing sea level, the carbon cycle, and potentially atmospheric and oceanic circulation patterns. As an Arctic nation, United States' adaptation, mitigation, and policy decisions depend on projections of future Alaskan and Arctic climate. This chapter of the Climate Science Special Report documents significant scientific progress and knowledge about how the Alaskan and Arctic climate has changed and will continue to change.

  1. U.S. initiatives to strengthen forensic science & international standards in forensic DNA

    Science.gov (United States)

    Butler, John M.

    2015-01-01

    A number of initiatives are underway in the United States in response to the 2009 critique of forensic science by a National Academy of Sciences committee. This article provides a broad review of activities including efforts of the White House National Science and Technology Council Subcommittee on Forensic Science and a partnership between the Department of Justice (DOJ) and the National Institute of Standards and Technology (NIST) to create the National Commission on Forensic Science and the Organization of Scientific Area Committees. These initiatives are seeking to improve policies and practices of forensic science. Efforts to fund research activities and aid technology transition and training in forensic science are also covered. The second portion of the article reviews standards in place or in development around the world for forensic DNA. Documentary standards are used to help define written procedures to perform testing. Physical standards serve as reference materials for calibration and traceability purposes when testing is performed. Both documentary and physical standards enable reliable data comparison, and standard data formats and common markers or testing regions are crucial for effective data sharing. Core DNA markers provide a common framework and currency for constructing DNA databases with compatible data. Recent developments in expanding core DNA markers in Europe and the United States are discussed. PMID:26164236

  2. An exploration of the impact of family background factors on the science achievement of Afro-Caribbean and African American students in the United States

    Science.gov (United States)

    Pinder, Patrice J.

    Ogbu and Simons (1998) defined voluntary immigrants as individuals who chose to migrate to the United States (U.S.). Involuntary immigrants are defined as individuals whose ancestors were brought to the U.S. by force (Obgu & Simons, 1998). There have been recent reports indicating that voluntary immigrants are outperforming involuntary immigrants (Fisher, 2005; Williams, Fleming, Jones, & Griffin, 2007). There seems to be a trend in voluntary immigrants exhibiting a higher academic achievement pattern than involuntary immigrants (Fisher, 2005; Rong & Preissle, 1998; Williams et al., 2007). However, the reason for the groups' differences in achievement has not been extensively explored. The primary objective of this research study was to explore the impact of family background on the academic achievement patterns of Afro-Caribbean and African American students in the United States. The study utilized two research designs; a causal-comparative and a correlational design. A questionnaire was distributed to a sample of eighty-seven high school students. Eighteen of the participants were Afro-Caribbean students, and sixty-seven were African American students. Chemistry test scores for the students were also provided. The results of the study indicated that Afro-Caribbean students outperformed African American students on the test of science achievement. The difference was statistically significant (t= 2.43, pstudents' family backgrounds. Moreover, the findings of this study suggest that the positive impact of arrival status on the first-generation of Afro-Caribbean immigrants may be influencing their children's academic success in science. The present study holds a few implications for parents and teachers of immigrant minority students. Additionally, the current researcher has offered several implications for future research on ethnicity, immigration pattern, parenting, and achievement.

  3. A behavioral science/behavioral medicine core curriculum proposal for Japanese undergraduate medical education.

    Science.gov (United States)

    Tsutsumi, Akizumi

    2015-01-01

    Behavioral science and behavioral medicine have not been systematically taught to Japanese undergraduate medical students. A working group under the auspices of Japanese Society of Behavioral Medicine developed an outcome-oriented curriculum of behavioral science/behavioral medicine through three processes: identifying the curriculum contents, holding a joint symposium with related societies, and defining outcomes and proposing a learning module. The behavioral science/behavioral medicine core curriculum consists of 11 units of lectures and four units of practical study. The working group plans to improve the current core curriculum by devising formative assessment methods so that students can learn and acquire attitude as well as the skills and knowledge necessary for student-centered clinical practice.

  4. Increasing student learning through space life sciences education

    Science.gov (United States)

    Moreno, Nancy P.; Kyle Roberts, J.; Tharp, Barbara Z.; Denk, James P.; Cutler, Paula H.; Thomson, William A.

    2005-05-01

    Scientists and educators at Baylor College of Medicine are using space life sciences research areas as themes for middle school science and health instructional materials. This paper discusses study findings of the most recent unit, Food and Fitness, which teaches concepts related to energy and nutrition through guided inquiry. Results of a field test involving more than 750 students are reported. Use of the teaching materials resulted in significant knowledge gains by students as measured on a pre/post assessment administered by teachers. In addition, an analysis of the time spent by each teacher on each activity suggested that it is preferable to conduct all of the activities in the unit with students rather than allocating the same total amount of time on just a subset of the activities.

  5. Language-Based Reasoning in Primary Science

    Science.gov (United States)

    Hackling, Mark; Sherriff, Barbara

    2015-01-01

    Language is critical in the mediation of scientific reasoning, higher-order thinking and the development of scientific literacy. This study investigated how an exemplary primary science teacher scaffolds and supports students' reasoning during a Year 4 materials unit. Lessons captured on video, teacher and student interviews and micro-ethnographic…

  6. Forensic Science Education and Educational Requirements for Forensic Scientists.

    Science.gov (United States)

    Gaensslen, Robert E.

    2002-01-01

    Focuses on criminalistics, which can be understood to mean the activities and specialty areas characteristic of most municipal, county, or state forensic science laboratories in the United States. (DDR)

  7. Water, law, science

    Energy Technology Data Exchange (ETDEWEB)

    Narasimhan, T.N.

    2007-10-17

    In a world with water resources severely impacted bytechnology, science must actively contribute to water law. To this end,this paper is an earth scientist s attempt to comprehend essentialelements of water law, and to examine their connections to science.Science and law share a common logical framework of starting with apriori prescribed tenets, and drawing consistent inferences. In science,observationally established physical laws constitute the tenets, while inlaw, they stem from social values. The foundations of modern water law inEurope and the New World were formulated nearly two thousand years ago byRoman jurists who were inspired by Greek philosophy of reason.Recognizing that vital natural elements such as water, air, and the seawere governed by immutable natural laws, they reasoned that theseelements belonged to all humans, and therefore cannot be owned as privateproperty. Legally, such public property was to be governed by jusgentium, the law of all people or the law of all nations. In contrast,jus civile or civil law governed private property. Remarkably, jusgentium continues to be relevant in our contemporary society in whichscience plays a pivotal role in exploiting vital resources common to all.This paper examines the historical roots of modern water law, followstheir evolution through the centuries, and examines how the spirit ofscience inherent in jus gentium is profoundly influencing evolving waterand environmental laws in Europe, the United States and elsewhere. In atechnological world, scientific knowledge has to lie at the core of waterlaw. Yet, science cannot formulate law. It is hoped that a philosophicalunderstanding of the relationships between science and law willcontribute to their constructively coming together in the service ofsociety.

  8. Approaches for Improving Earth System Science Education in Middle Schools and High Schools in the United States (Invited)

    Science.gov (United States)

    Adams, P. E.

    2009-12-01

    Earth system science is an often neglected subject in the US science curriculum. The state of Kansas State Department of Education, for example, has provided teachers with a curriculum guide for incorporating earth system science as an ancillary topic within the subjects of physics, chemistry, and the biological sciences. While this does provide a means to have earth system science within the curriculum, it relegates earth system science topics to a secondary status. In practice, earth system science topics are considered optional or only taught if there is time within an already an overly crowded curriculum. Given the importance of developing an educated citizenry that is capable of understanding, coping, and deciding how to live in a world where climate change is a reality requires a deeper understanding of earth system science. The de-emphasis of earth system science in favor of other science disciplines makes it imperative to seek opportunities to provide teachers, whose primary subject is not earth system science, with professional development opportunities to develop content knowledge understanding of earth system science, and pedagogical content knowledge (i.e. effective strategies for teaching earth system science). This is a noble goal, but there is no single method. At Fort Hays State University we have developed multiple strategies from face-to-face workshops, on-line coursework, and academic year virtual and face-to-face consultations with in-service and pre-service teachers. A review of the techniques and measures of effectiveness (based on teacher and student performance), and strengths and limitations of each method will be presented as an aid to other institutions and programs seeking to improve the teaching and learning of earth system science in their region.

  9. Values Underpinning STEM Education in the USA: An Analysis of the Next Generation Science Standards

    Science.gov (United States)

    Hoeg, Darren G.; Bencze, John Lawrence

    2017-01-01

    The Next Generation Science Standards (NGSS) were designed to address poor science and math performance in United States schools by inculcating globally competitive science, technology, engineering, and mathematics literacies relevant to participation in future society. Considering the complex network of influences involved in the development of…

  10. Electrifying Engagement in Middle School Science Class: Improving Student Interest Through E-textiles

    Science.gov (United States)

    Tofel-Grehl, Colby; Fields, Deborah; Searle, Kristin; Maahs-Fladung, Cathy; Feldon, David; Gu, Grace; Sun, Chongning

    2017-08-01

    Most interventions with "maker" technologies take place outside of school or out of core area classrooms. However, intervening in schools holds potential for reaching much larger numbers of students and the opportunity to shift instructional dynamics in classrooms. This paper shares one such intervention where electronic textiles (sewable circuits) were introduced into eighth grade science classes with the intent of exploring possible gains in student learning and motivation, particularly for underrepresented minorities. Using a quasi-experimental design, four classes engaged in a traditional circuitry unit while the other four classes undertook a new e-textile unit. Overall, students in both groups demonstrated significant learning gains on standard test items without significant differences between conditions. Significant differences appeared between groups' attitudes toward science after the units in ways that show increasing interest in science by students in the e-textile unit. In particular, they reported positive identity shifts pertaining to their perceptions of the beliefs of their friends, family, and teacher. Findings and prior research suggest that student-created e-textile designs provide opportunities for connections outside of the classroom with friends and family and may shift students' perceptions of their teacher's beliefs about them more positively.

  11. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Faculty of Biotechnology and Biomolecular Science, Department of Cell and Molecular Biology, University Putra Malaysia (UPM), Serdang, 43400, Selangor, Malaysia; Unit of Forensic and Management, Department of Wildlife and National Parks of Peninsular Malaysia, Km10, Jalan Cheras, 56100, Kuala Lumpur, Malaysia ...

  12. Availability, Uniqueness and Perceived Value of Bachelor of Science in Pharmaceutical Sciences (BSPS Programs in the United States

    Directory of Open Access Journals (Sweden)

    Rabaa M. Al-Rousan

    2013-12-01

    Full Text Available We describe the uniqueness of the Bachelor of Science in Pharmaceutical Sciences (BSPS degree and the factors that contribute to this uniqueness. A total of 18 colleges and schools that offer a BSPS were identified in the literature and compared. A review of the current literature and university websites was conducted in order to compare and contrast the different BSPS programs. BSPS program directors’ perceptions were evaluated through a 14-item online survey instrument. Of the 16 programs surveyed, seven (43.8% responded to the survey. The respondents agreed that most of the BSPS graduates are placed (from the highest to the lowest at pharmacy school, postgraduate education and in the pharmaceutical industry. This is a timely review of coursework, program lengths and job opportunities for graduates of the BSPS. Currently, the BSPS programs have yet to receive a large amount of attention, but the importance in pharmaceutical education cannot be denied.

  13. A RWMAC commentary on the Science Policy Research Unit Report: UK Nuclear Decommissioning Policy: time for decision

    International Nuclear Information System (INIS)

    Anon.

    1994-04-01

    The Radioactive Waste Management Advisory Committee (RWMAC) is an independent body which advises the Secretaries of State for the Environment, Scotland and Wales, on civil radioactive waste management issues. Chapter 4 of the RWMAC's Twelfth Annual Report discussed nuclear power plant decommissioning strategy. One of the RWMAC's conclusions was that the concept of financial provisioning for power station decommissioning liabilities, which might be passed on to society several generations into the future, deserved further study. A specification for such a study was duly written (Annex 2) and, following consideration of tendered responses, the Science Policy Research Unit (SPRU) at Sussex University, was contracted to carry out the work. The SPRU report stands as a SPRU analysis of the subject. This separate short RWMAC report, which is being released at the same time as the SPRU report, presents the RWMAC's own commentary on the SPRU study. The RWMAC has identified five main issues which should be addressed when deciding on a nuclear plant decommissioning strategy. These are: the technical approach to decommissioning, the basis of financial provisions, treatment of risk, segregation of management of funds, and the need for a wider environmental view. (author)

  14. Lecture programme The reality of science today

    CERN Multimedia

    2007-01-01

    What are the new challenges and realities facing scientific research? What is its place in society today? To answer these questions, the History and Philosophy of Sciences Unit of Geneva University, in collaboration with ASPERA, the European network for astroparticle physics research, has organised a programme of lectures entitled La réalité de la science d’aujourd’hui, enjeux et défis de la diversité. This series of lectures will provide researchers and members of the public with a snapshot of the state of science today from the perspective of laboratories and institutes, and on subjects such as funding policy and technological and legal impact. The first lecture will be given by science historian Dominique Pestre (EHESS & Centre Koyré, Paris), renowned for his contributions to the analysis of science past and present, and notably one of the authors of the work "History of CERN". He will discuss the modern methods of producing scientific knowledge which have been develop...

  15. Energy matters: An investigation of drama pedagogy in the science classroom

    Science.gov (United States)

    Alrutz, Megan

    The purpose of this study is to explore and document how informal and improvisational drama techniques affect student learning in the science classroom. While implementing a drama-based science unit, I examined multiple notions of learning, including, but not limited to, traditional notions of achievement, student understanding, student participation in the science classroom, and student engagement with, and knowledge of, science content. Employing an interpretivist research methodology, as outlined by Fredrick Erickson for qualitative analysis in the classroom, I collected data through personal observations; student and teacher interviews; written, artistic and performed class work; video-recorded class work; written tests; and questionnaires. In analyzing the data, I found strong support for student engagement during drama-based science instruction. The drama-based lessons provided structures that drew students into lessons, created enthusiasm for the science curriculum, and encouraged meaningful engagement with, and connections to, the science content, including the application and synthesis of science concepts and skills. By making student contributions essential to each of the lessons, and by challenging students to justify, explain, and clarify their understandings within a dramatic scenario, the classroom facilitators created a conducive learning environment that included both support for student ideas and intellectual rigor. The integration of drama-based pedagogy most affected student access to science learning and content. Students' participation levels, as well as their interest in both science and drama, increased during this drama-based science unit. In addition, the drama-based lessons accommodated multiple learning styles and interests, improving students' access to science content and perceptions of their learning experience and abilities. Finally, while the drama-based science lessons provided multiple opportunities for solidifying understanding of

  16. Determinants of Political Science Faculty Salaries at the University of California

    Science.gov (United States)

    Grofman, Bernard

    2009-01-01

    Combining salary data for permanent non-emeritus faculty at seven departments of political science within the University of California system with lifetime citation counts and other individual-level data from the Masuoka, Grofman, and Feld (2007a) study of faculty at Ph.D.-granting political science departments in the United States, I analyze…

  17. National Congress of Food Science and Technology

    International Nuclear Information System (INIS)

    1995-01-01

    ATAM is the principal promoter of the diffusion of food science and technology in Mexico with the organization of the XXVI National Congress of Food Science and Technology. Pre-Congress activities were as follow: two first on 'Food legislation in the United States of America' and the second on 'Characterization of food quality', a magisterial desk on the theme 'The challenge of food industry in front of the present Mexico', two round tables: a) Quality assurance systems and risk analysis 'Iso 9000' and b) 'Biotechnological products' and c) 'H Program'. With the ambitious program, the Congress included 234 papers divided in oral presentations and posters on subjects as: nutrition, education, toxicology, additives, gums, fruits, cereals, new products, dairy products, rheology, oleaginous, risk analysis, critical points, statistics and analysis. The foreign participant countries were Venezuela, Spain, Cuba and United States of America. Short communication. (Author)

  18. Library exhibits and programs boost science education

    Science.gov (United States)

    Dusenbery, Paul B.; Curtis, Lisa

    2012-05-01

    Science museums let visitors explore and discover, but for many families there are barriers—such as cost or distance—that prevent them from visiting museums and experiencing hands-on science, technology, engineering, and mathematics (STEM) learning. Now educators are reaching underserved audiences by developing STEM exhibits and programs for public libraries. With more than 16,000 outlets in the United States, public libraries serve almost every community in the country. Nationwide, they receive about 1.5 billion visits per year, and they offer their services for free.

  19. Teaching science as inquiry in US and in Japan: A cross-cultural comparison of science teachers' understanding of, and attitudes toward inquiry-based teaching

    Science.gov (United States)

    Tosa, Sachiko

    Since the publication of the National Science Education Standards in 1996, learning science through inquiry has been regarded as the heart of science education. However, the TIMSS 1999 Video Study showed that inquiry-based teaching has been taking place less in the United States than in Japan. This study examined similarities and differences in how Japanese and American middle-school science teachers think and feel about inquiry-based teaching. Teachers' attitudes toward the use of inquiry in science teaching were measured through a survey instrument (N=191). Teachers' understanding of inquiry-based teaching was examined through interviews and classroom observations in the United States (N=9) and Japan (N=15). The results show that in spite of the variations in teachers' definitions of inquiry-based teaching, teachers in both countries strongly agree with the idea of inquiry-based teaching. However, little inquiry-based teaching was observed in either of the countries for different reasons. The data indicate that Japanese teachers did not generally help students construct their own understanding of scientific concepts in spite of well-planned lesson structures and activity set-ups. On the other hand, the observational data indicate that American teachers often lacked meaningful science content in spite of their high level of pedagogical knowledge. The need for addressing the importance of scientific concepts in teacher preparation programs in higher education institutions in the US is advocated. To the Japanese science education community, the need for teachers' acquisition of instructional strategies for inquiry-based teaching is strongly addressed.

  20. Basic Principles of Animal Science. Reprinted.

    Science.gov (United States)

    Florida State Dept. of Education, Tallahassee.

    The reference book is designed to fulfill the need for organized subject matter dealing with basic principles of animal science to be incorporated into the high school agriculture curriculum. The material presented is scientific knowledge basic to livestock production. Five units contain specific information on the following topics: anatomy and…

  1. Citizen Science and Event-Based Science Education with the Quake-Catcher Network

    Science.gov (United States)

    DeGroot, R. M.; Sumy, D. F.; Benthien, M. L.

    2017-12-01

    The Quake-Catcher Network (QCN, quakecatcher.net) is a collaborative, citizen-science initiative to develop the world's largest, low-cost strong-motion seismic network through the utilization of sensors in laptops and smartphones or small microelectromechanical systems (MEMS) accelerometers attached to internet-connected computers. The volunteer computers monitor seismic motion and other vibrations and send the "triggers" in real-time to the QCN server hosted at the University of Southern California. The QCN servers sift through these signals and determine which ones represent earthquakes and which ones represent cultural noise. Data collected by the Quake-Catcher Network can contribute to better understanding earthquakes, provide teachable moments for students, and engage the public with authentic science experiences. QCN partners coordinate sensor installations, develop QCN's scientific tools and engagement activities, and create next generation online resources. In recent years, the QCN team has installed sensors in over 225 K-12 schools and free-choice learning institutions (e.g. museums) across the United States and Canada. One of the current goals of the program in the United States is to establish several QCN stations in K-12 schools around a local museum hub as a means to provide coordinated and sustained educational opportunities leading up to the yearly Great ShakeOut Earthquake Drill, to encourage citizen science, and enrich STEM curriculum. Several school districts and museums throughout Southern California have been instrumental in the development of QCN. For educators QCN fulfills a key component of the Next Generation Science Standards where students are provided an opportunity to utilize technology and interface with authentic scientific data and learn about emerging programs such as the ShakeAlert earthquake early warning system. For example, Sunnylands Center in Rancho Mirage, CA leads Coachella Valley Hub, which serves 31 K-12 schools, many of

  2. Science Hack Day: an opportunity for public engagement, art/science mash-ups, and inspiration

    Science.gov (United States)

    Bellis, Matthew

    2013-04-01

    The idea of a Science Hack Day (http://sciencehackday.com/) is to put non-scientists (designers, web developers, artists, interested enthusiasts) in a room with scientists and some good ideas, and see what science-themed project they can create in a weekend (about 24 hours of real hacking). The motto of the organizers is ``Get Excited and Make Things with Science!'' I have participated in several of these events including the first one held in the United State in Palo Alto in 2010 and as a remote advisor to participants in Nairobi, Kenya. To these events I have brought particle physics data from both the BaBar and the CMS (Compact Muon Solenoid) experiments, data from the CoGeNT dark matter direct-detection experiment, and my expertise and enthusiasm. The experience has been transformative for me as both a scientist and a science advocate. This talk will recount my experiences with Science Hack Day events in general and detail some projects that have come out of these days, including the Particle Physics Wind Chime (http://www.mattbellis.com/windchime/) and the Standard Model of Cocktail Physics (http://www.physicsdavid.net/2012/11/standard-model-of-cocktail-physics/). Opportunities for other scientists to take part in similar events will be discussed.

  3. Evaluation of a technology unit in a girls' primary school

    Science.gov (United States)

    Eke, Marion; Gardner, Paul L.

    1991-12-01

    Rapid advances in technology are changing the structure of the workforce. There are elite highly-paid hi-tech occupations and low status poorly-paid jobs. Women are unfortunately more likely to be found in the latter category. To allow them to qualify and compete for the higher-status positions, girls need to participate in the physical sciences and in technology studies. However, they are rarely attracted to them in secondary school, possibly because they are already alienated from them by the time they leave primary school. This paper reports some of the outcomes of a curriculum unit taught in two primary school classes in an independent school for girls. The unit was cross-curricular, involving technology, science and other fields of knowledge; it made extensive use of LEGO Technic materials. The evaluation of the unit, based on observations, a teacher journal and pupil questionnaires, focussed upon the issue of whether it assisted the girls to feel happier about working with unfamiliar technology and feel more capable of doing so. Implications for teaching technology are also discussed.

  4. Cyberinfrastructure for e-Science.

    Science.gov (United States)

    Hey, Tony; Trefethen, Anne E

    2005-05-06

    Here we describe the requirements of an e-Infrastructure to enable faster, better, and different scientific research capabilities. We use two application exemplars taken from the United Kingdom's e-Science Programme to illustrate these requirements and make the case for a service-oriented infrastructure. We provide a brief overview of the UK "plug-and-play composable services" vision and the role of semantics in such an e-Infrastructure.

  5. Revising and Updating the Plant Science Components of the Connecticut Vocational Agriculture Curriculum.

    Science.gov (United States)

    Connecticut Univ., Storrs. Dept. of Educational Leadership.

    This curriculum guide provides the plant science components of the vocational agriculture curriculum for Regional Vocational Agriculture Centers. The curriculum is divided into exploratory units for students in the 9th and 10th grades and specialized units for students in grades 11 and 12. The five exploratory units are: agricultural pest control;…

  6. Frontiers in Microbiology: Envisioning a Curriculum Unit for High School Biology

    Energy Technology Data Exchange (ETDEWEB)

    Mark Bloom

    2004-06-18

    Microbiology is undergoing a quiet revolution. Techniques such as polymerase chain reaction, high throughput DNA sequencing, whole genome shotgun sequencing, DNA microarrays, and bioinformatics analyses are greatly aiding our understanding of the estimated one billion species of microbes that inhabit the Earth. Unfortunately, the rapid pace of research in microbiology stands in contrast to the much slower pace of change in educational reform. Biological Sciences Curriculum Study (BSCS) hosted a two-day planning meeting to discuss whether or not a new curriculum unit on microbiology is desirable for the high school audience. Attending the meeting were microbiologists, high school biology teachers, and science educators. The consensus of the participants was that an inquiry-based unit dealing with advances in microbiology should be developed for a high school biology audience. Participants established content priorities for the unit, discussed the unit's conceptual flow, brainstormed potential student activities, and discussed the role of educational technology for the unit. As a result of the planning meeting discussions, BSCS staff sought additional funding to develop, disseminate, and evaluate the Frontiers in Microbiology curriculum unit. This unit was intended to be developed as a replacement unit suitable for an introductory biology course. The unit would feature inquiry-based student activities and provide approximately four weeks of instruction. As appropriate, activities would make use of multimedia. The development and production processes would require about two years for completion. Unfortunately, BSCS staff was not able to attract sufficient funding to develop the proposed curriculum unit. Since there were some unexpended funds left over from the planning meeting, BSCS requested and received permission from DOE to use the balance of the funds to prepare background materials about advances in microbiology that would be useful to teachers. These

  7. Learning Activity Package, Physical Science. LAP Numbers 1, 2, 3, and 4.

    Science.gov (United States)

    Williams, G. J.

    These four units of the Learning Activity Packages (LAPs) for individualized instruction in physical science cover measuring techniques, operations of instruments, metric system heat, matter, energy, elements, atomic numbers, isotopes, molecules, mixtures, compounds, physical and chemical properties, liquids, solids, and gases. Each unit contains…

  8. Research opportunities in photochemical sciences

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    The workshop entitled {open_quotes}Research Opportunities in Photochemical Sciences{close_quotes} was initiated by the U.S. Department of Energy (DOE), Office of Energy Research (ER), Office of Basic Energy Sciences (BES), Division of Chemical Sciences. The National Renewable Energy Laboratory (NREL) in Golden, Colorado was requested by ER to host the workshop. It was held February 5-8, 1996 at the Estes Park Conference Center, Estes Park, CO, and attended by about 115 leading scientists and engineers from the U.S., Japan, and Europe; program managers for the DOE ER and Energy Efficiency and Renewable Energy (EERE) programs also attended. The purpose of the workshop was to bridge the communication gap between the practioneers and supporters of basic research in photochemical science and the practioneers and supporters of applied research and development in technologies related to photochemical science. For the purposes of the workshop the definition of the term {open_quotes}photochemical science{close_quotes} was broadened to include homogeneous photochemistry, heterogeneous photochemistry, photoelectrochemistry, photocatalysis, photobiology (for example, the light-driven processes of biological photosynthesis and proton pumping), artificial photosynthesis, solid state photochemistry, and solar photochemistry. The technologies under development through DOE support that are most closely related to photochemical science, as defined above, are the renewable energy technologies of photovoltaics, biofuels, hydrogen energy, carbon dioxide reduction and utilization, and photocatalysis for environmental cleanup of water and air. Individual papers were processed separately for the United states Department of Energy databases.

  9. Women and girls in science education: Female teachers' and students' perspectives on gender and science

    Science.gov (United States)

    Crotty, Ann

    Science is a part of all students' education, PreK-12. Preparing students for a more scientifically and technologically complex world requires the best possible education including the deliberate inclusion and full contributions of all students, especially an underrepresented group: females in science. In the United States, as elsewhere in the world, the participation of girls and women in science education and professional careers in science is limited, particularly in the physical sciences (National Academy of Sciences [NAS], 2006). The goal of this research study is to gain a better understanding of the perspectives and perceptions of girls and women, both science educators and students, related to gender and participation in science at the time of an important course: high school chemistry. There is a rich body of research literature in science education that addresses gender studies post---high school, but less research that recognizes the affective voices of practicing female science teachers and students at the high school level (Bianchini, Cavazos, & Helms, 2000; Brown & Gilligan, 1992; Gilligan, 1982). Similarly, little is known with regard to how female students and teachers navigate their educational, personal, and professional experiences in science, or how they overcome impediments that pose limits on their participation in science, particularly the physical sciences. This exploratory study focuses on capturing voices (Brown & Gilligan, 1992; Gilligan, 1982) of high school chemistry students and teachers from selected urban and suburban learning communities in public schools in the Capital Region of New York State. Through surveys, interviews, and focus groups, this qualitative study explores the intersection of the students' and teachers' experiences with regard to the following questions: (1) How do female chemistry teachers view the role gender has played in their professional and personal lives as they have pursued education, degree status, and

  10. Wilderness science: A historical perspective

    Science.gov (United States)

    David N. Cole

    2014-01-01

    Wilderness is a relatively new and powerful idea that is still finding its footing in the world of science. Although the intellectual history of wilderness can be traced farther back in time (Nash 2001), as a land classification wilderness is less than a century old, and it was just 50 years ago that wilderness was codified in legislation in the United States. While...

  11. International Degree Mobility in Library andInformation Science

    OpenAIRE

    Hillebrand, Vera; Greifeneder, Elke

    2017-01-01

    This study explores patterns of the geographical mobility for researchers in Library and Information Science and shows that there are clear patterns towards the United States in particular, and more general to countries offering an English language education.

  12. Reflections of middle school students by gender and race/ethnicity on obtaining a successful science education

    Science.gov (United States)

    Mihalik, Bethany

    Sixty-five eighth grade students responded to a science beliefs survey during a science-inquiry lab unit in an action research project to assess whether gender has an effect on how the students perceive their science classes. The survey was given to eighth grade students during the first week of school. Student results were categorized by gender and by race/ethnicity. The middle school where the study took place is fairly diverse with 540 total students of which 48% of them are White, 42% are Black, and 10% are Hispanic. Six female science teachers are employed at the middle school, two per grade. The first unit that is taught in science is inquiry skills, the basics of all science such as graphing, laboratory tools, safety, etc. This unit is taught in 6 th, 7th, and 8th grades, as a part of our standards. Inquiry test results for 8th graders are also given in this thesis, and are categorized again by gender and race/ethnicity. The results of the surveys and the assessment show a gap in the way students think about and complete activities in science. It was exciting to see that the female students scored better overall than male students on an inquiry-based summative assessment, while white students overall scored better than Black and Hispanic students. White males tended to rank science as the class they enjoyed the most of all core classes and thought science was easier than all the other data demographics. The conclusion found was stunning, in that the true gap in student's beliefs about science lies within the different races/ethnicities, rather than just gender alone.

  13. Fighting fires... with science

    CERN Document Server

    Anaïs Schaeffer

    2016-01-01

    CERN firefighters are working with a research centre in the United States to develop more effective firefighting techniques.   One of the UL FSRI’s model houses is set alight... in the interest of science. (Photo: ©UL FSRI) For around ten years, the Underwriters Laboratories Firefighter Safety Research Institute (UL FSRI) has been carrying out scientific research on the various techniques used by firefighters in the United States and around the world. This research has focused on evaluating the effectiveness and safety of current practices worldwide with the aim of developing even better techniques. In many cases the research has shown that a combination of techniques gives the best results. The interiors of the model houses are fully furnished. (Photo: ©UL FSRI) Art Arnalich, who has worked with fire brigades in the United States and Europe and is now a member of CERN’s Fire Brigade, has actively participated in this research since 2013. His knowledge of ...

  14. Advancing perinatal patient safety through application of safety science principles using health IT.

    Science.gov (United States)

    Webb, Jennifer; Sorensen, Asta; Sommerness, Samantha; Lasater, Beth; Mistry, Kamila; Kahwati, Leila

    2017-12-19

    The use of health information technology (IT) has been shown to promote patient safety in Labor and Delivery (L&D) units. The use of health IT to apply safety science principles (e.g., standardization) to L&D unit processes may further advance perinatal safety. Semi-structured interviews were conducted with L&D units participating in the Agency for Healthcare Research and Quality's (AHRQ's) Safety Program for Perinatal Care (SPPC) to assess units' experience with program implementation. Analysis of interview transcripts was used to characterize the process and experience of using health IT for applying safety science principles to L&D unit processes. Forty-six L&D units from 10 states completed participation in SPPC program implementation; thirty-two (70%) reported the use of health IT as an enabling strategy for their local implementation. Health IT was used to improve standardization of processes, use of independent checks, and to facilitate learning from defects. L&D units standardized care processes through use of electronic health record (EHR)-based order sets and use of smart pumps and other technology to improve medication safety. Units also standardized EHR documentation, particularly related to electronic fetal monitoring (EFM) and shoulder dystocia. Cognitive aids and tools were integrated into EHR and care workflows to create independent checks such as checklists, risk assessments, and communication handoff tools. Units also used data from EHRs to monitor processes of care to learn from defects. Units experienced several challenges incorporating health IT, including obtaining organization approval, working with their busy IT departments, and retrieving standardized data from health IT systems. Use of health IT played an integral part in the planning and implementation of SPPC for participating L&D units. Use of health IT is an encouraging approach for incorporating safety science principles into care to improve perinatal safety and should be incorporated

  15. Information Science: Science or Social Science?

    OpenAIRE

    Sreeramana Aithal; Paul P.K.,; Bhuimali A.

    2017-01-01

    Collection, selection, processing, management, and dissemination of information are the main and ultimate role of Information Science and similar studies such as Information Studies, Information Management, Library Science, and Communication Science and so on. However, Information Science deals with some different characteristics than these subjects. Information Science is most interdisciplinary Science combines with so many knowledge clusters and domains. Information Science is a broad disci...

  16. Science and technology in the global Cold War

    CERN Document Server

    Krige, John

    2014-01-01

    The Cold War period saw a dramatic expansion of state-funded science and technology research. Government and military patronage shaped Cold War technoscientific practices, imposing methods that were project oriented, team based, and subject to national-security restrictions. These changes affected not just the arms race and the space race but also research in agriculture, biomedicine, computer science, ecology, meteorology, and other fields. This volume examines science and technology in the context of the Cold War, considering whether the new institutions and institutional arrangements that emerged globally constrained technoscientific inquiry or offered greater opportunities for it. The contributors find that whatever the particular science, and whatever the political system in which that science was operating, the knowledge that was produced bore some relation to the goals of the nation-state. These goals varied from nation to nation; weapons research was emphasized in the United States and the Soviet Unio...

  17. Hearts and minds in the science classroom: The education of a confirmed evolutionist

    Science.gov (United States)

    Jackson, David F.; Doster, Elizabeth C.; Meadows, Lee; Wood, Teresa

    This study traces a heuristic inquiry process from the point of view of a science educator, from a secular-humanist background in the northern United States, attempting to better understand and appreciate a major aspect of religious-influenced culture in the southern United States which has a major bearing on science education in the region. The intellectual and emotional viewpoints of selected scientists, science educators, science teachers, and prospective science teachers are examined regarding the relationship between their orthodox Christian religious beliefs and biological evolutionary theory. We view the prospect of teaching evolution to students with such a religious commitment as a prime example of the severe limitations of cognitively-oriented conceptual change theory. We also view conflicts between religion and science regarding evolution as a bona fide example of a multicultural issue in education. These theoretical perspectives are inconsistent with the common tendency among science professionals to view or treat orthodox Christian students in a manner unconscionable with others - to disrespect their intellect or belittle their motivations, to offer judgments based on stereotypes and prejudices, to ignore threats to personal selfesteem, or to deny the de facto connection of some scientific conceptions to the morals, attitudes, and values of individuals with such religious commitments.Received: 14 June 1994; Revised: 7 November 1994;

  18. Reform of the National Security Science and Technology Enterprise

    National Research Council Canada - National Science Library

    Berry, William; Coffey, Timothy; DeYoung, Donald; Kadtke, James; Loeb, Cheryl

    2008-01-01

    A strong science and technology (S&T) program has been vitally important to American national security since World War II and has to date given the United States a strategic advantage over competitors...

  19. The Effects of Motivation on Student Performance on Science Assessments

    Science.gov (United States)

    Glenn, Tina Heard

    Academic achievement of public school students in the United States has significantly fallen behind other countries. Students' lack of knowledge of, or interest in, basic science and math has led to fewer graduates of science, technology, engineering, and math-related fields (STEM), a factor that may affect their career success and will certainly affect the numbers in the workforce who are prepared for some STEM jobs. Drawing from self-determination theory and achievement theory, the purpose of this correlational study was to determine whether there were significant relationships between high school academic performance in science classes, motivations (self-efficacy, self-regulation, and intrinsic and extrinsic goal orientation), and academic performance in an introductory online college biology class. Data were obtained at 2 points in time from a convenience multiethnic sample of adult male ( n =16) and female (n = 49) community college students in the southeast United States. Correlational analyses indicated no statistically significant relationships for intrinsic or extrinsic goal orientation, self-efficacy, or self-regulation with high school science mean-GPA nor college biology final course grade. However, high school academic performance in science classes significantly predicted college performance in an entry-level online biology class. The implications of positive social change include knowledge useful for educational institutions to explore additional factors that may motivate students to enroll in science courses, potentially leading to an increase in scientific knowledge and STEM careers.

  20. U.S. initiatives to strengthen forensic science & international standards in forensic DNA.

    Science.gov (United States)

    Butler, John M

    2015-09-01

    A number of initiatives are underway in the United States in response to the 2009 critique of forensic science by a National Academy of Sciences committee. This article provides a broad review of activities including efforts of the White House National Science and Technology Council Subcommittee on Forensic Science and a partnership between the Department of Justice (DOJ) and the National Institute of Standards and Technology (NIST) to create the National Commission on Forensic Science and the Organization of Scientific Area Committees. These initiatives are seeking to improve policies and practices of forensic science. Efforts to fund research activities and aid technology transition and training in forensic science are also covered. The second portion of the article reviews standards in place or in development around the world for forensic DNA. Documentary standards are used to help define written procedures to perform testing. Physical standards serve as reference materials for calibration and traceability purposes when testing is performed. Both documentary and physical standards enable reliable data comparison, and standard data formats and common markers or testing regions are crucial for effective data sharing. Core DNA markers provide a common framework and currency for constructing DNA databases with compatible data. Recent developments in expanding core DNA markers in Europe and the United States are discussed. Published by Elsevier Ireland Ltd.

  1. Framework for Disciplinary Writing in Science Grades 6-12: A National Survey

    Science.gov (United States)

    Drew, Sally Valentino; Olinghouse, Natalie G.; Faggella-Luby, Michael; Welsh, Megan E.

    2017-01-01

    This study investigated the current state of writing instruction in science classes (Grades 6-12). A random sample of certified science teachers from the United States (N = 287) was electronically surveyed. Participants reported on their purposes for teaching writing, the writing assignments most often given to students, use of evidence-based…

  2. Cultural Emergence: Theorizing Culture in and from the Margins of Science Education

    Science.gov (United States)

    Wood, Nathan Brent; Erichsen, Elizabeth Anne; Anicha, Cali L.

    2013-01-01

    This special issue of the Journal of Research in Science Teaching seeks to explore conceptualizations of culture that address contemporary challenges in science education. Toward this end, we unite two theoretical perspectives to advance a conceptualization of culture as a complex system, emerging from iterative processes of cultural bricolage,…

  3. Connecting Earth Systems: Developing Holistic Understanding through the Earth-System-Science Model

    Science.gov (United States)

    Gagnon, Valoree; Bradway, Heather

    2012-01-01

    For many years, Earth science concepts have been taught as thematic units with lessons in nice, neat chapter packages complete with labs and notes. But compartmentalized Earth science no longer exists, and implementing teaching methods that support student development of holistic understandings can be a time-consuming and difficult task. While…

  4. Training the Next Generation of Teaching Professors: A Comparative Study of Ph.D. Programs in Political Science

    Science.gov (United States)

    Ishiyama, John; Miles, Tom; Balarezo, Christine

    2010-01-01

    In this article, we investigate the graduate curricula of political science programs and 122 Ph.D.-granting political science programs in the United States and how they seek to prepare political science teachers. We first investigate whether the department offers a dedicated political science course at the graduate level on college teaching, and…

  5. How Is Science Being Taught? Measuring Evidence-Based Teaching Practices across Undergraduate Science Departments

    Science.gov (United States)

    Drinkwater, Michael J.; Matthews, Kelly E.; Seiler, Jacob

    2017-01-01

    While there is a wealth of research evidencing the benefits of active-learning approaches, the extent to which these teaching practices are adopted in the sciences is not well known. The aim of this study is to establish an evidential baseline of teaching practices across a bachelor of science degree program at a large research-intensive Australian university. Our purpose is to contribute to knowledge on the adoption levels of evidence-based teaching practices by faculty within a science degree program and inform our science curriculum review in practical terms. We used the Teaching Practices Inventory (TPI) to measure the use of evidence-based teaching approaches in 129 courses (units of study) across 13 departments. We compared the results with those from a Canadian institution to identify areas in need of improvement at our institution. We applied a regression analysis to the data and found that the adoption of evidence-based teaching practices differs by discipline and is higher in first-year classes at our institution. The study demonstrates that the TPI can be used in different institutional contexts and provides data that can inform practice and policy. PMID:28232589

  6. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. V. K. Kashyap1 Richa Ashma1 Sonali Gaikwad1 B. N. Sarkar2 R. Trivedi1. DNA Typing Unit, Central Forensic Science Laboratory, 30 Gorachand Road, Kolkata 700 014, India; Anthropological Survey of India, 27 Jawaharlal Nehru Road, Kolkata 700 016, India ...

  7. Saltcedar (Tamarix spp.) and Russian Olive (Elaeagnus angustifolia) in the Western United States-A Report on the State of the Science

    Science.gov (United States)

    Shafroth, Patrick

    2010-01-01

    The Salt Cedar and Russian Olive Control Demonstration Act of 2006 (Public Law 109-320) directs the Department of the Interior to submit a report to Congress that includes an assessment of several issues surrounding these two nonnative trees, now dominant components of the vegetation along many rivers in the Western United States. This report was published in 2010 as a U.S. Geological Survey Scientific Investigations Report (available online at http://pubs.usgs.gov/sir/2009/5247). The report was produced through a collaborative effort led by the Bureau of Reclamation and U.S. Geological Survey, with critical contributions from the U.S. Department of Agriculture and from university researchers. The document synthesizes the state of the science and key research needs on the following topics related to management of saltcedar (Tamarix spp.) and Russian olive (Elaeagnus angustifolia) in the Western United States: their distribution and abundance (extent); the potential for water savings associated with controlling these species; considerations related to wildlife use of saltcedar and Russian olive habitat and restored habitats; methods of control and removal; possible utilization of dead biomass following control and removal; and approaches and challenges associated with site revegetation or restoration. A concluding chapter discusses possible long-term management strategies, potentially useful field-demonstration projects, and a planning process for on-the-ground projects involving removal of saltcedar and Russian olive.

  8. UK review of radio science, 1984-1986. Ionosphere and magnetosphere

    International Nuclear Information System (INIS)

    Rishbeth, H.; Jones, D.

    1986-12-01

    The paper contains the United Kingdom (U.K.) review of Radio Science, 1984-1986, covering ionospheric and magnetospheric science. This is the current UK contribution towards an international review published by the International Union of Radio Science (URSI). The UK review is divided into topics prescribed by URSI and covers work that is actually published within the period October 1983 - Sept. 1986, also as prescribed by URSI. The topics discussed in the review include: incoherent and coherent scatter, probing the magnetosphere, plasma instabilities, ionospheric modification, composition, ionization and chemistry and ionospheric dynamics. (U.K.)

  9. Learning Achievement Packages in Sciences-Biology: Cell Theory, Mitosis, Magnification, Wounds.

    Science.gov (United States)

    Solis, Juan D.

    This publication presents four science curriculum units designed to meet the learning problems of students with special language handicaps. The materials are written in both English and Spanish, and deal with topics in biology suitable for students in grades 7 through 11. All four units were classroom tested during 1970-1972 in the Calexico…

  10. United States Foreign Policy and the Second Liberian Civil War

    African Journals Online (AJOL)

    chifaou.amzat

    2013-09-28

    Sep 28, 2013 ... Council for the Development of Social Science Research in Africa, 2013 .... Diaspora groups based in the United States to intervene in the war. Ulti- .... take security sector reform as required by the Abuja II Peace Accord.

  11. Measuring Science Instructional Practice: A Survey Tool for the Age of NGSS

    Science.gov (United States)

    Hayes, Kathryn N.; Lee, Christine S.; DiStefano, Rachelle; O'Connor, Dawn; Seitz, Jeffery C.

    2016-01-01

    Ambitious efforts are taking place to implement a new vision for science education in the United States, in both Next Generation Science Standards (NGSS)-adopted states and those states creating their own, often related, standards. In-service and pre-service teacher educators are involved in supporting teacher shifts in practice toward the new…

  12. Humanities and Social Sciences Books of Ten National Disciplinary Associations, 2000-2009

    Science.gov (United States)

    Wiberley, Stephen E., Jr.

    2016-01-01

    Books are the most important medium of communication in the humanities, a major medium in the social sciences, and a central component of academic library collections. This study examined humanities and social sciences books that won prizes from ten leading United States disciplinary associations between 2000 and 2009. The study extends earlier…

  13. Proposal for a United Nations Basic Space Technology Initiative

    Science.gov (United States)

    Balogh, Werner

    Putting space technology and its applications to work for sustainable economic and social development is the primary objective of the United Nations Programme on Space Applications, launched in 1971. A specific goal for achieving this objective is to establish a sustainable national space capacity. The traditional line of thinking has supported a logical progression from building capacity in basic space science, to using space applications and finally - possibly - to establishing indigenous space technology capabilities. The experience in some countries suggests that such a strict line of progression does not necessarily hold true and that priority given to the establishment of early indigenous space technology capabilities may contribute to promoting the operational use of space applications in support of sustainable economic and social development. Based on these findings and on the experiences with the United Nations Basic Space Science Initiative (UNBSSI) as well as on a series of United Nations/International Academy of Astronautics Workshops on Small Satellites in the Service of Developing Countries, the United Nations Office for Outer Space Affairs (UNOOSA) is considering the launch of a dedicated United Nations Basic Space Technology Initiative (UNBSTI). The initiative would aim to contribute to capacity building in basic space technology and could include, among other relevant fields, activities related to the space and ground segments of small satellites and their applications. It would also provide an international framework for enhancing cooperation between all interested actors, facilitate the exchange of information on best practices, and contribute to standardization efforts. It is expected that these activities would advance the operational use of space technology and its applications in an increasing number of space-using countries and emerging space nations. The paper reports on these initial considerations and on the potential value-adding role

  14. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Assignment of human sprouty 4 gene to chromosome segment 5q32∼33 and analysis of its pattern of expression ... State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, People's Republic of China; United Gene Holdings, Ltd., Shanghai 200092, People's Republic of ...

  15. The Psychology of Simonton's Science: Commentary on Simonton (2009).

    Science.gov (United States)

    Feist, Gregory J

    2009-09-01

    One key assumption of the psychology of science is that psychological factors make certain interests, talents, and abilities more likely and others less likely (Feist, 2006). The line of argument that Simonton (2009, this issue) puts forth-integrating and uniting the meta-literatures on dispositional and developmental influences on scientific and artistic creativity-is not only consistent with this assumption from the psychology of science, but it is also a breeding ground for a host of testable hypotheses and calls for future empirical investigations. Given Simonton's own extraordinary levels of scientific creativity, indeed it would be interesting to turn his ideas back on him to see how his science is a product of his own developmental and dispositional experiences. We'll leave that, however, for future biographers and psychologists of science. © 2009 Association for Psychological Science.

  16. On teaching computer ethics within a computer science department.

    Science.gov (United States)

    Quinn, Michael J

    2006-04-01

    The author has surveyed a quarter of the accredited undergraduate computer science programs in the United States. More than half of these programs offer a 'social and ethical implications of computing' course taught by a computer science faculty member, and there appears to be a trend toward teaching ethics classes within computer science departments. Although the decision to create an 'in house' computer ethics course may sometimes be a pragmatic response to pressure from the accreditation agency, this paper argues that teaching ethics within a computer science department can provide students and faculty members with numerous benefits. The paper lists topics that can be covered in a computer ethics course and offers some practical suggestions for making the course successful.

  17. Foreign Science and Engineering Presence in U.S. Institutions and the Labor Force

    Science.gov (United States)

    2008-07-23

    United States, Washington, DC, May 2005, pp. 17-65. 8 Center for Immigration Studies, Davis, Donald R. and David E. Weinstein , United States Technological...Academy of Sciences, Wm. A. Wulf, President, National Academy of Engineering, and Harvey Fineberg, President, Institute of Medicine, December 13, 2002

  18. Examining Teachers' Hurdles to `Science for All'

    Science.gov (United States)

    Southerland, Sherry; Gallard, Alejandro; Callihan, Laurie

    2011-11-01

    The goal of this research is to identify science teachers' beliefs and conceptions that play an important role in shaping their understandings of and attempts to enact inclusive science teaching practices. We examined the work products, both informal (online discussions, email exchanges) and formal (papers, unit plans, peer reviews), of 14 teachers enrolled in a master's degree course focused on diversity in science teaching and learning. These emerging understandings were member-checked via a series of interviews with a subset of these teachers. Our analysis was conducted in two stages: (1) describing the difficulties the teachers identified for themselves in their attempts to teach science to a wide range of students in their classes and (2) analyzing these self-identified barriers for underlying beliefs and conceptions that serve to prohibit or allow for the teachers' understanding and enactment of equitable science instruction. The teachers' self-identified barriers were grouped into three categories: students, broader social infrastructure, and self. The more fundamental barriers identified included teacher beliefs about the ethnocentrism of the mainstream, essentialism/individualism, and beliefs about the meritocracy of schooling. The implications of these hurdles for science teacher education are discussed.

  19. Plasma Science Committee (PLSC) and study on new opportunities in plasma science and technology

    International Nuclear Information System (INIS)

    1992-01-01

    The Plasma Science Committee (PLSC) of the National Research Council (NRC) is charged with monitoring the health of the field of plasma science in the United States. Accordingly, the Committee identifies and examines both broad and specific issues affecting the field. Regular meetings, teleconferences, briefings from agencies and the scientific community, the formation of study panels to prepare reports, and special symposia are among the mechanisms used by the PLSC to meet its charge. This progress report presents a review of PLSC activities from July 15, 1991 to May 31, 1992. The details of prior activities are discussed in earlier reports. This report also includes the status of activities associated with the PLSC study on opportunities in plasma science and technology. During the above period, the PLSC has continued to track and participate in, when requested, discussions on the health of the field. Much of the perspective of the PLSC has been presented in the recently-published report Research Briefing on Contemporary Problems in Plasma Science. That report has served as the basis for briefings to representatives of the federal government as well as the community-at-large. In keeping with its charge to identify and highlight specific areas for scientific and technological opportunities, the PLSC completed publication of the report Plasma Processing of Materials: Scientific and Technological Opportunities and launched a study on new opportunities in plasma science and technology

  20. African Heath Sciences Vol 7 No 3.p65

    African Journals Online (AJOL)

    FOMCS2

    Conclusion: The burden of HIV infection in the medical emergency unit is high and majority of the patients who ... Key words:HIV/AIDS, Eligibility for antiretroviral therapy, Hospitals, Africa. African ... National Council of Science and Technology.

  1. Military conversion and Science from a global perspective

    International Nuclear Information System (INIS)

    Proctor, J.

    1994-01-01

    The changes that begun in late 1980s in Europe and former Soviet Union have great impact upon political, economic and social conditions of most people in the world, meaning present state and future development of science. This paper deals with the problems of defense conversion and brain drain which provide a uniting global issue for learned societies, academies of science and organizations advancing technology around the world to maintain pressure on decision makers to raise science and technology in their scheme of priorities. Learned societies and academies both non-governmental and government supported have clear roles in defense conversion and related issues of brain drain. The challenge remains: to design and implement structures and processes for the modern world to deal with high technology, basic and applied science with the attendant great concentration of power and resources. Revised procedures for funding transitional structures and processes for sciences are expected to be recommended

  2. Integrating the Teaching of Space Science, Planetary Exploration And Robotics In Elementary And Middle School with Mars Rover Models

    Science.gov (United States)

    Bering, E. A.; Ramsey, J.; Smith, H.; Boyko, B. S.; Peck, S.; Arcenaux, W. H.

    2005-05-01

    The present aerospace engineering and science workforce is ageing. It is not clear that the US education system will produce enough qualified replacements to meet the need in the near future. Unfortunately, by the time many students get to high school, it is often too late to get them pointed toward an engineering or science career. Since some college programs require 6 units of high school mathematics for admission, students need to begin consciously preparing for a science or engineering curriculum as early as 6th or 7th grade. The challenge for educators is to convince elementary school students that science and engineering are both exciting, relevant and accessible career paths. This paper describes a program designed to help provide some excitement and relevance. It is based on the task of developing a mobile robot or "Rover" to explore the surface of Mars. There are two components to the program, a curriculum unit and a contest. The curriculum unit is structured as a 6-week planetary science unit for elementary school (grades 3-5). It can also be used as a curriculum unit, enrichment program or extracurricular activity in grades 6-8 by increasing the expected level of scientific sophistication in the mission design. The second component is a citywide competition to select the most outstanding models that is held annually at a local college or University. Primary (Grades 3-5) and middle school (Grades 6-8) students interested in science and engineering will design and build of a model of a Mars Rover to carry out a specific science mission on the surface of Mars. The students will build the models as part of a 6-week Fall semester classroom-learning or homework project on Mars. The students will be given design criteria for a rover, and be required to do basic research on Mars that will determine the operational objectives and structural features of their rover. This module may be used as part of a class studying general science, earth science, solar system

  3. Application of the Reggio Emilia Approach to Early Childhood Science Curriculum.

    Science.gov (United States)

    Stegelin, Dolores A.

    2003-01-01

    This article focuses on the relevance of the Reggio Emilia approach to early childhood education for science knowledge and content standards for the preK-12 student population. The article includes: (1) a summary of key concepts; (2) a description of the science curriculum standards for K-3 in the United States; and (3) an example of an in-depth…

  4. Enhancing fire science exchange: The Joint Fire Science Program's National Network of Knowledge Exchange Consortia

    Science.gov (United States)

    Vita Wright; Crystal Kolden; Todd Kipfer; Kristine Lee; Adrian Leighton; Jim Riddering; Leana Schelvan

    2011-01-01

    The Northern Rocky Mountain region is one of the most fire-prone regions in the United States. With a history of large fires that have shaped national policy, including the fires of 1910 and 2000 in Idaho and Montana and the Yellowstone fires of 1988, this region is projected to have many large severe fires in the future. Communication about fire science needs and...

  5. Nurses\\' perception of caring behaviors in intensive care units in hospitals of Lorestan University of Medical Sciences, Iran

    Directory of Open Access Journals (Sweden)

    Asadi SE

    2014-11-01

    Full Text Available Background and Objective: Caring is the core of nursing however, different individules have different perceptions of it. Continuous assessment and measurement of caring behaviors results in the identification of their problems. The careful planning of interventions and problem solving will improve care. The aim of this study was to identify nurses' perception of caring behaviors in the intensive care units. Materials and Method: In this descriptive-analytic study, 140 nurses were selected from intensive care units of hospitals affiliated to Lorestan University of Medical Sciences, Iran, using the census method in 2012. The data collection tool was the Caring Behaviors Inventory for Elders (CBI-E. This questionnaire consisted of two parts including demographic information and 28 items related to care. Face and content validity of the Persian version of the questionnaire were provided by professionals, and after deletion of 4 items a 24-item questionnaire was provided. Cronbach's alpha coefficient was calculated to assess reliability (&alpha = 0.71. Data were analyzed using SPSS software version 18 and descriptive-analytic statistics (Kruskal-Wallis test and Mann-Whitney test. Results: Based on the findings, nurses paid more attention to the physical–technical aspects (95.71 ± 12.76 of care in comparison to its psychosocial aspects (75.41 ± 27.91. Nurses had the highest score in care behavior of "timely performance of medical procedures and medication administration". Conclusion: Since nurses paid more attention to the technical aspects of care than its psychosocial aspects, by providing nurses with a correct perception of care, patients can be provided with needs-based care. This will increase patient satisfaction with nursing care, and indirectly result in the positive attitude of patients and society toward the nursing profession and its services. Moreover, nursing education officials can use these results to assist nurses in meeting

  6. On the non-existence of a Bartlett correction for unit root tests

    DEFF Research Database (Denmark)

    Jensen, Jens Ledet; Wood, Andrew T.A.

    1997-01-01

    There has been considerable recent interest in testing for a unit root in autoregressive models, especially in the context of cointegration models in econometrics. The likelihood ratio test for a unit root has non-standard asymptotic behaviour. In particular, when the errors are Gaussian, the lim...... for improved distributional approximations, and the question of whether W admits a Bartlett correction is of interest. In this note we establish that a Bartlett correction does not exist in the simplest unit root model. © 1997 Elsevier Science B.V....

  7. Teaching and Learning Science for Transformative, Aesthetic Experience

    Science.gov (United States)

    Girod, Mark; Twyman, Todd; Wojcikiewicz, Steve

    2010-11-01

    Drawing from the Deweyan theory of experience (1934, 1938), the goal of teaching and learning for transformative, aesthetic experience is contrasted against teaching and learning from a cognitive, rational framework. A quasi-experimental design was used to investigate teaching and learning of fifth grade science from each perspective across an entire school year including three major units of instruction. Detailed comparisons of teaching are given and pre and post measures of interest in learning science, science identity affiliation, and efficacy beliefs are investigated. Tests of conceptual understanding before, after, and one month after instruction reveal teaching for transformative, aesthetic experience fosters more, and more enduring, learning of science concepts. Investigations of transfer also suggest students learning for transformative, aesthetic experiences learn to see the world differently and find more interest and excitement in the world outside of school.

  8. Life Science Literacy of an Undergraduate Population

    Science.gov (United States)

    Medina, Stephanie R.; Ortlieb, Evan; Metoyer, Sandra

    2014-01-01

    Science content knowledge is a concern for educators in the United States because performance has stagnated for the past decade. Investigators designed this study to determine the current levels of scientific literacy among undergraduate students in a freshman-level biology course (a core requirement for majors and nonmajors), identify factors…

  9. Careers in Science: Being a Soil Scientist

    Science.gov (United States)

    Bryce, Alisa

    2015-01-01

    Being a soil scientist is a fascinating and certainly diverse career, which can indeed involve working in a laboratory or diagnosing sick orange trees. However it often involves much, much more. In 2015, as part of the United Nations' "International Year of Soils," Soil Science Australia's (SSA) "Soils in Schools" program…

  10. The Science Standards and Students of Color

    Science.gov (United States)

    Strachan, Samantha L.

    2017-01-01

    In a 2014 report, the National Center for Education Statistics (NCES) projected that by the year 2022, minority students will outnumber non-Hispanic white students enrolled in public schools. As the diversity of the student population in the United States increases, concerns arise about student performance in science classes, especially among…

  11. Capturing Parents' Individual and Institutional Interest Toward Involvement in Science Education

    Science.gov (United States)

    Kaya, Sibel; Lundeen, Cynthia

    2010-11-01

    Parents are generally less involved in their children’s science education (as compared to reading and mathematics) due to low self-efficacy and a lack of home-school communication. This study examined parental interest and attitudes in science as well as the nature of parent-to-child questioning during an interactive home, school, and community collaboration in the southeastern United States. Study results, compiled from observations, exit surveys, and interviews revealed largely positive family interactions and attitudes about science learning and increased parental interest toward involvement in elementary science. Parents frequently used productive questioning techniques during activities. These results imply that successful home, school, and community partnerships may elevate levels of parental participation in their children’s science education and the parents’ perception of themselves as being competent in assisting in science.

  12. Improving middle and high school students' comprehension of science texts

    Directory of Open Access Journals (Sweden)

    Brandi E. JOHNSON

    2011-11-01

    Full Text Available Throughout the United States, many middle and high school students struggle to comprehend science texts for a variety of reasons. Science texts are frequently boring, focused on isolated facts, present too many new concepts at once, and lack the clarity and organization known to improve comprehension. Compounding the problem is that many adolescent readers do not possess effective comprehension strategies, particularly for difficult expository science texts. Some researchers have suggested changing the characteristics of science texts to better assist adolescent readers with understanding, while others have focused on changing the strategies of adolescent readers. In the current paper, we review the literature on selected strategy instruction programs used to improve science text comprehension in middle and high school students and suggest avenues for future research.

  13. Improving middle and high school students' comprehension of science texts

    Directory of Open Access Journals (Sweden)

    Brandi E. Johnson

    2011-10-01

    Full Text Available Throughout the United States, many middle and high school students struggle to comprehend science texts for a variety of reasons. Science texts are frequently boring, focused on isolated facts, present too many new concepts at once, and lack the clarity and organization known to improve comprehension. Compounding the problem is that many adolescent readers do not possess effective comprehension strategies, particularly for difficult expository science texts. Some researchers have suggested changing the characteristics of science texts to better assist adolescent readers with understanding, while others have focused on changing the strategies of adolescent readers. In the current paper, we review the literature on selected strategy instruction programs used to improve science text comprehension in middle and high school students and suggest avenues for future research.

  14. Supporting Ngss-Congruent Instruction in Earth & Space Science Through Educator Implementation and Feedback: Refining the Dig Texas Blueprints

    Science.gov (United States)

    Jacobs, B. E.; Bohls-Graham, C. E.; Ellins, K. K.; Riggs, E. M.; Serpa, L. F.; Stocks, E.; McIver, H.; Sergent, C.

    2015-12-01

    The development of the Next Generation Science Standards (NGSS) as a framework around which to guide K-12 science instruction has generated a call for rigorous curricula that meets the demand for developing a workforce with expertise in tackling modern Earth science challenges. The Diversity and Innovation in Geosciences (DIG) Texas Blueprints project addresses this need for quality, aligned curricula with educator-vetted, freely available resources carefully selected and compiled into three week thematic units that have been aligned with the Earth Science Literacy Principles and the NGSS. These units can then be packaged into customized blueprints for a year-long Earth & Space Science course that engages students in the relevant disciplinary core ideas, crosscutting concepts and science and engineering practices. As part of supporting NGSS-congruent instruction, each unit has extensive scaffolding notes for the learning activities selected for that unit. Designed with both the new and veteran teacher in mind, these scaffolding notes yield information regarding advanced teacher preparation, student prerequisite skills, and potential challenges that might arise during classroom implementation. Feedback from Texas high school teachers implementing the DIG Texas Blueprints in the classroom, in addition to that of university secondary education majors in a preparation course utilizing the blueprints, instigated the most recent revisions to these scaffolding notes. The DIG Texas Blueprints Educator Intern Team charged with these revisions then determined which learning activities became candidates for either inclusion in the refined units, retention as an additional resource, or elimination from the blueprints. This presentation will focus on the development of these scaffolding notes and their role in supporting congruence with the NGSS. A review of the second year of implementation of the blueprints and the feedback that generated the final revisions will be shared

  15. STEM Enrichment Programs and Graduate School Matriculation: The Role of Science Identity Salience

    Science.gov (United States)

    Merolla, David M.; Serpe, Richard T.

    2013-01-01

    Improving the state of science education in the United States has become a national priority. One response to this problem has been the implementation of STEM enrichment programs designed to increase the number of students that enter graduate programs in science. Current research indicates enrichment programs have positive effects for student…

  16. Uncovering Students' Environmental Identity: An Exploration of Activities in an Environmental Science Course

    Science.gov (United States)

    Blatt, Erica

    2014-01-01

    This study at a public high school in the Northeastern United States explores how students' environmental identities are affected by various activities in an Environmental Science course. Data was collected as part of an ethnographic study involving an Environmental Science teacher and her tenth-twelfth grade students. The results focus on…

  17. Microtremor Measurements Over a Non-Producing Reservoir in Dhahran, Saudi Arabia

    Science.gov (United States)

    Popoola, A. K.; Kaka, S. I.

    2011-12-01

    As part of National Science, Technology and Innovation Plan of the King Abdulaziz City for Science and Technology (KACST) program, we are conducting a small-scale pilot passive seismic experiment over a non-producing reservoir to better understand and characterize the origin of various near-surface noises. In this paper, we present the results obtained so far from five stations distributed at various locations of interest over the Dammam Dome structure, which is where the first discovery of oil in Saudi Arabia is situated. One of our stations is located on a concrete foundation structure that used to house the old seismic station at KFUPM. The remaining four stations are situated within the Dammam Dome structure at KFUPM where both middle and upper Rus Formations are exposed. Continuous data was collected at all stations with a Geospace Seismic Recording system manufactured by the OYO Geospace. We systematically selected recordings at all stations at different times of the day in order to check the diurnal variations and site dependences. We analyzed time series data and performed spectral analysis at various frequency range of interest between 0.1-30 Hz. We also looked at microtremor signals between 2 to 3 Hz to see whether or not there exists the correlation between low-frequency microtremors and hydrocarbon bearing structures under the subsurface as reported by various researchers in the region. The results obtained so far show no clear signals between 2-3 Hz. We hope that our ongoing experiment will likely contribute in resolving the ongoing debate on the use of microtremor signals as a direct hydrocarbon indicator by bringing new data and experimental results. Meanwhile, strong signals were consistently observed between 23-25 Hz, specifically at stations located on open grounds. We observed microtremor signals due to site amplifications at frequency < 3Hz with periodic peaks at an average frequency of about10 Hz before the amplification disappears. We also

  18. The contribution of IUPAC to polymer science education

    Czech Academy of Sciences Publication Activity Database

    Chan, C. H.; Fellows, C. M.; Hess, M.; Hiorns, R. C.; Hoven, V. P.; Russell, G. T.; dos Santos, C. G.; Šturcová, Adriana; Theato, P.

    2017-01-01

    Roč. 94, č. 11 (2017), s. 1618-1628 ISSN 0021-9584 Institutional support: RVO:61389013 Keywords : graduate education/research * internet /web-based learning * nomenclature/units/symbols * polymer chemistry Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 1.419, year: 2016

  19. Public Spending on Health Service and Policy Research in Canada, the United Kingdom, and the United States: A Modest Proposal

    Directory of Open Access Journals (Sweden)

    Vidhi Thakkar

    2017-11-01

    Full Text Available Health services and policy research (HSPR represent a multidisciplinary field which integrates knowledge from health economics, health policy, health technology assessment, epidemiology, political science among other fields, to evaluate decisions in health service delivery. Health service decisions are informed by evidence at the clinical, organizational, and policy level, levels with distinct, managerial drivers. HSPR has an evolving discourse spanning knowledge translation, linkage and exchange between research and decision-maker partners and more recently, implementation science and learning health systems. Local context is important for HSPR and is important in advancing health reform practice. The amounts and configuration of national investment in this field remain important considerations which reflect priority investment areas. The priorities set within this field or research may have greater or lesser effects and promise with respect to modernizing health services in pursuit of better value and better population outcomes. Within Canada an asset map for HSPR was published by the national HSPR research institute. Having estimated publiclyfunded research spending in Canada, we sought identify best available comparable estimates from the United States and the United Kingdom. Investments from industry and charitable organizations were not included in these numbers. This commentary explores spending by the United States, Canada, and the United Kingdom on HSPR as a fraction of total public spending on health and the importance of these respective investments in advancing health service performance. Proposals are offered on the merits of common nomenclature and accounting for areas of investigation in pursuit of some comparable way of assessing priority HSPR investments and suggestions for earmarking such investments to total investment in health services spending.

  20. Unit: Electric Circuits, Inspection Pack, National Trial Print.

    Science.gov (United States)

    Australian Science Education Project, Toorak, Victoria.

    As a part of the unit materials in the series produced by the Australian Science Education Project, this teacher edition is primarily composed of a core relating to simple circuits, a test form, and options. Options are given under the headings: Your Invention; "How Long Does a Call Last?"; One, Two, Three Wires; Parallel Circuits; More…